
Oracle® Communications Converged
Application Server
Administrator Guide

Release 8.1
F82334-02
March 2025

Oracle Communications Converged Application Server Administrator Guide, Release 8.1

F82334-02

Copyright © 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xi

My Oracle Support xi

 Revision History

1 Converged Application Server Configuration

Overview of Configuration and Administration Tools 1-1

Administration Console 1-1

WebLogic Scripting Tool (WLST) 1-2

Additional Configuration Methods 1-2

Editing Configuration Files 1-2

Custom JMX Applications 1-2

Common Configuration Tasks 1-3

Getting Started 1-3

Accessing the Administration Console 1-3

Locking and Persisting the Configuration 1-4

Using WLST (JMX) to Configure Converged Application Server 1-5

Configuration MBeans for the SIP Servlet Container 1-5

Locating the Converged Application Server MBeans 1-6

WLST Configuration Examples 1-6

Setting Logging Levels 1-8

Startup Sequence for a Converged Application Server Domain 1-8

Startup Command Options 1-9

Reverting to the Original Boot Configuration 1-10

Configuring Converged Application Server Container Properties 1-10

Configure General SIP Application Server Properties 1-10

Adding Servers to the Converged Application Server Cluster 1-11

Configuring Timer Processing 1-11

Configuring Timer Affinity (Optional) 1-11

Configuring NTP for Accurate SIP Timers 1-12

Configuring Network Connection Settings 1-13

iii

Overview of Network Configuration 1-13

Configuring External IP Addresses in Network Channels 1-14

About IPv4 and IPv6 Support 1-14

Enabling DNS Support 1-15

Configuring Network Channels for SIP or SIPS 1-15

Reconfiguring an Existing Channel 1-16

Creating a New SIP or SIPS Channel 1-16

Configuring Custom Timeout, MTU, and Other Properties 1-17

Configuring SIP Channels for Multihomed Machines 1-19

Configuring Engine Servers to Listen on Any IP Interface 1-19

Configuring Static Source Port for Outbound UDP Packets 1-19

Configuring Listen Addresses for Servers 1-20

Configuring Coherence Cluster Addressing 1-21

Configuring Maximum Content Length 1-21

Using the Engine Cache 1-21

Overview of Engine Caching 1-21

Configuring Engine Caching 1-22

Monitoring and Tuning Cache Performance 1-22

Configuring Coherence 1-22

About Coherence Engine Communication and State Management 1-23

Configuring Coherence for Engine Communication and State Management 1-23

About Call-State Storage and Management for SIP Calls 1-23

Configuring Coherence Call-State Storage 1-24

Monitoring Coherence Call-State Storage 1-26

Configuring Server Failure Detection 1-28

Overview of Failover Detection 1-28

Coherence Cluster Overview 1-28

Split-Brain Handling 1-29

Coherence Configuration 1-29

Cluster Configuration File 1-29

Avoiding and Recovering From Server Failures 1-30

Failure Prevention and Automatic Recovery Features 1-30

High Availability 1-31

Overload Protection 1-31

Redundancy and Failover for Clustered Services 1-31

Automatic Restart for Failed Server Instances 1-32

Managed Server Independence Mode 1-32

Automatic Migration of Failed Managed Servers 1-32

Geographic Redundancy for Regional Site Failures 1-32

Directory and File Backups for Failure Recovery 1-33

Enabling Automatic Configuration Backups 1-33

Storing the Domain Configuration Offline 1-34

iv

Backing Up Logging Servlet Applications 1-34

Backing Up Security Data 1-35

Backing Up Additional Operating System Configuration Files 1-35

Restarting a Failed Administration Server 1-36

Restarting an Administration Server on the Same System 1-36

Restarting an Administration Server on Another System 1-37

Restarting Failed Managed Servers 1-37

Storing Long-Lived Call State Data in an RDBMS 1-38

Overview of Long-Lived Call State Storage 1-38

Requirements and Restrictions 1-38

Configuring RDBMS Call State Storage 1-39

Create the Database Schema 1-39

Configure JDBC Resources 1-40

Configuring Persistence Options (Primary and Secondary Sites) 1-41

Using Persistence Hints in SIP Applications 1-41

Configuring Geographically-Redundant Installations 1-42

Geographic Redundancy 1-42

Situations Best Suited to Use Geo-Redundancy 1-43

Situations Not Suited to Use Geo-Redundancy 1-44

Geo-Redundancy Considerations 1-44

Using Geographically-Redundant SIP Engines 1-44

Example Domain Configurations 1-45

Requirements and Limitations 1-46

Steps for Configuring Geographic Persistence 1-46

Configuring Geographic Redundancy 1-47

Configuring JDBC Resources (Primary and Secondary Sites) 1-47

Configuring Persistence Options (Primary Site Only) 1-48

Configuring JMS Resources Options (Primary Site Only) 1-48

Configuring Persistence Options (Secondary Sites) 1-50

Configuring JMS Resources (Secondary Site Only) 1-50

Configuring Cross Domain Security (Both Primary and Secondary Sites) 1-52

Understanding Geo-Redundant Replication Behavior 1-52

Call State Replication Process 1-52

Call State Processing After Failover 1-52

Removing Backup Call States 1-53

Monitoring Replication Across Regional Sites 1-54

Troubleshooting Replication 1-54

Upgrading Deployed SIP Applications 1-54

Overview of SIP Application Upgrades 1-54

Requirements and Restrictions for Upgrading Deployed Applications 1-55

Steps for Upgrading a Deployed SIP Application 1-55

Assign a Version Identifier 1-56

v

Defining the Version in the Manifest 1-56

Deploy the Updated Application Version 1-56

Undeploy the Older Application Version 1-57

Roll Back the Upgrade Process 1-57

Accessing the Application Name and Version Identifier 1-58

Using Administration Mode 1-58

2 Configuring Infrastructure Components

Configuring the Proxy Registrar 2-1

About Proxy Registrar Configuration 2-1

Setting Authentication for the Proxy Registrar 2-1

Using the Administration Console to Configure Trusted Hosts 2-2

Configuring the Proxy Registrar 2-2

Configure the Proxy 2-3

Configuring the Registrar 2-4

Configuring the Proxy-Required Options for the Sip Server Proxy 2-6

Provisioning Users 2-6

Launching Sash 2-6

Using Sash 2-7

Creating a User 2-11

Deleting a User 2-14

Scripting with Sash 2-14

Error Logging in Sash 2-15

Configuring Diameter Client Nodes and Relay Agents 2-15

Overview of Diameter Protocol Configuration 2-15

About the Diameter Domain Template 2-15

Steps for Configuring Diameter Client Nodes and Relay Agents 2-16

Installing the Diameter Domain Template 2-17

Creating TCP, TLS, and SCTP Network Channels for the Diameter Protocol 2-17

Configuring Two-Way SSL for Diameter TLS Channels 2-19

Configuring and Using SCTP for Diameter Messaging 2-19

Configuring Diameter Nodes 2-19

Creating a New Node Configuration (General Node Configuration) 2-20

Configuring Diameter Applications 2-22

Configuring Peer Nodes 2-28

Configuring Routes 2-29

Example Domain Configuration 2-29

Troubleshooting Diameter Configurations 2-33

vi

3 Monitoring, Tuning, and Troubleshooting

Monitoring, Tuning, and Troubleshooting Overview 3-1

Getting Started: Your System Stack 3-1

Hardware/VM Monitoring, Tuning, and Troubleshooting 3-2

Operating System and CPU Monitoring, Tuning, and Troubleshooting 3-2

Operating System Tuning Recommendations 3-2

JVM Monitoring, Tuning and Troubleshooting 3-3

Converged Application Server Monitoring, Tuning, and Troubleshooting 3-3

Monitoring the Sessions for License Limits 3-4

About the Monitoring of Licenses 3-4

About the License Metrics 3-4

About the Monitoring Process 3-5

Setting Up the Logging Parameters 3-5

Configuring the License Tracking as Startup Command Options 3-5

About the Log Information 3-6

Monitor Messages Per Second 3-7

Configure MPS Monitoring 3-9

Monitoring, Tuning, and Troubleshooting the JVM 3-10

Profiling JVM Performance 3-10

Using Java Flight Recorder 3-10

Using Java Mission Control 3-13

Creating Thread and Heap Dumps Using jcmd 3-14

The Java Control+Break Handler 3-15

Tuning JVM Garbage Collection for Production Deployments 3-16

Goals for Tuning Garbage Collection Performance 3-16

Modifying JVM Parameters in Server Start Scripts 3-16

Tuning Garbage Collection with Oracle JDK 3-17

Avoiding JVM Delays Caused by Random Number Generation 3-17

Troubleshooting Memory Leaks 3-18

Configuring Converged Application Server SNMP 3-18

Overview of Converged Application Server SNMP 3-18

Browsing the MIB 3-19

Configuring SNMP 3-19

Understanding and Responding to SNMP Traps 3-20

Trap Descriptions 3-20

Converged Application Server Debugging and Tuning 3-22

Debugging Issues in the Runtime Environment 3-22

About the Runtime Debug Process 3-22

Recommended Debug Log Settings 3-23

Issues that Require the Enabling of Multiple Debug Attributes 3-24

Enabling the Runtime Debug Attributes 3-25

vii

Server Performance Tuning Recommendations 3-25

Manage SIP Application Session Timeout 3-26

Specifying the Minimum and Maximum Thread Pool Size 3-26

Files for Troubleshooting 3-27

Backwards Compatibility with TO and FROM System Headers 3-28

Converged Application Server Monitoring and Overload Protection 3-28

About Monitoring and Overload Protection 3-28

SIP Server and Application Monitoring 3-28

General 3-29

SIP Performance 3-29

SIP Applications 3-30

Call State Storage 3-30

Other Ways to Monitor Converged Application Server 3-32

Monitoring Applications with the WebLogic Scripting Tool 3-32

Developing Custom Management Utilities with JMX 3-32

WebLogic Server Diagnostic Framework 3-33

About Converged Application Server Overload Protection 3-33

About the Overload Protection Framework 3-33

Configuring Overload Protection 3-33

About Event Handlers 3-33

About Actions 3-34

About Statistics Collectors 3-36

About Thresholds 3-37

Example: Configuring Overload Protection Based upon Session Rate 3-39

Using the WebLogic Server Diagnostic Framework (WLDF) 3-41

Overview of Converged Application Server and the WLDF 3-41

Data Collection and Logging 3-41

Watches and Notifications 3-42

Image Capture 3-42

Instrumentation 3-42

Configuring Server-Scoped Monitors 3-44

Configuring Application-Scoped Monitors 3-46

Logging SIP Requests and Responses 3-46

Overview of SIP Logging 3-46

Defining Logging Servlets in sip.xml 3-47

Configuring the Logging Level and Destination 3-47

Specifying the Criteria for Logging Messages 3-48

Using XML Documents to Specify Logging Criteria 3-48

Using Servlet Parameters to Specify Logging Criteria 3-49

Specifying Content Types for Unencrypted Logging 3-50

Enabling Log Rotation and Viewing Log Files 3-51

trace-pattern.dtd Reference 3-51

viii

Adding Tracing Functionality to SIP Servlet Code 3-53

Order of Startup for Listeners and Logging Servlets 3-53

4 Reference

Engine Server Configuration Reference (sipserver.xml) 4-1

Overview of sipserver.xml 4-1

Editing sipserver.xml 4-1

Steps for Editing sipserver.xml 4-1

XML Schema 4-2

Example sipserver.xml File 4-2

XML Element Description 4-2

enable-timer-affinity 4-2

message-debug 4-3

proxy—Setting Up an Outbound Proxy Server 4-3

t1-timeout-interval 4-4

t2-timeout-interval 4-4

t4-timeout-interval 4-4

timer-b-timeout-interval 4-5

timer-f-timeout-interval 4-5

max-application-session-lifetime 4-5

enable-local-dispatch 4-5

cluster-loadbalancer-map 4-6

default-behavior 4-6

default-servlet-name 4-7

retry-after-value 4-7

sip-security 4-7

route-header 4-8

engine-call-state-cache-enabled 4-8

server-header 4-8

server-header-value 4-9

persistence 4-9

use-header-form 4-10

enable-dns-srv-lookup 4-10

connection-reuse-pool 4-11

globally-routable-uri 4-12

domain-alias-name 4-12

enable-rport 4-12

image-dump-level 4-13

stale-session-handling 4-13

enable-contact-provisional-response 4-14

SIP Coherence Configuration Reference (coherence.xml) 4-14

ix

Overview of coherence.xml 4-14

Editing coherence.xml 4-14

XML Schema 4-15

Example coherence.xml File 4-15

XML Element Description 4-15

Diameter Configuration Reference (diameter.xml) 4-15

Overview of diameter.xml 4-15

Editing diameter.xml 4-16

Steps for Editing diameter.xml 4-16

XML Schema 4-16

Example diameter.xml File 4-16

XML Element Description 4-17

configuration 4-17

target 4-17

host 4-17

realm 4-17

address 4-17

port 4-18

validate-peer-address 4-18

tls-enabled 4-18

sctp-enabled 4-18

debug-enabled 4-18

message-debug-enabled 4-18

application 4-18

peer-retry-delay 4-19

allow-dynamic-peers 4-19

request-timeout 4-19

watchdog-timeout 4-19

include-origin-state-id 4-19

supported-vendor-id+ 4-19

peer+ 4-19

route 4-20

default-route 4-21

x

Preface

This document gives an overview of Oracle Communications Converged Application Server
architecture and management and provides configuration information for the data tier, engine
tier, geographic redundancy, and performance. It also provides information on upgrading from
previous releases of Converged Application Server.

Audience
This document is intended for those who set up Converged Application Server and its domains
and who upgrade from previous versions of Converged Application Server.

My Oracle Support
My Oracle Support (https://support.oracle.com) is your initial point of contact for all product
support and training needs. A representative at Customer Access Support (CAS) can assist
you with My Oracle Support registration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle Support
hotline for your local country from the list at http://www.oracle.com/us/support/contact/
index.html. When calling, make the selections in the sequence shown below on the Support
telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking, and Solaris Operating System Support.

3. Select one of the following options:

• For technical issues such as creating a new Service Request (SR), select 1.

• For non-technical issues such as registration or assistance with My Oracle Support,
select 2.

You are connected to a live agent who can assist you with My Oracle Support registration and
opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

Emergency Response

In the event of a critical service situation, emergency response is offered by the Customer
Access Support (CAS) main number at 1-800-223-1711 (toll-free in the US), or call the Oracle
Support hotline for your local country from the list at http://www.oracle.com/us/support/contact/
index.html. The emergency response provides immediate coverage, automatic escalation, and
other features to ensure that the critical situation is resolved as rapidly as possible.

A critical situation is defined as a problem with the installed equipment that severely affects
service, traffic, or maintenance capabilities, and requires immediate corrective action. Critical
situations affect service and/or system operation resulting in one or several of these situations:

xi

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

• A total system failure that results in loss of all transaction processing capability

• Significant reduction in system capacity or traffic handling capability

• Loss of the system's ability to perform automatic system reconfiguration

• Inability to restart a processor or the system

• Corruption of system databases that requires service affecting corrective actions

• Loss of access for maintenance or recovery operations

• Loss of the system ability to provide any required critical or major trouble notification

Any other problem severely affecting service, capacity/traffic, billing, and maintenance
capabilities may be defined as critical by prior discussion and agreement with Oracle.

Locate Product Documentation on the Oracle Help Center Site

Oracle Communications customer documentation is available on the web at the Oracle Help
Center (OHC) site, http://docs.oracle.com. You do not have to register to access these
documents. Viewing these files requires Adobe Acrobat Reader, which can be downloaded at
http://www.adobe.com.

1. Access the Oracle Help Center site at http://docs.oracle.com.

2. Click Industries.

3. Under the Oracle Communications sub-header, click the Oracle Communications
documentation link.
The Communications Documentation page appears. Most products covered by these
documentation sets appear under the headings "Network Session Delivery and Control
Infrastructure" or "Platforms."

4. Click on your Product and then Release Number.
A list of the entire documentation set for the selected product and release appears.

5. To download a file to your location, right-click the PDF link, select Save target as (or
similar command based on your browser), and save to a local folder.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Preface

xii

http://docs.oracle.com
http://www.adobe.com
http://docs.oracle.com
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Revision History

Table 1 Revision History

Date Revision

Oct 2023 • Initial release

March 2025 • Clarified definition of MPS

xiii

1
Converged Application Server Configuration

The Converged Application Server is based on Oracle WebLogic Server, and many system-
level configuration tasks are the same for both products. This guide addresses only those
system-level configuration tasks that are unique to the Converged Application Server, such as
tasks related to networking, security, and cluster configuration for the engine and the
Coherence cache.

HTTP server configuration and other basic configuration tasks such as server logging are
addressed in the Oracle WebLogic Server documentation. See "Overview of WebLogic Server
System Administration" in Understanding Oracle WebLogic Server to get started.

Overview of Configuration and Administration Tools
You can apply configuration changes using the Administration Console or from the command
line using the WLST utility. Changes to certain SIP Servlet container properties require a
restart of the engine for the change to take affect. In such cases, a Restart may be required
icon appears in the console.

The following sections contain more information about the configuration tools:

• Administration Console

• WebLogic Scripting Tool (WLST)

• Additional Configuration Methods

Administration Console
The Converged Application Server extends the WebLogic Administration Console user
interface with its own configuration and monitoring pages. The Administration Console
interface for Converged Application Server settings are similar to the core console available in
Oracle WebLogic Server.

All Converged Application Server configuration and monitoring is provided through these
nodes in the left pane of the console:

• SipServer: presents SIP Servlet container properties and other engine functionality. This
node is available for all domain types.

• ProxyRegistrar: presents Proxy/Registrar configuration options if you have configured a
proxy/registrar domain.

• Diameter: presents Diameter nodes and application configuration settings if you have
added Diameter support to an existing domain. For information on adding Diameter
support to a Converged Application Server domain, see "About Domains and Domain
Configuration" in Converged Application Server Installation Guide.

See "Accessing the Administration Console" for more information about using the console in
the Oracle WebLogic Server documentation.

1-1

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/intro/sysadmin.html#GUID-3CAB0785-3188-402F-9138-50E62444E51E
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/intro/sysadmin.html#GUID-3CAB0785-3188-402F-9138-50E62444E51E

WebLogic Scripting Tool (WLST)
The WebLogic Scripting Tool (WLST) enables you to perform interactive or automated (batch)
configuration operations using a command-line interface. WLST is a JMX tool that can view or
manipulate the MBeans available in a running Converged Application Server domain.

See "Using WLST (JMX) to Configure Converged Application Server" for more information
about modifying SIP Servlet container properties using WLST.

For general WLST information, see:

• For information about WLST, see "Using the WebLogic Scripting Tool" in Understanding
the WebLogic Scripting Tool.

• For information about WLST commands, see "WLST Command and Variable Reference"
in WLST Command Reference for WebLogic Server.

Additional Configuration Methods
Most Converged Application Server configuration is performed using either the Administration
Console or WLST. The methods described in the following sections may also be used for
certain configuration tasks.

Editing Configuration Files
You may also modify the configuration by editing configuration files.

The Converged Application Server custom resources utilize the basic domain resources
defined in config.xml, such as network channels, cluster and server configuration, and Java
EE resources. The config.xml file applies to all managed servers in the domain. However,
standalone Converged Application Server components are configured in separate
configuration files based on functionality:

• sipserver.xml contains general SIP container properties and engine tier configuration
settings.

• coherence.xml identifies servers that participate in SIP state storage, and also defines the
number of threads and partitions available in the state storage service.

• diameter.xml defines Diameter nodes and Diameter protocol applications used in the
domain.

See Reference for more information on the configuration files.

If you edit configuration files manually, you must reboot all servers to apply the configuration
changes.

Custom JMX Applications
Converged Application Server properties are represented by JMX-compliant MBeans. You can
therefore program JMX applications to configure SIP container properties using the appropriate
Converged Application Server MBeans.

The general procedure for modifying Converged Application Server MBean properties using
JMX is described in "Using WLST (JMX) to Configure Converged Application Server". For
more information about the individual MBeans used to manage SIP container properties, see
the Converged Application Server Java API Reference.

Chapter 1
Overview of Configuration and Administration Tools

1-2

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlstg/using_wlst.html#GUID-9D46482B-791A-4D19-9D6B-39C261CB0962
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlstc/reference.html#GUID-132315B2-5256-490F-9673-D6E8DB714709
https://docs.oracle.com/cd/E49461_01/doc.70/e39508/index.html

Common Configuration Tasks
General administration and maintenance of Converged Application Server requires that you
manage both WebLogic Server configuration properties and Converged Application Server
container properties.

Common configuration tasks include:

• Configure SIP Container Properties using the Administration Console or using WLST to
perform batch configuration. See "Configuring Converged Application Server Container
Properties" for more information.

• Configure WebLogic Server network channels to handle SIP and HTTP traffic. See
"Configuring Network Connection Settings" for more information.

• Configure load balancers, proxy registrar, diameter components, or other infrastructure
elements to support the Converged Application Server deployment. See "Configuring
Infrastructure Components" for more information.

• Deploy applications to the Converged Application Servers. See Converged Application
Server Developer's Guide for more information.

• Create and deploy logging Servlets to record SIP requests and responses and manage log
records. See "Logging SIP Requests and Responses" for more information.

Getting Started
This chapter describes how to start and stop servers in an Oracle Communications Converged
Application Server domain.

Accessing the Administration Console
The Administration Console enables you to configure and monitor core WebLogic Server
functionality as well as the SIP Servlet container functionality provided with Converged
Application Server. To configure or monitor SIP Servlet features using the Administration
Console:

1. Use your browser to access the URL:

http://address:port/console
where address is the Administration Server's listen address and port is the listen port.

Note:

The default administration console port for Converged Application Server is
7001.

2. Select the SipServer node in the left pane.

The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring Converged Application Server.

Chapter 1
Common Configuration Tasks

1-3

Table 1-1 Converged Application Server Configuration and Monitoring Pages

Tab SubTab Function

Configuration General Configure SIP timer values, session timeout duration, default Converged
Application Server behavior (proxy or user agent), server header format, call
state caching, DNS name resolution, timer affinity, domain aliases, report
support, diagnostic image format, stale session handling, Max-BreadthCheck
Support, SIP outbound support, and automatic responses to a non-INVITE
request.

Configuration Application Router Configure a custom Application Router (AR) type, use a JavaScript Object
Notation (JSON) configuration file, and pass properties to an AR. See
"Composing SIP Applications" in Converged Application Server Developer's
Guide.

Configuration Proxy Configure proxy routing URIs and proxy policies.

Configuration Overload Protection Configure the conditions for enabling and disabling automatic overload controls.

Configuration Message Debug Enable or disable SIP message logging on a development system.

Configuration SIP Security Identify trusted hosts for which authentication is not performed.

Configuration Persistence Configure persistence options for storing long-lived session data in an RDBMS,
or for replicating long-lived session data to a remote, geographically-redundant
site.

Configuration Call State Storage View call state Coherence cache service configuration settings supported by
the Sip Server. You can specify the number of worker threads and the number
of partitions used in the call-state Coherence cache service by the Sip Server.

Configuration LoadBalancer Map Configure the mapping of multiple clusters to internal virtual IP addresses
during a software upgrade.

Configuration Targets Configure the list of servers or clusters that receive the engine tier
configuration. The target server list determines which servers and/or clusters
provide SIP Servlet container functionality.

Configuration Connection Pools Configure connection reuse pools to minimize communication overhead with a
Session Border Control (SBC) function or Serving Call Session Control
Function (S-CSCF).

Monitoring General View runtime information about messages and sessions processed in engine
tier servers.

Monitoring SIP Performance View runtime performance information on SIP traffic throughput and number of
successful and failed transactions.

Monitoring SIP Applications View runtime session information for deployed SIP applications including
general runtime information, SIP performance information, individual SIP
application information and call state storage information.

Locking and Persisting the Configuration
The Administration Console Change Center provides a way to lock a domain configuration so
you can make configuration changes while preventing other administrators from making
changes during your edit session. You can enable or disable this feature in development
domains. It is disabled by default when you create a new development domain. See "Enable
and disable the domain configuration lock" in the Administration Console Online Help for more
information.

Some changes you make in the Administration Console take place immediately when you
activate them. Other changes require you to restart the server or module affected by the
change. These latter changes are called non-dynamic changes. Non-dynamic changes are

Chapter 1
Getting Started

1-4

indicated in the Administration Console with a warning icon containing an exclamation point. If
an edit is made to a non-dynamic configuration setting, no edits to dynamic configuration
settings will take effect until after you restart the server.

For more information on using Oracle WebLogic Server Administration Console, see "Using
the WebLogic Server Administration Console" in Understanding Oracle WebLogic Server.

To make changes:

1. Locate the Change Center in the upper left corner of the Administration Console.

2. Click Lock & Edit to lock the editable configuration hierarchy for the domain. This enables
you to make changes using the Administration Console.

3. Make the changes you desire on the relevant page of the console and click Save on each
page where you make a change.

4. When you have finished making all the desired changes, click Activate Changes in the
Change Center.

Note:

• You can instead discard your current changes by clicking Undo All
Changes. This deletes any temporary configuration files that were written
with previous Save operations.

• If you need to discard all configuration changes made since the server was
started, you can revert to original boot configuration file. See Reverting to the
Original Boot Configuration for more information.

Using WLST (JMX) to Configure Converged Application Server
The WebLogic Scripting Tool (WLST) is a utility that you can use to observe or modify JMX
MBeans available on a WebLogic Server or Converged Application Server instance. To learn
how to use WLST, see "Using the WebLogic Scripting Tool" in Understanding the WebLogic
Scripting Tool.

Before using WLST to configure a Converged Application Server domain, set your environment
to add required Converged Application Server classes to your classpath. Use either a domain
environment script or the setDomainEnv.sh script located in WL_home/server/bin where
WL_home is the directory where WebLogic Server is installed. The default WebLogic Server
home directory is named wlserver.

Configuration MBeans for the SIP Servlet Container
ConfigManagerRuntimeMBean manages access to and persists the configuration MBean
attributes described in the com.bea.wcp.sip.management.descriptor.beans package of the
Converged Application Server Java API Reference. Although you can modify other
configuration MBeans, such as WebLogic Server MBeans that manage resources such as
network channels and other server properties, those MBeans are not managed by
ConfigManagerRuntimeMBean.

Chapter 1
Getting Started

1-5

Locating the Converged Application Server MBeans
All SIP Servlet container configuration MBeans are located in the serverConfig MBean tree,
accessed using the serverConfig() command in WLST. Within this bean tree, individual
configuration MBeans can be accessed using the path:

CustomResources/sipserver/Resource/sipserver

For example, to browse the default Proxy MBean for a Converged Application Server domain
you would enter these WLST commands:

serverConfig()
cd('CustomResources/sipserver/Resource/sipserver/Proxy')
ls()

Runtime MBeans, such as ConfigManagerRuntime, are accessed in the custom MBean tree,
accessed using the custom() command in WLST. Runtime MBeans use the path:

mydomain:Location=myserver,Name=myserver,Type=mbeantype

Certain configuration settings, such as proxy and overload protection settings, are defined by
default in sipserver.xml. Configuration MBeans are generated for these settings when you
boot the associated server, so you can immediately browse the Proxy and
OverloadProtection MBeans. Other configuration settings are not configured by default and
you will need to create the associated MBeans before they can be accessed. See Creating and
Deleting MBeans.

WLST Configuration Examples
The following sections provide example WLST scripts and commands for configuring SIP
Servlet container properties.

Invoking WLST
To use WLST with Converged Application Server, you must ensure that all Converged
Application Server JAR files are included in your classpath. Follow these steps:

1. Set your Converged Application Server environment:

cd ~/domain_home/bin
. ./setDomainEnv.sh

where domain_home is the path to the domain's home directory.

2. Start WLST:

java weblogic.WLST
3. Connect to the Administration Server for your Converged Application Server domain:

connect('system','weblogic','t3://myadminserver:port_number')

WLST Template for Configuring Container Attributes
Because a typical configuration session involves accessing ConfigManagerRuntimeMBean
twice—once for obtaining a lock on the configuration, and once for persisting the configuration
and/or applying changes—JMX applications that manage container attributes generally have a
similar structure. The example below shows a WLST script that contains the common
commands needed to access ConfigManagerRuntimeMBean. The example script modifies

Chapter 1
Getting Started

1-6

the proxy RoutingPolicy attribute, which is set to supplemental by default in new Converged
Application Server domains. You can use this listing as a basic template, modifying commands
to access and modify the configuration MBeans as necessary.

Example 1-1 Template WLST Script for Accessing ConfigManagerRuntimeMBean

Connect to the Administration Server
connect('username','password','t3://localhost:7001')
Start an edit session
edit()
startEdit()
--MODIFY THIS SECTION AS NECESSARY--
Edit SIP Servlet container configuration MBeans
cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=myserver,SipServer=myserver,Typ
e=Proxy')
set('RoutingPolicy','domain')
Commit changes
save()
activate()

Creating and Deleting MBeans
The SipServer MBean represents the entire contents of the sipserver.xml configuration file. In
addition to having several attributes for configuring SIP timers and SIP application session
timeouts, SipServer provides helper methods to help you create or delete MBeans
representing proxy settings and overload protection controls.

The example shows an example of how to use the helper commands to create and delete
configuration MBeans that configuration elements in sipserver.xml. See also "Invoking Helper
Methods for Setting URI Attributes" for a listing of other helper methods in SipServer, or refer
to the Converged Application Server Java API Reference.

Example 1-2 WLST Commands for Creating and Deleting MBeans

connect('username','password','t3://localhost:7001')
edit()
startEdit()
cd('CustomResources/sipserver/Resource/sipserver')
cmo.destroyOverload()
cmo.createProxy()
save()
activate()

Working with URI Values
Configuration MBeans such as Proxy require URI objects passed as attribute values. Oracle
provides a helper class, com.bea.wcp.sip.util.URIHelper, to help you easily generate URI
objects from an array of Strings. The example below modifies the previous example to add a
new URI attribute to the LoadBalancer MBean. See also the Oracle Converged Application
Server Java API Reference for a full reference to the URIHelper class.

Example 1-3 Invoking Helper Methods for Setting URI Attributes

Import helper method for converting strings to URIs.
from com.bea.wcp.sip.util.URIHelper import stringToSipURIs
connect()
custom()
cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=ConfigManagerRu
ntime')
cmo.startEdit()
cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=sipserver,Type=SipServer')

Chapter 1
Getting Started

1-7

cmo.createProxy()
cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=sipserver,SipServer=sipserver,T
ype=Proxy')
stringarg = jarray.array([java.lang.String("sip://siplb.bea.com:5060")],java.lang.String)
uriarg = stringToSipURIs(stringarg)
set('ProxyURIs',uriarg)
cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=ConfigManagerRu
ntime')
cmo.save()

Setting Logging Levels
The Converged Application Server is subject to the common configuration settings defined for
WebLogic servers. To modify the logging settings for a Converged Application Server in the
Administration Console, access the logging configuration settings page as follows:

1. If your domain is running in Production mode, click Lock & Edit.

2. Expand the Environment node in the Domain Structure tree.

3. Click Servers.

4. In the right pane, click the Logging tab.

5. Modify the default logging settings and then click Save to commit your changes.

Alternatively, use the logging.xml WebLogic file to manually configure logging properties for
the servers.

Converged Application Server supports additional logging features that provide for SIP
message logging. SIP message logging should be enabled in development environments only.
It is not intended for production environments.

Configure SIP message logging as follows:

1. Expand the SipServer node in the Domain Structure tree.

2. In the Configuration tab, click the Message Debug subtab.

3. Select the Enable Debug checkbox.

4. Configure other message logging settings as needed. Other settings include the logging
verbosity level, the log entry pattern, and the target log file name. See the onscreen field
description for more information.

5. Click Save.

6. If your domain is running in Production mode, click Activate Changes.

7. Restart the WebLogic Server.

See "Logging SIP Requests and Responses" for information about creating custom log
listeners and more information about logging settings.

Startup Sequence for a Converged Application Server Domain
Converged Application Server start scripts use default values for many JVM parameters that
affect performance. For example, JVM garbage collection and heap size parameters may be
omitted, or may use values that are acceptable only for evaluation or development purposes.
In a production system, you must rigorously profile your applications with different heap size
and garbage collection settings in order to realize adequate performance. See Modifying JVM
Parameters in Server Start Scripts for suggestions about maximizing JVM performance in a
production domain.

Chapter 1
Getting Started

1-8

Caution:

When you configure a domain with multiple servers, you must accurately synchronize
all system clocks to a common time source (to within one or two milliseconds) in
order for the SIP protocol stack to function properly. See Configuring NTP for
Accurate SIP Timers for more information.

Because a typical Converged Application Server domain contains numerous engines, with
dependencies between the different server types, you should generally follow this sequence
when starting up a domain:

1. Start the Administration Server for the domain. Start the Administration Server in order to
provide the initial configuration to engine servers in the domain. The Administration Server
can also be used to monitor the startup/shutdown status of each Managed Server. You
generally start the Administration Server by using the startWebLogic.sh or
startWebLogic.cmd script (depending on your OS) installed with the Configuration
Wizard, or a custom startup script.

2. Start the engine servers.
You generally start each SIP Coherence server by using either the
startManagedWebLogic.sh script installed with the Configuration Wizard, or a custom
startup script. The startManagedWebLogic.sh script requires that you specify the name
of the server to start up and the URL of the Administration Server for the domain. For
example:

startManagedWebLogic.cmd engine0-0 t3://adminhost:7001

Following the above startup sequence ensures that all Managed Servers use the latest SIP
Servlet container and Coherence cache configuration.

Startup Command Options
The following table lists startup options available to Converged Application Server. For more
information about these and other options, see "WLST Command and Variable Reference" in
WLST Command Reference for WebLogic Server.

Table 1-2 Startup Command Options

Application Startup Option For More Information

Installer -Djava.io.tmpdir See the discussion about Temporary Disk Space
Requirements in the Fusion Middleware System
Requirements and Specifications.

SIP Servlet
Application Router

-
Djavax.servlet.sip.ar.spi.SipApplicationRoute
rProvider

See Configuring a Custom Application Router in
Converged Application Server Developer Guide.

SIP Servlet
Application Router

-Djavax.servlet.sip.dar.configuration See Using the Default Application Router in
Converged Application Server Developer Guide.

Converged
Application Server

-Dweblogic.management.discover See Restarting an Administration Server on the Same
System.

Converged
Application Server

-Dweblogic.RootDirectory See Restarting an Administration Server on Another
System.

Chapter 1
Getting Started

1-9

Table 1-2 (Cont.) Startup Command Options

Application Startup Option For More Information

Converged
Application Server

–Dwlss.dialog.index.enabled See Join and Replaces Header Support in Converged
Application Server Developer Guide.

Converged
Application Server

-Dwlss.local.serialization See Optimizing Memory Utilization and Performance
with Serialization in Converged Application Server
Developer Guide.

Converged
Application Server

-Dwlss.sip.session.count.log_interval See Configuring the License Tracking as Startup
Command Options.

Converged
Application Server

-Dwlss.sip.session.count.start_time See Configuring the License Tracking as Startup
Command Options.

Converged
Application Server

-Dwlss.send100ForNonInviteTransaction See the description about Sending Provisional
Responses to Non-Invite Requests in Converged
Application Server Developer Guide.

Converged
Application Server

-Dwlss.udp.lb.masquerade See information about Network Address Translation
Options in Converged Application Server Concepts.

Converged
Application Server

-Dwlss.udp.listen.on.ephemeral See information about Single-NIC Configurations with
TCP and UDP Channels in Converged Application
Server Concepts.

Reverting to the Original Boot Configuration
When you boot the Administration Server for a Converged Application Server domain, the
server parses the current container configuration in sipserver.xml. It generates a copy of the
initial configuration in a file named sipserver.xml.booted in the Domain_home/config/custom
directory, where Domain_home is the directory in which the Converged Application Server
domain resides. This backup is preserved until you next boot the server; modifying the
configuration using JMX does not affect the backup copy.

If you modify the SIP Servlet container configuration and later decide to roll back the changes,
copy the sipserver.xml.booted file over the current sipserver.xml file. Then reboot the server
to apply the new configuration.

Configuring Converged Application Server Container Properties
This section describes how to configure SIP container features in the engine of an Oracle
Communications Converged Application Server deployment.

Configure General SIP Application Server Properties
Loading SIP applications to the Converged Application Server in the Administration Console is
similar to loading any application to WebLogic server. You use the Deployments page in the
Administration Console to load, update, or remove an application or module.

The Converged Application Server defines general settings that apply to all SIP applications.
Before deploying applications to the Converged Application Server, you should verify and
modify the default values for the general settings. You can configure the general settings in the
SIP Server page of the Administration Console.

To configure general SIP application server properties:

Chapter 1
Configuring Converged Application Server Container Properties

1-10

1. Open the Administration Console for your domain.

2. If your domain is running in Production mode, click Lock & Edit.

3. Click the SipServer link in the Domain Structure pane.

The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring Converged Application Server. By default, the General
configuration page appears.

4. Use the fields in the General subtab of the Configuration tab to configure the general
settings applicable to serving SIP applications.

Among the settings that determine common application handling are:

• The default servlet invoked if a specific servlet is not identified for a request based on
the servlet mapping rules.

• Timer values. See "Configuring Timer Processing" for more information.

• Header handling settings.

• Application session settings.

For details, see the on-screen field descriptions in the Administration Console.

5. Click Save to save your configuration changes.

6. Click Activate Changes to apply your changes to the engine servers.

Adding Servers to the Converged Application Server Cluster
If you have configured a Converged Application Server replicated domain using the domain
configuration wizard, Converged Application Server instances include the default bea-engine-
tier-clust cluster. You can assign additional managed servers to each cluster as needed when
performance requirements in your environment require them.

See WebLogic Server Administration Console Online Help for information on how to Assign
servers to clusters.

For more information on clustering, see Understanding WebLogic Server Clustering in
Administering Clusters for Oracle WebLogic Server.

Configuring Timer Processing
As engine servers add new call state data to the SIP call-state store, they maintain data
structures to track the SIP protocol timers and application timers associated with each call.
Engine servers periodically poll the SIP Coherence call-state store to determine which timers
have expired, given the current time. By default, multiple engine polls to the call-state store are
staggered to avoid contention on the timer tables. Engine servers then process all expired
timers using threads allocated in the wlss.timer work manager.

Configuring Timer Affinity (Optional)
With the default timer processing mechanism, a given engine processes all timers that are
currently due to fire, regardless of whether that engine was involved in processing the calls
associated with those timers. However, some deployment scenarios require that a timer is
processed on the same engine server that last modified the call associated with that timer. One
example of this scenario is a hot standby system that maintains a secondary engine that
should not process any call data until another engine fails. Converged Application Server
enables you to configure timer affinity in such scenarios.

Chapter 1
Configuring Converged Application Server Container Properties

1-11

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlach/taskhelp/clusters/AssignServersToClusters.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlach/taskhelp/clusters/AssignServersToClusters.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/overview.html#GUID-7082EB65-5A7B-4211-B90D-B0482DCABCA4

When you enable timer affinity, each engine server periodically polls the SIP call-state store for
processed timers. When polling the SIP call-state store, an engine processes only those timers
associated with calls that were last modified by that engine, or timers for calls that have no
owner.

Note:

When an engine server fails, any call states that were last modified by that engine no
longer have an owner. Expired timers that have no owner are processed by the next
engine server that polls the SIP call-state store.

To enable timer affinity:

1. Access the Administration Console for your domain.

2. If your domain is running in Production mode, click Lock & Edit.

3. Select the SipServer node in the left pane. The right pane of the console provides two
levels of tabbed pages that are used for configuring and monitoring Converged Application
Server.

4. Select the Configuration, then General tab in the right pane.

5. Select the box for Enable Timer Affinity.

6. Click Save to save your configuration changes.

7. Click Activate Changes to apply your changes to the engine servers.

The Enable Timer Affinity setting is persisted in sipserver.xml in the enable-timer-affinity
element.

Configuring NTP for Accurate SIP Timers
In order for the SIP protocol stack to function properly, all engine servers must accurately
synchronize their system clocks to a common time source, to within one or two milliseconds.
Large differences in system clocks cause severe problems such as:

• SIP timers firing prematurely on servers with fast clock settings.

• Poor distribution of timer processing among engine servers. For example, one engine
server might process all expired timers, whereas other engine servers process no timers.

Oracle recommends using a Network Time Protocol (NTP) client or daemon on each
Converged Application Server instance and synchronizing to a common NTP server.

Chapter 1
Configuring Converged Application Server Container Properties

1-12

Caution:

You must accurately synchronize server system clocks to a common time source (to
within one or two milliseconds) in order for the SIP protocol stack to function properly.
Because the initial T1 timer value of 500 milliseconds controls the retransmission
interval for INVITE request and responses, and also sets the initial values of other
timers, even small differences in system clock settings can cause improper SIP
protocol behavior. For example, an engine server with a system clock 250
milliseconds faster than other servers will process more expired timers than other
engine servers, will cause retransmits to begin in half the allotted time, and may force
messages to time out prematurely.

Configuring Network Connection Settings
This chapter describes how to configure network resources for use with Oracle
Communications Converged Application Server.

Overview of Network Configuration
The default HTTP network configuration for each Converged Application Server instance is
determined from the Listen Address and Listen Port setting for each server. However,
Converged Application Server does not support the SIP protocol over HTTP. The SIP protocol
is supported over the UDP and TCP transport protocols. SIPS is also supported using the TLS
transport protocol.

To enable UDP, TCP, or TLS transports, you configure one or more network channels for a
Converged Application Server instance. A network channel is a configurable Oracle WebLogic
Server resource that defines the attributes of a specific network connection to the server
instance. Basic channel attributes include:

• The protocols supported by the connection

• The listen address (DNS name or IP address) of the connection

• The port number used by the connection

• (optional) The port number used by outgoing UDP packets

• The public listen address to embed in SIP headers when the channel is used for an
outbound connection. This is typically the IP address presented by the IP sprayer or
external load balancer as the virtual IP (VIP) for the telecommunication services.

You can assign multiple channels to a single Converged Application Server instance to support
multiple protocols or to use multiple interfaces available with multihomed server hardware. You
cannot assign the same channel to multiple server instances.

When you configure a new network channel for the SIP protocol, both the UDP and TCP
transport protocols are enabled on the specified port. You cannot create a SIP channel that
supports only UDP transport or only TCP transport. When you configure a network channel for
the SIPS protocol, the server uses the TLS transport protocol for the connection.

As you configure a new SIP Server domain, you will generally create multiple SIP channels for
communication to each engine in your system. Engines access the SIP call-state store using
the Coherence cluster configured in the domain.

Chapter 1
Configuring Network Connection Settings

1-13

Note:

If you configure the Coherence cluster to use Unicast addressing, you must configure
the engines to use either explicit listen addresses or explicit well-known addresses to
allow all cluster domain servers to locate each other.

Configuring External IP Addresses in Network Channels
When you set up a network channel for your Converged Application Server instance, you must
specify the public IP address that external clients use to address the instance. In most cases,
this address is presented by an IP sprayer or external load balancer or other network element
capable of exposing a virtual IP (VIP) on behalf of the Converged Application Server to the
external network.

You configure the client-facing address as the external listen address. When a SIP channel has
an external listen address that differs from the channel's primary listen address, Converged
Application Server embeds the host and port number of the external address in SIP headers,
such as in the Response header. This causes subsequent messages from external clients to
be directed to the public address rather than the local engine server address (which may not
be accessible to clients).

If an external listen address is not specified for the network channel, the Converged
Application Server embeds the primary listen address for the channel in the headers.

If you have more than one IP sprayer or load balancer that may receive external traffic
addressed to the Converged Application Server servers, you must define a channel on each
engine for each one. When a particular network interface on the engine is selected for
outbound traffic, the network channel associated with the network interface card's (NIC's)
address is examined to determine the external listen address to embed in SIP headers.

If your system uses a multihomed IP sprayer or load balancer having two public addresses,
you must also define a pair of channels to configure both public addresses. If the engine has
only one NIC, you must define a second, logical address on the NIC to configure a dedicated
channel for the second public address. In addition, you must configure your IP routing policies
to define which logical address is associated with each public address.

About IPv4 and IPv6 Support
If your operating system and hardware support IPv6, you can also configure Converged
Application Server to use IPv6 for network communication. Enable IPv6 for SIP traffic by
configuring a network channel with an IPv6 address. You must configure an IPv6 SIP channel
on each engine server that will support IPv6 traffic.

Each SIP network channel configured on an engine supports either IPv6 or IPv4 traffic. You
cannot mix IPv4 and IPv6 traffic on a single channel. You can configure a single engine with
both an IPv4 and IPv6 channel to support multiple, separate networks.

It is also possible for Converged Application Server engine nodes to communicate within the
cluster on IPv4 (or IPv6) while supporting the other protocol version for external SIP traffic. To
configure engine nodes on an IPv6 network, simply specify IPv6 listen addresses for each
server instance and, if desired, for the Coherence cluster communication.

Chapter 1
Configuring Network Connection Settings

1-14

Enabling DNS Support
Converged Application Server supports DNS for resolving the transport, IP address and port
number of a proxy required to send a SIP message. This matches the behavior described in
RFC 3263 (http://www.ietf.org/rfc/rfc3263.txt). DNS may also be used when routing
responses to resolve the IP address and port number of a destination.

Caution:

Because multihome resolution is performed within the context of SIP message
processing, any multihome performance problems result in increased latency
performance. Oracle recommends using a caching multihome server in a production
environment to minimize potential performance problems.

To configure DNS support:

1. Log in to the Administration Console for the Converged Application Server domain you
want to configure.

2. If your domain is running in Production mode, click Lock & Edit.

3. Select the SipServer node in the left pane of the Console.

4. Select the Configuration, and then select the General tab in the right pane.

5. Select the option for Enable DNS Server Lookup.

6. Click Save to save your changes.

7. If your domain is running in Production mode, click Activate Changes.

When you enable DNS lookup, the server can use DNS to:

• Discover a proxy server's transport, IP address, and port number when a request is sent to
a SIP URI.

• Resolve an IP address and port number during response routing, depending on the
contents of the Sent-by field.

For proxy discovery, Converged Application Server uses DNS resolution only once per SIP
transaction to determine transport, IP, and port number information. All retransmissions, ACKs,
or CANCEL requests are delivered to the same address and port using the same transport. For
details about how DNS resolution takes place, see RFC 3263 (http://www.ietf.org/rfc/
rfc3263.txt).

When a proxy is required to send a response message, Converged Application Server uses
DNS lookup to determine the IP address and port number of the destination, using the
information provided in the sent-by field and the Via the header.

Configuring Network Channels for SIP or SIPS
When you create a domain using the Configuration Wizard, Converged Application Server
instances are configured with a default network channel supporting the SIP protocol over UDP
and TCP. This default channel is configured to use Listen Port 5060, but specifies no Listen
Address. Follow the instructions in "Reconfiguring an Existing Channel" to change the default
channel's listen address or listen port settings. See "Creating a New SIP or SIPS Channel" for
information on creating a new channel resource to support additional protocols or additional
network interfaces.

Chapter 1
Configuring Network Connection Settings

1-15

http://www.ietf.org/rfc/rfc3263.txt
http://www.ietf.org/rfc/rfc3263.txt
http://www.ietf.org/rfc/rfc3263.txt

Reconfiguring an Existing Channel
You cannot change the protocol supported by an existing channel. To reconfigure an existing
listen address/port combination to use a different network protocol, you must delete the
existing channel and create a channel using the instructions in "Creating a New SIP or SIPS
Channel".

To reconfigure a channel:

1. Log in to the Administration Console for the Converged Application Server domain you
want to configure.

2. If your domain is running in Production mode, click Lock & Edit.

3. In the left pane, select the Environment entry to display its contents. Select Servers from
the displayed entries.

4. In the right pane, select the name of the server you want to configure.

5. Select Protocols, then select the Channels tab to display the configured channels.

6. To delete an existing channel, select it in the table and click Delete.

7. To reconfigure an existing channel:

a. Select the channel's link from Name column of the channel list (for example, the
default SIP channel).

b. Edit the Listen Address or Listen Port fields to correspond to the address of a NIC or
logical address on the associated engine server.

Note:

The channel must be disabled before you can modify the listen address or
listen port. Disable the channel by deselecting the Enabled check box.

c. Set the External Listen Address or External Listen Port fields to the destination
address and port addressed by external clients. This is typically the VIP address
presented by an external load balancer or IP sprayer in your system.

d. Edit the advanced channel attributes as necessary (see "Creating a New SIP or SIPS
Channel" for details.)

8. Click Save.

9. If your domain is running in Production mode, click Activate Changes.

Creating a New SIP or SIPS Channel
To add a new SIP or SIPS channel to the configuration of a Converged Application Server
instance:

1. Log in to the Administration Console for the Converged Application Server domain you
want to configure.

2. If your domain is running in Production mode, click Lock & Edit.

3. In the left pane, select the Environment node, and then select the Servers tab.

4. In the right pane, select the name of the server you want to configure.

Chapter 1
Configuring Network Connection Settings

1-16

5. Select the Protocols tab, then select the Channels tab to display the configured channels.

6. Click New to configure a new channel.

7. Fill in the new channel fields as follows:

• Name: Enter an administrative name for this channel, such as SIPS-Channel-eth0.

• Protocol: Select either sip to support UDP and TCP transport, or sips to support TLS
transport. A SIP channel cannot support only UDP or only TCP transport on the
configured port.

8. Click Next.

9. Fill in the new channel's addressing fields as follows:

• Listen Address: Enter the IP address or DNS name for this channel. On a DNS
server, enter the exact IP address of the interface you want to configure, or a
multihome name that maps to the exact IP address.

• Listen Port: Enter the port number used to communication through this channel. The
combination of Listen Address and Listen Port must be unique across all channels
configured for the server. SIP channels support both UDP and TCP transport on the
configured port.

• External Listen Address and External Listen Port: Edit these fields to match the
external address and port used by clients to address the system. This is typically a
virtual IP address presented by an external load balancer or IP sprayer.
If this value differs from the Listen Address value, the Converged Application Server
embeds this value in SIP message headers for further call traffic.

10. Click Next.

11. Set the additional channel properties listed below if required:

• Enabled: This attribute specifies whether to start the new channel.

• Tunneling Enabled: This attribute specifies whether tunneling through HTTP should
be enabled for this network channel. This value is not inherited from the server's
configuration.

• HTTP Enabled for This Protocol: This attribute cannot be selected for SIP and SIPS
channels, because Converged Application Server does not support HTTP transport
SIP protocols.

• Outbound Enabled: This attribute cannot be unchecked, because all SIP and SIPS
channels can originate network connections.

12. Click Finish.

13. If your domain is running in Production mode, click Activate Changes.

Configuring Custom Timeout, MTU, and Other Properties
SIP channels can be further configured using one or more custom channel properties. The
custom properties cannot be set using the Administration Console. Instead, you must use a
text editor to add the properties to a single, custom-property stanza in the channel
configuration portion of the config.xml file for the domain.

Converged Application Server provides the following custom properties that affect the transport
protocol of SIP channels:

• TcpConnectTimeoutMillis: Specifies the amount of time Converged Application Server
waits before it declares a destination address (for an outbound TCP connection) as
unreachable. The property is applicable only to SIP channels; Converged Application

Chapter 1
Configuring Network Connection Settings

1-17

Server ignores this attribute value for SIPS channels. A value of 0 disables the timeout
completely. A default value of 3000 milliseconds is used if you do not specify the custom
property.

• SctpConnectTimeoutMillis: Specifies the amount of time Converged Application Server
waits before it declares a destination address (for an outbound SCTP connection) as
unreachable. The property is applicable only to SCTP channels (for Diameter traffic). A
value of 0 disables the timeout completely. A default value of 3000 milliseconds is used if
you do not specify the custom property. See Configuring Static Source Port for Outbound
UDP Packets for information about creating SCTP channels for Diameter.

• SourcePorts: Configures one or more static port numbers that a server uses for
originating UDP packets.

Caution:

Oracle does not recommend using the SourcePorts custom property in most
configurations because it degrades performance. Configure the property only in
cases where you must specify the exact ports that Converged Application Server
uses to originate UDP packets.

• Mtu: Specifies the Maximum Transmission Unit (MTU) value for this channel. A value of -1
uses the default MTU size for the transport.

• EnabledProtocolVersions: Specifies the version of the SSL protocol to use with this
channel when Converged Application Server acts as an SSL client. When acting as an
SSL client, by default the channel requires TLS V1.2 as the supported protocol.
Oracle recommends the TLS V.1.2 protocol for the best security. TLS1 configures the
channel to send and accept only TLS V1.2 messages. Peers must respond with a TLS
V1.2 message or the SSL connection is dropped.

To configure a custom property, use a text editor to modify the config.xml file directly, or use a
JMX client such as WLST to add the custom property. When editing config.xml directly,
ensure that you add only one custom-properties element to the end of a channel's
configuration stanza. Separate multiple custom properties within the same element using
semicolons (;) as shown in the following example.

Example 1-4 Setting Custom Properties

<network-access-point>
 <name>sip</name>
 <protocol>sip</protocol>
 <listen-port>5060</listen-port>
 <public-port>5060</public-port>
 <http-enabled-for-this-protocol>false</http-enabled-for-this-protocol>
 <tunneling-enabled>false</tunneling-enabled>
 <outbound-enabled>true</outbound-enabled>
 <enabled>true</enabled>
 <two-way-ssl-enabled>false</two-way-ssl-enabled>
 <client-certificate-enforced>false</client-certificate-enforced>
 <custom-properties>EnabledProtocolVersions=ALL;Mtu=1000;SourcePorts=5060</
custom-properties>
</network-access-point>

Chapter 1
Configuring Network Connection Settings

1-18

Configuring SIP Channels for Multihomed Machines
If you are configuring a server that has multiple network interfaces (a "multihomed" server),
you must configure a separate network channel for each IP address used by Converged
Application Server. Converged Application Server uses the listen address and listen port
values for each channel when embedding routing information into SIP message system
headers.

Note:

If you do not configure a channel for a particular IP address on a multihomed system,
that IP address cannot be used when populating Via, Contact, and Record-Route
headers.

Configuring Engine Servers to Listen on Any IP Interface
To configure Converged Application Server to listen for UDP traffic on any available IP
interface, create a SIP channel and specify 0.0.0.0 (or :: for IPv6 networks) as the listen
address. You must still configure at least one additional channel with an explicit IP address to
use for outgoing SIP messages. (For multihomed machines, each interface used for outgoing
messages must have a configured channel.)

Note:

You must configure the 0.0.0.0 address directly on the server's network channel. If
you configure a SIP channel without specifying the channel listen address, but you
do configure a listen address for the server itself, then the SIP channel inherits the
server listen address. In this case the SIP channel does not listen on IP_ANY.

Note:

Using the 0.0.0.0 configuration affects only UDP traffic on Linux platforms.
Converged Application Server only creates TCP and HTTP listen threads
corresponding to the configured host name of the server, and localhost. If multiple
addresses are mapped to the host name, Converged Application Server displays
warning messages upon startup. To avoid this problem and listen on all addresses,
specify the :: address, which encompasses all available addresses for both IPv6 and
IPv4 for HTTP and TCP traffic as well.

Configuring Static Source Port for Outbound UDP Packets
You can optionally use a static port rather than a dynamically assigned ephemeral port as the
source port for outgoing UDP datagrams. Converged Application Server network channels
provide a SourcePorts attribute that you can use to configure one or more static ports that a
server uses for originating UDP packets.

Chapter 1
Configuring Network Connection Settings

1-19

You can identify the ephemeral port currently used by the Converged Application Server by
examining the server log file. A log entry appears as follows:

<Nov 30, 2005 12:00:00 AM PDT> <Notice> <WebLogicServer> <BEA-000202> <Thread "SIP
Message Processor (Transport UDP)" listening on port 35993.>

Caution:

Oracle does not recommend using the SourcePorts custom property in most
configurations because it degrades performance. Configure the property only in
cases where you must specify the exact ports that Converged Application Server
uses to originate UDP packets.

To use a static port for outgoing UDP datagrams, first disable use of the ephemeral port by
specifying the following server start-up option:

-Dwlss.udp.listen.on.ephemeral=false

To configure the SourcePorts property, use a JMX client such as WLST or directly modify a
network channel configuration in config.xml to include the custom property. SourcePorts
defines an array of port numbers or port number ranges. Do not include spaces in the
SourcePorts definition; use only port numbers, hyphens ("-") to designate ranges of ports, and
commas (",") to separate ranges or individual ports.

Example 1-5 Static Port Configuration for Outgoing UDP Packets

<network-access-point>
 <name>sip</name>
 <protocol>sip</protocol>
 <listen-port>5060</listen-port>
 <public-port>5060</public-port>
 <http-enabled-for-this-protocol>false</http-enabled-for-this-protocol>
 <tunneling-enabled>false</tunneling-enabled>
 <outbound-enabled>true</outbound-enabled>
 <enabled>true</enabled>
 <two-way-ssl-enabled>false</two-way-ssl-enabled>
 <client-certificate-enforced>false</client-certificate-enforced>
 <custom-properties>SourcePorts=5060</custom-properties>
</network-access-point>

Configuring Listen Addresses for Servers
Each server in the domain is a member in the Coherence cluster, and the default Coherence
configuration uses a generated well-known address list based on server listen addresses. You
must use explicit listen addresses with the domain servers for Coherence to correctly form a
cluster.You can set up explicit listen addresses using the domain creation wizard or, after
creating a domain, by using the Administration console and following these instructions:

1. Access the Administration Console for the Converged Application Server domain.

2. If your domain is running in Production mode, click Lock & Edit.

3. Select Environment, then select Servers from the left pane.

4. In the right pane, select the name of the server to configure.

5. Select Configuration, then select the General tab.

6. Enter a unique DNS name or IP address in the Listen Address field.

Chapter 1
Configuring Network Connection Settings

1-20

7. Click Save.

8. If your domain is running in Production mode, click Activate Changes.

Configuring Coherence Cluster Addressing
If you do not want to use explicit listen addresses with domain servers or want to isolate
Coherence cluster communication to its own network, you can configure Coherence cluster
addressing to use it's own addressing scheme, using one of the following cluster modes.

• Multicast with multicast address, port and time to live. Multicast communication can make
more efficient use of the network in some circumstances, but also might not work in all
environments.

• Unicast addressing, specifying explicit well-known addresses (WKAs) and explicit Unicast
listen ports for servers.

The default setting is Unicast addressing together with a well-known address list generated
from the domain server listen addresses

For more details, see "Configuring and Managing Coherence Clusters" in Administering
Clusters for Oracle WebLogic Server.

Configuring Maximum Content Length
By default, the maximum value for the Content-Length header is 327675 (5 * 65535). To set a
different value, set the value of the wlss.max.content.size property.

Using the Engine Cache
This chapter describes how to enable the Oracle Communications Converged Application
Server engine cache for improved performance with SIP-aware load balancers.

Overview of Engine Caching
A Converged Application Server engine cluster manages call-state data in several partitions in
the memory of each engine server. Each call-state entry resides in one such partition on a
specific engine server in the cluster. In many cases the engine server requesting the call-state
entry is not the same engine server where it is stored. Engine servers fetch and write data in
the SIP call-state store as necessary. Each call state data partition can have one or more
backup copies in another server to provide automatic failover in the event that a SIP call-state
store server fails or shuts down for some reason.

Converged Application Server also provides the option for engine servers to cache a portion of
the call-state data locally. When a local cache is used, an engine server first checks its local
cache. If the cache contains the required data, and the local copy of the data is up-to-date
(compared to the SIP call-state store copy), the engine locks the call state in the SIP call-state
store but reads directly from its cache. This improves response time performance for the
request, because the engine does not have to retrieve the call state data from a SIP call-state
store.

The engine cache stores only the call state data that has been most recently used by engine
servers. Call state data is moved into an engine's local cache as necessary to respond to client
requests or to refresh out-of-date data. If the cache is full when a new call state must be written
to the cache, the least-recently accessed call state entry is first removed from the cache. The
size of the engine cache is not configurable.

Chapter 1
Using the Engine Cache

1-21

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/coherence.html#GUID-C4577955-59DB-4333-A817-7C26641C4EDC

Using a local cache is most beneficial when a SIP-aware load balancer manages requests to
the engine cluster. With a SIP-aware load balancer, all of the requests for an established call
are directed to the same engine server, which improves the effectiveness of the cache. If you
do not use a SIP-aware load balancer, the effectiveness of the cache is limited, because
subsequent requests for the same call may be distributed to different engine severs (having
different cache contents).

Configuring Engine Caching
By default, engine caching is enabled. To disable partial caching of call state data in the
engine, specify the engine-call-state-cache-enabled element in sipserver.xml:

<engine-call-state-cache-enabled>false</engine-call-state-cache-enabled>

When enabled, the cache size is fixed at a maximum of 250 call states. The size of the engine
cache is not configurable.

Monitoring and Tuning Cache Performance
The SipPerformanceRuntime MBean monitors the behavior of the engine cache.

When enabled, the size of the cache is fixed at 250 call states. Because the cache consumes
memory, you may need to modify the JVM settings used to run engine servers to meet your
performance goals. Cached call states are maintained in the tenured store of the garbage
collector. Try reducing the fixed NewSize value when the cache is enabled (for example, -
XX:MaxNewSize=32m -XX:NewSize=32m). The actual value depends on the call state size
used by applications and the size of the applications themselves.

In addition, keep the following points in mind when using engine caching:

1. The engine cache is less useful if SIP aware load balancers are not used.

2. The engine cache is not used for timer processing, so if an application fires many timers,
cache benefits decrease.

3. The cache alters the garbage collection characteristics of the engine, since there is more
long-lived state.

For SIP performance monitoring information, see Converged Application Server Monitoring
and Overload Protection.

For more information on the methods of the SipPerformanceRuntime MBean, see its
interface description in the com.bea.wcp.sip.managment.runtime package in the Oracle
Converged Application Server Java API Reference.

Configuring Coherence
This chapter describes the implementation and configuration of Oracle Coherence in Oracle
Converged Application Server.

Converged Application Server uses Coherence for the following purposes:

• Cluster-wide engine communication and state management

• Application call-state storage and management for concurrent SIP calls

Chapter 1
Configuring Coherence

1-22

About Coherence Engine Communication and State Management
The Domain Creation Wizard automatically creates a default Coherence cluster for managing
Converged Application Server information when it sets up new domains. The default cluster
includes the engine servers and the administrative server in your environment.

Configuring Coherence for Engine Communication and State Management
You configure the Converged Application Server Coherence implementation using the Oracle
WebLogic Administration Console. See the chapter on "Configuring and Managing Coherence
Clusters" in Administering Clusters for Oracle WebLogic Server for more information on the
parameters that can be set in the Administration Console.

To configure the default Coherence cluster installed with Converged Application Server:

1. Log in to the Administration Console for the Converged Application Server Administration
Server.

2. If your domain is running in Production mode, click Lock & Edit.

3. In the Domain Structure tree, expand Environment.

4. Select Coherence Clusters.

5. In the Coherence Clusters table, select Coherence-Default.

6. Configure the parameters for the Coherence cluster as needed.

7. Click Save.

8. If your domain is running in Production mode, click Activate Changes.

Each engine server and the Administration server acts as a managed Coherence server.

To configure Coherence settings for individual engine servers and the Administration Server:

1. Log in to the Administration Console for the Converged Application Server Administration
Server.

2. If your domain is running in Production mode, click Lock & Edit.

3. In the Domain Structure tree, expand Environment.

4. Select Servers.
The Administration Console displays a list of servers included in your Converged
Application Server installation.

5. From the Servers table, select the engine server or the Administration Server for which
you want to configure Coherence settings.

6. In the Configuration tab, select Coherence.

7. Configure the Coherence parameters for the server.

8. Click Save.

9. If your domain is running in Production mode, click Activate Changes.

About Call-State Storage and Management for SIP Calls
The Coherence call-state storage facility for Converged Application Server is built on the
distributed cache service of WebLogic Server. In each managed server in the domain cluster,
Coherence combines logic and processing with state-storage data. Coherence writes data to

Chapter 1
Configuring Coherence

1-23

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/coherence.html#GUID-C4577955-59DB-4333-A817-7C26641C4EDC
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/coherence.html#GUID-C4577955-59DB-4333-A817-7C26641C4EDC

the primary partition cache-storage server and it, in turn, writes a backup copy to the
configured number of backup copies.

See "Understanding Distributed Caches" in Developing Applications with Oracle Coherence for
an explanation of Coherence distributed caches.

The image below illustrates an administration server with a Coherence cluster for call-state
storage.

Figure 1-1 Coherence Cluster for Call-State Storage

The Coherence call-state storage facility includes the following features:

• Built-in support for dynamically adding or removing nodes

• Partitions that migrate dynamically, eliminating the need to configure replica servers and
their partitions

• Enhanced data serialization with Portable Object Format (PoF)

• Proven node death detection for fail-over and split brain handling

• Flexible configuration

• Advanced network protocol that leverages UDP and supports multi-cast to optimize
network usage

• Graceful migration of partitions from one node to another during startup and shutdown,
limiting the impact on ongoing traffic and reducing the risk of overload

Configuring Coherence Call-State Storage
The coherence.xml custom resource file specifies a subset of the configuration options that
control call-state storage. The config.xml file specifies the custom resource file
as $domain_home/config/custom/coherence.xml. The entry in the config.xml file looks like
this:

Chapter 1
Configuring Coherence

1-24

https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.0/develop-applications/introduction-coherence-caches.html#GUID-3C6188BB-8549-41DA-B520-97DD707DDD44

<custom-resource>
 <name>coherence</name>
 <target>bea-engine-tier-clust</target>
 <descriptor-file-name>custom/coherence.xml</descriptor-file-name>
 <resource-class>com.bea.wcp.sip.management.descriptor.
 resource.CoherenceStorageResource</resource-class>
 <descriptor-bean-class>oracle.occas.management.descriptor.beans.
 storage.CoherenceStorageBean</descriptor-bean-class>
</custom-resource>

The following parameters describe the coherence.xml file. They define a default call-state
storage domain.

<?xml version='1.0' encoding='UTF-8'?>
<coherence-storage>
 <cache-config>
 <thread-count>20</thread-count>
 <partition-count>257</partition-count>
 </cache-config>
</coherence-storage>

Modifying the Call-State Storage Configuration

Note:

You cannot modify the configuration when servers in the domain are running.

To view and modify SIP call-state storage parameters:

1. Log in to the Administration Console for the Converged Application Server administration
server.

2. In the Domain Structure tree, click the SipServer node.

3. Click the Configuration tab.

4. Click the Call State Storage tab.

5. Enter values for Thread Count or Partition Count or both.

6. Click Save.

The following table describes the rules that apply to the Thread Count and Partition Count
parameters:

Table 1-3 Call State Storage Configuration Parameters

Parameter Type Validation Rule Restart Server? Notes

Thread Count integer -1 to 32767 Yes -1 = caller thread; 0 = service thread;
otherwise, thread pool

Partition Count integer 1 to 32767 Yes (all at the same time) Must be prime number

The values are saved in the domain_home/config/custom/coherence.xml file where
domain_home is the root directory of the Converged Application Server domain.

You can also set call-state storage parameters using WLST. See "Using WLST (JMX) to
Configure Converged Application Server" for more information.

Chapter 1
Configuring Coherence

1-25

Monitoring Coherence Call-State Storage
To monitor SIP call-state storage:

1. Log in to the Administration Console for the Converged Application Server administration
server.

2. In the Domain Structure tree, click SipServer.

3. Click the Monitoring tab.

4. Click the Call State Storage tab.

5. Click one of the following tabs, depending on the parameters you want to monitor:

• Call State Service

• Call State Cache

• Call State Metadata Cache

• Call State Index Cache

The following table describes the parameters that you can monitor on the Service tab for each
server:

Table 1-4 Call State Service Monitoring Parameters

Column
Name

MBean Attribute Description

Local
Messages

MessagesLocal The total number of self-addressed messages since the
last time the statistics were reset. These messages
service process-local requests and do not have an
associated network cost.

Received
Messages

MessagesReceived The total number of messages received by this service
since the last time statistics were reset. This value
accounts for messages received by any local,
dedicated, or shared transport.

Sent
Messages

MessagesSent The number of messages sent by this service since the
last time statistics were reset. This value accounts for
any messages sent by local, dedicated, or shared
transport.

Owned
Backup
Partitions

OwnedPartitionsBackup The number of partitions that this member backs up
(responsible for the backup storage).

Owned
Primary
Partitions

OwnedPartitionsPrimary The number of partitions that this member owns
(responsible for the primary storage).

Endangered
Partitions

PartitionsEndangered The total number of partitions that are not backed up.

Unbalanced
Partitions

PartitionsUnbalanced The total number of primary and backup partitions that
remain to be transferred until the distribution across
storage-enabled service members is fully balanced.

Vulnerable
Partitions

PartitionsVulnerable The total number of partitions that are backed up on the
same machine where the primary partition owner
resides.

Chapter 1
Configuring Coherence

1-26

Table 1-4 (Cont.) Call State Service Monitoring Parameters

Column
Name

MBean Attribute Description

Average
Request
Duration

RequestAverageDuration The average duration in milliseconds of an individual
synchronous request issued by the service.

Max Request
Duration

RequestMaxDuration The maximum duration in milliseconds of a
synchronous request issued by the service.

Pending
Request Count

RequestPendingCount The number of pending synchronous requests issued
by the service.

Average Task
Duration

TaskAverageDuration The average duration in milliseconds of an individual
task execution.

Task Backlog TaskBacklog The size of the backlog queue that holds tasks
scheduled to be executed by one of the service threads

Max Task
Backlog

TaskMaxBacklog The maximum size of the backlog queue.

Idle Thread
Count

ThreadIdleCount The number of currently idle threads in the service
thread pool.

The following table describes the parameters that you can monitor on the Call State Cache
tab for each server. The cache name is CallState, and this cache contains the call state data
cache entries which hold most of the call state content, including session and transaction data.

Table 1-5 Call State Cache Monitoring Parameters

Column Name MBean
Attribute
Name

Description

Entry Count Size The number of call-state objects currently stored.

Data Size Units The total number of bytes of call-state objects used for call-state
objects currently stored.

The following table describes the parameters that you can monitor on the Call State Metadata
Cache tab for each server. The cache name is CallState.meta. These are call-state lock and
timer entries.

Table 1-6 Call State Cache Metadata Monitoring Parameters

Column
Name

MBean
Attribute
Name

Description

Entry Count Size The number of call-state meta data objects.

Data Size Units The total number of bytes used for call-state meta data objects.

The following table describes the parameters that you can monitor on the Call State Index
Cache tab for each server. The cache name is CallState.idx. These are call-state secondary
index entries.

Chapter 1
Configuring Coherence

1-27

Table 1-7 Call State Index Cache Monitoring Parameters

Column
Name

MBean
Attribute
Name

Description

Entry Count Size The number of call-state secondary index entries currently stored.

Data Size Units The total number of bytes of call-state secondary index entries currently
stored.

You can monitor all parameters by connecting directly to the servers using JConsole.

Configuring Server Failure Detection
This chapter describes how to configure Oracle Communications Converged Application
Server to improve failover performance when a server becomes physically disconnected from
the network.

Overview of Failover Detection
To achieve a highly-available production system, the Converged Application Server uses the
Oracle Coherence distributed cache service to retrieve and write call-state data. The cache
service consists of a number of partitions that are spread across the servers that are running in
the cluster. Each partition has a primary copy of call-state storage assigned to one server in
the cluster, and a backup copy assigned to another server in the cluster. This means that a call
state that is required to process a request may reside on a remote server and possibly even a
remote machine.

The Converged Application Server architecture depends on the Coherence cache service to
detect when a server has failed or becomes disconnected. When an engine cannot access or
write call-state data because a server is unavailable, the Coherence cache service detects this
and reassigns the lost server's partitions to another server in the cluster and ensures a new
backup copy is made available on a different server, if one is running.

Coherence Cluster Overview
The Coherence cache service uses its own cluster communication protocol, known as
Tangosol Cluster Management Protocol (TCMP), to invoke remote servers, detect server
failure and achieve high availability. This protocol uses an optimized algorithm to quickly detect
that a server has become physically disconnected from the network. This algorithm, and the
configuration options that are available to modify its behavior, are described in detail in the
Oracle Coherence documentation. See the following documentation for more information on
Coherence and its distributed cache service.

• "Introduction to Coherence Clusters" in Developing Applications with Oracle Coherence

• "Understanding Distributed Caches" in Developing Applications with Oracle Coherence

See "Configuring Coherence" and "SIP Coherence Configuration Reference (coherence.xml)"
for additional information on configuring Coherence for the Converged Application Server.

Chapter 1
Configuring Server Failure Detection

1-28

https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.0/develop-applications/introduction-coherence-clusters.html#GUID-92569674-E077-46CE-BA06-1BA2DD59B605
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.0/develop-applications/introduction-coherence-caches.html#GUID-3C6188BB-8549-41DA-B520-97DD707DDD44

Split-Brain Handling
The Converged Application Server relies to a large extent on Oracle Coherence to detect and
handle a split-brain condition. A split-brain condition can occur, for example, when connectivity
is restored between two or more parts of a cluster that had been isolated from each other.

After a split-brain failure, causing two or more network partitions to be created, each such
network partition will contain a set of engines that will reform themselves into a smaller cluster
(or possibly a single server waiting to form a new cluster with newly started members).

Each such cluster will, while the network still is partitioned, continue to operate as if the other
engines have been shut down. The clusters will now have promoted the oldest member in the
cluster to a cluster senior member, responsible for managing the cluster state.

When the network is repaired, and all clusters become aware of each other again, the senior
members in each cluster will communicate to decide which single cluster should survive. This
may in certain situations take a couple of minutes before reaching a final conclusion, but will
eventually resolve as follows:

1. If one cluster is larger than all of the others, it will survive and all other engines will be shut
down.

2. If two or more equally large clusters exist that are larger than all the other clusters, the
cluster with the older senior member will survive and all other engines will be shut down.

When Coherence detects a split-brain condition, its behavior is controlled primarily through the
options related to death detection in the cluster-related configuration. For more information see
"Configuring Death Detection" in Developing Applications with Oracle Coherence.

Coherence Configuration
You can use the following three mechanisms to modify Coherence configuration options:

• The default Coherence cluster configuration file

• The system properties

• The tangosol-coherence-override.xml file

WARNING:

No servers in the domain can be running when you make changes to the Coherence
configuration. Also, the configuration must be the same for all servers in the domain
or unexpected behavior can result.

Cluster Configuration File
The default Coherence cluster configuration file, Custom-Default.xml, resides in the following
location:

$DOMAIN_HOME/config/coherence/Coherence-Default/

where $DOMAIN_HOME is the root directory for the domain.

The following table describes the default configuration options that you can specify.

Chapter 1
Configuring Server Failure Detection

1-29

https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.0/develop-applications/setting-cluster.html#GUID-FE185358-AE38-4436-9179-73E0D4CAAD13

Table 1-8 Coherence Cluster Configuration File Options

Option Element Name System Property Name Default
Value

TCP-ring IP-timeout <tcp-ring-listener><ip-
timeout>

tangosol.coherence.ipmonitor.pingtime
out

5

TCP-ring IP-attempts <tcp-ring-listener><ip-
attempts

tangosol.coherence.ipmonitor.pingtatte
mpts

2

Service Guardian
Timeout

<service-
guardian><timeout-
milliseconds>

tangosol.coherence.guard.timeout 305000

Packet Delivery Timeout <packet-
delivery><timeout-
milliseconds>

tangosol.coherence.packet.timeout 300000

You can override these default configuration options either by modifying the corresponding
system properties or creating an override configuration file, called tangosol-coherence-
override.xml, which you add to the system CLASSPATH variable on all servers.

See the following Coherence documentation for information on which configuration options you
can override and for information on how to use the override configuration option:

• Configuring a Coherence Clusterin Administering Clusters for Oracle WebLogic Server

• Death Detection Recommendations in Administering Oracle Coherence

• Configuring Death Detection in Developing Applications with Oracle Coherence

• Understanding the XML Overrride Feature in Developing Applications with Oracle
Coherence

• Coherence Operational Configuration Reference in Developing Applications with Oracle
Coherence

Avoiding and Recovering From Server Failures
This chapter describes the Oracle Communications Converged Application Server failure
prevention and recovery features, and includes the configuration artifacts that are required to
restore different portions of a Converged Application Server domain.

Failure Prevention and Automatic Recovery Features
A variety of events can lead to the failure of a server instance. Often one failure condition leads
to another. Loss of power, hardware malfunction, operating system malfunctions, network
partitions, or unexpected application behavior may each contribute to the failure of a server
instance.

Converged Application Server uses a highly clustered architecture as the basis for minimizing
the impact of failure events. However, even in a clustered environment it is important to
prepare for a sound recovery process if an individual server fails.

Converged Application Server, and the underlying WebLogic Server platform, provide many
features that protect against server failures. In a production system, use all available features
to ensure uninterrupted service.

Chapter 1
Avoiding and Recovering From Server Failures

1-30

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/coherence.html#GUID-0C46C005-86C5-4648-848E-D638E669ACE3
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.0/administer/production-checklist.html#GUID-03540445-972C-4CF3-860B-F0F65256ADCE
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.0/develop-applications/setting-cluster.html#GUID-FE185358-AE38-4436-9179-73E0D4CAAD13
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.0/develop-applications/understanding-configuration.html#GUID-2816FF6C-6666-4649-B576-E5B9EE791A91
https://docs.oracle.com/en/middleware/standalone/coherence/14.1.1.0/develop-applications/operational-configuration-elements.html#GUID-1B0FDF55-4BCB-4068-A185-EF03A9DF0D44

High Availability
High availability refers to a system design that eliminates or minimizes the amount of time that
a system is inaccessible due to some type of system failure.

Converged Application Server achieves high availability primarily due to the features of the
underlying Weblogic Server platform. These features include:

• WebLogic Server clusters that distribute the work load among the multiple instances of
WebLogic Server running on the nodes in the cluster. In the event of failure, the session
state of the failed WebLogic Server is available to other node that can continue the work. If
the cluster is configured correctly, services can also migrate to another node in the event of
failure. See Understanding Weblogic Server Clustering in Administering Clusters for Oracle
WebLogic Server for more information.

• Coherence clusters that distribute data across members to ensure that data is always
available. See Configuring and Managing Coherence Clusters in Administering Clusters for
Oracle WebLogic Server for more information.

• Overload protection that enables WebLogic Server to detect and recover from overload
conditions. See Avoiding and Managing Overload in Administering Server Environments
for more information.

• Network channels that segregate traffic by type to use resources effectively. See
Configuring Network Resources in Administering Server Environments for more
information

• Work Managers that optimize and prioritize work based on rules and performance
statistics. See Using Work Managers to Optimize Scheduled Work in Administering Server
Environments for more information.

You can also use virtual machines (VMs) to mitigate system failure. An individual server has
multiple points of potential failure, including CPU, RAM, network ports, and disk drives. A
virtual machine, on the other hand, can satisfy its resource requirements from a pool of
hardware resources so that a physical disk failure does not result in a failure of the virtual disk.
The virtual machine simply employs another available disk drive to compensate for the one
that failed.

Overload Protection
Converged Application Server implements an overload framework which supports plug-in
statistics collectors, plug-in event handlers, as well as multiple threshold settings and statistics
collection algorithms. For more information, see "About Converged Application Server
Overload Protection".

For general information on overload protection, see Avoiding and Managing Overload in
Administering Server Environments for Oracle WebLogic Server for more information.

Redundancy and Failover for Clustered Services
You can increase the reliability and availability of your applications by using multiple servers
and partitions in a dedicated cluster.

Server partitions store redundant copies of call state information, and automatically failover to
one another should a partition or server fail.

See Converged Application Server Concepts for more information.

Chapter 1
Avoiding and Recovering From Server Failures

1-31

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/overview.html#GUID-7082EB65-5A7B-4211-B90D-B0482DCABCA4
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/coherence.html#GUID-C4577955-59DB-4333-A817-7C26641C4EDC
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/cnfgd/overload.html#GUID-58A28016-EC54-4473-87EE-8DDC60D40B30
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/cnfgd/network.html#GUID-7513DDF1-761B-4319-9D8C-2E4E8D6EE2CB
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/cnfgd/self_tuned.html#GUID-0670CD7C-AC96-46D4-AA43-1F99F21F1CC3
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/cnfgd/overload.html#GUID-58A28016-EC54-4473-87EE-8DDC60D40B30

Automatic Restart for Failed Server Instances
WebLogic Server self-health monitoring features improve the reliability and availability of server
instances in a domain. Selected subsystems within each server instance monitor their health
status based on criteria specific to the subsystem. (For example, the JMS subsystem monitors
the condition of the JMS thread pool while the core server subsystem monitors default and
user-defined execute queue statistics.) If an individual subsystem determines that it can no
longer operate in a consistent and reliable manner, it registers its health state as failed with the
host server.

Each WebLogic Server instance, in turn, checks the health state of its registered subsystems
to determine its overall viability. If one or more of its critical subsystems have reached the
FAILED state, the server instance marks its own health state FAILED to indicate that it cannot
reliably host an application.

When used in combination with Node Manager, server self-health monitoring enables you to
automatically restart servers that have failed. This improves the overall reliability of a domain,
and requires no direct intervention from an administrator. For more information, see Using
Node Manager to Control Servers in the Administering Node Manager for Oracle WebLogic
Server.

Managed Server Independence Mode
Managed Servers maintain a local copy of the domain configuration. When a Managed Server
starts, it contacts its Administration Server to retrieve any changes to the domain configuration
that were made since the Managed Server was last shut down. If a Managed Server cannot
connect to the Administration Server during startup, it can use its locally-cached configuration
information—this is the configuration that was current at the time of the Managed Server's
most recent shutdown. A Managed Server that starts without contacting its Administration
Server to check for configuration updates is running in Managed Server Independence (MSI)
mode. By default, MSI mode is enabled. See Replicate domain config files for Managed Server
Independence in the Administration Console Online Help for more information.

Automatic Migration of Failed Managed Servers
When using Linux or UNIX operating systems, you can use WebLogic Server's server
migration feature to automatically start a candidate (backup) server if a Network tier server fails
or becomes partitioned from the network. The server migration feature uses node manager,
with the wlsifconfig.sh script, to automatically start candidate servers using a floating IP
address. Candidate servers are started only if the primary server hosting a Network tier
instance becomes unreachable. See the discussion on "Whole Server Migration" in
Administering Clusters for Oracle WebLogic Server for more information about using the server
migration feature.

Geographic Redundancy for Regional Site Failures
In addition to server-level redundancy and failover capabilities, you can configure peer sites to
protect against catastrophic failures, such as power outages, that can affect an entire domain.
This configuration enables you to failover from one geographical site to another, avoiding
complete service outages. For more information, see Configuring Geographically-Redundant
Installations.

Chapter 1
Avoiding and Recovering From Server Failures

1-32

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/nodem/starting_nodemgr.html#GUID-4E731D1B-BD1A-4D55-A9B7-307C57D71EA0
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/nodem/starting_nodemgr.html#GUID-4E731D1B-BD1A-4D55-A9B7-307C57D71EA0
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlach/taskhelp/domainconfig/ReplicateDomainConfigFilesForManagedServerIndependence.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlach/taskhelp/domainconfig/ReplicateDomainConfigFilesForManagedServerIndependence.html
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/clust/migration.html#GUID-BD940A79-CF6E-4FE6-9922-85220AE835B4

Directory and File Backups for Failure Recovery
Recovery from the failure of a server instance requires access to the domain's configuration
data. By default, the Administration Server stores a domain's primary configuration data in a
file called domain_home/config/config.xml, where domain_home is the root directory of the
domain.

The primary configuration file may reference additional configuration files for specific WebLogic
Server services, such as JDBC and JMS, and for Converged Application Server services, such
as SIP container properties and SIP call-state storage configuration. The configuration for
specific services are stored in additional XML files in subdirectories of the domain_home/
config directory, such as domain_home/config/jms, domain_home/config/jdbc, and
domain_home/config/custom for Converged Application Server configuration files.

The Administration Server can automatically archive multiple versions of the domain
configuration (the entire domain_home/config directory). Use the configuration archives for
system restoration in cases where accidental configuration changes need to be reversed. For
example, if an administrator accidentally removes a configured resource, the prior
configuration can be restored by using the last automated backup.

The Administration Server stores only a finite number of automated backups locally in
domain_home/config. For this reason, automated domain backups are limited in their ability to
guard against data corruption, such as a failed hard disk. Automated backups also do not
preserve certain configuration data that are required for full domain restoration, such as LDAP
repository data and server start-up scripts. Oracle recommends that you also maintain multiple
backup copies of the configuration and security offline, in a source control system.

This section describes file backups that Converged Application Server performs automatically
and manual backup procedures that an administrator should perform periodically.

Enabling Automatic Configuration Backups
Follow these steps to enable automatic domain configuration backups on the Administration
Server for your domain:

1. Access the Administration Console for your domain.

2. In the left pane of the Administration Console, select the name of the domain.

3. In the right pane, click Configuration, and then select the General tab.

4. Select Advanced to display advanced options.

5. Select Configuration Archive Enabled.

6. In the Archive Configuration Count box, enter the maximum number of configuration file
revisions to save.

7. Click Save.

When you enable configuration archiving, the Administration Server automatically creates a
configuration JAR file archive. The JAR file contains a complete copy of the previous
configuration (the complete contents of the domain_home\config directory). JAR file archive
files are stored in the domain_home\configArchive directory. The files use the naming
convention config-number.jar, where number is the sequential number of the archive.

When you save a change to a domain's configuration, the Administration Server saves the
previous configuration in domain_home\configArchive\config.xml#n. Each time the
Administration Server saves a file in the configArchive directory, it increments the value of the

Chapter 1
Avoiding and Recovering From Server Failures

1-33

#n suffix, up to a configurable number of copies—5 by default. Thereafter, each time you
change the domain configuration:

• The archived files are rotated so that the newest file has a suffix with the highest number,

• The previous archived files are renamed with a lower number, and

• The oldest file is deleted.

Be aware that configuration archives are stored locally within the domain directory, and they
may be overwritten according to the maximum number of revisions you selected. For these
reasons, you must also create your own off-line archives of the domain configuration, as
described in "Storing the Domain Configuration Offline".

Storing the Domain Configuration Offline
Although automatic backups protect against accidental configuration changes, they do not
protect against data loss caused by a failure of the hard disk that stores the domain
configuration, or accidental deletion of the domain directory. To protect against these failures,
you must also store a complete copy of the domain configuration offline, preferably in a source
control system.

Oracle recommends creating a full snapshot of the domain at regular intervals. For example,
you might want to create a snapshot when the following events occur:

• You first deploy the production system

• You add or remove deployed applications

• The configuration is tuned for performance

• Any other permanent change is made.

Note:

The domain directory is present on the Administration Server and each Managed
Server but the Administration Server has the master copy, which you must back up.
You do not need to back up any files on a Managed Server.

The WebLogic pack command creates a template archive file (.jar) based on an existing
WebLogic domain. For example, the following command creates a template file called
C:\oracle\user_templates\mydomain.jar.

pack -domain=C:\oracle\user_projects\domains\mydomain -
template=C:\oracle\user_templates\mydomain.jar -template_name="My WebLogic Domain"

The name of the template is My WebLogic Domain.

See Creating Templates and Domains Using the Pack and Unpack Commands for information
on using the pack and unpack commands.

Store the new archive in a source control system, preserving earlier versions should you need
to restore the domain to an earlier point in time.

Backing Up Logging Servlet Applications
If you use Converged Application Server logging Servlets (see "Logging SIP Requests and
Responses") to perform regular logging or auditing of SIP messages, backup the complete

Chapter 1
Avoiding and Recovering From Server Failures

1-34

https://docs.oracle.com/cd/E13179_01/common/docs92/pack/index.html

application source files so that you can easily redeploy the applications should the staging
server fail or the original deployment directory becomes corrupted.

Backing Up Security Data
The WebLogic Security service stores its configuration data config.xml file, and also in an
LDAP repository and other files.

Backing Up the WebLogic LDAP Repository
The default Authentication, Authorization, Role Mapper, and Credential Mapper providers that
are installed with Converged Application Server store their data in an LDAP server. Each
Converged Application Server contains an embedded LDAP server. The Administration Server
contains the master LDAP server, which is replicated on all Managed Servers. If any of your
security realms use these installed providers, you should maintain an up-to-date backup of the
following directory tree:

domain_home\servers\AdminServer\data\ldap

where domain_home is the domain's root directory and servers\AdminServer\data\ldap is the
directory in which the Administration Server stores run-time and security data.

Each Converged Application Server has an LDAP directory, but you only need to back up the
LDAP data on the Administration Server—the master LDAP server replicates the LDAP data
from each Managed Server when updates to security data are made. WebLogic security
providers cannot modify security data while the domain's Administration Server is unavailable.
The LDAP repositories on Managed Servers are replicas and cannot be modified.

The ldap\ldapfiles subdirectory contains the data files for the LDAP server. The files in this
directory contain user, group, group membership, policies, and role information. Other
subdirectories under the ldap directory contain LDAP server message logs and data about
replicated LDAP servers.

Do not update the configuration of a security provider while a backup of LDAP data is in
progress. If a change is made—for instance, if an administrator adds a user—while you are
backing up the ldap directory tree, the backups in the ldapfiles subdirectory could become
inconsistent. If this does occur, consistent, but potentially out-of-date, LDAP backups are
available.

Once a day, a server suspends write operations and creates its own backup of the LDAP data.
It archives this backup in a ZIP file below the ldap\backup directory and then resumes write
operations. This backup is guaranteed to be consistent, but it might not contain the latest
security data.

For information about configuring the LDAP backup, see the "Back Up LDAP Repository"
section in Administering Server Startup and Shutdown for Oracle WebLogic Server.

Backing Up Additional Operating System Configuration Files
Certain files maintained at the operating system level are also critical in helping you recover
from system failures. Consider backing up the following information as necessary for your
system:

• Load Balancer configuration scripts. For example, any automated scripts used to configure
load balancer pools and virtual IP addresses for the engine tier cluster and NAT
configuration settings.

• NTP client configuration scripts used to synchronize the system clocks of engine servers.

Chapter 1
Avoiding and Recovering From Server Failures

1-35

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/start/failures.html#GUID-4250DC45-00A4-455E-BA53-121F3E6CAA17

• Host configuration files for each Converged Application Server system (host names, virtual
and real IP addresses for multi-homed machines, IP routing table information).

Restarting a Failed Administration Server
If an Administration Server fails, only configuration, deployment, and monitoring features are
affected, but Managed Servers continue to operate and process client requests. Potential
losses incurred due to an Administration Server failure include:

• Loss of in-progress management and deployment operations.

• Loss of ongoing logging functionality.

• Loss of SNMP trap generation for WebLogic Server instances (as opposed to Converged
Application Server instances). On Managed Servers, Converged Application Server traps
are generated even without the Administration Server.

To resume normal management activities, restart the failed Administration Server instance as
soon as possible.

When you restart a failed Administration Server, no special steps are required. Start the
Administration Server as you normally would.

If the Administration Server shuts down while Managed Servers continue to run, you do not
need to restart the Managed Servers that are already running to recover management of the
domain. The procedure for recovering management of an active domain depends upon
whether you can restart the Administration Server on the same system it was running on when
the domain was started.

Restarting an Administration Server on the Same System
If you restart the WebLogic Administration Server while Managed Servers continue to run, by
default the Administration Server can discover the presence of the running Managed Servers.

Note:

Ensure that the startup command or startup script does not include -
Dweblogic.management.discover=false, which disables an Administration Server
from discovering its running Managed Servers.

The root directory for the domain contains a file, running-managed-servers.xml, which
contains a list of the Managed Servers in the domain and describes their running state. When
the Administration Server restarts, it checks this file to determine which Managed Servers were
under its control before it stopped running.

When a Managed Server is gracefully or forcefully shut down, its status in running-managed-
servers.xml is updated to not-running. When an Administration Server restarts, it does not try
to discover Managed Servers with the not-running status. A Managed Server that stops
running because of a system malfunction, or that was stopped by killing the JVM or the
command prompt (shell) in which it was running, will still have the status running in running-
managed-servers.xml. The Administration Server will attempt to discover them, and will throw
an exception when it determines that the Managed Server is no longer running.

Restarting the Administration Server does not cause Managed Servers to update the
configuration of static attributes. Static attributes are those that a server refers to only during
its startup process. Servers instances must be restarted to take account of changes to static

Chapter 1
Avoiding and Recovering From Server Failures

1-36

configuration attributes. Discovery of the Managed Servers only enables the Administration
Server to monitor the Managed Servers or make run-time changes to attributes configurable
while a server is running (dynamic attributes).

Restarting an Administration Server on Another System
If a system malfunction prevents you from restarting the Administration Server on the same
system, you can recover management of the running Managed Servers as follows:

1. Install the Converged Application Server software on the new system (if this has not
already been done).apply any patches that had been applied to the failed server.

2. Apply any patches that had been applied to the failed server.

3. Use the unpack command to create a WebLogic domain from the template that you
created when you backed up the domain. See Storing the Domain Configuration Offline.
Your application files should be available in the same relative location on the new file
system as on the file system of the original Administration Server.

4. Make your configuration and security data available to the new administration system by
copying them from backups or by using a shared disk. Refer to Backing Up Security Data.

5. Restart the Administration Server on the new system.
Ensure that the startup command or startup script does not include -
Dweblogic.management.discover=false, which disables an Administration Server from
discovering its running Managed Servers.

When the Administration Server starts, it communicates with the Managed Servers and informs
them that the Administration Server is now running on a different IP address.

Restarting Failed Managed Servers
If the system on which the failed Managed Server runs can contact the Administration Server
for the domain, simply restart the Managed Server manually or automatically using Node
Manager. You must configure Node Manager and the Managed Server to support automated
restarts, as described in the discussion on "How Node Manager Restarts a Managed Server"
in the Administering Node Manager for Oracle WebLogic Server.

If the Managed Server cannot connect to the Administration Server during startup, it can
retrieve its configuration by reading locally-cached configuration data. A Managed Server that
starts in this way is running in Managed Server Independence (MSI) mode.

For a description of MSI mode, and the files that a Managed Server must access to start in
MSI mode, see "Replicate domain config files for Managed Server independence" in
Administration Console Online Help.

To start a Managed Server in MSI mode:

1. Ensure that the following files are available in the Managed Server's root directory:

• msi-config.xml

• SerializedSystemIni.dat

• boot.properties

If these files are not in the Managed Server's root directory:

a. Copy the config.xml and SerializedSystemIni.dat file from the Administration
Server's root directory (or from a backup) to the Managed Server's root directory.

Chapter 1
Avoiding and Recovering From Server Failures

1-37

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/nodem/overview.html#GUID-8A73488E-D408-480B-81B9-04FE50850068
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlach/taskhelp/domainconfig/ReplicateDomainConfigFilesForManagedServerIndependence.html

b. Rename the configuration file to msi-config.xml. When you start the server, it will use
the copied configuration files.

Note:

Alternatively, use the -Dweblogic.RootDirectory=path startup option to
specify a root directory that already contains these files.

2. Start the Managed Server at the command-line or using a script.
The Managed Server will run in MSI mode until it is contacted by its Administration Server.
For information about restarting the Administration Server in this scenario, see "Restarting
a Failed Administration Server".

Storing Long-Lived Call State Data in an RDBMS
This chapter describes how to configure a Oracle Communications Converged Application
Server domain to use an Oracle or MySQL RDBMS with the Coherence cluster, in order to
conserve RAM.

Overview of Long-Lived Call State Storage
Converged Application Server enables you to store long-lived call state data in an Oracle or
MySQL RDBMS in order to conserve RAM. When you enable RDBMS persistence, by default
the Coherence cache persists a call state's data to the RDBMS after the call dialog has been
established, and at subsequent dialog boundaries, retrieving or deleting the persisted call state
data as necessary to modify or remove the call state.

Oracle also provides an API for application designers to provide "hints" as to when the
Coherence cache should persist call state data. These hints can be used to persist call state
data to the RDBMS more frequently, or to disable persistence for certain calls.

Note that Converged Application Server only uses the RDBMS to supplement the Coherence
cache's in-memory replication functionality. To improve latency performance when using an
RDBMS, the Coherence cache maintains SIP timers in memory, along with call states being
actively modified (for example, in response to a new call being set up). Call states are
automatically persisted only after a dialog has been established and a call is in progress, at
subsequent dialog boundaries, or in response to persistence hints added by the application
developer.

When used in conjunction with an RDBMS, the Coherence cache selects one engine to
process all call state writes (or deletes) to the database. Any available server can be used to
retrieve call states from the persistent store as necessary for subsequent reads.

RDBMS call state storage can be used in combination with an engine cache, if your domain
uses a SIP-aware load balancer to manage connections to the engine tier. See "Using the
Engine Cache".

Requirements and Restrictions
Enable RDBMS call state storage only when all of the following criteria are met:

• The call states managed by your system are typically long-lived.

• The size of the call state to be stored is large. Very large call states may require a
significant amount of RAM in order to store the call state.

Chapter 1
Storing Long-Lived Call State Data in an RDBMS

1-38

• Latency performance is not critical to your deployed applications.

The latency requirement, in particular, must be well understood before choosing to store call
state data in an RDBMS. The RDBMS call state storage option measurably increases latency
for SIP message processing, as compared to using a Coherence cache cluster. If your system
must handle a large number of short-lived SIP transactions with brief response times, Oracle
recommends storing all call state data in the Coherence cache.

Note:

RDBMS persistence is designed only to reduce the RAM requirements in the
Coherence cache for large, long-lived call states. The persisted data cannot be used
to restore a failed engine.

Configuring RDBMS Call State Storage
To change an existing Converged Application Server domain to store call state data in an
Oracle or MySQL RDBMS, you must configure the required JDBC datasource, edit the
Converged Application Server configuration, and add the required schema to your database.
Follow the instructions in the sections below to configure an Oracle Database.

Create the Database Schema
Converged Application Server includes a SQL script, callstate.sql, that you can use to
create the tables necessary for storing call state information. The script is installed to the
user_staged_config subdirectory of the domain directory when you configure a replicated
domain using the Configuration Wizard.

The contents of the callstate.sql SQL script are shown below.

Example 1-6 callstate.sql Script for Call State Storage Schema

drop table callstate;

create table callstate (
 key1 int,
 key2 int,
 bytes blob default empty_blob(),
 constraint pk_callstate primary key (key1, key2)
);

Follow these steps to execute the script commands using SQL*Plus:

1. Move to the Converged Application Server utils directory, in which the SQL Script is
stored:

cd ~/WL_HOME/common/templates/scripts/db/oracle

where WL_HOME is the path to the directory where the WebLogic Server component of
Converged Application Server is installed.

2. Start the SQL*Plus application, connecting to the Oracle database in which you will create
the required tables. Connect to the database using the user name, password and database
name that you specified when you installed the database software. For example:

sqlplus username/password@connect_identifier

Chapter 1
Storing Long-Lived Call State Data in an RDBMS

1-39

where connect_identifier connects to the database identified in the JDBC connection
pool.

3. Execute the Converged Application Server SQL script, callstate.sql:

START callstate.sql
4. Exit SQL*Plus:

EXIT

Configure JDBC Resources
Follow these steps to create the required JDBC resources in your domain:

1. Use your browser to access the URL http://address:port/console where address is the
Administration Server's listen address and port is the listen port.

Note:

The default administration console port for Converged Application Server is
7001.

2. Access the Administration Console for the domain.

3. If your domain is running in Production mode, click Lock & Edit.

4. Expand Services, then select the Data Sources node in the left pane.

5. In the Summary of JDBC Data Sources pane, click the Configuration tab, and then click
New in the Data Sources table and choose Generic Data Source from the pop up menu.

6. Fill in the fields of the Create a New JDBC Data Source page as follows:

• Name: Enter CallStateDataSource

• JNDI Name: Enter wlss.callstate.datasource.

• Database Type: Select Oracle or MySQL depending on your database.

7. Click Next.

8. Select an appropriate JDBC driver from the Database Driver list. Note that some of the
drivers listed in this field may not be installed by default on your system. Install third-party
drivers as necessary using the instructions from your RDBMS vendor. For more
information on JDBC drivers, see "Selecting a JDBC Driver" in Administering JDBC Data
Sources for WebLogic Server.

9. Click Next.

10. Configure any Transaction Options as required for your database. For more information on
JDBC transaction options, see "Configure Transaction Options" in Administering JDBC
Data Sources for WebLogic Server.

11. Click Next.

12. Fill in the fields of the Connection Properties tab using connection information for the
database you want to use. For more information, see "Configure Connection Properties" in
Administering JDBC Data Sources for WebLogic Server.

13. Click Next.

14. Click Test Configuration to test your connection to the RDBMS, or click Next to continue.

Chapter 1
Storing Long-Lived Call State Data in an RDBMS

1-40

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/jdbca/jdbc_datasources.html#GUID-4185F61A-B11F-4246-847A-AFC5D9636CF5
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/jdbca/jdbc_datasources.html#GUID-D9EA10ED-E508-4A8E-B363-91611BEE885C
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/jdbca/jdbc_datasources.html#GUID-86D1B0CB-59A7-4DAA-829F-FD7341059A35

15. On the Select Targets page, select the name of your SIP engine cluster (for example, bea-
engine-tier-clust).

16. Click Finish to save your changes.

17. If your domain is running in Production mode, click Activate Changes.

Configuring Persistence Options (Primary and Secondary Sites)
Follow these steps to configure the Converged Application Server persistence options to use
an RDBMS call state store:

1. Use your browser to access the URL http://address:port/console where address is the
Administration Server's listen address and port is the listen port.

Note:

The default administration console port for Converged Application Server is
7001.

2. If your domain is running in Production mode, click Lock & Edit.

3. Select the SipServer node in the left pane. The right pane of the console provides two
levels of tabbed pages that are used for configuring and monitoring Converged Application
Server.

4. Select Configuration, then select the Persistence tab in the right pane.

5. Configure the Persistence attributes as follows:

• DB Enabled: Check to enable call states to be stored in an RDBMS.

• Default Handling: Select db or all. It is acceptable to select all because
geographically-redundant replication is only performed if the Geo Site ID and Geo
Remote T3 URL fields have been configured.

For information on configuring geographical redundancy, see "Configuring
Geographically-Redundant Installations".

6. Click Save to save your configuration changes.

7. If your domain is running in Production mode, click Activate Changes.

Using Persistence Hints in SIP Applications
Converged Application Server provides a simple API to provide "hints" as to when the
Coherence cache should persist call state data. You can use the API to disable persistence for
specific calls or SIP requests, or to persist data more frequently than the default setting (at SIP
dialog boundaries).

To use the API, simply obtain a WlssSipApplicationSession instance and use the setPersist
method to enable or disable persistence. Note that you can enable or disable persistence
either to an RDBMS store, or to as geographically-redundant Converged Application Server
installation (see Configuring Geographically-Redundant Installations).

For example, some SIP-aware load balancing products use the SIP OPTIONS message to
determine if a SIP Server is active. To avoid persisting these messages to an RDBMS and to a
geographically-redundant site, a Servlet might implement a doOptions method to echo the
request and turn off persistence for the message, as shown below.

Chapter 1
Storing Long-Lived Call State Data in an RDBMS

1-41

Example 1-7 Disabling RDBMS Persistence for Option Methods

protected void doOptions(SipServletRequest req) throws IOException {
 WlssSipApplicationSession session =
 (WlssSipApplicationSession) req.getApplicationSession();
 session.setPersist(WlssSipApplicationSession.PersistenceType.DATABASE,
 false);
 session.setPersist(WlssSipApplicationSession.PersistenceType.GEO_REDUNDANCY, false);
 req.createResponse(200).send();
}

Configuring Geographically-Redundant Installations
This chapter describes how to replicate call state transactions across multiple, regional Oracle
Communications Converged Application Server installations.

Geographic Redundancy
Geographic redundancy ensures uninterrupted transactions and communications for providers,
using geographically-separated SIP server deployments.

A primary site can process various SIP transactions and communications and upon
determining a transaction boundary, replicate the state data associated with the transaction
being processed, to a secondary site. Upon failure of the primary site, calls are routed from the
failed primary site to a secondary site for processing. Similarly, upon recovery, the calls are re-
routed back to the primary site.

Figure 1-2 Geo-Redundancy

Chapter 1
Configuring Geographically-Redundant Installations

1-42

In the preceding figure, Geo-Redundancy is portrayed. The process proceeds as follows:

1. Call is initiated on a primary Converged Application Server Cluster site, call setup and
processing occurs normally.

2. Call is replicated as usual to the site's Coherence cache, and becomes eligible for
replication to a secondary site.

3. A single engine in the Coherence cache then places the call state data to be replicated on
a JMS queue configured.

4. Call is transmitted to one of the available engines using JMS over WAN.

5. Engines at the secondary site monitor their local queue for new messages. Upon receiving
a message, an Engine in the secondary site Converged Application Server Cluster persists
the call state data and assigns it the site ID value of the primary site.

Table 1-9 Geographic Redundancy Flow

Normal Operation Failover

When a session is initiated on a primary Converged Application Server
site, call setup and processing occurs normally.

Global load balancing policy updated to begin
routing calls - primary site to secondary site.

When a SIP transaction boundary is reached, the call is replicated (in-
memory) to the site's Coherence cache, and becomes eligible for
replication to a secondary site.

Once complete, the secondary site begins
processing requests for the backed-up call
state data.

A single engine in the Coherence cache then places the call state data to
be replicated on a JMS queue configured on the replica site.

When a requests hit secondary site engine
retrieves the data and activates the call state,
taking ownership for the call.

Data is transmitted to one of the available engines round-robin fashion. Sets the site ID associated with the call to zero
(making it appear local).

Engines at the secondary site monitor their local queue for new messages. Activates all dormant timers present in the call
state.

Upon receiving a message, an engine on the secondary site persists the
call state data and assigns it the site ID value of the primary site.

By default, call states are activated only for
individual calls, and only after those calls are
requested on the backup site.

The site ID distinguishes replicated call state data on the secondary site
from any other call state data actively managed by the secondary site.

Servlets can use the
WlssSipApplicationSession.getGeoSiteId()
method to examine the site ID associated with
a call.

Timers in replicated call state data remain dormant on the secondary site,
so that timer processing does not become a bottleneck to performance.

Any non-zero value for the site ID indicates that
the Servlet is working with call state data that
was replicated from another site.

Situations Best Suited to Use Geo-Redundancy
The following situations are best suited to take advantage of Geo-Redundancy:

• Your application uses SIP dialog states that are long-lived (dialog states that typically last
30 seconds or longer, such as SUBSCRIBE dialogs or conferences)

• Your application would reasonably be able to reconstruct the session (re-INVITE, expire
SUBSCRIBE dialogs to trigger re-subscriptions, and so on) from the state that has been
replicated

• The link between two Converged Application Server clusters or sites is low-bandwidth
(<1Gb/s each direction) or high (or variable) latency (>5ms 95%)

Chapter 1
Configuring Geographically-Redundant Installations

1-43

Situations Not Suited to Use Geo-Redundancy
Geo-Redundancy should not be used in these situations:

• A high-capacity link between sites is available

• Your application does not reach SIP dialog steady-states that are likely to last longer than
the time it would take to re-route all traffic to the secondary site in the event of catastrophic
failure (15-30 seconds)

• If the application session is likely to be terminated by the user before the application could
re-construct the session (most users will disconnect their calls before the session can be
re-established from the secondary site)

• The volume of session state objects created by the application is greater than the site
interconnect can support

Geo-Redundancy Considerations
Consider the following issues when planning for Geo-Redundancy:

• Dimension the system for the site link.

• Each dialog state is ~20KB on the wire.

• A typical B2BUA is two (2) dialogs.

• Aim for 25% utilization (or less, depending on the specific equipment and topology of the
site) to accommodate “jitter" and sustained latency on the link.

For example, a 100 Mb/s link can handle approximately1000 call states per second, and a
typical B2BUA (in the default configuration) generates 4 states during the call (two for each
dialog). So, a 100 Mb/s link will support a single Converged Application Server cluster
dimensioned for a peak arrival rate (call rate) of 250 CPS.

• Geo-Redundancy is not transparent to the application; in most cases the application must
be designed to use SetPersist() appropriately, and the developer must consider the
volume of state that the application will queue for replication between sites.

• Given the time it generally takes to route traffic to a secondary site, any application that
replicates state more frequently will unnecessarily saturate the JMS queue and site
interconnect.

• Tuning of JMS to the specific application environment is required: Serialization options,
message batching, reliable delivery options and queue size are all variable, depending on
the specific application and site characteristics

• Geo-Redundancy default behavior is to replicate all dialog state changes when Geo-
Redundancy is enabled for the container (this is not recommended for production
deployments).

• SetPersist() should be used within the application code to selectively identify dialog
states that will be long-lived (longer than ~20-30 seconds would be a reasonable
threshold).

Using Geographically-Redundant SIP Engines
The basic call state replication functionality available in the Converged Application Server
Coherence cache provides excellent failover capabilities for a single site installation. However,
the active replication performed within the Coherence cache requires high network bandwidth
in order to meet the latency performance needs of most production networks. This bandwidth

Chapter 1
Configuring Geographically-Redundant Installations

1-44

requirement makes a single Coherence cache cluster unsuitable for replicating data over large
distances, such as from one regional data center to another.

The Converged Application Server geographic persistence feature enables you to replicate call
state transactions across multiple Converged Application Server installations (multiple
Administrative domains or "sites"). A geographically-redundant configuration minimizes
dropped calls in the event of a catastrophic failure of an entire site, for example due to an
extended, regional power outage.

Example Domain Configurations
A secondary Converged Application Server domain that persists data from another domain
may itself process SIP traffic, or it may exist solely as an active standby domain. In the most
common configuration, two sites are configured to replicate each other's call state data, with
each site processing its own local SIP traffic. The administrator can then use either domain as
the "secondary" site should one of domains fail.

Figure 1-3 Common Geographically-Redundant Configuration

An alternate configuration utilizes a single domain that persists data from multiple, other sites,
acting as the secondary for those sites. Although the secondary site in this configuration can
also process its own, local SIP traffic, be aware that the resource requirements of the site may
be considerable because of the need to persist active traffic from several other installations.

Figure 1-4 Alternate Geographically-Redundant Configuration

Chapter 1
Configuring Geographically-Redundant Installations

1-45

When using geographic persistence, a single engine in the primary site places modified call
state data on a distributed JMS queue. By default, data is placed on the queue only at SIP
dialog boundaries. (A custom API is provided for application developers who want to replicate
data using a finer granularity, as described in "Using Persistence Hints in SIP Applications".) In
a secondary site, engines use a message listener to monitor the distributed queue to receive
messages and write the data to its own Coherence cache. If the secondary site uses an
RDBMS to store long-lived call states (recommended), then the call state data entries are
written into the RDBMS and removed from the in-memory call state cache.

Requirements and Limitations
The Converged Application Server geographically-redundant persistence feature is most useful
for sites that manage long-lived call state data in an RDBMS. Short-lived calls may be lost in
the transition to a secondary site, because Converged Application Server may choose to
collect data for multiple call states before replicating between sites.

You must have a reliable, site-aware load balancing solution that can partition calls between
geographic locations, as well as monitor the health of a given regional site. Converged
Application Server provides no automated functionality for detecting the failure of an entire
domain, or for failing over to a secondary site. It is the responsibility of the Administrator to
determine when a given site has "failed," and to redirect that site's calls to the correct
secondary site. Furthermore, the site-aware load balancer must direct all messages for a given
callId to a single home site (the "active" site). If, after a failover, the failed site is restored, the
load balancer must continue directing calls to the active site and not partition calls between the
two sites.

During a failover to a secondary site, some calls may be dropped. This can occur because
Converged Application Server generally queues call state data for site replication only at SIP
dialog boundaries. Failures that occur before the data is written to the queue result in the loss
of the queued data.

Also, Converged Application Server replicates call state data across sites only when a SIP
dialog boundary changes the call state. If a long-running call exists on the primary site before
the secondary site is started, and the call state remains unmodified, that call's data is not
replicated to the secondary site. Should a failure occur before a long-running call state has
been replicated, the call is lost during failover.

When planning for the capacity of a Converged Application Server installation, be aware that,
after a failover, a given site must be able to support all of the calls from the failed site as well
as from its own geographic location. This means that all sites that are involved in a
geographically-redundant configuration will operate at less than maximum capacity until a
failover occurs.

Steps for Configuring Geographic Persistence
In order to use the Converged Application Server geographic persistence features, you must
perform certain configuration tasks on both the primary "home" site and on the secondary
replication site.

Chapter 1
Configuring Geographically-Redundant Installations

1-46

Table 1-10 Steps for Configuring Geographic Persistence

Steps for Primary "Home" Site Steps for Secondary "Replication" Site:

1. Install Converged Application Server software and
create replicated domain.

2. Enable RDBMS storage for long-lived call states
(recommended).

3. Configure JMS Servers and modules required for
replicating data.

4. Configure persistence options to: define the unique
regional site ID; identify the secondary site's URL; and
enable replication hints.

5. Optionally configure cross domain security settings.

1. Install Converged Application Server software and create
replicated domain.

2. Enable RDBMS storage for long-lived call states
(recommended).

3. Configure JMS Servers and modules required for
replicating data.

4. Configure persistence options to define the unique
regional site ID.

5. Optionally configure cross domain security settings.

Note:

In most production deployments, two sites will perform replication services for each
other, so you will generally configure each installation as both a primary and
secondary site.

Follow the instructions in "Configuring Geographic Redundancy" to create the resources.

Configuring Geographic Redundancy
If you have an existing replicated Converged Application Server installation, or pair of
installations, you must manually create the JMS and JDBC resources required for enabling
geographic redundancy. You must also configure each site to perform replication. The steps to
enable geographic redundancy are:

1. Configure JDBC Resources. Oracle recommends configuring both the primary and
secondary sites to store long-lived call state data in an RDBMS.

2. Configure Persistence Options. Persistence options must be configured on both the
primary and secondary sites to enable engine tier hints to write to an RDBMS or to
replicate data to a geographically-redundant installation.

3. Configure JMS Resources. Both the primary and secondary sites must have available JMS
Servers and specific JMS module resources in order to replicate call state data between
sites.

4. Optionally, configure cross domain security for both primary and secondary sites.

The sections that follow describe each step in detail.

Configuring JDBC Resources (Primary and Secondary Sites)
Follow the instructions in "Storing Long-Lived Call State Data in an RDBMS" to configure the
JDBC resources required for storing long-lived call states in an RDBMS.

Chapter 1
Configuring Geographically-Redundant Installations

1-47

Configuring Persistence Options (Primary Site Only)
The primary site must configure the correct persistence settings in order to enable replication
for geographic redundancy. Follow these steps to configure persistence:

1. Use your browser to access the URL http://address:port/console where address is the
Administration Server's listen address and port is the listen port.

Note:

The default administration console port for Converged Application Server is
7001.

2. If your domain is running in Production mode, click Lock & Edit.

3. Select the SipServer node in the left pane. The right pane of the console provides two
levels of tabbed pages that are used for configuring and monitoring Converged Application
Server.

4. Select Configuration, then select the Persistence tab in the right pane.

5. Configure the Persistence attributes as follows:

• DB Enabled: Check to enable call states to be stored in an RDBMS. For information
on configuring RDBMS call state storage, see "Storing Long-Lived Call State Data in
an RDBMS".

• Geo Enabled: Check to enable geographic redundancy.

• Default Handling: Select "all" to persist long-lived call state data to an RDBMS and to
replicate data to an external site for geographic redundancy (recommended). If your
installation does not store call state data in an RDBMS, select "geo" instead of "all."

• Geo Site ID: Enter a unique number from 1 to 9 to distinguish this site from all other
configured sites. Note that the site ID of 0 is reserved to indicate call states that are
local to the site in question (call states not replicated from another site).

• Geo Remote T3 URL: This setting is deprecated. Leave it blank.

6. If your domain is running in Production mode, click Activate Changes.

Configuring JMS Resources Options (Primary Site Only)
Follow these steps to configure JMS resources for the primary site only:

1. Expand Services, then expand Messaging, and then select the JMS Servers node in the
left pane.

2. Click New in the right pane.

3. Enter a unique name for the JMS Server or accept the default name. If you have
configured a persistent store, select it from the drop down list adjacent Persistent Store.
Click Next to continue.

4. In the Target list, select the name of the engine cluster in the installation. Click Finish to
create the server.

5. Select Services in the left pane, expand Messaging and select JMS Modules.

Chapter 1
Configuring Geographically-Redundant Installations

1-48

6. In the JMS Modules table, click New and enter a Name for the new JMS Module, for
example geo-redundancy.

7. Click Next.

8. Select all the servers in the cluster, and click Next.

9. Check Would you like to add resources to this JMS system module and click Finish.

10. In the Summary of Resources table, click New.

11. Select the Connection Factory resource type and click Next.

12. Enter a Name for the connection factory, and enter
wlss.callstate.backup.site.connection.factory as the JNDI Name, and click Finish.

13. In the Summary of Resources table, click New.

14. Select the Foreign Server resource type and click Next.

Note:

ForeignServer-0 must be targeted to all servers in the engine cluster.

15. In the Summary of Resources table select the foreign server you just created.

16. In the General tab enter a JNDI Connection URL, for either a single server, for example,
t3://site-2-admin:7001, or for a cluster, for example, t3://site-2-engine1:8001,site-2-
engine2:8051 and click Save.

17. In the Destinations tab, click New.

18. Enter a Name for the foreign destination, and enter wlss.callstate.backup.site.peer.queue
for the Local JNDI Name, and wlss.callstate.backup.site.queue for the Remote JNDI
Name.

19. Click OK.

20. In the Connection Factories tab, click New.

21. Enter a Name for the foreign connection factory, and enter
wlss.callstate.backup.site.peer.connection.factory for the Local JNDI Name, and
wlss.callstate.backup.site.connection.factory for the Remote JNDI Name.

22. Click OK.

23. Click Save to save your configuration changes.

24. Click New, to create another JMS resource.

25. Select the Distributed Queue option.

26. Click New to create another JMS resource.

27. Select the Distributed Queue option and click Next.

28. Fill in the Name field of the Create a new JMS System Module Resource by entering a
descriptive name for the resource, such as DistributedQueue-Callstate.

29. JNDI Name: Enter the name wlss.callstate.backup.site.queue.

30. Click Next to continue.

31. Selected the Unrestricted value for the Client ID Policy option.

32. Click Finish to save the new resource.

Chapter 1
Configuring Geographically-Redundant Installations

1-49

33. If your domain is running in Production mode, click Activate Changes.

Configuring Persistence Options (Secondary Sites)
The secondary site must configure the correct persistence settings in order to enable
replication for geographic redundancy. Follow these steps to configure persistence:

1. Use your browser to access the URL http://address:port/console where address is the
Administration Server's listen address and port is the listen port.

Note:

The default administration console port for Converged Application Server is
7001.

2. If your domain is running in Production mode, click Lock & Edit.

3. Select the SipServer node in the left pane. The right pane of the console provides two
levels of tabbed pages that are used for configuring and monitoring Converged Application
Server.

4. Select Configuration, then select the Persistence tab in the right pane.

5. Configure the Persistence attributes as follows:

• DB Enabled: Check to enable call states to be stored in an RDBMS. For information
on configuring RDBMS call state storage, see "Storing Long-Lived Call State Data in
an RDBMS".

• Geo Enabled: Check to enable geographic redundancy.

• Default Handling: Select "all" to persist long-lived call state data to an RDBMS and to
replicate data to an external site for geographic redundancy (recommended). If your
installation does not store call state data in an RDBMS, select "geo" instead of "all."

• Geo Site ID: Enter a unique number from 1 to 9 to distinguish this site from all other
configured sites. Note that the site ID of 0 is reserved to indicate call states that are
local to the site in question (call states not replicated from another site).

• Geo Remote T3 URL: This setting is deprecated. Leave it blank.

6. If your domain is running in Production mode, click Activate Changes.

Configuring JMS Resources (Secondary Site Only)
Any site that replicates call state data from another site must configure certain required JMS
resources. The resources are not required for sites that do not replicate data from another site.

Follow these steps to configure JMS resources:

1. In your browser, enter http://address:port/console, where address is the Administration
Server's listen address and port is the listen port.

The default administration console port for Converged Application Server is 7001.

2. If your domain is running in Production mode, click Lock & Edit.

3. Expand Services, then expand Messaging, and then select the JMS Servers node in the
left pane.

4. Click New in the right pane.

Chapter 1
Configuring Geographically-Redundant Installations

1-50

5. Enter a unique name for the JMS Server or accept the default name. If you have
configured a persistent store, select it from the drop down list adjacent Persistent Store.
Click Next to continue.

6. In the Target list, select the name of the engine cluster in the installation. Click Finish to
create the new Server.

7. Expand Services, then Expand Messaging, and then select the JMS Modules node in
the left pane.

8. Click New in the right pane.

9. Fill in the fields of the Create JMS System Module page as follows:

• Name: Enter a name for the new module, or accept the default name.

• Descriptor File Name: Enter the prefix a configuration file name in which to store the
JMS module configuration (for example, systemmodule-callstate).

• Location In Domain: Enter a location to store the System Module description file
relative to your domain's JMS configuration sub directory.

10. Click Next to continue.

11. Choose the option All servers in the cluster in the Clusters pane.

12. Click Next to continue.

13. Select Would you like to add resources to this JMS system module and click Finish to
create the module.

14. In the Summary of Resources table, click New to add a new resource to the module.

15. Select the Connection Factory option and click Next.

16. Fill in the fields of the Create a new JMS System Module Resource as follows:

• Name: Enter a descriptive name for the resource, such as ConnectionFactory-
Callstate.

• JNDI Name: Enter the name wlss.callstate.backup.site.connection.factory.

17. Selected the Unrestricted value for the Client ID Policy option.

18. Click Next to continue.

19. Click Finish to save the new resource.

20. Select the name of the connection factory resource you just created in the JMS Modules
table.

21. Select Configuration, then select the Load Balance tab in the right pane.

22. De-select the Server Affinity Enabled option, and click Save.

23. Re-expand Services, then expand Messaging, and then select the JMS Modules node in
the left pane.

24. Select the name of the JMS module you created in the right pane.

25. Click New to create another JMS resource.

26. Select the Distributed Queue option and click Next.

27. Fill in the Name field of the Create a new JMS System Module Resource by entering a
descriptive name for the resource, such as DistributedQueue-Callstate.

28. JNDI Name: Enter the name wlss.callstate.backup.site.queue.

29. Click Next to continue.

Chapter 1
Configuring Geographically-Redundant Installations

1-51

30. Click Finish to save the new resource.

31. If your domain is running in Production mode, click Activate Changes.

Configuring Cross Domain Security (Both Primary and Secondary Sites)
Oracle recommends, depending upon your requirements, that you enable cross domain
security between your geographically redundant sites.

For information on cross domain security concepts and configuration details, refer to the
following documents:

• Integration and Multi-Domain Best Practices in Administering JMS Resources for Oracle
WebLogic Server

• Configuring Foreign Server Resources to Access Third-Party JMS Providers in
Administering JMS Resources for Oracle WebLogic Server

• Simplified Access to Foreign JMS Providers in Developing JMS Applications for Oracle
WebLogic Server

• Cross Domain Security in Developing JTA Applications for Oracle WebLogic Server

• Configuring Cross-Domain Security in Administering Security for Oracle WebLogic Server

Understanding Geo-Redundant Replication Behavior
This section provides more detail into how multiple sites replicate call state data.
Administrators can use this information to better understand the mechanics of geo-redundant
replication and to better troubleshoot any problems that may occur in such a configuration.
Note, however, that the internal workings of replication across Converged Application Server
installations is subject to change in future releases of the product.

Call State Replication Process
When a call is initiated on a primary Converged Application Server site, call setup and
processing occurs normally. When a SIP dialog boundary is reached, the call is replicated (in-
memory) to the site's Coherence cache, and becomes eligible for replication to a secondary
site. Converged Application Server may choose to aggregate multiple call states for replication
in order to optimize network usage.

A single engine in the Coherence cache then places the call state data to be replicated on a
JMS queue configured on the replica site. Data is transmitted to one of the available engines
(referenced in the Foreign Server resource configuration specified for the primary site) in a
round-robin fashion. Engines at the secondary site monitor their local queue for new
messages.

Upon receiving a message, an engine on the secondary site persists the call state data and
assigns it the site ID value of the primary site. The site ID distinguishes replicated call state
data on the secondary site from any other call state data actively managed by the secondary
site. Timers in replicated call state data remain dormant on the secondary site, so that timer
processing does not become a bottleneck to performance.

Call State Processing After Failover
To perform a failover, the Administrator must change a global load balancer policy to begin
routing calls from the primary, failed site to the secondary site. After this process is completed,
the secondary site begins processing requests for the backed-up call state data. When a

Chapter 1
Configuring Geographically-Redundant Installations

1-52

https://docs.oracle.com/cd/E28280_01/web.1111/e13738/best_practice.htm#JMSAD635
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/jmsad/advance_config.html#GUID-D718ED25-ADD5-42FF-9DB7-ED37A178F43A
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/jmspg/j2ee.html#GUID-4BAB2208-9851-4CD0-B14E-8DE7C5452B9F
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wljta/trxsecurity.html#GUID-A3E7BBC8-8AC1-45B2-B282-626CA423D7FB
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/secmg/domain.html#GUID-F861FC06-81C7-4A74-98C9-9C86F436AA04

request is made for data that has been replicated from the failed site, the engine retrieves the
data and activates the call state, taking ownership for the call. The activation process involves:

• Setting the site ID associated with the call to zero (making it appear local).

• Activating all dormant timers present in the call state.

By default, call states are activated only for individual calls, and only after those calls are
requested on the backup site. SipServerRuntimeMBean includes a method,
activateBackup(byte site), that can be used to force a site to take over all call state data
that it has replicated from another site. The Administrator can execute this method using a
WLST configuration script. Alternatively, an application deployed on the server can detect
when a request for replicated site data occurs, and then execute the method. The example
below shows sample code from a JSP that activates a secondary site, changing ownership of
all call state data replicated from site 1. Similar code could be used within a deployed Servlet.
Note that either a JSP or Servlet must run as a privileged user in order to execute the
activateBackup method.

In order to detect whether a particular call state request, Servlets can use the
WlssSipApplicationSession.getGeoSiteId() method to examine the site ID associated with
a call. Any non-zero value for the site ID indicates that the Servlet is working with call state
data that was replicated from another site.

Example 1-8 Activating a Secondary Site Using JMX

<%
 byte site = 1;

 InitialContext ctx = new InitialContext();
 MBeanServer server = (MBeanServer) ctx.lookup("java:comp/env/jmx/runtime");
 Set set = server.queryMBeans(new ObjectName("*:*,Type=SipServerRuntime"), null);
 if (set.size() == 0) {
 throw new IllegalStateException("No MBeans Found!!!");
 }

 ObjectInstance oi = (ObjectInstance) set.iterator().next();
 SipServerRuntimeMBean bean = (SipServerRuntimeMBean)
 MBeanServerInvocationHandler.newProxyInstance(server,
 oi.getObjectName());

 bean.activateBackup(site);
 %>

Note that after a failover, the load balancer must route all calls having the same callId to the
newly-activated site. Even if the original, failed site is restored to service, the load balancer
must not partition calls between the two geographical sites.

Removing Backup Call States
You may also choose to stop replicating call states to a remote site in order to perform
maintenance on the remote site or to change the backup site entirely. Replication can be
stopped by setting the Site Handling attribute to "none" on the primary site as described in
"Configuring Persistence Options (Secondary Sites)".

After disabling geographic replication on the primary site, you also may want to remove backup
call states on the secondary site. SipServerRuntimeMBean includes a method,
deleteBackup(byte site), that can be used to force a site to remove all call state data that it
has replicated from another site. The Administrator can execute this method using a WLST
configuration script or via an application deployed on the secondary site. The steps for

Chapter 1
Configuring Geographically-Redundant Installations

1-53

executing this method are similar to those for using the activateBackup method, described in
"Call State Processing After Failover".

Monitoring Replication Across Regional Sites
To monitor replication across regional sites, administrators will have examine WebLogic
behavior using a combination of WebLogic JMS and Coherence cache statistics.

Troubleshooting Replication
Administrators should monitor any SNMP traps that indicate failed database writes on a
secondary site installation.

Administrators must also ensure that all sites participating in geographically-redundant
configurations use unique site IDs.

Upgrading Deployed SIP Applications
This chapter describes how to upgrade deployed SIP Servlets and converged SIP/HTTP
applications in Oracle Communications Converged Applications Server to a newer version of
the same application without losing active calls.

Overview of SIP Application Upgrades
With Converged Applications Server, you can upgrade a deployed SIP application to a newer
version without losing existing calls being processed by the application. This type of application
upgrade is accomplished by deploying the newer application version alongside the older
version. Converged Applications Server automatically manages the SIP Servlet mapping so
that new requests are directed to the new version. Subsequent messages for older,
established dialogs are directed to the older application version until the calls complete. After
all of the older dialogs have completed and the earlier version of the application is no longer
processing calls, you can safely undeploy it.

Converged Applications Server's upgrade feature ensures that no calls are dropped while
during the upgrade of a production application. The upgrade process also enables you to
revert or rollback the process of upgrading an application. If, for example, you determine that
there is a problem with the newer version of the deployed application, you can undeploy the
newer version and activate the older version.

Note:

When you undeploy an active version of an application, the previous application
version remains in administration mode. You must explicitly activate the older version
in order to direct new requests to the application.

You can also use the upgrade functionality with a SIP administration channel to deploy a new
application version with restricted access for final testing. After performing final testing using
the administration channel, you can open the application to general SIP traffic.

Converged Applications Server application upgrades provide the same functionality as Oracle
WebLogic Server application upgrades, with the following exceptions:

Chapter 1
Upgrading Deployed SIP Applications

1-54

• Converged Applications Server does not support "graceful" retirement of old application
versions. Instead, only timeout-based undeployment is supported using the -
retiretimeout option to weblogic.Deployer.

• If you want to use administration mode with SIP Servlets or converged applications, you
must configure a sips-admin channel that uses TLS transport.

• Converged Applications Server handles application upgrades differently in replicated and
non-replicated environments. In replicated environments, the server behaves as if the
save-sessions-enabled element was set to "true" in the weblogic.xml configuration file.
This preserves sessions across a redeployment operation.
For non-replicated environments, sessions are destroyed immediately upon redeployment.

See "Redeploying Applications in a Production Environment" in Deploying Applications to
Oracle WebLogic Server for general information and instructions regarding production
application redeployment.

Requirements and Restrictions for Upgrading Deployed Applications
To use the application upgrade functionality of Converged Applications Server:

• You must assign version information to your updated application in order to distinguish it
from the older application version. Note that only the newer version of a deployed
application requires version information; if the currently-deployed application contains no
version designation, Converged Applications Server automatically treats this application as
the "older" version. See "Assign a Version Identifier".

• A maximum of two different versions of the same application can be deployed at one time.

• If your application hard-codes the use of an application name (for example, in composed
applications where multiple SIP Servlets process a given call), you must replace the
application name with calls to a helper method that obtains the base application name.
WebLogic Server provides ApplicationRuntimeMBean methods for obtaining the base
application name and version identifier, as well as determining whether the current
application version is active or retiring. See "Accessing the Application Name and Version
Identifier".

• When applications take part in a composed application (using application composition
techniques), Converged Applications Server always uses the latest version of an
application when only the base name is supplied.

• If you want to deploy an application in administration mode, you must configure a sips-
admin channel that uses TLS transport. See "Creating a New SIP or SIPS Channel" in
Configuring Network Connection Settings for more information.

Steps for Upgrading a Deployed SIP Application
Follow these steps to upgrade a deployed SIP application to a newer version:

1. Assign a Version Identifier: Package the updated version of the application with a version
identifier.

2. Deploy the Updated Application Version: Deploy the updated version of the application
alongside the previous version to initiate the upgrade process.

3. Undeploy the Older Application Version: After the older application has finished processing
all SIP messages for its established calls, you can safely undeploy that version. This
leaves the newly-deployed application version responsible for processing all current and
future calls.

Chapter 1
Upgrading Deployed SIP Applications

1-55

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/depgd/redeploy.html#GUID-FE62AB19-7B62-4755-91D3-34F0C7C003D8

Each procedure is described in the sections that follow. You can also roll back the upgrade
process if you discover a problem with the newly-deployed application. Applications that are
composed of multiple SIP Servlets may also need to use the ApplicationRuntimeMBean for
accessing the application name and version identifier.

Assign a Version Identifier
Converged Applications Server uses a version identifier—a string value—appended to the
application name to distinguish between multiple versions of a given application. The version
string can be a maximum of 215 characters long, and must consist of the following characters:

• a-z

• A-Z

• 0-9

• period ("."), underscore ("_"), or hyphen ("-") in combination with other characters

For deployable SIP Servlet WAR files, you must define the version identifier in the
MANIFEST.MF file of the application or specify it on the command line at deployment time.

Defining the Version in the Manifest
Both WAR and EAR deployments must specify a version identifier in the MANIFEST.MF file.

Example 1-9 Version Identifier in Manifest

Manifest-Version: 1.0
Created-By: 1.7.1_45 (Oracle Corporation)
Weblogic-Application-Version: v2

If you deploy an application without a version identifier, and later deploy with a version
identifier, Converged Applications Server recognizes the deployments as separate versions of
the same application.

Deploy the Updated Application Version
To begin the upgrade process, simply deploy the updated application archive using either the
Administration Console or weblogic.Deployer utility. Use the -retiretimeout option to the
weblogic.Deployer utility if you want to automatically undeploy the older application version
after a fixed amount of time. For example:

java weblogic.Deployer -name MyApp -version v2 -deploy -retiretimeout 7

Converged Applications Server examines the version identifier in the manifest file to determine
if another version of the application is currently deployed. If two versions are deployed, the
server automatically begins routing new requests to the most recently-deployed application.
The server allows the other deployed application to complete in-flight calls, directs no new calls
to it. This process is referred to as "retiring" the older application, because eventually the older
application version will process no SIP messages.

Note that Converged Applications Server does not compare the actual version strings of two
deployed applications to determine which is the higher version. New calls are always routed to
the most recently-deployed version of an application.

Converged Applications Server also distinguishes between a deployment that has no version
identifier (no version string in the manifest) and a subsequent version that does specify a

Chapter 1
Upgrading Deployed SIP Applications

1-56

version identifier. This enables you to easily upgrade applications that were packaged before
you began including version information as described in "Assign a Version Identifier".

Undeploy the Older Application Version
After deploying a new version of an existing application, the original deployment process
messages only for in-flight calls (calls that were initiated with the original deployment). After
those in-flight calls complete, the original deployment no longer processes any SIP messages.
In most production environments, you will want to ensure that the original deployment is no
longer processing messages before you undeploy the application.

To determine whether a deployed application is processing messages, you can obtain the
active session count from the application's SipApplicationRuntimeMBean instance. The
example below shows the sample WLST commands for viewing the active session count for
the findme sample application on the default single-server domain.

Based on the active session count value, you can undeploy the application safely (without
losing any in-flight calls) or abruptly (losing the active session counts displayed at the time of
undeployment).

Use either the Administration Console or weblogic.Deployer utility to undeploy the correct
deployment name.

Example 1-10 Sample WLST Session for Examining Session Count

connect()
custom()
cd
('examples:Location=myserver,Name=myserver_myserver_findme_findme,ServerRuntim
e=myserver,Type=SipApplicationRuntime')
ls()
-rw- ActiveAppSessionCount 0
-rw- ActiveSipSessionCount 0
-rw- AppSessionCount 0
-rw- CachingDisabled true
-rw- MBeanInfo
weblogic.management.tools.Info@5ae636
-rw- Name
myserver_myserver_findme_findme
-rw- ObjectName
examples:Location=myserver,Name=myserver_myserver_findme_findme,ServerRuntime=
myserver,Type=SipApplicationRuntime
-rw- Parent
examples:Location=myserver,Name=myserver,Type=ServerRuntime
-rw- Registered false
-rw- SipSessionCount 0
-rw- Type SipApplicationRuntime
-rwx preDeregister void :

Roll Back the Upgrade Process
If you deploy a new version of an application and discover a problem with it, you can roll back
the upgrade process by:

1. Undeploying the active version of the application.

Chapter 1
Upgrading Deployed SIP Applications

1-57

2. Activating the older version of the application. For example:

java weblogic.Deployer -name MyApp -appversion v1 -start

Note:

When you undeploy an active version of an application, the previous application
version remains in administration mode. You must explicitly activate the older
version in order to direct new requests to the application.

Alternatively, you can use simply use the -start option to start the older application version,
which causes the older version of the application to process new requests and retire the newer
version.

Accessing the Application Name and Version Identifier
If you intend to use Converged Applications Server's production upgrade feature, applications
that are composed of multiple SIP Servlets should not hard-code the application name. Instead
of hard-coding the application name, your application can dynamically access the deployment
name or version identifier by using helper methods in ApplicationRuntimeMBean. See the
discussion on ApplicationRuntimeMBean in the Oracle WebLogic Server documentation for
more information.

Using Administration Mode
You can optionally use the -adminmode option with weblogic.Deployer to deploy a new version
of an application in administration mode. While in administration mode, SIP traffic is accepted
only via a configured network channel named sips-admin having the TLS transport. If no
sips-admin channel is configured, or if a request is received using a different channel, the
server rejects the request with a 503 message.

To transition the application from administration mode to a generally-available mode, use the -
start option with weblogic.Deployer.

Note:

If using TLS is not feasible with your application, you can alternatively change the
Servlet role mapping rules to allow only 1 user on the newer version of the
application. This enables you to deploy the newer version alongside the older
version, while restricting access to the newer version.

Chapter 1
Upgrading Deployed SIP Applications

1-58

2
Configuring Infrastructure Components

Depending on the topology and requirements for the deployment, the Converged Application
Server SIP applications may rely on related infrastructure components to operate. These
components include, for example, proxy registrar and load balancers. This part describes the
components included with the Oracle Communications Converged Application Server.

WARNING:

Configuring proxy registrar is deprecated in release 8.0 and later.

• Configuring the Proxy Registrar

• Configuring Diameter Client Nodes and Relay Agents

Configuring the Proxy Registrar
This chapter describes how to configure a proxy registrar and the permissible Proxy-Require
options for the Sip Server in the Oracle Communications Converged Application Server
deployment.

About Proxy Registrar Configuration
The Administration Console exposes the Proxy Registrar MBean attributes that are used to set
Proxy and Registrar parameters. Only those parameters and attributes that you typically need
to set are exposed in the Administration Console. To modify advanced parameters and
attributes, you can modify MBean attributes by using WebLogic Scripting Tool (WLST).

For information about the Proxy and Registrar MBeans, see the Converged Application Server
Java API Reference.

Some Proxy Registrar configurations, such as security settings, require that you edit the
sip.xml deployment descriptor. If you modify sip.xml, you must redeploy the Proxy Registrar
for the changes to take effect.

Setting Authentication for the Proxy Registrar
Authentication for the Proxy and Registrar is defined in a security-constraint element in the
sip.xml deployment descriptor. Proxy and Registrar authentication is enabled by default. You
can disable authentication for the Proxy, Registrar, or both by removing their respective section
from the security-constraint element:

• To disable Registrar authentication, remove the registrar servlet section.

• To disable Proxy authentication, remove the VoipProxy Servlet section.

The type of authentication for SIP requests is defined in the auth-method subelement of the
login-config element in sip.xml. Converged Application Server supports DIGEST, BASIC
and CLIENT-CERT authentications. DIGEST authentication is the default. For more

2-1

information, see the discussion of authentication for SIP servlets in the Converged Application
Server Security Guide.

You can also set the following authentication policy:

• Trusted hosts:
You can bypass authentication for certain hosts by adding trusted-host definitions in the
sip-security element. See sip-security.

Note:

You can also configure trusted hosts by using the Administration Console. See
Using the Administration Console to Configure Trusted Hosts for instructions.

• Identity assertion mode:
You can set the identity-assertion element in sip.xml to specify either P-Asserted-
Identity or Identity.

• Security provider:
You configure security providers by using the Administration Console:

– If you set the identity assertion mode to P-Asserted-Identity, then configure a P-
Asserted-Identity Assertion Provider. Be sure to set its Trusted Hosts parameter.

– If you set the identity assertion mode to Identity, then configure an Identity Header
Assertion Provider.

See the discussion of SIP servlet identity assertion in the Converged Application Server
Security Guide.

Using the Administration Console to Configure Trusted Hosts
You can specify to bypass authentication for certain hosts by adding trusted-host definitions
through the Administration Console.

To add trusted hosts:

1. Log in to the Administration Console.

2. If your domain is running in Production mode, click Lock & Edit.

3. In the Domain Structure panel, click SipServer. The SIP Server configuration options are
displayed in the main window.

4. Click the Configuration tab and then the SIP Security tab.

5. Enter any trusted hosts and click Save.

6. If your domain is running in Production mode, click Activate Changes.

7. Stop and restart all servers in the domain. See Getting Started.

Configuring the Proxy Registrar
To configure the Proxy Registrar do the following:

• Configure the Proxy

• Configuring the Registrar

Chapter 2
Configuring the Proxy Registrar

2-2

Configure the Proxy
To configure the Proxy:

1. Log in to the Administration Console.

2. If your domain is running in Production mode, click Lock & Edit.

3. In the Domain Structure panel, click ProxyRegistrar. The Proxy Registrar configuration
options are displayed in the main window.

4. Click the Proxy tab.

5. Configure the following Proxy parameters:

Note:

Parameters that are preceded by an exclamation mark (!) indicate that you must
restart the servers for the new value to take effect. Be sure to restart all servers
in the domain to ensure that the new values are propagated to all servers.
Getting Started.

• !Enable ENUM Lookup: Select this option to enable ENUM lookup. If ENUM lookup is
disabled and the request URI is a Tel URL, then the request will be rejected with a 404
response.

• !ENUM DNS Server: Specify the address of the DNS server.

• !ENUM Zone: This is the DNS Zone used by ENUM. The default domain "e164.arpa"
provides the infrastructure in the DNS for storage of E.164 numbers.

• !ENUM SIP Service Field: Specify which service field of the DNS NAPTR record to
retrieve. The default, E2U+sip, is the common value for SIP applications.

• !ENUM Preset DNS Response: Specify a comma-separated list of predefined DNS
responses. If you set this value, the Proxy does not consult the DNS server for ENUM
lookup. Instead, the Proxy uses the ENUM Preset DNS Response value as the
response from the DNS server.

• Force Record Route: Select this option if you want all subsequent requests to go
through the Proxy. The default is True.

• Parallel Forking: Indicates whether a call that has more than one destination is routed
to those destinations in parallel or sequentially. The default is parallel.

• TimeOut Length: Specify the period in seconds that the Proxy waits for a final
response to a request. The default is 180 seconds.

If Parallel Forking is set to sequential, the time-out period is the time the container
waits for a final response from a branch before it CANCELs the branch and proxies the
next destination in the target set.

If Parallel Forking is set to Parallel, the time-out period is time the container waits for
final responses from the entire proxy (that is, all of the parallel branches) before it
CANCELs the branches. With parallel forking, the container sends the best final
response upstream.

• !Hosted Domains: Only set this value if you set Use Domain Service to false. Specify
a comma-separated list of the domain names for the domains hosted by this server. To
specify any domain name, use an asterisk: *

Chapter 2
Configuring the Proxy Registrar

2-3

• !Use Domain Service: Select this option to use the Domain Service to determine
which domains are hosted by the server. If set to false (not selected), then specify the
domains in the Hosted Domains parameter to specify the domains.

• Offline Code: Specify the status code that is returned when a SIP client is offline.

6. If needed, configure advanced parameters. You typically do not need to do this and can
accept the default values.

a. At the bottom of the Proxy window, click Advanced to display the advanced
parameters.

b. If needed, set the following parameters:

!Options: This specifies any option tags supported by the Proxy. When receiving a
request that has a Proxy-Require header, all option tags listed in the Proxy-Require
header must be specified in the Options field. If not specified, the proxy will reject the
request with a 420 response. The value is a comma-separated list of options. For
example, “privacy, sec-agree".

!Location Service: Specify the location service class name.

7. Click Save.

8. If your domain is running in Production mode, click Activate Changes.

9. If you changed the value of any parameter that requires restarting the server, stop and
restart all servers in the domain. See Getting Started.

Configuring the Registrar
To configure the Registrar:

1. Log in to the Administration Console.

2. If your domain is running in Production mode, click Lock & Edit.

3. In the Domain Structure panel, click ProxyRegistrar. The Proxy Registrar configuration
options are displayed in the main window.

4. Click the Registrar tab.

5. Configure the following Registrar parameters:

Note:

Parameters that are preceded by an exclamation mark (!) indicate that you must
restart the servers for the new value to take effect. Be sure to restart all servers
in the domain. See Getting Started.

• Max Contacts: Specifies the maximum allowed number of Contact headers in a
REGISTER request and the maximum number of contacts that will be stored as a
result of multiple REGISTER requests. The default is 5.

• Max Registration Expires: Specifies in seconds, the maximum allowed expiration
time for registrations. If a request is made that exceeds this maximum, a response is
sent that the time is too long. The default is 7200 seconds. Max Registration Expires
must be greater than the value of Min Registration Expires.

• Min Registration Expires: Specifies in seconds, the minimum allowed expiration time
for registrations. If a request is made that is shorter than this minimum, a response is

Chapter 2
Configuring the Proxy Registrar

2-4

sent that the time is too brief. The default is 60 seconds. Min Registration Expires
must be less than the value of Max Registration Expires.

• Default Registration Expires: Specifies in seconds, the default expiration time for
registrations. If an expiration time is not requested, the default is used. The default
value is 3600 seconds. Default Registration Expires must be greater than the value
of Min Registration Expires and less than the value of Max Registration Expires.

• Max Subscription Expires: Specifies in seconds, the maximum allowed expiration
time for subscriptions. If a request is made that exceeds this maximum, a response is
sent that the time is too long. The default is 7200 seconds. Max Subscription Expires
must be greater than the value of Min Subscription Expires.

• Min Subscription Expires: Specifies in seconds, the minimum allowed expiration time
for subscriptions. If a request is made that is shorter than this minimum, a response is
sent that the time is too brief. The default is 60 seconds. Min Subscription Expires
must be less than the value of Max Subscription Expires.

• Default Subscription Expires: Specifies in seconds, the default expiration time for
registrations. If an expiration time is not requested, the default is used. The default
value is 3600 seconds. Default Registration Expires must be greater than the value
of Min Registration Expires and less than the value of Max Registration Expires.

Note:

The Administration Console does not validate that the expiration times are
logically set. For example, if you set Default Expires to 3600 seconds and
set Max Expires to 2700 seconds, the Administration Console will accept the
configuration, but registrations may be denied.

6. If needed, configure advanced parameters. You typically do not need to do this and can
accept the default values.

a. At the bottom of the Registrar window, click Advanced to display the advanced
parameters.

b. Set the following parameters:

Supported Methods: Specify the supported methods to insert into the Contact header
of REGISTER request responses when the REGISTER request itself does not include
supported methods in the Allow header or the Contact header.

The format of this value is the same as the methods parameter in the contact header.

Enable Associated ID: Indicates whether to add the P-Associated-URI header when
the Registrar sends a response.

!Location Service House Keeper Period: The house keeper removes expired
registrations. Specify in seconds, the period between house-keeper runs. A negative
value means to run the house keeper only once, when the Proxy Registrar application
is started. The default is 300 seconds.

!Location Service House Keeper Delay: Specify in seconds, the time to wait after the
Proxy Registrar application is started, before the house keeper is started. A negative
value turns off the house keeper. The default is 120 seconds.

!Location Service: Specify the location service class name.

7. Click Save.

8. If your domain is running in Production mode, click Activate Changes.

Chapter 2
Configuring the Proxy Registrar

2-5

9. If you changed the value of any parameter that requires restarting the server, stop and
restart all servers in the domain. See Getting Started.

Configuring the Proxy-Required Options for the Sip Server Proxy
Provide the message header field values that the application supports in incoming messages.
If the message header field of an incoming message contains a value from this configured list,
then the message header is passed on to the application.

To provide the message header values for the Sip Server Proxy:

1. Log in to the Administration Console.

2. If your domain is running in Production mode, click Lock & Edit.

3. In the Domain Structure panel, click Sip Server. The Sip Server configuration options are
displayed in the main window.

4. Click the Proxy tab.

5. In the Proxy-Require Options field, enter a comma-separated list of permissible values
for the Proxy-Require headers. For example:

proxy,timer
6. Click Save.

Provisioning Users
You can use Sash to provision users for the proxy registrar. Sash is a command-line utility for
provisioning Converged Application Server users to the database, to the XML Document
Management Server (XDMS), and to the RADIUS server. You can provision users from the
Sash command line prompt (sash#) or by using the CommandService MBean.

See Getting Started With Oracle Internet Directory in Administrator's Guide for Oracle Internet
Directory for information on using Oracle Internet Database (OID) as the user provisioning
repository for a Converged Application Server deployment.

Launching Sash
The Sash launcher script is located in the same folder that contains the start and stop scripts
for Converged Application Server.

Launching Sash from the Command Line
Converged Application Server provides the following scripts for launching Sash from the
command line:

launch_sash.sh (UNIX)

launch_sash.cmd (Windows)

These scripts are located at domain_home/bin, where domain_home is the home directory of
the domain.

Connecting Sash to an External Converged Application Server Instance
By default, Sash connects to the local instance of Converged Application Server. If needed,
you can override this default behavior and connect Sash to external instances of Converged
Application Server.

Chapter 2
Configuring the Proxy Registrar

2-6

https://docs.oracle.com/en/middleware/idm/internet-directory/12.2.1.3/oidag/getting-started-oracle-internet-directory.html#GUID-EC5FF381-EDBE-4571-8498-64824A090DD3

Connecting to an External Instance of Converged Application Server

Sash connects to the Converged Application Server server through RMI. The following
example illustrates how to connect Sash to a Converged Application Server instance with the
host IP address 10.1.10.23:

sash –-host 10.1.10.23

When you connect to Converged Application Server, Sash prompts you for a username and a
password. The user name is the same as that for Converged Application Server administrator.
The password is the same as the password associated with the Converged Application Server
administrator. Once you log in, the Sash command prompt (sash) appears. An error message
displays if the login is unsuccessful.

Using Sash
There are two groups of Sash commands:

• Commands that create, delete, and update system objects

• Commands that query the system for information

Note:

Whenever a user adds a new application usage, the user must restart the server
before the new application usage is available.

Whenever a user deletes an existing application usage, the user must restart the
server for the deleted application usage to be completely unloaded (that is, a deleted
application usage will remain loaded until the server is restarted, when it is unloaded
and is then completely unavailable).

If a space precedes a sash command in a file, and then that file is used as input to
the sash command, it does not work. Ensure that you remove any preceding spaces
in sash commands in sash input files.

Viewing Available Commands
Entering help displays a list of all available commands in the server. The list of commands
varies depending on the components deployed to the server.

Table 2-1 Stand-alone Shell (Sash) Commands

Command Description Aliases Subcommands

privateIdentity Commands for adding
and removing private
communication
identities used for
authentication.

None Subcommands include:

• add – Adds a new user to the system. For example:

privateIdentity add privateId=alice
• delete – Removes a user from the system. For example:

privateIdentity delete privateId=alice

Chapter 2
Configuring the Proxy Registrar

2-7

Table 2-1 (Cont.) Stand-alone Shell (Sash) Commands

Command Description Aliases Subcommands

publicIdentity Commands for adding
and removing public
identities associated
with a private identity.

pubid Subcommands include:

• add – Adds a public identity to the system which is
associated with a particular user. For example:

publicIdentity add
publicId=sip:alice@test.example.com
privateId=alice

• delete – Deletes a communication identity from the system.
For example:

publicIdentity delete
publicId=sip:alice@test.example.com
privateId=alice

account Contains commands for
managing user
accounts. This
command enables you
to set the account as
active, locked, or as a
temporary account.

None Subcommands include:

• add – adds a new account to the system. The syntax is as
follows:

account add uid=<string> [active=<true|false>]
[locked=<true|false>]
[accountExpiresAt=<accountExpiresAt>]
[tempAccount=<true|false>]
[description=<string>]
[lockExpiresAt=<lockExpiresAt>]
[currentFailedLogins=<integer>]
For example: account add uid=alice active=true

• delete – Deletes an account from the system. For example:
account delete uid=<string>

• update – Updates an account. For example:

account update uid=<string> [active=<true|
false>] [locked=<true|false>]
[accountExpiresAt=<accountExpiresAt>]
[tempAccount=<true|false>]
[description=<string>]
[lockExpiresAt=<lockExpiresAt>]
[currentFailedLogins=<integer>]

• info – Retrieves information for a specific account. For
example: account info uid=<string>

Chapter 2
Configuring the Proxy Registrar

2-8

Table 2-1 (Cont.) Stand-alone Shell (Sash) Commands

Command Description Aliases Subcommands

role Manages role types
and user roles in the
system. role is an
additional security and
authorization
mechanism that is
defined within the
<auth-constraint>
element of sip.xml.
This command
authorizes a group of
users access to
applications. The
applications in turn
check for a specific
role. Converged
Application Server
defines one role for the
Proxy Registrar
application, "Location
Services".

None Subcommands include role system and role user.

role system
(subcommand of
role)

Manages the roles
types.

None Subcommands include:

• list – Lists the roles in the system. For example:

role system list
• add – Adds a new role to the system. For example:

role system add name=<string>
[description=<string>]

• update – Updates a role in the system. For example:

role system update name=<string>
[description=<string>]

• delete – Deletes a role from the system. For example:

role system delete name=<string>
[description=<string>]

role user
(subcommand of
role)

Manages the user roles None Subcommands include:

• add – Adds a role to a user. For example:

role user add uid=<string> name=<string>
• delete – Deletes a role from a user. For example:

role user delete uid=<string> name=<string>
• list – Lists roles for a user. For example:

role user list uid=<string>

Chapter 2
Configuring the Proxy Registrar

2-9

Table 2-1 (Cont.) Stand-alone Shell (Sash) Commands

Command Description Aliases Subcommands

credentials Command for
managing credentials.

None Subcommands include:

• add – Adds credentials to a user. For example:

credentials add password=<string>
realm=<string> uid=<string>

• addAll – Adds credentials for all of the configured realms in
the system to a user. For example:

credentials addAll password=<string>
uid=<string>

• delete – Deletes realm credentials for a user. For example:

credentials delete realm=<string> uid=<string>
• deleteAll – Deletes all credentials for a user. For example:

credentials deleteall uid=<string>
• update – Updates the credentials for a user. For example:

credentials update password=<string>
realm=<string> uid=<string>

• updateAll – Updates a user's credentials for all provisioned
realms in the system. For example:

credentials updateAll password=<string>
uid=<string>

• list – Lists all of the realms for which credentials exist for a
given user. For example:

credentials list uid=<string>
identity add Enables you to create a

basic user account.
None None. See Creating a User with the Identity Add Command.

Viewing Subcommands

To view the subcommands for a specific command, enter help <command>. For example,
entering help for the account command (help account) retrieves a brief overview of the
subcommands available to the account command.

Example 2-1 Retrieving Help for a Specific Command

*** Description ****
Contains commands for management of user accounts.
In an account you can set if the account is active,
locked or if it perhaps should be a temporarily account.

Aliases: [no aliases]

Syntax:
account

Sub-commands:
Adds a new account to the system
 account add uid=<string> [active=<true|false>] [locked=<true|false>]
[accountExpiresAt=<accountExpiresAt>] [tempAccount=<true|false>]
[description=<string>] [lockExpiresAt=<lockExpiresAt>]
[currentFailedLogins=<integer>]

Deletes an account

Chapter 2
Configuring the Proxy Registrar

2-10

 account delete uid=<string>

Updates an account
 account update uid=<string> [active=<true|false>] [locked=<true|false>]
[accountExpiresAt=<accountExpiresAt>] [tempAccount=<true|false>]
[description=<string>] [lockExpiresAt=<lockExpiresAt>]
[currentFailedLogins=<integer>]

Retrieve information about a particular account
 account info uid=<string>

In addition to the overview of the command group, the information displayed by entering help
<command> also includes the aliases (if any) to the command.

Note:

The delete command used with account, role, role system, role user,
privateIdentity, publicIdentity, and identity has the following aliases:

• remove
• del
• rm

Some commands require parameters. For example, if you enter help role system add, the
system informs you that the add command requires the name of the role and an optional
command for setting the description as well by displaying:

role system add name=<string> [description=<string>]

Note:

Optional commands such as [description=<string>] are enclosed within square
brackets [...].

The system alerts you if you omit a mandatory parameter or if you pass in a parameter that is
not recognized.

Creating a User
This section describes the publicIdentity and privateIdentity commands and how to use
them in conjunction with the add, account, role, and credentials subcommands to provision
a user account to the Oracle database.

The Private Identity (privateIdentity) uniquely identifies a user within a given authentication
realm. The Public Identity (publicIdentity) is the SIP address that users enter to register
devices. This address is the user's Address of Record (AOR) and the means through which
users call one another. A user can have only one Private Identity, but can have several Public
Identities associated with that Private Identity.

Chapter 2
Configuring the Proxy Registrar

2-11

Note:

To enable authentication to third-party databases (such as RADIUS), user accounts
that contain authentication data and are stored externally must match the Private
Identity to ensure the proper functioning of the Proxy Registrar and other applications
that require authentication.

To create a user, first add the user to the system by creating a private identity and then a public
identity for the user using the privateIdentity and publicIdentity commands with the add
privateId and add publicId subcommands, respectively.

After you create the private and public identity for the user, create an account for the user with
the account add uid command and optionally set the status of the account (such as active or
locked). The role command sets the role memberships for role-based permissions. Set the
level of permissions for the users using the role command, and then set user credentials by
defining the user's realm and password with the credentials command.

Creating a User from the Sash Command-Line Prompt
This section illustrates how to create a user from the Sash command prompt (sash#) by
creating a Converged Application Server user known as alice.

1. Create a user using the privateIdentity command.

privateIdentity add privateId=alice

2. Create the public identity for alice by entering the SIP address:

publicIdentity add publicId=sip:alice@test.example.com privateId=alice

3. Add an account for alice and use one of the optional commands to set the status of the
account. To create an active account for alice, enter the following:

account add uid=alice active=true

4. Use the role command to add alice to the Location Service user group. Doing so grants
alice permission to the Proxy Registrar's Location Service lookup.

role user add uid=alice name="Location Service"

5. Add user authentication credentials for alice:

credentials add uid=alice realm=test.example.com password=<password>

The credentials command is not needed for applications configured to use the RADIUS
Login Module to authenticate users against RADIUS servers. For more information on
these login modules, see Converged Application Server Security Guide.

Chapter 2
Configuring the Proxy Registrar

2-12

Note:

You must also configure realms using the SIP Servlet Container MBean before
you use Sash to add authorization credentials to a user.

WARNING:

You can only create one user per Sash command. If you configure a single
command that creates multiple users, only the final user will be created.

Example 2-2 Creating a User from the Sash Command-Line Prompt

sash# privateIdentity add privateId=alice
sash# publicIdentity add publicId=sip:alice@test.example.com privateId=alice
sash# account add uid=alice active=true
sash# role user add uid=alice name="Location Service"
sash# credentials add uid=alice realm=test.example.com password=<password>

Tip:

To create multiple users by creating Sash batch files, see Scripting with Sash.

Creating a User with the Command Service MBean
You can execute Sash commands using the CommandService MBean's execute operation.
The Command Service MBean is defined within the subscrdataservcommandsear application.

To create a user:

1. Select the execute operation. The Operation page for the execute operation appears.

2. Enter privateIdentity add privateId=alice in the Value field.

3. Click Invoke Operation. Repeat this process for each of the user creation commands. For
example, the subsequent publicIdentity and account commands would both be followed
by Invoke Operation.

Creating a User with the Identity Add Command
The identity add command enables you to create a user with one command string. This
command, which is an alias to the privateIdentity, publicIdentity, account, role and
credentials commands, enables you to quickly create a basic user account that contains the
minimum information needed for users to connect to Converged Application Server through a
SIP client. For example, to create a basic account for user alice using this command, enter the
following from either the command line or through the Command Service MBean's execute
operation:

identity add privateId=alice publicId=sip:sip.alice@example.com role="Location Service"
realm=example.com password=<password>

Chapter 2
Configuring the Proxy Registrar

2-13

Note:

For applications configured to authenticate users against a RADIUS system (the
applications with the RADIUS Login Module as the security provider), the command
to create a user account is as follows:

identity add privateId=alice publicId=sip:sip.alice@example.com role="Location
Service"

The identity add command only enables you to create a basic user account. Accounts that
require more complex construction, such as those that associate multiple publicIds with a
single privateId, must be created using multiple Sash commands.

Deleting a User
The identity delete command enables you to delete all of a user's roles, credentials,
account information, public and private identities using a single command string. For example,
to delete an account for a user alice using this command, enter the following from either the
command line or through the Command Service MBean's execute operation:

identity delete privateId=alice

Note:

The identity delete command indicates the delete operation is successful if any of
the user's data is deleted, even if certain data, such as the user account, no longer
exists due to being previously deleted.

Scripting with Sash
You can construct scripts for common tasks that contain several operations. Sash can be
evoked to execute a file containing a list of commands. To enable scripting, Sash provides
such command-line flags as:

• --exec (short name: -e): When this command-line flag is followed by a command enclosed
within quotation marks, Sash executes the command and then exits.

• --file (short name: -f): When this command-line flag is followed by a filename, Sash
reads the file and executes all commands in the file as they were entered and then exits.

• --nonewline: This command-line flag facilitates parsing output by stripping returns or
newlines from the messages returned from the executed commands. Although this
command facilitates parsing, it makes reading messages manually more difficult.

Example 2-3 Creating Users from a Text File (OWLCS_users.txt)

identity add privateId=candace publicId=sip:candace@doc.oracle.com role=user
password=1234 realm=doc.oracle.com
identity add privateId=deirdre publicId=sip:deirdre@doc.oracle.com role=user
password=1234 realm=doc.oracle.com
identity add privateId=evelyn publicId=sip:evelyn@doc.oracle.com role=user password=1234
realm=doc.oracle.com
identity add privateId=frank publicId=sip:frank@doc.oracle.com role=user password=1234
realm=doc.oracle.com

Chapter 2
Configuring the Proxy Registrar

2-14

Error Logging in Sash
Sash does not log to any files (with the default configuration), it only prints messages on the
console. The log level for Sash is configured in ORCL_HOME/sash/conf/logging.properties,
where ORCL_HOME is the home directory where you installed the WebLogic Server portion of
Converged Application Server (the default ORCL_HOME is oracle/middleware/occas).

Configuring Diameter Client Nodes and Relay Agents
This chapter describes how to configure individual servers to act as Diameter client nodes or
relays in a Oracle Communications Converged Application Server domain.

Overview of Diameter Protocol Configuration
A typical Converged Application Server domain includes support for the Diameter base
protocol and one or more IMS Diameter interface applications (Sh, Ro, Rf) deployed to engine
tier servers that act as Diameter client nodes. SIP Servlets deployed on the engines can use
the available Diameter applications to initiate requests for user profile data, accounting, and
credit control, or to subscribe to and receive notification of profile data changes.

One or more server instances may also be configured as Diameter relay agents, which route
Diameter messages from the client nodes to a configured Home Subscriber Server (HSS) or
other nodes in the network, but do not modify the messages. Oracle recommends configuring
one or more servers to act as relay agents in a domain. The relays simplify the configuration of
Diameter client nodes, and reduce the number of network connections to the HSS. Using at
least two relays ensures that a route can be established to an HSS even if one relay agent
fails.

The Converged Application Server supports multiple relays with a limitation that it tries to make
connection to the first configured relay that is in the state I-OPEN. If first relay in the list is not
in the I-OPEN state, then next node will be picked, and so on until it find a node in an I-OPEN
state. Diameter load balancer is an implementation which will ensure that the load will be
distributed sequentially to all the active relays using round robin algorithm.

Note:

The Converged Application Server does not support the Dh interface.

Note that relay agent servers do not function as either engine or SIP data tier instances: they
should not host applications, store call state data, maintain SIP timers, or even use SIP
protocol network resources (sip or sips network channels).

Converged Application Server also provides simulator applications for the Sh and Ro
protocols. You can use the simulator applications for testing while developing Sh and Ro
clients. The simulator applications are not intended for deployment to a production system.

About the Diameter Domain Template
Converged Application Server includes a Diameter domain template that creates a domain
having four Converged Application Server instances:

• An Administration Server (AdminServer)

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-15

• A Diameter Sh client node (hssclient)

• A Diameter relay node (relay)

• An HSS simulator (hss)

You can use the Diameter domain template as the basis for creating your own Diameter
domain. Or, you can use the customized Diameter Web Applications as templates for
configuring existing Converged Application Server instances to function as HSS client or relay
agent nodes. The configuration instructions in the sections that follow assume that you have
access to the Diameter domain configuration.

Table 2-2 Key Configuration Elements of the Diameter Domain

Server Name Network Channel
Configuration

Diameter Applications Notes

AdminServer n/a n/a The Administration Server provides no SIP or Diameter
protocol functionality.

hssclient diameter (TCP
over port 3868)

sip (UDP/TCP over
port 5060)

WlssShApplication The hssclient engine functions as a Diameter Sh client
node. The server contains network channels supporting
both SIP and Diameter traffic. The Diameter node
configuration deploys WlssShApplication
(com.bea.wcp.diameter.sh.WlssShApplication) to
provide IMS Sh interface functionality for deployed SIP
Servlets.

relay diameter (TCP
over port 3869)

RelayApplication The relay engine functions as a Diameter Sh relay
node. The server contains a network channel to support
both Diameter traffic. The server does not contain a
channel to support SIP traffic, as a relay performs no SIP
message processing.

The Diameter node configuration deploys
RelayApplication
(com.bea.wcp.diameter.relay.RelayApplication)
to provide relay services. The node configuration also
defines a realm-based route for relaying messages from
the hssclient engine.

hss diameter (TCP
over port 3870)

HssSimulator The hss engine's Diameter node configuration deploys
only the HssSimulator application
(com.bea.wcp.diameter.sh.HssSimulator). The
server is configured with a Diameter network channel.

Steps for Configuring Diameter Client Nodes and Relay Agents
To configure Diameter support in a Converged Application Server domain, follow these steps:

1. Install the Converged Application Server Diameter Domain. The Diameter domain contains
a sample configuration and template applications configured for different Diameter node
types. You may use the Diameter domain as a template for your own domain, or to better
understand how to configure different Diameter node types.

2. Enable the Diameter console extension. If you are working with the sample Diameter
domain, the Diameter console extension is already enabled. If you are starting with a basic
Converged Application Server domain, edit the config.xml file to enable the extension.

3. Create Diameter network channels. Create the network channels necessary to support
Diameter over TCP, TLS, or SCTP transports on engine tier servers and relays.

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-16

4. Create and configure the Diameter nodes. Configure the Diameter protocol client
applications on engine tier servers with the host name, peers, and routes to relay agents or
other network elements, such as an HSS. You can also configure Diameter nodes that
operate in standalone mode, without a Converged Application Server instance.

The sections that follow describe each step in detail. See also the "Example Domain
Configuration".

Installing the Diameter Domain Template
You install and configure the Diameter domain using the JAR file (diameterdomain.jar)
located at: Oracle_home/wlserver/common/templates/wsl/diameterdomain.jar

See the Converged Application Server Installation Guide for information on installing the
Diameter domain template using the Converged Application Server Configuration Wizard.

Creating TCP, TLS, and SCTP Network Channels for the Diameter Protocol
The Converged Application Server Diameter implementation supports the Diameter protocol
over the TCP, TLS, and SCTP transport protocols. (SCTP transport is provided with certain
restrictions as described in "Configuring and Using SCTP for Diameter Messaging".)

To enable incoming Diameter connections on a server, you must configure a dedicated network
channel of the appropriate protocol type:

• diameter channels use TCP transport

• diameters channels use TCP/TLS transport

• diameter-sctp channels use TCP/SCTP transport.

Servers that use a TCP/TLS channel for Diameter (diameters channels) must also enable two-
way SSL. Converged Application Server may automatically upgrade Diameter TCP
connections to use TLS as described in the Diameter specification (RFC 3558).

To configure a TCP or TCP/TLS channel for use with the Diameter provider, follow these steps:

1. Access the Administration Console for the Converged Application Server domain.

2. Click Lock & Edit to obtain a configuration lock.

If you are using a development domain, Lock & Edit is only present if you enable
configuration locking. See “Enable and disable the domain configuration lock" in the
Administration Console Online Help for more information.

3. In the left pane, select the name of the server to configure.

4. In the right pane, select Protocols, and then select Channels to display the configured
channels.

5. Click New to configure a new channel.

6. Fill in the fields of the Identity Properties page as follows:

• Name: Enter an administrative name for this channel, such as Diameter TCP/TLS
Channel.

• Protocol: Select diameter to support the TCP transport, diameters to support both
TCP and TLS transports, or diameter-sctp to support TCP transport.

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-17

Note:

If a server configures at least one TLS channel, the server operates in TLS
mode and will reject peer connections from nodes that do not support TLS
(as indicated in their capabilities exchange).

7. Click Next to continue.

8. Fill in the fields of the Network Channel Addressing page as follows:

• Listen Address: Enter the IP address or DNS name for this channel. On a multi-
homed machine, enter the exact IP address of the interface you want to configure, or a
DNS name that maps to the exact IP address.

• Listen Port: Enter the port number used to communication via this channel. Diameter
nodes conventionally use port 3868 for incoming connections.

• External Listen Port: Re-enter the Listen Port value.

9. Click Next to continue.

10. Chose attributes in the Network Channel Properties page as follows:

• Enabled: Select this attribute to ensure that the new channel accepts network traffic.

• Tunneling Enabled: Un-check this attribute for Diameter channels.

• HTTP Enabled for this Protocol: Un-check this attribute for Diameter channels.

• Outbound Enabled: Select this attribute to ensure that the node can initiate Diameter
messages using the channel.

11. Click Next to continue.

12. For diameters channels, select the following two attributes:

• Two Way SSL Enabled: Two-way SSL is required for TLS transport.

• Client Certificate Enforced: Select this attribute to honor available client certificates
for secure communication.

13. Click Finish to create the new channel.

14. Select the name of the newly-created channel in the Network Channel table.

15. Display the advanced configuration items for the newly-created channel by clicking the
Advanced link.

16. Change the Idle Connection Timeout value from the default (65 seconds) to a larger
value that will ensure the Diameter connection remains consistently available.

Note:

If you do not change the default value, the Diameter connection will be dropped
and recreated every 65 seconds with idle traffic.

17. Click Save.

18. Click Activate Changes.

The servers installed with the Diameter domain template include network channel
configurations for Diameter over TCP transport. Note that the relays server includes only a

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-18

diameter channel and not a sip or sips channel. Relay agents should not host SIP Servlets or
other applications, therefore no SIP transports should be configured on relay server nodes.

Configuring Two-Way SSL for Diameter TLS Channels
Diameter channels that use TLS (diameters channels) require that you also enable two-way
SSL, which is disabled by default.

Follow these steps to enable two-way SSL for a server. If you have not already configured
SSL, see the information on Configuring SSL in Administrator's Guide in the Oracle WebLogic
Server documentation for instructions.

Configuring and Using SCTP for Diameter Messaging
SCTP is a reliable, message-based transport protocol that is designed for use in telephony
networks. SCTP provides several benefits over TCP:

• SCTP preserves the internal structure of messages when transmitting data to an endpoint,
whereas TCP transmits raw bytes that must be received in order.

• SCTP supports multihoming, where each endpoint may have multiple IP addresses. The
SCTP protocol can transparently failover to another IP address should a connection fail.

• SCTP provides multistreaming capabilities, where multiple streams in a connection
transmit data independently of one another.

Converged Application Server supports SCTP for Diameter network traffic, with several
limitations:

• Only 1 stream per connection is currently supported.

• SCTP can be used only for Diameter network traffic; SIP traffic cannot use a configured
SCTP channel.

• TLS is not supported over SCTP.

SCTP channels can operate on either IPv4 or IPv6 networks. Creating TCP, TLS, and SCTP
Network Channels for the Diameter Protocol describes how to create a new SCTP channel. To
enable multihoming capabilities for an existing SCTP channel, specify the IPv4 address
0.0.0.0 as the listen address for the channel (or use the :: address for IPv6 networks).

Configuring Diameter Nodes
The Diameter node configuration for Converged Application Server engines is stored in the
diameter.xml configuration file, which is located in the directory: <MW_home>/user_projects/
domains/<domain_name>/config/custom.

Where:

• MW_home—The directory in which the Converged Application Server software is installed.
The installation program used to install Converged Application Server refers to this as
Middleware_home.

• domain_name—The name of the Diameter domain. In the following example, the domain
name is "base_domain": Oracle/Middleware/Oracle_Home/user_projects/domains/
base_domain/config/custom/.
If you want to provide diameter services (client, server, or relay functionality) on an engine
tier server, you must create a new node configuration and target the configuration to an
existing engine server instance.

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-19

Diameter node configurations are divided into several categories:

• General configuration defines the host identity and realm for the node, as well as basic
connection information and default routing behavior.

• Application configuration defines the Diameter application(s) that run on the node, as well
as any optional configuration parameters passed to those applications.

• Peer configuration defines the other Diameter nodes with which this node operates.

• Routes configuration defines realm-based routes that the node can use when resolving
messages.

The sections that follow describe how to configure each aspect of a Diameter node.

Creating a New Node Configuration (General Node Configuration)
Follow these steps to create a new Diameter node configuration and target it to an existing
Converged Application Server engine tier instance:

1. Log in to the Administration Console for the Converged Application Server domain you
want to configure.

2. Click Lock & Edit to obtain a configuration lock.
If you are using a development domain, Lock & Edit is only present if you enable
configuration locking. See "Enable and disable the domain configuration lock" in the
Administration Console Online Help for more information.

3. Select the Diameter node in the left pane of the Console.

4. Click New in the right pane to create a new Diameter configuration.

5. Fill in the fields of the Create a New Configuration page as described below, then click
Finish.

Table 2-3 Diameter Node General Configuration Properties

Property
Name

Description

Name Enter the administrative name for this Diameter node configuration.

Host Enter the host identity of this Diameter node, or leave the field blank to
automatically assign the host name of the target engine tier server as the
Diameter node's host identity. Note that the host identity may or may not match
the DNS name.

When configuring Diameter support for multiple Sh client nodes, it is best to omit
the host element from the diameter.xml file. This enables you to deploy the
same Diameter Web Application to all servers in the engine tier cluster, and the
host name is dynamically obtained for each server instance.

Realm Enter the realm name for which this node has responsibility, or leave the field
blank to use the domain name portion of the target engine tier server's fully-
qualified host name (for example, host@oracle.com).

You can run multiple Diameter nodes on a single host using different realms and
listen port numbers.

Note: An HSS, Application Server, and relay agents must all agree on a realm
name or names. The realm name for the HSS and Application Server need not
match.

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-20

Table 2-3 (Cont.) Diameter Node General Configuration Properties

Property
Name

Description

Address List IP addresses or DNS names of the local interface(s) to be bound during
connection setup. First address is the local primary address and others are
alternate addresses.

When the transport protocol is SCTP, all IP addresses will be associated with the
remote SCTP endpoint. When the transport protocol is TCP or TLS, only the first
address will be used.

Leave the field blank to use the host identity as the listen address.

Note: The host identity may or may not match the DNS name of the Diameter
node. Oracle recommends configuring the Address property with an explicit DNS
name or IP address to avoid configuration errors.

Port Local port to be bound along with local interface(s) during connection setup. If the
value is 0, the system assigns an ephemeral port.

Validate Peer
Addresses

Enable this checkbox to validate the remote SCTP connection addresses of a
Diameter Peer. If you enable this validation, only configured Peer Addresses are
allowed in remote Peer Addresses offered during SCTP association setup. An
SCTP association will be closed if any unknown remote Peer Address is present.

TLS Enabled Select this option if the Diameter node us configured with support for TLS
(diameters network channels). This field is used to advertise TLS capabilities
when the node is interrogated by another Diameter node.

Debug Select this option if you want to enable debug message output. Debug messages
are disabled by default.

Message
Debug

Select this option if you want to enable tracing for Diameter messages processed
by this node. Message tracing is disabled by default.

Dynamic Peers
Allowed

Select this option to allow dynamic discovery of Diameter peer nodes. Dynamic
peer support is disabled by default. Oracle recommends enabling dynamic peers
only when using the TLS transport, because no access control mechanism is
available to restrict hosts from becoming peers.

Peer Retry
Delay

Enter the amount of time, in seconds, this node waits before retrying a request to
a Diameter peer. The default value is 30 seconds.

Request
Timeout

Enter the amount of time, in milliseconds, this node waits for an answer message
before timing out.

Maximum
Request
Attempts

Enter the maximum number of times to retry a request before giving up.

Watchdog
Timeout

Enter the number of seconds this node uses for the value of the Diameter Tw
watchdog timer interval.

Targets Enter one or more target engine tier server names. The Diameter node
configuration only applies to servers listed in this field.

Default Route
Action

Specify an action type that describes the role of this Diameter node when using a
default route. The value of this element can be one of the following:

• none
• local
• relay
• proxy
• redirect

Default Route
Servers

Specifies one or more target servers for the default route. Any server you include
in this element must also be defined as a peer to this Diameter node, or dynamic
peer support must be enabled.

Load Balancing Select this option if you want to enable load balancing. Load balancing is disabled
by default.

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-21

6. Click Activate Changes to apply the configuration to target servers.

After creating a general node configuration, the configuration name appears in the list of
Diameter nodes. You can select the node to configure Diameter applications, peers, and
routes, as described in the sections that follow.

Configuring Diameter Applications
Each Diameter node can deploy one or more applications. You configure Diameter applications
in the Administration Console using the Configuration > Applications page for a selected
Diameter node. Follow these steps:

1. Log in to the Administration Console for the Converged Application Server domain you
want to configure.

2. Click Lock & Edit to obtain a configuration lock.

If you are using a development domain, Lock & Edit is only present if you enable
configuration locking. See "Enable and disable the domain configuration lock" in the
Administration Console Online Help for more information.

3. Select the Diameter node in the left pane of the Console.

4. Select the name of a Diameter node configuration in the right pane of the Console.

5. Select the Configuration > Applications tab.

6. Click New to configure a new Diameter application, or select an existing application
configuration from the table.

7. Fill in the application properties as follows:

• Application Name: Enter a name for the application configuration.

• Class Name: Enter the classname of the application to deploy on this node.

• Parameters: Enter optional parameters to pass to the application upon startup.

8. Click Finish to create the new application configuration.

9. Click Activate Changes to apply the configuration to the Diameter node.

Converged Application Server includes several Diameter applications to support clients using
the Sh, Rf, and Ro interfaces, Diameter relays, and simulators for the Sh and Ro interfaces.
The sections that follow provide more information about configuring these Converged
Application Server Diameter applications.

You can also use the base Diameter API included in Converged Application Server to create
and deploy your own Diameter applications. See "Using the Diameter Base Protocol API" in
Converged Application Server Diameter Application Development Guide for more information.

Configuring the Sh Client Application
The Sh client application is implemented as a provider to the Profile Service API. The
application transparently generates and responds to the Diameter command codes defined in
the Sh application specification. The Profile Service API enables SIP Servlets to manage user
profile data as an XML document using XML Document Object Model (DOM). Subscriptions
and notifications for changed profile data are managed by implementing a profile listener
interface in a SIP Servlet.

See "Using the Diameter Sh Interface Application" in Converged Application Server Diameter
Application Development Guide for more information about the API.

The Diameter nodes on which you deploy the Sh client application should be configured with:

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-22

• The host names of any relay agents configured in the domain, defined as Diameter peer
nodes. If no relay agents are used, all engine tier servers must be added to the list of
peers, or dynamic peers must be enabled.

• One or more routes to access relay agent nodes (or the HSS) in the domain.

To configure the Sh client application, you specify the
com.bea.wcp.diameter.sh.WlssShApplication class. WlssShApplication accepts the
following parameters:

• destination.host configures a static route to the specified host. Include a
destination.host param definition only if servers communicate directly to an HSS (static
routing), without using a relay agent. Omit the destination.host param completely when
routing through relay agents.

• destination.realm configures a static route to the specified realm. Specify the realm name
of relay agent servers or the HSS, depending on whether or not the domain uses relay
agents.

The following example shows a sample node configuration for an Sh client node that uses a
relay.

Example 2-4 Sample Diameter Node Configuration with Sh Client Application

<?xml version='1.0' encoding='utf-8'?>
<diameter xmlns="http://www.bea.com/ns/wlcp/diameter/300"
 xmlns:sec="http://www.bea.com/ns/weblogic/90/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://www.bea.com/ns/weblogic/90/security/wls">
 <configuration>
 <name>hssclient</name>
 <target>hssclient</target>
 <host>hssclient</host>
 <realm>oracle.com</realm>
 <!-- Omit the host and realm elements to dynamically assign the host name and
 domain name of individual engine tier servers. -->
 <message-debug-enabled>true</message-debug-enabled>
 <application>
 <name>WlssShApplication</name>
 <class-name>com.bea.wcp.diameter.sh.WlssShApplication</class-name>
 <param>
 <!-- Include a destination.host param definition only if servers will communicate
 directly to an HSS (static routing), without using a relay agent. Omit the
 destination.host param completely when routing through relay agents. -->
 <!-- Specify the realm name of relay agent servers or the HSS, depending on
 whether or not the domain uses relay agents. -->
 <name>destination.realm</name>
 <value>hss.com</value>
 </param>
 </application>
 <peer>
 <!-- Include peer entries for each relay agent server used in the domain. If no
 relay agents are used, include a peer entry for the HSS itself, as well as
 for all other Sh client nodes (all other engine tier servers in the domain).
 Alternately, use the allow-dynamic-peers functionality in combination with
 TLS transport to allow peers to be recognized automatically. -->
 <host>relay</host>
 <address>localhost</address>
 <!-- The address element can specify either a DNS name or IP address, whereas
 the host element must specify a diameter host identity. The diameter host
 identity may or may not match the DNS name. --
 <port>3869</port>
 </peer>

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-23

 <!-- Enter a default route to a selected relay agent. If the domain does not use
 a relay agent, specify a default route to relay messages directly to the HSS. --
>
 <default-route>
 <action>relay</action>
 <server>relay</server>
 </default-route>
 </configuration>
</diameter>

Configuring the Rf Client Application
The Converged Application Server Rf client application enables SIP Servlets to issue offline
charging messages using the IMS Rf interface. To configure the Rf application, specify the
class com.bea.wcp.diameter.charging.RfApplication. The Rf application accepts the
following parameters:

• cdf.host specifies the host name of the Charging Data Function (CDF).

• cdf.realm specifies the realm of the CDF.

See "Using the Diameter Rf Interface Application for Offline Charging" in Converged
Application Server Diameter Application Development Guide for more information about using
the Rf application API in deployed applications.

Configuring the Ro Client Application
The Converged Application Server Ro client application enables SIP Servlets to issue online
charging messages using the IMS Ro interface. To configure the Rf application, specify the
class com.bea.wcp.diameter.charging.RoApplication. The Ro application accepts the
following parameters:

• ocs.host specifies the host identity of the Online Charging Function (OCF). The OCF you
specify host must also be configured as the peer for the Diameter node on which the Ro
application is deployed.

• ocs.realm can be used instead of ocs.host for realm-based routing when using more than
one OCF host. The corresponding realm definition must also exist in the Diameter node's
configuration.

See "Using the Diameter Ro Interface Application for Online Charging" in Converged
Application Server Diameter Application Development Guide for more information about using
the Ro application API in deployed applications.

Configuring a Diameter Relay Agent
Relay agents are not required in a Diameter configuration, but Oracle recommends using at
least two relay agent servers to limit the number of direct connections to the HSS, and to
provide multiple routes to the HSS in the event of a failure.

Note:

You must ensure that relay servers do not also act as Converged Application Server
engine tier servers or SIP data tier servers. This means that the servers should not
be configured with sip or sips network channels.

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-24

Relay agent nodes route Sh messages between client nodes and the HSS, but they do not
modify the messages except as defined in the Diameter Sh specification. Relays always route
responses from the HSS back to the client node that initiated the message, or the response is
dropped if that node is unavailable.

To configure a Diameter relay agent, simply configure the node to deploy an application with
the class com.bea.wcp.diameter.relay.RelayApplication.

The node on which you deploy the relay application should also configure:

• All other nodes as peers to the relay node.

• A default route that specifies the relay action.

The example below shows the sample diameter.xml configuration for a relay agent node.

Example 2-5 Diameter Relay Node Configuration

<?xml version='1.0' encoding='utf-8'?>
<diameter xmlns="http://www.bea.com/ns/wlcp/diameter/300"
 xmlns:sec="http://xmlns.oracle.com/weblogic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://xmlns.oracle.com/weblogic/security/wls">
 <configuration>
 <name>relay</name>
 <target>relay</target>
 <host>relay</host>
 <realm>oracle.com</realm>
 <!-- The local address and port are bound before initiating outbound
connections
 to a remote Diameter server. Use 0.0.0.0 for all local addresses. Use
port 0
 for ephemeral ports. -->
 <address>10.0.0.20,10.0.0.21</address>
 <port>0</port>
 <tls-enabled>false</tls-enabled>
 <debug-enabled>true</debug-enabled>
 <message-debug-enabled>true</message-debug-enabled>
 <message-debug>
 <message-debug-enabled>true</message-debug-enabled>
 <logging-enabled>true</logging-enabled>
 <file-min-size>500</file-min-size>
 <log-filename>diameter-messages.log</log-filename>
 <rotation-type>bySize</rotation-type>
 <number-of-files-limited>false</number-of-files-limited>
 <file-count>7</file-count>
 <rotate-log-on-startup>true</rotate-log-on-startup>
 <log-file-rotation-dir xsi:nil="true"></log-file-rotation-dir>
 <rotation-time>00:00</rotation-time>
 <file-time-span>24</file-time-span>
 <date-format-pattern>MMM d, yyyy h:mm:ss,SSS a z</date-format-pattern>
 </message-debug>
 <application>
 <name>RelayApplication</name>
 <class-name>com.bea.wcp.diameter.relay.RelayApplication</class-name>
 </application>
 <peer-retry-delay>30</peer-retry-delay>
 <allow-dynamic-peers>true</allow-dynamic-peers>

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-25

 <request-timeout>30000</request-timeout>
 <max-request-attempts>1</max-request-attempts>
 <watchdog-timeout>30</watchdog-timeout>
 <!-- Define peer connection information for each Diameter node, or use
the
 allow-dynamic-peers functionality in combination with TLS transport
to
 allow peers to be recognized automatically. -->
 <peer>
 <host>hssclient</host>
 <address>localhost</address>
 <port>3868</port>
 <protocol>tcp</protocol>
 <watchdog-enabled>false</watchdog-enabled>
 </peer>
 <peer>
 <host>hss</host>
 <address>localhost</address>
 <port>3870</port>
 <protocol>tcp</protocol>
 <watchdog-enabled>false</watchdog-enabled>
 </peer>
 <peer>
 <host>example.3gppnetwork.org</host>
 <!-- Remote Diameter server addresses that will listen for incoming
 connections from OCCAS Diameter client. Remote Diameter server
 port is same for all remote Diameter server addresses. -->
 <address>10.2.2.6, 10.2.3.6</address>
 <port>3869</port>
 <protocol>sctp</protocol>
 <watchdog-enabled>true</watchdog-enabled>
 </peer>
 <route>
 <realm>oracle.com</realm>
 <application-id>16777217</application-id>
 <action>relay</action>
 <server>hssclient</server>
 </route>
 <!-- Enter a default route for this agent to relay messages to the HSS. --
>
 <default-route>
 <action>relay</action>
 <server>hss</server>
 </default-route>
 </configuration>
</diameter>

Configuring the Sh and Rf Simulator Applications
Converged Application Server contains two simulator applications that you can use in
development or testing environments to evaluate Diameter client applications. To configure a
simulator application, you simply deploy the corresponding class to a configured Diameter
node:

• com.bea.wcp.diameter.sh.HssSimulator simulates an HSS in your domain for testing Sh
client applications.

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-26

• com.bea.wcp.diameter.rf.RfSimulator simulates an CDF host for testing Rf client
applications

Note:

These simulators are provided for testing or development purposes only, and is
not meant as a substitute for a production HSS or CDF.

Diameter nodes that deploy simulator applications can be targeted to running engine tier
servers, or they may be started as standalone Diameter nodes. When started in standalone
mode, simulator applications accept the command-line options. See "Working with Diameter
Nodes" in Converged Application Server Diameter Application Development Guide.

Table 2-4 Command-Line Options for Simulator Applications

Option Description

-r, -realm realm_name Specifies the realm name of the Diameter node.

-h, -host host_name Specifies the host identity of the node.

-a, -address address Specifies the listen address for this node.

-p, -port port_number Specifies the listen port number for this node.

-d, -debug Enables debug output.

-m, -mdebug Enables Diameter message tracing.

Enabling Profile Service (Using an Sh Backend)
As noted earlier, Sh, Ro, and Rf applications can be configured and used separately, but Sh
can take advantage of the Profile Service API. To do so:

1. Configure ShApplication in diameter.xml.

2. Add a profile.xml file to DOMAIN_HOME/config/custom/profile.xml. You can either
install the Diameter domain as a template and modify the file or you can manually create
profile.xml.

Example 2-6 profile.xml sample

<profile-service xmlns="http://www.bea.com/ns/wlcp/wlss/profile/300">
 <mapping>
 <map-by>prefix</map-by>
 <map-by-prefix>
 <provider-prefix-set>
 <name>sh</name>
 <prefix>sh</prefix>
 </provider-prefix-set>
 </map-by-prefix>
 </mapping>

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-27

 <provider>
 <name>sh</name>
 <provider-class>com.bea.wcp.profile.ShProviderCached</provider-class>
 </provider>
</profile-service>

Configuring Peer Nodes
A Diameter node should define peer connection information for each other Diameter node in
the realm, or enable dynamic peers in combination with TLS transport to allow peers to be
recognized automatically. You configure Diameter peer nodes in the Administration Console
using the Configuration > Peers page for a selected Diameter node. Follow these steps:

1. Log in to the Administration Console for the Converged Application Server domain you
want to configure.

2. Click Lock & Edit to obtain a configuration lock.
If you are using a development domain, Lock & Edit is only present if you enable
configuration locking. See "Enable and disable the domain configuration lock" in the
Administration Console Online Help for more information.

3. Select the Diameter node in the left pane of the Console.

4. Select the name of a Diameter node configuration in the right pane of the Console.

5. Select the Configuration > Peers tab.

6. Click New to define a new peer entry.

7. Fill in the fields of the Create a New Peer page as follows:

• Host: Enter the peer node's host identity.

• Address: Enter a comma-separated list of IP addresses or DNS names of the remote
interface(s) for a Diameter peer. The first address is the primary remote address and
others are alternate remote addresses. When the transport protocol is SCTP, all IP
addresses will be associated with the remote SCTP endpoint. When the transport
protocol is TCP or TLS, only the first address will be used.
See "Validate SCTP Peer Address" for how the Converged Application Server behaves
when a Diameter peer offers an IP address not in this list. If you do not specify an
address, the host identity is used.

• Port Number: Enter the listen port number of the peer node.

• Protocol: Select the protocol used to communicate with the peer (TCP or SCTP).

Note:

Converged Application Server attempts to connect to the peer using only the
protocol you specify (TCP or SCTP). The other protocol is not used, even if a
connection fails using the selected protocol. TCP is used as by default if you
do not specify a protocol.

• Watchdog: Indicate whether the peer supports the Diameter Tw watchdog timer
interval.

8. Click Finish to create the new peer entry.

9. Click Activate Changes to apply the configuration.

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-28

Configuring Routes
Certain Diameter nodes, such as relays, should configure realm-based routes for use when
resolving Diameter messages. You configure Diameter routes in the Administration Console
using the Configuration and then Routes page for a selected Diameter node. Follow these
steps:

1. Log in to the Administration Console for the Converged Application Server domain you
want to configure.

2. Click Lock & Edit to obtain a configuration lock.
If you are using a development domain, Lock & Edit is only present if you enable
configuration locking. See "Enable and disable the domain configuration lock" in the
Administration Console Online Help for more information.

3. Select the Diameter node in the left pane of the Console.

4. Select the name of a Diameter node configuration in the right pane of the Console.

5. Select Configuration, then select the Routes tab.

6. Click New to configure a new Route.

7. Fill in the fields of the Create a New Route page as follows:

• Name: Enter an administrative name for the route.

• Realm: Enter the target realm for this route.

• Application ID: Enter the target Diameter application ID for this route.

• Action: Select an action that this node performs when using the configured route. The
action type may be one of: none, local, relay, proxy, or redirect.

• Server Names: Enter the names of target servers that will use the route.

• Load Balancing: Select the checkbox to enable load balancing on this specific route.

8. Click Finish to create the new route entry.

9. Click Activate Changes to apply the configuration.

See Diameter Relay Node Configuration for an example diameter.xml node configuration
containing a route entry.

Example Domain Configuration
This section describes a sample Converged Application Server configuration that provides
basic Diameter Sh protocol capabilities. The layout of the sample domain includes the
following:

• Three engine tier servers which host SIP applications and also deploy the Diameter Sh
application for accessing user profiles.

• Two servers that act as Diameter relay agents and forward diameter requests to an HSS.

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-29

Figure 2-1 Sample Diameter Domain

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-30

diameter.xml Configuration for Sample Engine Tier Cluster (Sh Clients)

The following example shows the contents of the diameter.xml file used to configure engine
tier servers (Sh Clients) in the sample domain.

<?xml version='1.0' encoding='utf-8'?>
<diameter xmlns="http://www.bea.com/ns/wlcp/diameter/300" xmlns:sec="http://
xmlns.oracle.com/weblogic/security" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xmlns:wls="http://xmlns.oracle.com/weblogic/security/wls">
 <configuration>
 <name>clientnodes</name>
 <target>Engine1</target>
 <target>Engine2</target>
 <target>Engine3</target>
 <host>clientnodes</host>
 <realm>sh_occas.com</realm>
 <tls-enabled>false</tls-enabled>
 <debug-enabled>true</debug-enabled>
 <message-debug-enabled>true</message-debug-enabled>
 <message-debug>
 <message-debug-enabled>true</message-debug-enabled>
 <logging-enabled>true</logging-enabled>
 <file-min-size>500</file-min-size>
 <log-filename>diameter-messages.log</log-filename>
 <rotation-type>bySize</rotation-type>
 <number-of-files-limited>false</number-of-files-limited>
 <file-count>7</file-count>
 <rotate-log-on-startup>true</rotate-log-on-startup>
 <log-file-rotation-dir xsi:nil="true"></log-file-rotation-dir>
 <rotation-time>00:00</rotation-time>
 <file-time-span>24</file-time-span>
 <date-format-pattern>MMM d, yyyy h:mm:ss,SSS a z</date-format-pattern>
 </message-debug>
 <application>
 <name>WlssShApplication</name>
 <class-name>com.bea.wcp.diameter.sh.WlssShApplication</class-name>
 <param>
 <name>destination.realm</name>
 <value>relay_occas.com</value>
 </param>
 </application>
 <peer-retry-delay>30</peer-retry-delay>
 <allow-dynamic-peers>true</allow-dynamic-peers>
 <request-timeout>30000</request-timeout>
 <max-request-attempts>1</max-request-attempts>
 <watchdog-timeout>30</watchdog-timeout>
 <peer>
 <host>Relay1</host>
 <address>10.0.1.20</address>
 <port>3821</port>
 <protocol>tcp</protocol>
 <watchdog-enabled>false</watchdog-enabled>
 </peer>
 <peer>
 <host>Relay2</host>

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-31

 <address>10.0.1.21</address>
 <port>3821</port>
 <protocol>tcp</protocol>
 <watchdog-enabled>false</watchdog-enabled>
 </peer>
 <default-route>
 <action>relay</action>
 <server>Relay1</server>
 </default-route>
 </configuration>
</diameter>

diameter.xml Configuration for Sample Relay Agents

The following example shows the diameter.xml file used to configure the relay agents.

<?xml version='1.0' encoding='utf-8'?>
<diameter xmlns="http://www.bea.com/ns/wlcp/diameter/300" xmlns:sec="http://
xmlns.oracle.com/weblogic/security" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xmlns:wls="http://xmlns.oracle.com/weblogic/security/wls">
 <configuration>
 <name>relaynodes</name>
 <target>Relay1</target>
 <target>Relay2</target>
 <host>relaynodes</host>
 <realm>relay_occas.com</realm>
 <tls-enabled>false</tls-enabled>
 <debug-enabled>true</debug-enabled>
 <message-debug-enabled>true</message-debug-enabled>
 <message-debug>
 <message-debug-enabled>true</message-debug-enabled>
 <logging-enabled>true</logging-enabled>
 <file-min-size>500</file-min-size>
 <log-filename>diameter-messages.log</log-filename>
 <rotation-type>bySize</rotation-type>
 <number-of-files-limited>false</number-of-files-limited>
 <file-count>7</file-count>
 <rotate-log-on-startup>true</rotate-log-on-startup>
 <log-file-rotation-dir xsi:nil="true"></log-file-rotation-dir>
 <rotation-time>00:00</rotation-time>
 <file-time-span>24</file-time-span>
 <date-format-pattern>MMM d, yyyy h:mm:ss,SSS a z</date-format-pattern>
 </message-debug>
 <application>
 <name>RelayApplication</name>
 <class-name>com.bea.wcp.diameter.relay.RelayApplication</class-name>
 </application>
 <peer>
 <host>Engine1</host>
 <address>10.0.1.1</address>
 <port>3821</port>
 <protocol>tcp</protocol>
 <watchdog-enabled>false</watchdog-enabled>
 </peer>
 <peer>
 <host>Engine2</host>

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-32

 <address>10.0.1.2</address>
 <port>3821</port>
 <protocol>tcp</protocol>
 <watchdog-enabled>false</watchdog-enabled>
 </peer>
 <peer>
 <host>Engine3</host>
 <address>10.0.1.3</address>
 <port>3821</port>
 <protocol>tcp</protocol>
 <watchdog-enabled>false</watchdog-enabled>
 </peer>
 <peer>
 <host>Relay1</host>
 <address>10.0.1.20</address>
 <port>3821</port>
 <protocol>tcp</protocol>
 <watchdog-enabled>false</watchdog-enabled>
 </peer>
 <peer>
 <host>Relay2</host>
 <address>10.0.1.21</address>
 <port>3821</port>
 <protocol>tcp</protocol>
 <watchdog-enabled>false</watchdog-enabled>
 </peer>
 <peer>
 <host>hss</host>
 <address>hssserver</address>
 <port>3870</port>
 <protocol>tcp</protocol>
 <watchdog-enabled>false</watchdog-enabled>
 </peer>
 <default-route>
 <action>relay</action>
 <server>hss</server>
 </default-route>
 </configuration>
</diameter>

Troubleshooting Diameter Configurations
SIP Servlets deployed on Converged Application Server use the available Diameter
applications to initiate requests for user profile data, accounting, and credit control, or to
subscribe to and receive notification of profile data changes. If a SIP Servlet performing these
requests generates an error similar to:

Failed to dispatch Sip message to servlet ServletName
java.lang.IllegalArgumentException: No registered provider for protocol: Protocol

The message may indicate that you have not properly configured the associated Diameter
application for the protocol. See "Configuring Diameter Applications" for more information.

If you experience problems connecting to a Diameter peer node, verify that you have
configured the correct protocol for communicating with the peer in "Configuring Peer Nodes".

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-33

Be aware that Converged Application Server tries only the protocol you specify for the peer
configuration (or TCP if you do not specify a protocol).

Chapter 2
Configuring Diameter Client Nodes and Relay Agents

2-34

3
Monitoring, Tuning, and Troubleshooting

This part provides information on monitoring, tuning, and troubleshooting Oracle
Communications Converged Application Server.

This part contains the following chapters:

• Monitoring, Tuning, and Troubleshooting Overview

• Monitoring the Sessions for License Limits

• Monitoring, Tuning, and Troubleshooting the JVM

• Configuring Converged Application Server SNMP

• Converged Application Server Debugging and Tuning

• Converged Application Server Monitoring and Overload Protection

• Using the WebLogic Server Diagnostic Framework (WLDF)

• Logging SIP Requests and Responses

Monitoring, Tuning, and Troubleshooting Overview
This chapter provides a road map to the detailed monitoring, tuning, and troubleshooting
chapters provided in this part.

Getting Started: Your System Stack
Before jumping into specific monitoring, tuning, and troubleshooting topics for Converged
Application Server, you should step back and consider your entire system stack, from the
lowest level components to the highest:

1. At the base of your system stack is the underlying hardware, or, in a virtualized
environment, your virtual machine or hypervisor.

2. The next step up is your operating system.

3. Sitting on top of the operating system is your Java Virtual Machine (JVM).

4. Running within the JVM, is your Converged Application Server, based itself upon the
WebLogic application server, and, within that, your Session Initiation Protocol (SIP)
applications themselves.

While you may be most concerned about the performance of your SIP applications, you need
to make sure that all levels of your system stack are optimized and running at peak
performance. For instance, if your operating system is misconfigured, no amount of WebLogic
tuning can improve the reliability of your SIP applications. Likewise, system hardware defects
will stop everything dead in its tracks.

Once you know that the base of your system stack is stable, that you've got ample disk space
and RAM, that your operating system is patched and not running any extraneous services, only
then should you proceed up the stack with tuning recommendations. With a stable base, you
can be certain that performance issues, should they occur, are localized to a particular top
level software component.

3-1

The following sections will go through monitoring, tuning, and troubleshooting considerations
for each level of the system stack, from lowest level to highest.

Hardware/VM Monitoring, Tuning, and Troubleshooting
Hardware or virtual machine monitoring and tuning is entirely dependent on your environment.
Depending upon your requirements, some things to keep in mind include:

• General climate control monitoring for physical servers including temperature and humidity

• Temperature monitoring for CPU and power supplies

• Enclosure fan speed monitoring

• Hardware reliability elements such as error correcting RAM and RAID configurations as
well as manageable network interface cards

Operating System and CPU Monitoring, Tuning, and Troubleshooting
Converged Application Server is certified to run on either Oracle Linux or Solaris operating
systems, and there are many resources available covering monitoring, tuning and
troubleshooting topics.

For both Oracle Linux and Solaris, Oracle provides OSWatcher Black Box which is useful for
OS and CPU monitoring. Oracle OSWatcher Black Box (OSWbb) collects and archives
operating system and network metrics that you can use to diagnose performance issues.
OSWbb operates as a set of background processes on the server and gathers data on a
regular basis, invoking such Unix utilities as vmstat, netstat, iostat, and top. For information
on installing and using OSWbb, see "Working with OSWatcher Black Box" in Oracle Linux
Monitoring and Tuning the System. Note that OSWbb is also compatible with Solaris.

For Linux tuning and troubleshooting, see Monitoring the System and Optimizing Performance.

Operating System Tuning Recommendations
In addition to tuning guidelines provided by your operating system documentation, you can use
these guidelines to improve your Converged Application Server system performance.

• Use the latest compatible OS version and network adapters.

• Enlarge the maximum file descriptor and the number of user processes by editing /etc/
security/limits.conf and adding entries like the following:

#<domain> <type> <item> <value>
{user} soft nofile 8192
{user} hard nofile 80000
{user} soft nproc 8192
{user} hard nproc 80000

• Tune the network for high throughput. For example, in /etc/sysctl.conf, increasing the
socket buffer sizes. For example:

net.core.rmem_max = 134217728
net.core.wmem_max = 134217728
net.ipv4.tcp_rmem = 4096 87380 134217728
net.ipv4.tcp_wmem = 4096 87380 134217728
net.core.netdev_max_backlog = 30000
net.ipv4.ip_local_port_range = 1024 65500

If you make any changes to sysctl.conf, you need to run sysctl -p for the changes to
take effect.

Chapter 3
Monitoring, Tuning, and Troubleshooting Overview

3-2

• By default, Coherence sends many, smaller packages instead of larger ones. In /etc/
sysctl.conf, you can increase the UDP MTU size limit. For example:

Enable jumbo frames
ifconfig eno1 mtu 9000 up

The default value is 1500 bytes.

• By default, CPU scaling does not take advantage of all available processing power. Run
the following command at the command line:

echo performance | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor >/dev/
null

Check the CPU scaling with grep "cpu MHz" /proc/cpuinfo.

• Configure network interrupt hashing. Run the following command at the command line:

ethtool -N eno1 rx-flow-hash udp4 sdfn

Check the CPU scaling with ethtool -n eno1 rx-flow-hash udp4.

• Make sure all your Converged Application Server servers are connected to the NTP server
and are synchronized.

JVM Monitoring, Tuning and Troubleshooting
Since Converged Application Server itself runs within a JVM, you need to make sure that the
JVM is correctly tuned and that you monitor it for any issues. For more information, see
Monitoring, Tuning, and Troubleshooting the JVM. In that chapter, you'll find the following
information:

• Profiling JVM Performance

• The Java Control+Break Handler

• Tuning JVM Garbage Collection for Production Deployments

• Avoiding JVM Delays Caused by Random Number Generation

• Troubleshooting Memory Leaks

Converged Application Server Monitoring, Tuning, and Troubleshooting
Next, you can attend to your Converged Application Server environment.

You can use Simple Networking Management Protocol (SNMP) to monitor your Converged
Application Server environment. For information on enabling and using SNMP see Configuring
Converged Application Server SNMP. In that chapter you'll find the following information:

• Configuring SNMP

• Understanding and Responding to SNMP Traps

Converged Application Server debugging and tuning topics are covered in Converged
Application Server Debugging and Tuning, including the following topics:

• Recommended Debug Log Settings

• Server Performance Tuning Recommendations

Converged Application Server provides a monitoring console for SIP applications as well as
flexible overload protection facilities which let you intercept and deal with SIP application
performance issues before they threaten the stability of your environment. For more

Chapter 3
Monitoring, Tuning, and Troubleshooting Overview

3-3

information, see Converged Application Server Monitoring and Overload Protection, which
covers the following topics:

• SIP Server and Application Monitoring

• Other Ways to Monitor Converged Application Server

• Configuring Overload Protection

Converged Application Server offers flexible logging configuration which is helpful when
debugging SIP application issues. See Logging SIP Requests and Responses, which covers
the following topics:

• Defining Logging Servlets in sip.xml

• Configuring the Logging Level and Destination

• Specifying the Criteria for Logging Messages

• Specifying Content Types for Unencrypted Logging

• Enabling Log Rotation and Viewing Log Files

• trace-pattern.dtd Reference

For troubleshooting general WebLogic messages, see BEA-000001 to BEA-2163006 in Oracle
Fusion Middleware Error Messages.

Monitoring the Sessions for License Limits

Note:

The method of tracking license limits described in this section is deprecated and will
be removed in the next release. See "Monitor Messages Per Second" for the method
currently supported for all new deployments.

About the Monitoring of Licenses
As a system administrator, you can ensure that Converged Application Server is not exceeding
the licensing limit for concurrent sessions per cluster in the system at any time.

In Converged Application Server, the number of concurrent sessions is the aggregate number
of established virtual connections between two endpoints represented by subscriber devices or
network switching equipment and traversing the licensed software at any one time.

A named user is an individual authorized by you to use the programs which are installed on a
single server or multiple servers. This definition of a named user is valid regardless of whether
the individual is actively using the programs at any given time. Additionally, Converged
Application Server counts a non human operated device that can access the programs as a
named user in addition to all individuals authorized to use the programs.

About the License Metrics
Converged Application Server supports the following when monitoring licenses:

• Cluster-based tracking

Total number of active sessions on a cluster

Chapter 3
Monitoring the Sessions for License Limits

3-4

https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.4/fmerr/bea-000001-bea-2194843.html#GUID-18AF5D6A-E91D-423D-98FF-92B3011C421C

• Sip Sessions

• Diameter Sessions

• High water mark for sessions

Converged Application Server stores the high water mark values in the log file for each engine.

About the High Water Mark
A high water mark is the indicator which represents the highest value seen for a monitored
entry in a specific period. Suppose that over the course of a week, the total count stored for a
monitored entry goes from 1 to 10 to 5. The high water mark value for this entry is 10.

Converged Application Server provides the following metric for the high water mark metric:

• The high water mark for the latest specified interval or duration that was specified, such as
the last hour or day.

• The high water mark since the start of the monitoring process.

To calculate the high water mark for the sessions in a cluster, Converged Application Server
sums up all the active sessions across all engines in a cluster and saves the highest number of
concurrent sessions. It performs this calculation for all engines synchronously.

About the Monitoring Process
When the monitoring of licenses is enabled, a dedicated polling thread is created whenever the
Sip server of an engine starts (or restarts). This polling thread monitors the traffic from that
starting point. At every interval, Converged Application Server stores the high water mark value
for the previous interval and the high water mark value from the start of the monitoring. See
Example of Log Entries for High Water Marks in a Sip Session.

If, for any reason, the server goes down in a standalone deployment, all the collected statistic
is lost. In a cluster deployment, as long as one engine is alive, the high water mark value
survives the event.

Setting Up the Logging Parameters
As an administrator, you specify the time when the monitoring is to begin and the length of the
logging interval. Set up start time for the monitoring and the interval for each engine in the
domain.

Note:

When you have more than one engine in a cluster, these configurations must be
identical for all the engines in that domain.

Configuring the License Tracking as Startup Command Options
To configure the settings as startup command options, specify the following for each engine in
the domain.

• The local time when the monitoring is to start as:

-Dwlss.sip.session.count.start_time=start_time

Chapter 3
Monitoring the Sessions for License Limits

3-5

where start_time is in the HH:MM:SS format, specifying the local time in hour, minute, and
second with the 24-hour clock system. For example, the entry to start the logging for a
server at 8:30 a.m. would be

-Dwlss.sip.session.count.start_time=08:30:00
By default, Converged Application Server commences its monitoring and logging process
of an engine in a domain when the engine starts up.

• The time intervals for the log output:

-Dwlss.sip.session.count.log_interval=interval_seconds

Where, interval_seconds is the monitoring interval, in seconds. Converged Application
Server commences its monitoring and logging process when the engine starts up.

For example,

-Dwlss.sip.session.count.log_interval=14400
The entry 14400 is 4 hours. The high water mark entry is logged every 4 hours from the
start of the logging, 08:30:00.

If this interval is set to 0, Converged Application Server does not monitor or save the log
information.

About the Log Information
Converge Application Server stores all log entries for session high water mark of a cluster or
standalone deployment in the server log file for each engine. The pathname to the
server_name.log file for each engine is:

domain_name/servers/server_name/logs/server_name.log

where domain_name is the name of the directory in which you located the Converged
Application Server domain and server_name is the name of the server.

Converged Application Server identifies the log information for the high water mark entries with
the following entries:

• For Sip Sessions: Concurrent SipSession Tracking:
• For Diameter Sessions: Concurrent Diameter Session Tracking:
The high water mark entries are entered in the following way:

• The high water mark entry for the most recent interval:
high water mark of last interval:value

• The high water mark entry since the start of the monitoring:
High water mark value of history:value

The example below shows an excerpt from a high water mark log output for a Sip session, set
to be logged every minute:

Example 3-1 Example of Log Entries for High Water Marks in a Sip Session

<Jan 11, 2016 12:06:00 PM PST> <Warning> <OCCAS> <BEA-000000> <Concurrent SipSession Tracking: |
AdminServer|High water mark of last interval:30|High water mark value of the history:30>
<Jan 11, 2016 12:07:00 PM PST> <Warning> <OCCAS> <BEA-000000> <Concurrent SipSession Tracking: |
AdminServer|High water mark of last interval:10|High water mark value of the history:30>
<Jan 11, 2016 12:08:00 PM PST> <Warning> <OCCAS> <BEA-000000> <Concurrent SipSession Tracking: |
AdminServer|High water mark of last interval:12|High water mark value of the history:30>
<Jan 11, 2016 12:09:00 PM PST> <Warning> <OCCAS> <BEA-000000> <Concurrent SipSession Tracking: |
AdminServer|High water mark of last interval:20|High water mark value of the history:30>

Chapter 3
Monitoring the Sessions for License Limits

3-6

<Jan 11, 2016 12:10:00 PM PST> <Warning> <OCCAS> <BEA-000000> <Concurrent SipSession Tracking: |
AdminServer|High water mark of last interval:40|High water mark value of the history:40>
<Jan 11, 2016 12:11:00 PM PST> <Warning> <OCCAS> <BEA-000000> <Concurrent SipSession Tracking: |
AdminServer|High water mark of last interval:0|High water mark value of the history:40>
<Jan 11, 2016 12:12:00 PM PST> <Warning> <OCCAS> <BEA-000000> <Concurrent SipSession Tracking: |
AdminServer|High water mark of last interval:00|High water mark value of the history:40>

To find the high water mark value on any given day for a server, access the logs directory
under the server name in your installation and enter the following grep command:

$ grep "Concurrent SipSession Tracking" engine1.log*

In this command, engine1 is the name of the server.

Monitor Messages Per Second
The Converged Application Server allows you to monitor the messages per second (MPS) sent
or received by your application to align with your licensed capacity. With a default 12-month
historic MPS retention, you can audit usage trends and plan adjustments to your MPS license.

The MPS metric is defined by the total number of every SIP request, SIP response, Diameter
request, Diameter answer, API Request, API Response, http(s) request and http(s) response
both sent to and received by the Converged Application Server (including re-transmissions),
over a sampling interval of 30 seconds. The MPS can be calculated as the calls per second
multiplied by the incoming and outgoing messages per call.

The following messages are not counted for the MPS metric:

• Messages between the Converged Application Server SIP Servlet applications in the same
managed node (SIP Engine, JVM), regardless of:

– Messages routed via the local network interface

– Messages passed as java objects

• Messages sent to or received from observability and monitoring tools, continuous delivery
tooling, configuration tools including REST API for configuration, and other tools used to
monitor and operate the Converged Application Server environment

• Diameter Connection Control messages

• Messages rejected/dropped by the overload protection feature

Understand the following terms to understand how the licensed MPS is calculated.

• Peak MPS—The highest number of messages (SIP, Diameter, API, http(s)) amassed in a
1-second interval during a 30-second window.

• Average MPS—The number of protocol messages (SIP, Diameter, API, http(s)) per
second averaged over a 30 second window.

Chapter 3
Monitor Messages Per Second

3-7

In the following example, the Peak MPS is 8502, and the Average MPS is 2534.

• Sampling Rate—The frequence with which the average number of messages is collected.
For example, if the sampling rate is 5 seconds, then the Converged Application Server
calculates the average MPS over a 30 second sliding window. The first sample covers 0 -
30 seconds, the second sample covers 5 - 35 seconds, the third sample covers 10 - 40
seconds, and so on.

• Retention Window—A 5 minute period during which the average MPS samples are
retained in an internal buffer in memory.
The retention window is used to record the peak of the average MPS values.

• Peak Average MPS—The highest number of average MPS values over the retention
window.
In the following example data set, the peak of the average MPS is 2542 within this 5
minute retention window.

Time Sample Average MPS

1 - 30 seconds 1 2534

5 - 35 seconds 2 2530

10 - 40 seconds 3 2515

15 - 45 seconds 4 2519

.

4 mins 25 sec - 4 mins 55 sec 59 2540

4 mins 30 sec - 5 mins 60 2542

• Licensed Peak Average MPS—Your licensed MPS number.
The Converged Application Server checks the retention window every 5 minutes for peak
average MPS values that exceed your licensed peak MPS.

If the peak average MPS value exceeds the threshold limit, the Converged Application Server
logs the alarm in the console log and updates the MPSConfig descriptor bean attribute
BreachInfo with the message "Threshold limit crossed during period <FROMDATE> and
<TODATE>".

The directory <DOMAIN_HOME>/servers/logs/MPS contains files called MPS_<MM-dd-
YYYY>.csv that contains the start time, end time, and peak average MPS. This file is rotated
daily. Files in this directory that are older than the Historic MPS Persistency value are
purged.

Chapter 3
Monitor Messages Per Second

3-8

Note:

Use the Historic MPS Persistency value to limit how much disk space is devoted to
MPS logs.

See the "MPS License Metric Definition" section of the License Document for a detailed
definition of what traffic is and is not counted in the MPS metric.

Configure MPS Monitoring
Enable MPS monitoring in the the Converged Application Server Administration Console.

1. From the Converged Application Server Administration Console, navigate to SIP Server
and then Configuration and then MPS.

2. Licensed Peak MPS—Enter the number of peak average messages per second that you
have been licensed for.

A value of 0 disables the MPS limit.

3. MPS Alert Threshold—Enter the percentage threshold of Licensed Peak MPS which,
once crossed, the Converged Application Server will generate an alert in the console log
and update the BreachInfo attribute in the MPSConfig bean.

The default value of 0 disables the MPS alert threshold. The range is 0 to 100.

If your licensed peak MPS is 200 and your MPS alert threshold is 75, the Converged
Application Server will generate an alarm if the peak average MPS is above 150 messages
per second.

4. Historic MPS Persistence—Enter the number of months that the Converged Application
Server should retain historic MPS values.

Chapter 3
Monitor Messages Per Second

3-9

The default value is 12. the Converged Application Server does not enforce an upper limit,
so consider disk space limitations when setting this value.

5. MPS Threshold Breach Info—This field is updated when the average peak MPS crosses
the licensed peak MPS.

For example: "Threshold limit crossed during period Mon Jan 09 22:15:00 IST 2023 and
Mon Jan 09 22:20:00 IST 2023"

6. Click Save.

Monitoring, Tuning, and Troubleshooting the JVM
This chapter describes how to monitor and tune Java Virtual Machine (JVM) performance for
Oracle Communications Converged Application Server engine servers.

Profiling JVM Performance
Java Flight Recorder and Java Mission Control together create a complete tool chain to
continuously collect low level and detailed runtime information enabling after-the-fact incident
analysis.

• Java Flight Recorder is a profiling and event collection framework built into the Oracle
JDK that lets Converged Application Server administrators and developers to gather
detailed low level information about how the Java Virtual Machine (JVM) and the Java
application are behaving.

• Java Mission Control is an advanced set of tools that enables efficient and detailed
analysis of the extensive of data collected by Java Flight Recorder. The tool chain enables
developers and administrators to collect and analyze data from Java applications running
locally or deployed in production environments.

• The jcmd utility is used to send diagnostic command requests to the JVM. It must be used
on the same machine on which the JVM is running, and have the same effective user and
group identifiers that were used to launch the JVM.

Using Java Flight Recorder
You can run multiple recordings concurrently and configure each recording using different
settings; in particular, you can configure different recordings to capture different sets of events.
However, in order to make the internal logic of Java Flight Recorder as streamlined as
possible, the resulting recording always contains the union of all events for all recordings active
at that time. This means that if more than one recording is running, you might end up with more
information in the recording than you wanted. This can be confusing but has no other negative
implications.

The easiest and most intuitive way to use JFR is through the Flight Recorder plug-in that is
integrated into Java Mission Control. This plug-in enables access to JFR functionality through
an intuitive GUI. For more information about using the JMC client to control JFR, see the Flight
Recorder Plug-in section of the Java Mission Control help.

Using the Command Line
You can start and configure a recording from the command line using the -
XX:StartFlightRecording option of the java command, when starting the application. To
enable the use of JFR, specify the -XX:+FlightRecorder option. Because JFR is a commercial
feature, you also have to specify the -XX:+UnlockCommercialFeatures option. The following

Chapter 3
Monitoring, Tuning, and Troubleshooting the JVM

3-10

example illustrates how to run the MyApp application and immediately start a 60-second
recording which will be saved to a file named myrecording.jfr:

java -XX:+UnlockCommercialFeatures -XX:+FlightRecorder -
XX:StartFlightRecording=duration=60s,filename=myrecording.jfr MyApp

To configure JFR, you can use the -XX:FlightRecorderOptions option.

Using Diagnostic Command
You can also control recordings by using Java-specific diagnostic commands.

The simplest way to execute a diagnostic command is to use the jcmd tool (located in the Java
installation directory). To issue a command, you have to pass the process identifier of the JVM
(or the name of the main class) and the actual command as arguments to jcmd. For example,
to start a 60-second recording on the running Java process with the identifier 5368 and save it
to myrecording.jfr in the current directory, use the following:

jcmd 5368 JFR.start duration=60s filename=myrecording.jfr

To see a list of all running Java processes, run the jcmd command without any arguments. To
see a complete list of commands available to a running Java application, specify help as the
diagnostic command after the process identifier (or the name of the main class). The
commands relevant to Java Flight Recorder are:

• JFR.start
Start a recording.

• JFR.check
Check the status of all recordings running for the specified process, including the recording
identification number, file name, duration, and so on.

• JFR.stop
Stop a recording with a specific identification number (by default, recording 1 is stopped).

• JFR.dump
Dump the data collected so far by the recording with a specific identification number (by
default, data from recording 1 is dumped).

Note:

These commands are available only if the Java application was started with the Java
Flight Recorder enabled, that is, using the following options:

-XX:+UnlockCommercialFeatures -XX:+FlightRecorder

Configuring Recordings
You can configure an explicit recording in a number of other ways. These techniques work the
same regardless of how you start a recording (that is, either by using the command-line
approach or by using diagnostic commands).

Chapter 3
Monitoring, Tuning, and Troubleshooting the JVM

3-11

Setting Maximum Size and Age

You can configure an explicit recording to have a maximum size or age by using the following
parameters:

• maxsize=size

Append the letter k or K to indicate kilobytes, m or M to indicate megabytes, g or G to
indicate gigabytes, or do not specify any suffix to set the size in bytes.

• maxage=age

Append the letter s to indicate seconds, m to indicate minutes, h to indicate hours, or d to
indicate days.

If both a size limit and an age are specified, the data is deleted when either limit is reached.

Setting the Delay

When scheduling a recording. you might want to add a delay before the recording is actually
started; for example, when running from the command line, you might want the application to
boot or reach a steady state before starting the recording. To achieve this, use the delay
parameter:

delay=delay

Append the letter s to indicate seconds, m to indicate minutes, h to indicate hours, or d to
indicate days.

Setting Compression

Although the recording file format is very compact, you can compress it further by adding it to a
ZIP archive. To enable compression, use the following parameter:

compress=true

Note that CPU resources are required for the compression, which can negatively impact
performance.

Creating Recordings Automatically
When running with a default recording you can configure Java Flight Recorder to automatically
save the current in-memory recording data to a file whenever certain conditions occur. If a disk
repository is used, the current information in the disk repository will also be included.

Creating a Recording On Exit

To save the recording data to the specified path every time the JVM exits, start your application
with the following option:

-XX:FlightRecorderOptions=defaultrecording=true,dumponexit=true,dumponexitpath=path

Set path to the location where the recording should be saved. If you specify a directory, a file
with the date and time as the name is created in that directory. If you specify a file name, that
name is used. If you do not specify a path, the recording will be saved in the current directory.

Creating a Recording Using Triggers

You can use the Console in Java Mission Control to set triggers. A trigger is a rule that
executes an action whenever a condition specified by the rule is true. For example, you can

Chapter 3
Monitoring, Tuning, and Troubleshooting the JVM

3-12

create a rule that triggers a flight recording to commence whenever the heap size exceeds 100
MB. Triggers in Java Mission Control can use any property exposed through a JMX MBean as
the input to the rule. They can launch many other actions than just Flight Recorder dumps.

Define triggers on the Triggers tab of the JMX Console. For more information on how to create
triggers, see the Java Mission Control help.

Troubleshooting
You can collect a significant amount of diagnostic information from Java Flight Recorder by
starting the JVM with one of the following options:

• -XX:FlightRecorderOptions=loglevel=debug
• -XX:FlightRecorderOptions=loglevel=trace.

Java Flight Recorder Command Reference
For a listing of commands you can use with the Java Flight Recorder, see "Command
Reference" in Java Platform, Standard Edition Java Flight Recorder Runtime Guide.

Using Java Mission Control
This section describes using Java Mission Control.

Starting the Java Mission Control Client
The JMC client executable file is located in the bin directory of the Java SE Development Kit
(JDK) installation path (JAVA_HOME). If the JAVA_HOME/bin directory is in the PATH environment
variable, you can start the JMC client by entering jmc at the command-line prompt (shell).
Otherwise, you have to specify the full path to the JMC executable:

• JAVA_HOME/bin/jmc (Linux)

Passing JVM Options To the JMC Launcher

JMC is a Java application, and the JMC client executable is a launcher for this application.
JMC startup is controlled by options specified in the jmc.ini file, which is located in the
JAVA_HOME/bin directory. Arguments to the -vmargs option in the jmc.ini file are options that
are passed to the JVM running the JMC application. You can specify these options to control
the way this JVM runs. If you do not want to modify the jmc.ini file, you can specify JVM
options on the command line as arguments to the -vmargs option of the jmc command.

Note:

If other options are specified for the jmc command, the -vmargs option must be
specified last.

To start the JMC client with your own set of JVM options (overriding those specified in the
jmc.ini file), run the following command (separate multiple arguments with spaces):

jmc -vmarg arguments

To start the JMC client with additional JVM options (appending them to those specified in the
jmc.ini file), run the following command (separate multiple arguments with spaces):

Chapter 3
Monitoring, Tuning, and Troubleshooting the JVM

3-13

https://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/comline.htm#JFRRT183
https://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/comline.htm#JFRRT183

jmc --launcher.appendVmargs -vmarg arguments

Using a Workspace Directory

If you want to copy your settings for the JMC client to another computer or another user, or use
different predefined settings for different applications, add the -data command-line option and
define a workspace directory when you start the JMC client:

jmc -data workspace-directory

Using the Java Mission Control GUI
For detailed information on using the Java Mission Control GUI client, see "Java Mission
Control Client GUI" in Java Platform, Standard Edition Java Mission Control User's Guide.

Creating Thread and Heap Dumps Using jcmd
You can use the Java utility, jcmd, to diagnostic command requests directly to the JVM. For
detailed information on using the jcmd utility, see "The jcmd Utility" in Java Platform, Standard
Edition Troubleshooting Guide.

Creating a Heap Dump using jcmd
To create a heap dump using jcmd execute the following command, replacing Process_ID with
the process ID of your JVM process and specifying a path and filename for the output file:

jcmd Process_ID GC.heap_dump /path/filename

Example 3-2 Creating a Heap Dump

jcmd 5216 GC.heap_dump ~/heapdumps/myheapdump.dprof
 5216:
 Heap dump file created

Creating a Thread Dump using jcmd
To create a thread dump using jcmd execute the following command, replacing Process_ID
with the process ID of your JVM process:

jcmd Process_ID Thread.print

Example 3-3 Creating a Thread Dump

jcmd 5216 Thread.print
5216:
 2014-09-19 13:12:30
 Full thread dump Java HotSpot(TM) 64-Bit Server VM (24.45-b08 mixed mode):

 "Thread-21" daemon prio=6 tid=0x0000000016109800 nid=0x1d5c in Object.wait()
 [0x000000001c22f000] java.lang.Thread.State: TIMED_WAITING (on object monitor)
 at java.lang.Object.wait(Native Method)

Other jcmd Commands
This section provides example jcmd commands.

List All JVM Processes

Run jcmd without any parameters (or with -l) to list all JVM processes preceded by a process
ID:

Chapter 3
Monitoring, Tuning, and Troubleshooting the JVM

3-14

https://docs.oracle.com/en/java/java-components/jdk-mission-control/8/user-guide/jmc-application-gui.html
https://docs.oracle.com/en/java/java-components/jdk-mission-control/8/user-guide/jmc-application-gui.html
https://docs.oracle.com/en/java/javase/17/troubleshoot/diagnostic-tools.html#GUID-42A18B29-B4AD-4831-B846-2CDBA55F2254

jcmd -l
 6848
 8120 sun.tools.jcmd.JCmd -l
 3108 weblogic.Server

List jcmd Commands for a Particular Process

Run jcmd PID help to list the jcmd commands available for that process. Replace PID with the
process ID of your JVM process:

jcmd 3108 help
 The following commands are available:
 VM.native_memory
 VM.commercial_features
 ManagementAgent.stop
 ManagementAgent.start_local
 ManagementAgent.start
 Thread.print
 GC.class_histogram
 GC.heap_dump
 GC.run_finalization
 GC.run
 VM.uptime
 VM.flags
 VM.system_properties
 VM.command_line
 VM.version
 help

Get More Information on a jcmd Command

To get more information on a jcmd command run jcmd help command_name where
command_name is the name of the jcmd command:

jcmd help GC.heap_dump
 GC.heap_dump
 Generate a HPROF format dump of the Java heap.

 Impact: High: Depends on Java heap size and content. Request a full GC
 unless the '-all' option is specified.

 Syntax : GC.heap_dump [options] <filename>

 Arguments:
 filename : Name of the dump file (STRING, no default value)

 Options: (options must be specified using the <key> or <key>=<value> syntax)
 -all : [optional] Dump all objects, including unreachable objects
 (BOOLEAN, false)

jcmd Command Reference
For a listing of commands you can use with the jcmd utility, see "Command Reference" in Java
Platform, Standard Edition Java Flight Recorder Runtime Guide.

The Java Control+Break Handler
On Oracle Solaris or Linux operating systems, the combination of pressing the Control key and
the backslash (\) key at the application console (standard input) causes the Java HotSpot VM
to print a thread dump to the application's standard output. On Windows, the equivalent key

Chapter 3
Monitoring, Tuning, and Troubleshooting the JVM

3-15

https://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/comline.htm#JFRRT183

sequence is the Control and Break keys. The general term for these key combinations is the
Control+Break handler.

On Oracle Solaris and Linux operating systems, a thread dump is printed if the Java process
receives a QUIT signal. Therefore, the kill -QUIT pid command causes the process with the ID
pid to print a thread dump to standard output.

Tuning JVM Garbage Collection for Production Deployments
This Section describes how to tune Java Virtual Machine (JVM) garbage collection
performance for Oracle Communications Converged Application Server engine servers.

Goals for Tuning Garbage Collection Performance
Production installations of Converged Application Server generally require extremely small
response times (under 50 milliseconds) for clients even under peak server loads. A key factor
in maintaining brief response times is the proper selection and tuning of the JVM's Garbage
Collection (GC) algorithm for Converged Application Server instances.

Whereas certain tuning strategies are designed to yield the lowest average garbage collection
times or to minimize the frequency of full GCs, those strategies can sometimes result in one or
more very long periods of garbage collection (often several seconds long) that are offset by
shorter GC intervals. With a production Converged Application Server installation, all long GC
intervals must be avoided to maintain response time goals.

The sections that follow describe GC tuning strategies for Oracle's JVM that generally result in
best response time performance.

Modifying JVM Parameters in Server Start Scripts
If you use custom startup scripts to start Converged Application Server engines and replicas,
simply edit those scripts to include the recommended JVM options described in the sections
that follow.

The Configuration Wizard also installs default startup scripts when you configure a new
domain. by default, these scripts are installed in the Middleware_Home/user_projects/
domains/domain_name/bin directory, where Middleware_Home is where you installed the
Converged Application Server software and domain_name is the name of the domain's
directory. The /bin directory includes:

• startWebLogic.cmd, startWebLogic.sh: These scripts start the Administration Server for
the domain. The also contain a variety of Java configuration settings.

• startManagedWebLogic.cmd, startManagedWebLogic.sh: These scripts start managed
engines and replicas in the domain.

If you use the Oracle-installed scripts to start engines and replicas, you can override JVM
memory arguments by first setting the USER_MEM_ARGS environment variable in your
command shell.

Note:

Setting the USER_MEM_ARGS environment variable overrides all default JVM
memory arguments specified in the Oracle-installed scripts. Always set
USER_MEM_ARGS to the full list of JVM memory arguments you intend to use.

Chapter 3
Monitoring, Tuning, and Troubleshooting the JVM

3-16

Tuning Garbage Collection with Oracle JDK
When using Oracle's JDK, the goal in tuning garbage collection performance is to reduce the
time required to perform a full garbage collection cycle. You should not attempt to tune the JVM
to minimize the frequency of full garbage collections, because this generally results in an
eventual forced garbage collection cycle that may take up to several full seconds to complete.

The simplest and most reliable way to achieve short garbage collection times over the lifetime
of a production server is to use a fixed heap size with the collector and the parallel young
generation collector, restricting the new generation size to at most one third of the overall heap.

Oracle recommends using the Garbage-First (G1) garbage collector. See "Getting Started with
the G1 Garbage Collector" for more information on using the Garbage-First collector.

The following example JVM settings are recommended for most production engine servers:

-server -Xms24G -Xmx24G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:ParallelGCThreads=20 -
XX:ConcGCThreads=5 -XX:InitiatingHeapOccupancyPercent=70

For standalone installations, use the example settings:

-server -Xms32G -Xmx32G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:ParallelGCThreads=20 -
XX:ConcGCThreads=5 -XX:InitiatingHeapOccupancyPercent=70

The above options have the following effect:

• -Xms, -Xmx: Places boundaries on the heap size to increase the predictability of garbage
collection. The heap size is limited in replica servers so that even Full GCs do not trigger
SIP retransmissions. -Xms sets the starting size to prevent pauses caused by heap
expansion.

• -XX:+UseG1GC: Use the Garbage First (G1) Collector.

• -XX:MaxGCPauseMillis: Sets a target for the maximum GC pause time. This is a soft
goal, and the JVM will make its best effort to achieve it.

• -XX:ParallelGCThreads: Sets the number of threads used during parallel phases of the
garbage collectors. The default value varies with the platform on which the JVM is running.

• -XX:ConcGCThreads: Number of threads concurrent garbage collectors will use. The
default value varies with the platform on which the JVM is running.

• -XX:InitiatingHeapOccupancyPercent: Percentage of the (entire) heap occupancy to
start a concurrent GC cycle. GCs that trigger a concurrent GC cycle based on the
occupancy of the entire heap and not just one of the generations, including G1, use this
option. A value of 0 denotes 'do constant GC cycles'. The default value is 45.

Avoiding JVM Delays Caused by Random Number Generation
The library used for random number generation in Oracle's JVM relies on /dev/random by
default for UNIX platforms. This can potentially block the Converged Application Server
process because on some operating systems /dev/random waits for a certain amount of
"noise" to be generated on the host system before returning a result.

To determine if your operating system exhibits this behavior, try displaying a portion of the file
from a shell prompt:

head -n 1 /dev/random

Chapter 3
Monitoring, Tuning, and Troubleshooting the JVM

3-17

https://docs.oracle.com/en/java/javase/17/gctuning/garbage-first-g1-garbage-collector1.html#GUID-ED3AB6D3-FD9B-4447-9EDF-983ED2F7A573
https://docs.oracle.com/en/java/javase/17/gctuning/garbage-first-g1-garbage-collector1.html#GUID-ED3AB6D3-FD9B-4447-9EDF-983ED2F7A573

If the command returns immediately, you need not continue. If the command does not return
immediately, configure the rngd daemon to feed data to the kernel's random number entropy
pool:

rngd -r /dev/urandom -o /dev/random -f -t .1

Note:

You may have to experiment with the value of the -t parameter. For more information
on the rngd daemon, run the man rngd command from a shell to display this manual
page.

Troubleshooting Memory Leaks
If your application's execution time becomes longer and longer, or if the operating system
seems to be performing slower and slower, this could be an indication of a memory leak. In
other words, virtual memory is being allocated but is not being returned when it is no longer
needed. Eventually the application or the system runs out of memory, and the application
terminates abnormally.

For more information on diagnosing Java memory leaks, see "Troubleshooting Memory Leaks"
in Java Platform, Standard Edition Troubleshooting Guide.

In addition, you can also use the Eclipse Memory Analyzer Tool (MAT) during development to
discover memory leaks as well as reduce memory consumption.

For details on the Eclipse MAT, see http://www.eclipse.org/mat/.

Configuring Converged Application Server SNMP
This chapter describes how to configure and manage SNMP services with Oracle
Communications Converged Application Server.

Overview of Converged Application Server SNMP
Converged Application Server includes a dedicated SNMP MIB to monitor activity on engine
tier and SIP data tier server instances. The Converged Application Server MIB is available on
both Managed Servers and the Administration Server of a domain. However, Converged
Application Server engine and SIP data tier traps are generated only by the Managed Server
instances that make up each tier. If your Administration Server is not a target for the sipserver
custom resource, it will generate only WebLogic Server SNMP traps (for example, when a
server in a cluster fails). Administrators should monitor both WebLogic Server and Converged
Application Server traps to evaluate the behavior of the entire domain.

Note:

Converged Application Server MIB objects are read-only. You cannot modify a
Converged Application Server configuration using SNMP.

Chapter 3
Configuring Converged Application Server SNMP

3-18

https://docs.oracle.com/en/java/javase/17/troubleshoot/troubleshooting-memory-leaks.html#GUID-8090B138-6E0C-4926-9659-BE739062AB75
http://www.eclipse.org/mat/

Browsing the MIB
The Converged Application Server MIB file is installed in WLSS_HOME/server/lib/WLSS-
MIB.asn1. Use an available SNMP management tool or MIB browser to view the contents of
this file. See also "Trap Descriptions" for a description of common SNMP traps.

Configuring SNMP
To enable SNMP monitoring for the entire Converged Application Server domain, follow these
steps:

1. Login to the Administration Console for the Converged Application Server domain.

2. If your domain is running in Production mode, click Lock & Edit.

3. In the left pane, select the Diagnostics > SNMP node.

4. In the Server SNMP Agents table, click the New button to create a new agent.

Note:

Ensure that you create a new Server SNMP agent, rather than a Domain-Scoped
agent.

5. Enter a unique name for the new SNMP agent (for example, "engine1snmp") and click OK.

6. Select the newly-created SNMP agent from the Server SNMP Agents table.

7. Select Configuration, then select the General tab:

Note:

You can also set this parameter to true by selecting the Symmetric Response
Routing option. To do this, select Configuration, then select the General tab of
the SipServer Administration console extension.

a. Select the Enabled check box to enable the agent.

b. Enter an unused port number in the SNMP UDP Port field.

Note:

If you run multiple Managed Server instances on the same machine, each
server instance must use a dedicated SNMP agent with a unique SNMP port
number.

c. Click Save.

8. Repeat the above steps to generate a unique SNMP agent for each server in your
deployment (SIP data tier server, engine tier server, and Administration Server).

9. If your domain is running in Production mode, click Activate Changes.

Chapter 3
Configuring Converged Application Server SNMP

3-19

Understanding and Responding to SNMP Traps
The following sections describe the Converged Application Server SNMP traps in more detail.
Recovery procedures for responding to individual traps are also included where applicable.

Trap Descriptions
This section describes the Converged Application Server SNMP traps.

overloadControlActivated, overloadControlDeactivated
Converged Application Server engines use a configurable throttling mechanism that helps you
control the number of new SIP requests that are processed. After a configured overload
condition is observed, Converged Application Server destroys new SIP requests by responding
with "503 Service Unavailable" to the caller. The servers continues to destroy new requests
until the overload condition is resolved according to a configured threshold control value. This
alarm is generated when the throttling mechanism is activated. The throttling behavior should
eventually return the server to a non-overloaded state, and further action may be unnecessary.

Recovery Procedure: Follow this recovery procedure:

1. Check other servers to see if they are nearly overloaded.

2. Check to see if the load balancer is correctly balancing load across the application servers,
or if it is overloading one or more servers. If additional servers are nearly overloaded,
Notify Tier 4 support immediately.

3. If the issue is limited to one server, notify Tier 4 support within one hour.

Additional Overload Information: If you set the queue length as an incoming call overload
control, you can monitor the length of the queue using the Administration Console. If you
specify a session rate control, you cannot monitor the session rate using the Administration
Console. (The Administration Console only displays the current number of SIP sessions, not
the rate of new sessions generated.)

serverStopped
This trap indicates that the WebLogic Server instance is now down. If this trap is received
spontaneously and not as a result of a controlled shutdown, follow the steps below.

Recovery Procedure: Follow this recovery procedure:

1. Use the following command to identify the hung process:

ps –ef | grep java

There should be only one PID for each WebLogic Server instance running on the machine.

2. After identifying the affected PID, use the following command to kill the process:

kill -3 [pid]
3. This command generates the actual thread dump. If the process is not immediately killed,

repeat the command several times, spaced 5-10 seconds apart, to help diagnose potential
deadlock problems, until the process is killed.

4. Attempt to restart Converged Application Server immediately.

5. Make a backup copy of all SIP logs on the affected server to aid in troubleshooting. The
location of the logs varies based on the server configuration.

Chapter 3
Configuring Converged Application Server SNMP

3-20

6. Copy each log to assist Tier 4 support with troubleshooting the problem.

Note:

Converged Application Server logs are truncated according to your system
configuration. Make backup logs immediately to avoid losing critical
troubleshooting information.

7. Notify Tier 4 support and include the log files with the trouble ticket.

8. Monitor the server closely over next 24 hours. If the source of the problem cannot be
identified in the log files, there may be a hardware or network issue that will reappear over
time.

Additional Shutdown Information: The Administration Console generates SNMP messages
for managed WebLogic Server instances only until the ServerShutDown message is received.
Afterwards, no additional messages are generated.

sipAppDeployed
Converged Application Server engine tier nodes generate this alarm when a SIP Servlet is
deployed to the container.

Recovery Procedure: This trap is generated during normal deployment operations and does
not indicate an exception.

sipAppUndeployed
Converged Application Server engines generate this alarm when a SIP application shuts down,
or if a SIP application is undeployed. This generally occurs when Converged Application
Server is shutdown while active requests still exist.

Recovery Procedure: During normal shutdown procedures this alarm should be filtered out
and should not reach operations. If the alarm occurs during the course of normal operations, it
indicates that someone has shutdown the application or server unexpectedly, or there is a
problem with the application. Notify Tier 4 support immediately.

sipAppFailedToDeploy
Converged Application Server engines generate this trap when an application deploys
successfully as a Web Application but fails to deploy as a SIP application.

Recovery Procedure: The typical failure is caused by an invalid sip.xml configuration file and
should occur only during software installation or upgrade procedures. When it occurs,
undeploy the application, validate the sip.xml file, and retry the deployment.

Note:

This alarm should never occur during normal operations. If it does, contact Tier 4
support immediately.

Chapter 3
Configuring Converged Application Server SNMP

3-21

Converged Application Server Debugging and Tuning
This chapter describes how to debug and tune Oracle Communications Converged Application
Server.

Debugging Issues in the Runtime Environment
At times, issues can arise in your runtime environment such as when a call session fails or a
server fails because the server configuration did not load correctly. You can resolve the issues
in the runtime environment with the help of the debug attributes that Converged Application
Server supports.

About the Runtime Debug Process
When you encounter an issue in the runtime environment, review the debug attributes that
Converged Application Server supports in the Administration Console. To further diagnose an
issue, select one or more of the relevant debug attributes that would help to reproduce the
scenario.

You can isolate the debug process by enabling the selected debug attributes in one server
only. Or you can attempt to view the behavior by enabling the selected attributes in all servers.

After enabling the relevant debug attributes in the Administration Console, rerun the scenario.

By default, Converged Application Server prints the debug log information to standard output
stream, stdout. To parse the debug information, pipe the stdout data to a file. When the issue
is resolved, be sure to disable the debug flag settings in the Administration Console. You can
redirect the Java virtual machine (JVM) output to a log file. For more information, see the
description about "Redirecting JVM Output" in Oracle Fusion Middleware Configuring Log Files
and Filtering Log Messages for Oracle WebLogic Server.

If you pipe stdout content to a file, manage the rotated log files in your production or
development environment. For more information about rotating log files, see "Configuring Log
File Rotation" in Converged Application Server Developer's Guide.

WARNING:

Debug flags can result in gigabytes of log output in heavy traffic cases. Make sure
that you use targeted debug flags as described in Debug Attributes.
Revert the setting for the debug attributes as soon as the issue you are tracing is
reproduced.

About the Debug Attributes Configuration Method
Use only the Administration Console to enable or disable debug attributes in Converged
Application Server.

Converged Application Server provides the serverdebug.xml file for your reference. This file is
located in the domain_home/config/custom directory, where domain_home represents the
directory in which Converged Application Server domain is created.

Chapter 3
Converged Application Server Debugging and Tuning

3-22

Caution:

• Do not modify the serverdebug.xml file manually.

• Do not enter a debug setting as a startup command option.

Recommended Debug Log Settings
The table below lists the various scenarios that you may encounter and the recommended
debug attributes to select and enable in the Administration Console for information on
debugging each issue.

Table 3-1 Converged Application Server Debug Attributes

Debug Attribute Issues for which this Attribute Provides Information

wlss.Admin Details about Sip Server startup and the loading of its modules

wlss.AppRouter Application router issues

wlss.CallState Call state issues

wlss.coherenceStore Information related to Oracle Coherence

wlss.concurrent Concurrent service issues

wlss.Deployment Application deployment issues

wlss.Diameter Diameter protocol handling within the container issues

wlss.Dns Issues related to Domain Naming Service

wlss.Filters Filter module that filters SIP message issues

wlss.Geo Geo redundancy handling issues

wlss.Headers Sip (message) header issues

wlss.History Issues related to call state history

wlss.instrumentation Issues related to diagnostics, SIP or Diameter message properties

wlss.MHDebug Message handler issues

wlss.RuntimeRest Issue related to runtime MBean

wlss.Security Security-related issues

wlss.SipEngine Issues related to SIP servers

wlss.SipEngineConfig Issues related to the loading of a server configuration

wlss.SipRequest Issues related to SIP requests

wlss.SipSession Issues related to SIP sessions

wlss.Status Performance and garbage collection issues

wlss.Status.Timer Timer statistics related to collections performance

wlss.Store Call state and other cache issues

wlss.Timer Internal timer issues

wlss.Traffic Issues related to Sip traffic information

wlss.Transaction Issues related to client and server transactions created within the container
to process the call flow

wlss.Transport Transport-level information for UDP, TCP, or TLS protocols.

Chapter 3
Converged Application Server Debugging and Tuning

3-23

Table 3-1 (Cont.) Converged Application Server Debug Attributes

Debug Attribute Issues for which this Attribute Provides Information

wlss.Wrapping Issues related to Enterprise JavaBeans (EJB) business object wrapping

Issues that Require the Enabling of Multiple Debug Attributes
Several issues require the enabling of multiple flags. The most common issues are described
here.

SIP Specific Issues Involving Calls
In general for any SIP specific issue involving calls, enable the following debug flags on the
engine servers and retrieve the server and stdout logs:

• wlss.Transaction

• wlss.SipSession

Transport-level Issues
In general for transport-level issues, enable the following debug flags on the engine servers
and retrieve the server and stdout logs:

• wlss.Transport

• wlss.SipSession

Server Does not Process SIP Messages
For SIP specific issues, a Wireshark trace indicates that a SIP message reached the server but
the message was not processed. Enable the following debug flags on the engine servers and
retrieve the server and stdout logs:

• wlss.Admin

• wlss.MHDebug

• wlss.Transaction

• wlss.SipSession

Locking and Timer-related Issues
For locking and timer-related issues, enable following debug flags in combination or one at a
time:

• wlss.CallState

• wlss.SipEngine

• wlss.Timer

Message Validation Issues
For message handling details, enable following debug flags in combination or one at a time:

• wlss.SipRequest

Chapter 3
Converged Application Server Debugging and Tuning

3-24

• wlss.Headers

Enabling the Runtime Debug Attributes
To debug and resolve issues at run time, you can enable the appropriate debug attributes for
one or all servers through the Converged Application Server Administration Console.

To set the debug attributes through the Administration Console:

1. Use your browser to access the URL:

http://address:port/console
where address is the Administration Server's listen address and port is the listen port.

Note:

The default Administration Console port for Converged Application Server is
7001.

2. Select the Sip Server node in the left pane.

The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring Converged Application Server.

3. Select the Server Debug tab under Configuration.

4. In the List of Servers in the Domain table, click on the name of the server.

The Server debug attributes table appears.

5. Select the check box next to the debug attribute that you want to enable or disable. For
information about the attributes, see "Recommended Debug Log Settings".

6. From the command buttons above or below the table, do one of the following:

• To enable the selected debug attributes in the selected server, click Enable.

• To disable the selected debug attributes in the selected server, click Disable.

• To enable the selected debug attributes in all servers, click Enable in all Servers.

• To disable the selected debug attributes in all servers, click Disable in all Servers.

For more information, see the description about "Define debug settings" in Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Online Help.

Server Performance Tuning Recommendations
The following recommendations can help improve Converged Application Server performance.

• Disable the Domain log broadcaster at each engine server Logging page.

Using JConsole, for each of your Converged Application Server managed servers, select
Logging, then Advanced, and then Domain log broadcaster, and set Severity level to
Off.

• Increase the Shared Capacity For Work Managers to 5000000 for each engine.

Using JConsole, select Environment, then Servers, then Configuration, and then
OCCAS_engine Overload, where OCCAS_engine is the server name of one of your
Converged Application Server engines.

Chapter 3
Converged Application Server Debugging and Tuning

3-25

• Increase the following tuning values in the Work Manager Settings:

– set wlss.transport.capacity to 5000000

– set wlss.timer.capacity to 150000

– set wlss.timer.maxthreads to 200

In JConsole, find the Work Managers by selecting your Converged Application Server
environment, then selecting each Work Manager in turn.

• In config.xml for the Converged Application Server Admin Server, increase the engines
server socket-readers from 2 to 10.

Find config.xml in domain_home/config, where domain_home is the root directory of the
domain.

• Manage SIP Application Session Timeout

• Specifying the Minimum and Maximum Thread Pool Size

Manage SIP Application Session Timeout
To prevent a caller or callee from being logged out during a session, make sure that the SIP
application session timeout is conservatively set based upon the upper bound of a call
duration. To set the session timeout, add the following entry to the sip.xml, where n
determines the timeout in minutes:

<session-config>
 <javaee:session-timeout>n</javaee:session-timeout>
</session-config>

The session timeout is set to 3 minutes by default. As a rule of thumb, if the maximum call
duration is, for example, 3 minutes, a rational setting for the session timeout would be 5 to 7
minutes.

Max Application Session Timeout
While the SIP application session timeout is dictated by the session-timeout element in
sip.xml as described above, the maximum application session lifetime is configured at the
container level by the max-application-session-lifetime element in sipserver.xml. The max-
application-session-lifetime element essentially limits the maximum value a deployer can set
for the session-timeout element in sip.xml. Configuring this element helps resource
management by ensuring that a deployer is forced to set a timeout value within specific
boundaries. If a value is not specified for max-application-session-lifetime, a deployer can
set any value in sip.xml.

Specifying the Minimum and Maximum Thread Pool Size
Depending upon the number of concurrent users for your environment, you should adjust the
value of the SelfTuningThreadPoolMinSize and SelfTuningThreadPoolMaxSize server
parameter.

The self-tuning thread pools start with a default size, which grows and shrinks automatically as
required. The default size for the administration server is 15, and 100 for engines in each
cluster. You can increase the number of threads to improve throughput, but the minimum will
never fall below the default. However, an excessive number of threads increases memory use,
and could cause garbage collection related performance issues. Oracle recommends 200 as a
working minimum and 400 as a working maximum. If you have a low number of concurrent
users, you can use a lower value.

Chapter 3
Converged Application Server Debugging and Tuning

3-26

To configure SelfTuningThreadPoolMinSize and SelfTuningThreadPoolMaxSize:

1. Use your browser to access the URL http://address:port/console where address is the
Administration Server's listen address and port is the listen port.

Note:

The default Administration Console port for Converged Application Server is
7001.

2. If your domain is running in Production mode, click Lock & Edit.

3. Expand the Environment node in the left pane and then, select Servers.

The Summary of Servers page appears.

4. Select the Configuration tab. Then, select the server name from the Servers table.

The Settings for Server_name page appears.

5. Select the Tuning subtab and expand the Advanced pane at the bottom.

6. Enter a value for Self Tuning Thread Minimum Pool Size.

7. Enter a value for Self Tuning Thread Maximum Pool Size.

8. Click Save to save your configuration changes.

9. If your domain is running in Production mode, click Activate Changes.

10. Restart the server.

Files for Troubleshooting
The following Converged Application Server log and configuration files are frequently helpful
for troubleshooting problems. Your technical support contact generally requests the following
files from you:

• domain_home/config/custom/coherence.xml

• domain_home/config/coherence/Coherence-Default/Coherence-Default.xml

• domain_home/config/coherence/Coherence-Default/Custom-Default.xml

• domain_home/config/config.xml

• domain_home/config/custom/sipserver.xml

• domain_home/server_name/*.log (Server and message logs)

• Located in the /WEB-INF subdirectory of the application

• Located in the /WEB-INF subdirectory of the application

By default, domain_home represents the directory in which Converged Application Server
domain is created and server_name is the name of the server.

General information that can help the technical support team includes:

• The specific versions of:

– Converged Application Server

– Java SDK

– Operating System

Chapter 3
Converged Application Server Debugging and Tuning

3-27

• Thread dumps for hung Converged Application Server processes

• Network analyzer logs

Backwards Compatibility with TO and FROM System Headers
In JSR289/RFC3261, you could modify TO and FROM fields. But JSR116/RFC2543 changed
TO and FROM parameters into system headers that can't be modified.

For backwards compatibility, use the Boolean flag wlss.enable_modify_to_from to modify the
TO and FROM headers in a request in a proxy servlet.

The fields can't be modified directly from the request object. Instead, the address object for the
TO and FROM fields must be retrieved and the getFrom() and getTo() methods of
SIPServletRequest. For example:

sipServletRequest.getFrom().setDisplayName("new user");
sipServletRequest.getFrom().setExpires(1000);
sipServletRequest.getFrom().setQ(0.1f);
URI myUri = sipServletRequest.getFrom().getURI():
sipServletRequest.getFrom().getURI().setParameter("newparam", "newvalue");
SipURI mySipUri = (SipURI) sipServletRequest.getFrom().getURI();
mySipUri.setUser("newuser");

By default, wlss.enable_modify_to_from is disabled (set to false).

Converged Application Server Monitoring and Overload
Protection

This chapter describes Oracle Communications Converged Application Server monitoring as
well as overload protection and how it is configured.

About Monitoring and Overload Protection
Converged Application Server provides two interrelated systems that you can use together to
ensure your environments remain within functional boundaries:

• SIP Server and Application Monitoring Console

• SIP Overload Protection

The first system, SIP Server and Application Monitoring Console, provides you with a window
into the performance of your SIP servers and deployed SIP applications. Using the console,
you can review the real time performance of your servers and applications, and spot possible
bottlenecks and impending failure conditions.

The second system, SIP Overload Protection, enables you to act upon the data you see in the
SIP Server and Application Monitoring Console. Using the SIP Overload Protection interface,
you can set flexible traps and thresholds, and statistical algorithms to gracefully handle many
types of performance issues before they endanger the health of your environment.

SIP Server and Application Monitoring
Converged Application Server provides a console interface for monitoring your Session
Initiation Protocol (SIP) servers and SIP applications.

To access the monitoring interface, do the following:

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-28

1. Use your browser to access the URL http://address:port/console where address is the
Administration Server's listen address and port is the listen port.

Note:

The default administration console port for Converged Application Server is
7001.

2. Select the SipServer node in the left pane, and select the Monitoring tab in the right
pane.

3. In the Monitoring tab, you can select the following subtabs:

• General: Provides general monitoring data on configured SIP servers.

• SIP Performance: Provides per server performance information.

• SIP Applications: Provides performance information on deployed SIP applications.

• Call State Storage: Provides state and statistics information for SIP call state.

The following sections provide details on each monitoring subtab.

General
The General subtab of the Monitoring tab provides a variety of general runtime information on
messages and sessions for each configured SIP server. Active SIP and Application sessions
are also totaled at the bottom of the pane.

Table 3-2 General Monitoring Data

Datum Description

Name The name of the SIP server instance.

Start Time The time at which the SIP server instance was started.

Application Session Count The number of active SIP application sessions.

SIP Session Count The number of active SIP sessions.

Destroyed Application Session
Count

The number of destroyed application sessions.

Destroyed SIP Session Count The number of destroyed SIP sessions.

Messages Received The number of SIP messages received.

Messages Rejected The number of rejected SIP messages.

Messages Processed The total number of SIP messages processed.

Cluster Id The Converged Application Server cluster ID.

The final row of the table provides domain wide totals for all of the data in the table.

SIP Performance
The SIP Performance subtab of the Monitoring tab provides runtime performance statistics
over a period of time for each configured SIP server. The period (default 60 seconds) and
sample frequency (default 10 seconds) are noted at the bottom of the pane.

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-29

Table 3-3 SIP Performance Monitoring Data

Datum Description

Name The name of the SIP server instance.

SIP Throughput The SIP message throughput.

Succeeded SIP Trans The number successful SIP transactions.

Failed SIP Trans The number of failed SIP transactions.

SIP Applications
The SIP Applications subtab of the Monitoring tab provides runtime session information for SIP
applications deployed on each configured SIP server.

Table 3-4 SIP Applications Data

Datum Description

Engine The Converged Application Server engine on which the SIP application
is deployed.

Name The name of the SIP application.

SIP Session Count The number of active SIP sessions.

Application Session Count The number of active application sessions.

Destroyed SIP Session Count The number of destroyed SIP sessions.

Destroyed Application Session
Count

The number of destroyed application sessions.

Call State Storage
The Call State Storage subtab of the Monitoring tab provides monitoring data in four additional
subtabs:

• Call State Service

• Call State Cache

• Call State Metadata Cache

• Call State Index Cache

The data monitored in each subtab is covered in the following sections.

Call State Service
The Call State Service subtab of the Call State Storage subtab describes state and statistics
about the call state Coherence cache service for the entire Converged Application Server
domain.

For more details on Coherence statistics and monitoring, see "Introduction to Coherence
Management" in Coherence Management Guide.

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-30

https://docs.oracle.com/en/middleware/fusion-middleware/coherence/12.2.1.4/manage/introduction-oracle-coherence-management.html#GUID-ED8FDE61-43D4-4D51-B859-7168C2F98F43
https://docs.oracle.com/en/middleware/fusion-middleware/coherence/12.2.1.4/manage/introduction-oracle-coherence-management.html#GUID-ED8FDE61-43D4-4D51-B859-7168C2F98F43

Table 3-5 Call State Service Monitoring Data

Datum Description

Server This is a static label, Total/Average (domainwide).

Local Messages The umber of messages pending processing.

Received Messages The total number of messages received by the host since the statistics
were last reset.

Sent Messages The total number of messages sent by the host since the statistics
were last reset.

Owned Backup Partitions The number of partitions that this domain backs up (responsible for the
backup storage).

Owned Primary Partitions The number of partitions that this domain owns (responsible for the
primary storage).

Endangered Partitions The number of partitions that are not currently backed up.

Unbalanced Partitions The number of primary and backup partitions which remain to be
transferred until the partition distribution across the storage enabled
service members is fully balanced.

Vulnerable Partitions The number of partitions that are backed up on the same computer
where the primary partition owner resides.

Average Request Duration The average duration (in milliseconds) of an individual synchronous
request issued by the service since the last time the statistics were
reset.

Max Request Duration The maximum duration (in milliseconds) of a synchronous request
issued by the service since the last time the statistics were reset.

Pending Request Duration The duration (in milliseconds) of the oldest pending synchronous
request issued by the service.

Average Task Duration The average duration (in milliseconds) of an individual task execution.

Task Backlog The size of the backlog queue that holds tasks scheduled to be
executed by a service thread.

Max Task Backlog The maximum size of the backlog queue since the last time the
statistics were reset.

Idle Thread Count The number of currently idle threads in the service thread pool.

Call State Cache
The Call State Cache subtab of the Call State Storage subtab describes state and statistics
about the call state Coherence cache for the entire Converged Application Server domain.

Table 3-6 Call State Cache Monitoring Data

Datum Description

Server This is a static label, Total/Average (domainwide).

Entry Count The number of entries in the Coherence call state cache.

Data Size The total data size of the Coherence call state cache.

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-31

Call State Metadata Cache
The Call State Metadata Cache subtab of the Call State Storage subtab describes state and
statistics about the call state metadata Coherence cache for the entire Converged Application
Server domain.

Table 3-7 Call State Metadata Cache Monitoring Data

Datum Description

Server This is a static label, Total/Average (domainwide).

Entry Count The number of entries in the Coherence call state metadata cache.

Data Size The total data size of the Coherence call state metadata cache.

Call State Index Cache
The Call State Index Cache subtab of the Call State Storage subtab describes state and
statistics about the call state index Coherence cache for the entire Converged Application
Server domain.

Table 3-8 Call State Index Cache Monitoring Data

Datum Description

Server This is a static label, Total/Average (domainwide).

Entry Count The number of entries in the Coherence call state index cache.

Data Size The total data size of the Coherence call state index cache.

Other Ways to Monitor Converged Application Server
In addition to using the monitoring functionality in the WebLogic console, you can also monitor
Converged Application Server using the WebLogic Scripting Tool (WLST), Java Management
Extensions (JMX) as well as the WebLogic Diagnostic Framework (WLDF). The next sections
provide additional details.

Monitoring Applications with the WebLogic Scripting Tool
The WebLogic Scripting Tool (WLST) is a command-line scripting environment that you can
use to create, manage, and monitor WebLogic domains. It is based on the Java scripting
interpreter, Jython. In addition to supporting standard Jython features such as local variables,
conditional variables, and flow control statements, WLST provides a set of scripting functions
(commands) that are specific to WebLogic Server.

You can use WLST to retrieve information that WebLogic Server instances produce to describe
their run-time state. For more information, see "Getting Runtime Information" in Understanding
the WebLogic Scripting Tool.

Developing Custom Management Utilities with JMX
To integrate third-party management systems with the WebLogic Server management system,
WebLogic Server provides standards-based interfaces that are fully compliant with the Java
Management Extensions (JMX) specification. You can use these interfaces to monitor

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-32

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wlstg/monitoring.html#GUID-B214AA06-D80B-44FB-8769-56CCCDC7EDE3

WebLogic Server MBeans, to change the configuration of a WebLogic Server domain, and to
monitor the distribution (activation) of those changes to all server instances in the domain.

To get started creating custom JMX management utilities, see Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

WebLogic Server Diagnostic Framework
The WebLogic Diagnostic Framework (WLDF) consists of a number of components that work
together to collect, archive, and access diagnostic information about a WebLogic Server
instance and its applications. Converged Application Server version integrates with several
components of the WLDF in order to monitor and diagnose the operation of engines, as well as
deployed SIP Servlets. For details, see Using the WebLogic Server Diagnostic Framework
(WLDF).

About Converged Application Server Overload Protection
Converged Application Server implements an overload framework which supports plug-in
statistics collectors, plug-in event handlers, as well as multiple threshold settings and statistics
collection algorithms.

About the Overload Protection Framework
Converged Application Server overload protection statistics collectors and event handlers are
installed as Statistics Provider Interface (SPI) plug-ins. Only a single instance of each statistics
collector and event handler can be instantiated as utility functions in the SPI.

Multiple thresholds can be configured for each statistics collector, and, when activated upon an
incoming SIP session, samples are collected at a user-configurable interval, and statistics
results are calculated according to a user-configurable algorithm. The results of the statistics
calculations are then used to execute particular actions depending upon the comparison of
those results with a user-configurable threshold value.

Configuring Overload Protection
This section describes using the WebLogic Administration console to configure event handlers
and statistics collectors.

Execute the following steps in order, since the later configurations have dependencies upon
the earlier steps.

Using the WebLogic administration console, you:

1. Configure a new event handler. See "About Event Handlers".

2. Configure actions for the event handler. See "About Actions".

3. Configure a statistics collector. See "About Statistics Collectors".

4. Configure a threshold, which includes a threshold statistics value, as well as sampling
intervals, number of samples to collect at each interval (or real-time sampling), an
algorithm to calculate the collected samples, as well as actions for upward and downward
breaches of the threshold. See "About Thresholds".

About Event Handlers
A Converged Application Server overload protection event handler plugs in to the SPI, and is
discovered when the overload protection framework is initialized. When a particular event

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-33

handler is discovered, only one instance is created and managed by the framework. Each
event handler must implement one or more actions. When a threshold-breaching event occurs,
the framework executes the actions defined for the event handler.

Each event handler can accept an optional event-handler scoped set of user configurable key/
value pairs, which are passed to the event handler's activate() method as parameters.

Configuring an Event Handler
To configure an overload protection event handler:

1. Open the Administration Console for your domain.

2. If your domain is running in Production mode, click Lock & Edit.

3. Click the SipServer link in the Domain Structure pane.
The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring Converged Application Server. By default, the General
configuration subtab is selected.

4. Click the Overload Protections subtab and then click the Event Handlers subtab.

5. In the Event Handlers table, click New.
Enter the following information:

• Event Handler Name: Required. Enter a name for the event handler, for example:
com.oracle.sendSnmpTrap

Table 3-9 Default Event Handlers

Event Handler Description

com.bea.wcp.sip.engine.s
erver.olp.handler.ControlT
rafficHandler

Used for a new call setup on a SIP container and either reject or
accept call traffic.

com.bea.wcp.sip.engine.s
erver.olp.handler.SendSN
MPTrapHandler

Used to send SNMP traps.

• Attributes: Optional. Specify key/value attribute pairs separated by semicolons, for
example: attribute1=21;attribute2=64
Attributes are passed to the event handler as parameters when the event is triggered.

Note:

The com.bea.wcp.sip.engine.server.olp.handler.SendSNMPTrapHandler
event handler supports a snmp-trap-message attribute. Its default value is
overloadControlActivated. No attributes are supported for the
com.bea.wcp.sip.engine.server.olp.handler.ControlTrafficHandler event.

6. Click Save to save your configuration changes.

7. If your domain is running in Production mode, click Activate Changes to apply your
changes to the engine servers.

About Actions
Once you have defined an event handler, you must define one or more actions for the event
handler to take when a threshold breaching event occurs. As with event handlers, actions are

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-34

also plugged into the overload protection framework using the SPI, and are discovered when
the framework is initialized, and, when discovered, only one instance is created and managed
by the framework.

Each action can accept an optional action-scoped set of user configurable key/value pairs,
which are passed to the actions activate() method as parameters.

Supported out of the box action types are listed in Default Action Types.

Configuring an Action
To configure an overload protection action:

1. Open the Administration Console for your domain.

2. If your domain is running in Production mode, click Lock & Edit.

3. Click the SipServer link in the Domain Structure pane.
The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring Converged Application Server. By default, the General
configuration subtab is selected.

4. Click the Overload Protections subtab and then click the Actions subtab.

5. In the Actions table, click New.
Enter the following information:

• Action Name: Required. Enter a name for the action, for example:

TrafficReject
• Event Handler: Required. Choose the name of an event handler you have created

from the drop down list. For information on configuring an event handler, see "About
Event Handlers".

• Action Type: Required. Enter an Action Type supported by the Event Handler, for
example:

reject-traffic

Table 3-10 Default Action Types

Action Type Description

accept-traffic Used by the event handler,
com.bea.wcp.sip.engine.server.olp.handler.ControlTrafficHa
ndler . After an overload condition has cleared, accepts SIP
session traffic.

reject-traffic Used by the event handler,
com.bea.wcp.sip.engine.server.olp.handler.ControlTrafficHa
ndler . When an overload condition occurs, rejects SIP session
traffic. SIP session traffic will continue to be rejected until an
accept-traffic action is triggered.

default Used by the event handler,
com.bea.wcp.sip.engine.server.olp.handler.SendSNMPTrapH
andler.

• Attributes: Optional. Specify key/value attribute pairs separated by semicolons, for
example:

attribute1=21;attribute2=64

Attributes are passed when the action is triggered.

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-35

Note:

Support for attributes is dependent upon the implementation of the particular
action. None of the default Action Types support any attributes.

6. Click Save to save your configuration changes.

7. If your domain is running in Production mode, click Activate Changes to apply your
changes to the engine servers.

About Statistics Collectors
Statistics collectors are also plugged into the overload protection framework using the SPI, and
are discovered when the framework is initialized. When a particular statistics collector
framework is discovered, only one instance is created and managed by the framework.

Each statistics collector consists of a name, a type and optional attributes. The collector name
is referred to when defining a threshold as described in "Configuring a Threshold". The
overload protection framework retrieves statistics samples using the statistics collector's
getStats() method to which the optional attributes are passed as parameters.

Supported out of the box statistics collectors are described in Default Statistics Collector
Types.

Configuring a Statistics Collector
To configure an overload protection statistics collector:

1. Open the Administration Console for your domain.

2. If your domain is running in Production mode, click Lock & Edit.

3. Click the SipServer link in the Domain Structure pane.
The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring Converged Application Server. By default, the General
configuration subtab is selected.

4. Click the Overload Protections subtab and then click the Statistics Collector subtab.

5. In the Statistics Collector table, click New.
Enter the following information:

• Statistics Collector Name: Required. Enter a name for the action, for example:
MBeanStatsCollector

• Statistics Collector Type: Required. Enter an Action Type supported by the Event
Handler, for example: mbean-stats
The following table lists the Statistics Collector Types supplied with Converged
Application Server.

Table 3-11 Default Statistics Collector Types

Statistics Collector Type Description

queue-length Uses the sum of the length of the transport
and timer work manager queue lengths.

mbean-stats Uses an MBean counter as a statistics
example.

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-36

Table 3-11 (Cont.) Default Statistics Collector Types

Statistics Collector Type Description

memory-usage Returns the call state memory usage from
Coherence.

active-diameter-session Returns the number of active Diameter
sessions.

• Attributes: Optional except for the mbean-stats collector type. Specify key/value
attribute pairs separated by semicolons, for example: attribute1=21;attribute2=64
Attributes are passed when the action is triggered.

Note:

The mbean-stats collector lets you use an MBean counter for statistics
samples. When configuring the collector, the attributes object-name and
attribute-name must be set so that the collector can find the attribute value
of the particular MBean.

For the object-name attribute, a variable ${server_name} can be used that
will be replaced with name of managed server on which the statistics
collector is running.

The following example shows a configuration retrieving the
ServerAppSessionCount from the SipServerRuntime MBean on the
current server.

object-name="com.bea:ServerRuntime=${server_name},Name=$
{server_name},Type=SipServerRuntime";attribute-
name=ServerAppSessionCount

For a complete list of Converged Application Server MBeans, see the Oracle
Communications Converged Application Server Java API Reference.

6. Click Save to save your configuration changes.

7. If your domain is running in Production mode, click Activate Changes to apply your
changes to the engine servers.

About Thresholds
An overload protection threshold consists of a threshold value, a collector, sampling settings,
and two lists of overload protection actions defined for an event handler.

Thresholds work in two modes: a sampling mode with a configurable interval and number of
samples, and a real-time mode. For both modes, statistics samples are collected and
calculated according to an selectable algorithm and compared to the threshold value. Each
threshold has two events, UP_EVENT and DOWN_EVENT. When the threshold is breached
upwards, the UP_EVENT event is triggered and when it is breached downwards, the
DOWN_EVENT event is triggered.

For each event, you can configure a list of event handler actions. When an event is triggered,
the overload protection framework will execute each action associated with the threshold
event.

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-37

Configuring a Threshold
To configure an overload protection Threshold:

1. Open the Administration Console for your domain.

2. If your domain is running in Production mode, click Lock & Edit.

3. Click the SipServer link in the Domain Structure pane.
The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring Converged Application Server. By default, the General
configuration subtab is selected.

4. Click the Overload Protections subtab and then click the Thresholds subtab.

5. In the Thresholds table, click New.
Enter the following information:

• Threshold Name: Required. Enter a name for the action, for example:

queueLengthThreshold
• Threshold Value: Required. Enter the level of the threshold. This is the value that the

threshold must exceed to trigger an event, for example:

10.0

Note:

The Threshold Value cannot be greater than 100.

• Sampling Mode: Required. Choose either realtime or sampling from the drop down
list. In realtime mode, statistics are compared against the Threshold Value when every
initial SIP message is received. No calculations are supported.

• Sampling Interval. Required when sampling mode is selected. Enter the interval at
which samples should be taken in milliseconds, for example:

1000
• Sampling Number. Required when sampling mode is selected. Enter the number of

samples to be taken at each Sampling Interval, for example:

5
• Algorithm Name: Required. Choose an appropriate algorithm to calculate samples.

Table 3-12 Algorithm Types

Algorithm Name Description

PERCNTILE Calculates the Pth percentile value of the
samples. When PERCNTILE is selected, an
Algorithm Parameter value must be
provided.

AVERAGE Calculates the average of the samples (sum of
samples divided by number of samples).

VALUE The straight value of the last sample.

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-38

Table 3-12 (Cont.) Algorithm Types

Algorithm Name Description

RATE The sample rate calculated as (last sample -
first sample)/(sampling interval).

• Algorithm Parameter: Required when the PERCNTILE algorithm is selected. Enter a
percentile value that the threshold must match, for example:

65
• Enable: Optional. Check Enable to enable the Threshold.

6. Click Next.

7. Choose the Actions to be executed when a threshold is breached upwards (if any) by
moving an Action from the Available list to the Chosen list.

8. Click Next.

9. Choose the Actions to be executed when a threshold is breached downwards (if any) by
moving an Action from the Available list to the Chosen list.

10. Click Finish to save your configuration changes.

11. If your domain is running in Production mode, click Activate Changes to apply your
changes to the engine servers.

Example: Configuring Overload Protection Based upon Session Rate
In the following example you create an overload protection scheme based upon the session
rate. You begin by creating an event handler of the type com.oracle.trafficControl to react to
traffic control events. Next, you create two actions that the event handler will initiate, one to
reject SIP session traffic and another to accept SIP session traffic. You then create a statistics
collector that reads counter information from the SipServerRuntime MBean, and you finally
create a threhold that takes 5 samples every 1000 milliseconds and reacts on an upwards/
downwards breach of a particular threshold value you set.

Once configured, when your threshold value is breached upwards, SIP traffic will be rejected
until the threshold value is again breached downwards.

To configure a session rate overload protection scheme:

1. Open the Administration Console for your domain.

2. If your domain is running in Production mode, click Lock & Edit.

3. Click the SipServer link in the Domain Structure pane.
The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring Converged Application Server. By default, the General
configuration subtab is selected.

4. Click the Overload Protections subtab and then click the Event Handlers subtab.

5. In the Event Handlers table, click New, and enter
com.bea.wcp.sip.engine.server.olp.handler.ControlTrafficHandler for the Event
Handler Name.

6. Click Save to save your configuration changes.

7. Click the SipServer link in the Domain Structure pane.

8. Click the Overload Protections subtab and then click the Actions subtab.

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-39

9. In the Actions table, click New and enter the following information:

• Action Name: Enter TrafficReject.

• Event Handler: Select com.oracle.trafficControl from the drop down list.

• Action Type: Enter reject-traffic.

10. Click Save to save your configuration changes.

11. In the Actions table, click New and enter the following information:

• Action Name: Enter TrafficAccept.

• Event Handler: Select com.oracle.trafficControl from the drop down list.

• Action Type: Enter accept-traffic.

12. Click the SipServer link in the Domain Structure pane.

13. Click the Overload Protections subtab and then click the Statistics Collector subtab.

14. In the Statistics Collectors table, click New and enter the following information:

• Statistics Collector Name: Enter
com.bea.wcp.sip.engine.server.olp.collector.MBeanCollector.

• Statistics Collector Type: Enter mbean-stats.

• Attributes: Enter:

object-name="com.bea:ServerRuntime=${server_name},Name=$
{server_name},Type=SipServerRuntime";attribute-name=ServerAppSessionCount

15. Click Save to save your configuration changes.

16. Click the SipServer link in the Domain Structure pane.

17. Click the Overload Protections subtab and then click the Thresholds subtab.

18. In the Thresholds table, click New and enter the following information:

• Threshold Name: Enter SessionRate.

• Threshold Value: Enter the threshold value you wish to use for the maximum number
of sessions.

Note:

The Threshold Value cannot be greater than 100.

• Sampling Mode: Select sampling from the drop down list.

• Sampling Interval: Enter 1000 to take a sample every 1000 milliseconds.

• Sampling Number: Enter 5 to take 5 samples at each sampling interval.

• Algorithm Name: Select RATE from the drop down list.

• Statistics Collector: Select
com.bea.wcp.sip.engine.server.olp.collector.MBeanCollector from the drop down
list.

• Check Enable.

19. Click Next.

20. For Up Actions, move TrafficReject from the Available list to the Chosen list.

Chapter 3
Converged Application Server Monitoring and Overload Protection

3-40

21. Click Next.

22. For Down Actions move TrafficAccept from the Available list to the Chosen list.

23. Click Finish.

24. If your domain is running in Production mode, click Activate Changes to apply your
changes to the engine servers.

Using the WebLogic Server Diagnostic Framework (WLDF)
This chapter describes the integration of Oracle Communications Converged Application
Server with the WebLogic Diagnostic Framework (WLDF).

Overview of Converged Application Server and the WLDF
The WebLogic Diagnostic Framework (WLDF) consists of a number of components that work
together to collect, archive, and access diagnostic information about a WebLogic Server
instance and its applications. Converged Application Server version integrates with several
components of the WLDF in order to monitor and diagnose the operation of engines, as well as
deployed SIP Servlets:

• Data Collectors: Converged Application Server integrates with the Harvester service to
collect information from runtime MBeans, and with the Logger service to archive SIP
requests and responses.

• Watches and Notifications: Administrators can use the Watches and Notifications
component to create complex rules, based on Converged Application Server runtime
MBean attributes, that trigger automatic notifications using JMS, JMX, SNMP, SMTP, and
so forth.

• Image Capture: Converged Application Server instances can collect certain diagnostic data
and write the data to an image file when requested by an Administrator. This data can then
be used to diagnose problems in a running server.

• Instrumentation: Converged Application Server instruments the server and application
code with monitors to help you configure diagnostic actions that are performed on SIP
messages (requests and responses) that match certain criteria.

The sections that follow provide more details about how Converged Application Server
integrates with each of the above WLDF components. See the Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server for more information about WLDF.

Data Collection and Logging
Converged Application Server uses the WLDF Harvester service to collect data from the
attributes of these runtime MBeans:

• SipApplicationRuntimeMBean

• SipServerRuntimeMBean

You can add charts and graphs of this data to your own custom views using the WLDF console
extension. To do so, first enable the WLDF console extension by copying the JAR file into the
console-ext subdirectory of your domain directory:

cp ~/ORACLE_HOME/Middleware/Oracle_Home/wlserver/server/lib/console-ext/diagnostics-
console-extension.jar ~/ORACLE_HOME/Middleware/Oracle_Home/user_projects/domains/
base_domain/console-ext

Chapter 3
Using the WebLogic Server Diagnostic Framework (WLDF)

3-41

When accessing the WLDF console extension, the Converged Application Server runtime
MBean attributes are available in the Metrics tab of the extension.

Converged Application Server also uses the WLDF Logger service to archive SIP and
Diameter messages to independent, dedicated log files (by default, domain_home/logs/
server_name/sipMessages.log). You can configure the name and location of the log file, as
well as log rotation policies, using the Configuration > Message Debug tab in the SIP Server
Administration Console extension. See "Enabling Message Logging" in Converged Application
Server Developer's Guide. Note that a server restart is necessary in order to initiate
independent logging and log rotation.

Watches and Notifications
The data collected from Converged Application Server runtime MBeans can be used to create
automated monitors, or "watches," that observe a server's diagnostic state. One or more
notifications can then be configured for use by a watch, in order to generate a message using
SMTP, SNMP, JMX, or JMS when your configured watch conditions and rules occur.

To use watches and notifications, you select the Diagnostics > Diagnostic Modules node in the
left pane of the Administration Console and create a new module with the watch rules and
notifications required for monitoring your servers. The watch rules can use the metrics
collected from Converged Application Server runtime MBeans, messages written to the log file,
or events generated by the diagnostic framework.

Image Capture
Converged Application Server adds its own image capture information to the diagnostic image
generated by the WLDF. You can generate diagnostic images either on demand, or
automatically by configuring watch rules.

The information contained in diagnostic images is intended for use by Oracle technical support
personnel when troubleshooting a potential server problem and includes:

• Call state and timer statistics.

• Work manager statistics.

Instrumentation
The WLDF instrumentation system creates diagnostic monitors and inserts them into
Converged Application Server or application code at specific points in the flow of execution.
Converged Application Server integrates with the instrumentation service to provide a built-in
DyeInjection monitor. When enabled, this monitor injects dye flags into the diagnostic context
when certain SIP messages enter or exist the system. Dye flags are injected based on the
monitor's configuration properties, and on certain request attributes.

Converged Application Server adds the dye flags described below, as well as the WebLogic
Server dye flags USER and ADDR. See Configuring the DyeInjection Monitor to Manage
Diagnostic Contexts in Oracle Fusion Middleware Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server for more information.

Table 3-13 Converged Application Server DyeInjection Flags

Dye Flag Description

PROTOCOL_SIP Set in the diagnostic context of all SIP protocol messages.

Chapter 3
Using the WebLogic Server Diagnostic Framework (WLDF)

3-42

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wldfc/config_context.html#GUID-D3A202A8-939C-4894-A7B6-B811D8B46E98
https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wldfc/config_context.html#GUID-D3A202A8-939C-4894-A7B6-B811D8B46E98

Table 3-13 (Cont.) Converged Application Server DyeInjection Flags

Dye Flag Description

SIP_REQ Set in the diagnostic context for all SIP requests that match the value of the
property SIP_REQ.

SIP_RES Set in the diagnostic context for all SIP responses that match the value of the
property SIP_RES.

SIP_REQURI Set if a SIP request's request URI matches the value of property
SIP_REQURI.

SIP_ANY_HEADER Set if a SIP request contains a header matching the value of the property
SIP_ANY_HEADER. The value of SIP_ANY_HEADER is specified using the
format messageType.headerName=headerValue where headerValue is
either a value or regular expression. For example, you can specify the
property as SIP_ANY_HEADER=request.Contact=sip:sipp@localhost:5061
or SIP_ANY_HEADER=response.Contact=sip:findme@172.17.30.50:5060.

Dye flags can be applied to both incoming and outbound SIP messages. The flags are useful
for dye filtering, and can be used by delegating monitors to trigger further diagnostic actions.

Converged Application Server provides several delegating monitors that can be applied at the
application and server scope, and which may examine dye flags set by the DyeInjection
monitor.

Table 3-14 Converged Application Server Diagnostic Monitors

Monitor Name Monitor
Type

Scope Pointcuts

occas/Sip_Servlet_Before_Service Before Application At entry of SipServlet.do* or
SipServlet.service methods of all
implementing subclasses.

occas/Sip_Servlet_After_Service After Application At exit of SipServlet.do* or
SipServlet.service methods of all
implementing subclasses.

occas/Sip_Servlet_Around_Service Around Application At entry and exit of SipServlet.do* or
SipServlet.service methods of all
implementing subclasses.

occas/Sip_Servlet_Before_Session Before Application At entry of getAttribute, set, remove, and
invalidate methods for both SipSession
and SipApplicationSession.

occas/Sip_Servlet_After_Session After Application At exit of getAttribute, set, remove, and
invalidate methods for both SipSession
and SipApplicationSession.

occas/Sip_Servlet_Around_Session Around Application At entry and exit of getAttribute, set,
remove, and invalidate methods for both
SipSession and SipApplicationSession.

Chapter 3
Using the WebLogic Server Diagnostic Framework (WLDF)

3-43

Table 3-14 (Cont.) Converged Application Server Diagnostic Monitors

Monitor Name Monitor
Type

Scope Pointcuts

occas/SipSessionDebug Around Application This is a built-in, application-scoped monitor
having fixed pointcuts and a fixed debug action.
Before and after a pointcut, the monitor
performs the SipSessionDebug diagnostic
action, which calculates the size of the SIP
session after serializing the underlying object.

The pointcuts for this monitor are as follows:

1. Before and after calls to getSession and
getApplicationSession of the
SipServletMessage class hierarchy.

2. Before and after calls to getAttribute,
setAttribute, and removeAttribute
methods in the SipSession and
SipApplicationSession classes.

Note: The occas/SessionDebugAction-
Before event is not triggered for the
req.getSession() or
req.getApplicationSession() joinpoints.
Only the occas/SessionDebugAction-
After is triggered, because the Session is
made available for inspection only after the
joinpoints have executed.

Note: If you compile your application using
Apache Ant, you must enable the debug
attribute to embed necessary debug
information into the generated class files.

occas/
Sip_Servlet_Before_Message_Send_Internal

Before Server At entry of Converged Application Server code
that writes messages to the wire.

occas/
Sip_Servlet_After_Message_Send_Internal

After Server At exit of Converged Application Server code
that writes messages to the wire.

occas/
Sip_Servlet_Around_Message_Send_Interna
l

Around Server At entry and exit of Converged Application
Server code that writes messages to the wire.

Configuring Server-Scoped Monitors
To use the server-scoped monitors, you must create a new diagnostic module and create and
configure one or more monitors in the module. For the built-in DyeInjection monitor, you then
add monitor properties to define the specific dye flags. For delegating monitors such as occas/
Sip_Servlet_Before_Message_Send_Internal, you add monitor properties to define
diagnostic actions.

Follow these steps to configure the Converged Application Server DyeInjection monitor, a
delegate monitor, and enable dye filtering:

1. Access the Administration Console for you domain.

2. If your domain is running in Production mode, click Lock & Edit.

Chapter 3
Using the WebLogic Server Diagnostic Framework (WLDF)

3-44

3. Select Diagnostics, then select the Diagnostic Modules node in the left pane of the
console.

4. Click New to create a new Diagnostic Module. Give the module a descriptive name, such
as "instrumentationModule," and click OK.

5. Select the new "instrumentationModule" from the list of modules in the table.

6. Select the Targets tab.

7. Select a server on which to target the module and click Save.

8. Return to the Diagnostic Modules node and select instrumentationModule from the list of
modules.

9. Select Configuration, then select the Instrumentation tab.

10. Select Enabled to enable instrumentation at the server level, then click Save.

11. Add the DyeInjection monitor to the module:

a. Click Add/Remove.

b. Select the name of a monitor from the Available list (for example, DyeInjection), and
use the arrows to move it to the Chosen list.

c. Click OK.

d. Select the newly-created monitor from the list of available monitors.

e. Ensure that the monitor is enabled, and edit the Properties field to add any required
properties. For the DyeInjection monitor, sample properties include:

SIP_RES=180
SIP_REQ=INVITE
SIP_ANY_HEADER=request.Contact=sip:sipp@localhost:5061

f. Click Save.

12. Add one or more delegate monitors to the module:

a. Return to the Configuration > Instrumentation tab for the new module.

b. Click Add/Remove.

c. Select the name of a delegate monitor from the Available list (for example, occas/
Sip_Servlet_Before_Message_Send_Internal), and use the arrows to move it to the
Chosen list.

d. Click OK.

e. Select the newly-created monitor from the list of available monitors.

f. Ensure that the monitor is enabled, then select one or more Actions from the available
list, and use the arrows to move the actions to the Chosen list. For the occas/
Sip_Servlet_Before_Message_Send_Internal monitor, sample actions include
DisplayArgumentsAction, StackDumpAction, ThreadDumpAction, and
TraceAction.

g. Select the check box to EnableDyeFiltering.

h. Select one or more Dye Masks, such as SIP_REQ, from the Available list and use the
arrows to move them to the Chosen list.

i. Click Save.

Chapter 3
Using the WebLogic Server Diagnostic Framework (WLDF)

3-45

Note:

You can repeat the above steps to create additional delegate monitors.

13. If your domain is running in Production mode, click Activate Changes.

Configuring Application-Scoped Monitors
You configure application-scoped monitors in an XML configuration file named weblogic-
diagnostics.xml. You must store the weblogic-diagnostics.xml file in the SIP module's or
enterprise application's META-INF directory.

The XML file enables instrumentation at the application level, defines point cuts, and also
defines delegate monitor dye masks and actions. The example below shows a sample
configuration file that uses the occas/Sip_Servlet_Before_Service monitor.

Example 3-4 Sample weblogic-diagnostics.xml File

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics">
 <instrumentation>
 <enabled>true</enabled>
 <include>demo.ProxyServlet</include>
 <wldf-instrumentation-monitor>
 <name>occas/Sip_Servlet_Before_Service</name>
 <enabled>true</enabled>
 <dye-mask>SIP_ANY_HEADER</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>DisplayArgumentsAction</action>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

In this example, if an incoming request's diagnostic context contains the SIP_ANY_HEADER
dye flag, then the occas/Sip_Servlet_Before_Service monitor is triggered and the
DisplayArgumentsAction is executed.

See "Configuring Instrumentation" in Configuring and Using the Diagnostics Framework for
Oracle WebLogic Server for more information about creating the weblogic-diagnostics.xml
configuration file.

Logging SIP Requests and Responses
This chapter describes how to configure and manage logging for SIP requests and responses
that Oracle Communications Converged Application Server processes.

Overview of SIP Logging
Converged Application Server enables you to perform Protocol Data Unit (PDU) logging for the
SIP requests and responses it processes. Logged SIP messages are placed either in the
domain-wide log file for Converged Application Server, or in the log files for individual Managed
Server instances. Because SIP messages share the same log files as Converged Application
Server instances, you can use advanced server logging features such as log rotation, domain
log filtering, and maximum log size configuration when managing logged SIP messages.

Administrators configure SIP PDU logging by defining one or more SIP Servlets using the
com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl class. Logging criteria

Chapter 3
Logging SIP Requests and Responses

3-46

https://docs.oracle.com/en/middleware/standalone/weblogic-server/14.1.1.0/wldfc/config_instrumentation.html#GUID-52CCB6F5-3C62-41B5-8294-E3AF76BD27F0

are then configured either as parameters to the defined servlet, or in separate XML files
packaged with the application.

As SIP requests are processed or SIP responses generated, the logging Servlet compares the
message with the filtering patterns defined in a standalone XML configuration file or Servlet
parameter. SIP requests and responses that match the specified pattern are written to the log
file along with the name of the logging servlet, the configured logging level, and other details.
To avoid unnecessary pattern matching, the Servlet marks new SIP Sessions when an initial
pattern is matched and then logs subsequent requests and responses for that session
automatically.

Logging criteria are defined either directly in sip.xml as parameters to a logging Servlet, or in
external XML configuration files. See "Specifying the Criteria for Logging Messages".

Note:

Engineers can implement PDU logging functionality in their Servlets either by
creating a delegate with the TraceMessageListenerFactory in the Servlet's init()
method, or by using the tracing class in deployed Java applications. Using the
delegate enables you to perform custom logging or manipulate incoming SIP
messages using the default trace message listener implementation. See "Adding
Tracing Functionality to SIP Servlet Code" for an example of using the factory in a
Servlet's init() method.

Defining Logging Servlets in sip.xml
Logging Servlets for SIP messages are created by defining Servlets having the implementation
class com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl. The definition
for a sample msgTraceLogger is shown below.

Example 3-5 Sample Logging Servlet

<servlet>
 <servlet-name>msgTraceLogger</servlet-name>
 <servlet-class>com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl</
servlet-class>
 <init-param>
 <param-name>domain</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>level</param-name>
 <param-value>full</param-value>
 </init-param>
 <load-on-startup/>
 </servlet>

Configuring the Logging Level and Destination
Logging attributes such as the level of logging detail and the destination log file for SIP
messages are passed as initialization parameters to the logging Servlet. Pattern-matching
Variables and Sample Values lists the parameters and parameter values that you can specify
as init-param entries. Sample Logging Servlet shows the sample init-param entries for a
Servlet that logs full SIP message information to the domain log file.

Chapter 3
Logging SIP Requests and Responses

3-47

Specifying the Criteria for Logging Messages
The criteria for selecting SIP messages to log can be defined either in XML files that are
packaged with the logging Servlet's application, or as initialization parameters in the Servlet's
sip.xml deployment descriptor. The sections that follow describe each method.

Using XML Documents to Specify Logging Criteria
If you do not specify logging criteria as an initialization parameter to the logging Servlet, the
Servlet looks for logging criteria in a pair of XML descriptor files in the top level of the logging
application. These descriptor files, named request-pattern.xml and response-pattern.xml,
define patterns that Converged Application Server uses for selecting SIP requests and
responses to place in the log file.

As SIP requests are processed or SIP responses generated, the logging Servlet compares the
message with the defined filtering patterns. SIP requests and responses that match the
specified pattern are written to the log file along with the name of the logging servlet, the
configured logging level, and other details. To avoid unnecessary pattern matching, the Servlet
marks new SIP Sessions when an initial pattern is matched and then logs subsequent requests
and responses for that session automatically.

Note:

By default Converged Application Server logs both requests and responses. If you
define a request-pattern.xml file, the response within the SIP session will be logged
automatically.

A typical pattern definition defines a condition for matching a particular value in a SIP message
header. For example, the sample response-pattern.xml used by the msgTraceLogger
Servlet matches all MESSAGE requests. The contents of this descriptor are shown in

Example 3-6 Sample response-pattern.xml for msgTraceLogger Servlet

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE pattern
 PUBLIC "Registration//Organization//Type Label//Definition Language"
 "trace-pattern.dtd">
<pattern>
 <equal>
 <var>response.method</var>
 <value>MESSAGE</value>
 </equal>
</pattern>

Additional operators and conditions for matching SIP messages are described in trace-
pattern.dtd Reference. Most conditions, such as the equal condition, require a variable (var
element) that identifies the portion of the SIP message to evaluate. The table below lists some
common variables and sample values. For additional variable names and examples, see
Section 16: Mapping Requests to Servlets in the SIP Servlet API 1.1 specification (http://
jcp.org/en/jsr/detail?id=289); Converged Application Server enables mapping of both
request and response variables to logging Servlets.

Chapter 3
Logging SIP Requests and Responses

3-48

http://jcp.org/en/jsr/detail?id=289
http://jcp.org/en/jsr/detail?id=289

Table 3-15 Pattern-matching Variables and Sample Values

Variable Sample Values

request.method, response.method MESSAGE, INVITE, ACK, BYE, CANCEL

request.uri.user, response.uri.user guest, admin, joe

request.to.host, response.to.host server.example.com

Both request-pattern.xml and response-pattern.xml use the same Document Type
Definition (DTD). See trace-pattern.dtd Reference for more information.

Using Servlet Parameters to Specify Logging Criteria
Pattern-matching criteria can also be specified as initialization parameters to the logging
Servlet, rather than as separate XML documents. The parameter names used to specify
matching criteria are request-pattern-string and response-pattern-string. They are defined
along with the logging level and destination as described in Configuring the Logging Level and
Destination.

The value of each pattern-matching parameter must consist of a valid XML document that
adheres to the DTD for standalone pattern definition documents (see "Using XML Documents
to Specify Logging Criteria"). Because the XML documents that define the patterns and values
must not be parsed as part of the sip.xml descriptor, you must enclose the contents within the
CDATA tag. The example below shows the full sip.xml entry for the sample logging Servlet,
invTraceLogger. The final two init-param elements specify that the Servlet log only INVITE
request methods and OPTIONS response methods.

Example 3-7 Logging Criteria Specified as init-param Elements

<servlet>
 <servlet-name>invTraceLogger</servlet-name>
 <servlet-class>com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl</
servlet-class>
 <init-param>
 <param-name>domain</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>level</param-name>
 <param-value>full</param-value>
 </init-param>
 <init-param>
 <param-name>request-pattern-string</param-name>
 <param-value>
 <![CDATA[
 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE pattern
 PUBLIC "Registration//Organization//Type Label//Definition Language"
 "trace-pattern.dtd">
 <pattern>
 <equal>
 <var>request.method</var>
 <value>INVITE</value>
 </equal>
 </pattern>
]]>
 </param-value>
 </init-param>

Chapter 3
Logging SIP Requests and Responses

3-49

 <init-param>
 <param-name>response-pattern-string</param-name>
 <param-value>
 <![CDATA[
 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE pattern
 PUBLIC "Registration//Organization//Type Label//Definition Language"
 "trace-pattern.dtd">
 <pattern>
 <equal>
 <var>response.method</var>
 <value>OPTIONS</value>
 </equal>
 </pattern>
]]>
 </param-value>
 </init-param>
 <load-on-startup/>
 </servlet>

Specifying Content Types for Unencrypted Logging
By default Converged Application Server uses String format (UTF-8 encoding) to log the
content of SIP messages having a text or application/sdp Content-Type value. For all other
Content-Type values, Converged Application Server attempts to log the message content
using the character set specified in the charset parameter of the message, if one is specified.
If no charset parameter is specified, or if the charset value is invalid or unsupported,
Converged Application Server uses Base-64 encoding to encrypt the message content before
logging the message.

If you want to avoid encrypting the content of messages under these circumstances, specify a
list of String-representable Content-Type values using the string-rep element in
sipserver.xml. The string-rep element can contain one or more content-type elements to
match. If a logged message matches one of the configured content-type elements,
Converged Application Server logs the content in String format using UTF-8 encoding,
regardless of whether or not a charset parameter is included.

Note:

You do not need to specify text/* or application/sdp content types as these are logged
in String format by default.

The example below shows a sample message-debug configuration that logs String content for
three additional Content-Type values, in addition to text/* and application/sdp content.

Example 3-8 Logging String Content for Additional Content Types

 <message-debug>
 <level>full</level>
 <string-rep>
 <content-type>application/msml+xml</content-type>
 <content-type>application/media_control+xml</content-type>
 <content-type>application/media_control</content-type>
 </string-rep>
 </message-debug>

Chapter 3
Logging SIP Requests and Responses

3-50

Enabling Log Rotation and Viewing Log Files
The Converged Application Server logging infrastructure enables you to automatically write to
a new log file when the existing log file reaches a specified size. You can also view log
contents using the Administration Console or configure additional server-level events that are
written to the log.

trace-pattern.dtd Reference
trace-pattern.dtd defines the required contents of the request-pattern.xml and response-
pattern.xml, documents, as well as the values for the request-pattern-string and response-
pattern-string Servlet init-param variables.

Example 3-9 trace-pattern.dtd

<!--
The different types of conditions supported.
- >

<!ENTITY % condition "and | or | not |
 equal | contains | exists | subdomain-of">

<!--
A pattern is a condition: a predicate over the set of SIP requests.
- >

<!ELEMENT pattern (%condition;)>

<!--
An "and" condition is true if and only if all its constituent conditions
are true.
- >

<!ELEMENT and (%condition;)+>

<!--
An "or" condition is true if at least one of its constituent conditions
is true.
- >

<!ELEMENT or (%condition;)+>

<!--
Negates the value of the contained condition.
- >

<!ELEMENT not (%condition;)>

<!--
True if the value of the variable equals the specified literal value.
- >

<!ELEMENT equal (var, value)>

<!--
True if the value of the variable contains the specified literal value.
- >

<!ELEMENT contains (var, value)>

Chapter 3
Logging SIP Requests and Responses

3-51

<!--
True if the specified variable exists.
- >

<!ELEMENT exists (var)>

<!--
- >

<!ELEMENT subdomain-of (var, value)>

<!--
Specifies a variable. Example:
 <var>request.uri.user</var>
- >

<!ELEMENT var (#PCDATA)>

<!--
Specifies a literal string value that is used to specify rules.
- >

<!ELEMENT value (#PCDATA)>

<!--
Specifies whether the "equal" test is case sensitive or not.
- >

<!ATTLIST equal ignore-case (true|false) "false">

<!--
Specifies whether the "contains" test is case sensitive or not.
- >

<!ATTLIST contains ignore-case (true|false) "false">

<!--
The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor. This allows
tools that produce additional deployment information (i.e information
beyond the standard deployment descriptor information) to store the
non-standard information in a separate file, and easily refer from
these tools-specific files to the information in the standard sip-app
deployment descriptor.
- >

<!ATTLIST pattern id ID #IMPLIED>
<!ATTLIST and id ID #IMPLIED>
<!ATTLIST or id ID #IMPLIED>
<!ATTLIST not id ID #IMPLIED>
<!ATTLIST equal id ID #IMPLIED>
<!ATTLIST contains id ID #IMPLIED>
<!ATTLIST exists id ID #IMPLIED>
<!ATTLIST subdomain-of id ID #IMPLIED>
<!ATTLIST var id ID #IMPLIED>
<!ATTLIST value id ID #IMPLIED>

Chapter 3
Logging SIP Requests and Responses

3-52

Adding Tracing Functionality to SIP Servlet Code
Tracing functionality can be added to your own Servlets or to Java code by using the
TraceMessageListenerFactory. TraceMessageListenerFactory enables clients to reuse the
default trace message listener implementation behaviors by creating an instance and then
delegating to it. The factory implementation instance can be found in the servlet context for SIP
Servlets by looking up the value of the
TraceMessageListenerFactory.TRACE_MESSAGE_LISTENER_FACTORY attribute.

Note:

Instances created by the factory are not registered with Converged Application
Server to receive callbacks upon SIP message arrival and departure.

To implement tracing in a Servlet, you use the factory class to create a delegate in the Servlet's
init() method.

Example 3-10 Using the TraceMessageListenerFactory

public final class TraceMessageListenerImpl extends SipServlet implements
MessageListener {
 private MessageListener delegate;

 public void init() throws ServletException {
 ServletContext sc = (ServletContext) getServletContext();
 TraceMessageListenerFactory factory = (TraceMessageListenerFactory)
sc.getAttribute(TraceMessageListenerFactory.TRACE_MESSAGE_LISTENER_FACTORY);
 delegate = factory.createTraceMessageListener(getServletConfig());
 }
 public final void onRequest(SipServletRequest req, boolean incoming) {
 delegate.onRequest(req,incoming);
 }
 public final void onResponse(SipServletResponse resp, boolean incoming) {
 delegate.onResponse(resp,incoming);
 }
}

Order of Startup for Listeners and Logging Servlets
If you deploy both listeners and logging servlets, the listener classes are loaded first, followed
by the Servlets. Logging Servlets are deployed in order according to the load order specified in
their Web Application deployment descriptor.

Chapter 3
Logging SIP Requests and Responses

3-53

4
Reference

This part provides reference information on Oracle Communications Converged Application
Server XML configuration files and their entries. It also provides a list of startup configuration
options.

This part contains the following chapters:

• Engine Server Configuration Reference (sipserver.xml)

• SIP Coherence Configuration Reference (coherence.xml)

• Diameter Configuration Reference (diameter.xml)

Engine Server Configuration Reference (sipserver.xml)
This chapter describes the Oracle Communications Converged Application Server engine
server configuration file, sipserver.xml.

Overview of sipserver.xml
The sipserver.xml file is an XML document that configures the SIP container features
provided by a Converged Application Server instance in a server installation. The
sipserver.xml file is stored in the domain_home/config/custom subdirectory where
domain_home is the root directory of the Converged Application Server domain.

Editing sipserver.xml
You should never move, modify, or delete the sipserver.xml file during normal operations.

Oracle recommends using the Administration Console to modify sipserver.xml indirectly,
rather than editing the file manually with a text editor. Using the Administration Console
ensures that the sipserver.xml document always contains valid XML.

You may need to manually view or edit sipserver.xml to troubleshoot problem configurations,
repair corrupted files, or to roll out custom configurations to many systems when installing or
upgrading Converged Application Server. When you manually edit sipserver.xml, you must
restart Converged Application Server instances to apply your changes.

Caution:

Always use the SipServer node in the Administration Console or the WLST utility to
make changes to a running Converged Application Server deployment. See
Configuring Converged Application Server Container Properties.

Steps for Editing sipserver.xml
If you need to modify sipserver.xml on a production system, follow these steps:

4-1

1. Use a text editor to open the domain_home/config/custom/sipserver.xml file, where
domain_home is the root directory of the Converged Application Server domain.

2. Modify the sipserver.xml file as necessary. See "XML Schema" for a full description of the
XML elements.

3. Save your changes and exit the text editor.

4. Restart or start servers to have your changes take effect:

Caution:

Always use the SipServer node in the Administration Console or the WLST utility
to make changes to a running Converged Application Server deployment. See
Configuring Converged Application Server Container Properties for more
information.

5. Test the updated system to validate the configuration.

XML Schema
The schema file for sipserver.xml (wcp-sipserver.xsd) is installed inside the wlss-
descriptor-binding.jar library, located in WL_home/wlserver/sip/server/lib, where WL_home
is the path to the directory where WebLogic Server is installed.

Example sipserver.xml File
The following shows a simple example of a sipserver.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<sip-server xmlns="http://www.bea.com/ns/wlcp/wlss/300">
 <overload>
 <threshold-policy>queue-length</threshold-policy>
 <threshold-value>200</threshold-value>
 <release-value>150</release-value>
 </overload>
</sip-server>

XML Element Description
The following sections describe each element used in the sipserver.xml configuration file.
Each section describes an XML element that is contained within the main sip-server element.

enable-timer-affinity
The enable-timer-affinity element determines the way in which engine servers process
expired timers. By default (when enable-timer-affinity is omitted from sipserver.xml, or is set to
false), an engine server that polls the SIP call-state store for expired timers might process all
available expired timers. When enable-timer-affinity is set to true, engine servers polling the
SIP call-state store process only those expired timers that are associated with call states that
the engine last modified (or expired timers for call states that have no owner).

See "Configuring Timer Processing" for more information.

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-2

message-debug
The message-debug element enables and configures access logging with log rotation for
Converged Application Server. Use this element only in a development environment, because
access logging logs all SIP requests and responses.

To perform more selective logging in a production environment, see Logging SIP Requests and
Responses.

proxy—Setting Up an Outbound Proxy Server
RFC 3261 defines an outbound proxy as "A proxy that receives requests from a client, even
though it may not be the server resolved by the Request-URI. Typically, a UA is manually
configured with an outbound proxy, or can learn about one through auto-configuration
protocols."

In Converged Application Server an outbound proxy server is specified using the proxy
element in sipserver.xml. The proxy element defines one or more proxy server URIs. You can
change the behavior of the proxy process by setting a proxy policy with the proxy-policy tag.
The table below describes the possible values for the proxy elements.

The default behavior is as if proxy policy is in effect. The proxy policy means that the request
is sent out to the configured outbound Proxy and the Route headers in the request preserving
any routing decision taken by Converged Application Server. This configuration enables the
outbound proxy to send the request over to the intended recipient after it has performed its
actions on the request. The proxy policy comes into effect only for the initial requests. As for
the subsequent request the Route Set takes precedence over any policy in a dialog. (If the
outbound proxy wants to be in the Route Set it can turn record routing on).

Also if a proxy application written on Converged Application Server wishes to override the
configured behavior of outbound proxy traversal, then it can add a special header with name X-
BEA-Proxy-Policy with the value domain. This header is stripped from the request while
sending, but the effect is to ignore the configured outbound proxy. Applications use the X-BEA-
Proxy-Policy custom header to override the configured policy on a request-by-request basis.
The value of the header can be domain or proxy. Note, however, that if the policy is
overridden to proxy, the configuration must still have the outbound proxy URIs to route to the
outbound proxy.

Table 4-1 Nested proxy Elements

Element Description

routing-policy An optional element that configures the behavior of
the proxy. Valid values are:

• domain: Proxies messages using the routing
rule defined by RFC 3261, ignoring any
outbound proxy that is specified.

• proxy: Sends the message to the downstream
proxy specified in the default proxy URI. If
there are multiple proxy specifications they are
tried in the order in which they are specified.
However, if the transport tries a UDP proxy,
the settings for subsequent proxies are
ignored.

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-3

Table 4-1 (Cont.) Nested proxy Elements

Element Description

uri The TCP or UDP URI of the proxy server. You must
specify at least one URI for a proxy element.
Place multiple URIs in multiple uri elements within
the proxy element.

The example below shows the default proxy configuration for Converged Application Server
domains. The request in this case is created in accordance with the SIP routing rules, and
finally the request is sent to the outbound proxy sipoutbound.oracle.com.

Example 4-1 Sample proxy Definition

<proxy>
 <routing-policy>proxy</routing-policy>
 <uri>sip:sipoutbound.oracle.com:5060</uri>
 <!-- Other proxy uri tags can be added. - >
</proxy>

t1-timeout-interval
This element sets the value of the SIP protocol T1 timer, in milliseconds. Timer T1 also
specifies the initial values of Timers A, E, and G, which control the retransmit interval for
INVITE requests and responses over UDP.

Timer T1 also affects the values of timers F, H, and J, which control retransmit intervals for
INVITE responses and requests; these timers are set to a value of 64*T1 milliseconds. See the
Session Initiation Protocol for more information about SIP timers. See also "Configuring NTP
for Accurate SIP Timers" for more information.

If t1-timeout-interval is not configured, Converged Application Server uses the SIP protocol
default value of 500 milliseconds.

t2-timeout-interval
This elements sets the value of the SIP protocol T2 timer, in milliseconds. Timer T2 defines the
retransmit interval for INVITE responses and non-INVITE requests. See the Session Initiation
Protocol for more information about SIP timers. See also "Configuring NTP for Accurate SIP
Timers" for more information.

If t2-timeout-interval is not configured, Converged Application Server uses the SIP protocol
default value of 4 seconds.

t4-timeout-interval
This elements sets the value of the SIP protocol T4 timer, in milliseconds. Timer T4 specifies
the maximum length of time that a message remains in the network. Timer T4 also specifies
the initial values of Timers I and K, which control the wait times for retransmitting ACKs and
responses over UDP. See the Session Initiation Protocol for more information about SIP timers.
See also "Configuring NTP for Accurate SIP Timers" for more information.

If t4-timeout-interval is not configured, Converged Application Server uses the SIP protocol
default value of 5 seconds.

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-4

timer-b-timeout-interval
This elements sets the value of the SIP protocol Timer B, in milliseconds. Timer B specifies the
length of time a client transaction attempts to retry sending a request. See the Session
Initiation Protocol for more information about SIP timers. See also "Configuring NTP for
Accurate SIP Timers" for more information.

If timer-b-timeout-interval is not configured, the Timer B value is derived from timer T1
(64*T1, or 32000 milliseconds by default).

timer-f-timeout-interval
This elements sets the value of the SIP protocol Timer F, in milliseconds. Timer F specifies the
timeout interval for retransmitting non-INVITE requests. See the Session Initiation Protocol for
more information about SIP timers. See also "Configuring NTP for Accurate SIP Timers" for
more information.

If timer-f-timeout-interval is not configured, the Timer F value is derived from timer T1 (64*T1,
or 32000 milliseconds by default).

max-application-session-lifetime
This element sets the maximum amount of time, in minutes, that a SIP application session can
exist before Converged Application Server invalidates the session. max-application-session-
lifetime acts as an upper bound for any timeout value specified using the session-timeout
element in a sip.xml file, or using the setExpires API.

A value of -1 (the default) specifies that there is no upper bound to application-configured
timeout values.

Note:

The value of max-application-session-lifetime must be equal or greater than the
default session length of every deployed application.

enable-local-dispatch
enable-local-dispatch is a server optimization that helps avoid unnecessary network traffic
when sending and forwarding messages. You enable the optimization by setting this element
true. When enable-local-dispatch enabled, if a server instance needs to send or forward a
message and the message destination is the engine's cluster address or the local server
address, then the message is routed internally to the local server instead of being sent through
the network.

You may want to disable this optimization if you feel that routing internal messages could skew
the load on engine servers, and you prefer to route all requests through a configured load
balancer.

By default enable-local-dispatch is set to false.

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-5

cluster-loadbalancer-map
The cluster-loadbalancer-map element is used only when upgrading Converged Application
Server software, or when upgrading a production SIP Servlet to a new version. It is not
required or used during normal server operations.

During a software upgrade, multiple engine clusters are defined to host the older and newer
software versions. A cluster-loadbalancer-map defines the virtual IP address (defined on
your load balancer) that correspond to an engine cluster configured for an upgrade. Converged
Application Server uses this mapping to ensure that engine requests for timers and call state
data are received from the correct "version" of the cluster. If a request comes from an incorrect
version of the software, Converged Application Server uses the cluster-loadbalancer-map to
forward the request to the correct cluster.

Each cluster-loadbalancer-map entry contains the two elements.

Table 4-2 Nested cluster-loadbalancer-map Elements

Element Description

cluster-name The configured name of an engine cluster.

sip-uri The internal SIP URI that maps to the engine
cluster. This corresponds to a virtual IP address
that you have configured in your load balancer. The
internal URI forwards requests to the correct
cluster version during an upgrade.

The example below shows a sample cluster-loadbalancer-map entry used during an
upgrade.

Example 4-2 Sample cluster-loadbalancer-map Entry

<cluster-loadbalancer-map>
 <cluster-name>EngineCluster</cluster-name>
 <sip-uri>sip:172.17.0.1:5060</sip-uri>
</cluster-loadbalancer-map>
<cluster-loadbalancer-map>
 <cluster-name>EngineCluster2</cluster-name>
 <sip-uri>sip:172.17.0.2:5060</sip-uri>
</cluster-loadbalancer-map>

See the section on upgrading production Converged Application Server software in the
Converged Application Server Installation Guide for more information.

default-behavior
This element defines the default behavior of the Converged Application Server instance if the
server cannot match an incoming SIP request to a deployed SIP Servlet (or if the matching
application has been invalidated or timed out). Valid values are:

• proxy: Act as a proxy server.

• ua: Act as a User Agent.

proxy is used as the default if you do not specify a value.

When acting as a User Agent (UA), Converged Application Server acts in the following way in
response to SIP requests:

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-6

• ACK requests are discarded without notice.

• CANCEL or BYE requests receive response code 481 - Transaction does not exist.

• All other requests receive response code 500 - Internal server error.

When acting as a proxy requests are automatically forwarded to an outbound proxy (see
"proxy—Setting Up an Outbound Proxy Server") if one is configured. If no proxy is defined,
Converged Application Server proxies to a specified Request URI only if the Request URI does
not match the IP and port number of a known local address for a SIP Servlet container, or a
load balancer address configured for the server. This ensures that the request does not
constantly loop to the same servers. When the Request URI matches a local container address
or load balancer address, Converged Application Server instead acts as a UA.

default-servlet-name
This element specifies the name of a default SIP Servlet to call if an incoming initial request
cannot be matched to a deployed Servlet (using standard servlet-mapping definitions in
sip.xml). The name specified in the default-servlet-name element must match the servlet-
name value of a deployed SIP Servlet. For example:

<default-servlet-name>myServlet</default-servlet-name>

If the name defined in default-servlet-name does not match a deployed Servlet, or no value is
supplied (the default configuration), Converged Application Server registers the name
com.bea.wcp.sip.engine.BlankServlet as the default Servlet. The BlankServlet name is
also used if a deployed Servlet registered as the default-servlet-name is undeployed from the
container.

BlankServlet's behavior is configured with the default-behavior element. By default the
Servlet proxies all unmatched requests. However, if the default-behavior element is set to ua
mode, BlankServlet is responsible for returning 481 responses for CANCEL and BYE
requests, and 500/416 responses in all other cases. BlankServlet does not respond to ACK,
and it always invalidates the application session.

retry-after-value
Specifies the number of seconds used in the Retry-After header for 5xx response codes. This
value can also include a parameter or a reason code, such as "Retry-After:
18000;duration=3600" or "Retry-After: 120 (I'm in a meeting)."

If the this value is not configured, Converged Application Server uses the default value of 180
seconds.

sip-security
Converged Application Server enables you to configure one or more trusted hosts for which
authentication is not performed. When Converged Application Server receives a SIP message,
it calls getRemoteAddress() on the SIP Servlet message. If this address matches an address
defined in the server's trusted host list, no further authentication is performed for the message.

The sip-security element defines one or more trusted hosts, for which authentication is not
performed. The sip-security element contains one or more trusted-authentication-host or
trusted-charging-host elements, each of which contains a trusted host definition. A trusted
host definition can consist of an IP address (with or without wildcard placeholders) or a DNS
name.

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-7

Example 4-3 Sample Trusted Host Configuration

<sip-security>
 <trusted-authentication-host>myhost1.mycompany.com</trusted-authentication-host>
 <trusted-authentication-host>172.*</trusted-authentication-host>
</sip-security>

route-header
3GPP TS 24.229 Version 7.0.0 :

http://www.3gpp.org/ftp/Specs/archive/24_series/24.229/24229-700.zip requires that
IMS Application Servers generating new requests (for example, as a B2BUA) include the S-
CSCF route header. In Converged Application Server, the S-CSCF route header must be
statically defined as the value of the route-header element in sipserver.xml. For example:

<route-header>
 <uri>Route: sip:wlss1.bea.com</uri>
</route-header>

engine-call-state-cache-enabled
Converged Application Server provides the option for engine servers to cache a portion of the
call-state data locally, to improve performance with SIP-aware load balancers. When a local
cache is used, an engine server first checks its local cache for existing call state data. If the
cache contains the required data, and the local copy of the data is up-to-date (compared to the
SIP call-state store), the engine locks the call state in the SIP call-state store but reads directly
from its cache.

By default the engine cache is enabled. To disable caching, set engine-call-state-cache-
enabled to false:

<engine-call-state-cache-enabled>false</engine-call-state-cache-enabled>

See Using the Engine Cache for more information.

server-header
Converged Application Server enables you to control when a Server header is inserted into
SIP messages. You can use this functionality to limit or eliminate Server headers to reduce the
message size for wireless networks, or to increase security.

By default, Converged Application Server inserts no Server header into SIP messages. Set the
server-header to one of the following string values to configure this behavior:

• none (the default) inserts no Server header.

• request inserts the Server header only for SIP requests generated by the server.

• response inserts the Server header only for SIP responses generated by the server.

• all inserts the Server header for all SIP requests and responses.

For example, the following element configures Converged Application Server to insert a Server
header for all generated SIP messages:

<server-header>all</server-header>

See also "server-header-value".

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-8

http://www.3gpp.org/ftp/Specs/archive/24_series/24.229/24229-700.zip

server-header-value
Converged Application Server enables you to control the text that is inserted into the Server
header of generated messages. This provides additional control over the size of SIP messages
and also enables you to mask the server entity for security purposes. By default, Converged
Application Server does not insert a Server header into generated SIP messages (see "server-
header"). If Server header insertion is enabled but no server-header-value is specified,
Converged Application Server inserts the value WebLogic SIP Server. To configure the
header contents, enter a string value. For example:

<server-header-value>MyCompany Application Server</server-header-value>

persistence
The persistence element enables or disables writing call state data to an RDBMS, or to a
remote, geographically-redundant Converged Application Server installation. For sites that use
geographically-redundant replication features, the persistence element also defines the site ID
and the URL at which to persist call state data.

The persistence element contains sub-elements.

Table 4-3 Nested persistence Elements

Element Description

default-handling Determines whether Converged Application
Server observes persistence hints for RDBMS
persistence or geographical-redundancy. This
element can have one of the following values:

• all: Specifies that call state data may be
persisted to both an RDBMS store and to
a geographically-redundant Converged
Application Server installation. This is the
default behavior. Replication to either
destination also requires that the available
resources (JDBC datasource and remote
JMS queue) are available.

• db: Specifies that long-lived call state data
is replicated to an RDBMS if the required
JDBC datasource and schema are
available.

• geo: Specifies that call state data is
persisted to a remote, geographically-
redundant site if the configured site URL
contains the necessary JMS resources.

• none: Specifies that only in-memory
replication is performed to other replicas in
the SIP call-state store. Call state data is
not persisted in an RDBMS or to an
external site.

geo-site-id Specifies the site ID of this installation. All
installations that participate in geographically-
redundant replication require a unique site ID.

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-9

Table 4-3 (Cont.) Nested persistence Elements

Element Description

geo-remote-t3-url Specifies the remote Converged Application
Server installation to which this site replicates
call state data. You can specify a single URL
corresponding to the engine cluster of the
remote installation. You can also specify a
comma-delimited list of addresses
corresponding to each engine server. The
URLs must specify the t3 protocol.

The example below shows a sample configuration that uses RDBMS storage for long-lived call
state and geographically-redundant replication. Call states are replicated to two engine servers
in a remote location.

Example 4-4 Sample persistence Configuration

<persistence>
 <default-handling>all</default-handling>
 <geo-site-id>1</geo-site-id>
 <geo-remote-t3-url>t3://remoteEngine1:7050,t3://remoteEngine2:7051</geo-remote-t3-url>
</persistence>

use-header-form
This element configures the server-wide, default behavior for using or preserving compact
headers in SIP messages. You can set this element to one of the following values:

• compact: Converged Application Server uses the compact form for all system-generated
headers. However, any headers that are copied from an originating message (rather than
generated) use their original form.

• force compact: Converged Application Server uses the compact form for all headers,
converting long headers in existing messages into compact headers as necessary.

• long: Converged Application Server uses the long form for all system-generated headers.
However, any headers that are copied from an originating message (rather than
generated) use their original form.

• force long: Converged Application Server uses the long form for all headers, converting
compact headers in existing messages into long headers as necessary.

enable-dns-srv-lookup
This element enables or disables Converged Application Server DNS lookup capabilities. If you
set the element to true, then the server can use DNS to:

• Discover a proxy server's transport, IP address, and port number when a request is sent to
a SIP URI.

• Resolve an IP address and port number during response routing, depending on the
contents of the Sent-by field.

For proxy discovery, Converged Application Server uses DNS resolution only once per SIP
transaction to determine transport, IP, and port number information. All retransmissions, ACKs,
or CANCEL requests are delivered to the same address and port using the same transport. For

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-10

details about how DNS resolution takes place, see RFC 3263: Session Initiation Protocol (SIP):
Locating SIP Servers (http://www.ietf.org/rfc/rfc3263.txt).

When a proxy needs to send a response message, Converged Application Server uses DNS
lookup to determine the IP address and port number of the destination, depending on the
information provided in the sent-by field and Via header.

By default, DNS resolution is not used (false).

Note:

Because DNS resolution is performed within the context of SIP message processing,
any DNS performance problems result in increased latency performance. Oracle
recommends using a caching DNS server in a production environment to minimize
potential performance problems.

connection-reuse-pool
Converged Application Server includes a connection pooling mechanism that minimizes
communication overhead with a Session Border Control (SBC) function or Serving Call
Session Control Function (S-CSCF). You can configure multiple, fixed pools of connections to
different addresses.

Converged Application Server opens new connections from the connection pool on demand as
the server makes requests to a configured address. The server then multiplexes new SIP
requests to the address using the already-opened connections, rather than repeatedly
terminating and re-creating new connections. Opened connections are reused in a round-robin
fashion. Opened connections remain open until they are explicitly closed by the remote
address.

Connection reuse pools are not used for incoming requests from a configured address.

To configure a connection reuse pool, you define the following four nested elements.

Table 4-4 Nested connection-reuse-pool Elements

Element Description

pool-name A String value that identifies the name of this pool. All configured pool-
name elements must be unique to the domain.

destination Specifies the IP address or host name of the destination SBC or S-CSCF.
Converged Application Server opens or reuses connection in this pool only
when making requests to the configured address.

destination-port Specifies the port number of the destination SBC or S-CSCF.

maximum-connections Specifies the maximum number of opened connections to maintain in this
pool.

The example below shows a sample connection-reuse-pool configuration having two pools.

Example 4-5 Sample connection-reuse-pool Configuration

<connection-reuse-pool>
 <pool-name>SBCPool</pool-name>
 <destination>MySBC</destination>
 <destination-port>7070</destination-port>

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-11

http://www.ietf.org/rfc/rfc3263.txt

 <maximum-connections>10</maximum-connections>
</connection-reuse-pool>
<connection-reuse-pool>
 <pool-name>SCSFPool</pool-name>
 <destination>192.168.1.6</destination>
 <destination-port>7071</destination-port>
 <maximum-connections>10</maximum-connections>
</connection-reuse-pool>

globally-routable-uri
This element enables you to specify a Globally-Routable User Agent URI (GRUU) that
Converged Application Server automatically inserts into Contact and Route-Set headers when
communicating with network elements. The URI specified in this element should be the GRUU
for the entire Converged Application Server cluster. (In a single-server domain, use a GRUU
for the server itself.)

User Agents (UAs) deployed on Converged Application Server typically obtain GRUUs through
a registration request. In this case, the application code is responsible both for requesting and
subsequently handling the GRUU. To request a GRUU, the UA includes the +sip.instance
field parameter in the Contact header in each Contact for which GRUU is required. Upon
receiving a GRUU, the UA uses the GRUU as the URI for the Contact header field when
generating new requests.

domain-alias-name
This element defines one or more domains for which Converged Application Server is
responsible. If a message has a destination domain that matches a domain specified with a
domain-alias-name element, Converged Application Server processes the message locally,
rather than forwarding it.

The sipserver.xml configuration file can have multiple main-alias-name elements. Each
element can specify either:

• an individual, fully-qualified domain name, such as myserver.mycompany.com, or

• a domain name starting with an initial wildcard character, such as *.mycompany.com,
used to represent all matching domains. Only a single wildcard character is supported, and
it must be used as the first element of the domain name.

Note:

You can also identify these domain names using the Domain Aliases field in the
Configuration > General tab of the SipServer Administration Console
extension.

enable-rport
This element determines whether Converged Application Server automatically adds an rport
parameter to Via headers when acting as a UAC. By default, the server does not add the rport
parameter; set the element to true to automatically add rport to requests generated by the
server.

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-12

Note:

You can also set this parameter to true by selecting the Symmetric Response
Routing option in the Administration Console. In the Administration Console, select
Configuration, then select the General tab of the SipServer Administration console
extension.

The rport parameter is used for symmetric response routing as described in RFC 3581
(http://www.ietf.org/rfc/rfc3581.txt). When a message is received by an RFC 3581-
compliant server, such as Converged Application Server, the server responds using the remote
UDP port number from which the message was received, rather than the port number specified
in the Via header. This behavior is frequently used when servers reside behind gateway
devices that perform Network Address Translation (NAT). The NAT devices maintain a binding
between the internal and external port numbers, and all communication must be initiated
through the gateway port.

Converged Application Server is compliant with RFC 3581, and will honor the rport parameter
even if you set the enable-rport element to false. The enable-rport element only specifies
whether the server automatically adds rport to the requests it generates when acting as a
UAC. To disable rport handling completely (disable RFC 3581 support), you must start the
server with the command-line option, -Dwlss.udp.uas.rport=false.

Note:

rport support as described in RFC 3581 requires that SIP responses include the
source port of the original SIP request. Because source port information is frequently
treated as sensitive data, Oracle recommends using the TLS transport.

image-dump-level
This element specifies the level of detail to record in Converged Application Server diagnostic
image files. You can set this element to one of two values:

• basic: Records all diagnostic data except for call state data.

• full: Records all diagnostic data including call state data.

Note:

Recording call state data in the image file can be time consuming. By default,
image dump files are recorded using the basic option.

You can also set this parameter using the Configuration > General tab of the
SipServer Administration Console extension.

stale-session-handling
Converged Application Server uses encoded URIs to identify the call states and application
sessions associated with a message. When an application is undeployed or upgraded to a new

Chapter 4
Engine Server Configuration Reference (sipserver.xml)

4-13

http://www.ietf.org/rfc/rfc3581.txt

version, incoming requests may have encoded URIs that specify "stale" or nonexistent call or
session IDs. The stale-session-handling element enables you to configure the action that
Converged Application Server takes when it encounters stale session data in a request. The
following actions are possible:

• drop: Drops the message without logging an error. This setting is desirable for systems
that frequently upgrade applications using Converged Application Server's in-place
upgrade feature. Using the drop action ensures that messages intended for older,
incompatible versions of a deployed application are dropped.

• error: Responds with an error, so that a UAC might correct the problem. This is the default
action. Messages having a To: tag cause a 481 Call/Transaction Does Not Exist error,
while those without the tag cause a 404 Not Found error.

• continue: Ignores the stale session data and continues processing the request.

Note:

When it encounters stale session data, Converged Application Server applies the
action specified by stale-session-handling before considering the value of the
default-behavior element. The default-behavior is performed only when you
have configured stale-session-handling to perform the continue action.

enable-contact-provisional-response
By default Converged Application Server does not place a Contact header in non-reliable
provisional (1xx) responses that have a To header. If you deploy applications that expect the
Contact header to be present in such 1xx responses, set this element to true:

<enable-contact-provisional-response>true</enable-contact-provisional-response>

Setting this element to true does not affect 100 Trying responses.

SIP Coherence Configuration Reference (coherence.xml)
This chapter describes the Coherence configuration file, coherence.xml, for Oracle
Communications Converged Application Server.

Overview of coherence.xml
The coherence.xml configuration file identifies servers that manage the concurrent call state
for SIP applications, and specifies distributed cache settings. See "Configuring Coherence" for
information on configuring Coherence.

The coherence.xml file resides in the domain_home/config/custom subdirectory where
domain_home is the root directory of Converged Application Server domain.

Editing coherence.xml
You can edit coherence.xml using either the Administration Console or a text editor. Changes
to the configuration cannot be applied to servers dynamically; you must restart servers to
change the SIP server configuration.

Chapter 4
SIP Coherence Configuration Reference (coherence.xml)

4-14

XML Schema
The schema file is bundled within the wlss-descriptor-binding.jar library, installed in the
Middleware_Home/wlserver/sip/server/lib directory where Middleware_Home is the path to
the directory where WebLogic Server is installed.

Example coherence.xml File
The default coherence.xml file is shown.

Example 4-6 Default coherence.xml File

<?xml version='1.0' encoding='UTF-8'?>
<coherence-storage>
 <cache-config>
 <thread-count>20</thread-count>
 <partition-count>257</partition-count>
 </cache-config>
</coherence-storage>

XML Element Description
The coherence.xml file describes the elements that govern the Coherence distributed cache
service.

Table 4-5 coherence.xml File Elements

Element Description

thread-count Specifies the number of threads used in the call-state Coherence
cache service used by the SIP server. Oracle recommends that this
value be a positive integer but you can specify 0 or -1 to obtain specific
behaviors. See the thread-count element description in "Cache
Configuration Elements" in Developing Applications with Oracle
Coherence for more information.

partition-count Specifies the number of partitions used in the call-state Coherence
cache service used by the SIP server. You must specify a positive
integer and should specify a prime number. See the partition-
count element description in "Cache Configuration Elements" in
Developing Applications with Oracle Coherence for more information.

Diameter Configuration Reference (diameter.xml)
This chapter describes the Oracle Communications Converged Application Server Diameter
configuration file, diameter.xml.

Overview of diameter.xml
The diameter.xml file configures attributes of a Diameter node, such as:

• The host identity of the Diameter node

• The Diameter applications that are deployed on the node

• Connection information for Diameter peer nodes

Chapter 4
Diameter Configuration Reference (diameter.xml)

4-15

• Routing information and default routes for handling Diameter messages.

The Diameter protocol implementation reads the configuration file at start time. diameter.xml
is stored in the domain_home/config/custom subdirectory where domain_home is the root
directory of the Converged Application Server domain.

Editing diameter.xml

WARNING:

You should never move, modify, or delete the diameter.xml file during normal
operations.

Oracle recommends using the Administration Console to modify diameter.xml indirectly, rather
than editing the file manually with a text editor. Using the Administration Console ensures that
the diameter.xml document always contains valid XML.

You may need to manually view or edit diameter.xml to troubleshoot problem configurations,
repair corrupted files, or to roll out custom Diameter node configurations to a large number of
machines when installing or upgrading Converged Application Server. When you manually edit
diameter.xml, you must restart Diameter nodes to apply your changes.

Caution:

Always use the Diameter node in the Administration Console or the WLST utility, as
described in Configuring Converged Application Server Container Properties to make
changes to a running Converged Application Server deployment.

Steps for Editing diameter.xml
If you need to modify diameter.xml on a production system, follow these steps:

1. Use a text editor to open the OCCAS_home/config/custom/diameter.xml file, where
OCCAS_home is the root directory of the Converged Application Server domain.

2. Modify the diameter.xml file as necessary. See "XML Element Description" for a full
description of the XML elements.

3. Restart or start servers to have your changes take effect.

4. Test the updated system to validate the configuration.

XML Schema
The XML schema file (wcp-diameter.xsd) is bundled within the wlssdiameter.jar library,
installed in WL_home/wlserver/sip/server/lib, where WL_home is the path to the directory
where WebLogic Server is installed.

Example diameter.xml File
See Configuring Diameter Client Nodes and Relay Agents for examples of diameter.xml
configuration files.

Chapter 4
Diameter Configuration Reference (diameter.xml)

4-16

XML Element Description
The following sections describe each XML element in diameter.xml.

configuration
The top level configuration element contains the entire diameter node configuration.

target
Specifies one or more target Converged Application Server instances to which the node
configuration is applied. The target servers must be defined in the config.xml file for your
domain.

host
Specifies the host identity for this Diameter node. If no host element is specified, the identity is
taken from the local server's host name. The host identity may or may not match the DNS
name.

Note:

When configuring Diameter support for multiple Sh client nodes, it is best to omit the
host element from the diameter.xml file. This omission enables you to deploy the
same Diameter web application to all servers in the engine cluster, and the host
name is dynamically obtained for each server instance.

realm
Specifies the realm name for which this Diameter node has responsibility. You can run multiple
Diameter nodes on a single host using different realms and listen port numbers. The HSS,
Application Server, and relay agents must all agree on a realm name or names. The realm
name for the HSS and Application Server need not match.

If you omit the realm element, the realm named is derived using the domain name portion of
the host name, if the host name is fully-qualified (for example, host@oracle.com).

address
Specifies comma-separated list of IP addresses or DNS names of the remote interface(s) for a
Diameter peer. The first address is the primary remote address and others are alternate
remote addresses. When the transport protocol is SCTP, all IP addresses will be associated
with the remote SCTP endpoint. When the transport protocol is TCP or TLS, only the first
address will be used.

See "Validate SCTP Peer Address" for how the Converged Application Server behaves when a
Diameter peer offers an IP address not in this list.

If you do not specify an address, the host identity is used.

Chapter 4
Diameter Configuration Reference (diameter.xml)

4-17

Note:

The host identity may or may not match the DNS name of the Diameter node. Oracle
recommends configuring the address element with an explicit DNS name or IP
address to avoid configuration errors.

port
Specifies the TCP or TLS or SCTP port number for this Diameter peer. The default port is
3588. If the value is 0, the system assigns an ephemeral port.

validate-peer-address
Enable this checkbox to validate the remote SCTP connection addresses of a Diameter Peer. If
you enable this validation, only configured Peer Addresses are allowed in remote Peer
Addresses offered during SCTP association setup. An SCTP association will be closed if any
unknown remote Peer Address is present.

Possible values are true or false.

tls-enabled
This element is used only for standalone node operation to advertise TLS capabilities.

Converged Application Server ignores the tls-enabled element for nodes running within a
server instance. Instead, TLS transport is reported as enabled if the server instance has
configured a Network Channel having TLS support (a diameters channel). See "Creating TCP,
TLS, and SCTP Network Channels for the Diameter Protocol".

sctp-enabled
This element is used only for standalone node operation to advertise SCTP capabilities.

Converged Application Server ignores the sctp-enabled element for nodes running within a
server instance. Instead, SCTP transport is reported as enabled if the server instance has
configured a Network Channel having SCTP support (a diameter-sctp channel). See "Creating
TCP, TLS, and SCTP Network Channels for the Diameter Protocol".

debug-enabled
Specifies a boolean value to enable or disable debug message output. Debug messages are
disabled by default.

message-debug-enabled
Specifies a boolean value to enable or disable tracing of Diameter messages. This element is
disabled by default.

application
Configures a particular Diameter application to run on the selected node. Converged
Application Server includes applications to support nodes that act as Diameter Rx clients,

Chapter 4
Diameter Configuration Reference (diameter.xml)

4-18

Diameter relay agents, or Home Subscriber Servers (HSS). The HSS application is a simulator
that is provided only for development or testing purposes.

class-name
Specifies the application class file to load.

param*
Specifies one or more optional parameters to pass to the application class.

name

Specifies the name of the application parameter.

value

Specifies the value of the parameter.

peer-retry-delay
Specifies the number of seconds this node waits between retries to Diameter peers. The
default value is 30 seconds.

allow-dynamic-peers
Specifies a boolean value that enables or disables dynamic peer configuration. Dynamic peer
support is disabled by default. Oracle recommends enabling dynamic peers only when using
the TLS transport, because no access control mechanism is available to restrict hosts from
becoming peers.

request-timeout
Specifies the number of milliseconds to wait for an answer from a peer before timing out.

watchdog-timeout
Specifies the number of seconds used for the Diameter Tw watchdog timer.

include-origin-state-id
Specifies whether the node should include the origin state AVP in requests and answers.

supported-vendor-id+
Specifies one or more vendor IDs to be added to the Supported-Version-Ids AVP in the
capabilities exchange.

peer+
Specifies connection information for an individual Diameter peer. You can choose to configure
connection information for individual peer nodes, or allow any node to be dynamically added as
a peer. Oracle recommends using dynamic peers only if you are using the TLS transport,
because there is no way to filter or restrict hosts from becoming peers when dynamic peers are
enabled.

Chapter 4
Diameter Configuration Reference (diameter.xml)

4-19

When configuring Sh client nodes, the peers element should contain peer definitions for each
Diameter relay agent deployed to your system. If your system does not use relay agents, you
must include a peer entry for the Home Subscriber Server (HSS) in the system and for all other
engine nodes that act as Sh client nodes.

When configuring Diameter relay agent nodes, the peers element should contain peer entries
for all Diameter client nodes that access the peer and the HSS.

host
Specifies the host identity for a Diameter peer.

address
Specifies comma-separated list of IP addresses or DNS names of the remote interface(s) for a
Diameter peer. The first address is the primary remote address and others are alternate
remote addresses. When the transport protocol is SCTP, all IP addresses will be associated
with the remote SCTP endpoint. When the transport protocol is TCP or TLS, only the first
address will be used.

See "Validate SCTP Peer Address" for how Converged Application Server behaves when a
Diameter peer offers an IP address not in this list.

If you do not specify an address, the host identity is used.

port
Specifies the TCP or TLS or SCTP port number for this Diameter peer. The default port is
3588. If the value is 0, the system assigns an ephemeral port.

protocol
Specifies the protocol used by the peer. This element may be one of tcp or sctp.

route
Defines a realm-based route that this node uses when resolving messages.

When configuring Sh client nodes, you should specify a route to each Diameter relay agent
node deployed in the system and a default-route to a selected relay. If your system does not
use relay agents, simply configure a single default-route to the HSS.

When configuring Diameter relay agent nodes, specify a single default-route to the HSS.

realm
The target realm used by this route.

application-id
The target application ID for the route.

action
An action type that describes the role of the Diameter node when using this route. The value of
this element can be one of the following:

• none

Chapter 4
Diameter Configuration Reference (diameter.xml)

4-20

• local

• relay

• proxy

• redirect

server+
Specifies one or more target servers for this route. Any server specified in the server element
must also be defined as a peer to this Diameter node, or dynamic peer support must be
enabled.

default-route
Defines a default route to use when a request cannot be matched to a configured route.

action
Specifies the default routing action for the Diameter node. See "route" for more information.

server+
Specifies one or more target servers for the default route. Any server you include in this
element must also be defined as a peer to this Diameter node, or dynamic peer support must
be enabled.

Chapter 4
Diameter Configuration Reference (diameter.xml)

4-21

	Contents
	Preface
	Audience
	My Oracle Support

	Revision History
	1 Converged Application Server Configuration
	Overview of Configuration and Administration Tools
	Administration Console
	WebLogic Scripting Tool (WLST)
	Additional Configuration Methods
	Editing Configuration Files
	Custom JMX Applications

	Common Configuration Tasks
	Getting Started
	Accessing the Administration Console
	Locking and Persisting the Configuration

	Using WLST (JMX) to Configure Converged Application Server
	Configuration MBeans for the SIP Servlet Container
	Locating the Converged Application Server MBeans
	WLST Configuration Examples
	Invoking WLST
	WLST Template for Configuring Container Attributes
	Creating and Deleting MBeans
	Working with URI Values

	Setting Logging Levels
	Startup Sequence for a Converged Application Server Domain
	Startup Command Options
	Reverting to the Original Boot Configuration

	Configuring Converged Application Server Container Properties
	Configure General SIP Application Server Properties
	Adding Servers to the Converged Application Server Cluster
	Configuring Timer Processing
	Configuring Timer Affinity (Optional)
	Configuring NTP for Accurate SIP Timers

	Configuring Network Connection Settings
	Overview of Network Configuration
	Configuring External IP Addresses in Network Channels
	About IPv4 and IPv6 Support
	Enabling DNS Support
	Configuring Network Channels for SIP or SIPS
	Reconfiguring an Existing Channel
	Creating a New SIP or SIPS Channel

	Configuring Custom Timeout, MTU, and Other Properties
	Configuring SIP Channels for Multihomed Machines
	Configuring Engine Servers to Listen on Any IP Interface
	Configuring Static Source Port for Outbound UDP Packets
	Configuring Listen Addresses for Servers
	Configuring Coherence Cluster Addressing
	Configuring Maximum Content Length

	Using the Engine Cache
	Overview of Engine Caching
	Configuring Engine Caching
	Monitoring and Tuning Cache Performance

	Configuring Coherence
	About Coherence Engine Communication and State Management
	Configuring Coherence for Engine Communication and State Management

	About Call-State Storage and Management for SIP Calls
	Configuring Coherence Call-State Storage
	Modifying the Call-State Storage Configuration

	Monitoring Coherence Call-State Storage

	Configuring Server Failure Detection
	Overview of Failover Detection
	Coherence Cluster Overview
	Split-Brain Handling

	Coherence Configuration
	Cluster Configuration File

	Avoiding and Recovering From Server Failures
	Failure Prevention and Automatic Recovery Features
	High Availability
	Overload Protection
	Redundancy and Failover for Clustered Services
	Automatic Restart for Failed Server Instances
	Managed Server Independence Mode
	Automatic Migration of Failed Managed Servers
	Geographic Redundancy for Regional Site Failures

	Directory and File Backups for Failure Recovery
	Enabling Automatic Configuration Backups
	Storing the Domain Configuration Offline
	Backing Up Logging Servlet Applications
	Backing Up Security Data
	Backing Up the WebLogic LDAP Repository

	Backing Up Additional Operating System Configuration Files

	Restarting a Failed Administration Server
	Restarting an Administration Server on the Same System
	Restarting an Administration Server on Another System

	Restarting Failed Managed Servers

	Storing Long-Lived Call State Data in an RDBMS
	Overview of Long-Lived Call State Storage
	Requirements and Restrictions
	Configuring RDBMS Call State Storage
	Create the Database Schema
	Configure JDBC Resources
	Configuring Persistence Options (Primary and Secondary Sites)

	Using Persistence Hints in SIP Applications

	Configuring Geographically-Redundant Installations
	Geographic Redundancy
	Situations Best Suited to Use Geo-Redundancy
	Situations Not Suited to Use Geo-Redundancy
	Geo-Redundancy Considerations

	Using Geographically-Redundant SIP Engines
	Example Domain Configurations

	Requirements and Limitations
	Steps for Configuring Geographic Persistence
	Configuring Geographic Redundancy
	Configuring JDBC Resources (Primary and Secondary Sites)
	Configuring Persistence Options (Primary Site Only)
	Configuring JMS Resources Options (Primary Site Only)
	Configuring Persistence Options (Secondary Sites)
	Configuring JMS Resources (Secondary Site Only)
	Configuring Cross Domain Security (Both Primary and Secondary Sites)

	Understanding Geo-Redundant Replication Behavior
	Call State Replication Process
	Call State Processing After Failover

	Removing Backup Call States
	Monitoring Replication Across Regional Sites
	Troubleshooting Replication

	Upgrading Deployed SIP Applications
	Overview of SIP Application Upgrades
	Requirements and Restrictions for Upgrading Deployed Applications
	Steps for Upgrading a Deployed SIP Application
	Assign a Version Identifier
	Defining the Version in the Manifest

	Deploy the Updated Application Version
	Undeploy the Older Application Version
	Roll Back the Upgrade Process
	Accessing the Application Name and Version Identifier
	Using Administration Mode

	2 Configuring Infrastructure Components
	Configuring the Proxy Registrar
	About Proxy Registrar Configuration
	Setting Authentication for the Proxy Registrar
	Using the Administration Console to Configure Trusted Hosts

	Configuring the Proxy Registrar
	Configure the Proxy
	Configuring the Registrar

	Configuring the Proxy-Required Options for the Sip Server Proxy
	Provisioning Users
	Launching Sash
	Launching Sash from the Command Line
	Connecting Sash to an External Converged Application Server Instance
	Connecting to an External Instance of Converged Application Server

	Using Sash
	Viewing Available Commands
	Viewing Subcommands

	Creating a User
	Creating a User from the Sash Command-Line Prompt
	Creating a User with the Command Service MBean
	Creating a User with the Identity Add Command

	Deleting a User
	Scripting with Sash
	Error Logging in Sash

	Configuring Diameter Client Nodes and Relay Agents
	Overview of Diameter Protocol Configuration
	About the Diameter Domain Template
	Steps for Configuring Diameter Client Nodes and Relay Agents
	Installing the Diameter Domain Template
	Creating TCP, TLS, and SCTP Network Channels for the Diameter Protocol
	Configuring Two-Way SSL for Diameter TLS Channels
	Configuring and Using SCTP for Diameter Messaging

	Configuring Diameter Nodes
	Creating a New Node Configuration (General Node Configuration)
	Configuring Diameter Applications
	Configuring the Sh Client Application
	Configuring the Rf Client Application
	Configuring the Ro Client Application
	Configuring a Diameter Relay Agent
	Configuring the Sh and Rf Simulator Applications
	Enabling Profile Service (Using an Sh Backend)

	Configuring Peer Nodes
	Configuring Routes

	Example Domain Configuration
	Troubleshooting Diameter Configurations

	3 Monitoring, Tuning, and Troubleshooting
	Monitoring, Tuning, and Troubleshooting Overview
	Getting Started: Your System Stack
	Hardware/VM Monitoring, Tuning, and Troubleshooting
	Operating System and CPU Monitoring, Tuning, and Troubleshooting
	Operating System Tuning Recommendations

	JVM Monitoring, Tuning and Troubleshooting
	Converged Application Server Monitoring, Tuning, and Troubleshooting

	Monitoring the Sessions for License Limits
	About the Monitoring of Licenses
	About the License Metrics
	About the High Water Mark

	About the Monitoring Process

	Setting Up the Logging Parameters
	Configuring the License Tracking as Startup Command Options

	About the Log Information

	Monitor Messages Per Second
	Configure MPS Monitoring

	Monitoring, Tuning, and Troubleshooting the JVM
	Profiling JVM Performance
	Using Java Flight Recorder
	Using the Command Line
	Using Diagnostic Command
	Configuring Recordings
	Creating Recordings Automatically
	Troubleshooting
	Java Flight Recorder Command Reference

	Using Java Mission Control
	Starting the Java Mission Control Client
	Using the Java Mission Control GUI

	Creating Thread and Heap Dumps Using jcmd
	Creating a Heap Dump using jcmd
	Creating a Thread Dump using jcmd
	Other jcmd Commands
	jcmd Command Reference

	The Java Control+Break Handler
	Tuning JVM Garbage Collection for Production Deployments
	Goals for Tuning Garbage Collection Performance
	Modifying JVM Parameters in Server Start Scripts
	Tuning Garbage Collection with Oracle JDK

	Avoiding JVM Delays Caused by Random Number Generation
	Troubleshooting Memory Leaks

	Configuring Converged Application Server SNMP
	Overview of Converged Application Server SNMP
	Browsing the MIB
	Configuring SNMP
	Understanding and Responding to SNMP Traps
	Trap Descriptions
	overloadControlActivated, overloadControlDeactivated
	serverStopped
	sipAppDeployed
	sipAppUndeployed
	sipAppFailedToDeploy

	Converged Application Server Debugging and Tuning
	Debugging Issues in the Runtime Environment
	About the Runtime Debug Process
	About the Debug Attributes Configuration Method

	Recommended Debug Log Settings
	Issues that Require the Enabling of Multiple Debug Attributes
	SIP Specific Issues Involving Calls
	Transport-level Issues
	Server Does not Process SIP Messages
	Locking and Timer-related Issues
	Message Validation Issues

	Enabling the Runtime Debug Attributes

	Server Performance Tuning Recommendations
	Manage SIP Application Session Timeout
	Max Application Session Timeout

	Specifying the Minimum and Maximum Thread Pool Size

	Files for Troubleshooting
	Backwards Compatibility with TO and FROM System Headers

	Converged Application Server Monitoring and Overload Protection
	About Monitoring and Overload Protection
	SIP Server and Application Monitoring
	General
	SIP Performance
	SIP Applications
	Call State Storage
	Call State Service
	Call State Cache
	Call State Metadata Cache
	Call State Index Cache

	Other Ways to Monitor Converged Application Server
	Monitoring Applications with the WebLogic Scripting Tool
	Developing Custom Management Utilities with JMX
	WebLogic Server Diagnostic Framework

	About Converged Application Server Overload Protection
	About the Overload Protection Framework

	Configuring Overload Protection
	About Event Handlers
	Configuring an Event Handler

	About Actions
	Configuring an Action

	About Statistics Collectors
	Configuring a Statistics Collector

	About Thresholds
	Configuring a Threshold

	Example: Configuring Overload Protection Based upon Session Rate

	Using the WebLogic Server Diagnostic Framework (WLDF)
	Overview of Converged Application Server and the WLDF
	Data Collection and Logging
	Watches and Notifications
	Image Capture
	Instrumentation
	Configuring Server-Scoped Monitors
	Configuring Application-Scoped Monitors

	Logging SIP Requests and Responses
	Overview of SIP Logging
	Defining Logging Servlets in sip.xml
	Configuring the Logging Level and Destination
	Specifying the Criteria for Logging Messages
	Using XML Documents to Specify Logging Criteria
	Using Servlet Parameters to Specify Logging Criteria

	Specifying Content Types for Unencrypted Logging
	Enabling Log Rotation and Viewing Log Files
	trace-pattern.dtd Reference
	Adding Tracing Functionality to SIP Servlet Code
	Order of Startup for Listeners and Logging Servlets

	4 Reference
	Engine Server Configuration Reference (sipserver.xml)
	Overview of sipserver.xml
	Editing sipserver.xml
	Steps for Editing sipserver.xml

	XML Schema
	Example sipserver.xml File
	XML Element Description
	enable-timer-affinity
	message-debug
	proxy—Setting Up an Outbound Proxy Server
	t1-timeout-interval
	t2-timeout-interval
	t4-timeout-interval
	timer-b-timeout-interval
	timer-f-timeout-interval
	max-application-session-lifetime
	enable-local-dispatch
	cluster-loadbalancer-map
	default-behavior
	default-servlet-name
	retry-after-value
	sip-security
	route-header
	engine-call-state-cache-enabled
	server-header
	server-header-value
	persistence
	use-header-form
	enable-dns-srv-lookup
	connection-reuse-pool
	globally-routable-uri
	domain-alias-name
	enable-rport
	image-dump-level
	stale-session-handling
	enable-contact-provisional-response

	SIP Coherence Configuration Reference (coherence.xml)
	Overview of coherence.xml
	Editing coherence.xml
	XML Schema
	Example coherence.xml File
	XML Element Description

	Diameter Configuration Reference (diameter.xml)
	Overview of diameter.xml
	Editing diameter.xml
	Steps for Editing diameter.xml

	XML Schema
	Example diameter.xml File
	XML Element Description
	configuration
	target
	host
	realm
	address
	port
	validate-peer-address
	tls-enabled
	sctp-enabled
	debug-enabled
	message-debug-enabled
	application
	class-name
	param*
	name
	value

	peer-retry-delay
	allow-dynamic-peers
	request-timeout
	watchdog-timeout
	include-origin-state-id
	supported-vendor-id+
	peer+
	host
	address
	port
	protocol

	route
	realm
	application-id
	action
	server+

	default-route
	action
	server+

