
Oracle® Communications Billing and
Revenue Management
Migrating Accounts to the BRM Database

Release 15.1
F93202-01
April 2025

Oracle Communications Billing and Revenue Management Migrating Accounts to the BRM Database, Release 15.1

F93202-01

Copyright © 2017, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

1 Understanding Conversion Manager

About Conversion Manager 1-1

Overview of the Data Conversion Process 1-2

About Testing Your Data Mapping 1-2

About Mapping Data 1-2

About Loading Data 1-3

About Verifying Data Before It Is Deployed 1-4

About Migrating Data to Multischema Systems 1-4

About Loading Data by Using Multiple Files 1-4

About Reloading Data 1-4

2 Installing and Configuring Conversion Manager

Installing Conversion Manager 2-1

Configuring the pin_cmt Utility 2-1

Referencing JAR Files 2-2

Defining Timestamp Validation for Finite Partitioned Classes 2-2

Viewing Data before Deploying 2-3

Enabling Multischema Loading 2-5

Enabling XML Validation 2-5

Configuring the Database Setup 2-5

Setting the Default Credit Limit Profile 2-6

Applying Cycle Fees to Deployed Accounts 2-7

Migrating New Balances to an Account Without Deleting Existing Balances 2-7

Supporting 31-Day Billing 2-7

Supporting Delayed Billing 2-7

Improving Conversion Manager Performance 2-7

XML File Formatting 2-8

iii

Running Multiple Instances of the pin_cmt Utility 2-8

Using Connection Pooling with Conversion Manager 2-8

Configuring Log File Levels 2-8

System Resources 2-9

Conversion Manager Preload Tuning 2-9

Increasing Memory Allocation to Prevent a System Hang 2-9

Conversion Manager Load Tuning 2-10

Conversion Manager Deploy Tuning 2-10

3 Mapping Legacy Data to the BRM Data Schema

About Creating XML Files 3-1

About the XSD Files 3-1

About the Types of Data to Convert 3-2

Tables Affected by the Conversion Process 3-2

Loading Data into Additional Audit Tables 3-7

4 Migrating Data by Using New and Extended Storable Classes

About Migrating Data by Using New and Extended Storable Classes 4-1

About Extended Storable Classes for Migration 4-2

About Linking to Data from New or Extended Storable Class Data 4-2

Creating XML Files for New or Extended Storable Class Data 4-2

Creating an XSD File for Extended Data 4-3

Creating Control Files for Extended Storable Classes 4-4

Creating Control Files for Custom Event Tables in a Virtual Column-Enabled System 4-5

Example of Extending a Service Storable Class 4-5

Setting a Service Balance Group 4-7

Example of Extending a Device Storable Class 4-7

Example of Creating a Storable Class 4-8

Example of Migrating Hierarchical Accounts 4-10

Setting an Account Bill Unit 4-11

Example of Migrating Hierarchical Bill Units within an Account 4-11

5 Loading Legacy Data into the BRM Database

Importing Data 5-1

Deploying Converted Data 5-2

Reloading Data 5-3

Troubleshooting Conversion Manager 5-3

Common pin_cmt Utility Error Messages 5-3

Testing the Imported Data 5-4

iv

Using testnap and Object Browser to Validate the Database 5-5

Validating /account Objects 5-5

Validating /bill, /item, /event, /service, and /payinfo Objects 5-6

Using Billing Care to Validate Data 5-6

Using SQL to Validate Data 5-6

6 Migrating Legacy Data into BRM Table Partitions

About Migrating Legacy Data into Table Partitions 6-1

About Partitioning 6-1

About Your Partitioning Scheme 6-1

About Making Conversion Manager Aware of Partitions 6-3

About the Timestamps Encoded in Object POIDs 6-3

Conversion Manager Tasks for Partitioned Storable Classes 6-3

About Configuring Conversion Manager to Encode Timestamps in POIDs 6-4

Setting Up Your System to Load Legacy Data into Table Partitions 6-4

Creating Partitions for Your Legacy Data 6-5

Configuring Conversion Manager for Partitioning 6-5

Configuring Which Timestamp to Encode 6-5

Configuring the Number of POIDs to Reserve 6-6

Passing Object Creation Timestamps in the Input XML File 6-7

7 Conversion Manager Utilities

cmt_mta_cycle_fees 7-1

pin_cmt 7-2

v

Preface

This book describes how to migrate accounts from a legacy non-BRM database to a BRM
database.

Audience
This book is for system database administrators and system administrators.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

1
Understanding Conversion Manager

This chapter describes how to use Oracle Communications Billing and Revenue Management
(BRM) Conversion Manager to convert data from a legacy database to the BRM database.

Topics in this document:

• About Conversion Manager

• Overview of the Data Conversion Process

• About Testing Your Data Mapping

• About Mapping Data

• About Loading Data

• About Loading Data by Using Multiple Files

• About Reloading Data

About Conversion Manager
You use Conversion Manager to load legacy data into BRM. Conversion Manager supports the
following types of data:

• Account data, such as the customer's name, address, profile, and discount information.

• Service data, such as the services subscribed to by the accounts.

• Charge offer data, such as charge offers purchased by the accounts.

• Billing data.

• Account hierarchy data.

• Balance data, including data for all balance elements. When data is migrated, rollover
events can use the balance data to manage rollovers.

You can load account and balance data together, or you can load account data first and
balance data second. All account data for an account must be loaded before loading balance
data.

Before migrating data, do the following:

• Create a price list that applies to the migrated data before migrating account and balance
data. Migrated data must reference the price list in the BRM database.

• Make sure that cycle arrears fees, billing-time discounts, and rollovers have been
processed in the legacy system.

When the accounts are migrated, cycle forward fees and discount grants (for example,
minutes) are applied. However, all delayed events are handled in the current bill.

1-1

Note:

Auditing is not supported by Conversion Manager.

Overview of the Data Conversion Process
Converting legacy data includes these tasks:

• Understanding the data in the legacy system and deciding how to convert it to the BRM
database.

• Mapping the data in the legacy database to the BRM database. To do so, you create XML
files, which are validated by the Conversion Manager XSD schema files.

• Migrating the data to the BRM database by using the pin_cmt utility. To migrate data:

– Import data into the BRM database. The data is hidden from BRM processes.

– Deploy the staged data to the production area.

See "Loading Legacy Data into the BRM Database" for more information.

Note:

BRM must be running when you import and deploy data.

About Testing Your Data Mapping
You test your data mapping by using a test database. To test the data mapping:

1. Create a subset of the data in an XML file. See "Mapping Legacy Data to the BRM Data
Schema".

2. Load the data into the test database. See "Loading Legacy Data into the BRM Database".

3. Test the data. See "Testing the Imported Data".

After you determine that the data mapping works, you import the data into the production
database.

About Mapping Data
You convert legacy data to XML format by using an extraction utility.

Note:

Conversion Manager does not include a utility for extracting legacy data into XML
files. You need to develop your own extraction utility or obtain it from third-party
sources.

Conversion Manager converts data from any type of legacy database; for example, Oracle.

Chapter 1
Overview of the Data Conversion Process

1-2

To map data from the legacy database to the BRM data schema, you need a thorough
understanding of the legacy data and how BRM stores data.

If your legacy data includes data not currently supported in BRM, you can create new storable
classes, or extend storable classes, to support the custom data. You can then extend the
Conversion Manager XML schema to migrate the data. See "Migrating Data by Using New and
Extended Storable Classes".

You can configure data enrichment to allow system-wide values to be bulk inserted and to
provide batch controls for operational integrity.

About Loading Data
You use the pin_cmt utility to load the converted data into the BRM database. Loading data
includes two processes: importing accounts and deploying accounts.

• First, you import the data into the BRM database. When the data is imported, it is hidden
from BRM processes, so it is not part of your production system. (Data is hidden by
changing the database number section in the Portal object ID (POID) of each imported
object. The database number is set to a number defined in the infranet.cmt.dbnumber
entry in the Infranet.properties file for the pin_cmt utility; for example, 0.0.0.12.)

When you import data, you specify a stage ID. This enables you to load data in stages; for
example, you can load a specific type of account first. A single database schema can
include multiple stages.

• After the data is imported, you deploy the data. When you deploy data, the imported data
is exposed as production data.

You control which accounts are deployed by entering the stage ID that you used when
importing the data. In addition, you specify the billing day of month (DOM). Therefore, only
those accounts with the specified stage ID and DOM are deployed.

After the data is deployed, the database number in the POID is changed to the actual
database number, and the data becomes available for use by BRM processes.

Note:

– Events that apply to a migrated account are not processed until the account
is deployed.

– When data is deployed, the database number used is defined in the
infranet.cmt.targetdbnumber entry in the pin_cmt utility
Infranet.properties file. By default, the number is 0.0.0.1.

– File processing data, such as the file name and batch ID, is stored in the /
batch/cmt object.

When accounts are deployed:

– The bill cycles are started.

– Cycle fees are applied.

– If you use a multischema system, the uniqueness table in the primary database
schema is updated.

Chapter 1
About Loading Data

1-3

About Verifying Data Before It Is Deployed
You can look at data that is imported but not yet deployed by logging in to Billing Care
connected to a scoped Oracle Data Manager (DM). See "Viewing Data before Deploying".

About Migrating Data to Multischema Systems
To load data into a multischema system, run a separate instance of the pin_cmt utility for each
database schema. The pin_cmt utility connects to the primary schema and creates a /
uniqueness object for every account and service migrated to BRM.

Note:

If you have a multischema system, make sure the stage IDs are larger than the
database IDs for the schemas. For example, if you have a schema with the number
0.0.0.5, use stage IDs larger than 5.

About Loading Data by Using Multiple Files
You can use multiple XML files to load data. For example, you can load account information
separately from balance data. You can use the same staging area for multiple files.

Note:

• Load account data before loading balance data.

• Load parent accounts before loading child accounts.

About Reloading Data
If the pin_cmt utility runs out of space in your BRM database for data rows, the loading
process stops. Data that is not loaded can be loaded after more space is made available in the
database. See "Reloading Data".

Chapter 1
About Loading Data by Using Multiple Files

1-4

2
Installing and Configuring Conversion
Manager

This chapter describes how to install Oracle Communications Billing and Revenue
Management (BRM) Conversion Manager.

Topics in this document:

• Installing Conversion Manager

• Configuring the pin_cmt Utility

• Improving Conversion Manager Performance

See also "Understanding Conversion Manager".

Installing Conversion Manager
Conversion Manager is available for the Linux operating system and for the Oracle database.

Note:

If you already installed the product, you must uninstall its features before reinstalling
them.

Ensure that the libocijdbc11.so file is available in your system. Conversion Manager requires
this OCI Instant JDBC Library.

To install Conversion Manager, see "Installing Individual BRM Components" in BRM
Installation Guide.

Configuring the pin_cmt Utility
You use the pin_cmt utility to migrate the data. To configure performance, log file, and other
settings for this utility, edit the Infranet.properties file in BRM_home/apps/cmt.

Note:

Many of the entries in the Infranet.properties file include default settings that are
applicable for testing your data mapping; for example, the number of threads that the
pin_cmt utility uses. You can change the settings when you load data into the
production system.

In addition, you need to edit the pin.conf file for the cmt_mta_cycle_fees utility. This utility is
run automatically by the pin_cmt utility to apply cycle fees. The pin.conf file is in BRM_home/

2-1

apps/cmt. It includes the standard connection parameters and multithreaded application (MTA)
performance setting. You can also specify to not apply cycle fees to accounts.

See "Applying Cycle Fees to Deployed Accounts".

Referencing JAR Files
To ensure that the pin_cmt utility finds all the necessary JAR files, include them in the
pin_cmt file, in the line that invokes Java. The format is:

BRM_home/jre/bin/java -Dfile.encoding=utf-8 -cp "jar_A:jar_B:jar_C:jar_D"
com.portal.cmt.Cmt $1 $2 $3 $4 $5 $6 $7 $8 $9

where jar_A:jar_B:jar_C:jar_D is the list of Java class JAR files. Oracle library references are
appended at the end.

Include all entries on one line with no line breaks. Separate JAR entries with a colon. Do not
include any spaces in the list of JAR files. The number of elements is limited only by
command-line length (approximately 8 kilobytes on most machines).

The following shows an example:

BRM_home/jre/bin/java -Dfile.encoding=utf-8 -cp "BRM_home/apps/cmt/cmt.jar:BRM_home/jars/
xercesImpl.jar:BRM_home/jars/xmlParserAPIs.jar:BRM_home/jars/pcm.jar:BRM_home/jars/
pcmext.jar:BRM_home/apps/cmt" com.portal.cmt.Cmt $1 $2 $3 $4 $5 $6 $7 $8 $9

Defining Timestamp Validation for Finite Partitioned Classes
When you import data that is in finite partitioned classes, you can define the timestamp
validation mode that is encoded in the POID of a finite partitioned class. You provide the
timestamp validation mode as the value for the infranet.cmt.timestampvalidation entry in the
Infranet.properties file for use by Conversion Manager.

Table 2-1 lists the valid entries for infranet.cmt.timestampvalidation.

Table 2-1 Valid Modes for Timestamp Validation

Input Value Timestamp Validation Mode

0 No timestamp validations are performed. If an entry is provided in created_t, that
creation time is used for a finite partitioned class. Otherwise, the current system time
is used for a finite partitioned class.

1 The created_t entry is mandatory for any finite partitioned class. It should be provided
in the input XML file containing the legacy data to be imported. If created_t is not
provided, Conversion Manager generates an error.

This is the default value for Infranet.cmt.timestampvalidation.

2 The default time is used for the POID encoding. If created_t is provided for any finite
partitioned class, Conversion Manager generates an error.

To add the infranet.cmt.timestampvalidation entry to the Infranet.properties file:

1. Open the BRM_home/apps/cmt/Infranet.properties file in a text editor.

2. Add the following entry. Provide the required value for n. See Table 2-1.

infranet.cmt.timestampvalidation = n

Chapter 2
Configuring the pin_cmt Utility

2-2

Note:

If you provide an invalid input for infranet.cmt.timestampvalidation, BRM
replaces that value with the default value (1).

3. Save and close the Infranet.properties file.

Viewing Data before Deploying
When you import data, the data is migrated to your production database, but it is not
accessible to normal BRM processes until it is deployed. To view the data, you need to
configure one or more Oracle Data Manager (DMs) as scoped DMs. A scoped DM can view
accounts according to their stage ID. You can configure multiple scoped DMs, one for each
staging area.

In addition to configuring scoped DMs, you also need to configure the production Oracle DM to
support DM scoping.

A BRM system that includes scoped DMs is called a scoped system.

To configure a scoped system:

1. Run the pin_convert_nonunique.sql script in BRM_home/apps/cmt/scripts. This script
drops unique constraints for indexes used in account creation.

Note:

By default, the pin_convert_nonunique.pl script uses PINX00 to identify
tablespaces for indexes. If you use a name other than PINX00, edit the
pin_convert_nonunique.pl script to change PINX00 to your tablespace name.

2. Run the BRM_home/sys/dd/data/cmt_copy_group_planlists_oracle.sql stored
procedure. This procedure duplicates the /group/plan_list object with the staged database
number, which enables you to create accounts by using Billing Care.

The stored procedure uses the following parameters:

• Database number; for example, 5

• Return code (number)

• Return message (varchar2(100))

The following shows a sample call using PL/SQL:

declare
p_return_code number;
p_return_mesg varchar2(100);
begin
CMT_COPY_GROUP_PLANLISTS_ORACLE(5,p_return_code,p_return_mesg);
end;

3. Create a pin.conf file for each scoped Oracle DM. To do so, edit the Oracle DM pin.conf
file in BRM_home/sys/dm_oracle.

Edit the following entries:

• Set the scoped_system entry to 1. This enables database scoping.

Chapter 2
Configuring the pin_cmt Utility

2-3

• Set the production_system entry to 0. This identifies the DM as a scoped DM.

• Set the staging_db_number entry to the stage ID used for importing data. If you use
a multischema system, the stage ID must be larger than the largest schema database
number.

• Include the table names for the data you are importing in the
scoped_exception_tables entry.

For example, a scoped DM for stage ID 11 has the following entries:

- dm scoped_system 1
- dm production_system 0
- dm staging_db_number 11
- dm scoped_exception_tables channel_event_t channel_t config_t data_t deal_t plan_t
product_t rate_plan_selector_t rate_plan_t rate_t search_t zonemap_t

4. Repeat the DM pin.conf configuration for each scoped DM, using a different stage ID for
each one.

5. Configure the production Oracle DM by editing the following entries:

• Set the scoped_system entry to 1.

• Set the production_system entry to 1. This identifies the DM as the production DM.

• Include the table names for the data you are importing in the
scoped_exception_tables entry.

The configuration for the production system looks like this:

- dm scoped_system 1
- dm production_system 1
- dm scoped_exception_tables channel_event_t channel_t config_t data_t deal_t plan_t
product_t rate_plan_selector_t rate_plan_t rate_t search_t zonemap_t

6. Start the scoped DMs.

7. Create a root account for each stage ID:

a. Start the scoped Oracle DMs.

b. Open the load_pin_acct script in BRM_home/apps/cmt/scripts.

c. Edit the first line of the script to point to a valid Perl path. For example:

/opt/portal/ThirdParty/perl/5.8.0/bin
d. Edit the $dm_port entry to point to the Oracle DM port number. For example:

$dm_port = 22251
e. Make sure the $db_no entry points to the production database. For example, if the

production database number is 0.0.0.1, and the staged database number is 0.0.0.11,
use the following entry:

$db_no = 0.0.0.1
f. Save and close the file.

g. Run the load_pin_acct script using the following command:

load_pin_acct -I pin_init_acct

Chapter 2
Configuring the pin_cmt Utility

2-4

Note:

The input flist used when the root account is created still refers to the
production database number because the staging DM translates it to the
staging database number.

8. Stop and restart all Connection Managers and Oracle DMs used for accessing the staged
data.

Enabling Multischema Loading
If you are migrating data to a multischema system, edit the entries shown in Table 2-2 in the
BRM_home/apps/cmt/Infranet.properties file:

Table 2-2 Infranet.properties File Entries to Enable Multischema Loading

Entry Description

infranet.cmt.deploy.multidb Enables or disables data migration in a multischema system.
Enter true or false.

infranet.cmt.primarydbname Specifies the database schema name (for example, pindb1).

infranet.cmt.primarydbuserid Specifies the schema login name.

infranet.cmt.primarydbpasswd Specifies the schema login password.

infranet.cmt.primarydbnumber Specifies the database number for the primary schema (for
example, 0.0.0.2).

Enabling XML Validation
The pin_cmt utility can validate the input files to ensure that the data has the correct structure.
However, this decreases performance. If you validate the XML prior to loading the data, you
can leave validation disabled.

Note:

You can test the data mapping by enabling validation when you migrate data to a test
database. You can also test the data mapping by using the Conversion Manager
XSD file with an online XML validator or third-party tool.

To enable or disable XML validation, edit the infranet.cmt.preprocess.validation entry in the
Infranet.properties file:

infranet.cmt.preprocess.validation = true

Configuring the Database Setup
Edit the following entries in the Infranet.properties file to match your typical account
configuration:

Chapter 2
Configuring the pin_cmt Utility

2-5

• Use the infranet.cmt.avgnoofservices entry to specify the average number of services
that each account owns. This entry reserves Portal object IDs (POIDs) for the objects that
will be created by the pin_cmt utility. The default is 5.

• Use the infranet.cmt.avgnoofdevices entry to specify the average number of devices that
each account owns. This entry reserves POIDs for the objects that will be created by the
pin_cmt utility. The default is 2.

• Use the infranet.cmt.noofrecords entry to specify the average number of account
records in each input XML data file.

• Use the infranet.cmt.dbnumber entry to set the staged database number (for example,
0.0.0.12). Use the infranet.cmt.dbname, infranet.cmt.userid, and infranet.cmt.passwd
entries for the rest of the staged database information.

• Use the infranet.cmt.targetdbnumber entry to set the target database.

Note:

If an account owns more or fewer services or devices than the numbers you
specify, the objects are still loaded.

Setting the Default Credit Limit Profile
When accounts are imported, balance groups are created for the accounts.

You can specify which credit limit profile is assigned to each balance group in the following
ways:

• You can specify the default credit limit profile by editing the infranet.cmt.creditprofile
entry in the Infranet.properties file:

infranet.cmt.creditprofile = IndexID

Each credit limit profile is stored in a PIN_FLD_PROFILES array in the /config/
credit_profile object. Replace IndexID with the index ID of the appropriate
PIN_FLD_PROFILES array. In this example, you would replace IndexID with 3:

0 PIN_FLD_PROFILES ARRAY [3] allocated 3, used 3
1 PIN_FLD_CREDIT_FLOOR DECIMAL [0] NULL
1 PIN_FLD_CREDIT_LIMIT DECIMAL [0] 133
1 PIN_FLD_CREDIT_THRESHOLDS INT [0] 0

• You can assign a credit limit, credit floor, and credit threshold to each balance group when
you run the pin_cmt utility. To do so, add the following XML elements to the input XML file
that you import with pin_cmt:

– <CrdLmt>

– <CrdFlr>

– <CrdTrsh>

The values specified in the input XML file take higher precedence than the value of the
infranet.cmt.creditprofile entry in the Infranet.properties file.

Chapter 2
Configuring the pin_cmt Utility

2-6

Applying Cycle Fees to Deployed Accounts
By default, the pin_cmt utility runs a separate utility, cmt_mta_cycle_fees, to apply cycle fees
after deploying accounts. To disable this, edit the infranet.cmt.deploy.opcode entry in the
BRM_home/apps/cmt/Infranet.properties file:

infranet.cmt.deploy.opcode = false

Migrating New Balances to an Account Without Deleting Existing Balances
By default, when you migrate new balances to an account that was previously migrated using
Conversion Manager, the pin_cmt utility deletes the existing balances on the account and
associates only the newly migrated balances to the account.

To migrate new balances to an account without deleting the existing balances:

1. Open the BRM_home/apps/cmt/Infranet.properties file in a text editor.

2. Add the following entry:

infranet.cmt.deleteexistingbalances = false
3. Save and close the file.

Supporting 31-Day Billing
If your BRM implementation uses 31-day billing, configure the following entries in the
Infranet.properties file:

infranet.cmt.31daybilling = true
infranet.cmt.31daybilling.forward = true

If the infranet.cmt.31daybilling.forward entry is enabled, BRM performs forward billing if the
billing day of month is greater than 28. If it is disabled, BRM performs backward billing.

For more information, see "About Using 31-Day Billing" in BRM Configuring and Running
Billing.

Supporting Delayed Billing
If your BRM implementation uses delayed billing, configure the following entry in the
Infranet.properties file:

infranet.cmt.billingdelay=true

For more information, see "Setting Up Delayed Billing" in BRM Configuring and Running
Billing.

Improving Conversion Manager Performance
Conversion Manager performance depends on the data and features used for a given BRM
implementation. Therefore, this documentation includes guidelines, but does not provide
specific values for performance-related configuration settings.

Chapter 2
Improving Conversion Manager Performance

2-7

XML File Formatting
Limit the number of accounts in an XML file to 10,000 accounts. Conversion Manager supports
XML files with any number of accounts, but limiting the number of accounts enables you to
debug the migration in the case of an error message.

When you create the XML files:

• Validate the files with the Conversion Manager physical XML schema.

• Use the proper tab (\t) and new line (\n).

• Do not use spaces.

• Make sure all the required tags are present in the XML.

Running Multiple Instances of the pin_cmt Utility
Use multiple instances of the pin_cmt utility to load multiple XML files simultaneously.

For example, you can write a batch/shell script similar to this:

cat >> run.sh << EOF
date > start.txt
pin_cmt -import -file one.xml 1 &
pin_cmt -import -file two.xml 1 &
pin_cmt -import -file three.xml 1 &
pin_cmt -import -file four.xml 1 &
pin_cmt -import -file five.xml 1 &
wait
date > end.txt
EOF

While running the script, measure the CPU load and time taken by the pin_cmt utility for this
entire batch. You can then increase the number of pin_cmt instances until the CPU load
reaches 90%.

Using Connection Pooling with Conversion Manager
To improve performance, you can use connection pooling with Conversion Manager. Configure
the following entries in the Infranet.properties file:

• infranet.cmt.minconns

• infranet.cmt.maxconns

• infranet.cmt.timeout

For example:

infranet.cmt.minconns = 15
infranet.cmt.maxconns = 30
infranet.cmt.timeout = 1000

For more information, see "About Connection Pooling" in BRM System Administrator's Guide.

Configuring Log File Levels
For test migrations, the default log file settings are set to return troubleshooting information.
For better performance, you should change those settings to report less information.

Chapter 2
Improving Conversion Manager Performance

2-8

• In the BRM_home/apps/cmt/pin.conf file, change the pin_mta loglevel entry to 1.

• In the BRM_home/apps/cmt/Infranet.properties file, change the infranet.log.level entry
to 1.

System Resources
Migrating data can use a lot of system resources. Performance can depend on:

• RAM size

• Number of CPUs

• Disk quotas

• File system usage

Conversion Manager Preload Tuning
After you have validated the XML files and are ready to load data, edit the BRM_home/
apps/cmt/Infranet.properties file to maximize performance.

• Turn off XML validation:

infranet.cmt.preprocess.validation = false
• Set the following entries to correspond to the amount of data in the XML files. The

infranet.cmt.noofrecords entry specifies the number of accounts.

infranet.cmt.noofrecords = 1000
infranet.cmt.avgnoofservices = 5
infranet.cmt.avgnoofdevices = 2

• Configure sufficient threads in the preprocess thread pool.

infranet.cmt.preprocess.num_of_threads = 5

The default value is 5, which is the optimal value in most cases.

• Make sure there are enough connections in the staging database connection pool:

infranet.cmt.minconns = 15
infranet.cmt.maxconns = 30
infranet.cmt.timeout = 1000

Increasing Memory Allocation to Prevent a System Hang
To test your mapping, you can run the pin_cmt utility with the default memory allocation.
However, when migrating a production database, you might need to increase the memory
allocation to prevent a system hang.

Edit the pin_cmt script to avoid system hangs.

Note:

Depending on your system configuration and load, your settings might be different.

JAVA_OPTIONS="-Xms1024m -Xmx2048m"
BRM_home/jre/bin/java $JAVA_OPTIONS -Dfile.encoding=utf-8 –cp "BRM_home/apps/cmt/
cmt.jar:BRM_home/jars/xercesImpl.jar:BRM_home/jars/xmlParserAPIs.jar:BRM_home/jars/

Chapter 2
Improving Conversion Manager Performance

2-9

pcm.jar:BRM_home/jars/pcmext.jar:BRM_home/apps/
cmt"com.portal.cmt.Cmt $1 $2 $3 $4 $5 $6 $7 $8 $9

Conversion Manager Load Tuning
In the BRM_home/apps/cmt/Infranet.properties file, verify the command line parameters for
the SQL*Loader.

infranet.cmt.sqlldr = sqlldr streamsize=2621440 readsize=2621440 columnarrayrows=5000

When you use the flag direct="true", make sure the BRM user has DBMS_LOCK permission.

Conversion Manager Deploy Tuning
Before you deploy data, edit the following entries in the Conversion Manager pin.conf file. The
file is located in BRM_home/apps/cmt.

• Set the log level to 1:

- pin_mta loglevel 1
• Specify the appropriate capacity settings for your system; for example:

- pin_mta children 5
- pin_mta per_batch 500
- pin_mta per_step 1000
- pin_mta fetch_size 5000

Chapter 2
Improving Conversion Manager Performance

2-10

3
Mapping Legacy Data to the BRM Data
Schema

This chapter explains, in general terms, what you need to understand about your legacy data
to successfully convert it to an Oracle Communications Billing and Revenue Management
(BRM) database.

Topics in this document:

• About Creating XML Files

• About the XSD Files

• About the Types of Data to Convert

• Tables Affected by the Conversion Process

See also "Understanding Conversion Manager".

About Creating XML Files
To migrate data, you create XML files that contain the data. You then migrate the data to the
BRM database by using the pin_cmt utility.

Note:

Ensure that there are no extra spaces in the input XML file. If you need to indent text
in the XML file, use the TAB key to add space.

Sample XML files for each type of data are available in BRM_home/apps/cmt/sample_data.
BRM_home is the directory in which the BRM server software is installed.

About the XSD Files
Conversion Manager includes two sets of XSD files:

• A set of conceptual files that you can use for mapping legacy data to BRM objects. These
files are easier to read than the set of files used for converting data.

• A set of physical files that are used by Conversion Manager when converting data. These
files are not as easy to read, but are written in a way that optimizes performance.

The difference between the types of files is how the XML tags are named. In the conceptual
files, the XML tags use the same field names as the BRM object fields.

For example:

• In the conceptual files:

PIN_FLD_ACCOUNT_NO = <FldAccountNo>

3-1

• In the physical files:

PIN_FLD_ACCOUNT_NO = <ActNo>

To set up mapping, you can use the easily-readable conceptual files to determine how to map
data. Then you can edit the physical files, after you know how the data is mapped.

The conceptual files are in BRM_home/apps/cmt/schema_files/conceptual.

The physical files are in BRM_home/apps/cmt/schema_files/physical.

Use the following physical XSD files to create your XML files:

• Use the CMT_Subscriber.xsd file for subscriber data.

• Use the CMT_Balances.xsd file for balance data.

Note:

– Before you use the pin_cmt utility to migrate data, validate the XML files with
the physical XSD files.

– Do not use spaces while generating the XML files. Use tabs (\t) and new
lines (\n).

About the Types of Data to Convert
Table 3-1 shows the types of legacy data that can be loaded into the BRM database.

Table 3-1 Legacy Data Storable in BRM Database

Type of Data Description

Account data Subscriber data such as name, address, profile, current account
balances, charge sharing group, and account hierarchy.

Charge offers, discount offers,
and bundles

Bundles purchased by the customer and associated with the
account.

Bill Bill information such as billing cycle and balances from the legacy
billing system.

Services Data pertaining to services owned by the account, such as a
wireless data service.

For example, when converting data for a wireless data service, the
following data is also converted:

• Device SIM
• Device number

Tables Affected by the Conversion Process
Table 3-2 shows the BRM tables that are affected by the conversion process. For more
information on the BRM tables and the fields in each table, see the following documents:

• "Storable Class-to-SQL Mapping" in BRM Developer's Reference

• "Storable Class Definitions" in BRM Developer's Reference

Chapter 3
About the Types of Data to Convert

3-2

Note:

The database tables are created during BRM installation.

Table 3-2 Tables Affected by the Conversion Process

Table Name Description

ACCOUNT_T Primary account table that represents billable accounts in BRM.
Only one row is added to this table for each account in BRM.

ACCOUNT_EXEMPTIONS_T Contains an entry for each tax exemption that applies to an
account.

ACCOUNT_NAMEINFO_T Contains name and address information for accounts. There is one
row for each name and address type (home address, work
address, mailing address, and so forth).

There must be at least one row in this table for each row in
ACCOUNT_T. For example, you can have billing name and
address information, technical contact name and address
information, and sales name and address information.

ACCOUNT_PHONES_T Contains a phone number and a phone type for each account.
There is one row for each phone type (up to seven types are
defined, including home, work, fax, and pager). If there is no phone
number information for an account, there are no rows in the table
for the account.

BALANCE_GROUP_T Stores the balance information such as dollars, minutes, bytes, and
frequent flier miles for various balance groups in an account. A
balance group includes one or more sub-balances for each
balance element. The sub-balance includes its current amount,
validity dates, rollover data, and contributors.

BAL_GRP_BALS_T Stores balance group data.

BAL_GRP_SUB_BALS_T Stores sub-balance data.

BILL_T Includes billing information, such as the amount due, amount
adjusted, currency, and bill number. A /bill object is created at the
end of a billing cycle.

A /bill object is created for every account. The account receivable
for a bill is stored in the /item objects that point to the balance
groups associated with the bill. The /bill object points to the /
account object, the account's bill unit (/billinfo object), and the /
invoice object.

BILLINFO_T Stores all billing, payment method, accounting cycle, and hierarchy
information necessary to bill an account. A bill unit is created for
every account. If the bill unit is nonpaying, the /billinfo object
points to the paying parent /billinfo object.

DEVICE_T Stores information about devices. There is a separate /device
object for every device managed by BRM. Generic data applicable
to all devices is stored in the parent /device object. Subclasses
such as /device/num store information specific to a particular
device type.

DEVICE_NUM_T Stores device information specific to phone numbers managed by
Number Manager.

DEVICE_SERVICES_T Stores device/service mapping data.

Chapter 3
Tables Affected by the Conversion Process

3-3

Table 3-2 (Cont.) Tables Affected by the Conversion Process

Table Name Description

DEVICE_SIM_T Stores device information specific to SIM cards managed by SIM
Manager.

EVENT_T Contains a row for each account that has a nonzero balance
forward amount. This table stores data for every event that occurs
for an account or service. In the case of conversion of an account
that has a balance, you should add a row to reflect the posting of
that balance.

You also need to write an entry to this table for each entry you
write to the EVENT_BILLING_DEAL_INFO_T and
EVENT_BILLING_PRODUCT_ACTION_T tables.

In addition, you can optionally add rows to this table to store past
activity for an account. For example, use this table to add rows for
importing past billing and payment history into BRM. These rows
can be brought over as memo type events, which can be viewed,
but they do not affect the current account balance (which should be
calculated and posted separately).

EVENT_BAL_IMPACTS_T Stores event data.

EVENT_ESSENTIALS_T Stores event data.

GROUP_T Represents collections of other objects that have an assigned set
of shared attributes. This table is optional. If you use it at
conversion time, one row must be added to this table if the account
is a parent account.

GROUP_BILLING_MEMBERS_T Rows for this table are optional and are included only for child
accounts (that have a parent account). During conversion, one row
needs to be added to this table for each child account (regardless
of the child account's payment method).

GROUP_PERMITTEDS_T Indicates which accounts are group accounts. Rows for this table
are optional and are included only for parent accounts that have at
least one child account.

GROUP_SHARING_MEMBERS_T Stores members of a sharing group.

GROUP_SHARING_CHARGES_T Stores charges of a sharing group.

GROUP_SHARING_DISCOUNTS
_T

Stores discounts of a charge sharing group.

GROUP_SHARING_PROFILES_T Stores the profile data that is shared in a profile sharing group.

ITEM_T Created to bundle events, this table summarizes billable item
activity by type. Rows in this table are added for each row in the
BILL_T table. In a conversion scenario, only one type of ITEM_T
entry is important, the /usage item. Although there are others
(cycle forward item, payment item, dispute item, and so on), they
are normally not pertinent for conversion. For conversion, a
default /item/misc is created to bundle events. Also, a service item
is created during conversion only if the recreate ='/item/<item-
type>' is specified in the input XML data.

JOURNAL_T Stores general ledger (G/L) journal data.

ORDERED_GROUPS_T Stores ordered balance group data.

ORDERED_BALGROUP_T Stores ordered balance group data.

Chapter 3
Tables Affected by the Conversion Process

3-4

Table 3-2 (Cont.) Tables Affected by the Conversion Process

Table Name Description

PAYINFO_T Stores generic payment method information for an account. Only
one row is added in this table for each row in ACCOUNT_T.

In addition to a row in PAYINFO_T, there must also be a row added
to the applicable payment method table. For example, you have to
add a row to PAYINFO_INV_T if the payment method for an
account is Invoice.

Additionally, if you have created a custom payment method and a
PAYINFO_paymentMethod_T table, where paymentMethod is the
custom payment method, you must add a row to that table for each
account with that payment method.

PAYINFO_CC_T Contains a row for each account that has a payment method of
Credit Card. This row is in addition to a row in PAYINFO_T.

Note: This payment method assumes that you are using the BRM-
provided FirstUSAPaymentech or FDC modules to process your
credit cards or that the clearing house or bank you use can
process the same information. If your credit card processing is
significantly different, you might want to set it up as another
payment method and store information on that payment method
separately.

If you migrate tokenized credit or debit card numbers, ensure that
you add the card type value for each credit card account. This
ensures that the legacy credit and debit card data is migrated in
the same format used for storing the credit card data in the
PAYINFO_CC_T table.

The following card type values are used in the PAYINFO_CC_T
table:

• 1 for VISA card
• 2 for MASTER card
• 3 for American Express card
• 5 for Discover card
• 6 for Diners Club card
• 7 for Carte Blanche
• 8 for JCB
• 9 for SWITCH
• 10 for unknown card types

PAYINFO_DD_T Contains a row for each account that has a payment method of
Direct Debit. This row is in addition to a row in PAYINFO_T.

PAYINFO_INV_T Contains a row for each account that has a payment method of
Invoice. Optionally, the table can also contain purchase order (PO)
information.

PROFILE_T Contains profile information, if any. This table can be left empty if
you decide not to convert profile information. You can populate only
one row in this table for each row in ACCOUNT_T.

PROFILE_customTable_T Rows are added to this table only if rows are added to PROFILE_T,
where customTable is the unique identifier you choose; for
example, company name. For each row added to PROFILE_T, a
corresponding row is added to PROFILE_customTable_T.

PROFILE_ACCT_EXTRATING_D
ATA_T

Contains profile information.

PROFILE_SERV_EXTRATING_T Contains profile information.

Chapter 3
Tables Affected by the Conversion Process

3-5

Table 3-2 (Cont.) Tables Affected by the Conversion Process

Table Name Description

PROFILE_SERV_EXTRATING_D
ATA_T

Contains profile information.

PURCHASED_DISCOUNT_T Contains an entry for each discount owned by an account at the
time of conversion.

PURCHASED_PRODUCT_T Contains an entry for each charge offer owned by an account at
the time of conversion.

SERVICE_T Stores generic service type information for accounts. There is one
row in this table for each applicable service for each entry in
ACCOUNT_T. In addition to a row in this table, a row must be
created in the service type table, such as broadband service or
email.

SERVICE_ALIAS_LIST_T Stores service aliases, used to identify customers by phone
number.

SERVICE_TELCO_T Stores telco service data.

SERVICE_TELCO_FEATURES_T Stores telco service data.

SERVICE_TELCO_GSM_T Stores telco service data.

UNIQUENESS_T Stores data that enforces uniqueness of logins across different
database schemas in a multischema environment.

In addition, the following audit tables are affected:

• AU_ACCOUNT_T

• AU_BAL_GRP_T

• AU_GROUP_SHARING_CHARGES_T

• AU_GROUP_SHARING_DISCOUNTS_T

• AU_GROUP_SHARING_PROFILES_T

• AU_GROUP_T

• AU_ORDERED_BALGROUP_T

• AU_ORDERED_GROUPS_T

• AU_PROFILE_ACCT_EXTRATING_DATA_T

• AU_PROFILE_SERV_EXTRATING_DATA_T

• AU_PROFILE_SERV_EXTRATING_T

• AU_PROFILE_T

• AU_PURCHASED_DISCOUNT_T

• AU_PURCHASED_PRODUCT_T

• AU_SERVICE_ALIAS_T

• AU_SERVICE_T

• AU_UNIQUENESS_T

Chapter 3
Tables Affected by the Conversion Process

3-6

Loading Data into Additional Audit Tables
You can configure Conversion Manager to load legacy data into audit tables that are not listed
in "Tables Affected by the Conversion Process" by:

1. Creating control files for each additional audit table

2. Adding the list of additional audit tables to the pin_cmt utility's Infranet.properties file

The following procedure describes how to configure Conversion Manager to load legacy data
into the AU_ACCOUNT_NAMEINFO_T audit table, but you can follow a similar procedure to
load legacy data into other audit tables.

To load legacy data into the AU_ACCOUNT_NAMEINFO_T audit table:

1. Go to the BRM_home/apps/cmt/ctl_files directory.

2. Copy the control file for the ACCOUNT_NAMEINFO_T table to the BRM_home/apps/cmt/
ctl_files/audit directory:

cp account_nameinfo_t.ctl BRM_home/apps/cmt/ctl_files/audit/account_nameinfo_t.ctl
3. Open the BRM_home/apps/cmt/ctl_files/audit/account_nameinfo_t.ctl file in a text

editor.

4. Change all instances of ACCOUNT_NAMEINFO_T to AU_ACCOUNT_NAMEINFO_T.

For example, change these lines:

LOAD DATA
APPEND
INTO TABLE ACCOUNT_NAMEINFO_T

to the following:

LOAD DATA
APPEND
INTO TABLE AU_ACCOUNT_NAMEINFO_T

5. Save and close the file.

6. Open the BRM_home/apps/cmt/ctl_files/Infranet.properties file in a text editor.

7. Add account_nameinfo_t to the infranet.cmt.auditloaders line:

infranet.cmt.auditloaders = account_t; bal_grp_t; group_sharing_charges_t;...;
account_nameinfo_t;

8. Save and close the file.

Chapter 3
Tables Affected by the Conversion Process

3-7

4
Migrating Data by Using New and Extended
Storable Classes

This chapter describes how to migrate data to your Oracle Communications Billing and
Revenue Management (BRM) database when the data requires new or extended storable
classes.

Topics in this document:

• About Migrating Data by Using New and Extended Storable Classes

• Example of Extending a Service Storable Class

• Example of Extending a Device Storable Class

• Example of Creating a Storable Class

• Example of Migrating Hierarchical Accounts

• Example of Migrating Hierarchical Bill Units within an Account

See also "Understanding Conversion Manager".

About Migrating Data by Using New and Extended Storable
Classes

If your legacy data includes data not currently supported in BRM, you support the custom data
by creating storable classes or extending storable classes. You can then extend the
Conversion Manager XML schema to migrate the data.

Note:

Conversion Manager does not support extensions for all BRM storable classes. See
"About Extended Storable Classes for Migration".

To use new or extended storable classes:

• Create the new or extended storable classes. See "About Extended Storable Classes for
Migration".

• Create XML files that include the migrated data. See "Creating XML Files for New or
Extended Storable Class Data".

• Create control files to add tables to the BRM database. See "Creating Control Files for
Extended Storable Classes".

• Run the pin_cmt utility as you would for migrating nonextended data. See "Loading
Legacy Data into the BRM Database".

4-1

Note:

– When you import data for new storable classes, you use a different pin_cmt
utility parameter (-import_custom). When you migrate data into custom
storable classes, the pin_cmt utility performs the additional step of activating
the custom data when it is deployed.

– Import all custom data before you deploy any data. The only exception is if all
the custom data belongs to the root account; for example, custom system
configuration data.

About Extended Storable Classes for Migration
You can extend the following storable classes:

• /service

• /device

• /payinfo

• /profile

For example:

• /service/extension1

• /service/extension1/extension

About Linking to Data from New or Extended Storable Class Data
Data in new or extended storable classes can include links to other objects. For example, a /
service/extended object can include a link to an /account object by including the account ID in
the PIN_FLD_ACCOUNT_OBJ field.

You can link to the following types of objects:

• /account

• /service (and extended service storable classes)

• /device (and extended device storable classes)

• /payinfo (and extended payinfo storable classes)

• /profile (and extended profile storable classes)

• /group/sharing/charges

• /group/sharing/discounts

When creating new or extended storable classes, follow the BRM standards and restrictions.
For example:

• You cannot nest substructs.

• An array can include an array, but no further levels are allowed.

Creating XML Files for New or Extended Storable Class Data
Use these guidelines when creating an XML file for data for new or extended storable classes:

Chapter 4
About Migrating Data by Using New and Extended Storable Classes

4-2

• Use the XML myExtension element for extended data.

• Use the XML NewClass element for new custom storable classes.

• Use the myArray and mySubstruct elements for arrays and substructs in the extended
data.

• Use the table attribute in each array and substruct to define the table that stores the data.

• Use the elem attribute in each array to define the index.

• Use the RefObj element to create links to other objects. To do so, use the ID of the object
being linked to. For example:

<RefObj type ="/account"> 1234 </RefObj>

If the pin_cmt utility does not find the object being linked to, it reports a warning and
inserts a null value in the Portal object ID (POID) being referenced.

• Use the type attribute in all new and extended elements to define the type of data.

– The type attribute for a new storable class is defined in the base storable class
element. For example:

<NewClass id="1243" type="/myclass" table="myclass_t" read="L" write="L" >
– The type attribute for an extended storable class is defined in the base storable class

element. For example:

<ActSrv id="771" type="/service/extended" precreate="/item/misc" global="true">
For XML examples, see the following sections:

• Example of Extending a Service Storable Class

• Example of Extending a Device Storable Class

• Example of Creating a Storable Class

Creating an XSD File for Extended Data
To validate the XML file, you must create an XSD file for the extended information. You can use
the myExtension.xsd file in BRM_home/apps/cmt/sample_data as a starting point.
BRM_home is the directory in which the BRM server software is installed.

Note:

For each type of extended information, use a different namespace to avoid collisions
caused by using the same name myExtension.

If the extended information contains BRM extensions (for example, /service/x, /payinfo/x, /
device/x, and /profile/x), include the custom XSD in the CMT_Subscribers.xsd file. This
allows the extended information to be validated along with the subscriber information.

If the extended information includes a custom storable class (for example, /my_profile), the
custom XSD does not need to be included in the CMT_Subscribers.xsd file. The extended
information can be validated by the custom XSD file.

Put the custom XSD file in the folder specified in the infranet.cmt.schema.location entry in
the pin_cmt utility Infranet.properties file. By default, the folder is BRM_home/apps/cmt/
schema_files/physical.

Chapter 4
About Migrating Data by Using New and Extended Storable Classes

4-3

Note:

To enable XML validation, use the infranet.cmt.preprocess.validation entry in the
pin_cmt Infranet.properties file. See "Enabling XML Validation".

Creating Control Files for Extended Storable Classes
Control files add tables to the BRM database. You create a control file for each table. You need
to create a control file for each of the following:

• New storable classes

• Substructs in new or extended storable classes

• Arrays in new or extended storable classes

When you create a control file, the name of the control file is used as the table name. For
example, if you create a new storable class named /myclass, which includes a substruct
named PIN_FIELD_MYSUBSTRUCT, the table name would be MYCLASS_SUBSTR_T. The
control file name would be myclass_substr_t.ctl.

Note:

• The order of columns in the control file must be the same as the order of columns
in the table.

• The order of data in the XML input file must be the same as the order of data in
the control file and table.

• While adding tables to the BRM database, ensure that the tables listed in the
pin_cmt utility Infranet.properties file belong to the main storable class.

For control file examples, see the following sections:

• Example of Extending a Service Storable Class

• Example of Extending a Device Storable Class

• Example of Creating a Storable Class

To use your custom control files:

1. Put the control files in BRM_home/apps/cmt/ctl_files.

2. Edit the pin_cmt utility Infranet.properties file.

• For control files that add substruct and array data, edit the infranet.cmt.loaders entry.
Add the control file names. For example:

infranet.cmt.loaders = account_t; account_nameinfo_t; ...; extended2_substr1_t;
extended_cust1_t; extended2_cycle_t;

• For control files that add data for a new storable class, add the
infranet.cmt.customtables entry. Add the table names, separated by semicolons. For
example:

infranet.cmt.customtables = myclass_t;

Chapter 4
About Migrating Data by Using New and Extended Storable Classes

4-4

Note:

By default, the infranet.cmt.customtables entry is not included in the
Infranet.properties file.

Creating Control Files for Custom Event Tables in a Virtual Column-Enabled System
BRM Conversion Manager includes control files that are suitable for a virtual column-enabled
system for migrating event tables (the event_t and event_bal_impacts_t tables). If you have
custom event tables to be migrated (for event-type objects that are not in the BRM system),
you must create the control files as described in this chapter. In addition, in a virtual column-
enabled system, the BRM Conversion Manager event control files cannot perform insert
operations on the virtual columns (the field_name_type columns) of event tables in the BRM
database; they must, instead, perform insert operations on the virtual column's associated
supporting column field_name_type_id.

See BRM System Administrator's Guide for information about using virtual columns on event
tables.

Example of Extending a Service Storable Class
The following example shows the XML data for an extended /service storable class:

<ActSub>
 <ActSrv id="771" type="/service/extended" precreate="/item/misc" global="true">
 <CWhn>2004-10-02T01:22:15-07:00</CWhn>
 <Log>159-51090219-237205-0-24083-1-tahoe</Log>
 <Pass>md5|5f4dcc3b5aa765d61d8327deb882cf99</Pass>
 <SrvSta>A</SrvSta>
 <Eff>2004-02-02T01:22:15-07:00</Eff>

 <SClsInfo>
 <myExtension>
 <mySubstruct table="extended_substr1_t" >
 <FldCustName type="string">abc</FldCustName>
 <FldCustType type="integer">99</FldCustType>
 </mySubstruct>
 <myArray table="extended_cust1_t" elem="1">
 <FldAmt type="integer">190</FldAmt>
 <FldDate="date">2004-02-02T01:22:15-7:00</FldDate>
 <myArray table="extended_cycle_t" elem="1">
 <Fldtype type="integer">190</Fldtype>
 </myArray>
 </myArray>
 </myExtension>

 </SClsInfo>

 </ActSrv>
</ActSub>

In Developer Workshop, the extended /service storable class definition looks like this:

/service/extended
 CMT_ARRAY
 CMT_NAME
 PIN_FLD_ACCOUNT_TYPE

Chapter 4
Example of Extending a Service Storable Class

4-5

 CUST_ARRAY
 PIN_FLD_CYCLE
 PIN_FLD_CUSTOMER_TYPE
 PIN_FLD_CYCLE_DISC_AMT
 PIN_FLD_CYCLE_END_T

After loading the data, the extended fields are included in the stored object like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /service/extended 11813 3
0 PIN_FLD_CREATED_T TSTAMP [0] (1083337746) Fri Apr 30 08:09:06 2004
0 PIN_FLD_MOD_T TSTAMP [0] (1083338129) Fri Apr 30 08:15:29 2004
.
.
.
0 PIN_FLD_TYPE ENUM [0] 0
0 PIN_FLD_ALIAS_LIST ARRAY [0] allocated 1, used 1
1 PIN_FLD_NAME STR [0] "00491110102"
0 10000 SUBSTRUCT [0] allocated 2, used 2
1 10004 STR [0] "abc"
1 PIN_FLD_ACCOUNT_TYPE ENUM [0] 99
0 10005 ARRAY [1] allocated 3, used 3
1 PIN_FLD_CYCLE_DISC_AMT DECIMAL [0] 190
1 PIN_FLD_CYCLE_END_T TSTAMP [0] (1075713735) Mon Feb 2 01:22:15 2004
1 PIN_FLD_CYCLE ARRAY [1] allocated 1, used 1
2 PIN_FLD_CUSTOMER_TYPE ENUM [0] 190

The following examples show the control files used for loading the data for the extended /
service storable class. The substruct and arrays require new tables. The array tables include
the columns REC_ID or REC_ID2; the substruct does not include these columns.

Example Control File for Substruct

-- extended_substr1_t.ctl

LOAD DATA
APPEND
 INTO TABLE EXTENDED_SUBSTR1_T
 (
 OBJ_ID0 INTEGER EXTERNAL TERMINATED BY ',',
 NAME CHAR TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"',
 TYPE INTEGER EXTERNAL TERMINATED BY ','
)

Example Control File for Array

-- extended_cust1_t.ctl

LOAD DATA
APPEND
 INTO TABLE EXTENDED_CUST1_T
 (
 OBJ_ID0 INTEGER EXTERNAL TERMINATED BY ',',
 REC_ID INTEGER EXTERNAL TERMINATED BY ',',
 AMOUNT INTEGER EXTERNAL TERMINATED BY ',',
 END_T INTEGER EXTERNAL TERMINATED BY ','
)

Example Control File for Array

-- extended_cycle_t.ctl

LOAD DATA
APPEND

Chapter 4
Example of Extending a Service Storable Class

4-6

 INTO TABLE EXTENDED_CYCLE_T
 (
 OBJ_ID0 INTEGER EXTERNAL TERMINATED BY ',',
 REC_ID INTEGER EXTERNAL TERMINATED BY ',',
 REC_ID2 INTEGER EXTERNAL TERMINATED BY ',',
 TYPE INTEGER EXTERNAL TERMINATED BY ','
)

Setting a Service Balance Group
The following example shows attributes in the input XML file that you set to associate a
balance group with a service.

To create a balance group and associate it with a service, set the bal_grp attribute to true.

<ActSrv id="50001" type="/service/telco/gsm/telephony" precreate="/item/misc"
global="true" bal_grp="true" billInfoElem="1">
 <Log>159-20040202-210000-0-24083-1-zion</Log>
 <Pass>md5|5f4dcc3b5aa765d61d8327deb882cf99</Pass>
 <SrvSta>A</SrvSta>
 <CrtT>2004-05-26T01:22:15-07:00</CrtT>
 <Eff>2004-05-26T01:22:15-07:00</Eff>
 <ServId>ServiceTelephony</ServId>
 </ActSrv>

To associate the balance group of a bill unit (/billinfo object) with a service, set the
skip_bal_grp_crt and bal_grp attributes to true. The balance group of the bill unit is
associated with the service.

<ActSrv id="50001" type="/service/telco/gsm/telephony" precreate="/item/misc"
global="true" bal_grp="true" skip_bal_grp_crt="true" billInfoElem="1">
 <Log>159-20040202-210000-0-24083-1-zion</Log>
 <Pass>md5|5f4dcc3b5aa765d61d8327deb882cf99</Pass>
 <SrvSta>A</SrvSta>
 <CrtT>2004-05-26T01:22:15-07:00</CrtT>
 <Eff>2004-05-26T01:22:15-07:00</Eff>
 <ServId>ServiceTelephony</ServId>
 </ActSrv>

Example of Extending a Device Storable Class
The following example shows the XML data for an extended /device storable class:

<DeviceInfo>
 <Device id="778" type="/device/extended2">
 <DevId>00982110309</DevId>
 <Src>source2</Src>
 <Mnufr>Airtel2</Mnufr>
 <Mdl>A4IR124</Mdl>
 </Device>
 <myExtension>
 <myArray table="dev_extended2_t" elem="1">
 <FldAmount type="integer">11</FldAmount>
 <FldDate type="date">2004-03-15T01:22:15-07:00</FldDate>
 </myArray>
 </myExtension>
</DeviceInfo>

In Developer Workshop, the extended /device storable class definition looks like this:

Chapter 4
Example of Extending a Device Storable Class

4-7

/device/extended2
 PIN_FLD_ENTRIES
 PIN_FLD_ENTRY_AMOUNT
 PIN_FLD_ENTRY_T

After loading the data, the extended fields are included in the stored object like this:

number of field entries allocated 14, used 14
0 PIN_FLD_POID POID [0] 0.0.0.1 /device/extended2 11811 0
0 PIN_FLD_CREATED_T TSTAMP [0] (1083337746) Fri Apr 30 08:09:06 2004
0 PIN_FLD_MOD_T TSTAMP [0] (0) <null>
0 PIN_FLD_READ_ACCESS STR [0] "L"
0 PIN_FLD_WRITE_ACCESS STR [0] "A"
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_DESCR STR [0] ""
0 PIN_FLD_DEVICE_ID STR [0] "00982110309"
0 PIN_FLD_MANUFACTURER STR [0] "Airtel2"
0 PIN_FLD_MODEL STR [0] "A4IR124"
0 PIN_FLD_SOURCE STR [0] "source2"
0 PIN_FLD_STATE_ID INT [0] 0
0 PIN_FLD_SERVICES ARRAY [3] allocated 2, used 2
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 11806 0
1 PIN_FLD_SERVICE_OBJ POID [0] 0.0.0.1 /service/extended2 11813 0
0 PIN_FLD_ENTRIES ARRAY [1] allocated 2, used 2
1 PIN_FLD_ENTRY_AMOUNT DECIMAL [0] 11
1 PIN_FLD_ENTRY_T TSTAMP [0] (1079342535) Mon Mar 15 01:22:15 2004

The following example shows the control file used for loading the data for the extended /device
storable class:

LOAD DATA
APPEND
 INTO TABLE DEV_EXTENDED2_t
 (
 OBJ_ID0 INTEGER EXTERNAL TERMINATED BY ',',
 REC_ID INTEGER EXTERNAL TERMINATED BY ',',
 AMOUNT INTEGER EXTERNAL TERMINATED BY ',',
 ENTRY_T INTEGER EXTERNAL TERMINATED BY ','
)

Example of Creating a Storable Class
The following example shows the XML data for a new storable class named /myclass:

<NewClass id="1243" type="/myclass" table="myclass_t" read="L" write="L" >
 <AcctObj>0.0.0.1-indian500</AcctObj>
 <myArray table="myclass_rules_t" elem="0">
 <rum_id type="integer">222</rum_id>
 <descr type="string">sachin</descr>
 <start_t type="date">2006-10-02T01:22:15-07:00</start_t>
 </myArray>
 </myArray>
</NewClass>

In Developer Workshop, the /myclass definition looks like this:

/myclass
 PIN_FLD_ACCOUNT_OBJ
 PIN_FLD_CREATED_T
 PIN_FLD_MOD_T
 PIN_FLD_POID
 PIN_FLD_READ_ACCESS

Chapter 4
Example of Creating a Storable Class

4-8

 PIN_FLD_RULES
 PIN_FLD_RUM_ID
 PIN_FLD_SCENARIO_DESCR
 PIN_FLD_SCHEDULE_DOWNTIME_START
 PIN_FLD_WRITE_ACCESS

After loading the data, the stored object looks like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /myclass 43567 0
0 PIN_FLD_CREATED_T TSTAMP [0] (1083780256) 5/6/04 3:04 AM
0 PIN_FLD_MOD_T TSTAMP [0] (1083780256) 5/6/04 3:04 AM
0 PIN_FLD_READ_ACCESS STR [0] "L"
0 PIN_FLD_WRITE_ACCESS STR [0] "L"
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 1
0 PIN_FLD_RULES ARRAY [0] allocated 4, used 4
1 PIN_FLD_RUM_ID INT [0] 222
1 PIN_FLD_SCENARIO_DESCR STR [0] "sachin"
1 PIN_FLD_SCHEDULE_DOWNTIME_START TSTAMP [0] (1159732335) 10/2/06 4:52 AM

The following example shows the control file used for loading the data for the new /myclass
storable class:

myclass_t.ctl

LOAD DATA
APPEND
 INTO TABLE MYCLASS_T
 (
 POID_DB INTEGER EXTERNAL TERMINATED BY ',',
 POID_ID0 INTEGER EXTERNAL TERMINATED BY ',',
 POID_TYPE CHAR TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"',
 POID_REV INTEGER EXTERNAL TERMINATED BY ',',
 CREATED_T INTEGER EXTERNAL TERMINATED BY ',',
 MOD_T INTEGER EXTERNAL TERMINATED BY ',',
 READ_ACCESS CHAR TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"',
 WRITE_ACCESS CHAR TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"',
 ACCOUNT_OBJ_DB INTEGER EXTERNAL TERMINATED BY ',',
 ACCOUNT_OBJ_ID0 INTEGER EXTERNAL TERMINATED BY ',',
 ACCOUNT_OBJ_TYPE CHAR TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"',
 ACCOUNT_OBJ_REV INTEGER EXTERNAL TERMINATED BY ','
)

The following example shows the control file used for loading the data for the /myclass
storable class PIN_FLD_RULES substruct:

myclass_rules_t.ctl

LOAD DATA
APPEND
 INTO TABLE MYCLASS_RULES_T
 (
 OBJ_ID0 INTEGER EXTERNAL TERMINATED BY ',',
 REC_ID INTEGER EXTERNAL TERMINATED BY ',',
 RUM_ID INTEGER EXTERNAL TERMINATED BY ',',
 DESCR CHAR TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"',
 START_T INTEGER EXTERNAL TERMINATED BY ','
)

Chapter 4
Example of Creating a Storable Class

4-9

Example of Migrating Hierarchical Accounts
The following example shows the various attributes that you need to specify for different
accounts at different hierarchy levels in the input XML file while performing the migration:

• Parent account: The following attributes should exist for the parent account:

<ActSbsc id="0.0.0.1-10001" isParent="Y">

Set id to the unique string by which the account will be identified. Set isParent to Y.

• Child account whose bill units are paying: The following attributes should exist for the
child account whose bill units are paying:

<ActSbsc id="0.0.0.1-10002" parenRef="0.0.0.1-10001">

Set id to the unique string by which the account will be identified. Set parenRef to a
reference to the parent ID.

• Child account whose bill units are nonpaying: The following attributes should exist for
the child account whose bill units are nonpaying:

<ActSbsc id="0.0.0.1-10003" parenRef="0.0.0.1-10001" payParenRef="0.0.0.1-10001">

Set id to the unique string by which the account will be identified. Set parenRef to a
reference to the parent ID. Set payParenRef to a reference to the paying parent ID.

The pay_type (PTyp) attribute under billinfo should be set to NPC as follows:

<ABinfo global="true">
 <ACDom>26</ACDom>
 <ANxt>2004-07-26T01:22:15-07:00</ANxt>
 <BlWn>1</BlWn>
 <BlSgmnt>RC</BlSgmnt>
 <PTyp>NPC</PTyp>
</ABinfo>

The payinfo_obj_type attribute under payinfo should be set to /payinfo. Also, comment
out the payinfo section as follows:

<APinfo id="10004" type="/payinfo">
 <DDom>26</DDom>
 <RelDue>2004-05-26T01:22:15-07:00</RelDue>
 <!-- payInvExtn>
 <Add>340/C Baker Street</Add>
 <Cty>Houston</Cty>
 <Cntr>USA</Cntr>
 <Nm>52345</Nm>
 <Stt>Texas</Stt>
 <Zip>56009</Zip>
 </payInvExtn -->
</APinfo>

• Paying and nonpaying child: Child accounts can have multiple paying bill units and
nonpaying bill units:

– Paying bill unit: The following attributes should exist for each paying bill unit:

<ActSbsc id="0.0.0.1-10004" parenRef="0.0.0.1-10001">

<ActSrv id="0.0.1.1-10224" type="/service/telco/fixedretail" billInfoElem="2">

Chapter 4
Example of Migrating Hierarchical Accounts

4-10

<ABinfo elem="2" parentElem="1" bal_grp="False" payInfoRefId="0.0.0.1-114">
<APinfo id="0.0.0.1-114" type="/payinfo/invoice">

– Nonpaying bill unit: The following attributes should exist for each nonpaying bill unit:

<ActSbsc id="0.0.0.1-10004" parenRef="0.0.0.1-10001">

<ActSrv id="0.0.1.1-10334" type="/service/telco/prepaid" billInfoElem="1">

<ABinfo elem="1" parentElem="1" payingParenRefId="0.0.0.1-10001">

Set payingParentRefId to a reference to the parent account ID that owns the paying
bill unit. This creates another /billinfo record for the child account. The
ar_billinfo_obj_id0 field of that record stores the ID of the paying bill unit.

Setting an Account Bill Unit
The following example shows attributes in the input XML file that you set to define a /billinfo
object as the account bill unit.

To define a /billinfo object as the account bill unit, set the isAccBillinfo attribute in the
<ABInfo> /billinfo object to Y. The balance group associated with the /billinfo object then
becomes the account default balance group.

Note:

There can be only one <ABinfo> /billinfo object for which the isAccBillinfo attribute
is set to Y. If there are duplicate <ABinfo> /billinfo objects, BRM returns an error
and the migration stops.

<ABinfo global="true" spnrCnt="1" spnreeCnt="2" elem="1" bal_grp="true"
isAccBillinfo="Y" payInfoRefId="MyAPInfo_1">
 <ACDom>21</ACDom>
 <ActgType>B</ActgType>
 <ANxt>2013-07-01T01:22:15-07:00</ANxt>
 <CrtT>2013-06-07T01:22:15-07:00</CrtT>
 <BlWn>1</BlWn>
 <BlSgmnt>RC</BlSgmnt>
 <PTyp>INV</PTyp>
 <BISta>A</BISta>
 <BillStat>3</BillStat>
 <ExmtFrmColl>A</ExmtFrmColl>
 <BIStaFlag>SBCA</BIStaFlag>
 <BillInfoId>MyBillInfo_1</BillInfoId>
</ABinfo>

Example of Migrating Hierarchical Bill Units within an Account
The following example shows hierarchical bill units within an account.

Chapter 4
Example of Migrating Hierarchical Bill Units within an Account

4-11

Note:

To create the hierarchical bill units in the same account, set the thisActHierarchy
attribute to true. In the following example, the bill units BI1 and BI2 are in account A.
BI1 is the parent of BI2.

<ABinfo global="true" spnrCnt="1" spnreeCnt="2" elem="1" bal_grp="true"
payInfoRefId="MyAPInfo_1">
 <ACDom>26</ACDom>
 <ActgType>B</ActgType>
 <ANxt>2013-07-01T01:22:15-07:00</ANxt>
 <CrtT>2013-06-07T01:22:15-07:00</CrtT>
 <BlWn>1</BlWn>
 <BlSgmnt>RC</BlSgmnt>
 <PTyp>INV</PTyp>
 <BISta>A</BISta>
 <BillStat>3</BillStat>
 <ExmtFrmColl>A</ExmtFrmColl>
 <BIStaFlag>SBCA</BIStaFlag>
 <BillInfoId>MyBillId3</BillInfoId>
 </ABinfo>
<ABinfo global="true" spnrCnt="1" spnreeCnt="2" elem="2" parentElem="1"
thisActHierarchy="true" bal_grp="true" payInfoRefId="MyAPInfo_1">
 <ACDom>26</ACDom>
 <ActgType>B</ActgType>
 <ANxt>2013-07-01T01:22:15-07:00</ANxt>
 <CrtT>2013-06-07T01:22:15-07:00</CrtT>
 <BlWn>1</BlWn>
 <BlSgmnt>RC</BlSgmnt>
 <PTyp>NPC</PTyp>
 <BISta>A</BISta>
 <BillStat>3</BillStat>
 <ExmtFrmColl>A</ExmtFrmColl>
 <BIStaFlag>SBCA</BIStaFlag>
 <BillInfoId>MyBillId1</BillInfoId>
</ABinfo>
<ABinfo global="true" spnrCnt="1" spnreeCnt="2" elem="3" parentElem="1"
thisActHierarchy="true" bal_grp="true" payInfoRefId="MyAPInfo_1">
 <ACDom>26</ACDom>
 <ActgType>B</ActgType>
 <ANxt>2013-07-01T01:22:15-07:00</ANxt>
 <CrtT>2013-06-07T01:22:15-07:00</CrtT>
 <BlWn>1</BlWn>
 <BlSgmnt>RC</BlSgmnt>
 <PTyp>NPC</PTyp>
 <BISta>A</BISta>
 <BillStat>3</BillStat>
 <ExmtFrmColl>A</ExmtFrmColl>
 <BIStaFlag>SBCA</BIStaFlag>
 <BillInfoId>MyBillId2</BillInfoId>
</ABinfo>

Chapter 4
Example of Migrating Hierarchical Bill Units within an Account

4-12

5
Loading Legacy Data into the BRM Database

This chapter describes how to load legacy data into your Oracle Communications Billing and
Revenue Management (BRM) database.

Topics in this document:

• Importing Data

• Deploying Converted Data

• Reloading Data

• Troubleshooting Conversion Manager

• Testing the Imported Data

Before you can load data, you must extract it from the legacy database into XML files. See:

• Understanding Conversion Manager

• Mapping Legacy Data to the BRM Data Schema

For information about performance tuning, see "Improving Conversion Manager Performance".

Importing Data
You import legacy data into the BRM database one file at a time.

Note:

To specify a database connection, edit the pin_cmt utility Infranet.properties file in
BRM_home/apps/cmt. BRM_home is the directory in which the BRM server software
is installed.

To import legacy data into the BRM database:

1. Go to BRM_home/apps/cmt.

2. Do one of the following:

• To import data that is not stored in a new storable class, run the pin_cmt utility using
the following syntax:

pin_cmt -import -file XML_input_data_file stage_ID

For example:

pin_cmt -import -file data.xml 100

5-1

Note:

If you have a multischema system, make sure the stage IDs are larger than
the database schema IDs. For example, if you have a schema with the
number 0.0.0.5, use stage IDs larger than 5.

• To import data that is stored in a new storable class, run the pin_cmt utility using the
following syntax:

pin_cmt -import_custom -file XML_input_data_file stage_ID

For example:

pin_cmt -import_custom -file data.xml 100
See "pin_cmt" for more information.

Possible errors:

• On all parser errors, Conversion Manager rejects the whole file. Take corrective action
based on the errors logged in cmt.pinlog and resubmit the corrected file.

• A record is rejected and not imported if its reference object is not found. For example, in
case of importing a child account when the parent account is not found, the child record is
rejected. The error is noted in the log file.

• I/O errors, such as the inability to find or open the specified document. The whole file is
rejected and an error is logged.

• You run out of database space. Use pin_cmt with the -recover parameter to recover your
data. For more information, see "Reloading Data".

Deploying Converted Data
When you deploy the data, the staging accounts are made available for production by updating
the database ID number in the object Portal object IDs (POID).

Note:

To specify a database connection, edit the pin_cmt utility Infranet.properties file in
BRM_home/apps/cmt.

To deploy your converted data, run pin_cmt using the following syntax:

pin_cmt -deploy DOM stage_ID

where:

• DOM is the billing cycle's day of month.

• stage_ID is the identity of the staging area.

See "pin_cmt" for more information.

Chapter 5
Deploying Converted Data

5-2

Reloading Data
If pin_cmt runs out of space in your BRM database for data rows, the importing process stops.
Data that was not imported can be imported after more space is made available in the
database.

Note:

To specify a database connection, edit the pin_cmt utility Infranet.properties file in
BRM_home/apps/cmt.

To import data when the utility runs out of database space:

1. Add space to the database.

2. Read the log files in BRM_home/apps/cmt to find the following information:

• How many records were processed.

• The batch ID for the import process that did not complete.

3. Edit the control files:

a. At the beginning of every control file, replace the string LOAD_DATA with
CONTINUE_LOAD_DATA.

b. In each table's control file, specify the number of records to skip for that table by using
the INTO TABLE clause. For example:

INTO TABLE account_t
SKIP 756

where 756 is the number of previously processed records.

4. Run the pin_cmt utility with the -recovery load parameter:

pin_cmt -recovery load batch_ID

See "pin_cmt" for more information.

Troubleshooting Conversion Manager
When Conversion Manager imports legacy data into the BRM database, it creates a log file
(cmt.pinlog) with a list of errors and warnings depending on the reporting level set for
message logging. (See "Setting the Reporting Level for Logging Messages" in BRM System
Administrator's Guide.)

In addition, the log file lists successfully processed records and failed records.

To find any error messages, read the cmt.pinlog file in the BRM_home/apps/cmt directory.

You can also read the Connection Manager and Data Manager log files.

Common pin_cmt Utility Error Messages
Table 5-1 shows common pin_cmt error messages.

Chapter 5
Reloading Data

5-3

Table 5-1 Common pin_cmt Messages

Error Message Description

CMD_LINE_ARG_ERR Error in the pin_cmt utility command line syntax.

MISSING_RESOURCE_ERR A required configuration entry in the pin_cmt utility
Infranet.properties file is missing.

DB_CONNECTION_ERR The database connection configuration in the pin_cmt
utility Infranet.properties file is incorrect. This error
occurs when the database is down.

BAD_INFRANET_CONNECTION One of the following:

• BRM is not running
• The CM connection information in the pin_cmt utility

Infranet.properties file is incorrect.

FILE_NOT_FOUND_ERR The input XML file is missing from the location specified in
the command line.

PARSING_ERR The input XML file is either not well-formed or not valid
with respect to CMT XSD.

IL_PR_PARENT_NOT_FOUND_ERR The input XML file includes an incorrect parent (/group/
billing) reference.

IL_PR_PAYING_PARENT_NOT_FOUND_E
RR

The input XML file includes an incorrect paying parent (/
group/billing) reference.

INCORRECT_DEVICE_REF The input XML file includes an incorrect device reference.

INCORRECT_SUB_OBJ_SERVICE_REF The input XML file includes an incorrect subscription
service reference.

INCORRECT_GSC_PARENT_REF The input XML file includes an incorrect group sharing
charges reference.

INCORRECT_GSD_PARENT_REF The input XML file includes an incorrect group sharing
discounts reference.

INCORRECT_GSP_PARENT_REF The input XML file includes an incorrect group sharing
profiles reference.

PROCESS_IS_RUNNING The input XML file is either already loaded or currently
being loaded by another pin_cmt instance.

SQL_ERROR Internal pin_cmt error.

Testing the Imported Data
You test the data to verify that the objects have been created correctly and that record pointers
are consistent.

Use any of the following tools to validate the data in your BRM database:

• The testnap utility and Object Browser. See "Using testnap and Object Browser to Validate
the Database".

• Billing Care. See "Using Billing Care to Validate Data".

• SQL. See "Using SQL to Validate Data".

Chapter 5
Testing the Imported Data

5-4

Note:

Before performing the initial test conversion, prepare a test database by using
the pin_setup script, and then create a backup of the database. Then load the
current price list and create another backup. This saves time because it is easier
to reload a database than to create one.

Using testnap and Object Browser to Validate the Database
Use testnap to verify that the following objects have been created correctly in the BRM
database. Use Object Browser to look at the contents of each new object in the BRM
database.

• /account

• /bill

• /item

• /event

• /service

• /group

• /payinfo

• /billinfo

• /balance_group

• /device

• /device/num

• /device/sim

Note:

Print the results of your testnap commands and match the objects in the list.
This allows you to make any necessary notes.

For information on how to use testnap, see "Using the testnap Utility to Test BRM" in BRM
Developer's Reference.

Validating /account Objects
To validate /account objects:

1. Use testnap or Object Browser to display the data in the object.

2. Examine each field to ensure the data in the field matches the input data file.

3. Verify that all the charge offers and services owned by this account are present.

4. Verify that all of the balances for this account are correct.

Chapter 5
Testing the Imported Data

5-5

Validating /bill, /item, /event, /service, and /payinfo Objects
To validate these objects:

1. Find the POIDs of these objects in the /account object.

2. Use testnap or Object Browser to display the data for each of these objects.

3. Examine each field in the object to ensure that the data contained in the field matches the
data in the input data file.

4. Ensure that these objects reference the correct /account object.

Using Billing Care to Validate Data
To validate data, verify the following:

• You can retrieve account data without any errors.

• You can update an account without any errors.

• You can change payment methods successfully. For example, change an account payment
method from credit card to invoice and back to credit card (use the answer_s and
answer_b daemons, if necessary).

• If parent-child billing data was converted, verify that the parent-child grouping works
correctly. To check this, do the following:

– Change some of the existing child accounts to orphan accounts, and some of the
existing orphan accounts to child accounts.

– Add a few arbitrary hierarchies.

– Move accounts to and from the parent accounts and verify that there are no errors.

Using SQL to Validate Data
You can use SQL to check the various record counts in BRM.

Note:

BRM contains the root account, which increases the number of accounts by 1.
Remember to consider this at the time of validation.

Verify the following:

• The total number of accounts created is equal to the total number of accounts converted
from your legacy system. Use the following SQL statement:

select count(*) from ACCOUNT_T
• The total number of account name and address records is equal to the total number of

accounts converted from your legacy system. Use the following SQL statement:

select count(*) from ACCOUNT_NAMEINFO_T

Chapter 5
Testing the Imported Data

5-6

Note:

If your implementation has more than one name and address type, you need to
take this into account.

• The total number of bill objects is equal to the total number of accounts converted from
your legacy system. This number must equal the number of records in the ACCOUNT_T
table. Use the following SQL statement:

select count(*) from BILL_T
• The total number of payment objects is equal to the total number of accounts converted

from your legacy system. This number should equal the number of records in the
ACCOUNT_T table. Use the following SQL statement:

select count(*) from PAYINFO_T

Also verify that the total records in the PAYINFO_INV_T, PAYINFO_CC_T, and
PAYINFO_DD_T tables match the number of records in the ACCOUNT_T table. Use these
SQL statements:

select count(*) from PAYINFO_INV_T
select count(*) from PAYINFO_CC_T

• The total number of /profile objects (if created) is equal to the total number of accounts
converted from your legacy system: this number should equal the number of records in the
ACCOUNT_T table. Use the following SQL statement:

select count(*) from PROFILE_custom_table_T

where custom_table is the implementation-unique identifier you choose; for example,
company name.

• The total number of child accounts whose bill units are nonpaying matches the number of
rows in the GROUP_BILLING_MEMBERS_T table. Use the following SQL statement:

select count(*) from GROUP_BILLING_MEMBERS_T where
object_type = '/account'

• The total number of parent accounts matches the number of rows in the GROUP_T table.
Use the following SQL statement:

select count(*) from GROUP_T where poid_type= '/group/billing'
• The total number of parent accounts matches the number of rows in the

GROUP_PERMITTEDS_T table. Use the following SQL statement:

select count(*) from GROUP_PERMITTEDS_T where type = '/account'

Chapter 5
Testing the Imported Data

5-7

6
Migrating Legacy Data into BRM Table
Partitions

This chapter describes how to load data from legacy billing systems into Oracle
Communications Billing and Revenue Management (BRM) table partitions.

Topics in this document:

• About Migrating Legacy Data into Table Partitions

• About Partitioning

• About Making Conversion Manager Aware of Partitions

• Setting Up Your System to Load Legacy Data into Table Partitions

Before you read this chapter, you should be familiar with the following:

• Partitioning. See "Partitioning Tables" in BRM System Administrator's Guide

• Conversion Manager. See "Understanding Conversion Manager"

About Migrating Legacy Data into Table Partitions
To load legacy data into BRM table partitions, do the following:

• Create back-dated partitions for storing legacy data. See "About Your Partitioning
Scheme".

• Configure Conversion Manager to encode a creation timestamp into specified object
POIDs. See "About Making Conversion Manager Aware of Partitions".

About Partitioning
Some BRM tables, such as the BILL_T table, store large amounts of data, which can slow
BRM search times. Dividing large tables into smaller, more manageable chunks, called
partitions, makes it easier for BRM to find data because it needs to search only a single
partition for data rather than an entire table.

In BRM, you create table partitions based on dates and divided by a specified interval: month,
week, or day. For example, you could set one partition for May 1 to May 31, the subsequent
one for June 1 to June 30, and so on. Objects are stored in partitions according to their
creation date and time. For example, /event objects created in May 2009 could be stored in
the May 2009 partition of the EVENT_T table.

About Your Partitioning Scheme
Before you begin loading legacy data into BRM, you must determine your partitioning scheme,
including which tables to partition and how many months of legacy data to load into BRM. For
example, you might decide to load only the last five months of your billing data into the BRM
system. In this case, you would create five back-dated partitions with a monthly interval for the
BILL_T table.

6-1

After determining your partitioning scheme, you must create the following:

• Back-dated table partitions for your legacy data. For example, if you are loading legacy
billing and item data into BRM, create back-dated table partitions for the /bill storable class
(BILL_T table) and the /item storable class (ITEM_T table). Your back-dated tables must
also comply with the following restrictions.

– The oldest back-dated partition that you create must have a start date prior to the
creation date of the oldest legacy object you are loading into BRM. For example, if the
oldest object that you are loading has a creation date of March 8, 2005, you must
create a back-dated table partition that starts on or before March 7, 2005.

– The most recent back-dated partition that you create must have an end date that is at
least one day prior to the BRM installation date. For example, if you install BRM on
August 15, 2009, the most recent back-dated partition must end on or before August
14, 2009.

• Future-dated partitions for data created on your new BRM system. Create future-
dated partitions for any storable classes you would like partitioned. The first future-dated
partition must start two days after the BRM installation date. For example, if you install
BRM on August 15, 2009, the first partition's start date must be August 17, 2009, or later.

For example, assume you install BRM on August 15, 2009, and the oldest billing object in your
legacy system has a creation date of January 20, 2009. In this example, you would create
seven back-dated partitions and one or more future-dated partitions for your /bill storable class
(BILL_T table) as shown in Table 6-1.

Table 6-1 Partitioning Scheme Example

Partition Date Range for Each BILL_T Partition

1 January 15, 2009, through February 14, 2009

2 February 15, 2009, through March 14, 2009

3 March 15, 2009, through April 14, 2009

4 April 15, 2009, through May 14, 2009

5 May 15, 2009, through June 14, 2009

6 June 15, 2009, through July 14, 2009

7 July 15, 2009, through August 14, 2009

8 August 17, 2009, through September 16, 2009

9 September 17, 2009, through October 16, 2009

10 partition_last

In this example, objects are loaded into partitions as shown below:

• Objects with creation timestamps prior to February 15, 2009, are automatically loaded into
Partition 1.

• Objects with creation timestamps on or after February 15, 2009, and prior to March 15,
2009, are loaded into Partition 2.

• Objects with creation timestamps after August 14, 2009, and prior to August 17, 2009, are
loaded into Partition 8.

Chapter 6
About Partitioning

6-2

Note:

If an object's creation timestamp is not covered by one of the partition ranges, the
object is automatically loaded into the next higher-range partition.

• Objects with creation timestamps after October 16, 2009, are loaded into partition 10
(partition_last).

Note:

If an object's creation timestamp is not covered by one of the partition ranges and
a higher-range partition does not exist, the object is automatically loaded into
partition_last.

About Making Conversion Manager Aware of Partitions
Conversion Manager can now encode timestamps into the object POIDs of partitioned and
purgeable storable classes, allowing the object to be loaded into the correct table partition. For
example, if a legacy bill object was created in May, Conversion Manager encodes the creation
timestamp into the /bill object's POID. The /bill object can then be loaded into the BILL_T
table's May 2009 partition.

About the Timestamps Encoded in Object POIDs
The timestamp encoded in object POIDs can be either:

• The creation timestamp passed in by the legacy system. In this case, you must pass the
object creation timestamp in the CrtT element of the input XML file.

• The system time when you run Conversion Manager. It does not use the timestamp from
pin_virtual_time.

You must make sure that the creation time is applied consistently to all related objects. For
example:

• When you migrate unpaid bills and open items from your legacy billing system to BRM, the
bill objects and their associated item objects must all use the legacy object's creation time.
Otherwise, the billing and invoicing utilities will not find all items associated with a bill.

• When you migrate balances from your legacy system to BRM, the account objects and
their associated balances must all use the legacy object's creation time.

Conversion Manager Tasks for Partitioned Storable Classes
When Conversion Manager is configured to encode timestamps into object POIDs, it performs
these additional tasks:

• Determines which storable classes are partitioned and purgeable by reading the BRM data
dictionary. In the data dictionary, partitioned and purgeable storable classes have their
IS_PARTITIONED field set to 1 and their PARTITION_MODE field set to Finite.

• Reserves a set of POIDs for each partitioned, purgeable storable class and a single set of
POIDS for all nonpartitioned storable classes. For example, if the /bill and /item storable

Chapter 6
About Making Conversion Manager Aware of Partitions

6-3

classes are partitioned and purgeable, Conversion Manager reserves three sets of POIDs:
one for /bill objects, one for /item objects, and one for objects of all nonpartitioned storable
classes.

• Assigns POIDs to objects based on the storable class type:

– If the storable class is partitioned and purgeable, Conversion Manager assigns a POID
from the storable class's reserve of partitioned POIDs and encodes the timestamp. It
uses either the timestamp passed in from the legacy system or the system time when
you ran Conversion Manager.

– If the storable class is not partitioned, Conversion Manager assigns a POID from the
reserve of nonpartitioned POIDs.

Note:

If the set of reserved POIDs is already depleted, Conversion Manager
reserves a new set of POIDs before assigning one to an object.

The object is then loaded into a partition according to the storable class type and the
timestamp encoded in the object POID.

During the loading phase, if no corresponding partition is available for the timestamp encoded
in the object POID, the object is loaded into the next higher-range partition. If no higher-range
partition is available, the object is loaded into partition_last.

If a storable class is not partitioned, the object is loaded directly into the target table.

About Configuring Conversion Manager to Encode Timestamps in POIDs
To configure Conversion Manager to encode timestamps in object POIDs, you specify the
following in the Conversion Manager Infranet.properties file:

• The number of POIDs to reserve at a time.

• Which timestamp to encode into POIDs.

For more information, see "Configuring Conversion Manager for Partitioning".

Setting Up Your System to Load Legacy Data into Table
Partitions

To set up your system to load data from legacy billing systems into BRM table partitions:

1. Make sure partitioning is enabled in your BRM system by doing either or both of the
following:

• When installing BRM, choose to partition your tables.

• After installing BRM, convert nonpartitioned storable classes to partitioned storable
classes.

For more information, see "Partitioning Tables" in BRM System Administrator's Guide.

2. Determine the oldest object for each storable class that will be partitioned in the BRM
database. The oldest partition's start date must be prior to the oldest object's creation date
for that storable class.

Chapter 6
Setting Up Your System to Load Legacy Data into Table Partitions

6-4

3. Create partitions with the partition_utils utility. See "Creating Partitions for Your Legacy
Data".

4. Configure Conversion Manager for partitioning. See "Configuring Conversion Manager for
Partitioning".

5. Include the legacy object's creation timestamp in the Conversion Manager input XML file.
See "Passing Object Creation Timestamps in the Input XML File".

Creating Partitions for Your Legacy Data
To create back-dated partitions, enter the following command:

partition_utils -o add -t realtime -s start_date -u month|week|day -q quantity
 [-c storable_class] [-w width] -b

where:

• start_date specifies the starting date for the first partition. The format is MMDDYYYY. The
start date must be before the BRM installation date. The oldest partition's start date must
be before the oldest object's creation date.

• quantity specifies the number of partitions to add.

• storable_class specifies the storable class to store in the partition. The default is /event.

• width specifies the number of units in a partition, such as 3.

You must also create future-dated partitions for objects generated by your new BRM system.
For more information on how to create future-dated partitions, see "Partitioning Database
Tables" in BRM System Administrator's Guide.

Configuring Conversion Manager for Partitioning
By default, Conversion Manager does not encode timestamps in object POIDs. You configure
Conversion Manager to do so through its Infranet.properties file.

To configure Conversion Manager for partitioning:

1. Open the BRM_home/apps/CMT/Infranet.properties file in a text editor. BRM_home is
the directory in which the BRM server software is installed.

2. Set the entries for creating partitioning-aware object POIDs:

• Use infranet.cmt.timestampvalidation to specify which timestamp to encode in
generated POIDs. See "Configuring Which Timestamp to Encode".

• Use infranet.cmt.noofrecords to specify the number of POIDs to reserve for
partitioned POIDs. See "Configuring the Number of POIDs to Reserve".

3. Save and close the file.

Configuring Which Timestamp to Encode
The timestamp encoded in object POIDs can be either the object creation time passed in from
the legacy system or the system time when you run pin_cmt.

Chapter 6
Setting Up Your System to Load Legacy Data into Table Partitions

6-5

Note:

If you specify to use the system time, Conversion Manager loads all of the legacy
data into one partition. You must configure and size the appropriate partition to store
the volume of data that will be loaded into it.

You specify which timestamp to encode by using the following Infranet.properties file entry:

infranet.cmt.timestampvalidation = Value

where Value is one of the following:

• 0: The timestamp is set to the creation time passed in the input XML file. If a creation time
is not passed in, Conversion Manager assigns the system time when you run pin_cmt.

• 1: The timestamp is set to the creation time passed in the XML file only. If a creation time is
not passed in, Conversion Manager generates an error. This setting ensures that all
partitioned classes include the original creation timestamp. This is the default.

• 2: The timestamp is set to the system time when you run pin_cmt. If a creation timestamp
is passed in, Conversion Manager generates an error. This ensures that all partitioned
classes are loaded with the system time.

Note:

This parameter cannot enforce validations across multiple runs of Conversion
Manager. Loading some objects with the system time and other objects with the
object creation time could cause system inconsistencies and business operations
to fail.

Configuring the Number of POIDs to Reserve
Conversion Manager reserves a set of POIDs for each storable class type that is partitioned
and reserves another set of POIDs for all other nonpartitioned storable classes.

To configure the number of POIDs to reserve:

• For partitioned storable classes, use the following entry:

infranet.cmt.noofrecords = Number

where Number specifies the number of POIDs to reserve. The default is 1.

Conversion Manager reserves the specified number of POIDs for each storable class that
is partitioned.

• For nonpartitioned storable classes, use the following entries:

infranet.cmt.noofrecords = Number
infranet.cmt.avgnoofservices = Services
infranet.cmt.avgnoofdevices = Devices

where:

– Number specifies the number of POIDs to reserve. The default is 1.

– Services specifies the average number of services in your accounts. The default is 5.

Chapter 6
Setting Up Your System to Load Legacy Data into Table Partitions

6-6

– Devices specifies the average number of devices in your accounts. The default is 2.

Conversion Manager multiplies these three values (Number * Services * Devices) to
compute the total number of POIDs to reserve for nonpartitioned storable classes.

For example, assume you partition the /bill and /item storable classes and the
Infranet.properties file includes the following entries:

infranet.cmt.noofrecords = 1000
infranet.cmt.avgnoofservices = 5
infranet.cmt.avgnoofdevices = 3

In this example, Conversion Manager reserves the following POIDs:

• 1,000 POIDs for /bill objects.

• 1,000 POIDs for /item objects.

• 15,000 POIDs for all other objects.

Passing Object Creation Timestamps in the Input XML File
The Conversion Manager input XML file includes a CrtT element for all storable classes. If you
want to encode the legacy object's creation time in your POIDs, you must pass the object's
creation time in the CrtT element of the input XML file.

When passing the legacy object's creation time, make sure:

• The object creation timestamp is correct. Conversion Manager does not perform any
validations on values passed in the CrtT element.

• Objects using the legacy creation time are not combined in the same partitioned,
purgeable table as objects using the system time.

Chapter 6
Setting Up Your System to Load Legacy Data into Table Partitions

6-7

7
Conversion Manager Utilities

This chapter provides reference information for Oracle Communications Billing and Revenue
Management (BRM) Conversion Manager utilities.

Topics in this document:

• cmt_mta_cycle_fees

• pin_cmt

cmt_mta_cycle_fees

Note:

The cmt_mta_cycle_fees utility is run internally by the pin_cmt utility. Do not run
this utility by itself.

The cmt_mta_cycle_fees utility applies cycle forward fees to BRM accounts that have been
deployed by the pin_cmt utility. See "Understanding Conversion Manager" and "Loading
Legacy Data into the BRM Database".

Note:

• Conversion Manager is an optional component, not part of base BRM.

• To connect to the BRM database, the cmt_mta_cycle_fees utility needs a
configuration file in the directory from which you run the utility.

Location

BRM_home/apps/cmt

where BRM_home is the directory in which the BRM server software is installed.

Syntax

cmt_mta_cycle_fees -stage_id stage_ID -cycle_dom day_of_month

Parameters

-stage_id stage_ID
The stage ID used when the data was imported.

-cycle_dom day_of_month
The billing day of month for the accounts that need cycle fees applied.

7-1

Results

The cmt_mta_cycle_fees utility notifies you when it runs successfully. Otherwise, look in the
pin_mta.pinlog file in BRM_home/apps/cmt for errors.

pin_cmt
Use the pin_cmt utility to load legacy data in XML format into your BRM database. See
"Understanding Conversion Manager" and "Loading Legacy Data into the BRM Database".

Note:

• Conversion Manager is an optional component, not part of base BRM.

• To specify a database connection, edit the pin_cmt Infranet.properties file in
BRM_home/apps/cmt.

Location

BRM_home/apps/cmt

Syntax

pin_cmt -import -file XML_input_data_file stage_ID|
 -import_custom -file XML_input_data_file stage_ID|
 -recovery load batch_ID|
 -deploy DOM stage_ID

Parameters

-import -file XML_input_data_file stage_ID
Imports the specified data file into the BRM database.

Note:

Ensure that there are no extra spaces in the input XML file. If you need to indent text
in the XML file, use the TAB key to add space.

-import_custom -file XML_input_data_file stage_ID
Imports data that uses new storable classes into the BRM database.

-recovery load batch_id
Reloads data after a failed load process. The batch ID is recorded in the cmt.pinlog file in
BRM_home/apps/cmt.

-deploy DOM stage_ID
Deploys data. DOM is the billing cycle's day of the month. stage_ID is the stage ID used when
the data was imported.
In this example, accounts with a billing day of month of 15 and stage ID of 100 are deployed:

pin_cmt -deploy 15 100

Chapter 7
pin_cmt

7-2

Results

The pin_cmt utility notifies you when it runs successfully. Otherwise, look in the cmt.pinlog file
in BRM_home/apps/cmt for errors. In addition, look for errors in the log file specified in the
pin.conf file for the cmt_mta_cycle_fees utility.

Chapter 7
pin_cmt

7-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Understanding Conversion Manager
	About Conversion Manager
	Overview of the Data Conversion Process
	About Testing Your Data Mapping
	About Mapping Data
	About Loading Data
	About Verifying Data Before It Is Deployed
	About Migrating Data to Multischema Systems

	About Loading Data by Using Multiple Files
	About Reloading Data

	2 Installing and Configuring Conversion Manager
	Installing Conversion Manager
	Configuring the pin_cmt Utility
	Referencing JAR Files
	Defining Timestamp Validation for Finite Partitioned Classes
	Viewing Data before Deploying
	Enabling Multischema Loading
	Enabling XML Validation
	Configuring the Database Setup
	Setting the Default Credit Limit Profile
	Applying Cycle Fees to Deployed Accounts
	Migrating New Balances to an Account Without Deleting Existing Balances
	Supporting 31-Day Billing
	Supporting Delayed Billing

	Improving Conversion Manager Performance
	XML File Formatting
	Running Multiple Instances of the pin_cmt Utility
	Using Connection Pooling with Conversion Manager
	Configuring Log File Levels
	System Resources
	Conversion Manager Preload Tuning
	Increasing Memory Allocation to Prevent a System Hang

	Conversion Manager Load Tuning
	Conversion Manager Deploy Tuning

	3 Mapping Legacy Data to the BRM Data Schema
	About Creating XML Files
	About the XSD Files
	About the Types of Data to Convert
	Tables Affected by the Conversion Process
	Loading Data into Additional Audit Tables

	4 Migrating Data by Using New and Extended Storable Classes
	About Migrating Data by Using New and Extended Storable Classes
	About Extended Storable Classes for Migration
	About Linking to Data from New or Extended Storable Class Data
	Creating XML Files for New or Extended Storable Class Data
	Creating an XSD File for Extended Data

	Creating Control Files for Extended Storable Classes
	Creating Control Files for Custom Event Tables in a Virtual Column-Enabled System

	Example of Extending a Service Storable Class
	Setting a Service Balance Group

	Example of Extending a Device Storable Class
	Example of Creating a Storable Class
	Example of Migrating Hierarchical Accounts
	Setting an Account Bill Unit

	Example of Migrating Hierarchical Bill Units within an Account

	5 Loading Legacy Data into the BRM Database
	Importing Data
	Deploying Converted Data
	Reloading Data
	Troubleshooting Conversion Manager
	Common pin_cmt Utility Error Messages

	Testing the Imported Data
	Using testnap and Object Browser to Validate the Database
	Validating /account Objects
	Validating /bill, /item, /event, /service, and /payinfo Objects

	Using Billing Care to Validate Data
	Using SQL to Validate Data

	6 Migrating Legacy Data into BRM Table Partitions
	About Migrating Legacy Data into Table Partitions
	About Partitioning
	About Your Partitioning Scheme

	About Making Conversion Manager Aware of Partitions
	About the Timestamps Encoded in Object POIDs
	Conversion Manager Tasks for Partitioned Storable Classes
	About Configuring Conversion Manager to Encode Timestamps in POIDs

	Setting Up Your System to Load Legacy Data into Table Partitions
	Creating Partitions for Your Legacy Data
	Configuring Conversion Manager for Partitioning
	Configuring Which Timestamp to Encode
	Configuring the Number of POIDs to Reserve

	Passing Object Creation Timestamps in the Input XML File

	7 Conversion Manager Utilities
	cmt_mta_cycle_fees
	pin_cmt

