
Oracle® Communications Calendar
Server
System Administrator's Guide

Release 8.0
E63136-05
June 2025

Oracle Communications Calendar Server System Administrator's Guide, Release 8.0

E63136-05

Copyright © 2015, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiii

Nomenclature xiii

Documentation Accessibility xiv

Diversity and Inclusion xiv

Part I Monitoring and Managing Calendar Server

1 Calendar Server System Administration Overview

About Calendar Server 1-1

Overview of Calendar Server Administration Tasks 1-1

About Calendar Server Administration Tools 1-2

Directory Placeholders Used in This Guide 1-2

2 Stopping and Starting Calendar Server Services

Overview of Stopping and Starting Calendar Server 2-1

Stopping and Starting Calendar Server 2-1

Starting and Stopping the Remote Document Store 2-2

3 Managing Calendar Server

Supported Application Server 3-1

Administering Calendar Server Using the Application Server 3-1

Administering the Document Store 3-1

Changing the Password Used for Remote Document Store Authentication 3-2

Using Calendar Server Administration Utilities 3-2

Managing Logging 3-2

Overview of Calendar Server Logging 3-3

Logging Calendar Server Information to the Application Server Log File 3-3

Configuring Logging 3-4

Viewing the Document Store Logs 3-4

iii

Using the scheduling Log 3-4

Using the commands Log 3-6

Administering Calendar Server Access 3-7

Overview of ACLs 3-7

Calendar Access Controls 3-8

Scheduling Access Controls 3-8

Setting Access Control for LDAP Groups 3-9

Retrieving Access Control Information 3-9

Modifying Access Control Configuration Parameters 3-9

Command-Line Utilities for Access Control 3-10

WCAP Commands for Access Control 3-10

Managing Domain ACLs 3-10

Managing Dynamic Group ACLs 3-11

Administering Scheduling Options 3-11

Configuring Scheduling Options 3-11

Overview of Calendar Booking Window 3-12

Configuring a Booking Window 3-13

Modifying Calendar Double Booking 3-13

Controlling Double Booking When Creating Accounts Automatically 3-14

Modifying Configuration Parameters That Control Double Booking 3-14

Overriding the Account Autocreation Through LDAP 3-15

Manually Creating Accounts 3-15

Modifying Double Booking on Existing Accounts 3-15

Inviting LDAP Groups 3-16

Administering Resource Calendars 3-16

About Resource Calendars 3-16

Provisioning Resource Calendars (commadmin) 3-17

Provisioning Resource Calendars (Delegated Administrator Console) 3-18

Managing a Resource Calendar's Mailbox 3-18

Administering Time Zones Support 3-18

Adding New WCAP Time Zones 3-19

Adding an Alias to an Existing Time Zone 3-19

Adding a New Time Zone 3-19

Customizing Calendar Notifications 3-20

Administering the Calendar Server Back End Databases 3-20

Administering the MySQL Database 3-20

Administering the Oracle Database 3-20

Backing Up and Restoring Calendar Server Data 3-21

Removing Unwanted Calendar Data to Reclaim Space 3-21

Purging Deleted Calendar Entries 3-21

Purging Messages From the Scheduling Inbox and Outbox 3-21

iv

4 Monitoring Calendar Server

About Monitoring Calendar Server 4-1

Calendar Server Monitoring Attributes 4-1

General Monitoring Attributes 4-1

Back-End Database Schedule Queue Attributes 4-1

Back-End Database Average Response Times Attributes 4-2

LDAP Response Time Monitoring Attributes 4-2

Using a Java Management Extension Client to Access the Monitoring Data 4-3

Using the responsetime Script 4-4

responsetime Script Syntax 4-4

Location 4-4

General Syntax 4-4

responsetime Script Error Codes 4-5

responsetime Script Example 4-6

Creating a Dedicated User Account for the responsetime Script 4-6

5 Setting Up and Managing Calendar Server Users

Provisioning Calendar Server Users 5-1

Overview of Provisioning Calendar Server 5-1

Provisioning Calendar Users by Using Delegated Administrator 5-2

Provisioning Calendar Users Across Virtual Domains 5-3

Managing Calendar Users and Accounts 5-3

Defining Valid Calendar Users 5-4

Enabling and Disabling Automatic Account Creation 5-4

Creating Calendar Account with Default Calendar Automatically Upon Login 5-4

Preventing a User or Resource From Accessing Calendar Server 5-5

Checking for Active Calendar Users 5-5

Removing Calendar Users 5-5

Removing a Calendar User (Example) 5-6

Moving Calendar Users to a New Back-End Database 5-7

Changing a User's Email Address in the Calendar Server Database 5-8

Subscribing and Unsubscribing Calendars 5-8

About Configuring External Authentication 5-9

Configuring Calendar Server for External Authentication 5-9

Example: External Authentication by Using cn 5-10

Configuring Proxy Authentication 5-11

6 Enabling Advanced Features

Enabling Attachments 6-1

v

Enabling Apple iCal Private/Confidential Support 6-1

Enabling SMS Calendar Notifications in Convergence 6-1

Enabling the iSchedule Channel to Handle iMIP Messages 6-1

Enabling CalDAV and CardDAV Autodiscovery 6-2

7 Configuring CalDAV Clients

Prerequisites 7-1

Configuring CalDAV Clients 7-1

Configuring Apple Calendar for Calendar Server 7-1

Configuring Apple iPhone for Calendar Server 7-2

Configuring Lightning 1.0 beta2 for Calendar Server 7-2

Configuring Lightning 1.0 beta for Calendar Server 7-3

Configuring Lightning 0.9 for Calendar Server 7-4

Accessing a Shared Calendar 7-5

Configuring a CalDAV Account by Using Non-standard or Demo Settings 7-5

iOS 3.x and 4.x Non-standard Configuration 7-6

Apple iCal Non-standard Configuration 7-6

Configuring Android for Calendar Server 7-7

Using the iPhone Configuration Utility 7-7

Exporting and Importing Calendars in Thunderbird Lightning 7-7

Exporting a Calendar 7-7

Importing a Calendar 7-7

Client Issues 7-8

Troubleshooting CalDAV Clients 7-8

Connector for Microsoft Outlook and Event Time Modifications 7-8

8 Configuring and Managing Virus Scanning

About Calendar Server and Virus Scanning 8-1

Overview of Calendar Server Virus Scanning Architecture 8-1

Configuring Calendar Server Virus Scanning 8-3

Configuring the MTA 8-3

Installing a Standalone Message Transfer Agent 8-4

Configuring the Messaging Server MTA for the Virus Spam Filter 8-4

Creating an Incoming SMTP Channel That Uses the Filter 8-4

Configuring the Rewrite Rule to Detect Calendar Data and Discard it After Scanning 8-5

Configuring Calendar Server for Virus Scanning 8-5

Example MTA Configuration for Calendar Server Virus Scanning 8-5

Calendar Server Configuration Examples 8-8

Calendar Server Virus Scan Command-line Utility 8-9

Virus Scan Logging 8-9

vi

MTA Logging 8-9

9 Using Calendar Server Notifications

Overview of Notification Architecture 9-1

About Reminders (Alarms) 9-2

About Server Email Notifications 9-3

Enabling Calendar Server Notifications 9-3

Enabling Notifications on an Account 9-4

Modifying Notifications on an Account 9-5

Managing Notification Templates 9-5

Notification Types 9-5

Templates, Resource Bundle, and Other Configuration Files 9-7

Notification Configuration 9-7

Resource Bundles 9-7

Template Files 9-7

Customizing Templates 9-10

Preserving Customized Template Files During Calendar Server Upgrade 9-12

Writing a Java Messaging Service Consumer 9-13

Notification Message Format 9-13

Code Sample 9-14

Managing Calendar Server Java Messaging Server Destinations 9-15

Overview of Calendar Server JMS Destinations 9-15

Administer JMS Destination in GlassFish Server Deployments 9-15

Listing a JMS Destination's Metrics 9-15

Purging All Messages 9-16

Monitoring Disk Utilization 9-16

Accessing Remote Brokers Tip 9-16

Administer JMS Destination in WebLogic Server Deployments 9-16

Presence Notifications 9-16

Configuring Presence Notifications 9-17

10

Troubleshooting Calendar Server

Troubleshooting Calendar Server Initial Configuration 10-1

Troubleshooting Application Server and Java 10-1

Troubleshooting Common Issues 10-1

Using the asadmin Command to Specify GlassFish Server Port 10-2

Using the GlassFish Server Administration Console to Check Calendar Server Status 10-2

Using the asadmin Command-line Utility to Check Calendar Server Status 10-2

Using the WebLogic Server Administration Console to Check Calendar Server Status 10-2

Troubleshooting the Calendar Server davserver Process 10-3

vii

Troubleshooting a Failing davadmin Command 10-3

Troubleshooting MySQL Server Errors 10-5

Importing a Convergence ics File 10-6

Refreshing Domain Information 10-7

Troubleshooting the iSchedule Back End on MySQL Server 10-7

Enabling Telemetry Logging 10-7

Common Errors in Log Files 10-8

Using the Same Start and End Date for an Event 10-8

Same UID Already in Use 10-8

No Specification of Content-type Header 10-8

Deleting a Non-existing File 10-8

Posting to Calendar Collection Without a File Name 10-8

Using a Non-implemented HTTP Method 10-9

Using the Browser Servlet in GlassFish Server Deployments 10-9

Troubleshooting CalDAV Clients 10-9

Lightning 10-10

Apple iCal 10-10

iPod touch 10-10

Known Issues 10-11

Troubleshooting Clients Running iOS 5 and Mac OS 10.7 10-11

Mac OS 10.9 iCal Client Not Able to Delete Events 10-11

Checking Active Calendar Users 10-11

Troubleshooting Calendar Server Agent Alerts in Instant Messaging Server 10-11

11

Improving Calendar Server Performance

Tuning Calendar Server Logging 11-1

Tuning Oracle GlassFish Server 11-1

Tuning JVM Options 11-1

Tuning JDBC Pool 11-1

Tuning HTTP Service and Listener 11-1

Tuning Oracle WebLogic Server 11-2

Tuning JVM Options for WebLogic Server 11-2

Tuning JDBC Pool for WebLogic Server 11-3

Tuning HTTP Service and Listener for WebLogic Server 11-4

Tuning MySQL Server 11-4

Tuning Oracle Solaris CMT Server 11-5

Tuning Reference 11-6

viii

12

Backing Up and Restoring Calendar Server Files and Data

Overview of Calendar Server Backup and Restore 12-1

Calendar Server Backup and Restore Techniques 12-1

Using the davadmin db backup Command 12-2

Using ZFS Snapshots 12-2

MySQL Backup and Restore Techniques 12-2

MySQL Asynchronous Replication 12-3

MySQL Database Dump 12-3

Point-In-Time Binlog Backup and Recovery 12-3

Oracle Database Backup and Restore Techniques 12-3

Part II Administering a High-Availability System

13

Configuring a High-Availability Database

Overview of MySQL Server Asynchronous Replication 13-1

MySQL Server Asynchronous Replication Example 13-1

MySQL Server Two-Way Replication Example 13-2

Replication Synchronization Issues 13-2

Using the Multi-Host Failover Feature of JDBC Connector/J 13-3

Test for MySQL Server Asynchronous Replication (Manual) 13-5

Test for MySQL Server Two-Way Replication with Connector/J Failover 13-8

14

Configuring Calendar Server for Highly Availability

Front End High Availability: Load Balancing 14-1

Back End High Availability: MySQL Async Replication 14-1

Back End High Availability: Oracle Data Guard 14-1

Document Store High Availability 14-1

Part III Calendar Server Reference

15

Calendar Server Configuration Reference

davserver.properties File 15-1

davservercreds.properties File 15-1

Document Store Server Configuration File 15-1

certmap.conf File 15-2

davadmin.properties File 15-2

ix

Notification Templates 15-3

16

Calendar Server Configuration Parameters

17

Calendar Server Command-Line Utilities

Overview of the Command-Line Utilities 17-1

davadmin Security 17-1

Environment Variables 17-1

davadmin Utility 17-1

Location 17-2

General Syntax 17-2

Ways to Provide Options 17-2

Clifile Properties 17-3

Common Options 17-3

davadmin Operations 17-5

Tool-Only Options 17-6

Exit Code 17-6

davadmin account 17-6

Syntax 17-6

account Operation 17-6

Options for account Operation 17-7

davadmin account Examples 17-10

davadmin backend 17-11

Syntax 17-11

backend Operation 17-12

Options for backend Operation 17-12

davadmin backend Examples 17-12

davadmin cache 17-13

Syntax 17-13

cache Operation 17-13

Options for the cache Operation 17-13

davadmin calendar 17-14

Syntax 17-14

calendar Operation 17-14

Options for calendar Operation 17-14

davadmin calendar Examples 17-15

davadmin calcomponent 17-16

Syntax 17-16

calcomponent Operation 17-16

x

Options for calcomponent Operation 17-16

davadmin calcomponent Examples 17-17

davadmin config 17-18

Syntax 17-18

config Operation 17-18

Options for config Operation 17-18

davadmin config Examples 17-19

davadmin db 17-19

Syntax 17-20

db Operation 17-20

Options for db Operation 17-21

davadmin db Examples 17-22

davadmin ldappool 17-23

Syntax 17-24

ldappool Operations 17-24

Options for ldappool Operation 17-24

davadmin ldappool Examples 17-25

davadmin migration 17-25

Syntax 17-25

migration Operation 17-25

Options for migration Operation 17-26

davadmin migration Examples 17-27

davadmin passfile 17-28

Syntax 17-28

passfile Operation 17-28

Options for passfile Operation 17-28

davadmin passfile Examples 17-28

davadmin vscan 17-29

Syntax 17-29

vscan Operation 17-30

Options for vscan Operation 17-30

davadmin vscan Examples 17-31

JConsole 17-32

AdminAccountMXBean Operation 17-32

AdminBackendMXBean Operation 17-32

AdminCalComponentMXBean Operation 17-32

AdminCalendarMXBean Operation 17-32

AdminConfigMBean Operation 17-32

AdminMigrationMXBean Operation 17-32

AdminMiscMXBean Operation 17-32

AdminUtilMXBean 17-33

Starting the Application Server in Secure Mode 17-33

xi

Summary of davadmin Changes by Release 17-33

Changes in Calendar Server 7 Update 1 17-33

Changes in Calendar Server 7 Update 2 17-33

Changes in Calendar Server 7 Update 2 Patch 5 17-33

Changes in Calendar Server 7 Update 3 17-34

Changes in Calendar Server 7.0.4.14.0 17-34

Changes in Calendar Server 7.0.4.16.0 17-35

Changes in Calendar Server 7.0.5.17.0 17-35

Deprecated Options 17-35

18

Time Zone Database

Africa 18-1

America 18-2

Antarctica 18-4

Arctic 18-5

Asia 18-5

Atlantic 18-6

Australia 18-6

Europe 18-7

Indian 18-8

Pacific 18-8

xii

Preface

This guide explains how to administer Oracle Communications Calendar Server and its
accompanying software components.

Audience
This document is intended for system administrators whose responsibility includes Calendar
Server. This guide assumes you are familiar with the following topics:

• Oracle Communications Calendar Server and Oracle Communications Messaging Server
protocols

• Oracle GlassFish Server or Oracle WebLogic Server

• Directory Server and LDAP

• System administration and networking

• General deployment architectures

Nomenclature
The following nomenclature is used throughout the document.

Convention Meaning

Application Server The term Application Server or application server is used in
this document to refer to either GlassFish Server or
WebLogic Server.

Supported Application Server: Oracle Communications
Calendar Server 8.0.0.3.0 and previous releases were
deployed on GlassFish Server, which is no longer
supported by Oracle. For that reason, Calendar Server
8.0.0.4.0 and beyond are only supported on Oracle
WebLogic Server. Oracle strongly recommends that you
upgrade your Calendar Server environments to release
8.0.0.4.0 or higher and migrate to WebLogic Server to
receive full Oracle support.

Directory Server The term Directory Server or directory server is used in this
document to refer to either Oracle Unified Directory Server
(OUD) or Oracle Directory Server Enterprise Edition
(ODSEE). Oracle strongly recommends that you migrate
from ODSEE to OUD to receive full Oracle support.

xiii

Note:

Calendar Server release 8.0.0.6.0 and above support Oracle Unified Directory Server
12.2.1.4. For Oracle Unified Directory support, you need to install and run DS setup
6.4.0.30.0. For more information, see the appendices "rundssetup Reference" and
"ODSEE to OUD Migration" in Oracle Communications Calendar Server Installation
and Configuration Guide. ODSEE is not supported from 8.0.0.8.20250424.

Calendar Server 8.0.0.8.20250424 supports MySQL Server 8.4. Calendar Server
8.0.0.6.0 and above support MySQL Server 8.0 in addition to MySQL Server 5.7.x.
Calendar Server 8.0.0.6.0 and above does not support MySQL Server 5.5.x.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
Monitoring and Managing Calendar Server

Part I contains the following chapters:

• Calendar Server System Administration Overview

• Stopping and Starting Calendar Server Services

• Managing Calendar Server

• Monitoring Calendar Server

• Setting Up and Managing Calendar Server Users

• Enabling Advanced Features

• Configuring CalDAV Clients

• Configuring and Managing Virus Scanning

• Using Calendar Server Notifications

• Troubleshooting Calendar Server

• Improving Calendar Server Performance

• Backing Up and Restoring Calendar Server Files and Data

1
Calendar Server System Administration
Overview

This chapter provides an overview of Oracle Communications Calendar Server, and describes
the basic administration tasks and tools used to perform those tasks.

About Calendar Server
Oracle Communications Calendar Server (also referred to as Calendar Server 7 and formerly
known as Oracle Communications Calendar Server for CALDAV Clients and Sun Java System
Calendar Server) is a carrier-grade, highly scalable, secure, and reliable calendaring and
scheduling platform. Calendar Server is compliant with the latest calendaring and scheduling
standards, including the CalDAV access protocol, which makes it usable with Apple iCal,
iPhone, Thunderbird Lightning, and any other CalDAV client.

Calendar Server provides a number of calendaring and scheduling capabilities, including:

• Personal appointments (one-time/recurring) and reminders

• Multiple calendars per user (Work calendar, Home calendar)

• Document store for storing event/task attachments

• Multiple access points, including desktop clients (Apple iCal, Outlook, Lightning),
Convergence web client, and mobile clients (iPhone, Android)

• Availability checks

• Invitation notifications

• Special handling of resource scheduling

• Comprehensive access control settings including settings for groups

• Sharing and subscription of calendars

Overview of Calendar Server Administration Tasks
A Calendar Server administrator is responsible for the day-to-day tasks of maintaining and
managing Calendar Server and its users. The tasks also include managing Calendar Server
components, the application server, and potentially other Unified Communications Suite
components.

You perform the following tasks as a Calendar Server administrator:

• Stopping and starting Calendar Server

• Managing calendar accounts

• Monitoring Calendar Server

• Tuning Calendar Server performance

• Migrating data to Calendar Server

• Managing the Calendar Server back-end database

1-1

• Backing up and restoring files

• Troubleshooting Calendar Server

About Calendar Server Administration Tools
Calendar Server is deployed on an application server domain.

When GlassFish Server is used as the container, you can use the GlassFish Server
Administration Console and asadmin command to manage the Calendar Server web
container. See the GlassFish Server documentation for more information.

When WebLogic Server is used as a container, you can use WebLogic Server Administration
Console to manage the Calendar Server web container. See the WebLogic Server
documentation for more information.

Calendar Server provides a number of command-line utilities for administering the server.
These utilities run under the umbrella command, davadmin. For more information, see
"Calendar Server Command-Line Utilities".

Directory Placeholders Used in This Guide
Table 1-1 lists the placeholders that are used in this guide:

Table 1-1 Calendar Server Directory Placeholders

Placeholder Directory

CalendarServer_home Specifies the installation location for the Calendar Server software. The
default is /opt/sun/comms/davserver.

DelegatedAdmin_home Specifies the installation location for the Delegated Administrator
software. The default is /opt/sun/comms/da.

GlassFish_home Specifies the installation location for the Oracle GlassFish Server
software. The default is /opt/glassfish3/glassfish.

WebLogic_home The base directory in which Oracle WebLogic Server software is
installed.

GlassFish_Domain Oracle GlassFish server domain in which Calendar Server is deployed.
For example, GlassFish_home/domains/domain1

WebLogic_Domain Oracle WebLogic Server domain in which Calendar Server is deployed.
For example, WebLogic_home/user_projects/domains/
base_domain.

Note: In case of WebLogic Server, it must have at least one Managed
Server instance configured and the Managed Server instance must be
hosting the Calendar Server.

AppServer_Domain Domain of the application server in which Calendar Server will be
deployed.

Domain refers to either Glassfish_Domain or Weblogic_Domain.

Chapter 1
About Calendar Server Administration Tools

1-2

2
Stopping and Starting Calendar Server
Services

This chapter describes how to stop and start Oracle Communications Calendar Server
services.

Overview of Stopping and Starting Calendar Server
Stopping and starting Calendar Server involves stopping and starting processes and
databases on the Calendar Server front-end and back-end hosts.

To stop and start the Calendar Server process on the front-end hosts, you must stop and start
the application server domain in which Calendar Server is deployed.

To stop and start the Calendar Server database on the back-end hosts, you use the
appropriate MySQL or Oracle Database command. See the following documentation for more
information:

• "Starting and Stopping MySQL Automatically" in MySQL Reference Manual

• "Stopping and Starting Oracle Software" in Oracle Database Administrator's Reference 19c
for Linux and UNIX-Based Operating Systems

When you start Calendar Server, you must first start the Calendar Server back-end database
hosts, as well as the remote document stores, before starting the Calendar Server front-end
hosts.

Stopping and Starting Calendar Server
The following examples show how to stop and start Calendar Server deployed on GlassFish
Server and WebLogic Server.

For GlassFish Server:

Example of a default GlassFish Server installation with Calendar Server deployed in domain1:

• To stop Calendar Server:

GlassFish_home/bin/asadmin stop-domain domain1
• To start Calendar Server:

GlassFish_home/bin/asadmin start-domain domain1
For WebLogic Server:

You can stop or start the domains in WebLogic Server Administration Console. You can also
stop or start the domains using the scripts provided in the bin directory of the domain. After
stopping or starting the domains, you should restart the Administration Server and Managed
Server on which Calendar Server is deployed. For more information, see the discussion about
starting and stopping servers in Administering Server Startup and Shutdown for Oracle
WebLogic Server.

2-1

https://dev.mysql.com/doc/refman/8.4/en/
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/start/overview.html
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/start/overview.html

Starting and Stopping the Remote Document Store
The Calendar Server document store is used to store and retrieve large data, such as todo
attachments.

To stop and start the Calendar Server remote document store server, use the stop-as and
start-as commands.

• To start the remote document store server:

CalendarServer_home/sbin/start-as
• To stop the remote document store server:

CalendarServer_home/sbin/stop-as

Chapter 2
Starting and Stopping the Remote Document Store

2-2

3
Managing Calendar Server

This chapter provides details on managing Oracle Communications Calendar Server.

Supported Application Server
Oracle Communications Calendar Server 8.0.0.3.0 and previous releases were deployed on
GlassFish Server, which is no longer supported by Oracle. For that reason, Calendar Server
8.0.0.4.0 and beyond are only supported on Oracle WebLogic Server. Oracle strongly
recommends that you upgrade your Calendar Server environments to release 8.0.0.4.0 or
higher and migrate to WebLogic Server to receive full Oracle support.

Administering Calendar Server Using the Application Server
Calendar Server depends on Oracle GlassFish Server or Oracle WebLogic Server deployed as
a web container.

For more information on administering GlassFish Server, see the Oracle GlassFish Server 3.0
documentation.

• Certificates and SSL in Oracle GlassFish Server Security Guide

• asadmin Utility in Oracle GlassFish Server Administration Guide

For more information on administering Oracle WebLogic Server, see the Oracle WebLogic
Server documentation.

• Configuring Keystores in Fusion Middleware Administering Security for Oracle WebLogic
Server Guide.

• Configure keystores in Oracle Fusion Middleware Administration Console Online Help for
Oracle WebLogic Server 12.2.1.3.0.

• Administration Console Online Help in Oracle Fusion Middleware Administration
Console Online Help for Oracle WebLogic Server 12.2.1.3.0.

Administering the Document Store
The Calendar Server document store is used to store and retrieve "large data," such as
calendar events with many invitees, and todos with large attachments. Normally, you configure
the document store as part of the Calendar Server installation process. You set up one
document store per configured Calendar Server back end. You do so by specifying the location
of the document store directory for Calendar Server to use in the
store.dav.defaultbackend.dbdir configuration parameter, if the store is local, and the
store.dav.backend_name.attachstorehost configuration parameter, if the store is remote. For
more information, see the topic on configuring the document store in Calendar Server
Installation and Configuration Guide.

Administering the document store involves:

• Starting and Stopping the Remote Document Store

3-1

• Changing the Password Used for Remote Document Store Authentication

Changing the Password Used for Remote Document Store Authentication
When changing passwords used for remote document store authentication, you must change
them on both the local Calendar Server host and on each remote document store host to keep
them synchronized.

To change the remote document store password:

1. Use the following davadmin command to change the password on each remote document
store host.

cd CalendarServer_home/sbin
davadmin passfile modify -O

Respond to the prompts.

2. Stop then restart the document store server for the password change to take effect.

cd CalendarServer_home/sbin
stop-as
start-as

3. Use the following davadmin command to change the password on the local Calendar
Server host.

cd CalendarServer_home/sbin
davadmin passfile modify

Respond to the prompts.

Note:

When you run the davadmin db backup command, you are prompted for the
document store password. To avoid having to enter a password every time when
running this command, create a password file by running the davadmin passfile
command.

Using Calendar Server Administration Utilities
Calendar Server provides a number of command-line utilities for server administration. These
utilities run under the umbrella command, davadmin, which is a simple shell script. By default,
the davadmin utility is installed in the CalendarServer_home/sbin directory with user or group
bin/bin permissions. See "Calendar Server Command-Line Utilities" for more information.

Managing Logging
Managing logging includes:

• Logging Calendar Server Information to the Application Server Log File

• Configuring Logging

• Viewing the Document Store Logs

• Using the scheduling Log

Chapter 3
Using Calendar Server Administration Utilities

3-2

• Using the commands Log

Overview of Calendar Server Logging
Calendar Server maintains the following types of log files:

• commands: Stores information about requests that are sent to the server and information
related to each operation performed to satisfy those requests. The commands log
contains servlet and core operation classes entries that are designed to help you monitor
requests to the server and help diagnose problems. See "Using the commands Log" for
more information on the commands log.

• errors: Stores error and debug-level information that is supplied by the server for use in
diagnosing problems.

• scheduling: Stores information on scheduling actions, showing when invitations are
enqueued and dequeued.

• telemetry: Stores entire Calendar Server servlet request and response transcripts.

• scan: Stores information on virus scanning actions.

Each log file has its own configuration parameters that control the log file location, maximum
size, log level, and number of files allowed.

Log files are created with a suffix of .number, for example, commands.0, commands.1, and
so on. The log file numbered .0 is the latest, the log file numbered .1 is previous, and so on.
When a log file is filled to its maximum configured size, the logging system increments each of
the existing log file suffixes to the next higher number, starting with the highest. If the number
of log files reaches the configured maximum, the highest numbered log file is deleted and the
next higher takes its place.

For example, Calendar Server is started for the first time and you have configured the
maximum number of log files at 10. The logging system begins writing messages to the log file
with the .0 suffix. When the .0 log file is filled to capacity, the logging system increments its
suffix to the next higher number and the file becomes .1. The logging system then creates a
new .0 log file and begins writing messages to it. When the .0 file become full, the logging
system increments the .1 file to .2, increments the .0 file to .1, and creates a a new .0 file. This
process continues until the maximum number of configured log files is reached. When that
happens, the logging system deletes the highest numbered (oldest) log file, .9, increments
each of the lower numbered files' suffixes, and creates a new .0 log file.

The Calendar Server log files are kept separate from the application server log files. The
GlassFish Server log files are maintained in the GlassFish_home/domains/domain_name/
logs directory. For example, /opt/glassfish3/glassfish/domains/domain1/logs.

The WebLogic Server log files are stored in the WebLogic_Domain/servers/
managed_server_name/logs.

Even though the container's log file is the root log file, by default, information that is stored in
the Calendar Server's log files is not stored in the container's log file.

Logging Calendar Server Information to the Application Server Log File
By default, the Calendar Server logToParent flag is set to false. It prevents logging of
information to the application server log file.

To log the calendar information to the application server log file (server.log for GlassFish
Server and managed_server_name.log for WebLogic Server) and the Calendar Server log file
(commands.0), set the log.dav.commands.logtoparent parameter to true:

Chapter 3
Managing Logging

3-3

davadmin config modify -u admin -o log.dav.commands.logtoparent -v true

Configuring Logging
Use the davadmin command to configure Calendar Server logging configuration parameters
as shown in Table 3-1.

name can be commands, errors, scheduling, telemetry, or scan, depending on the type of
logging you want to configure; use error to configure Calendar Server error logging. SEVERE
and WARNING messages need immediate attention. FINE, FINER, and FINEST messages
are usually informational only, but can provide more context for troubleshooting when
accompanying SEVERE and WARNING messages.

For more information about the logging configuration parameters and their default values, see
"Calendar Server Configuration Parameters".

Table 3-1 Calendar Server Log File Parameters

Parameter Description

log.dav.name.logdir Specifies the log file directory path

log.dav.name.loglevel Specifies the log level:

• OFF: No information is logged.
• SEVERE: Logs catastrophic errors.
• WARNING: Logs major errors or exceptions with the system.
• INFO: Logs general informational messages. This is the

default level.
• FINE: Logs general debugging and tracing information to

show the higher level flow through the code or more detailed
information about a problem.

• FINER: Logs more details than FINE.
• FINEST or ALL: Logs the finest grain details about code flow

or problem information. Enabling this level can result in
massive amounts of data in the log file, making it hard to
parse.

log.dav.name.logtoparent Enables or disables logging of the application server log file.
When set to true, messages are stored in the application server
log file and the Calendar Server log file. Set this parameter to
false to disable logging to the application server log file.

log.dav.name.maxlogfiles Specifies the maximum number of log files

log.dav.name.maxlogfilesize Specifies the log file's maximum size

Viewing the Document Store Logs
The document store logs are named astore.number and are located in the
CalendarServer_home/logs directory. Change to this directory to view the log files.

Using the scheduling Log
The scheduling log file stores information on scheduling actions, showing when invitations are
enqueued and dequeued Table 3-2 describes the scheduling codes in the scheduling log file.

Chapter 3
Managing Logging

3-4

Table 3-2 Codes Used in Scheduling Log Files

Code Log Level Needed Description

E INFO Enqueuing of an inbound scheduling message

J INFO Rejection of attempted enqueue

DL FINE Successful dequeue for a local recipient

DE FINE Successful dequeue for an external (iSchedule) recipient

DM FINE Successful dequeue for an iMIP recipient

QE INFO Temporary failure to dequeue for an external (iSchedule) recipient

QM INFO Temporary failure to dequeue for an iMIP recipient

R INFO Permanent failure to dequeue

By default, enqueues are logged, as well as unsuccessful dequeues, such as wrong user,
temporary errors, and so on. To see successful dequeues in the log, you must set the
scheduling log level to at least FINE.

The following log sample shows sample dequeues and enqueues.

[2012-06-01T16:26:56.018+0200] E "a11bdb82-422a11dd-8002d2ed-c263972e@example.com/
calendar-outbox/REQUEST-1338560816008-3-.ics" 6954475.scen REQUEST
mailto:james.smith@example.com mailto:ron.white@example.com "1.2;Delivered"
[2012-06-01T16:26:56.019+0200] E "a11bdb82-422a11dd-8002d2ed-c263972e@example.com/
calendar-outbox/REQUEST-1338560816008-3-.ics" 6954475.scen REQUEST
mailto:james.smith@example.com mailto:mary.jones@example.com "1.2;Delivered"
[2012-06-01T16:26:56.083+0200] DL "a11bdb82-422a11dd-8002d2ed-c263972e@example.com/
calendar-outbox/REQUEST-1338560816008-3-.ics" 6954475.scen REQUEST
mailto:james.smith@example.com mailto:ron.white@example.com "Success"
[2012-06-01T16:26:56.239+0200] DL "a11bdb82-422a11dd-8002d2ed-c263972e@example.com/
calendar-outbox/REQUEST-1338560816008-3-.ics" 6954475.scen REQUEST
mailto:james.smith@example.com mailto:mary.jones@example.com "Success"

invitation from james to ron and mary with UID "6954475.scen" was submitted (E) at
"2012-06-01T16:26:56.018+0200" and delivered at 2012-06-01T16:26:56.083 to ron and at
2012-06-01T16:26:56.239 to mary

This example shows the following information:

1. Timestamp

2. Scheduling codes (E,DL)

3. Relative URI of scheduling message being processed

4. iCalendar UID of the event/tasks

5. Type of message (iTIP REQUEST, REPLY)

6. Originator

7. Recipient

8. iTIP detailed status code

Chapter 3
Managing Logging

3-5

Using the commands Log
The Calendar Server commands log file contains per servlet entries that are designed to help
monitor requests to the server and help diagnose problems. The commands log file includes
the principal account that logged in and what operations were done from that account.

Table 3-3 describes the command log fields. The commands log records contain three set
fields and one variable field.

Table 3-3 commands Log Fields

Field Description

Time stamp Identifies when the log entry is created.

Sequence Unique number for each request.

Servlet Name of the Calendar Server servlet that handles the request.

Variable Logs information about the start and end of specific internal server
operations.

For HTTP commands that are logged from the servlet layers, this field
also logs the HTTP request coming in with a [REQ], the HTTP method,
URI information, IP address, host name, and port, as well as the user
principal information for that request. The corresponding response is
marked as [RES], followed by an HTTP status.

The following log entries are for a simple CalDAV query of a calendar event performed by
caluser8@example.com:

[2011-11-16T11:50:21.512-0700] <22> DavServlet[REQ] GET /davserver/dav/home/
caluser8@example.com/calendar/test.ics 127.0.0.1 localhost:8080{principal:
caluser8@example.com}
[2011-11-16T11:50:21.512-0700] <22> DavServlet----- {authenticated principal:
caluser8@example.com}
[2011-11-16T11:50:21.512-0700] <22> DavServlet----- Authentication: caluser8@example.com
login_time=0.0 secs,start_service_time=0.0 secs.
[2011-11-16T11:50:21.513-0700] <22> DavServlet----- Get /davserver/dav/home/
caluser8@example.com/calendar/test.ics start.
[2011-11-16T11:50:21.517-0700] <22> DavServlet----- Get end. Processing time=0.0040 secs.
[2011-11-16T11:50:21.517-0700] <22> DavServlet----- Get /davserver/dav/home/
caluser8@example.com/calendar/test.ics start.
[2011-11-16T11:50:21.521-0700] <22> DavServlet----- Get end. Processing time=0.0040 secs.
[2011-11-16T11:50:21.526-0700] <22> DavServlet[RES] [200] Command execution time: 0.014
secs

The following log entries are from a list_subscribed.wcap command executed by user
arnaud@example.com.

[2011-11-14T13:48:36.504-0700] <2056> WCAPServlet [REQ] GET /davserver/wcap/login.wcap?
user=arnaud&password=*****&fmt-out=text/xml 127.0.0.1 localhost:8080{principal:
arnaud@example.com}
[2011-11-14T13:48:36.504-0700] <2056> WCAPServlet----- {authenticated principal:
arnaud@example.com}
[2011-11-14T13:48:36.504-0700] <2056> WCAPServlet----- Authentication:
arnaud@example.com login_time=0.0 secs,start_service_time=0.0 secs.
[2011-11-14T13:48:36.504-0700] <2056> WCAPServlet----- Search /home/arnaud@example.com/
start. scope=SCOPE_ONE filter={DAV:}resourcetype=DEFAULT_CALENDAR
[2011-11-14T13:48:36.507-0700] <2056> WCAPServlet----- Search end. Processing
time=0.0030 secs. NbEvaluatedNodes=2,NbMatchingNodes=1
[2011-11-14T13:48:36.509-0700] <2056> WCAPServlet[RES] [200] Command execution time:

Chapter 3
Managing Logging

3-6

0.0060 secs
[2011-11-14T13:48:36.565-0700] <2057> WCAPServlet [REQ] GET /davserver/wcap/
list_subscribed.wcap?id=W6a505a75-cf21-4d68-90b6-35095ad51ccb&fmt-out=text/xml 127.0.0.1
localhost:8080{authenticated principal: arnaud@example.com}
[2011-11-14T13:48:36.596-0700] <2056> WCAPServlet----- ListSubscribedCalendars /home/
arnaud@example.com/calendar_subscribed_set start.
[2011-11-14T13:48:36.596-0700] <2056> WCAPServlet----- Get /home/arnaud@example.com/
calendar_subscribed_set start.
[2011-11-14T13:48:36.598-0700] <2056> WCAPServlet----- Get end. Processing time=0.0020
secs.
[2011-11-14T13:48:36.600-0700] <2056> WCAPServlet----- ListSubscribedCalendars end.
Processing time=0.0040 secs.
[2011-11-14T13:48:36.600-0700] <2056> WCAPServlet----- Search /home/arnaud@example.com/
start. scope=SCOPE_ONE filter=|({DAV:}resourcetype=CALENDAR)
({DAV:}resourcetype=DEFAULT_CALENDAR)
[2011-11-14T13:48:36.612-0700] <2056> WCAPServlet----- Search end. Processing time=0.012
secs. NbEvaluatedNodes=10,NbMatchingNodes=5
...
[2011-11-14T13:48:36.613-0700] <2057> WCAPServlet[RES] [200] Command execution time:
0.049 secs
[2011-11-14T13:48:36.668-0700] <2058> WCAPServlet [REQ] GET /davserver/wcap/
list_subscribed.wcap?id=W6a505a75-cf21-4d68-90b6-35095ad51ccb&fmt-out=text/xml 127.0.0.1
localhost:8080{authenticated principal: arnaud@example.com}
[2011-11-14T13:48:36.668-0700] <2056> WCAPServlet----- ListSubscribedCalendars /home/
arnaud@example.com/calendar_subscribed_set start.
[2011-11-14T13:48:36.668-0700] <2056> WCAPServlet----- Get /home/arnaud@example.com/
calendar_subscribed_set start.
[2011-11-14T13:48:36.670-0700] <2056> WCAPServlet----- Get end. Processing time=0.0020
secs.
[2011-11-14T13:48:36.672-0700] <2056> WCAPServlet----- ListSubscribedCalendars end.
Processing time=0.0040 secs.
[2011-11-14T13:48:36.672-0700] <2056> WCAPServlet----- Search /home/arnaud@example.com/
start. scope=SCOPE_ONE filter=|({DAV:}resourcetype=CALENDAR)
({DAV:}resourcetype=DEFAULT_CALENDAR)
[2011-11-14T13:48:36.691-0700] <2056> WCAPServlet----- Search end. Processing time=0.019
secs. NbEvaluatedNodes=9,NbMatchingNodes=4
[2011-11-14T13:48:36.692-0700] <2058> WCAPServlet[RES] [200] Command execution time:
0.025 secs

In this example, following the initial login.wcap command, the test issued multiple
list_subscribed.wcap commands to the Calendar Server WCAP servlet by using the same
session ID obtained from the login command. The email address of the user principal who
issues the request is also included as part of the fourth field, between curly braces.

Administering Calendar Server Access
Calendar Server uses Access Control Lists (ACLs) to determine access control for calendars
and scheduling.

Overview of ACLs
An Access Control List (ACL) consists of one or more Access Control Entries (ACEs), which
are strings that grant a particular level of access. ACEs collectively apply to the same calendar
or component, or for scheduling, to an account. Each ACE in an ACL must be separated by a
semicolon. Multiple ACE strings can apply to a single calendar or a single account.

ACLs are denied unless explicitly granted. Some control access is "built-in" to Calendar Server.
For example, calendar owners have full access to their calendars. Granting of a particular ACE
means implicitly granting anything considered a "lower" ACE.

Chapter 3
Administering Calendar Server Access

3-7

ACEs are in the form, ace_principal:right, where ace_principal can be "@" for all, "@domain"
for a domain, "user@domain" for a user and "group@domain" for a group. See "Calendar
Access Controls" for ACE rights for calendars and scheduling.

ACEs function in the following way:

• More specific access rights override other access rights.

• Access rights granted to a specific user are more specific than rights granted to a user as
member of a group.

• Rights granted as part of the "all" users setting are considered least specific.

• If a user is a member of multiple groups, the highest level of access granted individually by
any one of the groups is the access level of the user.

• Calendar Server access control does not take into consideration nesting levels within each
group.

You set Calendar Server access controls by using either the davadmin command or WCAP
commands. Calendar Server uses the acl parameter to facilitate storing of the ACE strings.
The acl parameter is a semicolon-separated list of ACE strings.

Calendar Access Controls
You can set the following four levels of calendar access controls on each calendar collection:

• none (level n)

• read (level r)

• read+write+delete (level w)

• read+write+delete+manage (level a)

An ACE is granted to all (@), domain, user or group. Definition of "all" is made server-wide
through the davcore.acl.calendaranonymousall configuration parameter. If set to false, "all"
does not include unauthenticated users. Users and groups are represented by their mail
address. If you change the davcore.acl.calendaranonymousall parameter, the change does
not affect ACLs that were previously configured. Changing
davcore.acl.calendaranonymousall only affects new ACLs.

The following example shows an ACE in which all users get read access,
userA@example.com gets read, write, delete, and manage access, and all members of
groupA@example.com get read, write, and delete access.

@:r;userA@example.com:a;groupA@example.com:w

The davcore.acl.defaultcalendaracl configuration parameter defines a default ACL for all
calendar collections. You can change this value by using the davadmin config command.
Calendar Server uses default ACLs for all calendars for which ACLs are not explicitly set.

Scheduling Access Controls
You can set scheduling permissions for an account, which are used for checking a user's
freebusy information, inviting a user, and inviting on behalf of a user. The four levels of
scheduling access levels are:

• none (level n)

• freebusy (level f)

• freebusy+schedule_invite (level s)

Chapter 3
Administering Calendar Server Access

3-8

• freebusy+schedule_invite+manage (level m)

An ACE is granted to all (@), domain, user or group. Definition of "all" is made server-wide
through the davcore.acl.schedulinganonymousall configuration parameter. If set to false,
"all" does not include unauthenticated users. If you change the
davcore.acl.schedulinganonymousall parameter, the change does not affect ACLs that were
previously configured. Changing davcore.acl.schedulinganonymousall only affects new
ACLs.

You define a default ACL for scheduling by using the davcore.acl.defaultschedulingacl
configuration parameter.

To invite someone else, you must have a scheduling right of at least s for that user.

Setting Access Control for LDAP Groups
In addition to granting calendar and scheduling ACEs to users, you can grant them to LDAP
groups. The group is represented by its mail address just like a user. An ACE granted to a
group is effective for all members of the group. Any user-specific ACEs granted to a group
member override the ACEs granted through group membership.

When evaluating group members for ACL evaluation, only internal group members are
considered. That is, only members defined in LDAP by using their DN, directly using the
uniquemember attribute, or indirectly as an LDAP URL that resolves to member DNs
belonging to the group by using the memberurl attribute, are considered for ACL evaluation.

Retrieving Access Control Information
You use the davadmin command or WCAP commands get_calprops.wcap,
search_calprops.wcap, and get_accountprops.wcap to retrieve the access control rights of
a logged-in user to a particular calendar, or user. The ACL itself is viewable by owners,
administrators, and those users with manage rights only. All other users can get their access
rights through the X-S1CS-MYRIGHTS property that is returned by the get and search
commands. The value of this property is either calendar-level rights (n, r, w, or a); or
scheduling rights (n, f, s or m), depending on the WCAP call.

See Calendar Server WCAP Developer's Guide for information on the get_calprops.wcap,
search_calprops.wcap, and get_accountprops.wcap commands.

Modifying Access Control Configuration Parameters
To modify an access control configuration parameter, run the davadmin config modify
command:

davadmin config modify -o configuration_parameter -v value

Table 3-4 describes the configuration parameters that Calendar Server uses for access control.

Table 3-4 Access Control Configuration Parameters

Parameter Description

davcore.acl.defaultcalendaracl Specifies the default access control settings used
when creating a new user calendar. The default is: ""

Chapter 3
Administering Calendar Server Access

3-9

Table 3-4 (Cont.) Access Control Configuration Parameters

Parameter Description

davcore.acl.defaultschedulingacl Specifies the default access control used for
scheduling that is set on a scheduling inbox creation
(from the server configuration parameter). The default
is: @:s

davcore.acl.calendaranonymousall Determines if all (@) includes anonymous principals
for user calendar access. The default is: false

davcore.acl.schedulinganonymousall Determines if all (@) includes anonymous principals
for scheduling access. The default is: false

davcore.acl.defaultresourcecalendaracl Specifies the default access control settings used
when creating a new resource calendar. The default is:
@:r

davcore.acl.defaultresourceschedulingacl Specifies the default access control settings set on
scheduling inboxes of resource calendars. The default
is: @:s

See "Calendar Server Configuration Parameters" for more information on these access control
configuration parameters.

Command-Line Utilities for Access Control
Use the davadmin calendar command to get or set calendar ACLs for calendars and the
davadmin account command to get or set scheduling ACLs for access control. See "Calendar
Server Command-Line Utilities" for more information.

To update the default calendar ACLs for existing user's calendar resource types calendar,
default_calendar, calsched_inbox, addressbook, and default_addressbook, use one of the
following commands:

davadmin account repair -u weblogic_admin_user --all-acl
or

davadmin account repair -u weblogic_admin_user -l
For more information, see "Calendar Server Command-Line Utilities".

WCAP Commands for Access Control
Use get_accountprops.wcap and set_accountprops.wcap to access and set an account's
scheduling rights. Use get_calprops.wcap and set_calprops.wcap to access and set the
access rights to a calendar. Use search_calprops.wcap to view a user's "MYRIGHTS"
(privilege level of access to other users' calendars).

For information on these commands, see the topic on Web Calendar Access Protocol overview
in Calendar Server WCAP Developer's Guide.

Managing Domain ACLs
Domain ACLs control calendar operations that span multiple domains. Calendar Server
combines domain ACLs with the calendar and scheduling ACLs to grant or deny levels of

Chapter 3
Administering Calendar Server Access

3-10

access to any calendaring or scheduling operation. All operations within a single domain rely
strictly on the calendar and scheduling ACLs.

For more information, see the topic on managing domain access controls in Calendar Server
Security Guide.

Managing Dynamic Group ACLs
The group ACL feature supports the use of dynamic groups. A dynamic group in LDAP uses
the member URL attribute to specify an LDAP filter for the membership of the group. For
example, the following URL uses a "department=marketing" filter for group membership:

[ldap:///o=mcom.com??sub?(department=marketing)]

Users that are determined to be members through the search filter are granted whatever
access is given to the group in the ACL.

Administering Scheduling Options
This section describes how manage Calendar Server scheduling rules, booking window, and
LDAP group invitation.

Administering scheduling options involves:

• Configuring Scheduling Options

• Configuring a Booking Window

• Modifying Calendar Double Booking

• Controlling Double Booking When Creating Accounts Automatically

• Modifying Configuration Parameters That Control Double Booking

• Overriding the Account Autocreation Through LDAP

• Manually Creating Accounts

• Modifying Double Booking on Existing Accounts

• Inviting LDAP Groups

Configuring Scheduling Options
Calendar Server processes incoming invitations and delivers them to recipients, including
delivery to default calendars for internal recipients, without any extra client interaction. If you
need Calendar Server to perform additional checks and processing during scheduling,
configure the attendantflag of the recipient's inbox by using either the davadmin account
command or the set_accountprops.wcap command.

The attendantflag properties are:

• Auto Decline of Recurring Meetings. You can disallow recurring meetings for some
resource calendars. Any invitation for a recurring meeting received on such a calendar is
declined, regardless of its availability.

• Auto Decline on Scheduling Conflict. Calendar Server performs an upfront freebusy check
on internal recipients and rejects the invitation if the scheduling results in a conflict and the
recipient is set up to auto decline on conflict.

• Auto Accept of invitation. Calendar Server can automatically accept incoming invitations if
the recipient is set up for it.

Chapter 3
Administering Scheduling Options

3-11

Default settings of the flag are determined by the following configuration parameters:

• davcore.autocreate.calattendantuserflags: default value for users (0 = no auto accept,
no auto decline booking conflict, no recurrence check on invitations)

• davcore.autocreate.calattendantresourceflags: default value for resource calendars (3
= auto accept invitation and auto decline on booking conflict)

Overview of Calendar Booking Window
The booking window is the scheduling time frame that determines how far into the future a
calendar or resource can be booked. The optional minbookingwindow setting calculates the
earliest date and time when a reservation can be made on a calendar for an event starting on a
specific date and time. The maxbookingwindow setting defines the latest date and time when
a resource can be reserved for an event starting on a specific date and time.

If the minbookingwindow value is defined, scheduling for an event at a certain time can occur
only if the current time is equal to or greater than the date and time calculated by subtracting
this value from the event's proposed start time. If the minbookingwindow setting is not
defined, then bookings can be made at any time before the end of the booking window. The
minbookingwindow takes a value in the range of 0 to 2,147,483,647 days. A negative integer
value indicates that the minbookingwindow is not honored during a freebusy check. The
default value is -1.

The maxbookingwindow setting (the default value is 365 days) defines the latest date and
time when a calendar or resource can be reserved for an event starting on a specific date and
time. If the current time is equal to or before the value obtained by subtracting the
maxbookingwindow value from the start date and time of the event, then the invitation is
successful. If this setting is absent, then the scheduling can occur any time from
minbookingwindow. The maxbookingwindow takes a value in the range of 0 to
2,147,483,647 days.

Taken together, the minbookingwindow and maxbookingwindow settings provide the
window of time events can be scheduled on the calendar, relative to the scheduling time. If a
single event's timing is outside that window or a recurring event's instances go beyond the
window (either before the minimum bound or after the maximum bound), all instances of the
event are declined. Otherwise, only instances that are in conflict with other events are
declined, if double booking is disallowed. In the case when no minimum bound is set, the event
is autodeclined only when any instance is beyond the upper bound specified by
maxbookingwindow settings.

In the case when no minimum bound is set, the event is autodeclined only when any instance
is beyond the upper bound specified by maxbookingwindow settings.

You set the global booking window settings by using the
davcore.scheduling.minbookingwindow parameter and the
davcore.scheduling.maxbookingwindow parameter. You can override the global minimum
and maximum values by using account-specific settings. These account-level minimum and
maximum booking window properties are stored as scheduling inbox collection properties.

In general, only use the davcore.scheduling.minbookingwindow parameter for specialized
resources or ones that require upfront time to be readied. For example, you might have a
conference room that needs to be configured for Internet connectivity and it normally takes a
week to do so. In this case, you would set the davcore.scheduling.minbookingwindow
parameter to 7 (days). The conference room resource calendar would then only be available
for booking 7 days in advance.

Chapter 3
Administering Scheduling Options

3-12

Note:

Calendar Server performs a booking window check only if the account is set up to
decline on doublebooking or when outside of booking window, that is, if the attendant
flag for the davcore.autocreate.calattendantuserflags or
davcore.autocreate.calattendantresourceflags configuration parameters is set
only to 2, 3, 6, or 7. For information on double booking, see "Modifying Calendar
Double Booking".

Configuring a Booking Window
To configure both the minimum and maximum booking windows for accounts, you can use
either the davadmin command or the set_accountprops.wcap interface. In absence of an
account property, Calendar Server defaults to using the corresponding system-wide booking
window configuration. For example:

• davadmin command:

davadmin account modify -a resource1@example.com -y
minbookingwindow=10,maxbookingwindow=365

• set_accountprops.wcap command:

$(wcapbase)/set_accountprops.wcap?account=$
(resourceEmail)&minbookingwindow=10&maxbookingwindow=365&fmt-out=text/json

The minimum and maximum booking window settings are used only if the attendant flag is also
set appropriately, that is, set to 2, 3, 6, or 7.

Modifying Calendar Double Booking
Double booking is the ability to schedule and display two events on a calendar at the same
time. Calendar Server keeps track of double booking based on a per-account property. You
can use the following ways to control double booking:

1. Use account autocreation to automatically assign the double-booking property flag.
Additionally, you can control the value assigned during autocreation on a per-account basis
by using specific LDAP values in the account's LDAP entry.

2. Manually create accounts with the desired property flag setting.

3. Modify the value of an existing account by using the davadmin account command or a
client that uses the wcap_setaccountprops command.

Note:

This feature concerns double booking by invitation only. It does not prevent users
with write permission from double booking the calendar by directly creating events in
it.

Chapter 3
Administering Scheduling Options

3-13

Controlling Double Booking When Creating Accounts Automatically
Because automatic creation of calendar accounts happens when users log in to Calendar
Server, you create users by provisioning the users in LDAP then providing instructions for
logging in. For more information, see "Creating Calendar Account with Default Calendar
Automatically Upon Login".

The two Calendar Server "autocreate" configuration parameters that control double booking
are:

• For users: davcore.autocreate.calattendantuserflags (default is 0, no auto decline, no
auto accept)

• For resources: davcore.autocreate.calattendantresourceflags (default is 3, auto decline
and auto accept)

Table 3-5 describes the flag options. Both the davcore.autocreate.calattendantuserflags and
davcore.autocreate.calattendantresourceflags configuration parameters take the options
described in the table. Double booking is allowed on calendars when the value of these
attendant flag options is 0, 1, 4, or 5.

Table 3-5 Flag Options

Option Value Description

0 Does not perform autoaccept, does not check booking conflict, does not check
recurrence on invitations

1 Automatically accepts invitations

2 Automatically declines if invitation results in booking conflict

3 Automatically accepts invitation and automatically declines on booking conflict

4 Automatically declines recurring meeting invitations

5 Automatically accepts invitations and automatically declines recurring meeting
invitations

6 Automatically declines recurring invitations and invitations that cause a booking
conflict

7 Automatically accepts invitations, automatically declines recurring invitations and
invitations that cause a booking conflict

Note:

At the system-wide level, if the davcore.scheduling.allowownerdoublebooking
parameter is set to true (the default value is false), then resource calendar owners
can double book the resource even if an attendant flag is set that prevents double
booking.

Modifying Configuration Parameters That Control Double Booking
Use the davadmin config modify command to change double booking behavior.

Chapter 3
Administering Scheduling Options

3-14

For example, the following command causes invitations for resources to be automatically
accepted on invitation and declined on booking conflict or if outside the allowed booking
window.

davadmin config modify -u admin -o davcore.autocreate.calattendantresourceflags -v 3

The following command configures the system to not perform autoaccept, not check booking
conflict, and not check recurrence on invitations for users:

davadmin config modify -u admin -o davcore.autocreate.calattendantuserflags -v 0

Overriding the Account Autocreation Through LDAP
You can use LDAP to override the double booking value that is set on individual accounts
during autocreation.

1. Check the value of the davcore.ldapattr.icsdoublebooking configuration parameter and
change it if necessary.

The value is an LDAP attribute that controls the double booking setting used during
autocreation. By default, this attribute is icsDoublebooking.

davadmin config list -o davcore.ldapattr.icsdoublebooking
Enter Admin password: password
davcore.ldapattr.icsdoublebooking: icsDoubleBooking

2. Update the account's entry in LDAP.

For example, if you use the icsDoublebooking attribute, a value of 1 enables double
booking, and a value of 0 prohibits double-booking. The autoaccept behavior is also
controlled similarly. The default attribute that controls autoaccept is icsAutoaccept and it
is defined by the davcore.ldapattr.icsautoaccept configuration parameter.

Manually Creating Accounts
Instead of relying on account autocreation (when a user logs in for the first time or a user or
resource is invited to an event for the first time), you can use the davadmin account create
command to explicitly create the account with the desired double booking flag setting.

For example, the following command creates a resource calendar that allows double booking
and no auto-accept:

davadmin account create -a "resource@example.com" -y "attendanceflag=0"

Note:

For accounts created through the davadmin command, the same defaults for
autocreation are used if you do not specify a value.

Modifying Double Booking on Existing Accounts
You can use the davadmin account modify command to change the double booking behavior
of any account at any time. For example, the following command modifies a resource calendar
so that double booking is no longer allowed:

davadmin account modify -a "resource@example.com" -y "attendanceflag=2"

Chapter 3
Administering Scheduling Options

3-15

Inviting LDAP Groups
You can invite entire groups in the LDAP directory as one attendee. The group is maintained
as one attendee in the organizer's calendar, but the Scheduling Service expands the group and
adds each member as a recipient of the invitation. When storing the invitation in each
recipients' calendar, that recipient is added as an ATTENDEE, which is referenced as a
member of the group. When a recipient replies, that recipient is added as an individual
ATTENDEE, also referenced as member of the initial group in the organizer's calendar. This
feature can be used to invite both static and dynamic groups in LDAP.

The following configuration parameters control this feature:

• davcore.serverlimits.maxgroupexpansion - Limits the level of nested group expansion.
By default, it is 3 (three levels deep)

• davcore.serverlimits.maxattendeesperinstance - For scheduling, limits the number of
members as a result of group expansion. The default is 1000.

• davcore.ldapattr.dngroupmember=uniquemember,
davcore.ldapattr.urlgroupmember=memberurl,
anddavcore.ldapattr.mailgroupmember=mgrprfc822mailmember - Specify the various
type of LDAP group memberships. davcore.ldapattr.dngroupmember is used for group
members specified as a DN, which denotes static membership.
davcore.ldapattr.urlgroupmember is used for group members specified through an
LDAP filter, which denotes dynamic membership. davcore.ldapattr.mailgroupmember is
used for group members specified through an email address.

If you have your own schema elements that follow the semantics of the preceding default
settings, you could add those attributes to the corresponding list by using a space delimited
fashion.

Administering Resource Calendars
Administering resource calendars involves:

• Provisioning Resource Calendars (commadmin)

• Provisioning Resource Calendars (Delegated Administrator Console)

• Managing a Resource Calendar's Mailbox

About Resource Calendars
Entities that can be scheduled but that do not control their own attendance status are called
resources. You provision resources in LDAP, either by using Delegated Administrator or LDAP
tools. See "Messaging Server and Calendar Server LDAP Object Classes and Attributes" in
Communications Suite Schema Reference for object classes and attributes required or allowed
by Calendar Server. Once provisioned, the actual calendars are automatically created on first
invite, if auto-creation is enabled. You can also create the calendar account with the default
calendar for the provisioned resource by using the davadmin account create command. See
"davadmin account" for details.

You can manage resource accounts and calendars just like user accounts and calendars. In
addition, you can set the resource account owner by using either the davadmin account or
set_accountprops.wcap commands.

An LDAP "mail" attribute (most often the mail attribute) is required to be present for resource
entries. Though resources do not check email, Calendar Server uses this address value to

Chapter 3
Administering Resource Calendars

3-16

identify and schedule the resource, and thus it must be unique to the resource. You do not
need to specify other values, such as owner's email address. Depending on your site's
requirements, you may choose to discard or manage the email that is sent to resource email
addresses. See "Managing a Resource Calendar's Mailbox" for more information.

Note:

When sharing a resource calendar and you do not receive the email notification
advising of the share in your local language then set the preferredLanguage
attribute to be your local language in the resource LDAP.

Provisioning Resource Calendars (commadmin)
When you have multiple back-end hosts, to provision the Calendar Server back-end host for
the resource, use the following command:

-A davstore:backend -E email

where backend is the JDBC resourcename without the JDBC prefix.

This is mandatory for:

• Multiple Calendar Server back-end hosts

• Calendar Server 6 coexistent deployments

Example for one back-end host:

DelegatedAdmin_home/bin/commadmin resource create -D admin -c bigdipper -N "Big Dipper
Conference Room" -E bigdipper@us.example.com -o calmaster

The LDAP entry for this example resembles the following.

dn: uid=bigdipper,ou=People,o=us.example.com,o=isp
cn: Big Dipper Conference Room
davuniqueid: d256e98e-fb1c-470e-9f78-eb80bc5e5ee8
icscalendar: bigdipper@us.example.com
icsstatus: active
inetresourcestatus: active
mail: bigdipper@us.example.com
objectclass: daventity
objectclass: inetresource
objectclass: icscalendarresource
objectclass: top
owner: uid=calmaster, ou=People, o=us.example.com,o=isp
uid: bigdipper

Example for multiple back-end host deployment:

DelegatedAdmin_home/bin/commadmin resource create -D calmaster -d demo.example.com -w
password -u room1 -c room1 -N Room1 -A davstore:defaultbackend -E room1@demo.example.com

Notes:

• For commadmin resource create, use the -o owner option, if you want a Convergence
user to be able to subscribe to the calendar.

• The -o owner option can only used be on a uid in the same domain as the resource.

Chapter 3
Administering Resource Calendars

3-17

Provisioning Resource Calendars (Delegated Administrator Console)
To provision resource calendars by using the Delegated Administrator console:

1. Log in to Delegated Administrator Console.

2. Select the organization in which to create the resource calendar.

3. Click the Calendar Resources tab.

4. Click New.

The New Calendar Resource page is displayed.

5. Type the required resource information, including Resource ID, Calendar Resource Name,
and Resource Owner.

You cannot create a resource without a resource owner.

6. In a multiple back-end deployment, make sure that you type the correct calendar store.

7. Click Next.

The summary page is displayed.

8. Click Finish to create the resource.

Managing a Resource Calendar's Mailbox
Use one of the following options for a resource calendar's mailbox:

• In the resource's LDAP entry, set the mail delivery option to forward and set the forwarding
address to the bitbucket channel.

Here is sample LDIF:

dn: uid=calresbitbucket,ou=People, o=exaample.com, o=dav
uid: calresbitbucket
cn: CalResBitBucket
description: Conference Room
mail: calresbitbucket@example.com
icsStatus: active
objectClass: top
objectClass: inetresource
objectClass: icscalendarresource
objectClass: daventity
objectClass: inetMailUser
objectclass: inetlocalmailrecipient
inetResourceStatus: active
owner: uid=john, ou=People, o=example.com, o=dav
mailDeliveryOption: forward
mailForwardingAddress: calresbitbucket@[channel:bitbucket]
mailhost: icsmail.example.com

• Assign the resource a valid email address and manage its mailbox. Either assign the
password and management of that mailbox to the owner of the resource, or expire and
expunge the email account more aggressively, so that email does not build up.

Administering Time Zones Support
Time zones are an important part of any time and date based application like calendaring and
scheduling. Calendar Server uses the standard Time Zone Database, which is maintained by

Chapter 3
Administering Time Zones Support

3-18

IANA, for time zone information. The timez one information is compiled and shipped along with
Calendar Server. Each Calendar Server patch is updated to the latest available Time Zone
Database. For more information on IANA, see the website at:

http://www.iana.org/time-zones
Administering time zones includes:

• Adding New WCAP Time Zones

• Adding an Alias to an Existing Time Zone

• Adding an Alias to an Existing Time Zone

Adding New WCAP Time Zones
Calendar Server makes a subset of supported time zones available to WCAP clients. Calendar
Server derives the supported WCAP time zones to match those that the Convergence client
supports. If you modify the Convergence client to support a new time zone, you must also add
the new time zone to Calendar Server's WCAP time zone list.

The list of WCAP time zones is derived from the list provided in the CalendarServer_home/
config/timezoneids.txt file. The file consists of the supported Time Zone Database
timezoneid strings followed by their aliases, if any. The alias names are separated by a colon
character. The file has one line per supported time zone.

For more information on how this works with Convergence, see the topic on adding and
modifying Calendar Server time zones in Convergence Customization Guide.

Adding an Alias to an Existing Time Zone
The following task applies to WCAP clients that use time zone aliases. Currently, the
Convergence client does not support time zone aliases.

To add an alias to an existing time zone:

1. Edit the CalendarServer_home/config/timezoneids.txt file.

2. Find the corresponding time zone line and add a colon followed by the new alias name at
the end of the line. For example, to add the alias US West Coast to the America/
Los_Angeles time zone entry, change:

America/Los_Angeles:Pacific Standard Time:US/Pacific

to

America/Los_Angeles:Pacific Standard Time:US/Pacific:US West Coast
3. Restart Calendar Server.

See "Stopping and Starting Calendar Server" for details.

Adding a New Time Zone
To add a new time zone:

1. Find the time zone or its equivalent in the "Time Zone Database" list supported by the
server.

2. Edit the CalendarServer_home/config/timezoneids.txt file.

3. Add an entry for that time zone ID to the end of the file.

Chapter 3
Administering Time Zones Support

3-19

http://www.iana.org/time-zones

4. If you prefer a different name, add that name as an alias too, by adding a colon and the
name following the time zone ID entry.

5. Restart Calendar Server.

See "Stopping and Starting Calendar Server" for details.

Customizing Calendar Notifications
Calendar Server provides preformatted notification messages to be sent to calendar owners
when changes occur in calendar resources and properties. You can customize these files for
your own deployment. See "Using Calendar Server Notifications" for details.

Administering the Calendar Server Back End Databases
This section describes how to administer the Calendar Server back end databases.

Administering the MySQL Database
The following links provide information about administering MySQL. For more information,
consult the MySQL documentation directly.

• "Starting and Stopping MySQL Automatically" in MySQL Reference Manual

• "MySQL Server and Server-Startup Programs" in MySQL Reference Manual

• "MySQL Administrative and Utility Programs" in MySQL Reference Manual

• Backing Up and Restoring Calendar Server Files and Data

Caution:

You can view the contents of the back-end store by using standard MySQL tools. Do
not use MySQL tools to modify your data.

Administering the Oracle Database
For information about administering Oracle Database, see the following:

• Stopping and Starting Oracle Software in Oracle Database Administrator's Reference
for Linux and UNIX-Based Operating Systems.

• Administering Oracle Database in Oracle Database Administrator's Reference for Linux
and UNIX-Based Operating Systems.

• Backing Up and Restoring Calendar Server Files and Data

For more information, see the Oracle Database documentation.

Caution:

You can view the contents of the back-end store by using standard Oracle Database
tools. Do not use Oracle Database tools to modify your data.

Chapter 3
Customizing Calendar Notifications

3-20

https://dev.mysql.com/doc/refman/8.4/en/
https://dev.mysql.com/doc/refman/8.4/en/
https://dev.mysql.com/doc/refman/8.4/en/
https://docs.oracle.com/en/database/oracle/oracle-database/19/unxar/stopping-and-starting-oracle-software.html#GUID-EFE15D61-4BDC-4A9B-B8E4-46A7325C2409
https://docs.oracle.com/en/database/oracle/oracle-database/19/unxar/administering-oracle-database.html#GUID-F71197C7-3B59-4DA1-99DC-3E33BC037ABF

Backing Up and Restoring Calendar Server Data
See "Backing Up and Restoring Calendar Server Files and Data" for information.

Removing Unwanted Calendar Data to Reclaim Space
To reclaim space in the Calendar Server database, you can purge deleted calendar entries and
purge messages from the scheduling inbox and outbox.

Purging Deleted Calendar Entries
When calendar data is deleted, either by users deleting events and tasks, or by using the
davadmin account delete, the data is only marked for deletion. The data is actually purged
from the calendar database when the expiry time is reached. The default expiry time is 30 days
and is controlled by the store.dav.defaultbackend.purgedelay configuration parameter. See
"Calendar Server Configuration Parameters" for more information on this parameter.

Purging Messages From the Scheduling Inbox and Outbox
Oracle Communications Calendar Server supports implicit scheduling. The actual scheduling
process involves writing of the iTIP request to the sender's calendar outbox, then posting it to
the recipients' inboxes, and eventually writing to the recipients' default calendars. The interim
iTIP messages are stored as resources in the Calendar Server users' scheduling outbox and
inbox. You can automatically purge these resources in the outbox and inbox collections.

To set the interval to purge messages from the scheduling outbox and inbox, use the
davcore.scheduling.calendaroutboxexpirytime and
davcore.scheduling.calendarinboxexpirytime parameters. See "Calendar Server
Configuration Parameters" for more information on these options. These parameters enable
you to set the expiration time for scheduling messages in all the users' outbox and inbox.

For each parameter, specify the number of seconds after which the resources in the outboxor
inbox should be deleted. The default for davcore.scheduling.calendaroutboxexpirytime is
604800 seconds (7 days), and the default for davcore.scheduling.calendarinboxexpirytime
is 2592000 seconds (30 days).

Chapter 3
Backing Up and Restoring Calendar Server Data

3-21

4
Monitoring Calendar Server

This chapter provides details on monitoring Oracle Communications Calendar Server.

About Monitoring Calendar Server
Calendar Server uses a managed bean (MBean) created in the application server to collect
monitoring data. By using the application server's Java Management Extension (JMX)
interface, you can then access this data by using a JMX-compliant client. The JMX client
connects to the platform's MBeanServer by using a JMX Service URL. Once a client connects
to the MBeanServer, it uses the Calendar Server monitoring MBean object name to access the
MBean's attributes.

Calendar Server Monitoring Attributes
This section describes the attributes of the Calendar Server monitoring MBean object name,
com.sun.comms.davserver:type=monitor.

General Monitoring Attributes
Table 4-1 describes the general monitoring attributes.

Table 4-1 General Monitoring Attributes

Name Type Description

EventsCreated Integer The number of events created since the server was started.

FailedLogins Integer The number of failed login attempts since the server was
started.

TasksCreated Integer The number of created tasks since the server was started.

BackendMonitorScheduleQData CompositeData[] The calendar schedule queue length per back-end database.
For more information, see "Back-End Database Schedule
Queue Attributes".

BackendMonitorARTData CompositeData[] The average response time per back-end database. For more
information, see "Back-End Database Average Response
Times Attributes".

BackendRTData TabularType

Map<K,V>

TabularData

(BackendRTData)

A dynamic collection of response time data of LDAP
connections, provided in a Map interface, that is, Map<String
backendID, BackendRTData rtData>.

Both the UG lookup and LDAP authentication connections are
monitored. For more information, see "LDAP Response Time
Monitoring Attributes".

Back-End Database Schedule Queue Attributes
Table 4-2 describes the back-end database schedule queue monitoring attributes.

4-1

Table 4-2 Back-End Database Schedule Queue Monitoring Attributes

Name Type Description

backendID String Name ID of this back-end database as defined on this front-end host.

message String Optional exception or informational message from this back-end database.

activeCount Long The count of resources on the schedule queue that are scheduled for immediate
processing. A value of -1 means no data is available.

retryCount Long The count of resources on the schedule queue that initially failed and are waiting for a later
retry. The default retry time period is 1 hour. The maximum retry default is 24.

Back-End Database Average Response Times Attributes
The average response time for a back-end database is passively calculated during normal
work load and reported in milliseconds. The sample duration period is approximately 60
seconds. Numerical fields may have a value of -1 if no data can be returned from that back-
end database. However, if there is no activity, then the last good value is retained if possible.
The data is measured by taking samples of real client requests. Thus, if no clients are active or
are not making requests, there is no data to be measured.

Table 4-3 describes the back-end database average response time monitoring attributes.

Table 4-3 Back-End Database Average Response Times Monitoring Attributes

Name Type Description

backendID String Name ID of this back-end database as defined on this front-end host.

message String Optional exception or informational message from this back-end database.

ART Long The average response time for a random sampling of simple database requests in milliseconds
over approximately a previous 60 seconds time frame. A value of -1 means no data.

NSamples Long The number of samples taken in this average.

startTime Long The system time in milliseconds of the first sample.

endTime Long The system time in milliseconds of the last sample.

status Long The back-end database status as known by this front-end host. The possible values are:

• 0 - Database is okay
• -1 - Database is down
• -2 - Database failed to start

statusTime Long The system time at which this JMX request was issued.

LDAP Response Time Monitoring Attributes
Table 4-4 describes the LDAP response time monitoring attributes.

Table 4-4 LDAP Response Times Monitoring Attributes

Name Type Description

backendID String Key. Name ID of this LDAP host, in format, BackendType-HostName, for example,
LDAPUg-01.example.com.

resptime Long The response time of simple back-end requests in milliseconds.

Chapter 4
Calendar Server Monitoring Attributes

4-2

Table 4-4 (Cont.) LDAP Response Times Monitoring Attributes

Name Type Description

message String Optional information about the connection, for example, "Exception occurred during LDAP
healthCheck()."

timestamp Long The system timestamp that was issued by this request.

Using a Java Management Extension Client to Access the
Monitoring Data

Calendar Server itself does not provide a client to access the monitoring data. Instead, you can
use any Java Management Extension (JMX) client.

To access the monitoring data, a JMX client needs the following information:

• Application Server host name or IP address

• Application Server port number (GlassFish Administration port or WebLogic Managed
Server port)

• Application Server administrative user name and password

• MBean ObjectName, which is com.sun.comms.davserver:type=monitor

• Attribute names

If you use GlassFish Server:

You connect a JMX client to the GlassFish Server's MBeanServer by using a JMX Service URL
of the following form:

service:jmx:rmi:///jndi/rmi://host:port/jmxrmi

where:

• host is the name or IP address of the GlassFish Server

• port is the GlassFish Server administration port number

If you use WebLogic Server:

For remote access, Oracle recommends you to use the T3/T3S protocol support provided in
the wlthint3client.jar library.

For more information, see the discussion about accessing WebLogic Server MBeans with JMX
in Oracle Fusion Middleware Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

You connect a JMX client to the WebLogic Server's MBeanServer by using a JMX Service URL
that has the following syntax:

service:jmx:t3s://host:port/jndi/weblogic.management.mbeanservers.runtime

where:

• host is the name or IP address of the WebLogic Server

• port is the WebLogic Managed Server port

Chapter 4
Using a Java Management Extension Client to Access the Monitoring Data

4-3

Note:

Ensure to provide SSL Port when using t3s protocol in the URL.

More information on JMX and JMX clients is available on the Java documentation web site at:

https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/

Using the responsetime Script
In addition to using monitoring data gathered by the Calendar Server monitoring MBean, you
can also check the health of your hosts by using the Calendar Server supplied responsetime
script. This script sends a set of basic requests to Calendar Server and measures the amount
of time needed to process those requests. When the responsetime script shows a spike or a
large increase in response time, this indicates a potential issue with Calendar Server that
needs to be addressed.

To run the responsetime script, you must provide the server type (calendar), the application
server host name and port, and an LDAP user account to run the script. When the script
finishes, it displays the number of milliseconds needed to run the series of requests to stdout.
When the script encounters no problems, it returns an exit status of 0. If the script encounters a
problem, it returns an exit status of 1 to stderr. See "responsetime Script Error Codes" for a list
of error codes and descriptions.

responsetime Script Syntax
Use the responsetime script to check the health of your Calendar Server hosts.

Location
CalendarServer_home/sbin

General Syntax
responsetime -t calendar -H host -p port [-s path_of_truststore]
 [-x context_root] [-L locale] [-h]

Table 4-5 describes the options.

Table 4-5 Options for responsetime Script

Option Description

-t Specifies to monitor Calendar Server (calendar).

-H Specifies the application server host name.

-p Specifies the application server administrative port.

-s Specifies the path to the truststore file, if a secure connection is used.

-x Specifies the context root for Calendar Server. The default is / (root).

Chapter 4
Using the responsetime Script

4-4

https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/

Table 4-5 (Cont.) Options for responsetime Script

Option Description

-L Specifies the language locale to use to display messages. The format is LL_CC_VV,
where:

• LL is the language code.
• CC is the country code.
• VV is the variant.

-h Displays usage help.

The responsetime script requires that you stream the following user name and password,
each on a separate line, to the script by using stdin:

• RT_USER=user

• RT_PWD=password

The responsetime script uses the WCAP protocol to fetch an event from a calendar that
belongs to RT_USER. The first time the responsetime script runs, the calendar event does
not yet exist. Thus, the script creates the calendar event for subsequent use. This one-time
calendar event creation causes a slight increase to the response time. Afterwards, the
response times should be similar except when server load differs.

For information on creating a dedicated user account for RT_USER, see "Creating a Dedicated
User Account for the responsetime Script".

responsetime Script Error Codes
Table 4-6 describes the responsetime script error codes and descriptions.

Table 4-6 responsetime Script Error Codes

Error Code String Description

200 Ok The request succeeded and the amount of time, in milliseconds, is
displayed to stdout.

201 Application server is down. The responsetime script cannot connect to the application server host.

202 Calendar server is down or
server path not found.

The responsetime program had trouble sending a request to the
application server host.

204 Login failure. A problem occurred when trying to log in to the application server host.

205 Invalid user name or password. Either the user name or the password was invalid.

206 Invalid server type. The value of the -t option provided was invalid.

207 Response Time request failed. A problem occurred when a request was made to the GlassFish Server.

208 Unable to find truststore file. The truststore file was not found or could not be accessed.

209 Unable to create resource. A problem occurred when creating the monitoring event.

210 Unable to locate or open
messages resource bundle.

A problem occurred when accessing the localization resource bundle.

211 Invalid option: An invalid option was entered on the command line.

212 The "{0}" option is required. A required option was not entered on the command line. The "{0}" string is
replaced in the message with the name of the missing option.

Chapter 4
Using the responsetime Script

4-5

responsetime Script Example
The following example shows how to invoke the responsetime script and run it by using
csrtuser as RT_USER.

#!/bin/sh
#
echo "RT_USER=csrtuser\nRT_PWD=password" | sbin/responsetime -t calendar -H
sc11.example.com -p 8080 -x /davserver

bash> example_csrt.sh
1374
bash>

Creating a Dedicated User Account for the responsetime Script
The responsetime script requires a user account in LDAP to be specified in the RT_USER
variable. You should create a dedicated user account for the responsetime script to use.
Create this user by using the Calendar Server config-rtuser script, which is located in the
CalendarServer_home/sbin directory. The config-rtuser script both creates the user in LDAP
and runs the davadmin command to create the user in the Calendar Server database.

To create a dedicated user for the responsetime script by using the config-rtuser script:

1. Log in to the Calendar Server host as root.

2. Change to the CalendarServer_home/sbin directory.

3. Run the config-rtuser script:

config-rtuser
4. Respond to the prompts for user account and password, Directory Manager password, and

the application server administrative password.

5. When prompted to proceed, type Y.

The script runs the ldapmodify command to create the user account.

Chapter 4
Using the responsetime Script

4-6

5
Setting Up and Managing Calendar Server
Users

This chapter describes how to provision Oracle Communications Calendar Server users and
manage calendar accounts.

Provisioning Calendar Server Users
This section describes how to provision Calendar Server users and contains the following
topics:

• Overview of Provisioning Calendar Server

• Provisioning Calendar Users by Using Delegated Administrator

• Provisioning Calendar Users Across Virtual Domains

Overview of Provisioning Calendar Server
Calendar Server uses Directory Server to store and retrieve user and resource information and
to perform authentication. Calendar Server does not add or modify LDAP data. Calendar
Server data (such as todos and events) is stored in an SQL database, which can be either
MySQL Server or Oracle Database.

Note:

Oracle Communications Calendar Server supports the same LDAP schema used by
Calendar Server 6. Some additional object classes and attributes were added for
Oracle Communications Calendar Server.

By default, Calendar Server automatically creates the necessary entries in the SQL database
for users upon their initial Calendar Server login. However, you must also perform some basic
LDAP user provisioning for users and resources to be able to access Calendar Server
services, and for Calendar Server automatic account creation to work. You can provision
Calendar Server users and resources in the Directory Server LDAP by using either Delegated
Administrator or LDAP tools.

You must provision Calendar Server users and resources so that Calendar Server can
automatically create accounts and users and resources can access Calendar Server services.
You must provision users and resources with the following attributes:

• An email attribute, such as mail.

• A unique ID attribute corresponding to the value for the server
davcore.uriinfo.permanentuniqueid configuration parameter. The default value is
davUniqueId. Be sure to also index the attribute used for
davcore.uriinfo.permanentuniqueid, as Calendar Server performs searches on it.

5-1

To define these attributes, the corresponding object classes must be present in LDAP. The
davEntity object class defines the davUniqueId attribute. In addition to the preceding two
LDAP requirements, if your deployment consists of multiple back-end databases, you must
define the Store ID attribute. The davEntity object class also defines the default Store ID
attribute. The default value for Store ID is davStore.

By default, if you provision Calendar Server users for email and unique ID attributes (and the
Store ID attribute when multiple back-end databases are deployed), users have a status of
active. The active status enables users to access Calendar Server services. To deny
Calendar Server services to users, you specify a value of either inactive or deleted for the
user's icsStatus attribute.

If you have a co-existent deployment of both Calendar Server 6 and Oracle Communications
Calendar Server, and are migrating users to Oracle Communications Calendar Server, you
must update the user's LDAP once the user is marked for migration and taken offline for
migration. You can only migrate the user at that point. Calendar Server uses an LDAP attribute
to determine if a user has been migrated. By default, the davStore attribute is used, but you
can choose another attribute if desired. In a single back-end deployment, this attribute must be
added with the value of defaultbackend. In a multiple back-end deployment, the value must
be the logical back-end ID for the database where the user's data resides after migration.
Again, the object class that defines the davStore attribute is davEntity.

For more information on Calendar Server LDAP schema, object classes, and attributes, see
Calendar Server Concepts and Communications Suite Schema Reference.

Provisioning Calendar Users by Using Delegated Administrator
Delegated Administrator 7 supports Calendar Server provisioning. Calendar Server makes use
of the davStore attribute and not icsdwphost (which is used in Calendar Server 6) to assign a
specific back-end in a multiple back-end scenario. You can add the davStore LDAP attribute to
users' and resources' subject entries to associate those users and resources with a particular
back-end Calendar Server store. The value of the davStore attribute is equal to one of the
davStore IDs defined in the server configuration. davStore is single valued. When not present,
a server configurable default davStore ID is used.

When a user or group is assigned a calendar service, the davEntity object class is added
along with icscalendaruser or icscalendargroup object class, enabling you to provision the
user or the group with a davStore attribute.

The new user wizard with the Calendar Service Details consists of the following fields:

• Calendar Host

• Calendar Store

• Timezone

where the Calendar Host and Timezone are applicable to Calendar Server 6 and Calendar
Store is applicable to Oracle Communications Calendar Server.

The user properties section in the Calendar Service Details consists of the following fields:

• Calendar Host: (icsdwphost)

• Calendar Store: (davstore)

• Email Address: (mail)

• Default Calendar: (icscalendar)

• Owned Calendar: (icscalendarowned)

Chapter 5
Provisioning Calendar Server Users

5-2

• Subscribed Calendar: (icssubscribed)

• Timezone: (icstimezone)

• Calendar Service Status: (icsstatus)

where the Calendar Host, Default Calendar, Timezone, Owned Calendar, and Subscribed
Calendar are applicable to Calendar Server 6 and Calendar Store is applicable to Oracle
Communications Calendar Server. Email Address and Calendar Service Status are applicable
to both servers.

A new field called Calendar Store is added for Oracle Communications Calendar Server users.
When configuring a user in Delegated Administrator with Calendar services, a valid davstore
ID has to be entered in the Calendar Store field instead of a host name.

Provisioning Calendar Users Across Virtual Domains
Calendar Server supports hosted (or virtual) domains. In a hosted domain installation, each
domain shares the same instance of Calendar Server, which enables multiple domains to exist
on a single server. Each domain defines a name space within which all users, groups, and
resources are unique. Each domain also has a set of attributes and preferences that you
specifically set.

Installing and configuring hosted domains on a server involves these high-level steps:

1. Installing and configuring Calendar Server and Delegated Administrator.

For more information, see Calendar Server Installation and Configuration Guide and
Delegated Administrator Installation and Configuration Guide.

2. Using Delegated Administrator to create the hosted domain, and users, resources, and
groups in that hosted domain.

For more information, see Delegated Administrator System Administrator's Guide.

3. Setting domain ACLs.

For more information, see the topic on managing domain access controls in Calendar
Server Security Guide.

Note:

Always perform your provisioning for Schema 2 with Delegated Administrator.
Schema 1 provisioning tools do not support hosted domains.

Managing Calendar Users and Accounts
Managing calendar users and accounts includes:

• Defining Valid Calendar Users

• Enabling and Disabling Automatic Account Creation

• Creating Calendar Account with Default Calendar Automatically Upon Login

• Preventing a User or Resource From Accessing Calendar Server

• Checking for Active Calendar Users

• Removing Calendar Users

Chapter 5
Managing Calendar Users and Accounts

5-3

• Removing a Calendar User (Example)

• Moving Calendar Users to a New Back-End Database

• Changing a User's Email Address in the Calendar Server Database

Defining Valid Calendar Users
The davcore.ldapattr.userobject configuration parameter defines what LDAP object class is
required for a calendar user entry to be considered valid. By default,
davcore.ldapattr.userobject is empty. A value that would make sense is icsCalendarUser,
however, if you use custom provisioning, you can define your own object class instead.

To define a valid calendar user:

Set the davcore.ldapattr.userobject configuration parameter to a valid LDAP object class.
For example:

davadmin config modify -o davcore.ldapattr.userobject -v icsCalendarUser

Setting davcore.ldapattr.userobject to the LDAP attribute icsCalendarUser would consider
users without that object class in their LDAP entries as invalid calendar users, therefore no
auto-provisioning would take place for them in the calendar store.

Enabling and Disabling Automatic Account Creation
You can enable or disable, on a system-wide basis, automatic account creation. When
automatic account creation is enabled, users' accounts are automatically created for them
when they first log in to Calendar Server.

• To enable automatic calendar accounts creation:

davadmin config modify -o davcore.autocreate.enableautocreate -v true
• To disable automatic calendar accounts creation:

davadmin config modify -o davcore.autocreate.enableautocreate -v false
See the davcore.autocreate.enableautocreate parameter in "Calendar Server Configuration
Parameters" for more information.

Creating Calendar Account with Default Calendar Automatically Upon Login
To create accounts with default calendars automatically when users log in:

1. Create users by provisioning them in LDAP.

2. Use the davadmin command to set any of the davcore.autocreate.* parameters to
customize your deployment.

See "Calendar Server Configuration Parameters" for more information.

3. Enable automatic account creation.

See "Enabling and Disabling Automatic Account Creation".

4. Provide users with instructions for logging in to Calendar Server.

Chapter 5
Managing Calendar Users and Accounts

5-4

Preventing a User or Resource From Accessing Calendar Server
To prevent a particular user from accessing Calendar Server, set the icsStatus attribute to
inactive. You can set the icsStatus attribute on a user or resource, or domain basis. For more
information on icsStatus, see Communications Suite Schema Reference.

Checking for Active Calendar Users
Use the commands log to check for which users have been querying their calendars. In this
way you can determine which users are active. For more information, see "Using the
commands Log".

Tip:

Use a cron job script to automatically scan the commands log file and generate this
kind of report.

Removing Calendar Users
Completely removing a calendar user involves deleting the user from the Calendar Server
database and the LDAP directory.

To remove a Calendar Server user:

1. Run the davadmin account delete command to delete the user account and calendars
from the Calendar Server back-end database.

2. Set the icsStatus attribute for users being deleted to "removed."

You must do this so that the last step of deleting the account from LDAP by using the
commadmin command is successful. Even when you delete the user account in previous
step, the LDAP entry for the user remains with the icsStatus attribute unchanged. Thus,
you must manually set the icsStatus attribute to "removed" so that running the Delegated
Administrator commadmin domain purge command removes the user's LDAP entry.

3. Run the Delegated Administrator commadmin domain purge command to remove the
user's LDAP entry.

Note:

The commadmin domain purge command does not, however, remove the user
as a member from any groups of which the user is a member. To completely
remove a user's entry from the directory, you must enable the Referential
Integrity plug-in. See the topic on maintaining referential integrity in Oracle
Fusion Middleware Administration Guide for Oracle Directory Server Enterprise
Edition 11.

When you remove a calendar user by running the davadmin account delete command, the
back-end resources for the user are deleted, and then purged according to the value of the
store.dav.defaultbackend.purgedelay configuration parameter. See "Removing Unwanted
Calendar Data to Reclaim Space" for more information.

Chapter 5
Managing Calendar Users and Accounts

5-5

Note:

The search_calprops.wcap command does not return calendars belonging to
accounts which have a status of 'inactive,' 'removed,' or 'deleted.'

Removing a Calendar User (Example)
These steps show how to use the command-line to remove a calendar user. In this example,
the user is:

dn: uid=jsmith,ou=People,o=us.example.com,o=isp

These steps use the ldapmodify command to make changes to the Directory Server LDAP.
Other LDAP tools are also available.

1. In LDAP, search for the user(s) to be removed. For example:

ldapsearch -h ds.us.example.com -b "o=isp" "(uid=jsmith)"
version: 1
dn: uid=jsmith,ou=People,o=us.example.com,o=isp
...

2. Run the davadmin command to remove the calendar account and its calendars from the
Calendar Server back-end database:

CalendarServer_home/sbin/davadmin account delete -a jsmith@us.example.com
Enter Admin password:
Are you sure you want to delete the account of jsmith@us.example.com and all of its
calendars (y/n)? [n] y

3. Verify that the calendar account has been removed from the Calendar Server back-end
database:

CalendarServer_home/sbin/davadmin account list -a jsmith@us.example.com
Enter Admin password:
Unknown user: jsmith@us.example.com

4. Run the ldapmodify command to change the user's status to removed in LDAP:

ldapmodify -h ds.us.example.com -D "cn=Directory Manager" -w password
dn: uid=jsmith,ou=People,o=us.example.com,o=isp
changetype: modify
replace: icsStatus
icsStatus: removed
^D
modifying entry uid=jsmith,ou=People,o=us.example.com,o=isp

Alternately, you can run the following commadmin command:

DelegatedAdmin_home/bin/commadmin user modify -D admin -d us.example.com -l jsmith -
A icsstatus:removed

5. (Optional) If user account is configured for mail service, remove the service for the user
and run the msuserpurge command to purge the account from the Messaging Server
message store. For example:

DelegatedAdmin_home/bin/commadmin user delete -l jsmith -S mail
MessagingServer_home/lib/msuserpurge -d us.example.com -g 0

The -g 0 option performs an immediate purge.

Chapter 5
Managing Calendar Users and Accounts

5-6

6. Run the commadmin command to purge the account:

DelegatedAdmin_home/bin/commadmin domain purge -D admin -n us.example.com -d
us.example.com -g 0
Enter login password:
OK

The -g 0 option performs an immediate purge.

7. Verify that the user has been removed from LDAP:

ldapsearch -h ds.us.example.com -b "o=isp" "(uid=jsmith)"

Nothing is returned from this command, indicating that the user is no longer present in
LDAP.

Moving Calendar Users to a New Back-End Database
To move an existing calendar user from one back-end database to another:

1. Take the user offline by using the ldapmodify command to set the LDAP attribute
icsstatus to inactive.

2. Back up the user's data by using the davadmin db backup command.

3. Delete the user's data from the old back-end database by using the davadmin account
delete command.

4. Update the user's davStore attribute to the new back-end database by using the
ldapmodify command.

5. Restore the user's data to the new back-end database by using the davadmin db restore
command.

6. Re-activate the user by setting the LDAP attribute icsstatus to active.

7. Restart the application server.

8. Verify that the data has been successfully moved by having the user log in and view
calendar data.

The following example shows how to move user caltest1@backend1.com from backend1 to
the default back-end host1. In this example:

• The default back end is on host host1 and the database name on the default back end is
caldav.

• The other back end is on host backend1 and the database name on backend1 is
caldav_backend1.

• The user caltest1@backend1.com has data located on backend1.

1. Take the user offline by using the ldapmodify command to set the LDAP attribute
icsstatus to inactive.

ldapmodify -D "cn=Directory Manager" -w password
dn: uid=caltest1, ou=People, o=backend1.com, o=dav
changetype: modify
replace: icsStatus
icsStatus:inactive

2. Back up the user's data by using the davadmin db backup command.

davadmin db backup -u database_user -a caltest1@backend1.com -H backend1 -d
caldav_backend1 -k caltest1.bak

Chapter 5
Managing Calendar Users and Accounts

5-7

3. Delete the user's data from the old back-end database by using the davadmin account
delete command.

davadmin account delete -u admin_user -a caltest1@backend1.com
4. Update the user's davStore attribute to the new back-end database by using the

ldapmodify command.

ldapmodify -D "cn=Directory Manager" -w password
dn: uid=caltest1, ou=People, o=backend1.com, o=dav
changetype: modify
replace: davStore:
davStore: defaultbackend

5. Restore the user's data to the new back-end database by using the davadmin db restore
command.

davadmin db restore -H host1 -u database_user -d caldav -k caltest1.bak
6. Re-activate the user by setting the LDAP attribute icsstatus to active.

ldapmodify -D "cn=Directory Manager" -w password
dn: uid=caltest1, ou=People, o=backend1.com, o=dav
changetype: modify
replace: icsStatus
icsStatus: active

7. Restart the application server.

Changing a User's Email Address in the Calendar Server Database
When a user undergoes an email address change, use this procedure to fix notification
addresses, organizer addresses, attendee addresses, and alarm addresses in the Calendar
Server database.

To change a user's email address in the Calendar Server database:

1. (Optional) If you are changing the email address because the user's mail domain has
changed, move the user entry to the correct domain container in LDAP for the new
domain. Be sure to retain the value of the davUniqueid attribute in the user's LDAP.

2. Add the previous email address value to the LDAP attribute defined as
mailAlternateAddress, that is, the attribute defined by the
davcore.ldapattr.mailalternateaddress configuration parameter.

3. Replace the value for the user's mail attribute in LDAP with the new email address.

4. Run the davadmin account repair -a command on the old email address. If the user's
domain has changed, also use the -D option to specify the new domain value. See
davadmin account in "Calendar Server Command-Line Utilities" for more information on
this command.

5. (Optional) Remove the previous email value from the mailAlternateAddress values.

Subscribing and Unsubscribing Calendars
Calendar Server administrators can subscribe or unsubscribe calendars for a user by using the
davadmin account command with subscribe or unsubscribe actions.

To subscribe a user to another user's calendar:

1. User A gives User B read, write, or all rights to User A's calendar.

2. User B is subscribed to User A's calendar:

Chapter 5
Subscribing and Unsubscribing Calendars

5-8

davadmin account subscribe -a User_B -c User_A's_calendar

For example:

davadmin account subscribe -a userb@example.com -c /home/usera@example.com/calendar/
To unsubscribe a user from another user's calendar:

davadmin account unsubscribe -a User_B -c User_A's_calendar

For example:

davadmin account unsubscribe -a userb@example.com -c /home/usera@example.com/calendar/

To subscribe using a collection file:

1. Create a file such as /tmp/list_of_collections with the following content:

/home/usera@example.com/calendar/
/home/userc@example.com/cal1/
/home/userd@example.com/personal/

2. Run the following command:

davadmin account subscribe -a userb@example.com -C /tmp/list_of_collections
See the account Operation commands in "Calendar Server Command-Line Utilities" for more
information.

About Configuring External Authentication
Calendar Server enables user authentication against a separate, LDAP directory external to
the Calendar server environment. Such a configuration is useful in hosted environments for
delegating one administrative aspect to a provider (managing the Calendar Server front- and
back-end hosts and LDAP directory with non-sensitive data), while maintaining control over the
LDAP user passwords in the internal, corporate network. In this setup, Calendar Server uses
the external directory for user authentication.

Configuring Calendar Server for external authentication consists of the following high-level
steps:

1. Creating the LDAP pool for the external authentication directory

2. Specifying how to search for users in that directory

3. Specifying how to map the external user entry back into a Unified Communications Suite
directory user entry

Configuring Calendar Server for External Authentication
1. Use the davadmin ldappool command to create then verify an LDAP pool for the external

authentication directory. For example:

cd CalendarServer_home/sbin
davadmin ldappool create -n myldap -y
'ldaphost=ldap.example.com,ldapport=389,ldapusessl=true,binddn="cn=Directory
Manager",bindpassword=password'
Enter Admin password: password

davadmin ldappool list
Enter Admin password:
Pool Name: myldap
ldaphost: ldap.example.com

Chapter 5
About Configuring External Authentication

5-9

ldapport: 389
ldapusessl: true
ldappoolsize: 10
binddn: cn=Directory Manager
bindpassword: ********
ldaptimeout: 60
ldappoolrefreshinterval: 1

You can also set other parameters, such as ldappoolsize and ldaptimeout. See the
davadmin ldappool command in "Calendar Server Command-Line Utilities" for more
information.

2. Define how to search for users in that directory by adding the
externalAuthPreUrlTemplate LDAP attribute to each of the domain entries associated
with that external directory. The attribute value is an LDAP URL (http://tools.ietf.org/
html/rfc4516) of the following form:

ldap://server_name/search_base_DN?attributes?scope?search_filter

where:

server_name must correspond to a defined LDAP pool.

search_base_DN and search_filter can contain the following patterns:

• %o (original login ID, as provided by the user over protocol)

• %U (user part of login ID)

• %V (domain part of login ID)

The % character in %o, %U, and %V needs to be encoded as per the general URI
definition. That is, the % character becomes %25.

3. Define how to map the external user entry back into a UCS directory user entry.

Do the external directory user entries have a mail attribute value corresponding to their
internal Unified Communications Suite directory attribute value?

• If yes, no further configuration is required. (In Step 2, the list of attributes to retrieve
should simply include the mail attribute.)

• If no, define a search to be issued against the Unified Communications Suite directory
by using the externalAuthPostUrlTemplate domain entry attribute. As with the
externalAuthPreUrlTemplate attribute, the externalAuthPostUrlTemplate value is
an LDAP URL of the following form:

ldap://server_name/search_base_DN?attributes?scope?search_filter

For more information, see the externalAuthPostUrlTemplate attribute description in
Communication Suite Schema Reference.

Note the following:

– The server_name is ignored and should be empty because the lookup is
performed against the internal Communications Suite directory.

– The attributes to be retrieved must include the mail attribute.

Example: External Authentication by Using cn
In this external authentication scenario, example.com is the default domain and uses the cn
attribute as the login ID. Each user entry in the external authentication directory contains a
ucsUid attribute value that corresponds to the internal Unified Communications Suite directory

Chapter 5
About Configuring External Authentication

5-10

http://tools.ietf.org/html/rfc4516
http://tools.ietf.org/html/rfc4516

uid attribute value (in the Unified Communications Suite user entry). The LDAP pool is myldap
and the following two attributes have been added to the example.com domain entry:

externalAuthPreUrlTemplate: ldap://myldap/dc=example,dc=com?ucsUid?sub?(cn=%25U)
externalAuthPostUrlTemplate: ldap:///uid=%25A[ucsUid],ou=people,o=example.com?mail?base?
(objectclass=*)

The LDAP entry in the external directory for a sample user, John Doe, looks like the following:

dn:cn=John Doe,ou=people,o=marketing,dc=example,dc=com
cn:John Doe
ucsUid:jdoe
...

The LDAP entry in the internal Unified Communications Suite directory for John Doe looks like
the following:

dn:uid=jdoe,ou=people,o=example.com
cn:Doe, John
uid:jdoe
mail:john.doe@example.com
...

The user authenticates by using the login ID John Doe. Given that this login ID has no domain
part, the default domain (example.com) is assumed and the externalAuthPreUrlTemplate
attribute of that domain entry is used to construct the following search against the server
defined by authPool:

• base DN: dc=example,dc=com

• scope: subtree search

• filter: (cn=John Doe)

• attributes to retrieve: ucsUid

The entry dn:cn=John Doe,ou=people,o=marketing,dc=example,dc=com is returned and
that dn is used to issue an LDAP bind request to verify the user's password.

That same entry (containing the ucsUid attribute) is used to construct a second search,
against the Unified Communications Suite user/group directory:

• base DN: uid=jdoe,ou=people,o=example.com

• scope: base search

• filter: (objectClass=*)

• attributes to retrieve: mail

The correct entry is found and the authentication is considered successful.

Configuring Proxy Authentication
You can configure Calendar Server for proxy authentication to enable a calendar administrator
to log in to Calendar Server on behalf of a calendar user. For more information, see Calendar
Server Security Guide.

Chapter 5
Configuring Proxy Authentication

5-11

6
Enabling Advanced Features

This chapter provides details on enabling advanced features in Oracle Communications
Calendar Server.

Enabling Attachments
To enable or disable attachments:

1. List the davcore.attachment.enable parameter value:

davadmin config list -u admin -o davcore.attachment.enable
2. Modify the parameter value:

a. To enable attachments:

davadmin config modify -u admin -o davcore.attachment.enable -v true
b. To disable attachments:

davadmin config modify -u admin -o davcore.attachment.enable -v false
You do not need to restart the Calendar Server process for a change in the
davcore.attachment.enable parameter to take effect.

Enabling Apple iCal Private/Confidential Support
To enable Apple iCal private/confidential support, set the davcore.acl.appleprivateevent to
true.

davadmin config modify -u admin -o davcore.acl.appleprivateevent -v true

This triggers the sending of the DAV header with the value calendarserver-private-events to
the iCal client. As a result, the iCal client includes a check box labeled "private" in the event
creation and modification UI. When the private check box is checked, the iCal property X-
CALENDARSERVER-ACCESS is set to CONFIDENTIAL. If the check box is unchecked, the
X-CALENDARSERVER-ACCESS is set to PUBLIC. Apple iCal currently supports only these
two values.

Enabling SMS Calendar Notifications in Convergence
You can enable SMS notifications for calendar event reminders (but not for calendar
invitations) in Convergence. For more information, see Convergence System Administrator's
Guide.

Enabling the iSchedule Channel to Handle iMIP Messages
The iSchedule database is used to manage external calendar invitations. The established
standard for scheduling between two separate calendar servers is still only through iCalendar
Message-Based Interoperability Protocol (iMIP), which sends calendar data over email.
Previously, end users had to manually import such invitations and responses that arrived in

6-1

email into their calendars. You can use an iSchedule channel that interprets such mail
messages and posts them to the Calendar server directly. Thus, external invitations and
responses get into users' calendars without any user intervention. See the topic on using the
iSchedule channel to handle iMIP messages in Messaging Server Unified Configuration
Administration Guide for instructions on how to set up Messaging Server. No special setup is
required for Calendar server.

You can also use the service.dav.ischedulewhitelist configuration parameter to prevent
denial of service attacks on the iSchedule port. The service.dav.ischedulewhitelist parameter
lists the hosts from which iSchedule POST requests are allowed. The parameter takes a space
separated list of single host IP addresses and/or Classless Inter-Domain Routing (CIDR)
entries. A CIDR entry is a base IP address followed by a number indicating how many upper
bits to mask. For example, specifying a CIDR of 10.20.30.0/24 matches all addresses from the
IP address 10.20.30.0 to the IP address 10.20.30.255. An entry of 0.0.0.0/0 allows all requests.
The default setting for the parameter is an empty list, which denies all requests except for
those from localhost.

You can also secure the iSchedule port. For more information, see Calendar Server Security
Guide.

Enabling CalDAV and CardDAV Autodiscovery
Calendar Server supports the .well-known URI concept to access the Principal URI without
having to specify the entire URI. That is, access to / (root) or /.well-known/caldav/ is
redirected to the /dav/principals/ URI.

To take full advantage of this functionality, see the IEFT Tools website for information about
how to configure a corresponding DNS record at:

http://tools.ietf.org/html/rfc6764

Chapter 6
Enabling CalDAV and CardDAV Autodiscovery

6-2

http://tools.ietf.org/html/rfc6764

7
Configuring CalDAV Clients

This chapter describes how to configure Apple and Lightning clients to communicate with
Oracle Communications Calendar Server.

Prerequisites
1. Users need to be provisioned in Directory Server. For information on provisioning users,

see "Overview of Provisioning Calendar Server". For information on how Calendar Server
works with Directory Server, see Calendar Server Concepts.

2. Obtain the following information on your Calendar Server deployment:

• application server host name and port where Calendar Server is installed

• user identifier (email address or uid@domain)

Configuring CalDAV Clients
This section contains the following tasks:

• Configuring Apple Calendar for Calendar Server

• Configuring Apple iPhone for Calendar Server

• Configuring Lightning 1.0 beta2 for Calendar Server

• Configuring Lightning 1.0 beta for Calendar Server

• Configuring Lightning 0.9 for Calendar Server

• Accessing a Shared Calendar

• Configuring a CalDAV Account by Using Non-standard or Demo Settings

• Configuring Android for Calendar Server

Configuring Apple Calendar for Calendar Server
To configure Apple Calendar:

1. Choose Internet Accounts from the Mac System Preferences menu.

2. Click Add(+), then click Add Other Account.

3. Click Add a calDav Account.

4. Change the Account type to Manual.

5. Enter your user name, password, and server address, then click Create.

The calendar appears in the left-hand column of the Calendar app.

6. You can now use the Calendar app.

7-1

Configuring Apple iPhone for Calendar Server
To configure Apple iPhone:

1. Navigate to the Mail, Contacts, and Calendar settings menu.

2. Select Add Account.

3. Select Other.

4. Select Add CalDAV Account.

5. Enter your Server address, User Name, and Password.

6. Tap Next.

The client indicates "Verifying CalDAV account", then "Account verified."

7. You can now use the Calendar application.

Configuring Lightning 1.0 beta2 for Calendar Server
These instructions assume that you have already installed at least Thunderbird 3.1.x on your
client machine.

To configure Lightning 1.0 beta 2:

1. Download Lightning 1.0 beta2 to your client machine from the Lightning Calendar web site
at:

http://www.mozilla.org/projects/calendar/releases/lightning1.0b2.html
2. Download, but do not execute, the appropriate binary for your client platform. If the

downloaded file is a zip file, unzip it.

3. Create a Thunderbird profile as follows:

a. In Mozilla Thunderbird, choose Add Ons or Extensions from the Tools menu,
depending on the version of Thunderbird.

b. Click the Install button.

A file chooser is displayed.

c. Navigate to the previously downloaded (and perhaps unzipped) .XPI file, select it, and
click OK.

d. In the Software Installation dialog box, click Install Now.

e. Click Restart Thunderbird.

f. Click Calendar in the Events and Tasks menu item at the top of the Thunderbird UI.

g. From the File menu, choose New, then Calendar.

If this selection is grayed out, you might need first to open the default calendar in
Thunderbird.

h. Choose On the Network.

i. Choose CalDAV.

j. Enter the URL of the calendar, for example:

https://example.com/dav/home/jsmith@example.com/calendar/

Chapter 7
Configuring CalDAV Clients

7-2

http://www.mozilla.org/projects/calendar/releases/lightning1.0b2.html

k. Enter your name, choose a color scheme, choose to set alarms or not, and select your
email address.

l. Enter your user name and password for the CalDAV server.

A confirmation dialog box informs you that your calendar has been created.

m. Click Finish.

The new calendar appears in the listing of calendars on the left side of the Thunderbird
UI.

Configuring Lightning 1.0 beta for Calendar Server
These instructions assume that you have already installed at least Mozilla Thunderbird 2.0.0.x
on your client machine.

To configure Lightning 1.0 beta:

1. Download Lightning 1.0 beta 1 to your client machine from the Lightning Calendar web site
at:

http://www.mozilla.org/projects/calendar/lightning/download.html
2. Download, but do not execute, the appropriate binary for your client platform.

If the downloaded file is a zip file, unzip it.

3. Create a Thunderbird profile as follows:

a. In Mozilla Thunderbird, choose Add Ons or Extensions from the Tools menu,
depending on the version of Thunderbird.

b. Click the Install button.

A file chooser is displayed.

c. Navigate to the previously downloaded (and perhaps unzipped) .XPI file, select it, and
click OK.

d. In the Software Installation dialog box, click Install Now.

e. Click Restart Thunderbird.

f. Click the Calendar icon in the lower left corner of the Thunderbird UI.

g. From the File menu, choose New then Calendar.

If this selection is grayed out, you might need first to open the default calendar in
Thunderbird.

h. Choose On the Network.

i. Choose CalDAV.

j. Enter the URL of the calendar, for example:

http://example.com:3080/dav/home/jsmith@example.com/calendar/

In this example, the default URI of / was used during initial configuration.

The general format is:

http://Application_Server_host:Application_Server_port/baseuri/dav/home/
email_address/calendar/

k. Enter your name, choose a color scheme, choose to set alarms or not, and select your
email address.

Chapter 7
Configuring CalDAV Clients

7-3

http://www.mozilla.org/projects/calendar/lightning/download.html

l. Enter your user name and password for the CalDAV server.

A confirmation dialog box informs you that your calendar has been created.

m. Click Finish.

The new calendar appears in the listing of calendars on the left side of the Thunderbird
UI.

4. Lightning 1.0 has CalDAV scheduling capability but it is turned off by default. Turn on the
following configuration preferences for CalDAV scheduling to work by using the Config
Editor.

• calendar.itip.notify

• calendar.caldav.sched.enabled

Windows: From the Tools menu, selection Options, then Advanced, then Config
Editor.

UNIX: From the Edit menu, select Preferences, Advanced, then General.

Configuring Lightning 0.9 for Calendar Server
These instructions assume that you have already installed at least Mozilla Thunderbird 2.0.0.x
on your client machine.

To configure Lightning 0.9:

1. Download Lightning 0.9 to your client machine from the Lightning Calendar web site at:

http://www.mozilla.org/projects/calendar/releases/lightning0.9.html
2. Download, but do not execute, the appropriate binary for your client platform.

If the downloaded file is a zip file, unzip it.

3. Create a Thunderbird profile as follows:

a. In Mozilla Thunderbird, choose Add Ons or Extensions from the Tools menu,
depending on the version of Thunderbird.

b. Click the Install button.

A file chooser is displayed.

c. Navigate to the previously downloaded (and perhaps unzipped) .XPI file, select it, and
click OK.

d. In the Software Installation dialog box, click Install Now.

e. Click Restart Thunderbird.

f. Click the Calendar icon in the lower left corner of the Thunderbird UI.

g. From the File menu, choose New then Calendar.

If this selection is grayed out, you might need first to open the default calendar in
Thunderbird.

h. Choose On the Network.

i. Choose CalDAV.

j. Enter the URL of the calendar, for example:

http://example.com:3080/dav/home/jsmith@example.com/calendar/

In this example, the default URI of / was used during initial configuration.

Chapter 7
Configuring CalDAV Clients

7-4

http://www.mozilla.org/projects/calendar/releases/lightning0.9.html

The general format is:

http://Application_Server_host/Application_Server_port/baseuri/dav/home/
email_address/calendar/

k. Enter your name, choose a color scheme, choose to set alarms or not, and select your
email address.

l. Enter your user name and password for the CalDAV server.

A confirmation dialog box informs you that your calendar has been created.

m. Click Finish.

The new calendar appears in the listing of calendars on the left side of the Thunderbird
UI.

4. Lightning 0.9 has CalDAV scheduling capability but it is turned off by default. Turn on the
following configuration preferences for CalDAV scheduling to work by using the Config
Editor.

• calendar.itip.notify

• calendar.caldav.sched.enabled

Windows: From the Tools menu, selection Options, then Advanced, then Config
Editor.

UNIX: From the Edit menu, select Preferences, Advanced, then General.

Accessing a Shared Calendar
The following steps describe how user A can access user B's calendar:

1. In Convergence, user B grants user A read, read/write, or owner privilege through the
Share panel.

2. Alternately, an administrator can use the davadmin calendar command to set the
calendar ACLs.

3. To view the newly shared calendar of user B, user A creates a new calendar or account on
the calendar client.

• Lightning: User A enters user B's calendar URL

• Apple iCal: User A enters user B's principal URL (in the Server Option of the Apple
iCal Account Creation panel)

Configuring a CalDAV Account by Using Non-standard or Demo Settings
The previous information assumes settings for valid for a production system but not for a demo
server, for example:

• Use of standard ports (443 or 80)

• SSL is the default

• Account URL follows a fixed pattern: http(s)://server_name/principals/users/username/

Demo servers usually run on non-standard port numbers and they do not always own the full
namespace, leading to account URLs (actually principal URL) that look more like the following
one for iCal:

http://caldav.example.com:3080/demo/dav/principals/username/

Chapter 7
Configuring CalDAV Clients

7-5

Similarly, a demo Lightning URL might resemble the following:

http://caldav.example.com:3080/demo/dav/home/username/calendar/

For information on configuring the default context URI for a Calendar Server deployment, see
Calendar Server Installation and Configuration Guide.

iOS 3.x and 4.x Non-standard Configuration
Typing the previous kind of URL can be very tedious and error prone, especially given that the
iPhone advanced configuration panel offers just a tiny text box. The following procedure
simplify the configuration process, assuming that you have a mail account already configured.

1. From your usual desktop client, email the principal URL to yourself.

Check that the URL is valid (by using a regular browser) before sending it.

The principal URL varies across servers. It is the same that you might have configured if
you are using the Apple iCal client.

2. Copy the URL from the iPhone Mail App.

a. From the iPhone Mail App, open the email.

b. Press and hold on the URL in the message. You should be asked whether you want to
open or copy the link.

c. Select copy.

3. Navigate to the CalDAV account creation panel.

4. Enter the server information.

a. Tap on the Server field.

A Paste button should appear on top of the text field.

b. Press Paste.

The full URL is shown. The client accepts a full URL in the server name field.

5. Enter the user name and password.

a. Go to the User Name field. The full principal URL is replaced by the server name only,
which is to be expected.

b. Enter your password and tap Next.

The client indicates "Verifying CalDAV account", then "Account verified."

6. You can now use the Calendar application.

Apple iCal Non-standard Configuration
1. Launch iCal.

2. Choose Preferences from the iCal menu and click Accounts.

3. To add a new account, click the Add (+) button.

4. Choose CalDAV from the Account type menu.

5. Enter your user name and password.

6. In Server Address, enter the principal URL, for example:

http://caldav.example.com:3080/demo/dav/principals/username/

Chapter 7
Configuring CalDAV Clients

7-6

7. Click Create.

You can now use the Calendar application.

For the regular server configuration, you would click the server options and enter the
principal URI, for example:

http://caldav.example.com/dav/principals/username/

Configuring Android for Calendar Server
Download and install the Android CalDAV-Sync client to synchronize events and tasks, and the
Android task app to synchronize all tasks, from the Android Apps web site at:

https://play.google.com/store/apps/details?id=com.icalparse&hl=en_IN

Note the following limitations:

• When you create an event with an attachment, the event is created without the server
storing the attachment.

• You cannot see attachments added to events by other clients.

Using the iPhone Configuration Utility
Apple provides the Apple Configurator to install and manage installation profiles. Enterprises
might find this utility helpful to manage their end user accounts. For more information, see the
Apple Configurator web page at:

https://apps.apple.com/in/app/apple-configurator/id1037126344?mt=12

Exporting and Importing Calendars in Thunderbird Lightning
This section contains the following tasks:

• Exporting a Calendar

• Importing a Calendar

Exporting a Calendar
To export a calendar:

1. Open any Calendar view.

2. Choose Export Calendar from the File menu.

3. Select the calendar.

4. When prompted to save the file, use the iCalendar format (the default is HTML).

Importing a Calendar
To import a calendar:

1. Open any Calendar view.

2. Choose Import Calendar from the File menu.

3. Select the exported file.

Chapter 7
Using the iPhone Configuration Utility

7-7

https://play.google.com/store/apps/details?id=com.icalparse&hl=en_IN
https://apps.apple.com/in/app/apple-configurator/id1037126344?mt=12

Client Issues
Topics in this section:

• Troubleshooting CalDAV Clients

• Connector for Microsoft Outlook and Event Time Modifications

Troubleshooting CalDAV Clients
For information on troubleshooting issues with Lightning ad Apple clients, see "Troubleshooting
CalDAV Clients".

Connector for Microsoft Outlook and Event Time Modifications
If you use Connector for Microsoft Outlook to create or modify the time of an event, and later
make a change to the event time by using Convergence, the event "jumps" to a new time. In
some cases, the event appears to "vanish" but in reality it "jumps" to the following day.
Currently, there is no workaround.

To reproduce:

1. Log into Convergence and create an event.

2. Log into Connector for Outlook and move the event.

3. Log into Convergence and make sure event is moved by refreshing.

4. Move the event again, but this time on Convergence.

The event "jumps" to a new time.

Chapter 7
Client Issues

7-8

8
Configuring and Managing Virus Scanning

This chapter describes how to configure and manage virus scanning for Oracle
Communications Calendar Server.

About Calendar Server and Virus Scanning
To enhance security within your deployment, you can use Calendar Server attachments virus
scanning. Calendar Server virus scanning can examine calendar attachments in a "real-time"
mode to test and optionally reject incoming infected data. You can also choose to scan and
optionally delete infected existing data "on-demand."

Virus scanning is not performed by Calendar Server itself. Instead, you configure an Oracle
Communications Messaging Server's Message Transfer Agent (MTA) to filter the calendar
data. You can configure Calendar Server to share an existing MTA that has already been
configured for Messaging Server virus scanning. Or, if you prefer, you can configure a
standalone MTA that functions only for Calendar Server virus scanning.

Calendar Server reports all virus scanning activities, as well as detected viruses, in its log file,
for both real-time and on-demand scanning.

Overview of Calendar Server Virus Scanning Architecture
Figure 8-1 depicts the Calendar Server virus scanning logical architecture.

8-1

Figure 8-1 Calendar Server Virus Scanning Architecture

The following information describes how a calendar attachment is scanned for viruses.

1. A calendar client submits a calendar event and attachment to Calendar Server.

2. Calendar Server receives the event and attachment then packages the attachment as an
email message for the MTA that has been configured to scan calendar attachments.

3. Calendar Server sends the email message containing the attachment by using the SMTP
protocol to the configured MTA.

4. Calendar Server keeps the connection to the MTA open as it awaits the response from the
MTA. During this time, the calendar client is also waiting for the MTA to reply back to
Calendar Server with its verdict.

5. The Calendar Server function responsible for connecting to the MTA keeps the attachment.

Later, after the scan has completed, the function either stores the attachment (and possibly
the event) in the Calendar Server document store or aborts if the MTA finds a virus. See
step 7 for details.

Chapter 8
Overview of Calendar Server Virus Scanning Architecture

8-2

6. The MTA receives the package on a specific channel that is configured for a
sourcespamfilter, which in turn is linked to an Anti-Virus Scanner (AVS).

You actually define a sourcespamfiltern, where n is an integer in a given range, to define
one of the possible sourcespamfilters on the system.

7. The AVS scans the package.

a. If the AVS detects a virus, the MTA refuses the message and replies with a virus
positive message to Calendar Server over the open connection.

b. If the AVS does not detect a virus, the MTA uses a Messaging Server rewrite rule to
send the package to the bitbucket channel and discard it. Calendar Server logs an
error either when it detect a virus or the AVS is not working.

8. Once it is notified by the MTA, Calendar Server decides if it can continue processing the
calendaring request normally or abort. If the davcore.virusscan.onlinevirusaction
parameter remains unset (is using the default value) or is set to reject, the submission is
rejected. The client receives the reply HttpStatus.FORBIDDEN (Virus Detected in
Attachment). Otherwise if davcore.virusscan.onlinevirusaction is set to "keep," the
attachment is accepted. The davcore.virusscan.onlinefailureaction parameter works
similarly, except that the default action is "keep."

Configuring Calendar Server Virus Scanning
The high-level steps to prepare your deployment to perform virus scanning for Calendar Server
include:

1. (Optional) Installing the Messaging Server MTA

2. Configuring the Messaging Server MTA

3. Configuring the MTA for the virus scan filter

4. Creating the incoming SMTP port and channel for Calendar Server virus scan

5. Configuring the rewrite rule to discard Calendar Server data after scanning

6. Configuring Calendar Server virus scanning parameters

The following sections describe configuring Messaging Server and Calendar Server in more
detail.

Topics in this section:

• Configuring the MTA

• Configuring the Messaging Server MTA for the Virus Spam Filter

• Configuring Calendar Server for Virus Scanning

Configuring the MTA
It is possible that your deployment has already deployed Messaging Server and an MTA to
perform email virus scanning. If so, you can reuse this existing MTA to also scan calendar
attachments for viruses. If this is not the case, you can install and configure a stand alone
MTA.

Prerequisite: Calendar Server virus scanning requires at least Messaging Server 7 Update 4
patch 23.

Chapter 8
Configuring Calendar Server Virus Scanning

8-3

Installing a Standalone Message Transfer Agent
When installing a standalone MTA for Calendar Server virus scanning, be sure to use
meaningful values for administrator postmaster, mail domain, and other configuration settings.
If you use values that are not meaningful to your deployment, errors can result.

The general steps to install an MTA include:

1. Installing the Messaging Server software

2. Running the Messaging Server configure script

3. Disabling the Message Store and Webmail Server

For details, see the topic on installing a Message Transfer Agent in Unified Communications
Suite Installation Guide.

When configuring Messaging Server, the "configure" step requires a valid Directory Server host
that is used to include configuration data such as the default mail domain and messaging
administrator account. The Directory Server host that you specify needs to be available during
virus scanning operations. However, due to MTA caching of LDAP data, this host is not heavily
utilized.

Configuring the Messaging Server MTA for the Virus Spam Filter
The MTA itself does not check for viruses. You configure the MTA to communicate with the
desired virus scanning software, also referred to as the AVS. For instructions, refer to the topic
on integrating spam and virus filtering programs Into Messaging Server in Messaging Server
Administration Guide.

The filter should use a Sieve rule to "refuse" the message from Calendar Server if a virus is
found by the virus scanning software. The Sieve rule returns FilterVerdictPositive. Calendar
Server checks SMTP return values for this exact string, which is defined in the option.dat file.
See "Example MTA Configuration for Calendar Server Virus Scanning" for more information.

Note:

You configure the MTA to perform a Sieve refuse action if there is a virus, which
returns an SMTP code 5xy plus the MTA-configured string FilterVerdictPositive.
Calendar Server responds to the target string, where other errors are considered
failures in service.

Creating an Incoming SMTP Channel That Uses the Filter
You create a new incoming SMTP port in Messaging Server's dispatcher.cnf file, strictly for
Calendar Server virus scanning use. In this way, Calendar Server traffic is tracked. In addition,
a separate SMTP port makes it easier to destroy all data being scanned. You associate this
incoming SMTP port with a new MTA channel in the imta.cnf file. Finally, you configure the
receiving channel to use the sourcespamfiltern that is configured with the desired virus scan
software, so that incoming calendar data is tested. For instructions, refer to Messaging Server
Administration Guide.

Chapter 8
Configuring Calendar Server Virus Scanning

8-4

Configuring the Rewrite Rule to Detect Calendar Data and Discard it After Scanning
Calendar Server sends the attachment data as an email with a user recipient email address.
You configure the MTA to detect the chosen email address. The email address is set up to use
the MTA's host name and domain, so that the MTA does not need to perform a lookup for the
domain. The user email address itself is not significant since incoming data is not actually
delivered. See the topic on rewrite rules and channels in Messaging Server Administration
Guide for more information.

Configuring Calendar Server for Virus Scanning
You use the davadmin command to configure Calendar Server parameters for virus scanning.
Some parameters are required. Others are optional.

1. Configure the following required parameters:

• davcore.virusscan.emailaddress

• davcore.virusscan.host

• davcore.virusscan.port

• davcore.viruscan.onlineenable

• davcore.virusscan.onlinevirusaction

The syntax for the davadmin command in this instance is as follows:

davadmin config modify -u adminID -o parameter -v value

For example:

davadmin config modify -u admin -o davcore.virusscan.emailaddress -v
myvirususer@mymachine.example.com

The email address' domain must match the MTA's domain. The user name itself is not
significant.

2. Configure optional parameters.

See "Calendar Server Configuration Parameters" for more information.

Example MTA Configuration for Calendar Server Virus Scanning
This example describes how to configure a Messaging Server MTA for Calendar Server virus
scanning.

1. Install Messaging Server software and configure an MTA.

If necessary, use the "Installation Scenario for Message Transfer Agent" instructions in
Unified Communications Suite Installation Guide.

In this example, the following values are used:

The Fully Qualified Host Name is required: mymachine.example.com
The LDAP directory server the MTA will use: myldap.example.com
The LDAP port: 389
The LDAP Bind user: cn=Directory Manager
The LDAP password: password
The system user name and group: mailsrv mailsrv
The default mail domain: example.com

Chapter 8
Example MTA Configuration for Calendar Server Virus Scanning

8-5

The postmaster email address admin@example.com
The password for messaging admin: password

2. Disable the Message Store and Webmail server.

configutil -o local.store.enable -v 0
configutil -o service.http.enable -v 0

3. Start the MTA.

start-msg
4. Configure the MTA for the virus scan filter.

This example uses ClamAV for the virus scanning software package to work with the MTA.

a. Create the ClamAV configuration file, clamav.mtaconf, in the /opt/sun/comms/
messaging64/lib/ directory.

b. Make sure that clamav.mtaconf file contains the following information:

HOST=localhost
PORT=3310

5. Edit the clamd.conf file to contain the follow information:

On Solaris: /opt/ClamAV/etc/clamd.conf

On Linux: /etc/clamd.conf

LogFile /tmp/clamd.log
LogTime yes
LogVerbose yes
FixStaleSocket yes
TCPSocket 3310
TCPAddr 127.0.0.1

6. (Solaris only) Set the path to the ClamAV bin directory.

setenv PATH /opt/ClamAV/bin:$PATH
7. Become root and start ClamAV.

su -
cd /opt/ClamAV/sbin/
clamd session

8. Create a "filter" on the MTA that serves as the connection to the ClamAV server.

Add the following information to the option.dat file in the config directory:

SPAMFILTER1_LIBRARY=/opt/sun/comms/messaging64/lib/libclamav.so
SPAMFILTER1_CONFIG_FILE=/opt/sun/comms/messaging64/lib/clamav.mtaconf
SPAMFILTER1_NULL_ACTION=data:,require ["reject","ereject","refuse"]; refuse
"FilterVerdictPositive";

This example uses filter 1, hence many of the keywords have "1" in them. For example,
SPAMFILTER1_LIBRARY is a registered MTA keyword. The MTA needs to know where to
locate the ClamAV configuration file. It also needs to know the location for the already
existing ClamAV client library that the MTA provides. This is the MTA's specific code that
knows how to communicate to ClamAV servers. Finally, an "action" is needed to tell the
MTA what to do depending on what is returned by clamAV.

By using this information for spam filter 1, the MTA knows where to find the existing MTA
library, where to find the configuration file for communicating to ClamAV, and how to handle
the response back from ClamAV. The "action" is a sieve string that explains that if there is
a virus detected, then "refuse" the SMTP submission with the FilterVerdictPositive string.
This is the string that is sent back to the Calendar server, and must be exact. So far, this

Chapter 8
Example MTA Configuration for Calendar Server Virus Scanning

8-6

configuration does not attach the filter to any incoming data. But now that this spam filter is
configured, it can be used in the channel definitions.

9. Create the incoming SMTP channel that uses the filter.

a. Create an SMTP port the Calendar Server uses.

b. Create a virus scan port and channel called tcp_vscan by adding code to the
dispatcher.cnf file:

!
! Virus Scan Port
!
[SERVICE=SMTP_VSCAN]
PORT=3025
IMAGE=IMTA_BIN:tcp_smtp_server
LOGFILE=IMTA_LOG:tcp_vscan_server.log
PARAMETER=CHANNEL=tcp_vscan
STACKSIZE=2048000
! Uncomment the following line and set INTERFACE_ADDRESS to an appropriate
! host IP (dotted quad) if the dispatcher needs to listen on a specific
! interface (e.g. in a HA environment).
!INTERFACE_ADDRESS=

10. Create a matching channel definition in the channel definition configuration. Rewrite rules
and channel definitions are located in the imta.cnf file. Add this channel in the channel
area, paying strict attention to syntax rules described in the MTA documentation in
Messaging Server Administration Guide.

!
! tcp_vscan
tcp_vscan smtp sourcespamfilter1 missingrecipientpolicy 6 pool SMTP_POOL
tcp_vscan-daemon

Note:

This example uses sourcespamfilter1, which is the spam filter already
configured. All incoming SMTP submissions on this port and channel are
submitted to ClamAV, and if a virus is found, Calendar Server receives the
correct message.

11. Configure the rewrite rule to send calendar data to be discarded after scanning.

With the virus scan channel and virus spam filter configured, Calendar Server receives the
proper return values from ClamAV. However, the incoming message needs to be handled
by the MTA. A rewrite rule is required to send it to be destroyed in the bitbucket channel.
Add the following rewrite rule to the imta.cnf file just before the rule "Rules to select local
users."

! Avoid all lookups and just force to bitbucket channel for messages
! coming in the tcp_vscan channel:
$* EF$U%$H@bitbucket-daemon$Mtcp_vscan

This rewrite rule checks for email coming in on the tcp_vscan port and sends it to the
bitbucket (where it is destroyed).

12. Configure Calendar Server's virus scan email address to be in the MTA's domain. The user
name is not significant.

Set davcore.virusscan.emailaddress to joe@mymachine.example.com.

13. Recompile the MTA configuration.

Chapter 8
Example MTA Configuration for Calendar Server Virus Scanning

8-7

imsimta cnbuild
imsimta restart

Summary:

1. Calendar Server sends data to be scanned to the Messaging Server MTA by using an
email address of joe@mymachine.example.com.

2. This is done on the specified port configured in the dispatcher.cnf file.

3. This email arrives at the MTA on the tcp_vscan channel, and is subjected to
sourcespamfilter1, which is tied to ClamAV through the configuration in the option.dat
file.

4. If virus scanning software detects a virus, a refuse action is sent back through SMTP to
Calendar Server with the string FilterVerdictPositive.

5. If the virus scanning software does not detect a virus, the incoming message is subjected
to rewrite rules that send it to the bitbucket for deletion.

The MTA communicates to LDAP to look up example.com, but caches LDAP's response
so it does not make this call often.

For more information on the virus scanning configuring parameters, see "Calendar Server
Configuration Parameters".

Calendar Server Configuration Examples
• To set the MTA host:

davadmin config modify -u admin -o "davcore.virusscan.host" -v "myhost.example.com"
• To set the SMTP port:

davadmin config modify -u admin -o "davcore.virusscan.port" -v "3025"
• To set the email address:

davadmin config modify -u admin -o "davcore.virusscan.emailaddress" -v
"myvirususer@mymachine.example.com"

• To set the timeout value:

davadmin config modify -u admin -o "davcore.virusscan.timeout" -v "1000"
• To enable scanning on incoming data:

davadmin config modify -u admin -o "davcore.virusscan.onlineenable" -v "true"
• To reject viruses discovered in attachments by the MTA:

davadmin config modify -u admin -o "davcore.virusscan.onlinevirusaction" -v "reject"
• To reject viruses if the AVS is not functioning or is not responding:

davadmin config modify -u admin -o "davcore.virusscan.onlinefailureaction" -v
"reject"

• To automatically delete a virus when scanning.

davadmin config modify -u admin -o "davcore.virusscan.clivirusaction" -v "delete"

Chapter 8
Calendar Server Configuration Examples

8-8

Calendar Server Virus Scan Command-line Utility
Use the davadmin vscan command to perform virus scanning operations. The davadmin
vscan command must be followed by the scan action. For more information, see "Calendar
Server Command-Line Utilities".

Virus Scan Logging
Virus scan activity for both online and CLI is logged in the calendar server's "scan" log. Found
virus are reported in the log. Actions taken against viruses are reported if any actions are
configured. Owning components that are found to reference data that is found to be a virus are
reported. The time just before a davadmin scan is started is printed at the end of a scan, in
case this time may be useful with the -T option in future scans.

Because the davadmin scan command runs on the application server (and not the davadmin
client), most useful information is printed in the Calendar Server's "scan" log, not always in the
standard output of the davadmin command. This also provides a central repository for all
historical virus scan related information and tracking.

MTA Logging
See the MTA documentation in Messaging Server Administration Guide for logging information.

To view and test channel traffic, add the keyword logging to the defaults channel in the
imta.cnf file. Add LOG_CONNECTION=255 and LOG_FILTER=1 to the option.dat file. Use
the MTA documentation to interpret channel operations such as "E" enqueue and "D" dequeue,
"O" open connection, "C" close connection. View messages coming in on the tcp_vscan
channel, and dequeue onto the bitbucket channel.

Chapter 8
Calendar Server Virus Scan Command-line Utility

8-9

9
Using Calendar Server Notifications

This chapter describes the Oracle Communications Calendar Server notification architecture,
how to enable notifications, the different types of notifications, and how to customize
notifications.

Overview of Notification Architecture
Calendar Server is capable of generating notifications for any change to the calendar data in
the database, or for some preset trigger. Notifications are published as Java Message Service
(JMS) messages. Calendar Server also includes a JMS consumer program that consumes the
JMS notifications and sends email messages to end users. One type of such end user email
notification, reminders, (sometimes called alarms), are set by end-users for themselves, so that
they are notified about their upcoming events and todos. Another type of notification is sent by
the server when a user, different than the one being notified, makes a change to the calendar
database, for example, by modifying an event invitation, granting a calendar permission, and
so on.

Calendar Server notification services use a publish/subscribe paradigm. Calendar Server
publishes messages, in this case, notifications. Receiving clients (the subscribers) receive only
those messages that they are interested in.

Calendar Server utilizes the built-in Java Messaging Service (JMS) in the application server to
communicate calendar data changes and calendar alarm triggers. Calendar Server bundles a
consumer program that "consumes" this information and sends email for certain subset of the
notifications as detailed in "Notification Types". For more information, see the JMS website at:

http://java.sun.com/products/jms/
Figure 9-1 shows that the Calendar Server notification service consists of two major
components, the Notification Service and Notification Consumer. The Notification Service
component is part of the Calendar Server itself, and is the publisher that posts messages of a
pre-configured JMS topic managed by the JMS provider. The Notification Consumer
component is the subscriber or the message consumer of that JMS topic.

9-1

http://java.sun.com/products/jms/

Figure 9-1 Calendar Server Notifications Services Architecture

The Notification Service component provides interfaces for Calendar Server to publish JMS
messages to a specific JMS topic (DavNotificationTopic) of the JMS broker. The Notification
Service component is part of the main Calendar Server servlet that is deployed in the
application server web container. The Notification Consumer component listens on the JMS
bus for the specific topic (DavNotificationTopic) notification messages, consumes the
messages, and sends notification email to recipients, if applicable. The consumer checks the
notification type and other instructions provided in the JMS message to determine what action
is to be taken. The Notification Consumer component message-driven bean (MDB) runs in the
application server J2EE container. The consumer MDB is deployed in EMBEDDED mode, and
thus is running in the same JVM of the J2EE container.

You can choose to write your own customized Notification Consumer programs. See "Writing a
Java Messaging Service Consumer".

About Reminders (Alarms)
Calendar Server sends out email for upcoming events and tasks if the owners of the events
and tasks have set an email or SMS reminder. (Convergence users can enable default
reminders.) The information is stored along with the event or task in the standard VALARM
format as specified in RFC 5545 with action set to EMAIL. The server maintains a queue of
these alarms and when the right time arrives, it posts the relevant information to the JMS bus
with the notification type set to ALARM. The notification consumer fills in the right alarm
template file based on the instructions in the JMS payload and the email is sent. For reminders

Chapter 9
About Reminders (Alarms)

9-2

to work, you only need to set the notification.dav.enablejmsnotif parameter to true, as well
as the correct SMTP configuration settings.

Calendar Server supports the Alarm-Agent Property. This property specifies whether a client,
server, both client and server, or none, is responsible for processing an alarm when it is
triggered. This is in accordance with the Extended VALARM draft. To view the draft, see the
IETF website at:

http://tools.ietf.org/html/draft-daboo-valarm-extensions-04
For details on how to set alarms by using the store commands in the WCAP protocol, see the
Calendar Server WCAP Developer's Guide.

About Server Email Notifications
Server notifications are used to notify users mostly about changes to their calendars due to
actions by other users, including event or task invitations, granting permission to a calendar,
and so on. To enable email notifications at a server level, both the
notification.dav.enablejmsnotif and notification.dav.enableemailnotif configuration
parameters must be set to true. In addition, notification should be enabled on a per account
basis. In case of event and task invitations or responses, to include the actual event or task in
standard ics format, the notification.dav.enableimipemailnotif needs to be enabled as well
(set to true).

Calendar Server supports RFC 6047 and sends iMIP invitations and responses to external
users as a consequence. External users reside either on a different Calendar Server
deployment administered by a separate group, or on an outside calendaring system, such as
Exchange, Google Calendar, and so on. However, this is a separate feature from the
notifications that are explained in this chapter. Calendar Server uses the
notification.dav.enableimip configuration parameter to control iMIP notifications. Both iMIP
and server email notifications use the notification.dav.smtp* configuration parameters to
configure the SMTP server to use.

In addition to external users, internal users that have their status set to inactive can also be
configured to receive iMIP invitations. The davcore.scheduling.rejectinactiverecipients
parameter enables and disables this capability. If this value is set to false, internal users whose
status attribute (icsStatus by default) is set to inactive in the LDAP directory receive iMIP
invitations just like external users. For users whose status is set to deleted or inactive, no
iMIP invitations are sent under any circumstances.

Enabling Calendar Server Notifications
Table 9-1 describes the Calendar Server notifications that are controlled by the configuration
parameters.

Chapter 9
About Server Email Notifications

9-3

http://tools.ietf.org/html/draft-daboo-valarm-extensions-04

Table 9-1 Notification Configuration Parameters

Parameter Description

notification.dav.enableemailnotif Controls server-wide email notification. When this
parameter is set to true, Calendar Server sends
email notifications for new event, task, calendar
creation, and access changes, if end users choose
to receive them. End users can choose to receive
notifications either by enabling their own account
through Convergence or by requesting that an
administrator do so by using the davadmin
command. These notifications are text emails sent to
users for actions that have already been recorded in
their calendars. If set to false, server-wide email
notification is disabled.

notification.dav.enablejmsnotif Controls server-wide JMS notification. When set to
true, Calendar Server publishes notifications to the
JMS bus. This parameter must be set to true for any
notification to work.

notification.dav.enableimipemailnotif Controls server-wide inclusion of actual event/task
ical content in email notification. When this
parameter is set to true, iCal content is included in
the server-wide JMS notification email sent to users
on the internal deployment. By default, iCal content
is not included in notifications. If this parameter is
enabled, email notifications with ics content can be
interpreted by iCal aware clients and even used for
responding from the email client itself. For this
feature to work correctly,
notification.dav.enableemailnotif,
notification.dav.enablejmsnotif, and
notification.dav.enableimipemailnotif must all be
enabled.

You can enable or disable these parameters by using Jconsole or the davadmin utility. You do
not need to restart the server for a change to these parameters to take effect.

The settings are not cumulative. That is, to receive email notification, not only should
notification.dav.enableemailnotif be set to true, so should notification.dav.enablejmsnotif.
Similarly, to get ics information in notifications, all three configuration options must be set to
true.

Other notification.dav.* configuration parameters control items such as the SMTP server to
use and its settings, maximum notification payload, location of notification templates, and so
on. The davcore.autocreate.enableemailnotification parameter determines if notification is
enabled by default on a newly created account and the
davcore.autocreate.emailnotificationaddressattr parameter specifies which LDAP attribute
to set as the default notification address when autocreating an account. (The default value is
mail.) For more details, see "Calendar Server Configuration Parameters".

Enabling Notifications on an Account
To enable notifications for all accounts:

1. Use the davadmin command to set the davcore.autocreate.enableemailnotification to
true.

Chapter 9
About Server Email Notifications

9-4

davadmin config modify -o davcore.autocreate.enableemailnotification -v true
Enter Admin password: password

2. If necessary, change the value of the LDAP attribute corresponding to
davcore.autocreate.emailnotificationaddressattr, which is used to set the email
notification address during account autocreation. The default value is mail.

Modifying Notifications on an Account
Calendar Server stores the values for the davcore.autocreate.enableemailnotification and
davcore.autocreate.emailnotificationaddressattr parameters in the database as properties
for each account. These parameters can be modified in two ways:

• User: Use a WCAP client that is capable of running the set_accountprops.wcap
command, specifying a new value for notifemail and notifrecipients.

• Administrator: Run the davadmin account command.

For more information on davadmin account see "Calendar Server Command-Line Utilities".

For information on the get_accountprops.wcap command, see Calendar Server WCAP
Developer's Guide.

Managing Notification Templates
This section describes the Calendar Server notification service in more detail and how to
customize notification templates for your deployment.

Topics in this section:

• Notification Types

• Templates, Resource Bundle, and Other Configuration Files

• Customizing Templates

• Preserving Customized Template Files During Calendar Server Upgrade

Notification Types
The notification message contains a type field that indicates what action triggered the
notification and thus helps the consumer decide how to process it.

Table 9-2 describes the notification types. It also lists the payload data, which is the resource
content (for example, iCal data) in byte array format. Attachments are not included.

Table 9-2 Notification Types

Notification Type Description Payload CS7 Consumer Action

ALARM Alarm iCal data Email is sent if ACTION type is EMAIL.

AUTOCREATE Initial creation of a user's home
collection (and its default sub-
collections)

None Email sent if creation happened as a
result of a scheduling invitation.
Creation due to user login or explicit
account creation by using the
davadmin command does not trigger
an email.

CREATE_CAL_COLLECTION Creation of a calendar collection None None.

Chapter 9
Managing Notification Templates

9-5

Table 9-2 (Cont.) Notification Types

Notification Type Description Payload CS7 Consumer Action

CREATE_CAL_RESOURCE Creation of an entry (event or
task) in a calendar collection

iCal data None.

CREATE_COLLECTION Creation of a non-calendar
collection

None None.

CREATE_RESOURCE Creation of an entry in a non-
calendar collection

iCal data None.

DELETE_CAL_COLLECTION Deletion of a calendar collection None None.

DELETE_CAL_RESOURCE Deletion of an entry (event or
task) in a calendar collection

iCal data None.

DELETE_COLLECTION Deletion of a non-calendar
collection

None None.

DELETE_RESOURCE Deletion of an entry in a non-
calendar collection

iCal data None.

EVENT_START Event start for presence
integration

UID,
DTSTART,
DTEND

Notification email is triggered if
presence notification is enabled
(davcore.presence.enable=true).

EVENT_END Event end for presence
integration

UID,
DTSTART,
DTEND

Notification email is triggered if
presence notification is enabled
(davcore.presence.enable=true).

MODIFY_CAL_RESOURCE Modification of an entry (event or
task) in a calendar collection

iCal data None.

MODIFY_RESOURCE Modification of an entry in a non-
calendar collection

iCal data None.

MOVE_CAL_COLLECTION A calendar collection was moved None None.

MOVE_CAL_RESOURCE An entry in a calendar collection
was moved

iCal data None.

MOVE_COLLECTION A non-calendar collection was
moved

None None.

MOVE_RESOURCE An entry in a non-calendar
collection was moved

None None.

SHARE_ACCOUNT An account was shared None An email is sent if additional
permission was granted.

SHARE_CAL_COLLECTION A calendar collection was
shared

None An email is sent if additional
permission was granted.

SCHEDULE_ITIP* Scheduling iTIP message iCal data iTIP scheduling: Announces an iTIP
scheduling event, task, or a significant
change to an event or task to an
external attendee.

SCHEDULE_RECEIVE Scheduling message is received iCal data Sends an email notification of the
invitation or the response as long as it
refers to an event or task in the future.
Notifies attendee of new event, task, or
a significant change to the event/task.

SCHEDULE_SEND Scheduling message is sent iCal data None.

NONE Undefined type iCal data Not applicable.

Chapter 9
Managing Notification Templates

9-6

SCHEDULE_ITIP* notification type is used by the notification service to directly send iMIP
messages to external invitees by using the same template substitution mechanism. No posting
is done to the JMS bus.

Templates, Resource Bundle, and Other Configuration Files
This section contains the following topics:

• Notification Configuration

• Resource Bundles

• Template Files

Notification Configuration
You enable or disable notifications and set the values of the SMTP server used by the
notification consumer by using the davadmin command or Jconsole. See "Calendar Server
Configuration Parameters" for details on each of the configuration properties that you can set
for notifications.

Resource Bundles
The value of the user's locale/preferred language attribute (defined by the
davcore.ldapattr.preferredlang configuration parameter) in the user's directory entry is used
to localize notification email. The attribute is retrieved from LDAP every time a notification is
triggered and is then passed along as part of the notification object being published. If the user
does not have any preferred locale/language, it defaults to the consumer module's system's
default.

Template Files
Notification templates are files that contain pre-formatted notification messages. For example,
request.fmt is used for scheduling request notification email message, while sms.fmt contains
a short template for alarm SMS messages.

Table 9-3 describes the available notification email templates. In a deployed production
environment, by default the templates should be located in the /config/templates sub-
directory, for example, /opt/sun/comms/davserver/config/templates/. The location of the
templates directory is defined by the notification.dav.configdir configuration parameter.

Table 9-3 Scenarios That Trigger Notifications and Templates Files Used

Message
Type

Notification
Type

Template Files From To Description

Alarm ALARM alarm.fmt?
alarm_todo.fmt

User's
scheduling
address

Recipients
listed in
alarm

Email reminder for an upcoming event or
todo.

Alarm ALARM sms.fmt User's
scheduling
address

Recipients
listed in
alarm

SMS reminder for an upcoming event or
todo. The SMS message is a more
concise message but is still sent by
email.

Auto creation AUTOCREAT
E

autocreate.fmt User's
scheduling
address.

User's
scheduling
address

Notifies of auto creation of user's home
collection due to the arrival of the very
first invitation.

Chapter 9
Managing Notification Templates

9-7

Table 9-3 (Cont.) Scenarios That Trigger Notifications and Templates Files Used

Message
Type

Notification
Type

Template Files From To Description

Event
Request
Notification

SCHEDULE_
RECEIVE

request.fmt,
request_recur.fm
t

Organizer Notification
recipients

Notifies attendee of a new event
invitation or significant change to an
invitation.

Todo Request
Notification

SCHEDULE_
RECEIVE

request_todo.fmt
,
request_recur_to
do.fmt

Organizer Notification
recipients

Notifies attendee of a new todo or
significant change to a todo.

Event reply
Notification

SCHEDULE_
RECEIVE

reply_requeststa
tus.fmt

Attendee Organizer Notifies the organizer of the status of an
invitation, when the status is of value 3.x
and 4.x, which indicates some issues
with the scheduling.

Todo Reply
Notification

SCHEDULE_
RECEIVE

reply_requeststa
tus_todo.fmt

Attendee Organizer Notifies the organizer of the status of a
todo, when the status is of value 3.x and
4.x, which indicates some issues with
the scheduling.

Event Cancel
Notification

SCHEDULE_
RECEIVE

cancel.fmt,
cancel_recur.fmt,
cancel_imip_tod
o.fmt,
cancel_recur_imi
p_todo.fmt

Organizer Notification
recipients

Notifies of a canceled event (to
attendee).

Todo Cancel
Notification

SCHEDULE_
RECEIVE

cancel_todo.fmt,
cancel_recur_to
do.fmt

Organizer Notification
recipients

Notifies of a canceled todo (to attendee).

Event Reply
Notification

SCHEDULE_
RECEIVE

reply.fmt,
reply_recur.fmt,
reply_imip_todo.
fmt,
reply_recur_imip
_todo.fmt

Attendee Organizer Notifies of the following reply scenarios:

1. Notifies the event organizer that an
attendee accepted the invitation;

2. Notifies the event organizer that an
attendee declined the invitation;

3. Notifies the event organizer that an
attendee tentatively accepted the
invitation.

Todo Reply
Notification

SCHEDULE_
RECEIVE

reply_todo.fmt,
reply_recur_todo
.fmt

Attendee Organizer Notifies of the following reply scenarios:

1. Notifies the todo organizer that an
attendee accepted the todo;

2. Notifies the todo organizer that an
attendee declined the todo;

3. Notifies the todo organizer that an
attendee tentatively accepted the
todo.

Event
Request
Notification
with iMIP
Data

SCHEDULE_
RECEIVE

request_imip.fmt
,
request_recur_i
mip.fmt,
request_imip_to
do.fmt,
request_recur_i
mip_todo.fmt

Organizer Notification
recipients

Notifies attendee of a new event or
significant change to the event. The
notification contains iCal information
because the
notification.dav.enableimipemailnotif
configuration parameter has been set to
true.

Chapter 9
Managing Notification Templates

9-8

Table 9-3 (Cont.) Scenarios That Trigger Notifications and Templates Files Used

Message
Type

Notification
Type

Template Files From To Description

Event Cancel
Notification
with iMIP
Data

SCHEDULE_
RECEIVE

cancel_imip.fmt,
cancel_recur_imi
p.fmt,
cancel_imip.fmt,
cancel_recur_imi
p.fmt

Organizer Notification
recipients

Notifies of a canceled event (to
attendee). The notification contains iCal
information because the
notification.dav.enableimipemailnotif
configuration parameter has been set to
true.

Event Reply
Notification
with iMIP
Data

SCHEDULE_
RECEIVE

reply_imip.fmt,
reply_recur_imip
.fmt,
reply_imip.fmt,
reply_recur_imip
.fmt

Attendee Organizer Notifies of the following reply scenarios:

1. Notifies the event organizer that an
attendee accepted the invitation;

2. Notifies the event organizer that an
attendee declined the invitation;

3. Notifies the event organizer that an
attendee tentatively accepted the
invitation. The notification contains
iCal information because the
notification.dav.enableimipemailn
otif configuration parameter has
been set to true.

iTIP Event
Request

SCHEDULE_
ITIP

itip_eventreques
t.fmt

Organizer External
attendee

iTIP scheduling: Announces an iTIP
scheduling event or a significant change
to an event to an external attendee.

iTIP Todo
Request

SCHEDULE_
ITIP

itip_todorequest.
fmt

Organizer External
attendee

iTIP scheduling: Announces an iTIP todo
or a significant change to a todo to an
external attendee.

iTIP Event
Cancel

SCHEDULE_
ITIP

itip_eventcancel.
fmt

Organizer External
attendee

iTIP scheduling: Notifies of a
cancellation of an iTIP scheduling event
to an external attendee.

iTIP Todo
Cancel

SCHEDULE_
ITIP

itip_todocancel.f
mt

Organizer External
attendee

iTIP scheduling: Notifies of a
cancellation of an iTIP todo to an
external attendee.

iTIP Event
Reply

SCHEDULE_
ITIP

itip_eventreply.f
mt

External
attendee

Organizer iTIP scheduling: Replies to an iTIP
scheduling event.

1. attendee accepted the invitation;

2. attendee declined the invitation;

3. attendee tentatively accepted the
invitation.

iTIP Todo
Reply

SCHEDULE_
ITIP

itip_todoreply.fm
t

External
attendee

Organizer iTIP scheduling: Replies to an iTIP todo.

1. attendee accepted the todo;

2. attendee declined the todo;

3. attendee tentatively accepted the
todo.

Share
calendar
account

SHARE_ACC
OUNT

share_account.f
mt

Sharer's
email
address

Sharee's
email
address

Notifies of a calendar account being
shared.

Chapter 9
Managing Notification Templates

9-9

Table 9-3 (Cont.) Scenarios That Trigger Notifications and Templates Files Used

Message
Type

Notification
Type

Template Files From To Description

Share
calendar
collection

SHARE_CAL
_COLLECTI
ON

share_cal.fmt Sharer's
email
address

Sharee's
email
address

Notifies of a calendar collection being
shared.

Notes about notifications and templates:

• Notification recipients: A recipient list stored in the property, SUN_NOTIFRECIPIENT. By
default, it's the scheduling address of the LDAP user on behalf of whom the operation is
executed. It can be modified through interfaces provided by WCAP or by using the
davadmin command.

• _recur files: Templates of file names containing "_recur" are used for notifications
regarding recurring resources.

• _imip templates: These templates are used by the iSchedule gateway, and contain x-
headers added by the gateway for special processing instructions.

Customizing Templates
Because JavaMail has interfaces to parse an entire string into a MIME message, a notification
template file is designed to be a well-formatted email MIME message that contains character
sequences denoted by a starting "%{", and an ending "}".

A template contains two types of trinkets:

• Resource bundle key: A place holder for locale-specific resource, in the format of ${key};

For example, trinket ${summary} contains a key "summary" that uniquely identifies a
locale-specific object in the resource bundle.

• Value trinket: A place holder for notification field value, in the format of %{trinket};

For a complete list of keys, refer to the email.properties file.

Table 9-4 describes all notification values and trinkets.

Table 9-4 Notification Value Trinkets

Name Description or Note Example

summary Summary Not applicable

from Email from value for this notification Not applicable

to Email to value for this notification Not applicable

organizer Organizer in ical Not applicable

attendees Attendee list in ical Not applicable

sender On behalf of sender Not applicable

recipient Original recipient Not applicable

start Start date/time for this notification Not applicable

end End date/time for this notification Not applicable

location Location in ical Not applicable

Chapter 9
Managing Notification Templates

9-10

Table 9-4 (Cont.) Notification Value Trinkets

Name Description or Note Example

description Description in ical Not applicable

note_recurring Used in template in recurring resources Not applicable

partstat Used in reply [ACCEPTED,
TENTATIVE,
DECLINED]

requeststatus Used in reply_requeststatus templates As defined in RFC5545

due Used in todo templates Not applicable

alarm_summary Used in alarm templates Not applicable

cal_owner Owner of the shared calender. Used in share
templates.

Not applicable

displayname The displayname of a calendar Not applicable

ical Used for iMIP messages Entire ical raw data

The following example shows an event request template, request.fmt, and the resulting
notification message constructed from the template.

Event Request Template

Subject: ${event_request_notification} %{summary}
From: %{from}
To: %{to}
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 7BIT
${summary}: %{summary}
${organizer}: %{organizer}
${attendees}: %{attendees}
${start}: %{start}
${end}: %{end}
${location}: %{location}
${description}:
%{description}

Resulting Notification Message

Subject: Event Request Notification: test
From: caluser39@example.com
To: caluser8@example.com
MIME-version: 1.0
Content-type: text/plain; charset=utf-8
Content-transfer-encoding: 7BIT
Summary: test
Organizer: caluser7@example.com
Attendees: caluser8@example.com
Start: Tue December 01, 2009 10:30:00 AM PST
End: Tue December 01, 2009 11:30:00 AM PST
Location: Loveland conf room, BRM05
Description: test notes.

The following example shows a customized request.fmt template, and the resulting
notification message constructed from the template. In the resource bundle, a new entry
should be included as shown in the example (summary_cap=SUMMARY).

Chapter 9
Managing Notification Templates

9-11

Customized request.fmt

Subject: ${event_request_notification} %{summary}
From: %{from}
To: %{to}
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 7BIT
${summary_cap}: %{summary}
${organizer}: %{organizer}
${attendees}: %{attendees}
${start}: %{start}
${end}: %{end}
${location}: %{location}
${description}:
%{description}

Resulting Notification Message

Subject: Event Request Notification: test
From: caluser39@example.com
To: caluser8@example.com
MIME-version: 1.0
Content-type: text/plain; charset=utf-8
Content-transfer-encoding: 7BIT
SUMMARY: test
Organizer: caluser7@example.com
Attendees: caluser8@example.com
Start: Tue December 01, 2009 10:30:00 AM PST
End: Tue December 01, 2009 11:30:00 AM PST
Location: Loveland conf room, BRM05
Description: test notes.

The Calendar Notifications module constructs the notification message from the corresponding
template. Based on the user's preferred language/locale, the Notification module retrieves the
locale-specific template from a runtime templates cache. It then performs more customization
with the notification values. If the locale-specific template is not found, the original template is
loaded and localized. The localized template is then stored in the cache, and thus should be
constructed only once.

You can customize a template as long as it is in valid MIME format. Each resource bundle key
is defined in the resource bundles and can be adjusted and added as long as it has a matching
entry in the bundle files. All notification value trinkets are predefined in the Java source code,
and should not be changed.

Preserving Customized Template Files During Calendar Server Upgrade
Customized notification template files are preserved during a Calendar Server upgrade.
Normally, there should be no problem merging customized notification template files during the
upgrade. If the upgrade encounters a problem with merging these files, the following message
is displayed:

log_msg "There are conflicts in merging $file customization"
log_msg "Please finish the merge by manually resolving the conflicts in $cfgFileNew"

The $file and $cfgFileNew are substituted with actual file names.

Chapter 9
Managing Notification Templates

9-12

Writing a Java Messaging Service Consumer
Calendar Server Notification Services use a publish/subscribe paradigm. The information in
this section describes how to create your own consumer program.

All Calendar Server notification messages are posted to a pre-defined JMQ Topic called
DavNotificationTopic. Each message consists of the associated iCal data as the message
body and some additional information passed in as properties.

Topics in this section:

• Notification Message Format

• Code Sample

Notification Message Format
The Notification data posted to the JMS bus is a JMS Message object. The iCal data is sent as
a JMS message body, while all other information is sent as message properties.

The properties are as follows:

• type (notification type): Indicates the type of change that occurred. See "Notification
Types" for the types that are currently defined. The following notification types trigger a
notification message to be sent from the MDB consumer:

– ALARM

– AUTOCREATE

– SCHEDULE_RECEIVE

– SCHEDULE_ITIP (email directly from Calendar Server)

– SHARE_ACCOUNT

– SHARE_CAL_COLLECTION

• resourceURI: A string property indicating the URI of the changed resource.

• fromAddress: A string Property indicating the originator, the scheduling address of the
principal URI who made the change.

• toAddresses: A string Property consisting of a comma separated list of recipient
address(es) where the notification is to be delivered. The final list of recipients are further
calculated based on the notification type and other conditions at the consumer.

• locale: A string Property that specifies the locale/preferred language of the owner of the
resource or collection on which a notification was triggered.

• notificationDate: A Long Property with the timestamp when the notification was posted to
the JMS bus.

The Notification Message payload is the resource content (that is, iCal data) in byte array
format. Attachments are not included.

An instruction field in a notification carries a special instruction on processing of a notification.
For example, an instruction of EXCEED_PAYLOAD_LIMIT indicates the iCal data involved in
this change exceeds the pre-configured maximum JMS payload size, and thus the consumer
needs to fetch the data separately.

Chapter 9
Writing a Java Messaging Service Consumer

9-13

Code Sample
The following sample code for a consumer assumes that you know now to implement Message
Driven Beans (MDB), and that you are familiar with Calendar Server's notification model and
types.

@MessageDriven(mappedName = "jms/DavNotificationTopic",
activationConfig = {
@ActivationConfigProperty(propertyName = "subscriptionDurability", propertyValue =
"Durable"),
@ActivationConfigProperty(propertyName = "clientID", propertyValue =
"CalDAVNotifConsumerID"),
@ActivationConfigProperty(propertyName = "subscriptionName", propertyValue =
"CalDAVNotifConsumer")
})
public class NotificationConsumer implements MessageListener {
...
public void onMessage(Message contents) {
...
public void onMessage(Message contents) {
if (contents instanceof StreamMessage) {
Notification notif = null;
// read the JMS message,
StreamMessage msg = (StreamMessage) contents;
try {
msg.reset();
byte[] theData = (byte[]) msg.readObject();
//first, filter out those types of notification that we want to process.
NotificationType type = NotificationType.valueOf(msg.getStringProperty("type"));
switch (type) {
case ACLCHANGE:
case CREATE_COLLECTION:
case CREATE_CAL_COLLECTION:
case DELETE_COLLECTION:
case DELETE_CAL_COLLECTION:
case SCHEDULE_SEND:
case CREATE_RESOURCE:
case CREATE_CAL_RESOURCE:
case DELETE_RESOURCE:
case DELETE_CAL_RESOURCE:
case MODIFY_RESOURCE:
case MODIFY_CAL_RESOURCE:
return;
case ALARM:
case AUTOCREATE:
case SCHEDULE_RECEIVE:
default:
break;
}
notif = new Notification(type,
msg.getStringProperty("resourceURI"),
msg.getStringProperty("fromAddress"),
msg.getStringProperty("toAddresses").split(","),
msg.getStringProperty("locale"),
new Date(msg.getLongProperty("notificationDate")),
theData);
} catch (MessageEOFException meofex) {
LOGGER.log(Level.WARNING, "Error reading message data object: "
+ "unexpected end of message stream has been reached. \n",
meofex);

Chapter 9
Writing a Java Messaging Service Consumer

9-14

} catch (MessageFormatException mfex) {
LOGGER.warning("Invalid type conversion.\n" + mfex);
} catch (JMSException jmse) {
LOGGER.log(Level.WARNING, "Error reading JMS message: "
+ "JMS provider fails to read the message due to some internal error.\n",
jmse);
}
if(notif != null) {
try {
// Get iCal data
byte[] data = notif.getData();
}
}

Managing Calendar Server Java Messaging Server Destinations
This section describes how to manage Java Messaging Server (JMS) destinations in Calendar
Server.

Topics in this section:

• Overview of Calendar Server JMS Destinations

• Administer JMS Destination in GlassFish Server Deployments

• Administer JMS Destination in WebLogic Server Deployments

Overview of Calendar Server JMS Destinations
The JMS API enables messages to be specified as either PERSISTENT or
NON_PERSISTENT. By default, Calendar Server JMS notification messages are delivered in
PERSISTENT mode. Thus, you should monitor and purge JMS messages for cases when the
destination's accumulated messages are taking up too much of the system's resources.
Calendar Server uses the DavNotificationTopic JMS topic.

Administer JMS Destination in GlassFish Server Deployments
This section describes how to manage Java Messaging Server (JMS) destinations in Calendar
Server by using the imqcmd command. For a complete list of imqcmd options, see Sun Java
System Message Queue 4.1 Administration Guide.

Use the following tasks to use the JMS imqcmd command to work with JMS destinations:

• Listing a JMS Destination's Metrics

• Purging All Messages

• Monitoring Disk Utilization

• Accessing Remote Brokers Tip

Listing a JMS Destination's Metrics
To list a JMS destination's metrics:

1. Change directories to the GlassFish_home/imq/bin directory.

2. List and display the metrics of the JMS topic used by the Calendar Server,
DavNotificationTopic.

Chapter 9
Managing Calendar Server Java Messaging Server Destinations

9-15

imqcmd list dst -t t -n DavNotificationTopic
...
imqcmd metrics dst -t t -n DavNotificationTopic
...

Purging All Messages
Occasionally, you might need to purge all messages queued at the DavNotificationTopic
physical destination, if the destination's accumulated messages are taking up too much of the
system's resources. Purging a physical destination deletes all messages queued at the
destination. Consider pausing the destination to temporarily suspend the delivery of messages
from producers to the destination previous to the purge operation. Also, take a snapshot of the
metrics before and after you run the purge command.

To purge all messages:

imqcmd pause dst -t t -n DavNotificationTopic PRODUCERS
...
imqcmd purge dst -t t -n DavNotificationTopic
...
imqcmd resume dst -t t -n DavNotificationTopic
...

Monitoring Disk Utilization
To monitor a physical destination's disk utilization, use the imqcmd metrics command with the
dsk option:

imqcmd metrics dst -t t -n DavNotificationTopic -m dsk -u admin

Accessing Remote Brokers Tip
You can also use the -b host:port option to specify a remote broker host name and port, for
example, -b host1.example.com:7676.

Administer JMS Destination in WebLogic Server Deployments
For information about administering JMS destination in WebLogic Server deployments, refer to
the following WebLogic Server documentation:

• See the discussion about JMS message management in Administration Console Online
Help.

• See the discussion about using WLST to manage JMS servers and JMS system module
resources in Fusion Middleware Administering JMS Resources for Oracle WebLogic
Server Guide.

• See the discussion about navigating and managing JMS resources in Understanding the
WebLogic Scripting Tool Guide.

Presence Notifications
Calendar Server publishes a JMS message on an event start and end that presence clients,
including Oracle Communications Instant Messaging Server, can use to automatically set
presence status. The client then displays a status message based on how that client
consumes and posts the status. Calendar Server publishes this JMS message through its
existing JMS infrastructure, which is also used to publish alarms for database changes.

Chapter 9
Presence Notifications

9-16

https://docs.oracle.com/middleware/12213/wls/WLACH/pagehelp/JMSjmsmessagejmsmessagetabletitle.html
https://docs.oracle.com/middleware/12213/wls/WLACH/pagehelp/JMSjmsmessagejmsmessagetabletitle.html
https://docs.oracle.com/middleware/12213/wls/JMSAD/wlst.htm#JMSAD257
https://docs.oracle.com/middleware/12213/wls/JMSAD/wlst.htm#JMSAD257
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wlstg/nav_edit.html#GUID-A513A3F9-F94A-4B1E-B92F-F9F23A3C7569
https://docs.oracle.com/en/middleware/fusion-middleware/12.2.1.3/wlstg/nav_edit.html#GUID-A513A3F9-F94A-4B1E-B92F-F9F23A3C7569

Configuring Presence Notifications
1. If you upgraded to Calendar Server 7.0.4.14.0, run the davadmin account upgrade

command.

2. Enable server-wide presence by setting the davcore.presence.enable parameter to true.

See "Enabling Notifications on an Account" for more information.

3. Configure the davcore.presence.advancepresencetriggerinterval parameter to set time
difference in seconds, between actual event timings and trigger time.

Chapter 9
Presence Notifications

9-17

10
Troubleshooting Calendar Server

This chapter describes troubleshooting strategies for Oracle Communications Calendar Server.

Troubleshooting Calendar Server Initial Configuration
If you experience trouble configuring Calendar Server while running the init-config initial
configurator script and you receive an error from the application server, ensure that you are
running the recommended Java version based on the JDK support available for the container
and that your environment is configured appropriately.

Note:

If you use GlassFish Server 3.x, use the JDK version 1.7 and if you use WebLogic
Server 12.x, use the JDK version 1.8. For more information, see the installation guide
of the corresponding application server.

Troubleshooting Application Server and Java
If you upgrade your Java SE to Java SE Development Kit 7, Update 7 (JDK 7u7) or later, you
must also upgrade GlassFish Server to the recommended patch level. If you use WebLogic
Server, upgrade Java to the recommended JDK8 update version as suggested by the
WebLogic Server version. Otherwise, you may encounter problems running the davadmin
command.

Troubleshooting Common Issues
Begin troubleshooting by ensuring that the application server web container is running and that
Calendar Server is deployed. You can use either the Application Server's Administration
Console or the command-line utilities.

Topics in this section:

• GlassFish Server:

– Using the asadmin Command to Specify GlassFish Server Port

– Using the GlassFish Server Administration Console to Check Calendar Server Status

– Using the asadmin Command-line Utility to Check Calendar Server Status

• WebLogic Server:

– Using the WebLogic Server Administration Console to Check Calendar Server Status

• Generic:

– Troubleshooting the Calendar Server davserver Process

– Troubleshooting a Failing davadmin Command

10-1

– Troubleshooting MySQL Server Errors

– Importing a Convergence ics File

– Refreshing Domain Information

– Troubleshooting the iSchedule Back End on MySQL Server

Using the asadmin Command to Specify GlassFish Server Port
If you have more than one GlassFish Server instance installed, use the asadmin -p to specify
the instance's administrative port number.

Using the GlassFish Server Administration Console to Check Calendar
Server Status

To check Calendar Server status by using GlassFish Server Administration Console:

1. Start the console.

2. Navigate to Web Applications under the Applications tab.

3. Ensure that davserver is deployed and enabled.

Using the asadmin Command-line Utility to Check Calendar Server Status
Run the following commands:

asadmin list-components -p admin-port --type=web
davserver web-module
Command list-components executed successfully.

asadmin show-component-status -p admin-port davserver
Status of davserver is enabled.
Command show-component-status executed successfully.

Using the WebLogic Server Administration Console to Check Calendar
Server Status

To check the Calendar Server status by using the WebLogic Server Administration console:

1. Start the WebLogic Server Administration Console.

2. In the Domain Structure section, click the domain name. For example, domain1.

3. Navigate to Environment, Servers, and then to the Configuration tab.

Note:

Ensure that the Administration Server and Managed Server in which Calendar
Server is deployed are up and running.

4. Navigate to Deployments.

5. Ensure that davserver is deployed under the Configuration tab.

Chapter 10
Troubleshooting Common Issues

10-2

Troubleshooting the Calendar Server davserver Process
To troubleshoot the davserver process:

1. If davserver is not enabled, check the Application Server log in which Calendar Server is
deployed.

• On GlassFish Server:

Check server.log in the GlassFish_home/domains/domain1/logs directory.

• On WebLogic Server:

Check managed_server_name.log in Weblogic_Domain/servers/
managed_server_name/logs directory.

2. If davserver is deployed and enabled but clients have trouble connecting, check the
davserver log, calendar.*, in the /var/opt/sun/comms/davserver/logs directory or an
equivalent directory. To increase the log level, use the davadmin command as shown in
the following example:

davadmin config modify -o log.dav.errors.loglevel -v FINE

See "Calendar Server Command-Line Utilities" for more information on the davadmin
command.

Troubleshooting a Failing davadmin Command
For GlassFish Server:

If a davadmin command fails to run, use the -e option to get more details about the failure. For
example:

davadmin version
Enter Admin password:*********
DAV server connection failed. Is the server running?

davadmin version -e
Enter Admin password:*********
JMXconnection exception for url service:jmx:rmi:///jndi/rmi://
commsuite.example.com:46633/jmxrmi - Exception creating connection to: 1.1.1.1; nested
exception is:
java.net.SocketException: java.security.NoSuchAlgorithmException: Error constructing
implementation (algorithm: Default, provider: SunJSSE, class:
com.sun.net.ssl.internal.ssl.DefaultSSLContextImpl)

This example shows SSL errors. In this case, you would make sure that the truststore file
pointed to by the command through the -s option, or the commandfile option, or the default
one, if none were specified explicitly, exists and is valid. The default truststore
file, .asadmintruststore, is located in the config directory.

To verify:

1. As root, run an asadmin command on the GlassFish Server host on which Calendar
Server is deployed. An .asadmintrustore file is created under the root (/) directory.

2. Ensure that this file is the same as the one in the Calendar Server config directory.

Also, see "Troubleshooting Application Server and Java".

For WebLogic Server:

Chapter 10
Troubleshooting Common Issues

10-3

If you use WebLogic Server and when davadmin command is successful, the following output
is displayed:

/opt/sun/comms/davserver/sbin/davadmin version
Enter Admin password: *********
Handshake succeeded: TLSv1.2
Oracle Communications Calendar Server version: 8.0.0.4.0 (built yyyy-mm-dd-Time)

The following example shows the output when the davdmin command fails:

/opt/sun/comms/davserver/sbin/davadmin version
Enter Admin password: *********
Handshake failed: TLSv1.2, error = sun.security.validator.ValidatorException: PKIX path
building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to
find valid certification path to requested target
Handshake failed: TLSv1.1, error = sun.security.validator.ValidatorException: PKIX path
building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to
find valid certification path to requested target
Handshake failed: TLSv1, error = Received fatal alert: handshake_failure
Handshake failed: TLSv1.2, error = sun.security.validator.ValidatorException: PKIX path
building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to
find valid certification path to requested target
Handshake failed: TLSv1.1, error = sun.security.validator.ValidatorException: PKIX path
building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to
find valid certification path to requested target
Handshake failed: TLSv1, error = Received fatal alert: handshake_failure
Server unavailable at url: service:jmx:t3s://commsuite.example.com:46633/jndi/
weblogic.management.mbeanservers.runtime

In the example, 46633 is the secure port of the managed server in which Calendar Server is
deployed.

This example shows SSL errors. In this case, check the following to troubleshoot the issue:

• WebLogic Server is configured in Secure mode using the supported keystores

• WebLogic Administration Console is accessible as https://hostname:secure_port/console

• The extractSSLArgs.sh script runs successfully in a secure mode before doing initial
configuration.

sh ./extractSSLArgs.sh -u weblogic_admin_user -p weblogic_admin_user_password -l
t3s://weblogic_server_host:SSL_port

• If there is a problem in running the above script successfully, try to use WLST command to
connect to the server.

wls:/offline> connect(weblogic_admin_user,weblogic_admin_user_password,t3s://
weblogic_server_host:SSL_port");

• WebLogic_Domain/config contains a valid .wls_sslargs file and the contents correspond
to the same keystore options that is configured at the WebLogic Server Side Secure
Configuration.

• davadmin.properties file under CalendarServer_home/config folder contains proper
details.

For example:

port=managed_server_port

secure=location of truststore used in configuring WebLogic Server in secure mode

Chapter 10
Troubleshooting Common Issues

10-4

For more information, see the discussion about running extractSSLArgs.sh to validate and
store WebLogic Server SSL details in the Calendar Server Installation and Configuration
Guide.

Troubleshooting MySQL Server Errors
If you find a MySQL Server back-end error, ensure MySQL Server is running.

If you use GlassFish Server:

1. Start the GlassFish Server Administration Console.

2. Select JDBC Resources from Resources, then select Connection Pools.

3. Choose the caldavPool and perform a ping.

4. If the ping fails, check the Pool properties to make sure they are all correct.

5. You can also perform a command-line ping as follows:

asadmin list-jdbc-connection-pools -p admin-port
__CallFlowPool
__TimerPool
DerbyPool
caldavPool
Command list-jdbc-connection-pools executed successfully.

asadmin ping-connection-pool -p admin-port caldavPool
Command ping-connection-pool executed successfully.

6. Even if you ping the pool, sometimes Calendar Server is not able to load the back end. In
this case, you see errors similar to the following:

SEVERE [2009-09-03T22:00:53.310-0700] <...JdbcBackend.getDataSource> Cannot lookup
DataSource: javax.naming.NameNotFoundException: defaultbackend1 not found

SEVERE [2009-09-03T22:00:53.313-0700] <...DavServer.loadBackend> failed to
instantiate or create backend com.sun.comms.davserver.backends.BackendException:
Cannot get DataSource: javax.naming.NameNotFoundException: defaultbackend1 not
found(OPERATION_NOT_SUPPORTED)

7. To see the pool and resource data clearly, view the GlassFish Server configuration file, for
example:

GlassFish_home/domains/domain1/config/domain.xml
8. If cause of error is not clear, delete and recreate the Connection Pool and JDBC resource

by using the asadmin command, for example:

asadmin delete-jdbc-connection-pool -p admin-port caldavPool
asadmin create-jdbc-connection-pool -p admin-port --user admin --datasourceclassname
com.mysql.jdbc.jdbc2.optional.MysqlDataSource --restype javax.sql.DataSource --
property
"DatabaseName=caldav:serverName=mysqlhost:user=caldav:password=mysqlpass:portNumber=3
306:networkProtocol=jdbc" caldavPool

asadmin create-jdbc-resource -p admin-port --user admin --connectionpoolid
caldavPool jdbc/defaultbackend

If you recreate the JDBC resource, ensure to use the same user name and password that
you initially used to create the resource. Restart GlassFish Server after recreating the
connectionpool and resource.

If you use WebLogic Server:

Chapter 10
Troubleshooting Common Issues

10-5

1. Start the WebLogic Server Administration Console.

2. In the left pane of the Console, under Domain Structure, select the domain name.

3. Click Services and Data Sources.

JDBC DataSources - defaultbackend and ischedulebackend are displayed in the
Configuration tab.

4. Select the defaultbackend JDBC Data Source name from the list.

5. Select Configuration and General tab.

The settings for defaultbackend are displayed.

6. Navigate to the Connection Pool tab and ensure that the properties are correct.

7. Navigate to Monitoring, and then click the Testing tab.

8. Select the listed managed server name and click the Test Data Source button.

Success or Error message displays in the Administration Console.

Note:

If the connection fails, verify the Pool properties from the Connection Pool tab to
ensure all properties are correct.

Occasionally, Calendar Server may not load the backend even though the connection to
pool succeeds. To see the pool and resource data clearly, view the WebLogic Server
configuration file. For example, Weblogic_Domain/config/config.xml

9. Delete and recreate the Connection Pool and JDBC resource from WebLogic Server
Administration Console if the cause of the error is unclear.

a. Click Lock & Edit before making changes to the configuration.

b. Click Activate Changes after making the changes and saving the configuration.

Note:

If you recreate the JDBC resource, ensure to use the same user name and
password that you initially used to create the resource.

If you use WebLogic Server as a container, for creating the JDBC resource,
see the discussion about installing and configuring multiple Calendar Server
back-end hosts for WebLogic Server manually in the Calendar Server
Installation and Configuration Guide.

c. Restart WebLogic Server after recreating the connection pool and resource.

10. Verify the MySQL logs for any errors.

Importing a Convergence ics File
You might see the following error when importing an ics file that was created in Convergence.

davadmin calresource import -u admin -a caluser6@example.com -m
convergence_caluser6_2.2.ics

Chapter 10
Troubleshooting Common Issues

10-6

Unable to import the resource into 'calendar'. DUE: 20090905T000000Z is before or equal
to DTSTART: 20090905T000000Z

This is likely a Convergence problem, because it creates the todo by setting DTSTART and
DUE to the same time. This is due to the restrictions described in RFC5545. The description
section states that DUE must be later than DTSTART.

The workaround is to manually fix the iCal data to have DTSTART before DUE.

Refreshing Domain Information
Calendar Server fetches and caches some domain information that is stored in LDAP, such as
domain status. The system does not periodically refresh domain information, unlike user and
group information.

If you need to refresh domain information, you can use one of the following methods:

• Restart the application server.

• Using the davadmin command, make a change to any of the LDAP-related configuration
options (base.ldapinfo.*), which causes the server to refresh all cached LDAP data.

Troubleshooting the iSchedule Back End on MySQL Server
If you are unable to do a POST command to /davserver/dav/ischedule/, check the following:

1. Verify that the davcore.scheduling.ischedulebackendid=ischedulebackendid
parameter has been set in the davserver.properties file.

2. Verify that you can connect to the ischedulepool from the application server.

If you use GlassFish Server, you can use the ping command from the GlassFish
Administration Console and if you use WebLogic Server, you can use the Test Data Source
option from the WebLogic Server Administration Console.

If you get the error "Access denied for user 'mysql'@'localhost' to database 'ischedule',"
run the following MySQL Server command

GRANT ALL ON ischedule.* TO 'mysql'@'localhost'
3. Verify that you can now connect to ischedulepool from the application server.

4. Restart the application server.

Enabling Telemetry Logging
To troubleshoot issues with a particular calendar user or client, it is useful to log all protocol
interactions. You can force all telemetry logs by setting the
service.dav.telemetry.forcetelemetry parameter to true. Do not use this setting unless
required as it generates lots of data.

To enable telemetry logging at a reduced level, set the service.dav.telemetry.filter parameter.
This parameter takes a space separated list of request URI prefixes that should be logged. For
example:

• /wcap/ logs all WCAP access.

• /dav/principals/caluser1/ /dav/home/caluser1/ logs all Calendar Server access to
caluser1's account (both principals and home collections, and all the resources
underneath).

Chapter 10
Enabling Telemetry Logging

10-7

Common Errors in Log Files
This section presents common errors that you might see in the Calendar Server log files. For
more information about using log files, see "Managing Logging".

Topics in this section:

• Using the Same Start and End Date for an Event

• Same UID Already in Use

• No Specification of Content-type Header

• Deleting a Non-existing File

• Posting to Calendar Collection Without a File Name

• Using a Non-implemented HTTP Method

Using the Same Start and End Date for an Event
FINE [2009-08-24T19:28:57.020-0700] <...DavServlet.service> Got a non standard
condition: DTEND: 20090829T000000 is before or equal to DTSTART: 20090829T000000

INFO [2009-08-24T19:28:57.021-0700] <...DavServerServlet.service> [RES] [403]
Command execution time: 0.041 secs

Same UID Already in Use
FINE [2009-08-24T19:30:50.044-0700] <...DavServlet.service> Got a non standard
condition: uid q3EfPB0C4EHHj918X2GVU1 already in use in /dav/home/modendahl/calendar/
765345.ics

INFO [2009-08-24T19:30:50.046-0700] <...DavServerServlet.service> [RES] [403]
Command execution time: 0.063 secs

No Specification of Content-type Header
FINE [2009-08-24T19:32:07.803-0700] <...DavServlet.service> Got a non standard
condition: unsupported content-type: application/octet-stream

INFO [2009-08-24T19:32:07.805-0700] <...DavServerServlet.service> [RES] [403]
Command execution time: 0.019 secs

Deleting a Non-existing File
FINE [2009-08-24T19:32:58.098-0700] <...DavServlet.service> Got a non standard
condition: getNode returned null for uri /dav/home/modendahl/calendar/teeeest.ics

INFO [2009-08-24T19:32:58.099-0700] <...DavServerServlet.service> [RES] [404]
Command execution time: 0.012 secs

Posting to Calendar Collection Without a File Name
FINE [2009-08-24T19:33:39.239-0700] <...DavServlet.service> Got a non standard
condition: Invalid Resource Type in POST:CALENDAR_RESOURCE

Chapter 10
Common Errors in Log Files

10-8

INFO [2009-08-24T19:33:39.241-0700] <...DavServerServlet.service> [RES] [403]
Command execution time: 0.02 secs

Using a Non-implemented HTTP Method
INFO [2009-08-24T19:35:10.416-0700] <...DavServerServlet.service> [REQ] CONNECT /dav/
home/modendahl/calendar/ 192.18.127.57 ics-s6.sfbay.example.com:8080

INFO [2009-08-24T19:35:10.418-0700] <...DavServerServlet.service> [RES] [501]
Command execution time: 0.0020 secs

Using the Browser Servlet in GlassFish Server Deployments
You can use a browser servlet to view an account's properties stored in collections and
resources. You might find this helpful when troubleshooting calendar problems. For more
information, see "Known Issues".

To access this browser servlet, take any valid dav URI and replace the dav prefix following
davserver with browse. For example, in a browser, change the following:

http://example.com:3080/davserver/dav/home/smithj/calendar/

to:

http://example.com:3080/davserver/browse/home/smithj/calendar/

The servlet returns a a view of the account's properties stored in collections and resources.
You can navigate among properties and delete them as well. The servlet also has some import
function if you want to use a server-side import instead of a client-side import.

The delete and file import features are enabled only when the logging level is set at FINE or
lower. To specify the logging level, use the log.dav.errors.loglevel configuration parameter.

Tip:

You can log in with Calendar Server administrator (the default is calmaster)
credentials to view multiple accounts with one login. Also, when viewing multiple
accounts, clear your browser cache before viewing the next account.

Troubleshooting CalDAV Clients
This section describes client issues.

Topics in this section:

• Lightning

• Apple iCal

• iPod touch

• Known Issues

• Troubleshooting Clients Running iOS 5 and Mac OS 10.7

• Mac OS 10.9 iCal Client Not Able to Delete Events

• Checking Active Calendar Users

Chapter 10
Using the Browser Servlet in GlassFish Server Deployments

10-9

Lightning
Lightning does not support more than one calendar account. It allows only one account per
server at a time.

Lightning 0.9 does not support multiple reminders for single events. Lightning 1.0 beta 1 does
support multiple reminders.

Lightning is not able to create an account if the user name contains special characters.

If Lightning 1.0 beta1 is installed with Thunderbird 3, and you try to go back to Thunderbird 2
and Lightning 0.9, when starting Thunderbird the following error occurs:

The Calendar data in your profile was updated by a newer version of Lightning, and
continuing will probably cause the information to be lost or corrupted. Lightning will
now be disabled and Thunderbird restarted.

To fix this error:

1. Export all your calendar data in iCalendar format.

2. Remove the calendar database storage.sdb file from your profile.

3. Restart the Thunderbird and import the iCalendar file.

Thunderbird on Solaris needs to be reloaded twice to get the newly created Todo.

Inviting users on Thunderbird for Solaris and checking their availability does not show free/
busy check properly. Instead, the invitee is always shown as free even when the invitee is
busy.

Calendar import is failing with Thunderbird on Windows and Solaris. The failed import displays
the "Modification_failed" error message. Logging back in to the profile loads the imported data
to the calendar.

Apple iCal
Apple iCal adds its own default reminder to an event if you select the "Add a default alarm to all
new events and invitations" option. Thus, if calendar1 exports the event (with no reminder) and
calendar2 imports it, the imported reminder has a default alarm set.

Apple iCal is not able to create an account if the user name contains special characters.

If the event is created with "Repeat on Weekdays only" option from Lightning or Convergence,
the Apple iCal will convert it to "Every day" and display it.

iPod touch
The following information was found with iPod touch 3.1.3 firmware.

Supported Features:

• Event is supported.

• Reminders are supported with iPod touch, up to a maximum of two reminders for a single
event.

• Recurrence is supported.

• iPod touch client enables you to a create duplicate calendar.

Chapter 10
Troubleshooting CalDAV Clients

10-10

Unsupported Features:

• Todos.

• [AppleiPhone]STATUS not being taken into account when invitation event canceled by
organizer.

• Invitations can be viewed by not accepted, declined or rejected.

• When the organizer of the event cancels the event, invitees do not have any information
that event is canceled.

• Attachments.

• Free/busy.

• Availability check.

• Import-Export functionality.

• Share/Subscribe of calendar.

Known Issues
Apple iPhone STATUS not being taken into account when invitation event canceled by
organizer

When an iPhone 3 user gets an invitation from a Lightning user, there is no option to accept,
reject, or decline the event. Additionally, when the inviting user deletes the event, the iPhone
user does not receive an event notification, nor is the event deleted from the user's calendar.
The event is in read-only mode. This issue is fixed starting with the iPhone 4 release.

Connector for Microsoft Outlook

See "Connector for Microsoft Outlook and Event Time Modifications".

Troubleshooting Clients Running iOS 5 and Mac OS 10.7
For correct setup and data synchronization to occur on devices running iOS 5 and Mac OS
10.7, make sure that you have installed at least Calendar Server 7 Update 2 Patch 5.

Mac OS 10.9 iCal Client Not Able to Delete Events
Currently, the Mac OS 10.9 iCal Client enables you to create or move events, but not delete
events.

Checking Active Calendar Users
See "Checking for Active Calendar Users".

Troubleshooting Calendar Server Agent Alerts in Instant
Messaging Server

You can configure Instant Messaging Server for Java Message Service (JMS) to support
Calendar Server Agent alerts. If you find that you are not receiving event reminders (alarms) in
an XMPP-enabled instant messaging client, verify that the password configuration has been
properly configured.

Chapter 10
Troubleshooting Calendar Server Agent Alerts in Instant Messaging Server

10-11

11
Improving Calendar Server Performance

This chapter describes how to tune your Oracle Communications Calendar Server deployment.

Tuning Calendar Server Logging
The Calendar Server logging function is I/O intensive. For optimal performance, decrease the
log level to WARNING. Another option is to store the log directory on a fast storage system,
such as a solid-state (SSD) system.

To change the log level:

davadmin config modify -o log.dav.errors.loglevel -v WARNING
davadmin config modify -o log.dav.commands.loglevel -v WARNING

Tuning Oracle GlassFish Server
The following GlassFish Server configuration is for a medium-sized deployment. Adjust the
values accordingly for your deployment.

• Tuning JVM Options

• Tuning JDBC Pool

• Tuning HTTP Service and Listener

Tuning JVM Options
-XX:+UseParallelOldGC
-XX:ParallelGCThreads=6
-Xms3200m
-XX:MaxPermSize=192m
-server
-Dsun.rmi.dgc.server.gcInterval=1800000
-Dsun.rmi.dgc.client.gcInterval=1800000
-Xmx3200m
-XX:NewRatio=2

Tuning JDBC Pool
max-pool-size=200
cachePrepStmts=true
prepStmtCacheSize=512

Tuning HTTP Service and Listener
Table 11-1 shows the HTTP service tuning settings.

11-1

Table 11-1 HTTP Service Tuning

HTTP Setting Attribute Value

keep-alive max-connections 250

Not applicable. thread-count 25

Not applicable. timeout-in-seconds 30

request-processing header-buffer-length-in-bytes 16384

Not applicable. initial-thread-count 10

Not applicable. request-timeout-in-seconds 20

Not applicable. thread-count 50

Not applicable. thread-increment 10

connection-pool max-pending-count 4096

Not applicable. queue-size-in-bytes 4096

Not applicable. receive-buffer-size-in-bytes 4096

Not applicable. send-buffer-size-in-bytes 8192

Table 11-2 shows the HTTP listener tuning settings.

Table 11-2 HTTP Listener Tuning

HTTP Listener Setting Value

acceptor-threads 1

accessLoggingEnabled false

xpowered-by false

Tuning Oracle WebLogic Server
The WebLogic Server configuration described in this section for a medium-sized deployment.
Adjust the values according to your deployment. You should perform modifications in the
managed domain in which Calendar Server is deployed.

• Tuning JVM Options for WebLogic Server

• Tuning JDBC Pool for WebLogic Server

• Tuning HTTP Service and Listener for WebLogic Server

Tuning JVM Options for WebLogic Server
For details about setting the JVM options in Oracle WebLogic Server see the discussion about
setting Java parameters for starting WebLogic Server and specifying Java options for a
WebLogic Server instance in the following documents:

• Oracle Fusion Middleware Tuning Performance of Oracle WebLogic Server
• Oracle Fusion Middleware Administering Server Startup and Shutdown for Oracle

WebLogic Server
JVM options:

Chapter 11
Tuning Oracle WebLogic Server

11-2

https://docs.oracle.com/middleware/12213/wls/PERFM/title.htm
https://docs.oracle.com/middleware/12213/wls/START/overview.htm#START138
https://docs.oracle.com/middleware/12213/wls/START/overview.htm#START138

-XX:+UseG1GC
-XX:ParallelGCThreads=6
-Xms3200m
-XX:MaxPermSize=192m
-server
-Dsun.rmi.dgc.server.gcInterval=1800000
-Dsun.rmi.dgc.client.gcInterval=1800000
-Xmx3200m
-XX:NewRatio=2

Tuning JDBC Pool for WebLogic Server
WebLogic Server instance uses a self-tuned thread-pool. The best way to determine the
appropriate pool size is to monitor the current size of the pool, shrink counts, grow counts, and
wait counts.

Configure the parameters related to JDBC Pool using WebLogic Administration Console:

1. Log in to WebLogic Server Administration Console.

2. Click Lock & Edit.

3. From the Domain Structure section, click the domain name. For example, domain1.

4. Navigate to Services and then Data Sources.

JDBC Datasources - defaultbackend and ischedulebackend are displayed in the
Configuration tab

5. Select each JDBC Data Source name from the list, navigate to the Connection Pool tab,
and then perform the following modifications:

• Change the value of Initial Capacity to 200. The default value is 1.

• Change the value of Maximum Capacity to 200. The default value is 15.

• Change the value of Statement Cache Size to 512. The default value is 10.

Note:

Setting the size of the statement cache to 0 turns Off the statement caching.
Therefore, setting this parameter to a non-zero value is equivalent to setting
cachePrepStmts=true in GlassFish Server.

6. Click Save.

7. Click Activate Changes.

8. Restart WebLogic Server Administration Server and Managed server.

Note:

For more information, see the discussions about self-tuning thread pool, tune the
number of database connections, tune pool sizes, and tuning data sources in the
Oracle WebLogic Server documentation.

Chapter 11
Tuning Oracle WebLogic Server

11-3

Tuning HTTP Service and Listener for WebLogic Server
WebLogic Server is enabled with self-tuning for most of the HTTP parameters. Ensure that the
following parameters are set by default. If the parameters are not set, you can set them using
the WebLogic Server Administration Console.

1. Log in to WebLogic Server Administration Console.

2. From the Domain Structure section, click the domain name.

3. Click Environment, Servers, Managed Server Name, and Tuning tab.

Note:

The Enable Native IO option is selected by default.

You should set the Accept Backlog value to 300.

4. Select Environment, Servers, Managed Server Name, Tuning Tab, and Advanced
section.

5. Set the Self-Tuning Thread Minimum Pool Size value to 1 and Self-Tuning Thread
Maximum Pool Size value to 400.

6. Select Environment, Servers, Protocols tab, and then HTTP tab.

Note:

The Keep-Alive option is enabled by default.

7. Select Services, Messaging, and JMS Servers.

8. Click JMS Server that Calendar Server has created. For example, JMSServer-DAV.

9. Navigate to the Configuration tab, General tab, Advanced section, and verify the
following:

• Message Buffer Size: -1, which indicates that the server automatically determines a
size based on the maximum heap size of JVM. This default value is set to either one-
third of the maximum heap size or 512 megabytes, whichever is smaller.

For more information, refer to Oracle Fusion Middleware Tuning Performance of
Oracle WebLogic Server .

Tuning MySQL Server
Configure the cache size and max connection size. For example:

back_log = 50
max_connections = 200
binlog_cache_size = 1M
max_heap_table_size = 64M
sort_buffer_size = 8M
join_buffer_size = 8M
thread_cache_size = 8
thread_concurrency = 8

Chapter 11
Tuning MySQL Server

11-4

https://docs.oracle.com/middleware/12213/wls/PERFM/title.htm
https://docs.oracle.com/middleware/12213/wls/PERFM/title.htm

query_cache_size = 64M
query_cache_limit = 2M
ft_min_word_len = 4
memlock
thread_stack = 192K
transaction_isolation = REPEATABLE-READ
tmp_table_size = 64M
log-bin=mysql-bin
expire_logs_days=1
binlog_format=mixed
slow-query-log = 1
long_query_time = 2
log_long_format
tmpdir = /tmp
innodb_additional_mem_pool_size = 16M
innodb_buffer_pool_size = 2G
innodb_data_file_path = ibdata1:10M:autoextend
innodb_file_io_threads = 4
innodb_thread_concurrency = 16
innodb_flush_log_at_trx_commit = 1
innodb_log_buffer_size = 8M
innodb_log_file_size = 256M
innodb_log_files_in_group = 3
innodb_max_dirty_pages_pct = 90
innodb_lock_wait_timeout = 120
innodb_flush_method=O_DIRECT #UFS only

Caution:

You can view contents of the back-end store by using standard MySQL tools. Do not
use MySQL tools to modify your data.

Tuning Oracle Solaris CMT Server
This section provides tuning recommendations for Chip Multi-threading (CMT) architectures
such as Sun servers with CoolThreads technology.

Set the following parameters in the /etc/system file.

set rlim_fd_max=260000
set hires_tick=1
set sq_max_size=0
set ip:ip_squeue_bind=0
set ip:ip_squeue_fanout=1
set ip:ip_soft_rings_cnt=16

TCP tuning:

ndd -set /dev/tcp tcp_time_wait_interval 60000
ndd -set /dev/tcp tcp_conn_req_max_q 3000
ndd -set /dev/tcp tcp_conn_req_max_q0 3000
ndd -set /dev/tcp tcp_max_buf 4194304
ndd -set /dev/tcp tcp_cwnd_max 2097152
ndd -set /dev/tcp tcp_xmit_hiwat 400000
ndd -set /dev/tcp tcp_recv_hiwat 400000

For Sun Fire T1000 and T2000 systems with 1.0GHz CPU, interrupt fencing by setting the
following parameter:

Chapter 11
Tuning Oracle Solaris CMT Server

11-5

psradm -i 1-3 5-7 9-11 13-15 17-19 21-23

Set the ZFS recordsize to 16 K (same as innoDB block size) by running the following
commands:

zfs create rpool/data
zfs set recordsize=16K rpool/data

Tuning Reference
Refer to the following documentation for additional tuning information:

• MySQL:

http://www.solarisinternals.com/wiki/index.php/Application_Specific_Tuning
• Network:

http://www.solarisinternals.com/wiki/index.php/Networks
• GlassFish Server:

http://download.oracle.com/docs/cd/E19159-01/819-3681/index.html
• WebLogic Server:

https://docs.oracle.com/middleware/12213/wls/PERFM/toc.htm
• MySQL benchmarks:

http://www.mysql.com/why-mysql/benchmarks/
• Scaling MySQL, T5440, ZFS:

http://blogs.oracle.com/mrbenchmark/entry/scaling_mysql_on_a_256
• Spec:

http://www.spec.org/jAppServer2004/results/jAppServer2004.html

Chapter 11
Tuning Reference

11-6

http://www.solarisinternals.com/wiki/index.php/Application_Specific_Tuning
http://www.solarisinternals.com/wiki/index.php/Networks
http://download.oracle.com/docs/cd/E19159-01/819-3681/index.html
https://docs.oracle.com/middleware/12213/wls/PERFM/toc.htm
http://www.mysql.com/why-mysql/benchmarks/
http://blogs.oracle.com/mrbenchmark/entry/scaling_mysql_on_a_256
http://www.spec.org/jAppServer2004/results/jAppServer2004.html

12
Backing Up and Restoring Calendar Server
Files and Data

This chapter describes backing up and restoring files and data in Oracle Communications
Calendar Server.

Overview of Calendar Server Backup and Restore
Calendar store backup and restore is one of the most important administrative tasks for your
Calendar Server deployment. You must implement a backup and restore policy for your
calendar store to ensure that data is not lost if problems such as system crashes, hardware
failures, or accidental deletion of information occur.

This information describes the two options for backing up and restoring the Calendar Server
calendar store (either MySQL database or Oracle Database, and the document store). You
must understand the pros and cons of these solutions to make the proper choice for your
deployment.

Note:

You cannot back up the Calendar Server store by backing up the active calendar
database and the Calendar Server data directory while Calendar Server is running. If
you do so, bad data results. Thus, you must use one of the two methods described in
this information.

Caution:

You can view contents of the back-end store by using standard MySQL or Oracle
Database tools. Do not use MySQL or Oracle Database tools to modify your data.

This information also assumes that you are backing up your LDAP Directory Server. Calendar
Server stores user, group, and resource information in LDAP. Calendar Server uses the
davUniqueId LDAP attribute to map each calendar entry (in LDAP) to a unique account in the
calendar store. The unique identifier links various entries from different database tables for a
user, group, and resource. You must use a unique identifier, and one that does not change, for
user, group, and resource entries stored in LDAP. For more information, see the topic on
Calendar Server unique identifier in Calendar Server Concepts.

Calendar Server Backup and Restore Techniques
The section describes the following ways to back up the Calendar Server data store:

• Using the davadmin db backup Command

12-1

• Using ZFS Snapshots

Using the davadmin db backup Command
Calendar Server provides the davadmin db backup command to back up the Calendar Server
data.

To back up and migrate users from Calendar Server 7 to Calendar Server 8:

1. Install a new instance of Calendar Server 7 (Same version as the one you have in
production).

2. Backup the old (production) instance of Calendar Server 7.

3. Restore the backup from old Calendar Server 7 to new Calendar Server 7.

4. Upgrade the new instance of Calendar Server 7 to Calendar Server 8.

5. If the above is successful, retire the old Calendar Server 7.

Note:

Calendar db restore will not work on a backup that was taken on a db with a different
schema version.

Pros:

• Supports partial backup and restore.

• You can also use backup and restore to migrate data from one Calendar Server host to
another.

Cons:

• The davadmin db backup command is relatively slow.

• The davadmin db restore command might take longer than the backup command, as it
needs to rebuild the database and indexes.

Using ZFS Snapshots
Use Oracle Solaris ZFS snapshots to produce an atomic snapshot of the file system containing
the MySQL database or Oracle Database and the attachment store. Then use zfs send or a
third-party file system backup software to back up the snapshot. See ZFS Administration Guide
for more information.

Pros:

• Performance is better than davadmin db backup.

Cons:

• This method does not support partial backup and restore.

MySQL Backup and Restore Techniques
The following methods back up the MySQL database only. For general information about
MySQL backup and restore, see the MySQL documentation at:

Chapter 12
MySQL Backup and Restore Techniques

12-2

http://dev.mysql.com/doc/refman/5.1/en/backup-and-recovery.html

MySQL Asynchronous Replication
Use MySQL asynchronous replication to replicate the databases. For more information, see
the MySQL documentation at:

http://dev.mysql.com/doc/refman/5.1/en/replication.html

MySQL Database Dump
Use mysqldump to dump the databases for backup or transfer to another SQL server. For
more information, see the MySQL documentation at:

http://dev.mysql.com/doc/refman/5.1/en/mysqldump.html

Point-In-Time Binlog Backup and Recovery
The binary log files provide you with the information you must use to replicate changes to the
database. For more information, see the MySQL documentation at:

http://dev.mysql.com/doc/refman/5.1/en/point-in-time-recovery.html

Oracle Database Backup and Restore Techniques
For general information about Oracle Database backup and restore, see the backup and
recovery documentation at:

http://docs.oracle.com/cd/E11882_01/nav/portal_14.htm#backup_and_recovery

Chapter 12
Oracle Database Backup and Restore Techniques

12-3

http://dev.mysql.com/doc/refman/5.1/en/backup-and-recovery.html
http://dev.mysql.com/doc/refman/5.1/en/replication.html
http://dev.mysql.com/doc/refman/5.1/en/mysqldump.html
http://dev.mysql.com/doc/refman/5.1/en/point-in-time-recovery.html
http://docs.oracle.com/cd/E11882_01/nav/portal_14.htm#backup_and_recovery

Part II
Administering a High-Availability System

Part II contains the following chapters:

• Configuring a High-Availability Database

• Configuring Calendar Server for Highly Availability

13
Configuring a High-Availability Database

Oracle Communications Calendar Server relies on native capabilities offered by MySQL Server
and the application server for a high-availability solution. This chapter provides details on one
such scenario: setting up replication of MySQL Server by using the JDBC Connector/J driver in
Oracle GlassFish Server and Oracle WebLogic Server. If you want more sophisticated
solutions for MySQL Server high availability, refer to the MySQL Server documentation, for
example, the "High Availability and Scalability" chapter in MySQL Reference Manual.

Other high availability solutions are also known in the MySQL Server community. You should
decide which solution best fits your deployment and requirements.

Note:

The examples in this information are intended for only one Calendar front end per
Calendar back end.

Overview of MySQL Server Asynchronous Replication
MySQL Server, as well as third parties, offer a wide range of high availability options ranging
from completely manual to high-end MySQL Server HA solutions. MySQL Server implements
manual asynchronous replication, provided within the product itself. This has been in use for
some time and is stable. Failover, failback, and resynchronizing nodes, and adding a node, are
all done manually. For more information, see the topic on replication in MySQL Reference
Manual.

MySQL Server 5.5 provides semi-synchronous replication in which the master node tries to
sync with at least one other node before completing the request, subject to a timeout.

MySQL Server Asynchronous Replication Example
This section describes a simple example of MySQL Server asynchronous replication
configuration for MySQL Server 5.5.8 consisting of one master and one slave.

To configure asynchronous replication:

1. Edit the /etc/my.cnf file for both master and slave MySQL Server hosts as follows:

[mysqld]
 basedir = /opt/mysql/mysql
 datadir = /var/opt/sun/comms/davserver/db
 default-storage-engine = InnoDB
 character-set-server = utf8
 transaction-isolation = READ-COMMITTED
 server-id=1
 log-bin=mysql-bin
 innodb_flush_log_at_trx_commit=1
 sync_binlog=1

13-1

https://dev.mysql.com/doc/refman/8.4/en/
https://dev.mysql.com/doc/refman/8.4/en/
https://dev.mysql.com/doc/refman/8.4/en/

 binlog-format=ROW
 skip-name-resolve

Note the following:

• server-id: The unique id for each server numbered greater than 0. (The master here is
1, the slave is 2.)

• log-bin: Turns on binary logging for replication.

• innodb_flush_log_at_trx_commit: Recommended.

• sync_binlog: Recommended.

• binlog-format: Must be ROW because of transaction-isolation level used in Calendar
Server and MySQL Server 5.5.8.

• skip-name-resolve: This is a workaround if you experience the following slave error:

ERROR 1042 (HY000): Can't get hostname for your address.
• Do not set log-slave-updates.

2. Follow the replication procedures described in the "Replication" chapter of MySQL
Reference Manual to complete the configuration.

In this example, both nodes have a log-bin and do not have log-slave-updates. Some
procedures in the "Replication" chapter might include log-slave-updates for specific
purposes, but they have been left out from these instructions, assuming most of the time a
failed node retains its data and does not need the log-slave-updates data on the other
node. These instructions also assume that the binary log removal over time might indicate
a node that lost its data, and so is not able to get all data from the other node's logs
anyhow.

MySQL Server Two-Way Replication Example
This section describes an example of a manually-controlled HA configuration. It is similar to the
preceding asynchronous replication example, except that each node is set to be the slave of
the other. Because both nodes have turned on binary logs, each node logs the data that comes
to it. The configuration is the same as asynchronous (assuming the replication user exists on
both nodes).

This is not very different from one-way synchronization considering that even in master-slave
replication you can set up the master as a slave to the original slave when you are trying to
resynchronize a failed master.

However, another way of using two-way replication is to assign specific client data to each
node, and use the opposite node for the slave. The result is that each node replicates the other
in parallel. It's important that any specific client data be assigned to only one master at a time
or else inconsistencies might occur.

Replication Synchronization Issues
When managing MySQL Server replication, it is important to understand synchronization
issues. If data arrives at one node in a different order as it does in a replicated node,
replication might fail and halt.

For example, given one-way replication, imagine that the master receives data called "dog"
and at the same time a client believing the master is not available sends "cat" to the slave. The
master has "dog" in row 1, and the slave has cat in row 1. The data between the nodes has
become inconsistent. When the slave receives "dog" from the master relay, it is not able to put

Chapter 13
MySQL Server Two-Way Replication Example

13-2

https://dev.mysql.com/doc/refman/8.4/en/
https://dev.mysql.com/doc/refman/8.4/en/

it into row 1 as it exists on the master. The nodes become inconsistent and replication fails and
halts.

MySQL Server has no internal mechanism to synchronize this automatically, and when the
MySQL Server server comes up as an active slave, it accepts new connections and also tries
to catch up with the master in parallel.

These issues need to be considered when executing manual replication procedures as well as
when using automatic functions of any other program.

Using the Multi-Host Failover Feature of JDBC Connector/J
JDBC Connector/J for MySQL Server has various capabilities for load balancing and high
availability. The example configuration in this section shows how to use JDBC Connector/J for
MySQL Server for an automatic failover, assuming a manual resynchronization and failback.
This example assumes the use of MySQL Server 5.5.8.

1. On the application server, make the following connector configuration:

Note:

The following information pertains to configuring the Calendar Server database.
You might also want to configure the same for the iSchedule database if it exists
on the same host.

For GlassFish Server:

• Enable connection validation

• Enable any failure close all connection

• Transaction isolation: Guaranteed read-committed

For WebLogic Server, see the discussion about using JDBC drivers with WebLogic Server
in the Administering JDBC Data Sources for Oracle WebLogic Server.

Note:

Most of the JDBC data source recommended settings are available by default.

The MySQL5.1.x connector is installed by default.

2. Use the following properties:

GlassFish Server:

user mysql
password mysql
URL jdbc:mysql://masterhost:3306,slavehost:3306/caldav
autoReconnect true
failOverReadOnly false
autoReconnectForPools true
roundRobinLoadBalance false
secondsBeforeRetryMaster 2147483647
queriesBeforeRetryMaster 2147483647

Chapter 13
Using the Multi-Host Failover Feature of JDBC Connector/J

13-3

https://docs.oracle.com/middleware/12213/wls/JDBCA/third_party_drivers.htm#JDBCA232

WebLogic Server:

user mysql
URL jdbc:mysql://masterhost:3306,slavehost:3306/caldav
failOverReadOnly false
roundRobinLoadBalance false
secondsBeforeRetryMaster 2147483647
queriesBeforeRetryMaster 2147483647

3. For more information, refer to the "MySQL Server Connector/J" chapter on configuration
parameters in MySQL 5.5 Reference Manual. The MySQL Server replication configuration
is two-way with each node being both a master and slave to the other. The example shows
a failure on master1, and master1 failing over to master2.

Note:

secondsBeforeRetryMaster and queriesBeforeRetryMaster are set to a very
large value to prevent the application server from failing back to master1 once it
has experienced a failover. This prevents new data from being written to master1
before master1 has had a chance to catch up. Otherwise, data might become
inconsistent.

Failover and recovering of this example works as follows:

1. Fail over.

You need a way to be alerted that a node has gone down. Once you are alerted, you must
address the situation quickly to control when master1 comes back up and is
resynchronzied and new connections are made to it.

2. Recover master1.

If master1's data is damaged or lost, you must reload master1 from master2 described in
the MySQL Server replication notes.

• Also, if master1 has data that did not make it to master2 before it failed over, it might
be easier to reload master1. This situation is less likely if semi-synchronous replication
is used.

• You can check the binary log position on master1 with show master status,
compared to master2's show slave status, to determine if master2 received all of
master1's data without error.

3. Bring back master1.

At this point it, might be useful to shut down GlassFish Server to make sure that master1
does not receive new connections before it can resynchronize with master2. Other
procedures are possible, but master1 needs to resynchronize before it receives new
GlassFish Server connections.

4. Bring up master1.

Verify it has resynchronized with master2 by using show master status on master2
versus show slave status on master1.

5. Once master1 is caught up, you can restart the application server and it should return
connections to master1, effectively failing back.

Chapter 13
Using the Multi-Host Failover Feature of JDBC Connector/J

13-4

Note:

Be sure to verify, test, and refine any HA procedure before putting it into production.

Test for MySQL Server Asynchronous Replication (Manual)
The test described in this section uses the following software and servers:

• MySQL Server 5.5.32 Enterprise Version

• JDBC Connector/J 5.1.5

• Two MySQL Server servers named Master and Slave

• Oracle Solaris 11

• GlassFish Server 3.2.x

• Oracle WebLogic Server 12.2.1.3

1. On host Master, create a user named mysql that has replication permission on Master. In
this case, user mysql is the same user name that Calendar Server uses itself to connect to
MySQL Server.

GRANT REPLICATION SLAVE ON *.* TO 'mysql'@'%';
2. On both hosts Master and Slave, edit the /etc/my.cnf config file as follows.

[mysqld]
 basedir = /opt/mysql/mysql
 datadir = /var/opt/sun/comms/davserver/db
 default-storage-engine = InnoDB
 character-set-server = utf8
 transaction-isolation = READ-COMMITTED
 server-id=1
 log-bin=mysql-bin
 innodb_flush_log_at_trx_commit=1
 sync_binlog=1
 binlog-format=ROW
 skip-name-resolve

3. Modify the application server and JDBC Connector/J configuration to fail over from Master
to Slave.

For GlassFish Server:

The following is for the caldav database. Do the same for the iSchedule database.

DataSource Classname: com.mysql.jdbc.jdbc2.optional.MysqlDataSource
Resource Type: javax.sql.DataSource

Enable 'connection validation'
Enable 'on any failure close all connection'
transaction isolation: Guaranteed
read-committed

user mysql
password mysql
URL jdbc:mysql://Master:3306,Slave:3306/caldav
autoReconnect true
failOverReadOnly false
autoReconnectForPools true

Chapter 13
Test for MySQL Server Asynchronous Replication (Manual)

13-5

roundRobinLoadBalance false
secondsBeforeRetryMaster 2147483647
queriesBeforeRetryMaster 2147483647

For WebLogic Server:

When WebLogic Server is used to deploy Calendar Server, set the required parameters in
WebLogic Server Administration Console as follows:

• Log in to WebLogic Server Administration Console

• Click Lock & Edit.

• In the Domain Structure section, click the domain name. For example, domain1.

• Navigate to Services and then Data Sources.

JDBC Datasources - defaultbackend and ischedulebackend are displayed in the
Configuration tab

• Select defaultbackend from the list and perform the following modifications:

– Navigate to the Connection Pool tab.

– Under Properties, add these parameters as key value pairs:

user mysql
URL=jdbc:mysql://Master:3306,Slave:3306/caldav
failOverReadOnly false
roundRobinLoadBalance false
secondsBeforeRetryMaster 2147483647
queriesBeforeRetryMaster 2147483647

Note:

password=password is not included in the list because the WebLogic
Server documentation does not recommend to provide a password.

• Click ischedulebackend datasource. Follow the steps provided in step 3 to set the
properties.

• Ensure that the correct database name is entered in the properties list:

URL=jdbc:mysql://Master:3306,Slave:3306/ischedule
• Click Activate Changes.

• Restart WebLogic Server.

• Ensure that WebLogic Server Administration or Managed Server logs do not show any
errors.

Note:

secondsBeforeRetryMaster and queriesBeforeRetryMaster are set to a high
value to prevent the application server and Connector/J from failing back if the
master were to come back up.

4. Initialize both hosts Master and Slave.

a. Run the following command, if the servers were previously functioning as a slave:

Chapter 13
Test for MySQL Server Asynchronous Replication (Manual)

13-6

stop slave;
b. Remove all Calendar Server data from both hosts so that the databases are

synchronized.

For example:

davadmin db init -H localhost -t mysql -u mysql -d caldav
davadmin db init -H localhost -t mysql -u mysql -d ischedule

Substitute your names for caldav and ischedule.

Caution:

These commands completely remove the calendar data.

c. On both Master and Slave, run the following command:

reset slave;
d. On both Master and Slave, run the following command:

reset master;
5. Set up Slave to be synchronized with Master.

a. Run the following command on Master:

show master status;

File = mysql-bin.000001
Position = 107

b. Note the File and Position to set parameters on Slave.

6. Run the following command on Slave:

CHANGE MASTER TO
MASTER_HOST='Master',
MASTER_USER='mysql',
MASTER_PASSWORD='mysql',
MASTER_LOG_FILE='mysql-bin.000001',
MASTER_LOG_POS=107;

7. Start Slave:

start slave;
8. Restart the application server to load Calendar Server.

9. Verify both Master and Slave.

use caldav;
select count(*) from Resources;

There should be one row after the application server starts.

10. Run data through Calendar Server (that is, use Calendar Server to create or change
events, and so on, to cause calendar data to be stored).

11. Verify that data is accumulating on both Master and Slave.

For example, use the following MySQL commands to look at data in the tables:

use caldav;
select * from Resources;

Chapter 13
Test for MySQL Server Asynchronous Replication (Manual)

13-7

You can also use this command:

select count(*) from Resources;

You can also use the following status commands:

show master status;
show slave status;

12. Stop Master and observe the failover.

The failover could take up to 60 seconds or more, as the connections time out.

13. Use the following command to observe that Slave is continuing to operate:

select count(*) from Resources;

Test for MySQL Server Two-Way Replication with Connector/J
Failover

The test described in this section uses the following software and servers:

• MySQL Server 5.5.32 Enterprise Version

• JDBC Connector/J 5.1.5

• Two MySQL Server servers named Master1 and Master2

• Oracle Solaris 11

• Oracle GlassFish Server 3.2.x

• Oracle WebLogic Server 12.2.1.3

1. On both hosts Master1 and Master2, create a user that has replication permission.

In this case, user mysql is the same user name that Calendar Server uses itself to connect
to MySQL Server.

2. Run the following command both Master1 and Master2.

GRANT REPLICATION SLAVE ON *.* TO 'mysql'@'%';
3. On both hosts Master1 and Master2, edit the /etc/my.cnf config file as follows.

[mysqld]
 basedir = /opt/mysql/mysql
 datadir = /var/opt/sun/comms/davserver/db
 default-storage-engine = InnoDB
 character-set-server = utf8
 transaction-isolation = READ-COMMITTED
 server-id=1
 log-bin=mysql-bin
 innodb_flush_log_at_trx_commit=1
 sync_binlog=1
 binlog-format=ROW
 skip-name-resolve

4. Modify the application server and JDBC Connector/J configuration to fail over from
Master1 to Master2.

GlassFish Server:

The following is for the caldav database, you should also do the same for the iSchedule
database.

Chapter 13
Test for MySQL Server Two-Way Replication with Connector/J Failover

13-8

DataSource Classname: com.mysql.jdbc.jdbc2.optional.MysqlDataSource
Resource Type: javax.sql.DataSource

Enable 'connection validation'
Enable 'on any failure close all connection'
transaction isolation: Guaranteed
read-committed

user mysql
password mysql
URL jdbc:mysql://Master1:3306,Master2:3306/caldav
autoReconnect true
failOverReadOnly false
autoReconnectForPools true
roundRobinLoadBalance false
secondsBeforeRetryMaster 2147483647
queriesBeforeRetryMaster 2147483647

For WebLogic Server:

When WebLogic Server is used to deploy Calendar Server, set the required parameters
from WebLogic Server Administration Console as follows:

• Log in to WebLogic Server Administration Console.

• Click Lock & Edit.

• In the Domain Structure section, click domain name. For example, domain1.

• Navigate to Services and then Data Sources.

JDBC Datasources - defaultbackend and ischedulebackend are displayed in the
Configuration tab.

• Select defaultbackend from the list and perform the following modifications:

– Navigate to the Connection Pool tab.

– Under Properties, add these parameters as key value pairs:

user mysql
URL jdbc:mysql://Master1:3306,Master2:3306/caldav
failOverReadOnly false
roundRobinLoadBalance false
secondsBeforeRetryMaster 2147483647
queriesBeforeRetryMaster 2147483647

Note:

password=password is not included in the list because the WebLogic
Server documentation does not recommend to provide a password.

• Click ischedulebackend datasource. Follow the steps provided in step 3 to set the
properties.

• Ensure that the correct database name is entered in the properties list:

URL=jdbc:mysql://Master:3306,Slave:3306/ischedule
• Click Activate Changes.

• Restart WebLogic Server.

Chapter 13
Test for MySQL Server Two-Way Replication with Connector/J Failover

13-9

• Ensure that errors are not seen in WebLogic Server Administration or Managed Server
logs.

secondsBeforeRetryMaster and queriesBeforeRetryMaster are set to a high value
to prevent the application server and Connector/J from failing back if the master were
to come back up.

5. Initialize both hosts Master1 and Master2:

a. Run the following command:

stop slave;
b. Remove all Calendar Server data from both hosts so that the databases are

synchronized. For example:

davadmin db init -H localhost -t mysql -u mysql -d caldav
davadmin db init -H localhost -t mysql -u mysql -d ischedule

Substitute your names for caldav and ischedule.

Caution:

These commands completely remove the calendar data.

c. On both Master1 and Master2, run the following command:

reset slave;
d. On both Master1 and Master2, run the following command:

reset master
6. Run the following command to verify file and position on each master:

show master status;
both show: mysql-bin.000001 107

7. Run the following commands to set each master to be a slave to the other:

a. On Master2:

CHANGE MASTER TO
MASTER_HOST='Master1',
MASTER_USER='mysql',
MASTER_PASSWORD='mysql',
MASTER_LOG_FILE='mysql-bin.000001',
MASTER_LOG_POS=107;

b. On Master1:

CHANGE MASTER TO
MASTER_HOST='Master2',
MASTER_USER='mysql',
MASTER_PASSWORD='mysql',
MASTER_LOG_FILE='mysql-bin.000001',
MASTER_LOG_POS=107;

8. Start slave connection on both hosts Master1 and Master2:

start slave;
9. Restart the application server to load Calendar Server.

10. Verify both hosts Master1 and Master2:

Chapter 13
Test for MySQL Server Two-Way Replication with Connector/J Failover

13-10

use caldav;
select count(*) from Resources;

There should be one row after the application server starts.

11. Run data through Calendar Server (that is, use Calendar Server to create or change
events, and so on, to cause calendar data to be stored).

12. Verify that data is accumulating on both Master and Slave.

For example, use the following MySQL commands to look at data in the tables:

use caldav;
select * from Resources;

You can also use this command:

select count(*) from Resources;

You can also use the following status commands:

show master status;
show slave status;

13. Stop Master1 and observe the failover.

The failover could take up to 60 seconds or more, as the connections time out.

14. Use this to observe the slave continuing:

select count(*) from Resources;
15. Stop the application server (to stop incoming client connections and data).

16. Bring Master1 online and allow it to sync as a slave to Master2.

17. Verify that Master1 synced as a slave to Master2.

• On Master1:

show slave status

Make sure that there are no errors and note the slave position, for example, mysql-
bin.000001 1827176.

• On Master2:

show master status
mysql-bin.000001 1827176

Verify this position with the one that you noted on Master1.

18. Verify that Master2 is still synced with Master1.

• On Master2:

show slave status

Make sure that there are no errors and note the slave position, for example, mysql-
bin.000002 107.

• On Master1:

show master status
mysql-bin.000002 107

Verify this position with the one that you noted on Master2.

Chapter 13
Test for MySQL Server Two-Way Replication with Connector/J Failover

13-11

19. Verify Row Count on both Master1 and Master2 by comparing the count from each
machine:

select count(*) from Resources;
20. Start the application server and start incoming client data.

21. Verify That Master1 is in action again, and that Master2 is following.

• On Master1:

show master status;

Verify that the position is increasing as master.

• On Master2:

show master status;

Verify that the position is not increasing.

• On both Master1 and Master2:

select count(*) from Resources;

Chapter 13
Test for MySQL Server Two-Way Replication with Connector/J Failover

13-12

14
Configuring Calendar Server for Highly
Availability

Choices for making Oracle Communications Calendar Server highly available include MySQL
Async Replication and Oracle Data Guard. You can also configure the document store for high
availability.

Front End High Availability: Load Balancing
To provide high availability of Calendar front-end hosts, deploy the hosts behind a load
balancer. The load balancer must use IP-based stickiness to distribute the load across the
front-end hosts.

Back End High Availability: MySQL Async Replication
You can achieve a highly available, redundant MySQL back-end deployment by using
asynchronous replication. You must configure the application server to use the replication
driver, as explained in the MySQL Connector/J Developer Guide at:

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-
properties.html
See "Configuring a High-Availability Database" for instructions.

Note:

MySQL Cluster with Calendar Server does not work reliably under load. Additionally,
MySQL Cluster's data recovery mechanism is not satisfactory with Calendar Server.
For these reasons, use MySQL asynchronous replication to achieve a redundant,
highly available Calendar Server deployment.

Back End High Availability: Oracle Data Guard
For information on maximizing Oracle Database availability by using Oracle Data Guard and
Advanced Replication, see the Oracle Database High Availability documentation at:

http://docs.oracle.com/cd/E11882_01/nav/portal_14.htm

Document Store High Availability
You can deploy a highly available document store. See "Configuring the Calendar Server
Document Store" in Calendar Server Installation and Configuration Guide for details.

14-1

http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://docs.oracle.com/cd/E11882_01/nav/portal_14.htm

Part III
Calendar Server Reference

Part III contains the following chapters:

• Calendar Server Configuration Reference

• Calendar Server Configuration Parameters

• Calendar Server Command-Line Utilities

• Time Zone Database

15
Calendar Server Configuration Reference

This chapter describes configuration files used by Oracle Communications Calendar Server.
By default, these files are located in the Calendar_home/config directory.

davserver.properties File
The davserver.properties file contains the main configuration settings. It consists of
configuration parameters and their current values.

Caution:

Do not edit this file manually. Always use the davadmin command to set
configuration parameters.

The format of the davserver.properties file is:

parameter=value
parameter=value
:
:

davservercreds.properties File
The davservercreds.properties file contains the password configuration settings. It consists
of configuration parameters that are passwords and their current values.

Caution:

Do not edit this file manually. Always use the davadmin command to set
configuration parameters.

The format of the davservercreds.properties file is:

password_parameter=value
password_parameter=value
:
:

Document Store Server Configuration File
The ashttpd.properties file contains the document store configuration parameters.

Table 15-1 describes the parameters in the ashttpd.properties file.

15-1

Table 15-1 ashttpd.properties File Parameters

Parameter Description Default Value

service.host Server host *

service.port Server port number 8008

store.datadir Data directory /var/opt/sun/comms/davserver

store.lockdir Lock directory /var/opt/sun/comms/davserver/lock

store.loglevel Log level INFO

store.sslkeystorepath Keystore for the server private
key

/var/opt/sun/comms/davserver/config/
dskeystore.jks

store.sslprotocols SSL protocols TLSv1.2 TLSv1.3 (Supported after
version 8.0.0.8.0)

TLSv1 TLSv1.1 TLSv1.2 (Supported till
version 8.0.0.8.0)

store.usessl Use SSL to communicate with
document store client.

false

The format of the ashttpd.properties file is:

key=value
key=value
:
:

Each line in the ashttpd.properties file stores a single property. There is no space before and
after key and value. If there are multiple network interfaces on the host and only one that the
server should bind to, specify that interface with the service.host config.

certmap.conf File
The certmap.conf file configures how a certificate is mapped to an LDAP entry.

The format of the certmap.conf file is:

certmap=name,name2
name.prop1=val1
name.prop2=val2

For more information on how to use this file, see the topic on the certificate mapper in
Convergence Security Guide.

davadmin.properties File
You can provide options to the davadmin command by including them in the
davadmin.properties file.

Table 15-2 describes the parameters in the davadmin.properties file.

Chapter 15
certmap.conf File

15-2

Table 15-2 davadmin.properties File Parameters

Parameter Description

userid Specifies the application server Administrator user ID.

hostname Specifies the application server Server host name.

port Specifies the application server administration port (JMX connector port).

secure Specifies the path to the truststore file used for a secure connection (HTTPS)
to the application server.

dbtype Specifies the type of database, either mysql or oracle.

dbhost Specifies the database host.

dbport Specifies the database port.

dbuserid Specifies the MySQL Server or Oracle Database user ID for database
commands.

sslprotocols Specifies the supported SSL protocols

[TLSv1.2 TLSv1.3 (Supported after version 8.0.0.8.0)

TLSv1 TLSv1.1 TLSv1.2 (Supported till version 8.0.0.8.0)] for the JMX proxy
to communicate with management beans in the server.

The format of the davadmin.properties file is:

parameter=value
parameter=value
:
:

Notification Templates
Notification templates are files that contain pre-formatted notification messages. For example,
request.fmt is used for scheduling request notification email message, while sms.fmt contains
a short template for alarm SMS messages. See "Using Calendar Server Notifications" for more
information.

Chapter 15
Notification Templates

15-3

16
Calendar Server Configuration Parameters

Table 16-1 describes the configuration parameters and descriptions for Calendar Server. See
"davadmin config" for information on how to update or change configuration parameters.

Table 16-1 Calendar Server Configuration Parameters

Parameter Description

base.ldapinfo.cachesize Size of the LDAP Authentication cache.

Syntax: integer

Minimum: 1

Maximum: 1000000

Default: 1000

base.ldapinfo.cachettl Time to live (in seconds) of cached LDAP Authentication info.

Syntax: integer

Unit: seconds

Minimum: 1

Maximum: Maximum int value

Default: 60

base.ldapinfo.dcroot Root of DC tree (Schema 1) or of the domain and users tree
(Schema 2) in Directory Server

Syntax: string

Default: o=isp

base.ldapinfo.defaultdomain Default domain

Syntax: string

Default: demo.example.com

base.ldapinfo.domainattrs Space separated list of LDAP attributes to use when retrieving
domain information.

Syntax: string

Default: icsStatus icsDomainNames icsDomainAcl
externalAuthPreUrlTemplate externalAuthPostUrlTemplate
corpDirectoryUrl

base.ldapinfo.loginseparator Character(s) to be used as login separator (between user ID and
domain)

Syntax: string

Default: @

base.ldapinfo.schemalevel Schema level.

Syntax: integer

Minimum: 1

Maximum: 2

Default: 2

16-1

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

base.ldapinfo.searchfilter This is the search filter used to look up users during
authentication when one is not specified in the
inetDomainSearchFilter for the domain. The syntax is the same
as inetDomainSearchFilter . See Communications Suite
Schema Reference for more information.

Syntax: string

Default: (uid=%U)

base.ldapinfo.serviceadmindn Distinguished name of single administrator in LDAP in absence
of admin group.

Syntax: string

Default: None.

base.ldapinfo.serviceadminsgroupdn Distinguished Name of service admins group in LDAP.

Syntax: string

Default: None.

base.ldapinfo.userattrs Space-separated list of LDAP attributes to retrieve from user
entries during the authentication phase.

Syntax: string

Default: mail ismemberof

base.ldapinfo.authldap.binddn Distinguished name to use when authenticating.

Syntax: string

Default: None.

base.ldapinfo.authldap.bindpassword Password to use when authenticating.

Syntax: password

Default: None

base.ldapinfo.authldap.ldaphost Space-delimited list of host names. Each host name may include
a trailing colon and port number.

Syntax: string

Default: localhost:389

base.ldapinfo.authldap.ldappoolrefreshinterval Length of elapsed time until the failover Directory Server host
reverts back to the primary Directory Server host. If set to -1,
does not refresh.

Syntax: integer

Unit: minutes

Minimum: 1

Maximum: 60

Default: 1

base.ldapinfo.authldap.ldappoolsize Maximum number of connections for this pool.

Syntax: integer

Minimum: 1

Maximum: 100

Default: 10

Chapter 16

16-2

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

base.ldapinfo.authldap.ldapport Port number to which to connect. Ignored for any host name
which includes a colon and port number.

Syntax: integer

Minimum: 0

Maximum: 65535

Default: 389

base.ldapinfo.authldap.ldaptimeout Timeout for all LDAP operations.

Syntax: integer

Unit: seconds

Minimum: 1

Maximum: 3600

Default: 60

base.ldapinfo.authldap.ldapusessl Use SSL to connect to the LDAP host.

Syntax: boolean

Default: false

base.ldapinfo.authldap.sslprotocols Specifies a space-delimited list of the supported SSL protocols to
communicate with the LDAP back-end service.

Syntax: string

Default: TLSv1.2 TLSv1.3 (Supported after version 8.0.0.8.0)

TLSv1 TLSv1.1 TLSv1.2 (Supported till version 8.0.0.8.0)

base.ldapinfo.ugldap.binddn Distinguished name to use when authenticating.

Syntax: string

Default: None.

base.ldapinfo.ugldap.bindpassword Password to use when authenticating.

Syntax: password

Default: None.

base.ldapinfo.ugldap.ldaphost Space-delimited list of host names. Each host name may include
a trailing colon and port number.

Syntax: string

Default: localhost:389

base.ldapinfo.ugldap.ldappoolrefreshinterval Length of elapsed time until the failover Directory Server host
reverts back to the primary Directory Server host. If set to -1, do
not refresh.

Syntax: integer

Unit: minutes

Minimum: 1

Maximum: 60

Default: 1

base.ldapinfo.ugldap.ldappoolsize Maximum number of connections for this pool.

Syntax: integer

Minimum: 1

Maximum: 100

Default: 10

Chapter 16

16-3

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

base.ldapinfo.ugldap.ldapport Port number to which to connect. Ignored for any host name that
includes a colon and port number.

Syntax: integer

Minimum: 0

Maximum: 65535

Default: 389

base.ldapinfo.ugldap.ldaptimeout Timeout for all LDAP operations.

Syntax: integer

Unit: seconds

Minimum: 1

Maximum: 3600

Default: 60

base.ldapinfo.ugldap.ldapusessl Use SSL to connect to the LDAP host.

Syntax: boolean

Default: false

base.ldapinfo.ugldap.sslprotocols Specifies a space-delimited list of the supported SSL protocols to
communicate with the back-end LDAP service.

Syntax: string

Default: TLSv1.2 TLSv1.3 (Supported after version 8.0.0.8.0)

TLSv1 TLSv1.1 TLSv1.2 (Supported till version 8.0.0.8.0)

base.ldappool.*.binddn Distinguished name to use when authenticating.

Syntax: string

Default: None.

base.ldappool.*.bindpassword Password to use when authenticating.

Syntax: password

Default: None.

base.ldappool.*.ldaphost Space-delimited list of host names. Each host name may include
a trailing colon and port number.

Syntax: string

Default: localhost:389

base.ldappool.*.ldappoolrefreshinterval Length of elapsed time until the failover Directory Server host
reverts back to the primary Directory Server host. If set to -1, do
not refresh.

Syntax: integer

Unit: minutes

Minimum: 1

Maximum: 60

Default: 1

base.ldappool.*.ldappoolsize Maximum number of connections for this pool.

Syntax: integer

Minimum: 1

Maximum: 100

Default: 10

Chapter 16

16-4

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

base.ldappool.*.ldapport Port number to which to connect. Ignored for any host name that
includes a colon and port number.

Syntax: integer

Minimum: 0

Maximum: 65535

Default: 389

base.ldappool.*.ldaptimeout Timeout for all LDAP operations.

Syntax: integer

Unit: seconds

Minimum: 1

Maximum: 3600

Default: 60

base.ldappool.*.ldapusessl Use SSL to connect to the LDAP host.

Syntax: boolean

Default: false

base.ldappool.*.sslprotocols Specifies a space-delimited list of the supported SSL protocols
for the LDAP pool to communicate with the back-end LDAP
service.

Syntax: string

Default: TLSv1.2 TLSv1.3 (Supported after version 8.0.0.8.0)

TLSv1 TLSv1.1 TLSv1.2 (Supported till version 8.0.0.8.0)

davcore.acl.aclcachesize Maximum number of ACL entries kept in cache. Entries are
removed from the cache only when this maximum is reached or
when any of the acl configuration parameters are changed. Can
be set to 0, indicating no cache.

Syntax: integer

Minimum: 0

Maximum: Maximum int value

Default: 1000

davcore.acl.aclcachettl Maximum amount of time (in seconds) that an ACL entry can be
kept in cache.

Syntax: integer

Unit: seconds

Minimum: 1

Maximum: Maximum int value

Default: 60

davcore.acl.appleprivateevent Enables or disables Apple Private/Confidential Events extension
support.

Syntax: boolean

Default: false

Chapter 16

16-5

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.acl.calendaranonymousall If true, map '@'(all) in calendar acls to authenticated and
unathenticated users. If false, map '@'(all) in acl to just
authenticated users.

Syntax: boolean

Default: false

If you change the davcore.acl.calendaranonymousall
parameter, the change does not affect ACLs that were previously
configured. Changing davcore.acl.calendaranonymousall only
affects new ACLs.

davcore.acl.defaultcalendaracl ACL to set when creating a new calendar collection (using the
WCAP format).

Syntax: string

Default: None.

davcore.acl.defaultresourcecalendaracl ACL to set when creating a new calendar collection for a
resource (using the WCAP format).

Syntax: string

Default: @:r

davcore.acl.defaultresourceschedulingacl ACL for user permissions to be set when creating a new calendar
inbox collection for a resource (using the WCAP format).

Syntax: string

Default: @:s

davcore.acl.defaultschedulingacl ACL for user permissions to be set when creating a new calendar
inbox collection (using the WCAP format).

Syntax: string

Default: @:s

davcore.acl.schedulinganonymousall If true, map '@'(all) in scheduling ACLs to authenticated and
unathenticated users. If false, map '@'(all) in acl to just
authenticated users.

Syntax: boolean

Default: false

If you change the davcore.acl.schedulinganonymousall
parameter, the change does not affect ACLs that were previously
configured. Changing davcore.acl.schedulinganonymousall
only affects new ACLs.

davcore.attachment.enable Enables or disables attachments.

Syntax: boolean

Default: true

davcore.auth.cert.enable Enables certificate-based client authentication.

Syntax: boolean

Default: false

davcore.auth.cert.fallback Fallback to user name and password authentication.

Syntax: boolean

Default: true

Chapter 16

16-6

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.autocreate.calattendantresourceflags Calendar attendant flags to set on resource scheduling inbox.
Default setting used on autocreation.

This value can be altered by the presence of the icsAutoAccept
and icsDoubleBooking attributes. The value is a bitmask of the
following:

0 - No automatic accept, no booking conflict check, no
recurrence check on invitations.

1 - Automatically accept invitations.

2 - Automatically declines if invitation results in booking conflict.

3 - Automatically accepts invitation and automatically declines on
booking conflict.

4 - Automatically declines recurring meeting invitations.

5 - Automatically accepts invitations and automatically decline
recurring meeting invitations.

6 - Automatically declines recurring invitations and invitations that
cause a booking conflict.

7 - Automatically accepts invitations, automatically declines
recurring invitations and invitations that cause a booking conflict.

Syntax: long

Minimum: 0

Maximum: 7

Default: 3

davcore.autocreate.calattendantuserflags Calendar attendant flags to set on users scheduling inbox.
Default setting used on autocreation.

This value can be altered by the presence of the icsAutoAccept
and icsDoubleBooking attributes.

The value is a bitmask of the following:

0 - No automatic accept, no booking conflict check, no
recurrence check on invitations.

1 - Automatically accepts invitations.

2 - Automatically declines if invitation results in booking conflict.

3 - Automatically accepts invitation and automatically declines on
booking conflict.

4 - Automatically declines recurring meeting invitations.

5 - Automatically accepts invitations and automatically declines
recurring meeting invitations.

6 - Automatically declines recurring invitations and invitations that
cause a booking conflict.

7 - Automatically accepts invitations, automatically declines
recurring invitations and invitations that cause a booking conflict.

Syntax: long

Minimum: 0

Maximum: 7

Default: 0

Chapter 16

16-7

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.autocreate.calcomponents Supported calendar components set for a new user calendar on
autocreation. Default setting used on autocreation.

Syntax: string

Default: VEVENT VTODO VFREEBUSY

davcore.autocreate.displaynameattr LDAP attribute, whose value is used to set Display Name, during
autocreation. Default setting used on autocreation.

Syntax: string

Default: cn

davcore.autocreate.emailnotificationaddressattr LDAP attribute, whose value is used to set Email Notification
address, during autocreation. Default setting used on
autocreation.

Syntax: string

Default: mail

davcore.autocreate.enableautocreate Enable autocreate operation. Default setting used on
autocreation.

Syntax: boolean

Default: true

davcore.autocreate.enableemailnotification Enable email notification. Default setting used on autocreation.

Syntax: boolean

Default: true

davcore.autocreate.rescalcomponents Supported calendar components set for a new resource calendar
on autocreation. Default setting used on autocreation.

Syntax: string

Default: VEVENT

davcore.homeuri.*.backendid Once it is determined that a URI matches the pattern, this
backendid template is used to identify the back end server
hosting this resource.

The template can reference the $1, $2,... variables saved during
the pattern matching, as well as references to LDAP attributes of
the subject matching the subjectfilter, using the ${attrname}
syntax or the ${attrname,defaultvalue} syntax. If this parameter
is not set, the uriinfo.backendidtemplate is used.

Syntax: string

Default: None.

davcore.homeuri.*.rank When multiple URI patterns are configured, this value determines
in which order those URI patterns are evaluated. A lower number
indicates that this pattern should be evaluated first.

Syntax: integer

Minimum: 0

Maximum: Maximum int value

Default: 1

Chapter 16

16-8

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.homeuri.*.subjectdomain Once it is determined that a URI matches the pattern, this
domain template is used to identify the subject owning with this
resource.

The template can reference the $1, $2, and so variables saved
during the pattern matching. For example, if the subjectdomain
is set to $2, and using the URI in the uripattern example, the
domain of the subject will be example.com.

Can be empty indicating the default domain.

Syntax: string

Default: $2

davcore.homeuri.*.subjectfilter Once it is determined that a URI matches the pattern, this LDAP
filter template is used to identify the subject owning with this
resource.

The template can reference the $1, $2, and so on variables
saved during the pattern matching. For example, if the
subjectfilter is set to (mail=$1@$2), and using the URI in the
uripattern example, the LDAP filter becomes
(mail=john@example.com).

Can be empty, indicating that this namespace is not associated
with a particular subject.

Syntax: string

Default: (mail=$1@$2)

davcore.homeuri.*.uripattern Regex pattern to be matched by the URI.

This pattern can contain regex groups (identified by ()
parenthesis) which will be saved into $1, $2, and so on.

The last regex group identifies the local path if there is any.

For example, if the pattern is ˆ/home/([ˆ/]+)@([ˆ/]+)(/\z|/.*), the
URI /home/john@example.com/calendar/ matches that
pattern. $1 will be set to the value john, $2 will be set to the
value example.com, and the local path will be /calendar.

Syntax: string

Default: ˆ/home/([ˆ/]+)@([ˆ/]+)(/\z|/.*)

davcore.ldapattr.commonname Common name attribute.

Syntax: string

Default: cn

davcore.ldapattr.corpdirectoryurl LDAP attribute to locate a custom external corporate directory for
this domain.

Syntax: string

Default: corpDirectoryUrl

davcore.ldapattr.davstore Logical back-end ID attribute.

Syntax: string

Default: davStore

davcore.ldapattr.defaultresourcetype Default CUTYPE value to use when the resource type LDAP
attribute of a calendar resource is not present.

Syntax: string

Default: ROOM

Chapter 16

16-9

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.ldapattr.dngroupmember Attributes for members in an LDAP group.

Syntax: string

Default: uniquemember

davcore.ldapattr.externalauthposturltemplate LDAP attribute to use to determine whether external
authentication should do a post=auth lookup against this domain.

Syntax: string

Default: externalAuthPostUrlTemplate

davcore.ldapattr.externalauthpreurltemplate LDAP attribute to use to determine whether external
authentication should be used against this domain.

Syntax: string

Default: externalAuthPreUrlTemplate

davcore.ldapattr.groupobject Space separated list of object class values indicating an LDAP
group.

Syntax: string

Default: groupofuniquenames groupofurls inetmailgroup

davcore.ldapattr.icsautoaccept LDAP attribute to use to determine whether autoaccept should
be enabled.

The attribute value can be 1 (autoaccept) or 0 (no autoaccept).

It is used only during autocreate.

Syntax: string

Default: icsAutoAccept

davcore.ldapattr.icsdoublebooking LDAP attribute to use to determine whether double booking is
allowed.

The attribute value can be 1 (double booking allowed) or 0 (no
double booking allowed).

It is used only during autocreate.

Syntax: string

Default: icsDoubleBooking

davcore.ldapattr.icsstatus Calendar Service status attribute.

Syntax: string

Default: icsstatus

davcore.ldapattr.inetresourcestatus LDAP attribute for global status of resources.

Syntax: string

Default: inetresourcestatus

davcore.ldapattr.inetuserstatus LDAP attribute for status of user's account with regards to global
service access.

Syntax: string

Default: inetuserstatus

davcore.ldapattr.mail Mail attribute.

Syntax: string

Default: mail

davcore.ldapattr.mailalternateaddress Space-separated list of alternate mail attributes.

Syntax: string

Default: mailAlternateAddress

Chapter 16

16-10

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.ldapattr.mailgroupmember Attributes for members in an LDAP group.

Syntax: string

Default: mgrprfc822mailmember

davcore.ldapattr.memberattr LDAP attribute listing the groups of which the entry is a member.

Syntax: string

Default: ismemberof

davcore.ldapattr.preferredlang Language attribute.

Syntax: string

Default: preferredLanguage

davcore.ldapattr.resourceobject Space-separated list of object class values indicating an LDAP
resource.

Syntax: string

Default: icsCalendarResource

davcore.ldapattr.resourceowner LDAP attribute to use to determine the owner of a calendar
resource (for example, conference room).

The attribute value must be a distinguished name.

It is used only during autocreate.

Syntax: string

Default: owner

davcore.ldapattr.resourcetype LDAP attribute to use to determine the CUTYPE (ROOM versus
RESOURCE) of a calendar resource.

The CUTYPE of users and groups is not based on this attribute.

The attribute value can take the following values:

• Location and room are mapped to a CUTYPE of ROOM.
• Thing and resource are mapped to a CUTYPE of

RESOURCE.
• Other values are mapped to RESOURCE.
Syntax: string

Default: kind

davcore.ldapattr.uid User ID attribute.

Syntax: string

Default: uid

davcore.ldapattr.urlgroupmember Attributes for members in an LDAP group.

Syntax: string

Default: memberurl

davcore.ldapattr.userobject Space separated list of object class values indicating a calendar
user.

Syntax: string

Default: None.

Chapter 16

16-11

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.otheruri.*.backendid Once it is determined that a URI matches the pattern, this
backendid template is used to identify the back end server
hosting this resource.

The template can reference the $1, $2, and so on variables
saved during the pattern matching, as well as refer to LDAP
attributes of the subject matching the subjectfilter, using the $
{attrname} syntax or the ${attrname,defaultvalue} syntax. If
this parameter is not set, the uriinfo.backendidtemplate is
used.

Syntax: string

Default: None.

davcore.otheruri.*.rank When multiple URI patterns are configured, this value determines
in which order those URI patterns should be evaluated. A lower
number indicates that this pattern should be evaluated first.

Syntax: integer

Minimum: 0

Maximum: Maximum int value

Default: 1

davcore.otheruri.*.subjectdomain Once it is determined that a URI matches the pattern, this
domain template is used to identify the subject owning with this
resource.

The template can reference the $1, $2, and so on variables
saved during the pattern matching. For example, if the
subjectdomain is set to $2, and using the URI in the uripattern
example, the domain of the subject will be example.com.

Can be empty indicating the default domain.

Syntax: string

Default: $2

davcore.otheruri.*.subjectfilter Once it is determined that a URI matches the pattern, this LDAP
filter template is used to identify the subject owning with this
resource.

The template can reference the $1, $2, and so on variables
saved during the pattern matching. For example, if the
subjectfilter is set to (mail=$1@$2), and using the URI in the
uripattern example, the LDAP filter becomes
(mail=john@example.com).

Can be empty, indicating that this namespace is not associated
with a particular subject.

Syntax: string

Default: (mail=$1@$2)

Chapter 16

16-12

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.otheruri.*.uripattern Regex pattern to be matched by the URI.

This pattern can contain regex groups (identified by ()
parenthesis) which is saved into $1, $2, and so on.

The last regex group identifies the local path if there is any.

For example, if the pattern is ˆ/home/([ˆ/]+)@([ˆ/]+)(/\z|/.*), the
URI /home/john@example.com/calendar/ will match that
pattern. $1 will be set to the value john, $2 will be set to the
value example.com and the local path will be /calendar.

Syntax: string

Default: ˆ/home/([ˆ/]+)@([ˆ/]+)(/\z|/.*)

davcore.presence.advancepresencetriggerinterval Specifies the number of seconds in advance to trigger for
presence update. That is, how long before event start/end is the
made. Changes to this value do not affect existing event triggers.

Syntax: long

Unit: seconds

Minimum: 0

Maximum: Maximum long value

Default: 0

davcore.presence.enable Enables or disables presence information publication.

Syntax: boolean

Default: true

davcore.principalsuri.*.backendid Once it is determined that a URI matches the pattern, this
backendid template is used to identify the back-end server
hosting this resource.

The template can reference the $1, $2, and so on variables
saved during the pattern matching, as well as refers to LDAP
attributes of the subject matching the subjectfilter, using the $
{attrname} syntax or the ${attrname,defaultvalue} syntax. If
this parameter is not set, the uriinfo.backendidtemplate is
used.

Syntax: string

Default: None.

davcore.principalsuri.*.rank When multiple URI patterns are configured, this value determines
in which order those URI patterns should be evaluated. A lower
number indicates that this pattern should be evaluated first.

Syntax: integer

Minimum: 0

Maximum: Maximum int value

Default: 1

Chapter 16

16-13

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.principalsuri.*.subjectdomain Once it is determined that a URI matches the pattern, this
domain template is used to identify the subject owning with this
resource.

The template can reference the $1, $2, and so on variables
saved during the pattern matching.

For example, if the subjectdomain is set to $2, and using the uri
in the uripattern example, the domain of the subject will be
example.com.

Can be empty indicating the default domain.

Syntax: string

Default: $2

davcore.principalsuri.*.subjectfilter Once it is determined that a URI matches the pattern, this LDAP
filter template is used to identify the subject owning with this
resource.

The template can reference the $1, $2, and so on variables
saved during the pattern matching.

For example, if the subjectfilter is set to (mail=$1@$2), and
using the URI in the uripattern example, the LDAP filter becomes
(mail=john@example.com).

Can be empty, indicating that this namespace is not associated
with a particular subject.

Syntax: string

Default: (mail=$1@$2)

davcore.principalsuri.*.uripattern Regex pattern to be matched by the URI.

This pattern can contain regex groups (identified by ()
parenthesis) which will be saved into $1, $2, and so on.

The last regex group identifies the local path if there is any.

For example, if the pattern is ˆ/home/([ˆ/]+)@([ˆ/]+)(/\z|/.*), the
URI /home/john@example.com/calendar/ will match that
pattern. $1 will be set to the value john, $2 will be set to the
value example.com and the local path will be /calendar.

Syntax: string

Default: ˆ/home/([ˆ/]+)@([ˆ/]+)(/\z|/.*)

davcore.reverseuri.*.backendid Back-end ID on which to apply this reverse mapping. There
should be only one mapping per backend.

Syntax: string

Default: None.

Chapter 16

16-14

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.reverseuri.*.uritemplate Canonical form of the URI prefix for this back end.

This template should have a corresponding uripattern. It should
not end with a slash.

The template can reference LDAP attributes of the subject, using
the ${attrname} syntax or the ${attrname,defaultvalue} syntax.
The ${domain} syntax can be used to reference the domain of
the subject.

If no template is defined for a given back end, the
uriinfo.defaulthomeuritemplate configuration parameter is
used.

Syntax: string

Default: None.

davcore.scheduling.allowownerdoublebooking If set, owners of resource calendars can double book even if the
resource account prevents double booking.

Syntax: boolean

Default: false

davcore.scheduling.calendarinboxexpirytime Specifies the number of seconds after which the resources in
calendar-inbox will be deleted.

Syntax: long

Unit: seconds

Minimum: 0

Maximum: Maximum long value

Default: 2592000

davcore.scheduling.calendaroutboxexpirytime Specifies the number of seconds after which the resources in
calendar outbox are deleted.

Syntax: long

Unit: seconds

Minimum: 0

Maximum: Maximum long value

Default: 604800

davcore.scheduling.includememberinattendee If set, scheduling messages would include the MEMBER=group
attribute in the ATTENDEE property, where group is the LDAP
group of which this attendee is a member. The default is set to
false to accommodate compatibility with Leopard Apple iCal.

Syntax: boolean

Default: false

davcore.scheduling.ischedulebackendid iSchedule back-end identifier. If not set, incoming iSchedule
requests are disabled.

Syntax: string

Default: None.

Chapter 16

16-15

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.scheduling.itiptransmittablexprops Space separated list of iCalendar X- properties that are
transmittable through iTIP.

All other X- properties are not transmitted between organizer and
attendees.

Syntax: string

Default: X-S1OC-OWNER-APPT-ID X-S1OC-TZID X-S1OC-
OUTLOOK-SENDER-EMAIL X-S1OC-OUTLOOK-SENDER-CN
X-S1OC-OUTLOOK-ACCEPTED-BY-NAME X-S1OC-
OUTLOOK-EVENT-REPLY-TIME

davcore.scheduling.localuserattr Local Calendar Server identifier attribute in LDAP. If not set, all
users found in LDAP are considered local. For deployments with
multiple servers, that can only partially interoperate, this option
must be set to a valid LDAP attribute. (For example: davStore).
Users with a valid value for that attribute in LDAP are considered
local. Others are considered remote.

Make sure the same attribute is added to
davcore.uriinfo.subjectattributes values.

Syntax: string

Default: None.

davcore.scheduling.maxattendeesforrefresh Above this limit of attendees, attendee's reply are only sent to the
organizer and are no longer propagated to the other attendees.

Syntax: long

Minimum: 0

Maximum: Maximum long value

Default: 50

davcore.scheduling.maxbookingwindow Specifies the number of days calendars that do not allow double
booking can be booked in advance. A valid range is [0, 2G].

Syntax: integer

Unit: days

Minimum: 1

Maximum: Maximum int value - 1

Default: 365

davcore.scheduling.maxretry Specifies maximum number of attempts to deliver a scheduling
message (for example, when the SMTP server or remote
iSchedule server is temporarily down).

Syntax: integer

Minimum: 0

Maximum: 999

Default: 24

Chapter 16

16-16

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.scheduling.minbookingwindow Specifies the start of a booking window in days from the time of
scheduling that a calendar can be booked in advance. A valid
range is [0, 2G]. A negative integer value indicates minimum
booking window is not honored during the free busy check.

Syntax: integer

Unit: days

Minimum: -1

Maximum: Maximum int value - 1

Default: -1

davcore.scheduling.rejectinactiverecipients When set to true, recipients of scheduling messages who have
their icsStatus set to inactive are treated as unknown
recipients. Otherwise, those recipients are treated as iMIP
recipients.

Syntax: boolean

Default: false

davcore.scheduling.rejectdeletedrecipients When set to true, users or groups that have icsstatus set to
'deleted' are treated as external addresses and an iMIP invitation
is sent.

Syntax: boolean

Default: false

davcore.scheduling.retryinterval Specifies the number of seconds to wait between two attempts to
deliver a scheduling message (for example, if the SMTP server or
remote iSchedule server is temporarily down).

Syntax: long

Unit: seconds

Minimum: 0

Maximum: Maximum long value

Default: 3600

davcore.scheduling.schedulinglogfilter Space-separated list of specific user email addresses. Logging is
done at a more detailed level for any user in this list who is the
organizer or an attendee of an event used for scheduling.

Syntax: string

Default: None.

davcore.scheduling.synchronousdelivery If set, scheduling messages (invitations, replies, cancel, and so
on) are delivered synchronously on submit. Do not use this
option during under normal operation.

Syntax: boolean

Default: false

davcore.serverdefaults.exportconfigdir Directory path for exported XSL transformation files.

Syntax: filepath

Default: config/export

davcore.serverdefaults.importconfigdir Directory path for imported properties and translation files.

Syntax: filepath

Default: config/import

Chapter 16

16-17

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.serverdefaults.jsonprefix Default prefix to append to all JSON output.

Syntax: string

Default: &&

davcore.serverdefaults.sslprotocols Specifies a space-delimited list of the supported SSL protocols
as the default for the various back-end services' sslprotocols
configuration. That is, if the specific sslprotocols parameter is
not set, it is set to the value of
davcore.serverdefaults.sslprotocols.

Syntax: string

Default: TLSv1.2 TLSv1.3 (Supported after version 8.0.0.8.0)

TLSv1 TLSv1.1 TLSv1.2 (Supported till version 8.0.0.8.0)

davcore.serverdefaults.tzid Default TZID to return when a calendar collection does not have
one explicity set.

Syntax: string

Default: None.

davcore.serverlimits.httpconnecttimeout HTTP connection timeout value (in milliseconds), when
connecting to another server.

Syntax: integer

Minimum: 500

Maximum: 100000

Default: 5000

davcore.serverlimits.httpsockettimeout HTTP Socket timeout value (in milliseconds), when connecting to
another server, and waiting for data.

Syntax: integer

Minimum: 500

Maximum: 100000

Default: 5000

davcore.serverlimits.maxaddressbookcontentlength Maximum size of an address book resource.

Syntax: long

Unit: bytes

Minimum: 0

Maximum: Maximum long value

Default: 10000000

davcore.serverlimits.maxattendeesperinstance Maximum number of ATTENDEE properties in any instance of a
calendar object resource stored in a calendar collection.

Syntax: long

Minimum: 0

Maximum: Maximum long value

Default: 1000

davcore.serverlimits.maxcalendarcontentlength Maximum size of a calendar resource.

Syntax: long Unit: bytes

Minimum: 0

Maximum: Maximum long value

Default: 10000000

Chapter 16

16-18

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.serverlimits.maxcontentlength Maximum size of a resource. Might be overwritten for certain
types of content (for example, text/calendar).

Syntax: long

Unit: bytes

Minimum: 0

Maximum: Maximum long value

Default: 10000000

davcore.serverlimits.maxgroupexpansion Maximum nested level of group expansion.

Syntax: integer

Minimum: 0

Maximum: -1

Default: 3

davcore.serverlimits.maxhttpredirects Maximum number of HTTP redirects to follow, when connecting
to another server.

Syntax: integer

Minimum: 0

Maximum: 10

Default: 3

davcore.serverlimits.maxischedulecontentlength Maximum size when posting ischedule requests. This affects
iSchedule freebusy and scheduling requests.

Syntax: long

Unit: bytes

Minimum: 0

Maximum: Maximum long value

Default: 10000000

davcore.serverlimits.maxmigrationthreads Maximum number of threads to create when running migration.

Syntax: integer

Minimum: 1

Maximum: 20

Default: 2

davcore.serverlimits.maxnumberofresourcesincollec
tion

Maximum number of resources allowed in a collection. A value of
-1 means no limit.

Syntax: long

Unit: bytes

Minimum: -1

Maximum: Maximum long value

Default: 10000

Chapter 16

16-19

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.serverlimits.maxresults Maximum number of resources returned by a single fetch
operation (WebDAV PROPFIND, CalDAV Reports, WCAP fetch
or export, and so on).

A value of 0 means no limit.

Admins are not affected by this limit.

Syntax: integer

Minimum: 0

Maximum: Maximum int value

Default: 10000

davcore.serverlimits.maxsearchtimerange Maximum bounded search range in days.

Syntax: long

Unit: days

Minimum: 0

Maximum: 366000

Default: 3660

davcore.serverlimits.maxuploadcontentlength Maximum size when uploading data. This affects operations that
let you create multiple resources in one request (for example,
import). It does not affect a regular PUT command.

Syntax: long

Unit: bytes

Minimum: 0

Maximum: Maximum long value

Default: 20000000

davcore.serverlimits.migrationtimeout Maximum number of hours to wait before terminating a migration.

Syntax: integer

Minimum: 1

Maximum: 100

Default: 8

davcore.serverlimits.minsearchcharacters Minimum number of characters allowed in a text filter search.

Syntax: integer

Minimum: 0

Maximum: 256

Default: 3

davcore.serverlimits.templockretry Maximum number of attempts to acquire a temporary lock when
doing write operations.

Syntax: integer

Minimum: 1

Maximum: Maximum int value

Default: 20

Chapter 16

16-20

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.serverlimits.templocktimeout Maximum amount of time to wait for a temporary lock when doing
write operations.

Syntax: integer

Unit: seconds

Minimum: 1

Maximum: Maximum int value

Default: 60

davcore.serverlimits.templockusebackend If true, temporary locks are ensured at the back-end level instead
of staying local to a server instance.

Syntax: boolean

Default: false

davcore.uriinfo.backendidtemplate The backendid template is used to identify the back-end server
hosting the home of a given subject.

The template can reference LDAP attributes of the subject, using
the ${attrname} syntax or the ${attrname,defaultvalue} syntax.

Syntax: string

Default: ${davStore,defaultbackend}

davcore.uriinfo.defaultdavuriprefix Canonical form of DAV URI prefix for WebDAV-based protocols.

This prefix corresponds to one of the the DavServlet specific path
(for example, /dav) as defined in web.xml.

It should not end with a slash.

Syntax: string

Default: /dav

davcore.uriinfo.defaulthomeuritemplate Canonical form of a subject home URI prefix.

This template should have a corresponding uripattern. It should
not end with a slash

The template can reference LDAP attributes of the subject, using
the ${attrname} syntax or the ${attrname,defaultvalue} syntax.
The ${domain} syntax can be used to reference the domain of
the subject.

Syntax: string

Default: /home/${mail}

davcore.uriinfo.defaultprincipaluritemplate Canonical form of a subject principal URI prefix.

This template should have a corresponding uripattern. It should
not end with a slash.

The template can reference LDAP attributes of the subject, using
the ${attrname} syntax or the ${attrname,defaultvalue} syntax.
The ${domain} syntax can be used to reference the domain of
the subject.

Syntax: string

Default: /principals/${mail}

Chapter 16

16-21

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.uriinfo.defaultresturiprefix Canonical form of REST URI prefix for WebDAV-based protocols.

This prefix corresponds to one of the RESTfulServlet specific
path as defined in the web.xml file.

It should not end with a slash.

Syntax: string

Default: /rest

davcore.uriinfo.directoryrootcollection Defines the root collection of all directory collections (without any
prefix).

Syntax: string

Default: /directory/

davcore.uriinfo.emailsearchfiltertemplate LDAP Filter used when searching a subject by email address.
The %s token is replaced by the email value to search.

Syntax: string

Default: |(mail=%s)(mailalternateaddress=%s)

davcore.uriinfo.fulluriprefix Full URL prefix to use wherever a full URL is required. It should
not end with a slash.

This prefix is used to construct attachment URLs embedded in
calendar resources.

Modifying this parameter does not change full URLs in already
existing calendar resources.

If SSL is used, the host name part of this prefix should match the
host name associated with the certificate.

Syntax: string

Default: http://localhost

davcore.uriinfo.ldapcachesize Maximum number of subjects (LDAP users, resources and
groups) kept in cache when mapping URIs and subjects. Entries
are removed from the cache only when this maximum is reached
or when any of the uriinfo configuration parameters are changed.
Can be set to 0, indicating no cache.

Syntax: integer

Minimum: 0

Maximum: Maximum int value

Default: 1000

davcore.uriinfo.ldapcachettl Maximum time (in seconds) that subjects (LDAP users,
resources and groups) are kept in cache when mapping URIs
and subjects.

Syntax: integer

Unit: seconds

Minimum: 1

Maximum: Maximum int value

Default: 60

Chapter 16

16-22

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.uriinfo.permanentuniqueid Name of an LDAP attribute present in the LDAP entry of all
subjects (users, groups, resources, and so on) that defines a
permanent and unique identifier for each subject.

The attribute value is used internally to do the mapping between
the subject LDAP entry and its repository. As such, it should
remain constant for the lifetime of the subject LDAP entry and it
should be unique (at least within the subject domain).

Warning: Changing this configuration parameter results in data
loss once the user's repository has been created.

Syntax: string

Default: davuniqueid

davcore.uriinfo.principalsrootcollection Defines the root collection of all principals in their canonical form.
(without any prefix). This parameter is used to return the
WebDAV DAV:principal-collection-set property.

Syntax: string

Default: /principals/

davcore.uriinfo.subjectattributes Space-separated list of LDAP attribute names to retrieve when
doing a search for users, group or resources.

Syntax: string

Default: cn davstore icsstatus mail mailalternateaddress
nsuniqueid owner preferredlanguage uid objectclass
ismemberof uniquemember memberurl
mgrprfc822mailmember kind

davcore.uriinfo.subjectsearchfilter LDAP filter used when a user is searching for other users. The
%s token is replaced by the search string.

Syntax: string

Default: (|(uid=%s*)(cn=*%s*)(mail=*%s*))

davcore.uriinfo.subjectsearchfilterminimum The minimum number of characters allowed for the search string.

Syntax: integer

Minimum: -2147483648

Maximum: Maximum int value

Default: 3

davcore.uriinfo.uricachesize Maximum number of resolved URIs kept in cache. Entries are
removed from the cache only when this maximum is reached or
when any of the uriinfo configuration parameters are changed.

Can be set to 0, indicating no cache.

Syntax: integer

Minimum: 0

Maximum: Maximum int value

Default: 10000

davcore.uriinfo.uricachettl Maximum time (in seconds) that resolved URIs are kept in cache.

Syntax: integer

Unit: seconds

Minimum: 1

Maximum: Maximum int value

Default: 60

Chapter 16

16-23

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.uriinfo.useldapproxyauth If set to true, uses proxy authorization for any LDAP search on
behalf of a user. If set to false, uses administrator credentials for
all LDAP searches.

Syntax: boolean

Default: true

davcore.virusscan.auth The virus scan connection should use user and password
authorization.

Syntax: boolean

Default: false

davcore.virusscan.clivirusaction Action to be performed when a virus is detected during
command-line operation. Value is empty or delete.

Syntax: string

Default: None.

davcore.virusscan.debug Enables or disables debugging on the virus SMTP connection.

Syntax: boolean

Default: false

davcore.virusscan.emailaddress Email recipient address that the MTA is configured to use to
trigger a custom virus scan. (Requires MTA configuration).

Syntax: string

Default: None.

davcore.virusscan.host MTA host name configured to accept virus scans.

Syntax: string

Default: None.

davcore.virusscan.onlineenable Enables or disables online virus scan.

Syntax: boolean

Default: false

davcore.virusscan.onlinefailureaction Action to be performed when virus service fails during an online
submission. Value is empty or reject.

Syntax: string

Default: None.

davcore.virusscan.onlinevirusaction Action to be performed when a virus is detected during an online
submission. Value is empty or reject.

Syntax: string

Default: None.

davcore.virusscan.pass The SMTP authorization password for the SMTP virus scan
connection.

Syntax: password

Default: None.

davcore.virusscan.port MTA host port configured to accept virus scans.

Syntax: string

Default: 25

davcore.virusscan.starttls The virus scan connection should use starttls.

Syntax: boolean

Default: false

Chapter 16

16-24

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

davcore.virusscan.timeout Timeout value (in milliseconds) for the connection to the MTA
during a virus scan operation.

Syntax: string

Default: 10000

davcore.virusscan.user The SMTP user authorized for the SMTP virus scan connection.

Syntax: string

Default: None.

davcore.virusscan.usessl The virus scan connection should use SSL.

Syntax: boolean

Default: false

log.dav.commands.logdateformat Specifies the date format pattern for the log.

Syntax: logdateformat

Default: yyyy-MM-dd'T'HH:mm:ss.SSSZ

log.dav.commands.logdir Specifies the directory path for log files.

Syntax: filepath

Default: logs

log.dav.commands.loglevel Specifies the log level.

Valid levels are OFF (no information is logged), SEVERE,
WARNING, INFO, CONFIG, FINE, FINER, FINEST, ALL (all
information is logged).

The FINEST and ALL levels produce a large amount of data.

Syntax: loglevel

Default: INFO

log.dav.commands.logtoparent Flag to enable logging to the application server log file, in
addition to the Calendar Server logs.

Syntax: boolean

Default: false

log.dav.commands.maxlogfiles Maximum number of log files.

Syntax: integer

Minimum: 1

Maximum: 100

Default: 10

log.dav.commands.maxlogfilesize Maximum size of each log file.

Syntax: integer

Unit: bytes

Minimum: 2097152

Maximum: Maximum int value

Default: 2097152

log.dav.errors.logdateformat Specifies the date format pattern for the log.

Syntax: logdateformat

Default: yyyy-MM-dd'T'HH:mm:ss.SSSZ

Chapter 16

16-25

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

log.dav.errors.logdir Specifies the directory path for log files.

Syntax: filepath

Default: logs

log.dav.errors.loglevel Specifies the log level.

Valid levels are OFF (no information is logged), SEVERE,
WARNING, INFO, CONFIG, FINE, FINER, FINEST, ALL (all
information is logged).

The FINEST and ALL levels produce a large amount of data.

Syntax: loglevel

Default: INFO

log.dav.errors.logtoparent Flag to enable logging to the application server log file, in
addition to the Calendar Server logs.

Syntax: boolean

Default: false

log.dav.errors.maxlogfiles Maximum number of log files.

Syntax: integer

Minimum: 1

Maximum: 100

Default: 10

log.dav.errors.maxlogfilesize Maximum size of each log file.

Syntax: integer

Unit: bytes

Minimum: 2097152

Maximum: Maximum int value

Default: 2097152

log.dav.scan.logdateformat Specifies the date format pattern for the log.

Syntax: logdateformat

Default: yyyy-MM-dd'T'HH:mm:ss.SSSZ

log.dav.scan.logdir Specifies the directory path for log files.

Syntax: filepath

Default: logs

log.dav.scan.loglevel Specifies the log level.

Valid levels are OFF (no information is logged), SEVERE,
WARNING, INFO, CONFIG, FINE, FINER, FINEST, ALL (all
information is logged).

The FINEST and ALL levels produce a large amount of data.

Syntax: loglevel

Default: INFO

log.dav.scan.logtoparent Flag to enable logging to the application server log file, in
addition to the Calendar Server logs.

Syntax: boolean

Default: false

Chapter 16

16-26

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

log.dav.scan.maxlogfiles Maximum number of log files.

Syntax: integer

Minimum: 1

Maximum: 100

Default: 10

log.dav.scan.maxlogfilesize Maximum size of each log file.

Syntax: integer

Unit: bytes

Minimum: 2097152

Maximum: Maximum int value

Default: 2097152

log.dav.scheduling.logdateformat Specifies the date format pattern for the log.

Syntax: logdateformat

Default: yyyy-MM-dd'T'HH:mm:ss.SSSZ

log.dav.scheduling.logdir Specifies the directory path for log files.

Syntax: filepath

Default: logs

log.dav.scheduling.loglevel Specifies the log level.

Valid levels are OFF (no information is logged), SEVERE,
WARNING, INFO, CONFIG, FINE, FINER, FINEST, ALL (all
information is logged).

The FINEST and ALL levels produce a large amount of data.

Syntax: loglevel

Default: INFO

log.dav.scheduling.logtoparent Flag to enable logging to the application server log file, in
addition to the Calendar Server logs.

Syntax: boolean

Default: false

log.dav.scheduling.maxlogfiles Maximum number of log files.

Syntax: integer

Minimum: 1

Maximum: 100

Default: 10

log.dav.scheduling.maxlogfilesize Maximum size of each log file.

Syntax: integer

Unit: bytes

Minimum: 2097152

Maximum: Maximum int value

Default: 2097152

log.dav.telemetry.logdateformat Specifies the date format pattern for the log.

Syntax: logdateformat

Default: yyyy-MM-dd'T'HH:mm:ss.SSSZ

Chapter 16

16-27

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

log.dav.telemetry.logdir Specifies the directory path for log files.

Syntax: filepath

Default: logs

log.dav.telemetry.loglevel Specifies the log level.

Valid levels are OFF (no information is logged), SEVERE,
WARNING, INFO, CONFIG, FINE, FINER, FINEST, ALL (all
information is logged).

The FINEST and ALL levels produce a large amount of data.

Syntax: loglevel

Default: INFO

log.dav.telemetry.logtoparent Flag to enable logging to the application server log file, in
addition to the Calendar Server logs.

Syntax: boolean

Default: false

log.dav.telemetry.maxlogfiles Maximum number of log files.

Syntax: integer

Minimum: 1

Maximum: 100

Default: 10

log.dav.telemetry.maxlogfilesize Maximum size of each log file.

Syntax: integer

Unit: bytes

Minimum: 2097152

Maximum: Maximum int value

Default: 2097152

notification.dav.configdir Specifies the directory path for notification configuration files or
format files.

Syntax: filepath

Default: config/templates

notification.dav.dateformat Specifies the date format pattern for notification. For example,
EEE MMMMM dd, yyyy.

Syntax: dateformat

Default: EEE MMMMM dd, yyyy

notification.dav.enableemailnotif Enables or disables server-wide email notification.

Syntax: boolean

Default: true

notification.dav.enableimip Enables or disables server-wide iMIP scheduling.

Syntax: boolean

Default: true

notification.dav.enableimipemailnotif Enables or disables server-wide scheduling email notification that
contains iMIP data.

Syntax: boolean

Default: false

Chapter 16

16-28

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

notification.dav.enablejmsnotif Enables or disables server-wide Java Message Service (JMS)
notification.

Syntax: boolean

Default: true

notification.dav.maxpayload Maximum payload size in bytes.

Syntax: integer

Minimum: -2147483648

Maximum: Maximum int value

Default: 10000000

notification.dav.smtpauth SMTP-AUTH access control mechanism flag.

Syntax: string

Default: false

notification.dav.smtpdebug SMTP debug flag.

Syntax: string

Default: false

notification.dav.smtphost SMTP host.

Syntax: string

Default: None.

notification.dav.smtppassword SMTP password.

Syntax: password

Default: None.

notification.dav.smtpport SMTP port.

Syntax: string

Default: 25

notification.dav.smtpstarttls SMTP starttls flag.

Syntax: string

Default: true

notification.dav.smtpuser SMTP user.

Syntax: string

Default: user

notification.dav.smtpusessl SMTP use SSL flag.

Syntax: string

Default: false

notification.dav.timeformat Specifies the time format pattern for notification. Use 'a' for
AM/PM marker. For example, hh:mm:ss aaa.

Syntax: timeformat

Default: hh:mm:ss aaa

notification.dav.timezoneformat Specifies the time zone format pattern for notification. Use 'z' for
general time zone, or 'Z' for RFC822 time zone.

Syntax: timezoneformat

Default: z

Chapter 16

16-29

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

service.dav.blacklist List of CalDAV clients to be denied of service, expressed as a
space separated list of regular expressions. Any client whose
User-Agent HTTP header contains any of the regex is denied
access.

Syntax: string

Default: None.

service.dav.ischedulewhitelist List of hosts that are allowed to send iScheduling POST
requests. Space-separated list of single host IP addresses and/or
Classless Inter-Domain Routing (CIDR) entries. A CIDR entry is
a base IP address followed by a number indicating how many
upper bits to mask. For example, 10.20.30.0/24 matches all
addresses in the range 10.20.30.0 - 10.20.30.255. If the entry is
0.0.0.0/0, all requests are allowed. If the list is empty, all requests
are denied, except for those from "localhost".

Syntax: string

Default: None

service.dav.propfinddavheadervalue Value of the HTTP Dav header value to return in all PROPFIND
responses.

Syntax: string

Default: 1, 3, access-control, calendar-proxy, calendarserver-
principal-property-search, calendar-access, calendar-auto-
schedule, addressbook
Other Values: calendar-schedule, sync-collection, extended-
mkcol

service.dav.telemetry.filter Space-separated list of request URIs that a particular request
should match (start with) to be logged by telemetry (for
example, /dav/home/jsmith/calendar/ /dav/home/jdoe/
calendar/).
Syntax: string

Default: None.

service.dav.telemetry.forcetelemetry Force telemetry for all users.

Warning: Setting this parameter to true generates a lot of data
and should not be used on a production system.

Syntax: boolean

Default: false

service.wcap.blacklist List of WCAP clients to be denied of service, expressed as a
space-separated list of regular expressions. Any client whose
User-Agent HTTP header contains any of the regex is denied
access.

Syntax: string

Default: None.

Chapter 16

16-30

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

service.wcap.maxsessions Maximum number of WCAP session IDs stored in the sessions
cache. Entries are removed from the cache only when this
maximum is reached, or when a logout command is executed
against the sessionid, or the entry has been in the cache for as
long as the session timeout allows.

Syntax: integer

Minimum: 0

Maximum: Maximum int value

Default: 10000

service.wcap.sessiontimeout Number of seconds before expiring a session.

Syntax: integer

Unit: seconds

Minimum: 1

Maximum: Maximum int value

Default: 1800

store.corpdir.defaultcorpdirectoryurl Default corporate directory information to use when doing
searches. Can be overwritten by domain specific information
(corpDirectoryUrl LDAP attribute in the domain entry). If no
baseDN is provided, the user's domain baseDN for users and
group is used. The list of attributes to retrieve is ignored.

Syntax: string

Default: ldap://ugldap/??sub?(objectclass=*)

store.corpdir.enablecorpdir Enables or disables corporate directory lookups.

Syntax: boolean

Default: true

store.corpdir.useldapproxyauth If set to true, uses LDAP proxy authorization to issue LDAP
searches on behalf of the logged in user.

If set to false, uses the LDAP Pool credentials for all LDAP
searches.

This parameter applies only to the default corporate directory
configuration.

Syntax: boolean

Default: true

store.dav.*.attachstorehost Document store host.

Syntax: string

Default: None.

store.dav.*.attachstoreport Document store port.

Syntax: integer

Minimum: -2147483648

Maximum: Maximum int value

Default: 8008

store.dav.*.backendid Back-end identifier.

Syntax: string

Default: None.

Chapter 16

16-31

Table 16-1 (Cont.) Calendar Server Configuration Parameters

Parameter Description

store.dav.*.dbdir Specifies the directory path for Calendar Server store.

Syntax: filepath

Default: data/db

store.dav.*.jndiname JNDI name pointing to this back-end host's JDBC DataSource,
as defined in the J2EE container (for example, jdbc/
defaultbackend.

Syntax: string

Default: None.

store.dav.*.purgedelay Sets the delay between deletion of a resource and its actual
removal (purge) from the back-end database. Setting this value
too low may cause synchronization clients to do a full
resynchronization too often.

Syntax: long

Unit: seconds

Minimum: 0

Maximum: Maximum long value

Default: 2592000

store.document.password Password to use when authenticating to a remote document
store server.

Syntax: password

Default: None.

store.document.timeout The HTTP(S) connection and read timeout value.

Syntax: integer

Minimum: -2147483648

Maximum: Maximum int value

Default: 10000

store.document.usessl Use SSL for communications with the remote document store
server.

Syntax: boolean

Default: false

Chapter 16

16-32

17
Calendar Server Command-Line Utilities

This chapter provides information about the Oracle Communications Calendar Server
command-line utilities.

Overview of the Command-Line Utilities
You use the davadmin command to administer Calendar Server. The davadmin command is
installed in the CalendarServer_home/sbin directory with user or group bin/bin permissions.

Note:

The davadmin command-line command administers aspects of the server and does
not affect any LDAP entries.

davadmin Security
The davadmin command requires you to authenticate with a user name and password to be
able to communicate with the server or database. You can use the davadmin passfile
operation to store the necessary passwords in an encrypted wallet for use by subsequent
davadmin commands. If you do not store passwords in the wallet, then you must enter them
by using a no-echo prompt on the command line. See "davadmin passfile" for more information
on how to create a file to store passwords.

Environment Variables
Table 17-1 describes the environment variables that you can use with the various davadmin
commands.

Table 17-1 davadmin Environment Variable

Environment Variable Description

DAVADMIN_CLIFILE Specifies the path to the bootstrap file. Can be used instead of the -F
option.

DAVADMIN_ACCOUNT Specifies the account information. Can be used instead of the -a
account option.

davadmin Utility
Use the davadmin utility to administer Calendar Server.

17-1

Location
CalendarServer_home/sbin

General Syntax
davadmin [operation [action]] [option1] [option2] ...

where:

• operation is the davadmin operation to run. See "davadmin Operations" for more
information.

• action is the action that the specified operation performs, such as create, delete, list, and
modify. Specifying an action is optional for certain operations.

• option is one or more command-line options that identify information that the operation
needs and the specifics of what the operation does. For example, some options provide
connection parameters, and the -o option specifies a configuration parameter that the
config operation may list or modify. All options are optional if the clifile is used and
accessed through the environment variable DAVADMIN_CLIFILE.

You can abbreviate an operation, an action, or both as long as they are unique in the
command. For example, for the command davadmin config list, you can enter davadmin c l.

The default action for most commands is list. The default is used when you do not specify the
action. For example, the following command lists the value of the base.ldapinfo.cachesize
configuration parameter.

davadmin config -o base.ldapinfo.cachesize

Note:

All words used for operations, actions, and options, and the components of
property=value, are case-sensitive, typically lower-case.

Ways to Provide Options
You can provide options to the davadmin command by:

• Using the command line

• Using the clifile

• Including them in davadmin.properties file

Any user can create a clifile. Only the administrative user can use the davadmin.properties
file. The davadmin.properties file is installed in the CalendarServer_home/config directory.

When you run the davadmin command, any option that you include on the command line
takes precedence over any like option in the clifile or the davadmin.properties file. Use of the
clifile or the davadmin.properties file is mutually exclusive. If you use the clifile, use it for
any option that is not on the command line. If you run the davadmin command as the
administrative user and do not supply a clifile, the davadmin.properties file is used for any
option that is not on the command line.

Chapter 17
davadmin Utility

17-2

The davadmin.properties file contains options for userid, hostname, port, secure, dbhost,
dbport, and dbuserid.

Clifile Properties
Table 17-2 describes the possible properties in the bootstrap file (clifile).

Table 17-2 Clifile Properties

Property Description

userid The application server administrator user ID.

usepasswordfile Use the password file. Unless this property is empty, 'n', 'no' or 'false',
the password file is used.

hostname Server host name.

port The application server administration port (JMX port).

secure Path to the truststore file used for a secure connection (HTTPS).

dbuserid MySQL Server or Oracle Database user ID.

dbhost Host name where the database server resides.

dbhostname Host name where the database server resides.

dbport Port on dbhost for access to the database.

database Specifies the name of the DAV store to be saved or updated.

docstore Specifies the document store (remote store specified as host:port or
local store by fully qualified path to root of document store)

migrationadminuser Administrative user to authenticate to Calendar Server 6 host.

migrationserverport Server and port information to connect to the Calendar Server 6 host
from which data needs to be migrated. The format is host:port.

Common Options
Table 17-3 describes the options that are common to all davadmin operations.

Table 17-3 Common Options

Short Option Long Option Description Required or Optional

-u adminuserid --userid MySQL Server or Oracle Database user
ID for db commands, the application
server Administrator user ID for all other
commands.

Required unless you provide it
through a CLI file by using the -F
option, or you are displaying usage
by using the -h option.

-W --usepasswordfile Get passwords from the password file.
You use the The davadmin passfile
command to create the password file.
You can add passwords for the
application server administrative user, the
migration server user, the database, and
the document store.

Optional. If the password file does
not exist or does not contain the
needed password, you are prompted
for the password.

Chapter 17
davadmin Utility

17-3

Table 17-3 (Cont.) Common Options

Short Option Long Option Description Required or Optional

-F file --clifile File with bootstrap information that you
use to specify command-line options so
that they do not have to be entered at the
command line. Each line in the bootstrap
file is in the form property=value. All
property names and values are case-
sensitive, typically lower-case. Some
commands also have a -f, --file option,
which provides additional batch input
specific to those commands. For possible
properties see the "Clifile Properties"
table.

Required unless all necessary
information is provided on the
command line or in the
davadmin.properties file. See
"Ways to Provide Options" for more
information on priority order of
options, the clifile and the
davadmin.properties file. A path to
the clifile file can also be specified by
the DAVADMIN_CLIFILE
environment variable.

-H host --hostname Server host name. Optional. Defaults to localhost.

-p port --port The application server administration port
(JMX connector port) and MySQL Server
or Oracle Database port for db
commands. The application server
administration port can be found in the
domain's domain.xml file or in the
Administration Console (Configuration-
>Admin Service->system).

Optional. Defaults to 3306 for db
commands and 8686 for other
commands.

-s path --secure Path to the truststore file used for a
secure connection (HTTPS).

Optional. Required if the application
server is running in secure mode.
Not applicable for db commands.

-e --detail Verbose output. Mostly used if a
command returns an error.

Optional.

-q --quiet Quiet mode for scripts. Optional.

-h --help Help for that particular operation. Optional.

-V --version Lists version of davadmin utility. (Checks
the local package version on disk, which
could be different than what has been
deployed to the application server, for
example, in the case where a patch was
added but the init-config command has
not yet been run.)

Note:
From Calendar server 8.0.0.4.0 release
onwards, the product version string is
optimized and the short pattern string is
removed to support Weblogic as the
deployment container.

For example, Calendar Server 8.0.0.2.0
displayed the version as Oracle
Communications Calendar Server
version: 8.0.0.2.0 (8-2.00; built
2018-01-09T23:53:06-0800).

Calendar Server 8.0.0.4.0 onwards, it will
be displayed as Oracle Communications
Calendar Server version: 8.0.0.4.0 (built
2019-11-15T05:47:08-0800).

Optional. Usable only by itself and
not with other options.

Each operation also has its own specific options, as shown in the following sections.

Chapter 17
davadmin Utility

17-4

davadmin Operations
Table 17-4 describes the davadmin operations.

Table 17-4 davadmin Class of Operations

Argument Description

version Displays version of the server. The application server is queried for the
version of Calendar Server deployed.

account Performs operations that affect the entire user or resource account.

backend Adds information for an additional back-end calendar store.

cache Performs operations on various Calendar Server caches.

calendar Performs calendar collection operations, such as create a collection,
modify a collection, or delete a collection.

calcomponent Performs resource operations, such as listing resources that meet a
specified criteria, importing resources, or deleting resources.

config Performs configuration operations, such as print a particular option, set a
particular option, or list all options. Some configuration operations
require that you restart Calendar Server. The davadmin config modify
command informs you if the change requires you to restart Calendar
Server to take effect. To stop and start Calendar Server, see "Stopping
and Starting Calendar Server Services" for details.

db Performs database related operations, like backing up and restoring the
database.

ldappool Performs ldappool operations, including creating, listing, and modifying
LDAP pools.

migration Performs migration of Calendar Server 6 data to Calendar Server Server
7 Update 1 and greater.

passfile Creates, deletes, lists, or modifies passwords in the password file.

vscan Performs virus scanning operations.

Each operation takes various command-line options. The common options used by all
davadmin operations are described in Table 17-3.

Note:

Any option value that contains special characters or spaces must be enclosed in
quotes ("") so that it is passed "as is" to the davadmin command. For example:

davadmin config modify -o base.ldapinfo.ugldap.binddn -v "cn=Directory Manager"

Chapter 17
davadmin Utility

17-5

Note:

If a portion of an option that is enclosed in quotes also needs to be quoted, you must
use single quotes around that portion. For example:

davadmin calendar modify -n calendar -y "displayname='A new calendar
name',acl=@:r"

Tool-Only Options
Two options, -V and -h, can be used without any operation specified. The -V option prints the
version of the command-line utility. The -h option prints the general usage.

Exit Code
The tool exits with exit code 0 on success and 1 on failure.

davadmin account
Use this command to perform operations that affect the entire user or resource account.

Syntax
davadmin account [create | delcomponents | delete | list | modify |
 repair | subscribe | unsubscribe | upgrade]
 [-p port] [-s path] [-a account] [-g uniqueid (delete only)]
 [-y property=value[,property=value...]] [-f file]
 [-B ldapbaseuri] [-R ldapfilter] [-d days]
 [-c collection_path | -C collections_file_path]
 [-m] [-o] [-D] [-v (list only)] [-e] [-r] [-q] [-h]

account Operation
Table 17-5 describes the actions for the account operation.

Table 17-5 Actions for account Operation

Command Description

create Creates an account for user who has been provisioned in the LDAP
Directory Server. The user must have an email address.

delcomponents Deletes components from all of the calendars belonging to an account or
a set of accounts. Use the -d option to specify deletion of all components
older than this number of days.

delete Deletes an account.

Chapter 17
davadmin account

17-6

Table 17-5 (Cont.) Actions for account Operation

Command Description

list Lists properties of an account. The list command displays managed
calendars for an account. These are all the calendars for which the
account is the owner or has "all" rights. Also, list displays the users'
subscribed calendars list. list is the default action, if it is not included on
the command line, for most commands. You can use the davadmin
account list command without the -a option to list all current users in
the Calendar Server database. You can get either a simple list, which
contains one user per line, or a detailed list, which contains complete
information about the user's account. The options affected by this
change are -a, -f, -B, and -v.

modify Modifies an account.

repair Repairs the user's email address in the database entries after an LDAP
email change occurs. When used with the -o option, repair updates the
owner lists of all accounts.

subscribe Subscribe to a calendar belonging to another user. That other user must
grant the requesting user access before this can be done.

unsubscribe Remove a calendar from a user's subscription list.

Options for account Operation
Table 17-6 describes the options for the account operation.

Table 17-6 Options for account Operation

Short Option Long Option Description

-a account --account Required. Principal account information provided as email
address. You can also supply the account information with the
DAVADMIN_ACCOUNT environment variable.

Chapter 17
davadmin account

17-7

Table 17-6 (Cont.) Options for account Operation

Short Option Long Option Description

-y property --property Comma-separated list of all property=value options for the
specified calendar. Possible properties include:

acl - The scheduling privileges set on the account. See
"Administering Calendar Server Access" for more information
about ACLs.

set-ace - Sets one or more individual ACEs in the ACL. A
semicolon separated list of ACEs.

remove-ace - Removes one or more individual ACEs from the
ACL. A semicolon separated list of ACE principals. ACE principals
are in the form: @, @domain,group@domain, or user@domain.

notifemail - Email notification enable flag. 0 = disabled, 1 =
enabled

notifrecipients - Recipients of email notifications. Multiple values
are separated by a space.

delegate_notifaddr - Accounts that are delegates for this
account. Multiple values are separated by a space.

owner - The new owner of the resource. This option is not
available for user owned accounts. owner updates the owner lists
of the old owner and the new owner with the right list of resource
accounts they own.

attendanceflag - Flag controlling behavior on invitation. Possible
values are:

0 - no autoaccept, no booking conflict check, no recurrence check
on invitations.

1 - autoaccept invitations

2 - autodecline if invitation results in booking conflict.

3 - autoaccept invitation and autodecline on booking conflict.

4 - autodecline recurring meeting invitations.

5 - autoaccept invitations and autodecline recurring meeting
invitations

6 - autodecline recurring invitations and invitations that cause a
booking conflict.

7 - autoaccept invitations, autodecline recurring invitations and
invitations that cause a booking conflict.

-f --file Local input file with one line for each account, for batch operation.
Each line has the format user:properties, where properties is a
comma-separated list of property settings as specified in the -y
option.

-B --ldapbaseuri Base URI in LDAP.

-R --ldapfilter User search filter in LDAP. Default is
(objectClass=icsCalendarUser)

-r --force Force the operation (do not prompt for confirmation).

-h --help Displays davadmin account usage help.

-c --collectionuri The full path of a collection to be added to a user's subscription
list, with the last part of the URI being the internal name of the
collection, for example: /home/user@example.com/
1468525830289-0/. Be sure to include the / at the end of the path.

Chapter 17
davadmin account

17-8

Table 17-6 (Cont.) Options for account Operation

Short Option Long Option Description

-C --collectionuris The full path to a file which holds full paths of collections to be
added to a user's subscription list. Each line is a path. For
example: /home/user2@example.com/1468525830289-0/

Table 17-7 describes the options for the delete operation.

Table 17-7 Options for delete Operation

Short Option Long Option Description

-a account --account Required. Principal account information provided as email address.
You can also supply the account information with the
DAVADMIN_ACCOUNT environment variable.

-d --days Number of days. Delete the components older than these many
number of days. Applies only to the davadmin account
delcomponents command.

-g uniqueID NA The principal account described by the database uniqueID, if -a fails.
Normally you run davadmin account delete while the user is still
defined in LDAP, so the higher level delete functionality can identify
the user. In the incorrect case where the user is no longer in LDAP
and the normal command fails due to User Not Found, you can delete
the user's database data by specifying -g uniqueID, where uniqueID
is the user's old LDAP uniqueID. Only use -g when users are no
longer defined in LDAP.

Table 17-8 describes the options for the repair operation.

Table 17-8 Options for repair Operation

Short Option Long Option Description Default?

-m --email Repairs the user's email address after an email
change. Valid only for the repair action. Specify
users with either the -a or -f options.

Yes

-o --ownerlists Updates the owner lists of all accounts. Valid only
for the repair action.

Yes (when
used with
the -D
option)

-D --domain New domain name if mail address change
includes change in domain due to moving user
from one domain to another. Valid only for the
repair action.

No

Table 17-9 describes the options for the davadmin account list command.

Chapter 17
davadmin account

17-9

Table 17-9 davadmin account list Options

Short Option Long Option Output Comments

-a --account The detailed account
information for this user. If
the user is not in the
database, the system
displays an "Unknown user:"
message.

The DAVADMIN_ACCOUNT
environment variable, if set, is
not used in place of the -a
option. If -a is not supplied on
the command line, a list of all
users in the database will be
displayed.

-f --file A list of the users in the file.
The system displays an
"Unknown user:" tag before
the names of users in the file
that are not in the database.

No comments.

-Buri --ldapbaseuri Base URI in LDAP. Searches
LDAP for a set of users and
then displays the users from
that list that exist in the
database.

No comments.

-v --verbose Detailed information is
displayed about each of the
users in the database.

Used with the -f and -B options.

davadmin account Examples
• To list the account for a user:

davadmin account list -a john.smith@example.com

Note:

The davadmin account list command shows only the calendar internal name.
The davadmin calendar list command shows both the calendar display name
and internal name.

• To create an account for user1@example.com:

davadmin account create -a user1@example.com
• To create an account for user1 under the LDAP base o=isp (the user has to be previously

provisioned in LDAP):

davadmin account create -B "o=isp" -R "uid=user1"
• To create an account for all users whose uid starts with "user1" (the users have to be

previously provisioned in LDAP) and have all of their notifemail properties set to disabled:

davadmin account create -B "o=isp" -R "uid=user1*" -y "notifemail=0"
• To create the calendar account with default calendar for a provisioned resource:

davadmin account create -a resource1@example.com
• To delete an account:

davadmin account delete -a john.smith@example.com

Chapter 17
davadmin account

17-10

Note:

This deletes the account from the calendar database. To completely remove the
account from LDAP, see "Removing Calendar Users".

• To delete a user's calendar entries, with all events and todos prior to and including today:

davadmin account delcomponents -a caluser31@example.com -d 0
• To set the scheduling rights on John Smith's account to allow Jane Doe to schedule events

and all other users to just do free busy checks:

davadmin account modify -a john.smith@example.com -y acl="jane.doe@example.com:s;@:f"
• To clear a resource's owner field:

davadmin account modify -a resource1@example.com -y owner=""

After running this command, the resource then has no owner.

• To repair the owner list for a resource account:

davadmin account repair -o -a calresource@example.com
• To repair the user's account (caluser1) after user has been migrated from domain

dept1.example.com to dept2.example.com:

davadmin account repair -m -D dept2.example.com -a caluser1@dept1.example.com
• To set the value of two individual ACEs in the ACL:

davadmin account modify -a user30@example.com -y set-
ace="user19@example.com:s;user20@example.com:f"

• To remove an individual ACE from the ACL:

davadmin account modify -a user30@example.com -y remove-ace=user19@example.com
• To create two accounts and set their properties by using an input file:

Input File:

user1@example.com:notifemail=0,attendanceflag=5
user2@example.com:notifemail=1,notifrecipients=user4@example.com;user3@example.com

Command:

davadmin account create -f input_file.txt
• To modify the previous two accounts and set their properties by using an input file:

davadmin account modify -f input_file.txt

davadmin backend
Use this command to add information for an additional back-end calendar store.

Syntax
davadmin backend [create | list | purge]
 [-u id] [-W] [-F clifile] [-H hostname]
 [-p port] [-s path] [-n name] [-j jndiname]
 [-d dbdir | [-S ashost] [-P asport]
 [-e] [-q] [-h]

Chapter 17
davadmin backend

17-11

backend Operation
Table 17-10 describes the actions for the backend operation.

Table 17-10 Actions for backend Operation

Command Description

create Configures a new back-end calendar store configuration on the front
end.

list Lists the back-end calendar store(s). This is the default action if not
included on the command line.

purge Immediately purges calendar data marked for expiration from Calendar
Server back-end database(s).

Options for backend Operation
Table 17-11 describes the options for the backend operation.

Table 17-11 Options for backend Operation

Short Option Long Option Description Required or Optional

-n --name Name of the backend. Required for create command.

-j --jndiname The JNDI name of the
JDBC resource of the back
end.

Required for create command.

-d --dbdir The path to the local
document store directory.

Required for create command and if
document store is local.

-S --ashost The host name of the
remote document store.

Required for create command and if
document store is remote.

-P --asport The port number of the
remote document store.

Required for create command and if
document store is remote.

davadmin backend Examples
• To list the back ends:

davadmin backend list -u admin
• To create a new back end with a local document store:

davadmin backend create -u admin -n store1 -j jdbc/store1 -d /var/cs7/store1
• To create a new back end with a remote document store:

davadmin backend create -u admin -n store2 -j jdbc/store2 -S store-2.example.com -P
8008

Chapter 17
davadmin backend

17-12

Caution:

The davadmin backend create command alone is not enough to completely
configure a new back-end store. See "Managing Calendar Server" for more
information on configuring multiple Calendar Server back-end hosts.

• To immediately purge calendar data that has been marked for expiration from the default
back end:

davadmin backend purge -u admin -n defaultbackend

davadmin cache
Use this command to perform operations on various Calendar Server caches.

Syntax
davadmin cache [clear]
 [-u id] [-W] [-F clifile] [-H hostname]
 [-p port] [-s path] [-t cache]
 [-d dbdir | [-S ashost] [-P asport]
 [-e] [-q] [-h]

cache Operation
Table 17-12 describes the action for davadmin cache command.

Table 17-12 Action for cache Operation

Command Description

clear Clears the various Calendar Server caches.

Options for the cache Operation
Table 17-13 describes the option for the cache operation.

Chapter 17
davadmin cache

17-13

Table 17-13 Option for cache Operation

Short Option Long Option Description

-t --cachelist Optional. Comma-separated list of caches, possible values are:

• acl - ACL string cache corresponding to a URI and LDAP
subject entry corresponding to each calendar collection.
Otherwise cleared according to the configuration options of
davcore.acl.aclcachesize and davcore.acl.aclcachettl.

• domainmap - Cache of information on domains retrieved from
LDAP. Otherwise cleared according to the configuration options
of base.ldapinfo.cachesize and base.ldapinfo.cachettl.

• ldapauth - Cache of logged-in principals' login ID and
passwords (encrypted). Otherwise cleared according to the
configuration options of base.ldapinfo.cachesize and
base.ldapinfo.cachettl.

• uri - Cache mapping LDAP subjects and URIs. Otherwise
cleared according to the configuration options of
davcore.uriinfo.ldapcachesize and
davcore.uriinfo.ldapcachettl.

davadmin calendar
Use this command to perform calendar collection operations, such as creating a collection,
modifying a collection, or deleting a collection.

Syntax
davadmin calendar [create | modify | delete | list]
 [-u id] [-W] [-F clifile] [-H hostname]
 [-p port] [-s path] [-a account] [-n name] [-v]
 [-y property=value[,property=value...]] [-f file]
 [-r] [-e] [-q] [-h]

calendar Operation
Table 17-14 describes the actions for the calendar operation.

Table 17-14 Actions for calendar Operation

Command Description

create Creates a calendar collection. Autocreates the account, if it does not
exist.

modify Modifies a calendar collection.

delete Deletes a calendar collection.

list Lists an account's calendars or details of a particular calendar (if the -n
option is provided). This is the default action if not included on the
command line.

Options for calendar Operation
Table 17-15 describes the options for the calendar operation.

Chapter 17
davadmin calendar

17-14

Table 17-15 Options for calendar Operation

Short Option Long Option Description

-a account --account Required. Principal account information provided as email address.
You can also supply the account information with the
DAVADMIN_ACCOUNT environment variable.

-n collection --name The calendar collection display name.

In addition to the display, name, the system creates a unique
internal name for the calendar. The display name is used for the -n
option in all calendar commands. To view both the internal and
display names for a calendar, use the davadmin calendar list
command.

If you use both -n collection and -y displayname=value in the same
command, they must be the same.

-y property --property Comma-separated list of all property=value options for the specified
calendar. Possible properties include:

set-ace - Specifies a semicolon separated list of ACEs to add or
modify to the calendar permissions (ACL).

remove-ace - Specifies a semicolon separated list of ACE
principals that are to be removed from the calendar permissions
(ACL). The ACE principal is the user, group, domain, or all portion
of the ACE not including the ":" and permission.

displayname - The calendar name. Defaults to the name given with
the -n option.

calendar-description - Description string. No default.

supported-calendar-component-set - Space-separated list of
supported components. The default is VEVENT VTODO
VFREEBUSY. This option is only available for creation of
secondary calendars. It cannot be used for creation of the default
calendar.

wcaptzid - The time zone tzid set on the calendar, for example,
America/Los_Angeles.

acl - The access control string set on the calendar. See
"Administering Calendar Server Access" for more information about
ACLs.

-f file --file Local commands input file for batch operation. Each line has colon-
separated entries for account information, calendar name, and
property list. For example:

user1@example.com:testcal:calendar-description=user1's test
cal

-h --help Displays davadmin calendar usage help.

davadmin calendar Examples
• To create an additional calendar with the given name for the specified user account:

davadmin calendar create -a john.smith@example.com -n mypersonalcalendar

The name, which is a required parameter, builds the new calendar's URI and sets its
display name. This is the name that would be used for the -n option for any further
davadmin calendar commands. This cannot be changed. The display name can be
modified later by using the davadmin calendar modify command with the -y
displayname option.

Chapter 17
davadmin calendar

17-15

• To list a summary of the calendar specified by name:

davadmin calendar list -a john.smith@example.com -n mypersonalcalendar

Note:

The davadmin calendar list command shows both the calendar display name
and internal name. The davadmin account list command shows only the
calendar internal name.

• To delete a calendar specified by name:

davadmin calendar delete -a john.smith@example.com -n mypersonalcalendar
• To set the access rights on John Smith's default calendar to give Jane Doe all rights and

only read rights to everyone else:

davadmin calendar modify -a john.smith@example.com -n calendar -y
acl="jane.doe@example.com:a;@:r"

davadmin calcomponent
Use this command to perform resource operations, such as listing resources that meet a
specified criteria, importing resources, or deleting resources.

Syntax
davadmin calomponent [list | delete | import | export]
 [-u id] [-W] [-F clifile] [-H hostname]
 [-p port] [-s path] [-a account] [-n name]
 [-y property=value[,property=value...]] [-i uri]
 [-m path | -x path] [-l logpath] [-t yes | no]
 [-e] [-r] [-q] [-h]

calcomponent Operation
Table 17-16 describes the actions for the calcomponent operation.

Table 17-16 Actions for calcomponent Operation

Command Description

list Displays a summary of all of the resources in a calendar or the specifics
of one resource. This is the default action if not included on the
command line.

delete Deletes a resource or all of the resources in a calendar.

import Imports resource data into a calendar.

export Exports resource data from a calendar.

Options for calcomponent Operation
Table 17-17 describes the options for the calcomponent operation.

Chapter 17
davadmin calcomponent

17-16

Table 17-17 Options for calcomponent Operation

Short Option Long Option Description

-a account --account Required. Principal account information provided as email address.
You can also supply the account information with the
DAVADMIN_ACCOUNT environment variable.

-n collection --name The calendar collection display name.

In addition to the display, name, the system creates a unique
internal name for the calendar. The display name is used for the -n
option in all calendar commands. To view both the internal and
display names for a calendar, use the davadmin calendar list
command.

-y property --property Comma-separated list of all property=value options for specified
calendar. Possible properties include:type - The component type or
types. Possible values are VEVENT and/or VTODO. If you use both
VEVENT and VTODO, enclose them in double quotes and separate
them with a space.start - The start of a time range used in the
search. The format of this value is yyyymmddThhmmssZ. This
value is in Zulu time. (The T is a separator between the day and
time.)end - The end of a time range used in the search. The format
of this value is yyyymmddThhmmssZ. This value is in Zulu time.
(The T is a separator between the day and time.)

-h --help Displays davadmin calcomponent usage help.

-i --uri Internal name of the component as shown by the calcomponent
list command.

-r --force Forces a delete operation so that you are not prompted for
confirmation. This option is generally needed for scripts.

-m --import-path Path to the file on the server machine, containing data to be
imported.

-x --export-path Path to the file where the exported data is to be stored.

-l --logpath Path to where the log directory is located. The davadmin
calcomponent import command enables the import to continue
even if an error occurs on an item being imported.

-t yes | no --fetch-attach For the export command, exports the attachment inline. The
default is yes.

davadmin calcomponent Examples
• To list the calendar resources in the user's default calendar:

davadmin calcomponent list -a john.smith@example.com
• To display the contents of a particular calendar resource:

davadmin calcomponent list -a john.smith@example.com -i 23454-333-3-3333.ics
• To list only a calendar's tasks:

davadmin calcomponent list -a john.smith@example.com -y type=VTODO
• To list all calendar resources from March 3, 2009 through March 4, 2009:

davadmin calcomponent list -a john.smith@example.com -y
start=20090303T070000Z,end=20090305T065959Z

Chapter 17
davadmin calcomponent

17-17

• To delete the event resources from March 3, 2009 through March 4, 2009, assuming that
the local time zone is Pacific Time:

davadmin calcomponent delete -a john.smith@example.com -y
type=VEVENT,start=20090303T070000Z,end=20090305T065959Z

• To delete a user's calendar entries, with some start/end date range:

davadmin calcomponent delete -a caluser31@example.com -y
start=20090701T000000Z,end=20090720T000000Z

davadmin config
Use this command to perform configuration operations, such as display a particular parameter,
set a particular parameter, or list all parameters. Some configuration operations require that
you restart Calendar Server. The davadmin config modify command informs you if the
change requires you to restart Calendar Server to take effect.

Syntax
davadmin config [list | modify]
 [-u id] [-W] [-F clifile] [-H hostname]
 [-p port] [-s path] [-o property] [-v value]
 [-d] [-f file] [-e] [-q] [-h] [-M]

config Operation
Table 17-18 describes the actions for the config operation.

Table 17-18 Actions for config Operation

Command Description

list Lists all configuration settings. This is the default action if not included
on the command line.

modify Modifies a configuration setting.

Options for config Operation
Table 17-19 describes a list of options for config operations that can be provided, unless you
are displaying usage by using the -h option. See "Calendar Server Configuration Parameters"
for the complete list of configuration parameters.

Table 17-19 Options for config Operation

Short Option Long
Option

Description

-o option --option Configuration option name. Gets the optional value if specified
without -v. Sets the option value if specified with a -v.

-v value --value Configuration option value.

Chapter 17
davadmin config

17-18

Table 17-19 (Cont.) Options for config Operation

Short Option Long
Option

Description

-f file --file Local file with list of configuration option=value entries for setting.
Pay attention to backslashes included in this input file.
Backslashes are treated as an escape character for the next
character in the line. For a single backslash to be properly
interpreted in a string, you must precede each backslash with
another backslash; that is, use an additional backslash. For
example, to include the string "^/principals/\z", you would use "^/
principals/z". This is due to the way that Java reads in properties
files. For more information, see the load(Reader reader) method
of the java.util.Properties class at: http://docs.oracle.com/
javase/6/docs/api/index.html

-M --modonly Lists the modified configuration properties (non-default values).

-d --default Sets the value to the default when used with the modify action.
Lists the default value when used with the list action.

-h --help Description of config option if specified with -o. Otherwise, usage
of davadmin config.

davadmin config Examples
• To show all configuration parameters:

davadmin config list
• To show all configuration parameters (prior to Calendar Server 7 Update 2):

davadmin config -l

davadmin config (since list is default)
• To show the current setting for the error log:

davadmin config -o log.dav.errors.loglevel
• To set the error log to accept "finest" messages:

davadmin config modify -o log.dav.errors.loglevel -v FINEST
• To list the default setting:

davadmin config list -o davcore.acl.defaultschedulingacl -d -u admin
Enter Admin password:
davcore.acl.defaultschedulingacl: @:s

• To modify to the default setting:

davadmin config modify -o davcore.acl.defaultschedulingacl -d -u admin
Enter Admin password:
davadmin config list -o davcore.acl.defaultschedulingacl -u admin
Enter Admin password:
davcore.acl.defaultschedulingacl: @:s

davadmin db
Use this command to perform database related operations, such as backing up and restoring
the database, and upgrading the database schema.

Chapter 17
davadmin db

17-19

http://docs.oracle.com/javase/6/docs/api/index.html
http://docs.oracle.com/javase/6/docs/api/index.html

Unlike other davadmin commands that communicate with the application server, the
davadmin db commands communicate directly with the back-end database, and thus require
that you specify the database host name, port, and password.

Although the davadmin db commands are not related to the application server like the other
davadmin commands, davadmin db commands do still use parameter values in the
davadmin.properties file if applicable.

Because each database back end is associated with a database host name, port, document
store, and so on, in a multiple back-end deployment, use a unique clifile (specified with the -F
option) for each back end in the deployment.

In a non-default deployment or multiple back-end deployment, properly define options such as
(-d database) and (-u dbuser), which might need to use specific and not default values.

Syntax
davadmin db [backup | init | list | restore | schema_version |
 schema_fullupgrade | schema_preupgrade]
 [-h] [-e] [-W] [-t dbtype] [-H dbhost] [-p dbport] [-F clifile]
 [-u dbuserid] [-d database] [-s truststore] [-b blockfactor]
 [-D domain] [-a account_mail] [-T token] [-O] [-i path]
 [-c] [-A docstore] [-z preupgradefunction] [-k backup_file]

db Operation
Table 17-20 describes the actions for the davadmin db operation.

Table 17-20 Actions for db Operation

Command Description

backup Backs up a database.

init Completely initializes the database.

Caution: All data will be lost.

list List contents of a backup file. This is the default action if not included on the
command line.

restore Restores the contents of a database.

schema_version Displays version information for the database, connector, and product schema
number.

schema_fullupgrad
e

Provides an optional way to perform a full upgrade of the database schema. For
more information about upgrading database schema and upgrading Calendar
Server, see "Upgrading Calendar Server" in Calendar Server Installation and
Configuration Guide.

schema_preupgrad
e

Provides an optional way to perform a pre-upgrade on the database schema. For
more information about upgrading database schema and upgrading Calendar
Server, see "Upgrading Calendar Server" in Calendar Server Installation and
Configuration Guide.

Chapter 17
davadmin db

17-20

Caution:

Do not run either the schema_fullupgrade or schema_preupgrade without fully
understanding the impact on your Calendar Server deployment.

The davadmin db backup, list, and restore commands require that you specify the
associated document store by using the -A option, or the docstore option in the clifile.

Note:

If you are using a remote document store, you must set the document store
password on the Calendar Server host by using the davadmin passfile command
and that password must match the one set for the remote document store. This
password is used whenever the backup or restore commands access the remote
document store.

Options for db Operation
Table 17-21 describes the options for the db operation (in addition to the common options).

Table 17-21 Options for db Operation

Short Option Long Option Description Available for Following
Actions

-d --database Specifies the name of the DAV store to be
saved or updated. The default is caldav. For
MySQL Server, this is the database name. For
Oracle Database, this is the network service
name (not SID nor pdb name).

backup, restore, list

-H --dbhost Specifies the database host. The default is
localhost.

All

-p --dbport Specifies the database port. The default is
3306.

All

-u --dbuserid Specifies the database user. For MySQL
Server, this is the connecting user name. For
Oracle DB, this is the user/schema name.

All

-k --bkfile Specifies the path of the file where the
database information is to be saved. Required.

backup, restore, list

-b --bkfactor Specifies blocking factor used during backup.
The default is 20.

backup, restore, list

-T --token Specifies the incremental backup token or
start time in milliseconds.

backup

-D --domain Domain name for per domain backup. backup

-a --account User account email value for per user backup. backup

-i --ipath Specifies the internal path for partial list or
restore.

restore, list

-c --contents Lists the resources and header. list

Chapter 17
davadmin db

17-21

Table 17-21 (Cont.) Options for db Operation

Short Option Long Option Description Available for Following
Actions

-A --docstore Specifies the document store (remote store
specified as host:port or local store by fully
qualified path to root of document store).

backup, restore, list

-t --dbtype Specifies the type of database, either mysql
or oracle. The default is mysql.

All

-O --overwrite Overwrites existing data. backup, restore

-s --dbsecure Supplies the path to the trustStore file that
contains the SSL certificate for secure
communications with the remote document
store.

backup, restore

-z --dbupgradefunction Specifies to run the pre-upgrade function(s) on
the database.

Caution: Do not run schema_preupgrade
without fully understanding the impact on your
Calendar Server deployment. For more
information, see "Upgrading Calendar Server"
in Calendar Server Installation and
Configuration Guide.

The pre-upgrade functions are:

• services-up - Executes all pre-upgrade
functions that can be run with old services
up. (Online DDL) Otherwise and most
commonly, pre-upgrade functions must be
run with services shut down.

• services-down - Executes all pre-
upgrade functions that cannot be run with
services up.

• all - Executes all available pre-upgrade
functions. Services should be shut down.

For a list of available functions by release, see
"Preupgrade Functions" in in Calendar Server
Installation and Configuration Guide.

Unless otherwise specified, never run pre-
upgrade functions with services up. In
addition, always back up your database before
upgrading.

Preupgrade functions are listed for each
release. Some function names execute
multiple preupgrade functions.

schema_preupgrade

davadmin db Examples
• To perform a full database backup:

davadmin db backup -k backup_file
• To perform a full backup for a particular user:

davadmin db backup -k backup_file -a john.smith@example.com
• To perform an incremental backup:

Chapter 17
davadmin db

17-22

davadmin db backup -k backup_file -T token obtained from last full backup
• To perform a full backup for a particular domain:

davadmin db backup -k backup_file -D sesta.com
• To list the contents of the backup file:

davadmin db list -c backup_file

When the davadmin db list -c command retrieves backup file content, it goes through the
checksums and is thus a way to verify the structure of the backup file itself.

• To perform a restore from a backup file:

davadmin db restore -k backup_file
• To restore from a backup file and overwrite a calendar:

davadmin db restore -O -e -W -k /export-filepath -i "hosted.domain/
mail:given.surname@hosted.domain/" -H mysqlcalhost -A
matching_document_store_host:8007 > /log_output_file

• To restore only the default 'calendar:'

davadmin db restore -O -e -W -k /export-filepath -i "hosted.domain/
mail:given.surname@hosted.domain/calendar/" -H mysqlcalhost -A
matching_document_store_host:8007 > /log_output_file

• To restore only a calendar named Soccer:

davadmin db restore -O -e -W -k /export-filepath -i "hosted.domain/
mail:given.surname@hosted.domain/Soccer/" -H mysqlcalhost -A
matching_document_store_host:8007 > /log_output_file

• To back up using SSL and the trustStore file:

davadmin db backup -k /tmp/backup_file -O -A docstore_host.example.com:8008 -s /
my_home/my_truststore -u mysql

• To execute a database schema preupgrade:

davadmin db schema_preupgrade -z preupgrade_function

This command executes one preupgrade function. A preupgrade function is an upgrade
change to the database, which can be run before the formal upgrade. This command does
not change the database schema version.

• To execute all available preupgrade functions:

davadmin db schema_preupgrade -z all

Prior to running this command, ensure that all services are shut down.

• To execute all preupgrade functions that cannot be run with services down:

davadmin db schema_preupgrade -z services-down

davadmin ldappool
Use this command to perform LDAP pool operations, including creating, listing, and modifying
LDAP pools.

Chapter 17
davadmin ldappool

17-23

Syntax
davadmin ldappool [create | delete | list | modify]
 [-u id] [-W] [-F clifile] [-H hostname]
 [-p port] [-s path] [-n poolname]
 [-y property=value [,property=value...]] [-f file]
 [-r] [-h]

ldappool Operations
Table 17-22 describes the actions for the ldappool operation.

Table 17-22 Actions for ldappool Operation

Command Description

create Creates an LDAP pool and sets its configuration parameters.

modify Modifies the LDAP pool's configuration parameters.

delete Deletes an LDAP pool.

list Lists an LDAP pool's configuration, or all LDAP pools' configuration. (This is
the default action.)

Options for ldappool Operation
Table 17-23 describes the options for the ldappool operation.

Table 17-23 Options for ldappool Operation

Short Option Long Option Description

-n poolname --name The name of the LDAP pool.

-y property --property Comma-separated list of all property=value options for the specified
LDAP pool. Properties are appended to base.ldappool.name to
produce the configuration parameters for the LDAP pool. Possible
properties include:

ldaphost - Space-delimited list of host names. Each host name can
include a trailing colon and port number.

ldapport - Port number to which to connect. Ignored for any host
name which includes a colon and port number.

ldapusessl - Use SSL to connect to the LDAP host. Value can be
true or false.

binddn - Distinguished name to use when authenticating.

bindpassword - Password to use when authenticating.

ldappoolsize - Maximum number of connections for this pool.

ldaptimeout - Timeout, in seconds, for all LDAP operations.

ldappoolrefreshinterval - Length of elapsed time, in minutes, until
the failover Directory Server reverts back to the primary Directory
Server. If set to -1, no refresh occurs.

-f file --file Local input file with one line for each account, for batch operation,
containing lines in the form pool_name:property_list. The properties
are the same ones available for the -y option. For delete operations,
only pool_name is used.

Chapter 17
davadmin ldappool

17-24

Table 17-23 (Cont.) Options for ldappool Operation

Short Option Long Option Description

-r --force Force the operation (do not prompt for confirmation).

-h --help Displays davadmin ldappool usage help.

davadmin ldappool Examples
• To create an LDAP pool named myldap:

davadmin ldappool create -n myldap -y
"ldaphost=host1.example.com,ldapport=389,binddn='cn=Directory
Manager',bindpassword=password"

• To update an LDAP pool by using properties from a file:

davadmin ldappool modify -n myldap -f /tmp/update_pool.input
• To delete an LDAP pool:

davadmin ldappool delete -n myldap
• To list all existing LDAP pools:

davadmin ldappool list
• To list the configuration parameters of a specific LDAP pool:

davadmin ldappool list -n myldap

davadmin migration
Use this command to performs migration of Calendar Server 6 data to Oracle Communications
Calendar Server.

For more information on migrating from Sun Java System Calendar Server 6 to Oracle
Communications Calendar Server, see Calendar Server Installation and Configuration Guide.

Note:

Migration from Calendar Server 6 to Calendar Server 8 is not supported from
Calendar Server 8.0.0.8.0 onwards.

Syntax
davadmin migration [migrate | status]
 [-u id] [-W] [-H hostname]
 [-p port] [-s path] [-a account]
 [-X migrationadminuser] [-F clifile] [-f file]
 [-L migrationserverport] [-S] [-B ldapbaseuri] [-R ldapfilter]
 [-T starttime] [-l logpath] [-c] [-G tag] [-h]

migration Operation
Table 17-24 describes the actions for the migration operation.

Chapter 17
davadmin migration

17-25

Table 17-24 Actions for migration Operation

Action Description

migrate Migrates the specified user(s).

status Gets the current status of the migration operation.

The migration option supports all davadmin common options. The default action for
migration is migrate.

Options for migration Operation
Table 17-25 describes the options for the migration operation.

Table 17-25 Options for migration Operation

Short Option Long Option Description Required

-a --account Principal account information
of the user to be migrated,
provided as email address.

Required unless batch
mode is used and account
information provided in
files, or ldapfilter used.

-X --migrationadminuser Administrative user to
authenticate to Calendar
Server 6 host.

Required unless
information is provided in
clifile.

-L --migrationserverport Server and port information
to connect to the Calendar
Server 6 host from which
data needs to be migrated.
The format is server:port.

Required unless
information is provided in
clifile.

-l log-directory --logpath Logs information about the
migration status.

Optional. Defaults to the
Calendar Server log
directory.

-f --file Local input file for batch
operation. Each line contains
the email address for an
account.

Optional if using the -a
option for single user
migration, or an LDAP
base URL is provided by
using the -B option.

-S --clientssl Use SSL when making client
connections.

Optional.

-B --baseuri Base URL in LDAP. All users
under the URL are migrated.

Required if -a or -f options
are not specified.

-R --ldapfilter User search filter in LDAP.
Default is
objectclass=icsCalendarU
ser.

Optional.

-T --starttime Start date for events and
tasks to be migrated. The
format of this value is
yyyymmddThhmmssZ. This
value is in Zulu time. (The T
is a separator between the
day and time.)

Optional.

Chapter 17
davadmin migration

17-26

Table 17-25 (Cont.) Options for migration Operation

Short Option Long Option Description Required

-c --capture Captures trace information
and details regarding the
migration.

Optional. Useful if
migration fails but
produces a large amount
of output.

-G --tag Log tag to use to check
status. This is the path to the
master log file that is output
when the migration
command is executed.

Required for status check.

-h --help Usage of davadmin
migration.

Optional.

For more information, see the topic on migration logging in Calendar Server Installation and
Configuration Guide.

The clifile that is provided through the -F option can be used to provide entries for
migrationadminuser, migrationadminpassword, and migrationserverport. The long option
for -x is --migrationadminpasswordpath, a path to the password file, but the entry in the
clifile is migrationadminpassword, because it is just a password.

davadmin migration Examples
• To perform a migration of user1's calendar (prior to Calendar Server 7 Update 2):

davadmin migration -X calmaster -x /admin/calmaster_pwd -L cs6host.example.com:8080 -
a user1@example.com -u admin -W /admin/appserver_pwd -s /admin/truststore -t /admin/
truststore_pwd

• To perform a migration of a list of users using the clifile for most of the input values (prior to
Calendar Server 7 Update 2):

davadmin migration -f /admin/user_list -F /admin/mig_clifile

Where user_list contains:

user1@example.com
user2@example.com
user300@example.com

and the mig_clifile contains:

userid=admin
hostname=localhost
port=8686
secure=/admin/truststore
migrationadminuser=calmaster
migrationserverport=cs6host.example.com:8080

• To find the users to migrate based on an LDAP base URI and an LDAP filter (uid):

davadmin migration migrate -B "o=isp" -R "uid=c*" -X calmaster -L
cs6host.example.com:8080 -u admin

• To find the users to migrate based on an LDAP base URI and an LDAP filter (object class):

davadmin migration migrate -B "ou=people,o=example.com,o=isp" -R
"objectclass=icscalendaruser" -X calmaster -L cs6host.example.com:8080 -u admin

Chapter 17
davadmin migration

17-27

davadmin passfile
Use this command to create, delete, list, or modify passwords in the password file.

When running the davadmin command, instead of having to enter passwords at the no-echo
prompt, you can supply passwords by using the password file. The password file is an
encrypted "wallet," which holds all passwords that davadmin might use.

Syntax
davadmin migration [create | delete | list | modify]
 [-u id] [-W] [-F clifile] [-H hostname]
 [-p port] [-s path] [-h] [-O]

passfile Operation
Table 17-26 describes the actions for the davadmin passfile operation.

Table 17-26 Actions for passfile Operation

Action Description

create Creates the password file. If it already exists, modifies it.

delete Deletes passwords in the password file. For each password, you are
asked if it should be removed.

list Displays all passwords in the password file.

modify Modifies passwords in the password file.

The default action is list.

Options for passfile Operation
Table 17-27 describes the option for the passfile operation.

Table 17-27 Option for passfile Operation

Option Description

-O Run the passfile command in standalone mode when access to the Calendar
Server is not needed. This is used when setting, deleting, and listing the
document store password and SSL passwords on the remote document store
host.

The passfile operation is available for the create, delete, list, and modify actions.

davadmin passfile Examples
• To modify the migration administrative password and add the document store password:

davadmin passfile modify
Enter the Password File password:
Do you want to set the app server admin user password (y/n)? [n] n
Do you want to set the database password (y/n)? [n]

Chapter 17
davadmin passfile

17-28

Do you want to set the migration server user password (y/n)? [n] y
Enter the migration server user password:
Reenter the migration server user password:
Do you want to set the document store password (y/n)? [n] y
Enter the document store password:
Reenter the document store password:
Do you want to set the document store SSL passwords (y/n)? [n]
Set new value for store.document.password. A server restart is required for this
change to take effect.

• To remove the database administrative password:

davadmin passfile delete
Enter the Password File password:
Do you want to remove the app server admin user password (y/n)? [n]
Do you want to remove the database password (y/n)? [n] y
Do you want to remove the migration server user password (y/n)? [n]
Do you want to remove the document store password (y/n)? [n]
Do you want to remove the document store SSL keystore password (y/n)? [n]
Do you want to remove the document store SSL certificate password (y/n)? [n]

• To change the password for the remote document store on the remote host. This command
must be run on the remote host:

davadmin passfile modify -O
Enter the Password File password:
Do you want to set the document store password (y/n)? [n] y
Enter the document store password:
Reenter the document store password:
Do you want to set the document store SSL passwords (y/n)? [n]

• To list all of the passwords:

davadmin passfile list
Enter the Password File password:
The app server admin user password: theadminpass
The migration server user password:
The database password: thesqlpass
The document store password: thedocstorepass
The document store SSL keystore password:
The document store SSL certificate password:

• To set the document store passwords used for SSL communications:

davadmin passfile modify -O
Enter the Password File password:
Do you want to set the document store password (y/n)? [n]
Do you want to set the document store SSL passwords (y/n)? [n] y
Enter the document store SSL keystore password:
Reenter the document store SSL keystore password:
Enter the document store SSL certificate password:
Reenter the document store SSL certificate password:

davadmin vscan
Use this command to performs virus scanning operations.

Syntax
davadmin vscan [scan]
 [-u id] [-W] [-H hostname]
 [-p port] [-s path]
 [-F clifile]

Chapter 17
davadmin vscan

17-29

 [-n backendID] [-a account] [-B uri] [-R filter]
 [-T time] [-r] [-h]

vscan Operation
Table 17-28 describes the action for the vscan operation.

Table 17-28 Action for vscan Operation

Action Description

scan Scans calendar data for viruses.

The scan action is the default.

Options for vscan Operation
Table 17-29 describes the options for vscan operations.

Table 17-29 Options for vscan Operation

Short Option Long Option Description

-u id --userid The application server administrator's user name. Required unless
you provide it through a CLI file by using the -F option, or you are
displaying usage by using the -h option.

-F file --clifile File with bootstrap information that you use to specify command-line
options so that they do not have to be entered at the command line.
Each line in the bootstrap file is in the form property=value. For
possible properties, see Table 17-2. Required unless all necessary
information is provided on the command line or in the
davadmin.properties file. See Options Precedence for more
information on priority order of options, the clifile and the
davadmin.properties file. A path to the clifile file can also be
specified by the DAVADMIN_CLIFILE environment variable.

-H host --hostname Host name of the server. Optional, defaults to localhost.

-p port --port The application server administration port (JMX connector port).
The application server administration port can be found in the
domain's domain.xml file or in the Administration Console
(Configuration->Admin Service->system. Optional. Defaults to 8686.

-s path --secure Path to the truststore file used for a secure connection (HTTPS).
Optional. Required if the application server is running in secure
mode.

-a account --account The account information (email address) of the user to be scanned.

-n backendid --name The name of the target backendID.

-B uri --ldapbaseuri Base URI in LDAP.

-R filter --ldapfilter User search filter in LDAP. Default is
(objectClass=icsCalendarUser).

-T time --starttime Scan data entered into the server after this time. Format:
yyyymmddThhmmssZ"

Chapter 17
davadmin vscan

17-30

Table 17-29 (Cont.) Options for vscan Operation

Short Option Long Option Description

-r --force Force delete any data found as a positive hit during the virus scan.
This overrides the davcore.virusscan.clivirusaction variable. So
with davcore.virusscan.clivirusaction set to empty string (no
delete) viruses are listed in the scan log after a scan. Then you can
add a -r to the scan to delete offending data after review, without
needing to change the virus scan configuration parameters.

-h --help Help for that particular operation. Optional.

For more information about how to set up and manage virus scanning, see "Configuring and
Managing Virus Scanning".

davadmin vscan Examples
The davadmin vscan command operates through the application server, and can thus operate
on any of the back ends configured with the specific Calendar Server. (There may very well
only be one.)

• To list the back ends:

davadmin backend list -u admin

defaultbackend
ischedulebackend

Normally you would want to scan the "defaultbackend" since that is where calendar user's
events and attachements are stored.

• To scan the entire default back end:

davadmin vscan scan -u admin -n "defaultbackend"
• To scan a single user's data given their calendar server registered email address:

davadmin vscan scan -u admin -a joe.smith@example.com
• To use LDAP base and filter to specify one or more users to scan:

davadmin vscan scan -u admin -n defaultbackend -B "o=dav" -R "uid=caluser12"
davadmin vscan scan -u admin -n defaultbackend -B "o=dav" -R "(|(uid=caluser222)
(uid=caluser111))"

In this example, using just a uid filter might not be specific enough for multiple domains.
Perhaps use ldapsearch to test filters if needed.

• To scan data at or beyond February 14th, 2011, 1am Zulu:

davadmin vscan scan -u admin -n defaultbackend -T 20110214T010000Z

Specifying a -T only scans data at the specified time and later, and is a big time saver for
ignoring older data already scanned. In the scan log, the time just before the scan began is
printed at the end of the run so it can be used with the -T option in the next scan if no new
virus rules are relevant.

Chapter 17
davadmin vscan

17-31

Note:

The davadmin vscan command uses the same virus scan configuration as online
virus scan, however it does not use the onlineenable variable. Thus, you can run
command-line scans without needing to affect incoming data if desired.

JConsole
The data and operations exposed by the MXBeans in the CalDAV server are accessible and
modifiable by using JConsole. All Admin Beans can be found under
com.sun.comms.davserver.adminutil.

AdminAccountMXBean Operation
Provides createAccounts, deleteAccounts, listAccounts, modifyAccounts,
deleteCalComponents and fixAccountMail operations.

AdminBackendMXBean Operation
Provides createBackend and getBackends operations.

AdminCalComponentMXBean Operation
Provides getCalComponentInfo, getCalComponents, deleteCalComponents,
importCalComponents and exportCalComponents operations.

AdminCalendarMXBean Operation
Provides createCalcollection, modifyCalCollection, deleteCalCollection and
getCalCollections operations.

AdminConfigMBean Operation
You use the getConfigParam and setConfigParam operations to get and set configuration
options. The AllConfigParams operation provides a list of the configuration parameters. The
value in JConsole is displayed as a "java.lang.String[]" array and double-clicking this field
shows the individual parameters. The getConfigParamDescription operation is used to get a
detailed description of a parameter.

AdminMigrationMXBean Operation
Provides checkStatus and migrate operations.

AdminMiscMXBean Operation
The version attribute of this MBean provides the server version.

Chapter 17
JConsole

17-32

AdminUtilMXBean
This is the super class for all Admin...MXBeans. It provides the checkConnection operation.

Starting the Application Server in Secure Mode
If the application server is running in a secure mode, JConsole needs to be started with the
truststorepath (-Djavax.net.ssl.trustStore) and optionally truststorepassword (-
Djavax.net.ssl.trustStorePassword) passed in.

Summary of davadmin Changes by Release
Topics in this section:

• Changes in Calendar Server 7 Update 1

• Changes in Calendar Server 7 Update 2

• Changes in Calendar Server 7 Update 2 Patch 5

• Changes in Calendar Server 7 Update 3

• Changes in Calendar Server 7.0.4.14.0

Changes in Calendar Server 7 Update 1
• The calresource operation has been renamed to calcomponent.

• The migration operation has been added for migration of data from Calendar Server 6.3 to
Calendar Server 7.

• The account operation has been added to enable listing, deletion, and properties
modification of user accounts.

• The calendar operation has been enhanced to enable setting of more calendar properties.

Changes in Calendar Server 7 Update 2
• The davadmin command has been made more secure in Calendar Server 7 Update 2 by

the removal of the capability to "pass in" passwords by using a password file. All
davadmin passwords must now be entered by typing in to a no-echo prompt.

• The backend and vscan arguments have been added.

• The dbhost property replaces the dbhostname property.

• The create, delcomponents, and repair actions have been added to the account
operation.

• The config -l option has been removed. Use config list now.

• The -t option has been added to the davadmin db command.

• The list and modify actions have been added to the davadmin config command.

Changes in Calendar Server 7 Update 2 Patch 5
• The davadmin command has also been updated to list calendars belonging to resource

accounts owned by a user.

Chapter 17
Summary of davadmin Changes by Release

17-33

• To clear a resource's owner field, run the davadmin account modify -a resource -y
owner="" command.

• The repair operation has been enhanced to include the -m option, to repair the user's
email address after an email change, and the -o option, to update the owner lists of all
accounts.

• The list operation displays managed calendars for an account.

• The davadmin calcomponent import command enables the import to continue even if an
error occurs on an item being imported.

• You can create a password file for use with the davadmin command to store
administrator passwords for the GlassFish Server administrative user, the migration
administrative user, and the database user.

Changes in Calendar Server 7 Update 3
• The passfile option has been updated to accommodate setting a password on the local

and remote document store.

• A new command, davadmin ldappool, has been added to support LDAP pools (which are
used in configuring external Directory Server authentication).

• The davadmin account list command now displays a list of all users in the database and
their details.

Changes in Calendar Server 7.0.4.14.0
• The -v option to davadmin account list displays the details of each account at the same

time.

• The davadmin account command takes subscribe and unsubscribe actions, so that a
Calendar Server administrator can subscribe or unsubscribe calendars for a user. The
subscribe and unsubscribe actions take either a single collection path on the command
line, specified by -c, or a set of collection paths in a file, specified by -C.

• The davadmin config list -M command lists changed options only.

• The davadmin config -d option sets the value to the default when used with the modify
action. Additionally it lists the default value when used with the list action.

• The davadmin account -y operation and davadmin -y calendar operation take the set-
ace and remove-ace properties.

• The davadmin db -s operation supplies the path to the trustStore file that contains the
SSL certificate for secure communications with the remote document store.

• You can now set account properties with the new account operation option by using an
input file (-f option). Previously, the -f option used to only allow a user name per line. Now
it allows a user name followed by properties for that user.

• The davadmin account upgrade operation sets the next presence triggers for all existing
events in the future. You must run davadmin account upgrade after upgrading from
Calendar Server 7 Update 3 or prior releases for existing future events to have their
presence triggers set.

• The davadmin db backup, list, and restore commands now require that you specify the
associated document store. You specify the document store by using the -A option, or the
docstore option in the CLI file.

Chapter 17
Summary of davadmin Changes by Release

17-34

Changes in Calendar Server 7.0.4.16.0
• The -v option to the davadmin calendar list -a user command displays a summary for all

calendars belonging to the user.

Changes in Calendar Server 7.0.5.17.0
• The davadmin db command now takes the schema_version, schema_fullupgrade, and

schema_preupgrade operations.

Deprecated Options
Table 17-30 describes the deprecated davadmin common options and in what release the
option was deprecated.

Table 17-30 Deprecated Common Option

Short Option Long Option Description Required or Optional

-W passfile

Removed in Calendar
Server 7 Update 2. You
are now prompted to
enter the administrative
password.

--passwordfile File containing
MySQL password for
db commands, the
application server
Administrator
password for all other
commands.

Required unless you provide
the password by using the -F
option or by displaying usage
by using the -h option. If you
don't provide this information,
you are prompted for the
password.

Table 17-31 describes the deprecated clifile properties and in what release the property was
deprecated.

Table 17-31 Deprecated Clifile Properties

Property Description

userid The application server Administrator user ID.

password
Removed in Calendar Server 7
Update 2. You are now prompted to
enter the administrative password.

The application server Administrator password.

dbpassword
Removed in Calendar Server 7
Update 2. You are now prompted to
enter the administrative password.

MySQL database user password.

migrationadminpassword
Removed in Calendar Server 7
Update 2. You are now prompted to
enter the administrative password.

The Calendar Server 6 administrative password.

Table 17-32 describes the deprecated option for config operation option and in what release
the option was deprecated.

Chapter 17
Deprecated Options

17-35

Table 17-32 Deprecated Option for config Operation

Short Option Long Option Description

-l
Removed in Calendar Server
7 Update 2. See the list
action.

--list Lists all configuration options.

Table 17-33 describes the deprecated option for migration operation option and in what
release the option was deprecated.

Table 17-33 Deprecated Option for migration Operation

Short Option Long Option Description Required

-x
Removed in Calendar
Server 7 Update 2. You are
now prompted to enter the
administrative password.

--
migrationadminpa
sswordpath

Path to file that contains the
Calendar Server 6
administrative password.

Required unless
information is
provided in clifile.

Chapter 17
Deprecated Options

17-36

18
Time Zone Database

This chapter lists the Time Zone Database (often called tz or zoneinfo) IDs that are supported
by Oracle Communications Calendar Server. This list is not necessarily what shows up in
WCAP clients. To add any of the following time zones to the WCAP client list, see
"Administering Time Zones Support" for details.

The database includes the following time zones:

• Africa

• America

• Antarctica

• Arctic

• Asia

• Atlantic

• Australia

• Europe

• Indian

• Pacific

Africa
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Kampala
Africa/Khartoum

18-1

Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek

America
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Costa_Rica
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica

Chapter 18
America

18-2

America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fortaleza
America/Glace_Bay
America/Godthab
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/La_Paz
America/Lima
America/Los_Angeles
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montreal
America/Montserrat
America/Nassau
America/New_York
America/Nipigon
America/Nome
America/Noronha
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Rainy_River
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santa_Isabel
America/Santarem

Chapter 18
America

18-3

America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Shiprock
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Thunder_Bay
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Kentucky/Louisville
America/Kentucky/Monticello
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem

Antarctica
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/South_Pole

Chapter 18
Antarctica

18-4

Antarctica/Syowa
Antarctica/Vostok

Arctic
Arctic/Longyearbyen

Asia
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Choibalsan
Asia/Chongqing
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Gaza
Asia/Harbin
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Istanbul
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kashgar
Asia/Kathmandu
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk

Chapter 18
Arctic

18-5

Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qyzylorda
Asia/Rangoon
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yekaterinburg
Asia/Yerevan

Atlantic
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley

Australia
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Currie
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney

Chapter 18
Atlantic

18-6

Europe
Europe/Amsterdam
Europe/Andorra
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kiev
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Nicosia
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Uzhgorod
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zaporozhye
Europe/Zurich

Chapter 18
Europe

18-7

Indian
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion

Pacific
Pacific/Auckland
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Enderbury
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Johnston
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis

Chapter 18
Indian

18-8

	Contents
	Preface
	Audience
	Nomenclature
	Documentation Accessibility
	Diversity and Inclusion

	Part I Monitoring and Managing Calendar Server
	1 Calendar Server System Administration Overview
	About Calendar Server
	Overview of Calendar Server Administration Tasks
	About Calendar Server Administration Tools
	Directory Placeholders Used in This Guide

	2 Stopping and Starting Calendar Server Services
	Overview of Stopping and Starting Calendar Server
	Stopping and Starting Calendar Server
	Starting and Stopping the Remote Document Store

	3 Managing Calendar Server
	Supported Application Server
	Administering Calendar Server Using the Application Server
	Administering the Document Store
	Changing the Password Used for Remote Document Store Authentication

	Using Calendar Server Administration Utilities
	Managing Logging
	Overview of Calendar Server Logging
	Logging Calendar Server Information to the Application Server Log File
	Configuring Logging
	Viewing the Document Store Logs
	Using the scheduling Log
	Using the commands Log

	Administering Calendar Server Access
	Overview of ACLs
	Calendar Access Controls
	Scheduling Access Controls
	Setting Access Control for LDAP Groups
	Retrieving Access Control Information
	Modifying Access Control Configuration Parameters
	Command-Line Utilities for Access Control
	WCAP Commands for Access Control
	Managing Domain ACLs
	Managing Dynamic Group ACLs

	Administering Scheduling Options
	Configuring Scheduling Options
	Overview of Calendar Booking Window
	Configuring a Booking Window
	Modifying Calendar Double Booking
	Controlling Double Booking When Creating Accounts Automatically
	Modifying Configuration Parameters That Control Double Booking
	Overriding the Account Autocreation Through LDAP
	Manually Creating Accounts
	Modifying Double Booking on Existing Accounts
	Inviting LDAP Groups

	Administering Resource Calendars
	About Resource Calendars
	Provisioning Resource Calendars (commadmin)
	Provisioning Resource Calendars (Delegated Administrator Console)
	Managing a Resource Calendar's Mailbox

	Administering Time Zones Support
	Adding New WCAP Time Zones
	Adding an Alias to an Existing Time Zone
	Adding a New Time Zone

	Customizing Calendar Notifications
	Administering the Calendar Server Back End Databases
	Administering the MySQL Database
	Administering the Oracle Database

	Backing Up and Restoring Calendar Server Data
	Removing Unwanted Calendar Data to Reclaim Space
	Purging Deleted Calendar Entries
	Purging Messages From the Scheduling Inbox and Outbox

	4 Monitoring Calendar Server
	About Monitoring Calendar Server
	Calendar Server Monitoring Attributes
	General Monitoring Attributes
	Back-End Database Schedule Queue Attributes
	Back-End Database Average Response Times Attributes
	LDAP Response Time Monitoring Attributes

	Using a Java Management Extension Client to Access the Monitoring Data
	Using the responsetime Script
	responsetime Script Syntax
	Location
	General Syntax

	responsetime Script Error Codes
	responsetime Script Example
	Creating a Dedicated User Account for the responsetime Script

	5 Setting Up and Managing Calendar Server Users
	Provisioning Calendar Server Users
	Overview of Provisioning Calendar Server
	Provisioning Calendar Users by Using Delegated Administrator
	Provisioning Calendar Users Across Virtual Domains

	Managing Calendar Users and Accounts
	Defining Valid Calendar Users
	Enabling and Disabling Automatic Account Creation
	Creating Calendar Account with Default Calendar Automatically Upon Login
	Preventing a User or Resource From Accessing Calendar Server
	Checking for Active Calendar Users
	Removing Calendar Users
	Removing a Calendar User (Example)
	Moving Calendar Users to a New Back-End Database
	Changing a User's Email Address in the Calendar Server Database

	Subscribing and Unsubscribing Calendars
	About Configuring External Authentication
	Configuring Calendar Server for External Authentication
	Example: External Authentication by Using cn

	Configuring Proxy Authentication

	6 Enabling Advanced Features
	Enabling Attachments
	Enabling Apple iCal Private/Confidential Support
	Enabling SMS Calendar Notifications in Convergence
	Enabling the iSchedule Channel to Handle iMIP Messages
	Enabling CalDAV and CardDAV Autodiscovery

	7 Configuring CalDAV Clients
	Prerequisites
	Configuring CalDAV Clients
	Configuring Apple Calendar for Calendar Server
	Configuring Apple iPhone for Calendar Server
	Configuring Lightning 1.0 beta2 for Calendar Server
	Configuring Lightning 1.0 beta for Calendar Server
	Configuring Lightning 0.9 for Calendar Server
	Accessing a Shared Calendar
	Configuring a CalDAV Account by Using Non-standard or Demo Settings
	iOS 3.x and 4.x Non-standard Configuration
	Apple iCal Non-standard Configuration

	Configuring Android for Calendar Server

	Using the iPhone Configuration Utility
	Exporting and Importing Calendars in Thunderbird Lightning
	Exporting a Calendar
	Importing a Calendar

	Client Issues
	Troubleshooting CalDAV Clients
	Connector for Microsoft Outlook and Event Time Modifications

	8 Configuring and Managing Virus Scanning
	About Calendar Server and Virus Scanning
	Overview of Calendar Server Virus Scanning Architecture
	Configuring Calendar Server Virus Scanning
	Configuring the MTA
	Installing a Standalone Message Transfer Agent

	Configuring the Messaging Server MTA for the Virus Spam Filter
	Creating an Incoming SMTP Channel That Uses the Filter
	Configuring the Rewrite Rule to Detect Calendar Data and Discard it After Scanning

	Configuring Calendar Server for Virus Scanning

	Example MTA Configuration for Calendar Server Virus Scanning
	Calendar Server Configuration Examples
	Calendar Server Virus Scan Command-line Utility
	Virus Scan Logging
	MTA Logging

	9 Using Calendar Server Notifications
	Overview of Notification Architecture
	About Reminders (Alarms)
	About Server Email Notifications
	Enabling Calendar Server Notifications
	Enabling Notifications on an Account
	Modifying Notifications on an Account

	Managing Notification Templates
	Notification Types
	Templates, Resource Bundle, and Other Configuration Files
	Notification Configuration
	Resource Bundles
	Template Files

	Customizing Templates
	Preserving Customized Template Files During Calendar Server Upgrade

	Writing a Java Messaging Service Consumer
	Notification Message Format
	Code Sample

	Managing Calendar Server Java Messaging Server Destinations
	Overview of Calendar Server JMS Destinations
	Administer JMS Destination in GlassFish Server Deployments
	Listing a JMS Destination's Metrics
	Purging All Messages
	Monitoring Disk Utilization
	Accessing Remote Brokers Tip

	Administer JMS Destination in WebLogic Server Deployments

	Presence Notifications
	Configuring Presence Notifications

	10 Troubleshooting Calendar Server
	Troubleshooting Calendar Server Initial Configuration
	Troubleshooting Application Server and Java
	Troubleshooting Common Issues
	Using the asadmin Command to Specify GlassFish Server Port
	Using the GlassFish Server Administration Console to Check Calendar Server Status
	Using the asadmin Command-line Utility to Check Calendar Server Status
	Using the WebLogic Server Administration Console to Check Calendar Server Status
	Troubleshooting the Calendar Server davserver Process
	Troubleshooting a Failing davadmin Command
	Troubleshooting MySQL Server Errors
	Importing a Convergence ics File
	Refreshing Domain Information
	Troubleshooting the iSchedule Back End on MySQL Server

	Enabling Telemetry Logging
	Common Errors in Log Files
	Using the Same Start and End Date for an Event
	Same UID Already in Use
	No Specification of Content-type Header
	Deleting a Non-existing File
	Posting to Calendar Collection Without a File Name
	Using a Non-implemented HTTP Method

	Using the Browser Servlet in GlassFish Server Deployments
	Troubleshooting CalDAV Clients
	Lightning
	Apple iCal
	iPod touch
	Known Issues
	Troubleshooting Clients Running iOS 5 and Mac OS 10.7
	Mac OS 10.9 iCal Client Not Able to Delete Events
	Checking Active Calendar Users

	Troubleshooting Calendar Server Agent Alerts in Instant Messaging Server

	11 Improving Calendar Server Performance
	Tuning Calendar Server Logging
	Tuning Oracle GlassFish Server
	Tuning JVM Options
	Tuning JDBC Pool
	Tuning HTTP Service and Listener

	Tuning Oracle WebLogic Server
	Tuning JVM Options for WebLogic Server
	Tuning JDBC Pool for WebLogic Server
	Tuning HTTP Service and Listener for WebLogic Server

	Tuning MySQL Server
	Tuning Oracle Solaris CMT Server
	Tuning Reference

	12 Backing Up and Restoring Calendar Server Files and Data
	Overview of Calendar Server Backup and Restore
	Calendar Server Backup and Restore Techniques
	Using the davadmin db backup Command
	Using ZFS Snapshots

	MySQL Backup and Restore Techniques
	MySQL Asynchronous Replication
	MySQL Database Dump
	Point-In-Time Binlog Backup and Recovery

	Oracle Database Backup and Restore Techniques

	Part II Administering a High-Availability System
	13 Configuring a High-Availability Database
	Overview of MySQL Server Asynchronous Replication
	MySQL Server Asynchronous Replication Example
	MySQL Server Two-Way Replication Example
	Replication Synchronization Issues
	Using the Multi-Host Failover Feature of JDBC Connector/J
	Test for MySQL Server Asynchronous Replication (Manual)
	Test for MySQL Server Two-Way Replication with Connector/J Failover

	14 Configuring Calendar Server for Highly Availability
	Front End High Availability: Load Balancing
	Back End High Availability: MySQL Async Replication
	Back End High Availability: Oracle Data Guard
	Document Store High Availability

	Part III Calendar Server Reference
	15 Calendar Server Configuration Reference
	davserver.properties File
	davservercreds.properties File
	Document Store Server Configuration File
	certmap.conf File
	davadmin.properties File
	Notification Templates

	16 Calendar Server Configuration Parameters
	17 Calendar Server Command-Line Utilities
	Overview of the Command-Line Utilities
	davadmin Security
	Environment Variables

	davadmin Utility
	Location
	General Syntax
	Ways to Provide Options
	Clifile Properties
	Common Options
	davadmin Operations
	Tool-Only Options
	Exit Code

	davadmin account
	Syntax
	account Operation
	Options for account Operation
	davadmin account Examples

	davadmin backend
	Syntax
	backend Operation
	Options for backend Operation
	davadmin backend Examples

	davadmin cache
	Syntax
	cache Operation
	Options for the cache Operation

	davadmin calendar
	Syntax
	calendar Operation
	Options for calendar Operation
	davadmin calendar Examples

	davadmin calcomponent
	Syntax
	calcomponent Operation
	Options for calcomponent Operation
	davadmin calcomponent Examples

	davadmin config
	Syntax
	config Operation
	Options for config Operation
	davadmin config Examples

	davadmin db
	Syntax
	db Operation
	Options for db Operation
	davadmin db Examples

	davadmin ldappool
	Syntax
	ldappool Operations
	Options for ldappool Operation
	davadmin ldappool Examples

	davadmin migration
	Syntax
	migration Operation
	Options for migration Operation
	davadmin migration Examples

	davadmin passfile
	Syntax
	passfile Operation
	Options for passfile Operation
	davadmin passfile Examples

	davadmin vscan
	Syntax
	vscan Operation
	Options for vscan Operation
	davadmin vscan Examples

	JConsole
	AdminAccountMXBean Operation
	AdminBackendMXBean Operation
	AdminCalComponentMXBean Operation
	AdminCalendarMXBean Operation
	AdminConfigMBean Operation
	AdminMigrationMXBean Operation
	AdminMiscMXBean Operation
	AdminUtilMXBean
	Starting the Application Server in Secure Mode

	Summary of davadmin Changes by Release
	Changes in Calendar Server 7 Update 1
	Changes in Calendar Server 7 Update 2
	Changes in Calendar Server 7 Update 2 Patch 5
	Changes in Calendar Server 7 Update 3
	Changes in Calendar Server 7.0.4.14.0
	Changes in Calendar Server 7.0.4.16.0
	Changes in Calendar Server 7.0.5.17.0

	Deprecated Options

	18 Time Zone Database
	Africa
	America
	Antarctica
	Arctic
	Asia
	Atlantic
	Australia
	Europe
	Indian
	Pacific

