
Oracle® Communications Billing and
Revenue Management
Cloud Native System Administrator's Guide

Release 15.1
F93177-01
April 2025

Oracle Communications Billing and Revenue Management Cloud Native System Administrator's Guide, Release 15.1

F93177-01

Copyright © 2021, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xi

Documentation Accessibility xi

Diversity and Inclusion xi

Part I Basic System Administration of BRM Cloud Native

1 Managing Pods and PVCs in BRM Cloud Native

Setting up Autoscaling of BRM Pods 1-1

Automatically Rolling Deployments by Using Annotations 1-3

Restarting BRM Pods 1-3

Setting Minimum and Maximum CPU and Memory Values 1-4

Using Static Volumes 1-5

2 Running Applications and Utilities Outside Pods

Running Load Utilities Through Configurator Jobs 2-1

Running pin_bus_params and load_pin_device_state 2-2

Running Load Utilities on Multischema Systems 2-3

Running Applications and Utilities Through brm-apps Jobs 2-4

Configuring MTA Performance Parameters 2-4

Running Custom Applications and Utilities Through brm-apps 2-6

Running Business Operations Through pin_job_executor Service 2-7

3 Exposing Directories as ConfigMaps

Configuring a CM ConfigMap Directory 3-1

Exposing the taxcode_map File Example 3-1

Configuring an EAI Publisher ConfigMap 3-2

iii

4 Managing a Helm Release

About Helm Releases 4-1

Tracking a Release's Status 4-1

Updating a Helm Release 4-1

Checking a Release's Revision 4-2

Rolling Back a Release To a Previous Revision 4-2

5 Managing Passwords in BRM Cloud Native

About Using External Kubernetes Secrets 5-1

Rotating the BRM Root Password 5-2

Rotating the BRM Root Key 5-5

Rotating the BRM Password 5-6

Rotating BRM Role Passwords 5-7

6 Managing Database Partitions

Converting Nonpartitioned Classes to Partitioned Classes 6-1

Adding Partitions to Your Database 6-2

7 Improving Performance in BRM Cloud Native

Deploying the CM and DM Containers in the Same Pod 7-1

Tuning Your Application Connection Pools 7-5

Configuring Multiple Replicas of Batch Controller 7-6

Deploying Paymentech Data Manager in HA Mode 7-6

8 Managing a BRM Cloud Native Multischema System

Running Billing Against a Specified Schema 8-1

Adding Schemas to a Multischema System 8-2

Migrating Accounts from One Schema to Another 8-7

Migrating Accounts Using Custom Search Criteria 8-9

Modifying Database Schema Priorities 8-12

Modifying Database Schema Status 8-13

Synchronizing /uniqueness Objects Between Schemas 8-15

9 Migrating Legacy Data to BRM Cloud Native

About Migrating Legacy Data 9-1

Loading Legacy Data into the BRM Database 9-1

iv

10

Creating Custom Fields and Storable Classes

Creating, Editing, and Deleting Fields and Storable Classes using BRM SDK Opcodes 10-1

Making the Data Dictionary Writable 10-1

Running the BRM SDK Opcodes 10-2

Making Custom Fields Available to Your PCM and C++ Applications 10-5

Making Custom Fields Available to Your Java PCM Applications 10-7

Moving Field and Storable Class Definitions Between BRM Servers with pin_deploy 10-7

Extracting Field and Storable Class Definitions with pin_deploy 10-8

Importing Field and Storable Class Definitions with pin_deploy 10-9

Part II Monitoring BRM Cloud Native Services

11

Monitoring BRM Cloud Native Services

About Monitoring BRM Cloud Native Services 11-1

Setting Up Monitoring for BRM Cloud Native Services 11-1

Configuring BRM Cloud Native to Collect Metrics 11-2

Configuring Perflib for BRM Opcode Monitoring 11-4

Configuring OracleDB_Exporter to Scrape Database Metrics 11-7

Configuring Grafana for BRM Cloud Native 11-8

BRM Opcode Metric Group 11-9

12

Monitoring and Autoscaling Business Operations Center Cloud Native

About Monitoring and Autoscaling in Business Operations Center Cloud Native 12-1

Setting Up Monitoring and Autoscaling in Business Operations Center 12-1

Configuring WebLogic Monitoring Exporter to Scrape Metric Data 12-2

Configuring webhook to Enable Autoscaling 12-3

Configuring Standalone Prometheus for Business Operations Center 12-5

Configuring Prometheus Operator for Business Operations Center 12-7

Creating Grafana Dashboards for Business Operations Center 12-9

Sample Prometheus Alert Rules for Business Operations Center 12-9

13

Monitoring and Autoscaling Billing Care Cloud Native

About Monitoring and Autoscaling in Billing Care Cloud Native 13-1

Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API 13-1

Configuring WebLogic Monitoring Exporter to Scrape Metric Data 13-2

Configuring Webhook to Enable Autoscaling 13-3

Configuring Standalone Prometheus for Billing Care 13-6

Configuring Prometheus Operator for Billing Care 13-9

v

Creating Grafana Dashboards for Billing Care and Billing Care REST API 13-11

Sample Prometheus Alert Rules for Billing Care and Billing Care REST API 13-11

14

Monitoring and Autoscaling Pipeline Configuration Center Cloud Native

About Monitoring and Autoscaling Pipeline Configuration Center Cloud Native 14-1

Setting Up Monitoring and Autoscaling in Pipeline Configuration Center 14-1

Configuring WebLogic Monitoring Exporter to Scrape Metric Data 14-2

Configuring webhook to Enable Autoscaling 14-3

Configuring Standalone Prometheus for Pipeline Configuration Center 14-5

Configuring Prometheus Operator for Pipeline Configuration Center 14-7

Creating Grafana Dashboards for Pipeline Configuration Center 14-9

Sample Prometheus Alert Rules for Pipeline Configuration Center 14-9

15

Monitoring BRM REST Services Manager Cloud Native

About Monitoring BRM REST Services Manager Cloud Native 15-1

Setting Up Monitoring for BRM REST Services Manager 15-1

Creating Grafana Dashboards for BRM REST Services Manager 15-4

Modifying Prometheus and Grafana Alert Rules After Deployment 15-5

About REST Endpoints for Monitoring BRM REST Services Manager 15-6

16

Tracing BRM REST Services Manager Cloud Native

About BRM REST Services Manager Tracing 16-1

Securing Communication with Zipkin 16-1

Enabling Tracing in BRM REST Services Manager 16-1

17

Tracing Opcode Processes

Enabling Selective Opcode Tracing 17-1

Part III Integrating with BRM Cloud Native

18

Integrating with Your BRM Cloud Native Deployment

Integrating with Thick Clients 18-1

Using a Custom TLS Certificate 18-2

Integrating with JCA Resource Adapter 18-3

Integrating with Kafka Servers 18-5

Integrating with Oracle Analytics Publisher 18-7

vi

Generating Invoices in Oracle Analytics Publisher 18-11

Part IV Administering PDC Cloud Native Services

19

Administering PDC Cloud Native Services

Creating PDC Users 19-1

Using Resource Limits in PDC Domain Pods 19-2

20

Running PDC Applications

About Running the PDC Utilities 20-1

Importing Pricing and Setup Components with ImportExportPricing 20-1

Importing from a Single XML File 20-1

Importing Multiple XML Files from a Directory 20-3

Exporting Pricing and Setup Components with ImportExportPricing 20-4

Using SyncPDC to Synchronize Setup Components 20-6

21

Monitoring PDC in a Cloud Native Environment

About Monitoring PDC Cloud Native 21-1

Setting Up Monitoring in PDC Cloud Native 21-1

Creating Grafana Dashboards for Pricing Design Center 21-3

22

Monitoring PDC REST Services Manager

About PDC REST Services Manager Logs 22-1

Accessing the PDC REST Services Manager Logs 22-2

Changing the Log Levels 22-3

Changing the Log Levels Using Helm 22-3

Changing the Log Levels Using Kubernetes 22-4

Changing the Default Log Manager Using Helm 22-4

About PDC REST Services Manager Tracing 22-5

Enabling Tracing in PDC REST Services Manager 22-5

Using Trace Tags to Troubleshoot Issues 22-6

About PDC REST Services Manager Metrics 22-7

Checking Access to PDC REST Services Manager Metrics 22-8

About Monitoring PDC REST Services Manager System Health 22-9

Verifying the PDC REST Services Manager Pod Status 22-9

Using the PDC REST Services Manager Health Endpoint 22-9

vii

23

Rotating PDC Log Files

About Rotating PDC Log Files 23-1

24

Managing Language Packs in PDC Pods

Enabling Language Packs in PDC Pods 24-1

25

Troubleshooting PDC Cloud Native

Troubleshooting ImportExportPricing Errors 25-1

Part V Administering ECE Cloud Native Services

26

Administering ECE Cloud Native Services

Running SDK Jobs 26-1

Error Handling for SDK Jobs 26-3

Changing the ECE Configuration During Runtime 26-3

Creating a JMX Connection to ECE Using JConsole 26-3

Reloading ECE Application Configuration Changes 26-4

Reloading the Grid Log Level 26-5

Configuring Subscriber-Based Tracing for ECE Services 26-6

Using Third-Party Libraries and Custom Mediation Specifications 26-8

Setting Up ECE Cloud Native in Firewall-Enabled Environments 26-9

Enabling Federation in ECE 26-11

Enabling Parallel Pod Management in ECE 26-13

Customizing SDK Source Code 26-14

27

Securing ECE Communications

Enabling SSL Communication When Separate Clusters for BRM and ECE 27-1

Using a Custom TLS Certificate for Secure Connections 27-2

Securing Communication Between the CHF and NRF, PCF, and SMF 27-2

Securing Communication Using KeyStores Mounted in the Helm Chart 27-2

Securing Communication Using External Kubernetes Secrets 27-3

28

Managing ECE Journal Storage

About Coherence Elastic Data Storage 28-1

Managing Coherence Journal Space 28-1

viii

29

Managing Persisted Data in the Oracle Database

Enabling Persistence in ECE 29-1

Re-Creating the ECE Schema After Deployment 29-3

Loading Only Partial Data into ECE Cache 29-3

Incremental Customer Loading in ECE Cache 29-4

30

Configuring Disaster Recovery in ECE Cloud Native

Setting Up Active-Active Disaster Recovery for ECE 30-1

Processing Usage Requests on Site Receiving Request 30-9

Stopping ECE from Routing to a Failed Site 30-10

Adding Fixed Site Back to ECE System 30-11

Activating a Secondary Rated Event Formatter Instance 30-11

About Conflict Resolution During the Journal Federation Process 30-12

31

Managing ECE Pods

Scaling Kubernetes Pods 31-1

Setting up Autoscaling of ECE Pods 31-1

Rolling Restart of ECE Pods 31-4

32

Monitoring ECE in a Cloud Native Environment

About Monitoring ECE in a Cloud Native Environment 32-1

Enabling ECE Metric Endpoints 32-2

Sample Prometheus Operator Configuration 32-3

ECE Cloud Native Metrics 32-4

BRS Metrics 32-4

BRS Queue Metrics 32-7

CDR Formatter Metrics 32-7

Coherence Metrics 32-7

Diameter Gateway Metrics 32-8

EM Gateway Metrics 32-8

JVM Metrics 32-9

Kafka JMX Metrics 32-10

Kafka Client Metrics 32-10

Micrometer Executor Metrics 32-11

RADIUS Gateway Metrics 32-12

Rated Event Formatter (REF) Metrics 32-12

Rated Events Metrics 32-13

ix

Session Metrics 32-13

A WebLogic-Based Application Metrics

WLS Server Metrics Group A-1

Application Runtime Metric Group A-2

Servlets Metric Group A-2

JVM Runtime Metric Group A-3

Execute Queue Runtime Metric Group A-3

Work Manager Runtime Metric Group A-4

Thread Pool Runtime Metric Group A-4

JDBC Service Runtime Metric Group A-4

JTA Runtime Metric Group A-6

WLS Scrape MBean Metric Group A-7

Persistent Store Runtime MBean Metric Group A-7

B Supported Scripts and Utilities

C Supported Utilities and Applications for brm-apps Jobs

D Supported Load Utilities for Configurator Jobs

x

Preface

This guide describes how to install and administer Oracle Communications Billing and
Revenue Management (BRM) Cloud Native Deployment Option.

Audience
This document is intended for DevOps administrators and those involved in installing and
maintaining an Oracle Communications Billing and Revenue Management (BRM) Cloud Native
Deployment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Part I
Basic System Administration of BRM Cloud
Native

This part describes basic administration tasks in an Oracle Communications Billing and
Revenue Management (BRM) cloud native system. It contains the following chapters:

• Managing Pods and PVCs in BRM Cloud Native

• Running Applications and Utilities Outside Pods

• Exposing Directories as ConfigMaps

• Managing a Helm Release

• Managing Passwords in BRM Cloud Native

• Managing Database Partitions

• Improving Performance in BRM Cloud Native

• Managing a BRM Cloud Native Multischema System

• Migrating Legacy Data to BRM Cloud Native

• Creating Custom Fields and Storable Classes

1
Managing Pods and PVCs in BRM Cloud
Native

Learn how to manage the pods and PersistentVolumeClaim (PVCs) in your Oracle
Communications Billing and Revenue Management (BRM) cloud native environment.

Topics in this document:

• Setting up Autoscaling of BRM Pods

• Automatically Rolling Deployments by Using Annotations

• Restarting BRM Pods

• Setting Minimum and Maximum CPU and Memory Values

• Using Static Volumes

Note:

This documentation uses the override-values.yaml file name for ease of use, but
you can name the file whatever you want.

Setting up Autoscaling of BRM Pods
You can use the Kubernetes Horizontal Pod Autoscaler to automatically scale up or down the
number of BRM pod replicas in your deployment based on a pod's CPU or memory utilization.

For more information about:

• Kubernetes Horizontal Pod Autoscaler, see "Horizontal Pod Autoscaling" in the Kubernetes
documentation

• Kubernetes requests and limits, see "Resource Management for Pods and Containers" in
the Kubernetes documentation

In BRM cloud native deployments, the Horizontal Pod Autoscaler monitors and scales these
BRM pods:

• batch-controller

• brm-rest-services-manager

• cm

• dm-eai

• dm-kakfa

• dm-oracle

• realtime-pipe

• rel-daemon

1-1

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

• rated-event-manager

To set up autoscaling for BRM pods:

1. Open your override-values.yaml file for oc-cn-helm-chart.

2. Enable the Horizontal Pod Autoscaler by setting the ocbrm.isHPAEnabled key to true.

3. Specify how often, in seconds, the Horizontal Pod Autoscaler checks a BRM pod's
memory usage and scales the number of replicas. To do so, set the
ocbrm.refreshInterval key to the number of seconds between each check. For example,
set it to 60 for a one-minute interval.

4. For each BRM pod, set these keys to the appropriate values for your system:

• ocbrm.BRMPod.resources.limits.cpu: Set this to the maximum number of CPU
cores the pod can utilize.

• ocbrm.BRMPod.resources.requests.cpu: Set this to the minimum number of CPU
cores required in a Kubernetes node to deploy a pod.

The pod is set to Pending if the minimum CPU amount is unavailable.

Note:

The node must have enough CPUs available for the CPU requests of all
containers of the pod. For example, the cm pod would need to have enough
CPUs for the cm container, eai_js container, and perflib container (if
enabled).

• ocbrm.BRMPod.resources.limits.memory: Set this to the maximum amount of
memory a pod can utilize.

• ocbrm.BRMPod.resources.requests.memory: Set this to the minimum memory
required for a Kubernetes node to deploy a pod.

The pod is set to Pending if the minimum amount is unavailable due to insufficient
memory.

• ocbrm.BRMPod.hpaValues.minReplica: Set this to the minimum number of pod
replicas that can be deployed in a cluster.

If a pod's utilization metrics drop below targetCPU or targetMemory, the Horizontal
Pod Autoscaler scales down the number of pod replicas to this minimum count. No
changes are made if the number of pod replicas is already at the minimum.

• ocbrm.BRMPod.hpaValues.maxReplica: Set this to the maximum number of pod
replicas to deploy when scale up is triggered.

If a pod's metrics utilization goes above targetCPU or targetMemory, the Horizontal
Pod Autoscaler scales up the number of pods to this maximum count.

• ocbrm.BRMPod.hpaValues.targetCpu: Set this to the percentage of requestCpu at
which to scale up or down a pod.

If a pod's CPU utilization exceeds targetCpu, the Horizontal Pod Autoscaler increases
the pod replica count to maxReplica. If a pod's CPU utilization drops below
targetCpu, the Horizontal Pod Autoscaler decreases the pod replica count to
minReplica.

• ocbrm.BRMPod.hpaValues.targetMemory: Set this to the percentage of
requestMemory at which to scale up or scale down a pod.

Chapter 1
Setting up Autoscaling of BRM Pods

1-2

If a pod's memory utilization exceeds targetMemory, the Horizontal Pod Autoscaler
increases the pod replica count to maxReplica. If memory utilization drops below
targetMemory, the Horizontal Pod Autoscaler decreases the pod replica count to
minReplica.

5. Save and close your override-values.yaml file.

6. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Automatically Rolling Deployments by Using Annotations
Whenever a ConfigMap entry or a Secret file is modified, you must restart its associated pod.
This updates the container's configuration, but the application is notified about the
configuration updates only if the pod's deployment specification has changed. Thus, a
container could use the new configuration while the application keeps running with its old
configuration.

You can configure a pod to automatically notify an application when a container's configuration
has changed. To do so, configure a pod to automatically update its deployment specification
whenever a ConfigMap or Secret file changes by using the sha256sum function. Add an
annotations section similar to this one to the pod's deployment specification:

kind: Deployment
spec:
 template:
 metadata:
 annotations:
 checksum/config: {{ include (print $.Template.BasePath "/
configmap.yaml") . | sha256sum }}

For more information, see "Automatically Roll Deployments" in Helm Chart Development Tips
and Tricks.

Restarting BRM Pods
You may occasionally need to restart a BRM pod, such as when an error occurs that you
cannot fix or a pod is stuck in a terminating status. You restart a BRM pod by deleting it with
kubectl.

To restart a BRM pod:

1. Retrieve the names of the BRM pods by entering this command:

kubectl get pods -n NameSpace

Chapter 1
Automatically Rolling Deployments by Using Annotations

1-3

https://helm.sh/docs/howto/charts_tips_and_tricks/#automatically-roll-deployments

where NameSpace is the namespace in which Kubernetes objects for the BRM Helm chart
reside.

The following provides sample output:

NAME READY STATUS RESTARTS AGE
cm-6f79d95887-lp7qs 1/1 Running 0 6d17h
dm-oracle-5496bf8d94-vjgn7 1/1 Running 0 6d17h
dm-kafka-d5ccf6dbd-l968b 1/1 Running 0 6d17h

2. Delete a pod by entering this command:

kubectl delete pod PodName -n NameSpace

where PodName is the name of the pod. For example, to delete and restart the cm pod,
you would enter:

kubectl delete pod cm-6f79d95887-lp7qs -n NameSpace

Setting Minimum and Maximum CPU and Memory Values
You can specify the minimum and maximum CPU and memory resources BRM cloud native
containers can use. Setting minimum values ensures containers can deploy successfully while
setting maximum values prevents containers from consuming excessive resources, which
could lead to system crashes.

Note:

For a pod to be scheduled on a node, the node must have enough CPUs available
for the CPU requests of all containers of the pod. For example, in case of the cm pod,
the node would need to have enough CPUs for the cm container, eai_js container,
and perflib container (if enabled).

You should also tune the JVM parameter for heap memory when tuning container-
level resources for Java-based containers. You do this adjustment through
component-level keys.

To set the minimum and maximum amount of CPUs and memory for containers, include the
following keys in your override-values.yaml file for oc-cn-helm-chart, oc-cn-init-db-helm-
chart, oc-cn-op-job-helm-chart, oc-cn-ece-helm-chart:

componentName:
 resources:
 requests:
 cpu: value
 memory: value
 limits:
 cpu: value
 memory: value

where:

• componentName: Specifies the component name in the values.yaml file, such as cm,
rel_daemon, and dm_vertex.

• limits.cpu: Specifies the maximum number of CPU cores the container can utilize, such as
1000m.

Chapter 1
Setting Minimum and Maximum CPU and Memory Values

1-4

• limits.memory: Specifies the maximum amount of memory a container can utilize, such as
2000Mi.

• requests.cpu: Specifies the minimum number of CPU cores reserved in a Kubernetes
node to deploy a container, such as 50m.

• requests.memory: Specifies the minimum amount of memory a container can utilize, such
as 256Mi.

You must perform a Helm install or Helm upgrade after making any changes.

For more information about requests and limits, see "Resource Management for Pods and
Containers" in the Kubernetes documentation.

Using Static Volumes
By default, the BRM cloud native pods use dynamic volume provisioning. However, you can
modify one or more pods to use static volumes instead to meet your business requirements. To
do so, you add createOption keys to the override-values.yaml file for each pod that you want
to use static volumes and then redeploy your Helm charts.

To change a pod to use dynamic volumes, remove the createOption keys from your override-
values.yaml file and then redeploy your Helm charts.

To change one or more pods to use static volumes, do the following:

1. Open the override-values.yaml file for the appropriate Helm chart: oc-cn-op-job-helm-
chart, oc-cn-helm-chart, and oc-cn-ece-helm-chart.

2. Under the appropriate pod's volume section, update the createOption keys.

For example, to use a hostPath-based volume, you would update the createOption key as
shown below:

volume:
 createOption:
 hostPath:
 path: pathOnNode
 type: Directory

where pathOnNode is the location on the host system of the external PV.

Note:

The batchpipe, rated-event-manager, and rel_daemon pods require a separate
volume for each schema in a multischema system. In this case, use
pathOnNode/SCHEMA. When you perform a helm upgrade or install, it replaces
SCHEMA with the schema number. For example, the Helm chart replaces
SCHEMA with 1 for schema 1, 2 for schema 2, and so on.

3. Save and close your override-values.yaml file.

4. Redeploy your Helm charts. For more information, see "Deploying BRM Cloud Native
Services" in BRM Cloud Native Deployment Guide.

The following shows sample override-values.yaml keys for changing the brm-sdk, batchpipe,
and batch-controller pods to use a static hostPath-based volume:

ocbrm:
 brm_sdk:

Chapter 1
Using Static Volumes

1-5

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

 volume:
 storage: 50Mi
 createOption:
 hostPath:
 path: /sample/vol
 type: Directory
 batchpipe:
 volume:
 output:
 storage: 100mi
 createOption:
 hostPath:
 path: /sample/vol/out/SCHEMA
 type: Directory
 reject:
 storage: 100mi
 createOption:
 hostPath:
 path: /sample/vol/reject/SCHEMA
 type: Directory

 batch-controller:
 volume:
 input:
 storage: 50mi
 createOption:
 hostPath:
 path: /sample/vol/input
 type: Directory

Chapter 1
Using Static Volumes

1-6

2
Running Applications and Utilities Outside
Pods

Learn how to run applications, utilities, and scripts on demand in Oracle Communications
Billing and Revenue Management (BRM) cloud native without entering a pod by running
configurator and brm-apps jobs.

Topics in this document:

• Running Load Utilities Through Configurator Jobs

• Running Load Utilities on Multischema Systems

• Running Applications and Utilities Through brm-apps Jobs

• Running Custom Applications and Utilities Through brm-apps

• Running Business Operations Through pin_job_executor Service

Running Load Utilities Through Configurator Jobs
You can run BRM load utilities on demand without entering into a pod by running a configurator
job. For a list of utilities supported by the configurator job, see "Supported Load Utilities for
Configurator Jobs".

To run BRM load utilities through configurator jobs:

1. Update the oc-cn-helm-chart/config_scripts/loadme.sh script with the list of load utilities
that you want to run. The input will follow this general syntax:

#!/bin/sh

cd runDirectory; utilityCommand configFile
exit 0;

where:

• runDirectory is the directory from which to run the utility.

• utilityCommand is the utility command to run at the command line.

• configFile is the file name and path to any input files the utility requires.

2. Move any required input files to the oc-cn-helm-chart/config_scripts directory.

If the input file is an XML file with an XSD path, modify the XML file to refer to the container
path. If the XML has only an XSD file name, move the XSD file along with the XML file.

3. Enable the configurator job. In your override-values.yaml file for oc-cn-helm-chart, set
ocbrm.config_jobs.run_apps to true:

ocbrm:
 config_jobs:
 run_apps: true

2-1

4. Run the helm upgrade command to update the release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

The utilities specified in the loadme.sh script are run.

5. If the utility requires the CM to be restarted, do this:

a. Update these keys in the override-values.yaml file for oc-cn-helm-chart:

• ocbrm.config_jobs.restart_count: Increment the existing value by 1

• ocbrm.config_jobs.run_apps: Set this to false

b. Update the Helm release again:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

Running pin_bus_params and load_pin_device_state
This example shows how to set up the configurator job to run the pin_bus_params and
load_pin_device_state utilities.

To run pin_bus_params and then run load_pin_device_state:

1. Add the following lines to the oc-cn-helm-chart/config_scripts/loadme.sh script:

#!/bin/sh

cd /oms/sys/data/config; pin_bus_params -v /oms/load/
bus_params_billing_flow.xml
cd /oms/sys/data/config; load_pin_device_state -v /oms/sys/data/config/
pin_device_state_num
exit 0;

2. Move the bus_params_billing_flow.xml and pin_device_state_num input files to the
oc-cn-helm-chart/config_scripts directory.

3. In the override-values.yaml file for oc-cn-helm-chart, set ocbrm.config_jobs.run_apps
to true.

4. Run the helm upgrade command to update the release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

5. Restart the CM because pin_bus_params requires it.

a. Set these keys in the override-values.yaml file:

Chapter 2
Running Load Utilities Through Configurator Jobs

2-2

• ocbrm.config_jobs.restart_count: Increment the existing value by 1

• ocbrm.config_jobs.run_apps: Set this to false

b. Update the Helm release again:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

Running Load Utilities on Multischema Systems
When you use the configurator job to load configuration data into a multischema system, you
load the configuration data into the primary schema.

To load configuration data on a multischema system:

1. Update the oc-cn-helm-chart/config_scripts/loadme.sh script with the list of load utilities
that you want to run. The input will follow this general syntax:

#!/bin/sh

cd runDirectory; utilityCommand configFile
exit 0;

2. Move any required input files to the oc-cn-helm-chart/config_scripts directory.

If the input file is an XML file with an XSD path, modify the XML file to refer to the container
path. If the XML has only an XSD file name, move the XSD file along with the XML file.

3. Enable the configurator job, and disable multischema in the configurator job.

In your override-values.yaml file for oc-cn-helm-chart, set these keys:

ocbrm:
 config_jobs:
 run_apps: true
 isMultiSchema: false

4. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

The utilities specified in the loadme.sh script are run.

5. If the utility requires the CM to be restarted, do this:

a. Update these keys in the override-values.yaml file for oc-cn-helm-chart:

• ocbrm.config_jobs.restart_count: Increment the existing value by 1

• ocbrm.config_jobs.run_apps: Set this to false

b. Update the BRM Helm release again:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

Chapter 2
Running Load Utilities on Multischema Systems

2-3

Running Applications and Utilities Through brm-apps Jobs
You can run applications and utilities on demand without entering a pod through a brm-apps
job. For a list of utilities and applications supported by the brm-apps job, see "Supported
Utilities and Applications for brm-apps Jobs".

To run BRM applications through a brm-apps job:

1. Update the oc-cn-helm-chart/brmapps_scripts/loadme.sh script to include the
applications and utilities that you want to run. The input will follow this general syntax:

#!/bin/sh

cd runDirectory; utilityCommand configFile
exit 0;

where:

• runDirectory is the directory from which to run the application or utility.

• utilityCommand is the utility or application command to run at the command line.

• configFile is the file name and path to any input files the application or utility requires.

2. Move any required input files to the oc-cn-helm-chart/brmapps_scripts directory.

3. Enable the brm-apps job. In your override-values.yaml file for oc-cn-helm-chart, set
ocbrm.brm_apps.job.isEnabled to true.

4. If you run a multithreaded application (MTA), configure the performance parameters in your
override-values.yaml file. For more information, see "Configuring MTA Performance
Parameters".

5. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

The applications and utilities specified in the loadme.sh script are run.

Configuring MTA Performance Parameters
You can configure the performance of multithreaded (MTA) applications, such as
pin_bill_accts and pin_export_price, outside of the Kubernetes cluster. To do so, you edit
these MTA-related keys in your override-values.yaml file for oc-cn-helm-chart:

• mtaChildren: Governs how many child threads process data in parallel. Each child thread
fetches and processes one account from the queue before it fetches the next one.

Chapter 2
Running Applications and Utilities Through brm-apps Jobs

2-4

You can increase the number of child threads to improve application performance when
the database server remains under-utilized even though you have a large number of
accounts. If you increase the number of children beyond the optimum, performance suffers
from context switching. This is often indicated by a higher system time with no increase in
throughput. Performance is best when the number of children is nearly equal to the
number of DM backends, and most backends are dedicated to processing transactions.

• mtaPerBatch: Specifies the number of payment transactions the pin_collect utility sends
to dm_fusa in a batch. For example, if you have 20,000 payments to process and the
mtaPerBatch key is set to 5000, the pin_collect utility sends four batches to dm_fusa
(each batch containing 5,000 payment transactions).

Note:

This key impacts the performance of the pin_collect application only. It has
minimal impact on other applications.

• mtaPerStep: Specifies how much data to store in dm_oracle when the application
performs a step search. It does not significantly impact performance but governs memory
usage in dm_oracle. It also prevents BRM from using all of its memory for one large
search.

A 64-bit dm_oracle can use reasonably large values. A typical mtaPerStep value for
invoice utilities would be between 10,000 and 50,000.

• mtaFetchSize: Specifies the number of account records to retrieve from the database and
hold in memory before the utility starts processing them. In general, this value should be as
large as possible to reduce the number of fetches from the database.

The maximum possible fetch size depends on the complexity of the application's search
results. When running applications on parent accounts (pay_type 10001), the
mtaFetchSize value refers to the number of parent accounts to retrieve. For example, if
you have 10,000 parent accounts and each account has an average of 50 children, you
would set mtaFetchSize to 10,000 to retrieve all parent accounts. When running
applications on only the children (pay_type 10007), you would set mtaFetchSize to
500,000 to retrieve all child accounts.

The MTA-related keys are nested under the ocbrm.brm_apps.deployment.DirectoryName
section in your override-values.yaml file:

ocbrm:
 brm_apps:
 deployment:
 DirectoryName
 mtaChildren: 5
 mtaPerBatch: 500
 mtaPerStep: 1000
 mtaFetchSize: 5000

where DirectoryName is the name of the directory in which the application resides, such as
pin_collections for the pin_collect application or pin_billd for the pin_bill_day application.
The directory name for each application is listed in "Supported Utilities and Applications for
brm-apps Jobs".

If you modify these keys, you must run the helm upgrade command for the changes to take
effect. See "Updating a Helm Release".

Chapter 2
Running Applications and Utilities Through brm-apps Jobs

2-5

Running Custom Applications and Utilities Through brm-apps
You can configure your BRM cloud native environment to run custom applications and utilities
through a brm-apps job. To do so:

1. Identify all binaries, libraries, and configuration files required for your custom utility.

2. Layer the binaries and libraries on top of the brm-apps image.

If any configuration needs to be done when the container starts, modify the entrypoint.sh
script and layer it while building the brm-apps image.

3. Convert any configuration files into ConfigMaps.

Example: Running pin_billing_custom

This example shows how to set up a custom utility named pin_billing_custom to run through
a brm-apps job.

1. Convert the utility's pin.conf configuration file into a ConfigMap, which will be mounted
inside the container in the path /oms/custom_pin.conf.

For information about converting a pin.conf file into a ConfigMap, refer to any
configmap_pin_conf file in the oc-cn-helm-chart/template directory.

2. Copy the entrypoint.sh script from the oc-cn-docker-files directory to the /oms directory.

3. In the entrypoint.sh script, under the brm-apps section, add a line for copying the /oms/
custom_pin.conf file to the apps/pin_billing_custom directory.

4. Layer the pin_billing_custom binary, the modified entrypoint.sh script, and the apps/
pin_billing_custom directory into a brm-apps image by creating this
dockerfile_custom_brm_apps file:

Note:

Ensure that the scripts and binaries have execute permission.

vi dockerfile_custom_brm_apps
 FROM brm_apps:15.1.x.x.x
 USER root
 COPY pin_billing_custom /oms/bin/
 RUN mkdir /oms/apps/pin_billing_custom
 COPY entrypoint.sh /oms/
 RUN chown -R omsuser:oms /oms/bin/pin_billing_custom /oms/apps/
pin_billing_custom /oms/entrypoint.sh && \
 chmod -R 755 /oms/bin/pin_billing_custom /oms/apps/
pin_billing_custom /oms/entrypoint.sh
 USER omsuser

5. Build the image by entering this command:

podman build --format docker --tag brm_apps:15.1.x.x.x-custom --file
dockerfile_custom_brm_apps .

Chapter 2
Running Custom Applications and Utilities Through brm-apps

2-6

6. Update the oc-cn-helm-chart/template/brm_apps_job.yaml file to mount the ConfigMap
in the container:

volumeMounts:
- name: brm-apps-custom-pin-conf
 mountPath: /oms/custom_pin.conf
 subPath: pin.conf
volumes:
- name: brm-apps-custom-pin-conf
 configMap:
 name: brm-apps-custom-conf

7. Add the pin.conf file entries to the ConfigMap:

apiVersion: v1
kind: ConfigMap
metadata:
 name: brm-apps-custom-conf
 namespace: {{ .Release.Namespace }}
 labels:
 application: {{ .Chart.Name }}
data:
 pin.conf: |
 #**
 pin.conf content here
 #**

8. Update the image tag in your override-values.yaml file.

Running Business Operations Through pin_job_executor Service
You can run business operations, such as billing and payment collections, in BRM cloud native
environments in the following ways:

• Using the brm-apps pod to run the pin_job_executor utility as a service named pje in the
pje pod. The pje service processes business operations jobs or runs the pin_virtual_time
utility. The pin_job_executor service port is exposed as ClusterIP, and the host name and
service name of the brm-apps pod is pje.

• Using the boc pod or another client application to call the PCM_OP_JOB_EXECUTE
opcode. In this case, the opcode request goes to the CM, which connects to the pje pod
through the pin_job_executor service. The pin_job_executor service processes the
opcode request and calls the appropriate BRM application.

For more information, see "Job Opcode Workflows" in BRM Opcode Guide.

Chapter 2
Running Business Operations Through pin_job_executor Service

2-7

3
Exposing Directories as ConfigMaps

Learn how to expose any directory as a ConfigMap in your Oracle Communications Billing and
Revenue Management (BRM) cloud native environment. This decouples environment-specific
configuration from your container images.

Topics in this document:

• Configuring a CM ConfigMap Directory

• Configuring an EAI Publisher ConfigMap

Configuring a CM ConfigMap Directory
You can expose the CM directory as a ConfigMap so your BRM cloud native deployment can
access custom input files.

To expose the oc-cn-helm-chart/cm_custom_files directory as a ConfigMap, do this:

1. Move your custom input files to the oc-cn-helm-chart/cm_custom_files directory.

2. In your override-values.yaml file for oc-cn-helm-chart, set these keys:

• ocbrm.cm.custom_files.enable: Set this to true.

• ocbrm.cm.custom_files.path: Set this to the location of your custom input files, such
as /oms/load.

3. In the CM ConfigMap file (configmap_pin_conf_cm.yaml), set the path to your custom
input files.

4. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Exposing the taxcode_map File Example
This example shows how to expose the taxcodes_map file using the CM ConfigMap.

1. Edit the taxcodes_map file and move it to the oc-cn-helm-chart/cm_custom_files
directory.

3-1

2. Set these keys in your override-values.yaml file for oc-cn-helm-chart:

ocbrm.cm.custom_files.enable=true
ocbrm.cm.custom_files.path=/oms/load

3. In the CM ConfigMap (configmap_pin_conf_cm.yaml), set the path to the
taxcodes_map file:

- fm_rate taxcodes_map /oms/load/taxcodes_map

4. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

Configuring an EAI Publisher ConfigMap
The payload configuration file used by the EAI Java Server (eai_js) process can be loaded as
a Kubernetes ConfigMap and consumed by eai_js from /oms/payload.

The following payload configuration files are included in the BRM Helm chart and can be
mounted as a Kubernetes ConfigMap:

• payloadconfig_ece_sync.xml: This configuration file synchronizes BRM with the ECE
rating engine.

• payloadconfig_ifw_sync.xml: This configuration file synchronizes BRM with the batch
and real-time rating engine.

• payloadconfig_kafka_sync: This configuration file is for publishing business events from
BRM to the Kafka server.

By default, the EAI Java Server uses the payloadconfig_ifw_sync.xml file. To configure it to
use a different payload configuration XML file, do the following:

1. Configure your payload configuration file.

2. Copy your payload configuration file to the oc-cn-helm-chart/payload_xml directory.

3. In your override-values.yaml file for oc-cn-helm-chart, set the
ocbrm.eai_js.deployment.eaiConfigFile key to the name of your payload configuration
file.

4. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Chapter 3
Configuring an EAI Publisher ConfigMap

3-2

4
Managing a Helm Release

Learn how to manage your Helm releases in Oracle Communications Billing and Revenue
Management (BRM) cloud native.

Topics in this document:

• About Helm Releases

• Tracking a Release's Status

• Updating a Helm Release

• Checking a Release's Revision

• Rolling Back a Release To a Previous Revision

About Helm Releases
After you install a Helm chart, Kubernetes manages all of its objects and deployments. All pods
created through oc-cn-helm-chart and oc-cn-ece-helm-chart are wrapped in a Kubernetes
controller, which creates and manages the pods and performs health checks. For example, if a
node fails, a controller can automatically replace a pod by scheduling an identical replacement
on a different node.

As part of maintaining a Helm release, administrators can check a release's status or revision,
update a release, or roll back the release to a previous revision.

Tracking a Release's Status
When you install a Helm chart, it creates a release. A release contains Kubernetes objects,
such as ConfigMaps, Secrets, deployments, and pods. Only some objects are up and running
immediately. Some objects have a start delay, but the Helm install command completes
immediately.

To track the status of a release and its Kubernetes objects, run this command:

helm status ReleaseName --namespace Namespace

where:

• ReleaseName is the name you assigned to this installation instance.

• NameSpace is the namespace in which the BRM Kubernetes objects reside.

Updating a Helm Release
To update any override-values.yaml key value after creating a release, run the following
command. This command updates or re-creates the impacted Kubernetes objects without
impacting other objects in the release. It also makes a new revision of the release.

4-1

Note:

Before updating the release, you can check for issues by running the helm upgrade
command and appending the --dry-run parameter.

helm upgrade ReleaseName Chart --values OverrideValuesFile --values
NewOverrideValuesFile --namespace Namespace

where:

• ReleaseName is the name you assigned to this installation instance.

• Chart is the name and location of the chart: oc-cn-helm-chart for BRM cloud native
services, oc-cn-ece-helm-chart for ECE cloud native services, or oc-cn-init-db-helm-
chart for initializing the BRM database schema.

• OverrideValuesFile is the path to the YAML file that overrides the default configurations in
the values.yaml file.

• NewOverrideValuesFile is the path to the YAML file that has updated values. The values in
this file are newer than those defined in values.yaml and OverrideValuesFile.

• Namespace is the namespace in which the BRM Kubernetes objects reside.

Checking a Release's Revision
Helm keeps track of the revisions you make to a release. To check the revision for a particular
release, run this command:

helm history ReleaseName --namespace Namespace

where:

• ReleaseName is the name you assigned to this installation instance.

• Namespace is the namespace in which the BRM Kubernetes objects reside.

Rolling Back a Release To a Previous Revision
To roll back a release to any previous revision, run this command:

helm rollback ReleaseName RevisionNumber --namespace Namespace

where:

• ReleaseName is the name you assigned to this installation instance.

• RevisionNumber is the value from the Helm history command.

• Namespace is the namespace in which the BRM Kubernetes objects reside.

Chapter 4
Checking a Release's Revision

4-2

5
Managing Passwords in BRM Cloud Native

Learn how to manage passwords in your Oracle Communications Billing and Revenue
Management (BRM) cloud native environment.

Topics in this document:

• About Using External Kubernetes Secrets

• Rotating the BRM Root Password

• Rotating the BRM Root Key

• Rotating the BRM Password

• Rotating BRM Role Passwords

About Using External Kubernetes Secrets
To increase system security and ease maintenance, you can store your KeyStore certificates
and wallets as external Kubernetes Secrets. To do so, you pre-create the certificates and
wallets as Kubernetes Secrets and then configure the extKeynameSecret keys in your
override-values.yaml file for the appropriate Helm chart, where Keyname is the name of the
wallet or KeyStore file, such as Keystore for KeyStore certificates, DBSSLWallet for SSL
database wallets, and Metadata for metadata files.

When you perform a Helm install or Helm upgrade, the Helm chart checks whether the
extKeynameSecret keys are set. If the keys are set, the Helm chart assumes that the Secrets
have been pre-created. If the keys are empty, the Helm chart creates the certificates and
wallets as Kubernetes Secrets.

You can use external Kubernetes Secrets for the following:

• Billing Care

• Billing Care REST API

• BRM REST Services Manager

• BRM Server

• Business Operations Center

• Elastic Charging Engine

• Pipeline Configuration Center

• Pricing Design Center (PDC)

• PDC REST Services Manager

• Standalone Web Services Manager

To use external Kubernetes Secrets in your BRM cloud native deployment:

1. Create your KeyStore certificates and wallets as Secrets in your Kubernetes cluster.

For information about creating Kubernetes Secrets, see "Managing Secrets" in the
Kubernetes documentation.

5-1

https://kubernetes.io/docs/tasks/configmap-secret/

2. Configure the appropriate keys for the component in your override-values.yaml file for
oc-cn-helm-chart, oc-cn-op-job-helm-chart, and oc-cn-ece-helm-chart. By default, the
extKeynameSecret key values are empty.

Note:

The external Kubernetes Secret keys (extKeynameSecret) take precedence
over any other KeyStore and wallet keys.

3. Perform a Helm install or Helm upgrade.

Rotating the BRM Root Password
The BRM root password is the password of service with the login ID root.0.0.0.1, which all
clients use to connect to the Connection Manager (CM). For security reasons, you should
change this password at regular intervals.

Changing the BRM root password impacts all clients that connect to the CM service: Billing
Care, the Billing Care REST API, Business Operations Center, and BRM Web Services.
Therefore, you must provide the new password to your clients so they can continue to connect
to the CM service.

This shows the procedure for changing the current BRM root password (RootPassword1) to a
new root password (RootPassword2) and then providing RootPassword2 to all of your clients:

1. In your override-values.yaml file for oc-cn-helm-chart, set the keys in Table 5-1.

Table 5-1 Initial Key Values

Key Value Description

ocbrm.rotate_password true Specify that the password is
being changed.

ocbrm.new_brm_root_passw
ord

RootPassword2 Set a new password for the
root.0.0.0.1 service.

ocbrm.cm.deployment.load_l
ocalized

0 Specify to not reload the
localized strings into the
database.

This was already done during
installation.

ocbc.bc.wop.serverStartPolic
y

NEVER Specify to shut down the
WebLogic servers for Billing
Care.

ocbc.bcws.wop.serverStartPo
licy

NEVER Specify to shut down the
WebLogic servers for the Billing
Care REST API.

ocboc.boc.wop.serverStartPo
licy

NEVER Specify to shut down the
WebLogic servers for Business
Operations Center.

2. Specify to shut down the WebLogic servers for BRM Web Services. In the oc-cn-helm-
chart/templates/domain_brm_wsm.yaml file, set the serverStartPolicy key to NEVER.

Chapter 5
Rotating the BRM Root Password

5-2

3. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name assigned to your existing oc-cn-helm-chart
installation.

• OverrideValuesFile is the file name and path of your override-values.yaml file.

• BrmNameSpace is the namespace for your existing BRM deployment.

Updating the release changes the password for service root.0.0.0.1, spins off new pods for
the CM and a few other services, and stops services for Billing Care, the Billing Care
REST API, Business Operations Center, and BRM Web Services.

4. Specify to turn off the password rotation indicator and to update the password. In the same
override-values.yaml file, set the keys in Table 5-2.

Table 5-2 Turn Off Password Rotation

Key Value Description

ocbrm.rotate_password false Turn off password rotation. This
specifies that the password is
not being changed.

ocbrm.brm_root_pass RootPassword2 Provide the updated password
for the root.0.0.0.1 service.

5. Update the password in the Infranet.properties file and wallet for Billing Care, the Billing
Care REST API, and Business Operations Center by either reinstalling oc-cn-op-job-
helm-chart or updating the wallet in place in the persistent volume (PV).

To reinstall oc-cn-op-job-helm-chart, do this:

a. Delete the release of oc-cn-op-job-helm-chart:

helm delete --namespace NameSpace OpJobReleaseName

where OpJobReleaseName is the name of the oc-cn-op-job-helm-chart release.

b. Clean up the domain home from the PV for Billing Care, Billing Care REST, and
Business Operations Center:

rm -rf DomainHome/domains/DomainUID

where:

• DomainHome is the location specified in the domainVolHostPath key under
groups ocbc.bc.wop, ocbc.bcws.wop, and ocboc.boc.wop.

• DomainUID is the domain name specified in the domainUID key under groups
ocbc.bc.wop, ocbc.bcws.wop, and ocboc.boc.wop. Typically, the defaults are
billingcare-domain, bcws-domain, and boc-domain respectively.

c. Clean up the application home from the PV for Billing Care and the Billing Care REST
API:

rm -rf ApplicationHome/billingcare

Chapter 5
Rotating the BRM Root Password

5-3

where ApplicationHome is the location specified in the appVolHostPath key under
groups ocbc.bc.wop and ocbc.bcws.wop.

d. Clean up the application home from the PV for Business Operations Center:

rm -rf ApplicationHome/BOC

where ApplicationHome is the location specified in the appVolHostPath key under
group ocboc.boc.wop.

e. Install oc-cn-op-job-helm-chart again:

helm install OpJobReleaseName oc-cn-op-job-helm-chart --namespace NameSpace --
values OverrideValuesFile

Wait for the jobs to complete their tasks.

f. Delete the policy job for Billing Care, the Billing Care REST API, and Business
Operations Center:

kubectl --namespace NameSpace delete job DomainUID-policy-job

where DomainUID is the domain name specified in the domainUID key under groups
ocbc.bc.wop, ocbc.bcws.wop, and ocboc.boc.wop in the override-values.yaml
file. Typically, the defaults are billingcare-domain, bcws-domain, and boc-domain
respectively.

To update the wallet in place in the PV, do this:

a. For Billing Care and the Billing Care REST API, update the password in the wallet by
following the instructions in "Storing Configuration Entries in the Billing Care Wallet" in
BRM Security Guide. The wallet for these clients is located at ApplicationHome/
billingcare/wallet/client.

b. For Business Operations Center, update the password in the wallet by following the
instructions in "Storing Configuration Entries in the Business Operations Center Wallet"
in BRM Security Guide. The wallet for Business Operations Center is located at
ApplicationHome/BOC/wallet/client.

where ApplicationHome is the location specified in the appVolHostPath key under groups
ocbc.bc.wop, ocbc.bcws.wop, and ocboc.boc.wop.

6. Delete the PDC and Pipeline Configuration Center deployments:

kubectl --namespace NameSpace delete deploy pdc-deployment pcc-deployment
7. Specify to start the WebLogic servers for BRM Web Services. In the oc-cn-helm-chart/

templates/domain_brm_wsm.yaml file, set the serverStartPolicy key to IF_NEEDED.

8. Update the release of oc-cn-helm-chart to bring up all client services with the updated CM
connection details:

helm upgrade --namespace NameSpace ReleaseName oc-cn-helm-chart --values
OverrideValuesFile

9. Update the BRM root password in your ECE pods by doing this:

a. Connect to any of the charging server (ecs) pods through JConsole. See "Creating a
JMX Connection to ECE Using JConsole" for more information.

b. Expand the ECE Configuration node.

c. Navigate to the BRM Connection node.

d. Expand Operations.

Chapter 5
Rotating the BRM Root Password

5-4

e. Enter the new BRM root password (RootPassword2) along with the existing wallet
password in the setPassword method and then run it.

f. Perform a test connection to validate that the connection is successful.

g. Rebounce the brmgateway pods for the new password to take effect and for the
connection pool to BRM to be re-created.

Rotating the BRM Root Key
You should rotate your root keys regularly to increase security.

To rotate the BRM root key:

1. Ensure that the cm and dm-oracle pods are up and running.

2. In your override-values.yaml file for oc-cn-helm-chart, set the ocbrm.root_key_rotate
key to true.

3. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

4. Restart the cm and dm-oracle pods.

If successful, the root key is rotated and a new one is generated in the Oracle wallet. You can
set ocbrm.root_key_rotate to false to avoid rotating the root key again.

Note:

The Oracle wallet is located in the path specified in the BRM_WALLET environment
variable.

After you rotate the root key once, use one of the following methods to rotate the root key
again:

• Rotating the Root Key Method 1

• Rotating the Root Key Method 2

Rotating the Root Key Method 1

One method for rotating the root key after you have rotated it once:

1. Delete the dm-oracle deployment.

2. In your override-values.yaml file for oc-cn-helm-chart, ensure that the
ocbrm.root_key_rotate key is set to true.

Chapter 5
Rotating the BRM Root Key

5-5

3. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

Rotating the Root Key Method 2

Use this method to rotate the root key if you are pointing an existing on-premises system to a
cloud native environment or upgrading from a previous release.

To rotate the root key after you have rotated it once:

1. In your override-values.yaml file for oc-cn-helm-chart, do the following:

• ocbrm.root_key_rotate: Set this key to false.

• ocbrm.existing_rootkey_wallet: Set this key to true.

2. Ensure the latest root-key wallet is stored in the Helm charts path, such as oc-cn-helm-
chart/existing_wallet/path.

3. Run the helm upgrade command and ensure that the new dm-oracle pod is created:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

4. In your override-values.yaml file for oc-cn-helm-chart, set the ocbrm.root_key_rotate
key to true.

5. Delete the dm-oracle deployment.

6. Run the helm upgrade command again:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

7. Restart the dm-oracle and cm pods.

Rotating the BRM Password
To rotate the BRM password, stop and restart your pods.

To rotate the BRM password:

1. In your override-values.yaml file for oc-cn-helm-chart, set the ocpdc.labels.isEnabled
key to false.

2. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name assigned to your existing oc-cn-helm-chart
installation.

• OverrideValuesFile is the file name and path of your override-values.yaml file.

• BrmNameSpace is the namespace for your existing BRM deployment.

Chapter 5
Rotating the BRM Password

5-6

3. In your override-values.yaml file for oc-cn-helm-chart, set the ocpdc.labels.isEnabled
key to true.

4. Run the helm upgrade command to update the Helm release.

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

Rotating BRM Role Passwords
You set the initial passwords for each role in your BRM cloud native system when you deploy
or upgrade your BRM cloud native server and database schema. These passwords are stored
in the Oracle wallet. After your system is deployed, you should rotate your role passwords
regularly.

To rotate your BRM role passwords after deployment:

1. Open your override-values.yaml file for oc-cn-helm-chart.

2. Set the ocbrm.rotate_brm_role_passwords key to true.

3. Specify the old and new passwords for each role password that you want to rotate using
this format:

ocbrm:
 brm_role_pass:
 old_roleName.0.0.0.1: oldPassword
 roleName.0.0.0.1: newPassword

where:

• oldPassword is the old password in Base64-encoded format.

• newPassword is the new password in Base64-encoded format.

• roleName is one of the following:

– acct_recv for the Accounts Receivable role. Users with this role can run the AR
utilities such as pin_refund and pin_monitor_balance.

– bc_client for the Billing Care role. Users with this role can run the Billing Care
application.

– bill_inv_pymt_sub for the Invoice Payments role. Users with this role can run the
invoicing utilities such as pin_inv_accts and pin_upd_assoc_bus_profile.

– billing for the Billing role. Users with this role can run billing applications such as
pin_bill_accts and pin_rollover.

– boc_client for the Business Operations Center role. Users with this role can run
the Business Operations Center application.

– collections for the Collections role. Users with this role can run the collections
utilities such as pin_collections_process and pin_collections_send_dunning.

– crypt_utils for the Encryption role. Users with this role can run the encryption
utilities such as pin_crypt_upgrade and pin_crypt_upgrade_keys.

– cust_center for the Customer Center role. Users with this role can run the
Customer Center application.

– cust_mgnt for the Customer Management role. Users with this role can run the
customer management utilities such as pin_contracts and pin_state_change.

Chapter 5
Rotating BRM Role Passwords

5-7

– invoicing for the Invoicing role. Users with this role can run the invoicing utilities
such as pin_inv_accts and pin_inv_doc_gen.

– java_client for the Java Applications role. Users with this role can run Java
applications such as Account Migration Manager and Conversion Manager.

– load_utils for the Load Utilities role. Users with this role can run the load utilities
such as load_config and load_pin_calendar.

– payments for the Payments role. Users with this role can run the payment utilities
such as pin_installments and pin_recover.

– pcc_client for the Pipeline Configuration Center role. Users with this role can run
the Pipeline Configuration Center application.

– rerating for the Rerating role. Users with this role can run the rerating utilities such
as pin_rerate and pin_rate_change.

– rsm for the REST Services Manager role. Users with this role can call the BRM
REST Services Manager API operations.

– super_user for the Super User role. Users with this role can create, update, and
delete other roles.

– ui_client for the Thick Clients role. Users with this role can run the thick clients
such as Payment Center and Number Administration Center.

– ece for the ECE role. Users with this role can run Elastic Charging Engine (ECE).

For example, to rotate the Business Operations Center and Pipeline Configuration Center
roles, you would enter the following:

ocbrm:
 brm_role_pass:
 old_boc_client.0.0.0.1: oldBOCPassword
 boc_client.0.0.0.1: newBOCPassword
 old_pcc_client.0.0.0.1: oldPCCPassword
 pcc.0.0.0.1: newPCCPassword

4. Keep all other role passwords in the file.

5. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

If successful, BRM cloud native:

• Rotates the passwords for role names prefixed with old_.

• Generates the new role passwords in the Oracle wallet.

All other passwords remain the same. You can set ocbrm.rotate_brm_role_passwords to
false to avoid rotating the role passwords again.

Chapter 5
Rotating BRM Role Passwords

5-8

6
Managing Database Partitions

Learn how to organize your Oracle Communications Billing and Revenue Management (BRM)
cloud native database by using partitioned tables.

Topics in this document:

• Converting Nonpartitioned Classes to Partitioned Classes

• Adding Partitions to Your Database

Converting Nonpartitioned Classes to Partitioned Classes
If you did not enable partitioning for one or more storable classes when you deployed BRM
cloud native, you can do so after deployment. The partitioning conversion feature splits a
storable class's table in the BRM database into the following partitions:

• partition_migrate: Holds all objects created before the nonpartitioned storable classes
were converted to partitioned storable classes. The BRM purge utility, partition_utils,
cannot purge objects in this partition. To purge them, you must develop your own tools
based on sound Oracle database management principles.

• partition_historic: Holds nonpurgeable events created after the nonpartitioned storable
classes were converted to partitioned storable classes. Nonpurgeable events should not
be purged from the database.

• partition_last: A spillover partition that is not intended to store objects you want to purge
or preserve. If you do not add purgeable partitions to your tables before BRM resumes
generating objects, purgeable objects created after the upgrade are stored in this partition.

To convert nonpartitioned storable classes to partitioned storable classes, perform these tasks:

1. Add the following lines to the oc-cn-helm-chart/brmapps_scripts/loadme.sh script:

#!/bin/sh

cd /oms/apps/partition; perl partitioning.pl ClassName
exit 0;

where ClassName is the name of the storable class that you want to partition, such as /
product or /bill.

2. The brm-apps-partition-cfg ConfigMap (configmap_partition_cfg.yaml) controls your
conversion parameters, such as your database's name and the partition logging directory.
If necessary, edit the parameters in the file and then run the helm upgrade command.

3. Enable the brm-apps job. In your override-values.yaml file for oc-cn-helm-chart, set
ocbrm.brm_apps.job.isEnabled to true.

4. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile -n
BrmNameSpace

where:

6-1

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

The brm_apps job runs a series of partitioning scripts that perform the conversion.

Check the log and pinlog files in the directory specified by the $PARTITION_LOG_DIR
parameter in your configmap_partition_cfg.yaml file. These log files show how long each
script took to run and list any errors that occurred. If any errors are reported, fix them and rerun
the script.

Adding Partitions to Your Database
You can add partitions to your database by using the partition_utils utility. For information
about the utility's syntax and parameters, see "partition_utils" in BRM System Administrator's
Guide.

To add partitions to the database in your BRM cloud native environment:

1. Stop the following BRM pods:

• dm-oracle

• cm

• realtime-pipeline

• batch-controller

• rel-daemon

• Other pods

2. Ensure that all jobs are stopped in your BRM cloud native environment. This includes
Configurator jobs, brm-apps jobs, ImportExportPricing jobs, and SyncPDC jobs.

3. Create a restore point in your BRM database.

For more information, see CREATE RESTORE POINT in Oracle Database SQL Language
Reference.

4. Run the partition_utils utility in test mode to check the command for enabling delayed-
event partitions:

partition_utils -o enable -t delayed -c /event/delayed/session% -p

The utility writes the operation's SQL statement to a partition_utils.log file without
performing any action on the database.

5. Verify that the generated SQL statement is correct in the partition_utils.log file before
proceeding.

6. Enable delayed-event partitions by running this command:

partition_utils -o enable -t delayed -c /event/delayed/session%
7. Run the partition_utils utility in test mode to check the command for adding partitions for

12 months:

partition_utils -o add -t delayed -s StartDate -u month -q 12 -f -p

Chapter 6
Adding Partitions to Your Database

6-2

https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/

where StartDate specifies the starting date for the new partitions in the format
MMDDYYYY. The start date must be the day after tomorrow or later. You cannot create
partitions starting on the current day or the next day. For example, if the current date is
January 1, the earliest start date for the new partition is January 3.

The utility writes the operation's SQL statement to a partition_utils.log file without
performing any action on the database.

8. Verify that the generated SQL statement is correct in the partition_utils.log file before
proceeding.

9. Add delayed-event partitions for 12 months by running this command:

partition_utils -o add -t delayed -s StartDate -u month -q 12 -f
10. Restart any Configurator, brm-apps, ImportExportPricing, or SyncPDC jobs in your BRM

cloud native environment.

11. Start the following BRM pods:

• dm-oracle

• cm

• realtime-pipeline

• batch-controller

• rel-daemon

Chapter 6
Adding Partitions to Your Database

6-3

7
Improving Performance in BRM Cloud Native

Learn how to improve performance in your Oracle Communications Billing and Revenue
Management (BRM) cloud native environment.

Topics in this document:

• Deploying the CM and DM Containers in the Same Pod

• Tuning Your Application Connection Pools

• Configuring Multiple Replicas of Batch Controller

• Deploying Paymentech Data Manager in HA Mode

Deploying the CM and DM Containers in the Same Pod
You can improve system performance by deploying the CM and Oracle DM containers in the
same pod.

To deploy the CM and DM in the same pod:

1. In the oc-cn-helm-chart/templates directory, rename the dm_oracle.yaml file to
_dm_oracle.yaml.

2. Copy the dm_oracle containers and VolumeMounts entries from the oc-cn-helm-chart/
templates/dm_oracle.yaml file into the oc-cn-helm-chart/templates/cm.yaml file. For
example:

containers:
- name: dm-oracle
 image: "{{ .Values.imageRepository }}
{{ .Values.ocbrm.dm_oracle.deployment.imageName }}:
{{ .Values.ocbrm.dm_oracle.deployment.imageTag }}"
 ports:
 - name: dm-pcp-port
 containerPort: 12950
 env:
 - name: ROTATE_PASSWORD
 value: "{{ .Values.ocbrm.rotate_password }}"
 {{ if eq .Values.ocbrm.rotate_password true }}
 - name: NEW_BRM_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: oms-schema-password
 key: new_brm_root_password
 {{ end }}
 {{- if eq .Values.ocbrm.existing_rootkey_wallet true }}
 - name: BRM_WALLET
 value: "/oms/client"
 {{- end }}
 - name: USE_ORACLE_BRM_IMAGES
 value: "{{ .Values.ocbrm.use_oracle_brm_images }}"

7-1

 - name: TZ
 value: "{{ .Values.ocbrm.TZ }}"
 - name: NLS_LANG
 value: "{{ .Values.ocbrm.db.nls_lang }}"
 - name: PIN_LOG_DIR
 value: "/oms_logs"
 - name: TNS_ADMIN
 value: "/oms/ora_k8"
 - name: SERVICE_FQDN
 value: "localhost"
 {{ if eq .Values.ocbrm.cmSSLTermination true }}
 - name: ENABLE_SSL
 value: "0"
 {{ else }}
 - name: ENABLE_SSL
 valueFrom:
 configMapKeyRef:
 name: oms-common-config
 key: ENABLE_SSL
 {{ end }}
 - name: ORACLE_CHARACTERSET
 valueFrom:
 configMapKeyRef:
 name: oms-common-config
 key: ORACLE_CHARACTERSET
 - name: DM_ORACLE_SERVICE_PORT
 value: "12950"
 - name: OMS_SCHEMA_USERNAME
 valueFrom:
 configMapKeyRef:
 name: oms-common-config
 key: OMS_SCHEMA_USERNAME
 {{ if .Values.ocbrm.brm_crypt_key }}
 - name: BRM_CRYPT_KEY
 valueFrom:
 secretKeyRef:
 name: oms-schema-password
 key: brm_crypt_key
 {{ end }}
 - name: OMS_DB_SERVICE
 valueFrom:
 configMapKeyRef:
 name: oms-common-config
 key: OMS_DB_SERVICE
 - name: OMS_DB_ALIAS
 value: "pindb"
 - name: LOG_LEVEL
 valueFrom:
 configMapKeyRef:
 name: oms-common-config
 key: LOG_LEVEL
 - name: DM_NO_FRONT_ENDS
 valueFrom:
 configMapKeyRef:
 name: oms-dm-oracle-config
 key: DM_NO_FRONT_ENDS

Chapter 7
Deploying the CM and DM Containers in the Same Pod

7-2

 - name: DM_NO_BACK_ENDS
 valueFrom:
 configMapKeyRef:
 name: oms-dm-oracle-config
 key: DM_NO_BACK_ENDS
 - name: DM_SHM_BIGSIZE
 valueFrom:
 configMapKeyRef:
 name: oms-dm-oracle-config
 key: DM_SHM_BIGSIZE
 - name: DM_MAX_PER_FE
 valueFrom:
 configMapKeyRef:
 name: oms-dm-oracle-config
 key: DM_MAX_PER_FE
 - name: DM_SHM_SEGMENT_SIZE
 valueFrom:
 configMapKeyRef:
 name: oms-dm-oracle-config
 key: DM_SHM_SEGMENT_SIZE
 - name: DM_NO_TRANS_BE_MAX
 valueFrom:
 configMapKeyRef:
 name: oms-dm-oracle-config
 key: DM_NO_TRANS_BE_MAX
 - name: DM_STMT_CACHE_ENTRIES
 valueFrom:
 configMapKeyRef:
 name: oms-dm-oracle-config
 key: DM_STMT_CACHE_ENTRIES
 - name: DM_SEQUENCE_CACHE_SIZE
 valueFrom:
 configMapKeyRef:
 name: oms-dm-oracle-config
 key: DM_SEQUENCE_CACHE_SIZE
 - name: VIRTUAL_TIME_SETTING
 valueFrom:
 configMapKeyRef:
 name: oms-common-config
 key: VIRTUAL_TIME_SETTING
 - name: VIRTUAL_TIME_ENABLED
 valueFrom:
 configMapKeyRef:
 name: oms-common-config
 key: VIRTUAL_TIME_ENABLED
 - name: SHARED_VIRTUAL_TIME_FILE
 value: /oms/virtual_time/shared/pin_virtual_time_file
 - name: BRM_LOG_STDOUT
 value: "FALSE"
 - name: SYNC_PVT_TIME
 value: "{{ .Values.ocbrm.virtual_time.sync_pvt_time }}"
 imagePullPolicy: {{ .Values.ocbrm.imagePullPolicy }}
 terminationMessagePolicy: FallbackToLogsOnError
 livenessProbe:
 exec:
 command:

Chapter 7
Deploying the CM and DM Containers in the Same Pod

7-3

 - /bin/sh
 - -c
 - sh /oms/test/is_dm_ready.sh
 initialDelaySeconds: 10
 periodSeconds: 10
 failureThreshold: 50
 readinessProbe:
 exec:
 command:
 - /bin/sh
 - -c
 - sh /oms/test/is_dm_ready.sh
 initialDelaySeconds: 15
 periodSeconds: 10
 timeoutSeconds: 1
 volumeMounts:
 - name: secret-volume
 mountPath: /etc/secret
 {{- if eq .Values.ocbrm.existing_rootkey_wallet true }}
 - name: wallet-pvc
 mountPath: /oms/client
 {{- end }}
 - name: dm-oracle-pin-conf-volume
 mountPath: /oms/pin.conf.tmpl
 subPath: pin.conf
 - name: dm-oracle-tnsnames-ora-volume
 mountPath: /oms/ora_k8
 - name: oms-logs
 mountPath: /oms_logs
 - name: virtual-time-volume
 mountPath: /oms/virtual_time/shared

- name: dm-oracle-pin-conf-volume
 configMap:
 name: dm-oracle-pin-conf-config
- name: dm-oracle-tnsnames-ora-volume
 configMap:
 name: db-config
 items:
 - key: tnsnames.ora
 path: tnsnames.ora
 - key: sqlnet.ora
 path: sqlnet.ora

3. Copy the dm_oracle annotations entries from the oc-cn-helm-chart/templates/
dm_oracle.yaml file into the oc-cn-helm-chart/templates/cm.yaml file. For example:

annotations:
 configmap_pin_conf_dm_oracle.yaml
 configmap_env_dm_oracle.yaml

4. In the cm-pin-conf-config ConfigMap, update the dm_pointer entry to point to localhost
rather than dm-oracle. For example:

- cm dm_pointer databaseNumber ip localhost 12950

Chapter 7
Deploying the CM and DM Containers in the Same Pod

7-4

5. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Tuning Your Application Connection Pools
You can improve an application's performance by tuning the number of threads available to
connect with the CM.

When the CM sends a request, it is assigned a thread from the application's connection pool
for performing operations. The thread is returned to the pool when the CM completes its
operation.

The request is queued if an incoming request cannot be assigned a thread immediately. The
request waits for a thread to become available for a configurable period. If a thread does not
become available during this time, an exception is thrown, indicating that the request timed out.

To tune the number of threads in an application's connection pool:

1. Open your override-values.yaml file.

2. Edit the parameters shown in Table 7-1.

Table 7-1 Connection Pool Parameters

Entry Description

infranet.connectionpool.minsize The minimum number of threads that the application
spawns when it starts.

infranet.connectionpool.maxsize The maximum number of threads the application can
spawn for accepting requests from the CM.

infranet.connectionpool.timeout The time, in milliseconds, that a connection request will
wait in the pending request queue for a free thread before
it times out. If a pending request is not assigned a thread
during this time, an exception is thrown.

infranet.connectionpool.maxidletim
e

The time, in milliseconds, that an unused thread remains in
the connection pool before it is removed.

Important: If the value is too low, threads might be
removed and restored too frequently. This can degrade
system performance.

infranet.connectionpool.maxreques
tlistsize

The maximum number of requests that can be held in the
pending request queue.

3. Save and close the file.

Chapter 7
Tuning Your Application Connection Pools

7-5

4. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Configuring Multiple Replicas of Batch Controller
If you load event files into your BRM cloud native deployment through Universal Event (UE)
Loader, you can improve throughput by running multiple replicas of the batch-controller pod. In
this case, each pod can select a file from those available in the UE Loader input
PersistentVolumeClaim (PVC). When an individual pod copies the file into its local file system
for processing, the other input files are distributed among the remaining batch-controller pod
replicas. The time a file arrives in the input PVC determines which pod gets to process the file.

To configure the number of replicas:

1. In your override-values.yaml file for oc-cn-helm-chart, set the
ocbrm.batch_controller.deployment.replicaCount key to the number of replicas to
create the batch-controller pod.

2. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

For more information about UE Loader, see "About Rating Events Created by External
Sources" in BRM Loading Events.

Deploying Paymentech Data Manager in HA Mode
Paymentech supports only one connection to its batch port at any one time. To support high
availability and increase throughput to the Paymentech server, you can deploy two
Paymentech Data Manager (dm-fusa) images, each using a different batch port for connecting
to the Paymentech server.

Deploying two images provides failover support for dm-fusa. If one dm-fusa deployment goes
down, the traffic from CM to dm-fusa will be redirected to the other dm-fusa deployment. The
load is also distributed among all dm-fusa deployments.

Chapter 7
Configuring Multiple Replicas of Batch Controller

7-6

To deploy two dm-fusa images:

1. Edit these keys in the configmap_env_dm_fusa.yaml file:

DMF_BATCH_PORT_2: "8781"
DMF_BATCH_SRVR_2: fusa-simulator-2
DMF_ONLINE_PORT_2: "9781"
DMF_ONLINE_SRVR_2: fusa-simulator-2

Note:

Unlike the batch port, simultaneous transactions can be sent to the Paymentech
online port. Thus, the values of DMF_ONLINE_PORT_2 and
DMF_ONLINE_SRVR_2 can be the same as or different from that of the first dm-
fusa deployment.

2. Rename the _dm_fusa_2.yaml file to dm_fusa_2.yaml.

3. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Using the Paymentech Simulator

For testing purposes, a second deployment of the Paymentech Simulator is provided in the
templates directory. To deploy this second version, rename the _fusa_simulator_2.yaml file
to fusa_simulator_2.yaml and then update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

The deployment scripts and configuration files for the Paymentech Simulator are only provided
for testing. In a production environment, remove these files:

• fusa_simulator.yaml

• fusa_simulator_2.yaml

• configmap_pin_conf_fusa_simulator.yaml

• configmap_env_fusa_simulator.yaml

Chapter 7
Deploying Paymentech Data Manager in HA Mode

7-7

8
Managing a BRM Cloud Native Multischema
System

Learn how to perform basic tasks, such as migrating accounts, adding schemas, or setting a
schema's status, in an Oracle Communications Billing and Revenue Management (BRM) cloud
native multischema system.

Topics in this document:

• Running Billing Against a Specified Schema

• Adding Schemas to a Multischema System

• Migrating Accounts from One Schema to Another

• Migrating Accounts Using Custom Search Criteria

• Modifying Database Schema Priorities

• Modifying Database Schema Status

• Synchronizing /uniqueness Objects Between Schemas

Running Billing Against a Specified Schema
You generate bills for your customers' accounts by running the pin_bill_accts utility through
the brm-apps job. By default, the utility runs against all schemas in your database, but you can
configure BRM cloud native to run the utility against a specific schema. For more information
about generating bills, see "Billing Accounts By Using the pin_bill_accts Utility" in BRM
Configuring and Running Billing.

To run billing against a particular database schema using the brm-apps job:

1. In your override-values.yaml file for oc-cn-helm-chart, set these keys:

• ocbrm.brm_apps.job.isEnabled: Set this to true.

• ocbrm.brm_apps.job.isMultiSchema: Set this to false.

2. Update the oc-cn-helm-chart/brmapps_scripts/loadme.sh script to run pin_bill_accts
commands on the specified schema:

if ["${DB_NUMBER}" = "0.0.0.x"]; then
cd /oms/apps/pin_billd; pin_bill_accts –verbose
exit 0;

where x is the schema number.

3. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

8-1

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

The pin_bill_accts utility generates bills for the accounts in the specified schema.

Adding Schemas to a Multischema System
To add one or more schemas to your existing BRM cloud native multischema system:

1. Initialize the new secondary schemas in your BRM database.

a. Open your override-values.yaml file for oc-cn-init-db-helm.

b. Set the ocbrm.db.skipPrimary key to true.

c. For each existing secondary schema in your system, set the
ocbrm.db.multiSchemas.secondaryN.deploy key to false.

d. For each new schema, add an ocbrm.db.multiSchemas.secondaryN block, where N
is 3 for the third secondary schema, 4 for the next secondary schema, and so on.

e. In the new ocbrm.db.multiSchemas.secondaryN block, set these keys:

• deploy: Set this to true to deploy this secondary schema.

• host: Set this to the host name of the secondary schema. This key is optional.

• port: Set this to the port number for the secondary schema. This key is optional.

• service: Set this to the service name for the secondary schema. This key is
optional.

• schemauser: Set this to the schema user name.

• schemapass: Set this to the schema password.

• schematablespace: Set this to the name of the schema tablespace, such as
pin01.

• indextablespace: Set this to the name of the index tablespace, such as pinx01.

This shows sample override-values.yaml entries for adding a third secondary
schema to an existing multischema system.

ocbrm:
 isAmt: true
 db:
 skipPrimary: true
 multiSchemas:
 secondary1:
 deploy: false
 schemauser: pin02
 schemapass: password
 schematablespace: pin02
 indextablespace: pinx02
 secondary2:
 deploy: false
 schemauser: pin03
 schemapass: password

Chapter 8
Adding Schemas to a Multischema System

8-2

 schematablespace: pin03
 indextablespace: pinx03
 secondary3:
 deploy: true
 schemauser: pin04
 schemapass: password
 schematablespace: pin04
 indextablespace: pinx04

f. Save and close your override-values.yaml file.

g. Run the helm install command for oc-cn-init-db-helm-chart.

helm install InitDbReleaseName oc-cn-init-db-helm-chart --values
OverrideValuesFile -n InitDbNameSpace

where:

• InitDbReleaseName is the release name for oc-cn-init-db-helm-chart and is used
to track this installation instance.

• OverrideValuesFile is the path to a YAML file that overrides the default
configurations in the values.yaml file for oc-cn-init-db-helm-cart.

• InitDbNameSpace is the namespace for oc-cn-init-db-helm-chart.

2. Specify the details for connecting the BRM server to your new secondary schemas.

a. Open your override-values.yaml file for oc-cn-helm-chart.

b. Enable account migration by setting the ocbrm.isAmt key to true.

c. Set the ocbrm.db.skipPrimary key to false.

d. For each secondary schema you are adding to your system, add an
ocbrm.db.multiSchemas.secondaryN block, where N is 3 for the third secondary
schema, 4 for the next secondary schema, and so on.

e. In each ocbrm.db.multiSchemas.secondaryN block, set the following keys:

• deploy: Set this to true.

• host: Set this to the host name of the secondary schema. This key is optional.

• port: Set this to the port number for the secondary schema. This key is optional.

• service: Set this to the service name for the secondary schema. This key is
optional.

• schemauser: Set this to the schema user name.

• schemapass: Set this to the schema password.

• schematablespace: Set this to the name of the schema tablespace, such as
pin01.

• indextablespace: Set this to the name of the index tablespace, such as pinx01.

This shows sample override-values.yaml entries for adding a third secondary
schema to an existing multischema system.

ocbrm:
 isAmt: true
 db:
 skipPrimary: false

Chapter 8
Adding Schemas to a Multischema System

8-3

 multiSchemas:
 secondary1:
 deploy: true
 schemauser: pin02
 schemapass: password
 schematablespace: pin02
 indextablespace: pinx02
 secondary2:
 deploy: true
 schemauser: pin03
 schemapass: password
 schematablespace: pin03
 indextablespace: pinx03
 secondary3:
 deploy: true
 schemauser: pin04
 schemapass: password
 schematablespace: pin04
 indextablespace: pinx04

f. Run the helm upgrade command from the helmcharts directory:

helm upgrade BrmReleaseName oc-cn-helm-chart –-namespace BrmNameSpace --values
OverrideValuesFile

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track
this installation instance. It must be different from the one used for oc-cn-init-db-
helm-chart.

• BrmNameSpace is the namespace where BRM Kubernetes objects for the BRM
Helm chart were previously deployed.

• OverrideValuesFile is the path to a YAML file that overrides the default
configurations in the values.yaml file for oc-cn-helm-chart.

The BRM Helm chart creates new dm-oracle, amt, and rel-daemon pods, Rated Event
(RE) Loader PVCs, services, ConfigMaps, and secrets. It also updates their
corresponding schema entries in the primary CM and Oracle DM and deploys multiple
containers for the batch-wireless-pipe pod.

3. Set each database schema's status and priority. BRM cloud native assigns accounts to an
open schema with the highest priority.

a. Open the configmap_pin_conf_testnap.yaml file.

b. Under the config_dist.conf section, add the following entries for each new secondary
schema:

DB_NO = "schema_number" ; # database config. block
PRIORITY = priority ;
MAX_ACCOUNT_SIZE = 100000 ;
STATUS = "status" ;
SCHEMA_NAME = "pin111x" ;

c. Set the STATUS and PRIORITY entries for each new secondary schema:

DB_NO = "0.0.0.1" ; # Primary schema configuration block
PRIORITY = priority;

Chapter 8
Adding Schemas to a Multischema System

8-4

MAX_ACCOUNT_SIZE = 100000 ;
STATUS = "status" ;
SCHEMA_NAME = "pin112x" ;

DB_NO = "0.0.0.2" ; # Secondary schema configuration block
PRIORITY = priority;
MAX_ACCOUNT_SIZE = 50000 ;
STATUS = "status" ;
SCHEMA_NAME = "pin113x" ;

where:

• priority is a number representing the schema's priority, with the highest number
having the most priority. For example, 5 indicates a greater priority than a value of
1. For more information, see "Modifying Database Schema Priorities".

• status specifies whether the schema is open, closed, or unavailable. For more
information, see "Modifying Database Schema Status".

d. Set up the configurator job to run the load_config_dist utility by adding the following
lines to the oc-cn-helm-chart/config_scripts/loadme.sh script:

#!/bin/sh

#cp /oms/config_dist.conf /oms/sys/test/config_dist.conf
cd /oms/sys/test; load_config_dist
exit 0;

e. In the override-values.yaml file for oc-cn-helm-chart, set this key:

ocbrm.config_jobs.run_apps: Set this to true.

f. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

The distribution information is loaded into the primary schema.

g. Update these keys in the override-values.yaml file for oc-cn-helm-chart:

• ocbrm.config_jobs.restart_count: Increment the existing value by 1.

• ocbrm.config_jobs.run_apps: Set this to false.

h. Update the oc-cn-helm-chart release again:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

The CM is restarted.

4. Reset BRM POID sequences as part of the brm-apps job.

a. Add these lines to the oc-cn-helm-chart/brmapps_scripts/loadme.sh script:

#!/bin/sh

java -cp $ORACLE_HOME/lib/ojdbc8.jar:$PIN_HOME/jars/

Chapter 8
Adding Schemas to a Multischema System

8-5

pin_reset_seq.jar:$PIN_HOME/jars/pcm.jar:$PIN_HOME/jars/oraclepki.jar
PinResetSeq /oms/pin_confs2/pin_reset_seq.properties
exit 0;

b. In your override-values.yaml file for oc-cn-helm-chart, set these keys:

• ocbrm.brm_apps.job.isEnabled: Set this to true.

• ocbrm.brm_apps.job.isMultiSchema: Set this to false.

c. Update the oc-cn-helm-chart release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

5. Set up the configuration job to run the load_pin_uniqueness utility.

See "Synchronizing the Database Schema /uniqueness Objects" in BRM System
Administrator's Guide for more information about the utility.

a. Add the following lines to the oc-cn-helm-chart/config_scripts/loadme.sh script:

#!/bin/sh

cd /oms/sys/test; load_pin_uniqueness
exit 0;

b. In the override-values.yaml file for oc-cn-helm-chart, set this key:

ocbrm.config_jobs.run_apps: Set this to true.

c. Update the oc-cn-helm-chart release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

The /uniqueness objects are synchronized between the schemas.

d. Update these keys in the override-values.yaml file for oc-cn-helm-chart:

• ocbrm.config_jobs.restart_count: Increment the existing value by 1.

• ocbrm.config_jobs.run_apps: Set this to false.

e. Update the oc-cn-helm-chart release again:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

The CM is restarted.

6. Run the pin_multidb.pl and pin_amt_install scripts.

a. In your override-values.yaml file for oc-cn-helm-chart, set these keys:

• ocbrm.brm_apps.job.isEnabled: Set this to true.

• ocbrm.brm_apps.job.isMultiSchema: Set this to false.

b. Add the following lines to the oc-cn-helm-chart/brmapps_scripts/loadme.sh script:

#!/bin/sh

Chapter 8
Adding Schemas to a Multischema System

8-6

cd /oms/setup/scripts; perl pin_multidb.pl
cd /oms/setup/scripts; perl pin_amt_install.pl
cd /oms/setup/scripts; perl pin_amt_install.pl -m
exit 0;

c. Update the oc-cn-helm-chart release:

helm upgrade BrmReleaseName oc-cn-helm-chart –-namespace BrmNameSpace --values
OverrideValuesFile

d. Restart the amt pod.

7. Configure the account-router Pipeline Manager to route CDRs to pipelines based on the
database schema POID. To do so, edit the ConfigMap file
configmap_acc_router_reg.yaml.

Based on the configuration, the account router Pipeline Manager does the following:

• Moves input files to the data PVC directory. The input file names have a router prefix
and an .edr suffix.

• Moves the rated output files to the input of the Rating pipeline.

• Replicates the Rating pipeline based on the multischema entry. The Range function is
used to replicate the rating pipeline.

• Moves the output files from the Rating pipeline to the outputcdr PVC directory.

Migrating Accounts from One Schema to Another
You migrate accounts from one schema to another in the same database by configuring the
account search configuration file and then running the pin_amt utility through the brm-apps
job. For more information, see "Understanding Account Migration" in BRM Moving Accounts
between Database Schemas.

To migrate accounts from one schema to another:

1. Enable Account Migration Manager in your BRM database by setting the ocbrm.isAmt key
to your override-values.yaml file.

2. In your override-values.yaml file for oc-cn-helm-chart, set these keys:

• ocbrm.brm_apps.job.isEnabled: Set this to true.

• ocbrm.brm_apps.job.isMultiSchema: Set this to false.

• ocbrm.isAmt: Set this to true.

3. Update the oc-cn-helm-chart/brmapps_scripts/loadme.sh script to run pin_amt
commands:

cd /oms/apps/amt; pin_amt -s /oms/apps/amt/account_search.cfg
exit 0;

4. In the configmap_infranet_properties_brm_apps.yaml file, do this:

a. Under the Infranet.properties section, set the controller_1_hold_period key to the
amount of time, in minutes, that the AMM Controller waits before migrating accounts.
This provides time for your pipelines to flush any EDRs targeted for accounts in the
migration job. The default is 120.

controller_1_hold_period=Value

Chapter 8
Migrating Accounts from One Schema to Another

8-7

b. Under the account_search.cfg section, specify the account search criteria by editing
the parameters in Table 8-1.

Table 8-1 Account Search Parameters

Parameter Description Required

src_database Specifies the source schema, which is the schema from which you are
migrating accounts. The default is 0.0.0.1.

YES

dest_database Specifies the destination schema, which is the schema to which you are
migrating accounts. The default is 0.0.0.2.

YES

batch_size Specifies the number of accounts in each batch. You can specify any
amount from 1 through 1,000. However, set this to an integer between 50
and 100 for optimal performance. The default is 100.

Important:
• Using a batch size of more than 50 accounts does not improve

performance.
• If you set this to a number greater than 100, you must increase the

size of your Oracle rollback segments.

YES

start_creation_date Use this parameter to migrate accounts that were created in a specific
date range. AMM migrates accounts created between midnight (00:00:00)
on the start date and 23:59:59 on the end date. For example, to migrate
accounts created after midnight on August 1, 2030, enter 08/01/2030.

Important: If you set this parameter, you must also set the
end_creation_date parameter.

no

end_creation_date Use this parameter to migrate accounts that were created in a specific
date range. AMM migrates accounts created between midnight (00:00:00)
on the start date and 23:59:59 on the end date. For example, to migrate
accounts created on or before 11:59:59 p.m. on August 10, 2030, enter
08/10/2030.

Important: If you set this parameter, you must also set the
start_creation_date parameter.

no

product_name Migrates accounts that purchased the specified charge offer. For
example, Offer 1b - Email Account.

no

account_status Migrates accounts based on the specified account status:

• Active: Migrates only active accounts. This is the default.
• Inactive: Migrates only inactive accounts.
• Closed: Migrates only closed accounts.

no

bill_day_of_month Migrates accounts that have the specified billing day of the month (DOM).
You can specify any number from 1 through 31. For example, enter 4 to
migrate all accounts that are billed on the 4th of the month.

no

max_accounts Specifies the maximum number of accounts to move in a job. The default
is 200.

no

poid_list Migrates accounts based on the POID. Use comma separators, for
example, 22860, 22861, 22862. Limit the number of accounts to 1,000 or
less.

no

Chapter 8
Migrating Accounts from One Schema to Another

8-8

Table 8-1 (Cont.) Account Search Parameters

Parameter Description Required

migration_mode Specifies whether to migrate account groups. When AMM finds an
account that belongs to a hierarchical account, charge sharing group, or
discount sharing group, AMM migrates all accounts related to that
account.

• IncludeAccountGroup specifies to migrate accounts groups.
• ExcludeAccountGroup specifies to exclude account groups from

migrations. This is the default.
Important: If you set this parameter, you must also set the
max_group_size parameter.

no

max_group_size Specifies the maximum size of an account group that AMM can migrate.
If an account group exceeds the maximum number of accounts, AMM
excludes the account group from the job. The default is 100.

no

cross_schema_group Specifies whether pin_amt migrates accounts that belong to a cross-
schema sharing group. A cross-schema sharing group has members in
multiple database schemas.

• Enabled: Does not migrate account members of a cross-schema
sharing group.

• Disabled: Migrates account members of a cross-schema sharing
group. This is the default.

Note: When this parameter is enabled, AMM performs validation for an
account and only its immediate child account. You should perform extra
validation to ensure accounts picked up by AMM are not part of a cross-
schema sharing group.

no

For more information, see "Creating the Account Search Configuration File" in BRM
Moving Accounts between Database Schemas.

5. Run the helm upgrade command to update the release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

The accounts meeting your search criteria are migrated from the source schema to the
destination schema.

6. Verify the brm-apps and controller log files.

Migrating Accounts Using Custom Search Criteria
Account Migration Manager (AMM) allows you to migrate accounts from one schema to
another using custom search criteria. For example, you can create custom criteria for finding
and migrating accounts for customers living in a specific American state or belonging to a
particular service provider.

Chapter 8
Migrating Accounts Using Custom Search Criteria

8-9

To migrate accounts using custom search criteria:

1. Enable Account Migration Manager in your BRM database by setting ocbrm.isAmt to true
in your override-values.yaml file.

2. In your override-values.yaml file for oc-cn-helm-chart, set these keys:

• ocbrm.brm_apps.job.isEnabled: Set this to true.

• ocbrm.brm_apps.job.isMultiSchema: Set this to false.

• ocbrm.isAmt: Set this to true.

3. Update the oc-cn-helm-chart/brmapps_scripts/loadme.sh script to run pin_amt
commands:

cd /oms/apps/amt; pin_amt -s /oms/apps/amt/account_search.cfg
exit 0;

4. Open the configmap_infranet_properties_brm_apps.yaml file.

5. Under the Infranet.properties section, set the controller_1_hold_period key to the
amount of time, in minutes, that the AMM Controller waits before migrating accounts. This
provides time for your pipelines to flush any EDRs targeted for accounts in the migration
job. The default is 120.

controller_1_hold_period=Value

6. Under the custom_account_search.properties section, add SQL fragments for your
search criteria using this syntax:

criteria_name=AND SQL_condition \n

where:

• criteria_name is the name of your selection criteria.

• SQL_condition is a valid SQL condition that searches a BRM table and references one
or more search variables, as shown below. Surround search variables with curly
braces “{ }" and ensure they match an entry under the account_search.cfg section.

condition_text '{SearchVariable}'...

• SearchVariable must use a unique name and not match one of the BRM-defined
search variable names under the account_search.cfg section.

For example, this SQL fragment enables AMM to search for accounts in a particular state.
AMM searches the ACCOUNT_NAME_INFO_T table for objects with the state field set to
a specified value.

select accounts based on state
cust_acct_search_account_state_constraint=\
AND EXISTS \n\
(SELECT an.obj_id0 FROM account_nameinfo_t an \n\
WHERE an.obj_id0 = a.poid_id0 and an.state = '{account_state}') \n

7. Under the account_search.cfg section, add your SearchVariable entry set to the
appropriate value.

Chapter 8
Migrating Accounts Using Custom Search Criteria

8-10

For example:

- Migrates accounts located in a specific state. Valid values
are California and Oregon.
account_state=California

8. Under the account_search.cfg section, specify the source and destination schema as
well as any additional account search criteria by editing the parameters in Table 8-1.

9. Save and close the configmap_infranet_properties_brm_apps.yaml file.

10. For each custom search variable, create a corresponding Java implementation of the
Conversion interface.

a. Run the appropriate profile script for your shell. This script sets your CLASSPATH and
PATH environment variables to the appropriate values.

For example, for the c shell:

cd BRM_home/apps/amt
source profile.csh

b. Create a class that implements the Conversion interface.

The following sample class, account_state.class, allows users to search for accounts
from California or Oregon.

package com.portal.amt;
public class account_state implements Conversion {
 public String convert(String stateName) throws ConversionException {
 String stateCode = null;
 if(stateName.equals("California")) {
 stateCode = "CA";
 } else if(stateName.equals("Oregon")) {
 stateCode = "OR";
 } else {
 throw new
 ConversionException("Error: account_state " + stateName + "
unknown.");
 }
 return(stateCode);
 }
}

c. Save and compile your SearchVariable.java source file in the BRM_home/
apps/amt/com/portal/amt directory.

cd BRM_home/apps/amt/com/portal/amt
javac SearchVariable.java

This creates a SearchVariable.class file in the same directory.

11. Run the helm upgrade command to update the release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

Chapter 8
Migrating Accounts Using Custom Search Criteria

8-11

The accounts meeting your custom search criteria are migrated from the source schema to
the destination schema.

12. Verify the brm-apps and controller log files.

Modifying Database Schema Priorities
Database schema priority determines when customer accounts are created in a particular
schema relative to other schemas. Multidatabase Manager assigns accounts to an open
schema with the highest priority.

If all schemas have the same priority, Multidatabase Manager chooses an open schema at
random in which to create the account. This distributes accounts evenly across all schemas.
However, BRM locates accounts as follows:

• All accounts with nonpaying child units in the same schema as their paying parent bill units

• All sponsored accounts are in the same schema as their sponsoring accounts

To limit the number of accounts in your primary database schema, set your primary database
schema to a lower priority than the secondary database schemas. Accounts will be created in
the secondary database schemas when possible.

You set each schema's priority by editing the configmap_pin_conf_testnap.yaml file and
then running the load_config_dist utility through the configurator job.

Note:

The load_config_dist utility overwrites all distributions already in the database.
When adding or updating distributions, be aware that you cannot load only new and
changed distributions.

To modify database schema priorities:

1. Open the configmap_pin_conf_testnap.yaml file.

2. Under config_dist.conf, set the PRIORITY entries to the schema's priority with the
highest number having the most priority. For example, 5 indicates a greater priority than a
value of 1.

In this example, BRM cloud native would create accounts on schema 0.0.0.2 because it
has the highest priority setting of all open schemas.

DB_NO = "0.0.0.1" ; # 1st database config. block
PRIORITY = 1 ;
MAX_ACCOUNT_SIZE = 100000 ;
STATUS = "OPEN" ;
SCHEMA_NAME = "schema_name"

DB_NO = "0.0.0.2" ; # 2nd database config. block
PRIORITY = 3;
MAX_ACCOUNT_SIZE = 50000 ;
STATUS = "OPEN" ;
SCHEMA_NAME = "schema_name"

DB_NO = "0.0.0.3" ; # 3rd database config. block
PRIORITY = 5;
MAX_ACCOUNT_SIZE = 50000 ;

Chapter 8
Modifying Database Schema Priorities

8-12

STATUS = "CLOSED" ;
SCHEMA_NAME = "schema_name"

3. Save and close the file.

4. Set up the configurator job to run the load_config_dist utility by adding the following lines
to the oc-cn-helm-chart/config_scripts/loadme.sh script:

#!/bin/sh

#cp /oms/config_dist.conf /oms/sys/test/config_dist.conf
cd /oms/sys/test ; load_config_dist
exit 0;

5. In your override-values.yaml file for oc-cn-helm-chart, set the
ocbrm.config_jobs.run_apps key to true.

6. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

The distribution information is loaded into the primary schema.

7. Restart the CM.

a. Update these keys in the override-values.yaml file for oc-cn-helm-chart:

• ocbrm.config_jobs.restart_count: Increment the existing value by 1

• ocbrm.config_jobs.run_apps: Set this to false

b. Update the Helm release again:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

The CM is restarted.

Modifying Database Schema Status
Database schema status determines whether a schema is available for account creation. You
can set schemas to the following statuses:

• Open: Open schemas are available for account creation.

• Closed: Closed schemas are not used for account creation under most circumstances.
Accounts are created in a closed schema only if a sponsoring account belongs to that
schema or if all schemas are closed. If all schemas are closed, Multidatabase Manager
chooses a closed schema at random in which to create accounts. It continues creating
accounts in that schema until a schema becomes open. To limit the number of accounts
created in a schema, you can manually change the schema's status to closed or have
Multidatabase Manager automatically switch it to closed when the schema reaches a
predefined limit.

• Unavailable: Unavailable schemas are not used for account creation unless the schema
contains an account's parent or sponsoring account.

You set each schema's status by editing the configmap_pin_conf_testnap.yaml file and then
running the load_config_dist utility through the configurator job.

Chapter 8
Modifying Database Schema Status

8-13

Note:

The load_config_dist utility overwrites all distributions already in the database.
When adding or updating distributions, be aware that you cannot load only new and
changed distributions.

To modify a schema's status:

1. Open the configmap_pin_conf_testnap.yaml file.

2. Under config_dist.conf, set the value of each schema's STATUS entry to OPEN,
CLOSED, or UNAVAILABLE. For example:

DB_NO = "0.0.0.1" ; # 1st database config. block
PRIORITY = 1 ;
MAX_ACCOUNT_SIZE = 100000 ;
STATUS = "OPEN" ;
SCHEMA_NAME = "schema_name" ;

DB_NO = "0.0.0.2" ; # 2nd database config. block
PRIORITY = 3;
MAX_ACCOUNT_SIZE = 50000 ;
STATUS = "OPEN" ;
SCHEMA_NAME = "schema_name" ;

3. Save and close the file.

4. Set up the configurator job to run the load_config_dist utility by adding the following lines
to the oc-cn-helm-chart/config_scripts/loadme.sh script:

#!/bin/sh

#cp /oms/config_dist.conf /oms/sys/test/config_dist.conf
cd /oms/sys/test ; load_config_dist
exit 0;

5. In your override-values.yaml file for oc-cn-helm-chart, set the
ocbrm.config_jobs.run_apps key to true.

6. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

The distribution information is loaded into the primary schema.

7. Restart the CM.

a. Update these keys in the override-values.yaml file for oc-cn-helm-chart:

• ocbrm.config_jobs.restart_count: Increment the existing value by 1

• ocbrm.config_jobs.run_apps: Set this to false

Chapter 8
Modifying Database Schema Status

8-14

b. Update the Helm release again:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

Synchronizing /uniqueness Objects Between Schemas
In a multischema environment, BRM cloud native uses the /uniqueness object to locate
subscribers. It contains a cache of services and must stay synchronized with the service cache
in the primary schema. During normal multischema operations, the /uniqueness objects in the
primary and secondary database schemas are updated automatically.

To determine whether the /uniqueness object in a secondary database schema is out of
synchronization, use sqlplus to compare the entries in the uniqueness_t database table with
those in the service_t database table. There should be a one-to-one relationship.

If the database tables are not synchronized, run the load_pin_uniqueness utility through the
configurator job. This utility updates the /uniqueness object with the current service data.

To synchronize /uniqueness objects between database schemas:

1. Set up the configurator job to run the load_pin_uniqueness utility by adding the following
lines to the oc-cn-helm-chart/config_scripts/loadme.sh script:

#!/bin/sh

cd /oms/sys/test ; load_pin_uniqueness
exit 0;

2. In your override-values.yaml file for oc-cn-helm-chart, set the
ocbrm.config_jobs.run_apps key to true.

3. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

The load_pin_uniqueness utility is run.

4. Restart the CM.

a. Update these keys in the override-values.yaml file for oc-cn-helm-chart:

• ocbrm.config_jobs.restart_count: Increment the existing value by 1

• ocbrm.config_jobs.run_apps: Set this to false

b. Update the Helm release again:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

The CM is restarted.

5. Verify that the /uniqueness object was loaded by using one of the following to display the /
uniqueness object:

• Object Browser.

Chapter 8
Synchronizing /uniqueness Objects Between Schemas

8-15

• robj command with the testnap utility.

Chapter 8
Synchronizing /uniqueness Objects Between Schemas

8-16

9
Migrating Legacy Data to BRM Cloud Native

Learn how to migrate data from your legacy database to the Oracle Communications Billing
and Revenue Management (BRM) cloud native database.

Topics in this document:

• About Migrating Legacy Data

• Loading Legacy Data into the BRM Database

About Migrating Legacy Data
You migrate legacy data to the BRM cloud native database using Conversion Manager.
Conversion Manager can migrate the following types of data: account data, service data,
product offering data, billing data, account hierarchy data, and balance data. See
"Understanding Conversion Manager" in BRM Migrating Accounts to the BRM Database for
more information.

The high-level steps for migrating legacy data to the BRM cloud native database include the
following:

1. Understanding the data in your legacy system and deciding how to convert it to the
database.

2. Mapping the data in your legacy database to the BRM database. To do so, you create XML
files that are validated by the Conversion Manager XSD schema files.

See "Mapping Legacy Data to the BRM Data Schema" in BRM Migrating Accounts to the
BRM Database.

3. Migrating the data to the BRM database by running the pin_cmt utility through a brm-apps
job.

See "Loading Legacy Data into the BRM Database".

Loading Legacy Data into the BRM Database
You load legacy data into the BRM cloud native database in a multistep process:

• Import your legacy data into a staged area of the BRM database

• If necessary, recover and reload any failed load processes

• Deploy the data from the staged area to the production area of the BRM database

You load legacy data by running the pin_cmt utility through the brm-apps job. For more
information about the utility's parameters and syntax, see "pin_cmt" in BRM Migrating
Accounts to the BRM Database.

To load legacy data into the BRM database, do the following:

1. Ensure that BRM cloud native is running.

9-1

2. (Optional) Modify the pin_cmt utility's connection and performance parameters. To do so,
edit the infranet-properties-brm-apps ConfigMap
(configmap_infranet_properties_brm_apps.yaml):

a. Under the file's cmt_Infranet.properties section, edit the pin_cmt parameters.

b. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track
this installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for
the BRM Helm chart.

3. Import your legacy data into a staged area of the BRM database:

a. Add the following lines to the oc-cn-helm-chart/brmapps_scripts/loadme.sh script:

#!/bin/sh

cd /oms/apps/pin_cmt; pin_cmt -import -file XML_input_data_file stage_ID
cd /oms/apps/pin_cmt; pin_cmt -import_custom -file XML_custom_data_file
stage_ID
exit 0;

where:

• XML_input_data_file is the file name and path to the XML file containing the
mapping between the legacy and BRM databases.

• stage_ID is the identity of the staging area.

• XML_custom_data_file is the file name and path to the XML file containing the
mapping between your legacy database and new storable classes in the BRM
database.

b. Move the XML_input_data_file and XML_custom_data_file files to the oc-cn-helm-
chart/brmapps_scripts directory.

c. Enable the pin_cmt utility and brm-apps job. In your override-values.yaml file for oc-
cn-helm-chart, set the following keys:

• ocbrm.cmt.enabled: Set this to true.

• ocbrm.brm_apps.job.isEnabled: Set this to true.

d. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

4. Check for load processes that failed and, if any did, recover and reload the processes:

a. Check the cmt.pinlog file for load failures.

b. In the cmt.pinlog file, retrieve the batch ID for each failed load process.

c. Add the following lines to the oc-cn-helm-chart/brmapps_scripts/loadme.sh script:

#!/bin/sh

Chapter 9
Loading Legacy Data into the BRM Database

9-2

cd /oms/apps/pin_cmt; pin_cmt -recovery load batch_ID
exit 0;

where batch_ID is the batch ID you retrieved from cmt.pinlog.

d. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

5. Deploy your data from the staged area to the production area of the BRM database:

a. Add the following lines to the oc-cn-helm-chart/brmapps_scripts/loadme.sh script:

#!/bin/sh

cd /oms/apps/pin_cmt; pin_cmt -deploy DOM stage_ID
exit 0;

where DOM is the billing cycle's day of the month. Only those accounts with the
specified stage ID and DOM are deployed.

b. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

After accounts are deployed, BRM cloud native starts their billing cycles, applies any cycle
fees, and, in multischema systems, updates the uniqueness table in the primary database
schema.

Chapter 9
Loading Legacy Data into the BRM Database

9-3

10
Creating Custom Fields and Storable Classes

You can create custom fields and storable classes in Oracle Communications Billing and
Revenue Management (BRM) cloud native using the BRM SDK opcodes or the pin_deploy
utility.

Topics in this document:

• Creating, Editing, and Deleting Fields and Storable Classes using BRM SDK Opcodes

• Moving Field and Storable Class Definitions Between BRM Servers with pin_deploy

The storable class structure is described in "Understanding Storable Classes" in BRM
Developer's Guide.

Creating, Editing, and Deleting Fields and Storable Classes
using BRM SDK Opcodes

You can use the BRM SDK opcodes to create, modify, delete, or retrieve storable class and
field specifications from the BRM database. For more information about the BRM SDK, see
"Using BRM SDK" in BRM Developer's Guide.

To manage field and storable class specifications using the BRM SDK opcodes:

1. Enable changes to the data dictionary. See "Making the Data Dictionary Writable".

2. Create, edit, or delete your custom storable classes and fields by running the BRM SDK
opcodes. See "Running the BRM SDK Opcodes".

3. Make your custom fields and storable classes available to BRM applications by generating
source and header files.

• For BRM applications written in PCM C and C++, see "Making Custom Fields
Available to Your PCM and C++ Applications".

• For BRM applications written in Java PCM, see "Making Custom Fields Available to
Your Java PCM Applications".

Making the Data Dictionary Writable
Ensure the data dictionary is writable before adding or changing fields and storable classes.

Perform the following for each database in your system:

1. Enable changes to the data dictionary by doing the following:

a. Open the dm-oracle-pin-conf-config ConfigMap.

b. Ensure the following fields are set to 1:

data:
 pin.conf: |
 - dm dd_write_enable_fields 1
 - dm dd_write_enable_objects 1

10-1

c. Save and close the file.

2. (Optional) To increase the size of the CM cache for the data dictionary, do the following:

a. Open the cm-pin-conf-config ConfigMap.

b. Increase the cacheSize value in the following entries:

data:
 pin.conf: |
 - cm_cache cm_data_dictionary_cache numberOfEntries, cacheSize, hashSize
 - cm_cache fm_utils_data_dictionary_cache numberOfEntries, cacheSize,
hashSize

c. Save and close the file.

3. (Optional) To configure whether the DM runs Data Definition Language (DDL) when
updating object types in the data dictionary tables, do the following:

a. Open the dm-oracle-pin-conf-config ConfigMap.

b. Set the following entry:

data:
 pin.conf: |
 - dm sm_oracle_ddl value

where value is 1 to run DDLs when updating object types or 0 not to run them. Setting
value to 1 ensures that database objects are mapped to the correct tables.

c. Save and close the file.

4. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile -n
BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Running the BRM SDK Opcodes
You can run the BRM SDK opcodes in the BRM cloud native system without entering a pod by
running the testnap utility through a configurator job. For more information about:

• The testnap utility's syntax and parameters, see "testnap" in BRM Developer's Guide.

• Configurator jobs, see "Running Load Utilities Through Configurator Jobs".

To run the BRM SDK opcodes:

1. Create a testnap script with the following content:

r << XXX 1
flistContent
XXX
xop opcodeNumber bufferNumber

where:

Chapter 10
Creating, Editing, and Deleting Fields and Storable Classes using BRM SDK Opcodes

10-2

• flistContent is the input flist for the BRM SDK opcode you want to run.

• opcodeNumber is the number of the BRM SDK opcode to run. For the list of opcode
numbers for the BRM SDK opcodes, see Table 10-1 and Table 10-2.

• bufferNumber is the internal buffer number used to load the opcode's input flist file.

2. Add the following lines to the oc-cn-helm-chart/config_scripts/loadme.sh script:

#!/bin/sh

cd /oms/sys/data/config; testnap testnapScript
exit 0;

where testnapScript is the name and path to the testnap script you created.

3. Move testnapScript to the oc-cn-helm-chart/config_scripts directory.

4. In the override-values.yaml file for oc-cn-helm-chart, set ocbrm.config_jobs.run_apps
to true.

5. Run the helm upgrade command for oc-cn-helm-chart:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

Table 10-1 describes the BRM SDK opcodes to run for creating, modifying, deleting, and
retrieving storable classes.

Table 10-1 BRM SDK Opcodes for Storable Classes

Opcode Name Opcode Number Description

PCM_OP_SDK_SET_O
BJ_SPECS

578 Creates or modifies a storable class specification in the
data dictionary of all databases in your BRM system.

It takes the following as input: POID, storable class
name, and storable class type.

If the transaction is successful, the opcode returns the
POID of the created or modified storable class and a
results array containing an SQL description of any table
changes.

Note: If you change a storable class after it has been
instanced and populated with data, your database will
be corrupted.

PCM_OP_SDK_GET_O
BJ_SPECS

577 Retrieves the storable class specifications specified in
the input flist. You can retrieve specific levels or types of
objects by using the wildcard (*) character. When no
storable classes are specified, the opcode returns all
storable class specifications in the BRM database.

If the transaction is successful, the opcode returns the
specified storable class specifications or all storable
class specifications if the input flist does not specify a
storable class.

Chapter 10
Creating, Editing, and Deleting Fields and Storable Classes using BRM SDK Opcodes

10-3

Table 10-1 (Cont.) BRM SDK Opcodes for Storable Classes

Opcode Name Opcode Number Description

PCM_OP_SDK_DEL_O
BJ_SPECS

583 Deletes storable class specifications from the data
dictionary only. To drop the actual table that was created
by PCM_OP_SDK_SET_OBJ_SPECS, you must drop it
manually.

The opcode deletes storable class specifications from
the data dictionary of all databases in your BRM system.

If the transaction is successful, the opcode returns the
POID of the deleted storable class and a results array
containing an SQL description of any table changes.

Note: Deleting a storable class that has already been
instantiated corrupts your database. For example, never
delete the /account storable class. Because of this
danger, Oracle recommends not using this opcode on a
production system.

Table 10-2 describes the BRM SDK opcodes to run for creating, modifying, deleting, and
retrieving field definitions.

Table 10-2 BRM SDK Opcodes for Field Definitions

Opcode Name Opcode Number Description

PCM_OP_SDK_SET_F
LD_SPECS

576 Creates or modifies the specified field specification in
the data dictionary of all databases in your BRM system.

It takes the following as input: a partial POID (database
number plus /dd/fields), field name, and field type.

Note: The POID is the only mandatory field on the input
flist. However, to implement the field, you must at least
specify the field name and type.

The opcode returns the POID of the created or modified
data dictionary field if the transaction is successful. If the
opcode cannot create or modify the field, the opcode
returns the field's POID, along with the
PIN_FLD_ACTION field set to NOOP.

PCM_OP_SDK_GET_F
LD_SPECS

575 Retrieves all field specifications specified on the input
flist. When no fields are specified, this opcode returns all
field specifications in the BRM database.

Note: Returning all field specifications can take a long
time.

PCM_OP_SDK_DEL_F
LD_SPECS

585 Deletes the specified field specification from the data
dictionary of all databases in your BRM system.

It takes the following as input: the partial POID
(database number plus /dd/fields) and the name of the
field to delete.

If the transaction is successful, the opcode returns the
POID of the deleted field specification.

Chapter 10
Creating, Editing, and Deleting Fields and Storable Classes using BRM SDK Opcodes

10-4

Making Custom Fields Available to Your PCM and C++ Applications
After you create custom fields and storable classes, you must make them available to your
BRM cloud native applications. The first step is to create a C header file, and then you
generate a Java package with the custom storable classes.

To make custom fields available to your BRM cloud native applications written in PCM C or
PCM C++:

1. Create a C header file for your custom fields. For information about the syntax to use in a
header file, view the BRM_home/include/pin_flds.h file in the brm-sdk pod.

2. Enable the brm-sdk pod if you haven't already done so.

a. Set these keys in your override-values.yaml file for oc-cn-helm-chart:

brm_sdk:
 isEnabled: true
 deployment:
 imageName: brm_sdk
 imageTag: 15.1.x.x.x
 pvc:
 storage: 50Mi

b. Run the helm upgrade command for oc-cn-helm-chart:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track
this installation instance.

• OverrideValuesFile is the path to a YAML file that overrides the default
configurations in the values.yaml file for oc-cn-helm-chart.

• BrmNameSpace is the namespace in which BRM Kubernetes objects were
created for oc-cn-helm-chart.

3. Copy your C header file to the brm-sdk pod:

cp fileName oc-cn-helm-chart/brm_sdk_scripts/
helm upgrade BrmReleaseName oc-cn-helm-chart --namespace BrmNameSpace --values
OverrideValuesFile

where fileName is the name of your C header file.

For example, if the C header file is named cust_flds.h:

cp cust_flds.h oc-cn-helm-chart/brm_sdk_scripts/
helm upgrade BrmReleaseName oc-cn-helm-chart --namespace BrmNameSpace --values
OverrideValuesFile

Afterward, the files from oc-cn-helm-chart/brm_sdk_scripts/ are available at /oms/load
in the brm-sdk pod.

Chapter 10
Creating, Editing, and Deleting Fields and Storable Classes using BRM SDK Opcodes

10-5

4. Find the name of the brm-sdk pod:

kubectl get pods -n BrmNameSpace | grep brm-sdk

You should see something similar to this:

NAME READY STATUS RESTARTS AGE
brm-sdk-f67b95777-bf8j5 1/1 Running 0 18m

In this case, the brm-sdk pod name (brmSDKPodName) is brm-sdk-f67b95777-bf8j5.

5. Run the kubectl exec command to get a shell to the running brm-sdk container:

kubectl exec -it -n BrmNameSpace brmSDKPodName bash

For example:

kubectl exec -it -n BrmNameSpace brm-sdk-f67b95777-bf8j5 bash
6. In your shell, go to the /oms/load directory and run the parse_custom_ops_fields.pl

script with the custom source file:

perl parse_custom_ops_fields -L pcmc -I filename -O custFlds -P
javaPackageName

where:

• custFlds: Specifies the name and the location of the memory-mapped output file to
create.

• javaPackageName: Specifies the name of the Java package in which to create the
generated classes.

For example, if the C header file is named cust_flds.h:

perl parse_custom_ops_fields -L pcmc -I cust_flds.h -O outputFile -P
javaPackageName

For information about the parameters and syntax for parse_custom_ops_fields, see
"parse_custom_ops_fields" in BRM Developer's Guide.

7. Configure one or more BRM applications to access your custom fields by doing the
following for each BRM application:

a. Open the application's oc-cn-helm-chart/templates/configmap_pin_conf_*.yaml
file.

b. Add the following entry, replacing custFlds with the file name and location of the
memory-mapped output file that parse_custom_ops_fields created:

- - ops_fields_extension_file custFlds

Chapter 10
Creating, Editing, and Deleting Fields and Storable Classes using BRM SDK Opcodes

10-6

Note:

Do not add more than one ops_fields_extension_file entry. The custom
fields source file and the extension file that results from it contain information
about all the custom fields in the data dictionary, so a single reference to that
file is sufficient.

c. Include the cust_flds.h header file in the applications and FMs that use the custom
fields.

Note:

Default BRM fields are defined with their numbers in the BRM_home/
include/pin_flds.h file in the brm-sdk pod. While it is possible to add custom
fields directly to pin_flds.h, you should not do so. Placing custom field
definitions in the separate cust_flds.h file allows you to upgrade to new
releases without having to edit pin_flds.h.

Making Custom Fields Available to Your Java PCM Applications

Note:

Developer Center is a Java application. To ensure that custom fields are displayed
properly in flists in Object Browser and Opcode Workbench, you must follow the
procedures for making fields available to Java applications.

Configure one or more BRM applications to access your custom fields by doing the following:

1. Create a Java source file for each custom field.

2. Do the following for each application:

a. Open the application's oc-cn-helm-chart/templates/
configmap_infranet_properties_*.yaml file.

b. Add properties for configuring your custom field and source file.

c. Save and close the file.

3. Compile the Java source files you created in Step 1.

4. (Optional) Compress the compiled classes into a JAR file.

5. In your CLASSPATH environment variable, add the location of the JAR files or compiled
Java classes.

Moving Field and Storable Class Definitions Between BRM
Servers with pin_deploy

You can transport definitions for storable classes and fields from one BRM server to another
using the pin_deploy utility. For example, you could move them from your development

Chapter 10
Moving Field and Storable Class Definitions Between BRM Servers with pin_deploy

10-7

environment to your production environment. The pin_deploy utility exports storable class and
field definitions to a Portal Object Definition Language (PODL) file and loads them into the
BRM data dictionary.

Moving field and storable class definitions from one BRM server to another involves these
high-level tasks:

1. Extracting Field and Storable Class Definitions with pin_deploy

2. Importing Field and Storable Class Definitions with pin_deploy

The pin_deploy utility is available on all BRM platforms, can be scripted, and can use stdin
and stdout. It has several modes of operation to ensure atomic operations and consistency. It
provides the following advantages:

• Streamlines the process of putting all storable class and field definitions into source code
management

• Enables you to print out a storable class or field definition for review

• Reduces the possibility of damaging the BRM production database data dictionary

See "pin_deploy" in BRM Developer's Guide for more information about the utility's syntax and
parameters.

Extracting Field and Storable Class Definitions with pin_deploy
To extract field and storable class definitions from the source BRM cloud native server:

1. To extract definitions for both fields and storable classes, add the following lines to the oc-
cn-helm-chart/config_scripts/loadme.sh script:

Note:

You must run pin_deploy from the BRM_home/sys/test directory because it
must be run with the root.0.0.0.1 role.

#!/bin/sh
cd BRM_home/sys/test; pin_deploy field [-cp] fieldName1 fieldName2
fieldNameN
cd BRM_home/sys/test; pin_deploy class [-mnscp] className1 className2
classNameN
exit 0;

where:

• fieldNameN specifies the name of the field to export.

• classNameN specifies the name of the storable class to export.

• -m specifies to export the storable class implementation.

• -n specifies to export the storable class interface.

• -s specifies to include all subclasses of specified storable class.

• -c specifies to include field definitions for all customer-defined fields within storable
classes.

Chapter 10
Moving Field and Storable Class Definitions Between BRM Servers with pin_deploy

10-8

• -p specifies to include field definitions for all BRM-defined fields within storable
classes.

2. In the override-values.yaml file for oc-cn-helm-chart, set ocbrm.config_jobs.run_apps
to true.

3. Run the helm upgrade command to update the release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Importing Field and Storable Class Definitions with pin_deploy
To import field and storable class definitions into the destination BRM server:

Note:

The pin_deploy utility cannot determine the space requirement in the BRM
database. If you run out of disk space before the deployment is complete, you must
manually drop the tables that were created, make more space, and try again.

1. Add up the implementation definitions (for example, initial clause) of the PODL files you
want to import to verify that you have enough disk space. The lines start with this text:

SQL_STORAGE =
2. Configure BRM cloud native to do the following:

• Run pin_deploy in verify mode to determine if there are any conflicts with existing
storable class and field definitions.

• Commit the storable class and field definitions to the BRM database.

To do so, add the following lines to the oc-cn-helm-chart/config_scripts/loadme.sh
script:

Note:

You must run pin_deploy from the BRM_home/sys/test directory because it
must be run with the root.0.0.0.1 role.

#!/bin/sh
cd BRM_home/sys/test; pin_deploy verify filename.podl

Chapter 10
Moving Field and Storable Class Definitions Between BRM Servers with pin_deploy

10-9

cd BRM_home/sys/test; pin_deploy command filename.podl
exit 0;

where:

• filename is the name of the PODL file that contains your storable class or field
definitions. If there are multiple PODL files, separate the file names using a space as a
delimiter.

• command is either:

– create to preserve old storable class and field definitions that conflict with new
ones

– replace to overwrite storable class and field definitions that conflict with existing
ones.

3. In the override-values.yaml file for oc-cn-helm-chart, set ocbrm.config_jobs.run_apps
to true.

4. Run the helm upgrade command to update the release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile -
n BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

In all cases, the utility imports the entire PODL file. Nothing from the file is loaded if the utility
cannot load the entire file. For example, if it loads a storable class that includes custom fields,
they must exist in the data dictionary or in the PODL file for the storable class to load.

Chapter 10
Moving Field and Storable Class Definitions Between BRM Servers with pin_deploy

10-10

Part II
Monitoring BRM Cloud Native Services

This part describes how to monitor Oracle Communications Billing and Revenue Management
(BRM) cloud native services. It contains the following chapters:

• Monitoring BRM Cloud Native Services

• Monitoring and Autoscaling Business Operations Center Cloud Native

• Monitoring and Autoscaling Billing Care Cloud Native

• Monitoring and Autoscaling Pipeline Configuration Center Cloud Native

• Monitoring BRM REST Services Manager Cloud Native

• Tracing BRM REST Services Manager Cloud Native

• Tracing Opcode Processes

For information about monitoring Elastic Charging Engine (ECE) and Pricing Design Center
(PDC), see "Monitoring ECE in a Cloud Native Environment" and "Monitoring PDC in a Cloud
Native Environment".

11
Monitoring BRM Cloud Native Services

Learn how to monitor your Oracle Communications Billing and Revenue Management (BRM)
cloud native services by using Prometheus and Grafana.

Topics in this document:

• About Monitoring BRM Cloud Native Services

• Setting Up Monitoring for BRM Cloud Native Services

• BRM Opcode Metric Group

About Monitoring BRM Cloud Native Services
You can set up monitoring for the following BRM cloud native services:

• CM

• Oracle DM

• Oracle DM shared memory, front-end processes, and back-end processes

• BRM Java Applications: RE Loader Daemon, Batch Controller, and EAI Java Server (JS)

• Web Services Manager

• BRM database

The metrics for the database are generated by OracleDB_exporter, and the metrics for all other
BRM services are generated directly by BRM cloud native. You use Prometheus to scrape and
store the metric data and then use Grafana to display the data in a graphical dashboard.

Setting Up Monitoring for BRM Cloud Native Services
To set up monitoring for BRM cloud native services:

1. Deploy Prometheus in your Kubernetes Cluster in one of the following ways:

• Deploy a standalone version of Prometheus in your cloud native environment. See
"Installation" in the Prometheus documentation.

• Deploy Prometheus Operator. See "prometheus-operator" on the GitHub website.

For the list of compatible software versions, see "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

2. Install Grafana. See "Install Grafana" in the Grafana documentation.

For the list of compatible software versions, see "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

3. Configure BRM cloud native to collect metrics for its components and export them to
Prometheus. See "Configuring BRM Cloud Native to Collect Metrics".

4. Configure how Perflib generates metric data for BRM opcodes. See "Configuring Perflib for
BRM Opcode Monitoring".

11-1

https://prometheus.io/docs/prometheus/latest/installation/
https://github.com/prometheus-operator/prometheus-operator
https://grafana.com/docs/grafana/latest/installation/

5. Configure OracleDB_exporter to scrape metrics from your Oracle database and export
them to Prometheus. See "Configuring OracleDB_Exporter to Scrape Database Metrics".

6. Create Grafana Dashboards to view your metric data. See "Configuring Grafana for BRM
Cloud Native".

Configuring BRM Cloud Native to Collect Metrics
To configure BRM cloud native to collect metrics for its components and then expose them in
Prometheus format:

1. In your override-values.yaml file for oc-cn-helm-chart, set the
monitoring.prometheus.operator.enable key to one of the following:

• true if you are using Prometheus Operator.

• false if you are using a standalone version of Prometheus. This is the default.

2. To collect metrics for the CM, do the following:

a. In your override-values.yaml file for oc-cn-helm-chart, set the
ocbrm.cm.deployment.perflib_enabled key to true.

b. In the oms-cm-perflib-config ConfigMap, review and update the Perflib configuration.
For information about the possible values, see "Configuring Perflib for BRM Opcode
Monitoring".

c. In the oms-cm-config ConfigMap, review and update the Perflib configuration. For
information about the possible values, see "Configuring Perflib for BRM Opcode
Monitoring".

3. To collect metrics for Oracle DM shared memory, front-end processes, and back-end
processes, do the following:

In the oms-cm-perflib-config ConfigMap, set the data.ENABLE_PROCESS_METRICS
key to true.

4. To collect metrics for the dm-oracle pod, do the following:

• In your override-values.yaml file for oc-cn-helm-chart, set the
ocbrm.dm_oracle.deployment.perflib_enabled key to true.

• In the oms-dm-oracle-perflib-config ConfigMap, review and update the Perflib
configuration. For information about the possible values, see "Configuring Perflib for
BRM Opcode Monitoring".

• In the oms-dm-oracle-config ConfigMap, review and update the Perflib configuration.
For information about the possible values, see "Configuring Perflib for BRM Opcode
Monitoring".

5. To collect metrics for the BRM Java applications, REL Daemon, Batch Controller, and EAI
Java Server, do the following:

In your override-values.yaml file for oc-cn-helm-chart, set the
monitoring.prometheus.jmx_exporter.enable key to true.

6. To collect metrics for Web Services Manager on WebLogic, do the following:

In your override-values.yaml file for oc-cn-helm-chart, set the
ocbrm.wsm.deployment.weblogic.monitoring.isEnabled key to true.

7. To collect metrics for Standalone Web Services Manager, do the following:

In your override-values.yaml file for oc-cn-helm-chart, set the
monitoring.prometheus.operator.enable key to true.

Chapter 11
Setting Up Monitoring for BRM Cloud Native Services

11-2

8. To persist the Perflib timing files in your BRM database, do the following:

a. In your override-values.yaml file for oc-cn-helm-chart, set the
ocbrm.perflib.deployment.persistPerlibLogs key to true.

b. Check the values of these Perflib timing-related environment variables in your oms-
cm-perflib-config and oms-dm-oracle-perflib-config ConfigMaps:
PERFLIB_VAR_TIME, PERFLIB_VAR_FLIST, and PERFLIB_VAR_ALARM. See
Table 11-1 for more information.

9. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

After you update the Helm release, metrics will be exposed to Prometheus through the CM pod
at the /metrics endpoint with the following ports:

• CM: Port 11961

• Oracle DM shared memory, back-end processes, and front-end processes: Port 11961 or
Port 31961

• Oracle DM: Port 12951

Example: Enabling Monitoring for All BRM Components

This shows sample override-values.yaml entries for enabling the collection of the following
metrics for Prometheus:

• CM

• Oracle DM

• Oracle DM shared memory, front-end processes, and back-end processes

• Web Services Manager

• BRM Java applications: REL Daemon, Batch Controller, and EAI Java Server

It also configures BRM to persist the Perflib timing files in your BRM database.

monitoring:
 prometheus:
 operator:
 enable: false
 jmx_exporter:
 enable: true
ocbrm:
 cm:
 deployment:
 perflib_enabled: true
 dm_oracle:

Chapter 11
Setting Up Monitoring for BRM Cloud Native Services

11-3

 deployment:
 perflib_enabled: true
 perflib:
 deployment:
 persistPerflibLogs: true
 wsm:
 deployment:
 weblogic:
 monitoring:
 isEnabled: true

Configuring Perflib for BRM Opcode Monitoring
The BRM cloud native deployment package includes the BRM Performance Profiling Toolkit
(Perflib), which the Connection Manager (CM), Oracle Data Manager (DM), Synchronization
Queue DM, and Account Synchronization DM depend on for generating and exposing BRM
opcode metrics.

You configure how Perflib generates the metric data by setting environment variables in the
following:

• For the CM: The oms-cm-perflib-config ConfigMap

• For the DMs: The oms-dm-oracle-perflib-config ConfigMap

Table 11-1 describes the environment variables you can use to configure Perflib for the CM and
DMs.

Table 11-1 Perflib Environment Variables

Environment Variable Description

PERFLIB_ENABLED Whether to enable opcode monitoring with Perflib.

• 0: Disables Perflib.
• 1: Enables Perflib. This is the default.

PERFLIB_HOME The location of the Perflib Toolkit.

PERFLIB_DEBUG The debug log level for Perflib.

• 0: Turn off debugging. This is the default.
• 1: Log summary information to stderr.
• 2: Log detailed opcode execution information to stderr.
• 4: Log trace information to stderr.

PERFLIB_MAX_LOG_SIZE The maximum number of opcodes that can be logged in one log
file. You can use this to prevent huge log files if detailed tracing is
used for long periods.

• 0: Creates a single file with no limits. This is the default.
• Number: Defines the maximum number of opcodes to log

before opening a new file.

PERFLIB_AGGREGATION_PERIO
D

The amount of time that data is recorded into a bucket, in minutes
or hours. When the amount of time expires, Perflib creates a new
bucket. For example, each bucket could record an hour's worth of
data, 2 hours of data, or 5 minutes of data.

The allowed values for hours: 1h, 2h, 3h, 4h, 6h, 8h, 12h, or 24h.

The allowed values for minutes: 1m, 2m, 3m, 4m, 5m, 6m, 10m,
12m, 15m, 30m, or 60m.

The default is 1h.

Chapter 11
Setting Up Monitoring for BRM Cloud Native Services

11-4

Table 11-1 (Cont.) Perflib Environment Variables

Environment Variable Description

PERFLIB_FLUSH_FREQUENCY How frequently, in seconds, to flush in-memory aggregation data to
trace files on disk.

The default is 3600 (1 hour).

PERFLIB_LOG_SINGLE_FILE The prefix for tracing filenames, such as cm_batch, cm_aia, or
cm_rt. This allows you to distinguish the trace files for each type of
application.

The default is perf_log.

PERFLIB_PIN_SHLIB The full path of the shared library that contains the BRM opcode
functions being interposed.

This environment variable is used for the CM only.

The default is /oms/lib/libcmpin.so.

PERFLIB_DATA_FILE The full path name of the memory-mapped data file Perflib uses to
store control variables and real-time trace data.

The following special formatting characters can be used as part of
the data file name and are substituted by Perflib when the data file
is created:

• %p: Substituted with the process ID of the process using
Perflib.

• %t: Substituted with the current time stamp (as a Linux time
number).

• %T: Substituted with the current time stamp (as a
YYYYMMDDHHMMSS string).

The default is /oms_logs/perflib_data.dat.

PERFLIB_LOG_DIR The directory where trace output is written.

The default is /oms_logs.

PERFLIB_DATA_FILE_RESET Whether real-time tracing data and variable settings are
maintained between application executions. This enables statistics
to continue to accumulate across an application restart.

• Y: All variables and trace data are destroyed when the
application starts. This is the default.

• N: The existing data is retained.

PERFLIB_VAR_TIME Whether the Perflib tracing is activated immediately.

• 0: Timing is disabled at startup.
• 1: Real-time timing is enabled at startup. This is the default.
• 2: File-based timing is enabled at startup.
• 3: File-based and real-time timing is enabled at startup.

PERFLIB_VAR_FLIST Whether the Perflib flist tracing is activated immediately.

• 0: Flist logging is disabled. This is the default.
• 1: Summary logging is enabled at startup.
• 2: Full flist logging is enabled at startup.

PERFLIB_VAR_ALARM Whether the Perflib alarm functionality is activated immediately.

• 0: Alarms are disabled at startup.
• 1: Alarms are enabled at startup. This is the default.

Chapter 11
Setting Up Monitoring for BRM Cloud Native Services

11-5

Table 11-1 (Cont.) Perflib Environment Variables

Environment Variable Description

PERFLIB_AUTO_FLUSH Whether the CM flushes data regularly (with the frequency set by
PERFLIB_FLUSH_FREQUENCY).

• 0: Disables flushing. In this case, if a CM does not receive any
opcode requests, flushing is not performed until the CM
terminates or an opcode arrives. This is the default.

• 1: Enables intra-opcode flushing. That is, flushing occurs
between different top-level opcodes.

• 2: Enables full flushing. Flushing occurs within an opcode
without waiting for it to complete. This can be useful when
tracing very long-running opcodes.

This environment variable is used for the CM only.

PERFLIB_COLLECT_CPU_USAG
E

Whether user and system CPU usage is tracked at the opcode
level, allowing CPU hogs to be identified more easily.

• 0: Collection is disabled.
• Positive value: CPU data is collected for opcodes down to that

level. For example, setting it to 1 would collect CPU data for
the top-level opcodes, while setting it to 2 would collect data
for both the top-level opcodes and all the children.

PERFLIB_LOCK_METHOD The method used to lock between processes.

• 0: Use POSIX shared-memory mutexes. This is the default.
• 1: Use file-based advisory locks.

PERFLIB_ASYNC_FLUSHING Whether flushing to the trace file from memory is done within the
opcode execution, or asynchronously in a separate thread.

• 0: Flush data to the trace file within the opcode execution.
• 1: Flush data to the trace file in a separate processing thread.

This is the default.

PERFLIB_TRACE_OBJECT_TYP
E

Whether Perflib records the BRM object type associated with
different database operations, such as PCM_OP_SEARCH,
PCM_OP_READ_FLDS, PCM_OP_WRITE_FLDS, and so on. This
can help you understand which objects are being read or written
most frequently and how much time is being spent on different
objects.

For PCM_OP_EXEC_SPROC, the latest versions of Perflib will
record the name of the stored procedure that was run.

• 0: Do not collect object type data.
• 1: Collect object type data and record it in real time or batch

trace files. This is the default.

PERFLIB_GROUP_TRANSACTIO
NS

Whether Perflib tracks BRM transactions as a single unit. The
opcodes run as part of a transaction are grouped under a virtual
opcode, TRANSACTION_GROUP.

• 0: Do not group transactions. This is the default.
• 1: Group transactions.

PERFLIB_LOG_MAX_SINGLE_FI
LE_SIZE

The threshold file size at which a new single log file is created (it
only works with the PERFLIB_LOG_SINGLE_FILE parameter).
Whenever a flush of aggregate timing data causes the configured
size to be exceeded, the log file is renamed, and a new file is
created for subsequent data.

The size is expressed in bytes. For example, 5242880 is equivalent
to 512 Mb. If the parameter is not defined or set to 0, the file size
defaults to 1 GB.

Chapter 11
Setting Up Monitoring for BRM Cloud Native Services

11-6

Table 11-1 (Cont.) Perflib Environment Variables

Environment Variable Description

PERFLIB_ALARM_CONFIG_FILE How Perflib handles alarms.

Perflib provides an example alarm file, alarm_config.lst, which
shows how operation-specific configurations may be done.

PERFLIB_ALARM The general alarm that triggers the logging of information regarding
any opcode call that exceeds a particular elapsed time.

ENABLE_PROCESS_METRICS Whether Prometheus generates metrics for the Oracle DM shared
memory, front-end processes, and back-end processes.

• true: Enables DM shared memory, front-end, and back-end
metrics in Prometheus format.

• false: Disables DM shared memory, front end, and back end
metrics. This is the default.

PERFLIB_LOG_CORRELATION_I
N_CALL_STACK

Whether Perflib adds the BRM correlation ID to call-stack logs.

• 0: Do not add correlation IDs to call-stack traces.
• 1: Add correlation IDs to call-stack traces. This is the default.

PERFLIB_FLIST_LOG_TO_STDO
UT

Instructs Perflib to generate flist logs to standard output.

• 0: Writes opcode flists and stack trace logs to files. This is the
default.

• 1: Writes opcode flists and stack trace logs to STDOUT.

Configuring OracleDB_Exporter to Scrape Database Metrics
You use OracleDB_Exporter to scrape metrics from your BRM database and export them to
Prometheus. Prometheus can then read the metrics and display them in a graphic format in
Grafana.

To configure OracleDB_Exporter to scrape and export metrics from your BRM database:

1. Download and install the following external applications:

• OracleDB_exporter. See https://github.com/iamseth/oracledb_exporter on the GitHub
website.

• Oracle database client.

For the list of compatible software versions, see "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

2. Specify the BRM database metrics to scrape and export in the Exporter_home/default-
metrics.toml file, where Exporter_home is the directory in which you deployed
OracleDB_Exporter.

For more information, see https://github.com/iamseth/oracledb_exporter/blob/master/
README.md on the GitHub website.

3. Open your override-values.yaml file for Prometheus.

4. Configure Prometheus to fetch performance data from OracleDB_exporter.

To do so, copy and paste the following into your override-values.yaml file, replacing
hostname with the host name of the machine on which OracleDB_exporter is deployed:

static_configs:
- targets: [hostname:33775']
- job_name: 'oracledbexporter'

Chapter 11
Setting Up Monitoring for BRM Cloud Native Services

11-7

https://github.com/iamseth/oracledb_exporter
https://github.com/iamseth/oracledb_exporter/blob/master/README.md
https://github.com/iamseth/oracledb_exporter/blob/master/README.md

static_configs:
- targets: ['hostname:9161']

5. Save and close your file.

6. Run the helm upgrade command to update your Prometheus Helm chart release.

The metrics for your BRM database are available at http://hostname:9161/metrics.

Configuring Grafana for BRM Cloud Native
You can create a dashboard in Grafana to display the metric data for your BRM cloud native
services.

Alternatively, you can use the sample dashboards included in the oc-cn-docker-
files-15.1.x.x.x.tgz package. To use the sample dashboards, import the dashboard files from
the oc-cn-docker-files/samples/monitoring/ directory into Grafana. See "Export and Import"
in the Grafana Dashboards documentation.

Table 11-2 describes each sample dashboard.

Table 11-2 Sample Grafana Dashboards

File Name Description

oc-cn-applications-dashboard.json Provides a high-level view of all BRM components
that have been installed, grouped by whether they
are running or have failed.

ocbrm-batch-controller-dashboard.json Allows you to view JVM-related metrics for the
Batch Controller.

ocbrm-dm-kafka-dashboard.json Allows you to view JVM-related metrics for the
Kafka DM.

ocbrm-cm-dashboard.json Allows you to view CPU and opcode-level metrics
for the CM.

ocbrm-dm-oracle-dashboard.json Allows you to view opcode-level, CPU usage, and
memory usage metrics for the Oracle DM.

ocbrm-dm-oracle-shm-dashboard.json Allows you to view shared memory, front-end
process, and back-end process metrics for the
Oracle DM.

ocbrm-eai-js-dashboard.json Allows you to view JVM and opcode-related
metrics for the EAI JS.

ocbrm-overview-dashboard.json Allows you to view metrics for BRM services at the
pod, container, network, and input-output level.

ocbrm-performance-dashboard.json Allows you to view performance-related metrics for
BRM cloud native.

ocbrm-rel-dashboard.json Allows you to view JVM-related metrics for Rated
Event (RE) Loader.

ocbrm-rem-dashboard.json Allows you to view metrics for Rated Event
Manager (REM).

ocbrm-remtable-dashboard.json Allows you to view table metrics for Rated Event
Manager (REM).

ocbrm-wsm-helidon-server-dashboard.json Allows you to view metrics for standalone Web
Services Manager.

Chapter 11
Setting Up Monitoring for BRM Cloud Native Services

11-8

https://grafana.com/docs/grafana/latest/dashboards/export-import/

Table 11-2 (Cont.) Sample Grafana Dashboards

File Name Description

ocbrm-wsm-weblogic-server-dashboard.json Allows you to view metrics for Web Services
Manager deployed on Oracle WebLogic Server.

Note:

For the sample dashboard to work properly, the data source name for the WebLogic
Domain must be Prometheus.

You can also configure Grafana to send alerts to your dashboard, an email address, or Slack
when a problem occurs. For example, you could configure Grafana to send an alert when an
opcode exceeds a specified number of errors. For information about setting up alerts, see
"Grafana Alerts" in the Grafana documentation.

BRM Opcode Metric Group
Use the BRM opcode metric group to retrieve runtime information for BRM opcodes. Table 11-3
lists the metrics in this group.

Table 11-3 BRM Opcode Metrics

Metric Name Metric
Type

Metric Description Pod

brm_opcode_calls
_total

Counter The total number of calls for a BRM opcode. cm

dm-oracle

brm_opcode_error
s_total

Counter The total number of errors when executing a BRM
opcode.

cm

dm-oracle

brm_opcode_exec
_time_total

Counter The total time taken to run a BRM opcode. cm

dm-oracle

brm_opcode_user_
cpu_time_total

Counter The total CPU time taken to run the BRM opcode
in user space.

cm

dm-oracle

brm_opcode_syste
m_cpu_time_total

Counter The total CPU time taken to run the BRM opcode
in OS Kernel space.

cm

dm-oracle

brm_opcode_recor
ds_total

Counter The total number of records returned by the BRM
opcode execution.

cm

dm-oracle

brm_dmo_shared_
memory_used_curr
ent

Gauge The total number of shared memory blocks
currently used by dm_oracle.

cm

brm_dmo_shared_
memory_used_ma
x

Counter The maximum number of shared memory blocks
currently used by dm_oracle.

cm

brm_dmo_shared_
memory_free_curr
ent

Gauge The total number of free shared memory blocks
available to dm_oracle.

cm

Chapter 11
BRM Opcode Metric Group

11-9

https://grafana.com/docs/grafana/latest/alerting/

Table 11-3 (Cont.) BRM Opcode Metrics

Metric Name Metric
Type

Metric Description Pod

brm_dmo_shared_
memory_hwm

Gauge The shared memory high watermark for
dm_oracle.

cm

brm_dmo_shared_
memory_bigsize_u
sed_max

Counter The maximum big size shared memory used by
dm_oracle in bytes.

cm

brm_dmo_shared_
memory_bigsize_u
sed_current

Gauge The total big size shared memory used by
dm_oracle in bytes.

cm

brm_dmo_shared_
memory_bigsize_h
wm

Gauge Big size shared memory high water mark for
dm_oracle in bytes.

cm

brm_dmo_front_en
d_connections_tota
l

Gauge The total number of connections for a dm_oracle
front-end process.

cm

brm_dmo_front_en
d_max_connection
s_total

Counter The maximum number of connections for a
dm_oracle front-end process.

cm

brm_dmo_front_en
d_trans_done_total

Counter The total number of transactions handled by the
dm_oracle front-end process.

cm

brm_dmo_front_en
d_ops_done_total

Counter The total number of operations handled by the
dm_oracle front-end process.

cm

brm_dmo_back_en
d_ops_done_total

Counter The total number of operations done by the
dm_oracle back-end process.

cm

brm_dmo_back_en
d_ops_error_total

Counter The total number of errors encountered by the
dm_oracle back-end process.

cm

brm_dmo_back_en
d_trans_done_total

Counter The total number of transactions handled by the
dm_oracle back-end process.

cm

brm_dmo_back_en
d_trans_error_total

Counter The total number of transaction errors in the
dm_oracle back-end process.

cm

com_portal_js_JS
Metrics_CurrentCo
nnectionCount

Counter The current count of concurrent connections to the
Java Server from the CM.

cm (eai-java-
server)

com_portal_js_JS
Metrics_MaxConne
ctionCount

Counter The maximum concurrent connections to the Java
Server from the CM.

cm (eai-java-
server)

com_portal_js_JS
Metrics_Successful
OpcodeCount

Counter The count of opcodes called from the CM, the
execution of which succeeded in the Java Server.

cm (eai-java-
server)

com_portal_js_JS
Metrics_FailedOpc
odeCount

Counter The count of opcodes called from the CM, the
execution of which failed in the Java Server.

cm (eai-java-
server)

com_portal_js_JS
Metrics_TotalOpco
deCount

Counter The total count of opcodes called from the CM. cm (eai-java-
server)

com_portal_js_JS
Metrics_TotalOpco
deExecutionTime

Counter The total time taken in milliseconds across all
opcodes.

cm (eai-java-
server)

Chapter 11
BRM Opcode Metric Group

11-10

12
Monitoring and Autoscaling Business
Operations Center Cloud Native

Learn how to use external applications, such as Prometheus and Grafana, to monitor and
autoscale Oracle Communications Business Operations Center in a cloud native environment.

Topics in this document:

• About Monitoring and Autoscaling in Business Operations Center Cloud Native

• Setting Up Monitoring and Autoscaling in Business Operations Center

• Sample Prometheus Alert Rules for Business Operations Center

About Monitoring and Autoscaling in Business Operations Center
Cloud Native

You set up the monitoring of Business Operations Center and the autoscaling of its managed-
server pods by using the following external applications:

• WebLogic Monitoring Exporter: Use this Oracle web application to scrape runtime
information from Business Operations Center cloud native and then expose the metric data
in Prometheus format. It exposes different WebLogic MBean metrics, such as memory
usage and session count, required to monitor and maintain the Business Operations
Center application.

• Prometheus: Use this open-source toolkit to scrape Business Operations Center metric
data from WebLogic Monitoring Exporter and store it in a time-series database. It can also
be used to scale up or down your Business Operations Center pods based on memory and
CPU usage.

You can use a standalone version of Prometheus or Prometheus Operator.

• Grafana: Use this open-source tool to view all Business Operations Center metric data
that is stored in Prometheus on a graphical dashboard.

Setting Up Monitoring and Autoscaling in Business Operations
Center

To set up monitoring and autoscaling in Business Operations Center cloud native:

1. Deploy Prometheus in one of the following ways:

• Deploy a standalone version of Prometheus in your cloud native environment. See
"Installation" in the Prometheus documentation.

• Deploy Prometheus Operator. See "prometheus-operator" on the GitHub website.

For the list of compatible software versions, see "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

2. Install Grafana. See "Install Grafana" in the Grafana documentation.

12-1

https://prometheus.io/docs/prometheus/latest/installation/
https://github.com/prometheus-operator/prometheus-operator
https://grafana.com/docs/grafana/latest/installation/

For the list of compatible software versions, see "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

3. Configure WebLogic Monitoring Exporter to scrape metric data from Business Operations
Center in your cloud native environment. See "Configuring WebLogic Monitoring Exporter
to Scrape Metric Data".

4. Configure the Prometheus webhook to autoscale the Business Operations Center pods in
your cloud native environment. See "Configuring webhook to Enable Autoscaling".

5. Configure one of the following to collect metric data and send alerts:

• Standalone version of Prometheus. See "Configuring Standalone Prometheus for
Business Operations Center".

• Prometheus Operator. See "Configuring Prometheus Operator for Business
Operations Center".

6. Configure Grafana to display Business Operations Center metric data. See "Creating
Grafana Dashboards for Business Operations Center".

Configuring WebLogic Monitoring Exporter to Scrape Metric Data
You configure WebLogic Monitoring Exporter to scrape metric data for Business Operations
Center by enabling monitoring of the application and by specifying whether to use it with
Prometheus or Prometheus Operator.

When monitoring is enabled, WebLogic Monitoring Exporter scrapes WebLogic Server MBean
metrics such as server status, web application session metrics, servlet metrics, JVM runtime
metrics, and so on. See "WebLogic-Based Application Metrics" for a full list of metrics that are
scraped. However, you can configure WebLogic Monitoring Exporter to scrape additional
WebLogic Server MBeans to meet your business requirements.

To configure WebLogic Monitoring Exporter to scrape metric data for Business Operations
Center cloud native:

1. Open your override-values.yaml file for oc-cn-helm-chart.

2. Set the ocboc.boc.monitoring.isEnabled key to true.

3. Set the ocboc.boc.monitoring.operator.isEnabled key to one of the following:

• true if you are using Prometheus Operator.

• false if you are using a standalone version of Prometheus. This is the default.

4. Optionally, configure WebLogic Monitoring Exporter to scrape additional metrics for
Business Operations Center. To do so, set the ocboc.boc.monitoring.queries key to the
full array of WebLogic Server MBeans to monitor in YAML structure. For the list of possible
MBeans, see MBean Reference for Oracle WebLogic Server in the Oracle WebLogic
Server documentation.

Note:

Set the queries key to the full list of MBeans to scrape, including the default
MBeans. That is, if you want to add one new metric, you must copy the default
list from the domain's YAML file, add the new metric to that list, and then copy the
full list to the queries key.

5. Set the other optional keys under ocboc.boc.monitoring as needed.

Chapter 12
Setting Up Monitoring and Autoscaling in Business Operations Center

12-2

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wlmbr/core/index.html

For information about the other keys under ocboc.boc.monitoring, read the descriptions
in the oc-cn-helm-charts/values.yaml file.

6. Save and close the file.

7. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

WebLogic Monitoring Exporter is started within the Business Operations Center WebLogic
Server pod and begins scraping metric data for Business Operations Center.

If you enabled Prometheus Operator, a ServiceMonitor is also deployed. The
ServiceMonitor specifies how to monitor groups of services. Prometheus Operator
automatically generates the scrape configuration based on this definition.

Configuring webhook to Enable Autoscaling
You can configure the webhook application to autoscale your Business Operations Center
pods. When configured to do so, the webhook application waits for alerts from Prometheus
Alertmanager. When it receives a specific alert status, the webhook application calls a script
that performs the scaling action.

You can optionally configure the webhook application to monitor for additional alert statuses
that trigger calls to your custom scripts.

To configure webhook to autoscale your Business Operations Center pods:

1. Open your override-values.yaml file for oc-cn-helm-chart.

2. Set the following keys to enable autoscaling:

• webhook.isEnabled: Set this to true.

• webhook.logPath: Set this to the path in which to write log files for the webhook
application.

• webhook.scripts.mountpath: Set this to the directory in which you will store any
custom scripts to be run by the webhook application. The default is /u01/script.

• webhook.wop.namespace: Set this to the namespace for WebLogic Kubernetes
Operator. See "Installing WebLogic Kubernetes Operator" in BRM Cloud Native
Deployment Guide.

• webhook.wop.sa: Set this to the service account for the WebLogic Kubernetes
Operator. The default is default.

• webhook.wop.internalOperatorCert: Set this to the WebLogic Kubernetes Operator
certificate. To retrieve the certificate for this key, run the following command:

kubectl -n operator describe configmap

Chapter 12
Setting Up Monitoring and Autoscaling in Business Operations Center

12-3

where operator is the namespace for WebLogic Kubernetes Operator.

For information about the other optional keys under the webhook section, read the
descriptions in the oc-cn-helm-charts/values.yaml file.

3. If you want the webhook application to monitor for additional alert statuses and call your
custom scripts, do the following:

a. Copy your custom scripts to the oc-cn-helm-chart/webhook_scripts directory.

b. In your override-values.yaml file for oc-cn-helm-chart, set the webhook.jsonConfig
key to include the additional alerts to monitor and the scripts that are triggered when
they occur. Use the following format:

jsonConfig: {"alertName":"value", "alertStatus":["value"], "args":
["arg1","arg2"], "script":"path/customScript", "workDirectory":"path"}

Table 12-1 lists the possible values for each parameter.

Table 12-1 Webhook Alerts

Alert Parameter Description

alertName Set this to the name of the alert to monitor, such as
clusterScaleUp.

alertStatus Set this to the alert's status that triggers a call to your custom
script. For example: firing.

args Set this to the list of arguments to pass to your custom script. The
arguments must be listed in the order in which they will appear in
the script's command line.

There are three types of arguments:

• static: These arguments can be directly mapped while calling
your script. For example: "operator" or "operator-sa".

• custom labels: Use the format @@LABEL:key-name@@,
where key-name is an alert label passed in the alert
notification. For example, to include the "domain_uid=boc-
domain" argument, you would enter "--
domain_uid=@@LABEL:domain_uid@@".

• environment variables: Use the format @@ENV:env-
name@@, where env-name is the environment variable that
is looked up. For example, to include the "--
wls_domain_namespace=oc-cn-brm" argument, you would
enter "--
wls_domain_namespace=@@ENV:NAMESPACE@@".

script The name of the script to run along with its fully qualified path. For
example: /u01/script/scalingAction.sh.

workDirectory The script's current working directory. For example: /u01/oracle/
app.

4. Save and close your override-values.yaml file.

5. Run the helm upgrade command to update your BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

The webhook application starts waiting for alerts from Prometheus Alertmanager.

Chapter 12
Setting Up Monitoring and Autoscaling in Business Operations Center

12-4

Example: Configuring webhook to Autoscale Business Operations Center Pods

The following shows sample override-values.yaml entries for setting up the webhook
application to perform autoscaling on your Business Operations Center pods:

webhook:
 isEnabled: true
 logPath: /u01/logs
 logLevel: INFO
 deployment:
 imageName: webhook
 imageTag: $BRM_VERSION
 imagePullPolicy: IfNotPresent
 scripts:
 mountPath: /u01/script
 wop:
 namespace: WME_Namespace
 sa: default
 internalOperatorCert: certificate
 jsonConfig: {"alertName":"clusterAlert", "alertStatus":["firing"], "args":
["arg1","arg2"], "script":"/u01/script/customAction.sh",
"workDirectory":"/u01/oracle/app"}

Configuring Standalone Prometheus for Business Operations Center
To configure a standalone version of Prometheus for Business Operations Center cloud native:

1. Open your override-values.yaml file for Prometheus.

2. Configure Prometheus to collect your Business Operations Center metrics exposed by
WebLogic Monitoring Exporter.

To do so, copy and paste the following into your file, replacing the variables with the
appropriate values for your system:

extraScrapeConfigs: |
 - job_name: 'wls-domain1'
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: namespace
 - source_labels: [__meta_kubernetes_pod_label_weblogic_domainUID,
__meta_kubernetes_pod_label_weblogic_clusterName]
 action: keep
 regex: boc-domain
 - source_labels:
[__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]
 action: replace

Chapter 12
Setting Up Monitoring and Autoscaling in Business Operations Center

12-5

 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: pod_name
 basic_auth:
 username: WebLogic_UserName
 password: WebLogic_Password

3. Configure the alert rules in Prometheus.

To do so, copy and paste the following into your file, replacing the variables with the
appropriate values for your system. However, do not change the alert names
clusterScaleUp and clusterScaleDown.

The clusterScaleUp rule specifies to scale up the number of Business Operations Center-
managed server pods when the number of servers goes below two for two minutes. The
clusterScaledown rule specifies to scale down the number of Business Operations
Center-managed server pods when the number of servers goes below two for two minutes.
For examples of other expressions you can use, see "Sample Prometheus Alert Rules for
Business Operations Center".

serverFiles:
 alerts:
 groups:
 - name: node_rules
 rules:
 - alert: clusterScaleUp
 for: 2m
 expr: sum by(weblogic_domainUID, weblogic_clusterName)
(up{weblogic_domainUID="boc-domain"}) < 2
 labels:
 domain_uid: boc-domain
 severity: critical
 annotations:
 description: 'Server count is less than 2'
 summary: 'Some wls cluster is in warning state.'
 - alert: clusterScaleDown
 for: 2m
 expr: sum by(weblogic_domainUID, weblogic_clusterName)
(up{weblogic_domainUID="boc-domain"}) > 3
 labels:
 domain_uid: boc-domain
 severity: critical
 annotations:
 description: 'Server count is greater 3'
 summary: 'Some wls cluster is in warning state.'

4. Configure Alertmanager to send alerts to the webhook application.

To do so, copy and paste the following into your file, replacing the variables with the
appropriate values for your system. However, do not change the alert names
clusterScaleUp and clusterScaleDown.

Chapter 12
Setting Up Monitoring and Autoscaling in Business Operations Center

12-6

For the url key, use the following syntax: http://
webhook.WLS_NameSpace.svc.cluster.local:8080/action, where WLS_NameSpace is
the namespace for your WebLogic Server domain.

alertmanagerFiles:
 alertmanager.yml:
 global:
 resolve_timeout: 5m
 route:
 group_by: ['alertname']
 receiver: 'null'
 group_wait: 10s
 group_interval: 10s
 repeat_interval: 5m
 routes:
 - match:
 alertname: clusterScaleUp
 receiver: 'web.hook'
 - match:
 alertname: clusterScaleDown
 receiver: 'web.hook'
 receivers:
 - name: 'web.hook'
 webhook_configs:
 - send_resolved: false
 url: 'http://webhook.oc-cn-brm.svc.cluster.local:8080/action'
 - name: 'null'

5. Save and close your override-values.yaml file for Prometheus.

6. Run the helm upgrade command to update your Prometheus Helm chart.

Configuring Prometheus Operator for Business Operations Center
To configure Prometheus Operator for Business Operations Center cloud native:

1. Open your override-values.yaml file for Prometheus Operator.

2. Configure the alert rules for Prometheus Operator.

To do so, copy and paste the following additionalPrometheusRulesMap section into your
file, replacing the variables with the appropriate values for your system. However, do not
change the alert names clusterScaleUp and clusterScaleDown.

The clusterScaleUp rule specifies to scale up the number of Business Operations Center-
managed server pods when the number of servers goes below two for two minutes. The
clusterScaledown rule specifies to scale down the number of Business Operations
Center-managed server pods when the number of servers goes below two for two minutes.
For examples of other expressions you can use, see "Sample Prometheus Alert Rules for
Business Operations Center".

Provide custom recording or alerting rules to be deployed into the
cluster.
##
additionalPrometheusRulesMap:
 - rule-name: Custom-rule
 groups:
 - name: custom-alert.rules

Chapter 12
Setting Up Monitoring and Autoscaling in Business Operations Center

12-7

 rules:
 - alert: clusterScaleUp
 annotations:
 message: WLS cluster has less than 2 running servers for more than 2
minutes.
 expr: sum by(weblogic_domainUID)
(up{serviceType="SERVER",weblogic_clusterName="cluster-1",weblogic_domainUI
D="boc-domain"}) < 2
 for: 2m
 labels:
 domain_uid: boc-domain
 severity: critical
 - alert: clusterScaleDown
 annotations:
 message: WLS cluster has more than 3 running servers for more than 2
minutes.
 expr: sum by(weblogic_domainUID)
(up{serviceType="SERVER",weblogic_clusterName="cluster-1",weblogic_domainUI
D="boc-domain"}) > 3
 for: 2m
 labels:
 domain_uid: boc-domain
 severity: critical

3. Configure Prometheus Operator to send alerts to the webhook application in WebLogic
Monitoring Exporter.

To do so, copy and paste the following alertmanager section into your file, replacing the
variables with the appropriate values for your system. However, do not change the alert
names clusterScaleUp and clusterScaleDown.

For the url key, use the following syntax: http://
webhook.BrmNameSpace.svc.cluster.local:8080/action, where BrmNameSpace is the
namespace for your BRM Kubernetes objects.

alertmanager:
 config:
 global:
 resolve_timeout: 5m
 route:
 group_by: ['alertname']
 group_wait: 10s
 group_interval: 10s
 repeat_interval: 5m
 receiver: 'null'
 routes:
 - match:
 alertname: clusterScaleUp
 receiver: 'web.hook'
 - match:
 alertname: clusterScaleDown
 receiver: 'web.hook'
 receivers:
 - name: 'null'
 - name: 'web.hook'
 webhook_configs:

Chapter 12
Setting Up Monitoring and Autoscaling in Business Operations Center

12-8

 - send_resolved: false
 url: 'http://webhook.oc-cn-brm.svc.cluster.local:8080/action'

4. Save and close your override-values.yaml file for Prometheus Operator.

5. Run the helm upgrade command to update your Prometheus Operator Helm chart.

Creating Grafana Dashboards for Business Operations Center
Create a dashboard in Grafana to display your Business Operations Center metric data.
Alternatively, you can use the sample dashboard JSON model included in the oc-cn-docker-
files-15.1.x.x.x.tgz package.

Note:

For the sample dashboard to work properly, the data source name for the WebLogic
Domain must be Prometheus.

To use the sample dashboard, import the oc-cn-docker-files/samples/monitoring/ocboc-
boc-dashboard.json dashboard file into Grafana. See "Export and Import" in the Grafana
Dashboards documentation for more information.

Sample Prometheus Alert Rules for Business Operations Center
You can use custom expressions for your Prometheus alert rules when setting up autoscaling
in Business Operations Center.

Sample Cluster Scale Up Expressions

To raise an alert when the average CPU usage across managed servers is greater than 70%
for more than two minutes:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblogic
_domainUID="boc-domain",weblogic_serverName=~".+"}[2m]))*100 > 70

To raise an alert when the average memory usage across managed servers is greater than
70% for more than two minutes:

100 - avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_domainUID="boc-
domain",weblogic_clusterName=~".+",weblogic_serverName=~".+"}[2m])) > 70

To raise an alert when the CPU usage is greater than 70% and memory usage is greater than
70%:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblogic
_domainUID="boc-domain",weblogic_serverName=~".+"}[2m])) * 100 > 70 and on()
100 -
avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_clusterName=~".+",weblogi
c_domainUID="boc-domain",weblogic_serverName=~".+"}[2m])) > 70

Chapter 12
Sample Prometheus Alert Rules for Business Operations Center

12-9

https://grafana.com/docs/grafana/latest/dashboards/export-import/

Sample Cluster Scale Down Expressions

To raise an alert when the CPU usage is less than 40%, memory usage is less than 40%, and
the number of managed servers is equal to 5:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblogic
_domainUID="boc-domain",weblogic_serverName=~".+"}[2m])) * 100 < 40 and on()
100 -
avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_clusterName=~".+",weblogi
c_domainUID="boc-domain",weblogic_serverName=~".+"}[2m])) < 40 and on() sum
by(weblogic_domainUID)
(up{weblogic_clusterName="cluster-1",weblogic_domainUID="boc-domain"}) == 5

Chapter 12
Sample Prometheus Alert Rules for Business Operations Center

12-10

13
Monitoring and Autoscaling Billing Care Cloud
Native

Learn how to use external applications, such as Prometheus and Grafana, to monitor and
autoscale Oracle Communications Billing Care in a cloud native environment.

Topics in this document:

• About Monitoring and Autoscaling in Billing Care Cloud Native

• Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API

• Sample Prometheus Alert Rules for Billing Care and Billing Care REST API

About Monitoring and Autoscaling in Billing Care Cloud Native
You set up the monitoring of Billing Care and the Billing Care REST API and the autoscaling of
their managed-server pods by using the following external applications:

• WebLogic Monitoring Exporter: Use this Oracle web application to scrape runtime
information from Billing Care and the Billing Care REST API and then expose the metric
data in Prometheus format. It exposes different WebLogic MBeans metrics, such as
memory usage and session count, required to monitor and maintain the Billing Care and
Billing Care REST API applications.

• Prometheus: Use this open-source toolkit to scrape metric data from WebLogic Monitoring
Exporter and store it in a time-series database. It can also be used to scale up or down
your Billing Care-managed server pods based on memory and CPU usage.

You can use a standalone version of Prometheus or Prometheus Operator.

• Grafana: Use this open-source tool to view all Billing Care and Billing Care REST API
metric data stored in Prometheus on a graphical dashboard.

Setting Up Monitoring and Autoscaling in Billing Care and Billing
Care REST API

To set up the monitoring and autoscaling of Billing Care and the Billing Care REST API in a
cloud native environment:

1. Deploy Prometheus in one of the following ways:

• Deploy a standalone version of Prometheus in your cloud native environment. See
"Installation" in the Prometheus documentation.

• Deploy Prometheus Operator. See "prometheus-operator" on the GitHub website.

For the list of compatible software versions, see "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

2. Install Grafana. See "Install Grafana" in the Grafana documentation.

13-1

https://prometheus.io/docs/prometheus/latest/installation/
https://github.com/prometheus-operator/prometheus-operator
https://grafana.com/docs/grafana/latest/installation/

For the list of compatible software versions, see "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

3. Configure WebLogic Monitoring Exporter to scrape metric data from Billing Care in your
cloud native environment. See "Configuring WebLogic Monitoring Exporter to Scrape
Metric Data".

4. Configure webhook to enable the autoscaling of Billing Care and Billing Care REST API
pods in your cloud native environment. See "Configuring Webhook to Enable Autoscaling".

5. Configure one of the following to collect metric data and send alerts:

• Standalone version of Prometheus. See "Configuring Standalone Prometheus for
Billing Care".

• Prometheus Operator. See "Configuring Prometheus Operator for Billing Care".

6. Configure Grafana to display Billing Care metric data. See "Creating Grafana Dashboards
for Billing Care and Billing Care REST API".

Configuring WebLogic Monitoring Exporter to Scrape Metric Data
You configure WebLogic Monitoring Exporter to scrape metric data for Billing Care and the
Billing Care REST API by enabling monitoring in each application and by specifying whether to
use each application with Prometheus or Prometheus Operator.

When monitoring is enabled, WebLogic Monitoring Exporter scrapes WebLogic Server MBean
metrics such as server status, web application session metrics, servlet metrics, JVM runtime
metrics, and so on. See "WebLogic-Based Application Metrics" for a full list of metrics that are
scraped. However, you can configure WebLogic Monitoring Exporter to scrape additional
WebLogic Server MBeans to meet your business requirements.

To configure WebLogic Monitoring Exporter to scrape metric data for Billing Care and the
Billing Care REST API in a cloud native environment:

1. Open your override-values.yaml file for oc-cn-helm-chart.

2. Configure monitoring for Billing Care cloud native:

• Set the ocbc.bc.monitoring.isEnabled key to true.

• Set the ocbc.bc.monitoring.operator.isEnabled key to true if you are using
Prometheus Operator, or false if you are using a standalone version of Prometheus.
The default is false.

3. Configure monitoring for the Billing Care REST API:

• Set the ocbc.bcws.monitoring.isEnabled key to true.

• Set the ocbc.bcws.monitoring.operator.isEnabled key to true if you are using
Prometheus Operator, or false if you are using a standalone version of Prometheus.
The default is false.

4. Optionally, configure WebLogic Monitoring Exporter to scrape additional metrics. To do so,
set the following keys to the full array of WebLogic Server MBeans to monitor in YAML
format. For the list of possible MBeans, see MBean Reference for Oracle WebLogic Server
in the Oracle WebLogic Server documentation.

• For Billing Care: ocbc.bc.monitoring.queries

• For the Billing Care REST API: ocbc.bcws.monitoring.queries

Chapter 13
Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API

13-2

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wlmbr/core/index.html

Note:

Set the queries key to the full list of MBeans to scrape, including the default
MBeans. That is, if you want to add one new metric, you must copy the default
list from the domain's YAML file, add the new metric to that list, and then copy the
full list to the queries key.

5. Set the other optional monitoring keys as needed.

For information about the other keys, read the descriptions in the oc-cn-helm-charts/
values.yaml file.

6. Save and close the file.

7. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

WebLogic Monitoring Exporter is started within the Billing Care and Billing Care REST API
WebLogic Server pods and begins scraping metric data for Billing Care and the Billing
Care REST API.

If you enabled Prometheus Operator, a ServiceMonitor is also deployed. The
ServiceMonitor specifies how to monitor groups of services. Prometheus Operator
automatically generates the scrape configuration based on this definition.

Configuring Webhook to Enable Autoscaling
You can configure the webhook application to autoscale your Billing Care and Billing Care
REST API pods. When configured to do so, the webhook application waits for alerts from
Prometheus Alertmanager. When it receives a specific alert status, the webhook application
calls a script that performs the scaling action.

You can optionally configure the webhook application to monitor for additional alert statuses
that trigger calls to your custom scripts.

To configure WebLogic Monitoring Exporter to autoscale your Billing Care pods:

1. Open your override-values.yaml file for oc-cn-helm-chart.

2. Set the following keys to enable autoscaling:

• webhook.isEnabled: Set this to true.

• webhook.logPath: Set this to the path in which to write log files for the webhook
application.

• webhook.scripts.mountpath: Set this to the directory in which you will store any
custom scripts to be run by the webhook application. The default is /u01/script.

Chapter 13
Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API

13-3

• webhook.wop.namespace: Set this to the namespace for WebLogic Kubernetes
Operator. See "Installing WebLogic Kubernetes Operator" in BRM Cloud Native
Deployment Guide.

• webhook.wop.sa: Set this to the service account for the WebLogic Kubernetes
Operator. The default is default.

• webhook.wop.internalOperatorCert: Set this to the WebLogic Kubernetes Operator
certificate. To retrieve the certificate for this key, run the following command:

kubectl -n operator describe configmap

where operator is the namespace for WebLogic Kubernetes Operator.

For information about the other optional keys under the webhook section, read the
descriptions in the oc-cn-helm-charts/values.yaml file.

3. If you want the webhook application to monitor for additional alert statuses and call your
custom scripts, do the following:

a. Copy your custom scripts to the oc-cn-helm-chart/webhook_scripts directory.

Note:

You can configure the mount path for your custom scripts by using the
webhook.scripts.mountPath key.

b. In your override-values.yaml file for oc-cn-helm-chart, set the webhook.jsonConfig
key to include the additional alerts to monitor and the scripts that are triggered when
they occur. Use the following format:

jsonConfig: {"alertName":"value", "alertStatus":["value"], "args":
["arg1","arg2"], "script":"path/customScript", "workDirectory":"path"}

Table 13-1 lists the possible values for each parameter.

Table 13-1 Webhook Alerts

Alert Parameter Description

alertName Set this to the name of the alert to monitor, such as
clusterScaleUp.

alertStatus Set this to the alert's status that triggers a call to your custom
script. For example: firing.

Chapter 13
Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API

13-4

Table 13-1 (Cont.) Webhook Alerts

Alert Parameter Description

args Set this to the list of arguments to pass to your custom script. The
arguments must be listed in the order in which they will appear in
the script's command line.

There are three types of arguments:

• static: These arguments can be directly mapped while calling
your script. For example: "operator" or "operator-sa".

• custom labels: Use the format @@LABEL:key-name@@,
where key-name is an alert label passed in the alert
notification. For example, to include the "domain_uid=bc-
domain" argument, you would enter "--
domain_uid=@@LABEL:domain_uid@@".

• environment variables: Use the format @@ENV:env-
name@@, where env-name is the environment variable that
is looked up. For example, to include the "--
wls_domain_namespace=oc-cn-brm" argument, you would
enter "--
wls_domain_namespace=@@ENV:NAMESPACE@@".

script The name of the script to run along with its fully qualified path. For
example: /u01/script/scalingAction.sh.

workDirectory The script's current working directory. For example: /u01/oracle/
app.

4. Save and close your override-values.yaml file.

5. Run the helm upgrade command to update your BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

The webhook application starts waiting for alerts from Prometheus Alertmanager.

Example: Configuring webhook to Autoscale Billing Care Pods

The following shows sample override-values.yaml entries for setting up the webhook
application to perform autoscaling on your Billing Care and Billing Care REST API pods:

webhook:
 isEnabled: true
 logPath: /u01/logs
 logLevel: INFO
 deployment:
 imageName: webhook
 imageTag: $BRM_VERSION
 imagePullPolicy: IfNotPresent
 scripts:
 mountPath: /u01/script
 wop:
 namespace: WebLogicKubernetesOperator_Namespace
 sa: default
 internalOperatorCert: certificate
 jsonConfig: {"alertName":"clusterAlert", "alertStatus":["firing"], "args":
["arg1","arg2"], "script":"/u01/script/customAction.sh",
"workDirectory":"/u01/oracle/app"}

Chapter 13
Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API

13-5

Configuring Standalone Prometheus for Billing Care
To configure a standalone version of Prometheus for Billing Care and the Billing Care REST
API:

1. Open your override-values.yaml file for Prometheus.

2. Configure Prometheus to scrape the required metrics exposed by WebLogic Monitoring
Exporter.

To do so, copy and paste the following into your file, replacing the variables with the
appropriate values for your system:

extraScrapeConfigs: |
 - job_name: 'wls-domain1'
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: namespace
 - source_labels: [__meta_kubernetes_pod_label_weblogic_domainUID,
__meta_kubernetes_pod_label_weblogic_clusterName]
 action: keep
 regex: billingcare-domain
 - source_labels:
[__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: pod_name
 basic_auth:
 username: username
 password: password

 - job_name: 'wls-domain2'
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: namespace
 - source_labels: [__meta_kubernetes_pod_label_weblogic_domainUID,
__meta_kubernetes_pod_label_weblogic_clusterName]
 action: keep
 regex: bcws-domain

Chapter 13
Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API

13-6

 - source_labels:
[__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: pod_name
 basic_auth:
 username: username
 password: password

where username and password is your WebLogic Server user name and password.

3. Configure the alert rules in Prometheus.

To do so, copy and paste the following into your file, replacing the variables with the
appropriate values for your system. However, do not change the alert names
clusterScaleUp and clusterScaleDown.

The clusterScaleUp rule specifies to scale up the number of Billing Care and Billing Care
REST API-managed server pods when the number of servers goes below two for two
minutes. The clusterScaledown rule specifies to scale down the number of Billing Care
and Billing Care REST API-managed server pods when the number of servers goes below
two for two minutes. For examples of other expressions you can use, see "Sample
Prometheus Alert Rules for Billing Care and Billing Care REST API".

serverFiles:
 alerts:
 groups:
 - name: node_rules
 rules:
 - alert: clusterScaleUp
 for: 2m
 expr: sum by(weblogic_domainUID, weblogic_clusterName)
(up{weblogic_domainUID="billingcare-domain"}) < 2
 labels:
 domain_uid: billingcare-domain
 severity: critical
 annotations:
 description: 'Server count is less than 2'
 summary: 'Some wls cluster is in warning state.'
 - alert: clusterScaleDown
 for: 2m
 expr: sum by(weblogic_domainUID, weblogic_clusterName)
(up{weblogic_domainUID="billingcare-domain"}) > 3
 labels:
 domain_uid: billingcare-domain
 severity: critical

Chapter 13
Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API

13-7

 annotations:
 description: 'Server count is greater than 3'
 summary: 'Some wls cluster is in warning state.'

 - alert: clusterScaleUp
 for: 2m
 expr: sum by(weblogic_domainUID, weblogic_clusterName)
(up{weblogic_domainUID="bcws-domain"}) < 2
 labels:
 domain_uid: bcws-domain
 severity: critical
 annotations:
 description: 'Server count is less than 2'
 summary: 'Some wls cluster is in warning state.'
 - alert: clusterScaleDown
 for: 2m
 expr: sum by(weblogic_domainUID, weblogic_clusterName)
(up{weblogic_domainUID="bcws-domain"}) > 3
 labels:
 domain_uid: bcws-domain
 severity: critical
 annotations:
 description: 'Server count is greater than 3'
 summary: 'Some wls cluster is in warning state.'

4. Configure Prometheus Alertmanager to send alerts to the webhook application.

To do so, copy and paste the following into your file, replacing the variables with the
appropriate values for your system. However, do not change the alert names
clusterScaleUp and clusterScaleDown.

For the url key, use the following syntax: http://
webhook.BRMNameSpace.svc.cluster.local:8080/action, where BRMNameSpace is the
namespace for your BRM Kubernetes objects.

alertmanagerFiles:
 alertmanager.yml:
 global:
 resolve_timeout: 5m
 route:
 group_by: ['alertname']
 receiver: 'null'
 group_wait: 10s
 group_interval: 10s
 repeat_interval: 5m
 routes:
 - match:
 alertname: clusterScaleUp
 receiver: 'web.hook'
 - match:
 alertname: clusterScaleDown
 receiver: 'web.hook'
 receivers:
 - name: 'web.hook'
 webhook_configs:
 - send_resolved: false

Chapter 13
Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API

13-8

 url: 'http://webhook.oc-cn-brm.svc.cluster.local:8080/action'
 - name: 'null'

5. Save and close your override-values.yaml file for Prometheus.

6. Run the helm upgrade command to update your Prometheus Helm chart.

Configuring Prometheus Operator for Billing Care
To configure Prometheus Operator for Billing Care cloud native:

1. Open your override-values.yaml file for Prometheus Operator.

2. Configure the alert rules for Prometheus Operator.

To do so, copy and paste the following additionalPrometheusRulesMap section into your
file, replacing the variables with the appropriate values for your system. However, do not
change the alert names clusterScaleUp and clusterScaleDown.

The clusterScaleUp rule specifies to scale up the number of managed server Billing Care
or Billing Care REST API pods when the number of servers goes below two for two
minutes. The clusterScaledown rule specifies to scale down the number of Billing Care or
Billing Care REST API-managed server pods when the number of servers goes below two
for two minutes. For examples of other expressions you can use, see "Sample Prometheus
Alert Rules for Billing Care and Billing Care REST API".

Provide custom recording or alerting rules to be deployed into the
cluster.
##

additionalPrometheusRulesMap:
 - rule-name: Custom-rule
 groups:
 - name: custom-alert.rules
 rules:
 - alert: clusterScaleUp
 annotations:
 message: WLS cluster has less than 2 running servers for more than
2 minutes.
 expr: sum by(weblogic_domainUID)
(up{serviceType="SERVER",weblogic_clusterName="cluster-1",weblogic_domainUI
D="billingcare-domain"}) < 2
 for: 2m
 labels:
 domain_uid: billingcare-domain
 severity: critical
 - alert: clusterScaleDown
 annotations:
 message: WLS cluster has more than 3 running servers for more than
2 minutes.
 expr: sum by(weblogic_domainUID)
(up{serviceType="SERVER",weblogic_clusterName="cluster-1",weblogic_domainUI
D="billingcare-domain"}) > 3
 for: 2m
 labels:
 domain_uid: billingcare-domain
 severity: critical
 - alert: clusterScaleUp

Chapter 13
Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API

13-9

 annotations:
 message: WLS cluster has less than 2 running server for more than
2 minutes.
 expr: sum by(weblogic_domainUID)
(up{serviceType="SERVER",weblogic_clusterName="cluster-1",weblogic_domainUI
D="bcws-domain"}) < 2
 for: 2m
 labels:
 domain_uid: bcws-domain
 severity: critical
 - alert: clusterScaleDown
 annotations:
 message: WLS cluster has more than 3 running servers for more than
2 minutes.
 expr: sum by(weblogic_domainUID)
(up{serviceType="SERVER",weblogic_clusterName="cluster-1",weblogic_domainUI
D="bcws-domain"}) > 3
 for: 2m
 labels:
 domain_uid: bcws-domain
 severity: critical

3. Configure Prometheus Operator to send alerts to the webhook application in WebLogic
Monitoring Exporter.

To do so, copy and paste the following alertmanager section into your file, replacing the
variables with the appropriate values for your system. However, do not change the alert
names clusterScaleUp and clusterScaleDown.

For the url key, use the following syntax: http://
webhook.BrmNameSpace.svc.cluster.local:8080/action, where BrmNameSpace is the
namespace for your BRM Kubernetes objects.

alertmanager:
 config:
 global:
 resolve_timeout: 5m
 route:
 group_by: ['alertname']
 group_wait: 10s
 group_interval: 10s
 repeat_interval: 5m
 receiver: 'null'
 routes:
 - match:
 alertname: clusterScaleUp
 receiver: 'web.hook'
 - match:
 alertname: clusterScaleDown
 receiver: 'web.hook'
 receivers:
 - name: 'null'
 - name: 'web.hook'
 webhook_configs:
 - send_resolved: false
 url: 'http://webhook.oc-cn-brm.svc.cluster.local:8080/action'

Chapter 13
Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API

13-10

4. Save and close your override-values.yaml file for Prometheus Operator.

5. Run the helm upgrade command to update your Prometheus Operator Helm chart.

Creating Grafana Dashboards for Billing Care and Billing Care REST API
You can create a dashboard in Grafana for displaying your Billing Care and Billing Care REST
API metric data.

Alternatively, you can use the sample dashboards that are included in the oc-cn-docker-
files-15.1.x.x.x.tgz package. To use the sample dashboards, import the following dashboard
files into Grafana. See "Export and Import" in the Grafana Dashboards documentation for more
information.

• Billing Care: oc-cn-docker-files/samples/monitoring/ocbc-billingcare-dashboard.json

• Billing Care REST API: oc-cn-docker-files/samples/monitoring/ocbc-billingcare-rest-
api-dashboard.json

Note:

For the sample dashboards to work properly, the data source name for the WebLogic
Domain must be Prometheus.

Sample Prometheus Alert Rules for Billing Care and Billing Care
REST API

You can use custom expressions for your Prometheus alert rules when setting up autoscaling
in Billing Care and the Billing Care REST API.

Sample Scale Up Expressions

To raise an alert when the average CPU usage across managed servers for more than 2
minutes is greater than 70%:

• For a Billing Care REST API domain:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblogic_domain
UID="bcws-domain",weblogic_serverName=~".+"}[2m]))*100> 70

• For a Billing Care domain:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblogic_domain
UID="billingcare-domain",weblogic_serverName=~".+"}[2m]))*100 > 70

To raise an alert when the average memory usage over 2 minutes across managed servers is
greater than 70%:

• For a Billing Care REST API domain:

100 - avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_domainUID="bcws-
domain",weblogic_clusterName=~".+",weblogic_serverName=~".+"}[2m])) > 70

Chapter 13
Sample Prometheus Alert Rules for Billing Care and Billing Care REST API

13-11

https://grafana.com/docs/grafana/latest/dashboards/export-import/

• For a Billing Care domain:

100 -
avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_domainUID="billingcare
-domain",weblogic_clusterName=~".+",weblogic_serverName=~".+"}[2m])) > 70

To raise an alert when the CPU usage is greater than 70% and the memory usage is greater
than 70%:

• For a Billing Care REST API domain:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblo
gic_domainUID="bcws-domain",weblogic_serverName=~".+"}[2m]))* 100 > 70 and
on() 100 -
avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_clusterName=~".+",webl
ogic_domainUID="bcws-domain",weblogic_serverName=~".+"}[2m]))> 70

• For a Billing Care domain:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblo
gic_domainUID="billingcare-domain",weblogic_serverName=~".+"}[2m]))* 100 >
70 and on() 100 -
avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_clusterName=~".+",webl
ogic_domainUID="billingcare-domain",weblogic_serverName=~".+"}[2m]))> 70

Sample Scale Down Expressions

To raise an alert when the CPU usage is less than 40%, memory usage is less than 40%, and
the number of managed servers is equal to 5 for two minutes:

• For a Billing Care REST API domain:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblo
gic_domainUID="bcws-domain",weblogic_serverName=~".+"}[2m]))* 100 < 40 and
on() 100 -
avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_clusterName=~".+",webl
ogic_domainUID="bcws-domain",weblogic_serverName=~".+"}[2m]))< 40 and on()
sum by(weblogic_domainUID)
(up{weblogic_clusterName="cluster-1",weblogic_domainUID="bcws-domain"}) ==5

• For a Billing Care domain:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblo
gic_domainUID="billingcare-domain",weblogic_serverName=~".+"}[2m]))* 100 <
40 and on() 100 -
avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_clusterName=~".+",webl
ogic_domainUID="billingcare-domain",web

Chapter 13
Sample Prometheus Alert Rules for Billing Care and Billing Care REST API

13-12

14
Monitoring and Autoscaling Pipeline
Configuration Center Cloud Native

Learn how to use external applications, such as Prometheus and Grafana, to monitor and
autoscale Oracle Communications Billing and Revenue Management (BRM) Pipeline
Configuration Center in a cloud native environment.

Topics in this document:

• About Monitoring and Autoscaling Pipeline Configuration Center Cloud Native

• Setting Up Monitoring and Autoscaling in Pipeline Configuration Center

• Sample Prometheus Alert Rules for Pipeline Configuration Center

About Monitoring and Autoscaling Pipeline Configuration Center
Cloud Native

You set up the monitoring of Pipeline Configuration Center and the autoscaling of its managed-
server pods by using the following external applications:

• WebLogic Monitoring Exporter: Use this Oracle web application to scrape run-time
information from Pipeline Configuration Center cloud native and then expose the metric
data in Prometheus format. It exposes different WebLogic MBean metrics, such as
memory usage and session count, required to monitor and maintain the Pipeline
Configuration Center application.

• Prometheus: Use this open-source toolkit to scrape Pipeline Configuration Center metric
data from WebLogic Monitoring Exporter and store it in a time-series database. It can also
be used to scale up or down your Pipeline Configuration Center pods based on memory
and CPU usage.

You can use a standalone version of Prometheus or Prometheus Operator.

• Grafana: Use this open-source tool to view all Pipeline Configuration Center metric data
that is stored in Prometheus on a graphical dashboard.

Setting Up Monitoring and Autoscaling in Pipeline Configuration
Center

To set up monitoring and autoscaling in Pipeline Configuration Center cloud native:

1. Deploy Prometheus in one of the following ways:

• Deploy a standalone version of Prometheus in your cloud native environment. See
"Installation" in the Prometheus documentation.

• Deploy Prometheus Operator. See "prometheus-operator" on the GitHub website.

For the list of compatible software versions, see BRM Compatibility Matrix.

2. Install Grafana. See "Install Grafana" in the Grafana documentation.

14-1

https://prometheus.io/docs/prometheus/latest/installation/
https://github.com/prometheus-operator/prometheus-operator
https://grafana.com/docs/grafana/latest/installation/

For the list of compatible software versions, see BRM Compatibility Matrix.

3. Configure WebLogic Monitoring Exporter to scrape metric data from Pipeline Configuration
Center in your cloud native environment. See "Configuring WebLogic Monitoring Exporter
to Scrape Metric Data".

4. Configure the Prometheus webhook to autoscale the Pipeline Configuration Center pods in
your cloud native environment. See "Configuring webhook to Enable Autoscaling".

5. Configure one of the following to collect metric data and send alerts:

• Standalone version of Prometheus. See "Configuring Standalone Prometheus for
Pipeline Configuration Center".

• Prometheus Operator. See "Configuring Prometheus Operator for Pipeline
Configuration Center".

6. Configure Grafana to display Pipeline Configuration Center metric data. See "Creating
Grafana Dashboards for Pipeline Configuration Center".

Configuring WebLogic Monitoring Exporter to Scrape Metric Data
You configure WebLogic Monitoring Exporter to scrape metric data for Pipeline Configuration
Center by enabling monitoring of the application and by specifying whether to use it with
Prometheus or Prometheus Operator.

When monitoring is enabled, WebLogic Monitoring Exporter scrapes WebLogic Server MBean
metrics such as server status, web application session metrics, servlet metrics, JVM runtime
metrics, and so on. See "WebLogic-Based Application Metrics" for a full list of metrics that are
scraped. However, you can configure WebLogic Monitoring Exporter to scrape additional
WebLogic Server MBeans to meet your business requirements.

To configure WebLogic Monitoring Exporter to scrape metric data for Pipeline Configuration
Center cloud native:

1. Open your override-values.yaml file for oc-cn-helm-chart.

2. Set the ocpcc.pcc.monitoring.isEnabled key to true.

3. Set the ocpcc.pcc.monitoring.operator.isEnabled key to one of the following:

• true if you are using Prometheus Operator.

• false if you are using a standalone version of Prometheus. This is the default.

4. Optionally, configure WebLogic Monitoring Exporter to scrape additional metrics for
Pipeline Configuration Center. To do so, set the ocpcc.pcc.monitoring.queries key to the
full array of WebLogic Server MBeans to monitor in YAML structure. For the list of possible
MBeans, see MBean Reference for Oracle WebLogic Server in the Oracle WebLogic
Server documentation.

Note:

Set the queries key to the full list of MBeans to scrape, including the default
MBeans. That is, if you want to add one new metric, you must copy the default
list from the domain's YAML file, add the new metric to that list, and then copy the
full list to the queries key.

5. Set the other optional keys under ocpcc.pcc.monitoring as needed.

Chapter 14
Setting Up Monitoring and Autoscaling in Pipeline Configuration Center

14-2

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wlmbr/core/index.html

For information about the other keys under ocpcc.pcc.monitoring, read the descriptions
in the oc-cn-helm-charts/values.yaml file.

6. Save and close the file.

7. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

WebLogic Monitoring Exporter is started within the Pipeline Configuration Center
WebLogic Server pod and begins scraping metric data for Pipeline Configuration Center.

If you enabled Prometheus Operator, a ServiceMonitor is also deployed. The
ServiceMonitor specifies how to monitor groups of services. Prometheus Operator
automatically generates the scrape configuration based on this definition.

Configuring webhook to Enable Autoscaling
You can configure the webhook application to autoscale your Pipeline Configuration Center
pods. When configured to do so, the webhook application waits for alerts from Prometheus
Alertmanager. When it receives a specific alert status, the webhook application calls a script
that performs the scaling action.

You can optionally configure the webhook application to monitor for additional alert statuses
that trigger calls to your custom scripts.

To configure webhook to autoscale your Pipeline Configuration Center pods:

1. Open your override-values.yaml file for oc-cn-helm-chart.

2. Set the following keys to enable autoscaling:

• webhook.isEnabled: Set this to true.

• webhook.logPath: Set this to the path in which to write log files for the webhook
application.

• webhook.scripts.mountpath: Set this to the directory in which you will store any
custom scripts to be run by the webhook application. The default is /u01/script.

• webhook.wop.namespace: Set this to the namespace for WebLogic Kubernetes
Operator. See "Installing WebLogic Kubernetes Operator" in BRM Cloud Native
Deployment Guide.

• webhook.wop.sa: Set this to the service account for the WebLogic Kubernetes
Operator. The default is default.

• webhook.wop.internalOperatorCert: Set this to the WebLogic Kubernetes Operator
certificate. To retrieve the certificate for this key, run the following command:

kubectl -n operator describe configmap

Chapter 14
Setting Up Monitoring and Autoscaling in Pipeline Configuration Center

14-3

where operator is the namespace for WebLogic Kubernetes Operator.

For information about the other optional keys under the webhook section, read the
descriptions in the oc-cn-helm-charts/values.yaml file.

3. If you want the webhook application to monitor for additional alert statuses and call your
custom scripts, do the following:

a. Copy your custom scripts to the oc-cn-helm-chart/webhook_scripts directory.

b. In your override-values.yaml file for oc-cn-helm-chart, set the webhook.jsonConfig
key to include the additional alerts to monitor and the scripts that are triggered when
they occur. Use the following format:

jsonConfig: {"alertName":"value", "alertStatus":["value"], "args":
["arg1","arg2"], "script":"path/customScript", "workDirectory":"path"}

Table 14-1 lists the possible values for each parameter.

Table 14-1 Webhook Alerts

Alert Parameter Description

alertName Set this to the name of the alert to monitor, such as
clusterScaleUp.

alertStatus Set this to the alert's status that triggers a call to your custom
script. For example: firing.

args Set this to the list of arguments to pass to your custom script. The
arguments must be listed in the order in which they will appear in
the script's command line.

There are three types of arguments:

• static: These arguments can be directly mapped while calling
your script. For example: "operator" or "operator-sa".

• custom labels: Use the format @@LABEL:key-name@@,
where key-name is an alert label passed in the alert
notification. For example, to include the "domain_uid=pcc-
domain" argument, you would enter "--
domain_uid=@@LABEL:domain_uid@@".

• environment variables: Use the format @@ENV:env-
name@@, where env-name is the environment variable that
is looked up. For example, to include the "--
wls_domain_namespace=oc-cn-brm" argument, you would
enter "--
wls_domain_namespace=@@ENV:NAMESPACE@@".

script The name of the script to run along with its fully qualified path. For
example: /u01/script/scalingAction.sh.

workDirectory The script's current working directory. For example: /u01/oracle/
app.

4. Save and close your override-values.yaml file.

5. Run the helm upgrade command to update your BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

The webhook application starts waiting for alerts from Prometheus Alertmanager.

Chapter 14
Setting Up Monitoring and Autoscaling in Pipeline Configuration Center

14-4

Example: Configuring webhook to Autoscale Pipeline Configuration Center Pods

The following shows sample override-values.yaml entries for setting up the webhook
application to perform autoscaling on your Pipeline Configuration Center pods:

webhook:
 isEnabled: true
 logPath: /u01/logs
 logLevel: INFO
 deployment:
 imageName: webhook
 imageTag: $BRM_VERSION
 imagePullPolicy: IfNotPresent
 scripts:
 mountPath: /u01/script
 wop:
 namespace: WME_Namespace
 sa: default
 internalOperatorCert: certificate
 jsonConfig: {"alertName":"clusterAlert", "alertStatus":["firing"], "args":
["arg1","arg2"], "script":"/u01/script/customAction.sh",
"workDirectory":"/u01/oracle/app"}

Configuring Standalone Prometheus for Pipeline Configuration Center
To configure a standalone version of Prometheus for Pipeline Configuration Center cloud
native:

1. Open your override-values.yaml file for Prometheus.

2. Configure Prometheus to collect your Pipeline Configuration Center metrics exposed by
WebLogic Monitoring Exporter.

To do so, copy and paste the following into your file, replacing the variables with the
appropriate values for your system:

extraScrapeConfigs: |
 - job_name: 'wls-domain1'
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: namespace
 - source_labels: [__meta_kubernetes_pod_label_weblogic_domainUID,
__meta_kubernetes_pod_label_weblogic_clusterName]
 action: keep
 regex: pcc-domain
 - source_labels:
[__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]

Chapter 14
Setting Up Monitoring and Autoscaling in Pipeline Configuration Center

14-5

 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: pod_name
 basic_auth:
 username: WebLogic_UserName
 password: WebLogic_Password

3. Configure the alert rules in Prometheus.

To do so, copy and paste the following into your file, replacing the variables with the
appropriate values for your system. However, do not change the alert names
clusterScaleUp and clusterScaleDown.

The clusterScaleUp rule specifies to scale up the number of Pipeline Configuration
Center-managed server pods when the number of servers goes below two for two minutes.
The clusterScaledown rule specifies to scale down the number of Pipeline Configuration
Center-managed server pods when the number of servers goes below two for two minutes.
For examples of other expressions you can use, see "Sample Prometheus Alert Rules for
Pipeline Configuration Center".

serverFiles:
 alerts:
 groups:
 - name: node_rules
 rules:
 - alert: clusterScaleUp
 for: 2m
 expr: sum by(weblogic_domainUID, weblogic_clusterName)
(up{weblogic_domainUID="pcc-domain"}) < 2
 labels:
 domain_uid: pcc-domain
 severity: critical
 annotations:
 description: 'Server count is less than 2'
 summary: 'Some wls cluster is in warning state.'
 - alert: clusterScaleDown
 for: 2m
 expr: sum by(weblogic_domainUID, weblogic_clusterName)
(up{weblogic_domainUID="pcc-domain"}) > 3
 labels:
 domain_uid: pcc-domain
 severity: critical
 annotations:
 description: 'Server count is greater 3'
 summary: 'Some wls cluster is in warning state.'

4. Configure Alertmanager to send alerts to the webhook application.

To do so, copy and paste the following into your file, replacing the variables with the
appropriate values for your system. However, do not change the alert names
clusterScaleUp and clusterScaleDown.

Chapter 14
Setting Up Monitoring and Autoscaling in Pipeline Configuration Center

14-6

For the url key, use the following syntax: http://
webhook.WLS_NameSpace.svc.cluster.local:8080/action, where WLS_NameSpace is
the namespace for your WebLogic Server domain.

alertmanagerFiles:
 alertmanager.yml:
 global:
 resolve_timeout: 5m
 route:
 group_by: ['alertname']
 receiver: 'null'
 group_wait: 10s
 group_interval: 10s
 repeat_interval: 5m
 routes:
 - match:
 alertname: clusterScaleUp
 receiver: 'web.hook'
 - match:
 alertname: clusterScaleDown
 receiver: 'web.hook'
 receivers:
 - name: 'web.hook'
 webhook_configs:
 - send_resolved: false
 url: 'http://webhook.oc-cn-brm.svc.cluster.local:8080/action'
 - name: 'null'

5. Save and close your override-values.yaml file for Prometheus.

6. Run the helm upgrade command to update your Prometheus Helm chart.

Configuring Prometheus Operator for Pipeline Configuration Center
To configure Prometheus Operator for Pipeline Configuration Center cloud native:

1. Open your override-values.yaml file for Prometheus Operator.

2. Configure the alert rules for Prometheus Operator.

To do so, copy and paste the following additionalPrometheusRulesMap section into your
file, replacing the variables with the appropriate values for your system. However, do not
change the alert names clusterScaleUp and clusterScaleDown.

The clusterScaleUp rule specifies to scale up the number of Pipeline Configuration
Center-managed server pods when the number of servers goes below two for two minutes.
The clusterScaledown rule specifies to scale down the number of Pipeline Configuration
Center-managed server pods when the number of servers goes below two for two minutes.
For examples of other expressions you can use, see "Sample Prometheus Alert Rules for
Pipeline Configuration Center".

Provide custom recording or alerting rules to be deployed into the
cluster.
##
additionalPrometheusRulesMap:
 - rule-name: Custom-rule
 groups:
 - name: custom-alert.rules

Chapter 14
Setting Up Monitoring and Autoscaling in Pipeline Configuration Center

14-7

 rules:
 - alert: clusterScaleUp
 annotations:
 message: WLS cluster has less than 2 running servers for more than 2
minutes.
 expr: sum by(weblogic_domainUID)
(up{serviceType="SERVER",weblogic_clusterName="cluster-1",weblogic_domainUI
D="pcc-domain"}) < 2
 for: 2m
 labels:
 domain_uid: pcc-domain
 severity: critical
 - alert: clusterScaleDown
 annotations:
 message: WLS cluster has more than 3 running servers for more than 2
minutes.
 expr: sum by(weblogic_domainUID)
(up{serviceType="SERVER",weblogic_clusterName="cluster-1",weblogic_domainUI
D="pcc-domain"}) > 3
 for: 2m
 labels:
 domain_uid: pcc-domain
 severity: critical

3. Configure Prometheus Operator to send alerts to the webhook application in WebLogic
Monitoring Exporter.

To do so, copy and paste the following alertmanager section into your file, replacing the
variables with the appropriate values for your system. However, do not change the alert
names clusterScaleUp and clusterScaleDown.

For the url key, use the following syntax: http://
webhook.BrmNameSpace.svc.cluster.local:8080/action, where BrmNameSpace is the
namespace for your BRM Kubernetes objects.

alertmanager:
 config:
 global:
 resolve_timeout: 5m
 route:
 group_by: ['alertname']
 group_wait: 10s
 group_interval: 10s
 repeat_interval: 5m
 receiver: 'null'
 routes:
 - match:
 alertname: clusterScaleUp
 receiver: 'web.hook'
 - match:
 alertname: clusterScaleDown
 receiver: 'web.hook'
 receivers:
 - name: 'null'
 - name: 'web.hook'
 webhook_configs:

Chapter 14
Setting Up Monitoring and Autoscaling in Pipeline Configuration Center

14-8

 - send_resolved: false
 url: 'http://webhook.oc-cn-brm.svc.cluster.local:8080/action'

4. Save and close your override-values.yaml file for Prometheus Operator.

5. Run the helm upgrade command to update your Prometheus Operator Helm chart.

Creating Grafana Dashboards for Pipeline Configuration Center
Create a dashboard in Grafana to display your Pipeline Configuration Center metric data.
Alternatively, you can use the sample dashboard JSON model included in the oc-cn-docker-
files-15.1.x.x.x.tgz package.

Note:

For the sample dashboard to work properly, the data source name for the WebLogic
Domain must be Prometheus.

To use the sample dashboard, import the oc-cn-docker-files/samples/monitoring/ocpcc-
pcc-wls-dashboard.json dashboard file into Grafana. See "Export and Import" in the Grafana
Dashboards documentation for more information.

Sample Prometheus Alert Rules for Pipeline Configuration
Center

You can use custom expressions for your Prometheus alert rules when setting up autoscaling
in Pipeline Configuration Center.

Sample Cluster Scale Up Expressions

To raise an alert when the average CPU usage across managed servers is greater than 70%
for more than two minutes:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblogic
_domainUID="pcc-domain",weblogic_serverName=~".+"}[2m]))*100 > 70

To raise an alert when the average memory usage across managed servers is greater than
70% for more than two minutes:

100 - avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_domainUID="pcc-
domain",weblogic_clusterName=~".+",weblogic_serverName=~".+"}[2m])) > 70

To raise an alert when the CPU usage is greater than 70% and memory usage is greater than
70%:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblogic
_domainUID="pcc-domain",weblogic_serverName=~".+"}[2m])) * 100 > 70 and on()
100 -
avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_clusterName=~".+",weblogi
c_domainUID="pcc-domain",weblogic_serverName=~".+"}[2m])) > 70

Chapter 14
Sample Prometheus Alert Rules for Pipeline Configuration Center

14-9

https://grafana.com/docs/grafana/latest/dashboards/export-import/

Sample Cluster Scale Down Expressions

To raise an alert when the CPU usage is less than 40%, memory usage is less than 40%, and
the number of managed servers is equal to 5:

avg(avg_over_time(wls_jvm_process_cpu_load{weblogic_clusterName=~".+",weblogic
_domainUID="pcc-domain",weblogic_serverName=~".+"}[2m])) * 100 < 40 and on()
100 -
avg(avg_over_time(wls_jvm_heap_free_percent{weblogic_clusterName=~".+",weblogi
c_domainUID="pcc-domain",weblogic_serverName=~".+"}[2m])) < 40 and on() sum
by(weblogic_domainUID)
(up{weblogic_clusterName="cluster-1",weblogic_domainUID="pcc-domain"}) == 5

Chapter 14
Sample Prometheus Alert Rules for Pipeline Configuration Center

14-10

15
Monitoring BRM REST Services Manager
Cloud Native

Learn how to use external applications, such as Prometheus, Grafana, and Helidon MP, to
monitor BRM REST Services Manager in a cloud native environment.

Topics in this document:

• About Monitoring BRM REST Services Manager Cloud Native

• Setting Up Monitoring for BRM REST Services Manager

• Creating Grafana Dashboards for BRM REST Services Manager

• Modifying Prometheus and Grafana Alert Rules After Deployment

• About REST Endpoints for Monitoring BRM REST Services Manager

About Monitoring BRM REST Services Manager Cloud Native
You set up monitoring for BRM REST Services Manager by using the following applications:

• Helidon MP: Use this Eclipse Microprofile application to run health checks and collect
metrics. Helidon MP is configured and ready to use in the BRM REST Services Manager
deployment package.

For information about using the health check and metrics endpoints, see "About REST
Endpoints for Monitoring BRM REST Services Manager". For more information about
Helidon MP, see "Helidon MP Introduction" in the Helidon MP documentation.

• Prometheus: Use this open-source toolkit to scrape metric data and then store it in a time-
series database. Use Prometheus Operator for BRM REST Services Manager.

See "prometheus-operator" on GitHub.

• Grafana: Use this open-source tool to view all BRM REST Services Manager metric data
stored in Prometheus on a graphical dashboard.

See "Grafana Support for Prometheus" in the Prometheus documentation for information
about using Grafana and Prometheus together.

Setting Up Monitoring for BRM REST Services Manager
To set up monitoring for BRM REST Services Manager cloud native:

1. Install Prometheus Operator:

a. Ensure that BRM cloud native prerequisite software, such as the Kubernetes cluster
and Helm, are running and that Git is installed on the node that runs the Helm chart.

b. Create a namespace for monitoring. For example:

kubectl create namespace monitoring

15-1

https://helidon.io/docs/v2/#/mp/introduction/01_introduction
https://github.com/prometheus-operator/prometheus-operator
https://prometheus.io/docs/visualization/grafana/#grafana-support-for-prometheus

c. Set the HTTP_PROXY environment variable on all cluster nodes with the following
command:

export HTTP_PROXY="proxy_host"
export HTTPS_PROXY=$HTTP_PROXY

where proxy_host is the hostname or IP address of your proxy server.

d. Download the Prometheus Operator helm charts with the following commands:

helm repo add stable https://charts.helm.sh/stable
helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts
helm repo update
helm fetch prometheus-community/kube-prometheus-stack

e. Unset the HTTP_PROXY environment variable with the following command:

unset HTTP_PROXY
unset HTTPS_PROXY

f. Create an override-values.yaml file for Prometheus Operator and configure optional
values to:

• Add alert rules, such as the two rules in the sample below.

• Make Prometheus, Alert Manager, and Grafana accessible outside the cluster and
host machine by changing the service type to LoadBalancer.

• Enable Grafana to send email alerts.

The following sample override-values.yaml shows alert rules and configuration
options.

additionalPrometheusRulesMap:
 - rule-name: BRM-RSM-rule
 groups:
 - name: brm-rsm-alert-rules
 rules:
 - alert: CPU_UsageWarning
 annotations:
 message: CPU has reached 80% utilization
 expr: avg without(cpu) (rate(node_cpu_seconds_total{job="node-
exporter", instance="instance", mode!="idle"}[5m])) > 0.8
 for: 5m
 labels:
 severity: critical
 - alert: Memory_UsageWarning
 annotations:
 message: Memory has reached 80% utilization
 expr: node_memory_MemTotal_bytes{job="node-exporter",
instance="instance"} - node_memory_MemFree_bytes{job="node-exporter",
instance="instance"} - node_memory_Cached_bytes{job="node-
exporter",instance="instance"} - node_memory_Buffers_bytes{job="node-
exporter", instance="instance"} > 22322927872
 for: 5m
 labels:

Chapter 15
Setting Up Monitoring for BRM REST Services Manager

15-2

 severity: critical
alertmanager:
 service:
 type: LoadBalancer
grafana:
 service:
 type: LoadBalancer
 grafana.ini:
 smtp:
 enabled: true
 host: email_host
 user: "email_address"
 password: "password"
 skip_verify: true
prometheus:
 service:
 type: LoadBalancer

For details about the default Prometheus Operator values to base your override-
values.yaml on, see "prometheus-operator/values.yaml" on the GitHub website.

g. Save and close the override-values.yaml file.

h. Install Prometheus Operator with the following command:

helm install prometheus kube-prometheus-stack --values override-
values.yaml --namespace monitoringNamespace

where monitoringNamespace is the namespace you created for monitoring.

i. Verify the installation with the following command:

kubectl get all -n monitoringNamespace

Pods and services for the following components should be listed:

• Alert Manager

• Grafana

• Prometheus Operator

• Prometheus

• Node Exporter

• kube-state-metrics

For the list of compatible software versions, see "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

2. Configure BRM REST Services Manager ServiceMonitor, which specifies how to monitor
groups of services. Prometheus Operator automatically generates the scrape configuration
based on this definition.

a. Ensure that BRM REST Services Manager is running.

b. Create an rsm-sm.yaml file with the following content:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor

Chapter 15
Setting Up Monitoring for BRM REST Services Manager

15-3

https://github.com/helm/charts/blob/master/stable/prometheus-operator/values.yaml

metadata:
 annotations:
 meta.helm.sh/release-name: releaseName
 meta.helm.sh/release-namespace: rsm_namespace
 labels:
 app.kubernetes.io/managed-by: Helm
 app.kubernetes.io/name: brm-rest-services-manager
 app.kubernetes.io/version: rsm_version
 chart: brmrestservicesmanager-15.1.0.0.0
 heritage: Helm
 release: prometheus
 name: brm-rest-services-manager-monitoring
 namespace: rsm_namespace
spec:
 endpoints:
 - path: /metrics
 port: api-http-prt
 namespaceSelector:
 matchNames:
 - rsm_namespace
 selector:
 matchLabels:
 app.kubernetes.io/name: brm-rest-services-manager

where:

• releaseName is the name given to the BRM REST Services Manager deployment
during Helm installation

• rsm_namespace is the namespace where BRM REST Services Manager is
deployed

• rsm_version is the version of BRM REST Services Manager, for example,
15.1.0.0.0

c. Save and close the file.

d. Apply the changes with the following command:

kubectl apply -f rsm-sm.yaml -n rsm_namespace

e. Verify the configuration in the Prometheus user interface. From the Status menu,
select Targets and confirm that the /metrics endpoint appears.

3. Configure Grafana to display BRM REST Services Manager metric data. See "Creating
Grafana Dashboards for BRM REST Services Manager".

4. Access the health and metrics REST endpoints. See "About REST Endpoints for
Monitoring BRM REST Services Manager".

Creating Grafana Dashboards for BRM REST Services Manager
Create a dashboard in Grafana for displaying your BRM REST Services Manager metric data.
Alternatively, you can use the sample dashboard JSON model that is included in the oc-cn-
docker-files-15.1.x.x.x.tgz package.

To use the sample dashboard:

Chapter 15
Creating Grafana Dashboards for BRM REST Services Manager

15-4

1. Open the oc-cn-docker-files/samples/monitoring/ocrsm-rsm-dashboard.json file in a
text editor.

2. Search for instance=\" and replace the default host and port all occurrences with the host
where your instance of Prometheus Operator is running and your prometheus-node-
exporter port.

For example, for the node_memory_MemFree_bytes expression, replace
Prometheus_Operator_host and Prometheus_Node_Exporter_Port:

{
 "exemplar": true,
 "expr": "node_memory_MemFree_bytes{job=\"node-exporter\",
instance=\"Prometheus_Operator_host:Prometheus_Node_Exporter_Port\"}",
 "hide": false,
 "interval": "",
 "legendFormat": "Free",
 "refId": "D"
}

3. Save and close the file.

4. In Grafana, import the edited oc-cn-docker-files/samples/monitoring/ocrsm-rsm-
dashboard.json dashboard file. See "Export and Import" in the Grafana Dashboards
documentation for more information.

Modifying Prometheus and Grafana Alert Rules After
Deployment

After deploying Prometheus Operator, you can add alert rules in Prometheus or make changes
in the Grafana user interface.

You have the following options for editing or adding Prometheus alert rules:

• Edit the override-values.yaml file and upgrade the Helm release.

• If you added rules in override-values.yaml before installing Prometheus Operator, use the
following command to edit the rules file:

kubectl edit prometheusrule kube-prometheus-stack-0 --namespace
monitoringNamespace

• If you didn't add any rules in override-values.yaml, use the following command to edit the
rules file:

kubectl edit prometheusrule prometheus-kube-prometheus-alertmanager --
namespace monitoringNamespace

You can also configure alert rules and add or remove email recipients in the Grafana user
interface. See "Legacy Grafana Alerts" in the Grafana documentation for more information.

Chapter 15
Modifying Prometheus and Grafana Alert Rules After Deployment

15-5

https://grafana.com/docs/grafana/latest/dashboards/export-import/
https://grafana.com/docs/grafana-cloud/legacy-alerting/

About REST Endpoints for Monitoring BRM REST Services
Manager

You can use REST endpoints to monitor metrics and run a health check on BRM REST
Services Manager.

Use a browser to send HTTP/HTTPS requests to the endpoints listed in Table 15-1, where
hostname and port are the URL and port for your BRM REST Services Manager server.

Table 15-1 BRM REST Services Manager Monitoring Endpoints

Type Description Endpoint

Health Returns details for both health/live
and health/ready endpoints

https://hostname:port/
health

Liveness Confirms that the application can
run in the environment. Checks
disk space, heap memory, and
deadlocks.

https://hostname:port/
health/live

Readiness Confirms that the application is
ready to perform work.

https://hostname:port/
health/ready

Metrics Returns standard Helidon MP
monitoring metrics for BRM REST
Services Manager.

https://hostname:port/
metrics

Sample Response for the Health Endpoint

The following example shows a response for the health endpoint, which includes both liveness
and readiness details:

{
 "outcome": "UP",
 "status": "UP",
 "checks": [
 {
 "name": "deadlock",
 "state": "UP",
 "status": "UP"
 },
 {
 "name": "diskSpace",
 "state": "UP",
 "status": "UP",
 "data": {
 "free": "144.85 GB",
 "freeBytes": 155532308480,
 "percentFree": "62.71%",
 "total": "231.00 GB",
 "totalBytes": 248031531008
 }
 },
 {
 "name": "heapMemory",

Chapter 15
About REST Endpoints for Monitoring BRM REST Services Manager

15-6

 "state": "UP",
 "status": "UP",
 "data": {
 "free": "225.08 MB",
 "freeBytes": 236014824,
 "max": "3.48 GB",
 "maxBytes": 3739746304,
 "percentFree": "97.37%",
 "total": "319.00 MB",
 "totalBytes": 334495744
 }
 }
]
}

Sample Response for the Metrics Endpoint

The response for the metrics endpoint contains the standard Helidon application and vendor
metrics. The following example shows some of the metrics in the response:

TYPE base_classloader_loadedClasses_count gauge
HELP base_classloader_loadedClasses_count Displays the number of classes
that are currently loaded in the Java virtual machine.
base_classloader_loadedClasses_count 9095
TYPE base_classloader_loadedClasses_total counter
HELP base_classloader_loadedClasses_total Displays the total number of
classes that have been loaded since the Java virtual machine has started
execution.
base_classloader_loadedClasses_total 9097
...
TYPE base_memory_usedHeap_bytes gauge
HELP base_memory_usedHeap_bytes Displays the amount of used heap memory in
bytes.
base_memory_usedHeap_bytes 138109824
TYPE base_thread_count gauge
HELP base_thread_count Displays the current number of live threads
including both daemon and nondaemon threads
base_thread_count 20
...
TYPE vendor_requests_count_total counter
HELP vendor_requests_count_total Each request (regardless of HTTP method)
will increase this counter
vendor_requests_count_total 4
TYPE vendor_requests_meter_total counter
HELP vendor_requests_meter_total Each request will mark the meter to see
overall throughput
vendor_requests_meter_total 4
TYPE vendor_requests_meter_rate_per_second gauge
vendor_requests_meter_rate_per_second 0.008296727017772145

For details about all of the metrics and more information about Helidon monitoring, see:

• "Helidon MP Metrics Guide" in the Helidon MP documentation

• "MicroProfile Metrics specification" on the GitHub website

Chapter 15
About REST Endpoints for Monitoring BRM REST Services Manager

15-7

https://helidon.io/docs/v2/#/mp/guides/05_metrics
https://github.com/eclipse/microprofile-metrics/releases/tag/2.0

16
Tracing BRM REST Services Manager Cloud
Native

Learn how to use Zipkin to trace the flow of API calls made to BRM REST Services Manager in
your Oracle Communications Billing and Revenue Management (BRM) cloud native system.

Topics in this document:

• About BRM REST Services Manager Tracing

• Securing Communication with Zipkin

• Enabling Tracing in BRM REST Services Manager

About BRM REST Services Manager Tracing
You can trace the flow of REST API calls made to BRM REST Services Manager using Zipkin,
an open-source tracing system. For more information, see the Zipkin website: https://zipkin.io/.

To set up tracing in BRM REST Services Manager cloud native:

1. Install Zipkin. See the Zipkin Quickstart documentation: https://zipkin.io/pages/
quickstart.html.

2. (Optional) Secure communication between BRM REST Services Manager and Zipkin. See
"Securing Communication with Zipkin".

3. Enable Zipkin tracing in BRM REST Services Manager cloud native. See "Enabling Tracing
in BRM REST Services Manager".

Afterward, you can start tracing the flow of API calls to BRM REST Services Manager using
the Zipkin UI or Zipkin API.

Securing Communication with Zipkin
To use secure communication with Zipkin:

1. Create a client TrustStore that BRM REST Services Manager can use to connect to Zipkin.

2. In your override-values.yaml file for oc-cn-helm-chart, set the following keys:

• ocrsm.rsm.configEnv.trustStoreFileName: The file name of the BRM REST
Services Manager SSL certificate.

• ocrsm.rsm.secretVal.trustStorePassword: The TrustStore password in Base64
format.

Enabling Tracing in BRM REST Services Manager
By default, tracing is disabled in BRM REST Services Manager cloud native. To enable tracing
with Zipkin:

1. In your override-values.yaml file for oc-cn-helm-chart, set the following keys under
ocrsm.rsm.configEnv:

16-1

https://zipkin.io/
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html

• isTracingEnabled: Set this to true.

• zipkinHostName: Set this to the host name of the server on which Zipkin is running.

• zipkinPort: Set this to the port number for Zipkin.

• zipkinProtocol: Set this to HTTP or HTTPS.

2. Deploy or redeploy the BRM Helm release by running the helm install command:

helm install BrmReleaseName oc-cn-helm-chart –-values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Chapter 16
Enabling Tracing in BRM REST Services Manager

16-2

17
Tracing Opcode Processes

Learn how to enable selective opcode tracing in a cloud native Oracle Communications Billing
and Revenue Management (BRM) environment, as part of the initiative to provide more
granularity in error-code, class, and location reporting by Perflib.

Topics in this document:

• Enabling Selective Opcode Tracing

Enabling Selective Opcode Tracing
Use the selective opcode tracing feature to control which opcodes are traced for flist and
summary tracing. By default, all opcodes are traced. You can enable selective opcode tracing
in a cloud native environment using a configuration file or during runtime using the pstatus
application.

To enable selective opcode tracing in a cloud native environment:

1. Open the CM and Oracle DM Perflib environment files in a text editor:

• CM: configmap_env_perf.yaml

• Oracle DM: configmap_env_perf_dm.yaml

2. Set the PERFLIB_VAR_TRACE_OPCODES parameter to a comma-separated list of
opcodes to trace when using Perflib’s full or summary flist tracing mode:

PERFLIB_VAR_TRACE_OPCODES: "opcodeNameOrNumber"

where opcodeNameOrNumber is either the name or number of a BRM opcode. If you list
multiple opcodes, use a comma as a delimiter. If the parameter is empty or missing, Perflib
traces all opcodes by default.

For example, this entry specifies to use flist tracing for only the
PCM_OP_CUST_COMMIT_CUSTOMER and
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL (108) opcodes:

PERFLIB_VAR_TRACE_OPCODES: "PCM_OP_CUST_COMMIT_CUSTOMER,108"

3. Run the helm upgrade command to update the release.

4. Restart the CM and Oracle DM services to initialize the new configuration.

To enable selective opcode tracing at runtime, enter the CM or Oracle DM pod directly using a
shell and run the pstatus application.

17-1

Part III
Integrating with BRM Cloud Native

This part describes how to integrate and deploy Oracle Communications Billing and Revenue
Management (BRM) cloud native with external systems. It contains the following chapters:

• Integrating with Your BRM Cloud Native Deployment

18
Integrating with Your BRM Cloud Native
Deployment

Learn how to integrate the Oracle Communications Billing and Revenue Management (BRM)
cloud native deployment with external systems, such as Oracle Analytics Publisher.

Topics in this document:

• Integrating with Thick Clients

• Using a Custom TLS Certificate

• Integrating with JCA Resource Adapter

• Integrating with Kafka Servers

• Integrating with Oracle Analytics Publisher

Integrating with Thick Clients
You can integrate BRM cloud native with thick clients, such as Customer Center and Pricing
Center. To do so:

1. Set these entries in the override-values.yaml file for oc-cn-helm-chart:

• ocbrm.cm.serviceFqdn: Set this to the CM's TLS certificate Subject Alternative
Name, such as dns:node1.brm.com.

• ocbrm.isSSLEnabled: Set this to 1.

2. Copy the client wallet from the CM service to your thick client's wallet on Windows.

Note:

All thick clients installed in standard mode (that is, in non-WebStart mode) can be
integrated with the BRM cloud native deployment. This is not relevant for self-
care applications.

3. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

18-1

Using a Custom TLS Certificate
You can secure connections between your BRM cloud native deployment and external service
providers, such as payment processors and tax calculators, by using Secure Sockets Layer
(SSL) certificates. By default, the BRM cloud native deployment uses the TLS certificate
provided with the BRM cloud native deployment package.

You can configure the BRM cloud native deployment to use your custom TLS certificate
instead. You might do this, for example, to allow client applications outside of the cloud
environment to access the BRM cloud native Connection Manager (CM). In this case, the CM
is exposed as a Kubernetes NodePort service.

To use a custom TLS certificate, do this:

1. When you generate your custom TLS certificate, ensure that its Subject Alternative Name
(SAN) includes these:

dns:cm
dns:HostName

where HostName is the host name used to connect to the CM from outside the Kubernetes
cluster.

For example, if your CM is running on the ocbrm.example.com server and you use the
Java keytool utility to generate the custom SAN certificate, you'd enter this command:

keytool -genkey -keyalg RSA -alias brm -keystore brm_custom.jks -validity
365 -keysize 2048 -ext san=dns:cm,dns:ocbrm.example.com

2. Create an Oracle wallet named brm_custom_wallet in the staging area and then copy it
to the top level of oc-cn-helm-chart:

mkdir brm_custom_wallet
orapki -nologo wallet create -wallet brm_custom_wallet -auto_login -pwd
Password

3. Convert the Java KeyStore to the Oracle wallet:

orapki wallet jks_to_pkcs12 -wallet brm_custom_wallet -pwd Password -
keystore brm_custom.jks -jkspwd Password

4. Verify the contents of the wallet:

orapki wallet display -wallet brm_custom_wallet

5. Move your custom TLS certificate to oc-cn-helm-chart/brm_custom_wallet.

The wallet containing the custom certificate will be mounted at /oms/wallet/custom.

6. Update these keys in your override-values.yaml file for oc-cn-helm-chart and oc-cn-op-
job-helm-chart:

• ocbrm.isSSLEnabled: Set this to 1.

• ocbrm.cmSSLTermination: Set this to true.

• ocbrm.isSSLEnabled: Set this to true.

Chapter 18
Using a Custom TLS Certificate

18-2

• ocbrm.customSSLWallet: Set this to true.

• ocbrm.wallet.client_location: Set this to /oms/wallet/custom.

• ocbrm.wallet.server_location: Set this to /oms/wallet/custom.

7. Install BRM cloud native services by entering this command from the helmcharts
directory.

helm install BrmReleaseName oc-cn-helm-chart --namespace BrmNameSpace --
values OverrideValuesFile

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the chart's values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Integrating with JCA Resource Adapter
You can deploy the BRM JCA Resource Adapter in WebLogic Server and use it to run opcodes
in the BRM cloud native deployment. For more information about JCA Resource Adapter, see
BRM JCA Resource Adapter.

Note:

To allow the JCA Resource Adapter to communicate with the BRM cloud native
deployment, expose the CM service as NodePort. For information, see "Integrating
with Thick Clients".

To deploy JCA Resource Adapter in your BRM cloud native deployment:

1. Enable the brm-sdk pod by setting these keys in your override-values.yaml file for oc-cn-
helm-chart:

brm_sdk:
 isEnabled: true
 deployment:
 imageName: brm_sdk
 imageTag: 15.1.x.x.x
 pvc:
 storage: 50Mi

2. Run the helm upgrade command for oc-cn-helm-chart:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

3. Find the name of the brm-sdk pod:

kubectl get pods -n BrmNameSpace | grep brm-sdk

Chapter 18
Integrating with JCA Resource Adapter

18-3

You should see something similar to this:

NAME READY STATUS RESTARTS AGE
brm-sdk-f67b95777-bf8j5 1/1 Running 0 18m

4. Enter the brm-sdk pod:

kubectl exec -n BrmNameSpace -it BrmSdkPodName bash

where BrmSdkPodName is the name of the pod from step 3.

For example:

kubectl exec -n MyNameSpace -it brm-sdk-f67b95777-bf8j5 bash
5. Go to the apps/brm_integrations/jca_adapter/ directory and copy the

OracleBRMJCA15Adapter.rar file to a new staging directory:

cd apps/brm_integrations/jca_adapter/
mkdir staging
cp OracleBRMJCA15Adapter.rar staging/

6. Go to your staging directory and extract the files from the OracleBRMJCA15Adapter.rar
archive file:

cd staging
jar xvf OracleBRMJCA15Adapter.rar

7. Update the following parameters in your META-INF/weblogic-ra.xml file:

• ConnectionString: Set this to the string for connecting to the BRM service in the
format:

protocol host port

For example: ip cm 11960.

• Password: Set this to the password for the BRM root user.

• JavaPcmSSL: Set this to true if SSL is enabled for BRM.

• SslWalletLocation: Set this to the location of the Oracle wallet that contains the BRM
client TLS certificate. This can be copied from the BRM installation.

8. From your staging directory, delete the OracleBRMJCA15Adapter.rar file and then build a
new archive file using the updated META-INF/weblogic-ra.xml file:

rm OracleBRMJCA15Adapter.rar
jar cvf OracleBRMJCA15Adapter.rar .

9. Copy the new OracleBRMJCA15Adapter.rar into the brm-sdk PVC storage class:

cp OracleBRMJCA15Adapter.rar /oms/ext/
10. Copy the client wallet to the brm-sdk PVC storage class:

cp -r /oms/wallet/client/ /oms/ext/wallet/
11. Exit the brm-sdk pod.

12. Retrieve the name of the PVC volume for the brm-sdk pod:

kubectl get pvc -n BrmNameSpace | grep brm-sdk

You should see something similar to this:

NAME STATUS VOLUME CAPACITY ACCESS
MODES STORAGE CLASS AGE
brm-sdk Bound pvc-094feae0-4d11-4887-83a0-b47a0fc6a3f4 50Mi
RWX myclass 24h

Chapter 18
Integrating with JCA Resource Adapter

18-4

13. Copy the OracleBRMJCA15Adapter.rar archive file from the PVC to the working directory

cp NfsMountPath/BrmNameSpace/BrmSdkPvc/OracleBRMJCA15Adapter.rar .

where BrmSdkPvc is the name of the PVC volume from step 12.

For example:

cp -r /mnt/oke_test/MyNameSpace/pvc-094feae0-4d11-4887-83a0-b47a0fc6a3f4/
OracleBRMJCA15Adapter.rar .

14. Copy the client wallet from the PVC to the working directory:

cp -r NfsMountPath/BrmNameSpace/BrmSdkPvc/WalletFolder .

For example:

cp -r /mnt/oke_test/MyNameSpace/pvc-094feae0-4d11-4887-83a0-b47a0fc6a3f4/wallet .
15. Copy the client wallet to the appropriate path and deploy OracleBRMJCA15Adapter.rar

on AIA.

Integrating with Kafka Servers
You can integrate your BRM cloud native system with a Kafka server to keep data
synchronized between BRM cloud native and your external applications that are connected to
the Kafka server. To synchronize account, pricing, and other data, BRM cloud native takes data
from internal notification events and constructs a business event that is published to a topic in
your Kafka server. Your external applications can then retrieve and process the data from the
Kafka topic. For more information, see "About Integrating BRM with an Apache Kafka Server"
in BRM Developer's Guide.

You integrate BRM cloud native with a Kafka server and configure it to publish data to a Kafka
server using the CM, Kafka DM, and Enterprise Application Integration (EAI) framework.

To integrate BRM cloud native with a Kafka Server:

1. (Optional) Configure the KeyStores required for secure communication between the Kafka
DM and Kafka Server.

a. Create the client certificate, client KeyStore, and client TrustStore. See "Security" in
the Apache Kafka documentation.

b. Verify that the server KeyStore and TrustStore are set up properly by running the
following command:

openssl s_client -debug -connect DomainName:PortNumber -tls1_2

If successful, the certificate is displayed. If the certificate isn't displayed or if there are
any other error messages, the KeyStore isn't set up properly.

c. Move the client's KeyStore files, such as identity.p12 and trust.p12, under the oc-cn-
helm-chart/keystores directory.

2. Open your override-values.yaml file for oc-cn-helm-chart.

3. Enable and configure the Kafka DM by editing the following keys:

• ocbrm.dm_kafka.is_enabled: Set this to true.

• ocbrm.dm_kafka.kafkaAsyncMode: Specify whether to use asynchronous mode
(true), in which the Kafka DM records all business events that fail to publish to a log

Chapter 18
Integrating with Kafka Servers

18-5

https://kafka.apache.org/documentation/#security

file. In synchronous mode (false), the Kafka DM returns errors to BRM when a
business event fails to publish to the Kafka server.

• ocbrm.dm_kafka.deployment.kafka_bootstrap_server_list: Set this to a comma-
separated list of addresses for the Kafka brokers in this format: hostname1:port1,
hostname2:port2. The default is ece-kafka:9093.

• ocbrm.dm_kafka.deployment.poolSize: Set this to the number of threads that can
run in the JS server to accept requests from the CM. Enter a number from 1 through
2000. The default is 64.

• ocbrm.dm_kafka.deployment.topicName: Set this to the name of the default Kafka
topic. The default name is BRM.

• ocbrm.dm_kafka.deployment.topicFormat: Set this to the format of the payload that
is published to the default Kafka topic: XML or JSON.

• ocbrm.dm_kafka.deployment.topicStyle: Set this to the style of all field names in
XML payloads:

– ShortName: The XML field names are in all capitals, such as <POID>,
<ACCOUNT_OBJ>, and <SUBSCRIBER_PREFERENCES_INFO>. This is the
default.

– CamelCase: The XML field names are in CamelCase, such as <Poid>,
<AccountObj>, and <SubscriberPreferencesInfo>.

– NewShortName: The XML field names are in CamelCase and are prefixed with
fld, such as <fldPoid>, <fldAccountObj>, and <fldString>.

– OC3CNotification: The input is transformed to match the field and formatting
requirements of Oracle Communications Convergent Charging Controller. Use this
style if Convergent Charging Controller is your external notification application.

• ocbrm.dm_kafka.deployment.isSecurityEnabled: Specifies whether SSL is enabled
between the Kafka DM and Kafka Server.

• ocbrm.dm_kafka.deployment.trustStorePassword: Specifies the TrustStore
password in Base64 format.

• ocbrm.dm_kafka.deployment.keyStorePassword: Specifies the KeyStore password
in Base64 format.

• ocbrm.dm_kafka.deployment.keyPassword: Specifies the key password in Base64
format.

• ocbrm.dm_kafka.deployment.password: Specifies the password in Base64 format.

4. Configure the EAI Java Server (JS) to use the Kafka DM event notification file by setting
the ocbrm.eai_js.deployment.eaiConfigFile key to
payloadconfig_ifw_kafka_sync_merged.xml.

5. Save and close the file.

6. To create additional Kafka topics or configure the Kafka DM to publish different business
events to a Kafka topic, edit the dm-kafka-config ConfigMap.

For more information about editing this ConfigMap, see "Mapping Business Events to
Kafka Topics" in BRM Developer's Guide.

7. Run the helm upgrade command to update your BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

Chapter 18
Integrating with Kafka Servers

18-6

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Example: Integrating BRM Cloud Native with a Kafka Server

The following shows sample override-values.yaml entries for integrating a BRM cloud native
system with a Kafka Server:

ocbrm:
 dm_kafka:
 isEnabled: true
 kafkaAsyncMode: true
 deployment:
 imageName: dm_kafka
 imageTag: $BRM_VERSION
 replicaCount: 1
 kafka_bootstrap_server_list: ece-kafka:9093
 poolSize: 64
 topicName: BRMTopic
 topicFormat: XML
 topicStyle: CamelCase
 isSecurityEnabled: true
 trustStorePassword: TrustStorePassword
 keyStorePassword: KeyStorePassword
 keyPassword: KeyPassword
 password: Password
 eai_js:
 deployment:
 imageName: eai_js
 imageTag: $BRM_VERSION
 eaiConfigFile: payloadconfig_ifw_sync.xml

Integrating with Oracle Analytics Publisher
You can optionally integrate your BRM cloud native deployment with invoicing software such as
Oracle Analytics Publisher. This integration enables you to generate more detailed and stylized
customer invoices that can be viewed in your invoicing software or Billing Care.

To integrate your BRM cloud native deployment with Oracle Analytics Publisher:

1. If you have not already done so, install Oracle Analytics Publisher.

For a list of compatible software versions, see "BRM Software Compatibility" in BRM
Compatibility Matrix.

2. Install the BRM-Oracle Analytics Publisher invoicing integration package using the OUI
installer on your Oracle Analytics Publisher server. This copies invoice layout templates,
such as for corporate invoices and consumer invoices, to the Oracle Analytics Publisher
server.

Chapter 18
Integrating with Oracle Analytics Publisher

18-7

The steps for installing the package on BRM cloud native are similar to those on BRM on-
premises. For more information, see "Installing the BRM-Oracle Analytics Publisher
Invoicing Integration Package" in BRM Designing and Generating Invoices.

3. Configure how to connect your Billing Care and Billing Care REST API cloud native
services with Oracle Analytics Publisher.

In your override-values.yaml file for oc-cn-op-job-helm-chart, set these keys:

• ocbc.bc.configEnv.bipUrl: The URL for PublicReportService_v11 from your Oracle
Analytics Publisher instance, which Billing Care uses to show invoices.

• ocbc.bc.configEnv.bipUserId: The name of the user with access to the Oracle
Analytics Publisher instance for viewing invoices from Billing Care.

• ocbc.bc.secretVal.bipPassword: The Base64-encoded password for the Oracle
Analytics Publisher user.

• ocbc.bcws.configEnv.bipUrl: The URL for PublicReportService_v11 from your
Oracle Analytics Publisher instance, which is used by the Billing Care REST API when
accessing PDF invoices.

• ocbc.bcws.configEnv.bipUserId: The name of the user with access to the Oracle
Analytics Publisher instance for accessing invoices from the Billing Care REST API.

• ocbc.bcws.secretVal.bipPassword: The Base64-encoded password for the Oracle
Analytics Publisher user.

4. Do one of the following:

• Deploy your Billing Care and Billing Care REST API cloud native services. See
"Deploying BRM Cloud Native Services" in BRM Cloud Native Deployment Guide.

• Upgrade your Billing Care and Billing Care REST API cloud native services. See
"Upgrading Your Billing Care and Billing Care REST API Cloud Native Services" in
BRM Cloud Native Deployment Guide.

5. Configure how to connect BRM cloud native with Oracle Analytics Publisher.

In your override-values.yaml file for oc-cn-helm-chart, set these keys under
ocbrm.brm_apps.deployment.pin_inv_doc_gen:

• bipServer: The name of the server on which Oracle Analytics Publisher is installed.

• bipPort: The port number for Oracle Analytics Publisher.

• bipUsername: The name of the user with access to the Oracle Analytics Publisher
instance.

• bipPassword: The Base64-encoded password for the Oracle Analytics Publisher user.

• schedulerDBServer: The name of the server on which the Scheduler database is
installed.

• schedulerDBPort: The port number for communicating with the Scheduler database.

• schedulerDBService: The service name for the Scheduler database.

• schedulerDBUsername: The user name for the Scheduler database.

• schedulerDBServiceCredentials: The security credentials for connecting to the
Scheduler database.

• jdbcPoolSize: The initial number of connections maintained in the pool.

• jdbcPoolMaxSize: The maximum number of connections that can be created.

• securityCredentials: The password for the Oracle wallet.

Chapter 18
Integrating with Oracle Analytics Publisher

18-8

6. In the BRM Helm chart's configmap_pin_conf_brm_apps_1.yaml file, set the following
entries:

• pin_inv_export export_dir: Set this to ./invoice_dir.

• pin_inv_export invoice_fmt: Set this to text/xml.

For example:

- pin_inv_export export_dir ./invoice_dir
- pin_inv_export invoice_fmt text/xml

7. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where BrmReleaseName is the release name assigned to your existing oc-cn-helm-chart
installation.

8. In your bus_params_Invoicing.xml file, set the following entries:

• xsi:schemaLocation: Set this to http://www.portal.com/schemas/
BusinessConfig/oms/xsd/business_configuration.xsd.

• EnableInvoicingIntegration: Set this to enabled to integrate BRM with your invoicing
software.

• InvoiceStorageType: Set this to 1 to store invoices in XML format.

For example:

<BusinessConfiguration
 xmlns="http://www.portal.com/schemas/BusinessConfig"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.portal.com/schemas/BusinessConfig
/oms/xsd/business_configuration.xsd">
...
<EnableInvoicingIntegration>enabled</EnableInvoicingIntegration>
<InvoiceStorageType>1</InvoiceStorageType>

9. In your bus_params_billing.xml file, set the following entries:

• RerateDuringBilling: Specify whether delayed events that arrive after the end of the
accounting cycle but during the delayed billing period can borrow against the rollover
of the current cycle (enabled) or not (disabled).

• EnableCorrectiveInvoices: Specify whether to enable corrective billing and corrective
invoicing (enabled) or not (disabled).

• AllowCorrectivePaidBills: Specify whether to allow a corrective bill to be generated
for a bill that has been fully or partially paid (enabled) or not (disabled).

• RejectPaymentsForPreviousBill: Specify whether to reject payments when the bill
number associated with a payment does not match the last bill (enabled) or to accept
them (disabled).

• CorrectiveBillThreshold: Specify the minimum bill amount that triggers a corrective
bill.

• GenerateCorrectiveBillNo: Specify whether corrective invoices use corrective bill
numbers (enabled) or the original bill numbers (disabled).

Chapter 18
Integrating with Oracle Analytics Publisher

18-9

For example:

<RerateDuringBilling>enabled</RerateDuringBilling>
<EnableCorrectiveInvoices>enabled</EnableCorrectiveInvoices>
<AllowCorrectivePaidBills>enabled</AllowCorrectivePaidBills>
<RejectPaymentsForPreviousBill>enabled</RejectPaymentsForPreviousBill>
<CorrectiveBillThreshold>0</CorrectiveBillThreshold>
<GenerateCorrectiveBillNo>enabled</GenerateCorrectiveBillNo>

10. In your events.file file, specify which events to include in your invoices.

For more information, see "Including Payment, A/R, and Tax Details in Invoices" in BRM
Designing and Generating Invoices.

11. In your pin_business_profile.xml file, configure your business profiles and validation
templates.

For more information, see "Setting Up Business Profiles and Validation Templates" in BRM
Managing Customers.

12. In your pin_invoice_data_map file, create or modify the data invoice templates.

For more information, see "Using Data Map Templates" in BRM Designing and Generating
Invoices.

13. Add the following lines to the oc-cn-helm-chart/config_scripts/loadme.sh script:

#!/bin/sh

cd /oms/sys/data/config; pin_bus_params -v /oms/load/
bus_params_Invoicing.xml
cd /oms/sys/data/config; pin_bus_params -v /oms/load/
bus_params_billing.xml
cd /oms/sys/data/config; pin_load_invoice_events -reload -brand "0.0.0.1/
account 1 0" -eventfile /oms/load/events.file
cd /oms/sys/data/config; load_pin_business_profile /oms/load/
pin_business_profile.xml
cd /oms/sys/data/config; load_pin_invoice_data_map -dv /oms/load/
pin_invoice_data_map
exit 0;

14. Move the following input files to the oc-cn-helm-chart/config_scripts directory:

• bus_params_invoicing.xml

• bus_params_billing.xml

• events.file

• pin_business_profile.xml

• pin_invoice_data_map

15. Enable the configurator job.

In your override-values.yaml file for oc-cn-helm-chart, set
ocbrm.config_jobs.run_apps to true.

16. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

Chapter 18
Integrating with Oracle Analytics Publisher

18-10

The configurator job runs the utilities specified in the loadme.sh script.

17. Restart the CM because it is required by pin_bus_params.

a. Set these keys in the override-values.yaml file:

• ocbrm.config_jobs.restart_count: Increment the existing value by 1

• ocbrm.config_jobs.run_apps: Set this to false

b. Update the Helm release again:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

When configuring Oracle Analytics Publisher, ensure that the Create_Xmlp_Invoice_Job.sql
script is run in the schema in which the scheduler database is installed. This script creates the
XMLP_INVOICE_JOB table, which should be present in the scheduler database.

Generating Invoices in Oracle Analytics Publisher
After integration is complete, you can generate your customers' invoices in Oracle Analytics
Publisher by doing the following:

1. Creating /invoice objects for your customers by doing one of the following:

• Running an invoicing job in Business Operations Center. See "Generating Invoices" in
Business Operations Center Help for more information.

• Running the pin_inv_accts utility through a brm-apps job. See "Running Applications
and Utilities Through brm-apps Jobs".

2. Generating your customer invoice documents using Oracle Analytics Publisher templates
by running the pin_inv_doc_gen utility through a brm-apps job. See "Running
Applications and Utilities Through brm-apps Jobs".

Chapter 18
Integrating with Oracle Analytics Publisher

18-11

Part IV
Administering PDC Cloud Native Services

This part describes how to administer Oracle Communications Pricing Design Center (PDC)
cloud native services. It contains the following chapters:

• Administering PDC Cloud Native Services

• Running PDC Applications

• Monitoring PDC in a Cloud Native Environment

• Monitoring PDC REST Services Manager

• Rotating PDC Log Files

• Managing Language Packs in PDC Pods

• Troubleshooting PDC Cloud Native

19
Administering PDC Cloud Native Services

Learn how to perform common system administration tasks on your Oracle Communications
Pricing Design Center (PDC) cloud native services.

Topics in this document:

• Creating PDC Users

• Using Resource Limits in PDC Domain Pods

Creating PDC Users
PDC is a role-based application that authenticates and authorizes users based on the group to
which they belong. The role-based functionality of PDC is supported by the following WebLogic
Server groups, which are created when you deploy oc-cn-op-job-helm-chart.

• PricingDesignAdmin: This group's users have administrative privileges on PDC. They
can perform operations on all PDC UI screens, pricing components, and setup
components.

• PricingAnalyst: This group's users have administrative privileges for pricing components
and view-only privileges for setup components.

• PricingReviewer: This group's users have view-only privileges for all pricing and setup
components.

When you create PDC users, add them to one of these groups based on the role of the user in
the organization.

To create PDC users in the PDC domain:

1. In your override-values.yaml file for oc-cn-op-job-helm-chart, set the following keys:

ocpdc:
 wop:
 users:
 name: UserName
 description: Description
 password: EncodedPassword
 groups: Group

where:

• UserName is the name of the user.

• Description is a brief description of the user.

• EncodedPassword is the Base64-encoded password for the user.

• Group is the name of the group that the user belongs to. The available PDC groups
are PricingAnalyst, PricingDesignAdmin, and PricingReviewer.

2. Deploy or redeploy PDC by running the helm install command for oc-cn-op-job-helm-
chart:

19-1

helm install OpJobReleaseName oc-cn-op-job-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• OpJobReleaseName is the release name assigned to your existing oc-cn-op-job-
helm-chart installation.

• OverrideValuesFile is the file name and path of your override-values.yaml file.

• BrmNameSpace is the namespace for your existing BRM deployment.

Using Resource Limits in PDC Domain Pods
You can optimize the PDC system's CPU and memory usage for requests and limits during
runtime. To do so:

1. In your oc-cn-helm-chart/pdc/vpa_values.yaml file, set the keys listed in Table 19-1.

Table 19-1 Keys for the BRM Helm Chart vpa_values.yaml File

Pods Keys

PDC Domain To set the request and limit values for the PDC domain pod:

• pdcDomainPOD.requests.cpu: Set this to the default CPU
request value.

• pdcDomainPOD.requests.memory: Set this to the default
memory requests value.

• pdcDomainPOD.limits.cpu: Set this to the maximum
number of CPU cores the pod can utilize.

• pdcDomainPOD.limits.memory: Set this to the maximum
amount of memory a pod can utilize. The default is 26i.

Real-Time Rating, Batch Rating,
and the SyncPDC utility

To set the request and limit values for the PDC domain pod:

• pdcDomainPOD.requests.cpu: Set this to the default CPU
request value.

• pdcDomainPOD.requests.memory: Set this to the default
memory requests value.

• pdcDomainPOD.limits.cpu: Set this to the maximum
number of CPU cores the pod can utilize.

• pdcDomainPOD.limits.memory: Set this to the maximum
amount of memory a pod can utilize.

The ImportExportPricing utility To set the request and limit values for the ImportExportPricing
pod:

• pdcDomainPOD.requests.cpu: Set this to the default CPU
request value.

• pdcDomainPOD.requests.memory: Set this to the default
memory requests value..

• pdcDomainPOD.limits.cpu: Set this to the maximum
number of CPU cores the pod can utilize.

• pdcDomainPOD.limits.memory: Set this to the maximum
amount of memory a pod can utilize.

2. In your oc-cn-op-job-helm-chart/pdc/vpa_values.yaml file, set the request and limit
values for the PDC domain job:

• pdcDomainJOB.requests.cpu: Set this to the default CPU request value.

• pdcDomainJOB.requests.memory: Set this to the default memory requests value.

Chapter 19
Using Resource Limits in PDC Domain Pods

19-2

• pdcDomainJOB.limits.cpu: Set this to the maximum number of CPU cores the pod
can utilize.

• pdcDomainJOB.limits.memory: Set this to the maximum amount of memory a pod
can utilize.

3. Run the helm upgrade command to update the release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name assigned to your existing oc-cn-helm-chart
installation.

• OverrideValuesFile is the file name and path of your override-values.yaml file.

• BrmNameSpace is the namespace for your existing BRM deployment.

Chapter 19
Using Resource Limits in PDC Domain Pods

19-3

20
Running PDC Applications

Learn how to run Oracle Communications Pricing Design Center (PDC) applications, such as
ImportExportPricing and SyncPDC, in an Oracle Communications Billing and Revenue
Management (BRM) cloud native environment.

Topics in this document:

• About Running the PDC Utilities

• Importing Pricing and Setup Components with ImportExportPricing

• Exporting Pricing and Setup Components with ImportExportPricing

• Using SyncPDC to Synchronize Setup Components

About Running the PDC Utilities
You can create your pricing and setup components by using these PDC utilities:

• ImportExportPricing: Use this utility to import, export, display, delete, or publish the
pricing and setup components that are defined in PDC.

See "Importing and Exporting Pricing and Setup Components" in PDC Creating Product
Offerings for more information.

• SyncPDC: Use this utility to synchronize setup components that are defined in BRM with
PDC.

See "Synchronizing Pricing Setup Components" in PDC Creating Product Offerings for
more information.

In a BRM cloud native environment, you run these utilities by setting keys in your override-
values.yaml file for oc-cn-helm-chart and then running the helm upgrade command.

Importing Pricing and Setup Components with
ImportExportPricing

After you deploy PDC, you can create pricing and setup components by defining them in one
or more XML files and importing them into the PDC database with the ImportExportPricing
utility.

Importing from a Single XML File
You can import data from a single XML file that contains your pricing and setup components.

To import from a single XML file:

1. Delete the pdc-import-export-job Kubernetes job:

kubectl delete job pdc-import-export-job

20-1

2. Copy your import XML file to one of these:

• The HostPath that you specified in ocpdc.volMnt.pdcBRMHostPath

• pdc-brm-pvc

3. Open your override-values.yaml file for oc-cn-helm-chart.

4. Under the ocpdc.configEnv.importExport section, set these keys:

• IE_Operation: Set this to import.

• IE_Component: Set this to one of the following component and object types to import
into the PDC database:

– config: Imports pricing setup components, such as tax codes, business profiles,
and general ledger IDs.

– pricing: Imports pricing components, such as events, charges, and chargeshares.

– metadata: Imports event, service, account, and profile attribute specifications.

– profile: Imports pricing profile data.

– customfields: Imports custom fields.

– all: Imports all objects and components.

• IE_File_OR_Dir_Name: Set this to the name of your import XML file.

• extraCmdLineArgs: Set this to any extra command-line arguments for
ImportExportPricing, apart from operation, component, and file name. The value
must be surrounded by quotes. For example: "-n ObjectName".

For more information about the utility's commands, see "ImportExportPricing" in PDC
Creating Product Offerings.

5. Save and close the file.

6. Run the helm upgrade command to update the release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

where:

• BrmReleaseName is the release name assigned to your existing oc-cn-helm-chart
installation.

• OverrideValuesFile is the file name and path of your override-values.yaml file.

• BrmNameSpace is the namespace for your existing BRM deployment.

PDC cloud native runs the ImportExportPricing utility at the command line, and the
specified pricing and setup components are imported into the PDC database.

Example: Importing Pricing Setup Components from a Single File

This shows sample YAML settings for importing pricing components, such as charge offers,
into the PDC database:

ocpdc:
 configEnv:
 importExport:
 IE_Operation: import
 IE_Component: pricing
 IE_File_OR_Dir_Name: PDC_ChargeOffers.xml
 extraCmdLineArgs: "-ow -ignoreID"

Chapter 20
Importing Pricing and Setup Components with ImportExportPricing

20-2

In this case, PDC cloud native runs the following command:

./ImportExportPricing -import -pricing PDC_ChargeOffers.xml -ow -ignoreID

Importing Multiple XML Files from a Directory
The ImportExportPricing utility can import pricing components, setup components, or
metadata objects from a directory containing multiple import XML files.

Note:

The XML files in the directory must contain only one type of configuration object: only
metadata objects, only setup components, or only pricing components.

To import data from multiple XML files in a directory:

1. Delete the pdc-import-export-job Kubernetes job:

kubectl delete job pdc-import-export-job

2. Create your import XML files. Ensure the files contain only one type of configuration object:
only pricing components, only setup components, or only metadata objects.

3. (Optional) Create an import_order.cfg file listing the order in which to import the XML
files. For example, you could specify to import chargeRatePlans.xml before
chargeOffers.xml.

Note:

• Ensure import_order.cfg does not contain empty lines.

• Without the file, ImportExportPricing imports your XML files in a random
order.

4. Copy your import XML files and import_order.cfg file to one of these:

• The HostPath that you specified in ocpdc.volMnt.pdcBRMHostPath

• pdc-brm-pvc

The input directory can include one or more subdirectories, but the import_order.cfg file
must be at the top level of your input directory.

5. Set the ownership and permissions of the input directory, its subdirectories, your import
XML files, and import_order.cfg file to chown runAsUser:0 and chmod 777.

6. Open your override-values.yaml file for oc-cn-helm-chart.

7. Under the ocpdc.configEnv.importExport section, set these keys:

• IE_Operation: Set this to import.

• IE_Component: Set this to one of the following component and object types to import
into the PDC database:

Chapter 20
Importing Pricing and Setup Components with ImportExportPricing

20-3

– config: Imports pricing setup components, such as tax codes, business profiles,
and general ledger IDs.

– pricing: Imports pricing components, such as events, charges, and chargeshares.

– metadata: Imports event, service, account, and profile attribute specifications.

• IE_File_OR_Dir_Name: Set this to the path in which your import XML files reside.

• extraCmdLineArgs: Set this to any extra command-line arguments for
ImportExportPricing, apart from operation, component, and file name. The value
must be surrounded by quotes. For example: "-n ObjectName".

For more information about the utility's commands, see "ImportExportPricing" in PDC
Creating Product Offerings.

8. Save and close the file.

9. Run the helm upgrade command to update the release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

where:

• BrmReleaseName is the release name assigned to your existing oc-cn-helm-chart
installation.

• OverrideValuesFile is the file name and path of your override-values.yaml file.

• BrmNameSpace is the namespace for your existing BRM deployment.

PDC cloud native runs the ImportExportPricing utility at the command line, and the
specified pricing and setup components are imported into the PDC database.

Example: Importing Pricing Setup Components from a Directory

This shows sample YAML settings for importing setup components, such as tax codes,
business profiles, and general ledger IDs, into the PDC database:

ocpdc:
 configEnv:
 importExport:
 IE_Operation: import
 IE_Component: config
 IE_File_OR_Dir_Name: MyDirectory
 extraCmdLineArgs: "-ow -ignoreID"

In this case, PDC cloud native runs the following command:

./ImportExportPricing -import -config MyDirectory -ow -ignoreID

Exporting Pricing and Setup Components with
ImportExportPricing

You can export pricing and setup components from the PDC database into one or more XML
files by using the ImportExportPricing utility.

Chapter 20
Exporting Pricing and Setup Components with ImportExportPricing

20-4

Note:

To export large XML files, increase the WebLogic transaction timeout settings. For
more information, see "Customizing WebLogic for PDC" in BRM Cloud Native
Deployment Guide.

To export pricing and setup components from the PDC database:

1. Delete the pdc-import-export-job Kubernetes job:

kubectl delete job pdc-import-export-job

2. Open your override-values.yaml file for oc-cn-helm-chart.

3. Under the ocpdc.configEnv.importExport section, set these keys:

• IE_Operation: Set this to export.

• IE_Component: Set this to one of the following component and object types to export
from the PDC database into an XML file:

– config: Exports pricing setup components, such as tax codes, business profiles,
and general ledger IDs.

– pricing: Exports pricing components, such as events, charges, and chargeshares.

– metadata: Exports event, service, account, and profile attribute specifications.

– profile: Exports pricing profile data.

– customfields: Exports custom fields.

– brmObject: Exports all BRM-created setup components from PDC.

– all: Exports all objects and components.

• extraCmdLineArgs: Set this to any extra command-line arguments for
ImportExportPricing, apart from operation, component, and file name. The value
must be surrounded by quotes. For example: "-n ObjectName".

For more information about the utility's commands, see "ImportExportPricing" in PDC
Creating Product Offerings.

4. Save and close the file.

5. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name assigned to your existing oc-cn-helm-chart
installation.

• OverrideValuesFile is the file name and path of your override-values.yaml file.

• BrmNameSpace is the namespace for your existing BRM deployment.

PDC cloud native runs the ImportExportPricing utility, which generates one or more of
the following output files to the HostPath specified in the ocpdc.volMnt.pdcBRMHostPath
key:

Chapter 20
Exporting Pricing and Setup Components with ImportExportPricing

20-5

• export_pricing.xml for the file containing pricing components. If this file already exists
in PDC, the utility generates the file name as export_pricing_timestamp.xml, where
timestamp is the server's local time in the format yyyy-mm-dd_hh-mm-ss.

• export_config.xml for the file containing setup components. If this file already exists
in PDC, the utility generates the file name as export_config_timestamp.xml.

• export_profile.xml for the file containing pricing profile data. If this file already exists
in PDC, the utility generates the file name as export_profile_timestamp.xml.

Example: Exporting Pricing Components

This shows sample YAML settings for exporting pricing components, such as charge offers and
discount offers, from the PDC database:

ocpdc:
 configEnv:
 importExport:
 IE_Operation: export
 IE_Component: pricing
 extraCmdLineArgs: "-v"

In this case, PDC cloud native runs the following command and then exports the pricing data
from the PDC database to a file named export_pricing.xml.

./ImportExportPricing -export -pricing -v

Using SyncPDC to Synchronize Setup Components
After you define the following setup components in BRM, you can synchronize the components
with PDC on a regular basis by using the SyncPDC process:

• Service definitions

• Event definitions

• Account definitions

• General ledger (G/L) IDs

• Provisioning tags

• Tax codes

• Tax suppliers

• Business profiles

The SyncPDC process determines which BRM components to synchronize with PDC using
the ECEEventEnrichmentSpec.xml file. The default file specifies to synchronize all BRM
setup components with PDC, but you can edit it at any time to meet your business needs. The
ECEEventEnrichmentSpec.xml file is located in the HostPath specified in the
ocpdc.volMnt.pdcBrmHostPath key.

You specify the schedule and frequency at which to run the SyncPDC process when you
deploy PDC by using these override-values.yaml keys for oc-cn-helm-chart:

• ocpdc.configEnv.syncPDC.SyncPDCStartAt: Specifies the schedule for running the
SyncPDC process, such as 14:00. The valid values are:

– startAt: The utility runs at the time the job is submitted.

Chapter 20
Using SyncPDC to Synchronize Setup Components

20-6

– "HH:MM": The utility runs at the specified time, where HH is an hour between 0 and
23, and MM is the minutes between 0 and 59. For example, enter "12:00" to schedule
the utility to run at noon.

• ocpdc.configEnv.syncPDC.SyncPDCInterval: Specifies the frequency at which to run
the SyncPDC process, such as daily or every 2 hours. Enter a value in the format "N:U",
where N is a valid number and U is one of these units: D (Daily), H (Hourly), or M (Minute).
For example, enter "2:D" to run the utility every other day.

Note:

A value of "24:H" is not the same as "1:D" due to daylight saving time (DST).

After PDC is deployed, you can start or stop the synchronization process by creating or
deleting the SyncPDC pod. When the pod is created, it automatically begins the BRM-to-PDC
synchronization process. It runs as a server process in the background, continuously checking
for data to synchronize from BRM or the rating system with PDC.

To start or stop the synchronization process:

1. Open your override-values.yaml file for oc-cn-helm-chart.

2. Under the ocpdc.configEnv.syncPDC section, set the runSyncPDC key to one of the
following:

• true to create the SyncPDC pod and start the synchronization process.

• false to delete the SyncPDC pod and stop the synchronization process.

3. Save and close the file.

4. Run the helm upgrade command to update the release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name assigned to your existing oc-cn-helm-chart
installation.

• OverrideValuesFile is the file name and path of your override-values.yaml file.

• BrmNameSpace is the namespace for your existing BRM deployment.

Chapter 20
Using SyncPDC to Synchronize Setup Components

20-7

21
Monitoring PDC in a Cloud Native
Environment

Learn how to monitor Pricing Design Center (PDC) in your Oracle Communications Billing and
Revenue Management (BRM) cloud native environment by using external applications.

Topics in this document:

• About Monitoring PDC Cloud Native

• Setting Up Monitoring in PDC Cloud Native

About Monitoring PDC Cloud Native
You use the following external applications to monitor operations in PDC cloud native:

• WebLogic Monitoring Exporter: Use this Oracle web application to scrape runtime
information from PDC and then export the metric data in Prometheus format. It exposes
different WebLogic Mbeans metrics, such as memory usage and session count, that are
required for monitoring and maintaining the PDC application deployed on the server.

• Prometheus: Use this open-source toolkit to aggregate and store the PDC metric data
scraped by the WebLogic Monitoring Exporter.

You can install a standalone version of Prometheus or Prometheus Operator. If you install
Prometheus Operator, PDC adds a ServiceMonitor that declaratively specifies how to
monitor groups of services. It automatically generates the Prometheus scrape
configuration based on the definition.

• Grafana: Use this open-source tool to view all PDC metric data stored in Prometheus on a
graphical dashboard.

To configure Grafana for displaying PDC metric data, see "Getting Started with Grafana" in
the Grafana documentation.

Setting Up Monitoring in PDC Cloud Native
Setting up monitoring in PDC cloud native involves these high-level tasks:

1. Deploying Prometheus in one of the following ways:

• Deploy a standalone version of Prometheus. See "Installation" in the Prometheus
documentation.

• Deploy Prometheus Operator. See "prometheus-operator" on the GitHub website.

For the list of compatible software versions, see "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

2. Configuring Prometheus to scrape data and send alerts. For more information, see
"Configuration" in the Prometheus documentation.

3. Installing Grafana. See "Install Grafana" in the Grafana documentation for information.

21-1

https://grafana.com/docs/grafana/latest/getting-started/getting-started/
https://prometheus.io/docs/prometheus/latest/installation/
https://github.com/prometheus-operator/prometheus-operator
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://grafana.com/docs/grafana/latest/installation/

For the list of compatible software versions, see "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

4. Enabling monitoring in your PDC cloud native deployment:

a. In the override-values.yaml file for oc-cn-helm-chart, set the
ocpdc.configEnv.monitoring.isEnabled key to true.

b. If you are using Prometheus Operator, also set these keys:

• ocpdc.configEnv.monitoring.prometheus.operator.isEnabled: Set this to true.

• ocpdc.configEnv.monitoring.prometheus.operator.namespace: Set this to the
namespace of the Prometheus Operator.

c. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track
this installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for
the BRM Helm chart.

WebLogic Monitoring Exporter is installed in your cloud native environment.

5. Edit the wls-exporter-config.yaml file to include the PDC metrics that you want to
monitor. For the metrics that can be used with PDC, see "WebLogic-Based Application
Metrics".

6. To create custom metrics for monitoring PDC, do the following:

a. Create a Python file defining the custom metrics you want scraped from PDC.

For more information, see "Writing Client Libraries" in the Prometheus Instrumenting
documentation.

b. Set the wls-exporter-config.yaml file's permission to:

chown 1000:1000
chmod 777

c. Move your Python file to the HostPath specified in the ocpdc.volMnt.pdcHostPath
key.

7. Run the helm upgrade command to update your BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

8. Configure Grafana to display Pricing Design Center metric data. See "Creating Grafana
Dashboards for Pricing Design Center".

Chapter 21
Setting Up Monitoring in PDC Cloud Native

21-2

https://prometheus.io/docs/instrumenting/writing_clientlibs/

Creating Grafana Dashboards for Pricing Design Center
Create a dashboard in Grafana to display your Pricing Design Center metric data. Alternatively,
you can use the sample dashboard JSON model included in the oc-cn-docker-
files-15.1.x.x.x.tgz package.

Note:

For the sample dashboard to work properly, the data source name for the WebLogic
Domain must be Prometheus.

To use the sample dashboard, import the oc-cn-docker-files/samples/monitoring/ocpdc-
pdc-wls-dashboard.json dashboard file into Grafana. See "Export and Import" in the Grafana
Dashboards documentation for more information.

Chapter 21
Setting Up Monitoring in PDC Cloud Native

21-3

https://grafana.com/docs/grafana/latest/dashboards/export-import/

22
Monitoring PDC REST Services Manager

Learn how to monitor Oracle Communication Pricing Design Center (PDC) REST Services
Manager in a cloud native environment using logging, tracing, metrics, and system health data.

Topics in this document:

• About PDC REST Services Manager Logs

• About PDC REST Services Manager Tracing

• About PDC REST Services Manager Metrics

• About Monitoring PDC REST Services Manager System Health

About PDC REST Services Manager Logs
You can review the PDC REST Services Manager logs to troubleshoot errors and monitor
system activity.

PDC REST Services Manager uses the Apache Log4j Java logging utility to log information
and errors about the following:

• Start up and shut down activity

• Interaction with other applications at integration points while processing publication events.
This includes interactions with PDC, Oracle Identity Cloud Service, and your master
product catalog.

• Authorization requests

• Authentication requests

• Zipkin tracing (see "About PDC REST Services Manager Tracing")

You access the logs in the Cloud Native BRM environment using the kubectl command in the
BRM namespace. See "Accessing the PDC REST Services Manager Logs".

The logs support the standard Java logging levels. By default, the log levels are set to INFO.
You can change the levels after installation. For example, setting the log levels to ALL allows
you to log detailed authentication or authorization errors for Helidon security providers. See
"Changing the Log Levels".

By default, PDC REST Services Manager routes Java logging to the Log4j log manager. After
setting up PDC REST Services Manager, you can change the log manager. See "Changing the
Default Log Manager Using Helm".

For general information about Java logging, see Java Platform, Standard Edition Core
Libraries. For information about Log4j, see: https://logging.apache.org/log4j/2.x/manual/
index.html

Oracle recommends using automated log file rotation for PDC REST Services Manager logs.
For information about configuring log file rotation, see My Oracle Support article 2087525.1 at:
https://support.oracle.com/knowledge/Oracle%20Linux%20and%20Virtualization/
2087525_1.html

22-1

https://logging.apache.org/log4j/2.x/manual/index.html
https://logging.apache.org/log4j/2.x/manual/index.html
https://support.oracle.com/knowledge/Oracle%20Linux%20and%20Virtualization/2087525_1.html
https://support.oracle.com/knowledge/Oracle%20Linux%20and%20Virtualization/2087525_1.html

Accessing the PDC REST Services Manager Logs
You access the PDC REST Services Manager logs to monitor and troubleshoot your system.

To access the logs:

1. To get the names of the PDC REST Services Manager pods, enter this command:

kubectl -n BRMNameSpace get pods | grep pdcrsm

The following is an example of the command's output, with the pod names in bold:

pdcrsm-7f48565595-bndp8 1/1 Running 0 6h35m
pdcrsm-7f48565595-hqfwb 1/1 Running 0 6h35m

2. To access the logs, enter this command:

kubectl -n BRMNameSpace logs PDCRSMPodName

where PDCRSMPodname is the name of the PDC REST Services Manager pod you want
the log for.

The following is an example of the logs for updating the 500FreeMinutes product offering:

pdcrsm-6f88869785-vtbw2 pdcrsm 2020-11-13T15:58:06.702Z | INFO |
9fcdb109-8682-4368-b4d5-b5b720a1af77 | 548aee87-5ef0-4c1a-b8c8-
d2b8a8c6fb40 | 500FreeMinutes | 4ca071fde65d2a61 | pool-3-thread-1 |
ctPublishEventServiceImpl | Processing Publish Event 548aee87-5ef0-4c1a-
b8c8-d2b8a8c6fb40->500FreeMinutes
pdcrsm-6f88869785-vtbw2 pdcrsm 2020-11-13T15:58:07.303Z | INFO |
9fcdb109-8682-4368-b4d5-b5b720a1af77 | 548aee87-5ef0-4c1a-b8c8-
d2b8a8c6fb40 | 500FreeMinutes | 4ca071fde65d2a61 | pool-3-thread-1 |
ductOfferingServiceLaunch | Retrieving ProductOffering for ID
500FreeMinutes
pdcrsm-6f88869785-vtbw2 pdcrsm 2020-11-13T15:58:09.088Z | INFO |
9fcdb109-8682-4368-b4d5-b5b720a1af77 | 548aee87-5ef0-4c1a-b8c8-
d2b8a8c6fb40 | 500FreeMinutes | 4ca071fde65d2a61 | pool-3-thread-1
| .c.b.i.d.PdcRmiConnection | Attempting to connect to PDC using t3s://pdc-
service:8002 ...
pdcrsm-6f88869785-vtbw2 pdcrsm Handshake failed: TLSv1.3, error = No
appropriate protocol (protocol is disabled or cipher suites are
inappropriate)
pdcrsm-6f88869785-vtbw2 pdcrsm Handshake succeeded: TLSv1.2
pdcrsm-6f88869785-vtbw2 pdcrsm 2020-11-13T15:58:12.437Z | INFO |
9fcdb109-8682-4368-b4d5-b5b720a1af77 | 548aee87-5ef0-4c1a-b8c8-
d2b8a8c6fb40 | 500FreeMinutes | 4ca071fde65d2a61 | pool-3-thread-1 |
c.b.i.d.PdcDatasourceImpl | Checking if PDC object with the name
"500FreeMinutes" exists
pdcrsm-6f88869785-vtbw2 pdcrsm 2020-11-13T15:58:12.479Z | INFO |
9fcdb109-8682-4368-b4d5-b5b720a1af77 | 548aee87-5ef0-4c1a-b8c8-
d2b8a8c6fb40 | 500FreeMinutes | 4ca071fde65d2a61 | pool-3-thread-1 |
o.c.b.i.s.PdcServiceImpl | Updating the PDC object "500FreeMinutes"
pdcrsm-6f88869785-vtbw2 pdcrsm 2020-11-13T15:58:16.134Z | INFO |
9fcdb109-8682-4368-b4d5-b5b720a1af77 | 548aee87-5ef0-4c1a-b8c8-

Chapter 22
About PDC REST Services Manager Logs

22-2

d2b8a8c6fb40 | 500FreeMinutes | 4ca071fde65d2a61 | pool-3-thread-1 |
o.c.b.i.s.PdcServiceImpl | PDC object successfully updated for
"500FreeMinutes"

Note:

This task shows how to access a single log at a time. To tail logs from multiple pods,
Oracle recommends using the Kubernetes Stern tool. See the Stern repository for
more information: https://github.com/stern/stern

Changing the Log Levels
You can change the root log level and the level for PDC REST Services Manager application-
specific log entries either by changing Helm values or by editing the PDC REST Services
Manager Kubernetes deployment resource.

For a more permanent solution, use Helm, which requires upgrading the Helm deployment.
See "Changing the Log Levels Using Helm".

For quicker troubleshooting, use Kubernetes. See "Changing the Log Levels Using
Kubernetes".

Changing the Log Levels Using Helm
Change the log levels using Helm for longer-term logging.

To change the log levels using Helm:

1. In the override-values.yaml file, under the entry for ocpdcrsm, edit the values for
rootLoglevel and appLogLevel as needed.

The following is an example of the ocpdcrsm entry, with the default values of INFO in
bold:

ocpdcrsm:
 isEnabled: true
 labels:
 name: "pdcrsm"
 version: "15.1.x.x.x"
 deployment:
 deadlineSeconds: 60
 revisionHistLimit: 10
 imageName:
 pdcrsm: "oracle/pdcrsm"
 # For non-empty tag, ":" MUST be prepended
 imageTag: ":15.1.x.x.x"
 imagePullPolicy: IfNotPresent
 rootLoglevel: INFO
 appLogLevel: INFO

2. Update your Helm release. See "Updating a Helm Release".

Chapter 22
About PDC REST Services Manager Logs

22-3

https://github.com/stern/stern

Changing the Log Levels Using Kubernetes
Change the log levels using Kubernetes for short-term troubleshooting logging.

To change the log levels using Kubernetes:

1. Enter this command:

kubectl -n BRMNameSpace set env deployment/pdcrsm ROOT_LOG_LEVEL=level
PDC_RSM_LOG_LEVEL=level

where level is the log level you want to set.

The following is an example of the ocpdcrsm entry, with the default values of INFO in
bold:

ocpdcrsm:
 isEnabled: true
 labels:
 name: "pdcrsm"
 version: "15.1.x.x.x"
 deployment:
 deadlineSeconds: 60
 revisionHistLimit: 10
 imageName:
 pdcrsm: "oracle/pdcrsm"
 # For non-empty tag, ":" MUST be prepended
 imageTag: ":15.1.x.x.x"
 imagePullPolicy: IfNotPresent
 rootLoglevel: INFO
 appLogLevel: INFO

2. Update your Helm release. See "Updating a Helm Release".

Note:

Next time a Helm update is performed, changes made using Kubernetes will be
overwritten. If you want to make the change permanent, update the Helm override-
values.yaml file as described in "Changing the Log Levels Using Helm".

Changing the Default Log Manager Using Helm
By default, PDC REST Services Manager uses the Log4J Log Manager. You can change this
after configuring PDC REST Services Manager.

To change the log manager using Helm:

1. In the override-values.yaml file, under the entry for ocpdcrsm, edit the value for -
Djava.util.logging.manager= in JAVA_OPTS.

Chapter 22
About PDC REST Services Manager Logs

22-4

By default, this is set to org.apache.logging.log4j.jul.LogManager when you install PDC
REST Services Manager. To use your system default, leave -
Djava.util.logging.manager= empty, as in the following example.

ocpdcrsm:
 isEnabled: true
 labels:
 name: "pdcrsm"
 version: "15.1.x.x.x"
 deployment:
 deadlineSeconds: 60
 revisionHistLimit: 10
 imageName:
 pdcrsm: "oracle/pdcrsm"
 # For non-empty tag, ":" MUST be prepended
 imageTag: ":15.1.x.x.x"
 imagePullPolicy: IfNotPresent
 rootLoglevel: ALL
 appLogLevel: ALL
 JAVA_OPTS: -Djava.util.logging.manager=

2. Update your Helm release. See "Updating a Helm Release".

About PDC REST Services Manager Tracing
You can trace the flow of REST API calls made to PDC REST Services Manager using Zipkin,
an open-source tracing system. For more information, see the Zipkin website: https://zipkin.io/.

To set up tracing in PDC REST Services Manager cloud native:

1. Install Zipkin. See the Zipkin Quickstart documentation: https://zipkin.io/pages/
quickstart.html.

2. Enable Zipkin tracing in PDC REST Services Manager cloud native. See "Enabling Tracing
in PDC REST Services Manager".

3. Optionally, add trace tags to help troubleshoot and trace messages and objects through
the system. See "Using Trace Tags to Troubleshoot Issues".

Afterward, you can start tracing the flow of REST API calls made to PDC REST Services
Manager using the Zipkin UI or Zipkin API.

Enabling Tracing in PDC REST Services Manager
By default, tracing is disabled in PDC REST Services Manager cloud native, but you can
enable it at any time.

To enable tracing with Zipkin:

1. In the override-values.yaml file for oc-cn-helm-chart, set
ocpdcrsm.configEnv.isTracingEnabled to true.

2. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

Chapter 22
About PDC REST Services Manager Tracing

22-5

https://zipkin.io/
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/quickstart.html

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• OverrideValuesFile is the file name and path to your override-values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Using Trace Tags to Troubleshoot Issues
Instead of reading through logs to identify and troubleshoot issues, you can use trace tags in
PDC REST Services Manager to correlate logs and traces.

PDC REST Services Manager tags events with the following trace tags:

• publishId: A general tag for the event. In the example below, this is the first id.

• eventId: A tag for the event that is specific to PDC REST Services Manager. In the
example below, this is the eventId.

• projectId: A tag for the project in the enterprise product catalog. In the example below, this
is the ID under project.

• productOfferId: A tag for a product offering. The example below shows the ID under each
entry in the projectItems array.

• productSpecificationId: A tag for product specifications. This does not appear in the
example below but would appear in log messages. You use the productOfferId tag to filter
logs and locate related productSpecificationId tags as needed.

The following shows an example event for publishing updates to two product offerings from an
enterprise product catalog to PDC. To illustrate an error scenario, a URL in the payload for the
testInit4Offer product offering has become corrupt. The IDs corresponding to trace tags are
shown in bold.

{
 "id": "d64066bd-2954-4f43-b8f2-69603c88c683",
 "eventId": "ea09ae5a-8098-4fb2-b634-ee8048b9cc1d",
 "eventTime": "2030-11-18T09:31:50.001Z",
 "eventType": "projectPublishEvent",
 "correlationId": "UC4Fcfc6a70f-60f5-456c-93d5-d8e038215201",
 "domain": "productCatalogManagement",
 "timeOccurred": "2030-11-18T09:31:50.001Z",
 "event": {
 "project": {
 "id": "demopackage11",
 "lifecycleStatus": "IN_DESIGN",
 "name": "Project01",
 "acknowledgementUrl": "http://host:port/mobile/custom/PublishingAPI",
 "projectItems": [
 {
 "id": "55c8362b32d36b49",
 "href": "http://host:port/mobile/custom/catalogManagement/productOffering/
testSuccess",
 "name": "testSuccess",
 "version": "1.0",
 "@referredType": "ProductOfferingOracle"
 },
 {
 "id": "55c8362b32d36b55",
 "href": "http://host:port/mobile/custom/CORRUPTDATA/productOffering/

Chapter 22
About PDC REST Services Manager Tracing

22-6

testInit4Offer",
 "name": "100Minutes",
 "version": "1.0",
 "@referredType": "ProductOfferingOracle"
 }
]
 }
 }
}

About PDC REST Services Manager Metrics
You can monitor the PDC REST Services Manager metrics by using the Metrics REST
endpoint. The metrics count successful and failed messages passing through the PDC REST
Services Manager integration points.

Use a monitoring tool that scrapes metrics data, such as Prometheus, to monitor the metrics
available from the PDC REST Services Manager Metrics endpoint. You can get the metrics in
plain text format, which is compatible with Prometheus, or JSON format. See "Checking
Access to PDC REST Services Manager Metrics" for information about accessing the metrics
endpoint and requesting different formats. For more information about Prometheus, see:
https://prometheus.io/.

Table 22-1 shows the available PDC REST Services Manager metrics.

Table 22-1 PDC REST Services Manager Metrics

Integration Point Metric Description

PDC interface pdc-create-object-success-
total

The number of Create events that returned a
success from PDC.

PDC interface pdc-create-object-error-total The number of Create events that returned an error
from PDC.

PDC interface pdc-update-object-success-
total

The number of update events that returned a
success from PDC.

PDC interface pdc-update-object-error-total The number of update events that returned an
error from PDC.

Product Offer Price
Project life cycle
event listener

notification-listener-change-
success-total

The number of well-formed publish events received
by PDC REST Services Manager.

Product Offer Price
Project life cycle
event listener

notification-listener-change-
error-total

The number of publish events accepted by PDC
REST Services Manager that could not be
processed due to invalid or incomplete event
payloads.

Product Offering
interface

product-offering-get-success-
total

The number of Product Offering GET API requests
that returned a success from the master product
catalog.

Product Offering
interface

product-offering-get-error-
total

The number of Product Offering GET API requests
that returned an error from the master product
catalog.

Product
Specification
interface

product-specification-get-
success-total

The number of Product Specification GET API
requests that returned a success from the master
product catalog.

Product
Specification
interface

product-specification-get-
error-total

The number of Product Specification GET API
requests that returned an error from the master
product catalog.

Chapter 22
About PDC REST Services Manager Metrics

22-7

https://prometheus.io/

Table 22-1 (Cont.) PDC REST Services Manager Metrics

Integration Point Metric Description

Publish Notification
interface

publish-job-status-success-
total

The number of Publish Notification
Acknowledgments that returned a success from
the master product catalog.

Publish Notification
interface

publish-job-status-fail-total The number of Publish Notification POST
Acknowledgments that returned an error from the
master product catalog.

Publish Product
Offering service

publish-product-offering-
success-total

The number of successful Product Offering Publish
actions.

Publish Product
Offering service

publish-product-offering-fail-
total

The number of Failed Product Offering Publish
actions.

You can also use Helidon framework metrics. See "Metrics" in the Helidon documentation for
more information: https://helidon.io/docs/v4/se/metrics/metrics.

Checking Access to PDC REST Services Manager Metrics
You can access the PDC REST Services Manager metrics from any tool that can access REST
API endpoints using an OAuth token generated by Oracle Identity Cloud Service for PDC
REST Services Manager. You can check whether you have access by using cURL commands.

To check whether you have access to the PDC REST Services Manager metrics:

1. In the command line on the system where cURL and your scraping tool are installed,
export your OAuth access token with the following command:

export TOKEN=OAuth_metrics_token

where OAuth_metrics_token is the client secret you stored for the Metrics scope in
"Configuring OAuth Authentication in PDC REST Services Manager" in BRM Cloud Native
Deployment Guide.

2. Enter one of the following commands:

• To get the metrics in plain text format:

curl --insecure -H "Authorization: Bearer $TOKEN" https://hostname:port/
metrics

where:

– hostname is the URL for the PDC REST Services Manager server.

– port is the TLS port for the PDC REST Services Manager server.

• To get the metrics in JSON format:

curl --insecure -H "Authorization: Bearer $TOKEN" -H "Accept:
application/json" https://hostname:port/metrics

Chapter 22
About PDC REST Services Manager Metrics

22-8

https://helidon.io/docs/v4/se/metrics/metrics

About Monitoring PDC REST Services Manager System Health
You can assess the health of the PDC REST Services Manager system by monitoring the pod
status and using the Health REST endpoint.

See:

• Verifying the PDC REST Services Manager Pod Status

• Using the PDC REST Services Manager Health Endpoint

Verifying the PDC REST Services Manager Pod Status
To verify the pod status, run this command:

kubectl -n BRMNameSpace get pods --selector=app.kubernetes.io/name=pdcrsm

The following is an example of the command output:

NAME READY STATUS RESTARTS AGE
pdcrsm-b9d7bb7d6-j2xsl7 1/1 Running 0 105m
pdcrsm-b9d7bb7d6-lfxcl 1/1 Running 0 105m

Note:

Kubernetes provides automatic health monitoring and will attempt to restart
applications when they fail.

Using the PDC REST Services Manager Health Endpoint
You can monitor overall system health by submitting a GET request to the following endpoint:

https://hostname:port/health

where:

• hostname is the URL for the PDC REST Services Manager server

• port is the TLS port for the PDC REST Services Manager server

The response contains information about:

• Deadlocked threads

• Disk space used

• Memory heap used

The following is an example of the response:

{
 "outcome": "UP",
 "status": "UP",
 "checks": [

Chapter 22
About Monitoring PDC REST Services Manager System Health

22-9

 {
 "name": "deadlock",
 "state": "UP",
 "status": "UP"
 },
 {
 "name": "diskSpace",
 "state": "UP",
 "status": "UP",
 "data": {
 "free": "101.80 GB",
 "freeBytes": 109306679296,
 "percentFree": "69.01%",
 "total": "147.52 GB",
 "totalBytes": 158399414272
 }
 },
 {
 "name": "heapMemory",
 "state": "UP",
 "status": "UP",
 "data": {
 "free": "399.05 MB",
 "freeBytes": 418431544,
 "max": "6.89 GB",
 "maxBytes": 7393378304,
 "percentFree": "99.41%",
 "total": "440.88 MB",
 "totalBytes": 462290944
 }
 }
]
}

Chapter 22
About Monitoring PDC REST Services Manager System Health

22-10

23
Rotating PDC Log Files

Learn how to rotate log files for your Oracle Communications Pricing Design Center application
to prevent them from growing too large.

Topics in this document:

• About Rotating PDC Log Files

About Rotating PDC Log Files
During log file rotation, PDC cloud native writes to a log file until it reaches a maximum size. It
then closes the log file and starts writing to a new log file. Rotation prevents your log files from
growing too large, making them slow to open and search.

You can set these log file rotation properties for PDC applications:

• Log level: Sets the logging level, which can be SEVERE, WARNING, INFO, CONFIG,
FINE, FINER, or FINEST.

• Log limit: Sets the log files' maximum file size in bytes. After the log file meets the
maximum, PDC closes the log file and creates a new log file.

• Log file count: Specifies the maximum number of log files to retain for the application.

• Persist log setting: Specifies whether to persist log files in the database after they are
closed. Possible values are:

– enabled or all: Persists all log files.

– disabled: Does not persist log files.

– failed: Persists failed log files only.

Note:

Only Real-Time Rating Engine (RRE) and Batch Rating Engine (BRE)
transaction log files and ImportExportPricing log files can be persisted.

Table 23-1 lists the PDC application's default log file rotation settings.

Table 23-1 PDC Application Log Files

PDC Application Name or
Log File

Default Log
Level

Default Log
Limit

Default Log
File Count

Default Persist
Log Setting

Pricing Server Log WARNING 500000 50 N/A

Pricing Server Trace Log WARNING 500000 50 N/A

ImportExportPricing utility WARNING 1048576 (1 MB) 100 failed

SyncPDC utility WARNING 20000 10 N/A

23-1

Table 23-1 (Cont.) PDC Application Log Files

PDC Application Name or
Log File

Default Log
Level

Default Log
Limit

Default Log
File Count

Default Persist
Log Setting

RRE/BRE Transformation
Prime Log

WARNING 50000 50 N/A

RRE/BRE Transaction Logs WARNING N/A N/A failed

The following sections show how to configure log file rotation for PDC cloud native
applications.

Configuring Pricing Server Log File Rotation

This shows sample override-values.yaml keys for oc-cn-op-job-helm-chart. It configures log
file rotation for the Pricing Server logs and tracer logs:

ocpdc:
 configEnv:
 pdcAppLogLevel: WARNING
 pdcAppLogFileSize: 500000
 pdcAppLogFileCount: 50

Configuring ImportExportPricing Log File Rotation

This shows sample override-values.yaml keys for oc-cn-helm-chart. It configures log file
rotation for the ImportExportPricing utility:

ocpdc:
 configEnv:
 importExport:
 logLevel: SEVERE
 logSize: 50000
 logCount: 100
 persistIELogs: true

Configuring SyncPDC Log File Rotation

This shows sample override-values.yaml keys for oc-cn-helm-chart. It configures log file
rotation for the SyncPDC utility:

ocpdc:
 configEnv:
 syncPDC:
 logLevel: INFO
 logFileSize: 50000
 logFileCount: 100

Configuring RRE/BRE Log File Rotation

This shows sample override-values.yaml keys for oc-cn-helm-chart. It configures log file
rotation for the RRE/BRE transformation prime log and transaction logs:

ocpdc:
 configEnv:
 transformation:
 logLevel: INFO
 logFileSize: 50000
 logFileCount: 100
 persistTransactionLogs: failed

Chapter 23
About Rotating PDC Log Files

23-2

24
Managing Language Packs in PDC Pods

You can change the language displayed in your Oracle Communication Pricing Design Center
(PDC) UI screens, XML import files, and XML export files.

Topics in this document:

• Enabling Language Packs in PDC Pods

Enabling Language Packs in PDC Pods
To enable language packs in PDC pods:

1. Create a Dockerfile for building an Oracle Linux 8 Fusion Middleware image.

For example, to create a Dockerfile for the January 2024 CPU Image container-
registry.oracle.com/middleware/fmw-infrastructure_cpu:12.2.1.4-jdk8-ol8-240113:

FROM container-registry.oracle.com/middleware/fmw-infrastructure_cpu:12.2.1.4-jdk8-
ol8-240113
USER root
RUN locale -a
RUN microdnf install glibc-all-langpacks && \
 microdnf clean all && \
 rm -rf /var/cache/dnf/* /var/cache/yum/*
RUN locale -a

Note:

The RUN locale -a line is optional.

2. Build the image by running this command:

podman build --format=docker --force-rm=true --no-cache=true --tag
imageName:imageVersion .

For example:

podman build --format=docker --force-rm=true --no-cache=true --tag fmw_with_lang:1 .

Wait for the image to build.

3. In your override-values.yaml file for both oc-cn-op-job-helm-chart and oc-cn-helm-
chart, set the following keys:

• ocpdc.deployment.fmw.imageRepository: Set this to the image repository where
the fmw_with_lang:1 image resides.

• ocpdc.deployment.fmw.imageName: Set this to the name of the image you built. For
the above example, you would set it to fmw_with_lang.

• ocpdc.deployment.fmw.imageTag: Set this to the tag for the image you built. For the
above example, you would set it to 1.

24-1

• ocpdc.lang: Set this to the language to use, such as LV_LV.UTF-8 for Latvian or
en_US.UTF-8 for American English.

4. Deploy or redeploy PDC cloud native in your environment:

a. Direct WebLogic Kubernetes Operator to monitor the BRM namespace:

helm upgrade weblogic-operator weblogic-operator/weblogic-operator \
--namespace Operator \
--reuse-values \
--set "domainNamespaces={BrmNameSpace}" \
--wait

where:

• Operator is the namespace you created for WebLogic Kubernetes Operator as
part of the prerequisite tasks.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for
the BRM Helm chart.

b. Create WebLogic domains by running this command from the helmcharts directory:

helm install OpJobReleaseName oc-cn-op-job-helm-chart --namespace BrmNameSpace --
values OverrideValuesFile

c. Install PDC cloud native services by entering this command from the helmcharts
directory:

helm install BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile -n
BrmNameSpace

Chapter 24
Enabling Language Packs in PDC Pods

24-2

25
Troubleshooting PDC Cloud Native

Learn how to troubleshoot issues in Oracle Communications Pricing Design Center (PDC)
cloud native.

Topics in this document:

• Troubleshooting ImportExportPricing Errors

Troubleshooting ImportExportPricing Errors
When running the ImportExportPricing utility in a BRM cloud native environment, it may
generate the following error:

oracle.communications.brm.pdc.server.transformation.Transformer commitChanges

SEVERE: Error while committing transaction

oracle.communications.brm.pdc.server.transformation.TransformationException:
Error in database operation for [committing connection]

To resolve the issue:

1. Verify the connectivity to the database for both the Cross Reference (XREF) schema and
the BRM schema.

2. Redeploy PDC.

Note:

For an XREF schema error, redeploy PDC. For a BRM schema error, redeploy BRM
and PDC both.

25-1

Part V
Administering ECE Cloud Native Services

This part describes how to perform administration tasks on Oracle Communications Elastic
Charging Engine (ECE) cloud native services. It contains the following chapters:

• Administering ECE Cloud Native Services

• Securing ECE Communications

• Managing ECE Journal Storage

• Managing Persisted Data in the Oracle Database

• Configuring Disaster Recovery in ECE Cloud Native

• Managing ECE Pods

• Monitoring ECE in a Cloud Native Environment

26
Administering ECE Cloud Native Services

Learn how to perform common system administration tasks in Oracle Communications Billing
and Revenue Management (BRM) cloud native on your Elastic Charging Engine (ECE) cloud
native services.

Topics in this document:

• Running SDK Jobs

• Changing the ECE Configuration During Runtime

• Configuring Subscriber-Based Tracing for ECE Services

• Using Third-Party Libraries and Custom Mediation Specifications

• Setting Up ECE Cloud Native in Firewall-Enabled Environments

• Enabling Federation in ECE

• Enabling Parallel Pod Management in ECE

• Customizing SDK Source Code

Running SDK Jobs
You can run sample scripts for ECE cloud native services by running an SDK job.

To run SDK jobs:

1. In the override-values.yaml file for the ECE Helm chart, set the job.sdk.runjob key to
true.

2. The SDK directory containing the SDK sample scripts, configuration files, source code, and
so on is exposed in the PVC defined under the pvc.sdk section of the values.yaml file.

3. Run the helm install command to deploy the ECE Helm chart:

helm install EceReleaseName oc-cn-ece-helm-chart --namespace BrmNameSpace
--values OverrideValuesFile

The command creates a default SDK job that prints the following since you have not run
the SDK job with any valid parameters:

"Run the SDK job with script name and parameters. Usage - cd usage; sh
<scriptname> build; sh <scriptname> run <parameters>"

The SDK job then goes into a Completed state.

4. Check the logs printed by the job by running this command:

kubectl logs sdkJobName

5. After deployment completes and all of the pods are in a healthy state, you can run any
sample SDK script by doing one of these:

26-1

• Running the helm upgrade command in the following format:

'helm upgrade eceDeploymentName helmChartFolder --set
job.sdk.name=SDKJobName --set job.sdk.command="cd <folder-name>; sh
<script-name> build; sh <scriptname> run <parameters>"'

where:

– eceDeploymentName is the deployment name given during Helm installation. The
deployment name can be retrieved by running the helm ls command.

– helmChartFolder is the location where the ECE Helm chart is located.

– SDKJobName is the user-defined name for this instance of the SDK job.

– job.sdk.command is set to the command to run as part of the job. The SDK job
runs from the ocecesdk/bin directory, so you only need to provide the script file
location from the reference point of the ocecesdk/bin directory.

For example:

helm upgrade ece . --set job.sdk.name=samplegprssessionjob --set
job.sdk.command="cd usage; sh sample_gprs_session.sh build; sh
sample_gprs_session.sh run 773-20190923 INITIATE 60 1024 1024
TelcoGprs EventDelayedSessionTelcoGprs 1.0 2020-02-10T00:01:00 1024
1024 sessionId CUMULATIVE 1"

This command will not affect any other running pod in the namespace, except it
creates the job specified in job.sdk.name. The job runs the command specified in
job.sdk.command.

• Setting the SDK job and SDK command in your override-values.yaml file:

sdk:
 name: "SDKJobName"
 command: "cd <folder-name>; sh <script-name> build; sh <scriptname>
run <parameters>"
 runjob: "true"

Then, running the helm upgrade command:

helm upgrade eceDeploymentName helmChartFolder

6. After the job completes, it goes into a Completed state. You can check the logs by running
this command:

kubectl logs sdkJobName

sdkJobName will be available from the kubectl get po command. The job name will be in
the format: JobName-IDfromKubernetes.

7. To view the logs created by the SDK script, check the sdk logs folder in the PVC.

Chapter 26
Running SDK Jobs

26-2

Error Handling for SDK Jobs
Any error that occurs while running an SDK job will result in the job going into an Error state.
For example, an SDK job will go into an Error state when the SDK command includes invalid
parameter values.

You can check the reason why an error occurred by doing the following:

1. Running this command, which prints the output of the script:

kubectl logs sdkJobName

2. Checking the log file created under the SDK PVC location.

After correcting the error, run the helm upgrade command with a new job name. See "Running
SDK Jobs".

If you don't provide SDK commands while running the helm upgrade command, it prints the
following:

Run the SDK job with script name and parameters.
Usage - cd usage; sh <scriptname> build; sh <scriptname> run <parameters>

If you don't provide a job name, it uses the default job name of sdk. However, since
Kubernetes doesn't allow a completed job to be rerun, you must delete any previous job
named sdk before running the helm upgrade command again.

Changing the ECE Configuration During Runtime
After initially deploying your ECE cloud native services, any updates to the ECE configuration
require you to do a rolling update of the ECE pods.

Alternatively, you can update the ECE configuration during runtime without requiring you to
restart ECE pods by:

• Modifying ECE configuration MBeans through a JMX editor. See "Creating a JMX
Connection to ECE Using JConsole".

• Reloading the ECE application configuration by running a Kubernetes job. See "Reloading
ECE Application Configuration Changes".

• Reloading the grid log level for an ECE component by running a Kubernetes job. See
"Reloading the Grid Log Level".

Note:

You can run a Kubernetes job to reload either the ECE application configuration or
the grid log level, but not both at the same time.

Creating a JMX Connection to ECE Using JConsole
To create a JMX connection to ECE cloud native using JConsole:

Chapter 26
Changing the ECE Configuration During Runtime

26-3

1. In your override-values.yaml file, set the charging.jmxport key to the JMX port.

Note:

The global charging.jmxport key sets the default JMX port for all ECE pods.
However, you can override the JMX port for an individual pod by specifying a
different port in the pod's jmxport key.

If an individual pod's JMX port is exposed for JMX connection, create custom
services similar to ece-jmx-service-external for each ECE deployment type and
set the jmxservice.port key to the same value as the pod's jmxport key.

2. Label the pod as the ece-jmx-service-external service endpoint by running this command:

kubectl label po ecs1-0 ece-jmx=ece-jmx-external

3. Retrieve the worker node's IP address by running this command:

kubectl get pod ecs1-0 -o wide

4. Update the /etc/hosts file in the remote machine with the worker node's IP by running this
command:

ipAddress ecs1-0.ece-server.namespace.svc.cluster.local

Note:

You don't need to update the /etc/hosts file if JConsole is connecting to JMX
from within a cluster or machines where the pod's FQDN is resolved by DNS.

5. Connect to JConsole by running this command:

jconsole ecs1-0.ece-server.namespace.svc.cluster.local:jmxport

Afterward, you can start using JConsole to change ECE configuration MBeans. See "Managing
Online Charging Sessions" in ECE Implementing Charging.

Reloading ECE Application Configuration Changes
You can change the ECE appConfiguration during runtime by running a Kubernetes job. The
job automatically reloads the application's configuration into the ECE cloud native cache and
the charging-settings.xml file.

To reload ECE application configuration changes:

1. Open your override-values.yaml file for the ECE Helm chart.

2. Modify the ECE configuration MBeans to meet your business needs.

For example, changing the charging.server.degradedModeThreshold to 3.

3. Set the job.chargingConfigurationReloader.reloadAppConfig.runjob key to true.

This specifies to run a Kubernetes job.

Chapter 26
Changing the ECE Configuration During Runtime

26-4

4. Optionally, set the job.chargingConfigurationReloader.reloadAppConfig.command key
to the location of the configuration MBean. For example, enter charging.server for the
degradedModeThreshold Mbean, and enter charging.notification for the
rarNotificationMode MBean.

5. Do not change the pod's specification-related keys that can trigger a restart of the pod
during a Helm upgrade. For example, do not change the restartCount, image, or
jvmGCOpts keys.

6. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

The upgrade updates the charging-settings.xml file in the cache, updates the ECE
charging-settings-namespace ConfigMap, and triggers the charging-configuration-
reloader job.

7. Validate that the MBean attribute was modified by running the query.sh script in the ecs
pod.

See "Using the query Utility to Test ECE" in ECE Implementing Charging for more
information.

Note:

You do not need to restart the ecs, gateway, or ratedeventformatter pods for most
ECE configuration changes. Restarts are required only for changes to database
connection URL, Rated Event Formatter, Gateway-related, and Kafka-related
appConfiguration parameters.

Reloading the Grid Log Level
You can change the grid log level for any ECE component at runtime by using a Kubernetes
job.

To reload the grid log level during runtime:

1. Open your override-values.yaml file for the ECE Helm chart.

2. Set the job.chargingConfigurationReloader.reloadLogging.runjob key to true.

3. Set the job.chargingConfigurationReloader.reloadLogging.command key to the
following:

loggerOperation oracle.communication.brm.charging.loggerName loggerLevel

where:

• loggerOperation: The type of log operation, which can be setGridLogLevel,
setLogLevel, setGridLogLevelForFunctionalDomain,
setLogLevelForFunctionalDomain, or updateSubscriberTraceConfiguration.

• loggerName: The name of the component logger or functional name.

• loggerLevel: Specifies the log level, which can be ALL, DEBUG, ERROR, INFO,
TRACE, or WARN.

For example, to set the grid log level for the ECE application configuration to error:

Chapter 26
Changing the ECE Configuration During Runtime

26-5

setGridLogLevel oracle.communication.brm.charging.appconfiguration ERROR
4. To persist the log level changes in the database, set the log4j2.logger.loggerName key to

the log level. The loggerName and loggerLevel must match the values from step 3.

For example, if the command key is set to setGridLogLevel
oracle.communication.brm.charging.brmgateway INFO, you must set the key as
follows:

log4j2.logger.brmgateway: INFO
5. Do not change the pod's specification-related keys that can trigger a restart of the pod

during a Helm upgrade. For example, do not change the restartCount, image, or
jvmGCOpts keys.

6. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

After the job completes, the logging level is reflected in the ECE grid pods.

Configuring Subscriber-Based Tracing for ECE Services
You can selectively trace your subscribers' sessions based on one or more subscriber IDs. You
can also specify to trace and log selective functions, such as alterations (discounts), charges,
and distributions (charge sharing), for each subscriber.

ECE generates log files for the listed subscribers for each session. If a subscriber has multiple
sessions, separate log files are generated for each session. The trace file names are unique
and are in the format nodeName.subscriberID.sessionID.log. For example,
ecs1.SUBSCRIBER1.SESSION1.log.

Note:

ECE does not archive or remove the log files that are generated. Remove or archive
the log files periodically to avoid running out of disk space.

To configure subscriber-based tracing for your ECE services:

1. To enable subscriber-based tracing, do the following:

a. Open your override-values.yaml file for oc-cn-ece-helm-chart.

b. Set the following keys under the subscriberTrace section:

• logMaxSubscribers: Specify the maximum number of subscribers for whom you
want to enable tracing. The default value is 100.

• logMaxSubscriberSessions: Specify the maximum number of sessions for which
the logs need to be generated per subscriber. The default value is 24.

• logExpiryWaitTime: Specify how long to wait, in seconds, before the logging
session expires. The default value is 1.

• logCleanupInterval: Specify the interval time, in seconds, for log cleanup. The
default value is 2.

Chapter 26
Configuring Subscriber-Based Tracing for ECE Services

26-6

• logLevel: Specify the log level you want to use for generating logs, such as
DEBUG or ERROR. The default value is DEBUG.

• subscriberList: Specify a list or range of subscriber IDs to trace. For example,
you could enter subscriberId1-subscriberId10 to specify the range of subscribers
from 1 through 10.

c. Save and close your override-values.yaml file.

2. To enable subscriber-based tracing for the alterations, charges, and distribution functions,
do the following:

a. Open your charging-settings.yaml ConfigMap.

b. Go to the subscriber-trace.xml section of the file.

c. Update the <componentLoggerList> element to include the list of functions to trace
and log.

For example, to enable subscriber-based tracing and logging for the alteration
function, you would add the following lines:

<componentLoggerList config-
class="java.util.ArrayList">
 <componentLogger
 loggerName="ALL"
 loggerLevel="ERROR"
 config-
class="oracle.communication.brm.charging.subscribertrace.configuration.i
nternal.ComponentLoggerImpl"/>
 <componentLogger
 loggerName="oracle.communication.brm.charging.rating.alteration"
 loggerLevel="DEBUG"
 config-
class="oracle.communication.brm.charging.subscribertrace.configuration.i
nternal.ComponentLoggerImpl"/>
</componentLoggerList>

d. Save and close your override-values.yaml file.

3. Run the helm upgrade command to update your ECE Helm chart:

helm upgrade EceReleaseName oc-cn-ece-helm-chart --values
OverrideValuesFile -n BrmNameSpace

where:

• EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to track
this installation instance.

• OverrideValuesFile is the name and location of your override-values.yaml file for oc-
cn-ece-helm-chart.

• BrmNameSpace is the namespace in which the BRM Kubernetes objects reside.

4. In your override-values.yaml file for oc-cn-ece-helm-chart, set the charging.jmxport
key to 31022.

5. Label the ecs1-0 pod so that JMX can connect to it:

kubectl -n namespace label pod ecs1-0 ece-jmx=ece-jmx-external

Chapter 26
Configuring Subscriber-Based Tracing for ECE Services

26-7

6. Update the /etc/hosts file on the remote machine with the worker node of ecs1-0:

IP_OF_WORKER_NODE ecs1-0.ece-server.namespace.svc.cluster.local

7. Connect to JConsole by entering this command:

jconsole ecs1-0.ece-server.namespace.svc.cluster.local:31022

JConsole starts.

8. Do the following in JConsole:

a. In the editor's MBean hierarchy, expand the ECE Logging node.

b. Expand Configuration.

c. Expand Operations.

d. Select updateSubscriberTraceConfiguration.

e. Click the updateSubscriberTraceConfiguration button.

f. In the editor's MBean hierarchy, expand the ECE Subscriber Tracing node.

g. Expand SubscriberTraceManager.

h. Expand Attributes.

9. Verify that the values that you specified in step 3 appear.

Note:

The attributes displayed here are read-only. You can update these attributes by
editing the ECE_home/config/subscriber-trace.xml file.

To disable subscriber-based tracing, remove the list of subscribers from the
subscriberTrace.subscriberList key in your override-values.yaml file and then run the helm
upgrade command.

Using Third-Party Libraries and Custom Mediation Specifications
To use third-party libraries and custom mediation specifications with ECE cloud native:

1. Place all third-party libraries in the 3rdparty_jars directory inside external-pvc.

2. Place your custom mediation specifications in the ece_custom_data directory inside
external-pvc.

3. Run the helm install command:

helm install EceReleaseName oc-cn-ece-helm-chart --namespace BrmNameSpace
--values OverrideValuesFile

where:

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Chapter 26
Using Third-Party Libraries and Custom Mediation Specifications

26-8

• EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to track
this installation instance. It must be different from the one used for the BRM Helm
chart.

• OverrideValuesFile is the path to the YAML file that overrides the default configurations
in the chart's values.yaml file.

If you need to load custom mediation specifications into ECE cloud native after the ECE cluster
is set up, do the following:

1. Stop the configloader pod.

Your mediation specifications will be loaded into the ECE cache from the configloader pod.

2. Place your custom mediation specifications in the ece_custom_data directory inside
external-pvc.

3. Connect to JConsole. See "Creating a JMX Connection to ECE Using JConsole".

4. In JConsole, click the MBeans tab.

5. Expand the ECE Configuration node.

6. Expand migration.loader.

7. Expand Attributes.

8. Set the configObjectsDataDirectory attribute to/home/charging/opt/ECE/oceceserver/
sample_data/config_data/specifications/.

This will load all mediation specifications that are placed inside the specifications
directory, including those in the ece_custom_data directory.

Note:

To load only specific mediation specifications, set the
configObjectsDataDirectory attribute to the absolute path where the
specifications are located (that is, the external-pvc pod's mounted path). For
example, set the attribute to /home/charging/ext/ece_custom_data or /home/
charging/opt/ECE/oceceserver/sample_data/config_data/specifications/
ece_custom_data.

9. Exit JConsole.

10. In your override-values.yaml file for oc-cn-ece-helm-chart, set the
migration.loader.configObjectsDataDirectory key to the same value as specified in step
8.

11. Run the helm upgrade command to update the ECE Helm release:

helm upgrade EceReleaseName oc-cn-ece-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

Setting Up ECE Cloud Native in Firewall-Enabled Environments
To set up your ECE cloud native services in a firewall-enabled environment, do the following:

1. Ensure that the conntrack library is installed on your system. The library must be installed
so Coherence can form clusters correctly. Most Kubernetes distributions install it for you.

Chapter 26
Setting Up ECE Cloud Native in Firewall-Enabled Environments

26-9

You can check whether the library is installed by running this command:

rpm -qa | grep conntrack

If it is installed, you should see output similar to the following:

libnetfilter_conntrack-1.0.6-1.el7_3.x86_64
conntrack-tools-1.4.4-4.el7.x86_64

2. Kubernetes distributions can create iptables rules that block some types of traffic that
Coherence requires to form clusters. If you are not able to form clusters, do the following:

a. Check whether iptables rules are blocking traffic by running the following command:

sudo iptables -t nat -v -L POST_public_allow -n

If you have entries in the chain, you will see output similar to the following. Sample
chain entries are shown in bold.

Chain POST_public_allow (1 references)
pkts bytes target prot opt in out source destination
53 4730 MASQUERADE all -- * !lo 0.0.0.0/0 0.0.0.0/0
0 0 MASQUERADE all -- * !lo 0.0.0.0/0 0.0.0.0/0

b. Remove any chain entries. To do so, run this command for each chain entry:

iptables -t nat -v -D POST_public_allow 1

c. Ensure that the chain entries have been removed by running this command:

sudo iptables -t nat -v -L POST_public_allow -n

If all chain entries have been removed, you will see something similar to the following:

Chain POST_public_allow (1 references)
pkts bytes target prot opt in out source destination

3. Open ports on the firewall for the following:

• The ECE coherence cluster. That is, if the coherencePort key in your override-
values.yaml file for oc-cn-ece-helm-chart is configured as 15000/tcp or 15000/udp,
open them on the firewall service.

• Open port 19612/tcp on the firewall for the pod init check done by the metric service.

• Open a port on the firewall configured as jmxPort for JMX connection with ecs1 pod
and node-ports for other ece services in values.yaml.

• Ensure that ports specific to the network plugin, such as flannel and coredns, are open
on the firewall.

• Ensure that ports required by the volume provisioner are open on the firewall.

4. Add your network interface and worker node subnets to your firewall by doing the
following:

Chapter 26
Setting Up ECE Cloud Native in Firewall-Enabled Environments

26-10

a. Look up the network interface that the Kubernetes cluster uses for communication:

sudo ip a

The network interface is returned.

b. Add the network interface to the firewall's trusted zone.

For example, to change the subnet and interface specific to your cluster:

sudo firewall-cmd --zone=trusted --add-interface=cni0 —permanent”

c. (Optional) Add worker node subnets to the firewall's trusted zone. For example:

sudo firewall-cmd --permanent --zone=trusted --add-source=ipAddress/16
sudo firewall-cmd --permanent --zone=trusted --add-source=ipAddress/16

d. Restart the firewall services.

Enabling Federation in ECE
Enabling federation in ECE allows you to manage and monitor your ecs pods across multiple
clusters in the federation. You enable federation by:

• Adding each Kubernetes cluster as a member of the Coherence federation

• Specifying which cluster is the primary cluster and which ones are secondary clusters

• Specifying how to connect to the ECE service

• Adding the ecs pod to JMX

To enable federation in ECE:

1. Set up the primary cluster by updating these keys in your override-values.yaml file for oc-
cn-ece-helm-chart:

Note:

Set the jvmCoherenceOpts keys in each charging.coherenceMemberName
section with Coherence Federation parameters for the primary and secondary
clusters.

• charging.clusterName: Set this to the name of your primary cluster.

• charging.isFederation: Set this to true. This specifies that the cluster is a participant
in a federation.

• charging.primaryCluster: Set this to true.

• charging.secondaryCluster: Set this to false.

• charging.cluster.primary.eceServiceName: Set this to the ECE service name that
creates the Kubernetes cluster with all ECE components in the primary cluster.

• charging.cluster.primary.eceServicefqdnOrExternalIP: Set this to the fully qualified
domain name (FQDN) of the ECE service running in the primary cluster. For example:
ece-server.NameSpace.svc.cluster.local.

Chapter 26
Enabling Federation in ECE

26-11

• charging.cluster.secondary.eceServiceName: Set this to the ECE service name that
creates the Kubernetes cluster with all ECE components in the secondary cluster.

• charging.cluster.secondary.eceServicefqdnOrExternalIP: Set this to the FQDN of
the ECE service. For example: ece-server.NameSpace.svc.cluster.local.

2. Install oc-cn-ece-helm-chart by running this command from the helmcharts directory:

helm install ReleaseName oc-cn-ece-helm-chart --namespace NameSpace --
values OverrideValuesFile

This brings up the necessary pods in the primary cluster.

3. Set up the secondary cluster by updating these keys in your override-values.yaml file for
oc-cn-ece-helm-chart:

Note:

Set the jvmCoherenceOpts keys in each charging.coherenceMemberName
section with Coherence Federation parameters for the primary and secondary
clusters.

• charging.clusterName: Set this to the name of your secondary cluster.

• charging.isFederation: Set this to true.

• charging.secondaryCluster: Set this to true.

• charging.primaryCluster: Set this to false.

• charging.cluster.primary.eceServiceName: Set this to the ECE service name that
creates the Kubernetes cluster with all ECE components in the primary cluster.

• charging.cluster.primary.eceServicefqdnOrExternalIP: Set this to the fully qualified
domain name (FQDN) of the ECE service running in the primary cluster. For example:
ece-server.NameSpace.svc.cluster.local.

• charging.cluster.secondary.eceServiceName: Set this to the ECE service name that
creates the Kubernetes cluster with all ECE components in the secondary cluster.

• charging.cluster.secondary.eceServicefqdnOrExternalIP: Set this to the FQDN of
the ECE service in the secondary cluster. For example: ece-
server-2.NameSpace.svc.cluster.local.

4. Install oc-cn-ece-helm-chart by running this command from the helmcharts directory:

helm install ReleaseName oc-cn-ece-helm-chart --namespace NameSpace --
values OverrideValuesFile

This brings up the necessary pods in the secondary cluster.

5. Invoke federation from the primary production site to your secondary production sites by
connecting from JConsole of the ecs1 pod.

a. Update the label for the ecs1-0 pod:

kubectl label -n NameSpace po ecs1-0 ece-jmx=ece-jmx-external

Chapter 26
Enabling Federation in ECE

26-12

b. Update the /etc/hosts file on the remote machine with the worker node of ecs1-0:

IP_OF_WORKER_NODE ecs1-0.ece-server.namespace.svc.cluster.local

c. Connect to JConsole:

jconsole ecs1-0.ece-server.namespace.svc.cluster.local:31022

JConsole starts.

d. Invoke start() and replicateAll() with the secondary production site name from the
coordinator node of each federated cache in JMX. To do so:

i. Expand the Coherence node, expand Federation, expand
BRMFederatedCache, expand Coordinator, and then expand Coordinator. Click
on start(BRM2) and replicateAll(BRM2), where BRM2 is the secondary
production site name.

ii. Expand the Coherence node, expand Federation, expand
OfferProfileFederatedCache, expand Coordinator, and then expand
Coordinator. Click on start(BRM2) and replicateAll(BRM2).

iii. Expand the Coherence node, expand Federation, expand
ReplicatedFederatedCache, expand Coordinator, and then expand
Coordinator. Click on start(BRM2) and replicateAll(BRM2).

iv. Expand the Coherence node, expand Federation, expand
XRefFederatedCache, expand Coordinator, and then expand Coordinator. Click
on start(BRM2) and replicateAll(BRM2).

e. From the secondary production site, verify that data is being federated from the
primary production site to the secondary production sites, and that all pods are
running.

Enabling Parallel Pod Management in ECE
You can configure the Kubernetes StatefulSet controller to start all ecs pods simultaneously by
enabling parallel pod management. To do so:

1. Open your override-values.yaml file for oc-cn-ece-helm-chart.

2. Set the parallelPodManagement key to one of the following:

• true: The ecs pods will start in parallel. You must scale down the replicas manually.
See "Scaling Down the ecs Pod Replicas".

• false: The ecs pods will wait for a pod to be in the Running and Ready state or
completely stopped prior to starting or stopping another pod. This is the default.

3. Deploy the ECE Helm chart (oc-cn-ece-helm-cart):

helm install EceReleaseName oc-cn-ece-helm-chart --namespace BrmNameSpace
--values OverrideValuesFile

Scaling Down the ecs Pod Replicas

To scale down ecs pod replicas when parallelPodManagement is enabled:

1. Ensure that the ecs pod is in the Usage Processing state.

Chapter 26
Enabling Parallel Pod Management in ECE

26-13

2. Check the ecs pod's current replica count by running one of these commands:

• kubectl get po -n BrmNameSpace | grep -i ecs

• kubectl get sts ecs -n BrmNameSpace

where BrmNameSpace is the namespace in which the BRM Kubernetes objects reside.

3. Reduce the ecs pod's replica count by one by running this command:

kubectl scale sts ecs --replicas=newReplicaCount -n BrmNameSpace

where newReplicaCount is the current replica count reduced by one.

For example, if the current replica count is 6, you would run this command to scale down
ecs to 5 replicas:

kubectl scale sts ecs --replicas=5 -n BrmNameSpace

4. Wait for the replica to stop.

5. Continue reducing the ecs pod replica count until you reach the desired amount.

The desired minimum ecs replica count is 3.

Customizing SDK Source Code
If you want to customize the ECE SDK source code for any of the sample scripts or Java code,
the SDK directory with all of these files is exposed under the SDK PVC. You can change any
file in the PVC, and the same will be reflected inside the pod.

When you run the SDK job with the build and run options, the customized code is built and
run from the job.

Chapter 26
Customizing SDK Source Code

26-14

27
Securing ECE Communications

Learn how to secure communications within your Oracle Communications Elastic Charging
Engine (ECE) cloud native system and between ECE and external applications.

Topics in this document:

• Enabling SSL Communication When Separate Clusters for BRM and ECE

• Using a Custom TLS Certificate for Secure Connections

• Securing Communication Between the CHF and NRF, PCF, and SMF

Enabling SSL Communication When Separate Clusters for BRM
and ECE

If BRM and ECE are located in different Kubernetes clusters or cloud native environments,
enable SSL communication between BRM and the External Manager (EM) Gateway.

To enable SSL communication:

1. In the CM configuration file (BRM_home/sys/cm/pin.conf), set the em_pointer parameter
to the host name and port of either the emgateway service or the load balancer:

- cm em_pointer ece ip hostname port

where hostname is the worker node IP or LoadBalancer IP, and port is the emgateway
service node port or LoadBalancer exposed port.

2. In your override-values.yaml file for oc-cn-ece-helm-chart, set the
emgateway.serviceFqdn key to the dedicated worker node IP or load balancer IP.

The emgateway pod can be scheduled on specific worker nodes using nodeSelector.

3. If this is the first time you are deploying ECE, run the helm install command:

helm install EceReleaseName oc-cn-ece-helm-chart --namespace BrmNameSpace
--values OverrideValuesFile

4. If you have already deployed ECE, do the following:

a. Delete the .brm_wallet_date hidden files from the ece-wallet-pvcLocation/brmwallet
directory, where ece-wallet-pvcLocation is the directory for the wallet PVC.

b. Move the ece-wallet-pvcLocation/brmwallet/server directory to server_bkp.

c. Perform a rolling restart of the ecs1 pod by incrementing the restartCount key in your
override-values.yaml file and then running a helm upgrade command. See "Rolling
Restart of ECE Pods" for more information.

d. Delete the emgateway pods. This enables the pods to read the updated BRM Server
wallet entries.

27-1

e. Run the helm upgrade command to update the ECE Helm chart:

helm upgrade EceReleaseName oc-cn-ece-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

Using a Custom TLS Certificate for Secure Connections
To configure ECE to use a custom TLS certificate for communicating with external service
providers, set these keys in the override-values.yaml file for oc-cn-ece-helm-chart:

• charging.customSSLWallet: Set this to true.

• charging.secretCustomWallet.name: Set this to the Secret name.

• charging.emGatewayConfigurations.emGatewayConfigurationList.emGateway1Conf
ig.wallet: Set this to /home/charging/wallet/custom/cwallet.sso.

• charging.emGatewayConfigurations.emGatewayConfigurationList.emGateway2Conf
ig.wallet: Set this to the custom wallet path.

• charging.brmWalletServerLocation: Set this to the custom wallet path.

• charging.brmWalletClientLocation: Set this to the custom wallet path.

• charging.brmWalletLocation: Set this to the custom wallet path.

• charging.radiusGatewayConfigurations.wallet: Set this to the custom wallet path.

• charging.connectionConfigurations.BRMConnectionConfiguration.brmwallet: Set
this to the custom wallet path.

Note:

If the custom wallet is deployed after ECE is installed, perform a Helm upgrade. You
can update the wallet location configured for ECE pods such as radiusgateway,
emgateway, and brmgateway by using JMX.

Securing Communication Between the CHF and NRF, PCF, and
SMF

You can enable secure communication between the HTTP Gateway (CHF) and the NRF, PCF,
and SMF in one of these ways:

• Using KeyStore certificates stored in the cloud native Helm charts. See "Securing
Communication Using KeyStores Mounted in the Helm Chart".

• Using external Kubernetes Secrets. See "Securing Communication Using External
Kubernetes Secrets".

Securing Communication Using KeyStores Mounted in the Helm Chart
To enable secure communication between the HTTP Gateway (CHF) and the NRF, PCF, and
SMF using KeyStores mounted in the Helm chart:

Chapter 27
Using a Custom TLS Certificate for Secure Connections

27-2

1. Generate your SSL TrustStore and Identity KeyStore certificates for the NRF, PCF, and
SMF.

2. Move the SSL TrustStore and Identity KeyStore certificate files to the oc-cn-ece-helm-
chart/secrets/httpgateway directory.

When you perform a Helm install or upgrade, the ECE Helm chart mounts the TrustStore
and Identity KeyStores inside the httpgateway pods as a Kubernetes Secret.

3. Open your override-values.yaml file for oc-cn-ece-helm-chart.

4. Enable SSL-based communication between the CHF and the PCF, NRF, and SMF by
setting the following keys under
httpgateway.httpgatewayList.httpGatewayConfiguration:

• pcfSSLEnabled: Set this to true to enable SSL-based communication between the
CHF and PCF.

• nrfSSLEnabled: Set this to true to enable SSL-based communication between the
CHF and NRF.

• smfSSLEnabled: Set this to true to enable SSL-based communication between the
CHF and SMF.

• httpSSLType: Specify the type of SSL communication: oneway or twoway.

5. Specify the name and location of the TrustStore and Identity KeyStore files by setting the
following keys under httpgateway:

• httpIdentityKeystore: Specify the path to the Identity KeyStore certificate files.

• httpIdentityKeystoreType: Specify the type of SSL Identity KeyStore: PKCS12 or
SSO.

• httpTruststore: Specify the path to the SSL TrustStore files.

• httpTruststoreType: Specify the type of SSL TrustStore file: PKCS12 or SSO.

6. If your ECE cloud native services route communication between the CHF and other
network functions through an Oracle Services Communications Proxy (SCP), do the
following:

a. In the httpgateway.httgatewayList.httpGatewayConfiguration.scpAuthorities key,
enter the URL of the primary and secondary SCP authority, delimited by commas.

For example: scpAuthorities="scp1.example.com,scp2.example.com".

b. Ensure that the oc-cn-ece-helm-chart/secrets/httpgateway/ directory contains the
SCP SSL KeyStore certificates rather than PCF and SMF certificates.

See "Configuring Communication through SCP" in ECE Implementing Charging for more
information about SCP.

7. Run the helm install or helm upgrade command to update the ECE Helm chart.

The KeyStores are mounted inside the httpgateway pod as a Kubernetes Secret at /home/
charging/mnt/secrets/httpgateway/server_ssl.

Securing Communication Using External Kubernetes Secrets
To enable secure communication between the HTTP Gateway (CHF) and the NRF, PCF, and
SMF using external Kubernetes Secrets:

1. Create your KeyStore certificates for the NRF, PCF, and SMF as Secrets in your
Kubernetes cluster.

Chapter 27
Securing Communication Between the CHF and NRF, PCF, and SMF

27-3

Note:

If communication is routed through an Oracle Services Communications Proxy
(SCP), create SCP-related certificates instead.

For information about creating Kubernetes Secrets, see "Managing Secrets" in the
Kubernetes documentation.

2. Open your override-values.yaml file for oc-cn-ece-helm-chart.

3. Specify the external Kubernetes Secrets by setting the following keys under httpgateway:

• extHttpIdentityKeystoreSecret: Specify the name of the external Kubernetes Secret
containing the HTTP Identity KeyStore.

• httpIdentityKeystore: Specify the name of the Identity KeyStore certificate file
contained in the external Kubernetes Secret.

• httpTruststore: Specify the name of the SSL TrustStore file contained in the external
Kubernetes Secret.

• extHttpTruststoreSecret: Specify the name of the external Kubernetes Secret
containing the HTTP TrustStore.

4. If your ECE cloud native services route communication between the CHF and other
network functions through an Oracle Services Communications Proxy (SCP), set the
httpgateway.httgatewayList.httpGatewayConfiguration.scpAuthorities key to the URL
of the primary and secondary SCP authority, delimited by commas.

For example: scpAuthorities="scp1.example.com,scp2.example.com".

See "Configuring Communication through SCP" in ECE Implementing Charging for more
information about SCP.

5. Perform a helm install of the ECE Helm chart:

helm install EceReleaseName oc-cn-ece-helm-chart --namespace BrmNameSpace --values
OverrideValuesFile

where:

• EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to track
this installation instance. It must be different from the one used for the BRM Helm
chart.

• BrmNameSpace is the namespace in which BRM Kubernetes objects reside for the
BRM Helm chart.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the oc-cn-ece-helm-chart/values.yaml file.

Chapter 27
Securing Communication Between the CHF and NRF, PCF, and SMF

27-4

https://kubernetes.io/docs/tasks/configmap-secret/

28
Managing ECE Journal Storage

In Oracle Communications Elastic Charging Engine (ECE) cloud native deployments, you can
manage the size of the journal storage to meet your business needs.

Topics in this document:

• About Coherence Elastic Data Storage

• Managing Coherence Journal Space

About Coherence Elastic Data Storage
ECE cloud native utilizes Oracle Coherence Elastic Data to manage data in both the ECE
cache and the federated cache. Coherence Elastic Data stores data across memory and disk-
based devices, employing a journaling mechanism to store object state changes. Journals
record values for a specific key, and an in-memory map specifies which journal file contains the
most recent value for a key.

Coherence Elastic Data contains two types of journals:

• RAM Journal: This journal stores data in memory.

• Flash Journal: This journal stores data on disk-based devices, such as Solid State Disks
(SSDs). The disk can be local or shared and is expected to perform similarly to SSDs.

The flash journal functions as overflow memory for the RAM journal. Coherence writes data to
the RAM journal until it reaches a specified maximum, after which it writes data to the flash
journal. After the RAM journal's usage drops below the maximum threshold, Coherence returns
to writing data to the RAM journal.

Over time, outdated data can accumulate in a journal file. Coherence Elastic Data uses an
internal garbage collection algorithm to track whether a threshold is reached. When the
threshold is met, garbage collection threads are activated to remove outdated values, and the
files are recycled and reused for future data storage.

In ECE cloud native, Coherence Elastic Data uses two per-JVM storage buffers, with one
dedicated to each journal. The Elastic Data serves as a single resource shared by all services
running on a cluster member.

Managing Coherence Journal Space
You can control the amount of space the flash and RAM journals use to meet your business
needs. By default, ECE cloud native creates journal space for small-to-medium-sized
deployments with up to 20,000 TPS. For larger deployments, you may need to increase the
size of the journal space.

To manage the amount of space Coherence Elastic Data uses to store journal data, do the
following:

1. Open your override-values.yaml file for oc-ece-cn-helm-chart.

2. Configure Coherence Elastic Data for ECE cloud native by modifying these entries under
charging.journalingConfig:

28-1

• journalManagerDirectoryPath: Specifies the path for storing the flash journal files.
Ensure this directory already exists before deploying.

• flashJournalMaxSize: Specifies the maximum size per ECS JVM for a flash journal
file. The default is 10 GB.

• ramJournalMaxSize: Specifies the maximum size of the RAM journal as a percentage
of the Heap memory, such as 10% or 20%. When the maximum percentage is
reached, Coherence Elastic Data writes data to the flash journal. The default is 10%
and should not be increased without justification.

3. The federation service uses an internal journal record cache to track cache data changes
that have not yet been federated to other federation participants. Specify the maximum
size of this cache by configuring the following keys under
charging.federatedCacheScheme.journalCacheHighUnits:

Note:

Keep the relative sizing between the HighUnits values. In addition, the sum of all
four HighUnits values should not exceed flashJournalMaxSize +
ramJournalMaxSize.

• brmJournalCacheHighUnits: Specifies the maximum size of the federation journal
record cache for the BRM federated service. The default is 8 GB.

• xreffederatedJournalCacheHighUnits: Specifies the maximum size of the federation
journal record cache for the XREF federated service. The default is 500 MB.

• replicatedfederatedJournalCacheHighUnits: Specifies the maximum size of the
federation journal record cache for the replicated federated service. The default is 500
MB.

• offerProfileFederatedJournalCacheHighUnits: Specifies the maximum size of the
federation journal record cache for the offer profile federated service. The default is
500 MB.

When the limit is reached, the federation service moves the destination participants to the
ERROR state and removes all pending entries from the journal record cache.

4. Save and close your override-values.yaml file.

5. Redeploy your ECE Helm chart by running this command:

helm install EceReleaseName oc-cn-ece-helm-chart --namespace BrmNameSpace --values
override-values.yaml

where:

• EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to track
this installation instance. It must be different from the one used for the BRM Helm
chart.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Chapter 28
Managing Coherence Journal Space

28-2

29
Managing Persisted Data in the Oracle
Database

Learn about data persistence and the tasks for managing Elastic Charging Engine (ECE) data
stored in an Oracle Communications Billing and Revenue Management (BRM) cloud native
database.

Topics in this document:

• Enabling Persistence in ECE

• Loading Only Partial Data into ECE Cache

• Incremental Customer Loading in ECE Cache

Enabling Persistence in ECE
You can set up ECE to persist its cache data in the Oracle database, creating a permanent
backup of the cache in case a node fails, a partition is lost, or so on. ECE automatically
recovers the cache data from the persistence database when needed.

When persistence is enabled, the ECE core components, such as Customer Updater, Pricing
Updater, and configLoader, persist the following at startup:

• The data published from BRM and PDC into the ECE cache

• The mediation specification data loaded into the ECE cache

• The data that is synchronized or received from BRM

• Other data such as balance, top-up history, recurring bundle history, rated events, and
Portal object IDs (POIDs)

Note:

If pricingLoadFromPersistence is set to FALSE and the state is not
USAGE_PROCESSING, the Pricing Updater will, upon startup, clean up the existing
ECE schema and expect the pricing to be republished. This behavior aligns with the
expected persistence process. Similarly, if the state is not USAGE_PROCESSING
and customerLoadFromPersistence is set to FALSE, the Customer Updater will,
upon startup, attempt to clean the ECE schema before reloading all data from BRM.

During installation, upgrade, auto-recovery, and pod restart, ECE uses the Kubernetes REST
API to:

• Automatically update the charging-settings-namespace ConfigMap to enable the
reloading of cache data from the persistence database

• Retrieve the metadata from ECE statefulsets and pods

• Automatically apply management labels to ecs pods

29-1

To configure ECE cloud native for persistence:

1. Configure ECE to reload cache data, retrieve metadata, and apply management labels
during installation, upgrade, auto-recovery, and pod restart. To do so, configure the ece-
namespace service account to authenticate the API server.

For information about the rules defined in the role-based access control (RBAC) ece-
namespace, see the ece-clusterrole-sa.yaml file in the ECE Helm chart.

2. Enable and configure persistence in ECE cloud native. To do so, set these keys in the
override-values.yaml file for oc-cn-ece-helm-chart:

Note:

Ensure the persistence tablespace names are all uppercase.

secretEnv:
 PERSISTENCEDATABASEPASSWORD:
 - schema: 1
 PASSWORD: password
 PERSISTENCEDBAPASSWORD:
 - schema: 1
 PASSWORD: password # SYSDBA user
 PERSISTENCEDATABASEKEYPASS:
 - schema: 1
 PASSWORD: password
charging:
 persistenceEnabled: "true"
 cachePersistenceConfigurations:
 cachePersistenceConfigurationList:
 - clusterName: "BRM"
 persistenceStoreType: "OracleDB"
 persistenceConnectionName: "oraclePersistence1"
 reloadThreadPoolSize: "10"
 configLoadFromPersistence: "true"
 pricingLoadFromPersistence: "true"
 customerLoadFromPersistence: "true"
 partitionLossRecoverFromPersistence: "true"
 writeBehindThreadPoolSize: "1"
 connectionConfigurations:
 OraclePersistenceConnectionConfigurations:
 - clusterName: "BRM"
 schemaNumber: "1"
 name: "oraclePersistence1"
 dbSysDBAUser: "sys"
 dbSysDBARole: "sysdba"
 userName: "ece"
 hostName: ""
 port: "1521"
 sid: ""
 service: ""
 tablespace: "ECETABLE"
 temptablespace: "ECETEMP"
 cdrstoretablespace: "ECECDRTABLESPACE"
 cdrstoreindexspace: "ECECDRINDEXSPACE"
 jdbcUrl: ""
 retryCount: "3"
 retryInterval: "1"
 maxStmtCacheSize: "100"

Chapter 29
Enabling Persistence in ECE

29-2

 connectionWaitTimeout: "300"
 timeoutConnectionCheckInterval: "300"
 inactiveConnectionTimeout: "300"
 databaseConnectionTimeout: "600"
 persistenceInitialPoolSize: "4"
 persistenceMinPoolSize: "4"
 persistenceMaxPoolSize: "12"
 reloadInitialPoolSize: "0"
 reloadMinPoolSize: "0"
 reloadMaxPoolSize: "20"
 dbSSLEnabled: "true"
 dbSSLType: "twoway"
 sslServerCertDN: "DC=local,DC=oracle,CN=pindb"
 trustStoreLocation: "/home/charging/ext/ece_ssl_db_wallet/schema1/
cwallet.sso"
 trustStoreType: "SSO"
 walletLocation: "/home/charging/wallet/ecewallet/"
 cdrStorePartitionCount: "32"
 queryTimeout: "5"

When you deploy oc-cn-ece-helm-chart with this configuration, the Helm chart creates a
schema user if one doesn't already exist, creates ECE tables, creates indexes, and runs stored
procedures.

To see the ECE deployment logs, run this command:

kubectl logs -f EcePersistenceJobPod -n BrmNameSpace

where EcePersistenceJobPod is the name of the pod where ece-persistence-job is deployed,
and BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Re-Creating the ECE Schema After Deployment
If you want to re-create the ECE schema, any table, or any index after the ECE Helm chart is
already deployed, do the following:

1. Delete the ECE Helm chart.

2. Delete the pre-existing ece-persistence-job from your system by running this command:

kubectl delete job ece-persistence-job -n BrmNameSpace
3. Install the Helm chart again by running the following command:

helm install ece --namespace BrmNameSpace oc-cn-ece-helm-chart [--no-hooks]

Note:

Include the --no-hooks argument only if everything needed for persistence is
already in the persistence database.

Loading Only Partial Data into ECE Cache
You can optionally configure ECE to load only partial data from the persistence database into
the ECE cache. In this case, the initial load of data into the ECE cache includes data only up to
a specified minimum amount (back-low-limit). If the data required for processing a usage
request is not available in the ECE cache, ECE loads that data into the ECE cache from the

Chapter 29
Loading Only Partial Data into ECE Cache

29-3

persistence database and evicts some other data from the ECE cache. This ensures that the
maximum limit (back-high-limit) is not exceeded. Later, when you restart the ECE system,
ECE loads the most recently used data into the ECE cache.

For more information, see "Enabling Partial Loading of Data" in BRM System Administrator's
Guide.

To load only partial data into the ECE cache, set these parameters for the charging-cache-
config-persistence.xml file in the oc-cn-ece-helm-chart/templates/charging-settings.yaml
ConfigMap:

• back-high-limit: The maximum amount of data that can be loaded into the ECE cache.

• back-low-limit: The minimum amount of data that can be loaded or reloaded into the ECE
cache from the persistence database.

Incremental Customer Loading in ECE Cache
By default, the customerupdater pod loads all customer data from the BRM database into the
ECE cache at startup, but you can configure the pod to load customer data incrementally.

To incrementally load customer data into the ECE cache:

1. Configure the customerupdater pod to load only an initial set of customers into the ECE
cache and bring ECE to the UsageProcessing state by setting these keys in the override-
values.yaml file for oc-cn-ece-helm-chart:

• job.customerloader.runjob: Set this to false.

• charging.incrementalCustomerLoad: Set this to true.

• migration.loader.initialCustomerLoadFilterQuery: Set this to a query such as "and
ROWNUM <= 1" to load one customer.

2. Install the ECE Helm chart.

3. Load the remaining customers incrementally into the ECE cache by setting these keys in
the override-values.yaml file for oc-cn-ece-helm-chart:

• job.customerloader.runjob: Set this to true.

• job.customerloader.command: Set this to -incremental
customer_updater_schema_name, where customer_updater_schema_name is the
schema name specified for the customerupdater pod.

• charging.incrementalCustomerLoad: Set this to true.

• migration.loader.incrementalCustomerLoadFilterQuery: Set this to a query such as
"and POID_ID0 NOT IN (select POID_ID0 from ACCOUNT_T where POID_ID0 <> 1
and ROWNUM <= 1)" to load remaining customers.

4. Perform a Helm upgrade by running this command:

helm upgrade EceReleaseName oc-cn-ece-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to
track this installation instance, and OverrideValuesFile is the path to the YAML file that
overrides the default configurations in the chart's values.yaml file.

Chapter 29
Incremental Customer Loading in ECE Cache

29-4

30
Configuring Disaster Recovery in ECE Cloud
Native

Learn how to set up your Oracle Communications Elastic Charging Engine (ECE) cloud native
services for disaster recovery.

Topics in this document:

• Setting Up Active-Active Disaster Recovery for ECE

• Processing Usage Requests on Site Receiving Request

• Stopping ECE from Routing to a Failed Site

• Adding Fixed Site Back to ECE System

• Activating a Secondary Rated Event Formatter Instance

• About Conflict Resolution During the Journal Federation Process

Setting Up Active-Active Disaster Recovery for ECE
Disaster recovery provides continuity in service for your customers and guards against data
loss if a system fails. In ECE cloud native, disaster recovery is implemented by configuring two
or more active production sites at different geographical locations. If one production site fails,
another active production site takes over the traffic from the failed site.

During operation, ECE requests are routed across the production sites based on your load-
balancing configuration. All updates that occur in an ECE cluster at one production site are
replicated to other production sites through the Coherence cache federation.

For more information about the active-active disaster recovery configuration, see "About the
Active-Active System" in BRM System Administrator's Guide.

To configure ECE cloud native for active-active disaster recovery:

1. In each Kubernetes cluster, expose ports on the external IP using the Kubernetes
LoadBalancer service.

The ECE Helm chart includes a sample YAML file for the LoadBalancer service (oc-cn-
ece-helm-chart/templates/ece-service-external.yaml) that you can configure for your
environment.

2. On your primary production site, update the override-values.yaml file with the external IP
of the LoadBalancer service, the federation-related parameters, the JMX port for the
monitoring agent, the active-active disaster recovery parameters, and so on.

The following shows example override-values.yaml file settings for a primary production
site:

monitoringAgent:
 monitoringAgentList:
 - name: "monitoringagent1"
 replicas: 1
 jmxport: "31020"

30-1

 jmxEnabled: "true"
 jvmJMXOpts: "-Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false -
Dcom.sun.management.jmxremote.local.only=false -
Dcom.sun.management.jmxremote.password.file=../config/jmxremote.password -
Dsecure.access.name=admin -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.port=31020 -
Dcom.sun.management.jmxremote.rmi.port=31020"
 jvmOpts: "-Djava.net.preferIPv4Addresses=true"
 jvmGCOpts: ""
 restartCount: "0"
 nodeSelector: "node1"
 - name: "monitoringagent2"
 replicas: 1
 jmxport: "31021"
 jmxEnabled: "true"
 jvmJMXOpts: "-Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false -
Dcom.sun.management.jmxremote.local.only=false -
Dcom.sun.management.jmxremote.password.file=../config/jmxremote.password -
Dsecure.access.name=admin -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.port=31021 -
Dcom.sun.management.jmxremote.rmi.port=31021"
 jvmOpts: "-Djava.net.preferIPv4Addresses=true"
 jvmGCOpts: ""
 restartCount: "0"
 nodeSelector: "node2"
charging:
 jmxport: "31022"
 coherencePort: "31015"
...
...
 clusterName: "BRM"
 isFederation: "true"
 primaryCluster: "true"
 secondaryCluster: "false"
 clusterTopology: "active-active"
 cluster:
 primary:
 clusterName: "BRM"
 eceServiceName: ece-server
 eceServicefqdnOrExternalIP: "0.1.2.3"
 secondary:
 - clusterName: "BRM2"
 eceServiceName: ece-server
 eceServicefqdnOrExternalIp: "0.1.3.4"
 federatedCacheScheme:
 federationPort:
 brmfederated: 31016
 xreffederated: 31017
 replicatedfederated: 31018
 offerProfileFederated: 31019

Chapter 30
Setting Up Active-Active Disaster Recovery for ECE

30-2

3. On your secondary production site, update the override-values.yaml file with the external
IP of the LoadBalancer service, the federation-related parameters, the JMX port for the
monitoring agent, the active-active disaster recovery parameters, and so on.

The following shows example settings in an override-values.yaml for a secondary
production site:

monitoringAgent:
 monitoringAgentList:
 - name: "monitoringagent1"
 replicas: 1
 jmxport: "31020"
 jmxEnabled: "true"
 jvmJMXOpts: "-Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false -
Dcom.sun.management.jmxremote.local.only=false -
Dcom.sun.management.jmxremote.password.file=../config/jmxremote.password -
Dsecure.access.name=admin -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.port=31020 -
Dcom.sun.management.jmxremote.rmi.port=31020"
 jvmOpts: "-Djava.net.preferIPv4Addresses=true"
 jvmGCOpts: ""
 restartCount: "0"
 nodeSelector: "node1"
 - name: "monitoringagent2"
 replicas: 1
 jmxport: "31021"
 jmxEnabled: "true"
 jvmJMXOpts: "-Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false -
Dcom.sun.management.jmxremote.local.only=false -
Dcom.sun.management.jmxremote.password.file=../config/jmxremote.password -
Dsecure.access.name=admin -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.port=31021 -
Dcom.sun.management.jmxremote.rmi.port=31021"
 jvmOpts: "-Djava.net.preferIPv4Addresses=true"
 jvmGCOpts: ""
 restartCount: "0"
 nodeSelector: "node2"
charging:
 jmxport: "31022"
 coherencePort: "31015"
...
...
 clusterName: "BRM2"
 isFederation: "true"
 primaryCluster: "false"
 secondaryCluster: "true"
 clusterTopology: "active-active"
 cluster:
 primary:
 clusterName: "BRM"

Chapter 30
Setting Up Active-Active Disaster Recovery for ECE

30-3

 eceServiceName: ece-server
 eceServicefqdnOrExternalIP: "0.1.2.3"
 secondary:
 - clusterName: "BRM2"
 eceServiceName: ece-server
 eceServicefqdnOrExternalIp: "0.1.3.4"
 federatedCacheScheme:
 federationPort:
 brmfederated: 31016
 xreffederated: 31017
 replicatedfederated: 31018
 offerProfileFederated: 31019

4. On your primary and secondary production sites, add the customerGroupConfigurations
and siteConfigurations sections to the override-values.yaml file.

The following shows example settings to add to the override-values.yaml file in your
primary and secondary production sites:

customerGroupConfigurations:
 - name: "customergroup1"
 clusterPreference:
 - priority: "1"
 routingGatewayList: "0.1.2.3:31500"
 name: "BRM"
 - priority: "2"
 routingGatewayList: "0.1.3.4:31500"
 name: "BRM2"
 - name: "customergroup2"
 clusterPreference:
 - priority: "2"
 routingGatewayList: "0.1.2.3:31500"
 name: "BRM"
 - priority: "1"
 routingGatewayList: "0.1.3.4:31500"
 name: "BRM2"
siteConfigurations:
 - name: "BRM"
 affinitySiteNames: "BRM2"
 monitorAgentJmxConfigurations:
 - name: "monitoringagent1"
 host: "node1"
 jmxPort: "31020"
 disableMonitor: "true"
 - name: "monitoringagent2"
 host: "node2"
 jmxPort: "31021"
 disableMonitor: "true"
 - name: "BRM2"
 affinitySiteNames: "BRM"
 monitorAgentJmxConfigurations:
 - name: "monitoringagent1"
 host: "node1"
 jmxPort: "31020"
 disableMonitor: "true"
 - name: "monitoringagent2"

Chapter 30
Setting Up Active-Active Disaster Recovery for ECE

30-4

 host: "node2"
 jmxPort: "31021"
 disableMonitor: "true"

5. In your override-values.yaml file, configure kafkaConfigurationList with both primary
and secondary site Kafka details.

The following shows example settings to add to the override-values.yaml file in your
primary and secondary production sites:

kafkaConfigurationList:
 - name: "BRM"
 hostname: "hostname:port"
 topicName: "ECENotifications"
 suspenseTopicName: "ECESuspenseQueue"
 partitions: "200"
 kafkaProducerReconnectionInterval: "120000"
 kafkaProducerReconnectionMax: "36000000"
 kafkaDGWReconnectionInterval: "120000"
 kafkaDGWReconnectionMax: "36000000"
 kafkaBRMReconnectionInterval: "120000"
 kafkaBRMReconnectionMax: "36000000"
 kafkaHTTPReconnectionInterval: "120000"
 kafkaHTTPReconnectionMax: "36000000"
 - name: "BRM2"
 hostname: "hostname:port"
 topicName: "ECENotifications"
 suspenseTopicName: "ECESuspenseQueue"
 partitions: "200"
 kafkaProducerReconnectionInterval: "120000"
 kafkaProducerReconnectionMax: "36000000"
 kafkaDGWReconnectionInterval: "120000"
 kafkaDGWReconnectionMax: "36000000"
 kafkaBRMReconnectionInterval: "120000"
 kafkaBRMReconnectionMax: "36000000"
 kafkaHTTPReconnectionInterval: "120000"
 kafkaHTTPReconnectionMax: "36000000"

6. If data persistence is enabled, configure a primary and secondary Rated Event Formatter
instance on your primary and secondary production sites for each site in the
ratedEventFormatter section of the override-values.yaml file.

The following shows example settings to add to the override-values.yaml file in your
primary and secondary production sites:

ratedEventFormatter:
 ratedEventFormatterList:
 ratedEventFormatterConfiguration:
 name: "ref_site1_primary"
 clusterName: "BRM"
 primaryInstanceName: "REF-1"
 partition: "1"
 noSQLConnectionName: "noSQLConnection"
 connectionName: "oracle1"
 threadPoolSize: "2"
 retainDuration: "0"
 ripeDuration: "30"

Chapter 30
Setting Up Active-Active Disaster Recovery for ECE

30-5

 checkPointInterval: "20"
 siteName: "site1"
 pluginPath: "ece-ratedeventformatter.jar"
 pluginType:
"oracle.communication.brm.charging.ratedevent.formatterplugin.internal.Samp
leFormatterPlugInImpl"
 pluginName: "brmCdrPluginDC1Primary"
 noSQLBatchSize: "25"
 ratedEventFormatterConfiguration:
 name: "ref_site1_secondary"
 clusterName: "BRM2"
 partition: "1"
 noSQLConnectionName: "noSQLConnection"
 connectionName: "oracle2"
 threadPoolSize: "2"
 retainDuration: "0"
 ripeDuration: "30"
 checkPointInterval: "20"
 siteName: "site1"
 pluginPath: "ece-ratedeventformatter.jar"
 pluginType:
"oracle.communication.brm.charging.ratedevent.formatterplugin.internal.Samp
leFormatterPlugInImpl"
 pluginName: "brmCdrPluginDC1Primary"
 noSQLBatchSize: "25"
 ratedEventFormatterConfiguration:
 name: "ref_site2_primary"
 clusterName: "BRM2"
 primaryInstanceName: "REF-2"
 partition: "1"
 noSQLConnectionName: "noSQLConnection"
 connectionName: "oracle2"
 threadPoolSize: "2"
 retainDuration: "0"
 ripeDuration: "30"
 checkPointInterval: "20"
 siteName: "site2"
 pluginPath: "ece-ratedeventformatter.jar"
 pluginType:
"oracle.communication.brm.charging.ratedevent.formatterplugin.internal.Samp
leFormatterPlugInImpl"
 pluginName: "brmCdrPluginDC1Primary"
 noSQLBatchSize: "25"
 ratedEventFormatterConfiguration:
 name: "ref_site2_secondary"
 clusterName: "BRM"
 partition: "1"
 noSQLConnectionName: "noSQLConnection"
 connectionName: "oracle1"
 primaryInstanceName: "ref_site2_primary"
 threadPoolSize: "2"
 retainDuration: "0"
 ripeDuration: "30"
 checkPointInterval: "20"
 siteName: "site2"
 pluginPath: "ece-ratedeventformatter.jar"

Chapter 30
Setting Up Active-Active Disaster Recovery for ECE

30-6

 pluginType:
"oracle.communication.brm.charging.ratedevent.formatterplugin.internal.Samp
leFormatterPlugInImpl"
 pluginName: "brmCdrPluginDC1Primary"
 noSQLBatchSize: "25"

The siteName key specifies which ECE site’s rated events are processed by the Rated
Event Formatter instance, independent of which ECE site the Rated Event Formatter
instance is running in. Primary Rated Event Formatter instances run in the same site as
siteName and are normally active and processing the local ECE site’s rated events.
Secondary Rated Event Formatter instances run in a different ECE site as siteName and
are only activated when the primary instance is unavailable.

For more information about Rated Event Formatter in active-active systems, see "About
Rated Event Formatter in a Persistence-Enabled Active-Active System" in BRM System
Administrator's Guide.

7. Depending on whether persistence is enabled in ECE, do one of the following:

• If persistence is enabled, add the cachePersistenceConfigurations and
connectionConfigurations.OraclePersistenceConnectionConfigurations sections
to your override-values.yaml file on both primary and secondary production sites.

The following shows example settings to add to the override-values.yaml file on your
primary and secondary sites:

 cachePersistenceConfigurations:
 cachePersistenceConfigurationList:
 - clusterName: "BRM"
 persistenceStoreType: "OracleDB"
 persistenceConnectionName: "oraclePersistence1"
...
...
 - clusterName: "BRM2"
 persistenceStoreType: "OracleDB"
 persistenceConnectionName: "oraclePersistence2"
...
...
 connectionConfigurations:
 OraclePersistenceConnectionConfigurations:
 - clusterName: "BRM"
 name: "oraclePersistence1"
...
...
 - clusterName: "BRM2"
 name: "oraclePersistence2"
...
...

• If persistence is disabled, add the ratedEventPublishers and
NoSQLConnectionConfigurations sections to your override-values.yaml file on
primary and secondary production sites.

The following shows example settings to add to the override-values.yaml file on your
primary and secondary sites:

 ratedEventPublishers:
 - clusterName: "BRM"

Chapter 30
Setting Up Active-Active Disaster Recovery for ECE

30-7

 noSQLConnectionName: "noSQLConnection1"
 threadPoolSize: "4"
 - clusterName: "BRM2"
 noSQLConnectionName: "noSQLConnection2"
 threadPoolSize: "4"
 connectionConfigurations:
 NoSQLConnectionConfigurations:
 - clusterName: "BRM"
 name: "noSQLConnection1"
...
...
 - clusterName: "BRM2"
 name: "noSQLConnection2"
...
...

8. Deploy the ECE Helm chart (oc-cn-ece-helm-cart) on the primary cluster and bring the
primary cluster to the Usage Processing state.

9. Invoke federation from the primary production site to your secondary production sites by
connecting from JConsole of the ecs1 pod.

a. Update the label for the ecs1-0 pod:

kubectl label -n NameSpace po ecs1-0 ece-jmx=ece-jmx-external

b. Update the /etc/hosts file on the remote machine with the worker node of ecs1-0:

IP_OF_WORKER_NODE ecs1-0.ece-server.namespace.svc.cluster.local

c. Connect to JConsole:

jconsole ecs1-0.ece-server.namespace.svc.cluster.local:31022

JConsole starts.

d. Invoke start() and replicateAll() with the secondary production site name from the
coordinator node of each federated cache in JMX. To do so:

i. Expand the Coherence node, expand Federation, expand
BRMFederatedCache, expand Coordinator, and then expand Coordinator. Click
on start(BRM2) and replicateAll(BRM2), where BRM2 is the secondary
production site name.

ii. Expand the Coherence node, expand Federation, expand
OfferProfileFederatedCache, expand Coordinator, and then expand
Coordinator. Click on start(BRM2) and replicateAll(BRM2).

iii. Expand the Coherence node, expand Federation, expand
ReplicatedFederatedCache, expand Coordinator, and then expand
Coordinator. Click on start(BRM2) and replicateAll(BRM2).

iv. Expand the Coherence node, expand Federation, expand
XRefFederatedCache, expand Coordinator, and then expand Coordinator. Click
on start(BRM2) and replicateAll(BRM2).

e. From the secondary production site, verify that data is being federated from the
primary production site to the secondary production sites, and that all pods are
running.

Chapter 30
Setting Up Active-Active Disaster Recovery for ECE

30-8

After federation completes, your primary and secondary production sites move to the
Usage Processing state, and the monitoring agent pods are spawned.

Note:

By default, the federation interceptor is invoked for events received at the
destination site during replicateAll for conflict resolution. You can disable this by
setting the disableFederationInterceptor attribute to true in the
charging.server AppConfiguration MBean at the destination site before invoking
replicateAll for Coherence services from the source site. The cache data will be
replicated at the destination site without performing conflict resolution. Once
replicateAll is complete, set the disableFederationInterceptor attribute to
false.

10. When all pods are ready on each site, scale down and then scale up the monitoring agent
pods in each production site. This synchronizes the monitoring agent pods with the other
pods in the cluster.

Note:

Repeat these steps to scale up or down any pod after the monitoring agent is
initialized.

a. Scale down monitoringagent1 to 0:

kubectl -n NameSpace scale deploy monitoringagent1 --replicas=0

b. Wait for monitoringagent1 to stop and then scale it back up to 1.

kubectl -n NameSpace scale deploy monitoringagent1 --replicas=1

c. Scale down monitoringagent2 to 0:

kubectl -n NameSpace scale deploy monitoringagent2 --replicas=0

d. Wait for monitoringagent2 to stop and then scale it back up to 1.

kubectl -n NameSpace scale deploy monitoringagent2 --replicas=1

11. Verify that the monitoring agent logs are collecting metrics.

Processing Usage Requests on Site Receiving Request
By default, the ECE active-active disaster recovery mode processes usage requests according
to the preferred site assignments in the customerGroup list. For example, if subscriber A's
preferred primary site is site 1, ECE processes subscriber A's usage requests on site 1. If
subscriber A's usage request is received by production site 2, it is sent to production site 1 for
processing.

You can configure the ECE active-active mode to process usage requests on the site that
receives the request, regardless of the subscriber's preferred site. For example, if a

Chapter 30
Processing Usage Requests on Site Receiving Request

30-9

subscriber's usage request is received by production site 1, it is processed on production site
1. Similarly, if the usage request is received by production site 2, it is processed on production
site 2.

Note:

This configuration does not apply to usage charging requests for sharing group
members. Usage requests for sharing group members are processed on the same
site as the sharing group parent.

To configure the ECE active-active mode to process usage requests on the site that receives
the request irrespective of the subscriber's preferred site:

1. In your override-values.yaml file for oc-cn-ece-helm-chart, set the
charging.brsConfigurations.brsConfigurationList.brsConfig.skipActiveActivePreferr
edSiteRouting key to true.

2. Run the helm upgrade command to update your ECE Helm release:

helm upgrade EceReleaseName oc-cn-ece-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to track
the installation instance.

• OverrideValuesFile is the path to the YAML file that overrides the default configurations
in the oc-cn-ece-helm-chart/values.yaml file.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

Stopping ECE from Routing to a Failed Site
When an active production site fails, you must notify the monitoring agent about the failed site.
This stops ECE from rerouting requests to the failed production site.

To notify the monitoring agent about a failed production site:

1. Connect to the monitoring agent through JConsole:

a. Update /etc/hosts with the worker IP of the monitoringagent1 pod.

worker_IP ece-monitoringagent-service-1

b. Connect through JConsole by running this command:

jconsole ece-monitoringagent-service-1:31020

JConsole starts.

2. Expand the ECE Monitoring node.

3. Expand Agent.

4. Expand Operations.

Chapter 30
Stopping ECE from Routing to a Failed Site

30-10

5. Set the failoverSite() operation to the name of the failed production site.

You can also use the activateSecondaryInstanceFor operation to fail over to a backup Rated
Event Formatter as described in "#unique_207." See "Resolving Rated Event Formatter
Instance Outages" in BRM System Administrator's Guide for conceptual information about how
to resolve Rated Event Formatter outages.

Adding Fixed Site Back to ECE System
Notify the monitoring agent after a failed production site starts functioning again. This allows
ECE to route requests to the site again.

To add a fixed site back to the ECE disaster recovery system:

1. Connect to the monitoring agent through JConsole:

a. Update /etc/hosts with the worker IP of the monitoringagent1 pod.

worker_IP ece-monitoringagent-service-1

b. Connect through JConsole by running this command:

jconsole ece-monitoringagent-service-1:31020

JConsole starts.

2. Expand the ECE Monitoring node.

3. Expand Agent.

4. Expand Operations.

5. Set the recoverSite() operation to the name of the original production site.

Activating a Secondary Rated Event Formatter Instance
If a primary Rated Event Formatter instance is down, you can activate a secondary instance to
take over rated event processing. For example, in Figure 30-1, you could activate REF-2 in
ECE Site 1 if REF-1 in ECE Site 1 goes down.

Figure 30-1 Sample Rated Event Formatter Instance in Active-Active Mode

Chapter 30
Adding Fixed Site Back to ECE System

30-11

To activate a secondary Rated Event Formatter instance:

1. Connect to the ratedeventformatter pod through JConsole by doing the following:

a. Update the label for the ratedeventformatter pod:

kubectl label -n NameSpace po ratedeventformatter1-0 ece-jmx=ece-jmx-
external

Note:

ece-jmx-service-external has only one endpoint as the IP of the
ratedeventformatter pod.

b. Update the /etc/hosts file on the remote machine with the worker node of the
ratedeventformatter pod.

IP_OF_WORKER_NODE ratedeventformatter1-0.ece-
server.namespace.svc.cluster.local

c. Connect through JConsole by running this command:

jconsole redeventformatter1-0.ece-
server.namespace.svc.cluster.local:31022

JConsole starts.

2. Expand the ECE Monitoring node.

3. Expand RatedEventFormatterMatrices.

4. Expand Operations.

5. Run the activateSecondaryInstance operation.

The secondary Rated Event Formatter instance begins processing rated events.

About Conflict Resolution During the Journal Federation Process
In active-active disaster recovery systems, any changes to the ECE cache on one site are
automatically federated to the ECE cache on other sites. Sometimes, an entity, such as a
customer's balance, can change simultaneously at both sites. For example, Site 1 processes
Joe's purchase of 500 prepaid minutes, while Site 2 processes Joe's usage of 20 prepaid
minutes. ECE uses custom conflict resolution logic to merge these changes on both sites.

However, ECE may occasionally be unable to resolve these conflicts. This can happen when
the skipActiveActivePreferredSiteRouting entry in the values.yaml file is enabled or when
the federation process stops for a short time.

When unresolved conflicts happen, ECE:

• Does not make the updates to the ECE cache on each site.

• Logs details about the unresolved conflict to the ECS log files, located in the ECE_home/
logs directory.

• Tracks information about the conflict resolution in the ECE metric shown in Table 30-1.

Chapter 30
About Conflict Resolution During the Journal Federation Process

30-12

Table 30-1 Coherence Federated Service Metric

Metric Name Type Description

ece.federated.serv
ice.change.record
s

Counter Tracks the number of change records and tags them by
conflict classification type:

– notModified
– error
– alreadyConflictResolved
– internallyModified
– externallyModified
– sameBinary
– sameRevisionNumber
– deleted
– conflictDetected

Chapter 30
About Conflict Resolution During the Journal Federation Process

30-13

31
Managing ECE Pods

Learn how to manage the Elastic Charging Engine (ECE) pods in your Oracle Communications
Billing and Revenue Management (BRM) cloud native environment.

Topics in this document:

• Setting up Autoscaling of ECE Pods

• Rolling Restart of ECE Pods

Scaling Kubernetes Pods
Kubernetes pods that are created as part of the deployment can be scaled up or down. By
default, three ECE server replicas are created during the installation process.

To scale a Kubernetes pod, run this command:

Note:

Kubernetes pods can be scaled only if the partitions are balanced.

kubectl scale statefulsets componentName --replicas=newReplicaCount

If scaling doesn't occur, check the partitionUnbalanced count under
Coherence.service.partitionUnbalanced for all cache services.

Setting up Autoscaling of ECE Pods
You can use the Kubernetes Horizontal Pod Autoscaler to automatically scale up or scale down
the number of ECE pod replicas based on a pod's CPU or memory utilization. In BRM cloud
native deployments, the Horizontal Pod Autoscaler monitors and scales these ECE pods:

• ecs

• ecs1

• httpgateway

Changing the number of replicas in an ECE autoscalable ReplicaSet results in a re-balancing
of the in-memory cache distribution across the replicas. This re-balancing activity consumes
incremental CPU and memory resources and can take multiple seconds to complete.
Therefore, an ECE autoscaling design should attempt to strike a balance between optimizing
infrastructure resource usage and minimizing changes to the number of replicas in a
ReplicaSet due to autoscaling.

31-1

Note:

Enabling autoscaling of ECE pods in a production environment should be preceded
by comprehensive validation of all scenarios expected to trigger autoscaling (scale up
and scale down). It is recommended that this validation be performed in a
demonstration or test environment using infrastructure equivalent to the target
production infrastructure. In addition, monitoring the frequency of autoscaling is
recommended to detect flapping conditions so that adjustments can be incorporated
to avoid flapping.

To set up and enable autoscaling for ECE pods:

1. Ensure that your ECE cluster is set up and the system is in the UsageProcessing state.

Note:

Do not enable Horizontal Pod Autoscaler for your ECE cluster until ECE reaches
the UsageProcessing state. Enabling it during customer or balance data loading
could lead to customer load failure due to re-balancing of the in-memory cache.

2. Open your override-values.yaml file for oc-cn-ece-helm-chart.

3. Enable the Horizontal Pod Autoscaler in ECE by setting the charging.hpaEnabled key to
true:

charging
 hpaEnabled: "true"

4. Specify the memory and CPU usage for each supported ECE pod. To do so, set the
required keys under the ecs, ecs1, and httpgatewayn sections:

• maxReplicas: Set this to the maximum number of pod replicas to deploy when scale
up is triggered.

If a pod's average utilization goes above averageCpuUtilization or
averageMemoryUtilization, the Horizontal Pod Autoscaler increases the number of
pod replicas up to this maximum count.

• averageCpuUtilization: Set this as a target or threshold for average CPU usage
across all of the pod's replicas with the same entry point. For example, if a cluster has
four ecs pod replicas and one ecs1 pod replica, the average will be the sum of CPU
usage divided by five. The default is 70% for ecs.

The autoscaler increases or decreases the number of ecs or httpgateway pod replicas
to maintain the average CPU utilization you specified across all pods.

Note:

Only the ecs pod and httpgateway pod (with NRF disabled) will be scaled up
and down.

• averageMemoryUtilization: Set this as a target or threshold for average resource
consumption across all of the pod's replicas, such as 1 Gi. For example, if a cluster

Chapter 31
Setting up Autoscaling of ECE Pods

31-2

has four ecs pod replicas and one ecs1 pod replica, the average will be the sum of
memory utilization divided by five.

The autoscaler increases or decreases the number of ecs or httpgateway pod replicas
to maintain the average memory utilization you specified across all pods.

Note:

Only the ecs pod and httpgateway pod (with NRF disabled) will be scaled up
and down.

• cpuLimit: Set this to the maximum amount of CPU that a pod can utilize.

• cpuRequest: Set this to the minimum CPU amount, in milli-cores, that must be
available in a Kubernetes node to deploy a pod. For example, enter 1000m for 1 CPU
core.

If the minimum CPU amount is not available, the pod's status is set to Pending.

• memoryLimit: Set this to the maximum amount of memory that a pod can utilize. The
default is 3 Gi for the ecs pod.

• memoryRequest: Set this to the minimum amount of memory required for a
Kubernetes node to deploy a pod. The default is 2 Gi for the ecs pod.

If the minimum amount is not available, the pod's status is set to Pending.

• scaleDownStabilizationWindowSeconds: Specifies the duration, in seconds, of the
stabilization window when scaling down pods. Oracle recommends using a value of
120 seconds or more.

• disableHpaScaleDown: Set this to true to prevent the Horizontal Pod Autoscaler from
scaling down the pod.

This shows sample entries for the httpgateway pod:

httpgateway:
 httpgatewayList:
 - coherenceMemberName: "httpgateway1"
 maxreplicas: 3
 averageCpuUtilization: 70
 averageMemoryUtilization: ""
 cpuLimit: 2000m
 cpuRequest: 1000m
 memoryLimit: 3Gi
 memoryRequest: 1Gi
 scaleDownStabilizationWindowSeconds: 120
 disableHpaScaleDown: "false"

 - coherenceMemberName: "httpgateway2"
 maxreplicas: 3
 averageCpuUtilization: 70
 averageMemoryUtilization: ""
 cpuLimit: 2000m
 cpuRequest: 1000m
 memoryLimit: 3Gi
 memoryRequest: 1Gi

Chapter 31
Setting up Autoscaling of ECE Pods

31-3

 scaleDownStabilizationWindowSeconds: 120
 disableHpaScaleDown: "false"

5. To lower the heap memory used by the ECE pods, set the appropriate JVM garbage
collection (GC) parameters in the jvmGCOpts key.

Memory-based scale down occurs only if the amount of pod memory decreases. You can
decrease pod memory by using JVM garbage collection (GC). For more information about
JVM GC, see the "Java Garbage Collection Basics" tutorial.

6. Under the ecs, ecs1, and httpgatewayn sections, set the replicas key based on your
configured Horizontal Pod Autoscaler values. For example, the number of replicas should
meet the average resource consumption requirements you set in
averageMemoryUtilization.

This prevents the autoscaler from scaling down the ECE pods during the Helm upgrade,
which could result in cache data loss.

7. Save and close your override-values.yaml file.

8. Enable Horizontal Pod Autoscaler in ECE by running the helm upgrade command for oc-
cn-ece-helm-chart:

helm upgrade EceReleaseName oc-cn-ece-helm-chart --namespace BrmNameSpace
--values OverrideValuesFile

where:

• EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to track
this installation instance.

• BrmNameSpace is the namespace in which the BRM Kubernetes objects reside.

• OverrideValuesFile is the path to the YAML file that overrides the default configurations
in the values.yaml file.

Rolling Restart of ECE Pods
You can force a rolling restart of any ECE pod. If you restart a pod with multiple replicas, the
pod replicas are restarted in reverse order. For example, if the ecs pod contains three replicas,
the replicas are restarted in this order: 3, 2, 1.

To force a rolling restart of one or more ECE pods:

1. In your override-values.yaml file for oc-cn-ece-helm-chart, increment the appropriate
pod's restartCount key by 1. For example, if the key was set to 3, you would increment it
to 4.

Table 31-1 lists the keys to use for restarting each ECE pod.

Table 31-1 Keys for Restarting ECE Pods

ECE Pod Key

ecs charging.ecs.restartCount

pricingupdater charging.pricingupdater.restartCount

customerupdater customerUpdater.customerUpdaterList.[N].restartCount1

emgateway emgateway.emgatewayList.[N].restartCount1

Chapter 31
Rolling Restart of ECE Pods

31-4

Table 31-1 (Cont.) Keys for Restarting ECE Pods

ECE Pod Key

diametergateway diametergateway.diametergatewayList.[N].restartCount1

httpgateway httpgateway.httpgatewayList.[N].restartCount1

brmgateway brmgateway.brmgatewayList.[N].restartCount1

radiusgateway radiusgateway.radiusgatewayList.[N].restartCount1

ratedeventformatter ratedEventFormatter.ratedEventFormatterList.
[N].restartCount1

monitoringagent monitoringAgent.monitoringAgentList.[N].restartCount1

Notes:

(1) N represents the item block list, which is indicated by a dash (–) in the override-
values.yaml file.

2. Perform a helm upgrade to update the Helm release:

helm upgrade EceReleaseName oc-cn-ece-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

Chapter 31
Rolling Restart of ECE Pods

31-5

32
Monitoring ECE in a Cloud Native
Environment

You can monitor the system processes, such as memory and thread usage, in your Oracle
Communications Elastic Charging Engine (ECE) components in a cloud native environment.

Topics in this document:

• About Monitoring ECE in a Cloud Native Environment

• Enabling ECE Metric Endpoints

• Sample Prometheus Operator Configuration

• ECE Cloud Native Metrics

About Monitoring ECE in a Cloud Native Environment
You can set up monitoring of your ECE components in a cloud native environment. When
configured to do so, ECE exposes JVM, Coherence, and application metric data through a
single HTTP endpoint in an OpenMetrics/Prometheus exposition format. You can then use an
external centralized metrics service, such as Prometheus, to scrape the ECE cloud native
metrics and store them for analysis and monitoring.

Note:

• ECE only exposes the metrics on an HTTP endpoint. It does not provide the
Prometheus service.

• Do not modify the oc-cn-ece-helm-chart/templates/ece-ecs-
metricsservice.yaml file. It is used only during ECE startup and rolling
upgrades. It is not used for monitoring.

ECE cloud native exposes metric data for the following components by default:

• ECE Server

• BRM Gateway

• Customer Updater

• Diameter Gateway

• EM Gateway

• HTTP Gateway

• CDR Formatter

• Pricing Updater

• RADIUS Gateway

32-1

• Rated Event Formatter

Setting up monitoring of these ECE cloud native components involves the following high-level
tasks:

1. Ensuring that the ECE metric endpoints are enabled. See "Enabling ECE Metric
Endpoints".

ECE cloud native exposes metric data through the following endpoint: http://
localhost:19612/metrics.

2. Setting up a centralized metrics service, such as Prometheus Operator, to scrape metrics
from the endpoint.

For an example of how to configure Prometheus Operator to scrape ECE metric data, see
"Sample Prometheus Operator Configuration".

3. Setting up a visualization tool, such as Grafana, to display your ECE metric data in a
graphical format.

Enabling ECE Metric Endpoints
The default ECE cloud native configuration exposes JVM, Coherence, and application metric
data for all ECE components to a single REST endpoint. If you create additional instances of
ECE components, you must configure them to expose metric data.

To ensure that the ECE metric endpoints are enabled:

1. Open your override-values.yaml file for oc-cn-ece-helm-chart.

2. Verify that the charging.metrics.port key is set to the port number where you want to
expose the ECE metrics. The default is 19612.

3. Verify that each ECE component instance has metrics enabled.

Each application role under the charging key can be configured to enable or disable
metrics. In the jvmOpts key, setting the ece.metrics.http.service.enabled option enables
(true) or disables (false) the metrics service for that role.

For example, these override-values.yaml entries would enable the metrics service for
ecs1.

charging:
 labels: "ece"
 jmxport: "9999"
 …
 metrics:
 port: "19612"
 ecs1:
 jmxport: ""
 replicas: 1
 …
 jvmOpts: "-Dece.metrics.http.service.enabled=true"
 restartCount: "0"

4. Save and close your override-values.yaml file.

Chapter 32
Enabling ECE Metric Endpoints

32-2

5. Run the helm upgrade command to update your ECE Helm release:

helm upgrade EceReleaseName oc-cn-ece-helm-chart --namespace EceNameSpace
--values OverrideValuesFile

where:

• EceReleaseName is the release name for oc-cn-ece-helm-chart.

• EceNameSpace is the namespace in which to create ECE Kubernetes objects for the
ECE Helm chart.

• OverrideValuesFile is the name and location of your override-values.yaml file for oc-
cn-ece-helm-chart.

Sample Prometheus Operator Configuration
After installing Prometheus Operator, you configure it to scrape metrics from the ECE metric
endpoint. The following shows sample entries you can use to create Prometheus Service and
ServiceMonitor objects that scrape ECE metric data.

This sample creates a Service object that specifies to:

• Select all pods with the app label ece

• Scrape metrics from port 19612

apiVersion: v1
kind: Service
metadata:
 name: prom-ece-metrics
 labels:
 application: prom-ece-metrics
spec:
 ports:
 - name: metrics
 port: 19612
 protocol: TCP
 targetPort: 19612
 selector:
 app: ece
 sessionAffinity: None
 type: ClusterIP
 clusterIP: None

This sample creates a ServiceMonitor object that specifies to:

• Select all namespaces with ece in their name

• Select all Service objects with the application label prom-ece-metrics

• Scrape metrics from the HTTP path /metrics every 15 seconds

kind: ServiceMonitor
metadata:
 name: prom-ece-metrics
spec:
 endpoints:

Chapter 32
Sample Prometheus Operator Configuration

32-3

 - interval: 15s
 path: /metrics
 port: metrics
 scheme: http
 scrapeTimeout: 10s
 namespaceSelector:
 matchNames:
 - ece
 selector:
 matchLabels:
 application: prom-ece-metrics

For more information about configuring Prometheus Operator, see https://github.com/
prometheus-operator/prometheus-operator/tree/main/Documentation.

ECE Cloud Native Metrics
ECE cloud native collects metrics in the following groups to produce data for monitoring your
ECE components:

• BRS Metrics

• BRS Queue Metrics

• CDR Formatter Metrics

• Coherence Metrics

• Diameter Gateway Metrics

• EM Gateway Metrics

• JVM Metrics

• Kafka JMX Metrics

• Kafka Client Metrics

• Micrometer Executor Metrics

• RADIUS Gateway Metrics

• Rated Event Formatter (REF) Metrics

• Rated Events Metrics

• Session Metrics

Note:

Additional labels in the metrics indicates the name of the executor.

BRS Metrics
The BRS Metrics group contains the metrics for tracking the throughput and latency of the
charging clients that use batch request service (BRS).

Table 32-1 lists the metrics in this group.

Chapter 32
ECE Cloud Native Metrics

32-4

https://github.com/prometheus-operator/prometheus-operator/tree/main/Documentation
https://github.com/prometheus-operator/prometheus-operator/tree/main/Documentation

Table 32-1 BRS Metrics

Metric Name Type Description

ece.brs.message.receive Counter Tracks how many messages have been received.

ece.brs.message.send Counter Tracks how many messages have sent.

ece.brs.task.processed Counter Tracks the total number of requests accepted,
processed, timed out, or rejected by the ECE
component.

You can use this to track the approximate processing
rate over time, aggregated across all client applications,
and so on.

ece.brs.task.pending.count Gauge Contains the number of requests that are pending for
each ECE component.

ece.brs.current.latency.by.typ
e

Gauge Tracks the latency of a charging client for each service
type in the current query interval. These metrics are
segregated and exposed from the BRS layer per service
type and include event_type, product_type, and
op_type tags.

This metric provides the latency information for the
following operation types: Initiate, Update, Terminate,
Cancel, Price_Enquiry, Balance_Query,
Debit_Amount, Debit_Unit, Refund_Amount, and
Refund_Unit.

ece.brs.current.latency Gauge Tracks the current operation latency for a charging client
in the current scrape interval.

This metric contains the BRS statistics tracked using the
charging.brsConfigurations MBean attributes. This
configuration tracks the maximum and average latency
for an operation type since the last query. The maximum
window size for collecting this data is 30 seconds, so the
query has to be run every 30 seconds.

This metric provides the latency information for the
following operation types: Initiate, Update, Terminate,
Cancel, Price_Enquiry, Balance_Query,
Debit_Amount, Debit_Unit, Refund_Amount,
Refund_Unit, and Spending_Limit_Report.

ece.brs.retry.queue.phase.co
unt

Counter Tracks the count of operations performed on the retry
queue.
Additional Label: phase

ece.brs.task.resubmit Counter Tracks the number of tasks that were scheduled for retry.
Additional Label: resubmitReason

ece.brs.task.retry.count Counter Tracks the distributions of the number of retries
performed for a retried request.
Additional Label: source, retries

ece.brs.task.retry.distribution Distribution
Summary

Tracks the distributions of the number of retries
performed for a retried request.
Additional Label: source

Reactor Netty ConnectionProvider Metrics

The Reactor Netty ConnectionProvider Metrics group contains standard metrics that provide
insights into the pooled ConnectionProvider which supports built-in integration with Micrometer.
Table 32-2 lists the metrics in this group.

Chapter 32
ECE Cloud Native Metrics

32-5

For additional information about Reactor Netty ConnectionProvider Metrics, see "Reactor Netty
Reference Guide" in the Project Reactor documentation for more information: https://
projectreactor.io/docs/netty/1.1.17/reference/index.html.

Table 32-2 Reactor Netty ConnectionProvider Metrics

Metric Name Type Description

reactor.netty.connection.provi
der.total.connections

Gauge Tracks the number of active or idle connections.

reactor.netty.connection.provi
der.active.connections

Gauge Tracks the number of connections that have been
successfully acquired and are in active use.

reactor.netty.connection.provi
der.max.connections

Gauge Tracks the maximum number of active connections that
are allowed.

reactor.netty.connection.provi
der.idle.connections

Gauge Tracks the number of idle connections.

reactor.netty.connection.provi
der.pending.connections

Gauge Tracks the number of requests that are waiting for a
connection.

reactor.netty.connection.provi
der.pending.connections.time

Timer Tracks the time spent waiting to acquire a connection
from the connection pool.

reactor.netty.connection.provi
der.max.pending.connections

Gauge Tracks the maximum number of requests that are
queued while waiting for a ready connection.

Reactor Netty HTTP Client Metrics

The Reactor Netty HTTP Client Metrics group contains standard metrics that provide insights
into the HTTP client which supports built-in integration with Micrometer. Table 32-3 lists the
metrics in this group.

For additional information about Reactor Netty ConnectionProvider Metrics, see "Reactor Netty
Reference Guide" in the Project Reactor documentation for more information: https://
projectreactor.io/docs/netty/1.1.17/reference/index.html.

Table 32-3 Reactor Netty HTTP Client Metrics

Metric Name Type Description

reactor.netty.http.client.data.re
ceived

DistributionSu
mmary

Tracks the amount of data received, in bytes.

reactor.netty.http.client.data.s
ent

DistributionSu
mmary

Tracks the amount of data sent, in bytes.

reactor.netty.http.client.errors Counter Tracks the number of errors that occurred.

reactor.netty.http.client.tls.han
dshake.time

Timer Tracks the amount of time spent for TLS handshakes.

reactor.netty.http.client.conne
ct.time

Timer Tracks the amount of time spent connecting to the
remote address.

reactor.netty.http.client.addres
s.resolver

Timer Tracks the amount of time spent resolving the remote
address.

reactor.netty.http.client.data.re
ceived.time

Timer Tracks the amount of time spent consuming incoming
data.

reactor.netty.http.client.data.s
ent.time

Timer Tracks the amount of time spent in sending outgoing
data.

Chapter 32
ECE Cloud Native Metrics

32-6

https://projectreactor.io/docs/netty/1.1.17/reference/index.html
https://projectreactor.io/docs/netty/1.1.17/reference/index.html
https://projectreactor.io/docs/netty/1.1.17/reference/index.html
https://projectreactor.io/docs/netty/1.1.17/reference/index.html

Table 32-3 (Cont.) Reactor Netty HTTP Client Metrics

Metric Name Type Description

reactor.netty.http.client.respon
se.time

Timer Tracks the total time for the request or response.

BRS Queue Metrics
The BRS Queue Metrics group contains the metrics for tracking the throughput and latency of
the BRS queue. Table 32-4 lists the metrics in this group.

Table 32-4 BRS Queue Metrics

Metric Type Description

ece.eviction.queue.size Gauge Tracks the number of items in the queue.

ece.eviction.queue.eviction.ba
tch.size

Gauge Tracks the number of queue items the eviction cycle
processes in each iteration.

ece.eviction.queue.time Timer Tracks the amount of time items spend in the queue.

ece.eviction.queue.operation.
duration

Timer Tracks the time it takes to perform an operation on the
queue.

ece.eviction.queue.scheduled
.operation.duration

Timer Tracks the time it takes to perform a scheduled
operation on the queue.

ece.eviction.queue.operation.f
ailed

Counter Counts the number of failures for a queue operation.

CDR Formatter Metrics
The CDR Formatter Metrics group contains the metrics for tracking Charging Function (CHF)
records. Table 32-5 lists the metrics in this group.

Table 32-5 CDR Formatter Metrics

Metric Name Metric Type Description

ece.chf.records.processed Counter Tracks the total number of CHF records the CDR
formatter has processed.

ece.chf.records.purged Counter Tracks the total number of CHF records the CDR
formatter purged.

ece.chf.records.loaded Counter Tracks the total number of CHF records the CDR
formatter has loaded.

Coherence Metrics
All Coherence metrics that are available through the Coherence metrics endpoint are also
accessible through the ECE metrics endpoint.

• For details of the Coherence metrics, see "Oracle Coherence MBeans Reference" in
Oracle Fusion Middleware Managing Oracle Coherence

Chapter 32
ECE Cloud Native Metrics

32-7

https://docs.oracle.com/en/middleware/fusion-middleware/coherence/14.1.2/manage/oracle-coherence-mbeans-reference.html

• For information about querying Coherence metrics, see "Querying for Coherence Metrics"
in Oracle Fusion Middleware Managing Oracle Coherence

Diameter Gateway Metrics
The Diameter Gateway group contains metrics on events processed by the Diameter Gateway.
Table 32-6 lists the metrics in this group.

Table 32-6 Diameter Gateway Metrics

Metric Name Type Description

ece.requests.by.result.code Counter Tracks the total number of requests processed for each
result code.

ece.diameter.current.latency.b
y.type

Gauge Tracks the latency of an Sy request for each operation
type in the current query interval. The
SLR_INITIAL_REQUEST,
SLR_INTERMEDIATE_REQUEST, and STR operations
are tracked.

ece.diameter.session.count Gauge Tracks the count of the currently cached diameter
sessions.

Additional label: Identity

ece.diameter.session.cache.c
apacity

Gauge Tracks the maximum number of diameter session cache
entries.

Additional label: Identity

ece.diameter.session.sub.cou
nt

Gauge Tracks the count of currently cached active ECE
sessions. This is the count of sessions in the right side
of the session map
(MapString,MapString,DiameterSession).

ece.diameter.notification.requ
ests.sent

Timer Tracks the amount of time taken to send a diameter
notification.

Additional labels: protocol, notificationType, result

EM Gateway Metrics
The EM Gateway Metrics group contains standard metrics that provide insights into the current
status of your EM Gateway activity and tasks. Table 32-7 lists the metrics in this group.

Table 32-7 EM Gateway Metrics

Metric Name Type Description

ece.emgw.processing.latency Timer Tracks the overall time taken in the EM Gateway.

Additional label: handler

ece.emgw.handler.processing
.latency

Timer Tracks the total processing time taken for each request
processed by a handler.

Additional label: handler

ece.emgw.handler.processing
.latency.by.phase

Timer Tracks the time it takes to send a request to the
dispatcher or BRS.

Additional label: phase,handler

ece.emgw.handler.error.count Counter Tracks the number of failed requests.

Additional label: handler, failureReason

Chapter 32
ECE Cloud Native Metrics

32-8

https://docs.oracle.com/en/middleware/fusion-middleware/coherence/14.1.2/manage/using-coherence-metrics.html#COHMG-GUID-A163B2EC-C30E-4069-BEF4-F07D56765051

Table 32-7 (Cont.) EM Gateway Metrics

Metric Name Type Description

ece.emgw.opcode.formatter.e
rror

Counter Tracks the number of opcode formatter errors.

Additional label: phase

JVM Metrics
The JVM Metrics group contains standard metrics about the central processing unit (CPU) and
memory utilization of JVMs which are members of the ECE grid. Table 32-8 lists the metrics in
this group.

Table 32-8 JVM Metrics

Metric Name Type Description

jvm.memory.bytes.init Gauge Contains the initial size, in bytes, for the Java heap and
non-heap memory.

jvm.memory.bytes.committed Gauge Contains the committed size, in bytes, for the Java heap
and non-heap memory.

jvm.memory.bytes.used Gauge Contains the amount , in bytes of Java heap and non-
heap memory that are in use.

jvm.memory.bytes.max Gauge Contains the maximum size, in bytes, for the Java heap
and non-heap memory.

jvm.memory.pool.bytes.init Gauge Contains the initial size, in bytes, of the following JVM
memory pools: G1 Survivor Space, G1 Old Gen, and
G1 Survivor Space.

jvm.memory.pool.bytes.comm
itted

Gauge Contains the committed size, in bytes, of the following
JVM memory pools: G1 Survivor Space, G1 Old Gen,
and G1 Survivor Space.

jvm.memory.pool.bytes.used Gauge Contains the amount in bytes, of Java memory space in
use by the following JVM memory pools: G1 Survivor
Space, G1 Old Gen, and G1 Survivor Space.

jvm.buffer.count.buffers Gauge Contains the estimated number of mapped and direct
buffers in the JVM memory pool.

jvm.buffer.total.capacity.bytes Gauge Contains the estimated total capacity, in bytes, of the
mapped and direct buffers in the JVM memory pool.

process.cpu.usage Gauge Contains the CPU percentage for each ECE component
on the server. This data is collected from the
corresponding MBean attributes by JVMs.

process.files.open.files Gauge Contains the total number of file descriptors currently
available for an ECE component and the descriptors in
use for that ECE component.

coherence.os.system.cpu.loa
d

Gauge Contains the CPU load information percentage for each
system in the cluster.

These statistics are based on the average data collected
from all the ECE grid members running on a server.

Chapter 32
ECE Cloud Native Metrics

32-9

Table 32-8 (Cont.) JVM Metrics

Metric Name Type Description

system.load.average.1m Gauge Contains the system load average (the number of items
waiting in the CPU run queue) for each machine in the
cluster.

These statistics are based on the average data collected
from all the ECE grid members running on a server.

coherence.os.free.swap.spac
e.size

Gauge Contains system swap usage information (by default in
megabytes) for each system in the cluster.

These statistics are based on the average data collected
from all the ECE grid members running on a server.

Kafka JMX Metrics
The Kafka JMX Metrics group contains metrics for tracking the throughput and latency of the
Kafka server and topics. Table 32-9 lists the metrics in this group.

Table 32-9 Kafka JMX Metrics

Metric Name Type Description

kafka.app.info.start.time.ms Gauge Indicates the start time in milliseconds.

kafka.producer.connection.clo
se.rate

Gauge Contains the number of connections closed per second.

kafka.producer.io.ratio Gauge Contains the fraction of time the I/O thread spent doing
I/O.

kafka.producer.io.wait.time.ns
.total

Counter Contains the total time the I/O thread spent waiting.

kafka.producer.iotime.total Counter Contains the total time the I/O thread spent doing I/O.

kafka.producer.metadata.wait.
time.ns.total

Counter Contains the total time, in nanoseconds the producer
has spent waiting on topic metadata.

kafka.producer.node.request.l
atency.max

Gauge Contains the maximum latency, in milliseconds of
producer node requests.

kafka.producer.record.error.to
tal

Counter Contains the total number of record sends that resulted
in errors.

kafka.producer.txn.begin.time.
ns.total

Counter Contains the total time, in nanoseconds the producer
has spent in beginTransaction.

kafka.producer.txn.commit.tim
e.ns.total

Counter Contains the total time, in nanoseconds the producer
has spent in commitTransaction.

Kafka Client Metrics
The Kafka Client Metrics group contains metrics for tracking the throughput, latency, and
performance of Kafka producer and consumer clients.

Chapter 32
ECE Cloud Native Metrics

32-10

Note:

All Kafka producer metrics apply to the ECS and BRM Gateway. All Kafka consumer
metrics apply to the BRM Gateway, HTTP Gateway, and Diameter Gateway.

For more information about the available metrics, refer to the following Apache Kafka
documentation:

• Producer Metrics: https://kafka.apache.org/36/generated/producer_metrics.html

• Consumer Metrics: https://kafka.apache.org/36/generated/consumer_metrics.html

Micrometer Executor Metrics
The Micrometer Executor Metrics group contains standard metrics that provide insights into the
activity of your thread pool and the status of tasks. These metrics are created by Micrometer, a
third party software. Table 32-10 lists the metrics in this group.

Note:

The Micrometer API optionally allows a prefix to the name. In the table below, replace
prefix with ece.brs for BRS metrics or ece.emgw for EM Gateway metrics.

Table 32-10 Micrometer Executor Metrics

Metric Name Type Description

prefix.executor.completed.tas
ks

FunctionCoun
ter

Tracks the approximate total number of tasks that have
completed execution.
Additional label: Identity

prefix.executor.active.threads Gauge Tracks the approximate number of threads that are
actively executing tasks.
Additional label: Identity

prefix.executor.queued.tasks Gauge Tracks the approximate number of tasks that are queued
for execution.
Additional label: Identity

prefix.executor.queue.remaini
ng.tasks

Gauge Tracks the number of additional elements that this queue
can ideally accept without blocking.
Additional label: Identity

prefix.executor.pool.size.threa
ds

Gauge Tracks the current number of threads in the pool.
Additional label: Identity

prefix.executor.pool.core.thre
ads

Gauge Tracks the core number of threads in the pool.
Additional label: Identity

prefix.executor.pool.max.threa
ds

Gauge Tracks the maximum allowed number of threads in the
pool.
Additional label: Identity

Chapter 32
ECE Cloud Native Metrics

32-11

https://kafka.apache.org/36/generated/producer_metrics.html
https://kafka.apache.org/36/generated/consumer_metrics.html

RADIUS Gateway Metrics
The RADIUS Gateway Metrics group contains standard metrics that track the customer usage
of services. Table 32-11 lists the metrics in this group.

Table 32-11 RADIUS Gateway Metrics

Metric Name Type Description

ece.radius.sent.disconnect.message.cou
nter.total

Counter Tracks the number of unique disconnect
messages sent to the Network Access Server
(NAS), excluding the retried ones.

ece.radius.retried.disconnect.message.c
ounter.total

Counter Tracks the number of retried disconnect
messages, excluding the total number of
retries.

ece.radius.successful.disconnect.messa
ge.counter.total

Counter Tracks the number of successful disconnect
messages.

ece.radius.failed.disconnect.message.co
unter.total

Counter Tracks the number of failed disconnect
messages.

ece.radius.auth.extension.user.data.late
ncy

Timer Tracks the following:

• The latency of converting a customer into
an extension customer.

• The latency of converting a balance into
an extension balance map.

• The latency of how long it takes to get a
user data response from the user data.

Rated Event Formatter (REF) Metrics
The Rated Event Formatter (REF) Metrics group contains standard metrics that provide
insights into the current status of your REF activity and tasks. Table 32-12 lists the metrics in
this group.

Table 32-12 REF Metrics

Metric Name Type Description

ece.rated.events.checkpoint.i
nterval

Gauge Tracks the time, in seconds, used by the REF instance
to read a set of rated events at a specific time interval.

ece.rated.events.ripe.duration Gauge Tracks the duration, in seconds, that rated events have
existed before they can be processed.

ece.rated.events.worker.count Gauge Contains the number of worker threads used to process
rated events.

ece.rated.events.phase.latenc
y

Timer Tracks the amount of time taken to complete a rated
event phase. This only measures successful phases.

Additional labels: phase, siteName

ece.rated.events.phase.failed Counter Tracks the number of rated event phase operations that
have failed.

Additional labels: phase, siteName

Chapter 32
ECE Cloud Native Metrics

32-12

Table 32-12 (Cont.) REF Metrics

Metric Name Type Description

ece.rated.events.checkpoint.a
ge

Gauge Tracks the difference in time between the retrieved data
and the current time stamp.

Additional labels: phase, siteName

ece.rated.events.batch.size Gauge Tracks the number of rated events retrieved on each
iteration.

Additional labels: phase, siteName

Rated Events Metrics
The Rated Events Metrics group contains metrics on rated events processed by ECE server
sessions. Table 32-13 lists the metrics in this group.

Table 32-13 Rated Events Metrics

Metric Name Type Description

ece.rated.events.formatted Counter Contains the number of successful or failed formatted
rated events per RatedEventFormatter worker thread
upon each formatting job operation.

ece.rated.events.cached Counter Contains the total number of rated events cached by
each ECE node.

ece.rated.events.inserted Counter Contains the total number of rated events that were
successfully inserted into the database.

ece.rated.events.insert.failed Counter Contains the total number of rated events that failed to
be inserted into the database.

ece.rated.events.purged Counter Contains the total number of rated events that are
purged.

ece.requests.by.result.code Counter Tracks the total number of requests processed for each
result code.

Session Metrics
The Session Metrics group contains metrics on ECE server sessions. Table 32-14 lists the
metrics in this group.

Table 32-14 Session Metrics

Metric Name Type Description

ece.session.metrics Counter Contains the total number of sessions opened or closed
by rating group, node, or cluster.

Chapter 32
ECE Cloud Native Metrics

32-13

A
WebLogic-Based Application Metrics

This appendix lists the WebLogic-based application metrics supported by the Oracle
Communications Billing and Revenue Management (BRM) cloud native deployment.

WebLogic Monitoring Exporter collects metrics in the following groups to produce data for
monitoring Pricing Design Center (PDC), Business Operations Center, Billing Care, and Billing
Care REST API in a cloud native environment:

• WLS Server Metrics Group

• Application Runtime Metric Group

• Servlets Metric Group

• JVM Runtime Metric Group

• Execute Queue Runtime Metric Group

• Work Manager Runtime Metric Group

• Thread Pool Runtime Metric Group

• JDBC Service Runtime Metric Group

• JTA Runtime Metric Group

• WLS Scrape MBean Metric Group

• Persistent Store Runtime MBean Metric Group

WLS Server Metrics Group
Use the WLS server metrics group to retrieve runtime information about a server instance and
to transition a server from one state to another. Table A-1 lists the metrics in this group.

Table A-1 WLS Server Metrics

Metric Name Label Metric
Type

Description

wls_server_activation_time location long Returns the time when the server was started.

wls_server_admin_server_listen_p
ort

location int Returns the port on which this server is listening for
requests.

wls_server_open_sockets_current_
count

location int Returns the current number of sockets registered for socket
muxing on this server.

wls_server_state_val location int Returns the current state of the server as an integer:

• 0: Shutdown
• 1: Starting
• 2: Running

A-1

Application Runtime Metric Group
Use the application runtime metric group to collect runtime information about a deployed
enterprise application. Table A-2 describes the metrics in the group.

Table A-2 Application Runtime Metrics

Metric Name Label Metric
Type

Description

wls_webapp_config_deployment_st
ate

location

app

name

int Returns the current state of the deployment as an integer.

wls_webapp_config_open_sessions
_current_count

location

app

name

int Returns the current number of open sessions in this module.

wls_webapp_config_open_sessions
_high_count

location

app

name

int Returns the highest number of open sessions on this server
at any one time.

wls_webapp_config_sessions_open
ed_total_count

location

app

name

int Returns the total number of sessions that were opened.

Servlets Metric Group
Each WAR file can contain multiple servlets, and each WAR file can be integrated into an
enterprise archive (EAR). Use the servlets metric group to obtain runtime information about a
web application and each servlet. Table A-3 describes the metrics in this group.

Table A-3 Servlets Metrics

Metric Name Label Metric
Type

Description

wls_servlet_execution_time_averag
e

location

app name

servletNa
me

long Displays the average amount of time, in milliseconds, it took
to run all invocations of the servlet since it was most recently
deployed.

wls_servlet_execution_time_high location

app name

servletNa
me

long Displays the average amount of time, in milliseconds, that
the single longest invocation of the servlet has run since it
was most recently deployed.

wls_servlet_execution_time_low location

app name

servletNa
me

long Displays the average amount of time, in milliseconds, that
the single shortest invocation of the servlet has run since it
was most recently deployed.

Appendix A
Application Runtime Metric Group

A-2

Table A-3 (Cont.) Servlets Metrics

Metric Name Label Metric
Type

Description

wls_servlet_execution_time_total location

app name

servletNa
me

long Displays the average amount of time, in milliseconds, that all
invocations of the servlet have run since it was most recently
deployed.

wls_servlet_invocation_total_count location

app name

servletNa
me

int Displays the total number of times the servlet has been
invoked since WebLogic Server started.

wls_servlet_pool_max_capacity location

app name

servletNa
me

int Displays the maximum capacity of this servlet for single-
thread model servlets.

wls_servlet_reload_total_count location

app name

servletNa
me

int Displays the number of times the WebLogic Server has
reloaded the servlet since it was last deployed. WebLogic
Server typically reloads a servlet if it has been modified.

JVM Runtime Metric Group
Use the JVM runtime metric group to retrieve information about the Java Virtual Machine (JVM)
that the current server instance is running. Table A-4 describes the metrics in this group.

Table A-4 JVM Runtime Metrics

Metric Name Labels Metric
Type

Description

wls_jvm_heap_free_current name long Returns the current amount of memory, in bytes, that is
available in the JVM heap.

wls_jvm_heap_free_percent name int Returns the percentage of the JVM heap that is free.

wls_jvm_heap_size_current name long Returns the current size, in bytes, of the JVM heap.

wls_jvm_heap_size_max name long Returns the maximum size, in bytes, of the JVM heap.

wls_jvm_process_cpu_load name time Returns the amount of CPU time the Java virtual machine
runs in nanoseconds.

wls_jvm_uptime name long Returns the number of milliseconds the virtual machine has
been running.

Execute Queue Runtime Metric Group
Use the execute queue runtime metric group to return information about the queue. Table A-5
describes the metrics in this group.

Appendix A
JVM Runtime Metric Group

A-3

Table A-5 Execute Queue Runtimes Metrics

Metric Name Labels Metric
Type

Description

wls_socketmuxer_pending_request
_current_count

name int Returns the number of waiting requests in the queue.

Work Manager Runtime Metric Group
Use the work manager runtime metric group to retrieve information about requests from the
work manager. Table A-6 describes the metrics in this group.

Table A-6 Work Manager Runtime Metrics

Metric Name Label Metric
Type

Description

wls_workmanager_completed_requ
ests

name int Returns the number of requests that have been processed.

wls_workmanager_pending_reques
ts

name int Returns the number of waiting requests in the queue.

wls_workmanager_stuck_thread_co
unt

name int Returns the number of stuck threads in the thread pool.

Thread Pool Runtime Metric Group
Use the thread pool runtime metric group to monitor the self-tuning queue. Table A-7 describes
the metrics in this group.

Table A-7 Thread Pool Runtime Metrics

Metric Name Label Metric
Type

Description

wls_threadpool_execute_thread_tot
al_count

name int Returns the total number of threads in the pool.

wls_threadpool_hogging_thread_co
unt

name int Returns the threads that are currently being held by a
request. These threads will either be declared as stuck after
the configured timeout period or be returned to the pool.

wls_threadpool_queue_length name int Returns the number of pending requests in the priority
queue.

wls_threadpool_stuck_thread_coun
t

name int Returns the number of stuck threads in the thread pool.

JDBC Service Runtime Metric Group
Use the JDBC service runtime metric group to retrieve runtime information about a server
instance and to transition a server from one state to another. Table A-8 describes the metrics in
this group.

Appendix A
Work Manager Runtime Metric Group

A-4

Table A-8 JDBC Service Runtime Metrics

Metric Name Label Metric
Type

Description

wls_datasource_active_connection
s_average_count

name int Returns the average number of active connections in this
data source instance.

wls_datasource_active_connection
s_current_count

name int Returns the number of connections currently in use by
applications.

wls_datasource_active_connection
s_high_count

name int Returns the highest number of active database connections
in this data source instance since the data source was
instantiated.

wls_datasource_commit_outcome_
retry_total_count

name int Returns the cumulative total number of commit outcome
query retries conducted before resolving the outcome or
exceeding the retry seconds in this data source since the
data source was deployed.

wls_datasource_connection_delay_
time

name int Returns the average amount of time, in milliseconds, that it
takes to create a physical connection to the database.

wls_datasource_connections_total_
count

name int Returns the cumulative total number of database
connections created in this data source since the data
source was deployed.

wls_datasource_curr_capacity_high
_count

name int Returns the highest number of database connections
available or in use (current capacity) in this data source
instance since the data source was deployed.

wls_datasource_curr_capacity name int Returns the current count of JDBC connections in the data
source's connection pool.

wls_datasource_deployment_state name int Returns the module's current deployment state.

wls_datasource_failed_repurpose_
count

name int Returns the number of repurpose errors that have occurred
since the data source was deployed.

wls_datasource_failed_reserve_req
uest_count

name int Returns the cumulative running count of connection requests
from this data source that could not be fulfilled.

wls_datasource_failures_to_reconn
ect_count

name int Returns the number of times that the data source attempted
to refresh a database connection and failed.

wls_datasource_highest_num_avail
able

name int Returns the highest number of database connections that
were idle and available to be used by an application at any
time in this data source instance since the data source was
deployed.

wls_datasource_highest_num_unav
ailable

name int Returns the highest number of database connections that
were in use by applications or being tested by the system in
this data source instance since the data source was
deployed.

wls_datasource_leaked_connection
_count

name int Returns the number of leaked connections.

wls_datasource_num_available name int Returns the number of database connections that are
currently idle and available to be used by applications in this
data source instance.

wls_datasource_num_unavailable name int Returns the number of connections currently in use by
applications or being tested in this data source instance.

wls_datasource_prep_stmt_cache_
access_count

name long Returns the cumulative running count of the number of times
that the statement cache was accessed.

Appendix A
JDBC Service Runtime Metric Group

A-5

Table A-8 (Cont.) JDBC Service Runtime Metrics

Metric Name Label Metric
Type

Description

wls_datasource_prep_stmt_cache_
add_count

name long Returns the cumulative running count of the number of
statements added to the statement cache.

wls_datasource_prep_stmt_cache_
current_size

name int Returns the number of prepared and callable statements
currently cached in the statement cache.

wls_datasource_prep_stmt_cache_
delete_count

name long Returns the cumulative running count of statements
discarded from the cache.

wls_datasource_prep_stmt_cache_
hit_count

name long Returns the cumulative running count of the number of times
that statements from the cache were used.

wls_datasource_prep_stmt_cache_
miss_count

name long Returns the number of times that a statement request could
not be satisfied with a statement from the cache.

wls_datasource_reserve_request_c
ount

name long Returns the cumulative running count of connection requests
from this data source.

wls_datasource_waiting_for_conne
ction_current_count

name int Returns the number of connection requests waiting for a
database connection.

wls_datasource_waiting_for_conne
ction_failure_total

name long Returns the cumulative running count of connection requests
from this data source that had to wait before getting a
connection and eventually failed to get a connection.

wls_datasource_waiting_for_conne
ction_high_count

name int Returns the highest number of application requests
concurrently waiting for a connection from this data source
instance.

wls_datasource_waiting_for_conne
ction_success_total

name long Returns the cumulative running count of connection requests
from this data source that had to wait before getting a
successful connection.

wls_datasource_waiting_for_conne
ction_total

name long Returns the cumulative running count of connection requests
from this data source that had to wait before getting a
connection. This includes requests that eventually got a
connection and those that did not get a connection.

JTA Runtime Metric Group
Use the JTA runtime metric group to access transaction runtime characteristics within
WebLogic Server. Table A-9 describes the metrics in this group.

Table A-9 JTA Runtime Metrics

Metric Name Label Metric
Type

Description

wls_jta_active_transactions_total_c
ount

name long Returns the number of active transactions on the server.

wls_jta_seconds_active_total_count name int Returns the total number of seconds that transactions were
active for all committed transactions.

wls_jta_transaction_abandoned_tot
al_count

name long Returns the total number of transactions that were
abandoned since the server was started.

wls_jta_transaction_committed_tota
l_count

name long Returns the total number of transactions committed since the
server was started.

Appendix A
JTA Runtime Metric Group

A-6

Table A-9 (Cont.) JTA Runtime Metrics

Metric Name Label Metric
Type

Description

wls_jta_transaction_heuristics_total
_count

name long Returns the number of completed transactions with a
heuristic status since the server was started.

wls_jta_transaction_llrcommitted_to
tal_count

name long Returns the total number of LLR transactions that were
committed since the server was started.

wls_jta_transaction_no_resources_
committed_total_count

name long Returns the total number of transactions with no enlisted
resources that were committed since the server was started.

wls_jta_transaction_one_resource_
one_phase_committed_total_count

name long Returns the total number of transactions with more than one
enlisted resource that were one-phase committed due to
read-only optimization since the server was started.

wls_jta_transaction_total_count name long Returns the total number of transactions processed. This
total includes all committed, rolled back, and heuristic
transaction completions since the server was started.

WLS Scrape MBean Metric Group
Use the WLS scrape metric group to monitor the performance of the WebLogic Server.
Table A-10 describes the metrics in this group.

Table A-10 WLS Scrape MBean Metrics

Metric Name Label Metric
Type

Description

wls_scrape_mbeans_count_total instance long Returns the number of metrics scraped.

wls_scrape_duration_seconds instance long Returns the time required to do the scrape.

wls_scrape_cpu_seconds instance long Returns the amount of time the CPU used during the scrape.

Persistent Store Runtime MBean Metric Group
Use the persistent store runtime MBean metric group to monitor a persistent store. Table A-11
describes the metrics in this group.

Table A-11 Persistent Store Runtime MBean Metrics

Metric Name Label Metric
Type

Description

wls_persistentstore_allocated_io_b
uffer_bytes

name long Returns the amount of off-heap (native) memory, in bytes,
reserved for file store use. When applicable, this is a multiple
of the file store configurable attribute IOBufferSize. This
applies to synchronous write, direct-write, and cache-flush
policies.

wls_persistentstore_allocated_wind
ow_buffer_bytes

name long Returns the amount of off-heap (native) memory, in bytes,
reserved for file store window buffer use. Applies to
synchronous write policies Direct-Write-With-Cache and
Disabled, but only when the native wlfileio library is loaded.

Appendix A
WLS Scrape MBean Metric Group

A-7

Table A-11 (Cont.) Persistent Store Runtime MBean Metrics

Metric Name Label Metric
Type

Description

wls_persistentstore_create_count name long Returns the number of create requests issued by this store.

wls_persistentstore_delete_count name long Returns the number of delete requests issued by this store.

wls_persistentstore_object_count name int Returns the number of objects contained in the connection.

wls_persistentstore_physical_write_
count

name long Returns the number of times the store flushed its data to
durable storage.

wls_persistentstore_read_count name long Returns the number of read requests issued by this store,
including requests that occur during store initialization.

wls_persistentstore_update_count name long Returns the number of update requests issued by this store.

Appendix A
Persistent Store Runtime MBean Metric Group

A-8

B
Supported Scripts and Utilities

This appendix lists the scripts and utilities that are supported out-of-the-box by the Oracle
Communications Billing and Revenue Management (BRM) cloud native deployment.

You configure and run these scripts and utilities by editing your override-values.yaml file and
then updating the Helm release:

• ImportExportPricing

• pin_virtual_time

• syncPDC

B-1

C
Supported Utilities and Applications for brm-
apps Jobs

This appendix lists the utilities and applications that are supported by the brm-apps job in your
Oracle Communications Billing and Revenue Management (BRM) cloud native deployment.

The brm-apps job facilitates the running of utilities and applications on demand without
entering a pod.

Table C-1 lists the applications that can be run by the brm-apps job.

Table C-1 Supported Applications

Directory Application

apps/pin_inv_doc_gen pin_inv_doc_gen

apps/pin_amt pin_amt
pin_amt_install.pl

apps/telco RunSimulator

apps/pin_aq pin_portal_sync_oracle.pl

apps/pin_billd pin_bill_day
pin_bill_accts
pin_deposit
pin_mass_refund
pin_refund
pin_deferred_act
pin_ledger_report
pin_recycle

apps/pin_collections pin_collect
pin_collections_process
pin_collections_send_dunning

apps/load_channel_config pin_channel_export

apps/pin_trial_bill pin_trial_bill_accts

apps/pin_ifw_sync pin_ifw_sync_oracle.pl

apps/pin_monitor pin_monitor_balance

apps/pin_bulk_adjust pin_apply_bulk_adjustment

apps/partition_utils partition_utils

apps/pin_sepa pin_sepa

apps/pin_ra_check_thresholds pin_ra_check_thresholds

apps/pin_event_extract pin_event_extract

apps/pin_rerate pin_rerate

apps/integrate_sync pin_history_on

apps/storable_class_to_xml storableclasstoxml

apps/load_config load_config

C-1

Table C-1 (Cont.) Supported Applications

Directory Application

apps/pin_inv pin_inv_send
pin_inv_export
pin_inv_accts

apps/pin_remit pin_remittance
pin_remit_month

apps/pin_export_price pin_export_price

apps/load_price_list loadpricelist

apps/cmt pin_cmt

apps/partition partitioning.pl

apps/multi_db pin_multidb.pl

Appendix C

C-2

D
Supported Load Utilities for Configurator Jobs

This appendix lists the load utilities that are supported by the configurator job in your Oracle
Communications Billing and Revenue Management (BRM) cloud native deployment.

The configurator job facilitates the running of load utilities on demand without entering into a
pod. You can use the configurator job to run these load utilities:

• load_ara_config_object

• load_channel_config

• load_config_dist

• load_config_item_tags

• load_config_item_types

• load_config_provisioning_tags

• load_content_srvc_profiles

• load_edr_field_mapping

• load_event_map

• load_localized_strings

• load_pin_ach

• load_pin_ar_taxes

• load_pin_batch_suspense_override_reason

• load_pin_batch_suspense_reason_code

• load_pin_beid

• load_pin_billing_segment

• load_pin_bill_suppression

• load_pin_business_profile

• load_pin_calendar

• load_pin_config_auth_reauth_info

• load_pin_config_batchstat_link

• load_pin_config_business_type

• load_pin_config_controlpoint_link

• load_pin_config_export_gl

• load_pin_config_ood_criteria

• load_pin_config_ra_alerts

• load_pin_config_ra_flows

• load_pin_config_ra_thresholds

• load_pin_customer_segment

D-1

• load_pin_dealers

• load_pin_device_permit_map

• load_pin_device_state

• load_pin_event_record_map

• load_pin_excluded_logins

• load_pin_impact_category

• load_pin_glchartaccts

• load_pin_glid

• load_pin_invoice_data_map

• load_pin_network_elements

• load_pin_notify

• load_pin_num_config

• load_pin_order_state

• load_pin_payment_term

• load_pin_recharge_card_type

• load_pin_remittance_flds

• load_pin_remittance_spec

• load_pin_rerate_flds

• load_pin_rtp_trim_flist

• load_pin_rum

• load_pin_service_framework_permitted_service_types

• load_pin_sim_config

• load_pin_snowball_distribution

• load_pin_spec_rates

• load_pin_sub_bal_contributor

• load_pin_suspense_editable_flds

• load_pin_suspense_edr_fld_map

• load_pin_suspense_override_reason

• load_pin_suspense_params

• load_pin_suspense_reason_code

• load_pin_telco_provisioning

• load_pin_telco_service_order_state

• load_pin_telco_tags

• load_pin_uniqueness

• load_pin_verify

• load_pin_voucher_config

• load_suspended_batch_info

• load_tax_supplier

Appendix D

D-2

• load_transition_type

• load_usage_map

• pin_bus_params

• pin_deploy

• pin_load_invoice_events

• pin_uei_deploy

• testnap

Appendix D

D-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	Part I Basic System Administration of BRM Cloud Native
	1 Managing Pods and PVCs in BRM Cloud Native
	Setting up Autoscaling of BRM Pods
	Automatically Rolling Deployments by Using Annotations
	Restarting BRM Pods
	Setting Minimum and Maximum CPU and Memory Values
	Using Static Volumes

	2 Running Applications and Utilities Outside Pods
	Running Load Utilities Through Configurator Jobs
	Running pin_bus_params and load_pin_device_state

	Running Load Utilities on Multischema Systems
	Running Applications and Utilities Through brm-apps Jobs
	Configuring MTA Performance Parameters

	Running Custom Applications and Utilities Through brm-apps
	Running Business Operations Through pin_job_executor Service

	3 Exposing Directories as ConfigMaps
	Configuring a CM ConfigMap Directory
	Exposing the taxcode_map File Example

	Configuring an EAI Publisher ConfigMap

	4 Managing a Helm Release
	About Helm Releases
	Tracking a Release's Status
	Updating a Helm Release
	Checking a Release's Revision
	Rolling Back a Release To a Previous Revision

	5 Managing Passwords in BRM Cloud Native
	About Using External Kubernetes Secrets
	Rotating the BRM Root Password
	Rotating the BRM Root Key
	Rotating the BRM Password
	Rotating BRM Role Passwords

	6 Managing Database Partitions
	Converting Nonpartitioned Classes to Partitioned Classes
	Adding Partitions to Your Database

	7 Improving Performance in BRM Cloud Native
	Deploying the CM and DM Containers in the Same Pod
	Tuning Your Application Connection Pools
	Configuring Multiple Replicas of Batch Controller
	Deploying Paymentech Data Manager in HA Mode

	8 Managing a BRM Cloud Native Multischema System
	Running Billing Against a Specified Schema
	Adding Schemas to a Multischema System
	Migrating Accounts from One Schema to Another
	Migrating Accounts Using Custom Search Criteria
	Modifying Database Schema Priorities
	Modifying Database Schema Status
	Synchronizing /uniqueness Objects Between Schemas

	9 Migrating Legacy Data to BRM Cloud Native
	About Migrating Legacy Data
	Loading Legacy Data into the BRM Database

	10 Creating Custom Fields and Storable Classes
	Creating, Editing, and Deleting Fields and Storable Classes using BRM SDK Opcodes
	Making the Data Dictionary Writable
	Running the BRM SDK Opcodes
	Making Custom Fields Available to Your PCM and C++ Applications
	Making Custom Fields Available to Your Java PCM Applications

	Moving Field and Storable Class Definitions Between BRM Servers with pin_deploy
	Extracting Field and Storable Class Definitions with pin_deploy
	Importing Field and Storable Class Definitions with pin_deploy

	Part II Monitoring BRM Cloud Native Services
	11 Monitoring BRM Cloud Native Services
	About Monitoring BRM Cloud Native Services
	Setting Up Monitoring for BRM Cloud Native Services
	Configuring BRM Cloud Native to Collect Metrics
	Configuring Perflib for BRM Opcode Monitoring
	Configuring OracleDB_Exporter to Scrape Database Metrics
	Configuring Grafana for BRM Cloud Native

	BRM Opcode Metric Group

	12 Monitoring and Autoscaling Business Operations Center Cloud Native
	About Monitoring and Autoscaling in Business Operations Center Cloud Native
	Setting Up Monitoring and Autoscaling in Business Operations Center
	Configuring WebLogic Monitoring Exporter to Scrape Metric Data
	Configuring webhook to Enable Autoscaling
	Configuring Standalone Prometheus for Business Operations Center
	Configuring Prometheus Operator for Business Operations Center
	Creating Grafana Dashboards for Business Operations Center

	Sample Prometheus Alert Rules for Business Operations Center

	13 Monitoring and Autoscaling Billing Care Cloud Native
	About Monitoring and Autoscaling in Billing Care Cloud Native
	Setting Up Monitoring and Autoscaling in Billing Care and Billing Care REST API
	Configuring WebLogic Monitoring Exporter to Scrape Metric Data
	Configuring Webhook to Enable Autoscaling
	Configuring Standalone Prometheus for Billing Care
	Configuring Prometheus Operator for Billing Care
	Creating Grafana Dashboards for Billing Care and Billing Care REST API

	Sample Prometheus Alert Rules for Billing Care and Billing Care REST API

	14 Monitoring and Autoscaling Pipeline Configuration Center Cloud Native
	About Monitoring and Autoscaling Pipeline Configuration Center Cloud Native
	Setting Up Monitoring and Autoscaling in Pipeline Configuration Center
	Configuring WebLogic Monitoring Exporter to Scrape Metric Data
	Configuring webhook to Enable Autoscaling
	Configuring Standalone Prometheus for Pipeline Configuration Center
	Configuring Prometheus Operator for Pipeline Configuration Center
	Creating Grafana Dashboards for Pipeline Configuration Center

	Sample Prometheus Alert Rules for Pipeline Configuration Center

	15 Monitoring BRM REST Services Manager Cloud Native
	About Monitoring BRM REST Services Manager Cloud Native
	Setting Up Monitoring for BRM REST Services Manager
	Creating Grafana Dashboards for BRM REST Services Manager
	Modifying Prometheus and Grafana Alert Rules After Deployment
	About REST Endpoints for Monitoring BRM REST Services Manager

	16 Tracing BRM REST Services Manager Cloud Native
	About BRM REST Services Manager Tracing
	Securing Communication with Zipkin
	Enabling Tracing in BRM REST Services Manager

	17 Tracing Opcode Processes
	Enabling Selective Opcode Tracing

	Part III Integrating with BRM Cloud Native
	18 Integrating with Your BRM Cloud Native Deployment
	Integrating with Thick Clients
	Using a Custom TLS Certificate
	Integrating with JCA Resource Adapter
	Integrating with Kafka Servers
	Integrating with Oracle Analytics Publisher
	Generating Invoices in Oracle Analytics Publisher

	Part IV Administering PDC Cloud Native Services
	19 Administering PDC Cloud Native Services
	Creating PDC Users
	Using Resource Limits in PDC Domain Pods

	20 Running PDC Applications
	About Running the PDC Utilities
	Importing Pricing and Setup Components with ImportExportPricing
	Importing from a Single XML File
	Importing Multiple XML Files from a Directory

	Exporting Pricing and Setup Components with ImportExportPricing
	Using SyncPDC to Synchronize Setup Components

	21 Monitoring PDC in a Cloud Native Environment
	About Monitoring PDC Cloud Native
	Setting Up Monitoring in PDC Cloud Native
	Creating Grafana Dashboards for Pricing Design Center

	22 Monitoring PDC REST Services Manager
	About PDC REST Services Manager Logs
	Accessing the PDC REST Services Manager Logs
	Changing the Log Levels
	Changing the Log Levels Using Helm
	Changing the Log Levels Using Kubernetes

	Changing the Default Log Manager Using Helm

	About PDC REST Services Manager Tracing
	Enabling Tracing in PDC REST Services Manager
	Using Trace Tags to Troubleshoot Issues

	About PDC REST Services Manager Metrics
	Checking Access to PDC REST Services Manager Metrics

	About Monitoring PDC REST Services Manager System Health
	Verifying the PDC REST Services Manager Pod Status
	Using the PDC REST Services Manager Health Endpoint

	23 Rotating PDC Log Files
	About Rotating PDC Log Files

	24 Managing Language Packs in PDC Pods
	Enabling Language Packs in PDC Pods

	25 Troubleshooting PDC Cloud Native
	Troubleshooting ImportExportPricing Errors

	Part V Administering ECE Cloud Native Services
	26 Administering ECE Cloud Native Services
	Running SDK Jobs
	Error Handling for SDK Jobs

	Changing the ECE Configuration During Runtime
	Creating a JMX Connection to ECE Using JConsole
	Reloading ECE Application Configuration Changes
	Reloading the Grid Log Level

	Configuring Subscriber-Based Tracing for ECE Services
	Using Third-Party Libraries and Custom Mediation Specifications
	Setting Up ECE Cloud Native in Firewall-Enabled Environments
	Enabling Federation in ECE
	Enabling Parallel Pod Management in ECE
	Customizing SDK Source Code

	27 Securing ECE Communications
	Enabling SSL Communication When Separate Clusters for BRM and ECE
	Using a Custom TLS Certificate for Secure Connections
	Securing Communication Between the CHF and NRF, PCF, and SMF
	Securing Communication Using KeyStores Mounted in the Helm Chart
	Securing Communication Using External Kubernetes Secrets

	28 Managing ECE Journal Storage
	About Coherence Elastic Data Storage
	Managing Coherence Journal Space

	29 Managing Persisted Data in the Oracle Database
	Enabling Persistence in ECE
	Re-Creating the ECE Schema After Deployment

	Loading Only Partial Data into ECE Cache
	Incremental Customer Loading in ECE Cache

	30 Configuring Disaster Recovery in ECE Cloud Native
	Setting Up Active-Active Disaster Recovery for ECE
	Processing Usage Requests on Site Receiving Request
	Stopping ECE from Routing to a Failed Site
	Adding Fixed Site Back to ECE System
	Activating a Secondary Rated Event Formatter Instance
	About Conflict Resolution During the Journal Federation Process

	31 Managing ECE Pods
	Scaling Kubernetes Pods
	Setting up Autoscaling of ECE Pods
	Rolling Restart of ECE Pods

	32 Monitoring ECE in a Cloud Native Environment
	About Monitoring ECE in a Cloud Native Environment
	Enabling ECE Metric Endpoints
	Sample Prometheus Operator Configuration
	ECE Cloud Native Metrics
	BRS Metrics
	BRS Queue Metrics
	CDR Formatter Metrics
	Coherence Metrics
	Diameter Gateway Metrics
	EM Gateway Metrics
	JVM Metrics
	Kafka JMX Metrics
	Kafka Client Metrics
	Micrometer Executor Metrics
	RADIUS Gateway Metrics
	Rated Event Formatter (REF) Metrics
	Rated Events Metrics
	Session Metrics

	A WebLogic-Based Application Metrics
	WLS Server Metrics Group
	Application Runtime Metric Group
	Servlets Metric Group
	JVM Runtime Metric Group
	Execute Queue Runtime Metric Group
	Work Manager Runtime Metric Group
	Thread Pool Runtime Metric Group
	JDBC Service Runtime Metric Group
	JTA Runtime Metric Group
	WLS Scrape MBean Metric Group
	Persistent Store Runtime MBean Metric Group

	B Supported Scripts and Utilities
	C Supported Utilities and Applications for brm-apps Jobs
	D Supported Load Utilities for Configurator Jobs

