
Oracle® Communications Billing and
Revenue Management
Setting Up Pipeline Rating and Discounting

Release 15.1
F93241-01
April 2025



Oracle Communications Billing and Revenue Management Setting Up Pipeline Rating and Discounting, Release 15.1

F93241-01

Copyright © 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xiii

Documentation Accessibility xiii

Diversity and Inclusion xiii

Part I   Configuring Pipeline Rating

1   About Pipeline Rating

About Configuring Pipeline Rating 1-1

Rating EDRs Split Across Time Periods 1-1

About Pipeline Charge Versions 1-3

About Pipeline Charge Configurations 1-4

Using Passthrough Prices 1-4

About Pipeline Rate Adjustments 1-5

2   Configuring Pipeline Rating

About Configuring Function Modules for Pipeline Rating 2-1

About the Rating Data Modules 2-1

About Using Filter Sets to Apply System Products and Discounts 2-2

Loading Filter Set Data into BRM 2-2

Defining Your Filter Sets 2-3

About Global Rating 2-4

About Least Cost Rating 2-4

Configuring Least Cost Rating 2-5

Specifying the Rules to Qualify for Least Cost Rating 2-5

About Calculating the Promotional Savings 2-6

Specifying the Rules to Qualify for Promotional Savings 2-7

About Overlay Promotions 2-7

How Pipeline Modules Process Overlay Promotions 2-8

About Rating with Products and Discounts Whose Validity Starts on First Usage 2-9

About Suspending EDRs for Products and Discounts that Start on First Usage 2-11

iii



Configuring Pipeline Output for First-Usage Products, Discounts, and Balance Elements 2-12

Configuring First-Usage Output Streams 2-12

Specifying the First-Usage Format and Mapping Files in the DataDescription
Registry 2-12

About Updating Validity Period Information in the BRM Database 2-13

Loading the First-Usage Validity Templates 2-13

Configuring the ConfigurableValidityHandler Batch Handler 2-14

Configuring Batch Controller to Start the ConfigurableValidityHandler Batch Handler 2-14

Setting Up Recycling for Events whose Product or Discount Validity Starts on First
Usage 2-16

About First-Usage Validity for Events Rated Out of Order 2-16

About Customer Rating 2-16

Assigning a Default Charge and Default Segment for Customer Rating 2-17

About Customer Rating and Service Level Agreements 2-17

About Rate-Service Class Mapping 2-17

About Setting Up RSC Mapping 2-18

About RSC Maps 2-18

About Main Rating 2-18

About Rate Adjustment 2-19

Creating a Rate Adjustment Rules File 2-19

About Consolidation for BRM Billing 2-21

How the FCT_BillingRecord Module Works 2-21

Billing Consolidation with CIBER Roaming and Revenue Assurance 2-22

How the ISC_PostRating iScript Works 2-22

Adding Pipeline Rating Data to an Invoice 2-23

Specifying Invoice Data from Pipeline Manager and Custom Applications 2-23

Using Data Map Templates 2-23

Loading the Invoice Data Map Templates 2-25

Enabling Event Caching 2-25

Adding Invoice Data to Pipeline Output 2-26

Using the pin_virtual_time Utility with Pipeline Manager 2-26

3   Configuring EDR Input Processing

About the Input Process 3-1

About Setting Up Input Processing 3-3

About Input Processing File Types 3-4

Creating a Stream Format Description File 3-4

Record Types 3-6

Record Type SEPARATED 3-7

Record Type FIX 3-7

Record Type ASN 3-7

Syntax of the Stream Format Description File 3-8

iv



Supported Data Types for the Stream Format Description File 3-8

ASCII Data Types 3-8

ASN.1 Data Types 3-10

TAP Data Types 3-13

Setting Up an Input Mapping File 3-13

Setting Up an Input Grammar File 3-14

Configuring the Input DataDescription Registry Section 3-14

About the Order of Listing Stream Format Description Files 3-15

Configuring the Input Section in the Registry 3-15

About Getting Pipeline Input from Files 3-16

About Getting Pipeline Input from a Database 3-16

Specifying the Maximum Errors Allowed in an Input File 3-16

Reading TAP Files 3-17

About Customizing Mapping of Flist Fields to Rating EDR Container Fields 3-19

About the POID Format in the Rating EDR Container 3-21

Mapping an Flist Field to Multiple Rating EDR Container Fields 3-21

Using Conditions to Map an Flist Field to a Rating EDR Container Field 3-22

4   Configuring EDR Output Processing

About the Output Process 4-1

About the Output Processing System Components 4-1

About the Output Modules 4-2

About Output Processing File Types 4-2

About ASN.1 Output 4-3

About Configuring Output Processing 4-3

About Configuring the Output Section in the Registry 4-3

About Configuring Statistics Information in the Output Section 4-4

Configuring Output for Rated Events 4-5

Creating Separate Output Streams for Each Service 4-5

Creating Multiple Output Streams in One Output Registry 4-6

Configuring the Output DataDescription Registry Section 4-6

About the Order of Listing Stream Format Description Files 4-7

Configuring Output for Rejected or Duplicate EDRs 4-7

Sending Output to a File 4-7

Configuring the Temporary File Name 4-8

Configuring File Prefixes and Suffixes 4-8

Creating an Output File Name from the Input File Name 4-8

Applying a Prefix to the Sequence Number 4-8

Using the Output of One Pipeline as the Input to Another Pipeline 4-9

Sending Output to a Database 4-9

About the OUT_DB Module Configuration Files 4-10

v



Specifying the Destination 4-11

Specifying the Source 4-11

Handling Empty Output Streams 4-11

Parameter File 4-11

HEADER, TRAILER, and DETAIL Table Definitions 4-11

SqlBeginStream 4-12

SqlEndStream 4-12

Generated Configuration File 4-13

5   Configuring EDR Preprocessing

Handling Duplicate EDRs 5-1

Configuring Duplicate EDR Checking 5-1

Setting Date Parameters for Storing Processed EDRs 5-2

Specifying the Fields to Use for Duplicate Check 5-2

Specifying a Search Key for Duplicate Check 5-3

Managing FCT_DuplicateCheck Data Files 5-3

About Storing EDRs in a Database Instead of Files 5-4

Using Duplicate Check with Multiple Pipelines 5-5

Suspending Duplicate EDRs 5-5

Assembling EDRs 5-5

How FCT_CallAssembling Classifies EDRs 5-6

Managing the Call Assembling Data Files 5-7

Configuring Call Assembling 5-7

Rating Calls by Time Duration 5-8

Rating Incomplete Time Duration Calls 5-8

Removing Incomplete Time Duration Calls 5-10

Dropping Late Calls 5-10

Rating Calls by Implied Time Duration 5-11

Rating Calls by Volume of Data Sent 5-12

Specifying a Time Error 5-13

Rating Continuous Data Calls by Segment 5-14

Rating Partial Calls by Service 5-14

Capturing Fields From the Last Call Record 5-15

Tracking the Status of Assembled Calls 5-15

Migrating Call Assembling Data Between Releases and Pipelines 5-16

Assembling Calls with Multiple Pipelines 5-17

Discarding and Skipping EDRs 5-17

Configuring EDR Discarding 5-17

About Configuring Discard and Skip Expressions 5-17

Configuring Output of Discarded EDRs 5-18

Generating Multiple TAP MOC and MTC Records 5-19

vi



Using Rules to Send EDRs to Different Output Streams 5-19

Configuring Enhanced Splitting 5-20

Sending EDRs to Pipeline Output Streams 5-20

Using Pipeline Manager with Multiple Database Schemas 5-21

Setting Up Account Identification in Multischema Systems 5-22

6   Setting Up EDR Enrichment

Identifying the Network Operator/Service Provider 6-1

Creating an NO/SP Map 6-1

Creating an NO/SP Data File 6-2

Setting Up Social Numbers 6-2

Creating a Social Number Data File 6-2

Creating Call Destination Descriptions 6-3

Setting Up Prefix/Description Mapping 6-3

Creating a Prefix/Description Data File 6-4

Mapping Multiple Phone Numbers to a Single Number 6-4

Creating a CLI Mapping File 6-4

Managing Number Portability 6-5

Number Portability for the Batch Pipeline 6-5

About Number Portability Files 6-5

Creating a Number Portability Data File 6-6

Purging and Reloading the Memory Records 6-7

Appending Additional Number Portability Records 6-7

Setting Up Number Portability 6-8

Setting Up Number Portability for Batch Pipeline 6-8

Setting Up Number Portability for Real-Time Pipeline 6-8

Configuring Number Portability Search 6-9

Configuring Normalization for Number Portability 6-9

7   Setting Up Pipeline Aggregation

About Aggregation 7-1

About Setting Up Aggregation Pipelines 7-1

About Aggregation Scenarios 7-2

Creating Aggregation Scenarios 7-2

Defining Filter Criteria 7-2

Specifying Scenario Attributes 7-3

About Creating Groups 7-3

About Creating Classes for Groups 7-4

About Defining Class Dependencies 7-5

vii



8   Migrating Pipeline Manager Data Between Test and Production Systems

About Pipeline Manager Data Migration 8-1

Understanding Change Sets 8-2

Understanding the Change Set Life Cycle 8-2

Understanding Locks and Associations 8-4

Understanding the Pricing Data Model 8-4

Locking and Association Rules 8-4

About the Change Set Manager 8-6

Using Pipeline Manager Data Migration Features in Your Business 8-7

Setting Up Development and Production Environments 8-8

Planning Your Work 8-8

Organizing Work into Change Sets 8-9

Testing Change Sets 8-9

Planning the Export Process 8-10

Managing Change Set Files 8-10

Planning the Import Process 8-11

Coordinating Real-Time Rating Data Migration and Pipeline Data Migration 8-11

Configuring Pipeline Manager Data Migration Features 8-11

Enabling Data Migration in Pricing Center 8-12

Copying Production Data to the Development System 8-12

Customizing Change Set States 8-12

Exporting and Importing Change Sets by Using the loadchangesets Utility 8-14

Specifying BRM Servers for the loadchangesets Utility 8-15

Working in Interactive and Non-Interactive Mode 8-15

Exporting and Importing Change Sets in Interactive Mode 8-15

Exporting and Importing Change Sets in Non-Interactive Mode 8-16

9   Transferring Data Between Pipeline Manager Databases

About Transferring Data 9-1

About Specifying the Data to Extract 9-1

About Creating an Input XML File to Extract Data 9-1

About Specifying to Extract Child and Dependent Objects 9-2

About Using Regular Expressions when Specifying the Data to Extract 9-3

About the LoadIfwConfig Error Messages 9-4

Using LoadIfwConfig to Transfer Data Between Databases 9-5

Connecting LoadIfwConfig to the Pipeline Manager Database 9-5

Customizing the Regular Expression and Dependent Table Settings 9-6

Extracting Data from a Pipeline Manager Database 9-7

Extracting All Database Objects with LoadIfwConfig 9-7

Extracting All Database Objects Modified after a Specific Time 9-8

viii



Extracting a Subset of Database Objects with LoadIfwConfig 9-9

Loading Data into Pipeline Manager Databases 9-10

Updating the Pipeline Manager Database 9-10

Inserting Data into the Pipeline Manager Database 9-11

Deleting Data from a Pipeline Manager Database 9-11

10  
 

Creating iScripts and iRules

About iScripts 10-1

About iRules 10-1

Creating Rule Sets via Description Files 10-2

Descriptions for Data from an ASCII File 10-2

Descriptions for Data from a Database Table 10-2

Importing and Exporting Validation Rules 10-3

About the Rule Set XML File 10-3

About the db2irules.pl Script 10-4

About the irules2db.pl Script 10-5

Updating a Rule Set 10-5

Supported iScript Data Types 10-6

Supported iScript Constants 10-6

Constants for Normalizing National Access Codes 10-6

Date Constants 10-7

Database Connection Constants 10-7

Decimal Constants 10-8

Decimal Rounding Constants 10-8

EDR Container Content Constants 10-8

EDR Container Characters Deletion Constants 10-9

EDR Input State Constants 10-9

EDR Internal State Constants 10-9

POID Constants 10-10

TAM Transaction Constants 10-10

Supported Regular Expressions 10-10

iScript Variable Declarations 10-11

iScript Arrays and Hashes 10-11

iScript Function Declarations 10-12

iScript Control Structures 10-13

iScript Function Blocks 10-13

Using iScript Switch Statements 10-14

Examples for Switch Statements 10-14

Including Other iScript Source Files in Your iScript 10-15

About iScript Functions 10-15

About Special iScript Functions 10-15

ix



Pipeline-Related Function Hooks 10-16

EDR Processing-Related Function Hooks 10-16

Input Grammar-Related Function Hooks 10-16

Transaction-Manager Related Function Hooks 10-17

About iScript Flist Extension Functions 10-17

Improving Pipeline Performance in Custom iScripts and iRules 10-18

Part II   Configuring Pipeline Discounting

11  
 

Configuring Discounting Modules and Components

Configuring a Batch Discounting Pipeline 11-1

About Setting the Validity of Balance Elements Impacted by Discounts 11-1

Configuring Batch Discounting to Restrict Balance Element Validity End Time 11-2

Calculating the Match Factor of Parallel and Sequential Discounts 11-2

Configuring a Real-Time Discounting Pipeline 11-3

Configuring a Real-Time Discounting Pipeline 11-3

Configuring the Input Registry Section 11-4

About Dumping Discount Information during Run Time 11-4

About Discount Transaction Management 11-4

About Processing Balance Groups Locked by Other Transactions 11-4

Configuring Custom Business Events for Pipeline Discounting 11-5

12  
 

Discounting Utilities

pin_discount_cleanup 12-1

load_pin_snowball_distribution 12-2

Part III   Customer and Financial Management

13  
 

Configuring Balance Monitoring in Pipeline Manager

About Balance Monitoring and Pipeline Rating 13-1

About Synchronizing Monitor Data Between Cycle-fee and Pipeline Batch Rating 13-2

Enabling Balance Monitoring in Pipeline Manager 13-2

14  
 

Setting Up Pipeline-Triggered Billing

About Pipeline-Triggered Billing 14-1

Pipeline-Triggered Billing Components 14-2

How Pipeline Manager Triggers Billing 14-3

x



About the Pipeline-Triggered Billing Modules 14-4

About BillHandler 14-4

Overview of the Immediate Billing Process 14-5

About Suspending Billing-Trigger EDRs 14-6

Configuring Pipeline-Triggered Billing 14-7

Setting Up Pipeline Manager to Trigger Billing 14-7

Setting Up the Billing Batch Applications 14-8

Configuring Batch Controller to Start BillHandler 14-8

Configuring BillHandler 14-9

Running the pin_bill_accts Utility 14-10

15  
 

Setting Up Revenue Assurance Manager for Pipeline Batch Rating

About Revenue Assurance 15-1

About Collecting Revenue Assurance Data from Pipeline Batch Rating 15-1

About Using Event Notification to Generate Revenue Assurance Data 15-2

About Control Points 15-3

About Aggregation Scenarios 15-3

About Linking Pairs of Rating, Rerating, and Written-Off Control Points 15-3

About Flows 15-4

About Using UE Loader to Load Revenue Assurance Data 15-4

About the Revenue Assurance Data Collected in Rated Event Loader 15-4

About Collecting Revenue Assurance Data on Written-Off EDRs 15-4

Configuring Revenue Assurance Manager 15-5

Configuring Event Notification 15-5

Selecting Aggregation Scenarios 15-6

Loading Scenarios into the Pipeline Manager Database 15-6

Identifying Control Point Locations for Revenue Assurance Data 15-6

Configuring the FCT_AggreGate Module to Collect Revenue Assurance Data 15-7

Using iScripts to Derive Grouping Fields 15-8

Configuring SimpleSample Files 15-9

Adding Control Points to Flows 15-10

Linking Rating, Rerating, and Write-Off Control Points 15-10

Setting Up UE Loader to Load Revenue Assurance Data into the Database 15-11

Setting Up UE Loader Templates 15-11

Setting Up Batch Controller to Call UE Loader 15-12

Setting Up Revenue Assurance Manager to Collect Data on Written-Off EDRs 15-12

About Aggregation Scenarios 15-12

Data Fields Collected by All Scenarios 15-13

Fields Used to Group Scenario Data 15-13

Preconfigured Aggregation Scenario Details 15-14

Creating New Aggregation Scenarios for Revenue Assurance 15-15

xi



Tracking EDRs by Using Batch IDs 15-16

Keeping Track of Rejected EDRs by Using Batch IDs 15-16

Setting the Default Batch ID Behavior 15-17

16  
 

Setting Up Pipeline Manager Taxation

About Pipeline Taxation 16-1

Setting Up Pipelines to Tax Events 16-1

Configuring Pipelines to Apply Flat Taxes 16-2

About Applying a Flat Tax by Using the ISC_TaxCalc iScript 16-2

About Consolidating Tax Data by Using the FCT_BillingRecord Module 16-3

Sample Flat Tax Configurations 16-3

Applying Flat Taxes to Outcollect Roaming Calls 16-3

Applying Flat Taxes to Third-Party Content Usage 16-4

17  
 

Credit Limit and Threshold Checking during Batch Rating

About Credit Limit and Threshold Checking during Batch Rating 17-1

About the Format of the XML Output File Name 17-2

About Loading Notifications from Pipeline Manager to BRM 17-2

Setting Up the Batch Rating Process to Perform Threshold Checking 17-3

Enabling Threshold Checking in Pipeline Manager 17-3

Configuring Batch Controller to Run load_notification_event 17-4

Configuring Pipeline Manager to Perform Threshold Checking 17-5

xii



Preface

This book describes how to set up Oracle Communications Billing and Revenue Management
Pipeline Manager to rate and discount usage events.

Audience
This book is intended for pricing administrators and charging experts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc


Part I
Configuring Pipeline Rating

This part describes how to configure pipeline rating in an Oracle Communications Billing and
Revenue Management (BRM) system. It contains the following chapters:

• About Pipeline Rating

• Configuring Pipeline Rating

• Configuring EDR Input Processing

• Configuring EDR Output Processing

• Configuring EDR Preprocessing

• Setting Up EDR Enrichment

• Setting Up Pipeline Aggregation

• Migrating Pipeline Manager Data Between Test and Production Systems

• Transferring Data Between Pipeline Manager Databases

• Creating iScripts and iRules



1
About Pipeline Rating

This chapter describes how to configure pricing components for rating with Oracle
Communications Billing and Revenue Management (BRM) Pipeline Manager.

About Configuring Pipeline Rating
Configuring pipeline rating involves two sets of tasks:

• Creating pricing components by using Pricing Center or PDC.

• Configuring rating function modules.

Rating EDRs Split Across Time Periods
Event data records (EDRs) sometimes overlap time periods. For example, if off-peak rating
starts at 7:30 p.m., and a call begins at 7:10 p.m. and ends at 7:35 p.m., the call overlaps the
boundary between peak and off-peak rates. When you define a charge, you specify a Splitting
option that determines how an EDR that overlaps a time period is rated.

You can choose from four splitting options:

• No splitting, based on start time: Use the start time to rate the entire call.

• No splitting, based on end time: Use the end time to rate the entire call.

• Consecutive splitting: Split the call into separately rated parts. When using multiple price
steps for different usage levels, continue counting the call duration from the time of the
split.

• Isolated splitting: Split the call into separately rated parts. When using multiple price steps
for different usage levels, start over at zero from the time of the split.

The Consecutive and Isolated splitting options are used when you use a combination of price
steps and time-based rating. With this combination, you can have a case where an event is
split by time zones, resulting in the application of two different pricings, each with its own
Pricing Steps. The Consecutive and Isolated splitting options enable you to determine how to
handle the selection of the appropriate Pricing Step.

Here is an example:

Figure 1-1 shows the peak pricing and the off-peak pricing.

1-1



Figure 1-1    Peak and Off-Peak Pricing

06:00 - 07:30 is peak

07:30 - 10:00 is off-peak

An EDR is rated that starts at 7:10 and finishes 7:35, for a total of 25 minutes. The event is
split into two segments:

07:10 – 07:30 - peak (20 minutes)

07:30 – 07:35 - off-peak (5 minutes)

Figure 1-2 shows how Consecutive splitting works. The gray areas show how the pricing steps
are applied in both peak and off-peak pricing. In this case, the first 20 minutes apply to the
peak pricing, so the call is rated at .25 per minute, .10 per minute, and .5 per minute. The last 5
minutes are rated by the off-peak pricing, which, since it uses consecutive splitting, takes into
account the previous 20 minutes, and rates the final 5 minutes at .02 per minute.

Figure 1-2    Consecutive Splitting

Figure 1-3 shows how Isolated splitting works. In this case, the first 20 minutes apply to the
peak Pricing in the same way as Consecutive splitting. The last 5 minutes are rated by the off-
peak model, which, because it uses Isolated splitting, does not consider the previous 20

Chapter 1
Rating EDRs Split Across Time Periods

1-2



minutes. Instead, it begins counting at zero, so the remaining 5 minutes are rated by the first
step, that is, .08 per minute.

Figure 1-3    Isolated Splitting

Using Consecutive splitting and Isolated splitting gives different results for the final charge for
the EDR. In this example:

Table 1-1 shows the results of Consecutive splitting.

Table 1-1    Results of Consecutive Splitting

Usage Calculation Result

Peak (20 minutes) (5 * 0.25) + (15 * 0.10) +
(5 * 0.05)

3.00

Off-peak (5 minutes) 5 * 0.02 0.10

NA Total 3.10

Table 1-2 shows the results of Isolated splitting.

Table 1-2    Results of Isolated Splitting

Usage Calculation Result

Peak (20 minutes) (5 * 0.25) + (15 * 0.10) +
(5 * 0.05)

3.00

Off-peak (5 minutes) 5 * 0.08 0.40

NA Total 3.40

About Pipeline Charge Versions
Each charge must have at least one charge version and can have as many versions as you
need. Each charge version is valid for a different time period and only one version is valid for
each period. The start time of an EDR determines which charge version is used for that record.

Chapter 1
Rating EDRs Split Across Time Periods

1-3



In addition to the validity period, you specify a zone model when you define a charge version.
The zone model determines how calls to and from different regions are classified for rating.
Each charge version can use different zone models.

Charge versions are stored in the IFW_RATEPLAN_VER table in the Pipeline Manager
database.

Charge versions can be either basic or delta versions.

• A basic version can be used as the basis of other versions. You must specify all required
attributes when you create a basic charge version.

• A delta version inherits attributes from a basic charge version that you specify when you
create the delta version. In the delta version, you enter only the attributes that you want to
change. For example, you might change only the Version, Valid From, and Zone Model
fields.

About Pipeline Charge Configurations
The charge configuration determines which pricing or price selector is used to charge a given
EDR. When you define a charge configuration, you specify a combination of criteria that an
EDR must match to be rated by a particular pricing.

Each configuration maps a combination of service code, service class, and impact category to
a combination of time model and time period. The configuration then maps the time model/time
period combination to a pricing or price selector.

You can create any number of configurations for a charge version. The configurations in a
given charge version must cumulatively cover all possible combinations of service code,
service class, impact category, time model, and time period.

When you associate a pricing with a charge configuration, you can optionally specify an
alternative pricing that is used in addition to the main pricing. You can compare the charges
that result from the two models. For example, you may want to better understand the financial
impact of a change to a different pricing before committing to the change.

Charge configurations are stored in the IFW_RATEPLAN_CNF table in the Pipeline Manager
database.

Using Passthrough Prices
When you define a charge configuration, you can choose to ignore the calculated price and
use a price that is passed in by the CDR instead. For example, you can ignore the calculated
charge and use a passed-in charge if you receive external wholesale charges and want to use
them for retail rating.

You can also modify or replace the passed-in price by specifying an add-on type and entering a
charge. There are three add-on types:

• Percentage increases the passed-in price by a percentage that you enter.

• Addon Value increases the passed-in price by a fixed amount that you enter.

• New Value replaces the passed-in price with an amount you enter.

To use the passed-in price without modification, specify 0 as the charge.

Chapter 1
Rating EDRs Split Across Time Periods

1-4



About Pipeline Rate Adjustments
Rate adjustments are an optional way to customize a pipeline charge version. You can use rate
adjustments to provide discounts based on date, time, service, and other event attributes. For
example, you can provide a discount on all calls for a specific day.

An adjustment can be a percentage change to the original charge, a value to be added to the
charge, or a completely new value to replace the charge.

When you define a rate adjustment, you specify dates and times during which the adjustment
is valid and a maximum quantity above which the adjustment does not apply.

You also specify rules that determine whether an EDR qualifies for the adjustment. These rules
filter EDRs based on values such as usage class, usage type, service code, service class,
impact category, source network, and destination network. You can enter fixed values,
expressions, or a wildcard (.*) that matches all values.

When you use a rate adjustment, the original charge is overwritten by the adjusted charge.
This is different from discounting, which leaves the original charge in place while calculating a
discounted charge. Adjustments and discounts are also handled differently for accounting
purposes. When calculating the general ledger (G/L) impact, the adjusted amount is not
considered revenue. When you use discounting, however, the discounted amount is counted
as revenue.

There are two ways to define rate adjustments:

• You can define rate adjustments in Pricing Center. In this case, the rate adjustment data is
stored in the IFW_RATEADJUST table in the Pipeline Manager database.

• You can create a file that defines rate adjustment rules.

Rate adjustment is performed by the FCT_RateAdjust module. The module reads data from
the EDR and evaluates it according to the rate adjustment rules stored in the database or in
the rate adjustment file.

Chapter 1
Rating EDRs Split Across Time Periods

1-5



2
Configuring Pipeline Rating

This chapter describes how to configure the Oracle Communications Billing and Revenue
Management (BRM) pricing data and modules necessary for batch rating with Pipeline
Manager.

About Configuring Function Modules for Pipeline Rating
Three groups of modules are involved in rating:

• The pre-rating modules (FCT_ GlobalRating, FCT_CustomerRating, and FCT_RSC_Map)
gather information and prepare the event data record (EDR) for rating.

• The FCT_MainRating module applies charges and pricing to the EDR, creating charge
breakdown data, including charge packets with charges.

• The post-rating modules (FCT_RateAdjust and FCT_BillingRecord) make changes to the
EDR after the charge data is included.

Multiple Pipeline Manager modules add and delete charge packet blocks to EDRs. Therefore,
the value in the NUMBER_OF_CHARGE_PACKETS field does not reflect the actual number of
charge packets in the charge breakdown record. You can get the correct number of charge
packets by using the edrNumDatablocks function in a custom iScript module.

Depending on how your pipelines are set up, you need to configure some or all of these
modules for rating.

About the Rating Data Modules
Configure the following data modules for rating:

• DAT_AccountBatch

• DAT_BalanceBatch

• DAT_Calendar

• DAT_Currency

• DAT_Dayrate

• DAT_ExchangeRate

• DAT_ItemAssign

• DAT_ModelSelector

• DAT_NOSP

• DAT_PriceModel

• DAT_Rateplan

• DAT_TimeModel

2-1



About Using Filter Sets to Apply System Products and Discounts
Use filter sets to apply system products/charge offers and system discounts/discount offers to
a select group of customers. For example, you can provide reduced international call rates for
all customers with great credit.

When configured to use filter sets, the pipeline:

1. Analyzes each EDR to determine whether it meets the criteria for a filter set.

2. Adds any applicable system products/charge offers and system discounts/ discount offers,
along with their priorities, to the EDR's list of purchased products/charge offers.

3. Uses the product/charge offer and/or discount/discount offer when rating the EDR.

Note:

The actual product/charge offer or discount/discount offer the pipeline uses to
rate the EDR depends on how your system is configured.

You use the following to configure your system for filter sets:

• system_filterset_edr_field_values. This file specifies which EDR fields and values can
be used as filter criteria. You must load this file into the BRM database prior to creating
your filter sets.

• IRL_UsageType. This iRule assigns usage types to an EDR. This signals the pipeline that
the EDR qualifies for the special consideration that a filter set contains.

• FCT_Filter_Set. This module determines whether an EDR qualifies for any filter sets, and,
if it does, adds any applicable system products/charge offers and system discounts/
discount offers to the EDR's list of purchased products/charge offers.

To configure BRM to use filter sets, perform the following tasks:

1. Specify which EDR fields and values can be used as filter criteria and then load the data
into the BRM database. See "Loading Filter Set Data into BRM".

2. Define your filter sets by using a custom application. See "Defining Your Filter Sets".

3. Configure the IRL_UsageType iRule to assign usage types to EDRs.

4. Configure FCT_Filter_Set to apply system products/charge offers and discount/discount
offers to specified market segments. See "FCT_Filter_Set" in BRM Pipeline Manager
Reference.

5. Connect the FCT_DiscountAnalysis module to the FCT_Filter_Set module. Use the
FCT_DiscountAnalysis module's Filter_SetModule registry entry. See
"FCT_DiscountAnalysis" in BRM Pipeline Manager Reference.

Loading Filter Set Data into BRM
You can specify the EDR fields and values that you can use as filter criteria. To do so, you edit
the system_filterset_edr_field_values.en_US sample file in the BRM_home/sys/msgs/
system_filter_set directory. BRM_home is the directory where you installed BRM
components. For example, to use location as filter criteria, add these entries to the file:

Chapter 2
About Using Filter Sets to Apply System Products and Discounts

2-2



DETAIL.ASS_CAMEL_EXT.MSC_ADDRESS="London"
DETAIL.ASS_CAMEL_EXT.MSC_ADDRESS="Paris"

After defining the field values, you use the load_localized_strings utility to load the contents of
the system_filterset_edr_field_values.locale file into the /strings object. To run the
load_localized_strings utility, use this command:

load_localized_strings system_filterset_edr_field_values.locale

Note:

If you are loading a localized version of this file, use the correct file extension for your
locale.

Defining Your Filter Sets
You define your filter sets by creating a custom client application to call the filter set opcodes.
BRM then stores data about each filter set in /filter_set/product objects in the BRM database.

Note:

To create and manage filter sets by using a custom client application, configure your
application to call the filter set opcodes.

To create a filter set, perform the following:

1. Create your system products/charge offers and system discounts/discount offers and
associate them with specific service and event types. For example:

• Create a system charge offer for /service/telco/gsm/telephony events that charges a
flat rate of 5 cents per minute.

• Create a system discount offer for /service/telco/gsm/sms events that provides a
20% discount for the first 10 minutes of usage.

2. Create your filter sets by mapping filter criteria to system charge offers and system
discount offers. When creating filter sets, you specify:

• The conditions required for an EDR to qualify for a system charge offer or discount
offer. That is, the list of required EDR fields and values for each filter set.

• Applicable system products/charge offers and discounts/discount offers, along with
their priority and validity dates.

In Table 2-1, Filter_1 specifies that all GSM wireless calls made to Paris by customers with
great credit qualify for a 20% discount.

Chapter 2
About Using Filter Sets to Apply System Products and Discounts

2-3



Table 2-1    Example Filters

Filter name Filter criteria System charge offer
or system discount
offer

Priority

Filter_1 DETAIL.ASS_GSMW_EXT.RECORD_TYP
E="Great credit"

DETAIL.ASS_CAMEL_EXT.MSC_ADDRE
SS="Paris"

20% Discount 3

Filter_2 DETAIL.ASS_GSMW_EXT.RECORD_TYP
E="Great credit"

Flat rate charge offer 6

About Global Rating
Use global rating to rate every EDR by using the same set of charges. Global rating is
performed by the FCT_ GlobalRating module. This module adds an associated charge
breakdown record to the EDR. Each charge, or partial charge, from the global charges adds a
charge packet.

Global rating is typically used for gathering data used for business planning. For example:

• You can use global rating to calculate an average wholesale charge. You can then
compare the average charge with the actual charge to find profit margins for different
customer types.

• You can use global rating to calculate an average retail charge. You can use this data to
monitor unusual charge amounts that can indicate an error in a rating configuration.

To configure global rating, see "FCT_CustomerRating" in BRM Pipeline Manager Reference.
Use the EdrRatePlans registry entry to specify the global charges. You can use this entry in a
semaphore.

About Least Cost Rating
Use least cost rating to rate EDRs by using the charge offer that produces the lowest charge to
customers. In this configuration, the pipeline:

1. Rates EDRs by using all products/charge offers associated with an EDR and applies any
discounts.

2. Finds the charge and discount that produces the lowest charge.

3. Applies the lowest charge to the customer's balance impact.

Note:

An EDR can qualify for either least cost rating or overlay promotion. It cannot
qualify for both. See "About Overlay Promotions".

You use the following modules to find the lowest possible charge for an event:

• The IRL_LeastCostPerEDR iRule screens EDRs for least cost rating. It compares each
EDR against conditions that you specify. When an EDR meets the criteria, the module
flags the EDR for least cost rating.

Chapter 2
About Global Rating

2-4



• The FCT_CustomerRating module checks whether an EDR is flagged for least cost rating,
and, if it is, generates breakdown records and associated charge packets for each charge
offer. All charge packets are listed in order of priority, highest priority first.

• The ISC_LeastCost iScript calculates the total charge for each charge offer and discount
and flags the charge that produces the lowest charge. When the lowest charge is
generated by a promotional charge offer, the module also calculates the total savings
between the promotional charge offer and the lowest priority (base) charge offer.

You configure the modules in a discounting pipeline that includes the FCT_DiscountAnalysis
module and the FCT_Discount module. These modules find any applicable discounts for each
charge and calculate the discount for each charge packet.

Configuring Least Cost Rating
To set up least cost rating:

1. Specify your least cost rating criteria. See "Specifying the Rules to Qualify for Least Cost
Rating". To do so, you edit and configure the IRL_LeastCostPerEDR iRule. See
"IRL_LeastCostPerEDR" in BRM Pipeline Manager Reference.

2. Configure FCT_CustomerRating for least cost rating by using the LeastCostRating entry.
See "FCT_CustomerRating" in BRM Pipeline Manager Reference.

3. Configure the ISC_LeastCost iScript to find the lowest charge for customers. See
"ISC_LeastCost" in BRM Pipeline Manager Reference.

Specifying the Rules to Qualify for Least Cost Rating
To specify which EDRs are flagged for least cost rating:

1. Edit the Pipeline_home/iScriptLib/iScriptLib_Standard/IRL_LeastCostPerEDR.irl file to
include your rules for least cost rating. Pipeline_home is the directory where you installed
Pipeline Manager. The variables in the file correspond to positions in the
IRL_LeastCostPerEDR.data file.

For example, this rule specifies that EDRs matching the conditions in position 1 will have
their DETAIL.CUST_A.LEAST_COST EDR field set to the value in position 2 of the
IRL_LeastCostPerEDR.data file:

CONDITION:

SetLeastCostDefault ();
${1};

RESULT:
edrLong(DETAIL.CUST_A.LEAST_COST) = ${2};

2. Edit the Pipeline_home/iScriptLib/iScriptLib_Standard/IRL_LeastCostPerEDR.data file
to include the conditions required for least cost rating. Use Boolean operators to specify
the combinations of market segments and charge offer priorities for testing whether EDRs
qualify for least cost rating. You can create any number of entries.

For example, this rule specifies that only EDRs that meet both of these criteria are flagged
for least cost rating (DETAIL.CUST_A.LEAST_COST set to 2):

• MARKET_SEGMENT EDR field = 1234

• Charge offer priority greater than 4

segmentContains("1234") and priority()>4;2

Chapter 2
About Least Cost Rating

2-5



3. Configure the FCT_IRules module to point to IRL_LeastCostPerEDR.irl.

Note:

If you configure a pipeline to use filter sets, make sure IRL_LeastCostPerEDR
runs after FCT_Filter_Set.

See "IRL_LeastCostPerEDR" in BRM Pipeline Manager Reference.

About Calculating the Promotional Savings
You can calculate how much money your customers save when an event is rated with a
promotional charge offer rather than a base charge offer by using promotional savings.
Promotional savings allows you to calculate the difference in charges between a promotional
charge offer and the base charge offer, so you can advertise the savings to your customers.

When configured for promotional savings, the pipeline:

1. Rates EDRs by using the highest priority charge offer and the lowest priority (base) charge
offer.

2. Calculates the difference between the charge for the promotional charge offer and the
charge for the base charge offer.

3. Applies the savings amount to the EDR.

Note:

The pipeline applies the savings amount only when the promotional charge offer
generates the lowest charge.

You use the following modules to calculate promotional savings:

• The IRL_PromotionalSavingPerEDR iRule screens EDRs for promotional savings. It
compares each EDR against your specified criteria. When an EDR meets the criteria, the
module flags the EDR for promotional savings.

• The FCT_CustomerRating module checks whether an EDR is flagged for promotional
savings, and, if it is, generates separate charge breakdown records and associated charge
packets for the highest priority (promotional) and lowest priority (base) charge offer.

• The ISC_LeastCost iScript calculates the charges for the highest and lowest priority
products/charge offers and calculates the total savings amount.

See "How Pipeline Modules Process Overlay Promotions" for information about how the
processing of overlay promotions and promotional savings are related.

To set up promotional savings:

1. Specify your promotional savings criteria. See "Specifying the Rules to Qualify for
Promotional Savings".

2. Configure FCT_CustomerRating for promotional savings by using the PromotionalSaving
entry. See "FCT_CustomerRating" in BRM Pipeline Manager Reference.

Chapter 2
About Calculating the Promotional Savings

2-6



3. Configure ISC_LeastCost to calculate the promotional savings amount. See
"ISC_LeastCost" in BRM Pipeline Manager Reference.

Specifying the Rules to Qualify for Promotional Savings
To specify which EDRs are flagged for a promotional savings calculation:

1. Edit the Pipeline_home/iScriptLib/iScriptLib_Standard/
IRL_PromotionalSavingPerEDR.irl file to include your rules for qualifying for a
promotional savings calculation. The variables in the file correspond to positions in the
IRL_PromotionalSavingPerEDR.data file.

For example, this rule specifies that EDRs matching the conditions in position 1 will have
their DETAIL.CUST_A.PROMOTIONAL_SAVING EDR field set to the value in position 2:

CONDITION:

${1};

RESULT:
edrLong( DETAIL.CUST_A.PROMOTIONAL_SAVING ) = ${2};

2. Edit the Pipeline_home/iScriptLib/iScriptLib_Standard/
IRL_PromotionalSavingPerEDR.data file to include your conditions for qualifying for a
promotional savings calculation. Use Boolean operators to specify the required
combination of filter sets and charge offer priorities. You can create any number of entries.

For example:

productName("Standard GSM Telephony", "Highest") and priority("Highest") > 
4 and usageStartTimeGreaterThan("20040101000000", "Highest") and 
serviceType("/service/telco/gsm/telephony", "Highest"); 2

productName("Standard GSM Telephony", "Base") and priority("Base") < 4 and 
usageStartTimeGreaterThan("20040101000000", "Base") and serviceType("/
service/telco/gsm/telephony", "Base"); 2

3. Configure the FCT_IRules module to run the IRL_PromotionalSavingPerEDR iRule. Use
the PromotionalSaving entry to specify the path to your IRL_PromotionalSavingPerEDR
iRules file.

For more information, see "IRL_PromotionalSavingPerEDR" in BRM Pipeline Manager
Reference.

About Overlay Promotions
Overlay promotions allow you to quickly and easily replace your existing products/charge offers
and discounts/discount offers with special products/charge offers and discounts/discount offers
that take precedence. For example, you may want to offer a special 10% discount for three
months to your existing customers who have paid all their bills on time. To do this, you add a
charge offer that offers the same services but costs10% less and has a higher priority than the
original charge offer.

You do not need to create new zone models for promotional products/charge offers.
Promotional products/charge offers can use the same zone models as standard products/
charge offers. For example, you can create two promotional products/charge offers,
CALL_USA and CALL_INDIA. You can give CALL_USA priority 4 and CALL_INDIA priority 2,
while your base charge offer has priority 0. There is no need to create special zone models for

Chapter 2
About Overlay Promotions

2-7



the promotional charge offers. If a customer buys the promotional products/charge offers, BRM
uses them to rate calls to the US and India. Calls to other countries will be rated using the base
product/charge offer.

The capability to use overlay promotions is built into a pipeline, which:

• Recognizes and uses product/charge offer priorities.

• Allows you to associate multiple products/charge offers with the same service and event.

• Allows you to rate calls using overlay promotions only.

Note:

The overlay promotions feature interacts with least cost rating and promotional
savings. An EDR can qualify for either least cost rating or overlay promotion. It
cannot qualify for both.

How Pipeline Modules Process Overlay Promotions
The overlay promotions feature requires no special configuration of pipeline modules. The
following modules are involved in the processing of overlay promotions:

• FCT_CustomerRating. The module creates a list of associated charge breakdowns and
corresponding charge packets ordered from highest to lowest priority. If two products/
charge offers have the same priority, the charge offer with the earliest start time is given a
higher priority.

The module then determines whether an EDR qualifies for least cost rating or overlay
promotions. If the EDR qualifies for overlay promotions, the module further checks whether
the EDR qualifies for promotional savings.

Note:

An EDR can qualify for either least cost rating or overlay promotion. It cannot
qualify for both. If the EDR qualifies for overlay promotion, it may also qualify for
promotional savings.

If the EDR is eligible for least cost rating, FCT_CustomerRating performs these tasks:

– Enables least cost rating by setting the DETAIL.CUST_A.LEAST_COST field to 2.

– Disables promotional savings and overlay promotion by setting the
DETAIL.CUST_A.PROMOTIONAL_SAVING and DETAIL.CUST_A.PROMOTION
fields to 1.

If the EDR is eligible for overlay promotions and promotional savings,
FCT_CustomerRating performs these tasks:

– Enables promotional savings by setting the
DETAIL.CUST_A.PROMOTIONAL_SAVING field to 2.

– Disables overlay promotions and least cost rating by setting the
DETAIL.CUST_A.PROMOTION and DETAIL.CUST_A.LEAST_COST fields to 1.

Chapter 2
About Overlay Promotions

2-8



If the EDR qualifies for overlay promotions but not promotional savings,
FCT_CustomerRating performs these tasks:

– Enables overlay promotions by setting the DETAIL.CUST_A.PROMOTION field to 2.

– Disables least cost rating and promotional savings by setting the
DETAIL.CUST_A.LEAST_COST and DETAIL.CUST_A.PROMOTIONAL_SAVING
fields to 1.

• FCT_PreRating. The module populates the zoning information for each charge breakdown
record in the EDR:

– If least cost rating is used, the module finds the zoning information for all charge
breakdown records. See "About Least Cost Rating".

– If promotional savings or overlay promotion is used, the module finds the zoning
information for at least one charge breakdown record. See "About Overlay
Promotions".

• FCT_MainRating. The module functions differently depending on whether the EDR is
rated in least cost rating, overlay promotion, or promotional savings mode:

– Least cost mode. The module rates all charge breakdown records. If it fails to rate
any charge breakdown record, it returns an error. See "About Least Cost Rating".

– Overlay promotion mode. The module tries to rate charge breakdown records
starting with the highest priority record. If rating is successful for a charge breakdown
record, the module selects the charge of that record and populates the
INTERN_FOUND_PP_INDEX field with the index of that charge. The module then
deletes all other charge breakdown records from the container.

– Promotional savings mode. The module tries to rate charge breakdown records,
starting with the highest priority record. If rating is successful for a charge breakdown
record, the module selects the charge of that record and populates the
INTERN_FOUND_PP_INDEX field with the index of that charge. The module
continues rating charge breakdown records until it reaches the last record. It then
checks for and selects the last successfully rated record. The module keeps the first
and last successful charge breakdown records in the EDR container but deletes all
others. See "About Calculating the Promotional Savings".

About Rating with Products and Discounts Whose Validity Starts
on First Usage

The effective period of an account's products/charge offers and discounts/discount offers can
start when the products/charge offers and discounts/discount offers are first used to rate a
subscriber's usage.

If products/charge offers or discounts/discount offers are configured to start on first usage, you
set up pipeline rating to set their validity periods when first usage occurs.

Note:

Balance Elements that are granted by products/charge offers and discounts/discount
offers can also start on first usage. To set balance element validity when first usage
occurs, you configure the batch discounting pipeline. See "About Setting the Validity
of Balance Elements Impacted by Discounts ".

Chapter 2
About Rating with Products and Discounts Whose Validity Starts on First Usage

2-9



When configured to set validity on first usage, the pipeline:

1. Suspends EDRs that use products/charge offers or discounts/discount offers configured to
start on first usage until the product/charge offer and discount/discount offer validity
periods are set.

EDRs are not suspended when first-usage balance element validity is set because the
pipeline calculates and stores the validity period in memory. The pipeline uses the stored
validity period if it needs to consume balance elements for any other events before the
balance validity period has been set in the database.

2. Sends the charge offer or discount offer information to a file in the output stream.

BRM processes the file, sets the validity periods in the database, and charges any
applicable purchase and cycle fees. While their validity periods are being set, the products/
charge offers and discounts/discount offers are locked.

3. If the event is discounted and the discount balance impact consumes a balance element
balance that starts on first usage, the pipeline sends the balance element information to a
file in the output stream.

BRM processes the file and sets the balance element validity periods in the database. If
the validity period of all first-usage balance elements are configured to be synchronized,
BRM also sets the validity period of those balance elements.

4. Rates the events when the EDRs are recycled.

If the pipeline transaction is rolled back or canceled, the validity period of any charge offer or
discount offer that was set in the transaction is unset.

BRM uses the EAI framework and Oracle DM to synchronize charge offer and discount offer
validity periods in the BRM database and pipeline memory.

The following modules are involved in setting the effective periods of products/charge offers
and discounts/discount offers:

• The FCT_FirstUsageNotify module. See "About Suspending EDRs for Products and
Discounts that Start on First Usage".

• The DAT_AccountBatch module determines if an account's products/charge offers and
discounts/discount offers start on first usage, determines the state of the validity period,
and calculates the validity periods based on the EDR timestamp. It sends this information
to the FCT_Account module.

The state of a validity period is used for coordinating the validity-setting and EDR-
suspension processes. The state can be one of the following:

– NOT_FirstUsage: Indicates that the charge offer or discount offer's validity period is
already set in the database.

– NEW_FirstUsage: Indicates that the charge offer or discount offer is configured to
start on first usage and that its validity period has not yet been initialized.

– INIT_FirstUsage: Indicates that the charge offer or discount offer's validity period has
been initialized but has not yet been stored in the database.

If the validity periods of all first-usage balance elements in the bundle should be
synchronized, DAT_AccountBatch retrieves a list of the balance groups that have first-
usage validity and are associated with the products/charge offers or discounts/discount
offers in the bundle.

• The FCT_ApplyBalance module. See "About Setting the Validity of Balance Elements
Impacted by Discounts ".

Chapter 2
About Rating with Products and Discounts Whose Validity Starts on First Usage

2-10



• The OUT_GenericStream module and related modules. See "Configuring Pipeline Output
for First-Usage Products, Discounts, and Balance Elements".

To set the validity for products/charge offers and discounts/discount offers that start on first
usage, you must also perform these tasks:

• Configure BRM recycling to recycle suspended EDRs. For more information, see "Setting
Up Recycling for Events whose Product or Discount Validity Starts on First Usage".

• Use Universal Event (UE) Loader to update the validity periods in the BRM database. See
"About Updating Validity Period Information in the BRM Database".

About Suspending EDRs for Products and Discounts that Start on First
Usage

Use the FCT_FirstUsageNotify module to suspend EDRs while BRM sets the validity periods
of products/charge offers and discounts/discount offers that start on first usage. See
"FCT_FirstUsageNotify" in BRM Pipeline Manager Reference.

Note:

To recycle and rate EDRs that are suspended while validity is being set, you must
configure BRM standard recycling. See "Configuring Standard Recycling" in BRM
Suspending and Recycling Pipeline EDRs.

If a call details record (CDR) uses both a charge offer and a discount offer that start on first
usage for the first time, the EDR is suspended and recycled twice: once to set the charge offer
validity period and again to set the discount offer validity period. This is because the charge
offer may grant balance elements that can be impacted by the discount offer, so the charge
offer's purchase and cycle events need to be processed before the discount offer is evaluated.

The FCT_FirstUsageNotify module performs the following tasks:

1. Checks whether the products/charge offers and discounts/discount offers used to rate an
EDR have validity periods that start on first usage.

2. If a product/charge offer and discount/discount offer starts on first usage, flags the EDR for
suspense and recycling by setting the
ERR_FIRST_USAGE_VALIDITY_NEEDS_INITIALIZING error code and the
FirstUsageValidity recycle key in the EDR.

3. Notifies the DAT_AccountBatch module that the validity period of the charge offer or
discount offer is being set.

4. Sends the charge offer and discount offer validity information to a separate output stream.

5. Continues to flag for suspense and recycling subsequent EDRs that use the products/
charge offers or discounts/discount offers with first-usage validity until the validity period is
set.

FCT_FirstUsageNotify predetermines whether the FCT_Reject module will reject an EDR.
FCT_FirstUsageNotify does not process EDRs that will be rejected because product/charge
offer, discount/discount offer, or balance element validity should not be set for EDRs that will be
otherwise suspended.

Chapter 2
About Rating with Products and Discounts Whose Validity Starts on First Usage

2-11



Configuring Pipeline Output for First-Usage Products, Discounts, and
Balance Elements

In the batch rating pipeline, you configure two output streams: one for files containing products/
charge offers and discounts/discount offers that start on first usage, and another for files
containing balance elements that start on first usage.

To create the first-usage output streams, configure the following:

• The OUT_GenericStream module. See "Configuring First-Usage Output Streams ".

• The DataDescription section of the registry. See "Specifying the First-Usage Format and
Mapping Files in the DataDescription Registry".

Configuring First-Usage Output Streams
Configure the OUT_GenericStream module to write the first-usage products/charge offers,
discounts/discount offers, and balance elements to an output file.

The default output grammar description files are:

• For products/charge offers and discounts/discount offers,
FirstUsageNotify_OutGrammar.dsc.

• For balance elements, FirstUsageResource_OutGrammar.dsc.

In the EXT_OutFileManager section of the registry, specify the temporary file specifications as
follows:

• For first-usage products/charge offers and discounts/discount offers:

OutputPath = ./data/out/firstUsage/prod_disc
OutputPrefix = test_PROD
OutputSuffix = .out_1
TempPrefix = .
TempDataPath    = ./data/out/firstUsage/prod_disc
TempDataPrefix  = prod.tmp.
TempDataSuffix  = .data_1

• For first-usage balance elements:

OutputPath = ./data/out/firstUsage/resources
OutputPrefix = test_RES
OutputSuffix = .out_1
TempPrefix = .
TempDataPath    = ./data/out/firstUsage/resources
TempDataPrefix  = res.tmp.
TempDataSuffix  = .data_1

See "OUT_GenericStream" in BRM Pipeline Manager Reference.

Specifying the First-Usage Format and Mapping Files in the DataDescription Registry
Configure the first-usage stream formats, input mapping, and output mapping in the batch
pipeline DataDescription registry section as follows:

DataDescription
{ 
   Standard 
   { 

Chapter 2
About Rating with Products and Discounts Whose Validity Starts on First Usage

2-12



   ModuleName = Standard 
   Module 
   { 
   StreamFormats
   {
      FIRST_USAGE_NOTIFY_OUTPUT=./formatDesc/Formats/FirstUsageNotify/FirstUsageNotify.dsc 
      FIRST_USAGE_RESOURCES=./formatDesc/Formats/FirstUsageNotify/FirstUsageResource.dsc
   }
   . . .
   OutputMapping
   {
      FIRST_USAGE_PROD_DISC=./formatDesc/Formats/FirstUsageNotify/FirstUsageNotify_OutMap.dsc
      FIRST_USAGE_RESOURCES=./formatDesc/Formats/FirstUsageNotify/FirstUsageResource_OutMap.dsc

   }
   }
   }
}

For more information, see "Configuring Output for Rated Events".

About Updating Validity Period Information in the BRM Database
You use UE Loader to update validity periods in the BRM database when first usage occurs.

You use the ConfigurableValidityHandler batch handler to run the UE Loader utility (uel).

Perform the following tasks to update validity periods for first-usage products/charge offers,
discounts/discount offers, and balance elements:

• Load the first-usage validity Universal Event Mapper templates. See "Loading the First-
Usage Validity Templates".

• Configure the ConfigurableValidityHandler batch handler. See "Configuring the
ConfigurableValidityHandler Batch Handler".

• Configure Batch Controller. See "Configuring Batch Controller to Start the
ConfigurableValidityHandler Batch Handler".

Loading the First-Usage Validity Templates
BRM provides two Universal Event (UE) Mapper event import templates that are used by UE
Loader to process the first-usage product/charge offer, discount/discount offer, and balance
element files output by the OUT_GenericStream module:

• FirstUsageProductsDiscounts.xml: This template defines the format of the first-usage
product/charge offer and discount files.

• FirstUsageResources.xml: This template defines the format of the first-usage balance
element files.

You must load these templates into the BRM database by running the pin_uei_deploy utility.

For example:

pin_uei_deploy -c -t FirstUsageProductsDiscounts -i BRM_home/formatDesc/Formats/
FirstUsageNotify/FirstUsageProductsDiscounts.xml 

pin_uei_deploy -c -t FirstUsageResources -i BRM_home/formatDesc/Formats/FirstUsageNotify/
FirstUsageResources.xml

Chapter 2
About Rating with Products and Discounts Whose Validity Starts on First Usage

2-13



Configuring the ConfigurableValidityHandler Batch Handler
BRM provides the ConfigurableValidityHandler batch handler for loading first-usage validity
data. You must configure ConfigurableValidityHandler to run the following utilities:

• pin_rel: This utility loads data for events that are rated in batches.

• uel: This utility loads validity period data for products/charge offers, discounts/discount
offers, and balance elements when they are used for the first time.

• pin_load_rerate_jobs: You must also configure to run this utility if you configured Pipeline
Manager to detect and rerate events that are rated out of order. This utility creates rerate
jobs for the events that were rated out of order.

For more information, see "About Using a Single Batch Handler to Run Multiple Loading
Utilities" in BRM Setting Up Pipeline Pricing.

To configure the ConfigurableValidityHandler batch handler, you edit the handler's configuration
file (BRM_home/apps/pin_rel/ConfigurableValidityHandler_config.values). You specify
handler, processing, and staging directories for each loading utility that this batch handler runs.

Configuring Batch Controller to Start the ConfigurableValidityHandler Batch Handler
Batch Controller polls the pipeline output directories and starts the ConfigurableValidityHandler
batch handler when a data file is ready to be loaded.

Note:

If you use the ConfigurableValidityHandler batch handler, do not configure Batch
Controller to run a separate instance of the handlers that load pipeline batch-rated
events, out-of-order rerating requests, or first-usage validity data. (You may configure
a separate instance of the Rated Event (RE) Loader handler that loads suspended
events into /suspended_usage objects.) If you have already configured Batch
Controller to run the out-of-order event handler (OODHandler), remove those entries
or comment them out.

To configure Batch Controller to start the ConfigurableValidityHandler batch handler:

1. Open the Batch Controller Infranet.properties file in BRM_home/apps/batch_controller.

2. Edit the file to include entries for the ConfigurableValidityHandler batch handler.

Note:

• If you have already configured the Batch Controller Infranet.properties file
for RE Loader, you can use the existing RE Loader entries and most of their
values or you can change them. Entries that you must change are marked
with an asterisk (*).

• If you have not yet configured the Batch Controller Infranet.properties file
for RE Loader, you must add ConfigurableValidityHandler values for all of the
following entries.

Chapter 2
About Rating with Products and Discounts Whose Validity Starts on First Usage

2-14



Table 2-2 lists the entries you must set and the default values used for RE Loader.

Table 2-2    Entries for RE Loader

Entry Description

batch.random.events Identifies this specific configuration for triggering Batch Controller.
For example:

batch.random.events   CdrFileEvent

event_name.name (Optional) A name for the configuration identifier. For example:

CdrFileEvent.name   CdrFileEvent

event_name.handlers The batch handler identifier. For example:

CdrFileEvent.handlers   ConfigurableValidityHandler

The default is relHandler.

event_name.file.location The full path to the pipeline output directory where the rated-event
files are deposited. For example:

CdrFileEvent.file.location   /export/portal/integRate

event_name.file.pattern The rated-event output file name.

You can use an asterisk (*) to represent zero or more characters in
the file name. No other wildcards (metacharacters) are supported.

For example:

CdrFileEvent.file.pattern   cdr*.dat

*handler_name.name The name of the batch handler that is run. For example:

ConfigurableValidityHandler.name ConfigurableValidityHan
dler

Note: If you did not change the default RE Loader value for
event_name.handlers, this entry should be:

relHandler.name   ConfigurableValidityHandler

handler_name.max.at.lowloa
d.time
handler_name.max.at.highlo
ad.time

The number of batch handler instances that can run concurrently
during periods of low load and high load usage. Typical default
settings are 6 at low load and 3 at high load. For example:

ConfigurableValidityHandler.max.at.highload.time   3
ConfigurableValidityHandler.max.at.lowload.time   6

*handler_name.start.string The full path to the ConfigurableValidityHandler handler. For
example:

ConfigurableValidityHandler.start.string   BRM_home/
apps/pin_rel/ConfigurableValidityHandler.pl

Note: If you did not change the default RE Loader value for
event_name.handlers, this entry should be:

relHandler.start.string   BRM_home/apps/pin_rel/
ConfigurableValidityHandler.pl

3. Save and close the file.

Chapter 2
About Rating with Products and Discounts Whose Validity Starts on First Usage

2-15



4. Stop and restart Batch Controller.

Setting Up Recycling for Events whose Product or Discount Validity Starts
on First Usage

To suspend and recycle EDRs while product/charge offer and discount/discount offer validity is
being set, you must configure BRM standard recycling. See "Configuring Standard Recycling"
in BRM Suspending and Recycling Pipeline EDRs.

For information about standard recycling, see "About Standard Recycling" in BRM Suspending
and Recycling Pipeline EDRs.

To recycle events suspended due to first-usage validity, you run the pin_recycle utility. Use the
-k parameter and specify the FirstUsageValidity recycle key. For example:

pin_recycle -k FirstUsageValidity 

For more information, see "Using Standard Recycling to Recycle Suspended EDRs" in BRM
Suspending and Recycling Pipeline EDRs and "pin_recycle" in BRM Pipeline Manager
Reference.

About First-Usage Validity for Events Rated Out of Order
In the batch rating pipeline, if events are rated in a different order than they occurred, validity
periods that are based on first usage may be incorrectly set. This can happen if the first event
rated, which initiated the validity period, wasn't actually the first usage event. To correct the
validity periods, you must rerate the events. Rerating corrects the order of the events and
resets the validity period based on the actual first-usage event.

About Customer Rating
Customer rating assigns a charge to an EDR based on customer data. The
FCT_CustomerRating module performs customer rating. The module creates an associated
charge breakdown record and one charge packet, which includes the charge code. The
FCT_MainRating module uses the charge code to rate the event.

To assign the charge, the FCT_CustomerRating module does the following:

• If the service that generated the event includes a service-level charge extended rating
attribute (ERA), that charge is used.

If you're using subscription services, and a subscription service and member service both
own a service-level charge ERA, the member service's ERA has priority and is used for
selecting the charge.

• If there is no service-level charge ERA, but there is an account-level charge ERA, that
charge is used.

• If there is no charge ERA, the charge associated with the last product/charge offer found is
used when there is more than one product/charge offer available.

To configure customer rating, see "FCT_CustomerRating" in BRM Pipeline Manager
Reference.

Chapter 2
About Customer Rating

2-16



Assigning a Default Charge and Default Segment for Customer Rating
When you configure the FCT_CustomerRating module, you can assign a default charge and
default segment to use if no customer information for the A number is found.

• Use the DefaultRateplan entry to specify the default charge name in case there is not
enough information to assign a charge. You can change this value by using a semaphore.

• Use the DefaultSegment entry to specify if segment rating is used, the default segment to
use if no segment is found. You can change this value by using a semaphore.

See "FCT_CustomerRating" in BRM Pipeline Manager Reference.

About Customer Rating and Service Level Agreements
You define service-level agreement (SLA) codes in Pricing Center or Pipeline Configuration
Center (PCC) to map service level agreements (SLAs) to a usage-scenario (USC) group, rate-
service class (RSC) group, and rule set. The SLA mapping is stored in the IFW_SLA database
table.

During customer rating, if the FCT_CustomerRating module finds an SLA code, the module
looks up the code in the IFW_SLA database table and adds the following data to the charge
packet:

• RSC group

• USC group

• Rule set

Pipeline Manager can use any one of these to determine the rate for the service level usage:

• The RSC group is used by the FCT_RSC_Map module to find the RSC map.
FCT_RSC_Map maps the usage class, usage type, service code, and impact category to a
new service class. See "About Setting Up RSC Mapping".

• The USC group is used by the FCT_USC_Map module to find the USC map.
FCT_USC_Map maps the usage class, usage type, service code, service class, and zone
to a new usage type and impact category.

About Rate-Service Class Mapping
You map a rate-service class (RSC) to perform rating based on the quality of service (QoS)
when you set up service-level agreements (SLAs). RSC mapping is performed by the
FCT_RSC_Map module, which maps the usage class, usage type, service code, and impact
category to a new service class.

You create RSC map groups to provide a different service class for each level of service
quality. You link the RSC map group to an SLA code in Pricing Center or Pipeline Configuration
Center (PCC). The FCT_CustomerRating module looks up the SLA code and adds the
associated RSC group to the charge packet (see "About Customer Rating and Service Level
Agreements"). FCT_RSC_Map uses the RSC group to evaluate the EDR and find the correct
RSC map.

The RSC map group is specified in the INTERN_SLA_RSC_GROUP field of the EDR. This
field is filled in by FCT_CustomerRating when the product/charge offer includes a service-level
agreement ERA. If INTERN_SLA_RSC_GROUP is empty, the default RSC group is used. You
specify the default RSC group in the DefaultRscGroup entry of the FCT_RSC_Map registry.

Chapter 2
About Rate-Service Class Mapping

2-17



About Setting Up RSC Mapping
To set up RSC mapping, do the following:

1. Use Pricing Center or Pipeline Configuration Center (PCC) to create RSC maps and RSC
map groups.

2. Use Pricing Center or PCC to create SLA codes and link them to RSC map groups.

3. Configure FCT_RSC_Map. See "FCT_RSC_Map" in BRM Pipeline Manager Reference.

About RSC Maps
To assign a new service class to the EDR, FCT_RSC_Map reads data from the EDR and
evaluates it according to the RSC map. An RSC map includes one or more mapping rules that
specify the data that must be matched to apply the new service class.

When you create RSC maps, you create a mapping rule for each new service class. You can
also define the order in which the rules are evaluated. The new service class is derived from
the first rule that matches the data. If no matching rule is found, FCT_RSC_Map uses the
default RSC map as defined in the registry. If no default value exists, no mapping is performed.

You can use the following EDR data to create an RSC mapping rule:

• The charge used to rate the EDR

• The QoS requested

• Usage class

• Usage type

• Service code

• Service class

• Impact category

When you create the mapping rules, you can use regular expressions. For information on the
regular expressions you can use, see "About Using Regular Expressions when Specifying the
Data to Extract".

To create a valid mapping, the data in the EDR must match all of the mapping data.

About Main Rating
The FCT_MainRating module carries out the pipeline rating functionality.

When an EDR is ready for rating, it includes all the data needed by FCT_MainRating; for
example, the service class, usage class, zone, and charge. The module uses the charge to
rate the EDR. To rate the EDR, the module uses information about dates, times, and the
pricing to apply charges. When rating is finished, the EDR contains complete charge
breakdown data, including charge packets with charges.

FCT_MainRating uses criteria in the charge configuration that apply to an EDR to find the
correct pricing to use for rating. If a single event is rated by using different time periods, such
as peak and off-peak, more than one pricing can be used. If an event is mapped to a price
selector, the model selector's rules are evaluated to choose a pricing.

Chapter 2
About Main Rating

2-18



If the charge configuration includes an alternative pricing, the module creates a new charge
packet. The EDR is rated again by using the alternative pricing. The charge packet is flagged
with the A (Alternative) pricing type.

During main rating, the module checks for the RUM group associated with the service code. At
least one charge packet is added to the EDR for each RUM assigned to the RUM group. A
single charge packet is generated for each time period, RUM, and balance element that is
used. (The balance elements are defined in the pricing.)

To configure main rating, see "FCT_MainRating" in BRM Pipeline Manager Reference.

About Rate Adjustment
You use rate adjustments to provide discounts based on date, time, service, and other event
attributes.

To set up rate adjustment, do the following:

1. Create rules that specify which EDRs to adjust and how to adjust them. You have two
options:

• Create rate adjustment rules in Pricing Center or Pipeline Configuration Center (PCC).
In this case, the rate adjustment data is stored in the Pipeline Manager database.

• Create a file that defines usage scenario maps. In this case, the FCT_RateAdjust
module reads the file. For information on creating the file, see "Creating a Rate
Adjustment Rules File".

2. Configure FCT_RateAdjust. See "FCT_RateAdjust" in BRM Pipeline Manager Reference.

Creating a Rate Adjustment Rules File
The rate adjustment rules can be defined in an ASCII file:

• Each rule consists of a list of fields. The following table describes the meaning of each
field.

• Every new line defines an adjustment rule.

• Fields are separated by semicolons (;).

• Comment lines start with #.

• Empty lines are allowed.

Note:

The value of the field rank is ignored. The evaluation order of the rules is given
by the order of the rules within the file.

Table 2-3 lists the fields in the file.

Chapter 2
About Rate Adjustment

2-19



Table 2-3    Fields in a Rate Adjustment File

Position Field Description

1 Rank Specifies the evaluation order of the rules.

This is ignored because the evaluation order is specified
within the file.

2 Rate plan Specifies the charge to adjust.

3 Rate plan version Specifies the charge version.

4 Valid from Specifies the start date for the rate adjustment.

This can be either a date with the format YYYYMMDD or a
weekday with an optional timestamp; for example:

• 19990524
• SAT
• MON16:00
If the field is left empty, the earliest possible date
(19010101) is used.

5 Valid to Specifies the end date for the rate adjustment.

This can be either a date with the format YYYYMMDD or a
weekday with an optional timestamp.

If the field is left empty, the latest possible date (20370205)
is used.

6 Time from Specifies the start time for the rate adjustment.

The format is HH:MM.

The default is 00:00.

7 Time to Specifies the end time for the rate adjustment.

The format is HH:MM.

Example: To set up a discount that is valid on weekends
between 13:00 and 14:00, you have to set the following:

• ValidFrom = SAT
• ValidTo = SUN
• TimeFrom = 13:00
• TimeTo = 14:00

8 Quantity value Specifies the maximum quantity value for an EDR container.
If this maximum is exceeded, the mapping rule will not be
used. If this field is left empty or if a 0 is specified, the rule is
valid for every quantity value.

Example: You can use this entry to avoid discounting for
calls longer than 120 seconds by setting the field to 120.

9 Usage class Specifies the compare pattern for the usage class.

10 Usage type Specifies the compare pattern for the usage type.

11 Service code Specifies the compare pattern for the service code.

12 Service class Specifies the compare pattern for the service class.

13 Impact category Specifies the compare pattern for the impact category.

14 Source network Specifies the compare pattern for the source network.

15 Destination network Specifies the compare pattern for the destination network.

16 Discount type Specifies the discount type.

17 Discount value Specifies the discount value.

Chapter 2
About Rate Adjustment

2-20



Table 2-3    (Cont.) Fields in a Rate Adjustment File

Position Field Description

18 Comment Specifies the rate adjustment name.

About Consolidation for BRM Billing
The FCT_BillingRecord module consolidates charge packets and discount packets into an
associated BRM billing record in the EDR. This data is loaded as a rated event by RE Loader.

The associated BRM billing record includes the POIDs of the /account object and the /service
object and the POID of the item that receives the balance impact. If an event affects more than
one customer balance, an associated BRM billing record is created for each balance.

An associated BRM billing record can contain one or more balance impact packets. The data
in a balance impact packet is loaded into an /event object balance array. Therefore, the data
includes information about the charged amount, the charge, and balance elements.

The balance impact packet also includes data in the PIN_INFO_STRING field. This field
contains the information about the individual charge packets.

Each balance impact packet includes data for one balance impact per balance element. If
there are different G/L IDs for the same balance element, a balance impact packet is created
for each G/L ID.

To configure FCT_BillingRecord, see "FCT_BillingRecord" in BRM Pipeline Manager
Reference.

Note:

Don't use FCT_BillingRecord in a CIBER roaming revenue assurance environment.
For more information, see "Billing Consolidation with CIBER Roaming and Revenue
Assurance".

How the FCT_BillingRecord Module Works
FCT_BillingRecord uses the data in the EDR to determine if the charges should be included in
the associated BRM billing record. To do so, the module checks the following data. If any of
these do not match, no associated billing record is created.

• The record type must be 981. This record type is created by the FCT_CustomerRating
module for customer rating.

• The charge packet must use the following:

– The standard pricing type: PRICEMODEL_TYPE = S

– A retail charge: RATEPLAN_TYPE = R

– A currency type that matches the currency type specified in the FCT_BillingRecord
module registry. The options are Home, Billing, and Rating.

– A currency that matches one of the entries specified in the FCT_BillingRecord module
registry. See "FCT_BillingRecord" in BRM Pipeline Manager Reference.

Chapter 2
About Consolidation for BRM Billing

2-21



If the charge packet meets the criteria, the module sums the amount, discount, and quantity for
each BRM balance element and creates the associated BRM billing record and one or more
balance impact packets.

For balance monitoring, FCT_BillingRecord generates a monitor packet for each monitor
group.

To get data, FCT_BillingRecord connects to the following data modules:

• The DAT_AccountBatch module, which provides data about items.

• The DAT_ItemAssign module, which provides data about items assigned for sponsorship
events.

• The DAT_Currency module, which provides data for converting currency symbols to
numeric values.

• The DAT_BalanceBatch module, which provides the ObjectCacheType value from the /
balance_group object.

Billing Consolidation with CIBER Roaming and Revenue Assurance
For CIBER roaming and revenue assurance, use the ISC_PostRating iScript instead of
FCT_BillingRecord.

ISC_PostRating adds all the retail and wholesale charges and puts them in the
DETAIL.RETAIL_CHARGED_AMOUNT_VALUE and
DETAIL.WHOLESALE_CHARGED_AMOUNT_VALUE fields.

Note:

ISC_PostRating and FCT_BillingRecord perform similar billing consolidation, but
ISC_PostRating doesn't load balance impact data into the database.

See "ISC_PostRating" in BRM Pipeline Manager Reference.

How the ISC_PostRating iScript Works
ISC_PostRating sets the following attributes:

• Wholesale and retail impact category

• Charged amount value

• Amount currency

• Tax treatment

for an EDR based on these values specified in the Pipeline Manager registry:

• Balance Element type

• Pricing type

• Currency type

Chapter 2
About Consolidation for BRM Billing

2-22



Note:

This iScript accesses only EDR fields. It doesn't access the database.

Adding Pipeline Rating Data to an Invoice
When you rate usage by using pipeline rating, information about how events are rated are
stored in the EDR. You can display this information on invoices. For example, if a call spans
two rates, for peak and off-peak time, you can display the rate used for each part of the call.
For example:

Table 2-4    Displaying Pipeline Rating Data

Date/time Called number Duration Average rate per unit Total charge

12/12/2003 1200 4085551212 10min $0.125 $1.25

12/12/2003 1200 4085551212 5min $0.15 $0.75

12/12/2003 1200 4085551212 5min $0.10 $0.50

In the example shown in Table 2-4, the data is stored in the
INTERN_PRICE_MDL_STEP_INFO EDR field.

To add pipeline rating invoice data to your invoices, you need to configure the
OUT_GenericStream module AddInvoiceData registry entry to add the data to the BRM billing
record.

Specifying Invoice Data from Pipeline Manager and Custom
Applications

If you process events that originate in Pipeline Manager or a custom application, you can
create a template to specify the event invoice data so that it can be included in your invoices.

BRM provides a default template file (pin_invoice_data_map) located in BRM_home/sys/
data/config. This file includes a default INTEGRATE template for Pipeline Manager invoice
data. You can modify the INTEGRATE template or add new templates to the file.

To use this feature, you must do the following:

• Load the new invoice data template. See "Loading the Invoice Data Map Templates".

• Enable event caching in the Connection Manager (CM). See "Enabling Event Caching".

• Configure the output module to add invoice data. See "Adding Invoice Data to Pipeline
Output".

Using Data Map Templates
Templates in the pin_invoice_data_map file define the fields in invoice data records. If you
use different invoice record formats, you can create a template for each record format. The
data map file can include any number of templates.

Chapter 2
Adding Pipeline Rating Data to an Invoice

2-23



When you define templates, you specify the BRM flist fields that map to the invoice record
fields. When the invoice data is processed, the fields are passed in an flist to the invoicing
opcodes for processing.

The default INTEGRATE template defines Pipeline Manager invoice data. You can modify the
INTEGRATE template or create new templates.

To create or modify templates in the pin_invoice_data_map file:

1. Open the BRM_home/data/config/pin_invoice_data_map file.

2. Change the INTEGRATE template or add a new template to the end of the file. Use the
following syntax:

ID template_name
field_level   field_name
field_level   field_name
field_level   field_name
...

where:

• template_name is the name of the template.

• field_level is the level of the field in the flist.

• field_name is the associated BRM field.

For example:

ID INTEGRATE
0 PIN_FLD_CALLING_NUMBER
0 PIN_FLD_CALLED_NUMBER
. . . 
0 PIN_FLD_BAL_IMPACTS
1 PIN_FLD_RATE_TAG
1 PIN_FLD_AMOUNT

3. Save and close the file.

The order of the fields in the template must correspond to the order of the fields in the invoice
record. Any custom invoice data records that you process must follow these rules:

• Fields must be separated by a pound symbol: #

• Arrays and substructs must be enclosed in angle brackets: < >

• Each balance impact element must end with a pipe symbol: |

Note:

The pipe is optional after the last element.

• The first field in the record must be the name of the corresponding invoice data template
and be preceded by the @ symbol.

For example: @INTEGRATE

• The template name in the record must match the template name in the
load_pin_invoice_data_map file.

Chapter 2
Specifying Invoice Data from Pipeline Manager and Custom Applications

2-24



Loading the Invoice Data Map Templates
After defining invoice data map templates, load them into the BRM database.

Note:

• When you run load_pin_invoice_data_map, it overwrites the existing invoice
data templates. If you are updating a set of templates, you cannot load new
templates only. You must load complete sets of invoice data templates each time
you run load_pin_invoice_data_map.

• To connect to the BRM database, load_pin_invoice_data_map needs a
configuration file in the directory from which you run the utility.

If you defined a custom field for invoicing, you must add the full path name of the
mapping file to the load_pin_invoice_data_map utility's pin.conf file.

To load the data map templates:

1. Go to the directory that contains the utility's configuration file.

2. Run the following command, which loads the data map template:

load_pin_invoice_data_map -d -v pin_invoice_data_map

Enabling Event Caching
Pipeline Manager caches invoice data before sending it to BRM for processing. Therefore, you
must enable event caching to include Pipeline Manager invoice data in your invoices.

To enable event caching:

1. Go to BRM_home/sys/data/config.

2. Use the following command to create an editable XML file from the invoicing instance of
the /config/business_params object:

pin_bus_params -r BusParamsInvoicing bus_params_Invoicing.xml

This command creates an XML file named bus_params_Invoicing.xml.out in your
current directory. If you do not want this file in your current directory, specify the path as
part of the file name.

3. In bus_params_Invoicing.xml.out, set EventCache to enabled:

<EventCache>enabled</EventCache>

Caution:

BRM uses the XML in this file to overwrite the existing instance of the /config/
business_params object. If you delete or modify any other parameters in the
file, these changes affect the associated aspects of the BRM configuration.

4. Save and exit the file.

Chapter 2
Specifying Invoice Data from Pipeline Manager and Custom Applications

2-25



5. Rename the bus_params_Invoicing.xml.out file to bus_params_Invoicing.xml.

6. Use the following command to load your changes into the /config/business_params
object:

pin_bus_params bus_params_Invoicing.xml

You should run this command from the BRM_home/sys/data/config directory, which
includes support files used by the utility. To run it from a different directory, see
"pin_bus_params" in BRM Developer's Guide.

7. Read the object with the testnap utility or the Object Browser to verify that all fields are
correct.

For general instructions on using testnap, see "Using the testnap Utility to Test BRM" in
BRM Developer's Guide. For information on how to use Object Browser, see "Reading
Objects" in BRM Developer's Guide.

8. Stop and restart the CM.

For more information, see "Starting and Stopping the BRM System" in BRM System
Administrator's Guide.

Adding Invoice Data to Pipeline Output
To add data from a pipeline to your invoices, configure the OUT_GenericStream module to add
the data to the BRM billing record.

To output invoice data, add the following registry parameter to all OUT_GenericStream
modules:

AddInvoiceData = TRUE

This parameter is read by the output grammar. When set to TRUE, the output module adds
invoice data to each BRM billing record.

Using the pin_virtual_time Utility with Pipeline Manager
If you use pin_virtual_time to test charging and billing, you need to set the VirtualTime
parameter for the DAT_BalanceBatch module to True to ensure that balances are calculated
correctly.

Chapter 2
Using the pin_virtual_time Utility with Pipeline Manager

2-26



3
Configuring EDR Input Processing

This chapter describes how to set up input processing for the Oracle Communications Billing
and Revenue Management (BRM) Pipeline Manager.

About the Input Process
To process incoming data, Pipeline Manager input modules convert data into an internal EDR
format understood by the pipeline function modules. The input data is contained in files, such
as CDRs for telco rating.

The input process works as follows:

1. Your mediation system automatically places CDR files into a directory.

If you start a pipeline and the directory already includes input files, they are processed
according to the last-modified timestamp.

2. The input module uses the stream format description file to create separate records from
the data. For example, the data is separated into HEADER records, DETAIL records, and
TRAILER records. DETAIL records can include data for one service only (for example,
GSM or GPRS).

3. The input module uses the input grammar file to process each record. The module verifies
that the syntactical order for each record is correct. For example, if a particular field is
supposed to include 10 characters, the input module uses the grammar file to check that. It
also uses the grammar file to normalize data, such as the A number.

If an error is found, processing stops and an error message is logged.

4. The input module creates an EDR container for the data. See "About EDRs" in BRM
Setting Up Pipeline Pricing.

5. The input module uses an input mapping file to copy data from the external file into the
appropriate EDR container fields.

Note:

A separate input mapping file is required to process each external data format.
See "Setting Up an Input Mapping File".

6. The input module puts the EDR into the input buffer for processing by the function
modules.

Note:

A separate input grammar file is required to process each external data format. See
"Setting Up an Input Grammar File".

3-1



The following examples show how the A number in a CDR is mapped to a rating EDR
container.

Note:

These examples show only selected portions of the stream format description,
grammar, and mapping files.

The following example shows part of a stream format description file. This section of the file
describes how a DETAIL record is formatted and lists the fields in the record (fields are
separated by a semicolon). The first field (SERVICE) stores the service code, the second
(A_NUMBER) stores the A number, and so forth. Data in each of the fields must be of type
AscString().

DETAIL(SEPARATED)
{
Info
{
Pattern = ".*\n"; 
FieldSeparator = ';';
RecordSeparator = '\n';
}
SERVICE     AscString();
A_NUMBER    AscString();
B_NUMBER    AscString();
...

The next example shows part of an input grammar file. The first two lines create a new block of
data in an EDR container (edrNew) and specify the location in an external file from which the
data should be copied (edrInputMap). Inside the new block, the next two lines normalize the A
number and then add a field to the EDR container called DETAIL.A_NUMBER.

edrNew( DETAIL, CONTAINER_DETAIL );
edrInputMap( "SAMPLE.DETAIL.STD_MAPPING" );
...
number = normalizeNumber( edrString( DETAIL.A_NUMBER ), "00", 0 );
edrString( DETAIL.A_NUMBER ) = number;

The next example shows part of an input mapping file. In this example, the A_NUMBER
defined in the stream format description example is mapped to the DETAIL.A_NUMBER field
defined in the input grammar example. Note how the nested blocks of data correspond to the
edrInputMap entry (SAMPLE.DETAIL.STD_MAPPING) in the input grammar example.

SAMPLE
  DETAIL
  {
    HDR_MAPPING
    {
    "010"       -> HEADER.RECORD_TYPE;
    ... 
  }
  TRL_MAPPING
  {
    "090"       -> TRAILER.RECORD_TYPE;
    ... 
  }
  
  STD_MAPPING

Chapter 3
About the Input Process

3-2



  {
    "020"       -> DETAIL.RECORD_TYPE; 
    0           -> DETAIL.DISCARDING;
    "00"        -> DETAIL.A_MODIFICATION_INDICATOR;
    0           -> DETAIL.A_TYPE_OF_NUMBER;
    "0"         -> DETAIL.A_NUMBERING_PLAN;
    A_NUMBER    -> DETAIL.A_NUMBER;
...

You can map one field in an external file to multiple fields in an EDR container. The following
example shows part of the same input mapping file. In this part of the file, however, the data
block for the GSM service maps the A_NUMBER to a different field:

GSMW_MAPPING
  {
  "520"       -> DETAIL.ASS_GSMW_EXT.RECORD_TYPE; 
  A_NUMBER    -> DETAIL.ASS_GSMW_EXT.A_NUMBER_USER;
  B_NUMBER    -> DETAIL.ASS_GSMW_EXT.DIALED_DIGITS;
...
  }

About Setting Up Input Processing
To set up input processing, do the following:

1. (CDR processing only) Define a CDR file input directory in your pipelines. Configure your
mediation system to put the files in this folder automatically.

Note:

You can configure your system to route CDR files from a single input directory to
multiple identical pipelines.

2. Set up a stream format description file. You can start with the sample files that are
provided. See "Creating a Stream Format Description File".

3. Set up an input mapping file. You can start with the sample files that are provided. See
"Setting Up an Input Mapping File".

4. If necessary, set up an input grammar file. In most cases, you do not need to modify the
default grammar file. If you modify an EDR container (for example, if you add fields), you
might need to modify the input grammar to ensure that data in your EDR containers is
correctly formatted. See "Setting Up an Input Grammar File".

Note:

If you customize an EDR container description, you must ensure that your
customizations do not affect existing module functionality. Many modules require
data from default EDR fields.

5. Configure these input sections in the registry:

• The DataDescription section. See "Configuring the Input DataDescription Registry
Section".

• The InputBuffer section in the Pipeline section.

Chapter 3
About the Input Process

3-3



• The Input section. See "Configuring the Input Section in the Registry".

The sample Pipeline Manager registry files include stream format description, input mapping,
and input grammar files that convert data using the rating EDR and TAP formats.

About Input Processing File Types
Input processing uses the following types of files:

• Input file: The file from the external system.

• Temporary file: The same file as the input file, but renamed as a temporary file during
processing. If the file is rejected, this file is not used.

• Done File: The same file as the input file, but renamed as a done file after processing has
been successfully completed.

• Error File: The same file as the input file, but renamed as an error file if the file is rejected.

These files are managed by the EXT_InFileManager module. See "About Getting Pipeline
Input from Files".

Creating a Stream Format Description File
To create a stream format description file, first identify the data in your external files that you
need to use for rating. You can then either start with one of the sample files or create your own.

In the following example, the external file is a CDR. It includes three records: a HEADER, a
TRAILER, and a DETAIL. Each record starts with a character that identifies its EDR container
content type (H for HEADER, T for TRAILER, and D for DETAIL), and each record has a fixed
structure.

• The example HEADER record in Table 3-1 has two fields.

Table 3-1    Header Record in Stream Format Description

Field Length Description

IDENTIFIER 1 The character H.

CREATION_TIME 14 The creation time of the CDR stream in the format
YYYYMMDDHHMMSS.

• The example DETAIL record in Table 3-2 has five fields.

Table 3-2    Detail Record in Stream Format Description

Field Length Description

IDENTIFIER 1 The character D.

CALLING_PARTY 15 The A number.

CALLED_PARTY 15 The B number.

START_TIMESTAMP 14 The start time of the call in format
YYYYMMDDHHMMSS.

DURATION 9 The duration of the call in seconds.

• The example TRAILER record in Table 3-3 has two fields.

Chapter 3
Creating a Stream Format Description File

3-4



Table 3-3    Trailer Record in Stream Format Description

Field Length Description

IDENTIFIER 1 The character T.

NUMBER_OF_DETAILS 9 The total number of DETAIL records in the stream.

A sample CDR input stream might be the following:

H20010613123410D4943311217 4957641506 20010613100112000000045D494106136432 49401531224    
20010613100215000000056T000000002

The INP_GenericStream input module uses the stream format description file to break the
CDR input stream into the following records:

H20010613123410

D4943311217 4957641506 20010613100112000000045
 
D494106136432 49401531224 20010613100215000000056
 
T000000002

The input module uses regular expressions to find each record. Table 3-4 lists the three record
types and their regular expressions.

Table 3-4    Regular Expressions for the Records

Record Regular expression Description

HEADER "H.{14}" H followed by 14 arbitrary characters.

DETAIL "D.{53}" D followed by 53 arbitrary characters.

TRAILER "T.{9}" T followed by 9 arbitrary characters.

The description of the record must contain the following:

• The regular expression used by the input module to recognize the physical record

• The position and types of the fields inside the physical record

A sample format stream description for this example looks like this:

SampleFormat 
{ 
  Header(FIX) 
  { 
    Info 
    { 
      Pattern = "H.{14}"; 
    } 
    IDENTIFIER        AscString(1); 
    CREATION_TIME     AscDate("YYYYmmddHHMMSS"); 
  } 

  Detail(FIX) 
  { 
    Info 
    { 
      Pattern = "D.{53}"; 
    } 

Chapter 3
Creating a Stream Format Description File

3-5



    IDENTIFIER        AscString(1); 
    CALLING_PARTY     AscString(15); 
    CALLED_PARTY      AscString(15); 
    START_TIMESTAMP   AscDate("YYYYmmddHHMMSS"); 
    DURATION          AscInteger(9); 
  } 

  Trailer(FIX) 
  { 
    Info 
    { 
    Pattern = "T.{9}"; 
  } 

    IDENTIFIER        AscString(1); 
    NUMBER_OF_DETAILS AscInteger(9); 
  } 
}

Each field in the record is defined by the field type and value. For example, the fields in the
DETAIL record are defined as follows:

    IDENTIFIER        AscString(1); 
    CALLING_PARTY     AscString(15); 
    CALLED_PARTY      AscString(15); 
    START_TIMESTAMP   AscDate("YYYYMMDDHHMMSS"); 
    DURATION          AscInteger(9); 

Record Types
The INP_GenericStream input module uses regular expressions to recognize the data records
in the input stream. Different types of data records define fields in different ways:

• Fields can defined by fixed-widths.

• Fields can be separated by special characters.

• The length of the field can be included in the input data (as in ASN.1 input).

Therefore, each data record has a record type that tells the input module how to split up the
record into fields. Each data record has an Info block in its definition that contains some setup
parameters for the record, for example, the field separator for a separated record. The record
type determines which parameters can be used.

For example, this DETAIL record uses the record type SEPARATED:

DETAIL(SEPARATED)
{
Info
{
Pattern = ".*\n"; 
FieldSeparator = ';';
RecordSeparator = '\n';
}
SERVICE     AscString();
A_NUMBER    AscString();
B_NUMBER    AscString();
...

Chapter 3
Creating a Stream Format Description File

3-6



Record Type SEPARATED
The record type SEPARATED is used for records in which fields are separated by a special
field delimiter character. The record itself can be terminated by another character (for example,
the end-of-line symbol \n). Because there is no length information for the record, the regular
expression specified as a pattern must match the full record, including the record separator.

There are no restrictions for the data types that can be used inside the SEPARATED record,
although it makes no sense to use binary data types inside this record. The length information
calculated from the position of the field delimiters overwrites length information specified in the
data types. See Table 3-5.

Table 3-5    Parameters in SEPARATED

Parameter Value Description Mandatory

Pattern String Regular expression that defines the entire
record. This includes all records and the record
separator character.

Yes

FieldSeparator Character Character that delimits single fields.

Default = Comma ( , )

No

RecordSeparator Character Character that delimits records.

Default = No record separator

No

Record Type FIX
This record type is used for records with predefined width for each field. The record must
contain all the fields. The record length is calculated as a sum of the widths of individual fields.
Only data types with width information can be used. See Table 3-6.

Table 3-6    Parameters in FIX

Parameter Value Description Mandatory

Pattern String Regular expression that identifies the
record.

Yes

Record Type ASN
This record type is used for file formats defined in ASN.1, for example, TAP. You can use only
the TAP and ASN data types in this record type. See Table 3-7.

Table 3-7    Parameters in ASN

Parameter Value Mandatory

Application Integer No

Context Integer No

Private Integer No

Universal Integer No

Chapter 3
Creating a Stream Format Description File

3-7



Syntax of the Stream Format Description File
The stream format description file is a simple ASCII file. The following grammar defines the
syntax of the stream format description file:

<format-description-file> ::=  (<use_directive> | <stream-format>)* 
<boolean> ::=                  "true" | "false" 
<character> ::=                "'" "single character" "'" 
<decimal> ::=                  "0..9"* "." "0..9"+ 
<extension-field-type> ::=     "any field type defined in a user extension" 
<extension-record-type> ::=    "any record type defined in a user extension" 
<field-name> ::=               <identifier> 
<field-type> ::=               "AscString" | "AscDecimal" | "AscLong" | "AscDate" | ... |
                               <extension-field-type> 
<format-name> ::=              <identifier> 
<identifier> ::=               "a..z,A..Z,_" "a..z,A..Z,0..9,_"* 
<info-block> ::=               "Info" "{" <info-parameter>* "}" 
<info-parameter> ::=           <identifier> "=" <value> ";" 
<integer> ::=                  "0..9"+ 
<record-definition> ::=        <record-name> "(" <record-type> ")" "{" <info-block>
                               <record-field>* "}" 
<record-field> ::=             <field-name> <field-type> "(" [<field-parameter> 
                               [, <field-parameter>]*] ")" ";" 
<record-name> ::=              <identifier> 
<record-type> ::=              "FIX" | "SEPARATED" | "ASN" | <extension-record-type> 
<stream-format> ::=            <format-name> "{" <record-definition>* "}" 
<string> ::=                   "\"" "any character"* "\"" 
<use_directive> ::=            "use" <identifier> ";" 
<value> ::=                    <decimal> | <integer> | <identifier> | <string> | 
                               <character> | <boolean> 

Supported Data Types for the Stream Format Description File
Each entry in the stream format description file assigns a data type to a field. For example, this
line assigns the AscString data type to the A number:

CALLING_PARTY     AscString(15); 

Pipeline rating supports the following categories of data types:

• ASCII Data Types

• ASN.1 Data Types

• TAP Data Types

ASCII Data Types
Pipeline Manager supports the following ASCII data types:

• AscDate

• AscDecimal

• AscInteger

• AscString

• AscRawString

AscDate

Chapter 3
Creating a Stream Format Description File

3-8



Use the AscDate data type to read and write date/time information as an ASCII string. The
AscDate data type can be used without any parameters or with a string specifying the used
date format.

AscDate( [String format] ) 

The format string uses the following patterns:

• %Y: The year including the century (1901 ... 2037)

• %y: The year without the century (00 ... 99)

• %m: Month number (01 ... 12)

• %d: Day of the month (01 ... 31)

• %H: Hour (00 ... 23)

• %M: Minute (00 ... 59)

• %S: Seconds (00 ... 59)

When no format string is defined, the following default format is used:

%Y%m%d%H%M%S

AscDecimal

Use AscDecimal to read and write decimal values to and from ASCII streams.

AscDecimal( [Integer len [, Bool withPoint [, Integer precision [, Char pointChar [, Identifier 
rounding[, Char padChar]]]]]] ) 

• len: The total length of the decimal value (default is 0 => unspecified).

• withPoint: Boolean flag to specify if there is a decimal point in the string (default is true).

• precision: Number of digits after the decimal point (default is 6).

• pointChar: Character used as decimal point (default is the point '.').

• rounding: Rounding method to use (PLAIN, UP, DOWN, BANK) (default is DOWN).

• padChar: Padding character to use (default is '0').

AscInteger

Use AscInteger to read and write integer values to and from ASCII streams.

Integer values are supported in the range from -2147483648 to 2147483647.

Note:

AscInteger cannot be NULL (empty).

AscInteger( [Integer len [, Char padChar]] ) 

• len: The total length of the integer value (default is 0 => unspecified)

• padChar: The character used to pad integer values to a fixed length (default is the '0')

AscString

Use the AscString data type to read and write strings to and from an ASCII stream.

Chapter 3
Creating a Stream Format Description File

3-9



AscString( [Integer len [, Char padChar [, Bool isLeftJustified]]] ) 

• len: The total length of the string (default is 0 => unspecified).

• padChar: The character used to pad string values to a fixed length (default is a space
character).

• isLeftJustified: Flag indicating that the string is left justified (default is true).

AscRawString

Equivalent to AscString, but preserves leading and trailing spaces while AscString strips all
spaces from strings.

ASN.1 Data Types
Pipeline Manager supports the following ASN.1 data types:

• ASN_Integer

• ASN_LegacyOctetString

• ASN_OctetString

• ASN_RawOctetString

• ASN_BcdString

• ASN_NumberString

• ASN_HexString

• ASN_Tag

• ASN_Blob

ASN_Integer

Use ASN_Integer to read and write integer values from and to ASN.1 streams. Integer values
are supported in the range from -2147483648 to 2147483647.

Note:

ASN_Integer cannot be null (empty).

ASN_Integer( Integer TagValue [, String Asn1Class] ) 

• TagValue: The value to use as ASN.1 Tag.

• Asn1Class: The Class of the ASN.1 object. Values are:

– Application

– Context

– Private

– Universal

The default is Application.

Chapter 3
Creating a Stream Format Description File

3-10



ASN_LegacyOctetString

Use ASN_LegacyOctetString to read and write an Octet string, which is a Byte string without
any specific encoding for the data, for example, ascii or hex, from and to ASN.1 streams.
ASN_LegacyOctetString removes the leading and trailing spaces after decoding an octet
string.

This data type is similar to the ASN_OctetString data type except for the following difference:

• ASN_LegacyOctetString encodes an empty octet string with length = 0 and no value.

• ASN_OctetString builds an empty octet string with length = 1 and a space for the value.
See "ASN_OctetString".

ASN_LegacyOctetString( Integer TagValue [, String Asn1Class] ) 

• TagValue: The value to use as ASN.1 Tag.

• Asn1Class: The Class of the ASN.1 object. Values are:

– Application (Default)

– Context

– Private

– Universal

ASN_OctetString

Use ASN_OctetString to read and write strings from and to ASN.1 streams. An Octet string is a
Byte string without any specific encoding for the data, for example, ascii or hex.

ASN_OctetString( Integer TagValue [, String Asn1Class] ) 

• TagValue: The value to use as ASN.1 Tag.

• Asn1Class: The Class of the ASN.1 object. Values are:

– Application (Default)

– Context

– Private

– Universal

ASN_RawOctetString

Use ASN_RawOctetString to read and write an Octet string, which is a Byte string without any
specific encoding for the data, for example, ascii or hex, from and to ASN.1 streams. Unlike the
ASN_LegacyOctetString, ASN_RawOctetString does not remove the leading and trailing
spaces after decoding an octet string.

See also "ASN_LegacyOctetString".

ASN_RawOctetString( Integer TagValue [, String Asn1Class] )  

• TagValue: The value to use as ASN.1 Tag.

• Asn1Class: The Class of the ASN.1 object. Values are:

– Application (Default)

– Context

Chapter 3
Creating a Stream Format Description File

3-11



– Private

– Universal

ASN_BcdString

ASN_BcdString is an extension of the ASN_OctetString used to read and write strings
containing data coded in the Binary Coded Decimal form to and from ASN.1 streams. This type
automatically decodes and encodes BCD, so the user accesses the data seamlessly.

ASN_BcdString( Integer TagValue [, String Asn1Class] ) 

• TagValue: The value to use as ASN.1 Tag

• Asn1Class: The Class of the ASN.1 object. Values are:

– Application (Default)

– Context

– Private

– Universal

ASN_NumberString

ASN_NumberString is an extension of the ASN_OctetString used to read and write strings
containing only numbers (and spaces) but packed in an ascii string from ASN.1 streams. An
ASN_NumberString can be read and written as a string, date, or long.

ASN_NumberString( Integer TagValue [, String Asn1Class] ) 

• TagValue: The value to use as ASN.1 Tag.

• Asn1Class: The Class of the ASN.1 object. Values are:

– Application (Default)

– Context

– Private

– Universal

ASN_HexString

ASN_HexString is an extension of the ASN_OctetString used to read and write strings
containing data coded in the Hexadecimal form, but stored as ASCII strings, from and to
ASN.1 streams. This type is used because iScript cannot directly manipulate hexadecimal byte
strings, so the strings are stored as ASCII representation of hexadecimal strings. For example,
0x28F3 is stored as 28F3.

ASN_HexString supports cases in which a special conversion method of read or write access
is necessary.

ASN_HexString( Integer TagValue [, String Asn1Class] ) 

• TagValue: The value to use as ASN.1 Tag.

• Asn1Class: The Class of the ASN.1 object. Values are:

– Application (Default)

– Context

– Private

Chapter 3
Creating a Stream Format Description File

3-12



– Universal

ASN_Tag

Use ASN_Tag to read and write constructed ASN.1 objects to and from ASN.1 streams. Only
the Parser should create this type of objects, out of record definitions in the block description
file.

The ASN_Tag object can read both definite and indefinite length ASN.1 objects.

ASN_Blob

ASN_Blob is a special type used to store a complete structured (constructed) ASN.1 Object in
the form of a byte string. This is useful when you need to transmit a block of data from the
input to the output without processing, thus not needing to map the data into EDR container
fields.

The only limitation for this type is that the ASN.1 object must have a definite length.

ASN_Blob( Integer TagValue [, String Asn1Class [, String Asn1Form]] )

• TagValue: The value to use as ASN.1 Tag

• Asn1Class: The Class of the ASN.1 object. Values are:

– Application (Default)

– Context

– Private

– Universal

• Asn1Form: The Form of the ASN.1 object. Values are:

– Constructed (Default)

– Primitive

TAP Data Types
Pipeline Manager supports the following TAP data types. These are defined only to match the
type name used in the TAP format description file.

• TAP_AsciiString. Same type as a standard ASN_OctetString.

• TAP_Description. Same type as a standard ASN_OctetString.

• TAP_Currency. Same type as a standard ASN_OctetString.

• TAP_PercentageRate. Same type as a standard ASN_Integer.

Setting Up an Input Mapping File
To create an input mapping file, first identify the data in your external files that you need to map
from the external files to the EDR container. You can then either start with one of the sample
input mapping files or create your own.

Each mapping entry contains a list of mappings either from data record fields to EDR container
fields or from constant values to EDR container fields. You can map a data record field to more
than one EDR container field by adding more than one mapping. For example:

A_NUMBER    -> DETAIL.A_NUMBER;
.

Chapter 3
Setting Up an Input Mapping File

3-13



.

.
A_NUMBER    -> DETAIL.ASS_GSMW_EXT.A_NUMBER_USER;

The following grammar defines the syntax of the input mapping file:

<input-mapping-file> ::=    <file-format-mapping>* 
<constant> ::=              <integer> | <decimal> | <string> 
<constant-mapping> ::=      <constant> "->" <edr-field> 
<decimal> ::=               "0..9"* "." "0..9"+ 
<edr-field> ::=             <identifier> ("." <identifier>)+ 
<field-mapping> ::=         <field-name> "->" <edr-field> 
<field-name> ::=            <identifier> 
<file-format-mapping> ::=   <file-format> "{" <record-mapping>* "}" 
<identifier> ::=            "a..z,A..Z,_" "a..z,A..Z,0..9,_"* 
<integer> ::=               "0..9"+ 
<mapping-entry> ::=         <field-mapping> | <constant-mapping> 
<mappings> ::=              <mapping-name> "{" <mapping-entry>* "}" 
<record-mapping> ::=        <record-name> "{" <mappings>* "}" 
<string> ::=                "\"" "any character"* "\"" 

Setting Up an Input Grammar File
The input grammar contains iScript statements to create an EDR container.

The syntax of the input grammar file is similar to the syntax used in Yacc grammars. This file
defines the grammar of the input data that are parsed and of the iScript statements that are run
when a certain symbol is found in the input data stream.

Configuring the Input DataDescription Registry Section
You configure a DataDescription section in the registry for each pipeline. The
DataDescription section includes the following entries:

• StreamFormats: Specifies the input stream format file.

See "About the Order of Listing Stream Format Description Files".

• InputMapping: Specifies the input mapping description file.

• OutputMapping: Specifies the output mapping description file.

Note:

You specify the input grammar description file in the Input section.

This sample shows the DataDescription section:

DataDescription
  {
   Standard
   {
   ModuleName = Standard
   Module 
   { 
   StreamFormats
   {
     Format1 = ./formatDesc/Formats/Flist/Flist_v01.dsc

Chapter 3
Setting Up an Input Grammar File

3-14



   }
   InputMapping
   {
    Mapping1 = ./formatDesc/Formats/Flist/Flist_v01_InMap.dsc
   }
   OutputMapping
   {
    Mapping1 = ./formatDesc/Formats/Flist/Flist_v01_OutMap.dsc
   }
   }
   }
}

Note:

The DataDescription section also includes an entry for the output mapping file. See
"Configuring EDR Output Processing".

About the Order of Listing Stream Format Description Files
Pipeline module instances prioritize the order in which formats are considered for parsing in
the order that the stream format description files are listed in the StreamFormats section of
the registry.

Parsing errors can occur in a pipeline if the stream format description files are listed in the
incorrect order. For example, the stream format description file that applies to your custom
input stream would be listed in the StreamFormats section before the output stream format
description file.

Configuring the Input Section in the Registry

Note:

When you configure the Input section, you configure the Pipeline Input Controller.
See "Input Controller" in BRM Pipeline Manager Reference.

To configure the Input section in the registry, do the following:

• The UnitsPerTransaction entry: Use this entry to improve performance.

• The INP_GenericStream module: Specify the input grammar file in this section. See
"INP_GenericStream" in BRM Pipeline Manager Reference.

When configuring the INP_GenericStream module, configure one of the following modules
as a submodule of the INP_GenericStream module:

– EXT_InFileManager: Configure this module if the pipeline receives input from files.
This module manages the input, temporary, and done files. See "EXT_InFileManager"
in BRM Pipeline Manager Reference.

– EXT_InEasyDB: Configure this module if the pipeline receives input from a database.
See "EXT_InEasyDB" in BRM Pipeline Manager Reference.

Chapter 3
Configuring the Input Section in the Registry

3-15



– EXT_InSocketMgrFlist: Configure this module for input from flist-based networks if
the pipeline receives input from prepaid networks.

About Getting Pipeline Input from Files
To configure a pipeline to read data from files, use the EXT_InFileManager module.

When you configure the module, you specify the directories, suffixes, and prefixes for the
following files:

• Input files: CDR files from the mediation system. The prefix and suffix are used by the
input module to identify which files to process.

The input module checks periodically for files in this folder with the specified prefix and/or
suffix.

• Done files: Created when a transaction is successfully completed.

• Error files: Created after a transaction rollback.

To manage file names, you can specify the following:

• The prefix for temporary files. Temporary files are used as input until the transaction is
complete.

• Whether to replace or append prefixes and suffixes.

• The time period (in seconds) for which the input directory must be empty before the
EVT_INPUT_DIR_EMPTY event is sent.

See "EXT_InFileManager" in BRM Pipeline Manager Reference.

About Getting Pipeline Input from a Database
To get pipeline input from a database, use the EXT_InEasyDB module.

To set up a pipeline for database input:

1. Create a job file that consists of SQL statements. It can also include iRule variables, which
are defined in a parameter file. The EXT_InEasyDB module uses the commands to create
EDRs.

2. Place the job file in a specific directory. When Pipeline Manager starts, the EXT_InEasyDB
module finds the directory from the registry and starts the input process according to the
commands in the job file.

You can stop and restart the pipeline after a system crash by configuring a restart file.

You can start the pipeline by using the ReadDatabase semaphore. When the module receives
a start command while in process, the new SQL command is written to a job file.

The returned values of the database input stream contain all fields of each selected row
divided by the configurable delimiter.

To configure the pipeline to read data from a database, see "EXT_InEasyDB" in BRM Pipeline
Manager Reference.

Specifying the Maximum Errors Allowed in an Input File
You can configure the Output Controller to reject an entire input stream that exceeds a
maximum percentage of errors. For example, you can specify to reject an input stream if over
20% of the EDRs have a particular error.

Chapter 3
Configuring the Input Section in the Registry

3-16



You specify the error threshold by using the MaxErrorRates entry in the Output section of the
registry file.

Note:

You can also configure a pipeline to reject individual EDRs by using the FCT_Reject
module. For information, see "About Standard Recycling" in BRM Suspending and
Recycling Pipeline EDRs and "Recycling EDRs in Pipeline-Only Systems" in BRM
Suspending and Recycling Pipeline EDRs.

When an input stream exceeds the error threshold, the Output Controller:

• Deletes all output streams associated with the input stream. For example, if a pipeline
splits an input stream into five output streams, the Output Controller deletes all five output
streams.

• Moves the input stream to the error directory. You define the location of the error directory
by using the ErrorPath registry entry. For information, see "EXT_InFileManager" in BRM
Pipeline Manager Reference.

To set an error threshold:

1. Stop Pipeline Manager, if necessary.

2. Open your registry file in a text editor.

3. Edit the Pipeline Output Controller's MaxErrorRates registry entries, making sure you:

• List all error codes that the Pipeline Output Controller should monitor.

• Specify an error threshold for each error code. The threshold specifies the maximum
percentage of EDRs that are allowed to have the particular error.

For example, to configure the Output Controller to reject a stream if any of the following are
true:

• Over 10% of the EDRs have an INF_EDR_REJECTED error.

• Over 8% of the EDRs have an ERR_CUST_NOT_FOUND error.

• Over 20% of the EDRs have an ERR_CHARGED_ZONE_NOT_FOUND error.

Output 
{ 
    ...
    MaxErrorRates 
    { 
        INF_EDR_REJECTED = 10 
        ERR_CUST_NOT_FOUND = 8 
        ERR_CHARGED_ZONE_NOT_FOUND = 20 
    } 
    ...
}

4. Save and close the registry file.

5. Restart Pipeline Manager.

Reading TAP Files
Pipeline Manager can read the following TAP versions:

Chapter 3
Reading TAP Files

3-17



• TAP-0301 from the TD57v3.04.00 specification

• TAP-0303 from the TD57v3.07.01 specification

• TAP-0304 from the TD57v3.08.02 specification

• TAP-0309 from the TD57v3.90 specification

• TAP-0310 from the TD57v3.10.01 specification

• TAP-0311 from the TD57v28 specification

• TAP-0312 from the TD57v30.1 specification

• TAP-0312 from the TD57v32.1 specification

You can specify TAP input grammar files when you set up your input modules. The files are
located in the Pipeline_home/formatDesc/Formats/TAP3 directory. Pipeline_home is the
directory where you installed Pipeline Manager.

Note:

Because the TAP 3.10 standard introduced fundamental changes, files produced
according to earlier versions of the TAP standard are not compliant with the TAP 3.10
standard. Therefore, the TAP 3.10 grammar files cannot be used to process previous
TAP versions.

Note the following implementation details:

• The following records are generated when TAP is processed by Pipeline Manager:

– 1 Header record (010): 1 EDR

– 1 Trailer record (090): 1 EDR

– 1 GPRS record (040 for SGSN, 042 for GGSN or mixed ticket): 1 EDR

– 1 mobile supplementary service (MSS) record (029): 1 EDR

– 1 service center usage (SCU) record (050): 1 EDR

– 1 value added service (VAS) record (060): 1 EDR

– 1 content transaction (CONT) record (999): 1 EDR

– 1 location service (LOCN) record (998): 1 EDR

– 1 mobile originating call (MOC) record (021): n EDRs: one EDR for every basic service
used.

– 1 mobile terminating call (MTC) record (031): n EDRs: one EDR for every basic service
used.

• For each supplementary service, an SS_PACKET is created and attached to the
corresponding EDR. For every charge detail of the VAS array, a charge packet is added to
the latest generated EDR. The VAS short description is stored in the
DETAIL.ASS_CBD.CP.PRODUCTCODE_USED field.

• The Value added service used block is used to build an associated charge breakdown
record containing data for rating.

• The CAMEL service information is stored in the ASSOCIATED_CAMEL_EXTENSION
("700") block of the EDR. The associated charge packets are stored on the same

Chapter 3
Reading TAP Files

3-18



ASS_CBD as others but with the PRODUCTCODE_USED field set to CAMEL to identify
them.

• Mobile originating and terminating records (MOC and MTC records) are split into multiple
records downstream by the ISC_TapSplitting iScript. This iScript generates one EDR for
every basic service in the basic service used array. For more information, see
"ISC_TapSplitting" in BRM Pipeline Manager Reference.

Note the following restrictions:

• The size of the ASN.1 string is not checked during input.

• Pipeline Manager does not add the MIN to the EDR.

• Pipeline Manager does not add the electronic serial number (ESN) to the EDR.

The TAP output grammar recognizes all record types generated by Pipeline Manager.

About Customizing Mapping of Flist Fields to Rating EDR
Container Fields

To process events received from the Connection Manager (CM), a real-time pipeline converts
the event data from flist format to rating EDR format for processing by Pipeline Manager.

BRM provides default flist-to-rating-EDR mappings for GSM, GPRS, and SMS events in the
Pipeline_home/formatDesc/Formats/Realtime/rate_event.xml file. When the real-time
pipeline starts, the INP_Realtime module uses the descriptions in this XML file to construct an
in-memory representation of the flist-to-rating-EDR mapping. The pipeline uses the in-memory
mapping to convert incoming flists to rating EDR format.

Table 3-8 displays the XML elements are used in the flist-to-rating-EDR mapping.

Table 3-8    XML Elements in flist-to-rating-EDR Mappings

XML element Description

OpcodeMap The root node of the XML document. The XML document can have only one
OpcodeMap element. This element requires the opcode attribute, which is a unique
string used to differentiate between OpcodeMap elements in other XML files.

InMap The flist-to-rating-EDR mappings for the input flist. The XML document can have
only one InMap element. The containerType attribute specifies the root-level name
of the rating EDR container.

FlistField A field in the input flist. If the target attribute is present, the flist field is mapped to
the target field in the rating EDR container.

EdrBlock Indicates when a rating EDR Block should be created.

Sample input flist:

0 PIN_FLD_POID           POID [0] 0.0.0.1 /account 12035 15
0 PIN_FLD_EVENT        SUBSTRUCT [0] allocated 52, used 52
1     PIN_FLD_POID           POID [0] 0.0.0.1 /event/delayed/session/telco/gsm 
1373193266068995136 0
1     PIN_FLD_ACCOUNT_OBJ    POID [0] 0.0.0.1 /account 12035 0
1     PIN_FLD_START_T      TSTAMP [0] (1081882800) Tue Apr 13 12:00:00 2004
1     PIN_FLD_END_T        TSTAMP [0] (1081883200) Tue Apr 13 12:00:00 2004   
1     PIN_FLD_QUANTITY    DECIMAL [0] 400
1     PIN_FLD_TELCO_INFO   SUBSTRUCT [0] allocated 20, used 12
2         PIN_FLD_CALLING_FROM    STR [0] "0049100050"

Chapter 3
About Customizing Mapping of Flist Fields to Rating EDR Container Fields

3-19



2         PIN_FLD_CALLED_TO       STR [0] "0049100051"
2         PIN_FLD_USAGE_CLASS     STR [0] "NORM"
2         PIN_FLD_TERMINATE_CAUSE   ENUM [0] 0
1     PIN_FLD_GSM_INFO     SUBSTRUCT [0] allocated 20, used 14
2         PIN_FLD_CALLED_NUM_MODIF_MARK   ENUM [0] 0
2         PIN_FLD_DIRECTION          ENUM [0] 0
2         PIN_FLD_CELL_ID            STR [0] "123456"
2         PIN_FLD_SUB_TRANS_ID       STR [0] "S"
2         PIN_FLD_DESTINATION_SID    STR [0] ""
2         PIN_FLD_NUMBER_OF_UNITS    DEC[0] 1.0

The default flist-to-rating-EDR mapping in XML for the above flist:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<OpcodeMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="./OpcodeMapping.xsd" 
opcode="PCM_OP_RATE_PIPELINE_EVENT">
   <InMap containerType="DETAIL">
      <!--CONSTANT EDR DETAIL ITEMS-->
      <EdrField name="DETAIL.RECORD_TYPE" value="020" />
      <EdrField name="DETAIL.DISCARDING" value="0" />
      <!--EVENT FLIST ITEMS-->
      <FlistField name="PIN_FLD_EVENT">
         <!--EVENT POID-->
         <FlistField name="PIN_FLD_POID" format="type" target="DETAIL.EVENT_TYPE" alias="EventType"/>
         <!--ACCOUNT_OBJ-->
         <FlistField name="PIN_FLD_ACCOUNT_OBJ" format="short" target="DETAIL.CUST_A.ACCOUNT_PARENT_ID" />
         <!--CHARGING_START-->
         <FlistField name="PIN_FLD_START_T">
            <EdrField name="DETAIL.CHARGING_START_TIMESTAMP" />
            <EdrField name="DETAIL.NE_CHARGING_START_TIMESTAMP" />
         </FlistField>
         <!--CHARGING_END-->
         <FlistField name="PIN_FLD_END_T">
            <EdrField name="DETAIL.CHARGING_END_TIMESTAMP" />
            <EdrField name="DETAIL.NE_CHARGING_END_TIMESTAMP" />
         </FlistField>
         <!--QUANTITY FIELD-->
         <FlistField name="PIN_FLD_QUANTITY" target="DETAIL.DURATION" />
         <!--TELCO FLIST ITEMS-->
         <FlistField name="PIN_FLD_TELCO_INFO">
            <!--A_NUMBER-->
            <FlistField name="PIN_FLD_CALLING_FROM">
               <EDRField name="DETAIL.A_NUMBER"/>
               <EDRField name="DETAIL.ASS_GSMW_EXT.A_NUMBER_USER" onAliasName="EventType" onAliasValue="/
event/delayed/session/telco/gsm" />
            </FlistField>
            <!--B NUMBER-->     
            <FlistField name="PIN_FLD_CALLED_TO">
               <EDRField name="DETAIL.B_NUMBER"/>
               <EDRField name="DETAIL.ASS_GSMW_EXT.DIALED_DIGITS" onAliasName="EventType" onAliasValue="/
event/delayed/session/telco/gsm" />
            </FlistField>
            <!--USAGE_CLASS-->  
            <FlistField name="PIN_FLD_USAGE_CLASS" target="DETAIL.USAGE_CLASS" />
            <!--CALL_COMPLETION_INDICATOR-->
            <FlistField name="PIN_FLD_TERMINATE_CAUSE" target="DETAIL.CALL_COMPLETION_INDICATOR" />
         </FlistField> <!--END TELCO FLIST ITEMS-->
         <!--GSM FLIST ITEMS-->
         <FlistField name="PIN_FLD_GSM_INFO" onAliasName="EventType" onAliasValue="/event/delayed/
session/telco/gsm" optional="true">
            <EdrBlock name="DETAIL.ASS_GSMW_EXT"/>

Chapter 3
About Customizing Mapping of Flist Fields to Rating EDR Container Fields

3-20



            <!--CONSTANT DETAIL.ASS_GSMW_EXT EDR ITEMS-->
            <EdrField name="DETAIL.ASS_GSMW_EXT.RECORD_TYPE" value="520" />
            <FlistField name="PIN_FLD_CALLED_NUM_MODIF_MARK" target="DETAIL.B_M ODIFICATION_INDICATOR" />
            <FlistField name="PIN_FLD_DIRECTION" target="DETAIL.USAGE_DIRECTION" />
            <FlistField name="PIN_FLD_CELL_ID" target="DETAIL.ASS_GSMW_EXT.CELL_ID"/>
            <FlistField name="PIN_FLD_SUB_TRANS_ID" target="DETAIL.LONG_DURATION_INDICATOR" />
            <FlistField name="PIN_FLD_NUMBER_OF_UNITS" target="DETAIL.NUMBER_OF_UNITS" />
         </FlistField> <!--END GSM FLIST ITEMS-->
         <!--END EVENT FLIST ITEMS-->
      </FlistField>
   </InMap>
</OpcodeMap>

You can customize the default GSM, GPRS, and SMS mappings and create custom mappings
for other types of events. To customize flist-to-rating-EDR mappings, you must be familiar with
the following topics:

• BRM flists.

• XML

• XML Schema

To create and use a custom mapping:

1. Edit the pipeline event XML file (Pipeline_home/formatDesc/Formats/Realtime/
rate_event.xml) to add your custom mappings.

2. Validate the XML file using Pipeline_home/formatDesc/Formats/Realtime/
opcode_ifw_mapping.xml file.

Note:

Using an invalid XML file prevents the INP_Realtime module from successfully
starting. Make sure you validate the XML file against the XML schema.

About the POID Format in the Rating EDR Container
If an flist field is a POID, the format attribute is required to indicate the format of the POID in
the rating EDR container. The following format types are supported: long, short, id, and type.

For example, the format of POID 0.0.0.1 /account 12065 is mapped as follows:

• 1_12065 /account when the format attribute is long

• 1_12065 when the format attribute is short

• 12065 when the format attribute is id

• /account when the format attribute is type

Mapping an Flist Field to Multiple Rating EDR Container Fields
If the FlistField element contains child EDRField elements, the flist field is mapped to multiple
rating EDR fields.

In the following example, PIN_FLD_END_T is mapped to multiple fields in the DETAIL EDR
block:

Chapter 3
About Customizing Mapping of Flist Fields to Rating EDR Container Fields

3-21



<FlistField name="PIN_FLD_END_T">
<EdrField name="DETAIL.CHARGING_END_TIMESTAMP" />
<EdrField name="DETAIL.NE_CHARGING_END_TIMESTAMP" />
</FlistField>

Using Conditions to Map an Flist Field to a Rating EDR Container Field
You can use the FlistField attributes alias, onAliasName, and onAliasValue for conditional
mappings.

In this example, the input flist is a /event/delayed/session/telco/gsm event. The
PIN_FLD_GSM_INFO substruct of the event is mapped to the DETAIL.ASS_GSMW EDR
block.

<FlistField name="PIN_FLD_POID" format="type" target="DETAIL.EVENT_TYPE" alias="EventType"/>
<!--GSM FLIST ITEMS-->
<FlistField name="PIN_FLD_GSM_INFO" onAliasName="EventType" onAliasValue="/event/delayed/session/telco/
gsm" optional="true"> <EdrBlock name="DETAIL.ASS_GSMW_EXT"/>
<!--CONSTANT DETAIL.ASS_GSMW_EXT EDR ITEMS-->
<EdrField name="DETAIL.ASS_GSMW_EXT.RECORD_TYPE" value="520" />
<EdrField name="DETAIL.ASS_GSMW_EXT.TIME_BEFORE_ANSWER" value="0" />
<EdrField name="DETAIL.ASS_GSMW_EXT.NUMBER_OF_SS_PACKETS" value="0" />
<FlistField name="PIN_FLD_CALLED_NUM_MODIF_MARK" target="DETAIL.B_MODIFICATION_INDICATOR" />
<FlistField name="PIN_FLD_DIRECTION" target="DETAIL.USAGE_DIRECTION" />
<FlistField name="PIN_FLD_CELL_ID" target="DETAIL.ASS_GSMW_EXT.CELL_ID" />
<FlistField name="PIN_FLD_SUB_TRANS_ID" target="DETAIL.LONG_DURATION_INDICATOR" />
<FlistField name="PIN_FLD_NUMBER_OF_UNITS" target="DETAIL.NUMBER_OF_UNITS" />
</FlistField> <!--END GSM FLIST ITEMS-->

You can also map an alias to an EdrField defined elsewhere. For example:

<FlistField name="PIN_FLD_START_T" target="DETAIL.CHARGING_START" alias="startTime"/>
<!--GSM FLIST ITEMS-->
<FlistField name="PIN_FLD_GSM_INFO" >
<EdrBlock name="DETAIL.ASS_GSMW_EXT"/>
<!--CONSTANT DETAIL.ASS_GSMW_EXT EDR ITEMS-->
<EdrField name="DETAIL.ASS_GSMW_EXT.CHARGING_START" useAlias="startTime" />
</FlistField> <!--END GSM FLIST ITEMS-->

Chapter 3
About Customizing Mapping of Flist Fields to Rating EDR Container Fields

3-22



4
Configuring EDR Output Processing

This chapter describes how to set up output processing for the Oracle Communications Billing
and Revenue Management (BRM) Pipeline Manager. The input can be CDRs for telco rating.

About the Output Process
Pipeline Manager can generate data for various purposes:

• To provide rated events for the Rated Event (RE) Loader to load into the BRM database.

• To collect rejected EDRs for recycling.

• To collect duplicate EDRs.

• To send data to the Pipeline Manager database for additional processing in another
pipeline.

• To handle discarded EDRs.

The output process works as follows:

1. The completed EDRs are moved to the output buffer.

2. The output module reads data from the output buffer and processes the data. The
processing performed depends on the output configuration, for example:

• If the output consists of rated EDRs, the output module uses grammar and description
files to convert the EDRs to a format that the RE Loader uses.

• If the output consists of rejected EDRs, the output module creates reject files.

3. The output module writes the data to the specified output stream. The destination of an
output stream can be a file directory, a location in the database, or an external network.
You can configure different directories, file names, and network destinations for each
output stream.

About the Output Processing System Components
Output processing is managed by the output controller and the output collection module.

• The output controller manages the overall output process. You can configure output
properties that apply to all streams. See "Output Controller" in BRM Pipeline Manager
Reference.

The Output controller performs the following functions:

– Manages the output stream's trailer information.

– Rejects input streams when they exceed a specified maximum number of errors.

– Checks for duplicate CDR files.

– Notifies the Transaction Manager when a transaction ends.

– Stops the pipeline when critical errors occur.

4-1



The input stream's trailer information can become invalid when a pipeline discards or
rejects individual EDRs or when a pipeline splits EDRs into multiple output streams. For
example, the input stream's trailer contains a total charge amount field, which contains the
charge amount for all EDRs. When a pipeline discards some EDRs in the input stream, the
total charge amount is no longer valid. To correct this, the Output Controller automatically
recalculates the trailer information for each output stream.

• Output collection defines all the output streams for the pipeline. The Output Collection
module performs the following functions:

– Generates the output devices that are specified in the registry at system startup.

– Passes the EDR container to the specified output device.

You configure the Output Collection module by editing a pipeline's OutputCollection
section of the registry file. For information, see "Output Controller" in BRM Pipeline
Manager Reference.

About the Output Modules
The following output modules are available:

• OUT_GenericStream: Used to process rated events. This module converts the EDR
format to a format needed for further processing, for example, RE Loader format to load
rated events or TAP format for outcollect processing of roaming records.

See "Configuring Output for Rated Events" and "OUT_GenericStream" in BRM Pipeline
Manager Reference.

• OUT_Reject: Used to process rejected or duplicate events. See "Configuring Output for
Rejected or Duplicate EDRs" and "OUT_Reject" in BRM Pipeline Manager Reference.

• OUT_DB: Used to send data to the database. See "Sending Output to a Database" and
"OUT_DB".

• OUT_DevNull: Used to discard EDRs that you don't want to recycle. See "Configuring
Output of Discarded EDRs" and "OUT_DevNull" in BRM Pipeline Manager Reference.

• EXT_OutFileManager: Used to manage the output files of the OUT_GenericStream
module and the OUT_Reject modules. See "EXT_OutFileManager" in BRM Pipeline
Manager Reference.

About Output Processing File Types
Output processing uses the following types of files:

• Temporary data file: Stores records during processing. There is one temporary file for
each external file being processed. If the entire external file is rejected, the temporary file is
not used.

• Output File: Stores the EDRs after processing. This file is derived from the temporary file.
When processing is completed successfully, the temporary file is renamed and becomes
the output file.

• Temporary stream file list: Stores the names of temporary data files. This is required
when the Replace registry entry is enabled. In that case, the output file name is appended
with a sequence number. Each output stream uses a separate temporary stream file list.
For example, the telephony output stream registry includes these entries:

TempDataPath       = ./samples/wireless/data/telout
TempDataPrefix     = tel.tmp.
TempDataSuffix     = .data

Chapter 4
About the Output Process

4-2



Note:

These registry entries are used for internal pipeline processing only and should
not be changed.

These output processing files are managed by the "EXT_OutFileManager" module in BRM
Pipeline Manager Reference.

About ASN.1 Output
ASN.1 objects are composed of a triplet TLV (Tag/LengthOfValue/Value). Therefore, before
writing ASN.1 to the output, you must calculate the LengthOfValue field for every element of
the ASN.1 tree that you are building. To do this, use the EXT_AsnTree module.

This extension has functions to perform the following tasks:

• Builds a tree of ASN.1 objects.

• Updates the LengthOfValue fields of the ASN.1 objects.

• Flushes the resulting ASN.1 data block to an output stream.

About Configuring Output Processing
To configure output processing, do the following:

1. Create the directories for the output streams.

2. For output of rated events:

• Set up an output stream format description file.

• Set up a mapping file.

• Set up a grammar file.

In most cases, you need to modify only the sample stream format description and output
mapping files.

3. Configure these output sections in the registry:

• The output mapping in the DataDescription section. This specifies the output
mapping for rated events. See "Configuring the Output DataDescription Registry
Section".

• The OutputBuffer section in the Pipeline section.

• The Output section. This section includes the configuration for the pipeline output
controller and for output modules such as the OUT_GenericStream module. See
"About the Output Modules".

4. Configure the output stream for the function modules that create the output. For example,
configure the FCT_Reject module to send rejected EDRs to the reject output stream.

About Configuring the Output Section in the Registry
The output section in a pipeline has this hierarchy:

Pipeline
  Output

Chapter 4
About Configuring Output Processing

4-3



      Output controller
         Output collection
             Output streams

• The output controller manages the overall output process. You can configure output
properties that apply to all streams. See "Output Controller" in BRM Pipeline Manager
Reference.

• Output collection defines all the output streams for the pipeline. You configure the Output
Collection module by editing the OutputCollection section of the registry file. For
information, see "Output Collection" in BRM Pipeline Manager Reference.

• Output streams send EDRs to the appropriate output location. See "About the Output
Modules".

About Configuring Statistics Information in the Output Section

Note:

Instrumented statistics are designed for batch rating and not real-time rating.
Statistics are related to transactions. Since real-time rating does not use transactions,
instrumented statistics are unavailable for real-time rating.

The Statistic subgroup controls the statistics related to Pipeline Manager's EDR processing
rate. You can view these statistics in the output logs or HTTP browser.

The Statistic subgroup has one registry option, EDRCountCriteria. This option can have two
possible values:

• INPUT: The Pipeline Manager considers only the detailed CDRs that are passed through it
as input for calculating the EDR statistics.

• ALL: This is the default option. The Pipeline Manager considers all the EDRs that are
passed through it for calculating the EDR statistics. This includes the duplicate EDRs
created and the EDRs directed to an additional output stream.

Note:

The Statistic subgroup is optional. If this subgroup is not present, the behavior of
the Pipeline Manager is similar to that when EDRCountCriteria is set to ALL.

This sample shows the output hierarchy:

Pipelines
{
    W_SAMPLE
    {
        Output
        {
            WriteDefaultEdr = False
            MaxErrorRates
        {
        }
          #The following subgroup is optional
            Statistic 
            {

Chapter 4
About Configuring Output Processing

4-4



                    EdrCountCriteria = ALL
            }
            OutputCollection
            {
                Output stream 1
                {
                    ModuleName = OUT_Module_1
                    ...
                } 
                Output stream 2
                {
                    ModuleName = OUT_Module_2
                    ...
                } 
            } # end of Output 
        } # END W_SAMPLE
    } # END Pipelines

Configuring Output for Rated Events
To output rated events from pipeline rating, you configure the OUT_GenericStream module.
This module converts EDRs to the output format used by RE Loader. The output is a file that is
loaded by RE Loader.

To convert data from EDR format to a file, the module uses the following files:

• Stream format description

• Output grammar: Specifies which records to include in the output.

• Output mapping: Specifies how to map the data in EDRs to data in the format defined by
the output grammar file.

The sample registry files include stream format description, output grammar, and output
mapping files that convert data from the BRM EDR, TAP, and CIBER formats.

To configure the OUT_GenericStream module, you specify the following:

• The output grammar file.

• The BRM event type that the output file contains, such as /event/delayed/session/gsm.

• The type of pipeline, for example, rating or backout.

• Whether to delete empty output streams.

• The output module, either "EXT_OutFileManager" in BRM Pipeline Manager Reference.

See "OUT_GenericStream" in BRM Pipeline Manager Reference.

Creating Separate Output Streams for Each Service
Events from different services (GSM, SMS, and so forth) must be delivered to the RE Loader
or a prepaid network in separate files. To do this:

• Configure the IRL_EventTypeSplitting iScript to split EDRs by service code. See "Sending
EDRs to Pipeline Output Streams".

• In the registry, configure an instance of the OUT_GenericStream module for each service.

Chapter 4
Configuring Output for Rated Events

4-5



Creating Multiple Output Streams in One Output Registry
Each EDR must have a default output stream and may also contain additional output streams.
Use the following iScript functions to manipulate multiple output streams in a single registry:

• "edrAddAdditionalStream" in BRM Pipeline Manager Reference

• "edrRemoveAdditionalStream" in BRM Pipeline Manager Reference

• "edrGetAdditionalStream" in BRM Pipeline Manager Reference

• "edrContainsAdditionalStream" in BRM Pipeline Manager Reference

To add output streams to the default stream in the sample registry:

1. Create an iScript file that adds the stream.

The edrAddAdditionalStream iScript document contains an example addoutmod.isc
iScript file that shows how to add two additional output module streams.

2. Reference this iScript file in the pipeline FunctionPool registry section.

The edrAddAdditionalStream iScript document contains an example function registry
section that shows how to use the addoutmod.isc file to add an output stream in the
function registry.

3. Define the stream in the pipeline output registry section.

The edrAddAdditionalStream iScript document contains an example output registry
section that shows how to configure additional output streams by using
OUT_GenericStream.

See edrRemoveAdditionalStream for an example that shows how to remove an EDR output
stream.

Configuring the Output DataDescription Registry Section
You configure a DataDescription section in the registry for each pipeline. The
DataDescription section specifies the stream format description and input mapping files (see
"About the Input Process") and the output mapping file.

DataDescription
  { 
   Standard 
   {
   ModuleName = Standard 
   Module 
   { 
   StreamFormats
   {
     Format1 = ./formatDesc/Formats/Flist/Flist_v01.dsc
   }
   InputMapping
   {
    Mapping1 = ./formatDesc/Formats/Flist/Flist_v01_InMap.dsc
   }
   OutputMapping
   {
    Mapping1 = ./formatDesc/Formats/Flist/Flist_v01_OutMap.dsc
   }
   }

Chapter 4
Configuring Output for Rated Events

4-6



   }
}

About the Order of Listing Stream Format Description Files
Pipeline module instances prioritize the order in which formats are considered for parsing in
the order that the stream format description files are listed in the StreamFormats section of
the registry.

Parsing errors can occur in a pipeline if the stream format description files are listed in the
incorrect order. For example, the stream format description file that applies to your custom
input stream would be listed in the StreamFormats section before the output stream format
description file.

Configuring Output for Rejected or Duplicate EDRs
The OUT_Reject module writes rejected EDRs to a reject file. A rejected EDR is identical to
the EDR input.

To configure output for rejected EDRs, do the following:

• For rejected EDRs, configure the FCT_Reject module. See:

– "Configuring Standard Recycling" in BRM Suspending and Recycling Pipeline EDRs

– "Recycling EDRs in Pipeline-Only Systems" in BRM Suspending and Recycling
Pipeline EDRs

• For duplicate EDRs, configure the FCT_DuplicateCheck module. See "Handling Duplicate
EDRs".

• In the registry, configure an instance of the OUT_Reject module for rejected EDRs and an
instance for duplicate EDRs. See "OUT_Reject" in BRM Pipeline Manager Reference.

You can use the same output directory with different file suffixes and/or prefixes for
rejected or duplicate EDRs.

The OUT_Reject module is a submodule of the Output Collection module. All registry
parameters and error messages are handled by the Output Collection module. See "Output
Collection" in BRM Pipeline Manager Reference.

File handling for rejected and duplicate EDRs is performed by the EXT_OutFileManager
module. See "Sending Output to a File".

Sending Output to a File
To send output to a file, use the "EXT_OutFileManager" in BRM Pipeline Manager Reference
module. The EXT_OutFileManager module handles file prefixes, suffixes, and paths for the
OUT_GenericStream and OUT_Reject modules.

The EXT_OutFileManager module writes the output data to a temporary data file. When the
TAM reports a successful completion of a transaction, the file is renamed to an output file and
the temporary data file is removed.

If a transaction is rolled back, the original input is restored, and the temporary data file is
moved to an error directory and renamed with an error prefix and/or suffix.

By default, the EXT_OutFileManager module is configured to delete empty output files. There
is a short period of time during which empty output files are renamed and deleted. If another
process, such as one that manages output files, tries to manipulate the file during this period,

Chapter 4
Configuring Output for Rejected or Duplicate EDRs

4-7



the pipeline may experience errors. To avoid this problem, configure any output file
management processes to wait approximately one minute before attempting to manipulate
files.

Configuring the Temporary File Name
Use the TempPrefix registry entry to specify the prefix for temporary data files.

Note:

Do not change the TempDataPrefix, TempDataSuffix, and TempDataPath registry
entries. These entries are used by the pipeline for internal data processing only.

See "EXT_OutFileManager" in BRM Pipeline Manager Reference.

Configuring File Prefixes and Suffixes
Use the OutputPath, OutputPrefix, and OutputSuffix registry entries to manage the output
files for each stream.

Note:

To ensure output file integrity, specify a unique combination of OutputPath,
OutputSuffix, and OutputPrefix values for each output stream defined in the
registry.

See "EXT_OutFileManager" in BRM Pipeline Manager Reference.

Creating an Output File Name from the Input File Name
Use the UseInputStreamName registry entry to specify to use the input file name to build the
output file name.

For example, when UseInputStreamName = [2,4;4,6;8,&], the following characters from the
input file name are used to build the output file name:

• Characters 2 to 4.

• Characters 4 to 6.

• Characters 8 to end of string, where the '&' symbol indicates the end of the string.

For instance, if the name of the input file is test12345678, Outputprefix is test, and
Outputsuffix is .edr, the output file name will be testestt1245678.edr

See "EXT_OutFileManager" in BRM Pipeline Manager Reference.

Applying a Prefix to the Sequence Number
Use the SequencerPrefix registry entry to specify a prefix to the sequence number before it
gets appended to the generated output file name.

Chapter 4
Sending Output to a File

4-8



Note:

This entry is used only when AppendSequencerNumber is set to True.

For example, when SequencerPrefix is "+", Outputprefix is test, Outputsuffix is .edr, the
output file name will be test+000002.edr.

By default, the SequencerPrefix is "_" and if no SequencerPrefix is needed, it has to be
specified as SequencerPrefix = "".

Note:

Do not use the characters #, $, =, /, or \ to specify SequencerPrefix.

Using the Output of One Pipeline as the Input to Another Pipeline
If you want to use the output of one pipeline as the input for another pipeline, you must move
the output file to another directory before it can be used by the next pipeline. You move the
files by using "Event Handler" in BRM Pipeline Manager Reference and an external script.
Event Handler would run your external script when prompted by a specified internal event. The
external script would move the output file from one directory to another.

For example, if you want to use the output file from pipeline A as the input file to pipeline B:

• Configure pipeline A to generate output files in directory 1.

• Configure pipeline B to process input files from directory 2.

• Create a simple script (ExternalScript) that moves the output files from directory 1 to
directory 2.

• Configure Event Handler to run ExternalScript whenever pipeline A generates an output
file. For example, you can configure Event Handler to run ExternalScript when it receives
an EVT_OUTPUT_FILE_READY event from the "EXT_OutFileManager" module in BRM
Pipeline Manager Reference.

Sending Output to a Database
Use the OUT_DB module to send data to a database. You configure the following:

• A SQL command parameter file

• Files that define the following:

– SqlBeginStream statement

– HEADER records

– DETAIL records

– TRAILER records

– SqlEndStream statement

• The OUT_DB module

The OUT_DB module reads the parameter file for each new output stream.

Chapter 4
Sending Output to a Database

4-9



When you configure the OUT_DB module, you configure the following:

• The database to load data into.

• Path and file names for the configuration files.

• Aliases for the stream name and row number.

• Source and destination for the header record.

• File management options.

For more information about the OUT_DB module registry entries, see "OUT_DB" in BRM
Pipeline Manager Reference.

About the OUT_DB Module Configuration Files
The parameter file contains key and value pairs. The keys are used by other configuration files
(SqlBeginStream, HeaderTableDefinition, DetailTableDefinition, TrailerTableDefinition,
SqlEndStream). The syntax to recognize keys is ${KEY}. When the other files are processed,
all found keys are replaced by the corresponding values. The files are not deleted.

It is possible to change the database tables in a running system if there are no open streams.

The SqlBeginStream file and the SqlEndStream file are used to define SQL statements that
are passed to the database. The begin stream statement is run before the first EDR arrives,
and the end stream statement is run after the last EDR is processed.

The HeaderTableDefinition, DetailTableDefinition (only if the NumberOfRows registry entry
is set to 1), and TrailerTableDefinition files are used to describe the table in which the EDRs
must be stored. For more information, see "HEADER, TRAILER, and DETAIL Table
Definitions".

First the table name is defined with ${TABLE}, which is replaced by the definition in the
parameter file. Then the column names of the table are defined. Each line holds a column of
the table and its EDR container field, which is mapped into this column. The value is the EDR
container field with external and alias names delimited by a comma ( , ).

${HEADER_TABLE} 
;RECORD_TYPE      = HEADER.RECORD_TYPE   , HDR_RECORD_TYPE 

Each column starts with the FieldDelimiter after the table name.

Because schema definition is not supported by the RWDBBulkInserter, when the
NumberOfRows registry entry is set to 1, the columns are defined like the example above. For
bulk insertion into the database when NumberOfRows is greater than 1, the column definition
is deleted from the table definition file and the schema of the table definition in the database is
used to create the BulkInsert. The following example shows the DETAIL table definition file for
BulkInsert:

${DETAILTABLE} 
;DETAIL.RECORD_TYPE   , RECORD_TYPE 
;DETAIL.RECORD_NUMBER , RECORD_NUMBER 
...

In this case, each sequence of the EDR container field definition in the table definition file must
be in the same order as the column definition in the database table.

Each logical block must end with two number signs ( ## ) except within the table definition file.
A comment line must start with two slashes ( // ).

Chapter 4
Sending Output to a Database

4-10



All these files result in one final configuration file for each stream with replaced parameter keys
within the SQL statements, except optional registry keys. The registry keys
(StreamNameAlias and RowNumAlias) are replaced immediately before the SQL statement
is passed to the database.

The name of the final configuration file is the stream name. It is located in the ControlPath. If
the SaveConfigurationFile registry entry is enabled, a suffix is added. If processing is
successful, the suffix is .done; otherwise, it is .err.

Specifying the Destination
The destination value can be applied to an appropriate field in the HEADER record of an
output module. In the BRM format, this entry is used to fill the recipient field in the HEADER
record.

Specifying the Source
The source value can be applied to an appropriate field in the HEADER record of an output
module. In the BRM format, this entry is used to fill the sender field in the HEADER record.

Handling Empty Output Streams
Because of splitting and rejecting, there is a possibility that an output stream may contain only
the HEADER and TRAILER records. In this case, the production of a default DETAIL record
can be forced. If the WriteDefaultEdr registry entry is set to True, every DETAIL table contains
at least one DETAIL record.

If the DeleteWithoutDetails registry entry is set to True, all insert and update operations will
be rolled back and the default record will be deleted.

These settings are ignored if the output is for a reject stream.

Parameter File
Items in bold text are parameter keys.

DETAIL_TABLE 
sol42_out 
## 
HEADER_TABLE 
sol42_out_header 
## 
TRAILER_TABLE 
sol42_out_trailer 
## 

HEADER, TRAILER, and DETAIL Table Definitions

HeaderTableDefinition

The format of HeaderTableDefinition does not depend on the NumberOfRows registry entry.
The format of HeaderTableDefinition is as follows:

${HEADER_TABLE} 
;RECORD_TYPE      = HEADER.RECORD_TYPE   , HDR_RECORD_TYPE 

Chapter 4
Sending Output to a Database

4-11



TrailerTableDefinition

The format of TrailerTableDefinition does not depend on the NumberOfRows registry entry.
The format of TrailerTableDefinition is as follows:

${TRAILER_TABLE} 
;RECORD_TYPE      = TRAILER.RECORD_TYPE   , TRR_RECORD_TYPE 

DetailTableDefinition

The format of DetailTableDefinition depends on the NumberOfRows registry entry. When
NumberOfRows is set to 1, the format of DetailTableDefinition is as follows:

${DETAIL_TABLE} 
;record_type      = DETAIL.RECORD_TYPE   , RECORD_TYPE 
;record_number    = DETAIL.RECORD_NUMBER , RECORD_NUMBER 

When NumberOfRows is greater than 1, the format of DetailTableDefinition is as follows:

${DETAIL_TABLE} 
;DETAIL.RECORD_TYPE   , RECORD_TYPE 
;DETAIL.RECORD_NUMBER , RECORD_NUMBER 

SqlBeginStream
Identifiers in bold text are registry entries. They are replaced before the statement is passed to
the database.

One statement:

insert into stream_process (streamname, startdate,runmode,numberofrow,destination,source,info)
values 
// this is a comment line 
(__StreamName__, sysdate,'Debug',500,'${TABLE}','sol42_detailin','testing') 

More statements:

begin 
insert into tab1 (col1, col2) values (val1, val2); 
insert into tab2 (col1, col2, col3) values 
(val1, val2, val3); 
// if an SQL block is used there must be a semicolon at the end 
end; 

SqlEndStream
Identifiers in bold text are registry entries. They are replaced before the statement is passed to
the database.

update stream_process set enddate = sysdate, 
edrnum = __RowNum__, 
// duration only valid, if startdate and sysdate within one day 
duration= 
(3600*to_char(sysdate,'HH24')+60*to_char(sysdate,'MI')+to_char(sysdate,'SS'))- 
(3600*to_char(startdate,'HH24')+60*to_char(startdate,'MI')+to_char(startdate,'SS')) 
where 
streamname = __StreamName__ 

Chapter 4
Sending Output to a Database

4-12



Generated Configuration File
SqlBeginStream 
insert into stream_process (streamname, startdate,runmode,numberofrow,destination,source,info) 
values 
(__StreamName__, sysdate,'Debug',500,'sol42_out','sol42_detailin','testing') 
## 
HeaderTableDefinition 
sol42_out_header 
## 
DetailTableDefinition 
sol42_out 
## 
TrailerTableDefinition 
sol42_out_trailer 
## 
SqlEndStream 
update stream_process set enddate = sysdate, 
edrnum = __RowNum__, 
duration= 
(3600*to_char(sysdate,'HH24')+60*to_char(sysdate,'MI')+to_char(sysdate,'SS'))- 
(3600*to_char(startdate,'HH24')+60*to_char(startdate,'MI')+to_char(startdate,'SS')) 
where 
streamname = __StreamName__ 
## 

Chapter 4
Sending Output to a Database

4-13



5
Configuring EDR Preprocessing

This chapter describes how to configure the modules used for preprocessing event data
records (EDRs) in the Oracle Communications Billing and Revenue Management (BRM)
Pipeline Manager; for example, it describes how to discard duplicate EDRs.

Handling Duplicate EDRs
Use the FCT_DuplicateCheck module to find EDRs that have already been processed and
send them to a special output stream. This prevents you from charging a customer twice for
the same usage.

As a pipeline processes EDRs, the following occurs:

1. The FCT_DuplicateCheck module keeps a record of EDRs that have already been
processed.

2. As new EDRs are processed, the module checks for duplicate EDRs by comparing data in
the incoming EDRs with data in the EDRs that have already been processed.

The FCT_DuplicateCheck module uses the following criteria to check for duplicate EDRs:

• The date of an EDR. If an EDR is older than a certain date, it is not processed and no
further checking is performed. It is unlikely that a duplicate EDR will be processed
much later than an original EDR.

• The data in an EDR. You configure which data to use when comparing a new EDR
against EDRs that have already been processed.

• A search key. An EDR is considered a duplicate if it has the same search key and the
same values contained in the fields used for data comparison.

3. If an EDR is a duplicate, it is flagged with an error so other modules do not need to
process it, and it is moved to a separate output stream.

Configuring Duplicate EDR Checking
To enable duplicate EDR checking, configure the FCT_DuplicateCheck module. See
"FCT_DuplicateCheck" in BRM Pipeline Manager Reference and the following topics:

• Setting Date Parameters for Storing Processed EDRs

• Specifying the Fields to Use for Duplicate Check

• Specifying a Search Key for Duplicate Check

• Managing FCT_DuplicateCheck Data Files

• About Storing EDRs in a Database Instead of Files

• Using Duplicate Check with Multiple Pipelines

• Suspending Duplicate EDRs

To define the output stream for duplicate EDRs, use the Output configuration in the registry.
You typically use the OUT_Reject module. See "Sample Output Configuration" and
"OUT_Reject" in BRM Pipeline Manager Reference for more information.

5-1



Note:

When you enable duplicate checking, you must also set the transaction manager
RedoEnabled entry to True.

Setting Date Parameters for Storing Processed EDRs
To check for duplicate EDRs, you need to store a record of the EDRs that have already been
processed. The FCT_DuplicateCheck module then checks incoming EDRs against the
previously processed EDRs. If you receive a high volume of EDRs, you cannot store a record
of all EDRs. Therefore, to limit the number of EDRs you store, you specify date criteria. If an
EDR is older than the specified date, it is not processed.

Note:

The date of an EDR is derived from its DETAIL.CHARGING_START_TIMESTAMP
field.

To specify date parameters for EDR storage, you use the following date settings, specified in
the FCT_DuplicateCheck registry. Depending on an EDR's date relative to these settings and
on whether the FCT_DuplicateCheck module is connected to the database, the EDR is
ignored, stored in a file, stored in the database, or stored in memory.

• StoreLimit: Specifies the oldest date that previously-processed EDRs can be stored.
EDRs dated earlier than the StoreLimit date are ignored and not processed by the
FCT_DuplicateCheck module.

• BufferLimit: Specifies the oldest date that previously-processed EDRs can be stored in
memory. All EDRs whose date is equal to or later than the BufferLimit date are stored in
memory. The FCT_DuplicateCheck module searches the memory directly, thus improving
performance.

The StoreLimit date must be equal to or earlier than the BufferLimit date. For example, if the
StoreLimit is June 1, the BufferLimit date can be June 1 or later.

Note:

Because StoreLimit and BufferLimit are specified as absolute dates (for example,
August 2, 2025), you need to change them daily. You change them by using an
FCT_DuplicateCheck semaphore file entry. See "FCT_DuplicateCheck" in BRM
Pipeline Manager Reference for more information.

Specifying the Fields to Use for Duplicate Check
You configure which data to use when comparing a new EDR against EDRs that have already
been processed. A typical duplicate check for a phone call compares the A number, B number,
and start time in a new and processed EDR. If the data in all fields match, the new EDR is
flagged as a duplicate.

Chapter 5
Handling Duplicate EDRs

5-2



To specify which fields to use, use the FCT_DuplicateCheck Fields registry entry. See
"FCT_DuplicateCheck" in BRM Pipeline Manager Reference for more information.

The following example shows a typical configuration:

Fields
{
    1  =  DETAIL.BASIC_SERVICE
    2  =  DETAIL.B_NUMBER
}

Note:

Do not use the DETAIL.CHARGING_START_TIMESTAMP field for duplicate
checking.

Specifying a Search Key for Duplicate Check
The duplicate check search key identifies duplicate EDRs. An EDR is considered a duplicate if
it has the same time, the same search key value, and the same values for fields listed in the
IFW_DUPLICATECHECK table or in the Fields lists stored as a record in memory.

The search key is used as a key to the internal data structure. For example, if the search key is
A_NUMBER, then A_NUMBER is the hash key used to find the data in memory or in a file for
the EDR being checked.

Managing FCT_DuplicateCheck Data Files
The FCT_DuplicateCheck module uses data files to store EDR data while the EDRs are
processed. The file name syntax is:

FileName_TransactionId.dat

FileName is the value entered in the FileName registry entry:

FileName = duplicateData

The file contains the data from the fields specified in the registry and the EDR date. At the end
of each transaction, the FCT_DuplicateCheck module saves the data from memory to disk in a
new transaction file.

Note:

• To store EDRs in files for duplicate checking, configure unique FileName
settings, Path registry settings, or both for each module.

• To store EDRs in the database for duplicate checking, use the
FCT_DuplicateChecking module's DataConnection registry entry to connect the
module to the database. See "About Storing EDRs in a Database Instead of
Files".

The duplicate check transaction files should be backed up routinely when the pipeline is not
processing EDRs. Temporary files, however, should not be backed up.

Chapter 5
Handling Duplicate EDRs

5-3



To restore transaction files from a backup, shut down the pipeline and restart after restoring
backed up transactions files. You can restore duplicate check data without shutting down
provided that the pipeline is not processing any EDRs. There is no semaphore to reload the
data file, but resetting the StoreLimit or BufferLimit settings results in a reload. The values of
these settings do not need to be changed from their original startup registry settings.

After an abnormal termination, temporary files may be left behind (there should be only one
because file mode should only be used with a single pipeline). These files correspond to
transactions that were never committed, and the input files associated with these transactions
will be reprocessed upon restarting. You should delete these temporary files before restarting.
Temporary files use the suffix .tmp.

About Storing EDRs in a Database Instead of Files
If you use the FCT_DuplicateCheck module's DataConnection registry entry to connect the
module to the database, the module handles EDRs as follows:

• EDRs whose date is equal to or later than the StoreLimit date and earlier than the
BufferLimit date are stored in the database instead of in files. If an EDR is stored in the
database, files are not created.

• EDRs whose date is equal to or later than the BufferLimit date are stored in memory and
in files.

Note:

To avoid using excessive disk space when checking for duplicate EDRs, use the
FCT_DuplicateCheck module's DataConnection registry entry to connect the
module to the database. (The StoreLimit and BufferLimit date settings, and
connecting the module to the database, are designed to help maintain
performance without overloading memory.)

When the FCT_DuplicateCheck module is connected to the database, an entry is added to the
IFW_DUPLICATECHECK database table for each unique EDR. For each duplicate EDR, the
error INF_DUPLICATE_EDR is reported and no entry is added to the table.

If the pipeline transaction is canceled, all the rows with the current transaction ID are removed.

If you do not use the FCT_DuplicateCheck module's DataConnection registry entry to connect
the module to the database (the default), the module handles EDRs as follows:

• EDRs whose date is equal to or later than the StoreLimit date and earlier than the
BufferLimit date are stored in files instead of the database. (Each EDR is assigned a
value that is stored in memory. If the EDR is stored in files, the module checks the memory
for the value, which points to the EDR in the file. The module then reads the EDR data
from the file.)

• EDRs whose date is equal to or later than the BufferLimit date are stored in memory and
in files.

Note:

Although not connecting the module to the database enables faster checking for
duplicate EDRs, it uses a large amount of disk space.

Chapter 5
Handling Duplicate EDRs

5-4



Create Database Tables for Duplicate Check Data

Use the FCT_DuplicateCheck TableSuffix registry entry to create multiple
IFW_DUPLICATECHECK tables when you run multiple pipelines. You typically do this when
you run a separate pipeline for each type of service.

For example, if the pipeline processes GSM EDRs, you can use GSM as the table suffix to use
a table named IFW_DUPLICATECHECK_GSM.

You need to manually create the tables and the indexes. For example:

• IFW_DUPLICATECHECK_GSM

• BIDX_DUPCHK_DATA_GSM

Using Duplicate Check with Multiple Pipelines
When you use the FCT_DuplicateCheck module, you must process the EDRs for each account
in the same pipeline. If you use duplicate check in multiple pipelines for the same account,
duplicate calls may get processed by different pipelines and will not be recognized as being
duplicate.

Suspending Duplicate EDRs
By design, a duplicate EDR is not considered as a suspended EDR and is sent to a different
output stream than suspense handling stream. Therefore, duplicate EDRs are not handled by
suspense handling.

If your business requires to process duplicate EDRs as suspended EDRs, you can do the
following:

1. Change the entry StreamName = DuplicateOutput to StreamName =
SuspenseCreateOutput in the FCT_DuplicateCheck registry.

This will cause the duplicate check reject file to be routed to the suspense handling stream.

2. Add an iScript in the pipeline after duplicate check processing, to check for EDR error. If
the error is duplicate check error, set the error to some other error and set error status as
major.

This will cause the duplicate EDR to be processed by FCT_Reject and FCT_Suspense
plugins.

Note:

You should ensure that duplicate EDRs are associated with a specific error code to
be able to manage and monitor the EDRs in Suspense Manager Center.

Assembling EDRs
Use the FCT_CallAssembling module to assemble multiple CDRs into a single EDR that
pipeline modules can rate. You typically need to assemble CDRs for long phone calls or GPRS
sessions that have been recorded in multiple CDRs.

The default behavior of FCT_CallAssembling is designed to assemble time duration calls. This
is appropriate for wireless voice calls that are rated based on how long the call lasts. You can
also configure this module to assemble calls in a manner appropriate for EDRs rated based on

Chapter 5
Assembling EDRs

5-5



the volume of data sent. This is appropriate for a long data transfer session, such as
downloading a movie. You can choose to collect both time duration and data volume from
multiple CDRs, and a number of other matrixes, such as:

• Volume sent

• Volume received

• Number of units

• Retail charge amount

• Wholesale charge amount

For example, a GPRS session might last for 24 hours. The network might be configured to
generate an intermediate CDR every 30 minutes. This GPRS data session is recorded by
several partial CDRs. If you rate by volume per session, you use the FCT_CallAssembling
module to assemble the partial CDRs into one EDR before rating.

However, remember that the more metrics that you collect, the more system resources you will
use.

How FCT_CallAssembling Classifies EDRs
FCT_CallAssembling uses the LONG_DURATION_INDICATOR EDR field to classify
assembled calls.

The purpose of LONG_DURATION_INDICATOR changes when calls are assembled. CDRs
arrive with this field set to one of these values, which identify the type of call segment:

• F: The first segment of the call.

• L: The last segment of the call.

• I: An intermediate segment of the call.

After FCT_CallAssembling assembles these call segments into an EDR, it gives the EDR one
of these long duration indicators to specify its status.

• C: Complete call. The first and last segments have both arrived, enabling the call's
duration to be calculated. If intermediate call segments arrive after the call is complete,
they are given a long duration indicator of XC, XO, or XP and may not be rated.

• S: A single CDR containing the entire call.

• SL: Slice of a call. Used if KeepCallOpen = True or MaxDuration = True. Composed of
the first call segment and any intermediate call segments that have arrived when the call is
flushed. This part of the call is rated. When any other intermediate segments and the last
segment arrive, the call is given a long duration indicator of C (complete), and these
segments are rated.

• P: Partially assembled call. Used if FlushLimit = True or KeepCallOpen = false. Partially
assembled calls are rated with the information in whatever segments have arrived.
Subsequent call segments are given a long duration indicator of XP and are not rated.

• XC: Late intermediate EDR. This long duration indicator is for intermediate call segments
that arrive after the call is marked complete and rated. Late intermediate call segments are
not rated; instead they are used for auditing.

• XO: Late overlap EDR. Used if time duration rating is used, and DropLateCDRs=False.
This status indicates that the call segment was flushed before this CDR arrived, and it
represents a time duration period already rated. These late segments are not rated;
instead they are used for auditing.

Chapter 5
Assembling EDRs

5-6



• XP: Late timeout EDR. Used if DropLateCDRs = False. This status indicates that the call
timed out before this CDR arrived. These late segments are not rated; instead they are
used for auditing.

Managing the Call Assembling Data Files
Open EDRs are stored in a data file. You configure the path and file name in the Path and
FileName entries in the FCT_CallAssembling registry. The syntax for the file name is:

FileName_TransactionID.dat

This file is read at startup and reloaded after rollback. While processing, data is stored in a
temporary file.

The FCT_CallAssembling module processes the EDRs in a single transaction. You should
backup the work files routinely when the pipeline is not processing any EDRs.

To restore from a backup, shut down the pipeline and restart after restoring backed up work
files. Work files use the suffix .dat.

After abnormal termination, temporary files may be left behind. Temporary work files use the
suffix .tmp. These correspond to transactions that never committed. Therefore, the input files
associated with these transactions will be reprocessed upon restarting. Delete these temporary
files before restarting.

Note:

Never delete the most recent .dat file.

Configuring Call Assembling
To configure call assembling, see "FCT_CallAssembling" in BRM Pipeline Manager Reference
and the following topics:

• Rating Calls by Time Duration

• Rating Calls by Implied Time Duration

• Rating Calls by Volume of Data Sent

In addition to specifying how to perform call assembly, you can configure FCT_CallAssembling
to do the following:

• Specify an amount of time (in seconds) that is an acceptable amount of time error for each
call. See "Specifying a Time Error" for more information.

• Keep calls open indefinitely, and rate them in segments periodically. See "Rating
Continuous Data Calls by Segment" for more information.

• Limit the effect of FlushLimit to calls with specific service codes. See "Rating Partial Calls
by Service" for more information.

• Capture data from Basic Detail Record fields for the L call segment. See "Capturing
Fields From the Last Call Record " for more information.

• Get a report about calls being assembled. See "Tracking the Status of Assembled Calls"
for more information.

If you are upgrading, see "Migrating Call Assembling Data Between Releases and Pipelines".

Chapter 5
Assembling EDRs

5-7



Rating Calls by Time Duration
By default, the FCT_CallAssembling module assembles the time duration of a call so it can be
rated.

To assemble EDRs for their time duration, the FCT_CallAssembling module identifies partial
EDRs by using the following EDR attributes:

• The chain reference. This ID identifies which event the partial EDR belongs to. Multiple
partial EDRs that belong to the same event all have the same chain reference.

Note:

Chain reference must be unique for each call instance. Oracle does not support
identical chain references across several call events.

• The long duration indicator. For a list of these indicators, see "How FCT_CallAssembling
Classifies EDRs".

Parts of EDRs can be processed out of order; for example, the Last segment might arrive
before the First segment. The FCT_CallAssembling module manages EDRs by tracking their
status:

• As a soon as a first or intermediate call segment record arrives, the EDR is stored in a data
file and the state is set to Open. See "Managing the Call Assembling Data Files".

• By default, if a First or Last segment is already stored in a file, and the matching Last
segment or First segments arrive, the record state is changed to Closed. The EDR is
moved back into the pipeline. Any Intermediate segment that belong to the assembled
EDR that arrive after the assembled EDR is closed are ignored.

You can also direct this module to wait for all CDRs before closing a call, or close it after
you send in a semaphore. This allows you to rate incomplete calls or calls that never
receive a first or last record.

The time duration for a call is calculated as follows:

Call Duration = [(Start_Time_Of_Last_Segment) - (Start_Time_Of_First_Segment)] + 
Duration of the Last Segment

For example, if there is a call which starts at Jan 01, 2009 12:00:00 PM and ends at Jan 01,
2009 at 12:30:00 PM. The EDR will have the following information:

• First Segments TimeStamp as Jan 01, 2009 12:00:00 PM and Duration

• Last Segment TimeStamp would be Jan 01, 2009 12:25:00 PM + 300(Seconds)

In this case, the call duration will be calculated as follows:

[(12:25:00 PM) - (12:00:00 PM)] + 300 = 1800 Seconds

Rating Incomplete Time Duration Calls
Some EDRs can never be completely assembled because the First, Intermediate, or Last
segment never arrives. In this situation, you can choose to close these calls using either the
FlushLimit semaphore entry or the MaxDuration startup registry entry. Both of these entries
force calls to be flushed and rated after the time limit you set.

Chapter 5
Assembling EDRs

5-8



Here is a comparison of the two entries:

• MaxDuration is a startup registry entry. It takes effect when you start the pipeline. Each
time a new call segment arrives, it recalculates the total time duration for that call. If the
new time duration exceeds the limit you set, the call is flushed and it remains open for
more CDRs. You set the time duration in seconds. To change the setting, you must restart
the pipeline.

For details, see "Using MaxDuration to Rate Incomplete Calls".

• FlushLimit is a semaphore registry entry used with KeepCallOpen=True. It sets a
maximum age a call can have before being flushed. When you send in the semaphore, the
pipeline calculates whether a call exceeds the maximum age. If a call exceeds the
FlushLimit setting, FCT_CallAssembling creates and rates the EDR and then closes the
call. You set the time limit in days. A setting of 0 flushes all calls. A setting of 1 flushes all
calls that have been opened more than 1 day. You can change the FlushLimit setting
every time you send in a semaphore.

For details, see "Using FlushLimit to Rate Incomplete Calls".

Using MaxDuration to Rate Incomplete Calls
MaxDuration is a startup registry entry that directs FCT_CallAssembling to rate segments of a
wireless call periodically. This entry specifies the total amount of time duration (in seconds) that
a call can have before the call segments that have arrived are rated. FCT_CallAssembling
recalculates the call duration for every call each time a new call segment arrives and compares
it to the MaxDuration setting. If the new time duration equals or exceeds the setting for
MaxDuration, FCT_CallAssembling creates an EDR to rate the existing portion of the call.

To use the MaxDuration entry, add it to the startup registry and start (or restart) the pipeline.

Table 5-1 illustrates FCT_CallAssembling behavior with MaxDuration set. In the example, the
CDRs did not arrive in chronological order.

Example call with KeepCallOpen=True and MaxDuration=28800 (8 hours)

Table 5-1    FCT_CallAssembling and CDRs

CDR Start time End time Duration
(hours)

FCT_CallAssembling takes this action...

F 1:00 4:00 3 Waits. MaxDuration setting not reached.

I1 4:00 7:00 3 Waits. MaxDuration setting not reached.

I2 7:00 10:00 3 Creates EDR for 9 hours of call duration.
MaxDuration setting exceeded.

I3 10:00 13:00 3 Waits. MaxDuration setting not reached.

I5 16:00 19:00 3 Creates EDR for 9 hours of call duration, even
though a CDR is missing. MaxDuration setting
exceeded.

I4 13:00 16:00 3 Not rated; call duration already rated. This EDR is
either emitted as XO or dropped, depending on
the DropLateCDRs setting.

In this example, if MaxDuration is set to 28800 seconds (8 hours), FCT_CallAssembling rates
the EDRs of a call with a total time duration of more than 8 hours. This call arrives in 3-hour
segments and will be rated after the third segment arrives, and FCT_CallAssembling
calculates that the 9-hour call duration exceeds the 8-hour limit. When the MaxDuration

Chapter 5
Assembling EDRs

5-9



setting is reached, the call segments are flushed and rated, the long duration indicator for the
call is set to SL, and the call is left open for more call segments.

If a CDR is missing, FCT_CallAssembling adds the missing call time represented by the EDR if
it can. In the example above, the I4 call segment arrived last, but the time duration it
represented had already been rated when the I5 segment arrived. FCT_CallAssembling
calculated the time duration by subtracting the start time from I3 and the end time from I5. The
difference was 9 hours of time duration, which exceeds the 8-hour setting, so an EDR was
created to rate that duration.

Using FlushLimit to Rate Incomplete Calls
FlushLimit assembles the calls and emits them into the pipeline for rating. The call has a long
duration indicator set to P for "Partial."

In this example, FlushLimit flushes all calls the have a CHARGING_START_TIMESTAMP
older than five days from today.

FlushLimit=5

To flush all incomplete calls, use 0; for example:

FlushLimit=0

The flush operation does not happen immediately. Instead, it happens at the arrival of the next
pipeline transaction. This is done to ensure that Flush operations happen within the context of
a transaction.

Removing Incomplete Time Duration Calls
When you flush EDRs, they re-enter the pipeline as part of the current transaction. The EDRs
are still stored in the work files (.dat and .EDR), with a state of Timeout. This prevents a late-
arriving call segment from re-opening a call that has already been flushed. If you are sure that
no further segments will arrive, use the RemoveLimit semaphore entry to remove calls from
the work files.

The RemoveLimit entry removes all calls with the Closed or Timeout status, but leaves calls
with a state of Closed_Rejected or Timeout_Rejected alone. Closed_Rejected or
Timeout_Rejected calls will be recycled. However, if you are sure that calls with the
Closed_Rejected or Timeout_Rejected status will not be recycled, use a
RemoveRejectedLimit semaphore entry to remove these calls from the work files.

Dropping Late Calls
You can drop late EDRs from the pipeline entirely, or send them through as non-valid EDRs. If
you send them through the pipeline, you can use them for auditing.

Use the DropLateCDR registry entry to specify how to handle the output of late EDRs:

• True (Default) = Drop late EDRs from the pipeline. The EDRs are counted in the report of
late-arriving EDRs.

• False = Send late EDRs through the pipeline as non-valid. The EDRs are not counted in
the report of late-arriving EDRs. They are not rated.

Chapter 5
Assembling EDRs

5-10



Rating Calls by Implied Time Duration
By default, FCT_CallAssembling calculates a call's time duration by using the difference
between the first EDR's start time and the last EDR's end time. This includes the time duration
for any CDRs between the first and last that have not yet arrived. The time duration for these
missing CDRs is included in the EDR and rated.

If KeepCallOpen=True calls are rated in segments. When a semaphore with
KeepCallOpen=True is sent in:

• All the CDRs that have arrived for a call are assembled.

• An EDR is emitted and rated.

• The call is kept open for more CDRs.

When the next semaphore is sent in, all CDRs that have arrived since the last semaphore are
assembled as an EDR and rated.

By default, FCT_CallAssembling calculates a call's time duration by subtracting the end time of
the last CDR that has arrived from the start time of the first. Because the CDRs between the
first and last are not used in the calculation, it does not matter if they have arrived when the
EDR is created. If a CDR between the first and last CDRs is missing when the time duration is
calculated, the missing CDR is dropped when it finally does arrive.

Example time duration registry

CallAssembling
 {
  ModuleName = FCT_CallAssembling 
  Module 
   {
      Active            = True
      AssembleVolume    = False
      AssembleSGSN      = False
      SplitAtGaps       = False
      MaxDuration       = 900
      Path              = ./data/assy
      FileName          = calls
      Mode              = Normal
      RejectMissingChain = True
      CallDurationTolerance = 59
      DropLateCDRs          = False

      AssembledEDR  {
          1 = Detail.custom_fields_from_last_edr1
          2 = Detail.custom_field_from_last_edr2...
      }
   }
 }

Note:

If you use both the FCT_CallAssembling and FCT_Reject in the same pipeline, use
the FCT_Reject module CallAssemblingModule registry entry to ensure that
complete EDRs are recycled. See "FCT_Reject" in BRM Pipeline Manager
Reference.

Chapter 5
Assembling EDRs

5-11



Rating Calls by Volume of Data Sent
Use the AssembleVolume and/or AssembleSGSN registry entries to direct
FCT_CallAssembling to rate calls by the volume of data sent. Both AssembleVolume and
AssembleSGSN ensure that you capture the entire volume of data sent for a single call, and
they both direct FCT_CallAssembling to rate a call only after all of its call records have arrived.

If you do not plan to rate calls by volume of data sent, leave AssembleVolume set to False.
This saves system resources by disabling the registry entries which rate by volume.

The volume-based rating entries protect against lost revenue. Call records can arrive in any
order, so it is not unusual for an intermediate segment to arrive after the first and last segments
have arrived and been rated. In this case, any intermediate segments that arrive after the call
is closed are dropped, and all the volume they contain are lost (and so is the revenue).

By default, FCT_CallAssembling calculates the time duration for each CDR individually.
FCT_CallAssembling subtracts the end times from the start times of each CDR to calculate the
time duration. This module then adds the time durations of all CDRs as they arrive to create a
grand total for the call.

If your business requires that all non-contiguous CDRs be rated as separate EDRs (TAP
requires this) set the SplitAtGaps registry entry to True. If not, then set this entry to False, and
non-contiguous CDRs will be collected into a single EDR, saving system resources.

However, if you are rating calls by volume of data sent, lost intermediate call records will cause
calls to remain open indefinitely. Send in a Flushlimit entry frequently to avoid this.

For information on data calls that you want to keep open indefinitely and rate periodically, see
"Rating Continuous Data Calls by Segment".

Example volume of data call registry

CallAssembling
 {
  ModuleName = FCT_CallAssembling 
  Module 
   {
      Active            = True
      AssembleVolume    = True
      AssembleSGSN      = True
      SplitAtGaps       = False
      Path              = ./data/assy
      FileName          = calls
      RejectMissingChain = True
      CallDurationTolerance = 59
      DropLateCDRs          = False

      AssembledEDR  {
          1 = Detail.custom_fields_from_last_edr1
          2 = Detail.custom_field_from_last_edr2...
      }
   }
 }

Example TAP volume of data call registry

This example adheres to the TAP 3.10 standard. Volume and SGSN data are recorded
precisely at the start and end times of each call segment. Because SplitAtGaps = True, if any
call segments are missing, the segments before and after it are emitted as separate EDRs.

Chapter 5
Assembling EDRs

5-12



CallAssembling
 {
  ModuleName = FCT_CallAssembling 
  Module 
   {
      Active            = True
      AssembleVolume    = True
      AssembleSGSN      = True
      SplitAtGaps       = True
      Path              = ./data/assy
      FileName          = calls
      RejectMissingChain = True
      CallDurationTolerance = 59
      DropLateCDRs          = False

      AssembledEDR  {
          1 = Detail.custom_fields_from_last_edr1
          2 = Detail.custom_field_from_last_edr2...
      }
   }
 }

Specifying a Time Error
Use the CallDurationTolerance startup registry entry to specify an amount of time (in
seconds) that is an acceptable amount of time error for each call.

Note:

The default value for this entry correctly handles most calls, so you do not need to
change this entry unless you notice a problem.

Mobile phone calls are commonly split into multiple call records. Each call record should start
at the same second that the previous one ended. For example, a call record with an end time
of 12:01:30 should be followed by the next call record with a start time of 12:01:30.
Unfortunately, it is common for these start and end times to either not quite match, or to
overlap slightly (time error). The reason may be that the call records come from different
routing switches with clocks that have not been synchronized, or the switches themselves have
difference time tolerances.

The CallDurationTolerance default value is 60 seconds of tolerance to compensate for this
time error. If a call has less than 60 seconds of error, a call is considered complete and sent for
rating. Otherwise the call is left open and must be closed with a semaphore entry. A single call
with 10 call records, each overlapping by 3 seconds, creates a call with 30 seconds of time
error. This 30-second time error is less than the CallDurationTolerance 60-second time limit,
so the call is considered complete and sent down the pipeline for rating.

Note:

Setting this entry too low causes an inordinate number of calls to be left open
indefinitely. Setting this entry too high can cause the pipeline to rate calls with
missing call segments. The 60-second default value is appropriate for most BRM
implementations.

Chapter 5
Assembling EDRs

5-13



Rating Continuous Data Calls by Segment
Use the KeepCallOpen semaphore registry entry together with FlushLimit, to keep calls open
indefinitely, and rate them in segments periodically. This feature is designed for data calls that
are kept open continuously (days at a time). These long data calls are usually rated
periodically to capture revenue.

KeepCallOpen is an update registry entry sent in the FlushLimit semaphore.

For example, a bank might keep a continuous call open to each of its ATMs to pass data back
and forth. Using the default behavior, the call would not be rated for days. You will probably
want to capture the revenue for these types of calls periodically, perhaps every 12 or 24 hours.
Setting KeepCallOpen to True keeps, these calls open. You then rate these calls in segments
by sending in a FlushLimit semaphore entry.

If you set KeepCallOpen to True and send it in with the FlushLimit semaphore every 12
hours, an EDR is created twice a day, each EDR rating the previous 12 hours of call time and
volume.

KeepCallOpen is an entry in the FlushLimit update registry entry.

By default KeepCallOpen is set to False. The default behavior directs this module to rate the
call when the first and last segments have arrived, or when the FlushLimit is sent, whichever
comes first. Any subsequent records are ignored.

Rating Partial Calls by Service
Use the FlushServiceCode semaphore registry entry to limit the effect of FlushLimit to calls
with specific service codes. FlushServiceCode is sent as an entry in the FlushLimit update
registry entry. If the FlushServiceCode entry matches the value of the
DETAIL.INTERNAL_SERVICE_CODE field of the call segment, the call is flushed. All other
partial calls are ignored.

For example, the following FlushServiceCode entry directs the pipeline to rate only calls with
the dat service code:

{
  FlushLimit = 0
  FlushServiceCode = dat
}

Figure 5-1 shows how the FlushServiceCode and KeepCallOpen semaphore registry entries
interact.

Chapter 5
Assembling EDRs

5-14



Figure 5-1    FlushServiceCode and KeepCallOpen Semaphore Interaction

Capturing Fields From the Last Call Record
Use the AssembledEDR startup registry entry to capture data from Basic Detail Record
fields for the L call segment.

The final record of a call has a long duration indicator of L (last), however the L call record may
not be the last to arrive at the pipeline. In some cases it is important that information be
captured from the L call record. For example, the number that terminated the call can only
come from the L call record.

If AssembledEDR is used, the pipeline captures Basic Detail Record data from the L call
record and adds it to the EDR emitted, regardless of whether it was actually the last call record
received.

List any Basic Detail Record fields to capture data from in the AssembledEDR entry,
including any custom fields that your business requires. The pipeline will then include the data
from those fields on the EDR that is compiled and processed. See "Sample Registry" in BRM
Pipeline Manager Reference for an example.

Tracking the Status of Assembled Calls
You can use a semaphore command to receive a report about the status of calls currently
being assembled. The report provides the following information:

• The number of partially assembled calls.

• The number of EDRs currently waiting to be assembled.

• The number of late EDRs that are parts of calls that are no longer being assembled, for
one of the following reasons:

Chapter 5
Assembling EDRs

5-15



– The call was assembled and sent to the pipeline. In this case, the first and last portion
of a call was processed, and an intermediate part arrived after the EDR had been sent
into the pipeline.

– The call was flushed by a FlushLimit semaphore, and another portion arrived after the
call was flushed.

The report includes the following data about late EDRs:

– The number of late-arriving EDRs for flushed calls.

– The number of late-arriving EDRs for assembled calls.

– The total number of late-arriving EDRs.

In addition to creating the report, each assembled EDR includes a NUMBER_OF_CDRS field
that stores the number of CDRs that were included in the EDR. You can use this data in an
aggregation scenario to gather additional data about assembled calls.

Note:

For EDRs that are not part of split calls, the FCT_CallAssembling module enters 1 in
the NUMBER_OF_CDRS field.

Migrating Call Assembling Data Between Releases and Pipelines
When you upgrade BRM from one release to another or apply patches, you need to migrate
the call data in your .dat files to the new format by using the XML support provided with the
FCT_CallAssembling module.

You use the following semaphore registry entries to change the format of the data from one
release or pipeline to another:

• ExportDataToXml

• ImportDataFromXml

For more information, see the semaphore file entries in "FCT_CallAssembling" in BRM Pipeline
Manager Reference.

To migrate call assembly data, perform the following steps:

1. Export the data from your existing data files to an XML file by using a semaphore registry
file with the ExportDataToXml entry:

ExportDataToXml
{
   CallsPerFile = Value
}

2. Import the data from the XML file into the data file with the new format by using the
ImportDataFromXml entry:

ImportDataFromXml
{
   FileName = filename.xml
}

Chapter 5
Assembling EDRs

5-16



Assembling Calls with Multiple Pipelines
When you use the FCT_CallAssembling module, you must process the EDRs for each account
in the same pipeline. If you assemble calls in multiple pipelines for the same account, the call
segments may get processed by different pipelines and cannot be assembled.

Discarding and Skipping EDRs
You can use the FCT_Discard module to skip or discard EDRs:

• Skipping an EDR removes it from the pipeline.

• Discarding an EDR sends it to a different output stream. You will probably want to audit the
information in EDRs with a LONG_DURATION_INDICATOR of XC, XO, or XP before you
discard them.

In both the cases the state of the EDR becomes invalid. (To indicate a discarded EDR, a value
is entered in the DETAIL.DISCARDING field.)

For example, you can filter the following EDRs:

• Discard EDRs that are older than three days and have a B_NUMBER that begins with
0049.

• Discard EDRs that have a RECORD_TYPE that begins with a 9 followed by two digits, an
INTERN_SERVICE_CODE that ends with a 2, and a
WHOLESALE_CHARGED_AMOUNT_VALUE of 0.

For information on the regular expressions you can use, see "About Using Regular
Expressions when Specifying the Data to Extract".

To create a valid mapping, the data in the EDR must match all of the mapping data.

Configuring EDR Discarding
To configure EDR discarding:

1. Specify which EDRs to discard or skip. See "About Configuring Discard and Skip
Expressions".

2. Configure the OUT_DevNull module as the output stream for discarded EDRs. See
"Configuring Output of Discarded EDRs".

3. Configure the FCT_Discard module. See "FCT_Discard" in BRM Pipeline Manager
Reference.

• Use the FCT_Discard module StreamName registry entry to specify the output stream.

• To send EDRs to different output streams without making them invalid, use the
FCT_EnhancedSplitting module. To process EDRs that belong to accounts in different
BRM database schemas, see "FCT_AccountRouter" in BRM Pipeline Manager
Reference.

About Configuring Discard and Skip Expressions
To specify which EDRs to discard or skip, you create a set of regular expressions using a set of
data fields. These fields are not mandatory so if they do not exist in the EDR description it does
not matter. If all expressions match the available fields, the EDR will be removed.

Chapter 5
Discarding and Skipping EDRs

5-17



You can create different discard rules for separate pipelines.

You define discard rules in Pricing Center or Pipeline Configuration Center (PCC). The discard
rules are stored in the IFW_DISCARDING table.

Use the Reload semaphore file entry to reload regular expression patterns after you change
them.

You can discard or skip EDRs based on the following:

• Rank. This specifies the order in which to evaluate the rules.

• Record type.

• Source network.

• Destination network.

• Call complete indicator.

• Long duration indicator.

• Usage class.

• Internal service code.

• GSM switch or GPRS switch.

• Tariff class.

• Tariff subclass.

• Connection type.

• Connection subtype.

• B number.

• The age of the EDR.

• If the wholesale charge should be zero.

For information on the regular expressions you can use, see "About Using Regular
Expressions when Specifying the Data to Extract".

To configure the FCT_Discard module. See "FCT_Discard" in BRM Pipeline Manager
Reference.

Configuring Output of Discarded EDRs
Use the OUT_DevNull module to handle EDRs that should be discarded from a pipeline.

To discard EDRs, do the following:

• Configure the FCT_Discard module. See "Discarding and Skipping EDRs ".

• In the pipeline, configure the OUT_DevNull module. See "OUT_DevNull" in BRM Pipeline
Manager Reference.

OUT_DevNull is a submodule of the Output Collection module. All registry parameters and
error messages are handled by the Output Collection module. See "Output Collection" in BRM
Pipeline Manager Reference.

Chapter 5
Discarding and Skipping EDRs

5-18



Generating Multiple TAP MOC and MTC Records
When you process TAP files, you use the ISC_TapSplitting iScript to splits mobile originating
and terminating EDRs into multiple EDRs when the CDR contains more than one basic
service. The ISC_TapSplitting creates a new EDR for each additional basic service.

Splitting mobile originating and terminating EDRs enables CDR rejection when a basic service
record associated with a CDR is in error. It also permits custom validations to be added prior to
splitting.

Service information for all secondary services (supplementary, VAS, CAMEL), which are part of
a basic service EDR, are added to the last basic service EDR. Charge information for these
secondary services are added to the last charge breakdown record of the last basic service
EDR.

EDR splitting is performed after TAP validation. TAP files and EDRs that are rejected due to
errors are not split. After the new EDRs are created, the original EDR is deleted.

To configure ISC_TapSplitting, see "ISC_TapSplitting" in BRM Pipeline Manager Reference.

Using Rules to Send EDRs to Different Output Streams

Note:

To send EDRs to different output streams for the Rated Event (RE) Loader, use the
IRL_EventTypeSplitting iScript. See "Sending EDRs to Pipeline Output Streams".

Use the FCT_EnhancedSplitting module to specify different output streams for EDRs based on
rules. For example:

• You can split EDRs for different service types into different output streams.

• You can split EDRs from roaming outcollects and incollects into different streams.

To send EDRs to different output streams, you define a set of rules. For example, you can send
all telephony EDRs from a specific network to a different output stream.

You can use the following data in the rules:

• Record type.

• Service code.

• Usage class.

• Source and destination network.

• Switch.

• Trunk in/out.

• A number and B number area code.

• Normalized C number area code (forwarded or routed number).

This example assigns all telephony EDRs with an A number starting with 49 to the Out49
system brand:

Chapter 5
Generating Multiple TAP MOC and MTC Records

5-19



Service code :   TEL
A number:        0049.* 
System brand:    Out49

In addition you can specify the order in which to evaluate the rules, and the dates when the
rule is valid.

The FCT_EnhancedSplitting module evaluates each EDR against the rules. The first rule that
matches the criteria defines the system brand to use. The system brand is identified by a code.
You use that code to map the system brand to an output stream in the registry. In this example,
system brand Out49 is mapped to the EdrOutputOut49 output:

SystemBrands 
{ 
Out49 = EdrOutputOut49 
}

You can create separate splitting rules for different pipelines.

You can use a semaphore file entry to reload a new set of rules.

Configuring Enhanced Splitting
To configure enhanced splitting, you do the following:

1. Configure system brands. Each system brand is mapped to an output stream.

2. Use Pricing Center or Pipeline Configuration Center (PCC) to configure the splitting rules.
Each rule is associated with a system brand. If an EDR matches a rule, it uses the system
brand defined in the rule.

To create a valid mapping, the data in the EDR must match all of the mapping data.

For the data fields, you use regular expressions. For information on the regular
expressions you can use, see "About Using Regular Expressions when Specifying the
Data to Extract".

3. Configure an output stream for each system brand. See "Configuring EDR Output
Processing".

4. Configure the FCT_EnhancedSplitting module. This defines the output stream for each
system brand. See "FCT_EnhancedSplitting" in BRM Pipeline Manager Reference.

Sending EDRs to Pipeline Output Streams
When you load rated events in the BRM database, RE Loader loads events for separate
services from separate directories. Therefore, your pipeline needs to send EDRs to separate
output streams for each internal service code. To do so, you use the IRL_EventTypeSplitting
iScript.

To specify the output stream, you edit the IRL_EventTypeSplitting.data file. This file maps
service codes to output streams. For example, this entry maps the TEL service code to the
TelOutput stream:

TEL;TelOutput

Chapter 5
Sending EDRs to Pipeline Output Streams

5-20



Note:

You can also use the FCT_EnhancedSplitting module to send EDRs to different
output streams based on EDR content. See "Using Rules to Send EDRs to Different
Output Streams".

The IRL_EventTypeSplitting iScript must run after the FCT_ServiceCodeMap module and
before FCT_Reject module.

To configure the IRL_EventTypeSplitting iScript, you configure it as part of the FCT_IRules
module. See "FCT_IRules" in BRM Pipeline Manager Reference.

For more information, see "IRL_EventTypeSplitting" in BRM Pipeline Manager Reference.

Using Pipeline Manager with Multiple Database Schemas
In a multischema environment, you start a separate instance of Pipeline Manager for each
BRM database schema.

• Use the FCT_AccountRouter module to find the account and send the EDR to the correct
instance of Pipeline Manager. The FCT_AccountRouter runs in its own instance of Pipeline
Manager.

• Use the DAT_AccountBatch module to supply data to the FCT_AccountRouter module. It
runs in the same instance of Pipeline Manager as the FCT_AccountRouter module. See
"DAT_AccountBatch" in BRM Pipeline Manager Reference.

To find the A number customer and the B number customer, the FCT_AccountRouter module
does the following:

1. The module looks for the following data in the EDR:

• The internal service code that indicates which data can be used to identify the account.
For example, if the internal service code is a telephony service, the identifying data is
the A number. A different service might use the IMSI as the identifier.

You identify which data to use by using Pricing Center or Pipeline Configuration Center
(PCC).

• The timestamp for the EDR. The timestamp is important because telephone numbers
can be used by different accounts at different times.

2. The module uses the DAT_AccountBatch module to look up the account. See
"DAT_AccountBatch" in BRM Pipeline Manager Reference.

Note:

• If no A customer is found, the EDR is rejected. If the B customer is missing,
no error is generated.

• Because phone numbers can be recycled, the search is made on data from
BRM audit objects.

3. The DAT_AccountBatch module returns the database number.

Chapter 5
Using Pipeline Manager with Multiple Database Schemas

5-21



4. The FCT_AccountRouter sends the EDR to the correct pipeline, using the configuration
defined in the registry.

Setting Up Account Identification in Multischema Systems
To set up account identification in a multischema system, do the following:

1. Configure service and account data in the Pipeline Manager database:

• Configure internal service codes. The DAT_AccountBatch module retrieves account
information based on which services are rated.

• Configure how the FCT_AccountRouter module looks up accounts (for example, by
telephone number or IMSI). You specify which data is used for identifying accounts
when you configure the FCT_Account module.

• (Optional) Configure account ID prefixes to use for handling duplicate telephone
numbers. You configure this when you configure the FCT_Account module.

2. Configure the FCT_AccountRouter. See "FCT_AccountRouter" in BRM Pipeline Manager
Reference.

Note:

Since the FCT_AccountRouter module needs the internal service code, the
FCT_AccountRouter module must be placed after the FCT_ServiceCodeMap
module in the pipeline.

3. Configure the DAT_AccountBatch module UseAsRouter registry entry.

If set to True, the module is used by the FCT_AccountRouter module to route EDRs to
separate Pipeline Manager instances. See "FCT_AccountRouter" in BRM Pipeline
Manager Reference.

If set to False (the default), the module is used by the FCT_Account module to get account
data.

See "DAT_AccountBatch" in BRM Pipeline Manager Reference.

Chapter 5
Using Pipeline Manager with Multiple Database Schemas

5-22



6
Setting Up EDR Enrichment

This chapter describes ways to enrich event data record (EDR) data for rating by the Oracle
Communications Billing and Revenue Management (BRM) Pipeline Manager.

Identifying the Network Operator/Service Provider
If your network supports multiple network operator/service providers (NO/SPs), you can use
the FCT_NOSP module to identify the various NO/SPs. This module uses the source and
destination codes and A number prefix in the EDR to assign a new source and destination
code for the NO/SP.

Use this module when you need to identify the NO/SP and the NO/SP information is not
available in the EDR; for example, when mobile networks are separated by means of the A
number and you need to segment calls.

To map NO/SP data, you do the following:

1. Use Pricing Center or Pipeline Configuration Center (PCC) to create NO/SP maps. See
"Creating an NO/SP Map".

You can also use a file to configure the NO/SP map.

2. Configure the FCT_NOSP module. See "FCT_NOSP" in BRM Pipeline Manager
Reference.

3. Configure the DAT_NOSP module. See "DAT_NOSP" in BRM Pipeline Manager
Reference.

If you store NO/SP data in a file, see "Creating an NO/SP Data File".

Creating an NO/SP Map
To create NO/SP mappings, you use Pricing Center or Pipeline Configuration Center (PCC) or
a text file to set up the data that specifies how to map NO/SPs.

The mappings are based on the following data:

• Map group.

• The order in which mappings are applied. The first NO/SP map that matches is used.

• The source network and network destination recorded in the CDR.

• The phone number prefix to match.

• The new network source and destination to use in the EDR.

For information on the regular expressions you can use, see "About Using Regular
Expressions when Specifying the Data to Extract".

Pricing Center or Pipeline Configuration Center (PCC) stores the mappings in the IFW_NOSP
database table.

For information on using a file to specify NO/SP maps, see "Creating an NO/SP Data File".

6-1



Creating an NO/SP Data File
You can store data for the DAT_NOSP module in the Pipeline Manager database or in a text
file.

The configuration file must be an ASCII file. Each row defines one mapping rule. All fields in a
row are separated by a semicolon (;). The fields in one row have the following order:

1. MAPGROUP (NOT NULL)

2. RANK (NOT NULL)

3. OLD_SOURCE

4. OLD_DESTINATION

5. A_PREFIX

6. NEW_SOURCE (NOT NULL)

7. NEW_DESTINATION (NOT NULL)

Setting Up Social Numbers
In some cases, customers want a B number to not appear on an invoice. For example, some
countries require that certain called numbers remain anonymous, such as the number for a
treatment center. You can set up social numbers to hide specific B numbers.

The social flag functionality is run by the FCT_SocialNo module. When it finds a social number,
the module sets a flag in the EDR B_MODIFICATION_INDICATOR field. You can use this flag
to customize how to handle the number; for example, remove the last three digits or not allow
the EDR to be included in an invoice.

To set up social numbers:

1. Use Pricing Center or Pipeline Configuration Center (PCC) to specify social numbers.

To specify social number, you specify the number that identifies it internally and give the
number a descriptive name.

The FCT_SocialNo module looks for an exact match of this number in the EDR.

You can also use a file to specify social numbers. See "Creating a Social Number Data
File".

2. Configure the FCT_SocialNo module. See "FCT_SocialNo" in BRM Pipeline Manager
Reference.

Creating a Social Number Data File
You can specify social numbers in Pricing Center, Pipeline Configuration Center (PCC), or a
file.

The social number data file uses the following syntax:

number1
number2
...

The number uses the same format as the normalized B number in the EDR.

Chapter 6
Setting Up Social Numbers

6-2



International-access-code c\Country-code National-destination-code Access-code

For example:

0014085555555 

Creating Call Destination Descriptions
You can set up descriptions for call destination area codes. For example, a prefix of 001408
can be described as "San Jose, California." The description is displayed on the customer's bill.

Prefix/description mapping is performed by the FCT_PrefixDesc module. You set up a mapping
between prefixes and descriptions. The module finds the best match for the prefix and adds
the description to the EDR DESCRIPTION field.

To set up prefix/description mapping:

1. Map prefixes and descriptions in Pricing Center or Pipeline Configuration Center (PCC).

Note:

You can also use a text file. See "Creating a Prefix/Description Data File".

2. Configure the FCT_PrefixDesc module. See "DAT_PrefixDesc" in BRM Pipeline Manager
Reference.

3. Configure the DAT_PrefixDesc module. See "DAT_PrefixDesc" in BRM Pipeline Manager
Reference.

Setting Up Prefix/Description Mapping
To set up prefix/description mapping in Pricing Center or Pipeline Configuration Center (PCC),
enter the following:

• The area code prefix. The prefix must have the same format that is used for normalization
within a pipeline. The FCT_PrefixDesc module does not normalize numbers.

• The prefix type:

– National

– International

– Special

Note:

If you use a file to store the mappings, you do not enter any prefix type. See
"Creating a Prefix/Description Data File".

• The description to use, for example, "New York City."

Chapter 6
Creating Call Destination Descriptions

6-3



Note:

All prefix/description pairs must be unique.

Creating a Prefix/Description Data File
You can define prefix/description mappings in the Pipeline Manager database, or in a file.

The mapping file has the following structure:

Prefix1; Description1
Prefix2; Description2

Mapping Multiple Phone Numbers to a Single Number
Customers with more than one telephone number sometimes want to get only one bill for all
their numbers. You can map multiple telephone numbers to one number. This mapping is
performed by the FCT_CliMapping module. The module uses the A number to search for a
mapping entry. If there is a mapping entry, the A number is replaced by the Caller Line
Identification (CLI) number

For example, a customer with a primary number 14085722000 could have five extra telephone
numbers but would like to be billed as if they originated from the same number. To accomplish
this for all the calls originating from the other five numbers, the A number is mapped to
14085722000 in the EDR.

To configure CLI mapping:

1. Define the mapping in a file. See "Creating a CLI Mapping File ".

2. Configure the FCT_CliMapping module. See "FCT_CliMapping" in BRM Pipeline Manager
Reference.

Creating a CLI Mapping File
As shown in Table 6-1, the FCT_CliMapping module requires an ASCII mapping file that
contains the numbers to map to a single number.

• Every new line defines a mapping.

• Fields are separated by semicolons (;).

• There should be no semicolon at the end of a line.

Table 6-1    FCT_CliMapping Module File Structure

Column Name Position Length Format Description

1 CLI_FROM 1 25 X(25) Start CLI

2 SERVICE_CODE 27 5 X(5) Service Code

3 MAPPING_CLI 33 25 X(25) Mapping CLI

4 CUST_NUMBER 59 10 X(10) Customer number

5 SUBSC_NUMBER 70 20 X(20) Subscriber number

6 ISDN_RANK 91 1 X(1) Rank of the ISDN number

Chapter 6
Mapping Multiple Phone Numbers to a Single Number

6-4



Managing Number Portability
Customers may want to change network operators but retain their existing phone number. You
can maintain number portability data to keep a track of the network operator a customer uses.

For maintaining number portability data, the DAT_NumberPortability module loads the data
from the number portability file into the memory (pipeline's run-time memory).

The FCT_NumberPortability gets the number portability data from the DAT_NumberPortability
module. The data includes the CLI, the new network operator ID, and the date that the
customer changed network operators. The FCT_NumberPortability module uses the date of
the event to determine which network operator applies. If the new network operator applies,
FCT_NumberPortability module updates the new network operator ID in the EDR.

BRM's number portability feature support batch pipeline (offline mode). See "Number
Portability for the Batch Pipeline".

For batch pipeline rating, the FCT_NumberPortability module updates the EDR with the
appropriate network operator ID based on the time stamp when the network operator changed.

For real-time pipeline rating, the FCT_NumberPortability module updates the EDR with the
appropriate network operator ID based on the time stamp when the network operator changed.
The FCT_Opcode module creates an opcode input flist containing the new network operator
information. The flist is used for rating the calls in real time.

Number Portability for the Batch Pipeline
BRM uses semaphores to load the number portability data file using the batch process in the
pipeline.

The number portability process for the batch pipeline makes the system inactive when the new
number portability records are updated in the system.

About Number Portability Files
The number portability file is an ASCII file that stores the number portability data. The data
from these files is loaded into the DAT_NumberPortability module.

You enter the following information in the number portability file:

• CLIs.

• The time stamp when CLIs are ported to a new network operator.

• The new network operator ID.

See "Creating a Number Portability Data File".

The following example shows a sample of number portability records in a number portability
file:

Call Line ID            Date              Network Operator ID
408555                  20080101000000    D030
408555                  20080110000000    D010

The records in the example show that the subscriber changes the network operator to D030 on
January 01, 2008. From January 01 to January 1, the subscriber is with the network operator
D030. On January 10, the subscriber changes the network operator to D010.

Chapter 6
Managing Number Portability

6-5



BRM uses the following number portability files:

• Primary number portability file: Contains the primary number portability records that
already exist.

• Delta number portability file: Contains the additional number portability records that need to
be added to the memory and the primary number portability file.

You use the primary number portability file when you use the reload probe or the Reload
semaphore to reload number portability data.

You use the delta number portability file when you use the deltaLoad probe to update the
primary number portability file.

To manage number portability data, you can do the following:

• Purge data from the primary number portability file. To purge data from the file, use the
purge utility (purge.np_data.pl). See "Purging and Reloading the Memory Records".

• Reload the data from the primary number portability file to the memory. See "Purging and
Reloading the Memory Records".

• Append the data from the delta number portability file to the memory and subsequently to
the primary number portability file. See "Appending Additional Number Portability
Records".

Creating a Number Portability Data File
The DAT_NumberPortability module reads the required data from a reverse-sorted ASCII file.

Each row of the number portability file contains a CLI number, a date and time (when the
numbers are ported), and a network operator ID as shown in Table 6-2.

Table 6-2    Input File for DAT NumberPortability module

Column Format Description

Call Line Identity Number String Specifies the telephone number or a part of the
telephone number.

Portation date and time YYYYMMDDhhm
mss

Specifies the date and time of the number
portation.

Network Operator ID Dxxx Specifies the new telephone carrier.

An example of a sample file:

089761   20020910101230   D030
089761   20020912101230   D018
089545   20020820084000   D017
089545   20020920230010   D030

Note:

The columns are separated by spaces.

Use the DAT_NumberPortability FileName registry entry to specify the file name for the number
portability data file.

Chapter 6
About Number Portability Files

6-6



Purging and Reloading the Memory Records
The purge utility is used to delete existing records (from the number portability file) that are
older than a time stamp specified in the utility. You can purge the data from the memory by
using the purge utility. For purging the records from the memory, you must first purge records
from the number portability file and then use the reload probe to ensure that the records in the
number portability file and the memory are in sync.

To purge and reload number portability records:

1. Run the purge_np_data.pl utility to purge the primary number portability data file:

purge_np_data.pl NP_FileName TimeStamp [–b backup_filename] [-n]

where,

• NP_FileName specifies the name of the primary number portability file. For example,
Primary_NP_Data.data.

• TimeStamp specifies the date prior to which all the number portability records are
purged. For example, 20080105000000.

• -b backup_filename specifies the name of the backup file that will contain the
unpurged number portability records. For example, Primary_NP_Data.bak.

This command takes a backup of the existing number portability records in the backup file
and deletes all number portability records prior to the date (timestamp) specified from the
primary number portability file.

2. Initiate the Reload semaphore to reload the purged number portability data into the
memory.

This ensures that the records in the number portability file and the memory are in sync.

Note:

For the sample entry of Reload semaphore, see "Sample Semaphore File Entry"
in BRM Pipeline Manager Reference.

If the reload operation fails, the memory data will contain all the unpurged data. The
primary number portability data file is moved to a Pipeline_home/npdata/error directory.
Pipeline_home is the directory where you installed Pipeline Manager.

Appending Additional Number Portability Records
You can use the delta number portability file to append additional or newly ported records to
the primary number portability file. The delta number portability file contains the additional
records that are in the same format as the primary number portability file. By default, the delta
number portability file is stored in the Pipeline_home directory. You can also manually add the
additional records in the primary number portability file but this process is cumbersome when
you need to add many records.

To append additional number portability records:

1. Initiate the AdditionalNumPortData semaphore with the delta number portability file name
as a value. The delta number portability file contains additional entries in the same format
as the number portability file.

Chapter 6
About Number Portability Files

6-7



The additional entries are first added to the memory and then the memory data is dumped
into the primary number portability file so that the records in the memory and the primary
number portability file are in sync.

Note:

For the sample entry of AdditionalNumPortData semaphore, see "Sample
Semaphore File Entry (DAT_NumberPortability)" in BRM Pipeline Manager
Reference.

2. Initiate a PrintData semaphore to print the records to a file.

All number portability data in the memory is copied to the file. By default, this file is created
in the Pipeline_home directory.

Note:

For the sample entry of the PrintData semaphore, see "Sample Semaphore File
Entry" in BRM Pipeline Manager Reference.

Setting Up Number Portability
You must set up number portability to maintain the number portability data to keep track of the
network operator a customer is using. You can configure number portability for the following:

• Batch pipeline

• Real-time pipeline

Setting Up Number Portability for Batch Pipeline
To set up number portability for the batch pipeline:

1. Configure the FCT_NumberPortability module. See "FCT_NumberPortability" in BRM
Pipeline Manager Reference.

2. Configure the DAT_NumberPortability module. See "DAT_NumberPortability" in BRM
Pipeline Manager Reference.

When you configure the DAT_NumberPortability module, you specify the following:

• The search method. See "Configuring Number Portability Search".

• Normalization. See "Configuring Normalization for Number Portability".

• The number portability data file. See "Creating a Number Portability Data File".

Setting Up Number Portability for Real-Time Pipeline
To set up number portability for the real-time pipeline:

1. Configure the FCT_NumberPortability module. See "FCT_NumberPortability" in BRM
Pipeline Manager Reference.

2. Configure the DAT_NumberPortability module. See "DAT_NumberPortability" in BRM
Pipeline Manager Reference.

Chapter 6
About Number Portability Files

6-8



When you configure the DAT_NumberPortability module, you specify the following:

• The search method. See "Configuring Number Portability Search".

• Normalization. See "Configuring Normalization for Number Portability".

• The number portability data file. See "Creating a Number Portability Data File".

3. Configure the ISC_PopulateOpcodeAndUtilBlock_Diameter iScript in the registry file and
place it in the processing pipeline after the FCT_NumberPortability module. See
"ISC_PopulateOpcodeandUtilBlock_Diameter" in BRM Pipeline Manager Reference.

4. Configure the ISC_MapNetworkOperatorInfo iScript and place it after the
ISC_PopulateOpcodeAndUtilBlock_Diameter iScript in the registry file. See
"ISC_MapNetworkOperatorInfo" in BRM Pipeline Manager Reference.

5. Configure the FCT_Opcode module and place it in the processing pipeline after the
ISC_PopulateOpcodeAndUtilBlock_Diameter iScript. See "FCT_Opcode" in BRM Pipeline
Manager Reference.

Configuring Number Portability Search
You can configure which of the following search methods the DAT_NumberPortability module
uses to find a phone number's current network operator:

• Best match searches the number portability file for objects with the best combination of
matching phone number prefix and recent port date. For example, a number portability file
includes the following entries and a pipeline module receives a CDR with a date of
November 2 and the phone number 4085551234:

Call Line ID      Date              Network Operator ID
408               20081001000000    D030
408555            20080801000000    D029
408555            20080708000000    D028

The DAT_NumberPortability module returns network operator D029 because the entry
contains the most recent port date with the most matching prefix numbers.

• Exact match searches for the first object that exactly matches a given phone number.

• Any prefix match searches for the first object with a matching prefix.

To configure the search method, use the DAT_NumberPortability SearchMethod registry entry.
See "DAT_NumberPortability" in BRM Pipeline Manager Reference.

Configuring Normalization for Number Portability
Use the following DAT_NumberPortability registry entries to specify number normalization data:

• CountryCode

• NationalAccessCode

• InternationalAccessCode

• InternationalAccessCodeSign

For example, you can normalize this phone number:

04106760279

so that it becomes:

00494106760279

Chapter 6
About Number Portability Files

6-9



See "FCT_NumberPortability" in BRM Pipeline Manager Reference.

Chapter 6
About Number Portability Files

6-10



7
Setting Up Pipeline Aggregation

This chapter describes the Oracle Communications Billing and Revenue Management (BRM)
Pipeline Manager aggregation feature.

About Aggregation
You use the aggregation feature to compile data from event data records (EDRs). Aggregation
is typically used for the following:

• To filter and summarize data for compiled statistics about service usage, customer activity,
network activity, dealer commissions, and so forth. For example, you can compile the sum
of charges per customer per month.

• To aggregate data and use for rating. For example, you can compile GPRS usage records
and rate the aggregated amount.

• To output a back-out file used as input for rerating.

About Setting Up Aggregation Pipelines
Because the results of aggregation are typically not used by other modules, and because the
aggregation process uses more resources than rating, aggregation is typically performed by a
separate pipeline. You can run an aggregation pipeline parallel to a rating pipeline, so that the
same input files will be processed by both pipelines.

The aggregation pipeline processes EDRs in transactions, typically one transaction per input
file. When the transaction is finished, the data is written from memory to a file.

After every transaction, the aggregated results are written to a file that contains the transaction
ID. For every transaction and aggregation scenario a result and a control file is created. The
control files are used by the Database (DB) Loader utility to load the results into the database.
See "Creating Aggregation Scenarios".

You define the control file in the FCT_AggreGate registry entries. After the data is processed
by the pipeline, you use DB Loader to load the data from the file to a database. This can be the
same database used by Pipeline Manager or a different database. You can run the utility
automatically or manually. See "Database Loader" in BRM Pipeline Manager Reference.

See "Creating Aggregation Scenarios".

See "FCT_AggreGate" and "DAT_ScenarioReader" in BRM Pipeline Manager Reference.

Note:

If you configure aggregation for rerating, ensure that the FCT_AggreGate module is
working in back-out mode.

7-1



About Aggregation Scenarios
You aggregate data by creating aggregation scenarios (see "Creating Aggregation Scenarios").
An aggregation scenario specifies which data to use and how to process the data. You use the
following criteria when setting up aggregation scenarios:

• Filter conditions: Allows you to choose which EDRs to aggregate; for example, you can
specify all calls for a single customer, service, time period, or charge.

Note:

Conditional filters for combined attributes are not supported.

• Grouping rules: Allows you to group calls according to various criteria; for example, you
can aggregate sums based on levels of duration, as follows:

– All calls less than one minute.

– All calls from one to five minutes.

– All calls over five minutes.

• Aggregation functions: You can do the following with the data:

– Count the number of selected events.

– Sum the values of selected events.

– Generate the square sum from values of selected events.

You can use any EDR field for filtering, grouping, or aggregating. However, aggregation criteria
are limited to the following:

• The data must be in the EDR.

• The data must be available for an overall aggregation, typically of a NUMBER type.

Note:

An aggregation scenario is analogous to an SQL SELECT statement with a
GROUP BY claus.

For example, select all EDRs where the time period is peak time, then group the
calls by levels of duration (for example, 0-1 minute, 1-5 minutes), and aggregate
the charges for each level of duration.

Creating Aggregation Scenarios
When you create an aggregation scenario, you define filter, grouping, and aggregation
functions. When you run an aggregation pipeline, you specify which scenario to use in the
FCT_AggreGate registry.

Defining Filter Criteria
Define the following when defining filter criteria for a scenario:

Chapter 7
About Aggregation Scenarios

7-2



• The status of the filter criteria (active or inactive).

• The EDR field that the filter is applied to.

• The data type to use; for example, string, number, or date/time.

• The value to filter with.

• The function used for aggregating:

– Count

– Sum

– Square sum

• The decimal precision for the aggregated result.

Specifying Scenario Attributes
In addition to defining the filters, groups, and aggregation functions, you can use the registry to
define the following attributes for each scenario:

• The EDR container description for the scenario.

Note:

You can only set up filters and groups for fields included in the EDR container
description.

• A default table name where the aggregation results are stored.

• The maximum number of aggregations held in memory before writing the data to a file.
Enter 0 to specify an infinite number.

• Default directories for the following:

– Where to store the aggregation results file (temporary and finished data).

– Database (DB) Loader control files.

• A default delimiter for the single values of grouping and aggregation fields.

About Creating Groups
You use grouping rules to group and order aggregation results. Grouping rules are applied to
EDR container fields and associated with a rank. For example, aggregation results can be
grouped first by the event originator, then by zones, and then by time periods, or by duration,
area code, or geographic zone.

When you define groups, you define the database columns that contain the aggregated data.
For example, if you group aggregation results by duration, a column for that value is created in
the table in the results file.

A group includes the following attributes:

• The EDR field for which the values are grouped; for example, time period or duration.

• The column name where the aggregations for the group are written in the results file.

• The data type for the grouped data:

– String

Chapter 7
About Aggregation Scenarios

7-3



– Number

– Date/time

• If applicable, the output format for the data. This can be date/time values or string format;
for example UPPER, LOWER or SUBSTR(x,y).

About Creating Classes for Groups
You create classes to group results for a type of data. For example, to group aggregation
results by the duration of events, you can create the duration classes shown in Table 7-1.

Table 7-1    Duration Classes

Class Value to group by

Duration Class A 0 to 60 seconds

Duration Class B 61 to 300 seconds

Duration Class C 301 to 600 seconds

Duration Class D More than 600 seconds

When creating a class, you define the following categories:

• The name; for example, duration.

• The data type:

– String

– Number

– Date/time

• Class items. For each class item you define the following:

– The name; for example, duration.

– The data type (string, number, or date/time)

– The value; the following is an example duration class item:

D=1-5 & HH=08-20

You specify values by using regular expressions. Use the same expressions defined
when "Defining Filter Criteria".

Note:

For values that do not match any other class items, specify an "undefined"
class item for every class.

About Linked Classes

You can create multiple linked classes to group results by more than one category. For
example, if you create groups for time period and duration, you can group results as follows:

• Peak time: 0-1 minute

• Peak time: 1-5 minutes

• Peak time: over 5 minutes

Chapter 7
About Aggregation Scenarios

7-4



• Off-peak time: 0-1 minute

• Off-peak time: 1-5 minutes

• Off-peak time: over 5 minutes

About Defining Class Dependencies
During aggregation, class groupings are processed in order as defined in a tree structure. To
define this order, you assign classes to nodes in the tree structure. For example, to aggregate
data by time and duration, data is aggregated first by the time class, and then by the duration
class.

Chapter 7
About Aggregation Scenarios

7-5



8
Migrating Pipeline Manager Data Between
Test and Production Systems

This chapter explains the Pipeline Manager data migration features of Oracle Communications
Billing and Revenue Management (BRM). It provides conceptual information about Pipeline
Manager data migration and operational information about implementing data migration
features in your business.

About Pipeline Manager Data Migration
You use the Pipeline Manager data migration feature to create, test, and modify pipeline rating
data in a development environment, then deploy it to your production environment. This
capability provides increased flexibility and security by isolating development and testing
activities from production systems.

This is the basic workflow of the Pipeline Manager data migration process:

1. Set up identical development and production systems.

To ensure data integrity and testing validity, the pipeline rating data in the development
system must be exactly the same as the data in the production system. The two systems
diverge as you make changes to the development environment, but they converge again
when you export these changes and import them into the production system.

See "Setting Up Development and Production Environments".

2. Create and modify charges and discounts on the development system.

Using standard Pricing Center procedures with some modifications, you create and modify
pipeline pricing data such as charges, discounts, and pricing. You use change sets to
organize your work. Change sets are groups of related changes that are managed and
exported as a whole. Change sets ensure data integrity by locking objects when
necessary.

See "Understanding Change Sets" and "Understanding Locks and Associations".

3. Test your changes on the development system.

You should test your changes thoroughly to ensure that they work as you expect. The data
migration features in Pricing Center guard against major errors such as referring to objects
that don't exist, but you must test the business content of your changes to make sure that
you achieve the results that you want.

See "Testing Change Sets".

4. Export change sets from the development system.

After testing, you can export a single change set or a group of change sets to a file. The
file contains the information required to recreate the modified objects in the production
database. If you export a group of change sets to a single file, you can specify the order in
which the change sets are exported.

See "Planning the Export Process".

5. Import change set files into the production environment.

8-1



The import process reads the file created during export from the development system. All
changes are validated to ensure data integrity. For example, the import process checks
that all objects referred to by objects in the change set exist in the production database. If
errors are found, the entire file is rejected and no changes are made.

See "Planning the Import Process".

Understanding Change Sets
Change sets are the basis of the Pipeline Manager data migration features in Pricing Center.
Change sets track the changes you make and make it possible to treat those changes as a
whole. They also enforce rules about which objects can be added, changed, or deleted. See
"Understanding Locks and Associations".

For example, a change in policies at your business makes it necessary to modify several
pricings. You can make all these modifications as part of single change set that you export
from the development system and import into the production system as a whole. Using a
change set guarantees that the production system receives exactly the same changes that you
made in the development system.

The content of a change set is determined by the changes you make while that change set is
active. When data migration is enabled, you must have an active change set before you make
any changes to rating and pricing data. You can have only one active change set at a time and
a change set can be active for only one user at a time. Every change you make is part of the
active change set.

You can activate, inactivate, and reactivate change sets freely. For example, you can activate
one change set to make a change to a screen, then switch to another change set to make a
different change. When you exit from Pricing Center, the active change set is automatically
inactivated to make it available to other users.

You can create as many change sets as you need. In some cases you may use only a single
change set to include all the changes associated with a particular pricing change. In other
cases, you may need to set up a number of different change sets for various parts of the
project. See "Organizing Work into Change Sets".

You use the Change Set Manager, a screen in the Pricing Center application, to create and
manage change sets. See "About the Change Set Manager ".

Understanding the Change Set Life Cycle
Change sets follow a life cycle that dictates what you can and can't do. This life cycle is
comprised of change set states through which change sets move. By default, the life cycle
includes four states. You can add additional states to conform to your business practices.

Note:

Managing the change set life cycle is a sensitive task. It is possible to invalidate
testing scenarios and to create discrepancies between the test and production
environments if you do not monitor and manage change set states carefully.

Figure 8-1 illustrates the default change set life cycle.

Chapter 8
About Pipeline Manager Data Migration

8-2



Figure 8-1    Default Change Set Life Cycle

There are four default change set states:

• In Progress. When you create a new change set, it is in the In Progress state, the working
state for change sets. When an In Progress change set is active, you can make any
modifications to the pipeline rating data that you need. From In Progress, you can
manually change the state to Ready to Export or to a custom states that you define.

• Ready to Export. You change the state to Ready to Export when you confirm that all your
data is complete and correct. You should test your data before switching to this state.

In the Ready to Export state, you cannot make any changes to the data in the change set.
If you need to make additional changes, you must manually switch back to In Progress.

The normal next step is to export the change set to a file. When you export a change set,
its state automatically switches to Exported.

• Exported. This state shows that the change set has been exported, but has not yet been
imported into the production database. You cannot make any changes to the data in a
change set in the Exported state.

You must manually change the state to Closed when the file is imported.

Note:

Changing to Closed state from Exported is a vital step. If you do not close the
change set, all locks and associations remain active, potentially blocking the
completion of other change sets.

If there is a problem importing the change set, you can manually return the change set to
the In Progress state to make necessary changes. This should be a carefully managed

Chapter 8
About Pipeline Manager Data Migration

8-3



task to avoid confusion about which change set file contains the correct data. See
"Planning the Export Process".

• Closed. This is the end state for change sets. The Closed state indicates that a change set
is complete and in production. The change set is no longer available for use and cannot be
reactivated. Its locks and associations are released. You can view information about the
modifications made in this change set, but can no longer back them out.

For more information, see "Customizing Change Set States".

Understanding Locks and Associations
Locks and associations are used by change sets to ensure data integrity, prevent contradictory
changes, and maintain information about what data has changed or been affected.

• A lock prevents a data object from being modified or deleted by a change set other than
the one that established the lock.

• An association indicates that a data object is referred to by a locked object. While an object
can have only a single lock, it can have multiple associations. It can also have a lock and
associations at the same time. An object with an association cannot be deleted until the
association is removed.

When data migration is enabled, locks and associations are automatically implemented by
Pricing Center, preventing you from making changes that violate the locking rules. For
example, if a change set has locked a pricing, you can't modify that pricing with any other
change set.

Even though locks and associations are enforced automatically, you should understand the
rules that are used to enforce them. This knowledge will help you and your colleagues work
efficiently and smoothly. For example, if you create a new calendar in a particular change set,
locking prevents that calendar from being visible to other change sets until the change set that
created the calendar is closed. You need to plan your work accordingly. See "Organizing Work
into Change Sets" for more information.

The next section, "Understanding the Pricing Data Model", provides background information
about how pipeline rating data is stored in the database. "Locking and Association Rules"
provides information about the rules governing locks and associations.

Understanding the Pricing Data Model
When you create a charge, pricing, or another element of pipeline rating data, it is stored in a
table in the Pipeline Manager database, but for the purposes of clarity, we can think of Pipeline
Manager data as independent objects.

These objects have different kinds of relationships with each other. Many objects are reusable.
They are elements such as calendars, time models, pricings, and zone models that can be
referred to by many other objects. For example, a single calendar can be used by many
charges.

Other objects have a parent-child relationship. One parent object refers to many different
occurrences of the same type of child object.

Locking and Association Rules
When an object is modified, added, or deleted while a change set is active, that change set
has a lock on the object. For example, if you make a change to a charge under Change Set 1,
that charge is locked by Change Set 1 and cannot be modified or deleted by another change
set until the lock is released.

Chapter 8
About Pipeline Manager Data Migration

8-4



These are the three most basic locking rules:

• An object can have only one lock. In other words, when an object is locked by one change
set, it cannot be locked by another.

• An object that is locked by a change set cannot be modified or deleted by another change
set.

• A newly created object is locked by the change set that created it.

These rules prevent change sets from making contradictory changes.

In addition to these basic locking rules, additional rules govern the objects related to locked
objects. These rules work differently depending on whether the object is reusable or part of a
parent-child relationship.

Rules for Reusable Objects

When a change set locks an object that directly refers to a reusable object, the change set
creates an association to the reusable object. For example, when you modify a charge, the
change set creates a lock on the charge and an association to the calendar referred to by the
charge.

Associations are used to keep track of data that is potentially affected by changes made in a
change set. They are also used to guard against deletion of objects that might cause data
integrity problems.

These are the rules governing locking and associations for reusable objects:

• Objects with associations cannot be deleted until all associations have been removed. The
deletion of associated objects is prohibited because it would cause data integrity problems;
the locked object would have a reference to an object that no longer exists.

• Multiple change sets can create associations to the same object. For example, suppose
Charge A and Charge B both refer to Calendar Z. Change Set 1 modifies Charge A,
thereby creating an association to Calendar Z. Change Set 2 then modifies Charge B,
which creates an additional association to Calendar Z.

• A change set can create an association to a locked object, except if that object is newly
added by another change set. For example, if Change Set 1 has modified Pricing A and
therefore locked it, Change Set 2 can still make a change that results in an association to
that pricing. However, if Change Set 1 has added Pricing B, the new pricing is not visible to
other change sets. No associations can be created to it by other change sets.

• A change set can obtain a lock on an associated object to make modifications. (The object
cannot be deleted, however.) For example, suppose Change Set 1 modifies Charge A,
which locks the charge and creates an association to Calendar Z. Change Set 2 can still
lock the calendar for modification. It cannot delete the calendar because that would violate
the rule about deleting associated objects.

• Associations are created only for objects directly referred to by a particular locked object.
When you lock a charge, you create an association to the calendar it refers to, but you do
not create an association to any objects referred to by the calendar.

Rules for Parent-Child Relationships

There is one main locking rule for parent-child relationships: a child object is locked when its
immediate parent object is locked. For example, when you modify a charge, the charge and all
its charge versions are locked.

Unlike associations, parent-child locking is recursive. In other words, not only the children of
the parent object, but the children's children, are locked. For example, when you lock a charge,

Chapter 8
About Pipeline Manager Data Migration

8-5



its versions are locked, which in turn causes the version's charge configurations, rate
adjustments, and special day links also to be locked.

Because of the recursive nature of parent-child locks, you need to use some special
techniques to minimize their impact. For example, to prevent all of a charge's children from
being locked when you want to modify only a particular version, you can open the charge in
read-only mode, then open the version you want to edit. Only that version and its children are
locked, making it possible for other change sets to change other parts of the charge.

Note:

You cannot delete a child object when you open its parent in read-only mode. For
example, if you open a charge in read-only mode, then try to delete a charge version,
you see an error dialog box. You must open and lock the parent object to delete a
child object.

About the Change Set Manager
You use the Change Set Manager in Pricing Center to create and work with change sets. The
Change Set Manager has two main areas:

• The navigation panel on the left enables you to open and create change sets. It lists all the
available change sets in two sections: Non-Exported and Exported. You also search for
closed change sets in the navigation panel.

• The Change Set Manager window displays the details of the open change set, including
the name, state, description., the data modified by this change set, and the data
associated with it. You can also activate a change set in the Change Set Manager window.

To open the Change Set Manager, click the Change Set Manager button ( ) in the toolbar.
Alternatively, you can choose View - Change Set Manager.

The Change Set Manager opens. The navigation panel on the left side of the screen shows the
available change sets as shown in Figure 8-2.

Chapter 8
About the Change Set Manager

8-6



Figure 8-2    Change Set Manager

In the Change Set Manager, you can do the following:

• Create new change sets

• Activate change sets

• View change set data

• Work with change set states

• Back out change sets

• Export change sets

• Import change sets

Using Pipeline Manager Data Migration Features in Your
Business

The Pipeline Manager data migration features in Pricing Center provide a framework that you
can use to create and test new pricing data for your business. Because every business is
different, you need to develop procedures that meet your needs. This section provides
guidance about integrating Pricing Center data migration features into your business.

Chapter 8
Using Pipeline Manager Data Migration Features in Your Business

8-7



Note:

The Pricing Center data migration features guard against problems in data integrity,
but don't validate content. You must be careful and methodical to ensure that your
business content is correct and testable.

Setting Up Development and Production Environments
To ensure accurate testing, your development and production data models must be identical to
begin with. Each database must contain exactly the same objects with exactly the same
contents.

When you create new pricing data on the development system, the two databases diverge, but
due to the data that you have introduced. You can therefore be confident that your testing will
reveal only issues introduced by the new data. Later, when all your changes have been
exported from your development system to your production system, the data models will again
be identical. See "Copying Production Data to the Development System".

You must also enable data migration for the two systems. When you install Pricing Center, you
can choose not to enable data migration, to enable only import capability, or to enable the
entire feature. You can also enable or disable data migration after Pricing Center has been
installed. See "Enabling Data Migration in Pricing Center".

Until you enable data migration, you cannot import or export data to or from either system.

Note:

If you enable data migration for one instance of Pricing Center, you should also
enable data migration for all other instances of Pricing Center that have access to the
same test and production databases. Instances of Pricing Center without data
migration enabled can make changes outside the scope of change sets, thereby
causing inconsistencies in the data.

Another configuration step is setting up the change set life cycle that you want to use. The
change set life cycle is based on your business process and reflects the stages that a change
goes through from development to production. Depending on your business process, you may
want to add change set states to the default life cycle. For example, you may want to add
states called Testing and Approval. See "Understanding the Change Set Life Cycle" and
"Customizing Change Set States".

Planning Your Work
You should plan your pricing data projects offline before using Pricing Center to implement
them on the development system. You should know exactly which new pricing objects you
need to introduce, which objects need to be changed, and which need to be deleted. You
should also make sure to identify all reusable object that will be modified so that you can test
all the objects that refer to them.

The exact planning process you use depends on your business needs and the complexity of
the data model you are implementing. Whatever process you use, make sure there is a solid
connection between your offline process and your work in Pricing Center. Use a consistent

Chapter 8
Using Pipeline Manager Data Migration Features in Your Business

8-8



naming policy so that you can track a change from its inception in the planning process to its
implementation in Pricing Center. For example, if your marketing department initiates a change
through a formal change request, you can incorporate information from the change request into
the Change Set ID, name, and description in Pricing Center.

Organizing Work into Change Sets
The way you organize change sets on your development system; how many change sets you
use for a particular project and how changes are divided among them; can have a large impact
on how efficiently you complete your work. Here are two reasons why you need to think
carefully about change set organization:

• Change sets can be dependent on each other. For example, if you are creating a new
reusable object in one change set, other change sets cannot view or reference that object
until the first change set is closed. Dependencies can also be based on content. If you
make changes to the content of a pricing in one change set, for example, any changes you
make in other change sets that rely on this new content create a dependency.

• Locks created by one change set can prevent other change sets from accessing objects.
For example, suppose two people are implementing two separate groups of changes, each
in its own change set, and each change set requires the modification of the same pricing.
When one user modifies the pricing, the other user is blocked until the first change set is
closed.

You should use the information from the planning process to decide how many change sets to
create and what to include in them. From your planning, you should develop a clear picture of
the specific changes you need to make.

These are some of the factors to consider when organizing change sets:

• The number and complexity of changes. If you need to make only a few, simple
changes, you can make them all in single change set. On the other, if you are working on a
major overhaul of your pricing data, you should organize your work into multiple change
sets.

• The types of changes you are making. Reusable objects can be referenced by many
different objects, so changes to them can have a broad impact. To prevent one change
set's locks from causing problems for other change sets, you can make all your reusable
object changes in one change set that you export and import separately before other
changes.

• How many users are involved. The larger the number of users involved in the
implementation of a pricing data project, the more important it is to be very careful about
planning and organizing the work. You can use change sets to divide work among users.

Testing Change Sets
Testing is vital to ensure that the pricing data you create is valid. Pricing Center prevents you
from making errors that cause data integrity problems such as references to objects that no
longer exist. But it is your responsibility to ensure that the content of your pricing data is valid:
Pricing Center can ensure that a pricing exists, but it can't verify that it contains the correct
information for your business.

Pricing Center does provide warnings in situations where your actions might cause problems.
For example, when you open a Pricing Center screen for an object that has an association to
another change set, you can get information about which change set created the association.

Chapter 8
Using Pipeline Manager Data Migration Features in Your Business

8-9



You should test the data as realistically as possible by using the pricing data in your
development system to rate CDRs in an environment that closely resembles your production
environment.

These are some guidelines for helping you decide what to test:

• When you modify a reusable object, test to ensure that the objects that reference it are still
valid. For example, if you make a change to a calendar, you should test all the charges that
refer to that calendar to make sure that the change doesn't cause an unexpected result.

• Keep in mind the possible effects of multiple successive change sets modifying the same
object. Locking prevents more than one change set from modifying an object at the same
time. After a change set is closed and its locks are released, however, another change set
can modify previously locked objects.

• Coordinate the activities of all users and all change sets to ensure that you are testing
exactly what will be exported and imported. For example, another change set can modify a
pricing to which a charge in your change set has an association. Such a change doesn't
cause a referential integrity problem; the pricing still exists; but may cause unexpected
results during rating. Ideally, when you are testing a change set or group of change sets,
there is no other development activity that might affect the tests.

Planning the Export Process
When a change set or group of change sets is complete, you export it to a file that can be
imported into the target system.

Follow these guidelines for exporting change sets:

• Before you export, make sure that you understand any dependencies between change
sets.

Some dependencies are determined by locking rules. For example, if a new reusable
object is introduced in one change set, that change set must be exported, imported, and
closed before another change set can refer to the new object.

Other dependencies are based on content. For example, if you use a change set to modify
an existing calendar, you should make sure to export and import that change set before
any change sets that rely on the modification.

• To ensure that change sets are exported and imported in the proper order, you can include
multiple change sets in the same file and specify the sequence in which they are
processed.

• Export change sets only when you are sure that they are complete and ready to be
imported. There is no point in having incomplete export files in your system. They serve no
purpose and there is some risk that they might be imported accidentally.

Managing Change Set Files
Change set files contain sensitive data, so you should manage them carefully. Three tasks are
particularly vital:

• Ensuring file security. Once a file has been exported, it should be tracked carefully to
ensure that it is not lost or corrupted. You should make sure there is no confusion about file
names, which files are waiting to be imported, and similar matters.

• Keeping track of file versions. It's possible to have more than one version of a change
set file. For example, if you export a file and then discover a problem with a change set in
the file, you may need to make corrections and export the changes again. You should be

Chapter 8
Using Pipeline Manager Data Migration Features in Your Business

8-10



very careful to keep track of the file versions to ensure that you are importing the correct
one.

• Keeping track of the file sequence. In some cases, files must be exported and imported
in a particular order. For example, if you modify a calendar in one change set, you should
export and import that change set before other change sets that rely on the modified
calendar.

Depending on the complexity of your data model, a version control system may be useful for
managing change set files.

You can specify the default locations to which change set files are exported and from which
they are imported. For example, you can choose to export files to a location known to your
version control system.

Planning the Import Process
Importing data into your production system is obviously a critical task. The Pricing Center
import process checks every change to ensure that it is valid. If there are any errors during
importation, the entire file is rejected, no changes are made to the target data, and the file is
moved to an error directory.

In addition, you can take these steps to ensure that data is imported successfully:

• Import files in the correct order. If there are content dependencies among change set
files, make sure to import them in the required order. For example, a change set may
include a modification that another change relies on. The locking rules and other
safeguards prevent data integrity errors such as references to non-existent objects, but
you must keep track of dependencies based on business content.

• Ensure that files reflect final data. You should check that you are importing files that
contain the final versions of your pricing data. If you accidentally import a file that is
incomplete, you have to remove or modify the data manually; importing a file cannot be
reversed. Careful planning and file management will prevent these problems.

Coordinating Real-Time Rating Data Migration and Pipeline Data Migration
BRM packages contain a mixture of real-time and pipeline data. For example, when you define
charge offers, you can map some events to real-time charges and other events to pipeline
charges.

Real-time and pipeline pricing data are exported and imported separately using different
procedures. This document covers data migration for pipeline pricing data only.

You must manually coordinate the real-time and pipeline migration procedures. For example, if
you added new pipeline pricing data associated with rating a new charge offer, you must
migrate both the new charge offer (real-time data) and the new pricing data (pipeline data).

Configuring Pipeline Manager Data Migration Features
There are a number of configuration task for Pipeline Manager data migration that you
accomplish outside the Pricing Center application, including enabling data migration, copying
data to ensure that the development and production systems are identical, and optionally
customizing the change set life cycle.

Chapter 8
Configuring Pipeline Manager Data Migration Features

8-11



Enabling Data Migration in Pricing Center
The Pipeline Manager data migration features are optional. They are visible only if you enable
them. You can enable the ability to import change set files without enabling the full set of data
migration features. Import-only data migration is useful for production systems where you want
to reduce the risk of accidental data changes.

You normally enable data migration during the Pricing Center installation process. You can also
enable data migration after Pricing Center has been installed by making a change to the
Pricing Center configuration file.

Note:

If you enable data migration for one instance of Pricing Center, you should also
enable data migration for all other instances of Pricing Center that have access to the
same test and production databases. Instances of Pricing Center without data
migration enabled can make changes outside the scope of change sets, thereby
causing inconsistencies in the data.

To enable data migration after installation:

1. Exit Pricing Center.

2. Open the Pricing Center configuration file (custom.properties) in a text editor. This file is
located in the \lib subdirectory of the installation directory, normally C:\Program
Files\Portal\PricingCenter.

3. Change the value for the pipeline.datamigration parameter to 2 (for full data migration
functionality) or 1 (for import capability only).

4. Save the file.

5. Start Pricing Center.

Copying Production Data to the Development System
When you set up your development environment, you start out with an exact duplicate of the
production database.

Note:

The test and production databases must be completely identical, including sequence
IDs, for data migration to work reliably.

Use the replication tools provided with your database to copy the production database. See
your system's documentation for instructions.

Customizing Change Set States
You can customize change set states to define a workflow for your projects. Your need for this
customization depends on the complexity of your work. If there are only one or two change

Chapter 8
Configuring Pipeline Manager Data Migration Features

8-12



sets in progress at any one time and they contain simple changes, it may not be necessary to
customize. On the other hand, if you have a team of planners working on multiple change sets
in varying states of completion, you should customize the life cycle to reflect your process. See
"Understanding the Change Set Life Cycle".

To customize change set states, you modify the state.config file, then load it by using the
stateconfigtool utility. The state.config file lists each valid state transition. In other words, it
defines all the states that it is valid to move to from any given state. It also lists whether the
transition is manual (accomplished by the user in the Change Set State dialog box) or
automatic (accomplished by the BRM).

These are the contents of the default state.config file, which defines the standard change set
life cycle:

# State Transition for Changeset
# currentState,nextState,Action

inprogress,readytoexport,manual
readytoexport,exported,automatic
readytoexport,inprogress,manual
exported,inprogress,manual
exported,closed,manual

Note:

You can define additional states, but you cannot delete any default states. The
custom states you define must come between In Progress and Ready to Export. All
customized states must have a manual transition.

For example, the following file defines a new state called Testing. You can switch to Testing
from In Progress and can switch from Testing to Ready to Export or back to In Progress. Note
that you can't switch from Ready to Export back to Testing.

# State Transition for Changeset
# currentState,nextState,Action

inprogress,readytoexport,manual
inprogress,testing,manual
testing,readytoexport,manual
testing,inprogress,manual
readytoexport,exported,automatic
readytoexport,inprogress,manual
exported,inprogress,manual
exported,closed,manual

You load the change set configuration into the database by using the stateconfigtool utility.
When you run this utility, you specify the file name, the database type, the host, the port
number, the database instance, a login user name, and a login password.

To customize change set states:

1. Use a text editor to open the state.config file located in the Pricing Center directory,
typically Program Files\Portal Software\Pricing Center.

Chapter 8
Configuring Pipeline Manager Data Migration Features

8-13



2. Add new states, being careful to account for all the transitions necessary.

Note:

Don't make any changes to the default entries in the state.config file. Doing so
will cause an error when you load the file.

3. Save the file under a new name. Saving the file under a different name preserves the
original file in case you want to return to the default configuration.

4. From the Pipeline_home\tools\StateConfigTool directory, run the stateconfigtool utility
to load the file. Pipeline_home is the directory where you installed Pipeline Manager. Use
this syntax:

stateconfigtool -f file_name -d database_type -h host -n port -i database_id 

For example:

stateconfigtool -f Pipeline_home/tools/StateConfigTool/state.config -d oracle -h 
sample_host -n 1521 -i pindb

Exporting and Importing Change Sets by Using the
loadchangesets Utility

Under certain circumstances, importing and exporting change sets by using Pricing Center
may be inconvenient or undesirable. For example, you may prefer not to allow Pricing Center
access to your production system to prevent unauthorized or accidental changes to your
production pricing data.

In these cases, you can use the loadchangesets command-line utility to export change sets
from your test environment and import them into your production database.

Note:

Exporting and importing change sets by using the loadchangesets utility changes
only the final stages of the entire pipeline pricing data migration process. You still use
Pricing Center to create and manage change sets.

The general process for exporting and importing change sets is similar whether you use
Pricing Center or loadchangesets.

The loadchangesets utility has two modes: interactive and non-interactive. They both enable
you to import and export change sets, but work somewhat differently. See "Working in
Interactive and Non-Interactive Mode".

Unlike Pricing Center, where you can choose which change sets to export, loadchangesets
exports all the change sets that are in Ready to Export state. You should therefore be careful to
monitor the life cycles of your change sets to ensure that you are exporting all the changes
sets you want and none that you don't want.

Chapter 8
Exporting and Importing Change Sets by Using the loadchangesets Utility

8-14



Specifying BRM Servers for the loadchangesets Utility
Before you can use the loadchangesets utility, you must specify the BRM servers to export
from and import to. You enter the host names (or IP addresses) and port numbers in a
configuration file.

To specify BRM servers for import and export:

1. Exit Pricing Center if necessary.

2. Open the Pricing Center configuration file (custom.properties) in a text editor. This file is
located in the \lib subdirectory of the installation directory, normally C:\Program
Files\Portal\PricingCenter.

3. To specify the server from which to export pricing data, enter the host name (or IP address)
and port number in the pipeline.datamigration.utility.export.environment.host and
pipeline.datamigration.utility.export.environment.port entries.

For example, to export from TestPricingServer, port number 11960, enter the following:

pipeline.datamigration.utility.export.environment.host=TestPricingServer
pipeline.datamigration.utility.export.environment.port=11960

4. To specify the server to which to import pricing data, enter the host name (or IP address)
and port number in the pipeline.datamigration.utility.import.environment.host and
pipeline.datamigration.utility.import.environment.port entries.

For example, to import to ProductionPricingServer, port number 56968, enter the following:

pipeline.datamigration.utility.import.environment.host=ProductionPricingServer
pipeline.datamigration.utility.import.environment.port=56968

5. Save the file.

Working in Interactive and Non-Interactive Mode
You can use the loadchangesets utility in interactive or non-interactive mode:

• In interactive mode, you issue a command for each step in the process of importing or
exporting. After you enter interactive mode, the prompt changes to an angle bracket and
commands are single words for performing particular actions. You can view a list of the
change sets that will be imported and exported

• In non-interactive mode, you use commands that batch several related parts of the import
or export process. You must enter a full command, including the utility name for each set of
actions.

Exporting and Importing Change Sets in Interactive Mode
The following procedures describe exporting and importing change sets by using
loadchangesets in interactive mode.

To export and import change sets by using loadchangesets in interactive mode:

1. Make sure the change sets that you want to export are complete and that they, and no
others, are in Ready to Export state.

2. Go the /lib directory in the Pricing Center installation directory.

Chapter 8
Exporting and Importing Change Sets by Using the loadchangesets Utility

8-15



3. To switch to interactive mode, enter the following command:

loadchangesets -i

The prompt changes to ==>.

4. To load the change set data from the export database into memory, enter the following
command:

export

5. To write the change set data from memory to a change set file, enter the following
command. The file name must include the .exp file name extension.

write change_set_file 

The change sets are exported to the specified file in the /export/done subdirectory in the
Pricing Center installation directory. This directory is created automatically if it doesn't exist
when you run the utility.

6. Move the change set file that you created into the /import subdirectory in the
PricingCenter install directory.

7. To read the change set data from the change set file into memory, enter the following
command. The file name must include the .exp extension.

read change_set_file

8. (Optional) Enter the following command to view the names of the change sets you loaded
into memory:

list

9. To load the change set data from memory into the import database, enter the following
command:

import

Exporting and Importing Change Sets in Non-Interactive Mode
The following procedures describe exporting and importing change sets by using
loadchangesets in non-interactive mode.

To export change sets by using loadchangesets in non-interactive mode:

1. Make sure the change sets that you want to export are complete and that they, and no
others, are in Ready to Export state.

2. Go the /lib directory in the Pricing Center installation directory.

3. Enter the following command, where change_set_file is the name of the file into which you
want to export the change sets. The file name must include the .exp file name extension.

loadchangesets -fx change_set_file 

Chapter 8
Exporting and Importing Change Sets by Using the loadchangesets Utility

8-16



The change sets are exported to the specified file in the /export/done subdirectory in the
Pricing Center installation directory. This directory is created automatically if it doesn't exist
when you run the utility.

To import change sets by using loadchangesets in non-interactive mode:

1. Move the change set file that you want to import into the /import subdirectory in the
PricingCenter install directory.

2. Go the /lib directory in the Pricing Center installation directory.

3. Enter the following command, where change_set_file is the name of the file that you want
to import. The file name must include the .exp file name extension.

loadchangesets -fi change_set_file

Chapter 8
Exporting and Importing Change Sets by Using the loadchangesets Utility

8-17



9
Transferring Data Between Pipeline Manager
Databases

This chapter describes how to transfer data from one Pipeline Manager database to another,
such as from a test database to a production database, by using the Oracle Communications
Billing and Revenue Management (BRM) LoadIfwConfig utility.

About Transferring Data
You transfer data by extracting data from a source Pipeline Manager database and then
loading the data into a destination Pipeline Manager database. You specify which data to
extract at the command line or by using an XML file. The LoadIfwConfig utility extracts the
specified data from the source database to an output XML file. The utility can then load the
output XML file directly into the destination database.

About Specifying the Data to Extract
You can specify to extract:

• All data in the Pipeline Manager database. You specify to extract all data by using only a
utility command. For instructions, see "Extracting a Subset of Database Objects with
LoadIfwConfig".

• All Pipeline Manager data that has been modified after a specified date and time. You
specify to extract data based on the modification date and time by using utility commands.
For instructions, see "Extracting All Database Objects Modified after a Specific Time".

• A subset of the data, based on the objects' attributes and modification time. You specify to
extract a subset of the data by using an input XML file with the LoadIfwConfig utility. See
"About Creating an Input XML File to Extract Data".

About Creating an Input XML File to Extract Data
If you are extracting a subset of data, you must create an input XML file that specifies the table
from which to extract the data and, optionally, the criteria that the data must meet. The criteria
consists of fields and their required values. For example, you can specify to extract from a
specific table only those objects that have the SAMPLE field set to 100. The utility would then
extract all objects with a SAMPLE field set to 100 as well as any child objects and any
dependent objects. See "About Specifying to Extract Child and Dependent Objects".

When the input XML file specifies a table only, the utility extracts objects from the entire table
as well as from any child and dependent objects. When the input XML file specifies a table and
required field values, the utility extracts from the table only those objects that contain the
matching field values plus any child and dependent objects.

The syntax for the input XML file is shown below:

<RecordSet>
  <TableName [FieldName1 ="Value1"] [FieldName2 ="Value2"] .../>
</RecordSet>

9-1



where:

• TableName is the name of the table from which to extract objects.

• FieldNameX is the name of the table field that must match the specified value. You can list
multiple field-value pairs.

• ValueX specifies the required field value. To be able to list multiple values for each field,
see "About Using Regular Expressions when Specifying the Data to Extract".

For example, the following input XML file specifies to retrieve all objects from the IFW_RUM
table that match all of the criteria below:

• Have their NAME field set to Duration.

• Have their RUM field set to DUR.

• Have their TYPE field set to D.

<RecordSet>
   <IFW_RUM NAME ="Duration" RUM ="DUR" TYPE ="D" />
</RecordSet>

About Specifying to Extract Child and Dependent Objects
When extracting a subset of data, the LoadIfwConfig utility automatically extracts all objects
that meet your specified criteria as well as any related child objects. For example, when the
utility extracts a charge object, the utility automatically extracts all child objects of the charge,
such as the charge version and charge configuration objects.

If one of the child objects is also related to other objects, you can configure the utility to extract
the other objects as well.

Figure 9-1    Object Relationships and Dependencies

For example, in Figure 9-1 above, object A meets your specified criteria. Because object A is a
parent object, the utility automatically extracts object A and its two child objects, B and C.
Because object C is also related to object D, extracting only the objects in object group 1 would
break the relationships in object group 2.

To prevent this from happening, you can configure the utility to extract object D whenever
object C is extracted. You do this by making object D a dependent of object C. In this case,
whenever object C is extracted, the utility would also extract:

• Object D, because it is a dependent of object C.

• Object E, because it is a child of object D.

Chapter 9
About Creating an Input XML File to Extract Data

9-2



The utility determines the object dependencies by using the Pipeline_home/tools/XmlLoader/
LoadIfwConfig.xsd file, where Pipeline_home is the directory where you installed Pipeline
Manager. You customize the dependencies by using the Pipeline_home/tools/XmlLoader/
CustomConfig.xml file.

Note:

The settings in the CustomConfig.xml file override the settings in the
LoadIfwConfig.xsd file.

The syntax for the CustomConfig.xml file is shown below:

<TableName AddDependingTable="AddTable" AddDependingTableMapping="Field1:Field2"/>
<TableName DependingTableNames="DependingTable"/>

where:

• TableName specifies the table that has dependent objects in another table.

• AddTable specifies the dependent table. The utility extracts data using the provided
mapping whenever data from TableName is extracted.

• Field1 is the field from TableName that is related to a field in AddTable.

• Field2 is the relating field in AddTable. The utility extracts any objects from AddTable that
have matching values whenever data from TableName is extracted.

• DependingTable specifies the list of dependent tables. Data from these tables must be
extracted whenever data is extracted from TableName. You can list multiple table names
by using the pipe symbol (|) as a delimiter.

Sample CustomConfig.xml entries are shown below:

<IFW_RATEPLAN_CNF AddDependingTable="IFW_TIMEMODEL" AddDependingTableMapping="TIMEMODEL:TIMEMODEL"/>
<IFW_RATEPLAN_CNF DependingTableNames="IFW_TIMEMODEL|IFW_PRICEMODEL"/>

• The first line specifies that the utility must extract dependent data from IFW_TIMEMODEL,
relating the TIMEMODEL field of IFW_RATEPLAN_CNF to the TIMEMODEL field of
IFW_TIMEMODEL.

• The second line specifies to extract dependent data from the IFW_TIMEMODEL and
IFW_PRICEMODEL tables whenever data is extracted from IFW_RATEPLAN_CNF.

About Using Regular Expressions when Specifying the Data to Extract
By default, you cannot use regular expressions when specifying the data to extract. This
means that the input XML file must include a separate line for each required field value, which
impacts performance because multiple entries generate multiple SQL queries to the database.
For example, to retrieve objects from the IFW_RATEPLAN_CNF table that have an
IMPACT_CATEGORY value of FRANCE or SPAIN, the input XML file would contain these
lines:

<IFW_RATEPLAN_CNF IMPACT_CATEGORY="FRANCE"/>
<IFW_RATEPLAN_CNF IMPACT_CATEGORY="SPAIN"/>

You can configure the utility to accept the following regular expressions when searching
defined fields:

• The asterisk (*) symbol for wildcard searches.

Chapter 9
About Creating an Input XML File to Extract Data

9-3



• The pipe (|) symbol for the logical OR operation.

You define which fields support regular expressions by configuring the RegExFields entry in
the Pipeline_home/tools/XmlLoader/CustomConfig.xml file.

The syntax for the RegExFields entry is shown below:

<TableName RegExFields="FieldName"/>

where:

• TableName is the name of the table that contains the specified field.

• FieldName is the name of the field that can be searched with regular expressions. You can
list multiple fields by using the pipe symbol (|) as a delimiter.

For example, the following entry specifies that you can use regular expressions when
searching for values in the IMPACT_CATEGORY field of the IFW_RATEPLAN_CNF table:

<IFW_RATEPLAN_CNF RegExFields="IMPACT_CATEGORY"/>

For the above example, you could retrieve records that have their IMPACT_CATEGORY field
set to FRANCE or SPAIN by using this input XML entry:

<IFW_RATEPLAN_CNF IMPACT_CATEGORY="FRANCE|SPAIN"/>

About the LoadIfwConfig Error Messages
The LoadIfwConfig utility logs information about any errors it encounters to the log file you
specified in the ProcessLog section of the LoadIfwConfig.reg registry file. Table 9-1
describes the utility's error messages.

Note:

The utility will pass through any error messages thrown by the Xerces SAX parser
and the Oracle database. For information about these error messages, see the
appropriate vendor's documentation.

Table 9-1    LoadIfwConfig Error Messages utility

Error message Description

ERROR: Connection is not Valid The utility failed to connect to the database.

ERROR: DataBaseStatus is not Valid The database credentials or database connect
string is not correct.

ERROR: Couldn't get next sequence: SQLString The utility could not generate a sequence number
to insert into the database.

ERROR: during insert: SQLString The utility encountered an error during the insert
operation.

ERROR: during update: SQLString The utility encountered an error during the update
operation.

ERROR: during delete: SQLString The utility encountered an error during the delete
operation.

Exception occurred while running the SQLString The utility encountered an error while running
other SQL statements.

Chapter 9
About the LoadIfwConfig Error Messages

9-4



Table 9-1    (Cont.) LoadIfwConfig Error Messages utility

Error message Description

Exception from DB: ErrorMessage The error message that was thrown by the Oracle
database.

File Not parsed properly or Braces not matched
properly

The utility's registry file (LoadIfwConfig.reg)
contains incorrect entries or the entries are not
framed correctly.

DependentFields structure provided in XML for
depending table not proper

The AddDependingTableMapping entry in the
CustomConfig.xml file is set incorrectly.

No rows for deletion because rows present in Child
table

The utility could not delete the requested row
because the row's associated child records still
contain data.

Could not find valid Translation for: Table:
TableName Referred Table: TableName Field:
FieldName CODE Field Value: FieldValue

The required table dependencies are not provided
in the input XML file.

FATAL ERROR at file: FileName line: LineNumber
char: Position Message: Message

The input XML file contains mistakes, such as
unparseable characters.

Using LoadIfwConfig to Transfer Data Between Databases
To transfer data from one Pipeline Manager database to another, perform these steps:

1. Connect LoadIfwConfig to the source Pipeline Manager database. See "Connecting
LoadIfwConfig to the Pipeline Manager Database".

2. (Optional) Specify the regular expressions and table dependencies that are supported on
the source Pipeline Manager system. See "Customizing the Regular Expression and
Dependent Table Settings".

3. Extract data from the source Pipeline Manager database. See "Extracting Data from a
Pipeline Manager Database".

4. Connect LoadIfwConfig to the destination Pipeline Manager database. See "Connecting
LoadIfwConfig to the Pipeline Manager Database".

5. Load data into the destination Pipeline Manager database. See "Loading Data into Pipeline
Manager Databases".

Connecting LoadIfwConfig to the Pipeline Manager Database
You connect the LoadIfwConfig utility to the Pipeline Manager database by using the
LoadIfwConfig.reg registry file. You can edit this registry file manually, but it is also updated
by the pin_setup utility during the LoadIfwConfig installation process.

To connect LoadIfwConfig to the Pipeline Manager database:

1. Open the Pipeline_home/tools/XmlLoader/LoadIfwConfig.reg registry file in a text editor.

2. Edit the registry entries to match your system environment. In particular, pay
attention to these entries:

• In the XMLCustomizationFile entry, specify the location of the optional customization
XML file. LoadIfwConfig contains a sample customization file (CustomConfig.xml)
and a schema file (CustomConfig.xsd) to which the XML should conform.

Chapter 9
Using LoadIfwConfig to Transfer Data Between Databases

9-5



• In the LoadDataFromDB entry, specify whether to increase performance by loading
the sequence-to-code translation information into memory. If this entry is missing or
blank, it defaults to False.

• (Optional) In the RowFetchSize entry, specify the number of database rows to retrieve
on each trip to the database. Increasing the number of rows can reduce the required
number of database fetches and increase the utility's performance. The default is 100.

The other entries are standard logging and connection registry entries.

3. Save and close the file.

A sample LoadIfwConfig.reg file is shown below:

LoadIfwConfig
{
  LogMessageTable
  {
    MessageFilePath   = ./
    MessageFileSuffix = .msg
  }

  ProcessLog
  {
    FilePath          = ./log
    FileName          = LoadIfwConfig
    FileSuffix        = .log
    WriteMessageKey   = True
  }

  DataPool
  {
    Database
    {
      ModuleName = DbInterface
      Module
      {
        # Common
        DatabaseName = DatabaseName
        UserName     = UserName
        PassWord     = EncryptedPassword
        AccessLib    = oci231
      }
    }
  }
  XMLCustomizationFile = CustomConfig.xml
  LoadDataFromDB = True
  RowFetchSize = 200
}

Customizing the Regular Expression and Dependent Table
Settings

If you want the LoadIfwConfig utility to support regular expressions for any fields, or if you
want to add table dependencies for any objects, you must modify the CustomConfig.xml file.

To customize the regular expression and dependent table settings, perform these steps on the
source Pipeline Manager:

1. Open the Pipeline_home/tools/XmlLoader/CustomConfig.xml file in a text editor.

Chapter 9
Customizing the Regular Expression and Dependent Table Settings

9-6



2. Specify the table fields that support regular expressions by using the RegExFields entry.
For example, the following entry specifies that the CODE and NAME fields in the
IFW_RATEPLAN table support regular expressions:

<IFW_RATEPLAN RegExFields="CODE|NAME"/>

For more information, see "About Using Regular Expressions when Specifying the Data to
Extract".

3. Specify any object dependencies by using the AddDependingTable and
AddDependingTableMapping entries. For example, the following entry specifies to
retrieve dependent data from IFW_TIMEMODEL, relating the TIMEMODEL field of
IFW_RATEPLAN_CNF to the TIMEMODEL field of IFW_TIMEMODEL:

<IFW_RATEPLAN_CNF AddDependingTable="IFW_TIMEMODEL" 
AddDependingTableMapping="TIMEMODEL:TIMEMODEL"/>

For more information, see "About Specifying to Extract Child and Dependent Objects".

4. Specify any table dependencies by using the DependingTableNames entry. For example,
the following entry specifies to extract dependent data from the IFW_TIMEMODEL table
whenever data from IFW_RATEPLAN_CNF is extracted:

<IFW_RATEPLAN_CNF DependingTableNames="IFW_TIMEMODEL"/>

For more information, see "About Specifying to Extract Child and Dependent Objects".

5. Save and close the file.

Extracting Data from a Pipeline Manager Database
You can use the LoadIfwConfig utility to extract:

• All Pipeline Manager database objects. See "Extracting a Subset of Database Objects with
LoadIfwConfig".

• All Pipeline Manager database objects modified after a certain date and time. See
"Extracting All Database Objects with LoadIfwConfig".

• A subset of Pipeline Manager database objects. See "Extracting All Database Objects
Modified after a Specific Time".

Extracting All Database Objects with LoadIfwConfig
The utility extracts all database objects by iterating through each table in the schema in order,
selecting all of the rows, and dumping them directly into an XML file.

To extract all Pipeline Manager database objects:

1. Go to the Pipeline_home/tools/XmlLoader directory.

2. Enter this command:

Interactive mode

LoadIfwConfig
write [OutputFile]
retrieve_all

where OutputFile specifies the name and location of the file to which to extract the pipeline
data. By default, the utility writes the output to a file named default.out in the current
directory.

Chapter 9
Extracting Data from a Pipeline Manager Database

9-7



Non-interactive mode

LoadIfwConfig  -rall [-o OutputFile]

where OutputFile specifies the name and location of the file to which to extract the pipeline
data. By default, the utility writes the output to a file named default.out in the current
directory.

Note:

For more information about the utility's syntax, see "LoadIfwConfig" in BRM
Pipeline Manager Reference.

The utility writes the extracted objects to the output file in XML format. You can now load the
output XML file directly into the destination Pipeline Manager database.

Extracting All Database Objects Modified after a Specific Time
To extract all Pipeline Manager database objects that have been modified after a specified date
and time:

1. Go to the Pipeline_home/tools/XmlLoader directory.

2. Enter this command:

Interactive mode

LoadIfwConfig
write [OutputFile]
retrieve_all [-t Modifydate]

where:

• OutputFile specifies the name and location of the file to which to extract the pipeline
data. By default, the utility writes the output to a file named default.out in the current
directory.

• Modifydate specifies the timestamp after which to retrieve pricing objects. Enter the
timestamp in the ISO-8601 format: YYYY-MM-DDThh:mm:ss or YYYY-MM-DD, with
the server time zone as the default. For example:

2025-07-16T19:20:30
Non-interactive mode

LoadIfwConfig  -rall [-t Modifydate] [-o OutputFile]

where:

• Modifydate specifies the timestamp after which to retrieve pricing objects. Enter the
timestamp in the ISO-8601 format: YYYY-MM-DDThh:mm:ss or YYYY-MM-DD, with
the server time zone as the default. For example:

2025-07-16T19:20:30
• OutputFile specifies the name and location of the file to which to extract the pipeline

data. By default, the utility writes the output to a file named default.out in the current
directory.

Chapter 9
Extracting Data from a Pipeline Manager Database

9-8



Note:

For more information about the utility's syntax, see "LoadIfwConfig" in BRM
Pipeline Manager Reference.

The utility writes the extracted objects to the output file in XML format. You can now load the
output XML file directly into the destination Pipeline Manager database.

Extracting a Subset of Database Objects with LoadIfwConfig
To extract a subset of Pipeline Manager database objects:

1. Create an XML file that lists the objects to extract. The file specifies the table from which to
extract the objects and, optionally, the criteria that the objects must meet. You can use the
sample input XML file (Pipeline_home/tools/XmlLoader/samples.xml) as a starting point.

See "About Specifying the Data to Extract" for more information.

2. Go to the Pipeline_home/tools/XmlLoader directory.

3. Enter the following command:

Interactive mode

LoadIfwConfig 
[-nodep]
read InputFile
fetch [-t Modifidate]
write [OutputFile]

where:

• -nodep suppresses the object dependency relationships you configured in the
Pipeline_home/tools/XmlLoader/CustomConfig.xml file. The utility extracts only the
objects specified in InputFile and ignores all dependent objects.

Note:

To suppress object dependency relationships in interactive mode, the utility
session must start with the -nodep parameter.

• InputFile specifies the name and location of the file that lists which objects to retrieve.
This is the file that you created in step 1.

• Modifydate specifies to retrieve objects that were modified after the specified
timestamp. Enter the timestamp in the ISO-8601 format: YYYY-MM-DDThh:mm:ss or
YYYY-MM-DD, with the server time zone as the default. For example:

2025-07-16T19:20:30
• OutputFile specifies the output file to which the Pipeline Manager data is extracted. By

default, the utility writes the output to a file named default.out in the current directory.

Non-interactive mode

LoadIfwConfig  -i InputFile  -r [-nodep] [-t Modifydate] [-o OutputFile]

where:

Chapter 9
Extracting Data from a Pipeline Manager Database

9-9



• InputFile specifies the name and location of the file that lists which objects to retrieve.
This is the file that you created in step 1.

• -nodep suppresses the object dependency relationships you configured in the
Pipeline_home/tools/XmlLoader/CustomConfig.xml file. The utility extracts only the
objects specified in InputFile and ignores all dependent objects.

• Modifydate specifies to retrieve objects that were modified after the specified
timestamp. Enter the timestamp in the ISO-8601 format: YYYY-MM-DDThh:mm:ss or
YYYY-MM-DD, with the server time zone as the default. For example:

2025-07-16T19:20:30
• OutputFile specifies the output file to which the Pipeline Manager data is extracted. By

default, the utility writes the output to a file named default.out in the current directory.

The utility writes the extracted objects to the output file in XML format. You can now load the
output XML file directly into the destination Pipeline Manager database.

Loading Data into Pipeline Manager Databases
You load data into the destination Pipeline Manager database by using the LoadIfwConfig
utility's update option or insert option.

• Update option: The utility verifies whether the data provided in the input XML file already
exists in the database. If the data already exists, the utility updates the database record
with the new information. If the data does not exist, the utility inserts the data into the
database. To update data see, "Updating the Pipeline Manager Database".

• Insert option: The utility inserts data into the database without verifying whether the data
already exists. To insert data, see "Inserting Data into the Pipeline Manager Database".

Updating the Pipeline Manager Database
To update the data in the Pipeline Manager database:

1. Go to the Pipeline_home/tools/XmlLoader directory.

2. Enter this command:

Interactive mode

LoadIfwConfig
read InputFile
update
commit

where InputFile specifies the name and location of the XML file that contains the extracted
pipeline data from the source database. This is the output file you generated in "Extracting
Data from a Pipeline Manager Database".

Non-interactive mode

LoadIfwConfig  -u  -c  -i InputFile  

where InputFile specifies the name and location of the XML file that contains the extracted
pipeline data from the source database. This is the output file you generated in "Extracting
Data from a Pipeline Manager Database".

Chapter 9
Loading Data into Pipeline Manager Databases

9-10



Note:

For more information about the utility's syntax, see "LoadIfwConfig" in BRM
Pipeline Manager Reference.

The utility loads the data from the XML file into the Pipeline Manager database and commits
the data. If there is a failure, the utility rolls back the data and displays an error message.

Inserting Data into the Pipeline Manager Database
To insert data into a Pipeline Manager database:

1. Go to the Pipeline_home/tools/XmlLoader directory.

2. Enter this command:

Interactive mode

LoadIfwConfig
read InputFile
insert
commit

where InputFile specifies the name and location of the XML file that contains the extracted
data from the source database. This is the output file you generated in "Extracting Data
from a Pipeline Manager Database".

Non-interactive mode

LoadIfwConfig   -I  -c  -i InputFile

where InputFile specifies the name and location of the XML file that contains the extracted
data from the source database. This is the output file you generated in "Extracting Data
from a Pipeline Manager Database".

Note:

For more information about the utility's syntax, see "LoadIfwConfig" in BRM
Pipeline Manager Reference.

The utility loads the data from the XML file into the Pipeline Manager database and commits
the data. If there is a failure, the utility rolls back the data and displays an error message.

Deleting Data from a Pipeline Manager Database

Note:

Make sure the utility is connected to the Pipeline Manager database. See
"Connecting LoadIfwConfig to the Pipeline Manager Database".

To delete data from a Pipeline Manager database:

Chapter 9
Deleting Data from a Pipeline Manager Database

9-11



1. Create an XML file that specifies the data to delete. The file includes the table from which
to delete the objects and, optionally, the criteria that the objects must meet. For
information, see "About Specifying the Data to Extract".

2. Test the XML file by running the LoadIfwConfig utility with the -r or fetch parameter. Verify
that the output file lists the correct objects to delete. See "Extracting a Subset of Database
Objects with LoadIfwConfig" for more information.

3. Go to the Pipeline_home/tools/XmlLoader directory.

4. Enter the following command:

Interactive mode

LoadIfwConfig
read InputFile 
delete

where:

• InputFile specifies the name and location of the file that lists the objects to delete. This
is the file that you created in step 1.

Non-interactive mode

LoadIfwConfig  -p[f] -i InputFile 

where:

• f turns off the delete confirmation message.

• InputFile specifies the name and location of the file that lists the objects to delete. This
is the file that you created in step 1.

Note:

For more information about the utility's syntax, see "LoadIfwConfig" in BRM
Pipeline Manager Reference.

The utility deletes the specified database objects.

Chapter 9
Deleting Data from a Pipeline Manager Database

9-12



10
Creating iScripts and iRules

This chapter describes how to use the Application Programming Interface (API) to create
custom Oracle Communications Billing and Revenue Management (BRM) iScript and iRules
modules to process event detail records (EDRs) in the pipeline.

For information about the iScript functions, see "About iScript Functions".

About iScripts
iScript is a script language for analyzing and manipulating usage events. You can access any
field within the usage structure and modify it. Using an iScript, you can implement and
configure new guiding rules, mapping scenarios, discounting structures, interfaces to user-
defined database objects and to reference data, and operating report files.

iScript is the Pipeline Manager script programming language that can be used to customize
Pipeline Manager. It can be used for:

• Mapping operations that are not covered by standard modules.

• Adjusting values, such as normalizing phone numbers and IP addresses.

• Evaluating additional statistical data.

• Firing events.

• Performing splitting operations.

• Performing customer-specific pre- or post-rating or enrichment functionality.

You use iScripts to perform the same operation on every EDR. For example, if you have to
enrich or normalize data in EDRs or if you have to evaluate EDRs before splitting them.

iScript makes it easier than C or C++ programming languages to implement custom
functionality and business policies.

About iRules
An iRule consists of rule items that contain a number of conditions and a script to run when a
condition is fulfilled. Only the script for the first valid rule item is run during the rule evaluation.

You create the scripts to be run by using pattern-matching evaluation (for example, wildcards
and logical expressions) as well as normal comparison operators (for example, equal to, less
than, and greater than).

You use iRules when a function should be run only on certain EDRs or under certain
conditions. The rule-based engine offers an optimized method for defining logical conditions
and extensive string comparisons. Therefore, iRules offer a faster way of implementing rule-
based conditions than writing an iScript, which can include many "if-else" constructs.

You group rules and rule items into rule sets. A rule set defines the set of rules to be used by a
particular iRule module. You specify the rule set in the FCT_IRule module startup registry.

10-1



Note:

You can refer to only one EDR extension block in an iRule. For example, you cannot
use DETAIL.ASS_GSMW_EXT and DETAIL.ASS_SUSPENSE_EXT extension
blocks in the same iRule. Use an iScript instead to compare or evaluate fields from
multiple EDR extension blocks.

Creating Rule Sets via Description Files
In addition to the database interface and the file interface, you can also use a description file to
define a rule set. This is useful when you store the rule data in separate database tables or
ASCII files. A rule set defined by a description file can only have one rule.

Descriptions for Data from an ASCII File
In the following example description file:

• The rule name in is ClassTypeMap.

• The source data is stored in an ASCII file called /data/data.txt.

• The variables, represented by ${N}, are replaced by values in the source data file.

RULE: ClassTypeMap 
SOURCE: File 
FILE: /data/data.txt 
INIT_SCRIPT: 
String code = edrString( DETAIL.SERVICE_CODE ) + edrString( DETAIL.SERVICE_CLASS ); 
CONDITION: 
code =~ "${1}"; 
edrString( DETAIL.CALL_CLASS ) =~ "${2}"; 
edrString( DETAIL.CALL_TYPE ) =~ "${3}"; 
RESULT: 
edrString( DETAIL.CALL_TYPE ) = "${4}"; 
edrString( DETAIL.CALL_CLASS ) = "${5}";
  

The following example source data file contains the values that replace the variables
(represented by ${N}) in the definition file.

• The source data file must contain at least the number of columns, separated by
semicolons, as there are variables in the definition file.

• The column position corresponds to the variable number. For example, ${2} in the
description file is replaced with the value in column 2 of the source data file.

CODE1;CC1*;CT*;NewCC1;NewCT 
CODE2;CC2*;CT*;NewCC2;NewCT 
CODE3;CC3*;CT*;NewCC3;NewCT 
CODE4;CC4*;CT*;NewCC4;NewCT 
CODE5;CC5*;CT*;NewCC5;NewCT 
CODE6;CC6*;CT*;NewCC6;NewCT 
CODE7;CC7*;CT*;NewCC7;NewCT 
CODE8;CC8*;CT*;NewCC8;NewCT

Descriptions for Data from a Database Table
In the following example description file:

Chapter 10
About iRules

10-2



• The rule name is CZT_MapRule.

• The source data is retrieved from the IFW_CLASSTYPEZONE_MAP database table.

• The data is ordered first by the ZONEMODEL column and then by the RANK column.

• Each variable, represented by ${COLUMN_NAME}, is replaced by the value in that
database table column.

SOURCE: Database 
RULE: CZT_MapRule 
TABLE: IFW_CLASSTYPEZONE_MAP 
ORDERBY: ZONEMODEL 
ORDERBY: RANK 
INIT_SCRIPT: 
String code = edrString( DETAIL.SERVICE_CODE ) + edrString( DETAIL.SERVICE_CLASS ); 
CONDITION: 
code =~ "${CODE}" 
edrString( DETAIL.CALL_TYPE ) =~ "${CALLTYPE}"; 
edrString( DETAIL.CALL_CLASS ) =~ "${CALLCLASS}"; 
edrString( DETAIL.SERVICE_CODE ) =~ "${SERVICECODE}"; 
edrString( DETAIL.AOC_ZONE ) =~ "${ZONE_WS}"; 
edrString( DETAIL.CHARGED_ZONE ) =~ "${ZONE_RT}"; 
RESULT: 
if ( length( "${NEW_CALLTYPE}" ) > 0 ) 
{ 
edrString( DETAIL.CALL_TYPE ) = "${NEW_CALLTYPE}"; 
} 
if ( length( "${NEW_ZONE_RT}" ) > 0 ) 
{ 
edrString( DETAIL.CHARGED_ZONE ) = "${NEW_ZONE_RT}"; 
} 
if ( length( "${NEW_ZONE_WS}" ) > 0 ) 
{ 
edrString( DETAIL.AOC_ZONE ) = "${NEW_ZONE_WS}"; 
}

Importing and Exporting Validation Rules
You use the Database Storage and Extraction Tool for Validation Rules to extract validation
rules from the Pipeline Manager database and to import them in the Pipeline Manager
database. Pipeline Manager uses these validation rules for the roaming incollect and outcollect
processes.

This tool uses DBI and DBD drivers which are not part of the Pipeline Manager installation. You
download these drivers from www.cpan.org and compile and install them separately.

The Database Storage and Extraction Tool for Validation Rules consists of the following scripts:

• The db2irules.pl script extracts validation rules from the Pipeline Manager database.

• The irules2db.pl script adds validation rules to the Pipeline Manager database.

About the Rule Set XML File
The Database Storage and Extraction Tool for Validation Rules extracts the validation rules
from the database to a Rule Set XML file. When creating the XML file, it maps the Structured
Query Language (SQL) tables from the database to the appropriate XML tag names. When
you import rules and rule items in the database, the rank for each of these is determined by the
order in which they appear in the Rule Set XML file. For example, the first rule row or rule item

Chapter 10
About iRules

10-3



row found in the XML file is inserted into the database with a rank of 1, the second one is
inserted with a rank of 2 and so forth.

Table 10-1 shows a possible mapping.

Table 10-1    Possible Mappings for Validation

Pipeline Manager
Database Table

Pipeline Manager Database
Table Column

XML Tag Parent XML Tag

N/A N/A <RULESET_ROW> NONE

IFW_RULESET RULESET <RULESET_RULESET> <RULESET_ROW>

IFW_RULELSETLIST RULESET <RULESET_RULESET> <RULESET_ROW>

IFW_RULESET NAME <RULESET_NAME> <RULESET_ROW>

IFW_RULESET DESCRIPTION <RULESET_DESCRIPTION> <RULESET_ROW>

N/A N/A <RULE_ROW> <RULESET_ROW>

IFW_RULESETLIST RULE <RULE_RULE> <RULE_ROW>

IFW_RULE RULE <RULE_RULE> <RULE_ROW>

IFW_RULEITEM RULE <RULE_RULE> <RULE_ROW>

IFW_RULE NAME <RULE_NAME> <RULE_ROW>

IFW_RULESETLIST NAME <RULE_NAME> <RULE_ROW>

IFW_RULE INIT_SCRIPT <RULE_INIT_SCRIPT> <RULE_ROW>

N/A N/A <RULEITEM_ROW> <RULE_ROW>

IFW_RULEITEM NAME <RULEITEM_NAME> <RULEITEM_ROW>

IFW_RULEITEM CONDITION <RULEITEM_CONDITION> <RULEITEM_ROW>

IFW_RULEITEM RESULT <RULEITEM_RESULT> <RULEITEM_ROW>

About the db2irules.pl Script
You use the db2irules.pl script to extract rule sets from the Pipeline Manager database to the
Rule Set XML file. You can extract any number of rule sets at the same time. If you extract
multiple rule sets, each rule set is written to a separate Rule Set XML file.

When db2irules.pl extracts rows from the database, the text of each database row is checked
for the following XML reserved characters:

• Left angle bracket (<)

• Right angle bracket (>)

• Ampersand (&)

The XML parser uses these characters to find the start tags, end tags, and any references. It
replaces them with the following HTML and XML flags:

• &lt;

• &gt;

• &amp;

These flags make the file XML compliant, so that any XML parser can parse this file
successfully.

Chapter 10
About iRules

10-4



About the irules2db.pl Script
Use the irules2db.pl script to insert a rule set from Validation Rules XML file into the Pipeline
Manager database. You can insert only one rule set at a time. To load multiple rule sets into the
database, run this script separately for each rule.

When irules2db.pl imports rows to the database, each rule and rule set row of the XML file is
checked for the following HTML and XML flags:

• &lt;

• &gt;

• &amp;

The XML parser uses these characters to find the start tags, end tags, and any references. It
replaces the m with the following XML-reserved characters:

• Left angle bracket (<)

• Right angle bracket (>)

• Ampersand (&)

If you specify an invalid file name for the rule set, the irules2db.pl script displays an error and
terminates. If the file exists and can be opened, the script opens a transaction to the database
and starts inserting the rule sets. If any of the rule sets specified already exists in the database,
the irules2db.pl script reports an error, rolls back the transaction, and terminates. The error
message contains information on which row in the XML file caused the error.

Updating a Rule Set
You can update rule sets that already exist in the database in two ways:

• Extract, update, and import a rule set

• Replace a rule set with an updated version

Extract, update, and import a rule set

To update a rule set that already exists in the database, export, update, and reimport the XML
file:

1. Export the rule set to a Rule Set XML file by using the db2irules.pl script. For more
information, see "About the db2irules.pl Script".

Example:

db2irules.pl -u dbi:Oracle:orcl /home/data/CIBER_val
2. Delete the rule set from the database. Specify the name of the rule set and set the -d

parameter.

Example:

db2irules.pl -d dbi:Oracle:orcl /home/data/CIBER_val

The script deletes all rules of a rule set recursively.

3. Update the rule set in the XML file. For more information, see "About the Rule Set XML
File".

4. Import the rule set into the database.

Example:

Chapter 10
About iRules

10-5



irules2db.pl dbi:Oracle:orcl /home/data/CIBER_val_2002_07_01_17-15-39.xml 
Replace a rule set with an updated version

To replace an existing rule set with an updated version that you didn't extract from the
database, you can import the rule set and create a backup of the old rule set by using the -f
parameter.

Example:

irules2db.pl -f dbi:Oracle:orcl /home/data/CIBER_val /home/data/backup

The -f parameter causes the db2irules extraction script to be invoked and extract the original
file from the database before loading the new file. A backup file of the original rule set is stored
in the specified backup location.

Supported iScript Data Types
iScript supports the following data types in Table 10-2.

Table 10-2    Supported iScript Data Types

Data Type Description

Bool For Boolean values TRUE and FALSE.

String For 8-bit character strings of an unlimited length.

Long For signed integer values in the interval from - 9223372036854775808
(2ˆ63) to 9223372036854775807 (2ˆ63-1).

Date For date/time values in the interval from the 1901/01/01 00:00:00 to the
2037/02/05 00:00:00.

Decimal For floating pointer to numbers with a precision of 26 digits.

File As a handle for files.

Note:

Based on the data types listed above, you can also use hash and arrays.

Supported iScript Constants
iScript supports constants described in this section.

Constants for Normalizing National Access Codes
Table 10-3 lists the iScript constants used to normalize national access codes.

Table 10-3    National Access Code Normalizing iScript Constants

Constant Type Value Description

NORM_NAC String "0" "National access code"

NORM_IAC String "00" "International access code array"

Chapter 10
Supported iScript Data Types

10-6



Table 10-3    (Cont.) National Access Code Normalizing iScript Constants

Constant Type Value Description

NORM_IAC_STRING String "00" "International access code string"

NORM_CC String NA Country code array

NORM_CC_STRING String "49" "Country code string"

NORM_MCC String "262" "Mobile country code"

NORM_IAC_SIGN String "+" "International country code sign"

NORM_NDC String "172" "Network destination code"

Date Constants
Table 10-4 lists the Date constants.

Table 10-4    Date Constants

Constant Type Value Description

MAX_DATE Date 05.02.2037 23:59:59 Maximum value for the date. The date is
stored as the number of seconds since
00:00:00.

The MAX_DATE value is the last date that
can be represented with a four-byte unsigned
long, which is February 5, 2037. The internal
representation is adjusted to the time zone of
the system.

MIN_DATE Date 01.01.1901 00:00:00 Minimum value for the date. The date is
stored as the number of seconds since
00:00:00.

The MIN_DATE value is January 1, 1901.
The internal representation is adjusted to the
time zone of the system.

Database Connection Constants
Table 10-5 describes the database connection constants.

Table 10-5    Database Connection Constants

Constant Type Value Description

INVALID_CONNECTION Long -1 Invalid database connection handle

INVALID_RESULT Long -1 Invalid result handle

NO_MORE_RESULTS Long 0 No more results

NO_MORE_ROWS Long 0 No more rows

NEXT_ROW Long 1 Next row to be retrieved from the database table

NEXT_RESULT Long 1 Next result from db query

Chapter 10
Supported iScript Constants

10-7



Decimal Constants
Table 10-6 lists the decimal constants.

Table 10-6    Decimal Constants

Constant Type Value Description

INVALID_DECIMAL Decimal Decimal::initInvalidDecimal(); Invalid Decimal value

Decimal Rounding Constants
Table 10-7 lists the decimal rounding constants.

Table 10-7    Decimal Rounding Constants

Constant Type Value Description

ROUND_PLAIN Long 0 If the digit to the right of the specified decimal place is equal
to or greater than 5, add one to the digit at the specified
decimal place, then truncate any digits to the right.
Otherwise, truncate all digits to the right of the specified
decimal place.

ROUND_UP Long 1 If the digits the right of the specified decimal place are non-
zero, add one to the digit at the specified decimal place and
truncate any digits to the right.

ROUND_DOWN Long 2 Truncate all digits to the right of the specified decimal place.

ROUND_BANKERS Long 3 If incrementing the digit at the specified decimal place results
in an even number, increment it and truncate the digits to its
right. Otherwise, truncate the digits to the right of the
specified decimal place.

EDR Container Content Constants
Table 10-8 lists the EDR container content constants.

Table 10-8    EDR Container Constants

Constant Type Value Description

EDR_UNKNOWN_CONT Long 1 Unknown EDR content type

EDR_HEADER Long 2 EDR header record

EDR_DETAIL Long 3 EDR detail record

EDR_TRAILER Long 4 EDR trailer record

EDR_START Long 5 Service container that tells pipeline starts

EDR_STOP Long 6 Service container that tells pipeline shutting down

EDR_BEGIN Long 7 Service container that tells EDR processing begins

EDR_END Long 8 Ser vice container that tells EDR processing ends

EDR_BEGIN_TRANSACTION Long 9 Service container that tells transaction begins

Chapter 10
Supported iScript Constants

10-8



Table 10-8    (Cont.) EDR Container Constants

Constant Type Value Description

EDR_END_TRANSACTION Long 10 Service container that tells transaction ends

EDR Container Characters Deletion Constants
Table 10-9 lists the EDR container content deletion constants.

Table 10-9    EDR Container Content Deletion Constants

Constant Type Value Description

STRIP_LEADING Long True Roguewave constant used to delete the special leading characters
in an EDR string, for example, white spaces at the beginning of the
EDR container.

STRIP_TRAILING Long True Roguewave constant used to delete the special trailing characters in
an EDR string, for example, white spaces at the end of the EDR
container.

STRIP_BOTH Long True Roguewave constant used to delete both the special leading and
trailing characters in an EDR string, for example, white spaces at
the beginning of the EDR container.

EDR Input State Constants
Table 10-10 lists the EDR input state constants.

Table 10-10    EDR Input State Constants

Constant Type Value Description

EDR_INPUT_MISSING Long 0 Not supplied in input data

EDR_INPUT_EMPTY Long 1 Supplied with no value

EDR_INPUT_OTHER Long 2 Other "uninteresting" input state

EDR Internal State Constants
Table 10-11 lists the EDR internal state constants.

Table 10-11    EDR Internal State Constants

Constant Type Value Description

STATE_CLEARED Long 0 EDR value is cleared

STATE_CONNECTED long 1 EDR value is connected with a field from an input record

STATE_INITIALZED long 2 EDR value is initialized

STATE_SET long 3 EDR value is set

STATE_RESTORED long 4 EDR value is restored

STATE_RESTOREDASSET long 5 EDR value is restored as set

Chapter 10
Supported iScript Constants

10-9



Table 10-11    (Cont.) EDR Internal State Constants

Constant Type Value Description

CONTAINER_HEADER Long 2 Header record descriptor in container

CONTAINER_DETAIL Long 3 Detail record descriptor in container

CONTAINER_TRAILER Long 4 Trailer record descriptor in container

CONTAINER_UNKNOWN Long 1 Unknown record type in container

POID Constants
Table 10-12 lists the Portal object ID (POID) constants.

Table 10-12    POID Constants

Constant Type Value Description

NULL_PPOID POID BAS::Identifier(0, "", 0); Null POID pointer

INVALID_PPOID POID BAS::Identifier Invalid POID pointer

TAM Transaction Constants
Table 10-13 lists the TAM transaction constants.

Table 10-13    TAM Transaction Constants

Constant Type Value Description

TAM_NORMAL Long 0 Normal transaction

TAM_RECYCLE Long 1 Recycle transaction

TAM_RECYCLE_TEST Long 2 Recycle transaction for testing

TAM_UNKNOWN Long -1 Unknown transaction type

Supported Regular Expressions
iScript supports the regular expressions listed in Table 10-14.

Table 10-14    Regular Expressions Supported by iScript

Expression Description

. Matches any single character except the newline character \n.

\ Introduces metacharacters, and as part of the escape sequences. For
example, \n, a newline character, and \*, is a literal asterisk. You can use it
with three digits representing a number between 0 and 255 (ASCII code) to
get the corresponding character. For example, \065 is matched to the
character A.

Chapter 10
Supported Regular Expressions

10-10



Table 10-14    (Cont.) Regular Expressions Supported by iScript

Expression Description

[ ] A character class which matches any character within the brackets. If the first
character is a circumflex (ˆ), it changes the meaning to match any character
except the ones within the brackets. A dash inside indicates a character
range. For example, [0-9] means the same thing as [0123456789].

{ } Indicates how many times to match the previous pattern when the pattern has
one or two numbers. For example, A{1,3} matches one to three occurrences
of the letter A.

* Matches zero or more copies of the preceding expression.

+ Matches one or more copies of the preceding expression. For example, [0-9]+
matches 1, 111, or 123456 but not an empty string.

? Matches zero or one copy of the preceding expression. For example, -?[0-9]+
matches a signed number including an optional leading minus.

| Matches either the preceding expression or the following expression.

( ) Groups a series of expressions into a new expression. Useful when building
up complex patterns with *, +, and |.

! Negates the complete expression. It must be the first character in the
expression.

iScript Variable Declarations
The syntax of the variable declaration is similar to the C/C++ syntax:

Type Name [=Value];

As an option, you can declare variables to be constants:

const Type Name = Value;

For example:

Long x;
String serviceCode = "Tel";
const Decimal pi = 3.1415927

iScript Arrays and Hashes
All data types except File can be used in arrays or hashes:

Long a[ ]; // A normal array declaration
String dist [ ] [ ]; // A 2-dimensional string array
String ndc { } [ ]; // An associative array
String cli { } [ ]; // An associative array or arrays

You do not have to specify the dimension of the arrays and hashes. The data structures are
resized automatically and are initialized by default values. For numerical values, this is 0; for
strings, it is an empty string and dates become invalid.

You can access arrays and associative arrays in the following way:

a [3] = 4711;
ndc { "040" } = Hamburg;

Chapter 10
iScript Variable Declarations

10-11



cli { "Max Mueller" } [0] = "0171123456789";
cli { "Max Mueller" } [0] = "0177471111245";

Note:

If you use arrays and hashes in functions, clear them at the start of the functions, as
in this example:

function myFunction
{
    String str[];
    arrayClear(str);
     // ...
}
Arrays and hashes aren't initialized at the start of functions. They behave like static
variables. If they are not cleared in a function, they retain values from the last time
the function was run.

iScript Function Declarations
A function declaration has the following syntax:

function [returnType] identifier [( parameter [,parameter...])]
  

where returnType is optional. If you do not specify any return type, the default is VOID. A
function can have an unlimited number of arguments. You can use the basic types as return
and parameter types.

For example:

function Long square (Long x)
{
  return x.*;
}

Chapter 10
iScript Function Declarations

10-12



Note:

Avoid nesting functions. Nested functions can create unexpected results, as in this
example:

function myFunction
{
    Long i = 5;
    // ...
    myFunction();
        // Here the variable i is assigned the value set in the nested fu
nction.
    // ...
}

iScript Control Structures
The syntax of the control structures is similar to the C++ syntax, but because there are no
implicit type casts, the following expression is not valid in iScript:

if ( i ) ...
  

You must use explicit type casts:

if ( i != 0 )...
  

There are AND and OR operators for Boolean expressions. Empty statements in FOR loops
are not valid in iScript and there is no increment operator.

For example:

for ( ; i<100; i++ )
  

in C++ has to be replaced with

for ( i ; i<100; i=i+1)
  

in iScript.

iScript Function Blocks
A function block that is followed by a control structure must be enclosed in curly braces { }.
This is also true if only one statement is in the function block.

For example:

Chapter 10
iScript Control Structures

10-13



if ( (edrString ( DETAIL.RECORD_TYPE) = = "H"))
 {
  logStdout ("Header detected\n");
 }
else
 {
  
 }

Using iScript Switch Statements
iScript provides switch statements for String values, Long values, and regular expressions. The
syntax of the switch statement is similar to the C syntax. Follow these rules when including
switch statements:

• Specify only one statement per case label.

• Use a statement block and enclose several statements between curly braces ({ }).

• Terminate every case label by a break statement. Otherwise the statement of the following
case label is also run.

• For regular expressions, use the regExprSwitchCase statement instead of switch.

Examples for Switch Statements
Switch statements (Long)

switch ( edrLong ( DETAIL.RECORD_LENGTH ) )
{
 case 104:
  logStdout ( "Header record!" );
  break;
 case 685:
  {
      detail = detail + 1;
      logStdout ( "Detail record" );
  }
  break;
 default:
  logStdout ( "unknown record type" );
}
  

Switch statements (String)

switch ( edrString ( DETAIL.ERROR_TEXT) )
{
  case "ERR_DATETIME":
    logStdout ("invalid date/time" );
    break;
  case "ERR_NOIMSI":
    logStdout ("IMSI not specified");
  case "":
    logStdout ("no error detected");
    break;
...
}
  

Switch statements for regular expressions

Chapter 10
Using iScript Switch Statements

10-14



regExprSwitch ( edrString ( DETAIL.A_NUMBER ) )
{
  case "0049171.*":
    logStdout ( "D1-call\n" );
    break;
  case "0049172.*":
    logStdout ( "D2-call\n" );
    break;
}

Including Other iScript Source Files in Your iScript
You can use the include statement in your iScript to include other iScript source files.

Use the following syntax and specify each include statement in a separate line:

include "iScriptFile.isc";
  

Before an iScript is compiled, a preprocessor evaluates and processes the include
statements. If the included iScript file has an absolute path, the preprocessor tries to include
the file with the absolute path. Otherwise, the preprocessor uses a semicolon-separated list of
include directories specified in the ISCRIPT_INCLUDE environment variable.

If the ISCRIPT_INCLUDE environment variable is not set, the preprocessor uses only the
current directory as the input directory. If the environment variable is set, it does not contain the
current working directory by default. You must explicitly add the current working directory to the
list by using a dot (.) as the path. For example:

bash and sh:

export ISCRIPT_INCLUDE="/home/integRate/iscript include;/usr/iscript;."
  

csh and tsch:

setenv ISCRIPT_INCLUDE "/home/integRate/iscript_include;/usr/iscript;."

About iScript Functions
You use the iScript functions to perform a variety of operations. See "Pipeline Manager iScript
Functions" in BRM Pipeline Manager Reference.

About Special iScript Functions
Pipeline Manager includes a basic iScript interpreter and an extended interpreter that calls
special iScript functions on external events, such as onHeaderEdr or onDetaiEdr. These
special functions are function hooks that you can use to implement any actions you want to
perform at specific situations, such as when a transaction is rolled back, during EDR
processing.

For example, to perform custom actions when a transaction rolls back, you can include the
following function block in an iScript:

Function onRollback
{
  logStdout("onRollback() \n");
  /* Define rollback-related actions here. */
}

Chapter 10
Including Other iScript Source Files in Your iScript

10-15



Pipeline-Related Function Hooks
Use the functions listed in Table 10-15 to perform the actions you want at various stages of the
pipeline process:

Table 10-15    Pipeline-Related Functions

Function Description

BEGIN Called when Pipeline Manager starts and after the iScript is compiled.

END Called when Pipeline Manager is shut down.

onMessageReceived Deprecated.

onStartEdr Called when a pipeline starts. It is called once in the life of a pipeline
process.

onStopEdr Called when a pipeline stops. It is called once in the life of a pipeline
process.

EDR Processing-Related Function Hooks
Use the functions listed in Table 10-16 to perform the actions you want during various stages of
EDR processing:

Table 10-16    EDR-Processing Related Functions

Function Description

onBeginEdr Called when a BEGIN EDR container for each file opened in a transaction
passes through a module.

onBeginTransaction Called when a BEGIN_TRANSACTION EDR container passes through a
module.

onDetailEdr Called when a DETAIL EDR container passes through a module.

onEndEdr Called when an END EDR container for each file opened in a transaction
passes through a module.

onEndTransaction Called when an END_TRANSACTION EDR container passes through a
module.

onHeaderEdr Called when a HEADER EDR container passes through a module.

onInvalidDetailEdr Called when an EDR with invalid detail record is received by a module.

onTrailerEdr Called when a trailer container passes through a module.

Input Grammar-Related Function Hooks
Use the function hooks listed in Table 10-17 in the input grammar to run the actions you want
when the input module parses a stream:

Table 10-17    Input Grammar-Related Functions

Function Description

onParseEnd Called when the input module finishes parsing a stream.

Chapter 10
About Special iScript Functions

10-16



Table 10-17    (Cont.) Input Grammar-Related Functions

Function Description

onParseError Called when the input module encounters an error while parsing a stream.

onParseStart Called when the input module starts processing a stream.

streamIsEmpty Called when an empty stream is encountered.

Transaction-Manager Related Function Hooks
Use these functions listed in Table 10-18 to perform the actions you want during a transaction.

Table 10-18    Transaction Manager Related Functions

Function Description

onCancel Called when a transaction needs to be cancelled.

onCommit Called when the transaction manager notifies that a transaction is
committed.

onPrepareCommit Called when the transaction manager sends a request to prepare to
commit a transaction.

onRollback Called when a transaction needs to be rolled back.

About iScript Flist Extension Functions
You use the iScript flist extension functions to manipulate data in flists. For example, you can
use the functions to retrieve information from an flist so that you can add it to the EDR
container. You can also use the functions to add data taken from an EDR to an flist.

There are functions for creating flists, retrieving data from fields, setting field values, setting
and unsetting the current array, deleting fields and arrays, and retrieving error text.

Here is a simple example of moving data from an EDR to an flist. Suppose you have the
following EDR data block:

DETAIL.ASS_DATA
   String NAME
   Decimal VALUE
   Long QUANTITY
  

You can convert that EDR block to an flist in this format:

0 PIN_FLD_ARRAY   ARRAY 
1   PIN_FLD_STRING   STRING
1   PIN_FLD_DECIMAL   DECIMAL
1   PIN_FLD_INT   INT
  

The following is an example of iScript code to convert the EDR block to an flist:

fListPushElem( "PIN_FLD_ARRAY", 0 );
fListSetString( "PIN_FLD_STRING", edrString( DETAIL.ASS_DATA.NAME, 1 ) );
fListSetDecimal( "PIN_FLD_DECIMAL",edrDecimal( DETAIL.ASS_DATA.VALUE, 1 ) );
fListSetLong( "PIN_FLD_INT", edrLong( DETAIL.ASS_DATA.QUANTITY, 1 ) );

Chapter 10
About iScript Flist Extension Functions

10-17



fListPopElem();
  

Improving Pipeline Performance in Custom iScripts and iRules
This section provides some guidelines to reduce pipeline startup time and memory usage in
your custom iScripts and iRules.

When the pipeline framework loads an iRule, a finite state machine (FSM) is built in memory.
The number of objects the FSM creates in memory affects the pipeline startup and memory
usage. FSMs create decision trees in memory at startup-time which affect pipeline startup, but
decision trees help the pipeline work efficiently at run-time.

To reduce pipeline startup time and memory usage, follow these guidelines while creating
iRules:

• Split the database entries because the number of rows in the loaded table affects memory
usage and startup time of Rules.

• When writing rules, review the condition and reduce the number of compare patterns.

• Keep the regular expressions as simple as possible.

• If you have complex rules, place them at the beginning of an iRule.

• To improve processing performance, split big iRules if you have CPUs to allocate for new
threads.

To improve pipeline processing performance, follow these guidelines when creating iScripts:

• If you can use an iRule instead of an iScript, use an iRule.

• Keep iScripts simple.

• Whenever possible, use standard modules instead of creating custom modules.

• Avoid database read access from the iScript when processing EDRs. Instead, load data
during startup into hashes, and use that data when processing EDRs.

• Avoid functions that duplicate EDRs. They are performance intensive.

• Avoid writing to a database within an iScript. If you do, make sure you handle transactions
properly.

Chapter 10
Improving Pipeline Performance in Custom iScripts and iRules

10-18



Part II
Configuring Pipeline Discounting

This part describes how to configure pipeline discounting in Oracle Communications Billing and
Revenue Management (BRM). It includes these chapters:

• Configuring Discounting Modules and Components

• Discounting Utilities



11
Configuring Discounting Modules and
Components

This chapter describes how to configure discounting in the Oracle Communications Billing and
Revenue Management (BRM) Pipeline Manager.

Configuring a Batch Discounting Pipeline
Batch discounting is typically performed in a separate discounting pipeline.

Configure the following data modules:

• DAT_AccountBatch. This module provides account data to Pipeline Manager. This
module loads account data into memory when you start Pipeline Manager, and updates it
when it is changed in the BRM database.

• DAT_BalanceBatch. This module provides balance data for the FCT_Discount module
when discounting is run in batch. This module loads balance data into memory when you
start Pipeline Manager, and keeps the balance data synchronized between the Pipeline
Manager database and the BRM database. See "DAT_BalanceBatch" in BRM Pipeline
Manager Reference.

• DAT_ModelSelector. This module provides discount selector data to the
FCT_DiscountAnalysis module. See "DAT_ModelSelector" in BRM Pipeline Manager
Reference.

• DAT_Discount. This module supplies discount information to the discount function
modules. See "DAT_Discount" in BRM Pipeline Manager Reference.

Configure the following function modules:

• FCT_Discount. This module performs the discount calculations and adds discounting data
to the event data record (EDR). See "FCT_Discount" in BRM Pipeline Manager Reference.

• FCT_DiscountAnalysis. This module selects applicable discounts and prioritizes them.
See "FCT_DiscountAnalysis" in BRM Pipeline Manager Reference.

• FCT_Rounding. This module rounds the balance impacts of discounting. Use the Mode
registry entry to specify Discounting. See "FCT_Rounding" in BRM Pipeline Manager
Reference.

• FCT_ApplyBalance. This module is used only for batch discounting. This module adds
the discount balance impact to the EDR and updates the Pipeline Manager memory. See
"FCT_ApplyBalance" in BRM Pipeline Manager Reference.

About Setting the Validity of Balance Elements Impacted by Discounts
The effective period of a granted balance element can start when a subscriber first consumes
the balance element balance.

The following modules are used to set the validity period of balance elements that start on first
usage when they are impacted for the first time:

11-1



• DAT_BalanceBatch. This module calculates the balance element validity period based on
the EDR timestamp and initializes the validity period in memory.

If the validity periods of all first-usage balance elements in the bundle should be
synchronized, DAT_BalanceBatch adds information about those balance elements to the
EDR.

• FCT_ApplyBalance. This module sets the validity period information in the EDR for all
first-usage balance elements whose validity needs to be set. It then sends the entire EDR
to an output stream.

You specify the first-usage validity output stream in the FCT_ApplyBalance registry. See
"FCT_ApplyBalance" in BRM Pipeline Manager Reference.

You configure the output stream in the batch rating pipeline. See "Configuring Pipeline
Output for First-Usage Products, Discounts, and Balance Elements".

To set the validity period of first-usage balance elements sent to the output stream, you
configure Universal Event (UE) Loader. See "About Updating Validity Period Information in the
BRM Database".

Configuring Batch Discounting to Restrict Balance Element Validity End Time
When the validity period of a granted balance element starts on first usage and ends relative to
the start time, you can restrict the balance element end time to ensure the balance element
balance cannot continue to be consumed after the charge offer or discount offer expires.

To restrict the validity end time of first-usage balance elements, configure "DAT_BalanceBatch"
in BRM Pipeline Manager Reference to use the RestrictResourceValidityToOffer business
parameter setting from the BRM database.

You configure DAT_BalanceBatch to use business parameter settings from the BRM database
by performing the following:

• Configuring the "DAT_PortalConfig" in BRM Pipeline Manager Reference module in your
registry file. This module must be listed before all other data modules in the registry file.

• Connecting the "DAT_BalanceBatch" in BRM Pipeline Manager Reference module to
DAT_PortalConfig by using the PortalConfigDataModule registry entry.

When you restrict balance element validity end time, DAT_BalanceBatch sets the end time of
the balance element validity period to the end time of the charge offer or discount offer that
grants the balance element if it is earlier than the balance element validity end time.

Calculating the Match Factor of Parallel and Sequential Discounts
The match factor in discounting is the percentage of usage that is discounted by a single
discount when more than one discount is applied. The match factor is used with cascading
discounts in which a discount can be applied only to the portion of usage that has not already
been discounted.

For example, if an account owns two cascading discounts and the first one discounts 75% of
the usage, the match factor is .75. The second discount, therefore, can be applied only to 25%
of the usage.

By default, discounting does not calculate the match factor for parallel and sequential
discounts. Should you need to calculate the match factor for parallel and sequential discounts,
set the AvoidMatchFactorCalculation entry to False in the FCT_Discount module registry.
See "FCT_Discount" in BRM Pipeline Manager Reference.

Chapter 11
Configuring a Batch Discounting Pipeline

11-2



Configuring a Real-Time Discounting Pipeline
You can use a real-time discounting pipeline to calculate discounts for events that are rated by
real-time rating. This allows you to discount all events in real time, so customer discount
balances are always current.

To configure real-time discounting:

1. Configure a real-time discounting pipeline. See "Configuring a Real-Time Discounting
Pipeline".

2. Configure the Input registry section. See "Configuring the Input Registry Section".

3. Configure the Connection Manager (CM) to send discounting requests to the NET_EM
module.

Configuring a Real-Time Discounting Pipeline
Configure a real-time discounting pipeline that includes the following real-time discounting
modules:

• INP_Realtime. This module handles flist-to-EDR format translation for a real-time pipeline.
See "INP_Realtime" in BRM Pipeline Manager Reference.

Use this entry for the OpcodeMapping entry:

OpcodeMapping = ./formatDesc/Formats/Realtime/discount_event.xml
• OUT_Realtime. This module handles EDR-to-flist format translation for a real-time

pipeline. See "OUT_Realtime" in BRM Pipeline Manager Reference.

• NET_EM. This module provides an interface to the CM for the INP_Realtime and
OUT_Realtime modules and an interface to the BRM database for the
DAT_AccountRealtime and DAT_BalanceRealtime modules.

• DAT_AccountRealtime. This module provides account cycle data to the FCT_Discount
module. The DAT_AccountRealtime module gets data from the BRM database by
connecting with the NET_EM module. It does not store data in memory, so it does not load
data when you start Pipeline Manager. See "DAT_AccountRealtime" in BRM Pipeline
Manager Reference.

• DAT_BalanceRealtime. This module provides balance data for the FCT_Discount module
for real-time discounting. The DAT_BalanceRealtime module gets data from the BRM
database by connecting with the NET_EM module. It does not store data in memory, so it
does not load data when you start Pipeline Manager. See "DAT_BalanceRealtime" in BRM
Pipeline Manager Reference.

• FCT_CreditLimitCheck. This module is used only for real-time discounting. This module
is used during the prepaid authorization process to determine whether event owners have
enough balance elements in their account balance to use a requested service. For more
information, see "FCT_CreditLimitCheck" in BRM Pipeline Manager Reference.

In addition, configure the following standard discounting modules:

• FCT_Discount. This module performs the discount calculations and adds discounting data
to the EDR. See "FCT_Discount" in BRM Pipeline Manager Reference.

• FCT_DiscountAnalysis. This module selects applicable discounts and prioritizes them.
See "FCT_DiscountAnalysis" in BRM Pipeline Manager Reference.

Chapter 11
Configuring a Real-Time Discounting Pipeline

11-3



Configuring the Input Registry Section
To manage real-time discounting efficiently, you must enable the Input registry
UnitsPerTransaction entry. Use the following entry in the Input registry section:

Input
{
   UnitsPerTransaction = 1
   NoThread = true
...

About Dumping Discount Information during Run Time
You can dump discount configuration information during run time. Dumping the information
writes it to a file or to the terminal. This is useful should you need to verify, compare, or provide
discount configuration information during run time for troubleshooting purposes.

You can use the DAT_Discount and DAT_ModelSelector modules to write discount
configuration information. You can write discount configuration information for one or all
discounts in your system by using the DiscountModel and DataFileName semaphores. See
"DAT_Discount" and "DAT_ModelSelector" in BRM Pipeline Manager Reference.

About Discount Transaction Management
To maintain data integrity in a pipeline, discounting uses transactional processing on two
levels:

• Standard pipeline transactions, managed by the Transaction Manager (TAM). If a
transaction fails, the input is stopped and all open transactions are rolled back. After rolling
back the data, the input is restarted.

Note:

To enable transaction management, the redoEnable registry parameter of the
TAM must be set to True. If the redo mechanism is not enabled, discounting will
block any other sequential transactions.

• EDR transactions, managed by the discounting modules. An EDR might contain multiple
charge packets that are manipulated by the FCT_Discount module. The module might find
errors in some charge packets and not be able to finish processing the EDR. Therefore, all
changes made in one EDR are logged. If there are no errors, the data is committed,
otherwise the changes made by the module are rolled back and the EDR is not committed.

About Processing Balance Groups Locked by Other Transactions
During discount calculations in BRM, when discounting data is added to the event data record
(EDR), the associated balance group is locked by the transaction. By default, there is a
dependency between concurrent transactions involving the same balance group. If transaction
A locks a balance group, then, by default, transaction B waits for transaction A to commit or roll
back before it locks the same balance group.

Chapter 11
About Dumping Discount Information during Run Time

11-4



You can enhance pipeline throughput performance in BRM by configuring the
IgnoreEDROnLock entry in the FCT_Discount module to ignore an event data record, if the
associated balance group object is locked by another transaction.

For more information on the IgnoreEDROnLock registry entry in the FCT_Discount module,
see "FCT_Discount" in BRM Pipeline Manager Reference.

To configure the FCT_Discount module for:

• Batch operations, set the IgnoreEDROnLock registry entry to True.

• Run-time operations, set the IgnoreEDROnLock semaphore entry to True.

When the FCT_Discount module processes concurrent transactions involving the same locked
balance group objects, if IgnoreEDROnLock entry is set to True, it places the ignored or
rejected EDRs with the locked balance group in the discountError directory.

Configuring Custom Business Events for Pipeline Discounting
A business event is a BRM operation that you define in the Payload Generator EM
configuration file (payloadconfig.xml).

To enable custom business events in Pipeline Manager, you need to list them in the
DAT_BalanceBatch CustomEvents registry entry. For example, this entry enables an event
named CycleRollover20days:

CustomEvents
{
   CycleRollover20days
 }

Chapter 11
Configuring Custom Business Events for Pipeline Discounting

11-5



12
Discounting Utilities

This chapter provides reference information for Oracle Communications Billing and Revenue
Management (BRM) Pipeline Manager discounting utilities.

pin_discount_cleanup
Use this utility to change the status of expired discounts from active to canceled and to delete
canceled discounts.

You use this utility to close or delete the discounts that are canceled in the middle of a cycle
and the discount's validity rule is set to Full discount.

You can run this utility daily or add it to the pin_bill_day script to be run automatically.

Location

BRM_home/bin

Syntax

pin_discount_cleanup -m [close|delete] [-n days] [-d date] [-v] [-t] [-help] 

Parameters

-m close|delete
Specifies whether to delete discounts when they are canceled:

• close

Changes the status of all active, expired discounts to canceled without deleting the
discounts.

• delete

Deletes all expired discounts.

-n days
The number of days prior to -d date for which the expired discounts are retained. The utility
changes the status to canceled for the discounts that expired more than -n days prior to -d
date.

- d date
The end date (in the format MM/DD/YYYY) of the period in which discounts that expired are
retained.
For example, if -n is 5 and -d is 07/15/2025, the status of the discounts that expired before
7/10/2025 are changed to canceled.

12-1



Note:

• The expiry date cannot be greater than the current date. For instance, in the
example above, if 7/10/2025 is greater than the current date,
pin_discount_cleanup returns an error. Similarly, if only -d is specified, and is
greater than the current date, pin_discount_cleanup returns an error.

• If neither -n nor -d parameter is specified, the current date is used.

-v
Displays information about successful or failed processing as the utility runs.

Note:

This parameter is always used in conjunction with other parameters and commands.
It is not position dependent. For example, you can enter -v at the beginning or end of
a command to initiate the verbose parameter. To redirect the output to a log file, use
the following syntax with the verbose parameter. Replace filename.log with the name
of the log file:
pin_discount_cleanup other_parameters –v > filename.log

-t
Displays the number of records processed (the number of discounts that were canceled.

-help
Displays the syntax and parameters for this utility.

Results

To check results of running this utility, look in the log file (normally default.pinlog) for error
messages. The log file is located in the directory from which the utility was started or in a
directory specified in the utility's configuration file (pin.conf).

load_pin_snowball_distribution
Use this utility to load snowball discount distribution rules into the /config/
snowball_distribution object in the BRM database. You define how snowball discounts are
distributed in the pin_snowball_distribution file in BRM_home/sys/data/pricing/example.

Note:

This utility overwrites existing distribution rules. If you are updating distribution rules,
you cannot load new distribution rules only. You must load a complete set of
distribution rules each time you run this utility.

Location

BRM_home/bin

Chapter 12
load_pin_snowball_distribution

12-2



Syntax

load_pin_snowball_distribution pin_snowball_distribution_file [-d] [-v] 

Parameters

pin_snowball_distribution_file
The name and location of the file that defines the snowball distribution rules. The default
pin_snowball_distribution file is in BRM_home/sys/data/pricing/example.
If you do not run the utility from the directory in which the file is located, you must include the
complete path to the file. For example:

load_pin_snowball_distribution BRM_home/sys/data/pricing/example

-d
Creates a log file for debugging purposes. Use this parameter for debugging when the utility
appears to have run with no errors, but the data has not been loaded into the database.

-v
Displays information about successful or failed processing as the utility runs.

Note:

This parameter is always used in conjunction with other parameters. To redirect the
output to a log file, use the following syntax:
load_pin_snowball_distribution other_parameter –v > filename.log

Chapter 12
load_pin_snowball_distribution

12-3



Part III
Customer and Financial Management

This part describes how to configure customer management and financial functionality in
Oracle Communications Billing and Revenue Management (BRM) when using Pipeline
Manager. It contains the following chapters:

• Configuring Balance Monitoring in Pipeline Manager

• Setting Up Pipeline-Triggered Billing

• Setting Up Revenue Assurance Manager for Pipeline Batch Rating

• Setting Up Pipeline Manager Taxation

• Credit Limit and Threshold Checking during Batch Rating



13
Configuring Balance Monitoring in Pipeline
Manager

This chapter describes Oracle Communications Billing and Revenue Management (BRM)
Balance Monitoring Manager.

You use balance monitoring to enable your customers to monitor the balance of a group of
accounts. Balance monitoring collects the balance impacts for a specified group of accounts
and services, and notifies customers when their balance is too high. Customers and CSRs can
also access the group's total balance at any time by using a custom client interface.

For information about balance monitoring, see BRM Accounts Receivable.

About Balance Monitoring and Pipeline Rating
Pipeline Manager processes monitored balances as follows:

1. Pipeline modules rate the event and apply any discounts.

2. The FCT_Account module determines whether the event owner belongs to any monitor
groups and, if it does, enriches the MONITOR_LIST section of the EDR container with
information about each monitor group.

Note:

DAT_AccountBatch stores in-memory the list of monitor groups to which an
account or service belongs. The module retrieves this information from the BRM
database when you first start Pipeline Manager and when you create, modify, or
delete a monitor group. For more information, see "About Synchronizing Monitor
Data Between Cycle-fee and Pipeline Batch Rating".

3. The FCT_BillingRecord module generates a monitor packet for each monitor group.

• When a balance packet impacts the event balance group, FCT_BillingRecord creates
a MONITOR_PACKET for each monitor group in the monitor list.

• When a balance packet does not impact the event balance group (for example, the
discount share or charge share event balance groups), FCT_BillingRecord calls
DAT_AccountBatch to retrieve the monitor group list for the discount share or charge
share owner's balance group.

The MONITOR_PACKET contains an account POID of the balance monitor, the balance
group ID from the monitor group, balance element ID, amount, sub-balance impact, and
the sub-balance block from the balance packet.

4. The pipeline generates an output file that includes any monitor balance impacts.

5. Rated Event (RE) Loader retrieves the pipeline output file and publishes any monitored
balance impact data to the monitor queue.

13-1



About Synchronizing Monitor Data Between Cycle-fee and
Pipeline Batch Rating

Pipeline batch rating and cycle-fee rating determine where to apply balance monitor impacts by
accessing each member's list of monitor groups. For cycle-fee rating, this information is stored
in each member's /ordered_balgrp object in the BRM database. For pipeline batch rating, this
information is stored in memory by the DAT_AccountBatch module.

When you create, modify, or delete a balance monitor, BRM updates each member's /
ordered_balgrp object and then uses the EAI framework and Oracle DM to send the updated
information to Pipeline Manager, as follows:

1. BRM updates the member's /ordered_balgrp object and generates one of the business
events listed in Table 13-1.

Table 13-1    Monitor-Related Actions

Action Event

Create a new monitor group /event/group/sharing/monitor/create

Modify a monitor group by adding or removing
members

/event/group/sharing/monitor/modify

Delete a monitor group /event/group/sharing/monitor/delete

2. The EAI framework and Oracle DM processes these business events and publishes them
to the AQ database queue.

3. Pipeline Manager retrieves the data from the AQ database queue and updates its internal
memory:

• The DAT_Listener module retrieves the data from the queue and passes it to
DAT_AccountBatch.

• The DAT_AccountBatch module refreshes the monitor group list for all accounts.

Enabling Balance Monitoring in Pipeline Manager
Pipeline Manager determines whether balance monitoring is enabled by using the
BalanceMonitoring entry from the multibalance instance of the /config/business_params
object.

You must configure Pipeline Manager to use business parameter settings from the BRM
database by performing the following:

• Configuring the DAT_PortalConfig module in your registry file. This module must be listed
before all other data modules in the registry file.

• Connecting the DAT_AccountBatch module to DAT_PortalConfig by using the
PortalConfigDataModule registry entry.

Chapter 13
About Synchronizing Monitor Data Between Cycle-fee and Pipeline Batch Rating

13-2



Note:

You must enable balance monitoring in Pipeline Manager to have notification events
generated during the batch rating process.

Chapter 13
Enabling Balance Monitoring in Pipeline Manager

13-3



14
Setting Up Pipeline-Triggered Billing

This chapter provides a conceptual overview and instructions on setting up Oracle
Communications Billing and Revenue Management (BRM) pipeline-triggered billing.

About Pipeline-Triggered Billing
When you use pipeline batch rating, if an account is currently in the process of being billed,
incoming call records are suspended (not rated) for that account until its billing is complete.
The number of accounts being billed affects the time it takes to complete the billing process.
When you need accounts to be billed quickly so that their new usage can be rated, you can set
up Pipeline Manager to trigger billing. This will reduce the number of call records that might
need suspending. When Pipeline Manager triggers billing for an account, it is billed in a
separate billing process.

You use pipeline-triggered billing when event data records (EDRs) arrive for the next
accounting cycle before the associated accounts have been billed. Pipeline Manager triggers
billing for these accounts, enabling the new usage to be rated sooner and reducing the number
of EDRs that might need suspending or rerating.

When customers use their services while their accounts are being billed, Pipeline Manager
does not rate their usage until the accounts' billing is complete. The BRM billing process can
sometimes take several hours. When there is account activity during the billing process, there
is a greater possibility that call detail records (CDRs) will need recycling or rerating. When you
use pipeline-triggered billing, the accounts are billed in a separate billing process, reducing the
billing processing time.

When Pipeline Manager suspends EDRs because it is waiting for the account to be billed,
those EDRs must later be recycled for rating. Each time an EDR is recycled, it is suspended
until Pipeline Manager receives notification that the billing process for the account is complete.

Figure 14-1 shows how a CDR is repeatedly suspended for Account X until the account's
billing is complete. In this example, the billing process takes almost three hours.

Figure 14-1    Suspension of CDR Rating During Billing

14-1



With pipeline-triggered billing, billing is triggered for Account X when the first new CDR arrives,
as shown in Figure 14-2. The account is billed in a separate billing process, reducing the
processing time. Pipeline Manager can then rate the recycled CDR and new CDRs that arrive
for the next accounting cycle for that account:

Figure 14-2    Pipeline-Triggered Billing

Note:

Performance is affected by the number of accounts that need pipeline-triggered
billing. If too many accounts are triggered for billing by Pipeline Manager, there is no
performance advantage.

Pipeline-Triggered Billing Components
Pipeline-triggered billing comprises several components that work together to bill accounts:

• Pipeline Manager modules flag and route EDRs for accounts that require billing. See
"About the Pipeline-Triggered Billing Modules".

• BRM recycling suspends EDRs flagged to trigger billing until the accounts are billed. The
EDRs are periodically recycled. When the accounts are billed, the recycled EDRs can be
rated and are no longer suspended. See "About Suspending Billing-Trigger EDRs".

• Billing-trigger applications bill the triggered accounts. These applications include a
billing batch handler (BillHandler) and the BRM billing utility. When the accounts are billed,
BRM notifies Pipeline Manager that billing for the accounts is complete. See "About
BillHandler".

Figure 14-3 shows the relationships among Pipeline Manager, BRM standard recycling, and
the billing-trigger applications.

Chapter 14
About Pipeline-Triggered Billing

14-2



Figure 14-3    Pipeline Manager, Recycling, and Billing Applications Relationship

How Pipeline Manager Triggers Billing
The following steps describe the entire process of pipeline-triggered billing:

1. BRM runs billing when the accounting cycle ends.

2. An EDR enters a pipeline for processing.

3. The FCT_TriggerBill module checks if the EDR belongs to the next accounting cycle and if
partial billing has not yet been triggered for the account. When both of these conditions are
true, it sends the EDR to the billing-trigger output stream.

4. The FCT_Reject module sends the EDR to the suspense output stream.

For more information, see "About the Pipeline-Triggered Billing Modules".

5. When the EDR reaches the output modules, the data in the EDR takes two routes:

Suspend EDR:

a. The suspense output module suspends the EDR by sending it to Suspended Event
(SE) Loader. SE Loader stores the EDR in the BRM database.

b. The pin_recycle utility retrieves the EDR from the BRM database and sends it back
through the rating pipeline. The EDR begins the cycle again: If billing for the account is
complete, the EDR is rated. If billing is not complete, the EDR is again suspended.

For more information, see "About Suspending Billing-Trigger EDRs".

Trigger billing:

a. The pipeline billing-trigger output module creates a file containing the account and bill
units associated with the EDR.

b. The billing-trigger applications retrieve the file and bill the account associated with the
EDR.

For more information, see "About BillHandler".

c. BRM uses the Oracle Data Manager (DM) to notify Pipeline Manager that the account
is billed.

d. When the recycled EDR is sent back through a rating pipeline (through the Suspend
EDR route), the EDR is rated because the account has been billed.

Chapter 14
About Pipeline-Triggered Billing

14-3



About the Pipeline-Triggered Billing Modules
Pipeline Manager flags EDRs associated with accounts that require immediate billing and
sends them to the appropriate output streams. Pipeline-triggered billing uses the following
modules:

• The FCT_TriggerBill module, which determines whether EDRs should trigger billing based
on the accounting cycle date and billing state. To trigger billing, it sets a billing-trigger error
code (Awaiting billing of account) in the EDRs. To flag the EDRs for recycling, it sets a
billing-trigger recycle key value (Trigger_Billing).

• The FCT_Reject module, which detects the billing-trigger error code and sends the EDR to
the suspense output stream.

• The billing-trigger output module, which creates a file containing the accounts and bill units
for billing and sends the file to a separate directory.

• The suspense output module, which adds the EDRs that trigger billing to an output file.
The EDRs are loaded into the BRM database to be suspended and recycled.

Figure 14-4 shows the path that EDRs take when they are flagged to trigger billing.

Figure 14-4    EDR Path for Triggered Billing

About BillHandler
BillHandler bills the accounts whose EDRs are flagged to trigger billing. BillHandler is used
with the following applications:

• Batch Controller, which watches for billing-trigger files output by a pipeline. When a file is
present, Batch Controller starts BillHandler.

• The pin_bill_accts billing utility, which bills the accounts and bill units. BillHandler starts
the billing utility.

Figure 14-5 shows the batch handler billing process:

Chapter 14
About Pipeline-Triggered Billing

14-4



Figure 14-5    Batch Handler Billing Process

Overview of the Immediate Billing Process
To bill accounts identified for immediate billing, the following actions are performed:

1. Batch Controller starts BillHandler when a file is present in the pipeline billing-trigger output
directory.

2. BillHandler reads the accounts and bill units in the file and passes them to the
pin_bill_accts billing utility to be billed.

3. The pin_bill_accts billing utility creates the bills and updates the account information in
the BRM database.

4. When the accounts are billed, BRM notifies Pipeline Manager by sending a business event
to the Oracle DM.

Figure 14-6 shows an overview of the processes required to bill accounts that are identified for
immediate billing.

Chapter 14
About Pipeline-Triggered Billing

14-5



Figure 14-6    Immediate Accounts Billing Process

About Suspending Billing-Trigger EDRs
EDRs that are flagged to trigger billing are not rated and must be periodically recycled until the
accounts are billed. Pipeline-triggered billing uses BRM standard recycling to suspend and
recycle these EDRs.

You perform the following actions to suspend and recycle EDRs:

1. When EDRs contain the Awaiting billing of account error code, the FCT_Reject module
sends them to the suspense output stream.

2. SE Loader retrieves the EDRs from the output stream and stores them in the BRM
database.

3. The pin_recycle utility retrieves the EDRs from the BRM database and sends them back
through the rating pipeline. To continuously recycle any waiting EDRs, schedule the utility
to run periodically.

EDRs are suspended each time they are recycled until the accounts are billed. After the
accounts are billed, the EDRs are rated and are no longer sent to the suspense output stream.

Figure 14-7 shows an overview of the processes required to suspend and recycle EDRs
flagged to triggered billing.

Chapter 14
About Pipeline-Triggered Billing

14-6



Figure 14-7    Suspension and Recycling of EDRs Flagged to Trigger Billing

Configuring Pipeline-Triggered Billing
To configure pipeline-triggered billing:

• Configure Pipeline Manager. See "Setting Up Pipeline Manager to Trigger Billing".

• Configure Batch Controller. See "Setting Up the Billing Batch Applications".

• Configure Pipeline Manager recycling. You can use either standard recycling or Suspense
Manager with pipeline-triggered billing.

Setting Up Pipeline Manager to Trigger Billing
To set up Pipeline Manager to trigger billing:

1. Configure the FCT_TriggerBill module.

Use the TriggerBillCreateStream entry in the module registry to specify the billing-trigger
output module.

2. Configure the billing-trigger output stream in the OUT_GenericStream module.

The default output grammar file is TriggerBilling_OutGrammar.dsc.

The following is an example of the registry entries for the billing-trigger instance of the
OUT_GenericStream and EXT_OutFileManager modules:

TriggerBillCreateOutput
{
   ModuleName = OUT_GenericStream
   ProcessType = RATING_PIPELINE
   EventType = /event/delayed/session/telco/gsm
   Module
   {
      Grammar = ./formatDesc/Formats/TriggerBill/TriggerBilling_OutGrammar.dsc
      DeleteEmptyStream = True
      OutputStream
      {
         ModuleName = EXT_OutFileManager
         Module
         {
            OutputPath            = ./data/TriggerBill
            OutputPrefix          = trigger_billing
            OutputSuffix          = .tb
            TempPrefix            = .

Chapter 14
Configuring Pipeline-Triggered Billing

14-7



            TempDataPath          = ./data/TriggerBill
            TempDataPrefix        = trigger.billing.tmp.
            TempDataSuffix        = .data
            AppendSequenceNumber  = True
            Replace               = True
         }
      }
   }
} 

Note:

To ensure output file integrity, specify a unique combination of OutputPath,
OutputSuffix, and OutputPrefix values for each output stream defined in the
registry.

3. Add the format and mapping files to the DataDescription registry.

• The default StreamFormats file is TriggerBilling.dsc.

• The default OutputMapping file is TriggerBilling_OutMap.dsc.

The following is an example of the billing-trigger entries in the DataDescription registry:

DataDescription
{ 
   Standard 
   { 
   ModuleName = Standard 
   Module 
   {
   StreamFormats
   {
      TRIGGERBILL_CREATE_OUTPUT =./formatDesc/Formats/TriggerBill/TriggerBilling.dsc   
   }
   . . .
   OutputMapping
   {
      TRIGGERBILL_CREATE_OUTPUT =                            ./formatDesc/Formats/TriggerBill/
TriggerBilling_OutMap.dsc
   }
   }
   }
}

Setting Up the Billing Batch Applications
To set up the billing batch applications for pipeline-triggered billing:

• Configure batch controller to start BillHandler. See "Configuring Batch Controller to Start
BillHandler".

• Configure BillHandler. See "Configuring BillHandler".

Configuring Batch Controller to Start BillHandler
Use Batch Controller to start BillHandler. You configure Batch Controller to start BillHandler
when it detects a file in the pipeline billing-trigger output directory.

To configure Batch Controller:

Chapter 14
Configuring Pipeline-Triggered Billing

14-8



1. Open the BRM_home/apps/batch_controller/Infranet.properties file, where BRM_home
is the directory in which BRM is installed.

2. Add the entries shown in Table 14-1 for BillHandler.

Table 14-1    BillHandler Entries

Entry Description

batch.random.events Specify the event identifier. For example:

batch.random.events = Bill_Handler_file
For pipeline-triggered billing, this event is the appearance of a
billing-trigger file that is output by a pipeline.

event_name.name Specify a description for the event identifier. For example:

Bill_Handler_file.name = File passed to BillHandler

event_name.file.location Specify the full path to the pipeline billing-trigger output directory.
This is the directory where the billing-trigger output module
deposits the file of accounts to be billed.

event_name.file.pattern Specify the billing-trigger output file name. When Batch Controller
detects a file with this name, it starts BillHandler.

Tip: You can use an asterisk (*) to represent zero or more
characters in the file name. No other wildcards are supported.

For example:

Bill_Handler_file.pattern = *.out

event_name.handlers Specify BillHandler identifier. For example:

Bill_Handler_file.handlers = BillHandler

handler_name.name Specify a description for the BillHandler identifier. For example:

BillHandler.name = Bill Handler that executes
pin_bill_accounts

handler_name.max.at.lowload
.time
handler_name.max.at.highloa
d.time

Specify the number of BillHandler instances that can run
concurrently during periods of low-load and high-load usage.
Typical default settings are 6 at low load and 3 at high load.

handler_name.start.string Specify the command that starts BillHandler. The default is
BRM_home/apps/pin_bill_handler/BillHandler.pl.

3. Save and close the file.

Configuring BillHandler
BillHandler retrieves the pipeline-triggered billing output file and sends the account and bill
units to the billing utility. After the accounts and bill units are billed, BillHandler deposits the
input file to a separate directory.

To configure BillHandler:

1. Open the BRM_home/apps/pin_bill_handler/BillHandler_config.values file.

2. Edit the entries listed in Table 14-2.

Chapter 14
Configuring Pipeline-Triggered Billing

14-9



Table 14-2    Configuration Values for BillHandler

Entry Description

$FILETYPE Specify the EDR file-name pattern. For example, *.txt.bc.

Note: The asterisk (*) represents zero or more characters in the file name.
No other wildcards are supported.

Batch Controller runs BillHandler for each file with a name that matches
this pattern.

$HANDLER_DIR Specify the full path to the directory containing BillHandler, log, input,
output, and other files.

The default is BRM_home/apps/pin_bill_handler.

$pinBillActDir Specify the full path to the directory containing the pin_bill_accts billing
utility.

$STAGING Specify the full path to the BillHandler input file location.

Note: This is typically the same location specified for $HANDLER_DIR.
You configure this location as the output directory.

$PROCESSING Specify the full path to the directory from which the billing-trigger files are
processed.

The default is $pinBillActDir.

For information about other entries, see the BillHandler_config.values file.

3. Save and close the file.

Running the pin_bill_accts Utility
When Batch Handler runs the pin_bill_accts utility, it uses the -from_file parameter. This
parameter specifies that the accounts to bill will be read from a file, and the associated file
name. The input file is passed to the pin_bill_accts utility by the BillHandler billing batch
handler to trigger billing for the accounts specified in the file.

Chapter 14
Configuring Pipeline-Triggered Billing

14-10



15
Setting Up Revenue Assurance Manager for
Pipeline Batch Rating

This chapter describes how to configure Oracle Communications Billing and Revenue
Management (BRM) Revenue Assurance Manager to collect revenue assurance data from
pipeline batch rating.

About Revenue Assurance
You use Revenue Assurance Manager to verify the end-to-end completeness, accuracy, and
integrity of BRM billing and pipeline batch rating results. You can analyze revenue assurance
data to find revenue leakage in your system.

You obtain revenue assurance data by auditing the results of these processes:

• Billing: Revenue Assurance Manager provides statistics such as the number of accounts
billed or invoiced, the total revenue, and the number of records that were successfully
billed or failed to be billed.

• Pipeline batch rating: Revenue Assurance Manager provides statistics such as total
duration and charges, retail and wholesale amounts, and total discount amounts.

About Collecting Revenue Assurance Data from Pipeline Batch
Rating

You can collect revenue assurance data to analyze the effect of pipeline rating on Event Data
Records (EDRs). You configure Revenue Assurance Manager to collect statistics on EDRs at
various points in your pipelines, and then compare those statistics to see how a batch of EDRs
changes as it is processed.

The statistics collected can include:

• The number of EDRs in the batch

• Retail charged amount

• Event wholesale value

• Discounts applied

• Total time usage

• Amount of data transferred

• When a call started

• When a call ended

Revenue assurance data is collected and aggregated at control points that you configure in
pipelines. You establish control points by adding the FCT_AggreGate module at appropriate
pipeline locations. You determine the data to be collected by specifying aggregation scenarios
used by the module.

15-1



You can configure related control points into flows that enable you to examine data for a batch
sequentially. You can also link pairs of control points to see original and current values.

FCT_AggreGate outputs aggregated data into flat files. You configure the Batch Controller to
send these flat files to the Universal Event (UE) Loader as they are created. UE Loader parses
the flat files and then calls opcodes to load the information into the database as /
process_audit/batchstat objects.

Collecting revenue assurance data from pipeline batch rating involves these tasks:

• Configuring event notification to capture data on written-off EDRs and set up revenue
assurance alerts.

See "About Using Event Notification to Generate Revenue Assurance Data" for more
information.

• Configuring control points in your pipelines to determine where revenue assurance data is
captured.

See "About Control Points" for more information.

• Associating an aggregation scenario with each of your control points to determine how
revenue assurance data is organized. Revenue Assurance Manager includes
preconfigured aggregation scenarios that group revenue assurance statistics by using
different fields.

See "About Aggregation Scenarios" for more information.

• Linking pairs of control points related to rating, rerating, and written-off EDRs. Revenue
Assurance Center uses these linked pairs to establish the original and current values for a
set of EDRs.

See "About Linking Pairs of Rating, Rerating, and Written-Off Control Points" for more
information.

• Defining flows, which are ordered lists of control points that Revenue Assurance Center
uses to display revenue assurance data. Flows allow you to track revenue assurance data
for EDR batches at various stages during pipeline processing.

• Configuring Universal Event (UE) Loader to load revenue assurance data into the
database.

• Configuring alerts to be sent when revenue assurance data passes a threshold that you
set.

About Using Event Notification to Generate Revenue Assurance Data
Revenue Assurance Manager uses event notification to collect data on written-off EDRs and
set up revenue assurance alerts.

The following events are generated specifically to facilitate the revenue assurance event
notification process:

• /event/notification/suspense/writeoff: When suspended EDRs are written off, Suspense
Manager generates this event. By default, when this event occurs, the
PCM_OP_PROCESS_AUDIT_CREATE_WRITEOFF_SUMMARY opcode is called.

• /event/notification/ra_threshold: When specified conditions for producing revenue
leakage alerts occur, the load_pin_config_ra_thresholds utility generates this event. By
default, when this event occurs, the PCM_OP_PROCESS_AUDIT_POL_ALERT policy
opcode is called.

Chapter 15
About Collecting Revenue Assurance Data from Pipeline Batch Rating

15-2



About Control Points
You establish control points in batch pipelines to determine where Revenue Assurance
Manager collects data. You can configure control points in locations that enable you to
compare data from different stages in the rating processes.

You define a control point by adding the FCT_AggreGate module to the pipeline in the desired
location and specifying the control point name in the module registry. Each control point must
have a unique name that describes its purpose. For example, in a rating pipeline, you could
have control points named Rating and CP_After_Rating.

Each control point is associated with an aggregation scenario that specifies the data to be
collected and how it should be organized.

You add related control points to flows. In Revenue Assurance Center, you can view data from
all the control points in a flow. This enables you to follow the progress of EDR batches of EDRs
through the pipeline. See "About Flows" for more information.

About Aggregation Scenarios
Each control point requires an aggregation scenario to specify the data that the control point
collects and how the data will be organized.

An aggregation scenario specifies:

• The EDR fields to collect data from. For example, a scenario can collect information from
the discount amount or duration fields.

• Aggregation functions to apply to the data. For example, you can add data together or
average it.

• Fields by which to group the data collected. For example, you can group data by service
type. In this case, the data for each batch is grouped by the type of service, such as TEL,
SMS, or GPRS.

You can also collect revenue assurance data on more than one grouping field. For example, in
the BatchStat_SvcType_Status scenario, the grouping fields are Service Type and EDR
Status. The revenue assurance data collected is the EDR status such as Duplicate, Rejected,
or Successful for each service type.

You specify the scenario to use when you define a control point in the FCT_AggreGate module
registry. Scenarios can be used by any number of control points.

Revenue Assurance Manager provides a number of preconfigured scenarios. These scenarios
are suitable for use in a production system. You can also create new scenarios if necessary.

About Linking Pairs of Rating, Rerating, and Written-Off Control Points
Certain types of control points must be linked to establish original and current values displayed
in Revenue Assurance Center. You should link these types of control points:

• A rating control point to a rerating control point.

• A rating control point to a writeoff control point.

• A rerating control point to a writeoff control point.

Chapter 15
About Collecting Revenue Assurance Data from Pipeline Batch Rating

15-3



When pairs of control points are linked, Revenue Assurance Center shows the linked control
points in the same area. Values for the first control point are marked as original values, and the
last control point as current values.

About Flows
A flow is an ordered set of related control points that you group together for convenient
searching and viewing in Revenue Assurance Center. You can add any number of control
points to a flow, from any pipelines that are relevant.

You use Revenue Assurance Center to display data for flows. Each control point appears in its
own area. In this example, you can see two control points (P1_END and CP_AfterRating) from
Flow12. The second control point shows the effect that rating had on a small batch of EDRs.

About Using UE Loader to Load Revenue Assurance Data
In order to view batch pipeline revenue assurance data, you must first load that data into /
process_audit objects in the BRM database. You use Universal Event (UE) Loader to load the
data.

The UE Loader loads revenue assurance data into the following /process_audit objects:

• /process_audit/pipeline objects store information about processed EDRs.

• /process_audit/batchstat objects store information about the revenue assurance data
collected for specific scenarios.

You can configure the BRM Batch Controller to probe automatically for revenue assurance
data files and then call UE Loader to load them into the database. You can also decide to load
the data periodically by using cron or a similar program.

About the Revenue Assurance Data Collected in Rated Event Loader
Revenue Assurance Manager collects data from Rated Event (RE) Loader. BRM uses RE
Loader to load events that have been rated or rerated with pipeline batch rating.

The revenue assurance data collected from RE Loader include:

• Total revenue generated by the batch.

• Total number of EDRs loaded.

You can view the RE Loader data in Revenue Assurance Center or in Revenue Assurance
reports.

When the rated EDRs are loaded in RE Loader, either all the EDRs are loaded, or they all fail.
There is no possibility of some records getting loaded and some records failing. In Revenue
Assurance Manager, the data collected for RE Loader is not grouped by status or any other
fields.

You must load the CollectProcessAuditForIREL.sql file to enable the collection of revenue
assurance data from RE Loader.

About Collecting Revenue Assurance Data on Written-Off EDRs
You can use Revenue Assurance Manager to view statistics about the number of EDRs that
have been written off.

Chapter 15
About Collecting Revenue Assurance Data from Pipeline Batch Rating

15-4



When an EDR is written off through Suspense Manager, an /event/notification/suspense/
writeoff event is generated. You configure event notification so that Revenue Assurance
Manager collects data every time such an event occurs. The data collected from a written-off
EDR includes the original batch ID and the number of EDRs that were written off in that batch
of EDRs.

Configuring Revenue Assurance Manager
To set up Revenue Assurance Manager for pipeline batch rating, you need to complete the
following tasks:

• Configure event notification to notify Revenue Assurance Manager when events occur.

See "Configuring Event Notification" for more information.

• Choose scenarios that determine how the revenue assurance data is grouped.

See "Selecting Aggregation Scenarios" for more information.

• Identify control points for pipeline data collection.

See "Identifying Control Point Locations for Revenue Assurance Data" for more
information.

• Configure FCT_Aggregate to use your aggregation scenarios and control points.

See "Configuring the FCT_AggreGate Module to Collect Revenue Assurance Data" for
more information.

• Configure SimpleSample files to map the batchIDs of the EDRs.

See "Configuring SimpleSample Files" for more information.

• Add related sets of control points to flows.

See "Adding Control Points to Flows" for more information.

• Link control points for rating, rerating, and written-off EDRs.

See "Linking Rating, Rerating, and Write-Off Control Points " for more information.

• Configure Universal Event (UE) Loader to load revenue assurance data into the database.

See "Setting Up UE Loader to Load Revenue Assurance Data into the Database" for more
information.

• Configure Batch Controller to call UE Loader.

See "Setting Up Batch Controller to Call UE Loader" for more information.

Configuring Event Notification
Revenue Assurance Manager uses event notification to collect data on written-off EDRs and
set up revenue assurance alerts.

Before you can use Revenue Assurance Manager, you must configure the event notification
feature as follows:

1. If your system has multiple configuration files for event notification, merge them.

2. Ensure that the merged file includes the entire event notification list in the BRM_home/sys/
data/config/pin_notify_ra file.

3. (Optional) If necessary to accommodate your business needs, add, modify, or delete
entries in your final event notification list.

Chapter 15
Configuring Revenue Assurance Manager

15-5



4. (Optional) If necessary to accommodate your business needs, create custom opcodes for
event notification to trigger.

5. Load your final event notification list into the BRM database.

Note:

In addition, your business needs may require that you use event notification to
call opcodes when other objects are created in the BRM database.

Selecting Aggregation Scenarios
Aggregation scenarios determine what revenue assurance data is collected from pipelines and
how that data is grouped.

You may be able to use one or more of the preconfigured scenarios supplied with Revenue
Assurance Manager. Each scenario groups data differently.

If none of the preconfigured aggregation scenarios satisfies your business requirements, you
can create your own.

You must associate aggregation scenarios with control points in the registry of the
FCT_Aggregate module.

Loading Scenarios into the Pipeline Manager Database
You must load aggregation scenarios into the Pipeline Manager database before you can use
them. Scenarios that you create are loaded into the database by Pricing Center at the time of
creation.

To load scenarios into an Oracle Pipeline Manager database, run the following command
against the Pipeline Manager database from the Pipeline_home/database/oracle/scripts
directory:

% sqlplus user@databaseAlias
Enter password: password

SQL> RevenueAssurance_Scenarios.sql

where:

• Pipeline_home is the directory in which you installed Pipeline Manager.

• user is the Pipeline Manager user ID.

• password is the Pipeline Manager user password.

• database is the Pipeline Manager database alias.

Identifying Control Point Locations for Revenue Assurance Data
You configure control points in pipeline locations where you want to collect revenue assurance
data. You associate an aggregation scenario with the control point to determine the data that is
collected.

The exact locations where you place control points depend on the data you are collecting. It is
often useful to insert control points before and after a critical point in the pipeline. For example,

Chapter 15
Configuring Revenue Assurance Manager

15-6



you can insert a control point before and after rating so that you can analyze the impact on
EDRs.

You place a control point in a pipeline by inserting an instance of the FCT_AggreGate module
at the desired point in the pipeline. You specify the control point ID and aggregation scenario in
the module registry. See "Configuring the FCT_AggreGate Module to Collect Revenue
Assurance Data" for more information. Each control point ID must be unique system-wide.

Configuring the FCT_AggreGate Module to Collect Revenue Assurance
Data

You insert the FCT_AggreGate module at locations that you identify to collect revenue
assurance data. You define a control point and associated aggregation scenario in the registry
of each FCT_AggreGate module that you insert.

Note:

If an aggregation scenario requires one or more iScripts, you must specify them in
the Function Pool section of the pipeline registry. See "Using iScripts to Derive
Grouping Fields" for more information.

You also configure other options in the module registry, including details about control and
result files. These are standard options unrelated to revenue assurance.

To configure an FCT_AggreGate module for revenue assurance:

1. Add the FCT_AggreGate module to the pipeline registry at the desired location.

2. Configure the module for revenue assurance data:

• In the Scenarios section of the registry, create a block for the scenario by entering the
scenario name. For example, enter RA_03 to use the Service Type scenario.

• For the ControlPointId parameter, enter an ID for the control point you are defining.
The control point ID must be unique and have maximum of 30 characters. For
example, if you use the Service Type scenario, you might define the
CP_PostRatingBatchStat_Svctype control point.

• For the TableName registry entry, enter the name of the scenario that you defined
earlier.

Note:

The value of the TableName entry is used as the name of the output files for
the scenario. Using the scenario name for this entry makes it easier to
associate files with the scenarios from which they were created.

• Add the registry parameter IncludeProcessingTimestamps and set it to TRUE.

• Enter values for the standard FCT_AggreGate parameters, such as Threshold,
TempDir, DoneDir, CtlDir.

• Enter a semicolon (;) for the FieldDelimiter.

Chapter 15
Configuring Revenue Assurance Manager

15-7



• Add the parameters IncludeErrorEDRs and IncludeInvalidDetailEDRs and set them
to TRUE.

Note:

When configuring scenarios that do not use grouping based on the field
EDRStatus, do not specify the IncludeErrorEDRs and
IncludeInvalidDetailEDRs parameters.

The following example shows FCT_AggreGate configured for control point
CP_PostRatingBatchStat_Svctype using the Service Type aggregation scenario (RA_03):

# Aggregation
--------------------------------------------------
# AggreGate
{
 ModuleName = FCT_AggreGate
 Module
 {
  Active                   = TRUE
  ScenarioReaderDataModule = ifw.DataPool.ScenarioReader
  Scenarios
  {
   RA_03
   {
    TableName       = RA_03
    Threshold       = 10000
    TempDir         = ./data/aggregate
    DoneDir         = ./data/aggregate
    CtlDir          = ./data/aggregate
    FieldDelimiter  = ;
    ControlPointId  = CP_PostRatingBatchStat_Svctype
    IncludeErrorEDRs            = TRUE
    IncludeInvalidDetailEDRs    = TRUE
    IncludeProcessingTimestamps = TRUE
  
  ResultFile
  {
   IncludeFormat  = FALSE
   TempSuffix     = .tmp
   DoneSuffix     = .dat
   WriteEmptyFile = FALSE
  }
  ControlFile
  {
   IncludeFormat  = FALSE
   Suffix         = .ctl
   DataFilePath   = TRUE
  }
 }
} 

Using iScripts to Derive Grouping Fields
Review the description of the scenario you are using to see if it requires any iScripts.
Scenarios use iScripts to derive grouping fields such as EDR Status, Revenue Stream, and
Output Stream.

Chapter 15
Configuring Revenue Assurance Manager

15-8



If required, you need to specify the iScripts in the FunctionPool section of the registry file,
before the FCT_AggreGate module.

• ISC_SetEDRStatus

• ISC_SetOutputStream

• ISC_SetRevenueStream

• ISC_SetRevenueFigures

The following iScript must be placed at the beginning of the pipeline to ensure that the batch ID
is inserted before any further processing of the mediation batches.

• ISC_SetAndValidateBatchInfo

Configuring SimpleSample Files
Configure the SimpleSample files to map the batchIDs of the EDRs. This is a mandatory step
for Revenue Assurance Manager to work correctly.

You can find the SimpleSample files at: Pipeline_home/ifw/formatDesc/Formats/Sample.

To configure the SimpleSample files:

1. Open the SIMPLESAMPLE_v1.dsc file using a text editor such as Notepad.

2. Find the following line:

SERVICE                     AscString();
3. Add the following lines before the aforementioned line:

BATCH_ID                    AscString();
ORIGINAL_BATCH_ID           AscString();
SUSPENDED_FROM_BATCH_ID     AscString();
EVENT_ID                    AscString();

4. Save and close the file.

5. Open the SIMPLESAMPLE_v1_InMap.dsc file using a text editor such as Notepad.

6. Find the following line:

"020"                     -> DETAIL.RECORD_TYPE; 
7. Add the following lines before the aforementioned line:

BATCH_ID                 -> DETAIL.BATCH_ID;
ORIGINAL_BATCH_ID        -> DETAIL.ORIGINAL_BATCH_ID;
SUSPENDED_FROM_BATCH_ID   -> DETAIL.ASS_SUSPENSEEXT.SUSPENDED_FROM_BATCH_ID;
EVENT_ID                  -> DETAIL.EVENT_ID;

8. Save and close the file.

9. Open the SIMPLESAMPLE_v1_InGrammar.dsc file using a text editor such as Notepad.

10. Find the following line:

edrInputMap( "SIMPLESAMPLE_V1.DETAIL.STD_MAPPING" );
11. Add the following lines before the aforementioned line:

edrAddDatablock( DETAIL.ASS_SUSPENSE_EXT );
12. Save and close the file.

Chapter 15
Configuring Revenue Assurance Manager

15-9



Adding Control Points to Flows
Flows are ordered sets of related control points. You group control points into flows so that you
can search for and view them conveniently in Revenue Assurance Center. When you view a
flow in Revenue Assurance Center, its control points are displayed in the order in which they
were defined.

You define flows in the pin_config_ra_flows file and load the flows into the database by using
the load_pin_config_ra_flows utility. Flows are stored as /config/ra_flows objects.

The load_pin_config_ra_flows utility overwrites existing flows. You must load a complete set
of flows each time you run the utility.

To add control points into flows and load them into the database:

1. Open the BRM_home/sys/data/config/pin_config_ra_flows file in a text editor.

This file includes instructions about the syntax to use to add control points to flows.

2. Save and close the file.

3. Use the following command to load your control points into the database:

% load_pin_config_ra_flows pin_config_ra_flows

If you do not run the utility from the directory in which the file is located, include the
complete path to the file; for example:

% load_pin_config_ra_flows BRM_home/sys/data/config/pin_config_ra_flows

Tip:

If you copy the pin_config_ra_flows file to the directory from which you run the
load_pin_config_ra_flows utility, you do not have to specify the path or file
name. The file must be named load_pin_config_ra_flows.

To verify that the flows were loaded, you can display the /config/ra_flows object by using the
Object Browser, or use the robj command with the testnap utility.

Linking Rating, Rerating, and Write-Off Control Points
For Revenue Assurance Center to recognize original and current values for certain types of
control points, you must link them and add the links to the BRM database. The control points
that require linking include:

• Rating to rerating.

• Rerating to written-off.

• Rating to written-off.

To link control points, you define the links in the pin_config_controlpoint_link file and then
load them into the BRM database by using the load_pin_config_controlpoint_link utility.
Links are stored in the /config/link_controlpoint object in the BRM database. The
PCM_OP_PROCESS_AUDIT_CREATE_AND_LINK opcode links /process_audit/batchstat
objects based on the data in the /config/link_controlpoint object.

Chapter 15
Configuring Revenue Assurance Manager

15-10



Caution:

The load_pin_config_controlpoint_link utility overwrites existing links. You must
load a complete set of links each time you run the utility.

Note:

The load_pin_config_controlpoint_link utility needs a configuration (pin.conf) file
in the directory from which you run the utility.

To configure your control points into flows and load them into the database:

1. Open the BRM_home/sys/data/config/pin_config_controlpoint_link file in a text editor.
This file includes instructions on how to add control points into flows.

2. Save and close the file.

3. Use the following command to load your control points into the database:

% load_pin_config_controlpoint_link pin_config_controlpoint_link

If you do not run the utility from the directory in which the file is located, include the
complete path to the file; for example:

% load_pin_config_controlpoint_link BRM_home/sys/data/config/
pin_config_controlpoint_link

Tip:

If you copy the pin_config_controlpoint_link file to the directory from which you
run the load_pin_config_controlpoint_link utility, you do not have to specify
the path or file name. The file must be named pin_config_controlpoint_link.

To verify that the control point links were loaded, you can display the /config/
controlpoint_link object by using Object Browser, or use the robj command with the testnap
utility.

Setting Up UE Loader to Load Revenue Assurance Data into the Database
UE Loader takes the revenue assurance data from the FCT_AggreGate output files and loads
it into the BRM database. The following sections explain how to configure UE Loader.

Setting Up UE Loader Templates
UE Loader requires that each aggregation scenario have a separate UE Loader event input
template in XML format to map the data generated by FCT_AggreGate to the input flist for the
opcodes that data. Revenue Assurance Manager provides XML templates for each of the
preconfigured scenarios.

Chapter 15
Configuring Revenue Assurance Manager

15-11



Setting Up Batch Controller to Call UE Loader
Batch Controller runs programs such as UE Loader either when a specific event occurs or
automatically at timed intervals.

Most implementations use the occurrence-driven processing feature of Batch Controller to run
UE Loader whenever FCT_AggreGate creates output files with revenue assurance data.

Note:

If you set up Batch Controller to load scenario data files periodically rather than by
occurrence, make sure the files are loaded frequently. Revenue Assurance Center
uses the time when records were loaded into the database when it searches for data
in time range. For the revenue assurance data to be meaningful, it should be loaded
into the database soon after creation.

Setting Up Revenue Assurance Manager to Collect Data on
Written-Off EDRs

For written-off EDRs, Revenue Assurance Manager collects the original batch ID and the
number of EDRs that were written off in the batch.

To collect revenue assurance data on written-off EDRs, do the following:

• Enable event notification for Revenue Assurance Manager.

• Set a parameter in the Connection Manager pin.conf file to configure the control point ID
to collect the revenue assurance data on written-off EDRs. You can change this control
point ID.

About Aggregation Scenarios
Aggregation scenarios specify the data that is collected by Revenue Assurance Manager from
pipeline batch rating. You must specify an aggregation scenario at every control point you set
up in the pipeline.

Revenue Assurance Manager includes scenarios that are suitable for use in a production
system. These scenarios group revenue assurance data in different ways. See "Data Fields
Collected by All Scenarios" for a list of the fields from which the scenarios collect data. See
"Fields Used to Group Scenario Data" for a list of the fields by which the scenarios can group
data.

For example, the EDR statistics for scenario RA_03 are grouped by service type, such as TEL,
SMS, or GPRS. Data, such as event count, retail charged amount, and so on, is aggregated
for each service type.

Most of the scenarios group by combinations of grouping fields. For example, scenario RA_04
groups fields by both service type (TEL, SMS, and so on) and EDR status (duplicate, rejected,
written-off or successful). Data is aggregated separately for each combination; duplicate EDRs
for the SMS service, for example.

If the preconfigured scenarios do not meet your business needs, you can also create your own.

Chapter 15
Setting Up Revenue Assurance Manager to Collect Data on Written-Off EDRs

15-12



Note:

Custom scenarios require custom UEL templates and cannot be used with Revenue
Assurance Center.

Before you can use the preconfigured scenarios, you must load them into the pipeline
database.

Data Fields Collected by All Scenarios
All of the preconfigured aggregation scenarios collect statistics from the EDR fields listed in 
Table 15-1.

Table 15-1    All Scenarios Data Fields

Field Description

Event count Number of EDRs.

Retail charged amount Retail charged amount collected.

Event wholesale value Total wholesale amount charged for the EDR, if appropriate.

Discount amount Discount amount applied.

Duration Total usage time, in seconds, if appropriate (for example, for a voice
call).

Volume sent Data transferred in bytes, if appropriate (for example, for a GPRS
event).

Volume received Data received in bytes, if appropriate (for example, for a GPRS event).

Earliest call made The earliest call start timestamp.

Latest call made The latest call start timestamp.

Fields Used to Group Scenario Data
The EDR data fields in Table 15-2 are available to use for grouping data.

Table 15-2    Grouping Data Fields

Grouping Field Description

Batch ID Batch ID of the batch being processed.

Original batch ID Mediation batch ID of the rerating or recycling EDR batches.

Suspended from batch ID The batch ID from which the EDR was suspended.

Service type Type of service, such as TEL, SMS, or GPRS.

Revenue stream Retail, Wholesale, or Roaming.

Output stream The output stream of the EDR. This is based on the service type; for
example, if the service type is SMS, the output stream is SMS.

EDR status Success, Suspense, Duplicate, Discard, Rejected, or Skipped.

Suspense code Suspense reason code assigned to the EDR.

Chapter 15
About Aggregation Scenarios

15-13



Preconfigured Aggregation Scenario Details
Table 15-3 provides information about the Revenue Assurance Manager preconfigured
aggregation scenarios.

Table 15-3    RA Manager Preconfigured Aggregation Scenarios

Scenario/ File
Name

Collects Data for an
EDR Batch Based On

Grouping Fields (Listed
in the Grouping Order)

Storable Class Installation
Point

iScripts
Required

RA_01,
Batchstatat_si
mple

An EDR batch. Batch ID, Original batch
ID, Suspended from batch
ID

/process_audit/
batchstat/simple

Anywhere in
a pipeline

None

RA_02,
BatchStat_stat
us

EDR Status. Batch ID, Original batch
ID, Suspended from batch
ID, EDR status

/process_audit/
batchstat/status

Anywhere in
a pipeline

ISC_SetEDR
Status

RA_03,
BatchStat_Svc
Type

Service type. Batch ID, Original batch
ID, Suspended from batch
ID, Service type

/process_audit/
batchstat/svctype

After
FCT_Service
CodeMap

None

RA_04,
BatchStat_Svc
TypeStatus

Service type and EDR
status.

Using this scenario, you
can find the number of
records that are
duplicate, rejected, or
successful for each
service type.

Batch ID, Original batch
ID, Suspended from batch
ID, Service type, EDR
status

/process_audit/
batchstat/
svctype_status

After
FCT_Service
codeMap

ISC_SetEDR
Status

RA_05,
BatchStat_Rev
enueStream

Revenue stream.

The revenue streams
are: Retail, Wholesale,
and Roaming.

Batch ID, Original batch
ID, Suspended from batch
ID, Revenue stream

/process_audit/
batchstat/
revstream

After Post
Rating

ISC_SetReve
nueStream

RA_06,
BatchStat_Rev
enue
Stream_Status

Revenue stream and
EDR status.

Batch ID, Original batch
ID, Suspended from batch
ID, Revenue stream, EDR
status

/process_audit/
batchstat/
revstream_status

After Post
Rating

ISC_SetReve
nueStream,
ISC_SetEDR
Status

RA_07,
BatchStat_Rev
enueStream_S
vcType

Revenue stream and
service type.

Batch ID, Original batch
ID, Suspended from batch
ID, Revenue stream,
Service type

/process_audit/
batchstat/
revstream_svctyp
e

After Post
Rating

ISC_SetReve
nueStream

RA_08,
BatchStat_Rev
enueStream_S
erviceType_Sta
tus

Revenue stream,
service type, and EDR
status.

Batch ID, Original batch
ID, Suspended from batch
ID, Revenue stream,
Service type, EDR status

/process_audit/
batchstat/
revstream_svctyp
e_status

After Post
Rating

ISC_SetReve
nueStream,
ISC_SetEDR
Status

RA_09,
BatchStat_Svc
Type_Revenue
Stream

Service type and the
revenue stream.

Batch ID, Original batch
ID, Suspended from batch
ID, Revenue stream,
Service type

/process_audit/
batchstat/
revstream_status_
svctype

After Post
Rating

ISC_SetReve
nueStream

RA_10,
BatchStat_Ser
viceType_Reve
nueStream_Sta
tus

Service type, revenue
stream, and EDR status.

Batch ID, Original batch
ID, Suspended from batch
ID, Revenue stream,
Service type, EDR status

/process_audit/
batchstat/
svctype_revstrea
m_status

After Post
Rating

ISC_SetReve
nueStream,
ISC_SetEDR
Status

Chapter 15
About Aggregation Scenarios

15-14



Table 15-3    (Cont.) RA Manager Preconfigured Aggregation Scenarios

Scenario/ File
Name

Collects Data for an
EDR Batch Based On

Grouping Fields (Listed
in the Grouping Order)

Storable Class Installation
Point

iScripts
Required

RA_11,
BatchStat_Out
putstream

Output stream. Batch ID, Original batch
ID, Suspended from batch
ID, Output stream

/process_audit/
batchstat/
outputstream

Just before
output

ISC_SetOutp
utStream

RA_12,
BatchStat_Ser
viceType_Reve
nueStream_Ou
tputstream

Service type, revenue
stream, and output
stream.

Batch ID, Original batch
ID, Suspended from batch
ID, Output stream, Service
type, Revenue stream

/process_audit/
batchstat/
svctype_revstrea
m_outputstream

Just before
output

ISC_SetReve
nueStream
and
ISC_SetOutp
utStream

RA_13,
BatchStat_Sus
pense

Suspense reason code. Batch ID, Original batch
ID, Suspended from batch
ID, Suspense code

/process_audit/
batchstat/
suspense

After
FCT_Suspen
se

None

RA_14,
BatchStat_Ser
viceType_Reve
nueStream_Sta
tus_Outputstre
am

Service type, revenue
stream, EDR status, and
output stream.

Batch ID, Original batch
ID, Suspended from batch
ID, Service type, Revenue
stream, EDR status,
Output stream

/process_audit/
batchstat/
svctype_revstrea
m_status_outputst
ream

Just before
output

ISC_SetReve
nueStream,
ISC_SetOutp
utStream,
and
ISC_SetEDR
Status

Creating New Aggregation Scenarios for Revenue Assurance
Revenue Assurance Manager uses aggregation scenarios to group the data that it collects
from the pipeline. If the aggregation scenarios provided with Revenue Assurance Manager do
not meet you needs, you can create your own.

Note:

You cannot view data from custom scenarios in Revenue Assurance Center.

To create your own aggregation scenarios:

1. Create an aggregation scenario by using Pricing Center or PCC.

2. Create the appropriate /process_audit/batchstat subclasses.

Note:

The new subclasses created must contain an array field of type
PIN_FLD_GROUP_DETAILS. The PIN_FLD_ORIGINAL_BATCHID field must
also be created in the array.

3. Create the XML templates used by Universal Event (UE) Loader to load the aggregation
data generated by the new scenario.

4. Modify the PCM_OP_PROCESS_AUDIT_POL_CREATE_AND_LINK policy opcode to
check for duplication of records in the newly created /process_audit object.

Chapter 15
About Aggregation Scenarios

15-15



Tracking EDRs by Using Batch IDs
In pipeline batch rating, each batch file received from the mediation system is assigned a batch
ID, which is stored in every EDR derived from the file. Each EDR also receives a unique event
ID.

Note:

The KeepExistingBatchIds registry entry in FCT_PreSuspense module controls the
way batch IDs are set. For details, see "Setting the Default Batch ID Behavior".

During rerating and recycling, the EDR receives a new batch ID, but the original batch ID is
retained in a different field. Retaining the original batch ID in the EDR makes it possible to
determine the revenue impact of EDRs for each batch that is received from mediation, even if
some EDRs are rerated or recycled.

Revenue Assurance Manager uses the following fields to track EDRs as they are processed by
pipelines and as they are rerated or recycled:

• DETAIL.BATCH_ID

• DETAIL.ORIGINAL_BATCH_ID

• DETAIL.ASS_SUSPENSE_EXT.SUSPENDED_FROM_BATCH_ID

For example, BRM receives a batch file with batch ID Mediation087. All EDRs for events in
the file are assigned this batch ID. The batch rating pipeline processes EDRs from this batch
loads their data into the BRM database.

Later, some of the EDRs from this batch and a second batch, Mediation099, are rerated.
During rerating, the two sets of EDRs from different batches are given the new batch ID
ReratingBatch007. When the individual EDRs are given the new batch ID, their original batch
IDs are moved to the ORIGINAL_BATCH_ID field.

Table 15-4 contains selected data from an EDR in the batch after rating.

Table 15-4    Rating EDR Data

Event ID Duration Charge Batch ID Original Batch ID

189 180 3 Mediation087 Mediation087

Table 15-5 contains the data for the EDR after rerating.

Table 15-5    Rerating EDR Data

Event ID Duration Charge Batch ID Original Batch ID

189 180 5 ReratingBatch007 Mediation087

Keeping Track of Rejected EDRs by Using Batch IDs
When a batch file is processed, some of its EDRs may not be able to be rated because of
missing data or another reason. These rejected EDRs can be processed by Suspense

Chapter 15
Tracking EDRs by Using Batch IDs

15-16



Manager and recycled back into the rating pipeline. EDRs that are being rerated can also be
rejected and sent to recycling.

When Suspense Manager recycles the rerated EDRs back through the pipeline, they receive
new batch IDs based on the recycling batch. Their original batch IDs remain to reflect the
mediation batch they started in. The suspended-from batch ID field
(DETAIL.ASS_SUSPENSE_EXT.SUSPENDED_FROM_BATCH_ID) stores the ID of the batch
in which the EDR was rejected. This could be the original batch or a rerating batch.

For example, two batches (MED1 and MED2) are received from the mediation system and
processed by the batch rating pipeline. Some EDRs from each of the two batches are rejected
and then recycled as part of batch RCL1. In addition, some EDRs from the original two batches
are rerated as part of batch RRT1. Some of the EDRs in that rerating batch are rejected and
then recycled as part of batch RCL2.

Table 15-6 summarizes how the three different batch ID fields change as EDRs are rated,
rerated, and recycled.

Table 15-6    Batch ID Changed Fields

Pipeline Process Value for BATCH_ID Value for
ORIGINAL_BATCH_ID

Value for
SUSPENDED_FROM_
BATCH_ID

Rating Batch MED1 MED1 MED1 MED1(1)

Rating Batch MED2 MED2 MED2 MED2(1)

Recycle Batch RCL1
(containing suspended
EDRs from MED1 and
MED2)

RCL1 MED1/MED2 MED1/MED2

Rerating Batch RRT1
(containing EDRs from
MED1 and MED2)

RRT1 MED1/MED2 RRT1(1)

Recycle Batch RCL2
(containing suspended
EDRs from RRT1)

RCL2 MED1/MED2 RRT1

Note:

The value for SUSPENDED_FROM_BATCH_ID is ignored in rating and rerating.
Because it is left blank, it is assigned the batch ID value.

By linking the control point in the original mediation pipeline to the control point in the recycle
pipeline that processed the rerated EDRs, you can determine the revenue impact for each of
the mediation batches and identify the revenue leakage in your system.

Setting the Default Batch ID Behavior
The KeepExistingBatchIds registry entry in FCT_PreSuspense module controls whether the
values for batch IDs in EDR records are preserved as originally set by the input module.

• A value of True preserves the batch ID in each detail record of the batch input file.

Chapter 15
Setting the Default Batch ID Behavior

15-17



• A value of False (the default) sets the batch ID of each record to the batch ID contained in
the header record of the batch input file.

Chapter 15
Setting the Default Batch ID Behavior

15-18



16
Setting Up Pipeline Manager Taxation

This chapter describes how to configure your Oracle Communications Billing and Revenue
Management (BRM) system to tax events rated by a batch pipeline.

About Pipeline Taxation
BRM can apply taxes to events rated by Pipeline Manager. You can configure your system to
tax pipeline events in one of the following ways:

• During the pipeline rating process. Taxing events during pipeline rating allows you to
generate pipeline output files that include both usage and tax charges. This is useful when
output files are not sent through the billing process. For example, when you rate outcollect
roaming calls, you rate calls from another carrier's customer and then send the pipeline
output files directly to the other carrier for rating and verification.

Note:

You can apply only flat taxes during pipeline rating. For complex taxation, you
must defer taxation to the billing process.

• During the billing process. Deferring taxation to the BRM billing process allows you to
apply complex tax rules using third-party tax software or customized BRM policy opcodes.
It also reduces rounding errors because BRM simultaneously taxes all events of the same
type. This configuration works best for most wireless applications because it allows
complex taxation.

• During both pipeline rating and billing. Taxing events during both pipeline rating and
BRM billing allows you to:

– Obtain itemized tax charges for each usage event.

– Tax non-usage events, such as one-time purchases and cycle-time events that are
rated in real-time rather than by Pipeline Manager.

Setting Up Pipelines to Tax Events
You can configure a pipeline to apply flat taxes to events. To use flat taxes during pipeline
batch rating, you configure ISC_TaxCalc in your pipelines.

Note:

A pipeline can apply only flat taxes. To use more complex taxation, you must defer
taxation to the billing cycle.

16-1



ISC_TaxCalc must run after the FCT_MainRating module and before the FCT_BillingRecord
module. If you want to round the tax balance impact, you can optionally run the FCT_Rounding
module immediately after ISC_TaxCalc.

Pipeline Manager applies taxes as follows:

1. The pipeline input and function modules process call records.

2. The FCT_MainRating module rates the call record and adds charge packets to the
associated charge breakdown record.

3. The ISC_TaxCalc iScript module applies a flat tax.

See "About Applying a Flat Tax by Using the ISC_TaxCalc iScript " for more information.

4. The FCT_BillingRecord module consolidates the billing charges and flags whether an
event was taxed in a pipeline.

See "About Consolidating Tax Data by Using the FCT_BillingRecord Module" for more
information.

5. (Optional) The FCT_Rounding module rounds tax balance impacts.

6. The remaining function and output modules finish processing the call records and
generating output files.

See "Configuring Pipelines to Apply Flat Taxes" for information about configuring the pipeline
for taxation.

Configuring Pipelines to Apply Flat Taxes
To configure your pipelines to apply flat taxes:

1. Use ISC_TaxCalc in your pipelines.

See "About Applying a Flat Tax by Using the ISC_TaxCalc iScript " and "About
Consolidating Tax Data by Using the FCT_BillingRecord Module" for more information.

2. Configure ISC_TaxCalc.

About Applying a Flat Tax by Using the ISC_TaxCalc iScript
You use the ISC_TaxCalc iScript to apply flat taxes to charges flagged for taxation.

When ISC_TaxCalc processes an event data record (EDR), it determines whether the EDR
should be taxed by checking whether the Tax Treatment flag was applied to the pipeline
charge that applies to the event. If the flag isn't set, ISC_TaxCalc ignores the EDR and passes
it on to the next module in the pipeline. If the Tax Treatment flag is set, ISC_TaxCalc:

• Determines which tax rate to use by checking the taxcodes_map data stored in the cache,
if the taxcodes_map information is provided:

– If the event meets one of the tax criteria, ISC_TaxCalc uses the appropriate tax rate
defined in the taxcodes_map file.

– If the event does not meet any tax criteria, ISC_TaxCalc uses the default tax rate
specified in the registry file.

• If the TaxCodeMapFilePath parameter is not defined, the module retrieves tax code map
data from the /config/taxcodes_map object.

• Calculates the flat tax for the pre-tax amount.

Chapter 16
Setting Up Pipelines to Tax Events

16-2



Note:

The pre-tax amount is the charged amount minus any discounts.

• Populates the tax packet data block in the EDR with the pre-tax amount, tax percentage,
and tax balance impact.

About Consolidating Tax Data by Using the FCT_BillingRecord Module
You use the FCT_BillingRecord module to consolidate charge packets, discount packets, and
tax packets into an associated BRM billing record in the EDR.

When an EDR is flagged for taxation, FCT_BillingRecord:

• Creates a balance impact packet that consolidates the charge packet and any tax packet
data.

• Flags whether ISC_TaxCalc applied taxes to the EDR by using the
PIN_DEFERRED_AMOUNT field. It sets this field to 0 when an EDR contains a tax packet
and to PIN_AMOUNT when an EDR does not contain a tax packet.

Sample Flat Tax Configurations
This section shows how to set up flat taxes for two sample applications:

• Applying Flat Taxes to Outcollect Roaming Calls

• Applying Flat Taxes to Third-Party Content Usage

Applying Flat Taxes to Outcollect Roaming Calls
Roaming allows customers of one network operator to use their mobile phones in foreign
networks. When customers travel to other regions, they can use the services of any network
operator with a roaming agreement with their home network operator.

When customers from another network use your network (outcollect roaming), you rate those
calls and bill the customer's network operator for this usage. Applying a flat tax during the
rating process allows you to pass on local taxes to the other network operator.

To apply a local flat tax to outcollect roaming calls:

1. In PDC, ensure that the tax calculation is enabled in charge offers.

2. Set up a custom flat tax.

3. Configure the ISC_TaxCalc iScript in your outcollect processing pipeline.

See "Configuring Pipelines to Apply Flat Taxes" for more information.

After the pipeline generates output files that include both usage and tax charges:

• Send one output file to the other network operator for verification and rating.

• Load settlement data into the BRM database and generate invoices for billing the other
network operator.

Chapter 16
Sample Flat Tax Configurations

16-3



Applying Flat Taxes to Third-Party Content Usage
Wireless carriers allow customers to access third-party content, such as news and sports
scores, through mobile phones. Customers are often charged monthly subscription fees to
access the content and usage fees when downloading files. Carriers bill their customers for
this usage and then remit some of the fees to the third-party provider.

In this scenario, taxes are applied to:

• Usage events during the pipeline batch rating process.

• Cycle and one-time purchase events during the billing process.

To configure your system to apply flat taxes to third-party content usage:

1. In PDC, ensure that tax calculation is enabled in charge offers.

2. Set up your custom tax rates.

3. Configure the ISC_TaxCalc iScript in your pipelines.

4. Use Rated Event (RE) Loader to load your pipeline output files into the BRM database.

5. Configure BRM to perform deferred taxation.

When BRM completes the billing process, you can run the remittance utility and generate a
report summarizing the amount owed to each third-party provider. See "Remitting Funds to
Third Parties" in BRM Configuring and Running Billing.

Chapter 16
Sample Flat Tax Configurations

16-4



17
Credit Limit and Threshold Checking during
Batch Rating

This document describes how to manage credit limits when using Oracle Communications
Billing and Revenue Management Pipeline Manager.

About Credit Limit and Threshold Checking during Batch Rating
During batch rating, Pipeline Manager determines whether a customer's noncurrency balance
has breached a credit threshold. Pipeline Manager modules compare a customer's balance
against noncurrency credit threshold values and then compile a list of events that crossed
thresholds. A utility loads the list from Pipeline Manager into BRM.

Note:

Pipeline rating calculates balance impacts and credit threshold breaches
immediately. However, the utility that loads the balance impacts into the BRM
database is different from the utility that loads credit threshold breaches into BRM.
This means that a notification for a credit threshold breach might be sent before the
customer's balance is updated in the BRM database. Therefore, the customer
balance shown on the threshold breach notification might temporarily differ from the
balance in the customer's account.

The following pipeline modules are responsible for checking credit thresholds during the batch
rating process:

• DAT_PortalConfig retrieves credit profile information from the BRM database and stores it
in its internal memory.

• DAT_BalanceBatch retrieves the customer's current credit profile from the
DAT_PortalConfig module, compares the customer's updated balance to the credit profile,
and notifies FCT_ApplyBalance if a credit threshold or credit limit has been breached.

• FCT_ApplyBalance updates the customer's current balance in the DAT_BalanceBatch
internal memory and, if a credit threshold has been breached, writes the event detail
record (EDR) into an internal list.

To help you identify the exact event that caused the threshold breach, FCT_ApplyBalance
adds the following event attributes to each threshold breach notification:

– Event type (DETAIL.EVENTTYPE)

– Call originator (DETAIL.A_NUMBER)

– Call destination (DETAIL.B_NUMBER)

At the end of the transaction, FCT_ApplyBalance writes all of the EDRs from the internal
list to an XML output file. See "About the Format of the XML Output File Name".

17-1



After the XML output file is generated, Batch Controller uses the load_notification_event
utility to load the notification events into BRM. See "About Loading Notifications from Pipeline
Manager to BRM ".

About the Format of the XML Output File Name
Pipeline Manager generates output XML files using the following file name format:

OutputPrefix_PipelineName_StreamName_TransactionID_SequenceNumber

where:

• OutputPrefix is the prefix name specified in the OutputPrefix registry entry.

• PipelineName is the name of the individual pipeline, such as ALL_RATE.

• StreamName is based on the unitsPerTransaction parameter maintained at the input
level of the pipeline. A value of 1 means that one input file generates one output file. A
value greater than 1 means that multiple input files are merged into one output file.
StreamName is replaced with the name of the last file merged into the output file. For
example, if unitsPerTransaction was 3 and the files merged into the output file were
file01, file02, and file03, StreamName would be replaced with file03.

• TransactionID is the system-generated transaction ID number.

• SequenceNumber signifies the order in which FCT_ApplyBalance created the XML output
file within a transaction. For example, the first XML output file has a sequence number of 1,
the second output file has a sequence number of 2, and so on.

For example:

balancenotification_ALL_RATE_file01_776_1

About Loading Notifications from Pipeline Manager to BRM
Notifications from Pipeline Manager are loaded into the BRM database by the
load_notification_event utility. This utility is launched automatically by Batch Controller
whenever Pipeline Manager writes an output XML file to a specified directory.

When Pipeline Manager writes an output XML file to the specified directory, notifications are
loaded as follows:

1. Batch Controller launches the SampleLoadHandler batch handler.

2. SampleLoadHandler moves the output XML file to a processing directory and runs the
load_notification_event utility.

3. load_notification_event converts the notification events in the output XML file into flist
format and loads them into BRM.

4. The BRM event notification system sends an alert to the customer.

5. SampleLoadHandler determines whether the utility successfully loaded the notification
events into BRM:

• If the utility was successful, SampleLoadHandler moves the output XML file from the
processing directory to the archive directory.

• If the utility failed, SampleLoadHandler moves the output XML file from the processing
directory to the reject directory.

Chapter 17
About Credit Limit and Threshold Checking during Batch Rating

17-2



You must configure Batch Controller, the batch handler, and the load_notification_event utility
to process the output XML files. See "Configuring Batch Controller to Run
load_notification_event".

Setting Up the Batch Rating Process to Perform Threshold
Checking

To set up your system to perform threshold checking during the batch rating process:

• Enable threshold checking. See "Enabling Threshold Checking in Pipeline Manager".

• Configure Batch Controller to run the load_notification_event utility. See "Configuring
Batch Controller to Run load_notification_event".

• Configure Pipeline Manager to check thresholds. See "Configuring Pipeline Manager to
Perform Threshold Checking".

Enabling Threshold Checking in Pipeline Manager
By default, threshold checking is disabled for batch rating because it decreases pipeline rating
performance.

You can enable threshold checking in batch rating by modifying a field in the multi_bal
instance of the /config/business_params object.

To enable credit threshold checking during batch rating:

1. Go to the BRM_home/sys/data/config directory and run the following command:

pin_bus_params -r BusParamsMultiBal bus_params_multi_bal.xml
  

This command creates an editable XML file named bus_params_multi_bal.xml.out in
your working directory. If you do not want this file in your working directory, specify the path
as part of the file name.

2. Search the XML file for the following line:

<CreditThresholdChecking>disabled</CreditThresholdChecking>
  

3. Set the CreditThresholdChecking entry to the appropriate value:

• enabledOffline specifies to check credit thresholds during the batch rating process.

• disabled specifies to skip credit threshold checking during the batch rating process
and thus increase pipeline processing performance. This is the default setting.

4. Save and exit the file.

5. Rename the bus_params_multi_bal.xml.out file to bus_params_multi_bal.xml.

6. Go to the BRM_home/sys/data/config directory and run the following command:

pin_bus_params bus_params_multi_bal.xml
  

This command loads your changes into the multi_bal instance of the /config/
business_params object.

Chapter 17
Setting Up the Batch Rating Process to Perform Threshold Checking

17-3



Note:

BRM uses the XML in this file to overwrite the existing multi_bal instance of the /
config/business_params object. If you delete or modify any other parameters in
the file, these changes affect the associated aspects of the BRM multi_bal
configuration.

7. Read the object with the testnap utility or Object Browser to verify that all fields are
correct.

You do not need to restart the Connection Manager (CM) to update this entry.

Configuring Batch Controller to Run load_notification_event
Batch Controller is a cronjob application that monitors a processing directory and starts batch
handlers. When configured for threshold checking, Batch Controller waits for output XML files
to appear in the processing directory and then launches the SampleLoadHandler handler. The
batch handler moves the output XML files to a separate directory and then calls the
load_notification_event utility to load the notifications into the BRM database.

You configure Batch Controller by using the following configuration files:

• The batch_controller.properties file connects the Batch Controller to the CM, specifies
run-time parameters, identifies the batch handlers to run, and specifies when and how to
run the batch handlers.

• The load_notification_event pin.conf file connects the load_notification_event utility to
the CM.

• The SampleLoadHandler_config.values file specifies where the batch handler retrieves
and deposits the XML files and which utility to run.

To configure Batch Controller for threshold checking:

1. Open the BRM_home/apps/batch_controller/batch_controller.properties file in a text
editor.

2. Connect Batch Controller to the CM, if you have not already done so.

3. Make sure the entries for the load_notification_event batch handler (BRM_home/apps/
load_notification_event/SampleLoadUtilityHandler.pl) are correct. For example:

SampleHandler.name = SampleHandler
SampleHandler.max.at.lowload.time = 1
SampleHandler.start.string = $PIN_HOME/apps/load_notification_event/
SampleLoadUtilityHandler.pl

4. Specify the handler's polling directory and the file pattern to look for. For example:

event1.name = eventlabel1
event1.handlers = SampleHandler
event1.at = 115700
event1.file.location = $HOME/ifw/data/out/notifybalancebreach/
event1.file.pattern = *.xml

5. Save and close the file.

6. Connect the load_notification_event utility to the BRM database by editing the
BRM_home/apps/load_notification_event/pin.conf file.

7. Open the BRM_home/apps/load_notification_event/
SampleLoadHandler_config.values file in a text editor.

Chapter 17
Setting Up the Batch Rating Process to Perform Threshold Checking

17-4



8. Specify the directory from which to retrieve the XML files in the $STAGING entry. For
example:

$STAGING = "$HOME/ifw/data/out/notifybalancebreach/"
9. Specify the directory in which the handler archives the output XML files that loaded

successfully into BRM in the $ARCHIVE entry. For example:

$ARCHIVE = "$HANDLER_DIR/archive"
10. Specify the directory in which the handler stores the output XML files that failed to load into

BRM in the $REJECT entry. For example:

$REJECT = "$HANDLER_DIR/reject"
11. Save and close the file.

12. Start Batch Controller.

Configuring Pipeline Manager to Perform Threshold Checking
To configure threshold checking, perform the following:

1. Configure the DAT_BalanceBatch module.

2. Configure the DAT_PortalConfig module.

3. Configure the FCT_ApplyBalance module.

When you configure the FCT_ApplyBalance module, you specify the following:

• The maximum number of notifications in the output file. See "Configuring the Maximum
Number of Notifications".

• The output file prefix and directory location. See "Configuring the Output XML File".

Configuring the Maximum Number of Notifications

You specify the maximum number of notification events that FCT_ApplyBalance writes into the
XML output file by using the NumberOfNotificationLimit registry entry. When the file
breaches the maximum number, FCT_ApplyBalance closes the file and begins writing
notification events into a new XML output file.

Note:

You can identify the order in which XML output files were created by the sequence
number used in the file name. See "About the Format of the XML Output File Name".

Configuring the Output XML File

After FCT_ApplyBalance identifies that an EDR caused a balance to breach a credit threshold,
it writes the EDR to an output XML file. You can specify the prefix for the output file name by
using the OutputPrefix registry entry and the directory in which to save the file by using the
OutputDirectory registry entry.

Chapter 17
Setting Up the Batch Rating Process to Perform Threshold Checking

17-5


	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	Part I Configuring Pipeline Rating
	1 About Pipeline Rating
	About Configuring Pipeline Rating
	Rating EDRs Split Across Time Periods
	About Pipeline Charge Versions
	About Pipeline Charge Configurations
	Using Passthrough Prices
	About Pipeline Rate Adjustments


	2 Configuring Pipeline Rating
	About Configuring Function Modules for Pipeline Rating
	About the Rating Data Modules
	About Using Filter Sets to Apply System Products and Discounts
	Loading Filter Set Data into BRM
	Defining Your Filter Sets

	About Global Rating
	About Least Cost Rating
	Configuring Least Cost Rating
	Specifying the Rules to Qualify for Least Cost Rating

	About Calculating the Promotional Savings
	Specifying the Rules to Qualify for Promotional Savings

	About Overlay Promotions
	How Pipeline Modules Process Overlay Promotions

	About Rating with Products and Discounts Whose Validity Starts on First Usage
	About Suspending EDRs for Products and Discounts that Start on First Usage
	Configuring Pipeline Output for First-Usage Products, Discounts, and Balance Elements
	Configuring First-Usage Output Streams
	Specifying the First-Usage Format and Mapping Files in the DataDescription Registry

	About Updating Validity Period Information in the BRM Database
	Loading the First-Usage Validity Templates
	Configuring the ConfigurableValidityHandler Batch Handler
	Configuring Batch Controller to Start the ConfigurableValidityHandler Batch Handler

	Setting Up Recycling for Events whose Product or Discount Validity Starts on First Usage
	About First-Usage Validity for Events Rated Out of Order

	About Customer Rating
	Assigning a Default Charge and Default Segment for Customer Rating
	About Customer Rating and Service Level Agreements

	About Rate-Service Class Mapping
	About Setting Up RSC Mapping
	About RSC Maps

	About Main Rating
	About Rate Adjustment
	Creating a Rate Adjustment Rules File

	About Consolidation for BRM Billing
	How the FCT_BillingRecord Module Works
	Billing Consolidation with CIBER Roaming and Revenue Assurance
	How the ISC_PostRating iScript Works


	Adding Pipeline Rating Data to an Invoice
	Specifying Invoice Data from Pipeline Manager and Custom Applications
	Using Data Map Templates
	Loading the Invoice Data Map Templates
	Enabling Event Caching
	Adding Invoice Data to Pipeline Output

	Using the pin_virtual_time Utility with Pipeline Manager

	3 Configuring EDR Input Processing
	About the Input Process
	About Setting Up Input Processing
	About Input Processing File Types

	Creating a Stream Format Description File
	Record Types
	Record Type SEPARATED
	Record Type FIX
	Record Type ASN

	Syntax of the Stream Format Description File
	Supported Data Types for the Stream Format Description File
	ASCII Data Types
	ASN.1 Data Types
	TAP Data Types


	Setting Up an Input Mapping File
	Setting Up an Input Grammar File
	Configuring the Input DataDescription Registry Section
	About the Order of Listing Stream Format Description Files

	Configuring the Input Section in the Registry
	About Getting Pipeline Input from Files
	About Getting Pipeline Input from a Database
	Specifying the Maximum Errors Allowed in an Input File

	Reading TAP Files
	About Customizing Mapping of Flist Fields to Rating EDR Container Fields
	About the POID Format in the Rating EDR Container
	Mapping an Flist Field to Multiple Rating EDR Container Fields
	Using Conditions to Map an Flist Field to a Rating EDR Container Field


	4 Configuring EDR Output Processing
	About the Output Process
	About the Output Processing System Components
	About the Output Modules
	About Output Processing File Types
	About ASN.1 Output

	About Configuring Output Processing
	About Configuring the Output Section in the Registry
	About Configuring Statistics Information in the Output Section


	Configuring Output for Rated Events
	Creating Separate Output Streams for Each Service
	Creating Multiple Output Streams in One Output Registry
	Configuring the Output DataDescription Registry Section
	About the Order of Listing Stream Format Description Files


	Configuring Output for Rejected or Duplicate EDRs
	Sending Output to a File
	Configuring the Temporary File Name
	Configuring File Prefixes and Suffixes
	Creating an Output File Name from the Input File Name
	Applying a Prefix to the Sequence Number
	Using the Output of One Pipeline as the Input to Another Pipeline

	Sending Output to a Database
	About the OUT_DB Module Configuration Files
	Specifying the Destination
	Specifying the Source
	Handling Empty Output Streams
	Parameter File
	HEADER, TRAILER, and DETAIL Table Definitions
	SqlBeginStream
	SqlEndStream
	Generated Configuration File



	5 Configuring EDR Preprocessing
	Handling Duplicate EDRs
	Configuring Duplicate EDR Checking
	Setting Date Parameters for Storing Processed EDRs
	Specifying the Fields to Use for Duplicate Check
	Specifying a Search Key for Duplicate Check
	Managing FCT_DuplicateCheck Data Files
	About Storing EDRs in a Database Instead of Files
	Using Duplicate Check with Multiple Pipelines
	Suspending Duplicate EDRs


	Assembling EDRs
	How FCT_CallAssembling Classifies EDRs
	Managing the Call Assembling Data Files
	Configuring Call Assembling
	Rating Calls by Time Duration
	Rating Incomplete Time Duration Calls
	Using MaxDuration to Rate Incomplete Calls
	Using FlushLimit to Rate Incomplete Calls

	Removing Incomplete Time Duration Calls
	Dropping Late Calls

	Rating Calls by Implied Time Duration
	Rating Calls by Volume of Data Sent
	Specifying a Time Error
	Rating Continuous Data Calls by Segment
	Rating Partial Calls by Service
	Capturing Fields From the Last Call Record
	Tracking the Status of Assembled Calls
	Migrating Call Assembling Data Between Releases and Pipelines
	Assembling Calls with Multiple Pipelines

	Discarding and Skipping EDRs
	Configuring EDR Discarding
	About Configuring Discard and Skip Expressions
	Configuring Output of Discarded EDRs


	Generating Multiple TAP MOC and MTC Records
	Using Rules to Send EDRs to Different Output Streams
	Configuring Enhanced Splitting

	Sending EDRs to Pipeline Output Streams
	Using Pipeline Manager with Multiple Database Schemas
	Setting Up Account Identification in Multischema Systems


	6 Setting Up EDR Enrichment
	Identifying the Network Operator/Service Provider
	Creating an NO/SP Map
	Creating an NO/SP Data File

	Setting Up Social Numbers
	Creating a Social Number Data File

	Creating Call Destination Descriptions
	Setting Up Prefix/Description Mapping
	Creating a Prefix/Description Data File

	Mapping Multiple Phone Numbers to a Single Number
	Creating a CLI Mapping File

	Managing Number Portability
	Number Portability for the Batch Pipeline

	About Number Portability Files
	Creating a Number Portability Data File
	Purging and Reloading the Memory Records
	Appending Additional Number Portability Records
	Setting Up Number Portability
	Setting Up Number Portability for Batch Pipeline
	Setting Up Number Portability for Real-Time Pipeline

	Configuring Number Portability Search
	Configuring Normalization for Number Portability


	7 Setting Up Pipeline Aggregation
	About Aggregation
	About Setting Up Aggregation Pipelines
	About Aggregation Scenarios
	Creating Aggregation Scenarios
	Defining Filter Criteria
	Specifying Scenario Attributes
	About Creating Groups
	About Creating Classes for Groups
	About Defining Class Dependencies



	8 Migrating Pipeline Manager Data Between Test and Production Systems
	About Pipeline Manager Data Migration
	Understanding Change Sets
	Understanding the Change Set Life Cycle

	Understanding Locks and Associations
	Understanding the Pricing Data Model
	Locking and Association Rules


	About the Change Set Manager
	Using Pipeline Manager Data Migration Features in Your Business
	Setting Up Development and Production Environments
	Planning Your Work
	Organizing Work into Change Sets
	Testing Change Sets
	Planning the Export Process
	Managing Change Set Files
	Planning the Import Process
	Coordinating Real-Time Rating Data Migration and Pipeline Data Migration

	Configuring Pipeline Manager Data Migration Features
	Enabling Data Migration in Pricing Center
	Copying Production Data to the Development System
	Customizing Change Set States

	Exporting and Importing Change Sets by Using the loadchangesets Utility
	Specifying BRM Servers for the loadchangesets Utility
	Working in Interactive and Non-Interactive Mode
	Exporting and Importing Change Sets in Interactive Mode
	Exporting and Importing Change Sets in Non-Interactive Mode


	9 Transferring Data Between Pipeline Manager Databases
	About Transferring Data
	About Specifying the Data to Extract
	About Creating an Input XML File to Extract Data
	About Specifying to Extract Child and Dependent Objects
	About Using Regular Expressions when Specifying the Data to Extract

	About the LoadIfwConfig Error Messages
	Using LoadIfwConfig to Transfer Data Between Databases
	Connecting LoadIfwConfig to the Pipeline Manager Database
	Customizing the Regular Expression and Dependent Table Settings
	Extracting Data from a Pipeline Manager Database
	Extracting All Database Objects with LoadIfwConfig
	Extracting All Database Objects Modified after a Specific Time
	Extracting a Subset of Database Objects with LoadIfwConfig

	Loading Data into Pipeline Manager Databases
	Updating the Pipeline Manager Database
	Inserting Data into the Pipeline Manager Database

	Deleting Data from a Pipeline Manager Database

	10 Creating iScripts and iRules
	About iScripts
	About iRules
	Creating Rule Sets via Description Files
	Descriptions for Data from an ASCII File
	Descriptions for Data from a Database Table

	Importing and Exporting Validation Rules
	About the Rule Set XML File
	About the db2irules.pl Script
	About the irules2db.pl Script
	Updating a Rule Set


	Supported iScript Data Types
	Supported iScript Constants
	Constants for Normalizing National Access Codes
	Date Constants
	Database Connection Constants
	Decimal Constants
	Decimal Rounding Constants
	EDR Container Content Constants
	EDR Container Characters Deletion Constants
	EDR Input State Constants
	EDR Internal State Constants
	POID Constants
	TAM Transaction Constants

	Supported Regular Expressions
	iScript Variable Declarations
	iScript Arrays and Hashes
	iScript Function Declarations
	iScript Control Structures
	iScript Function Blocks
	Using iScript Switch Statements
	Examples for Switch Statements

	Including Other iScript Source Files in Your iScript
	About iScript Functions
	About Special iScript Functions
	Pipeline-Related Function Hooks
	EDR Processing-Related Function Hooks
	Input Grammar-Related Function Hooks
	Transaction-Manager Related Function Hooks

	About iScript Flist Extension Functions
	Improving Pipeline Performance in Custom iScripts and iRules


	Part II Configuring Pipeline Discounting
	11 Configuring Discounting Modules and Components
	Configuring a Batch Discounting Pipeline
	About Setting the Validity of Balance Elements Impacted by Discounts
	Configuring Batch Discounting to Restrict Balance Element Validity End Time

	Calculating the Match Factor of Parallel and Sequential Discounts

	Configuring a Real-Time Discounting Pipeline
	Configuring a Real-Time Discounting Pipeline
	Configuring the Input Registry Section

	About Dumping Discount Information during Run Time
	About Discount Transaction Management
	About Processing Balance Groups Locked by Other Transactions
	Configuring Custom Business Events for Pipeline Discounting

	12 Discounting Utilities
	pin_discount_cleanup
	load_pin_snowball_distribution


	Part III Customer and Financial Management
	13 Configuring Balance Monitoring in Pipeline Manager
	About Balance Monitoring and Pipeline Rating
	About Synchronizing Monitor Data Between Cycle-fee and Pipeline Batch Rating
	Enabling Balance Monitoring in Pipeline Manager

	14 Setting Up Pipeline-Triggered Billing
	About Pipeline-Triggered Billing
	Pipeline-Triggered Billing Components
	How Pipeline Manager Triggers Billing
	About the Pipeline-Triggered Billing Modules
	About BillHandler
	Overview of the Immediate Billing Process

	About Suspending Billing-Trigger EDRs

	Configuring Pipeline-Triggered Billing
	Setting Up Pipeline Manager to Trigger Billing
	Setting Up the Billing Batch Applications
	Configuring Batch Controller to Start BillHandler
	Configuring BillHandler
	Running the pin_bill_accts Utility



	15 Setting Up Revenue Assurance Manager for Pipeline Batch Rating
	About Revenue Assurance
	About Collecting Revenue Assurance Data from Pipeline Batch Rating
	About Using Event Notification to Generate Revenue Assurance Data
	About Control Points
	About Aggregation Scenarios
	About Linking Pairs of Rating, Rerating, and Written-Off Control Points
	About Flows
	About Using UE Loader to Load Revenue Assurance Data
	About the Revenue Assurance Data Collected in Rated Event Loader
	About Collecting Revenue Assurance Data on Written-Off EDRs

	Configuring Revenue Assurance Manager
	Configuring Event Notification
	Selecting Aggregation Scenarios
	Loading Scenarios into the Pipeline Manager Database

	Identifying Control Point Locations for Revenue Assurance Data
	Configuring the FCT_AggreGate Module to Collect Revenue Assurance Data
	Using iScripts to Derive Grouping Fields

	Configuring SimpleSample Files
	Adding Control Points to Flows
	Linking Rating, Rerating, and Write-Off Control Points
	Setting Up UE Loader to Load Revenue Assurance Data into the Database
	Setting Up UE Loader Templates

	Setting Up Batch Controller to Call UE Loader

	Setting Up Revenue Assurance Manager to Collect Data on Written-Off EDRs
	About Aggregation Scenarios
	Data Fields Collected by All Scenarios
	Fields Used to Group Scenario Data
	Preconfigured Aggregation Scenario Details
	Creating New Aggregation Scenarios for Revenue Assurance

	Tracking EDRs by Using Batch IDs
	Keeping Track of Rejected EDRs by Using Batch IDs

	Setting the Default Batch ID Behavior

	16 Setting Up Pipeline Manager Taxation
	About Pipeline Taxation
	Setting Up Pipelines to Tax Events
	Configuring Pipelines to Apply Flat Taxes
	About Applying a Flat Tax by Using the ISC_TaxCalc iScript
	About Consolidating Tax Data by Using the FCT_BillingRecord Module

	Sample Flat Tax Configurations
	Applying Flat Taxes to Outcollect Roaming Calls
	Applying Flat Taxes to Third-Party Content Usage


	17 Credit Limit and Threshold Checking during Batch Rating
	About Credit Limit and Threshold Checking during Batch Rating
	About the Format of the XML Output File Name
	About Loading Notifications from Pipeline Manager to BRM

	Setting Up the Batch Rating Process to Perform Threshold Checking
	Enabling Threshold Checking in Pipeline Manager
	Configuring Batch Controller to Run load_notification_event
	Configuring Pipeline Manager to Perform Threshold Checking




