
Oracle® Communications Billing and
Revenue Management
Web Services Manager

Release 15.1
F93204-01
April 2025

Oracle Communications Billing and Revenue Management Web Services Manager, Release 15.1

F93204-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

1 Using Web Services

About WSDL Files and BRM Opcodes 1-1

Configuring BRM to Use PCM_OP_BAL_GET_ECE_BALANCES 1-7

About Testing Web Services Manager 1-7

Determining the WSDL URLs for Web Services Manager 1-8

Testing a Web Services Implementation Using a Client Application 1-9

Example of Reading an Account Object in BRM Using Web Services 1-11

Sample SOAP Request Input XML File 1-12

Sample SOAP Response Output XML File 1-12

Sample Java Client 1-14

Using Metrics and Tracing (Standalone only) 1-14

Working with Metrics 1-15

Enabling Tracing 1-15

About Data Masking in Web Services Responses 1-16

2 Installing Web Services Manager

Installing Web Services Manager 2-1

Supported Servers 2-1

Uninstalling Web Services Manager 2-2

3 Deploying and Running Web Services Manager

Running and Stopping Standalone Web Services Manager 3-1

Deploying and Running Web Services Manager on WebLogic Server 3-1

Deploying and Running Web Services Manager on Tomcat Server 3-3

Deploying and Running infranetwebsvc.war 3-4

iii

Deploying and Running BrmWebServices.war 3-5

4 Configuring Web Services Manager

Validating Input and Output XML Data 4-1

Validating Input and Output XML Data for a Standalone Server 4-1

Validating Input and Output XML Data for WebLogic Server or Tomcat 4-2

About Connecting Web Services Manager to the BRM System 4-2

Connecting Web Services Manager to the BRM System 4-3

Connecting to a Different Instance of BRM 4-5

Configuring Security for Web Services Manager 4-7

Configuring Security for Standalone Web Services Manager 4-7

Configuring Security for Web Services Manager in WebLogic Server 4-8

Configuring Authentication for WebLogic Server 4-8

Configuring WebLogic Security Policy on BRM Web Services for JAX-WS in
WebLogic Server 4-9

Configuring Security for Web Services Manager in Tomcat Server 4-12

Configuring Authentication for Web Services Manager for JAX-WS in Tomcat Server 4-12

Enabling SSL in Tomcat Server 4-13

Disabling the JarScanner Feature in Tomcat Server 4-14

Configuring Java Logging for the Application Server 4-14

Configuring Java Logging for WebLogic Server 4-14

Specifying the Java Unified Logging (JUL) Mechanism 4-14

Creating a Startup Class 4-15

5 Securing Web Services Manager with OAuth 2.0

About the OAuth 2.0 Authorization Framework 5-1

Setting Up Web Services Manager with OAuth 2.0 5-1

Creating an OAuth Identity Domain 5-2

Creating a Resource Server 5-2

Creating an OAuth Client 5-3

Validating Your OAuth Setup 5-3

Configuring Standalone Web Services Manager 5-4

Configuring Web Services Manager for WebLogic Server 5-4

Sending SOAP Requests to BRM Web Services 5-5

6 Customizing Web Services for a Standalone Server

Setting Up Web Services Manager to Support Custom Fields in Opcodes 6-1

Setting Up Web Services Manager to Support Unexposed Opcodes for XML-Element
Services 6-1

Setting Up Web Services Manager to Support Custom Opcodes 6-3

iv

Supporting Custom Opcodes for XML-Element Services 6-3

Supporting Custom Opcodes for XML-String Services 6-9

7 Customizing Web Services for WebLogic Server or Tomcat Deployments

Setting Up Web Services Manager to Support Custom Opcodes 7-1

Creating a Custom Web Service 7-4

Generating the Schema Files for Your System 7-6

8 Generating the Schema for Your Opcodes

Generating the Schema for an Existing Opcode 8-1

Creating Opcode Specification Schema Files 8-2

Specifying the XSL Rules to Create the Opcode Schema 8-2

v

Preface

This guide provides guidelines for installing and setting up Oracle Communications Billing and
Revenue Management (BRM) Web Services Manager.

Audience
This document is intended for systems integrators, system administrators, database
administrators, and other individuals who are responsible for installing, configuring, and
customizing Web services for BRM.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

1
Using Web Services

Learn how to use Oracle Communications Billing and Revenue Management (BRM) Web
Services Manager, which enables BRM opcodes to be exposed through web services. Web
Services Manager supports SOAP web services and is packaged as an integration pack.

Topics in this document:

• About WSDL Files and BRM Opcodes

• About Testing Web Services Manager

• Using Metrics and Tracing (Standalone only)

• About Data Masking in Web Services Responses

About WSDL Files and BRM Opcodes
Web Services Manager exposes BRM opcodes as operations through different web services.
The web services define the opcodes that can be called and the attributes to include.

The web service APIs are grouped by functional area. For example, the BRMBillServices web
service defines the billing web service APIs, and the BRMPymtServices web service defines
the payment web service APIs. Web Services Manager includes one WSDL file for each web
service.

Web Services Manager contains two different types of WSDL files. One type is for web
services that support the payload as an XML string data type. The second type is for web
services that support the payload as an XML element data type. For example:

• The BRMBalService web service defines balances web service APIs that take the payload
as an XML string data type.

• The BRMBalService_v2 web service defines balances web service APIs that take the
payload as an XML element data type.

File names with a _v2 suffix support the payload as an XML element data type.

Note:

For deployments into a web server, such as Oracle WebLogic Server or Tomcat, the
WSDL and schema (XSD) files for web services that support the payload as an XML
string data type are included in the infranetwebsvc.war file. If you customize any
web services, copy the customized schema files and WSDL files to the
infranetwebsvc.war file.

Web services that support the payload as an XML element data type describe the input in a
well-defined structure. Any standards-compliant SOAP development application can generate
a client stub.

Table 1-1 describes the web services included that take the payload as an XML string.

1-1

Table 1-1 Web Services Included in Web Services Manager that Take the Payload as an
XML String

Web Service Name Description

BRMARServices Defines the accounts receivable web service, which includes the
following opcodes:

• PCM_OP_AR_ACCOUNT_ADJUSTMENT
• PCM_OP_AR_BILL_ADJUSTMENT
• PCM_OP_AR_GET_ACCT_ACTION_ITEMS
• PCM_OP_AR_GET_ACCT_BAL_SUMMARY
• PCM_OP_AR_GET_ACCT_BILLS
• PCM_OP_AR_GET_BAL_SUMMARY
• PCM_OP_AR_GET_BILL_ITEMS
• PCM_OP_AR_ITEM_ADJUSTMENT
• PCM_OP_AR_EVENT_ADJUSTMENT
• PCM_OP_AR_GET_ACTION_ITEMS
• PCM_OP_AR_GET_BILLS
• PCM_OP_AR_RESOURCE_AGGREGATION
See "Accounts Receivable FM Standard Opcodes" in BRM Opcode
Guide for more information.

BRMBalServices Defines the balances web service, which includes the following
opcodes:

• PCM_OP_BAL_GET_BALANCES
• PCM_OP_BAL_GET_BAL_GRP_AND_SVC
• PCM_OP_BAL_GET_ACCT_BAL_GRP_AND_SVC
• PCM_OP_BAL_GET_ACCT_BILLINFO
• PCM_OP_BAL_GET_ECE_BALANCES

Note: You must perform configuration steps before calling this
opcode. See "Configuring BRM to Use
PCM_OP_BAL_GET_ECE_BALANCES".

See "Balance FM Standard Opcodes" in BRM Opcode Guide for more
information.

BRMBillServices Defines the billing web service, which includes the following opcodes:

• PCM_OP_BILL_GET_ITEM_EVENT_CHARGE_DISCOUNT
• PCM_OP_BILL_GROUP_MOVE_MEMBER
• PCM_OP_BILL_MAKE_BILL_NOW
• PCM_OP_BILL_DEBIT
• PCM_OP_BILL_GROUP_GET_PARENT
See "Billing FM Standard Opcodes" in BRM Opcode Guide for more
information.

BRMCollectionsServices Defines the collections web service, which includes the following
opcode:

• PCM_OP_COLLECTIONS_SET_ACTION_STATUS
See "Collections Manager FM Standard Opcodes" in BRM Opcode
Guide for more information.

BRMCustcareServices Defines the customer care web service, which includes the following
opcode:

• PCM_OP_CUSTCARE_MOVE_ACCT

Chapter 1
About WSDL Files and BRM Opcodes

1-2

Table 1-1 (Cont.) Web Services Included in Web Services Manager that Take the
Payload as an XML String

Web Service Name Description

BRMCustServices Defines the customer web service, which includes the following
opcodes:

• PCM_OP_CUST_COMMIT_CUSTOMER
• PCM_OP_CUST_MODIFY_CUSTOMER
• PCM_OP_CUST_UPDATE_CUSTOMER
• PCM_OP_CUST_UPDATE_SERVICES
• PCM_OP_CUST_DELETE_ACCT
• PCM_OP_CUST_DELETE_PAYINFO
• PCM_OP_CUST_CREATE_PROFILE
• PCM_OP_CUST_MODIFY_PROFILE
• PCM_OP_CUST_DELETE_PROFILE
See "Customer FM Standard Opcodes" in BRM Opcode Guide for
more information.

BRMInvServices Defines the invoicing web service, which includes the following opcode:

• PCM_OP_INV_VIEW_INVOICE
Important: You must configure your client application to convert the
invoice data received from the PCM_OP_INV_VIEW_INVOICE opcode
into the appropriate format. See "About Invoicing Output XML Data" in
BRM JCA Resource Adapter.

See "Invoicing FM Standard Opcodes" in BRM Opcode Guide for more
information.

BRMPymtServices Defines the payment web service, which includes the following opcode:

• PCM_OP_PYMT_COLLECT
See "Payment FM Standard Opcodes" in BRM Opcode Guide for more
information.

BRMReadServices Defines the read web service, which includes the following opcodes:

• PCM_OP_READ_FLDS
• PCM_OP_READ_OBJ
• PCM_OP_SEARCH
See "LDAP Base Opcodes" in BRM Opcode Guide for more
information.

BRMSubscriptionServices Defines the subscription web service, which includes the following
opcodes:

• PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT
• PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT
• PCM_OP_SUBSCRIPTION_CANCEL_SUBSCRIPTION
• PCM_OP_SUBSCRIPTION_CHANGE_DEAL
• PCM_OP_SUBSCRIPTION_PURCHASE_DEAL
• PCM_OP_SUBSCRIPTION_SET_BUNDLE
• PCM_OP_SUBSCRIPTION_SET_DISCOUNT_STATUS
• PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO
• PCM_OP_SUBSCRIPTION_SET_PRODINFO
• PCM_OP_SUBSCRIPTION_SET_PRODUCT_STATUS
• PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION
• PCM_OP_SUBSCRIPTION_GET_PURCHASED_OFFERINGS
See "Subscription Management FM Standard Opcodes" in BRM
Opcode Guide for more information.

Chapter 1
About WSDL Files and BRM Opcodes

1-3

Table 1-2 describes the web services that take the payload as an XML element.

Table 1-2 Web Services Included in Web Services Manager that Take the Payload as an
XML Element

Web Service Name Description

BRMACTServices_v2 Defines the activity web service, which includes the following opcodes:

• PCM_OP_ACT_FIND
• PCM_OP_ACT_LOAD_SESSION
See "Activity FM Standard Opcodes" in BRM Opcode Guide for more
information.

BRMARServices_v2 Defines the accounts receivable web service, which includes the
following opcodes:

• PCM_OP_AR_ACCOUNT_ADJUSTMENT
• PCM_OP_AR_ACCOUNT_WRITEOFF
• PCM_OP_AR_BILL_ADJUSTMENT
• PCM_OP_AR_BILL_DISPUTE
• PCM_OP_AR_BILL_SETTLEMENT
• PCM_OP_AR_BILL_WRITEOFF
• PCM_OP_AR_BILLINFO_WRITEOFF
• PCM_OP_AR_EVENT_ADJUSTMENT
• PCM_OP_AR_EVENT_DISPUTE
• PCM_OP_AR_EVENT_SETTLEMENT
• PCM_OP_AR_GET_ACCT_ACTION_ITEMS
• PCM_OP_AR_GET_ACCT_BAL_SUMMARY
• PCM_OP_AR_GET_ACCT_BILLS
• PCM_OP_AR_GET_ACTION_ITEMS
• PCM_OP_AR_GET_BAL_SUMMARY
• PCM_OP_AR_GET_BILLS
• PCM_OP_AR_GET_BILL_ITEMS
• PCM_OP_AR_GET_DISPUTES
• PCM_OP_AR_GET_DISPUTE_DETAILS
• PCM_OP_AR_GET_ITEMS
• PCM_OP_AR_GET_ITEM_DETAILS
• PCM_OP_AR_ITEM_ADJUSTMENT
• PCM_OP_AR_ITEM_DISPUTE
• PCM_OP_AR_ITEM_SETTLEMENT
• PCM_OP_AR_ITEM_WRITEOFF
• PCM_OP_AR_RESOURCE_AGGREGATION
See "Accounts Receivable FM Standard Opcodes" in BRM Opcode
Guide for more information.

Chapter 1
About WSDL Files and BRM Opcodes

1-4

Table 1-2 (Cont.) Web Services Included in Web Services Manager that Take the
Payload as an XML Element

Web Service Name Description

BRMBALServices_v2 Defines the balances web service, which includes the following
opcodes:

• PCM_OP_BAL_CHANGE_VALIDITY
• PCM_OP_BAL_GET_BALANCES
• PCM_OP_BAL_GET_ECE_BALANCES

Note: You must perform configuration steps before calling this
opcode. See "Configuring BRM to Use
PCM_OP_BAL_GET_ECE_BALANCES".

• PCM_OP_BAL_GET_BAL_GRP_AND_SVC
• PCM_OP_BAL_GET_ACCT_BAL_GRP_AND_SVC
• PCM_OP_BAL_GET_ACCT_BILLINFO
See "Balance FM Standard Opcodes" in BRM Opcode Guide for more
information.

BRMBILLServices_v2 Defines the billing web service, which includes the following opcodes:

• PCM_OP_BILL_DEBIT
• PCM_OP_BILL_FIND
• PCM_OP_BILL_GET_ITEM_EVENT_CHARGE_DISCOUNT
• PCM_OP_BILL_GROUP_GET_PARENT
• PCM_OP_BILL_GROUP_MOVE_MEMBER
• PCM_OP_BILL_ITEM_EVENT_SEARCH
• PCM_OP_BILL_ITEM_REFUND
• PCM_OP_BILL_MAKE_BILL_NOW
• PCM_OP_BILL_REVERSE
• PCM_OP_BILL_SET_LIMIT_AND_CR
• PCM_OP_BILL_VIEW_INVOICE
See "Billing FM Standard Opcodes" in BRM Opcode Guide for more
information.

BRMCOLLECTIONSServices_
v2

Defines the collections web service, which includes the following
opcode:

• PCM_OP_COLLECTIONS_SET_ACTION_STATUS
See "Collections Manager FM Standard Opcodes" in BRM Opcode
Guide for more information.

BRMCUSTCAREServices_v2 Defines the customer care web service, which includes the following
opcode:

• PCM_OP_CUSTCARE_MOVE_ACCT

Chapter 1
About WSDL Files and BRM Opcodes

1-5

Table 1-2 (Cont.) Web Services Included in Web Services Manager that Take the
Payload as an XML Element

Web Service Name Description

BRMCUSTServices_v2 Defines the customer web service, which includes the following
opcodes:

• PCM_OP_CUST_COMMIT_CUSTOMER
• PCM_OP_CUST_CREATE_PROFILE
• PCM_OP_CUST_DELETE_ACCT
• PCM_OP_CUST_DELETE_PAYINFO
• PCM_OP_CUST_DELETE_PROFILE
• PCM_OP_CUST_FIND
• PCM_OP_CUST_FIND_PAYINFO
• PCM_OP_CUST_FIND_PROFILE
• PCM_OP_CUST_GET_NOTE
• PCM_OP_CUST_MODIFY_CUSTOMER
• PCM_OP_CUST_MODIFY_PROFILE
• PCM_OP_CUST_SET_NOTE
• PCM_OP_CUST_SET_STATUS
• PCM_OP_CUST_SET_TAXINFO
• PCM_OP_CUST_UPDATE_CUSTOMER
• PCM_OP_CUST_UPDATE_SERVICES
See "Customer FM Standard Opcodes" in BRM Opcode Guide for
more information.

• PCM_OP_CUST_POL_GET_PLANS
• PCM_OP_CUST_POL_GET_DEALS
• PCM_OP_CUST_POL_GET_PRODUCTS
• PCM_OP_CUST_POL_READ_PLAN
See "Customer FM Policy Opcodes" in BRM Opcode Guide for more
information.

BRMINVServices_v2 Defines the invoicing web service, which includes the following
opcode:

• PCM_OP_INV_VIEW_INVOICE
Important: You must configure your client application to convert the
invoice data received from the PCM_OP_INV_VIEW_INVOICE
opcode into the appropriate format. See "About Invoicing Output XML
Data" in BRM JCA Resource Adapter.

See "Invoicing FM Standard Opcodes" in BRM Opcode Guide for
more information.

BRMPYMTServices_v2 Defines the payment web service, which includes the following
opcode:

• PCM_OP_PYMT_COLLECT
See "Payment FM Standard Opcodes" in BRM Opcode Guide for
more information.

BRMREADServices_v2 Defines the read web service, which includes the following opcodes:

• PCM_OP_READ_FLDS
• PCM_OP_READ_OBJ
• PCM_OP_SEARCH
• PCM_OP_TEST_LOOPBACK
See "LDAP Base Opcodes" in BRM Opcode Guide for more
information.

Chapter 1
About WSDL Files and BRM Opcodes

1-6

Table 1-2 (Cont.) Web Services Included in Web Services Manager that Take the
Payload as an XML Element

Web Service Name Description

BRMSUBSCRIPTIONServices
_v2

Defines the subscription web service, which includes the following
opcodes:

• PCM_OP_SUBSCRIPTION_CANCEL_DEAL
• PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT
• PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT
• PCM_OP_SUBSCRIPTION_CANCEL_SUBSCRIPTION
• PCM_OP_SUBSCRIPTION_CHANGE_DEAL
• PCM_OP_SUBSCRIPTION_GET_HISTORY
• PCM_OP_SUBSCRIPTION_PURCHASE_DEAL
• PCM_OP_SUBSCRIPTION_PURCHASE_FEES
• PCM_OP_SUBSCRIPTION_READ_ACCT_PRODUCTS
• PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER
• PCM_OP_SUBSCRIPTION_SET_BUNDLE
• PCM_OP_SUBSCRIPTION_SET_DISCOUNT_STATUS
• PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO
• PCM_OP_SUBSCRIPTION_SET_PRODINFO
• PCM_OP_SUBSCRIPTION_SET_PRODUCT_STATUS
• PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION
• PCM_OP_SUBSCRIPTION_TRANSITION_DEAL
• PCM_OP_SUBSCRIPTION_TRANSITION_PLAN
• PCM_OP_SUBSCRIPTION_GET_PURCHASED_OFFERINGS
See "Subscription Management FM Standard Opcodes" in BRM
Opcode Guide for more information.

Configuring BRM to Use PCM_OP_BAL_GET_ECE_BALANCES
Before you can call the PCM_OP_BAL_GET_ECE_BALANCES opcode, you must configure
BRM to support the opcode. To do so, add the following entry to your Connection Manager
(CM) configuration file (BRM_home/sys/cm/pin.conf):

- cm em_group ece PCM_OP_BAL_GET_ECE_BALANCES

Stop and restart the CM for the changes to take effect.

About Testing Web Services Manager
You can develop custom applications that interact with BRM through Web Services Manager.
Use a SOAP development environment that supports importing WSDL files (for example,
SoapUI) to develop and test your custom web service applications. SOAP development
applications may have minor differences in product configuration. Consult your SOAP
development application documentation for configuration information.

In general, do the following to develop and test your web services applications:

1. Download and install a SOAP development application.

2. Configure a new project in your SOAP development application.

Chapter 1
About Testing Web Services Manager

1-7

3. Write a client application that communicates with web services using the SOAP protocol or
use the tools integrated in the development application.

See "" for an example of developing a client application.

4. Import the web service definitions using the WSDL files.

See "Determining the WSDL URLs for Web Services Manager" for information about
generating the WSDL URLs.

See "About WSDL Files and BRM Opcodes" for more information about the available
WSDLs.

5. Run the required commands to set up your application server environment.

6. Configure the properties of the web services operations in your SOAP development
environment with valid credentials.

7. Send a web service request to BRM from the SOAP development environment client.

See "" for an example of this process.

See "Sending SOAP Requests to BRM Web Services" for information about sending
requests to Web Services Manager if OAuth 2.0 is enabled..

8. View the web service response in the SOAP development environment.

Determining the WSDL URLs for Web Services Manager
The WSDL URLs that you use depends on how Web Services Manager is deployed:

• Web Services Manager Is Used in Standalone Mode

• Web Services Manager Is Deployed Into an External Web Server

Web Services Manager Is Used in Standalone Mode

To find the WSDL URLs in standalone mode, go to the following URL:

https://hostname:port/metro

where:

• hostname is the name or IP address for Web Services Manager.

• port is the port number for Web Services Manager.

Web Services Manager displays the WSDL URLs for each available service.

Web Services Manager Is Deployed Into an External Web Server

To find the WSDL URLs for Web Services Manager when it is deployed into a web server, look
in the infranetwebsvc.war and infranetwebsvc.war files.

For example, in WebLogic Server:

1. Log in to the WebLogic Server Remote Console.

2. Click Monitoring Tree, then Deployments, then Application Runtime Data, then
deploymentName, where deploymentName is the deployment name you chose when
deploying the software, for example WSM.

3. In the tree on the left, click Component Runtimes, then click adminServerName/
_BrmWebServices, then in the tree click Servlets.

The available web services are displayed in a table.

Chapter 1
About Testing Web Services Manager

1-8

4. Click the name of the servlet for the web service in the table.

The settings for the web service are displayed.

5. Scroll to the right until you see the URL column. It contains the URL for the web service.

Testing a Web Services Implementation Using a Client Application
To test your web services implementation, you can write a client application that communicates
with the web service using the SOAP protocol.

This sample procedure demonstrates how to use the InfranetBalanceTestClient.java sample
code with the PCM_OP_GET_BALANCES opcode to verify communication between BRM and
the web service. The sample uses WebLogic Server, but you can apply the concepts to any
type of implementation.

Note:

Ensure that your JAVA_HOME is pointing to Java 21. See BRM Compatibility Matrix
for information about software compatibility.

To test your implementation:

1. Do one of the following, which sets up the WebLogic Server environment:

• If WebLogic is installed on a Linux host, run WebLogic_home/wlserver/server/bin/
setWLSEnv.sh

• If WebLogic is installed on a Windows host, run WebLogic_home/server/bin/
setenv.exe

where WebLogic_home is the directory in which you installed the WebLogic Server.

2. Create an XML file (for example, build-stubs.xml) using the following text:

<project name="buildWebservice" default="all">
<property name="buildDir" value="./myapps" />
<property name="jarFiles" value="jars" />
<taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask"
 classpath="<WEBLOGIC_HOME>/wlserver/server/lib/weblogic.jar"/>

<target name="all" depends="jar" description="builds everything"></target>

<target name="generate-client">
 <clientgen wsdl="http://hostname:port/infranetwebsvc/BRMBalService?WSDL"
 packageName="test_client"
 destDir= "./myapps"/>
</target>

<target name="compile" depends="generate-client" description="compile source files">
 <echo>Compiling adapter files</echo>
 <javac destdir="${buildDir}">
 <src path="${buildDir}"/>
 </javac>
</target>

<target name="jar" depends="compile" description="generate jar file(s)">
 <jar jarfile="clientStub.jar" basedir="${buildDir}">
 <exclude name="**/*.java"/>

Chapter 1
About Testing Web Services Manager

1-9

 </jar>
</target>

<target name="clean" description="remove files created by target prepare">
 <delete dir="${buildDir}"/>
</target>
</project>

This XML file uses the WebLogic Server clientgen task to automatically generate a utility
library that provides low-level SOAP communication (client stubs).

3. Run the following command, which creates the client stubs:

ant -file build-stubs.xml

This process generates the clientstubs.jar file, which contains stubs used by the client.

4. The test client code (source_home/InfranetBalanceTestClient.java, where source_home
is the directory where your source code files are stored) then creates an flist, converts it to
XML, and calls the PCM_OP_GET_BALANCES opcode.

The following is a sample InfranetBalanceTestClient.java file:

import java.io.IOException;
import test_client.*; // corresponds to package name clientgen generated

public class InfranetBalanceTestClient

 {public static void main(String[] args) {
 try {
 String wsdlUrl = "http://hostname:port/infranetwebsvc/BRMBalService?
WSDL";
 BRMBalService_Service service = new
BRMBalService_Service_Impl(wsdlUrl);
 BRMBalService_PortType port = service.getBRMBalService_Ptt();

 String XMLInput="<?xml version=\"1.0\" encoding=\"UTF-80\"?>
<PCM_OP_BAL_GET_BALANCES_inputFlist> <PIN_FLD_POID>0.0.0.1 /account 1 0</
PIN_FLD_POID> </PCM_OP_BAL_GET_BALANCES_inputFlist>";
 System.out.println("Input: \n" + XMLInput);

 // Invoke the web method
 String result = port.pcmOpBalGetBalances(0, XMLInput);

 System.out.println("result: \n"+ result);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

5. Create another XML file (for example, build_client.xml) using the following text:

Note:

Replace the paths for the JAR files as required.

<project name="test_client" default="all">

 <target name="all" depends="run"/>

Chapter 1
About Testing Web Services Manager

1-10

 <path id="classpath">
 <pathelement path="clientStub.jar"/>
 <pathelement path="./classes"/>
 <pathelement path="<WEBLOGIC_HOME>/wlserver/server/lib/weblogic.jar"/>
 </path>

 <target name="compile">
 <mkdir dir="classes"/>
 <javac srcdir="src"
 destdir="classes"
 classpathref="classpath"/>
 </target>
 <target name="run" depends="compile">
 <java classname="InfranetBalanceTestClient"
 fork="yes"
 classpathref="classpath">
 </java>
 </target>
</project>

6. Build and run the test with the build_client.xml file using regular Ant tasks:

ant -file build_client.xml

Example of Reading an Account Object in BRM Using Web Services
This section provides an example of reading an account object using web services when
OAuth 2.0 is not configured.

See "Sending SOAP Requests to BRM Web Services" for information about sending requests
to Web Services Manager if OAuth 2.0 is enabled..

To read an account object in BRM using web services, you call the pcmOpReadObj web
service API that maps to the PCM_OP_READ_OBJ opcode. The pcmOpReadObj web service
API is included in the BRMReadServices_v2 web service, which contains web service APIs
that are related to reading accounts. See "About WSDL Files and BRM Opcodes" for more
information about the web services included in the Web Services Manager package.

You use URLs to create SOAP clients for web services. The URL is generated by JAX-WS.
See "Determining the WSDL URLs for Web Services Manager" for information about
generating the WSDL URLs.

In standalone mode, a sample URL for the BRMReadServices_v2 web service is:

http://hostname:port/metro/jaxws/BRMReadServices_v2?wsdl

When Web Services Manager is deployed into a web server, a sample URL for the
BRMReadServices_v2 web service, identified by the
com.portal.jax.read.BRMReadServicePttImpl_WEBSERVICE servlet, is:

http://hostIPAddress:port/BrmWebServices/BRMReadServices_v2?wsdl

Note:

To call a web service, users are required to authenticate using a valid user name and
a password. Users can call only those web services that they are authorized to call.

Chapter 1
About Testing Web Services Manager

1-11

Sample SOAP Request Input XML File
The following sample shows a SOAP request for the pcmOpReadObj web service API:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:bus="http://xmlns.oracle.com/BRM/schemas/BusinessOpcodes">
 <soapenv:Header/>
 <soapenv:Body>
 <bus:pcmOpReadObjRequest>
 <bus:PCM_OP_READ_OBJ_Request>
 <bus:flags>0</bus:flags>
 <bus:PCM_OP_READ_OBJ_inputFlist>
 <bus:POID>0.0.0.1 /account 1 0</bus:POID>
 </bus:PCM_OP_READ_OBJ_inputFlist>
 </bus:PCM_OP_READ_OBJ_Request>
 </bus:pcmOpReadObjRequest>
 </soapenv:Body>
</soapenv:Envelope>

Sample SOAP Response Output XML File
The following sample shows a SOAP response message for the pcmOpReadObj web service
API:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <pcmOpReadObjResponse xmlns="http://xmlns.oracle.com/BRM/schemas/BusinessOpcodes">
 <brm:AAC_ACCESS xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:AAC_PACKAGE xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:AAC_PROMO_CODE xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:AAC_SERIAL_NUM xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:AAC_SOURCE xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:AAC_VENDOR xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:ACCESS_CODE1 xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:ACCESS_CODE2 xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:ACCOUNT_NO xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">ROOT</brm:ACCOUNT_NO>
 <brm:ACCOUNT_TAG xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:ACCOUNT_TYPE xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">2</brm:ACCOUNT_TYPE>
 <brm:ATTRIBUTE xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0</brm:ATTRIBUTE>
 <brm:BAL_GRP_OBJ xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0.0.0.1 /balance_group 1 0</brm:BAL_GRP_OBJ>
 <brm:BRAND_OBJ xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0.0.0.1 /account 1 0</brm:BRAND_OBJ>
 <brm:BUSINESS_TYPE xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0</brm:BUSINESS_TYPE>
 <brm:CLOSE_WHEN_T xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">1970-01-01T00:00:00Z</brm:CLOSE_WHEN_T>
 <brm:CONTEXT_INFO xmlns:brm="http://xmlns.oracle.com/BRM/schemas/

Chapter 1
About Testing Web Services Manager

1-12

BusinessOpcodes">
 <brm:CORRELATION_ID>1724742721778T49</brm:CORRELATION_ID>
 </brm:CONTEXT_INFO>
 <brm:CREATED_T xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">2024-05-05T15:26:19Z</brm:CREATED_T>
 <brm:CURRENCY xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">840</brm:CURRENCY>
 <brm:CURRENCY_SECONDARY xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0</brm:CURRENCY_SECONDARY>
 <brm:CUSTOMER_SEGMENT_LIST xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:EFFECTIVE_T xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">2024-05-05T15:26:19Z</brm:EFFECTIVE_T>
 <brm:GL_SEGMENT xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:GROUP_OBJ xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0.0.0.0 0 0</brm:GROUP_OBJ>
 <brm:INCORPORATED_FLAG xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0</brm:INCORPORATED_FLAG>
 <brm:INTERNAL_NOTES flags="0x00" offset="0" size="0" xmlns:brm="http://
xmlns.oracle.com/BRM/schemas/BusinessOpcodes"/>
 <brm:ITEM_POID_LIST xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0.0.0.1|/item/misc 1 0</brm:ITEM_POID_LIST>
 <brm:LASTSTAT_CMNT xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:LAST_STATUS_T xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">2024-05-05T15:26:19Z</brm:LAST_STATUS_T>
 <brm:LINEAGE xmlns:brm="http://xmlns.oracle.com/BRM/schemas/BusinessOpcodes">/</
brm:LINEAGE>
 <brm:LOCALE xmlns:brm="http://xmlns.oracle.com/BRM/schemas/BusinessOpcodes"/>
 <brm:MOD_T xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">2024-05-05T15:26:19Z</brm:MOD_T>
 <brm:NAME xmlns:brm="http://xmlns.oracle.com/BRM/schemas/BusinessOpcodes">Brand
Host</brm:NAME>
 <brm:NAMEINFO elem="1" xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">
 <brm:ADDRESS/>
 <brm:CANON_COMPANY/>
 <brm:CANON_COUNTRY/>
 <brm:CITY/>
 <brm:COMPANY/>
 <brm:CONTACT_TYPE/>
 <brm:COUNTRY/>
 <brm:EMAIL_ADDR/>
 <brm:FIRST_CANON>system</brm:FIRST_CANON>
 <brm:FIRST_NAME>System</brm:FIRST_NAME>
 <brm:GEOCODE/>
 <brm:LAST_CANON>administrator</brm:LAST_CANON>
 <brm:LAST_NAME>Administrator</brm:LAST_NAME>
 <brm:MIDDLE_CANON/>
 <brm:MIDDLE_NAME/>
 <brm:SALUTATION/>
 <brm:SERVICE_OBJ>0.0.0.0 0 0</brm:SERVICE_OBJ>
 <brm:STATE/>
 <brm:TAXPKG_TYPE>0</brm:TAXPKG_TYPE>
 <brm:TITLE/>
 <brm:ZIP/>
 </brm:NAMEINFO>
 <brm:NEXT_ITEM_POID_LIST xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:OBJECT_CACHE_TYPE xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0</brm:OBJECT_CACHE_TYPE>

Chapter 1
About Testing Web Services Manager

1-13

 <brm:POID xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0.0.0.1 /account 1 1</brm:POID>
 <brm:READ_ACCESS xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">L</brm:READ_ACCESS>
 <brm:RESIDENCE_FLAG xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0</brm:RESIDENCE_FLAG>
 <brm:STATUS xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">10100</brm:STATUS>
 <brm:STATUS_FLAGS xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">0</brm:STATUS_FLAGS>
 <brm:TIMEZONE_ID xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes"/>
 <brm:VAT_CERT xmlns:brm="http://xmlns.oracle.com/BRM/schemas/BusinessOpcodes"/>
 <brm:WRITE_ACCESS xmlns:brm="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">L</brm:WRITE_ACCESS>
 </pcmOpReadObjResponse>
 </S:Body>
</S:Envelope>

Sample Java Client
If you want to read an account object using a client application, see the instructions in "Testing
a Web Services Implementation Using a Client Application" and use the
InfranetReadTestClient.java file below in place of the InfranetBalanceTestClient.java file in
the procedure, adjusting the other steps as appropriate.

import java.io.IOException;
import test_client.*; // corresponds to package name clientgen generated

public class InfranetReadTestClient {
public static void main(String[] args) {
 try {
 String wsdlUrl =
"http://hostname:port/infranetwebsvc/BRMReadService?WSDL";
 BRMReadService_Service service = new BRMReadService_Service_Impl(wsdlUrl);
 BRMReadService_PortType port = service.getBRMReadService_Ptt();

 String XMLInput="<?xml version=\"1.0\" encoding=\"UTF-80\"?>
<PCM_OP_READ_OBJ_inputFlist> <PIN_FLD_POID>0.0.0.1 /account 1 0</PIN_FLD_POID> </
PCM_OP_READ_OBJ_inputFlist>";
 System.out.println("Input: \n" + XMLInput);

 // Invoke the web method
 String result = port.pcmOpReadObj(0, XMLInput);
 System.out.println("result: \n"+ result);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Using Metrics and Tracing (Standalone only)
The standalone version of Web Services Manager includes additional tracing and metric
reporting capabilities.

More information is contained in the following topics:

• Working with Metrics

• Enabling Tracing

Chapter 1
Using Metrics and Tracing (Standalone only)

1-14

Working with Metrics
The standalone version of Web Services Manager includes additional tracing and metric
reporting capabilities.

On cloud native implementations of BRM, the metric collection can be integrated with a
Prometheus dashboard.

The following metric types are available:

• base: Operating system or Java runtime measurements

• vendor: REST.request and other key performance indicator measurements

• application: Metrics registered in the application code. The following metrics are available
for the Web Services Manager, for all APIs, with successful and failed metrics recorded
separately.

– http_request_duration_seconds_count: Contains the number of requests received.

– http_request_duration_seconds: Contains the percentile values
(0.5,0.75,0.95,0.98,0.99,0.999) for response times.

– http_request_duration_seconds_max: Contains the maximum response time (in
seconds) recorded.

– http_request_duration_seconds_sum: Contains the sum of all the response times
recorded, in seconds.

Metrics for individual APIs are included when the API is called, and the API call is listed in the
metric. For example:

http_request_duration_seconds{api="PCM_OP_READ_OBJ",status="success",quantile="0.75",scop
e="application"}.

This metric indicates that the PCM_OP_READ_OBJ API is in the application scope, and
when it is successful, its duration is in the 75th percentile (0.75).

To access the metrics, use the following URL:

http://hostname:port/observe/metrics

To filter the metrics based on their type, use the following URL:

http://hostname:port/observe/metrics?scope=scope

where scope is one of the following: base, vendor, or application.

Enabling Tracing
Tracing provides end-to-end visibility into the Web Services Manager's operations, which helps
identify and locate performance issues. You can view tracing information using Zipkin, which is
an open-source tracing system. See the Zipkin website: https://zipkin.io/ for more information
about Zipkin and its user interface. See "Tracing Guide" in the Helidon documentation: https://
helidon.io/docs/v4/se/tracing for information about more tracing configuration options.

When tracing is enabled, the logs generated by the Web Services Manager for each request
contain the trace_id associated with the request. You can use this to assist in tracing any
issues.

To enable and configure tracing:

Chapter 1
Using Metrics and Tracing (Standalone only)

1-15

https://zipkin.io/
https://helidon.io/docs/v4/se/tracing
https://helidon.io/docs/v4/se/tracing

1. Open the BRM_home/apps/brm_wsm/config/Infranet.properties file.

2. Set the following entry in the file to true:

tracing.enabled=true
3. Set the following entries to the correct values for your environment:

tracing.host=hostname
tracing.port=port

4. Save and exit the file.

5. Stop and restart the Web Services Manager. See "Running and Stopping Standalone Web
Services Manager" for more information.

About Data Masking in Web Services Responses
SOAP output response XML files may contain masked fields as configured by your BRM
implementation. Subscriber fields, including payment information and user credentials, may be
hidden in responses for securing sensitive subscriber data.

See "Masking Sensitive Customer Data" in BRM Managing Customers for more information on
configuring data masking.

Chapter 1
About Data Masking in Web Services Responses

1-16

2
Installing Web Services Manager

Learn how to install and set up Oracle Communications Billing and Revenue Management
(BRM) Web Services Manager.

Topics in this document:

• Installing Web Services Manager

• Uninstalling Web Services Manager

Installing Web Services Manager

Note:

If you already installed the product, you must uninstall its features before reinstalling
them.

Before you install and configure Web Services Manager:

• Unless you are using the Web Services Manager in standalone mode, you must install a
supported, standards-compliant server. See "Supported Servers" for a list of the servers
supported by Web Services Manager. See server documentation for more information.

• You must install BRM. See "Installing BRM" in BRM Installation Guide for more
information.

• You must also increase the heap size used by the Java Virtual Machine (JVM) before
running the installation program to avoid "Out of Memory" error messages in the log file.
For information, see "Problem: Java Out of Memory Error" in BRM System Administrator's
Guide.

Note:

Oracle recommends that you install Web Services Manager on the system on which
BRM is installed.

To install Web Services Manager, see "Installing Individual BRM Components" in BRM
Installation Guide. The optional component to select is Webservice Manager version, where
version is the same as the version of BRM that is installed.

Supported Servers
If you are deploying Web Services Manager on an external server (instead of using it in
standalone mode), Web Services Manager is supported on the following servers:

• Oracle WebLogic Server

2-1

• Apache Tomcat server

Uninstalling Web Services Manager
To uninstall Web Services Manager, see "Uninstalling Optional Components" in BRM
Installation Guide.

Chapter 2
Uninstalling Web Services Manager

2-2

3
Deploying and Running Web Services
Manager

Learn how to deploy and start the Oracle Communications Billing and Revenue Management
(BRM) Web Services Manager.

Topics in this document:

• Running and Stopping Standalone Web Services Manager

• Deploying and Running Web Services Manager on WebLogic Server

• Deploying and Running Web Services Manager on Tomcat Server

Running and Stopping Standalone Web Services Manager
When you are using the Web Services Manager in standalone mode, you do not need to
deploy the software. You can start and stop it using scripts that are provided with the product.

To start standalone Web Services Manager, run the following command from the
BRM_home/bin directory:

start_brm_wsm

When started this way, the application takes into account the values in the BRM_home/apps/
brm_wsm/config/infranet.properties file.

To stop standalone Web Services Manager, run the following command from the
BRM_home/bin directory:

stop_brm_wsm

Deploying and Running Web Services Manager on WebLogic
Server

You can deploy Web Services Manager on WebLogic Server through the WebLogic Server
Remote Console. Depending on the type of payload supported by web services, deploy one of
the following files:

• infranetwebsvc.war: Includes web services that support the payload as an XML string
data type.

• BrmWebServices.war: Includes web services that support the payload as an XML
element data type.

If you customize web services, regenerate infranetwebsvc.war or BrmWebServices.war and
use the generated version. Otherwise, you should use the default infranetwebsvc.war or
BrmWebServices.war file. For more information about customizing web services, see
"Customizing Web Services for WebLogic Server or Tomcat Deployments".

To deploy Web Services Manager on WebLogic Server:

3-1

1. Create the WebLogic Server domain. See the discussion about creating a WebLogic
domain in Fusion Middleware Creating Domains Using the Configuration Wizard for
detailed instructions.

2. If you deploy the BrmWebServices.war file, set the heap size required to start WebLogic
Server:

a. Open the WebLogic_home/user_projects/domains/domain_Name/
setDomainEnv.sh file in a text editor.

where WebLogic_home is the directory in which WebLogic Server is installed, and
domain_name is the name of the domain you created in step 1.

b. Add the following entry:

USER_MEM_ARGS ="-Xms2048m -Xmx2048m"
c. Save and close the file.

d. Restart WebLogic Server.

3. Do one of the following:

• If you customized web services:

a. Extract the BRM_home/deploy/web_services/infranetwebsvc.war or the
BRM_home/deploy/web_services/BrmWebServices.war file to local_dir.

where BRM_home is the directory in which BRM is installed, and local_dir is a
directory on the machine on which you installed WebLogic Server.

b. Copy the CustomFields.jar files to the local_dir/WEB-INF/lib directory. See
"Setting Up Web Services Manager to Support Custom Opcodes" for more
information.

Note:

The JRE version that was used to generate CustomFields.jar must be
the same or lower than the version of the WebLogic Server JRE.

c. Open the BRM_home/deploy/web_services/Infranet.properties file in a text
editor.

d. Modify the following entry:

infranet.custom.field.package = package

where package is the name of the package that contains the CustomOp.java file.
For example: com.portal.classFiles.

e. Add all the custom fields to the Infranet.properties file.

f. Save and close the file.

g. Copy the BRM_home/deploy/web_services/Infranet.properties file to local_dir/
WEB-INF/classes or to the home directory on the machine on which WebLogic
Server is installed.

h. Regenerate the WAR file by running one of the following commands:

To regenerate the infranetwebsvc.war file:

jar -cvf infranetwebsvc.war *

Chapter 3
Deploying and Running Web Services Manager on WebLogic Server

3-2

To regenerate the BrmWebServices.war file:

jar -cvf BrmWebServices.war *
• If you did not customize web services:

a. Extract the BRM_home/deploy/web_services/infranetwebsvc.war or the
BRM_home/deploy/web_services/BrmWebServices.war file to local_dir.

b. Copy the BRM_home/deploy/web_services/Infranet.properties file to local_dir/
WEB-INF/classes directory or to the home directory on the machine on which
WebLogic Server is installed.

c. Regenerate the WAR file by running one of the following commands:

To regenerate the infranetwebsvc.war file:

jar -cvf infranetwebsvc.war *

To regenerate the BrmWebServices.war file:

jar -cvf BrmWebServices.war *
4. Log in to WebLogic Server Remote Console.

5. Click Edit Tree, then Deployments, then App Deployments.

The existing deployments are displayed in a table.

6. Click New.

7. Enter the name for the deployment in the Name field, move your administration server
name in the Targets list to the Chosen area, and turn off Upload.

8. Click Choose File next to the Source field and browse to the infranetwebsvc.war or
BrmWebServices.war file.

9. Click Create.

The deployed application is added to the list.

10. Click the name of your new deployment to view and configure any other deployment
options.

To start Web Services Manager for web services:

1. Click Monitoring Tree, then Deployments, then Application Management.

A table containing the deployments is displayed.

2. Select the box next to the deployments you created, such as infranetwebsvc or WSM,
and click Start.

Deploying and Running Web Services Manager on Tomcat
Server

You can deploy Web Services Manager on Apache Tomcat Server through the Tomcat Web
Application Manager. See BRM Compatibility Matrix to ensure you are using the supported
version of Apache Tomcat.

Depending on the type of payload supported by web services, deploy one of the following files:

• infranetwebsvc.war: Includes the web services that support the payload as an XML string
data type. See "Deploying and Running infranetwebsvc.war".

Chapter 3
Deploying and Running Web Services Manager on Tomcat Server

3-3

• BrmWebServices.war: Includes the web services that support the payload as an XML
element data type. See "Deploying and Running BrmWebServices.war".

If you customize web services, regenerate infranetwebsvc.war or BrmWebServices.war and
use the generated version. Otherwise, you should use the default infranetwebsvc.war or
BrmWebServices.war file. For more information about customizing web services, see
"Customizing Web Services for WebLogic Server or Tomcat Deployments".

Deploying and Running infranetwebsvc.war
To deploy Web Services Manager for web services that support the payload as an XML string
data type on Tomcat server:

1. BRM Web Services Manager uses earlier versions of Java libraries that Tomcat no longer
supports. To use BRM Web Services Manager with Tomcat, you must convert the libraries
to work with Tomcat:

a. Download version 1.0.0 of the Eclipse Transformer to the BRM_home/deploy/
web_services directory.

b. Extract the contents of the distribution JAR file using the following command:

jar xf org.eclipse.transformer.cli-1.0.0-distribution.jar
c. Convert the .war file to use Tomcat's version of the libraries using the following

command:

java -jar org.eclipse.transformer.cli-1.0.0.jar infranetwebsvc.war
infranetwebsvc-jakarta.war

2. Create the Tomcat server domain.

See the Tomcat documentation for detailed instructions.

3. Download the JAX-WS Reference Implementation (RI) library, version 4.0.3, from.

4. Extract the jaxws-ri-4.0.3.zip file and copy the following files to Tomcat_home/lib, where
Tomcat_home is the directory in which the Tomcat server is installed:

• gmbal-api-only.jar

• ha-api.jar

• jakarta.activation-api.jar

• jakarta.xml.bind-api.jar

• jakarta.xml.soap-api.jar

• jakarta.xml.ws-api.jar

• jaxb-core.jar

• jaxb-impl.jar

• jaxb-jxc.jar

• jaxb-xjc.jar

• jaxws-rt.jar

• jaxws-tools.jar

• management-api.jar

• saaj-impl.jar

• stax-ex.jar

Chapter 3
Deploying and Running Web Services Manager on Tomcat Server

3-4

• streambuffer.jar

5. Download xalan-2.7.0.jar file and copy it file to Tomcat_home/lib.

6. In the infranetwebsvc-jakarta.war/WEB-INF/web.xml file, uncomment the servlet-to-URL
mapping and save and close the file.

7. Log in to the Tomcat Web Application Manager.

8. In the War file to deploy section, click Browse.

9. Select the infranetwebsvc-jakarta.war file and click Deploy.

Tomcat Web Application Manager displays the deployed application in the Applications
list.

For more information about the BRM web services included in Web Services Manager that
take the payload as an XML string data type, see "Using Web Services".

Deploying and Running BrmWebServices.war
To deploy Web Services Manager for web services that support the payload as an XML
element data type on Tomcat server:

1. BRM Web Services Manager uses earlier versions of Java libraries that Tomcat no longer
supports. To use BRM Web Services Manager with Tomcat, you must convert the libraries
to work with Tomcat:

a. Download version 1.0.0 of the Eclipse Transformer to the BRM_home/deploy/
web_services directory.

b. Extract the contents of the distribution JAR file using the following command:

jar xf org.eclipse.transformer.cli-1.0.0-distribution.jar
c. Convert the .war file to use Tomcat's version of the libraries using the following

command:

java -jar org.eclipse.transformer.cli-1.0.0.jar BrmWebServices.war
BrmWebServices-jakarta.war

2. Create the Tomcat server domain.

See the Tomcat documentation for detailed instructions.

3. Download the JAX-WS Reference Implementation (RI) library, version 4.0.3.

4. Extract the jaxws-ri-4.0.3.zip file and copy the following files to Tomcat_home/lib, where
Tomcat_home is the directory in which the Tomcat server is installed:

• gmbal-api-only.jar

• ha-api.jar

• jakarta.activation-api.jar

• jakarta.xml.bind-api.jar

• jakarta.xml.soap-api.jar

• jakarta.xml.ws-api.jar

• jaxb-core.jar

• jaxb-impl.jar

• jaxb-jxc.jar

• jaxb-xjc.jar

Chapter 3
Deploying and Running Web Services Manager on Tomcat Server

3-5

• jaxws-rt.jar

• jaxws-tools.jar

• management-api.jar

• saaj-impl.jar

• stax-ex.jar

• streambuffer.jar

5. Download xalan-2.7.0.jar file and copy it file to Tomcat_home/lib.

6. In the BrmWebServices-jakarta.war/WEB-INF/web.xml file, uncomment the servlet-to-
URL mapping and save and close the file.

7. Log in to the Tomcat Web Application Manager.

8. In the War file to deploy section, click Browse.

9. Select the BrmWebServices-jakarta.war file and click Deploy.

Tomcat Web Application Manager displays the deployed application in the Applications
list.

10. In the Applications list, click the /BrmWebServices link.

11. The Tomcat Web Application Manager displays an HTTP and an HTTPS URL for the BRM
web services.

A sample URL for the BRMCUSTServices_v2 web service is as follows:

http://hostname:port/BrmWebServices/BRMCUSTServices_v2?wsdl

where:

• hostname is the domain IP address of the application server on which Web Services
Manager is deployed.

• port is the domain port number of the application server on which Web Services
Manager is deployed.

Web Services Manager displays the WSDL URLs for each available service.

For more information about the BRM web services included in Web Services Manager that
take the payload as an XML element data type, see "Using Web Services".

Chapter 3
Deploying and Running Web Services Manager on Tomcat Server

3-6

4
Configuring Web Services Manager

Learn how to configure Oracle Communications Billing and Revenue Management (BRM) Web
Services Manager by connecting the deployed application to the BRM system and configuring
security, authorization, and Java logging for the deployed application.

Topics in this document:

• Validating Input and Output XML Data

• About Connecting Web Services Manager to the BRM System

• Configuring Security for Web Services Manager

• Disabling the JarScanner Feature in Tomcat Server

• Configuring Java Logging for the Application Server

Validating Input and Output XML Data
Web Services Manager validates the input and output XML by comparing the XML fields and
values against the opcode XML schema.

The opcode specifications, schemas, and WSDL files are packaged along with Web Services
Manager. The package includes the opspec.xsd file and the pin_opspec_to_schema utility.
Use the opspec.xsd file to write opcode specifications for custom opcodes that need to be
exposed as a web service. Use the pin_opspec_to_schema utility to generate the schema
files from the opcode specification files.

For more information, see the following topics:

• Validating Input and Output XML Data for a Standalone Server

• Validating Input and Output XML Data for WebLogic Server or Tomcat

Validating Input and Output XML Data for a Standalone Server
To configure Web Services Manager to validate the input and output XML against the target
opcode XML schema on a standalone server:

1. Open the BRM_home/apps/brm_wsm/config/Infranet.properties file.

2. Set the following entries in the file to true:

webservices.input.validation.enabled=true
webservices.output.validation.enabled=true

3. (Optional) Set the following entries in the file to true if you want the system to log the error
instead of failing the request:

webservices.soap.input.validation.reportonly=false
webservices.soap.output.validation.reportonly=false

4. Set the following entry to the correct location of your .xsd files:

webservices.schema.location=fileLocation

4-1

where fileLocation is a directory with appropriate permissions for Web Services Manager.
The default is ${PIN_HOME}/apps/brm_wsm/schemas.

5. Save and exit the file.

6. Stop and restart the Web Services Manager. See "Running and Stopping Standalone Web
Services Manager" for more information.

Validating Input and Output XML Data for WebLogic Server or Tomcat
To configure Web Services Manager to validate the input and output XML against the target
opcode XML schema when using WebLogic Server or Tomcat:

1. Open the local_dir/WEB-INF/classes/Infranet.properties file.

2. Add the following entries to the file:

• webservices.input.validation.enabled=true

• webservices.output.validation.enabled=true

3. Do one of the following:

• If you are using WebLogic Server, copy the schema files packaged as a part of Web
Services Manager installation from the BRM_home/deploy/web_services/schemas
directory to the local_dir/common/lib directory.

• If you are using any supported server, copy the schema files from the BRM_home/
deploy/web_services/schemas directory to the local_dir/WEB-INF/classes directory.

About Connecting Web Services Manager to the BRM System
Web Services Manager connects to the BRM system through a BRM Connection Manager
(CM). Figure 4-1 shows how BRM and the SOAP client communicate with the deployed
application. Web Services Manager translates Portal Communication Module (PCM)
communications sent from a CM in the BRM system into SOAP requests sent to the SOAP
client over HTTP. Web Services Manager translates SOAP responses sent from the SOAP
client over HTTP into PCM communications that are returned to the CM.

Chapter 4
About Connecting Web Services Manager to the BRM System

4-2

Figure 4-1 Architecture of Web Services Manager in the BRM System

Connecting Web Services Manager to the BRM System
If you customized web services, use the custom infranetwebsvc.war or
BrmWebServices.war file. Otherwise, you should use the default infranetwebsvc.war or
BrmWebServices.war file. For more information about customizing web services, see
"Customizing Web Services for a Standalone Server" or "Customizing Web Services for
WebLogic Server or Tomcat Deployments".

To connect Web Services Manager to the BRM system:

1. On your application server, copy the BRM_home/deploy/web_services/
Infranet.properties file to one of the following:

• local_dir/WEB-INF/classes directory, where local_dir is a directory on the machine on
which you installed your application server.

Note:

If you copy the Infranet.properties file to the local_dir/WEB-INF/classes
directory, extract the infranetwebsvc.war file or BrmWebServices.war file
to a local directory (local_dir) on the system on which your application server
is installed.

• The home directory on the machine on which you installed your application server.

2. Open the Infranet.properties file in a text editor.

3. If your BRM server and Web Services Manager instances are running on the same server,
update these parameters:

infranet.connection=pcp://root.0.0.0.1:password@ipAddress:port/0.0.0.1/service/
admin_client 1
infranet.login.type=1

Chapter 4
About Connecting Web Services Manager to the BRM System

4-3

where:

• password is the password for the BRM server.

• ipAddress is the IP address of the system on which BRM is installed.

• port is the port number used by the application server on which BRM is installed.

4. If your BRM server is running on a different server than Web Services Manager, comment
out the infranet.connection parameter and add the infranet.wallet.location parameter:

#infranet.connection=
infranet.wallet.location=wallet_location

where wallet_location is the PCP connection to your BRM server with the path to your
client Oracle wallet. For example: pcp://root.0.0.0.1:password@ipAddress:port/0.0.0.1/
service/admin_client/scratch/pin00/WALLET.

5. If SSL is enabled in the CM, update these parameters:

infranet.pcp.ssl.enabled=true
infranet.pcp.ssl.wallet.location=wallet_directory

where wallet_directory is the path to your client Oracle wallet. The client Oracle wallet
contains the optional client SSL certificate and the private key, and it contains the Trusted
CA certificate.

6. If you added custom opcodes or custom fields for web services, add the enum values of
the custom fields.

For example, if you created the custom_fld_usage_id field and the enum value for the
custom_fld_usage_id field is 10001, add this entry:

infranet.custom.field.10001=custom_fld_usage_id

For information about mapping enum values, see "Creating Custom Fields" in BRM
Developer's Guide.

7. (Optional) To configure the connection pool parameters, modify the following entries:

infranet.connectionpool.minsize=min_connections
infranet.connectionpool.maxsize=max_connections
infranet.connectionpool.timeout=connection_timeout
infranet.connectionpool.maxrequestlistsize=connection_maxrequest
infranet.connectionpool.maxidletime=connection_maxidle

where:

• min_connections is the minimum number of connections allowed in the pool. The
default number is 1.

• max_connections is the maximum number of connections allowed in the pool. The
default number is 8.

• connection_timeout is the connection pool timeout in milliseconds. The default value is
30000 milliseconds.

• connection_maxrequest is the maximum number of connection requests the
connection pool can queue before returning an error. The default number is 50.

• connection_maxidle is the time in milliseconds that an idle (unused) connection
remains in the connection pool before it is removed. The default value is 10000
milliseconds.

8. (Optional) To configure logging for Web Services Manager if it is deployed into a web
server, modify the following entry:

Chapter 4
About Connecting Web Services Manager to the BRM System

4-4

webservices.log.enabled=log_value

where log_value is one of the following:

• true enables logging. This option saves and displays the log files as standard output in
the application server console.

• false disables logging. This option saves the log files in the /domain/logs/
BRMWebSvcMgr.log file. Configure the BRM_home/deploy/web_services/lib/
weblogic_ws_startup.jar file to use this option.

9. Save and close the file.

10. (Optional) To configure logging if you are using Web Services Manager in standalone
mode, set the appropriate parameters in the BRM_home/apps/brm_wsm/config/
logging.properties file.

11. If you are working in the local_dir/WEB-INF/classes directory, regenerate the WAR file by
running one of the following commands:

• To regenerate the infranetwebsvc.war file:

jar -cvf infranetwebsvc.war *
• To regenerate the BrmWebServices.war file:

jar -cvf BrmWebServices.war *
12. Deploy the regenerated infranetwebsvc.war or BrmWebServices.war file on the server.

See "Deploying and Running Web Services Manager".

Connecting to a Different Instance of BRM
If you customized web services, use the custom infranetwebsvc.war or
BrmWebServices.war file. Otherwise, you should use the default infranetwebsvc.war or
BrmWebServices.war file. For more information about customizing web services, see
"Customizing Web Services for WebLogic Server or Tomcat Deployments".

To change the instance of BRM to which Web Services Manager connects:

1. On your application server, copy the BRM_home/deploy/web_services/
Infranet.properties file to one of the following:

• local_dir/WEB-INF/classes directory, where local_dir is a directory on the machine on
which you installed your application server.

Note:

If you copy the Infranet.properties file to the local_dir/WEB-INF/classes
directory, extract the infranetwebsvc.war or BrmWebServices.war file to a
local directory (local_dir) on the system on which your application server is
installed.

• The home directory on the machine on which you installed your application server.

2. Open the copied Infranet.properties file.

3. If your BRM server and Web Services Manager instances are running on the same server,
update these parameters:

Chapter 4
About Connecting Web Services Manager to the BRM System

4-5

infranet.connection=pcp://root.0.0.0.1:password@ipAddress:port/0.0.0.1/service/
admin_client 1
infranet.login.type=1

where:

• password is the password for the BRM server.

• ipAddress is the IP address of the system on which BRM is installed.

• port is the port number used by the application server on which BRM is installed.

4. If your BRM server is running on different server than Web Services Manager, comment
out the infranet.connection parameter and add the infranet.wallet.location parameter:

#infranet.connection=
infranet.wallet.location=wallet_location

where wallet_location is the PCP connection to your BRM server with the path to your
client Oracle wallet. For example: pcp://root.0.0.0.1:password@ipAddress:port/0.0.0.1/
service/admin_client/scratch/pin00/WALLET.

5. If SSL is enabled in the Connection Manager (CM), locate the following lines and update
the parameters if necessary:

infranet.pcp.ssl.enabled=true
infranet.pcp.ssl.wallet.location=wallet_directory

where wallet_directory is the path to your client Oracle wallet. The client Oracle wallet
contains the optional client SSL certificate and the private key, and it contains the Trusted
CA certificate.

6. If you added custom opcodes or custom fields for web services, add the enum values of
the custom fields.

For example, if you created the custom_fld_usage_id custom field and the enum value
for the custom_fld_usage_id field is 10001, add the following entry:

infranet.custom.field.10001=custom_fld_usage_id

For information about mapping enum values, see "Creating Custom Fields" in BRM
Developer's Guide.

7. (Optional) To configure the connection pool parameters, modify the following entries:

infranet.connectionpool.minsize=min_connections
infranet.connectionpool.maxsize=max_connections
infranet.connectionpool.timeout=connection_timeout

where:

• min_connections is the minimum number of connections allowed in the pool. The
default number is 1.

• max_connections is the maximum number of connections allowed in the pool.

• connection_timeout is the connection pool timeout in milliseconds.

8. (Optional) To configure logging for Web Services Manager, modify the following entry:

webservices.log.enabled=log_value

where log_value is one of the following:

• true enables logging. This option saves and displays the log files as standard output in
the application server console.

Chapter 4
About Connecting Web Services Manager to the BRM System

4-6

• false disables logging. This option saves the log files in the /domain/logs/
BRMWebSvcMgr.log file. Configure the BRM_home/deploy/web_services/lib/
weblogic_ws_startup.jar file to use this option.

9. (Optional) To configure searching in BRM using the PCM_OP_SEARCH opcode, restrict
the PCM_OP_SEARCH opcode to pre-defined search templates by modifying the following
entry:

allowed.search.template.ids=template_id

where template_id is the template ID of the search template that you want the
PCM_OP_SEARCH opcode to use for searching. Use a comma (,) to separate multiple
template IDs. If you do not want to restrict the PCM_OP_SEARCH opcode to any pre-
defined search templates, set template_id to None.

For a list of template IDs, connect to the BRM database and check the list of POIDS and
the respective templates in the SEARCH_T table in the BRM database. For more
information, see "Searching for Objects in the BRM Database" in BRM Developer's Guide.

10. If you added custom opcodes or custom fields for web services, add the enum values of
the custom fields. For information about mapping enum values, see "Creating Custom
Fields" in BRM Developer's Guide.

For example, if you created the custom_fld_usage_id field and the enum value for the
custom_fld_usage_id field is 10001, add the following entry:

infranet.custom.field.10001=custom_fld_usage_id
11. Save and close the file.

12. If you are working in the local_dir/WEB-INF/classes directory, regenerate the WAR file by
running one of the following commands:

• To regenerate the infranetwebsvc.war file:

jar -cvf infranetwebsvc.war *
• To regenerate the BrmWebServices.war file:

jar -cvf BrmWebServices.war *
13. Deploy the regenerated infranetwebsvc.war or BrmWebServices.war file on the server.

See "Deploying and Running Web Services Manager".

Configuring Security for Web Services Manager
By default, secure sockets layer (SSL) security for Web Services Manager is enabled. If you
disabled SSL during the BRM server installation, you can enable SSL in Web Services
Manager by configuring security parameters and enabling the SSL security feature in the
application server on which Web Services Manager is deployed.

For more information, see the following topics:

• Configuring Security for Standalone Web Services Manager

• Configuring Security for Web Services Manager in WebLogic Server

• Configuring Security for Web Services Manager in Tomcat Server

Configuring Security for Standalone Web Services Manager
To configure security for Web Services Manager in WebLogic Server, do the following:

Chapter 4
Configuring Security for Web Services Manager

4-7

1. Obtain an SSL certificate and private key and convert them into PKCS12 (.p12) or JKS
(.jks) format.

2. Edit the BRM_home/deploy/web_services/Infranet.properties file.

3. Uncomment the following lines in the file and set them all to the appropriate values for your
environment:

@HTTPS Socket
server.sockets.https.port=8081
server.sockets.https.host=0.0.0.0
server.sockets.https.tls.enabled=true
server.sockets.https.tls.endpoint-identification-algorithm=NONE
server.sockets.https.tls.client-auth=NONE
server.sockets.https.tls.private-key.keystore.passphrase=ABCD123#
server.sockets.https.tls.private-key.keystore.resource.path=/etc/example/server.p12
server.sockets.https.tls.trust.keystore.trust-store=true
server.sockets.https.tls.trust.keystore.passphrase=ABCD123#
server.sockets.https.tls.trust.keystore.resource.path=/etc/example/server.p12

Configuring Security for Web Services Manager in WebLogic Server
Before you configure security for Web Services Manager, ensure that WebLogic Server and
Web Services Manager are installed and that Web Services Manager has been deployed on a
WebLogic Server domain. See "Installing Web Services Manager" and "Deploying and
Running Web Services Manager" for more information.

To configure security for Web Services Manager in WebLogic Server, do the following:

1. Configure authentication for Web Services Manager. See "Configuring Authentication for
WebLogic Server".

2. Configure authorization for Web Services Manager. See "Configuring WebLogic Security
Policy on BRM Web Services for JAX-WS in WebLogic Server".

Configuring Authentication for WebLogic Server
Before you configure authentication for Web Services Manager, create a user, group, and
security realm for Web Services Manager in WebLogic Server. For more information about
creating users and groups, see the discussion about users, groups, and security roles in
Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.
For more information about security realms, see the discussion about security realms in
WebLogic Server in Fusion Middleware Securing Oracle WebLogic Server.

To configure authentication for Web Services Manager in WebLogic Server:

1. Open the local_dir/infranetwebsvc.war/WEB-INF/weblogic.xml file in a text editor, where
local_dir is a directory on the WebLogic host where you copied the infranetwebsvc.war
file.

2. Remove the comment from the following lines:

<security-role-assignment>
 # <role-name>brmws</role-name>
 # <externally-defined/>
</security-role-assignment>

3. Save and close the file.

4. Open the local_dir/infranetwebsvc.war/WEB-INF/web.xml file in a text editor.

5. Remove the comment from the following lines:

Chapter 4
Configuring Security for Web Services Manager

4-8

<security-constraint>
 # <web-resource-collection>
 # <web-resource-name>restricted web services</web-resource-name>
 # <url-pattern>/*</url-pattern>
 # <http-method>GET</http-method>
 # <http-method>POST</http-method>
 # </web-resource-collection>
 # <auth-constraint>
 # <role-name>brmws</role-name>
 # </auth-constraint>
 # <user-data-constraint>
 # <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 # </user-data-constraint>
</security-constraint>

<login-config>
 # <auth-method>BASIC</auth-method>
 # <realm-name>default</realm-name>
</login-config>
<security-role>
 # <role-name>brmws</role-name>
</security-role>

6. Save and close the file.

7. Log in to WebLogic Server Remote Console.

8. Click Edit Tree, then Environment, then Servers.

A table containing the list of servers in the domain is displayed.

9. Select the server for which you want to enable the SSL port.

10. In the General subtab, select SSL Listen Port Enabled.

11. In the SSL Listen Port field, enter a free port number. The default is 7002. Make a note of
the values in the Listen Port and SSL Listen Port fields.

12. Click Save.

If you use a SOAP development application to generate a web service client and use port
numbers other than the default port numbers, the URLs for the web services that take the
payload as an XML element show port numbers that do not match the port numbers you
configured in WebLogic Server Remote Console. Populate the correct port numbers in the
URLs for the WSDL files that are generated dynamically by your SOAP development
application by changing the port numbers manually in your SOAP development application
request.

Configuring WebLogic Security Policy on BRM Web Services for JAX-WS in
WebLogic Server

You define access restrictions for web services in security policies in WebLogic Server.

To configure WebLogic Security Policy on BRM Web Services for JAX-WS in WebLogic
Server:

1. Determine the port binding name for each of the endpoints that you intend to secure. For
each endpoint, do the following:

a. Look at the WSDL file for the endpoint. See "Determining the WSDL URLs for Web
Services Manager" for information about accessing the WSDL.

b. In the WSDL file, find the port name. It may be near the end of the file. For example,
the following line contains the port name for the BRMReadServices_v2:

Chapter 4
Configuring Security for Web Services Manager

4-9

<port binding="brm:BRMReadService_binding" name="BRMReadService_pt">

For this endpoint, the name is BRMReadService_pt.

c. Record the port name.

2. Determine which of the policies supplied with WebLogic Server you would like to
implement. For example:

• If you want to use the policy for HTTPS with basic authentication, you could use
Wssp1.2-2007-Https-BasicAuth.xml.

• If you want to use the policy for HTTPS without authentication, you could use
Wssp1.2-2007-Https.xml.

3. Create the BRM_home/apps/deploy/web_services/brm_wsm_ws_policy and
BRM_home/apps/deploy/web_services/brm_wsm_ws_policy/WEB-INF directories.

4. In the BRM_home/apps/deploy/web_services/brm_wsm_ws_policy/WEB-INF directory,
create a weblogic-webservices-policy.xml file in the following format:

<webservice-policy-ref xmlns=http://xmlns.oracle.com/weblogic/webservice-policy-ref
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation=http://xmlns.oracle.com/weblogic/webservice-policy-ref
 http://xmlns.oracle.com/weblogic/webservice-policy-ref/1.1/
webservice-policy-ref.xsd>
 <port-policy>
 <port-name>portName1</port-name>
 <ws-policy>
 <uri>policy:policyFilename</uri>
 <direction>both</direction>
 <status>enabled</status>
 </ws-policy>
 </port-policy>
 <port-policy>
 <port-name>portName2</port-name>
 <ws-policy>
 <uri>policy:policyFilename</uri>
 <direction>both</direction>
 <status>enabled</status>
 </ws-policy>
 </port-policy>
. . .
 <port-policy>
 <port-name>portNamen</port-name>
 <ws-policy>
 <uri>policy:policyFilename</uri>
 <direction>both</direction>
 <status>enabled</status>
 </ws-policy>
 </port-policy></webservice-policy-ref>

where:

• portName1 is the port name for the first endpoint, for example BRMReadService_pt.

• portName2 is the port name for the second endpoint, for example
BRMCustService_pt.

• portNamen is the port name for the nth endpoint, for example
BRMSubscriptionService_pt.

• policyFilename is the name of the WebLogic Server policy file you are using, for
example Wssp1.2-2007-Https-BasicAuth.xml.

Chapter 4
Configuring Security for Web Services Manager

4-10

5. If you are using the services in the infranetwebsvc.war file, do the following:

a. Create the following plan.xml file and put it in the appropriate deployment directory:

<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
xmlns.oracle.com/weblogic/deployment-plan http://xmlns.oracle.com/weblogic/
deployment-plan/1.0/deployment-plan.xsd" global-variables="false">
 <application-name>deploymentName</application-name>
 <module-override>
 <module-name>infranetwebsvc.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="true">
 <root-element>webservice-policy-ref</root-element>
 <uri>WEB-INF/weblogic-webservices-policy.xml</uri>
 </module-descriptor>
 </module-override>
 <config-root>policyPath</config-root>
</deployment-plan>

where:

• deploymentName is the name of the deployment in WebLogic that contains
infranetwebsvc.war.

• policyPath is the path to the brm_wsm_ws_policy directory you created above,
that is, BRM_home/apps/deploy/web_services/brm_wsm_ws_policy.

b. Redeploy the deployment in WebLogic that contains infranetwebsvc.war.

6. If you are using the services in the BrmWebServices.war file:

a. Create the following plan.xml file and put it in the appropriate deployment directory:

<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
xmlns.oracle.com/weblogic/deployment-plan http://xmlns.oracle.com/weblogic/
deployment-plan/1.0/deployment-plan.xsd" global-variables="false">
 <application-name>deploymentName</application-name>
 <module-override>
 <module-name>BrmWebServices.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="true">
 <root-element>webservice-policy-ref</root-element>
 <uri>WEB-INF/weblogic-webservices-policy.xml</uri>
 </module-descriptor>
 </module-override>
 <config-root>policyPath</config-root>
</deployment-plan>

where:

• deploymentName is the name of the deployment in WebLogic that contains
BrmWebServices.war.

• policyPath is the path to the brm_wsm_ws_policy directory you created above,
that is, BRM_home/apps/deploy/web_services/brm_wsm_ws_policy.

b. Redeploy the deployment in WebLogic that contains BrmWebServices.war.

7. To verify that the security policy has been added, access the WSDL for the endpoint again,
and look for text similar to the following:

<wsp:UsingPolicy wssutil:Required="true"/>
<ns0:Policy xmlns:ns0="http://schemas.xmlsoap.org/ws/2004/09/policy"
wssutil:Id="DefaultReliability.xml">

Chapter 4
Configuring Security for Web Services Manager

4-11

<ns1:RMAssertion xmlns:ns1="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
<ns1:InactivityTimeout Milliseconds="600000"/>
<ns1:BaseRetransmissionInterval Milliseconds="3000"/>
<ns1:ExponentialBackoff/>
<ns1:AcknowledgementInterval Milliseconds="200"/>
<ns2:Expires xmlns:ns2="http://www.bea.com/wsrm/policy" Expires="P1D"/>
</ns1:RMAssertion>
</ns0:Policy>

If you have enabled SSL, add the following entry in the session-config element of the
BrmWebServices.war/WEB-INF/web.xml file to enable cookie security:

<cookie-config>
 <secure>true</secure>
</cookie-config>

Configuring Security for Web Services Manager in Tomcat Server
Before you configure security for Web Services Manager, ensure that Tomcat server and Web
Services Manager are installed and that Web Services Manager has been deployed on a
Tomcat server domain. See "Installing Web Services Manager" and "Deploying and Running
Web Services Manager" for more information.

To configure security for Web Services Manager in Tomcat server, do the following:

1. Configure authentication for Web Services Manager for JAX-WS in Tomcat server. See
"Configuring Authentication for Web Services Manager for JAX-WS in Tomcat Server".

2. Enable SSL in Tomcat server. See "Enabling SSL in Tomcat Server".

Configuring Authentication for Web Services Manager for JAX-WS in Tomcat Server
To configure authentication for Web Services Manager for JAX-WS in Tomcat server:

1. Open the local_dir/BrmWebServices.war/WEB-INF/web.xml file in a text editor.

2. Add the following lines:

<security-constraint>
 # <web-resource-collection>
 # <web-resource-name>restricted web services</web-resource-name>
 # <url-pattern>/*</url-pattern>
 # <http-method>GET</http-method>
 # <http-method>POST</http-method>
 # </web-resource-collection>
 # <auth-constraint>
 # <role-name>brmws</role-name>
 # </auth-constraint>
<user-data-constraint>
 # <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
</security-constraint>

<login-config>
 # <auth-method>BASIC</auth-method>
</login-config>
<security-role>
 # <role-name>brmws</role-name>
</security-role>

3. Save and close the file.

4. Open the local_dir/apache-tomcat-version/conf/tomcat-users.xml file in a text editor.

Chapter 4
Configuring Security for Web Services Manager

4-12

5. Locate the following lines and specify the login details of the user:

<role rolename="brmws"/>
<user username="username" password="password" roles="brmws"/>

where:

• username is the username for accessing web services.

• password is the password for accessing web services.

6. Save and close the file.

7. Open the config/server.xml file in a text editor.

8. In the <Engine> section, add the following class path:

 <Realm className="org.apache.catalina.realm.MemoryRealm" />
9. Save and close the file.

10. Restart the Tomcat server.

Enabling SSL in Tomcat Server
To enable secure communication for Web Services Manager, enable secure sockets layer
(SSL) in the Tomcat server domain on which you deploy Web Services Manager.

To enable SSL for Tomcat server:

1. Generate the KeyStore by running the following command:

keytool -genkey -alias mykeys -keyalg RSA -keystore mykeystore

where:

• mykeys is the alias.

• mykeystore is the name of the KeyStore.

2. Open the conf/server.xml file in a text editor.

3. Uncomment the following lines and specify the path for the KeyStore file:

<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol"
 # address="IPAddress"
 # maxThreads="150" SSLEnabled="true" scheme="https" secure="true"
 # clientAuth="false" sslProtocol="TLS"
 # keystoreFile="filepath"
 # keystorePass="password"/>

where:

• IPAddress is the IP address of the machine on which you installed the Apache Tomcat
server.

• filepath is the KeyStore file path.

• password is the password for the KeyStore file.

4. Save and close the file.

Chapter 4
Configuring Security for Web Services Manager

4-13

Disabling the JarScanner Feature in Tomcat Server
The JarScanner feature in the Tomcat server is used to scan the web application for JAR files.
To avoid unnecessary warnings displayed for optional JAR files, disable the JarScanner
feature in the Tomcat server.

To disable the JarScanner feature in the Tomcat server:

1. Open the local_dir/apache-tomcat-version/conf/context.xml in a text editor.

2. Search for the following entry:

<JarScanner scanClassPath="true" scanAllFiles="false" scanAllDirectories="false"></
JarScanner>

3. Set the scanClassPath entry to false:

<JarScanner scanClassPath="false" scanAllFiles="false" scanAllDirectories="false"></
JarScanner>

4. Save and close the file.

Configuring Java Logging for the Application Server
Depending on your configuration, you may wish to change the level of Java logging on the
application server. To configure the Java logging level, do the following:

• For WebLogic Server, see "Configuring Java Logging for WebLogic Server" for Web
Services Manager-specific configuration. For more information, see the discussion about
application logging and WebLogic logging services in Fusion Middleware Using Logging
Services for Application Logging for Oracle WebLogic Server.

• For Tomcat server, see the discussion about logging in Tomcat in Tomcat User Guide.

Configuring Java Logging for WebLogic Server
To configure Java logging in WebLogic Server:

1. Specify the Java Unified Logging (JUL) mechanism. See "Specifying the Java Unified
Logging (JUL) Mechanism".

2. Create a startup class. See "Creating a Startup Class".

Specifying the Java Unified Logging (JUL) Mechanism
Specifying the JUL mechanism allows Web Services Manager to use JUL in addition to the
WebLogic Server Remote Console logging.

To specify the JUL mechanism:

1. Open the BRM_home/deploy/web_services/Infranet.properties file in a text editor.

2. Uncomment the following entry:

webservices.log.enabled = true
3. Change the value to false:

webservices.log.enabled = false
4. Save and close the file.

Chapter 4
Disabling the JarScanner Feature in Tomcat Server

4-14

Creating a Startup Class
You define a startup class to enable JUL and create log files for the following web service
classes:

• com.portal.webservices.BRMFlistToXML

• com.portal.webservices.BRMXMLToFlist

• com.portal.webservices.OpcodeCaller

• com.portal.webservices.WebServicesUtilities

To create a startup class:

1. Copy the BRM_home/deploy/web_services/weblogic_ws_startup.jar file to the
domain_name/lib directory, where domain_name is the WebLogic Server domain in which
Web Services Manager is deployed.

2. Log in to WebLogic Server Remote Console.

3. Click Edit Tree, then Environment, then Startup Classes.

A list of any startup classes is displayed in a table.

4. Click New.

5. In the Name field, enter BRMWSLoggerStartUpClass and click Create.

6. In the Class Name field, enter com.portal.webservices.BRMWSLoggerStartUp.

7. In the Arguments field, set the log level. This field sets the log level for all the classes in
Web Services Manager:

• To log problems that require attention from the system administrator, enter SEVERE.
This is the default.

• To log the most detailed trace and debug messages, enter FINEST.

• To log highly detailed trace and debug messages, enter FINER.

• To log trace and debug messages for performance monitoring, enter FINE.

8. Turn on Run Before Application Deployments and Run Before Application
Activations.

9. Click the Targets tab, move your administration server name in the Targets list to the
Chosen area, and click Save.

10. Restart the WebLogic Server, which applies changes.

11. Redeploy any existing Web Services Manager deployments. See "Deploying and Running
Web Services Manager".

By default, log files are created in the WebLogic_home/user_projects/domains/
domain_name/logs/BRMWebServicesMgrLogs/BRMWebServicesMgr.log file.

where:

• WebLogic_home is the directory in which WebLogic Server is installed.

• domain_name is the name of the domain you are configuring.

Chapter 4
Configuring Java Logging for the Application Server

4-15

5
Securing Web Services Manager with OAuth
2.0

Learn how to secure Oracle Communications Billing and Revenue Management (BRM) Web
Services Manager with the OAuth 2.0 authorization framework.

Topics in this document:

• About the OAuth 2.0 Authorization Framework

• Setting Up Web Services Manager with OAuth 2.0

• Sending SOAP Requests to BRM Web Services

About the OAuth 2.0 Authorization Framework
Web Services Manager uses the OAuth 2.0 protocol to authenticate a client application's
identity and to authorize the client application to access BRM web services. It does this by
validating an OAuth access token that is passed in the header of the client's HTTP/HTTPS
request to Web Services Manager.

Your client must pass this OAuth access token in the header of every HTTP/HTTPS request
sent to Web Services Manager.

Setting Up Web Services Manager with OAuth 2.0
To set up your client application to use OAuth 2.0 authentication to access BRM web services:

1. (For deployments using Tomcat only) Download commons-io-2.18.0.jar and copy the file
to Tomcat_home/lib.

2. Install the Oracle Access Management software. For the list of supported versions, see
"Additional BRM Software Requirements" in BRM Compatibility Matrix.

For information about installing the Oracle Access Management software, see Oracle
Fusion Middleware Installing and Configuring Oracle Identity and Access Management.

3. Create an identity domain in Oracle Access Management. See "Creating an OAuth Identity
Domain".

4. Create a resource server in your identity domain. See "Creating a Resource Server".

5. Create an OAuth client in your identity domain. See "Creating an OAuth Client".

6. Validate that OAuth 2.0 is set up properly in Web Services Manager. See "Validating Your
OAuth Setup".

7. Configure Web Services Manager to protect BRM web services through Oracle Access
Management. See "Configuring Standalone Web Services Manager" or "Configuring Web
Services Manager for WebLogic Server".

5-1

https://docs.oracle.com/en/middleware/idm/suite/12.2.1.3/inoam/index.html
https://docs.oracle.com/en/middleware/idm/suite/12.2.1.3/inoam/index.html

Creating an OAuth Identity Domain
You create an OAuth identity domain to control the authentication and authorization of users
who can sign in to Web Services Manager, and what features they can access. You create all
artifacts, such as the resource server and OAuth client, under the identity domain.

To create an identity domain, use cURL to send an HTTP/HTTPS request to the Oracle Access
Management URL:

curl -i -H "Content-Type: application/json" \
-H "Accept: application/json" \
-H "Authorization:Basic encoded_admin" \
-X POST http://oam_adminHost:oam_adminPort/oam/services/rest/ssa/api/v1/
oauthpolicyadmin/oauthidentitydomain \
-d '{"name": "identity_domain", "description": "Description", "tokenSettings":
[{ "tokenType": "ACCESS_TOKEN", "tokenExpiry": 3600 }] }'

where:

• encoded_admin is the Base64-encoded format of the client ID and client secret separated
by a colon (client_id:client_secret).

• oam_adminHost:oam_adminPort is the host name and port for the Oracle Access
Management administration server.

• identity_domain is the name of the Oracle Access Management identity domain that you
want to create.

For more information about the Oracle Access Management endpoint, see "Add a new OAuth
Identity Domain" in REST API for OAuth in Oracle Access Manager.

Creating a Resource Server
A resource server hosts the protected resources. It must be capable of accepting and
responding to resource requests using OAuth access tokens.

To create a resource server, use cURL to send an HTTP/HTTPS request to the Oracle Access
Management URL:

curl -i -H "Authorization:Basic encoded_admin" \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-X POST http://oam_admitHost:oam_adminPort/oam/services/rest/ssa/api/v1/
oauthpolicyadmin/application \
-d '{ "name": "resource_server", "idDomain": "identity_domain",
"description": "Description", "scopes":[{ "scopeName":"OAUTH1",
"description":"All Access" }] }'

where resource_server is the name of the resource server that you want to create.

For more information about the Oracle Access Management endpoint, see "Add a new
Resource Server" in REST API for OAuth in Oracle Access Manager.

Chapter 5
Setting Up Web Services Manager with OAuth 2.0

5-2

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.3/oroau/op-oam-services-rest-ssa-api-v1-oauthpolicyadmin-oauthidentitydomain-post.html
https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.3/oroau/op-oam-services-rest-ssa-api-v1-oauthpolicyadmin-oauthidentitydomain-post.html
https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.3/oroau/op-oam-services-rest-ssa-api-v1-oauthpolicyadmin-application-post.html
https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.3/oroau/op-oam-services-rest-ssa-api-v1-oauthpolicyadmin-application-post.html

Creating an OAuth Client
To create an OAuth client, use cURL to send an HTTP/HTTPS request to the Oracle Access
Management URL:

curl -i -H "Authorization:Basic encoded_admin" \
-H "Content-Type: application/json" \
-H "Accept: application/json" \
-X POST http://oam_adminHost:oam_adminPort/oam/services/rest/ssa/api/v1/
oauthpolicyadmin/client \
-d '{ "secret": "client_secret", "id": "client_id", "name": "client_name",
"scopes": ["BrmWebServices.OAUTH1"], \
"clientType": "CONFIDENTIAL_CLIENT", "idDomain": "identity_domain",
"description": "Description", "grantTypes":["CLIENT_CREDENTIALS"],
"defaultScope": "BrmWebServices.OAUTH1", \
"redirectURIs": [{ "url":"http://wsm_host:wsm_port/BrmWebServices",
"isHttps": false }] }'

where:

• client_id and client_secret are the client ID and client secret.

• client_name is the name of the OAuth client that you want to create.

• wsm_host:wsm_port is the hostname and port number of the Web Services Manager
server.

For more information about the Oracle Access Management endpoint, see "Add a new OAuth
Client" in REST API for OAuth in Oracle Access Manager.

Validating Your OAuth Setup
To validate that Web Services Manager has been successfully secured with OAuth 2.0:

1. Generate an OAuth access token by submitting a POST request to the Create Access
Token Flow endpoint in the Oracle Access Management OAuth REST API using cURL:

curl -i -H 'Authorization: Basic encoded_admin' \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-H "X-OAUTH-IDENTITY-DOMAIN-NAME: identity_domain" \
--request POST http://oam_managedServerHost:oam_managedServerPort/oauth2/
rest/token \
-d 'grant_type=CLIENT_CREDENTIALS&scope=BrmWebServices.OAUTH1'

where oam_managedServerHost and oam_managedServerPort port is the host name and
port for the Oracle Access Management server.

If successful, the response code 200 is returned with the access token and its expiration
time in the response payload.

For more information, see "Create Access Token Flow" in REST API for OAuth in Oracle
Access Manager.

Chapter 5
Setting Up Web Services Manager with OAuth 2.0

5-3

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.3/oroau/op-oam-services-rest-ssa-api-v1-oauthpolicyadmin-client-post.html
https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.3/oroau/op-oam-services-rest-ssa-api-v1-oauthpolicyadmin-client-post.html
https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.3/oroau/op-oauth2-rest-token-post.html

2. Validate the access token by submitting a GET request to the Validate Access Token
Flow endpoint in the Oracle Access Management OAuth REST API using cURL:

curl -i -H "X-OAUTH-IDENTITY-DOMAIN-NAME: identity_domain" \
--request GET "http://oam_managedServerHost:oam_managedServerPort/oauth2/
rest/token/info?access_token=access_token"

where access_token is the access token returned in step 1.

If successful, the response code 200 is returned with details about the access token in the
response payload.

For more information, see "Validate Access Token Flow" in REST API for OAuth in Oracle
Access Manager.

Configuring Standalone Web Services Manager
Configure Web Services Manager to protect BRM web services through Oracle Access
Management.

1. Extract the certificate from the OAuth server and put it in a directory to which the Web
Services Manager has access.

2. Open the BRM_home/apps/brm_wsm/config/Infranet.properties file in a text editor and
edit the following parameters:

infranet.isOAuth=false
infranet.certificatePath=certPath/certFile

where:

• certPath is the directory to which you copied the OAuth certificate.

• certFile is the name of the certificate file.

Configuring Web Services Manager for WebLogic Server
Configure Web Services Manager to protect BRM web services through Oracle Access
Management and enable OAuth validation.

To configure Web Services Manager for WebLogic Server:

1. Copy the BRM_home/deploy/web_services/Infranet.properties file to the BRM_home/
apps/brm_wsm/config/ directory.

2. Open the copied Infranet.properties file in a text editor.

3. Edit the following parameters:

infranet.OAuthOldOAM=false
infranet.OAuthAccessTokenUrl:http://oam_host:oam_port/oauth2/rest/ token/
info
infranet.OAuthDomainName:identity_domain

4. Save and close the file.

5. Restart Web Services Manager.

When you restart the WebLogic Server, ensure that the libportal.so BRM library is set in
LD_LIBRARY_PATH. For JRE on 64-bit environments, rename libportal64.so to
libportal.so.

Chapter 5
Setting Up Web Services Manager with OAuth 2.0

5-4

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.3/oroau/op-oauth2-rest-token-info-get.html

6. Go to the BRM_home/deploy/web_services directory and then extract the contents of the
BrmWebServices.war file to a local directory (local_dir):

jar -xvf BrmWebServices.war

7. Open the local_dir/WEB-INF/web.xml file in a text editor.

8. Uncomment these filter and filter-mapping tags:

<filter>
 <filter-name>OAuthTokenValidationFilter</filter-name>
 <filter-class>com.portal.jax.OAuthTokenValidationFilter</filter-
class>
</filter>
<filter-mapping>
 <filter-name>OAuthTokenValidationFilter</filter-name>
 <servlet-name>BrmWebServices</servlet-name>
 <url-pattern>/BrmWebServices/*</url-pattern>
 <url-pattern>/BRMPricingServices_v2/</url-pattern>
 <url-pattern>/BRMBalServices_v2/</url-pattern>
 <url-pattern>/BRMARServices_v2</url-pattern>
 <url-pattern>/BRMBillServices_v2</url-pattern>
 <url-pattern>/BRMCustServices_v2</url-pattern>
 <url-pattern>/BRMCustcareServices_v2</url-pattern>
 <url-pattern>/BRMInvServices_v2</url-pattern>
 <url-pattern>/BRMPymtServices_v2</url-pattern>
 <url-pattern>/BRMCollectionServices_v2</url-pattern>
 <url-pattern>/BRMReadServices_v2</url-pattern>
 <url-pattern>/BRMActServices_v2</url-pattern>
 <url-pattern>/BRMSubscriptionServices_v2</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

9. Save and close the file.

10. Regenerate the BrmWebServices.war file.

a. Go to local_dir and delete the existing BRMWebServices.war file:

cd local_dir
rm BrmWebServices.war

b. Create a new BrmWebServices.war archive file:

jar -cvf BrmWebServices.war .

Sending SOAP Requests to BRM Web Services
After you have set up OAuth 2.0 authentication in Web Services Manager, you can start
submitting SOAP requests to the BRM web services.

To send a request to a BRM web service:

Chapter 5
Sending SOAP Requests to BRM Web Services

5-5

1. Submit a GET request to the BRM web service that you want to use:

curl -i -H "X-OAUTH-IDENTITY-DOMAIN-NAME: identity_domain" \
-H "Authorization:Bearer access_token" \
--request GET http://wsmHost:wsmPort/BrmWebServices/webServicesName?wsdl

where:

• wsmHost:wsmPort is

– For the standalone server: The host name and port for Web Services Manager.
You can find these values at the top of the infranet.properties file.

– For Web Services Manager deployed in another server (for example, WebLogic
Server): the host name and port number for the external server that contains BRM
Web Services Manager.

• webServicesName is the name of the web service such as BRMACTServices_v2,
BRMCUSTServices_v2, or BRMPYMTServices_v2. For the web service names, see
"About WSDL Files and BRM Opcodes".

2. Submit a request to the target SOAP operation, ensuring that you send the OAuth access
token in the header request:

curl -i -H "Content-Type: text/xml;charset=UTF-8"
--request POST http://wsmHost:wsmPort/BrmWebServices/webServicesName
-d '<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:bus="http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes">
<soapenv:Header>
 <code>access_token</code>
</soapenv:Header>
<soapenv:Body>
 <bus:operationNameRequest>
 <bus:opcode_Request>
 <bus:opcode_inputFlist>
 </bus:opcode_inputFlist>
 </bus:opcode_Request>
 </bus:pcmOpSearchRequest>
</soapenv:Body>
</soapenv:Envelope>'

where:

• operationName is the name of the SOAP operation to call in the web service interface.

• opcode is the name of the BRM opcode to call.

For example, to search for accounts that have purchased a particular package, you would
submit this request to the pcmOpSearch operation in the BRMReadServices_v2
interface:

curl -i -H "Content-Type: text/xml;charset=UTF-8"
--request POST http://wsmHost:wsmPort/BrmWebServices/BRMReadServices_v2
-d '<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:bus="http://xmlns.oracle.com/BRM/schemas/BusinessOpcodes">
<soapenv:Header>
 <code>access_token</code>
</soapenv:Header>

Chapter 5
Sending SOAP Requests to BRM Web Services

5-6

<soapenv:Body>
 <bus:pcmOpSearchRequest>
 <bus:PCM_OP_SEARCH_Request>
 <bus:flags>0</bus:flags>
 <bus:PCM_OP_SEARCH_inputFlist>
 <bus:FLAGS>256</bus:FLAGS>
 <bus:ARGS elem="1">
 <bus:POID>0.0.0.1 /plan -1 0</bus:POID>
 </bus:ARGS>
 <bus:ARGS elem="2">
 <bus:ACCOUNT_OBJ>0.0.0.1 /account 1 0</bus:ACCOUNT_OBJ>
 </bus:ARGS>
 <bus:ARGS elem="3">
 <bus:NAME>Plan 1 - Measured Web Access with Discounts</
bus:NAME>
 </bus:ARGS>
 <bus:POID>0.0.0.1 /search/pin 45 0</bus:POID>
 <bus:RESULTS elem="0"></bus:RESULTS>
 <bus:TEMPLATE>select X from /plan where F1 like V1 and F2 = V2
and F3 =V3</bus:TEMPLATE>
 </bus:PCM_OP_SEARCH_inputFlist>
 </bus:PCM_OP_SEARCH_Request>
 </bus:pcmOpSearchRequest>
</soapenv:Body>
</soapenv:Envelope>'

Chapter 5
Sending SOAP Requests to BRM Web Services

5-7

6
Customizing Web Services for a Standalone
Server

Learn how to customize Oracle Communications Billing and Revenue Management (BRM)
Web Services Manager to expose your customized opcodes or support custom web services
when running on a standalone server.

Topics in this document:

• Setting Up Web Services Manager to Support Custom Fields in Opcodes

• Setting Up Web Services Manager to Support Unexposed Opcodes for XML-Element
Services

• Setting Up Web Services Manager to Support Custom Opcodes

For information about enabling or disabling validation of input and output XML data, see
"Validating Input and Output XML Data".

Setting Up Web Services Manager to Support Custom Fields in
Opcodes

You can expose custom fields in BRM opcodes that are exposed by default as web services by
doing the following:

1. Add the custom field to the opcode in BRM. See "Creating Custom Fields and Storable
Classes" in BRM Developer's Guide for instructions.

2. If you are using the standalone server, update the appropriate .xsd file with the new fields.
The location of the schema files is specified in the webservices.schema.location
parameter in the BRM_home/apps/brm_wsm/config/Infranet.properties file.

3. If you want to control the XML validation, see "Validating Input and Output XML Data" for
more information.

Setting Up Web Services Manager to Support Unexposed
Opcodes for XML-Element Services

You can expose BRM opcodes that are not exposed by default as web services by following
the procedure below.

See "About WSDL Files and BRM Opcodes" for information about the opcodes that are
exposed by default.

To enable Web Services Manager to support these opcodes:

1. Generate the XSD file for your system. See "Generating the Schema Files for Your
System" for instructions.

2. Copy the generated XSD file to the location specified in webservices.schema.location in
the BRM_home/apps/brm_wsm/config/Infranet.properties file.

6-1

3. Create a WSDL file for the web service. See "Generating WSDL Files for Web Services" in
BRM JCA Resource Adapter.

4. Generate the sun-jaxws.xml file using one of the following endpoints:

• /configurations/endpoints/default (to use the default deployment descriptor)

• /configurations/endpoints (to use a custom deployment descriptor)

5. Update the corresponding <endpoint> tag in the generated sun-jaxws.xml file for your
implementation so that it points to your customized endpoint:

<endpoint name="endpointName"
 implementation="pathToClass"
 url-pattern="urlPattern"
 wsdl="WEB-INF/wsdl/customDir/customWsdl" />

where:

• endpointName is the logical name of the endpoint for the web service.

• pathToClass is the fully qualified path to the implementation class.

• urlPattern is the URL pattern to access the web service.

• customDir is a custom directory created to avoid conflicts with the standard Web
Services Manager WSDL files. Ensure that your custom WSDL is located in this
directory.

• customWsdl is the name of the WSDL file you created in step 3. Ensure that you add
the same custom WSDL file to the .jar file later in this procedure.

For example:

<endpoint name="JAXWS_BRMCustomService"

implementation="com.oracle.communications.brm.wsm.jaxws.services.cust.BRMCustomServic
ePttImpl"
 url-pattern="/jaxws/BRMCustomService"
 wsdl="WEB-INF/wsdl/customDir/BRMCustomServices_v2.wsdl" />

6. Create a JAR file that contains your WSDL file and your edited sun-jaxws.xml file in the
following structure:

• WEB-INF/wsdl/customDir/customWsdl

• sunjavawxPath/sun-jaxws.xml

where:

• customDir is the custom folder used to distinguish your custom WSDL from the
standard WSDL files.

• customWsdl is the name of your WSDL file.

• sunjavawxPath is the path to the sun-jaxws.xml you created during this procedure.

7. Update the Infranet.properties file with the following new values:

webservices.descriptor=sunjavawxPath/sun-jaxws.xml
webservices.loadcustomschema=true

where sunjavawxPath is the path to the sun-jaxws.xml you created during this procedure.

8. Set the BRM_WSM_CLASSPATH_EXT environment variable to the full path of the jar file
you created above.

Chapter 6
Setting Up Web Services Manager to Support Unexposed Opcodes for XML-Element Services

6-2

Setting Up Web Services Manager to Support Custom Opcodes
You can expose your custom opcodes as web services by following the procedures below.

See "About WSDL Files and BRM Opcodes" for information about the opcodes that are
exposed by default.

See the following sections for details of how to support custom opcodes:

• Supporting Custom Opcodes for XML-Element Services

• Supporting Custom Opcodes for XML-String Services

Supporting Custom Opcodes for XML-Element Services
To enable Web Services Manager to support these opcodes for the web services that expect
an XML element payload:

1. Generate the XSD file for your system. See "Generating the Schema Files for Your
System" for instructions.

2. Copy the generated XSD file to the location specified in webservices.schema.location in
the BRM_home/apps/brm_wsm/config/Infranet.properties file.

3. Create a WSDL file for the web service. See "Generating WSDL Files for Web Services" in
BRM JCA Resource Adapter.

4. Do one of the following:

• Create the CustomOp.java file by entering the following command:

parse_custom_ops_fields -L pcmjava -I input -O output -P java_package

where:

– input is the header file you create for your custom opcodes and fields.

– output is the memory-mapped file or directory for the output of the script. output
must be a directory having some correspondence with the Java package. For
example, if java_package is in com.portal.classFiles, output must be f:/
mysource/com/portal/classFiles.

– java_package is the Java package in which to put the generated classes.

For more information, see "parse_custom_ops_fields" in BRM Developer's Guide.

• Manually create the CustomOp.java file.

5. Verify that the CustomOp.java file contains the following:

• The mapping between opcode names and opcode numbers for all the custom opcodes
in the file.

Note:

Verify that the mapping includes the full name of each opcode. If any opcode
name is truncated, replace the truncated name with the full name.

• The opToString method, which converts opcode numbers to opcode names.

Chapter 6
Setting Up Web Services Manager to Support Custom Opcodes

6-3

• The stringToOp method, which converts opcode names to opcode numbers.

The following is a sample CustomOp.java file:

public class CustomOp {
 public static final int CUSTOM_OP_ACT_INFO= 100000;
 public static final int CUSTOM_OP_READ_ACT_PRODUCT = 100001;
 public static String opToString(int op) { try {
 java.lang.reflect.Field[] flds =
CustomOp.class.getFields();
 for(int i = 0; i < flds.length; i++) {
 try {
 int val = flds[i].getInt(null);
 if(val == op) {
 return flds[i].getName();
 }
 } catch(IllegalAccessException e) { continue;
 } catch(IllegalArgumentException e) { continue; }
 }
 } catch(SecurityException e) {}
 return null;
}
public static int stringToOp(String op) {
 try {
 java.lang.reflect.Field[] flds =
CustomOp.class.getFields();
 for(int i = 0; i < flds.length; i++) {
 try {
 String name = flds[i].getName();
 if(name.equals(op)) {
 return flds[i].getInt(null);
 }
 } catch(IllegalAccessException e) { continue;
}
 catch(IllegalArgumentException e) { continue; }
 }
 } catch(SecurityException e) {}
 return -1;
 }
}

6. Compile the CustomOp.java file into the CustomOp.class file by entering the following
command:

javac -d . path/CustomOp.java

For example:

javac -d . com/portal/classFiles/CustomOp.java
7. Package the CustomOp.class file into the CustomFields.jar file by entering the following

command:

jar -cvf CustomFields.jar path/CustomOp.class

For example:

jar -cvf CustomFields.jar com/portal/classFiles/CustomOp.class
8. Make the CustomFields.jar file available to Web Services Manager by doing the following:

a. Copy the path/CustomFields.jar file to the CustJarLoc directory, where path is the
path to the CustomFields.jar file (for example, BRM_home/apps/brm_wsm) and
CustJarLoc is a directory that the Web Services Manager has permission to access.

Chapter 6
Setting Up Web Services Manager to Support Custom Opcodes

6-4

b. Open the BRM_home/apps/brm_wsm/config/Infranet.properties file in a text editor.

c. Add or modify the following entry:

infranet.custom.field.package = package

where package is the name of the package that contains the CustomOp.java file; for
example, com.portal.classFiles.

d. Add all the custom fields to the Infranet.properties file.

e. Save and close the file.

f. Add the full path of CustJarLoc to the BRM_WSM_CLASSPATH_EXT environment
variable.

g. Stop and restart the Web Services Manager. See "Running and Stopping Standalone
Web Services Manager" for more information.

9. Generate the web service implementation class for the custom service by doing the
following:

a. Create an implementation class for your new web service. Following is a sample
implementation class. Ensure that you update the packageName, ServiceName,
PortName, ServiceClassName, and BindingSOAPVersion with your custom values.

package packageName;

// Copyright (c) 2024, 2025, Oracle and/or its affiliates.

import java.util.List;
import java.util.logging.Logger;
import java.util.logging.Level;
import java.util.concurrent.ConcurrentHashMap;
import java.time.Duration;
import io.helidon.metrics.api.MeterRegistry;
import io.helidon.metrics.api.Metrics;
import io.helidon.metrics.api.Timer;
import io.helidon.metrics.api.Tag;
import io.helidon.tracing.Span;
import jakarta.annotation.Resource;
import jakarta.jws.HandlerChain;
import jakarta.jws.soap.SOAPBinding;
import jakarta.xml.ws.Provider;
import jakarta.xml.ws.ServiceMode;
import jakarta.xml.ws.BindingType;
import jakarta.xml.ws.WebServiceContext;
import jakarta.xml.ws.WebServiceProvider;
import jakarta.xml.ws.soap.SOAPFaultException;
import jakarta.xml.soap.SOAPMessage;
import jakarta.xml.soap.SOAPException;
import jakarta.xml.soap.SOAPElement;
import jakarta.xml.soap.SOAPFactory;
import jakarta.xml.soap.Detail;
import jakarta.xml.soap.SOAPFault;
import jakarta.xml.soap.SOAPConstants;
import javax.xml.namespace.QName;
import org.w3c.dom.Document;
import com.portal.pcm.DeterminateException;
import com.portal.pcm.EBufException;
import com.oracle.communications.brm.wsm.jaxws.ApiRequestProcessor;
import com.oracle.communications.brm.wsm.utils.WebServicesUtilities;
import com.oracle.communications.brm.wsm.utils.TracerHandler;
import com.oracle.communications.brm.wsm.utils.SOAPFaultResponse;

Chapter 6
Setting Up Web Services Manager to Support Custom Opcodes

6-5

import com.oracle.communications.brm.wsm.utils.ApplicationException;

@WebServiceProvider(targetNamespace = "http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes", serviceName = "ServiceName", portName = "PortName")
@ServiceMode(value = jakarta.xml.ws.Service.Mode.MESSAGE)
@SOAPBinding(style = SOAPBinding.Style.DOCUMENT, parameterStyle =
SOAPBinding.ParameterStyle.BARE)
@BindingType(jakarta.xml.ws.soap.SOAPBinding.BindingSOAPVersion)
@HandlerChain(file = "handler-chain.xml")
public class ServiceClassName implements Provider<SOAPMessage> {
 private static Logger m_logger =
Logger.getLogger(ServiceClassName.class.getName());
 private final MeterRegistry registry = Metrics.globalRegistry();

 private final Tag successTag = Tag.create("status", "success");
 private final Tag failTag = Tag.create("status", "fail");

 private final ConcurrentHashMap<Integer,Timer> successResponseTimerMap = new
ConcurrentHashMap<Integer,Timer>();
 private final ConcurrentHashMap<Integer,Timer> failedResponseTimerMap = new
ConcurrentHashMap<Integer,Timer>();

 @Override
 public SOAPMessage invoke(SOAPMessage request) {
 m_logger.entering(ServiceClassName.class.getName(), "Starting invoke
method execution for request");
 Span span = TracerHandler.startSpan(null,
ServiceClassName.class.getName() + "." + "invoke");
 Exception spanException = null;

 String opcodeName = null, soapVersion = null, soapNamespaceUri = null;
 int opcodeNumber = -1;
 long startTime = System.nanoTime();
 SOAPMessage response = null;
 Timer currentTimer;

 try{
 // Determining SOAP request protocol version (1.1 or 1.2)
 soapNamespaceUri =
request.getSOAPPart().getEnvelope().getNamespaceURI();

 if (SOAPConstants.URI_NS_SOAP_1_1_ENVELOPE.equals(soapNamespaceUri))
{
 soapVersion = SOAPConstants.SOAP_1_1_PROTOCOL;
 }
 else if
(SOAPConstants.URI_NS_SOAP_1_2_ENVELOPE.equals(soapNamespaceUri)) {
 soapVersion = SOAPConstants.SOAP_1_2_PROTOCOL;
 }
 else {
 soapVersion = SOAPConstants.DEFAULT_SOAP_PROTOCOL;
 soapNamespaceUri = SOAPConstants.URI_NS_SOAP_ENVELOPE;
 }
 m_logger.log(Level.FINEST, "SOAP Protocol Version: " + soapVersion +
", SOAP Namespace URI: " + soapNamespaceUri);
 Document reqDoc = request.getSOAPBody().extractContentAsDocument();

 opcodeName = WebServicesUtilities.getOpcodeName(span.context(),
reqDoc);
 opcodeNumber = WebServicesUtilities.getOpcode(span.context(),
opcodeName);

Chapter 6
Setting Up Web Services Manager to Support Custom Opcodes

6-6

 m_logger.log(Level.FINEST, "Opcode name obtained from request
payload: " + opcodeName);

 if(!successResponseTimerMap.containsKey(opcodeNumber)){
 m_logger.log(Level.FINEST, "Initializing success & failure
metric timers");

 Tag apiTag = Tag.create("api", opcodeName);

 successResponseTimerMap.put(
 opcodeNumber,

registry.getOrCreate(Timer.builder("http_request_duration").tags(List.of(apiTag,
successTag)))
);
 failedResponseTimerMap.put(
 opcodeNumber,

registry.getOrCreate(Timer.builder("http_request_duration").tags(List.of(apiTag,
failTag)))
);
 }
 ApiRequestProcessor processor = new ApiRequestProcessor();
 response = processor.processApiRequest(span.context(), reqDoc,
opcodeName, opcodeNumber, soapVersion, soapNamespaceUri);

 currentTimer = successResponseTimerMap.get(opcodeNumber);
 currentTimer.record(Duration.ofNanos((System.nanoTime() -
startTime)));
 } catch (ApplicationException e) {
 spanException = e;
 if (opcodeNumber != -1) {
 currentTimer = failedResponseTimerMap.get(opcodeNumber);
 currentTimer.record(Duration.ofNanos((System.nanoTime() -
startTime)));
 }
 throw SOAPFaultResponse.createErrorResponse(e, soapVersion,
soapNamespaceUri);
 } catch (SOAPException ex) {
 spanException = ex;
 if (opcodeNumber != -1) {
 currentTimer = failedResponseTimerMap.get(opcodeNumber);
 currentTimer.record(Duration.ofNanos((System.nanoTime() -
startTime)));
 }
 throw SOAPFaultResponse.createErrorResponse(
 new ApplicationException(ex,
ApplicationException.SERVER_EXCEPTION), soapVersion, soapNamespaceUri
);
 } finally {
 TracerHandler.endSpan(span, spanException);
 m_logger.exiting(ServiceClassName.class.getName(), "Completed invoke
method execution for request");
 }
 return response;
 }
}

b. Create BRMCustomServicePttImpl.java and compile it using the following command:

javac -d . -cp '.:$PIN_HOME/jars/*' packageName/BRMCustomServicePttImpl.java

where packageName is the package name configured in your implementation class.

Chapter 6
Setting Up Web Services Manager to Support Custom Opcodes

6-7

10. Generate the sun-jaxws.xml file using one of the following endpoints:

• /configurations/endpoints/default (to use the default deployment descriptor)

• /configurations/endpoints (to use a custom deployment descriptor)

11. Add the new endpoint in the generated sun-jaxws.xml file for your implementation:

<endpoint name="endpointName"
 implementation="pathToClass"
 url-pattern="urlPattern"
 wsdl=wsdl="WEB-INF/wsdl/customDir/customWsdl" />

where:

• endpointName is the logical name of the new endpoint for the web service.

• pathToClass is the fully qualified path to the implementation class.

• urlPattern is the URL pattern to access the web service.

• customDir is a custom directory created to avoid conflicts with the standard Web
Services Manager WSDL files. Ensure that your custom WSDL is located in this
directory.

• customWsdl is the name of the WSDL file you created in step 3. Ensure that you add
the same custom WSDL file to the .jar file later in this procedure.

For example:

<endpoint name="JAXWS_BRMCustomService"
 implementation="CustomPackage.BRMCustomServicePttImpl"
 url-pattern="/jaxws/BRMCustomService"
 wsdl=""WEB-INF/wsdl/customDir/BRMCustomServices_v2.wsdl" />

12. Create a JAR file that contains your implementation class, its WSDL file, and your edited
sun-jaxws.xml file in the following structure:

• WEB-INF/wsdl/customDir/customWsdl

• sunjavawxPath/sun-jaxws.xml

• packageName/BRMCustomServicePttImpl.class

where:

• customDir is the custom folder used to distinguish your custom WSDL from the
standard WSDL files.

• customWsdl is the name of your WSDL file.

• sunjavawxPath is the path to the /sun-jaxws.xml you created during this procedure.

• packageName is the package name configured in your implementation class.

13. Update the Infranet.properties file with the following new values:

webservices.descriptor=sunjavawxPath/sun-jaxws.xml
webservices.loadcustomschema=true
infranet.custom.field.package=CustomOp_package

where:

• sunjavawxPath is the path to the /sun-jaxws.xml you created during this procedure.

• CustomOp_package is the path to the CustomOp.class file you created earlier in this
procedure.

14. Add the full paths of CustomFields.jar file and the JAR file you created in step 12 to the
BRM_WSM_CLASSPATH_EXT environment variable.

Chapter 6
Setting Up Web Services Manager to Support Custom Opcodes

6-8

Supporting Custom Opcodes for XML-String Services
To enable Web Services Manager to support these opcodes for the web services that expect
an XML string payload:

1. Do one of the following:

• Create the CustomOp.java file by entering the following command:

parse_custom_ops_fields -L pcmjava -I input -O output -P java_package

where:

– input is the header file you create for your custom opcodes and fields.

– output is the memory-mapped file or directory for the output of the script. output
must be a directory having some correspondence with the Java package. For
example, if java_package is in com.portal.classFiles, output must be f:/
mysource/com/portal/classFiles.

– java_package is the Java package in which to put the generated classes.

For more information, see "parse_custom_ops_fields" utility in BRM Developer's
Guide.

• Manually create the CustomOp.java file.

2. Verify that the CustomOp.java file contains the following:

• The mapping between opcode names and opcode numbers for all the custom opcodes
in the file.

Note:

Verify that the mapping includes the full name of each opcode. If any opcode
name is truncated, replace the truncated name with the full name.

• The opToString method, which converts opcode numbers to opcode names.

• The stringToOp method, which converts opcode names to opcode numbers.

The following is a sample CustomOp.java file:

public class CustomOp {
 public static final int CUSTOM_OP_ACT_INFO= 100000;
 public static final int CUSTOM_OP_READ_ACT_PRODUCT = 100001;
 public static String opToString(int op) { try {
 java.lang.reflect.Field[] flds =
CustomOp.class.getFields();
 for(int i = 0; i < flds.length; i++) {
 try {
 int val = flds[i].getInt(null);
 if(val == op) {
 return flds[i].getName();
 }
 } catch(IllegalAccessException e) { continue;
 } catch(IllegalArgumentException e) { continue; }
 }
 } catch(SecurityException e) {}
 return null;
}

Chapter 6
Setting Up Web Services Manager to Support Custom Opcodes

6-9

public static int stringToOp(String op) {
 try {
 java.lang.reflect.Field[] flds =
CustomOp.class.getFields();
 for(int i = 0; i < flds.length; i++) {
 try {
 String name = flds[i].getName();
 if(name.equals(op)) {
 return flds[i].getInt(null);
 }
 } catch(IllegalAccessException e) { continue;
}
 catch(IllegalArgumentException e) { continue; }
 }
 } catch(SecurityException e) {}
 return -1;
 }
}

3. Compile the CustomOp.java file into the CustomOp.class file by entering the following
command:

javac -d . path/CustomOp.java

For example:

javac -d . com/portal/classFiles/CustomOp.java
4. Package the CustomOp.class file into the CustomFields.jar file by entering the following

command:

jar -cvf CustomFields.jar path/CustomOp.class

For example:

jar -cvf CustomFields.jar com/portal/classFiles/CustomOp.class
5. Make the CustomFields.jar file available to Web Services Manager by doing the following:

a. Copy the path/CustomFields.jar file to the CustJarLoc directory, where path is the
path to the CustomFields.jar file (for example, BRM_home/apps/brm_wsm/) and
CustJarLoc is a directory that the Web Services Manager has permission to access.

b. Open the BRM_home/apps/brm_wsm/config/Infranet.properties file in a text editor.

c. Add or modify the following entry:

infranet.custom.field.package = package

where package is the name of the package that contains the CustomOp.java file; for
example, com.portal.classFiles.

d. Add all the custom fields to the BRM_home/apps/brm_wsm/config/
Infranet.properties file.

e. Save and close the file.

f. Set the BRM_WSM_CLASSPATH_EXT environment variable to the full path of
CustJarLoc.

6. Generate the web service implementation class for the custom service by doing the
following:

a. Create an implementation class for your new web service. Following is a sample
implementation class. Ensure that you update the packageName with your custom
value.

Chapter 6
Setting Up Web Services Manager to Support Custom Opcodes

6-10

package packageName;

// Copyright (c) 2025, Oracle and/or its affiliates.

import com.oracle.communications.brm.wsm.utils.ApplicationException;
import com.oracle.communications.brm.wsm.utils.OpcodeCaller;
import com.oracle.communications.brm.wsm.utils.SOAPFaultResponse;

import jakarta.jws.WebMethod;
import jakarta.jws.WebParam;
import jakarta.jws.WebResult;
import jakarta.jws.WebService;
import jakarta.jws.soap.SOAPBinding;
import jakarta.xml.soap.SOAPConstants;
import jakarta.jws.HandlerChain;

/**
 * Class that implements OOB Infranet CUST Web Service.
 * Implementation detail: This class delegates to OpcodeCaller all functionality
 * related to communicating with Infranet and calling opcodes. This allows
 * flexibility in reimplementing the web service, for a different app server,
 * for example. In that case, the new implementation can simply call the
 * OpcodeCaller utility functions.
 *
 * CUSTOM_OP_GENERIC

 */

@WebService (name = "BRMCustomService",
 targetNamespace = "http://xmlns.oracle.com/BRM/schemas/
BusinessOpcodes/",
 portName = "BRMCustomService_ptt")
@SOAPBinding(style = SOAPBinding.Style.RPC)
@HandlerChain(file = "handler-chain.xml")
public class BRMCustomInfra {
@WebMethod(operationName = "customOpGeneric")
 public @WebResult(name = "CUSTOM_OP_GENERIC_response") String customGeneric(
 @WebParam(name = "flags")int flag,
 @WebParam(name = "CUSTOM_OP_GENERIC_request")String inFlist)
 {
 String CUSTOM_OP_GENERIC_response = null;
 OpcodeCaller oc = new OpcodeCaller();
 try {
 CUSTOM_OP_GENERIC_response =
oc.opcodeWithFlags("CUSTOM_OP_GENERIC", flag, inFlist,"CUSTOM_OP_GENERIC.xsd");
 return CUSTOM_OP_GENERIC_response;
 } catch (ApplicationException ex) {
 throw SOAPFaultResponse.createErrorResponse(ex,
SOAPConstants.SOAP_1_1_PROTOCOL, SOAPConstants.URI_NS_SOAP_1_1_ENVELOPE);
 }
 }
}

b. Compile it using the following command:

javac -d . -cp '.:$PIN_HOME/jars/*' packageName/BRMCustomInfra.java

where packageName is the package name configured in your implementation class.

7. Generate the sun-jaxws.xml file using one of the following endpoints:

• /configurations/endpoints/default (to use the default deployment descriptor)

• /configurations/endpoints (to use a custom deployment descriptor)

Chapter 6
Setting Up Web Services Manager to Support Custom Opcodes

6-11

8. Add the new endpoint in the generated sun-jaxws.xml file for your implementation:

<endpoint name="endpointName"
 implementation="pathToClass"
 url-pattern="urlPattern />

where:

• endpointName is the logical name of the new endpoint for the web service.

• pathToClass is the fully qualified path to the implementation class.

• urlPattern is the URL pattern to access the web service.

For example:

<endpoint
 name="JAXWS_STR_BRMCustomService"
 implementation="CustomPackage.BRMCustomInfra"
 url-pattern="/jaxws_str/BRMCustomService" />

9. Create a JAR file that contains your implementation class and your edited sun-jaxws.xml
file in the following structure:

• sunjavawxPath/sun-jaxws.xml

• packageName/BRMCustomInfra.class

where:

• sunjavawxPath is the path to the sun-jaxws.xml you created during this procedure.

• packageName is the package name configured in your implementation class.

10. Update the Infranet.properties file with the following new values:

webservices.descriptor=sunjavawxPath/sun-jaxws.xml

where sunjavawxPath is the path to the sun-jaxws.xml you created during this procedure.

11. Add the full paths of CustomFields.jar file and the JAR file you created in step 9 to the
BRM_WSM_CLASSPATH_EXT environment variable.

12. Stop and restart the Web Services Manager. See "Running and Stopping Standalone Web
Services Manager" for more information.

Chapter 6
Setting Up Web Services Manager to Support Custom Opcodes

6-12

7
Customizing Web Services for WebLogic
Server or Tomcat Deployments

Learn how to customize Oracle Communications Billing and Revenue Management (BRM)
Web Services Manager to expose your custom opcodes or support custom web services in an
instance of Web Services Manager deployed on Oracle WebLogic Server or Tomcat.

Topics in this document:

• Setting Up Web Services Manager to Support Custom Opcodes

• Creating a Custom Web Service

• Generating the Schema Files for Your System

For information about enabling or disabling validation of input and output XML data, see
"Validating Input and Output XML Data".

Setting Up Web Services Manager to Support Custom Opcodes
To expose custom opcodes as web services, first implement the custom opcode. For more
information on custom opcodes, see "Using Custom Opcodes" in BRM Developer's Guide.
Then, enable Web Services Manager to support custom opcodes as described below.

To enable Web Services Manager to support custom opcodes:

1. Do one of the following:

• Create the CustomOp.java file by entering the following command:

parse_custom_ops_fields -L pcmjava -I input -O output -P java_package

where:

– input is the header file you create for your custom opcodes and fields.

– output is the memory-mapped file or directory for the output of the script. output
must be a directory having some correspondence with the Java package. For
example, if java_package is in com.portal.classFiles, output must be f:/
mysource/com/portal/classFiles.

– java_package is the Java package in which to put the generated classes.

For more information, see the discussion about the parse_custom_ops_fields utility
in BRM Developer's Guide.

• Manually create the CustomOp.java file.

2. Verify that the CustomOp.java file contains the following:

• The opcode-name-to-opcode-number mapping for all the custom opcodes in the file.

7-1

Note:

Verify that the mapping includes the full name of each opcode. If any opcode
name is truncated, replace the truncated name with the full name.

• The opToString method, which converts opcode numbers to opcode names.

• The stringToOp method, which converts opcode names to opcode numbers.

The following is a sample CustomOp.java file:

public class CustomOp {
 public static final int CUSTOM_OP_ACT_INFO= 100000;
 public static final int CUSTOM_OP_READ_ACT_PRODUCT = 100001;
 public static String opToString(int op) { try {
 java.lang.reflect.Field[] flds =
CustomOp.class.getFields();
 for(int i = 0; i < flds.length; i++) {
 try {
 int val = flds[i].getInt(null);
 if(val == op) {
 return flds[i].getName();
 }
 } catch(IllegalAccessException e) { continue;
 } catch(IllegalArgumentException e) { continue; }
 }
 } catch(SecurityException e) {}
 return null;
}
public static int stringToOp(String op) {
 try {
 java.lang.reflect.Field[] flds =
CustomOp.class.getFields();
 for(int i = 0; i < flds.length; i++) {
 try {
 String name = flds[i].getName();
 if(name.equals(op)) {
 return flds[i].getInt(null);
 }
 } catch(IllegalAccessException e) { continue;
}
 catch(IllegalArgumentException e) { continue; }
 }
 } catch(SecurityException e) {}
 return -1;
 }
}

3. Compile the CustomOp.java file into the CustomOp.class file by entering the following
command:

javac -d . path/CustomOp.java

For example:

javac -d . com/portal/classFiles/CustomOp.java
4. Package the CustomOp.class file into the CustomFields.jar file by entering the following

command:

Chapter 7
Setting Up Web Services Manager to Support Custom Opcodes

7-2

Note:

Make sure the JRE version that was used to generate the CustomFields.jar file
is the same or lower than the version of the WebLogic Server JRE.

jar -cvf CustomFields.jar path.CustomOp.class

For example:

jar cvf CustomFields.jar com.portal.classFiles.CustomOp.class
5. Make the CustomFields.jar file available to Web Services Manager by doing one of the

following:

• If you have not deployed Web Services Manager, do the following:

a. Copy the path/CustomFields.jar file to the local_dir/WEB-INF/lib directory, where
path is the path to the CustomFields.jar file (for example, com/portal/
classFiles).

b. Open the BRM_home/deploy/web_services/Infranet.properties file in a text
editor.

c. Add or modify the following entry:

infranet.custom.field.package = package

where package is the name of the package that contains the CustomOp.java file;
for example, com.portal.classFiles.

d. Add all the custom fields to the Infranet.properties file.

e. Save and close the file.

f. Copy the BRM_home/deploy/web_services/Infranet.properties file to the
local_dir/WEB-INF/classes directory or the home directory on the machine on
which you installed WebLogic Server.

• If you have deployed Web Services Manager, do the following:

a. Copy the path/CustomFields.jar file to the local_dir/WEB-INF/lib directory.

where local_dir is the directory in which you deployed Web Services Manager on
your application server.

b. Open the Webservices_deployment_dir/WEB-INF/classes/Infranet.properties file
in a text editor.

c. Add or modify the following entry:

infranet.custom.field.package = package

where package is the name of the package that contains the CustomOp.java file;
for example, com.portal.classFiles.

d. Add all the custom fields to the Infranet.properties file.

e. Save and close the file.

Chapter 7
Setting Up Web Services Manager to Support Custom Opcodes

7-3

Creating a Custom Web Service
You can extend Web Services Manager to support custom web services. Before you create a
custom web service or customize an existing web service in Web Services Manager,
implement your custom opcodes in the BRM system. For more information, see "Creating
Custom Fields and Storable Classes" in BRM Developer's Guide.

To create a custom web service:

1. If you created an opcode with custom fields for your custom web service, configure BRM to
recognize the custom fields. See "Creating Custom Fields and Storable Classes" in BRM
Developer's Guide.

2. Create a WSDL file for the web service. See "Generating WSDL Files for Web Services" in
BRM JCA Resource Adapter.

To create a WSDL file manually, do the following:

• For web services that support payload as XML string, see the deploy/web_services/
wsdl sample file and create the WSDL file.

• For web services that support payload as XML element, see the deploy/
web_services/BrmWebServices.war/WEB-INF/wsdl sample file and create the
WSDL file.

3. Create the XML specifications for your custom opcodes. See "Creating Opcode
Specification Schema Files".

4. Generate web service classes for your custom service by doing the following:

a. Create the following directory structure in a local directory (local_dir) on the machine
on which your application server is installed.

/wsdl
/src
/classes
/jar

b. Copy your custom WSDL files and schema (XSD) files into the local_dir/wsdl directory.

c. Copy the BrmWebServices.war/WEB-INF/wsdl/BRMWebServiceException.xsd file
into the local_dir/wsdl directory.

d. Create the custom_services.xml as an Ant build file.

The following is a sample custom_services.xml file:

<?xml version="1.0"?>
<project name="Custom BRM WebServices build file" default="all" basedir=".">
<property name="buildDir" value="classes"/>
<property name="srcDir" value="src"/>
<property name="wsdlDir" value="wsdl"/>
<property name="pinwsgen" value="pin_wsgen"/>

<!-- define the classpath -->
<path id="classpath">
 <pathelement path="${buildDir}"/>
 <pathelement path="jar/web_services.jar"/>
 <pathelement path="jar/webServicesUtils.jar"/>
</path>

<!-- create Source files from WSDL and XSDs -->
<target name="custom_service_gen" description="Create java source files from

Chapter 7
Creating a Custom Web Service

7-4

wsdl" >
 <exec executable="BRM_home/deploy/web-services/pin_wsgen/pin_wsgen"
failonerror="true">
 <arg value="-s"/>
 <arg value="src"/>
 <arg value="-d"/>
 <arg value="${buildDir}"/>
 <arg value="-p"/>
 <arg value="com.portal.jax.'yourpackagesubdirname' "/>
 <arg value="${wsdlDir}/'YourCustomServices_v2.wsdl'/>
 </exec>
</target>

<target name="all" depends="custom_service_gen, custom_jar" description="build
everything" />

<!-- compile task -->
<target name="compile" depends="custom_service_gen" description="compile source
files" >
 <echo>" Compiling JAX-WS impl classes"</echo>
 <javac srcdir="${srcDir}"
 destdir="${buildDir}"
 classpathref="classpath"
 debug="on"
 source="1.5"/>
</target>
<!--Create custom service jar -->
<target name="custom_jar" depends="custom_service_gen, compile"
description="generate jar file" >
 <jar jarfile="custom_services.jar" basedir="${buildDir}" >
 </jar>
</target>
<!--ant clean task -->
<target name="clean" description="remove derived objects" >
 <delete dir="classes/com"/>
 <delete dir="custom_service.jar"/>
</target>
</project>

where:

• BRM_home is the directory in which BRM is installed.

• YourCustomServices_v2 is the custom service WSDL file name.

• yourpackagesubdirname is the package directory for your custom service.

5. Generate and build your custom web services by running the following command:

ant -file custom_services.xml
6. Add all the custom field enum constants to the Infranet.properties file. See "Connecting

Web Services Manager to the BRM System" for more information.

7. Package your custom web service with the BrmWebServices.war file by doing the
following:

a. Extract the BrmWebServices.war file to a local directory (local_dir) on the machine on
which you installed your application server.

b. Do one of the following:

• (For WebLogic Server) Modify the local_dir/WEB-INF/Web.xml file to include your
custom service URL mapping similar to existing URL mapping.

Chapter 7
Creating a Custom Web Service

7-5

• (For Apache Tomcat server) Modify the local_dir/WEB-INF/sun.jaxws.xml file to
add your custom service implementation class.

c. Copy your custom WSDL files and schema (XSD) files into the local_dir/WEB-INF/
wsdl/ directory.

d. Copy your custom_services.jar into the local_dir/WEB-INF/classes directory.

e. Copy your CustomFields.jar into the local_dir/WEB-INF/lib directory.

f. Delete the existing BrmWebServices.war file.

g. Create a new BrmWebServices.war file by running the following command:

jar -cvf BrmWebServices.war *

Generating the Schema Files for Your System
Web Services Manager uses schema files to validate data it sends to or receives from BRM.

To generate the schema files for your system, do the following:

1. If you modified any opcodes, generate schemas for the opcodes in your BRM system. See
"Generating the Schema for an Existing Opcode".

2. Generate schemas for the storable classes and subclasses in your BRM system. See
"Generating the Schema for Your Storable Classes and Subclasses" in BRM JCA
Resource Adapter.

3. In your opcode schema files, specify the location of your storable class schema files. See
"Specifying the Location of the Storable Class Schema Files in the Opcode Schema Files"
in BRM JCA Resource Adapter.

Note:

After generating the opcode and storable class schema files, copy the schema
files to a location that is accessible to the Web Services Manager. Make sure that
this location is the same as the location that is specified in the include section of
the opcode schema files and in the opcode schema InteractionSpec attribute in
the WSDL files. See "Specifying the Location of the Storable Class Schema Files
in the Opcode Schema Files" and "Generating the WSDL Files for Your System"
in BRM JCA Resource Adapter.

Chapter 7
Generating the Schema Files for Your System

7-6

8
Generating the Schema for Your Opcodes

Learn how to use the Oracle Communications Billing and Revenue Management (BRM) Web
Services Manager package with the opcode schemas and flist specifications you need for a
default integration.

Topics in this document:

• Generating the Schema for an Existing Opcode

• Creating Opcode Specification Schema Files

• Specifying the XSL Rules to Create the Opcode Schema

If you customized any of the opcodes that are supported by Web Services Manager or if you
added support for new opcodes, you must generate XSD schema files for the opcodes.

Note:

• Before you customize an existing opcode specification, ensure that you update
the opcode specification in the BRM system.

• After you customize web services, copy the customized schema files and the
WSDL files to the infranetwebsvc.war file.

Generating the Schema for an Existing Opcode
To generate schema files for an opcode that you customized and Web Services Manager
already supports:

1. Modify the opcode's XML specification file. By default, the opcode specification XML files
are installed in the BRM_home/apps/brm_integrations/opspecs directory, where
BRM_home is the directory in which you installed the BRM components.

2. Do one of the following:

• For web services that take payload as XML string:

– Run the pin_opspec_to_schema utility. See "Creating Opcode Specification
Schema Files".

– Copy the customized XSD files to the BRM_home/deploy/web_services/
schemas directory.

• For web services that take payload as XML element:

– Run the pin_opspec_to_schema_v2 utility. See "Creating Opcode Specification
Schema Files".

– Copy the customized XSD files to the infranetwebsvc/WEB-INF/services/
InfranetWebservices.aar/META-INF directory.

8-1

Creating Opcode Specification Schema Files
You must create opcode flist specification files for opcodes that you customize or add to the
Web Services Manager. Create the specification XML files by following the BRM_home/apps/
brm_integrations/stylesheets/opspec.xsd file.

You then convert the opcode flist specification XML files into XSD schema by using the
pin_opspec_to_schema and pin_opspec_to_schema_v2 utilities.

To convert opcode flist specification XML files into XSD schema, go to the BRM_home/apps/
brm_integrations directory and do the following:

• For web services that take payload as XML string, run the following command:

pin_opspec_to_schema -i input_file [-o output_file]
• For web services that take payload as XML element, run the following command:

Note:

Before you run the following command, specify the BRM installation directory in
the pin_opspec_to_schema_v2 utility by replacing $PIN_HOME with
BRM_home.

pin_opspec_to_schema_v2 -i input_file > output_file

where:

– input_file specifies the name and location of the opcode's XML flist specification. By
default, the utility looks for the file in the current directory.

– output_file creates the XSD schema output file using the name you specify. By default,
the utility creates a file named opcodename.xsd in the directory from which you run
the utility.

You can also create XSD schema for web services that take payload as XML element by using
the pin_opspec_to_schema_v2 XSD generator utility that is located in the BRM_home/bin
directory.

To create the XSD schema file by using the pin_opspec_to_schema_v2 utility, run the
following command using Groovy:

groovy pin_opspec_to_schema_v2 -i input.xml > output.xsd

where:

• input.xml specifies the name of the opcode's XML flist specification

• output.xsd creates the XSD schema output file using the name you specify

Specifying the XSL Rules to Create the Opcode Schema
The pin_opspec_to_schema utility uses the BRM_home/brm_integrations/stylesheets/
pin_opspec_to_schema.xsl style sheet to generate the schema for BRM opcodes. If your
opcode references custom fields, you must customize the pin_opspec_to_schema.xsl style
sheet to handle your custom fields.

Chapter 8
Creating Opcode Specification Schema Files

8-2

For a list of the supported BRM data types, see "Understanding the BRM Data Types" in BRM
Developer's Guide.

Chapter 8
Specifying the XSL Rules to Create the Opcode Schema

8-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Using Web Services
	About WSDL Files and BRM Opcodes
	Configuring BRM to Use PCM_OP_BAL_GET_ECE_BALANCES

	About Testing Web Services Manager
	Determining the WSDL URLs for Web Services Manager
	Testing a Web Services Implementation Using a Client Application
	Example of Reading an Account Object in BRM Using Web Services
	Sample SOAP Request Input XML File
	Sample SOAP Response Output XML File
	Sample Java Client

	Using Metrics and Tracing (Standalone only)
	Working with Metrics
	Enabling Tracing

	About Data Masking in Web Services Responses

	2 Installing Web Services Manager
	Installing Web Services Manager
	Supported Servers

	Uninstalling Web Services Manager

	3 Deploying and Running Web Services Manager
	Running and Stopping Standalone Web Services Manager
	Deploying and Running Web Services Manager on WebLogic Server
	Deploying and Running Web Services Manager on Tomcat Server
	Deploying and Running infranetwebsvc.war
	Deploying and Running BrmWebServices.war

	4 Configuring Web Services Manager
	Validating Input and Output XML Data
	Validating Input and Output XML Data for a Standalone Server
	Validating Input and Output XML Data for WebLogic Server or Tomcat

	About Connecting Web Services Manager to the BRM System
	Connecting Web Services Manager to the BRM System
	Connecting to a Different Instance of BRM

	Configuring Security for Web Services Manager
	Configuring Security for Standalone Web Services Manager
	Configuring Security for Web Services Manager in WebLogic Server
	Configuring Authentication for WebLogic Server
	Configuring WebLogic Security Policy on BRM Web Services for JAX-WS in WebLogic Server

	Configuring Security for Web Services Manager in Tomcat Server
	Configuring Authentication for Web Services Manager for JAX-WS in Tomcat Server
	Enabling SSL in Tomcat Server

	Disabling the JarScanner Feature in Tomcat Server
	Configuring Java Logging for the Application Server
	Configuring Java Logging for WebLogic Server
	Specifying the Java Unified Logging (JUL) Mechanism
	Creating a Startup Class

	5 Securing Web Services Manager with OAuth 2.0
	About the OAuth 2.0 Authorization Framework
	Setting Up Web Services Manager with OAuth 2.0
	Creating an OAuth Identity Domain
	Creating a Resource Server
	Creating an OAuth Client
	Validating Your OAuth Setup
	Configuring Standalone Web Services Manager
	Configuring Web Services Manager for WebLogic Server

	Sending SOAP Requests to BRM Web Services

	6 Customizing Web Services for a Standalone Server
	Setting Up Web Services Manager to Support Custom Fields in Opcodes
	Setting Up Web Services Manager to Support Unexposed Opcodes for XML-Element Services
	Setting Up Web Services Manager to Support Custom Opcodes
	Supporting Custom Opcodes for XML-Element Services
	Supporting Custom Opcodes for XML-String Services

	7 Customizing Web Services for WebLogic Server or Tomcat Deployments
	Setting Up Web Services Manager to Support Custom Opcodes
	Creating a Custom Web Service
	Generating the Schema Files for Your System

	8 Generating the Schema for Your Opcodes
	Generating the Schema for an Existing Opcode
	Creating Opcode Specification Schema Files
	Specifying the XSL Rules to Create the Opcode Schema

