
Oracle® Communications Billing and
Revenue Management
Developer's Reference

Release 15.0
F86227-02
June 2024

Oracle Communications Billing and Revenue Management Developer's Reference, Release 15.0

F86227-02

Copyright © 2017, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Diversity and Inclusion ix

1 PIN Libraries Reference

Configuration File-Reading Functions 1-1

pin_conf 1-1

pin_conf_beid 1-2

pin_conf_multi 1-3

Decimal Data Type Manipulation Functions 1-5

About Using the API 1-5

International Platform Issues 1-5

About Rounding Modes 1-5

About Scaling 1-7

About Memory Management 1-7

pbo_decimal_abs 1-7

pbo_decimal_abs_assign 1-8

pbo_decimal_add 1-8

pbo_decimal_add_assign 1-9

pbo_decimal_compare 1-9

pbo_decimal_copy 1-10

pbo_decimal_destroy 1-10

pbo_decimal_divide 1-11

pbo_decimal_divide_assign 1-12

pbo_decimal_from_double 1-12

pbo_decimal_from_double_round 1-13

pbo_decimal_from_str 1-13

pbo_decimal_is_null 1-14

pbo_decimal_is_zero 1-15

pbo_decimal_multiply 1-15

pbo_decimal_multiply_assign 1-16

pbo_decimal_negate 1-16

iii

pbo_decimal_negate_assign 1-17

pbo_decimal_round 1-17

pbo_decimal_round_assign 1-18

pbo_decimal_sign 1-19

pbo_decimal_subtract 1-19

pbo_decimal_subtract_assign 1-20

pbo_decimal_to_double 1-20

pbo_decimal_to_str 1-21

psiu_currency_append_currency_exchange_rate 1-21

Error-Handling Macros 1-22

PIN_ERR_LOG_EBUF 1-22

PIN_ERR_LOG_FLIST 1-23

PIN_ERR_LOG_MSG 1-24

PIN_ERR_LOG_POID 1-24

PIN_ERR_SET_LEVEL 1-25

PIN_ERR_SET_LOGFILE 1-26

PIN_ERR_SET_PROGRAM 1-27

PIN_ERRBUF_CLEAR 1-27

PIN_ERRBUF_IS_ERR 1-28

PIN_ERRBUF_RESET 1-28

pin_set_err 1-29

Flist Field-Handling Macros 1-30

PIN_FLIST_ANY_GET_NEXT 1-30

PIN_FLIST_ELEM_ADD 1-31

PIN_FLIST_ELEM_COPY 1-32

PIN_FLIST_ELEM_COUNT 1-33

PIN_FLIST_ELEM_DROP 1-34

PIN_FLIST_ELEM_GET 1-34

PIN_FLIST_ELEM_GET_NEXT 1-35

PIN_FLIST_ELEM_MOVE 1-36

PIN_FLIST_ELEM_PUT 1-37

PIN_FLIST_ELEM_SET 1-38

PIN_FLIST_ELEM_TAKE 1-39

PIN_FLIST_ELEM_TAKE_NEXT 1-40

PIN_FLIST_FLD_COPY 1-41

PIN_FLIST_FLD_DROP 1-42

PIN_FLIST_FLD_GET 1-42

PIN_FLIST_FLD_MOVE 1-43

PIN_FLIST_FLD_PUT 1-44

PIN_FLIST_FLD_RENAME 1-45

PIN_FLIST_FLD_SET 1-46

PIN_FLIST_FLD_TAKE 1-47

iv

PIN_FLIST_SUBSTR_ADD 1-48

PIN_FLIST_SUBSTR_DROP 1-49

PIN_FLIST_SUBSTR_GET 1-49

PIN_FLIST_SUBSTR_PUT 1-50

PIN_FLIST_SUBSTR_SET 1-51

PIN_FLIST_SUBSTR_TAKE 1-52

Flist Management Macros 1-53

PIN_FLIST_CONCAT 1-53

PIN_FLIST_COPY 1-53

PIN_FLIST_COUNT 1-54

PIN_FLIST_CREATE 1-55

PIN_FLIST_DESTROY 1-55

PIN_FLIST_DESTROY_EX 1-56

PIN_FLIST_PRINT 1-57

PIN_FLIST_SORT 1-58

PIN_FLIST_SORT_REVERSE 1-59

PIN_STR_TO_FLIST 1-60

PIN_FLIST_TO_STR 1-61

PIN_FLIST_TO_STR_COMPACT_BINARY 1-62

PIN_FLIST_TO_XML 1-63

POID Management Macros 1-64

PIN_POID_COMPARE 1-64

PIN_POID_COPY 1-65

PIN_POID_CREATE 1-66

PIN_POID_DESTROY 1-67

PIN_POID_FROM_STR 1-67

PIN_POID_GET_DB 1-68

PIN_POID_GET_ID 1-69

PIN_POID_GET_REV 1-69

PIN_POID_GET_TYPE 1-70

PIN_POID_IS_NULL 1-70

PIN_POID_LIST_ADD_POID 1-70

PIN_POID_LIST_COPY 1-71

PIN_POID_LIST_COPY_NEXT_POID 1-72

PIN_POID_LIST_COPY_POID 1-72

PIN_POID_LIST_CREATE 1-73

PIN_POID_LIST_DESTROY 1-73

PIN_POID_LIST_REMOVE_POID 1-74

PIN_POID_LIST_TAKE_NEXT_POID 1-75

PIN_POID_PRINT 1-75

PIN_POID_TO_STR 1-76

String Manipulation Functions 1-77

v

About the String Manipulation Functions 1-77

String Manipulation Functions 1-80

pcm_get_localized_string_list 1-80

pin_string_list_destroy 1-80

pin_string_list_get_next 1-81

Validity Period Manipulation Macros 1-81

About Relative Offset Values 1-82

PIN_VALIDITY_GET_UNIT 1-83

PIN_VALIDITY_GET_OFFSET 1-83

PIN_VALIDITY_GET_MODE 1-83

PIN_VALIDITY_SET_UNIT 1-84

PIN_VALIDITY_SET_OFFSET 1-84

PIN_VALIDITY_SET_MODE 1-85

PIN_VALIDITY_DECODE_FIELD 1-85

PIN_VALIDITY_ENCODE_FIELD 1-86

2 Storable Class Definitions

Fields Common to All Storable Classes 2-1

3 Perl Extensions to the PCM Libraries

Connection Functions 3-1

Error-Handling Functions 3-1

Flist Conversion Functions 3-1

PCM Opcode Functions 3-2

Example Perl Scripts 3-2

Perl Script Example 1 3-2

Perl Script Example 2 3-4

pcm_context_close 3-8

pcm_perl_connect 3-9

pcm_perl_context_open 3-9

pcm_perl_destroy_ebuf 3-10

pcm_perl_ebuf_to_str 3-10

pcm_perl_get_session 3-11

pcm_perl_get_userid 3-11

pcm_perl_is_err 3-11

pcm_perl_new_ebuf 3-12

pcm_perl_op 3-12

pcm_perl_print_ebuf 3-13

pin_flist_destroy 3-14

pin_flist_sort 3-14

vi

pin_perl_flist_to_str 3-15

pin_perl_str_to_flist 3-15

pin_perl_time 3-16

pin_set_err 3-16

4 Storable Class-to-SQL Mapping

Storable Class-to-SQL Mapping 4-1

SQL Mapping Matrix 4-1

SQL Mapping Notes 4-1

Doing SQL Joins 4-2

Reserved Tables 4-2

SQL Statement Information at Runtime 4-3

5 Sample Applications

About Using the PCM C Sample Programs 5-1

Finding the PCM C Sample Programs 5-1

Description of the PCM C Sample Programs 5-1

Compiling the Sample PCM C Programs 5-4

Running the Sample PCM C Programs 5-5

Using the FM and DM Templates 5-5

Creating Accounts by Using the sample_app.c Program 5-5

Syntax for sample_app.c 5-6

Removing Accounts by Using the sample_del.c Program 5-6

Syntax for sample_del.c 5-6

Searching by Using the sample_search.c Program 5-6

Syntax for sample_search.c 5-7

Displaying Current Users by Using the sample_who.c Program 5-7

Syntax for sample_who.c 5-7

Troubleshooting the sample_app.c Application 5-7

Problem: Test Failed 5-7

Problem: Bad Port Number 5-7

Problem: Customer Account Creation Error 5-8

About Using the PCM C++ Sample Programs 5-8

Finding the Sample PCM C++ Programs 5-8

Description of the Sample PCM C++ Programs 5-9

Compiling the Sample PCM C++ Programs 5-10

Running the Sample PCM C++ Programs 5-11

About Using the PCM Java Sample Programs 5-11

Finding the Sample PCM Java Programs 5-11

Description of the Sample PCM Java Programs 5-12

vii

Compiling the Sample PCM Java Programs 5-14

Running the Sample PCM Java Programs 5-15

Creating Accounts by Using the CreateCustomer.java Program 5-15

Creating Events by Using the CreateCustomUsageEvent.java Program 5-15

Running the CreateCustomUsageEvent Program 5-15

About Using the PCM Perl Sample Programs 5-16

Finding the Sample PCM Perl Programs 5-16

Description of the Sample PCM Perl Programs 5-16

Running the Sample PCM Perl Programs 5-18

viii

Preface

This guide provides reference information for Oracle Communications Billing and Revenue
Management (BRM) application programming interfaces (APIs).

This guide has been updated to include changes and new feature content added for release
15.0.1.

Audience
This guide is intended for developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
PIN Libraries Reference

This chapter provides reference information for Oracle Communications Billing and Revenue
Management (BRM) Portal Information Network (PIN) libraries.

Configuration File-Reading Functions
Use these functions to read configuration files, such as pin.conf files.

pin_conf
This BRM library routine reads a single configuration value from a configuration file.

The Connection Manager (CM), Data Manager (DM), and Portal Communications Module
(PCM) libraries all use this routine to read the configuration information.

When first called, this routine looks for the configuration file specific to the application. See
"Locations of Configuration and Properties Files" in BRM System Administrator's Guide. The
library returns an error if it cannot locate the configuration file.

This routine uses regular malloc. If you are using this routine in a Storage Manager to get data
to put on an flist, use SET (not PUT), and then free the object by using the regular free routine
when you are finished.

Note:

Do not use this routine if performance is a consideration and you use the routine
often.

For more information on configuration files, see "Syntax for Configuration Entries" in BRM
System Administrator's Guide.

For information on reading multiple configuration values from a file, see "pin_conf_multi".

Syntax

#include "pcm.h"
void
pin_conf(
 char *prog_name,
 char *token,
 int32 valtype,
 caddr_t* **valpp,
 int32 *errp);

1-1

Parameters

prog_name
The program name this routine looks for in the configuration file. If prog_name is NULL, the
routine looks only for entries marked with a program of "-". If prog_name is any other value,
the routine looks for either a specific match or "-" in the program parameter.

token
The name of the configuration entry keyword this routine looks for in the configuration file.

valtype
The type of the value the routine reads in the configuration entry. This parameter tells the
routine how to interpret the entry value. The supported types are:

• PIN_FLDT_INT

• PIN_FLDT_DECIMAL

• PIN_FLDT_STR

• PIN_FLDT_POID

valpp
The ptr-ptr used to pass back the location of the value for the entry. The memory for the value
is dynamically allocated, and the filled-in pointer type matches the value type.

errp
A pointer to the error buffer, which passes error information back to the caller.

Return Values

This routine returns nothing.

This routine passes error status back to the caller. If it finds a matching entry in the
configuration file, it passes back PIN_ERR_NONE. If it does not find a matching entry, it
passes back PIN_ERR_NOT_FOUND. The routine might also pass back other error values.

pin_conf_beid
This library routine reads values for BRM balance elements from the /config/beid object.

Syntax

#include "pin_errs.h"
#include "pcm.h"
pin_flist_t*
pin_conf_beid(
 pcm_context_t *ctxp,
 pin_errbuf_t *ebufp);

Parameters

ctxp
A pointer to an open context. This routine gets the database number from the configuration file
of the current application and queries that database for the /config/beid object.

ebufp
A pointer to the error buffer, which passes error information back to the caller.

Chapter 1
Configuration File-Reading Functions

1-2

Return Values

Returns values for the /config/beid object data as an flist.

Error Handling

This routine sets the return flist to NULL and provides more information about the error in the
error buffer if there is an error.

pin_conf_multi
This library routine reads multiple configuration values of the same type from a configuration
file. To do this, you reuse this routine until it returns PIN_ERR_NOT_FOUND. This routine
uses the time_t value to monitor the configuration file for changes throughout this operation
and returns an error if the state of the file changes.

The Connection Manager (CM), Data Manager (DM), and PCM libraries all use this routine to
read the configuration information.

When first called, this routine looks for the configuration file specific to the application. See
"Configuration File Locations" in BRM System Administrator's Guide. The library returns an
error if it cannot locate the configuration file.

This routine uses regular malloc. If you are using this routine in a Storage Manager to get data
to put on an flist, use SET (not PUT), and then free the object by using the regular free routine
when you are finished.

Note:

Do not use this routine if performance is a consideration and you use the routine
often.

For more information on configuration files, see "Using Configuration Files to Connect and
Configure Components" in BRM System Administrator's Guide.

For information on reading a single configuration value from a file, see "pin_conf".

Syntax

#include "pcm.h"
void
pin_conf(
 char *prog_name,
 char *token,
 int32 valtype,
 caddr_t* **valpp,
 int32 *linep,
 time_t *modtp,
 int32 *errp);

Chapter 1
Configuration File-Reading Functions

1-3

Parameters

prog_name
The program name this routine looks for in the configuration file. If prog_name is NULL, the
routine looks only for entries marked with a program of "-". If prog_name is any other value,
the routine looks for either a specific match or "-" in the program parameter. For a description
of configuration file syntax, see "Syntax for Configuration Entries" in BRM System
Administrator's Guide.

token
The name of the configuration entry keyword this routine looks for in the configuration file.

valtype
The type of the value the routine reads in the configuration entry. This parameter tells the
routine how to interpret the entry value. The supported types are:

• PIN_FLDT_INT

• PIN_FLDT_DECIMAL

• PIN_FLDT_STR

• PIN_FLDT_POID

valpp
The ptr-ptr used to pass back the location of the value for the entry. The memory for the value
is dynamically allocated, and the filled-in pointer type matches the value type.

linep
A pointer to a line number. Passes an integer back to the caller to identify the line where the
last value was found. Initialize to zero on the first call.

modtp
A pointer to a time variable. Passes a timestamp back to the caller to compare to the last
timestamp. Initialize to zero on the first call.

errp
A pointer to the error status, which passes error information back to the caller.

Return Values

This routine returns nothing.

This routine passes error status back to the caller.

• If it finds a matching entry in the configuration file, it passes back PIN_ERR_NONE. This
indicates that the routine then reuses the key to look for another matching entry (as long as
it has not generated a PIN_ERR_STALE_CONF error).

• If it does not find a matching entry, it passes back PIN_ERR_NOT_FOUND. This signals
the end of the routine.

• If it detects, based on a change in the time_t value, that the configuration file has been
opened, modified, or has otherwise changed since it first accessed the file (jeopardizing
the ability of the routine to maintain correct reference to the last value read), it passes back
PIN_ERR_STALE_CONF.

Chapter 1
Configuration File-Reading Functions

1-4

Note:

In this case, you must restart the entire process.

The routine may also pass back other error values.

Decimal Data Type Manipulation Functions
This section describes decimal data type manipulation functions.

About Using the API
The decimal data type application programming interface (API) consists of a minimal set of
methods that provides all the functionality you need to perform basic mathematical functions,
comparison, and format conversion with the decimal data type. Input and output to the
functions are provided using number strings or floating point doubles.

Note:

Use strings to avoid small quantity errors; for example, 31.299999999 vs. 31.3.

If there are errors, functions that return a pin_decimal_t return NULL. pbo_decimal_destroy
allows NULL.

International Platform Issues
The pin_decimal function expects the decimal point character to be that of the locale. For US
systems, this is a period; for most international platforms, it is a comma.

Caution:

Do not pass a string with a hard-coded decimal point to ::pin_decimal because
pin_decimal will return a NULL pointer in platforms that do not use a period for the
decimal point character.

About Rounding Modes
This section defines the rounding modes that you pass as input parameters in the following
functions:

• pbo_decimal_round

• pbo_decimal_round_assign

• pbo_decimal_from_double

• pbo_decimal_from_double_round

The rounding modes in Table 1-1 are defined in pcm.h. They have the same names and
functionality as the Java BigDecimal Datatype.

Chapter 1
Decimal Data Type Manipulation Functions

1-5

Table 1-1 Rounding Modes

Rounding Mode Description

ROUND_UP Rounds up to the nearest number of the appropriate scale.

Examples: 21.11 rounds to 21.2 when the scale is one decimal
place.

ROUND_DOWN Rounds down to the nearest number of the appropriate scale.

Examples: 21.19 rounds to 21.1 when the scale is one decimal
place.

ROUND_DOWN_ALT Rounds down after first rounding to the nearest using a scale of two
more than the one configured. This method compensates for possible
loss of precision when numbers are rounded down during certain
computations, such as when prorating cycle fees.

For more information, see "About Rounding Modes That Correct for
Loss of Precision" in BRM PDC Creating Product Offerings.

ROUND_CEILING If the number is positive, rounding is the same as for ROUND_UP; if
negative, the same as for ROUND_DOWN.

ROUND_FLOOR If the number is positive, rounding is the same as for
ROUND_DOWN; if negative the same as for ROUND_UP. This
method allows you to round to benefit customers. For example, if
rounding is set to two significant digits, a credit to a customer of
-7.999 is rounded to -8.00, and a debit of 7.999 is rounded to 7.99.

ROUND_FLOOR_ALT Rounds using ROUND_FLOOR after first rounding to the nearest
using a scale of two more than the one configured. This method
compensates for possible loss of precision when numbers are
rounded down during certain computations, such as when prorating
cycle fees.

For more information, see "About Rounding Modes That Correct for
Loss of Precision" in BRM PDC Creating Product Offerings.

ROUND_HALF_UP If the discard part is .5 or higher round up; otherwise, round down.

Examples: 21.15 rounds to 21.2, 21.14 rounds to 21.1, etc.

This is the most common rounding method.

ROUND_HALF_DOWN If the discard part is more than .5, round up; if it is .5 or less, round
down.

Examples: 21.16 rounds to 21.2, 21.15 rounds to 21.1.

ROUND_HALF_EVEN If the digit to the left of the discard is odd, rounding is the same as for
ROUND_HALF_UP. If the digit to the left is even, rounding is the
same as for ROUND_HALF_DOWN.

Examples:
1.049 rounds to 1.0

1.050 rounds to 1.0

1.051 rounds to 1.1

1.149 rounds to 1.1

1.150 rounds to 1.2

1.151 rounds to 1.2

ROUND_UNNECESSARY Rounding not allowed. If rounding is attempted with this rounding
mode, an error is returned.

Chapter 1
Decimal Data Type Manipulation Functions

1-6

About Scaling
A decimal data type is based on the Java BigDecimal data type. It is an immutable, arbitrary-
precision signed decimal number, which consists of an arbitrary precision integer value and a
nonnegative integer scale, which represents the number of decimal digits to the right of the
decimal point.

For this implementation, the scale is set at 15, meaning numbers carry up to 15 decimal
places. For operations that would normally result in a value with a larger scale, the value is
rounded to 15 decimal places. For example, when multiplying the two decimal data types
12.528694120521357 and 4.126943650923412, the mathematical result would normally be
51.705214655047095455751917310084, which has a scale of 30. However, because the
scale is set at 15, the product is rounded to 51.705214655047095 and a consistent scale of 15
is maintained.

About Memory Management
For functions that allocate memory for the pin_decimal_t structure, make sure that the
memory is reclaimed after the pin_decimal_t is no longer needed. If pin_decimal_t has been
passed to an flist with PIN_FLIST_PUT, use pin_flist_destroy to reclaim memory. Otherwise,
use pbo_decimal_destroy.

assign functions do not allocate new memory; instead, they replace the first parameter with
the new value. Therefore, there is no need to reclaim memory.

pbo_decimal_abs
This function returns a pointer to a newly allocated pin_decimal_t, which is the absolute value
of the input pin_decimal_t.

Syntax

pin_decimal_t*
pbo_decimal_abs(
 const pin_decimal_t *pdp,
 pin_errbuf_t *ebufp);

Parameters

pdp
A pointer to the input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

Chapter 1
Decimal Data Type Manipulation Functions

1-7

pbo_decimal_abs_assign
This function replaces the input pin_decimal_t with its absolute value.

Syntax

pin_decimal_t*
pbo_decimal_abs_assign(
 pin_decimal_t *pdp,
 pin_errbuf_t *ebufp);

Parameters

pdp
A pointer to the input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

pbo_decimal_add
This function adds the two decimals passed in and returns a pointer to a newly allocated
pin_decimal_t. The scale of the output is the larger of the scales of the two inputs.

Syntax

pin_decimal_t*
pbo_decimal_add(
 const pin_decimal_t *pdp1,
 const pin_decimal_t *pdp2,
 pin_errbuf_t *ebufp);

Parameters

pdp1
A pointer to the input pin_decimal_t.

pdp2
A pointer to another input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

Chapter 1
Decimal Data Type Manipulation Functions

1-8

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

pbo_decimal_add_assign
This function replaces the value of the first pin_decimal_t with the sum of itself and another
pin_decimal_t.

Syntax

void
pbo_decimal_add_assign(
 pin_decimal_t *pdp1,
 const pin_decimal_t *pdp2,
 pin_errbuf_t *ebufp);

Parameters

pdp
A pointer to the input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

pbo_decimal_compare
This function compares the first input decimal with the second input decimal and returns one of
the following values to indicate the difference between the input decimals:

• -1 if pdp1 < pdp2

• 0 if pdp1 = pdp2

Note:

pdp1 is considered equal to pdp2 if the difference between them is less than
10-12.

• 1 if pdp1 > pdp2

• 0 in the event of an error.

Syntax

int
pbo_decimal_compare(
 const pin_decimal_t *pdp1,

Chapter 1
Decimal Data Type Manipulation Functions

1-9

 const pin_decimal_t *pdp2,
 pin_errbuf_t *ebufp);

Parameters

pdp1
A pointer to the first pin_decimal_t.

pdp2
A pointer to the second pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

pbo_decimal_copy
This function makes a copy of the input pin_decimal_t and returns a pointer to the newly
allocated pin_decimal_t.

Syntax

pin_decimal_t*
pbo_decimal_copy(
 const pin_decimal_t *pdp,
 pin_errbuf_t *ebufp);

Parameters

pdp
A pointer to the input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

pbo_decimal_destroy
This function frees all the memory associated with the specified pin_decimal_t and sets
*decpp to NULL.

Chapter 1
Decimal Data Type Manipulation Functions

1-10

Syntax

void
pbo_decimal_destroy(
 pin_decimal_t **decpp);

Parameter

decpp
A pointer to a pointer to the pin_decimal_t to be deleted. Can be set to NULL (the function
does nothing).

pbo_decimal_divide
This function divides the first input parameter by the second input parameter and returns a
pointer to a newly allocated pin_decimal_t.

Note:

Rounding is performed according to preset rounding and scaling. The default
rounding mode is ROUND_DOWN and the scaling is set at 15 decimal places.

Syntax

pin_decimal_t*
pbo_decimal_divide(
 const pin_decimal_t *nump,
 const pin_decimal_t *byp,
 pin_errbuf_t *ebufp);

Parameters

nump
A pointer to the dividend.

byp
A pointer to the divisor.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_BAD_ARG if one of the following is true:

– The scale is less than 0.

– The rounding mode is unknown.

– Either the dividend or the divisor is not a valid pin_decimal_t.

– An attempt was made to divide by 0.

Chapter 1
Decimal Data Type Manipulation Functions

1-11

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

pbo_decimal_divide_assign
This function divides the dividend by the divisor and stores the result in the dividend.

Syntax

void
pbo_decimal_divide_assign(
 pin_decimal_t *nump,
 const pin_decimal_t *byp,
 pin_errbuf_t *ebufp);

Parameters

nump
A pointer to the dividend.

byp
A pointer to the divisor.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_BAD_ARG if one of the following is true:

– The scale is less than 0.

– The rounding mode is unknown.

– Either the dividend or the divisor is not a valid pin_decimal_t.

– An attempt was made to divide by 0.

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

pbo_decimal_from_double
This function constructs a pin_decimal_t data type from the double-precision floating point
number (allocates memory) and returns a pointer to the newly created pin_decimal_t data
type.

Note:

Because of the inherent rounding errors associated with converting a double to a
decimal data type, you should avoid using this function whenever possible. Use
pbo_decimal_from_str instead. If you must use doubles, use the
pbo_decimal_from_double_round function.

Chapter 1
Decimal Data Type Manipulation Functions

1-12

Syntax

pin_decimal_t
*pbo_decimal_from_double(
 double d,
 pin_errbuf_t *ebufp);

Parameters

d
The input of type double float (a double-precision floating point number).

ebufp
A pointer to the error buffer.
See also "pbo_decimal_from_str ".

pbo_decimal_from_double_round
This function provides an option for choosing the rounding mode. (See "About Rounding
Modes".)

Constructs a pin_decimal_t data type from the double-precision floating point number
(allocates memory) and returns a pointer to the newly created pin_decimal_t data type.

Note:

Because of the inherent rounding errors associated with converting a double to a
decimal data type, you should avoid using this function whenever possible. Use
pbo_decimal_from_str instead.

Syntax

pin_decimal_t*
pbo_decimal_from_double_round(
 double value,
 int rounding_mode,
 pin_errbuf_t *ebufp)

Parameters

value
The value to convert.

rounding_mode
See "About Rounding Modes".

ebufp
A pointer to the error buffer.

pbo_decimal_from_str
This function constructs a pin_decimal_t data type from an input string and returns a pointer
to the newly created pin_decimal_t data type.

Chapter 1
Decimal Data Type Manipulation Functions

1-13

This function understands NULL to create a NULL-valued pin_decimal_t. The string does not
need to end with a null character, but parsing will end at either a null character or any white
space character.

This function ignores leading spaces, tabs, and leading 0's and checks on nonnumeric types.

This function detects the sign (+ or -) and stores it. This function accepts the same input at
strtod except that an exponent is not allowed, and only base 10 is supported.

Syntax

pin_decimal_t*
pbo_decimal_from_str(
 const *str,
 pin_errbuf_t *ebufp);

Parameters

str
The input number string.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the string pointer is NULL

• PIN_ERR_BAD_ARG if there were multiple decimal points before null or space or if it
cannot derive a valid number from the string

• PIN_ERR_NO_MEM if the function cannot allocate memory for pbo_decimal

pbo_decimal_is_null
This function verifies if the input pin_decimal_t is NULL.

Syntax

int
pbo_decimal_is_null(
 const pin_decimal_t *pdp,
 pin_errbuf_t *ebufp);

Parameters

pdp
The pointer to the input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns PIN_ERR_BAD_ARG indicating that a non-NULL
pointer points to a data area not marked as a valid pin_decimal_t.

Chapter 1
Decimal Data Type Manipulation Functions

1-14

pbo_decimal_is_zero
This function checks if the input value is a valid pin_decimal_t and has a zero value. Returns
1 if the conditions are met; otherwise, it returns 0.

Syntax

int
pbo_decimal_is_zero(
 const pin_decimal_t *pdp,
 pin_errbuf_t *ebufp);

Parameters

pdp
A pointer to the input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns PIN_ERR_BAD_ARG indicating that a non-NULL
pointer points to a data area that is not marked as a valid pin_decimal_t.

pbo_decimal_multiply
This function multiplies the two input pin_decimal_t values and returns a pointer to a new
pin_decimal_t that is the product.

Syntax

pin_decimal_t*
pbo_decimal_multiply(
 const pin_decimal_t *pdp1,
 const pin_decimal_t *pdp2,
 pin_errbuf_t *ebufp);

Parameters

pdp1
The pointer to an input pin_decimal_t.

pdp2
The pointer to another input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

Chapter 1
Decimal Data Type Manipulation Functions

1-15

pbo_decimal_multiply_assign
This function multiplies two pin_decimal_t data types and stores the product in the first
pin_decimal_t.

For example, if a=10 and b=2, after calling pbo_decimal_multiply_assign(a, b, *ebufp), a is
equal to 20.

Syntax

void
pbo_decimal_multiply_assign(
 pin_decimal_t *pdp1,
 const pin_decimal_t *pdp2,
 pin_errbuf_t *ebufp);

Parameters

pdp1
The pointer to an input pin_decimal_t.

pdp2
The pointer to another input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

pbo_decimal_negate
This function returns a pointer to a new pin_decimal_t that has the reverse sign of the input
decimal. If the input decimal has a value of 0, it returns a pointer to another pin_decimal_t
with the value of 0.

Table 1-2 contains examples, where x is a pointer pin_decimal_t:

Table 1-2 pbo_decimal_negate Examples

Value to Which x Points pbo_decimal_negate(x, ebuf) Returns a New Pointer to This Value:

5 -5

0 0

-3 3

Syntax

pin_decimal_t*
pbo_decimal_negate(
 const pin_decimal_t *pdp,
 pin_errbuf_t *ebufp);

Chapter 1
Decimal Data Type Manipulation Functions

1-16

Parameters

pdp
The pointer to the input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

pbo_decimal_negate_assign
This function reverses the sign of the input pin_decimal_t.

Syntax

pin_decimal_t*
pbo_decimal_negate_assign(
 pin_decimal_t *pdp,
 pin_errbuf_t *ebufp);

Parameters

pdp
The pointer to the input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

pbo_decimal_round
This function returns a pointer to a new pin_decimal_t that contains the value of the first
argument rounded according to the specified scale and rounding mode.

Syntax

pin_decimal_t*
pbo_decimal_round(
 const pin_decimal_t *decp,
 int32 scale,
 int32 rounding_mode,
 pin_errbuf_t *ebufp);

Chapter 1
Decimal Data Type Manipulation Functions

1-17

Parameters

decp
A pointer to the input pin_decimal_t.

scale
See "About Scaling".

rounding_mode
See "About Rounding Modes".

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

pbo_decimal_round_assign
This function replaces the value of the first argument with the value of the argument rounded
according to the specified scale and rounding mode.

Syntax

void
pbo_decimal_round_assign(
 pin_decimal_t *decp,
 int32 scale,
 int32 rounding_mode,
 pin_errbuf_t *ebufp);

Parameters

decp
A pointer to the input pin_decimal_t.

scale
See "About Scaling".

rounding_mode
See "About Rounding Modes".

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

Chapter 1
Decimal Data Type Manipulation Functions

1-18

• PIN_ERR_BAD_ARG if decp is an invalid value

pbo_decimal_sign
This function returns the sign of the pin_decimal_t argument: -1 if the argument is negative, 0
if the argument is zero or if there is an error, or 1 if the argument is positive.

Syntax

int
pbo_decimal_sign(
 const pin_decimal_t *pdp,
 pin_errbuf_t *ebufp);

Parameters

pdp
The pointer to the input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

pbo_decimal_subtract
This function subtracts two pin_decimal_t parameters and returns a pointer to a new
pin_decimal_t containing the difference.

Syntax

pin_decimal_t*
pbo_decimal_subtract(
 const pin_decimal_t *nump,
 const pin_decimal_t *byp,
 pin_errbuf_t *ebufp);

Parameters

nump
The pointer to the pin_decimal_t from which to subtract.

byp
The pointer to the pin_decimal_t to subtract.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

Chapter 1
Decimal Data Type Manipulation Functions

1-19

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

pbo_decimal_subtract_assign
This function subtracts a decimal from another decimal and replaces the value of the first
decimal with the difference.

For example, if a=8 and b=3, after calling pbo_decimal_subtract_assign (a, b, ebuf), a is
equal to 5.

Syntax

void
pbo_decimal_subtract_assign(
 pin_decimal_t *pdp1,
 const pin_decimal_t *pdp2,
 pin_errbuf_t *ebufp);

Parameters

pdp1
The pointer to an input pin_decimal_t.

pdp2
The pointer to another input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

pbo_decimal_to_double
This function converts the input pin_decimal_t into a double-precision floating point number.

If pin_decimal_t is not NULL, this function converts pin_decimal_t to a string using
pin_decimal_to_str(NULL format,...) and then strtod.

Syntax

double
pbo_decimal_to_double(
 const pin_decimal_t *pdp,
 pin_errbuf_t *ebufp);

Parameters

pdp
A pointer to the input pin_decimal_t.

Chapter 1
Decimal Data Type Manipulation Functions

1-20

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

• PIN_ERR_BAD_ARG if strtod returns an error

See also pin_decimal_to_str().

pbo_decimal_to_str
This function creates an ASCII string representation of the input decimal value.

If successful, the function returns a pointer to the allocated null-terminated string. If there are
errors, it returns NULL.

Syntax

char*
pbo_decimal_to_str(
 const pin_decimal_t *pdp,
 pin_errbuf_t *ebufp);

Parameters

pdp
A pointer to the input pin_decimal_t.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pin_decimal_t pointer is NULL

• PIN_ERR_IS_NULL if the input pin_decimal_t is NULL-valued

• PIN_ERR_NO_MEM if the function cannot allocate memory for the output pin_decimal_t

psiu_currency_append_currency_exchange_rate
The function appends a psiu_currency_exchange_rate_t structure to the designated rate
table.

Syntax

void
psiu_currency_exchange_rate (
 psiu_list_t *psiu_plist_cerp,

Chapter 1
Decimal Data Type Manipulation Functions

1-21

 psiu_currency_exchange_rate_t *pcerRatep,
 pin_errbuf_t *ebufp);

Parameters

psiu_plist_cerp
The rate table to append the psiu_currency_exchange_rate_t structure into.

pcerRatep
A pointer to the psiu_currency_exchange_rate_t structure that should be appended to the
specified list.

ebufp
A pointer to the error buffer.

Error Handling

If there are errors, this function returns the following error status:

• PIN_ERR_NULL_PTR if the input pcerRatep pointer is NULL

• PIN_ERR_IS_NULL if the input psiu_plist_cerp is NULL-valued

Error-Handling Macros
This section describes error-handling macros.

PIN_ERR_LOG_EBUF
This BRM macro logs a standardized message that includes details of the error condition
recorded in an error buffer. It provides a convenient method for logging errors returned by API
calls that use the error buffer to pass back status. The caller can specify an additional message
that is appended to the standard format.

Syntax

#include "pcm.h"
void
PIN_ERR_LOG_EBUF(
 int32 level,
 char *msg,
 pin_errbuf_t *ebufp);

Parameters

level
The level of this log message. Based on the level specified and the logging level set in the log
system, the message is either printed or discarded. See "PIN_ERR_SET_LEVEL" for the error
level descriptions.

msg
A string to be printed in addition to the standard logging message. Allows additional detailed
information to be added to the log message by the caller.

Chapter 1
Error-Handling Macros

1-22

ebufp
A pointer to the error buffer containing the error condition. The values in the error buffer are
printed in human-readable form as part of the log message.

Return Values

This macro returns nothing.

Error Handling

There are no error conditions for this macro. If the message cannot be logged for any reason,
that information is not passed back to the caller.

PIN_ERR_LOG_FLIST
This macro prints the contents of an flist to the error log file. It allows an application to log an
arbitrary message and the corresponding flist for recording errors, accounting, or debugging.
The specified message and flist are logged in the standard log entry format, so complete
information about where they came from is available in the log file.

Syntax

#include "pcm.h"
void
PIN_ERR_LOG_FLIST(
 int32 level,
 char *msg,
 pin_flist_t *flistp);

Parameters

level
The level of this log message. Based on the level specified and the logging level set in the log
system, the message is either printed or discarded. See "PIN_ERR_SET_LEVEL" for the
error-level descriptions.

msg
A string to be printed in addition to the standard logging message. Allows additional detailed
information to be added to the log message by the caller.

flistp
A pointer to the flist to be printed in addition to the log message.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and then tested once for any errors. See "Series-
Style ebuf" in BRM Developer's Guide for more information.

Chapter 1
Error-Handling Macros

1-23

PIN_ERR_LOG_MSG
This macro logs the specified message to the log file. It allows an application to log arbitrary
messages for recording errors or debug information. The specified message is logged in the
standard log entry format, so complete information about where the message came from is
available in the log file.

Syntax

#include "pcm.h"
void
PIN_ERR_LOG_MSG(
 int32 level,
 char *msg);

Parameters

level
The level of this log message. Based on the level specified and the logging level set in the log
system, the message is either printed or discarded. See "PIN_ERR_SET_LEVEL" for the
error-level descriptions.

msg
A string to be printed in addition to the standard logging message. Allows additional detailed
information to be added to the log message by the caller. Special characters should be
escaped if you want them to be printed without modification.

Return Values

This macro returns nothing.

Error Handling

There are no error conditions for this macro. If the message cannot be logged for any reason,
that information is not passed back to the caller.

PIN_ERR_LOG_POID
This macro prints the contents of a POID to the error log file. This operation allows an
application to log an arbitrary message and the corresponding POID for recording errors,
accounting, or debugging. The specified message and POID are logged in the standard log
entry format, so complete information about where they came from is available in the log file.

Syntax

#include "pcm.h"
void
PIN_ERR_LOG_POID(
 int32 level,
 char *msg,
 poid_t *pdp);

Chapter 1
Error-Handling Macros

1-24

Parameters

level
The level of this log message. Based on the level specified and the logging level set in the log
system, the message is either printed or discarded. See "PIN_ERR_SET_LEVEL" for the
error-level descriptions.

msg
A string to be printed in addition to the standard logging message. Allows additional detailed
information to be added to the log message by the caller.

pdp
A pointer to the POID to be printed in addition to the standard log entry information.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and then tested once for any errors. See "Series-
Style ebuf" in BRM Developer's Guide for more information.

PIN_ERR_SET_LEVEL
This macro sets the desired level of logging. Messages sent to the logging system have a
severity code that describes the category of the message. Users can choose to have
messages of different categories either logged or suppressed, depending on how much
logging output they would like to see. Messages that are suppressed are discarded.

In general, BRM recommends that only debug messages be suppressed on a production
system. All other types of messages convey possible system problems that should be
investigated. Debug messages can be enabled when they might help diagnose an application
error and then suppressed when the system is running in a steady state.

If PIN_ERR_SET_LEVEL is not called, the logging system defaults to a level of 2.

Syntax

#include "pcm.h"
int32
PIN_ERR_SET_LEVEL(
 int32 level);

Parameter

level
Sets the mask for which level of errors should be logged and which ones suppressed. All
messages with a level of level or less are printed. All messages with a level greater than level
are suppressed. Errors come in the levels listed in Table 1-3:

Chapter 1
Error-Handling Macros

1-25

Table 1-3 PIN_ERR_SET_LEVEL Values

Allowed Level Values System Category Type of Message Messages Returned

0 N/A N/A Nothing at this level

1 E Error Serious system integrity problems

2 W Warning Possible data corruption problems

3 D Debug Details of application errors

• Setting level to 0 means no messages will be produced, no matter what the error.

• Setting level to 1 will log only errors, which indicate some portion of the BRM system is not
operating correctly.

• Setting level to 2 will print errors and warnings. Warnings indicate that data was found in
the database that is suspect, and some data corruption may have occurred. The system
can still operate properly, but specific operations related to the corrupt data may have to be
bypassed.

• Setting level to 3 prints debug messages. The debug messages log detailed information
about operations that applications attempt that generate errors in the system due to
incorrect parameters or other application level errors. The system is not adversely affected
by this type of event, but the application developer can use the debug messages to more
easily pinpoint where the application error is located.

Return Values

Returns 0 if the macro is successful. Returns a nonzero value if an error occurred. The only
possible failure is the specification of an unreasonable value for level.

Error Handling

Returns a nonzero value if an error occurred. In this case, the internal state of the logging
system is unchanged.

PIN_ERR_SET_LOGFILE
This macro specifies the file to use for logging. The log file can be changed at any time by
calling PIN_ERR_SET_LOGFILE. All messages logged after the change are logged to the new
file.

If this macro is not called, the logging system uses the default ./default.pinlog log file, where ./
is relative to the directory in which the application was started.

Syntax

#include "pcm.h"
int32
PIN_ERR_SET_LOGFILE(
 char *path);

Parameter

path
The path of the file to be used as the log file. The file is opened exactly as specified, so
relative paths will work, but they will be relative to the current directory of the running program.

Chapter 1
Error-Handling Macros

1-26

Return Values

Returns a nonzero value if an error occurred.

Error Handling

Returns a nonzero value if an error occurred. The internal state of the logging system is
unchanged. The return value should be tested after the call to ensure the desired log file will be
used.

PIN_ERR_SET_PROGRAM
This macro sets the program name for log messages. The program name is printed in each log
message as additional information to aid in debugging problems. The program name can be
set to any string desired.

If PIN_ERR_SET_PROGRAM is not called, log messages are printed with a blank program
name field.

Syntax

#include "pcm.h"
int32
PIN_ERR_SET_PROGRAM(
 char *program);

Parameter

program
The name of the running program to be printed in log messages. If the pointer is NULL, the
current name is not changed.

Return Values

Returns 0 if the macro is successful. Returns a nonzero value if an error occurred. The only
possible failure condition is the specification of a NULL pointer.

Error Handling

Returns a nonzero return value if an error occurred. In this case, the internal state of the
logging system is unchanged.

PIN_ERRBUF_CLEAR
This macro is used for a newly allocated or defined error buffer structure to initialize the
contents of the error buffer to 0.

Syntax

#include "pcm.h"
void
PIN_ERRBUF_CLEAR(
 pin_errbuf_t *ebufp);

Chapter 1
Error-Handling Macros

1-27

Parameter

ebufp
A pointer to the error buffer that is initialized.

Return Values

This macro returns nothing.

Example

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_ERRBUF_IS_ERR
This macro checks the specified error buffer for an error condition. It allows an application to
quickly check whether an error occurs on a call that uses the error buffer.

Macros that use individual ebuf error handling must use PIN_ERRBUF_IS_ERR after each call
to test for an error.

Macros that use series-style ebuf error handling can make an entire series of calls and use this
macro once at the end to test for an error.

Syntax

#include "pcm.h"
int32
PIN_ERRBUF_IS_ERR(
 pin_errbuf_t *ebufp);

Parameter

ebufp
A pointer to an error buffer. Used by the macro to determine whether an error has occurred.

Return Values

Returns 0 if the error buffer contains no error. Returns a nonzero value if the error buffer
contains an error.

Example

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_ERRBUF_RESET
This macro is called to reset the error buffer either before reusing an existing error buffer
structure or before calling pin_free to free a dynamically allocated error buffer structure.

For details on the structure and fields in an error buffer, see "Error Buffer" in BRM Developer's
Guide.

The use of PIN_ERRBUF_RESET depends on the type of macro called with the error buffer:

Chapter 1
Error-Handling Macros

1-28

• Individual-style ebuf: Macros that use this style of error handling must examine the error
buffer for an error after each call. Use PIN_ERRBUF_RESET to clear any error that was
detected before using the same error buffer again.

• Series-style ebuf: Macros that use this style of error handling can use the same error
buffer for a series of calls without checking for or clearing errors between calls. After a
series of calls, check the error buffer for errors. Use PIN_ERRBUF_RESET to clear any
error before using the error buffer again.

Syntax

#include "pcm.h"
void
PIN_ERRBUF_RESET(
 pin_errbuf_t *ebufp);

Parameter

ebufp
A pointer to the error buffer that is reset.

Return Values

This macro returns nothing.

Example

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

pin_set_err
This function sets the error values in the pin_errbuf_t (ebuf) structure pointer.

Note:

This is the only error handling routine that is not a macro. This is a function.

Syntax

EXTERN
void
pin_set_err(
 pin_errbuf_t *ebuf,
 int32 location,
 int32 pin_errclass,
 int32 pin_err,
 int32 field,
 int32 rec_ID,
 int32 reserved);

Chapter 1
Error-Handling Macros

1-29

Parameters

ebuf
A pointer to the error buffer.

location
The location of an error. For a list of possible locations, see "BRM Error Locations" in BRM
System Administrator's Guide.

pin_errclass
One of the four classes. See "BRM Error Classes" in BRM System Administrator's Guide.

pin_err
One of the system error codes. For a list of possible error codes, see "BRM Error Codes" in
BRM System Administrator's Guide.

field
Set to 0 or to the applicable PIN_FLD_xxx.

rec_ID
Set to 0 or to the record ID of the array element the error occurred on.

reserved
Set to 0 or to a value chosen to provide further information about the specific error.

Return Values

This function returns nothing.

Error Handling

There are no error conditions for this function. If the message cannot be logged for any reason,
that information is not passed back to the caller.

Flist Field-Handling Macros
This section describes flist field-handling macros.

PIN_FLIST_ANY_GET_NEXT
This BRM macro gets the value of the next simple field, substructure, or element of an array in
an flist. It lets an application walk an flist retrieving each field value.

The value returned is a pointer to the actual field value, and the field remains unchanged on
the original flist. The value returned must be treated as read-only to maintain the integrity of the
flist. If a writable copy of the value is needed, the application must either make a copy of the
returned value or take it according to its type as listed in Table 1-4:

Table 1-4 Next Field Macros

Field Type Macro to Use

Simple PIN_FLIST_FLD_TAKE

Substructure PIN_FLIST_SUBSTR_TAKE

Array element PIN_FLIST_ELEM_TAKE

Chapter 1
Flist Field-Handling Macros

1-30

Syntax

#include "pcm.h"
void
*PIN_FLIST_ANY_GET_NEXT(
 pin_flist_t *flistp,
 pin_fld_num_t *fldp,
 int32 *record_idp,
 pin_cookie_t *cookiep,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist containing the field being obtained.

fldp
A pointer to the field.

record_idp
The element ID, in case of array field is returned if not NULL.

cookiep
The cookie for the next field.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the value on the flist. The pointer must be cast appropriately depending on
the type of the field. Returns NULL if an error occurred or if the field is not found.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_ELEM_ADD
This macro adds a specified array element to the flist. The flist for the element fields is created
and returned. The pointer to this element flist can then be used to set/put fields into the
element.

If the specified array element already exists on the flist, the existing element flist is destroyed
and replaced by the new element flist.

Syntax

#include "pcm.h"
pin_flist_t *
PIN_FLIST_ELEM_ADD(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 v_int32 elem_id,
 pin_errbuf_t *ebufp);

Chapter 1
Flist Field-Handling Macros

1-31

Parameters

flistp
A pointer to the flist receiving the array element.

fld
The number of the field being added.

elem_id
The element ID of the element being added.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the flist for the array element. Returns NULL if an error occurred.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

Example

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_FLIST_ELEM_COPY
This macro copies an element in an array from one flist to another. You can change the
element name and record ID while copying the element. The type must remain the same.

Syntax

#include "pcm.h"
int32
PIN_FLIST_ELEM_COPY(
 pin_flist_t *src_flistp,
 pin_fld_num_t src_fld,
 pin_rec_id_t src_recID,
 pin_flist_t *dest_flistp,
 pin_fld_num_t dest_fld,
 pin_rec_id_t dest_recID,
 pin_errbuf_t *ebufp);

Parameters

src_flistp
A pointer to the source flist from which the element is copied.

src_fld
The element that is copied from the source flist.

src_recID
The record ID of the element that is copied.

Chapter 1
Flist Field-Handling Macros

1-32

dest_flistp
A pointer to the destination flist to which an element is copied.

dest_fld
The copied element in the destination flist.

dest_recID
The record ID of the copied element in the destination flist.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns 1 if the field to be copied is found. Returns 0 if the field to be copied is not found. Not
finding a field does not result in an error buffer error.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_ELEM_COUNT
This macro counts the number of elements of an array on an flist. It does not look at
substructure flists, so the elements must be on the flist passed in at the highest level.

Syntax

#include "pcm.h"
int32
PIN_FLIST_ELEM_COUNT(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist being counted.

fld
The field number of the array containing the elements being counted. Each time a field with
this number is found, the element count is incremented.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns the number of elements found as an unsigned integer. Returns 0 if an error occurred.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

Chapter 1
Flist Field-Handling Macros

1-33

PIN_FLIST_ELEM_DROP
This macro drops the specified array element from an flist. The element flist is destroyed and
the memory reallocated.

Note:

This opcode causes an array to shift its indexing if an element other than the last is
dropped. Do not use this PIN_FLIST_ELEM_DROP in a loop of
PIN_FLIST_ELEM_GET_NEXT calls; the off-set will cause elements to be skipped.

Syntax

#include "pcm.h"
void
PIN_FLIST_ELEM_DROP(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 int32 elem_id,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist containing the array element being removed.

fld
The field number of the array containing the element being removed.

elem_id
The element ID of the element being removed.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_ELEM_GET
This macro gets the value of a specific array element from the flist. The element remains on
the flist unchanged, and the value returned is a pointer to the element flist owned by the flist.
The element flist returned must be treated as read-only to maintain the integrity of the flist. If a
writable copy of the element flist is needed, the application must either make a copy of the
returned element flist or use PIN_FLIST_ELEM_TAKE to take ownership of the element from
the flist.

Chapter 1
Flist Field-Handling Macros

1-34

Syntax

#include "pcm.h"
pin_flist_t *
PIN_FLIST_ELEM_GET(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 int32 elem_id,
 int32 optional,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist containing the array element being obtained.

fld
The field number of the array containing the element being obtained.

elem_id
The ID of the array you need returned.

optional
If this flag is set (by passing in a nonzero value) and the element is not found, no error
condition is set. If this flag is not set, and the element is not found, an error condition is set.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the element flist. Returns NULL if an error occurred.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_ELEM_GET_NEXT
This macro gets an array element from an flist. That is, this macro gets the value of the next
element of a specified array on an flist. It lets the application walk the flist, retrieving each
element of an array without knowing the element IDs ahead of time.

The element remains on the flist unchanged, and the value returned is a pointer to the element
flist owned by the flist. The element flist returned must be treated as read-only to maintain the
integrity of the flist. If a writable copy of the element flist is needed, the application must either
make a copy of the returned element flist or use PIN_FLIST_ELEM_TAKE_NEXT to take
ownership of the element from the flist.

Syntax

#include "pcm.h"
pin_flist_t *
PIN_FLIST_ELEM_GET_NEXT(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 int32 *elem_idp,

Chapter 1
Flist Field-Handling Macros

1-35

 int32 optional,
 pin_cookie_t *cookie,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist containing the array element being obtained.

fld
The field number of the array containing the element being taken.

elem_idp
A pointer to the number of the array element being taken.

optional
If this flag is set (by passing in a nonzero value) and the element is not found, no error
condition is set. If this flag is not set and the element is not found, an error condition is set.

cookie
If set to NULL, the first element on the list is returned. In subsequent calls to this macro, pass
in the cookie, and the next element of the array is retrieved.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the element flist, elem_idp, as the element number. Returns NULL if an
error occurred or if the element is not found.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_ELEM_MOVE
This macro moves an element of an array from one flist to another. You can change the field
name and record ID when you move the element. The type must remain the same.

Syntax

#include "pcm.h"
int32
PIN_FLIST_ELEM_MOVE(
 pin_flist_t *src_flistp,
 pin_fld_num_t src_fld,
 pin_rec_id_t src_recID,
 pin_flist_t *dest_flistp,
 pin_fld_num_t dest_fld,
 pin_rec_id_t dest_recID,
 pin_errbuf_t *ebufp);

Chapter 1
Flist Field-Handling Macros

1-36

Parameters

src_flistp
A pointer to the source flist from which the element is moved.

src_fld
The element that is moved from the source flist.

src_recID
The record ID of the element that is moved.

dest_flistp
A pointer to the destination flist to which an element is moved.

dest_fld
The moved element in the destination flist.

dest_recID
The record ID of the moved element in the destination flist.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns 1 if the field to be moved is found. Returns 0 if the field to be moved is not found. Not
finding a field does not result in an error buffer error.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_ELEM_PUT
This macro puts an array element on an flist. The element flist provided is used as the value of
the array element. Ownership of the element flist is passed to the target flist, so the application
must not destroy it once it has been put. The memory holding the value must be dynamically
allocated.

After the field value has been added to an flist using this macro, the caller can no longer
access the value directly using the pointer to the value. The flist management system may
optimize memory usage by moving where the value is stored so the original pointer is no
longer valid.

If the specified array element already exists on the flist, the existing element flist is destroyed
and replaced by the new element flist.

If an error condition exists or this macro fails, the element being put is destroyed. The memory
is deallocated, and an error is returned to the error buffer.

Syntax

#include "pcm.h"
void
PIN_FLIST_ELEM_PUT(
 pin_flist_t *flistp,
 pin_flist_t *elem_flistp,

Chapter 1
Flist Field-Handling Macros

1-37

 pin_fld_num_t fld,
 int32 elem_id,
 pin_errbuf_t *ebufp);

Compilation Switch

-DASSIGN_NULL_AFTER_ELEM_PUT
(Release 15.0.1 or later) Assigns elem_flistp to a NULL value after the macro call. This
prevents the object or flist from being destroyed.

Parameters

flistp
A pointer to the destination flist.

elem_flistp
A pointer to the flist containing the array element being added.

fld
The field number of the array receiving the element.

elem_id
The number of the element to put on the flist.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_ELEM_SET
This macro sets a copy of an element on an flist. A dynamic copy of the specified element is
made for the flist. The element passed in does not have to be in dynamic memory. The
element passed in is unaffected by this macro. If the specified element already exists on the
flist, the existing element is destroyed and replaced by the new element.

Syntax

#include "pcm.h"
void
PIN_FLIST_ELEM_SET(
 pin_flist_t *flistp,
 void *elem_flistp,
 pin_fld_num_t fld,
 int32 elem_id,
 pin_errbuf_t *ebufp);

Chapter 1
Flist Field-Handling Macros

1-38

Parameters

flistp
A pointer to the destination flist for the element.

elem_flistp
A pointer to the flist for the input element.

fld
The field number of the array receiving the element.

elem_id
The number of the element being added.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_ELEM_TAKE
This macro takes the value of an array element from an flist and removes it from the flist. The
dynamically allocated memory holding the element flist is returned to the application. The
application is then responsible for freeing this element flist when it is no longer needed. This
macro is useful when the array element is no longer needed on the flist after the value is
retrieved.

Syntax

#include "pcm.h"
pin_flist_t *
PIN_FLIST_ELEM_TAKE(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 int32 elem_id,
 int32 optional,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist containing the element being taken.

fld
The field number of the array whose element is being taken.

elem_id
The number of the element being taken.

Chapter 1
Flist Field-Handling Macros

1-39

optional
If this flag is set (by passing in a nonzero value) and the element is not found, no error
condition is set. If this flag is not set and the element is not found, an error condition is set.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the element flist. Returns NULL if an error occurred or the element is not
found.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_ELEM_TAKE_NEXT
This macro takes the value of the next element of an array from the flist. It lets the application
walk the flist, retrieving each element of an array without knowing the element IDs ahead of
time.

The element is removed from the flist. The dynamically allocated memory holding the element
flist is returned to the application. The application is then responsible for freeing this element
flist when it is no longer needed by the application. This macro is useful when the array
element will not be needed on the flist after the value is retrieved.

Syntax

#include "pcm.h"
pin_flist_t *
PIN_FLIST_ELEM_TAKE_NEXT(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 int32 *elem_idp,
 int32 optional,
 pin_cookie_t *cookie,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist of the array containing the element being taken.

fld
The field number of the array containing the element being taken.

elem_idp
A pointer to the number of the element being taken.

optional
If this flag is set (by passing in a nonzero value) and the element is not found, no error
condition is set. If this flag is not set and the element is not found, an error condition is set.

cookie
If set to NULL, the first element on the list is returned. In subsequent calls to this macro, pass
in the cookie, and the next element of the array is retrieved.

Chapter 1
Flist Field-Handling Macros

1-40

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the element flist, elem_idp, as the element number. Returns NULL if an
error occurred or if the element is not found.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_FLD_COPY
This macro copies a field from one flist to another. If this macro is called to copy an array, it
copies the array with all the elements in the array.

You can change the field name while copying the field. The type must remain the same.

Syntax

#include "pcm.h"
int32
PIN_FLIST_FLD_COPY(
 pin_flist_t *src_flistp,
 pin_fld_num_t src_fld,
 pin_flist_t *dest_flistp,
 pin_fld_num_t dest_fld,
 pin_errbuf_t *ebufp);

Parameters

src_flistp
A pointer to the source flist from which the field is copied.

src_fld
The field that is copied from the source flist.

dest_flistp
A pointer to the destination flist to which a field is copied.

dest_fld
The copied field in the destination flist.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns 1 if the field to be moved is found. Returns 0 if the field to be moved is not found. Not
finding a field does not result in an error buffer error.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

Chapter 1
Flist Field-Handling Macros

1-41

PIN_FLIST_FLD_DROP
This macro removes a field from an flist, destroying the value of the field and reallocating the
memory.

Syntax

#include "pcm.h"
void
PIN_FLIST_FLD_DROP(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist containing the substructure.

fld
The field number of the substructure being removed.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_FLD_GET
This macro gets the value of a field from an flist. The value returned is a pointer to the actual
value owned by the flist, and the field remains on the original flist, unchanged. The value
returned must be treated as read-only to maintain the integrity of the flist. If a writable copy of
the value is needed, the application must either make a copy of the returned value or use
PIN_FLIST_FLD_TAKE to take ownership of the field from the flist.

Caution:

The pointer returned is valid only until you modify the flist by setting a field, retrieving
a field, or destroying the flist. To ensure that you have a valid pointer, always use
PIN_FLIST_FLD_GET immediately before you use the field, or dereference the
pointer returned from PIN_FLIST_FLD_GET and store the value locally.

Chapter 1
Flist Field-Handling Macros

1-42

Note:

To copy a field from one flist to another, use PIN_FLIST_FLD_COPY instead of
PIN_FLIST_FLD_GET and PIN_FLIST_FLD_SET. To copy an element from one flist
to another, use PIN_FLIST_ELEM_COPY.

Syntax

#include "pcm.h"
void *
PIN_FLIST_FLD_GET(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 int32 optional,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist containing the field being obtained.

fld
The number of the field being obtained.

optional
If this flag is set (by passing in a nonzero value) and the element is not found, no error
condition is set. If this flag is not set and the element is not found, an error condition is set.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the value on the flist. The pointer must be cast appropriately depending on
the type of the field. Returns NULL if an error occurred or if the field is not found.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

Example

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_FLIST_FLD_MOVE
This macro moves a field from one flist to another. If this macro is called to move an array, it
moves the array with all the elements in the array.

You can change the field name while moving the field. The type must remain the same.

Chapter 1
Flist Field-Handling Macros

1-43

Syntax

#include "pcm.h"
int32
PIN_FLIST_FLD_MOVE(
 pin_flist_t *src_flistp,
 pin_fld_num_t src_fld,
 pin_flist_t *dest_flistp,
 pin_fld_num_t dest_fld,
 pin_errbuf_t *ebufp);

Parameters

src_flistp
A pointer to the source flist from which a field is moved.

src_fld
The field that is moved from the source flist.

dest_flistp
A pointer to the destination flist into which a field is moved.

dest_fld
The moved field in the destination flist.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns 1 if the field to be moved is found. Returns 0 if the field to be moved is not found. Not
finding a field does not result in an error buffer error.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_FLD_PUT
This macro puts a field (including its data value) in an flist. The memory holding the value must
be dynamically allocated. The dynamic memory holding the value is given to the flist as part of
the put. This is useful for adding a field to the flist without copying its value if the application no
longer needs that memory.

Note:

To move fields between flists or to rename fields, use PIN_FLIST_FLD_MOVE,
PIN_FLIST_ELEM_MOVE, and PIN_FLIST_FLD_RENAME instead of
PIN_FLIST_FLD_TAKE and PIN_FLIST_FLD_PUT.

After the field value has been added to an flist using this macro, the caller can no longer
access the value directly using the pointer to the value. The flist management system may

Chapter 1
Flist Field-Handling Macros

1-44

optimize memory usage by moving where the value is stored so the original pointer is no
longer valid.

If the specified field already exists in the flist, the previous value is destroyed and replaced by
the new value.

If an error condition exists or this macro fails, the field being put is destroyed. The memory is
deallocated, and an error is returned to the error buffer.

Syntax

#include "pcm.h"
void
PIN_FLIST_FLD_PUT(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 void *valp,
 pin_errbuf_t *ebufp);

Compilation Switch

-DASSIGN_NULL_AFTER_FLD_PUT
(Release 15.0.1 or later) Assigns valp to a NULL value after the macro call. This prevents the
object or flist from being destroyed.

Parameters

flistp
A pointer to the flist receiving the field.

fld
The number of the field being added.

valp
A pointer to the field value being added.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

Example

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_FLIST_FLD_RENAME
This macro changes the name of a field in an flist. If you are changing the name of an array,
this macro changes the names of all the elements in the array.

Chapter 1
Flist Field-Handling Macros

1-45

The type of the fields must be the same.

Syntax

#include "pcm.h"
void
PIN_FLIST_FLD_RENAME(
 pin_flist_t *flistp,
 pin_fld_num_t src_fld,
 pin_fld_num_t dest_fld,
 pin_errbuf_t *ebufp)

Parameters

flistp
A pointer to the flist in which a field is renamed.

src_fld
The field that is renamed.

dest_fld
The new name of the field.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

If the field is not found, the error buffer contains a PIN_ERR_NOT_FOUND error.

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_FLD_SET
This macro adds a field and a value to an flist. A dynamic copy of the specified value is made
for the flist. The value passed does not have to be in dynamic memory. The value passed is
unaffected by the macro.

If the specified field already exists in the flist, the existing value is destroyed and replaced by
the new value.

Note:

To copy a field from one flist to another, use PIN_FLIST_FLD_COPY instead of
PIN_FLIST_FLD_GET and PIN_FLIST_FLD_SET. To copy an element from one flist
to another, use PIN_FLIST_ELEM_COPY.

Syntax

#include "pcm.h"
void

Chapter 1
Flist Field-Handling Macros

1-46

PIN_FLIST_FLD_SET(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 void *valp,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist receiving the field.

fld
The number of the field being added.

valp
A pointer to the field value.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

Example

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_FLIST_FLD_TAKE
This macro takes a field from an flist and returns its value. The dynamically allocated memory
holding the field value is returned to the application. The application is then responsible for
freeing this memory when it is no longer needed. This macro is useful when fields will not be
needed after the field value is retrieved.

Caution:

If you use PIN_FLIST_FLD_GET, you should do so before using this macro.
PIN_FLD_FLIST_TAKE can modify the memory locations of the flist, making the
PIN_FLIST_FLD_GET pointer invalid. To ensure that the pointer to the flist remains
valid, always call PIN_FLIST_FLD_GET immediately before using the field.

Use PIN_FLIST_FLD_GET when a read-only pointer to the field is needed.

Chapter 1
Flist Field-Handling Macros

1-47

Note:

To move fields between flists or to rename fields, use PIN_FLIST_FLD_MOVE,
PIN_FLIST_ELEM_MOVE, and PIN_FLIST_FLD_RENAME instead of
PIN_FLIST_FLD_TAKE and PIN_FLIST_FLD_PUT.

Syntax

#include "pcm.h"
void *
PIN_FLIST_FLD_TAKE(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 int32 optional,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist containing the field being taken.

fld
The number of the field being taken.

optional
If this flag is set (by passing in a nonzero value) and the element is not found, no error
condition is set. If this flag is not set and the element is not found, an error condition is set.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the field's value. The pointer must be cast appropriately depending on the
type of field. Returns NULL if an error occurred or if the field is not found.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_SUBSTR_ADD
This macro adds a substructure to an flist. The flist for the substructure is created and
returned. The pointer to this substruct flist can then be used to set/put fields into the
substructure. If the substructure already exists on the flist, the existing substruct flist is
destroyed and replaced by the new substruct flist.

Syntax

#include "pcm.h"
pin_flist_t *
PIN_FLIST_SUBSTR_ADD(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 pin_errbuf_t *ebufp);

Chapter 1
Flist Field-Handling Macros

1-48

Parameters

flistp
A pointer to the flist receiving the substructure.

fld
The field number of the substructure being added.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the flist for the substructure. Returns NULL if an error occurred.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_SUBSTR_DROP
This macro removes a substructure from an flist, freeing the allocated memory.

Syntax

#include "pcm.h"
void
PIN_FLIST_SUBSTR_DROP(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist containing the substructure being dropped.

fld
The field number of the substructure being dropped.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_SUBSTR_GET
This macro gets a substructure from an flist. The substructure remains on the flist unchanged,
and the value returned is a pointer to the substructure flist, owned by the flist. The substructure

Chapter 1
Flist Field-Handling Macros

1-49

returned must be treated as read-only to maintain the integrity of the flist. If a writable copy of
the substructure flist is needed, the application must either make a copy of the returned
substructure flist or use the PIN_FLIST_SUBSTR_TAKE macro to take ownership of the
substructure.

Syntax

#include "pcm.h"
void *
PIN_FLIST_SUBSTR_GET(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 int32 optional,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist with the substructure being obtained.

fld
The field number of the substructure being obtained.

optional
If this flag is set (by passing in a nonzero value) and the element is not found, no error
condition is set. If this flag is not set and the element is not found, an error condition is set.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the substructure flist. Returns NULL if an error occurred or if the element
is not found.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_SUBSTR_PUT
This macro puts a substructure on an flist. The substructure flist provided is used as the value
of the substructure. Ownership of the substructure flist is passed to the target flist, so the
application must not destroy it once it has been put. The memory holding the value must be
dynamically allocated.

After the value of the field has been added to an flist using this macro, the caller can no longer
access the value directly using the pointer to the value. The flist management system may
optimize memory usage by moving where the value is stored, so the original pointer is no
longer valid.

If the specified substructure already exists on the target flist, the existing element is destroyed
and replaced by the new element.

If an error condition exists or the macro otherwise fails, the substructure being put is destroyed.
The memory is deallocated and an error is returned to the error buffer.

Chapter 1
Flist Field-Handling Macros

1-50

This macro is optimal for adding inordinately large chunks of data to an flist. The flist does not
allocate memory for the added data; it is merely linked to where the memory is already
dynamically allocated. In contrast, PIN_FLIST_SUBSTR_SET adds an element by reallocating
memory for it in the flist.

Syntax

#include "pcm.h"
void
PIN_FLIST_SUBSTR_PUT(
 pin_flist_t *flistp,
 void *substr_flistp,
 pin_fld_num_t fld,
 pin_errbuf_t *ebufp);

Compilation Switch

-DASSIGN_NULL_AFTER_SUBSTR_PUT
(Release 15.0.1 or later) Assigns substr_flistp to a NULL value after the macro call. This
prevents the object or flist from being destroyed.

Parameters

flistp
A pointer to the flist being added.

substr_flistp
A pointer to the flist containing the substructure being added.

fld
The field number of the substructure being added.

ebufp
A pointer to the error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_SUBSTR_SET
This macro adds a copy of a substructure to an flist. A dynamic copy of the specified
substructure is made for the flist. The substructure passed in does not have to be in dynamic
memory. The substructure passed in is unaffected by this macro. If the specified field already
exists on the flist, the existing substructure is destroyed and replaced by the new substructure.

Syntax

#include "pcm.h"
void
PIN_FLIST_SUBSTR_SET(
 pin_flist_t *flistp,
 void *substr_flistp,

Chapter 1
Flist Field-Handling Macros

1-51

 pin_fld_num_t fld,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist receiving the substructure.

substr_flistp
A pointer to the flist containing the substructure being added.

fld
The field number of the substructure being added.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_FLIST_SUBSTR_TAKE
This macro takes a substructure off of an flist and returns its value. The dynamically allocated
memory holding the field value is returned to the application. The application is then
responsible for freeing this memory when it is no longer needed. This macro is useful when
fields will not be needed after the field value is retrieved.

Syntax

#include "pcm.h"
void *
PIN_FLIST_SUBSTR_TAKE(
 pin_flist_t *flistp,
 pin_fld_num_t fld,
 int32 optional,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist containing the substructure being taken.

fld
The field number of the substructure being removed from flistp.

optional
If this flag is set (by passing in a nonzero value) and the element is not found, no error
condition is set. If this flag is not set and the element is not found, an error condition is set.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Chapter 1
Flist Field-Handling Macros

1-52

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

Flist Management Macros
This section describes flist management macros.

PIN_FLIST_CONCAT
This BRM macro appends a (source) flist to the end of another (destination) flist. No
comparisons between the flists are performed, and the source flist remains unchanged.

Syntax

#include "pcm.h"
void
PIN_FLIST_CONCAT(
 pin_flist_t *dest_flistp,
 pin_flist_t *src_flistp,
 pin_errbuf_t *ebufp);

Parameters

dest_flistp
A pointer to the destination flist.

src_flistp
A pointer to the source flist.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns the concatenated flist in dest_flistp. If src_flistp is NULL, dest_flistp is returned
unchanged. Returns an error in the error buffer if dest_flistp is NULL.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

PIN_FLIST_COPY
This macro copies all levels of an existing flist, including its array elements and substructures.
The copied fields and their values are duplicated so no memory is shared between the two
flists.

Chapter 1
Flist Management Macros

1-53

Syntax

#include "pcm.h"
pin_flist_t *
PIN_FLIST_COPY(
 pin_flist_t *flistp,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist to be copied.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the new flist. Returns NULL if an error occurred.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

PIN_FLIST_COUNT
This macro counts the number of fields on the flist. Only fields on the main flist are included.
Each array element and substruct is counted as a single element.

If PIN_FLIST_COUNT is called with the pointer to an array element or substruct, the number of
fields at that level of the flist are counted.

Syntax

#include "pcm.h"
int32
PIN_FLIST_COUNT(
 pin_flist_t *flistp,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to an flist to count the fields of.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns the number of fields as an unsigned integer. Returns 0 if an error occurred.

Chapter 1
Flist Management Macros

1-54

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

PIN_FLIST_CREATE
This BRM macro creates an flist that is used to pass parameters to the PCM_OP function. This
macro creates an flist and returns a pointer that is used to reference the flist by all future
operations. All memory for the flist is dynamically allocated.

Syntax

#include "pcm.h"
pin_flist_t *
PIN_FLIST_CREATE(ebufp)
 pin_errbuf_t *ebufp);

Parameter

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the flist, in the form of pin_flist_t*. Returns NULL if an error occurred.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

Example

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_FLIST_DESTROY
This macro destroys an flist. Flists use dynamically allocated memory, and they must be
destroyed to free that memory. This macro destroys the entire contents of an flist, including all
fields on the flist.

PIN_FLIST_DESTROY can destroy an flist, even if the error buffer is NULL.

Syntax

#include "pcm.h"
void
PIN_FLIST_DESTROY(

Chapter 1
Flist Management Macros

1-55

 pin_flist_t *flistp,
 pin_errbuf_t *ebufp);

Parameters

*flistp
A pointer to the flist to destroy.

*ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

Example

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_FLIST_DESTROY_EX
This macro destroys an flist. Flists use dynamically allocated memory, and they must be
destroyed to free that memory. This macro first checks whether the pointer passed in is NULL.
If the pointer is NULL, it returns. If the pointer is not NULL, it destroys the entire contents of
the flist, including all fields on the flist, and sets the flist pointer to NULL.

Note:

PIN_FLIST_DESTROY_EX can destroy an flist, even if the error buffer is NULL.

Syntax

#include "pcm.h"
void
PIN_FLIST_DESTROY_EX(
 pin_flist_t **flistpp,
 pin_errbuf_t *ebufp);

Parameters

**flistpp
A pointer to the flist to destroy.

*ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Chapter 1
Flist Management Macros

1-56

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

Example

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_FLIST_PRINT
This macro prints, in ASCII format, an flist to a file. All levels of the flist, including the contents
of array elements and substructures, are printed. This is useful for debugging applications that
build or manipulate flists.

Syntax

#include "pcm.h"
void
PIN_FLIST_PRINT(
 pin_flist_t *flistp,
 FILE *fi,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist to print.

fi
A pointer to a file to print a message to. If the value of this pointer is NULL, the message is
printed to stdout.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

Chapter 1
Flist Management Macros

1-57

Example

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_FLIST_SORT
This macro sorts flists and is normally used to sort array elements. Arrays sorted may also be
the result of a search.

The flist to be sorted usually represents an array of search results returned from
PCM_OP_SEARCH. The sort_flistp parameter is an flist that you construct with
sort_parameter, called PIN_FLD_RESULTS. It would look like:

PIN_FLD_RESULTS
 field 1
 field 2
 .
 .
 .

Then use sort_default to compare nonexistent fields to existing fields. If all of the result
elements have field values, 0 can be passed as the value of sort_default.

In cases where a result element has a field value, and it is being compared to another result
element with the same field, but no value:

• A negative sort_default means that the result element with the missing field value is sorted
before the other in the sorted list.

• A positive sort_default means the missing field occurs after the other.

• A sort_default of 0 means that they are considered equal and order is arbitrary on the
sorted list.

Syntax

#include "pcm.h"
void
PIN_FLIST_SORT(
 pin_flist_t *flistp,
 pin_flist_t *sort_listp,
 int32 sort_default,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist being sorted. The flist should normally consist of an array so that the sort
is performed on elements of the array. Each element of the array may be a list of fields; it is
those fields that get sorted. When you call this macro, pass the exact array (flist) you want
sorted, not the entire array.

sort_listp
A list of fields in each element in flistp to use as sort fields. Elements in flistp are sorted in this
order. If the value of this parameter is NULL, PIN_ERR_BAD_ARG is returned.

Chapter 1
Flist Management Macros

1-58

sort_default
The comparison to be used if an element is not found:

• f1 NOT found, f2 found - return sort_default

• f1 found, f2 NOT found - return -sort_default

• f1 NOT found, f2 NOT found - return 0 (equal)

• a negative value for sort_default means: f1 < f2

• a positive value for sort_default means: f1 > f2

• a zero value for sort_default means: f1 == f2

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

PIN_FLIST_SORT_REVERSE
This macro sorts flists in reverse order. This macro, along with PIN_FLIST_SORT, is normally
used to sort array elements. Arrays sorted may also be the result of a search.

The flist to be sorted usually represents an array of search results returned from
PCM_OP_SEARCH or PCM_OP_STEP_SEARCH. The sort_flistp parameter is an flist that
you construct with sort_parameter, called PIN_FLD_RESULTS. It would look like:

PIN_FLD_RESULTS
 field n
 .
 .
 .
 field 2
 field 1

Then use the sort_default parameter to compare nonexistent fields to existing fields. If all of the
result elements have field values, 0 can be passed as the value of sort_default.

In cases where a result element has a field value, and it is being compared to another result
element with the same field, but no value:

• A negative sort_default means that the result element with the missing field value is sorted
after the other in the sorted list.

• A positive sort_default means the missing field occurs before the other.

• A sort_default of 0 means that they are considered equal and order is arbitrary on the
sorted list.

Chapter 1
Flist Management Macros

1-59

Syntax

#include "pcm.h"
void
PIN_FLIST_SORT_REVERSE(
 pin_flist_t *flistp,
 pin_flist_t *sort_listp,
 int32 sort_default,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist being sorted. The flist should normally consist of an array so that the sort
is performed on elements of the array. Each element of the array may be a list of fields; it is
those fields that get sorted.

sort_listp
A list of fields in each element in flistp to use as sort fields. Elements in flistp are sorted in this
order. If the value of this parameter is NULL, PIN_ERR_BAD_ARG is returned.

sort_default
The comparison to be used if an element is not found:

• a zero value for sort_default means: f1 == f2

• a positive value for sort_default means: f1 > f2

• a negative value for sort_default means: f1 < f2

• f1 NOT found, f2 NOT found - > return 0 (equal)

• f1 found, f2 NOT found -> return -sort_default

• f1 NOT found, f2 found -> return sort_default

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

PIN_STR_TO_FLIST
This macro takes a string representation of an flist (for example, the output of
PIN_FLIST_TO_STR) and creates an flist run-time data structure.

Syntax

#include "pcm.h"
void

Chapter 1
Flist Management Macros

1-60

PIN_STR_TO_FLIST(
 char *str,
 int64 default_db,
 pin_flist_t **flistp,
 pin_errbuf_t *ebufp);

Parameters

str
A pointer to a string containing an flist in ASCII form.

default_db
A specified database number. If the ASCII string contains the sub-string "$DB", the database
number in this parameter will replace it.

flistp
A pointer to a buffer for the return flist.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns the string in flistp.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

PIN_FLIST_TO_STR
This macro prints, in ASCII format, the contents of an flist to a buffer.

Syntax

#include "pcm.h"
void
PIN_FLIST_TO_STR(
 pin_flist_t *flistp,
 char **strpp,
 int32 *lenp,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist to print to a string.

strpp
A pointer to a buffer for the return string. If the value is NULL, a buffer is allocated using
malloc.

Chapter 1
Flist Management Macros

1-61

lenp
The length of the buffer that strpp points to. The buffer must be large enough to include a \0. If
the value of strpp is NULL, len is passed back as the size of the allocated buffer, including the
\0.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns the string in strpp. If a buffer was allocated, len is the size of the string, including the
NULL terminator. If a buffer is allocated, the application owns the memory and must free it
eventually.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

PIN_FLIST_TO_STR_COMPACT_BINARY
This macro prints, in compact binary form, the contents of an flist to a buffer.

Syntax

#include "pcm.h"
void
PIN_FLIST_TO_STR_COMPACT_BINARY(
 pin_flist_t *flistp,
 char **strpp,
 int32 *lenp,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist to print to a string.

strpp
A pointer to a buffer for the return string. If the value is NULL, a buffer is allocated using
malloc.

lenp
The length of the buffer that strpp points to. The buffer must be large enough to include a \0. If
the value of strpp is NULL, len is passed back as the size of the allocated buffer, including the
\0.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns the string in strpp. The string is stored in binary format in compact form, which means
the field numbers, instead of the field names, are stored in the buffer. If a buffer was allocated,

Chapter 1
Flist Management Macros

1-62

len is the size of the string, including the NULL terminator. If a buffer is allocated, the
application owns the memory and must free it eventually.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

PIN_FLIST_TO_XML
This macro converts an flist to XML format. It is designed for converting an invoice to an XML
format. The formatted XML invoice is generated directly from the flist. It ignores and does not
convert data in buffer fields or fields of type PIN_FLDT_BINSTR.

Note:

This macro does not generate a .DTD file.

Syntax

#include "pcm.h"
void
PIN_FLIST_TO_XML(
 pin_flist_t *flistp,
 int32 flags,
 int32 encoding,
 char **bufpp,
 int *lenp,
 char *root_elemname,
 pin_errbuf_t *ebufp);

Parameters

flistp
A pointer to the flist to convert.

flags
Specifies the name-attribute pairs to use for the XML element tag:

• PIN_XML_BY_TYPE

• Uses the TYPE field for the name of the XML element tag. This is the default.

• PIN_XML_BY_NAME

• Uses the field name for the name of the XML element tag.

• PIN_XML_BY_SHORT_NAME

• Uses the field name for the name of the XML element tag and drops the common prefix to
include only the unique portion. For example, PIN_FLD_NAME becomes NAME.

• PIN_XML_FLDNO

• Uses the field number for the attribute of the XML element tag.

Chapter 1
Flist Management Macros

1-63

• PIN_XML_TYPE

Uses the TYPE field for the attribute of the XML element tag.

encoding
Specify UTF8.

bufpp
A pointer to the buffer that will contain the XML converted data.

lenp
The size of the buffer that bufpp points to.

root_elemname
The root element name. If you do not specify this field, the default root element name,
document, is used.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and tested once for any errors. See "Series-Style
ebuf" in BRM Developer's Guide for more information.

POID Management Macros
This section describes POID management macros.

PIN_POID_COMPARE
This BRM macro compares two POIDs for equality. All fields of the POIDs, including the
revision level, must be identical for them to be considered equal.

Syntax

#include "pcm.h"
int32
PIN_POID_COMPARE(
 poid_t *poidp1,
 poid_t *poidp2,
 int32 check_rev,
 pin_errbuf_t *ebufp);

Parameters

poidp1
A pointer to the first POID to be compared.

Chapter 1
POID Management Macros

1-64

poidp2
A pointer to the second POID to be compared.

check_rev
Determines whether or not the revision level of two POIDs is compared. If check_rev is set to
0, only the POID ID, database number, and type are compared. If check_rev is set to a
nonzero value, the POID ID, database number, type, and revision number are compared.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns 0 if the POIDs are identical. Returns a negative value if poidp1 is less than poidp2.
Returns a positive value if poidp1 is greater than poidp2.

Error Handling

This routine uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer, and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and then tested once for any errors. See "Series-
Style ebuf" in BRM Developer's Guide for more information.

PIN_POID_COPY
This macro copies a POID. The new POID uses dynamically allocated memory and is owned
by the caller.

If src_poidp is NULL, or if the source POID data type is NULL, a NULL value is returned, and
no error condition is set.

Syntax

#include "pcm.h"
poid_t*
PIN_POID_COPY(
 poid_t *src_poidp,
 pin_errbuf_t *ebufp);

Parameters

src_poidp
A pointer to the source POID.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the newly created POID if the macro is successful. Returns NULL if the
macro fails.

Success codes

PCM_ERR_NONE

Chapter 1
POID Management Macros

1-65

Error codes

PCM_ERR_NO_MEM

Error Handling

This routine uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer, and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and then tested once for any errors. See "Series-
Style ebuf" in BRM Developer's Guide for more information.

PIN_POID_CREATE
This macro creates a POID. The POID uses dynamically allocated memory, and ownership of
the POID is given to the caller. A copy is made of type, so it does not need to be in dynamic
memory when passed.

id is typically initialized as 0. The create operation finds the next available ID in the database
and uses it when creating the object.

A source POID with a type of NULL is handled correctly. See "Portal Object ID (POID)" in BRM
Developer's Guide for more information.

Syntax

#include "pcm.h"
poid_t*
PIN_POID_CREATE(
 int64 db,
 char *type,
 int64 id,
 pin_errbuf_t *ebufp);

Parameters

db
The database number.

type
The data type for the new POID. See the list of objects in "Storable Class Definitions".
Examples are /service and /event/customer/nameinfo.

id
A unique object ID. This is a 64-bit quantity, so an extremely large number of objects can exist
within a single database. Object IDs are unique within a single database, but not across
databases.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the newly created POID if the macro is successful. Returns NULL if the
macro fails.

Chapter 1
POID Management Macros

1-66

Error Handling

This routine uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer, and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and then tested once for any errors. See "Series-
Style ebuf" in BRM Developer's Guide for more information.

Examples

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_POID_DESTROY
This macro destroys a POID. POIDs use dynamically allocated memory and must be
destroyed to free that memory. The entire POID is destroyed, including the type string.

Syntax

#include "pcm.h"
void
PIN_POID_DESTROY(
 poid_t *poidp,
 pin_errbuf_t *ebufp);

Parameters

poidp
A pointer to the POID to be destroyed.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller. This parameter
is optional. If a NULL is passed in, no error information is returned.

Return Values

This macro returns nothing.

Error Handling

This routine uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer, and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and then tested once for any errors. See "Series-
Style ebuf" in BRM Developer's Guide for more information.

Examples

The sample_app.c file and the accompanying makefile illustrate how to use this macro when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PIN_POID_FROM_STR
This macro converts a string to a POID.

Chapter 1
POID Management Macros

1-67

Note:

This macro allocates the new POID's memory. To avoid memory leaks, PUT the
POID onto an flist (typical case) or destroy the flist.

Syntax

#include "pcm.h"
poid_t*
PIN_POID_FROM_STR(
 char *strp,
 char **endcpp,
 pin_errbuf_t *ebufp);

Parameters

strp
A pointer to the destination string.

endcpp
A pointer to the character following the last character of the POID value. That is, the character
that terminated the scan (usually NULL, white space, or a new line).

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

Returns a pointer to the POID created from the input string if the macro is successful. Returns
NULL if the macro fails.

Error Handling

This routine uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer, and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and then tested once for any errors. See "Series-
Style ebuf" in BRM Developer's Guide for more information.

PIN_POID_GET_DB
This macro returns the database number portion of a POID.

Syntax

#include "pcm.h"
int64
PIN_POID_GET_DB(
 poid_t *poidp);

Parameter

poidp
A pointer to the POID whose database number is being returned.

Chapter 1
POID Management Macros

1-68

Return Values

Returns the database number if the macro is successful.

Error Handling

This macro does not handle errors.

PIN_POID_GET_ID
This macro returns a POID's ID.

Syntax

#include "pcm.h"
int64
PIN_POID_GET_ID(
 poid_t *poidp);

Parameter

poidp
A pointer to the POID whose ID is being returned.

Return Values

Returns the POID's ID if the macro is successful.

Error Handling

This macro does not handle errors.

PIN_POID_GET_REV
This macro returns the POID's revision level. The revision level is incremented each time any
portion of the object is updated.

Syntax

#include "pcm.h"
int32
PIN_POID_GET_REV(
 poid_t *poidp);

Parameter

poidp
A pointer to the POID whose nonzero revision level is being returned.

Return Values

Returns the POID's revision level if the macro is successful.

Error Handling

This macro does not handle errors.

Chapter 1
POID Management Macros

1-69

PIN_POID_GET_TYPE
This macro returns the object type of the POID in string format. Possible types are listed in
"Storable Class Definitions". Examples are /account and /event/billing/charge.

Syntax

#include "pcm.h"
char*
PIN_POID_GET_TYPE(
 poid_t *poidp);

Parameter

poidp
A pointer to the POID whose type is being returned.

Return Values

Returns the POID's type as a string if the macro is successful.

Error Handling

This macro does not handle errors.

PIN_POID_IS_NULL
This macro checks a POID to see whether it is NULL. The condition is satisfied if the pointer is
NULL or the database number is 0.

Syntax

#include "pcm.h"
int32
PIN_POID_IS_NULL(
 poid_t *poidp);

Parameter

poidp
A pointer to the POID to check.

Return Values

Returns a nonzero value if the POID pointer is NULL or the database number is 0.

Error Handling

This macro does not handle errors.

PIN_POID_LIST_ADD_POID
This macro adds a POID to the POID list.

Chapter 1
POID Management Macros

1-70

Syntax

#include "pcm.h"
void
PIN_POID_LIST_ADD_POID(
 char **strpp,
 poid_t *pdp,
 int32 flag,
 pin_errbuf_t *ebufp)

Parameters

strpp
Pointer to the POID list.

pdp
Pointer to the POID to be added to the list.

flag
A PCM flag (PCM_FLDFLG_FIFO or PCM_FLDFLG_CMPREV).

ebufp
Pointer to the error buffer.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_POID_LIST_COPY
This macro copies a POID list.

Syntax

#include "pcm.h"
poid_list_t *
PIN_POID_LIST_COPY(
 poid_list_t *src_pldp,
 pin_errbuf_t *ebufp)

Parameters

src_pldp
Pointer to the POID list to be copied.

ebuf
Pointer to the error buffer.

Return Values

Returns a pointer to the newly created POID list if the macro is successful. Returns NULL if the
macro fails.

Chapter 1
POID Management Macros

1-71

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_POID_LIST_COPY_NEXT_POID
This macro copies 'next' POID from the POID list.

Syntax

#include "pcm.h"
poid_t *
pin_poid_list_get_next(
 char *strp,
 int32 optional,
 pin_cookie_t *cookiep,
 pin_errbuf_t *ebufp)

Parameters

strp
Pointer to the POID list from which the next POID is to be copied.

optional
If this flag is set to a nonzero value and the element is not found, no error condition is set. If
this flag is not set, and the element is not found, an error condition is set.

cookiep
The cookie for the next POID.

ebufp
Pointer to the error buffer.

Return Values

Returns a pointer to the newly created POID if the macro is successful. Returns NULL if the
macro fails.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_POID_LIST_COPY_POID
This macro copies the specified POID from the POID list.

Syntax

#include "pcm.h"
poid_t*
PIN_POID_LIST_COPY_POID(
 char *strp,
 void *vp,
 int32 flags,
 pin_errbuf_t *ebufp)

Chapter 1
POID Management Macros

1-72

Parameters

strpp
Pointer to the POID list.

vp
Pointer to the POID to be copied.

flags
A PCM flag (PCM_FLDFLG_CMPREV or PCM_FLDFLG_TYPE_ONLY) to check for the
existence of the POID to be copied.

Ebufp
Pointer to the error buffer.

Return Values

Returns a pointer to the newly created POID if the macro is successful. Returns NULL if the
macro fails.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_POID_LIST_CREATE
This macro creates a POID list.

Syntax

#include "pcm.h"
poid_list_t *
PIN_POID_LIST_CREATE(
 pin_errbuf_t *ebufp)

Parameter

ebufp
Pointer to the error buffer.

Return Values

Returns a pointer to the newly created POID list if macro is successful. Returns NULL if the
macro fails.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_POID_LIST_DESTROY
This macro frees a POID list.

Chapter 1
POID Management Macros

1-73

Syntax

#include "pcm.h"
void
PIN_POID_LIST_DESTROY(
 poid_list_t *pldp,
 pin_errbuf_t *ebufp)

Parameters

pldp
Pointer to the POID list to be freed.

ebufp
Pointer to the error buffer.

Return Values

This macro returns nothing.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_POID_LIST_REMOVE_POID
This macro removes a POID from the POID list.

Syntax

#include "pcm.h"
void
PIN_POID_LIST_REMOVE_POID(
 char **strpp,
 poid_t *pdp,
 int32 check_rev,
 pin_errbuf_t *ebufp)

Parameters

strpp
Pointer to the POID list.

pdp
Pointer to the POID to be removed from the list.

check_rev
Determines the existence of the POID to be removed. If check_rev is set to 0, existence of the
POID is checked.

ebufp
Pointer to the error buffer.

Return Values

This macro returns nothing.

Chapter 1
POID Management Macros

1-74

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_POID_LIST_TAKE_NEXT_POID
This macro takes the 'next' POID from the POID list.

Syntax

#include "pcm.h"
poid_t *
pin_poid_list_take_next(
 char **strpp,
 int32 optional,
 pin_errbuf_t *ebufp)

Parameters

strpp
Pointer to the POID list.

optional
If this flag is set to a nonzero value and the element is not found, no error condition is set. If
this flag is not set, and the element is not found, an error condition is set.

ebufp
Pointer to the error buffer.

Return Values

Returns a pointer to the POID taken from the POID list if the macro is successful. Returns
NULL if the macro fails.

Error Handling

This macro uses series-style ebuf error handling. See "Series-Style ebuf" in BRM Developer's
Guide for more information.

PIN_POID_PRINT
This macro prints a POID.

Syntax

#include "pcm.h"
void
PIN_POID_PRINT(
 poid_t *poidp,
 FILE *fi,
 pin_errbuf_t *ebufp);

Parameters

poidp
A pointer to the POID to print.

Chapter 1
POID Management Macros

1-75

fi
The FILE pointer to the file to receive the message. If the value of FILE is NULL, the message
is printed to stdout.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

This macro returns nothing.

Error Handling

This routine uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer, and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and then tested once for any errors. See "Series-
Style ebuf" in BRM Developer's Guide for more information.

PIN_POID_TO_STR
This macro prints a POID to a string. Put the info of a POID into a string (strpp). If the buffer
(ebufp) is not large enough to hold the string, PIN_ERR_BAD_ARG is returned. The return
value of lenp includes the \0. The format of the string is:

"%d %s %d %d"

where the values are for:

database_number object_type object_id object_revision_level

object_revision_level is incremented each time the object is updated.

Syntax

#include "pcm.h"
void
PIN_POID_TO_STR(
 poid_t *poidp,
 char **strpp,
 int32 *lenp,
 pin_errbuf_t *ebufp);

Parameters

poidp
A pointer to the POID to be printed.

strpp
A pointer to the buffer receiving the string version of the POID. This should be 48 larger than
the value of PCM_MAX_POID_TYPE, to accommodate the largest strings.

lenp
The length of the buffer.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Chapter 1
POID Management Macros

1-76

Return Values

This macro returns nothing.

Error Handling

This routine uses series-style ebuf error handling. Applications can call any number of series
ebuf–style API routines using the same error buffer, and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and then tested once for any errors. See "Series-
Style ebuf" in BRM Developer's Guide for more information.

String Manipulation Functions
This section describes string manipulation functions.

About the String Manipulation Functions
You use the string manipulation functions to store and retrieve server strings, such as reason
codes, help messages, and other text displayed in the user interface. These strings are stored
on the server so that they can be easily localized for multiple languages and displayed
simultaneously in the appropriate languages for the client locales. For example, French and
German customer service representatives (CSRs) logged into BRM at the same time can read
messages in their own languages.

String manipulation functions also allow data received by the database to be canonicalized for
easy processing.

BRM Locale IDs

Linux, Windows, and Java use different locale IDs. So BRM includes a locale table, which
maps the BRM locale to locale strings for various platforms.

Similar to Linux, the BRM locale is either:

• The two-character ISO code for the language. These two-character locales are used for a
language in its country of origin. For example, fr designates French used in France.

• A concatenation of the two-character ISO code for the language and the two-character ISO
code for the country. For example, en_US designates English in the United States.

The locale description IDs are mapped to a /strings table containing the textual description of
the supported locales. This table and the BRM table name are stored in the database under /
config/locales.

For more information on BRM locale names, see "Locale Names" in BRM Developer's Guide.

Storable Class Hierarchy for Localized Strings

BRM includes a /strings storable class to store localized strings.

Note:

You cannot extend the /strings storable class.

Chapter 1
String Manipulation Functions

1-77

Structure of the /strings storable class:

/strings
POID PIN_FLD_POID
TIMESTAMP PIN_FLD_CREATED_T
TIMESTAMP PIN_FLD_MOD_T
STRING PIN_FLD_DOMAIN required, length = 1023
STRING PIN_FLD_DESCR optional, length = 1023
STRING PIN_FLD_LOCALE required, length = 1023
INT PIN_FLD_STRING_ID required
INT PIN_FLD_STR_VERSION required
STRING PIN_FLD_STRING required, length = 1023
STRING PIN_FLD_HELP_STRING optional, length = 1023

For descriptions of the fields, see the /strings storable class description.

Note:

Do not change these names and numbers or the information will not be accessible.

Locale Mapping

For detailed information on BRM locale mapping, see "Locale Names" in BRM Developer's
Guide.

Localized String Data Files

A file of localized string data contains multibyte character set (MBCS) strings, and the data is
loaded into the database by running a utility that constructs storable string objects using
information in the file.

The file extension of the file must be the BRM locale ID.

Sample names for files containing localized string data:

• locale_descr.en_US contains locale description information for United States English.

• reasons.en_US contains all of the reason code data for United States English.

String File Format Description

This section describes the required format of the string file. To use this file with the related
functions and utilities, the file must follow this format.

Note:

The load utility parser is case-insensitive to the keywords. It passes the locale and
domain strings to the database as received. BRM is case sensitive. For example,
en_us and the BRM locale en_US are not considered the same, nor are "Reason
Codes-Credit Reasons" and "reason codes-credit reasons."

• Comments begin with the # symbol. All comments and white space are ignored.

Chapter 1
String Manipulation Functions

1-78

• The string file has a locale ID as the first uncommented statement of the file, and there is
only one locale ID per file. You can use existing domains in the files and/or add your own.
Organize your strings by domains within the file.

• The string object definition is bounded by STR-END and consists of an ID unique within a
domain, a string version, and the string itself.

• A string is delimited by quotation marks and can contain any character, including a
quotation mark if escaped (\"). The percent symbol followed by an integer (%1) is
interpreted as a substitution parameter flag.

• For reason codes, the version field specifies the domain of the reason, such as credit or
debit.

This example shows a compatible string file:

#######################
strings.en_US
#######################

LOCALE = "en_US" ;

DOMAIN = "Reason Codes-Credit Reasons" ;
STR
 ID = 1 ;
 VERSION = 1 ;
 STRING = "Customer not satisfied with service" ;
END
STR
 ID = 2 ;
 VERSION = 1 ;
 STRING = "Customer unaware of charges" ;
END
STR
 ID = 3 ;
 VERSION = 1 ;
 STRING = "Debited account by mistake" ;
END

DOMAIN = "Reason Codes-Debit Reasons" ;
STR
 ID = 1 ;
 VERSION = 1 ;
 STRING = "Technical and support charges" ;
END
STR
 ID = 2 ;
 VERSION = 1 ;
 STRING = "Service charges" ;
END
STR
 ID = 3 ;
 VERSION = 1 ;
 STRING = "Credited account by mistake" ;
END

String Manipulation Example

You can create message strings in multiple languages to obtain all the reason codes for
English.

This is an example definition:

Chapter 1
String Manipulation Functions

1-79

string_list_t*
pcm_get_localized_string_list(
 pcm_context_t *context_p,
 const char *locale_p,
 const char *domain_p,
 const int32 string_id,
 const int32 string_vers,
 pin_errbuf_t *ebufp);

The top-level function, pcm_get_localized_string_list, allows arbitrary queries on the /
strings table. The argument list is similar to pcm_get_localized_string except that message
buffers are not supplied by the caller. The function can accept a null locale string, a null domain
string, a string ID = -1, or a string version = -1 to indicate that the argument is not part of the
search.

This example shows retrieving strings:

pcm_get_localized_string_list(context_p,"en_US","Reason Codes-Active Status
Reasons",-1,1,ebufp);

is equivalent to:

select*
from strings_t
where locale = "en_US" AND
 domain = "Reason Codes-Active Status Reasons" AND
 string_vers = 1

which returns a set of string objects for any locale ID fitting these criteria. The function returns
a container object of type string_list_t.

String Manipulation Functions
Table 1-5 lists String Manipulation Functions.

Table 1-5 String Manipulation Functions

Function Description

pcm_get_localized_string_list Retrieves the specified string list to be used by the string manipulation functions.

pin_string_list_destroy Deallocates the object and its flist when finished with the string list.

pin_string_list_get_next Retrieves the next object in the string list.

pcm_get_localized_string_list
This function retrieves the specified string list to be used by the string manipulation functions.

Use this function to obtain a group of related strings. It is much more efficient than calling
pcm_get_error_message for each individual string.

pin_string_list_destroy
This function deallocates the object and its flist when finished with the string list.

Chapter 1
String Manipulation Functions

1-80

Note:

To prevent memory leaks, you must call this after calling pcm_get_string_list.

Syntax

void
pin_string_list_destroy(
 string_list_t *string_listp,
 pin_errbuf_t *ebufp);

Parameters

string_listp
A pointer to the list.

ebufp
A pointer to an error buffer. Passes status information back to the caller.

pin_string_list_get_next
This function retrieves the next object in the string list.

The caller passes in the string list and a string info object, and the attributes of the next string
object are pulled from the list and copied to the string info object. The info object is then
returned to the caller. This function calls pin_string_info_init internally to flush the string info
object and prepare it for new data. This allows the same string info object to be used
repeatedly when iterating through the list.

Syntax

string_info_t*
pin_string_list_get_next(
 string_list_t *string_listp,
 string_info_t *string_infop,
 pin_errbuf_t *ebufp);

Parameters

string_listp
A pointer to the list.

string_infop
A pointer to the string.

ebufp
A pointer to an error buffer. Passes status information back to the caller.

Validity Period Manipulation Macros
Validity period manipulation macros are used to get and set relative offset values for validity
periods that start and end after a relative period passes. For example, a charge offer's cycle
fee period can become effective three months after the charge offer is purchased.

Chapter 1
Validity Period Manipulation Macros

1-81

About Relative Offset Values
Relative validity period information is stored in the BRM database in DETAILS fields. There are
DETAILS fields for charge offer, discount, and balance validity periods. The specific name of
the fields vary, but all end with "_DETAILS".

Relative validity period information includes the following values:

• Mode - Specifies generally when the validity period starts or ends and can be one of these:

– PIN_VALIDITY_ABSOLUTE = 0

– PIN_VALIDITY_IMMEDIATE = 1

– PIN_VALIDITY_NEVER = 2

– PIN_VALIDITY_FIRST_USAGE = 3

– PIN_VALIDITY_RELATIVE = 4

• Unit - Specifies the type of offset unit, which can be one of these:

– Seconds = 1

– Minutes = 2

– Hours = 3

– Days = 4

– Months = 5

– Event cycles = 7

– Accounting cycles = 8

– Billing cycles = 9

– None = 0

• Offset - Specifies the number of units in the offset period.

Note:

Not all of the unit and mode values listed above can be used with every relative
validity period in BRM. The unit and mode you can specify depends on the
validity period you are setting and whether you are setting the start or end time.
For more information, see the following topics:

– For information about the relative start and end times of charge offers and
discount offers in bundles, see "About the Validity Periods of Offers in
Bundles" in BRM PDC Creating Product Offerings.

– For information about the relative start and end times of discount offers
owned by accounts, see "Setting Discount Offer Purchase, Cycle, and Usage
Start and End Times" in BRM Managing Customers.

– For information about the relative start and end times of balances, see
"Configuring Validity Periods for Noncurrency Credit Balances" in BRM PDC
Creating Product Offerings.

Chapter 1
Validity Period Manipulation Macros

1-82

PIN_VALIDITY_GET_UNIT
This macro retrieves the relative offset unit from the start- or end-time details value that is
passed in.

Syntax

#include "pcm.h"
u_int32
PIN_VALIDITY_GET_UNIT(
 u_int32 encoded_value);

Parameter

encoded_value
The encoded value of the start- or end-time details field.

Return Values

Returns the value of the relative offset unit.

PIN_VALIDITY_GET_OFFSET
This macro retrieves the relative offset (the number of units in the relative period) from the
start- or end-time details value that is passed in.

Syntax

#include "pcm.h"
u_int32
PIN_VALIDITY_GET_OFFSET(
 u_int32 encoded_value);

Parameter

encoded_value
The encoded value of the start- or end-time details field.

Return Values

Returns the value of the relative offset.

PIN_VALIDITY_GET_MODE
This macro retrieves the mode value from the start- or end-time details value that is passed in.

Syntax

#include "pcm.h"
pin_validity_modes_t
PIN_VALIDITY_GET_MODE(
 u_int32 encoded_value);

Chapter 1
Validity Period Manipulation Macros

1-83

Parameter

encoded_value
The encoded value of the start- or end-time details field.

Return Values

Returns the value of the relative mode.

PIN_VALIDITY_SET_UNIT
This macro sets the relative offset unit in the start- or end-time details value that is passed in.

Syntax

#include "pcm.h"
u_int32
PIN_VALIDITY_SET_UNIT(
 u_int32 encoded_value,
 u_int32 unit_value);

Parameters

encoded_value
The encoded value of the start- or end-time details field.

unit_value
The offset unit value to set.

Return Values

Returns the encoded value of the start- or end-time details field set with the unit value passed
in.

PIN_VALIDITY_SET_OFFSET
This macro sets the relative offset (number of offset units) in the start- or end-time details value
that is passed in.

Syntax

#include "pcm.h"
u_int32
PIN_VALIDITY_SET_OFFSET(
 u_int32 encoded_value,
 u_int32 offset_value);

Parameters

encoded_value
The encoded value of the start- or end-time details field.

offset_value
The offset value to set.

Chapter 1
Validity Period Manipulation Macros

1-84

Return Values

Returns the encoded value of the start- or end-time details field set with the offset value
passed in.

PIN_VALIDITY_SET_MODE
This macro sets the relative mode in the start- or end-time details value passed in.

Syntax

#include "pcm.h"
u_int32
PIN_VALIDITY_SET_MODE(
 u_int32 encoded_value,
 pin_validity_modes_t mode_value);

Parameters

encoded_value
The encoded value of the start- or end-time details field.

mode_value
The mode value to set.

Return Values

Returns the encoded value of the start- or end-time details field set with the mode value
passed in.

PIN_VALIDITY_DECODE_FIELD
This macro decodes the values of the mode, unit, and offset in the start- or end-time details
value passed in and then sets them in mode, unit, and offset variables.

Syntax

#include "pcm.h"
void
PIN_VALIDITY_DECODE_FIELD(
 u_int32 encoded_value,
 pin_validity_modes_t mode_variable,
 u_int32 unit_variable,
 u_int32 offset_variable);

Parameters

encoded_value
The encoded value of the start- or end-time details field.

mode_variable
The mode variable to set.

unit_variable
The unit variable to set.

Chapter 1
Validity Period Manipulation Macros

1-85

offset_variable
The offset variable to set.

Return Values

This macro returns nothing.

PIN_VALIDITY_ENCODE_FIELD
This macro takes the mode, unit, and offset values passed in and encodes them into a start- or
end-time details field value.

Syntax

#include "pcm.h"
u_int32
PIN_VALIDITY_ENCODE_FIELD(
 pin_validity_modes_t mode_value,
 u_int32 unit_value,
 u_int32 offset_value);

Parameters

mode_value
The mode value.

unit_value
The unit value.

offset_value
The offset value.

Return Values

Returns the encoded value of the start- or end-time details field, set with the mode, unit, and
offset values passed in.

Chapter 1
Validity Period Manipulation Macros

1-86

2
Storable Class Definitions

This chapter provides reference information for Oracle Communications Billing and Revenue
Management (BRM) storable class.

For more information about storable class definitions and field definitions, see BRM Storable
Class Reference.

For information on how to define or modify storable classes and fields, see "Creating, Editing,
and Deleting Fields and Storable Classes" in BRM Developer's Guide.

For related information, see "Storable Class-to-SQL Mapping" and “About Flists" in BRM
Developer's Guide.

Fields Common to All Storable Classes
Every BRM storable class requires three fields to create its object in the system. These fields
are available to BRM applications and Facilities Modules (FMs) but cannot be written to
directly; they are manipulated only by the Storage Manager.

The fields are:

• PIN_FLD_POID. The unique ID for the object.

• PIN_FLD_CREATED_T. The time that the object was created.

• PIN_FLD_MOD_T. The last time the object was modified.

2-1

3
Perl Extensions to the PCM Libraries

This chapter contains a list of functions in pcmif, the Perl extension to Oracle Communications
Billing and Revenue Management (BRM) Portal Communications Module (PCM) library, with
links to the description of each function in the library.

For guidelines on using the Perl extensions to create applications, see "Creating Client
Applications by Using Perl PCM" in BRM Developer's Guide.

For sample Perl scripts using pcmif, see "Example Perl Scripts".

Connection Functions
Table 3-1 list the connection function perl extensions to the PCM libraries.

Table 3-1 Connection Functions

Function Description

pcm_context_close Closes the given PCM context, disconnects from BRM, and frees memory associated with the
context.

pcm_perl_connect Connects to BRM by using PCM_CONNECT.

pcm_perl_context_open Opens a PCM context to BRM by using PCM_CONTEXT_OPEN.

pcm_perl_get_session Obtains the session ID set after login as a printable POID and returns it as a string.

pcm_perl_get_userid Obtains the user ID set after login as a printable POID and returns it as a string.

pin_perl_time Returns the time from the pin_virtual_time function, which is used to change time in BRM.

Error-Handling Functions
Table 3-2 list the error-handling function perl extensions to the PCM libraries.

Table 3-2 Error-Handling Functions

Function Description

pcm_perl_destroy_ebuf Deletes a previously created error buffer from memory.

pcm_perl_ebuf_to_str Returns a static string with a printable representation of the error buffer.

pcm_perl_is_err Checks for errors and returns the integer value of the error code in the error buffer.

pcm_perl_new_ebuf Creates an empty error buffer structure and returns a pointer to it.

pcm_perl_print_ebuf Runs a printf of the printable representation of the error buffer.

pin_set_err Sets an error buffer.

Flist Conversion Functions
Table 3-3 list the flist conversion function perl extensions to the PCM libraries.

3-1

Table 3-3 Flist Conversion Functions

Function Description

pin_flist_destroy Deletes an opaque flist.

pin_flist_sort Sorts the specified flist using PIN_FLIST_SORT.

pin_perl_flist_to_str Converts an opaque flist into a printable string representation.

pin_perl_str_to_flist Converts a printable flist into an opaque flist and returns a reference to the flist.

PCM Opcode Functions
Table 3-4 list the PCM opcode function perl extensions to the PCM libraries.

Table 3-4 PCM Opcode Functions

Function Description

pcm_perl_op Performs the indicated PCM operation with the given flags and input flist. It returns the resulting
flist.

Example Perl Scripts
This section describes sample Perl scripts.

Perl Script Example 1
This sample script performs the following actions:

• It connects to BRM using the login information in the parameters set in the Config section.
The pin.conf file only needs a dummy user ID entry.

• If there is an argument, it uses that as the POID ID of the data object to read.

• If there is no argument, it uses POID ID 1 as the default.

• It then reads an object with the POID ID using PCM_OP_READ_OBJ and displays the
resulting flist.

#The first line of the Perl script.
#!/BRM_home/perl/bin/perl
#
#Test a readobj of /data N (defaults to 1).
#Use the following two lines to specify the directory of the pcmif

#files and that you are using the pcmif module.

use lib '.' ;
use pcmif;

Config section
Uses pcm_context_open(), so requires pin.conf with userid only

Set the login information.
 $LOGIN_DB = "0.0.0.1";
 $LOGIN_NAME = "root.0.0.0.1";
 $LOGIN_PASSWD = "password";

Chapter 3
PCM Opcode Functions

3-2

 $CM_HOST = "somehost";

Setup and connect
Create an ebuf for error reporting.

 $ebufp = pcmif::pcm_perl_new_ebuf();

Use a "here" document to assign an flist string to a variable.

 $f1 = <<"XXX"
 0 PIN_FLD_POID POID [0] $LOGIN_DB /service/pcm_client 1 0
 0 PIN_FLD_TYPE ENUM [0] 1
 0 PIN_FLD_LOGIN STR [0] "$LOGIN_NAME"
 0 PIN_FLD_PASSWD_CLEAR STR [0] "$LOGIN_PASSWD"
 0 PIN_FLD_CM_PTR STR [0] "ip $CM_HOST 11960"
 XXX
 ;

Use the string-to-flist conversion function to parse the flist string
that contains the login information and use it to open a PCM #context.

$login_flistp = pcmif::pin_perl_str_to_flist($f1,
 $LOGIN_DB, $ebufp);

Check for errors and print the error report.
 if (pcmif::pcm_perl_is_err($ebufp)) {
 print "flist conversion failed\n";
 pcmif::pcm_perl_print_ebuf($ebufp);
 exit(1);
 }
Open a PCM context.
$pcm_ctxp = pcmif::pcm_perl_context_open($login_flistp,
 $db_no, $ebufp);
Check for errors and print the status of the action.

 if (pcmif::pcm_perl_is_err($ebufp)) {
 pcmif::pcm_perl_print_ebuf($ebufp);
 exit(1);
 } else {
 $my_session = pcmif::pcm_perl_get_session($pcm_ctxp);
 $my_userid = pcmif::pcm_perl_get_userid($pcm_ctxp);
 print "back from pcmdd_context_open()\n";
 print " DEFAULT db is: $db_no \n";
 print " session poid is: ", $my_session, "\n";
 print " userid poid is: ", $my_userid, "\n";
 }

See if we should default to 1, or get a number

 if ($#ARGV >= 0) {
 $obj_id = $ARGV[0];
 } else {
 $obj_id = 1;
 }

Build an flist.
 $f1 = <<"XXX"
 0 PIN_FLD_POID POID [0] $db_no /data $obj_id 0
 XXX
 ;
Convert the flist you built from a string to the flist format.

Chapter 3
Example Perl Scripts

3-3

$flistp = pcmif::pin_perl_str_to_flist($f1, $db_no, $ebufp);

Check for errors and print the error report.
 if (pcmif::pcm_perl_is_err($ebufp)) {
 print "flist conversion failed\n";
 pcmif::pcm_perl_print_ebuf($ebufp);
 exit(1);
 }
Convert the flist to a printable string and print it.

 $out = pcmif::pin_perl_flist_to_str($flistp, $ebufp);
 print "IN flist is:\n";
 print $out;

Perform a PCM operation to read an object and assign the result
to a variable. Check for errors and print the error report.

$out_flistp = pcmif::pcm_perl_op($pcm_ctxp, "PCM_OP_READ_OBJ", 0,
 $flistp, $ebufp);
 if (pcmif::pcm_perl_is_err($ebufp)) {
 print "robj failed\n";
 pcmif::pcm_perl_print_ebuf($ebufp);
 exit(1);
 }
Convert the flist for the object you read to a printable string and print it.

$out = pcmif::pin_perl_flist_to_str($out_flistp, $ebufp);
 print "OUT flist is:\n";
 print $out;

Close the PCM context. Check for errors and print the error report.
 pcmif::pcm_context_close($pcm_ctxp, 0, $ebufp);
 if (pcmif::pcm_perl_is_err($ebufp)) {
 print "BAD close\n",
 pcmif::pcm_perl_ebuf_to_str($ebufp), "\n";
 exit(1);
 }
 exit(0);

Perl Script Example 2
The following example is used to set up an account with a service of type /service/ip with the
user name testterm01 (for a test script). It checks for the existence of the service and exits if
the service is found. Otherwise, it finds the /deal object needed for “IP Basic" (a standard
default) and then creates the /account and /service/ip objects by using
PCM_OP_CUST_COMMIT_CUSTOMER.

#!/BRM_home/perl/bin/perl

This is the directory for the pcmif.so and pcmif.pm files.
For most usage this is not needed, since they will be obtained
from the default directory (builtin to perl/BRM_home/<vers>/lib).

use lib '.' ;

The key - You MUST include this to indicate that you are using
the pcmif extension.

use pcmif;

The "pcmif::" prefix is a class prefix, meaning that the

Chapter 3
Example Perl Scripts

3-4

function "pcm_perl_new_ebuf()" is from the package/class
#"pcmif".
#
Get an ebuf for error reporting.
#
$ebufp = pcmif::pcm_perl_new_ebuf();

Do a pcm_connect(), $db_no is a return.

$pcm_ctxp = pcmif::pcm_perl_connect($db_no, $ebufp);

Convert an ebuf to a printable string.

$ebp1 = pcmif::pcm_perl_ebuf_to_str($ebufp);

Check for errors. Always do this.

if (pcmif::pcm_perl_is_err($ebufp)) {
pcmif::pcm_perl_print_ebuf($ebufp);
exit(1);
} else {
print "back from pcm_connect()\n";
print " DEFAULT db is: $db_no \n";
}

NOTE: The following convention ($DB_NO) was established
for use with testnap, to substitute the database number
into a printed flist as it was parsed into testnap.
We follow the text convention, but we let perl
do the substitution via this variable (in upper case).
NOTE: The flist parse should also perform
this substitution since it gets fed $db_no.
for testnap convention.
$DB_NO = $db_no;

Use a "here" document to build an flist string into
a variable. This flist will then be parsed and
used in a pcm_op.
#
search to see if /service/ip "testterm01" is already created

$f1 = <<"XXX"
0 PIN_FLD_POID POID [0] $DB_NO /search 236 0
0 PIN_FLD_PARAMETERS STR [0] "ip"
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_LOGIN STR [0] "testterm01"
0 PIN_FLD_RESULTS ARRAY [0]
1 PIN_FLD_POID POID [0] 0.0.0.0 0 0
1 PIN_FLD_LOGIN STR [0] ""
XXX
;
$flistp = pcmif::pin_perl_str_to_flist($f1, $db_no, $ebufp);
if (pcmif::pcm_perl_is_err($ebufp)) {
print "flist conversion to check for testterm01 failed\n";
pcmif::pcm_perl_print_ebuf($ebufp);
exit(1);
}
$out_flistp = pcmif::pcm_perl_op($pcm_ctxp, "PCM_OP_SEARCH", 0, $flistp, $ebufp);
if (pcmif::pcm_perl_is_err($ebufp)) {
print "SEARCH for testterm01 failed\n";

Chapter 3
Example Perl Scripts

3-5

pcmif::pcm_perl_print_ebuf($ebufp);
exit(1);
}

#
Check if "testterm01" is there. If it is you do not
have to recreate.
#
$out = pcmif::pin_perl_flist_to_str($out_flistp, $ebufp);
XXX warning, no error check

pcmif::pin_flist_destroy($flistp);
pcmif::pin_flist_destroy($out_flistp);

We converted the output flist into $out above,
then cleaned the flist objects up. Now we use
a perl string matching operator to look for the
user id we want.
#
if ($out =~ "testterm01") {
print "testterm01 already exists\n" ;
print $out;
exit(0);
}

print "XXX testterm01 does NOT exist\n" ;

#
First we need the poid of the /deal object - use "IP Basic".
#
$f1 = <<"XXX"
0 PIN_FLD_POID POID [0] $DB_NO /search 223 0
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_NAME STR [0] "IP Basic"
0 PIN_FLD_RESULTS ARRAY [0]
1 PIN_FLD_POID POID [0] 0.0.0.0 0 0
XXX
;
#
$flistp = pcmif::pin_perl_str_to_flist($f1, $db_no, $ebufp);
if (pcmif::pcm_perl_is_err($ebufp)) {
print "flist conversion to search for package failed\n";
pcmif::pcm_perl_print_ebuf($ebufp);
exit(1);
}
$out_flistp = pcmif::pcm_perl_op($pcm_ctxp, "PCM_OP_SEARCH", 0, $flistp, $ebufp);
if (pcmif::pcm_perl_is_err($ebufp)) {
print "SEARCH for package failed\n";
pcmif::pcm_perl_print_ebuf($ebufp);
exit(1);
}

$out = pcmif::pin_perl_flist_to_str($out_flistp, $ebufp);
XXX warning, no error check

pcmif::pin_flist_destroy($flistp);
pcmif::pin_flist_destroy($out_flistp);

if ($out !~ "/deal") {
print "no package found \n" ;

Chapter 3
Example Perl Scripts

3-6

print $out;
exit(1);
}

#
The /deal object poid (which will be <db> /deal <id> <rev>)
is isolated with index().Then the rest of the line
(containing the id...) goes into deal_poid, which is
trimmed by saving the matching pattern
(ie the id number) and substituting the saved pattern
(ie just the numbers) for the rest of the line.
#
$deal_at = index($out, "/deal");
$deal_poid = substr($out, $deal_at + 6);
$deal_poid =~ s|([0-9][0-9]*) .*|$1| ;

print "/deal object poid is ", $deal_poid, "\n";

#
now we fill in an flist for COMMIT_CUSTOMER
#
$f1 = <<"XXX"
0 PIN_FLD_POIDPOID [0] $DB_NO /account 0
0 PIN_FLD_ACCOUNT_OBJPOID [0] $DB_NO /account 0
0 PIN_FLD_AAC_ACCESS STR [0] "setup.fm_term"
0 PIN_FLD_AAC_SOURCE STR [0] "setup.fm_term"
0 PIN_FLD_AAC_VENDOR STR [0] "setup.fm_term"
0 PIN_FLD_AAC_PACKAGE STR [0] "setup.fm_term"
0 PIN_FLD_AAC_PROMO_CODE STR [0] "setup.fm_term"
0 PIN_FLD_AAC_SERIAL_NUM STR [0] "setup.fm_term"
0 PIN_FLD_BILLINFOARRAY [1]
1 PIN_FLD_BILL_TYPEENUM [0] 0
1 PIN_FLD_CURRENCYUINT [0] 840
0 PIN_FLD_PAYINFOARRAY [1]
1 PIN_FLD_NAMEINFO_INDEXUINT [0] 1
0 PIN_FLD_NAMEINFOARRAY [1]
1 PIN_FLD_SALUTATION STR [0] "Mr."
1 PIN_FLD_LAST_NAME STR [0] "testterm01"
1 PIN_FLD_FIRST_NAME STR [0] "testterm01"
1 PIN_FLD_MIDDLE_NAME STR [0] "x"
1 PIN_FLD_TITLE STR [0] "title"
1 PIN_FLD_COMPANY STR [0] "company"
1 PIN_FLD_ADDRESS STR [0] "address"
1 PIN_FLD_CITY STR [0] "Cupertino"
1 PIN_FLD_STATE STR [0] "CA"
1 PIN_FLD_ZIP STR [0] "95014"
1 PIN_FLD_COUNTRY STR [0] "USA"
1 PIN_FLD_EMAIL_ADDR STR [0] "email_addr"
1 PIN_FLD_CONTACT_TYPE STR [0] "contact_type"
0 PIN_FLD_SERVICESARRAY [1]
1 PIN_FLD_SERVICE_OBJPOID [0] $DB_NO /service/ip 0
1 PIN_FLD_LOGIN STR [0] "testterm01"
1 PIN_FLD_PASSWD_CLEAR STR [0] "testterm01"
XXX
;

#
To avoid quotation problems in the above here document,
the package is appended via ".".
#
$f1 = $f1 . "1PIN_FLD_DEAL_OBJ POID [0] $DB_NO /deal $deal_poid" ;

Chapter 3
Example Perl Scripts

3-7

print "flist is now\n";
print $f1;

$flistp = pcmif::pin_perl_str_to_flist($f1, $db_no, $ebufp);
if (pcmif::pcm_perl_is_err($ebufp)) {
pcmif::pcm_perl_print_ebuf($ebufp);
exit(1);
}
$out_flistp = pcmif::pcm_perl_op($pcm_ctxp, "PCM_OP_CUST_COMMIT_CUSTOMER",
0, $flistp, $ebufp);

if (pcmif::pcm_perl_is_err($ebufp)) {
print "BAD op: PCM_OP_CUST_COMMIT_CUSTOMER\n";
pcmif::pcm_perl_print_ebuf($ebufp);
exit(1);
}

$out = pcmif::pin_perl_flist_to_str($out_flistp, $ebufp);
print "OUT flist is \n" ;
print $out;

pcmif::pin_flist_destroy($flistp);
pcmif::pin_flist_destroy($out_flistp);

pcmif::pcm_context_close($pcm_ctxp, 0, $ebufp);
if (pcmif::pcm_perl_is_err($ebufp)) {
print "BAD close\n",
 pcmif::pcm_perl_ebuf_to_str($ebufp), "\n";
exit(1);

pcm_context_close
This function closes the given PCM context, disconnects from BRM, and frees memory
associated with the context. If a context is no longer needed, make sure you close it.

For more information, see BRM Opcode Guide.

Syntax

void
pcm_context_close(ctxp, how, ebufp);

Parameters

ctxp
A reference to an open PCM context.

how
Defines how to close the connection.
The standard option is to completely close the connection by passing in 0. However, if you fork
a process, make sure that the process which does not make PCM calls any more (usually the
child process) closes all open file descriptors (FDs). You can do this by passing 1 as the value
of how, which is PCM_CONTEXT_CLOSE_FD_ONLY in pcm.h. This allows the child process
(in most cases) to close the FDs without closing the PCM connection in the parent process
that spawned it. If you want the child process to continue making PCM calls, open another
PCM connection.

ebufp
A reference to an error buffer obtained through pcm_perl_new_ebuf.

Chapter 3
pcm_context_close

3-8

Return Values

This function returns nothing.

Error Handling

This function returns any errors to the error buffer.

pcm_perl_connect
This function connects to BRM by using PCM_CONNECT.

Syntax

pcm_context_t*
pcm_perl_connect(db_no, ebufp);

Parameters

db_no
The variable for the database number.

ebufp
A reference to an error buffer obtained through pcm_perl_new_ebuf.

Return Values

Returns an opaque reference to the PCM context and sets the database number to db_no if
the function is successful.

Error Handling

This function returns any errors to the error buffer.

pcm_perl_context_open
This function opens a PCM context to BRM by using PCM_CONTEXT_OPEN.

Syntax

pcm_context_t*
pcm_perl_context_open(login_flistp, db_no, ebufp);

Parameters

login_flistp
A reference to the login flist. The login flist must have a dummy PIN_FLD_POID, a valid login
type in PIN_FLD_TYPE, the PIN_FLD_LOGIN, and any other fields required for the given
type, usually PIN_FILD_PASSWD_CLEAR. Connection Manager (CM) is declared in the
pin.conf file or by one or more PIN_FLD_CM_PTR fields in the login flist.

db_no
The variable for the database number.

ebufp
A reference to an error buffer obtained through pcm_perl_new_ebuf.

Chapter 3
pcm_perl_connect

3-9

Return Values

Returns an opaque reference to the PCM context and sets the database number to db_no if
the function is successful.

Error Handling

This function returns any errors to the error buffer.

pcm_perl_destroy_ebuf
This function deletes a previously created error buffer from memory.

Syntax

void
pcm_perl_destroy_ebuf(ebufp);

Parameter

ebufp
A reference to the error buffer to be deleted.

Return Values

This function returns nothing.

Error Handling

This function does not handle errors.

pcm_perl_ebuf_to_str
This function returns a static string with a printable representation of the error buffer.

Syntax

char*
pcm_perl_ebuf_to_str(ebufp);

Parameter

ebufp
A reference to the error buffer.

Return Values

Returns a static string if the function is successful.

Error Handling

This function returns a null pointer if there are no errors or a printable string if there are errors.

Chapter 3
pcm_perl_destroy_ebuf

3-10

pcm_perl_get_session
This function obtains the session ID set after login as a printable POID and returns it as a
string.

Syntax

char*
pcm_perl_get_session(ctxp);

Parameter

ctxp
A reference to the open PCM context.

Return Values

Returns a printable string containing the session ID if the function is successful.

Error Handling

This function does not handle any errors.

pcm_perl_get_userid
This function obtains the user ID set after login as a printable POID and returns it as a string.

Syntax

char*
pcm_perl_get_userid(ctxp);

Parameter

ctxp
A reference to the open PCM context.

Return Values

Returns a printable string containing the user ID if the function is successful.

Error Handling

This function does not handle errors.

pcm_perl_is_err
This function checks for errors and returns the integer value of the error code in the error
buffer.

Syntax

int
pcm_perl_is_err(erbufp);

Chapter 3
pcm_perl_get_session

3-11

Parameter

erbufp
A reference to the error buffer.

Return Values

Returns 0 if there are no errors. Returns the error code if there are errors.

Error Handling

This function returns the error code if an error occurred.

pcm_perl_new_ebuf
This function creates an empty error buffer structure and returns a pointer to it.

Syntax

pin_errbuf_t*
pcm_perl_new_ebuf();

Parameters

This function has no parameters.

Return Values

Returns a reference to the error buffer if the function is successful.

pcm_perl_op
This function performs the indicated PCM operation.

Syntax

pin_flist_t*
pcm_perl_op(ctxp, op, flag, in_flp, ebufp);

Parameters

ctxp
A reference to an open PCM context.

op
The PCM opcode that indicates the operation to be performed. op may be a number or
symbolic opcode name, as long as it is known to BRM.
For a list of opcode names, see PCM opcode libraries.

flag
A flag for the opcode. See the opcode description for information on the flags each opcode
supports. Most opcodes take no flag, which is input as (int32) 0.

in_flp
A reference to the input flist.
For the input flist specifications, see PCM opcode libraries.

Chapter 3
pcm_perl_new_ebuf

3-12

ebufp
A reference to the error buffer.

Return Values

Returns a reference to the resulting flist if the function is successful. Returns NULL if there is a
serious error.

Note:

You have to explicitly destroy both the input and return flists. They are not
automatically deleted.

Error Handling

This function uses individual-style ebuf error handling. This means the application must
explicitly test for an error condition recorded in the error buffer before making other calls to the
BRM application programming interface (API).

The following error codes returned from PCM_OP indicate an error in the Portal
Communication Protocol (PCP) transmission:

• PIN_ERR_BAD_XDR

• PIN_ERR_STREAM_EOF

• PIN_ERR_STREAM_IO

• PIN_ERR_TRANS_LOST

• PIN_ERR_CM_ADDRESS_LOOKUP_FAILED

Note:

If you see one of these errors, close the context where the error occurred and
open a new context. The output flist is undefined, but the input flist is still valid.

pcm_perl_print_ebuf
This function runs a printf of the printable representation of the error buffer.

Syntax

void
pcm_perl_print_ebuf(ebufp);

Parameter

ebufp
A reference to the error buffer to be printed.

Return Values

This function returns nothing.

Chapter 3
pcm_perl_print_ebuf

3-13

Error Handling

This function prints the error buffer if there are errors. This function returns
pcm_perl_print_ebufp():NULL ptr if there are no errors.

pin_flist_destroy
This function deletes an opaque flist.

Syntax

void
pin_flist_destroy(flistp);

Parameter

flistp
A reference to the flist to delete.

Return Values

This function returns nothing.

Error Handling

This function does not handle errors.

pin_flist_sort
This function sorts the specified flist using PIN_FLIST_SORT.

Syntax

void
pin_flist_sort(*flistp, *sort_flistp, reverse, sort_default, ebufp);

Parameters

flistp
A reference to the flist being sorted. The flist normally is an array and the sorting is performed
on elements of the array. Each element of the array can be a list of fields; it is those fields that
get sorted.

sort_listp
A list of fields in each element in flistp to use as sort fields. Elements in flistp are sorted in this
order. If the value of this parameter is NULL, PIN_ERR_BAD_ARG is returned.

reverse
Reverses the order in which the flist is sorted.

sort_default
Compares nonexistent fields to existing fields.
For detailed information, see "PIN_FLIST_SORT".

ebufp
A reference to the error buffer.

Chapter 3
pin_flist_destroy

3-14

Return Values

This function returns nothing.

Error Handling

This routine uses series-style ebuf error handling. Applications can call any number of series-
style ebuf API routines by using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and then tested once for any errors.

pin_perl_flist_to_str
This function converts an opaque flist into a printable string representation.

For more information, see "PIN_FLIST_TO_STR".

Syntax

char*
pin_perl_flist_to_str(flistp, ebufp);

Parameters

flistp
A reference to the flist.

ebufp
A reference to the error buffer.

Return Values

Returns the flist in a printable string format if the function is successful. Returns NULL if the
function fails.

Error Handling

This routine uses series-style ebuf error handling. Applications can call any number of series-
style ebuf API routines by using the same error buffer and check for errors only once at the end
of the series of calls. This makes manipulating flists and POIDs much more efficient because
the entire logical operation can be completed and then tested once for any errors.

For more information, see "Understanding API Error Handling and Logging" in BRM
Developer's Guide.

pin_perl_str_to_flist
This function converts a printable flist into an opaque flist and returns a reference to the flist. If
the flist uses the string ‘$DB_NO' for the database in the POID type fields, the value of db_no
is substituted. In Perl, it is easier to set a variable $DB_NO and let Perl substitute the “DB_NO"
if the flist is defined using here documents.

Syntax

pin_flist_t*
pin_perl_str_to_flist(str, db_no, ebufp);

Chapter 3
pin_perl_flist_to_str

3-15

Parameters

str
A reference to the destination string containing an flist in printable format.

db_no
A reference to the database number. Must be a string containing a BRM database number in
dotted decimal format that is used to set the default database for parsing the flist.

ebufp
A reference to the error buffer.

Return Values

Returns the reference to the flist created from the input string if the function is successful.
Returns NULL if the function fails.

Error Handling

This function uses series-style ebuf error handling. Applications can call any number of series-
style ebuf API routines using the same error buffer and check for errors only once at the end of
the series of calls. This makes manipulating flists and POIDs much more efficient because the
entire logical operation can be completed and then tested once for any errors.

For more information, see "Finding Errors in Your Code" in BRM Developer's Guide.

pin_perl_time
This function returns the time from the pin_virtual_time function, which is used to change time
in BRM. You use this function for testing time-sensitive functions in BRM without affecting the
system clock.

For more information, see "pin_virtual_time" in BRM Developer's Guide.

Syntax

time_t
pin_perl_time();

Parameters

This function has no parameters. However, for time offsets to take effect, there must be an
entry for pin_virtual_time in the pin.conf file.

Return Values

Returns the time as a Linux style time value: the number of seconds since 00:00:00 UTC,
January 1, 1970.

Error Handling

This function does not handle errors.

pin_set_err
This function sets an error buffer.

Chapter 3
pin_perl_time

3-16

Syntax

void
pin_set_err(ebufp, location, errclass, pin_err, field, recID, resvd);

Parameters

ebufp
A reference to the error buffer to be set.

location
The location of an error, which is one of the PIN_ERRLOC_xxx, where xxx indicates the
subsystem that issued the error.
For details, see "pin_set_err".

errclass
One of the four classes of error PIN_ERRCLASS_xxx.
For details, see "pin_set_err".

pin_err
One of the system error messages PIN_ERR_xxx.
For details, see "pin_set_err".

field
Set this field to 0 or to the applicable PIN_FLD_xxx.

reciID
Set this field to 0 or to the record ID of the array element where the error occurred.

resvd
Reserved. Set this field to 0 or to a value chosen to provide further information about the
specific error.

Return Values

This function returns nothing.

Error Handling

This function does not handle errors.

Chapter 3
pin_set_err

3-17

4
Storable Class-to-SQL Mapping

This chapter lists each Oracle Communications Billing and Revenue Management (BRM)
storable class and the SQL tables to which it is mapped.

Storable Class-to-SQL Mapping
You use SQL directly with the database to generate reports. If you are an experienced system
administrator, you can add indexes to improve performance. The default indexes are specified
in the create_indexes.source file in the BRM_home/sys/dm_oracle/data/sql directory.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

• Do not update or delete the default indexes.

SQL Mapping Matrix
A complete list of SQL tables and fields and their storable-class equivalents is in the file
BRM_home/sys/dd/data/dd_objects.source. Indexes are listed in the
create_indexes.source file in the BRM_home/sys/dm_oracle/data/sql directory.

For storable class-to-SQL mapping information, refer to the storable class descriptions. Each
description includes the SQL mapping for every field in the storable class. See "Storable Class
Definitions".

SQL Mapping Notes
When looking up SQL mapping indexes, keep in mind the following exceptions.

• The PIN_FLD_INTERNAL_NOTES field in the /account storable class is implemented by
two fields in two separate tables: the field size is stored in the /account storable class as
internal_notes_size, and the field value is stored in the table
account_internal_notes_buf.

• The PIN_FLD_BUFFER field in the /data storable class is implemented by two fields in
two separate tables: the field size is stored in the /data storable class as buffer_size, and
the field value (the buffer) is actually stored in the table data_buffer_buf.

• SQL recid fields correspond to an element ID field.

• All /event storable subclasses inherit a set of fields from the /event super class, but they
are implemented using different tables. The following /event storable subclasses are
implemented using only the event_t table:

4-1

– /event/activity

– /event/activity/admin

– /event/billing/cycle/arrears

– /event/billing/cycle/fold

– /event/billing/cycle/forward

– /event/billing/debit

– /event/session/pcm_client

All other /event storable subclasses implemented using the event_t table plus one or more
additional tables.

• All /service/* storable classes inherit a set of fields from the /service storable class. In
addition, /service/email and /service/pcm_client are implemented using only the
service_t table, and /service/ip and /service/admin_client each require an additional
table.

• The /data storable class is a general data class that can be used to store any type of data,
including blobs. Unless you have specifically created /data storable classes, you won't
need to access them with SQL since they are generally not used by the system.

Doing SQL Joins
If POIDs (object IDs) are not being used as the join criteria, joins can be done with normal field
comparisons.

If object IDs are being used to join tables (for example, to get information about an account
and its current balances), simplified join criteria can be used. All tables have either POIDs,
which are concatenations of five fields, or they have two-field object IDs, obj_id0 and obj_id1.
The poid_id0 and poid_id1 fields in the main tables (like /account, /event, and /service) are
the same as the obj_id0 and obj_id1 fields in their related tables (that are used to implement
arrays and substructures), respectively. For example:

poid_id0 in account_t = obj_id0 in account_balances_t
poid_id1 in account_t = obj_id1 in account_balances_t

The database number (poid_db) should be the same for all objects in the same database and
you won't need to join on it. In most cases, just joining on the poid_id0 and poid_id1 fields are
sufficient. The only case where this is not enough is in the case of array elements such as /
event balance impacts where an SQL rec_id (or object element ID) is also required.

The poid_rev field is incremented each time an object is modified. This field should not be
used or changed. It is not necessary as a join criteria.

rec_id fields are used to match on particular array elements.

Reserved Tables
The following objects/tables listed in Table 4-1 are found in home/sys/data/sql/
dd_objects.source file are reserved for BRM use and should not be used by customers:

Chapter 4
Doing SQL Joins

4-2

Table 4-1 Reserved Tables

Object Reserved SQL Table

/link link_t

null object access_table

/who who_t

SQL Statement Information at Runtime
It is possible to obtain a list of SQL statements which correspond to an operation or sequence
of events. See "Increasing the Level of Reporting for a DM" in BRM System Administrator's
Guide for more details.

Chapter 4
SQL Statement Information at Runtime

4-3

5
Sample Applications

This chapter describes the sample programs included with the Oracle Communications Billing
and Revenue Management (BRM) SDK, how to use the sample code, and how to run the
sample programs.

Caution:

These programs can change or delete data in your BRM database.

About Using the PCM C Sample Programs
BRM SDK includes a set of sample applications and templates using the Portal
Communication Model (PCM) C application programming interface (API). You can use these
sample programs and templates in the following ways:

• Use the sample programs as code samples for extending BRM components and
applications and for writing custom applications.

• Run the corresponding executable application with a sample program to observe the
changes it makes in BRM.

• Use the templates, which provide the basic structure for the components, to create your
custom components, such as Facilities Modules (FMs) and Data Managers (DMs)

These samples are supported on Linux. Compile these sample programs using the appropriate
compiler for your platform.

Finding the PCM C Sample Programs
You can view the sample programs by clicking the links to the sample programs. When you
install BRM SDK on Linux, sample programs and templates are found in the following
directories:

• Most sample programs and the templates are installed in BRM_SDK_home/source/
samples by default.

• Other sample programs can be found in BRM_SDK_home/source/samples/apps/c.

• Templates are located in BRM_SDK_home/source/templates.

You can install BRM SDK on the BRM server at the same time as you install BRM, or
independently as an individual component. See "About BRM Install Package" and "Installing
Individual BRM Components" in BRM Installation Guide for more information.

Description of the PCM C Sample Programs
The sample programs demonstrate how to write code for various tasks when customizing
BRM.

5-1

Each sample includes these supporting files:

• Source files to view or modify for your own applications.

• Makefiles to compile the sample programs on Linux, if you make changes to the samples.

• A compiled application that verifies that the sample programs work as expected and that
allows you to observe the changes the programs make in BRM.

• A pin.conf that allows you to specify the information required for the sample application to
connect to BRM.

The following tables provide:

• A list of the sample programs and templates.

• A description of each sample program and template.

• Information on any executable program that you can run to observe the results.

Table 5-1 lists a sample for setting makefile macros.

Table 5-1 Setting Makefile Macros (File Located in BRM_SDK_home/source/samples)

Sample Description

env.unix Shows you how the environment is set up, for example, the location of include directories.
The makefiles reference the appropriate environment file for this information.

Instructions on setting the makefile macros are included in these text files.

Table 5-2 lists the sample flist files.

Table 5-2 Creating an Flist (Files Located in BRM_SDK_home/source/samples/flists/C)

Sample Description

simple_flist.c Shows how to create an flist with simple fields.

Run simple_flist.exe to see a printout of the flist created, which contains a POID and two
strings containing the first and last names.

For information on how to run simple_flist, see "Running the Sample PCM C Programs".

flists_with_arrays.c Shows how to create flists with arrays containing a single element and multiple elements.

Run flists_with_arrays.exe to see the flists created by this sample.

For information on how to run flists_with_arrays, see "Running the Sample PCM C
Programs".

flists_with_substructs.c Shows how to create an flist with a substructure.

Run flists_with_substructs.exe to see the flists created by this sample.

For information on how to run flists_with_substructs, see "Running the Sample PCM C
Programs".

Table 5-3 lists a sample file for creating a context.

Chapter 5
About Using the PCM C Sample Programs

5-2

Table 5-3 Creating a Context (File Located in BRM_SDK_home/source/samples/context/C)

Sample Description

create_context.c Shows you how to open a context, connect to BRM, perform operations, close the context and
test if the connection is open.

Run CreateContext.exe to see how to open a context.

For information on how to run create_context, see "Running the Sample PCM C Programs".

Table 5-4 lists a sample file for calling an opcode.

Table 5-4 Calling an Opcode (Files Located in BRM_SDK_home/source/samples/callopcode/C)

Sample Description

test_loopback.c Shows you how to call an opcode.

This sample calls the PCM_OP_TEST_LOOPBACK opcode which just returns the flist that you
pass in as the input.

Run test_loopback.exe to verify that the program returns input flist as the output.

For information on how to run test_loopback, see "Running the Sample PCM C Programs".

Table 5-5 lists the sample files for client application functions.

Table 5-5 Creating a Client Application (Files Located in BRM_SDK_home/source/samples/apps/c)

Sample Description

sample_app.c Shows how to create a customer account with services.

For more information about this program, see "Creating Accounts by Using the sample_app.c
Program".

sample_del.c Shows how to remove accounts from BRM.

For more information about this program, see "Removing Accounts by Using the sample_del.c
Program".

sample_search.c Shows how to search for objects and fields.

For more information about this program, see "Searching by Using the sample_search.c
Program".

sample_who.c Shows how to display the current users.

For more information about this program, see "Displaying Current Users by Using the
sample_who.c Program".

Table 5-6 lists the FM template files.

Table 5-6 Templates for Creating an FM

Sample Description

fm_generic_opcode.c Provides structure for generic (FM) opcodes. See "Using the FM and DM
Templates".

This file is in BRM_SDK_home/templates/fm_template.

fm_generic_config.c Shows you how to map from the opcode to the function. See "Using the FM and
DM Templates".

This file is in BRM_SDK_home/templates/fm_template.

Chapter 5
About Using the PCM C Sample Programs

5-3

Table 5-6 (Cont.) Templates for Creating an FM

Sample Description

op_define.h Header file required by FM templates which defines PCM_OP_GENERIC.

This file is in BRM_SDK_home/templates/fm_template.

Table 5-7 lists the template file for creating a DM.

Table 5-7 Template for Creating a DM

Sample Description

dm_generic.c Shows the basic structure of a Data Manager. See "Using the FM and DM
Templates".

This file is in BRM_SDK_home/templates/dm_template.

Table 5-8 lists the sample files for using the multithreaded application (MTA) APIs.

Table 5-8 Using the Multithreaded Application (MTA) API

Sample Description

pin_mta_monitor.c
(located in BRM_SDK_home/bin)

Sample monitoring utility.

pin_mta_test.c
(located in BRM_SDK_home/source/

samples/apps/c/mta_sample)

Sample test program using the MTA framework.

Compiling the Sample PCM C Programs
In addition to using the sample programs as a working programming example, you can also
use them as a basis for your own applications. You can make changes to the sample
programs, compile, and run them to test your changes. The sample programs directory
includes the following files:

• env.unix to set the environment

• Makefiles for Linux to compile the samples

To compile the sample programs on Linux:

1. Go to BRM_SDK_home/source/samples and open env.nt or env.unix, depending on
your operating system.

2. Set up the path for the environment by following the instructions in the file.

3. Save the file.

4. Compile using the appropriate make utility:

make

Chapter 5
About Using the PCM C Sample Programs

5-4

Running the Sample PCM C Programs
The executable versions of the sample programs are provided in addition to the source files. To
see the output generated by a sample program, follow these basic steps:

1. Go to the directory where the sample program is located. The default structure is:
BRM_SDK_home/source/samples or BRM_SDK_home/source/samples/apps/c.

2. Edit the entry in the configuration file pin.conf to point to the Connection Manager (CM).

3. Run the program by running the executable file, for example:

create_context.exe

Note:

Some sample programs require parameters or have special syntax requirements.
For more information, see "Creating Accounts by Using the sample_app.c
Program", "Removing Accounts by Using the sample_del.c Program", or
"Searching by Using the sample_search.c Program".

Using the FM and DM Templates
In addition to the sample programs, the BRM SDK includes FM and DM templates that you can
use as starting points for your own customized versions. You can make changes to the
templates, compile them, and run them to test your changes. Makefiles and .dlls are provided
for the templates in BRM_SDK_home/source/templates/fm_template and BRM_SDK_home/
source/templates/dm_template.

The templates are provided in two forms:

• C files that you can modify and compile according to the instructions in Compiling the
Sample PCM C Programs.

• DSP files that you can open as projects in Microsoft Visual Studio.

See "Testing New or Customized Policy FMs" and "Testing New or Customized DMs" in BRM
Developer's Guide for information about testing the modified templates.

Creating Accounts by Using the sample_app.c Program
The sample_app.c program creates an account with services in the specified package. You
can modify this program to add new services to an account or to create dummy accounts to
test BRM functionality.

This program performs the following actions:

1. Opens a database channel

2. Retrieves the specified package

3. Adds the customer information to the package

4. Creates the customer account

5. Closes the database channel

Chapter 5
About Using the PCM C Sample Programs

5-5

For information on the structure and parameters, see the source file sample_app.c located in
BRM_SDK_home/source/samples/apps/c.

Syntax for sample_app.c
Run the program with appropriate options listed in Table 5-9 and package name. The options
can be in any order except that the name of the package must be the last entry.

% sample_app [-l login] [-p password] <package>

Table 5-9 sample_app.c Account Creation Parameters

Parameter Description Condition

-l Login Required

-p Password Required

-d Set error level Optional

-h Print standard error Optional

The following example accepts the account logon and password for jsmith.

sample_app -l jsmith -p my_password email_package

Removing Accounts by Using the sample_del.c Program
The sample_del.c program finds an account by searching for one of its service logins, and
then deletes the account and all of its related objects.

Caution:

This program deletes accounts permanently. You cannot retrieve any accounts that
you delete by running this program.

For information on the structure and parameters, see the source file, sample_del.c located in
BRM_SDK_home/source/samples/apps/c.

Syntax for sample_del.c
The sample_del.c program does not take any parameters.

% sample_del /servicetype login

This example deletes the /service/ip account with the login smith:

% sample_del /service/ip smith

Searching by Using the sample_search.c Program
The sample_search.c program demonstrates the different types of searches in BRM.

• Read-object search with single result expected

Chapter 5
About Using the PCM C Sample Programs

5-6

Searches for the primary account object and displays the results with PIN_FLIST_PRINT.

• Read-fields search with multiple results expected

Searches for the POID, merchant, and status of all nonbillable accounts in the database.

• Step search

Searches for services that require AES-encrypted passwords. The first 10 such services
are retrieved in 2 blocks of 5 services each.

For information on the structure, see the source file sample_search.c located in
BRM_SDK_home/source/samples/apps/c.

Syntax for sample_search.c
The sample_search.c program does not take any parameters.

% sample_search

Displaying Current Users by Using the sample_who.c Program
The sample_who.c program finds all the active dialup sessions in the database, looks up the
login for each user with an open session, and displays a list of all customers currently logged in
to your Internet service.

For information on the structure, see the source file sample_who.c located in
BRM_SDK_home/source/samples/apps/c.

Syntax for sample_who.c
The sample_who.c program does not take any parameters.

% sample_who

Troubleshooting the sample_app.c Application
If you cannot run the sample_app application, use this information to identify any problems
and resolve them.

Problem: Test Failed
sample# sample_app
bad/no "userid" from pin.conf file

Test Failed, See Log File.

Solution

Edit the sample_app configuration file to include the correct userid entry and make sure the
application is configured correctly.

Problem: Bad Port Number
sample# sample_app
(11400): bad receive of login response, err 4
(11400): login failed 4

Test Failed, See Log File

Chapter 5
About Using the PCM C Sample Programs

5-7

sample# cat default.pinlog
E Fri Mar 15 14:56:44 1998 db2.corp <no name>:11393 pcm.c(1.41):90
 Connect open failed (4/100) in pcm_context_open
E Fri Mar 15 14:58:39 1998 db2.corp <no name>:11400 pcm.c(1.41):90
 Connect open failed (4/5) in pcm_context_open

Solution

Edit the cm_ptr entry in the sample_app configuration file with the valid CM port number.

Problem: Customer Account Creation Error
sample# sample_app

Test Failed, See Log File

E Fri Mar 15 15.10:37 1998 db2.corp :11405 sample_app.c:167
 op_cust_create_acct error [location= class= errno= field num= recid=<0>
reserved=<0>]

Solution

Load the BRM objects into the database.

About Using the PCM C++ Sample Programs
BRM SDK includes a set of sample applications using the PCM C++ API. You can use these
sample programs in the following ways:

• Use the sample programs as code samples for extending BRM components and
applications and for writing custom applications.

• Run the corresponding executable application with a sample program to observe the
changes it makes in BRM.

These samples are supported Linux. Compile these sample programs using the appropriate
compiler for your platform.

Finding the Sample PCM C++ Programs
When you install BRM SDK on Linux, the sample programs are installed by default in
BRM_home/InfranetSDK/source/samples.

You can also display the sample programs by clicking the links in this document.

Note:

The installation directory is called BRM_SDK_home in the documentation.

You can install BRM SDK on the BRM server at the same time as you install BRM, or
independently as an individual component. See "About BRM Install Package" and "Installing
Individual BRM Components" in BRM Installation Guide for more information.

Chapter 5
About Using the PCM C++ Sample Programs

5-8

Description of the Sample PCM C++ Programs
The sample programs demonstrate how to write code for various tasks when customizing
BRM.

Each sample includes these supporting files:

• Source files to view or modify for your own applications

• Makefiles to compile the sample programs on Linux, if you make changes to the samples

• A compiled application that verifies that the sample programs work as expected and that
allows you to observe the changes the programs make in BRM

• A configuration file pin.conf that allows you to specify the information required for the
sample application to connect to BRM

The following tables provide:

• A list of the sample programs

• A description of each sample program

• Information on any executable program that you can run to observe the results

Table 5-10 lists the file for setting makefile macros.

Table 5-10 Setting Makefile Macros (File Located in BRM_SDK_home/source/samples)

Sample Description

env.unix Shows you how the environment is set up, for example, the location of include directories.
The makefiles reference the appropriate environment file for this information.

Instructions on setting the makefile macros are included in these text files.

Table 5-11 lists the sample files for creating an flist.

Table 5-11 Creating an Flist (Files Located in BRM_SDK_home/source/samples/flists/C++)

Sample Description

simple_flist.cpp Shows how to create an flist with simple fields.

Run simple_flist.exe to see a printout of the flist created, which contains a POID and two
strings containing the first and last names.

For information on how to run simple_flist, see "Running the Sample PCM C Programs".

flists_with_arrays.cpp Shows how to create flists with arrays containing a single element and multiple elements.

Run flists_with_arrays.exe to see the flists created by this sample.

For information on how to run flists_with_arrays, see "Running the Sample PCM C
Programs".

flists_with_substruct.cpp Shows how to create an flist with a substructure.

Run flists_with_substruct.exe to see the flists created by this sample.

For information on how to run flists_with_substruct, see "Running the Sample PCM C
Programs".

Table 5-12 lists the sample file for creating a context.

Chapter 5
About Using the PCM C++ Sample Programs

5-9

Table 5-12 Creating a Context (File Located in BRM_SDK_home/source/samples/context/C++)

Sample Description

create_context.cpp Shows you how to open a context, connect to BRM, perform operations, test if the
connection is open, and close the context.

Run create_context.exe to verify that the program returns input flist as the output.

For information on how to run create_context, see "Running the Sample PCM C
Programs".

Table 5-13 lists the sample file for calling an opcode.

Table 5-13 Calling an opcode (File Located in BRM_SDK_home/source/samples/callopcode/C++)

Sample Description

test_loopback.cpp Shows you how to call an opcode.

This sample calls the PCM_OP_TEST_LOOPBACK opcode which just returns the flist that
you pass in as the input.

Run test_loopback.exe to verify that the program returns input flist as the output.

For information on how to run test_loopback, see "Running the Sample PCM C
Programs".

Table 5-14 lists the sample files for creating a client application.

Table 5-14 Creating a Client Application (Files Located in BRM_SDK_home/source/samples/apps/C++)

Sample Description

sample_PinBD.cpp Shows how to use the class PinBigDecimal. This program illustrates how to create
a big decimal number from a string or double, the use of various rounding modes
and setting the number of decimal places, the use of mathematical functions, etc.

Run sample_PinBD.exe to see how the program works.

For information on how to run sample_PinBD, see "Running the Sample PCM C
Programs".

Table 5-15 lists the sample files for using the multithreaded application (MTA) APIs.

Table 5-15 Using the Multithreaded Application (MTA) API

Sample Description

pin_mta_monitor
(located in BRM_SDK_home/bin)

Sample monitoring utility.

pin_mta_test.c
(located in BRM_SDK_home/source/

samples/apps/c/mta_sample)

Sample test program using the MTA framework.

Compiling the Sample PCM C++ Programs
In addition to using the sample programs as working programming examples, you can also use
them as a basis for your own applications. You can make changes to the sample programs,

Chapter 5
About Using the PCM C++ Sample Programs

5-10

compile, and run them to test your changes. The sample programs directory includes the
following files:

• env.unix to set the environment

• Makefiles for Linux to compile the samples

To compile the sample programs:

1. Go to BRM_SDK_home/source/samples, and open env.unix.

2. Set up the path for the environment by following the instructions in the file.

3. Save the file.

4. Compile using the make utility:

make

Running the Sample PCM C++ Programs
The executable versions of the sample programs are provided. To see the output generated by
a sample program, follow these basic steps:

1. Go to the directory where the sample program is located. The default path is
BRM_SDK_home/source/samples.

2. Edit the entry in the configuration file pin.conf to point to the CM.

3. Run the program by running the executable, for example:

create_context.exe

About Using the PCM Java Sample Programs
BRM SDK includes a set of sample applications using the PCM Java API. You can use these
sample programs in the following ways:

• Use the sample programs as code samples for extending BRM components and
applications and for writing custom applications.

• Run the corresponding executable application with a sample program to observe the
changes it makes in BRM.

These samples are supported on Linux. Compile these sample programs using the appropriate
compiler for your platform.

Finding the Sample PCM Java Programs
When you install BRM SDK, the sample programs are installed by default in BRM_home/
InfranetSDK/source/samples.

You can also display the sample programs by clicking the links in this document.

Chapter 5
About Using the PCM Java Sample Programs

5-11

Note:

The installation directory is called BRM_SDK_home in the documentation.

You can install BRM SDK on the BRM server at the same time as you install BRM, or
independently as an individual component. See "About BRM Install Package" and
"Installing Individual BRM Components" in BRM Installation Guide for more
information.

Description of the Sample PCM Java Programs
The sample programs demonstrate how to write code for various tasks when customizing
BRM.

Each sample includes these supporting files:

• Source files to view or modify for your own applications

• Makefiles to compile the sample programs, if you make changes to the samples

• A compiled application that verifies that the sample programs work as expected and that
allows you to observe the changes the programs make in BRM

• A configuration file infranet.properties that allows you to specify the information required
for the sample application to connect to BRM

The following tables provide:

• A list of the sample programs and makefiles

• A description of each sample program and makefile

• Information on any executable program that you can run to observe the results

Table 5-16 lists the sample file for setting the makefile macros.

Table 5-16 Setting Makefile Macros (File Located in BRM_SDK_home/source/samples)

Sample Description

env.unix Shows you how the environment is set up, for example, the location of include directories.
The makefiles reference the appropriate environment file for this information.

Instructions on setting the makefile macros are included in these text files.

Table 5-17 lists the sample files for creating an flist.

Table 5-17 Creating an Flist (Files Located in BRM_SDK_home/source/samples/flists/Java)

Sample Description

SimpleFlist.java Shows how to create an flist with simple fields.

Run SimpleFlist.class to see a printout of the flist created, which contains a POID and two
strings containing the first and last names.

For information on how to run SimpleFlist, see "Running the Sample PCM C Programs".

Chapter 5
About Using the PCM Java Sample Programs

5-12

Table 5-17 (Cont.) Creating an Flist (Files Located in BRM_SDK_home/source/samples/flists/Java)

Sample Description

FlistsWithArrays.java Shows how to create flists with arrays containing a single element and with arrays
containing multiple elements.

Run FlistsWithArrays.class to see the flists created by this sample.

For information on how to run FlistsWithArrays, see "Running the Sample PCM C
Programs".

FlistsWithSubstructs.java Shows how to create an flist with a substructure.

Run FlistsWithSubstructs.class to see the flists created by this sample.

For information on how to run FlistsWithSubstructs, see "Running the Sample PCM C
Programs".

Table 5-18 lists the sample file for creating a context.

Table 5-18 Creating a Context (File Located in BRM_SDK_home/source/samples/context/Java)

Sample Description

CreateContext.java Shows you how to open a context, connect to BRM, perform operations, test if the
connection is open, and close the context.

Run CreateContext.class to see how to open a context.

For information on how to run CreateContext, see "Running the Sample PCM C
Programs".

Table 5-19 lists the sample file for calling an opcode.

Table 5-19 Calling an Opcode (File Located in BRM_SDK_home/source/samples/callopcode/Java)

Sample Description

TestLoopback.java Shows you how to call an opcode.

This sample calls the PCM_OP_TEST_LOOPBACK opcode which just returns the flist that
you pass in as the input.

Run TestLoopback.class to verify that the program returns input flist as the output.

For information on how to run TestLoopback, see "Running the Sample PCM C
Programs".

Table 5-20 lists the sample files for creating a client application.

Table 5-20 Creating a Client Application (Files Located in BRM_SDK_home/source/samples/apps/Java)

Sample Description

CreateCustomUsageEvent.java Shows you how to generate an email activity event for a particular account.

Run CreateCustomUsageEvent.class to see how the program works.

For more information on CreateCustomUsageEvent, see "Creating Events
by Using the CreateCustomUsageEvent.java Program"

For information on how to run CreateCustomUsageEvent, see "Creating
Events by Using the CreateCustomUsageEvent.java Program".

Chapter 5
About Using the PCM Java Sample Programs

5-13

Table 5-20 (Cont.) Creating a Client Application (Files Located in BRM_SDK_home/source/samples/
apps/Java)

Sample Description

CreateCustomer.java Shows you how to create a new customer through the user interface defined
in CreateCustomerUI.java,using the account information definition from
CreateCustomerAccountInfo.java and the model created by
CreateCustomerModel.java
Run CreateCustomer.class to see how to create a customer using these four
programs. For more information on CreateCustomer, see "Creating Accounts
by Using the CreateCustomer.java Program"

For information on how to run CreateCustomer, see "Running the Sample
PCM C Programs".

CreateCustomerUI.java Defines the user interface used by CreateCustomer.

CreateCustomerAccountInfo.java Defines the account information and holds the data.

CreateCustomerModel.java Shows you how to create new customers by creating flists to pass information
to it, including customer name and address, pertinent package, billing
information, invoice data, and so on. Then it adds the requested login and
password to each service array element and creates the customer in the BRM
database.

Of the four CreateCustomer programs, Create CustomerModel.java is
where all the BRM actions take place in this program.

Compiling the Sample PCM Java Programs
In addition to using the sample programs as working programming examples, you can also use
them as a basis for your own applications. You can make changes to the sample programs,
compile, and run them to test your changes. The sample programs directory includes the
following files:

• env.unix to set the environment

• Makefiles to compile the samples

To compile the sample programs:

Note:

To compile the sample programs, you must have a Java compiler installed on your
system. For a list of compatible versions of Java, see "Additional BRM Software
Requirements" in BRM Compatibility Matrix.

1. Go to BRM_SDK_home/source/samples, and open env.unix.

2. Set up the path for the environment by following the instructions in the file. Make sure the
JDK_HOME variable includes the absolute path of your Java compiler.

3. Save the file.

4. Compile using the make utility:

make

Chapter 5
About Using the PCM Java Sample Programs

5-14

Running the Sample PCM Java Programs
The executable versions of the sample programs are provided. To see the output generated by
a sample program, follow these basic steps:

1. Go to the directory where the sample program is located. The default structure is:
BRM_SDK_home/source/samples.

2. Edit the configuration file infranet.properties to point to the CM.

3. Set the classpath to:

java -classpath <path to jar files> <sample_name>

For example:

classpath/BRM_SDK_home/jars/pcm.jar;/BRM_SDK_home/jars/pcmext.jar;. SimpleFlist

4. Run the program, for example:

java create_context

Creating Accounts by Using the CreateCustomer.java Program
The CreateCustomer.java program creates an account with services in the specified package.
You can modify this program to add new services to an account or to create dummy accounts
to test BRM functionality.

This program performs the following actions:

1. Opens a database channel

2. Retrieves the specified package

3. Adds the customer information to the package

4. Creates the customer account

5. Closes the database channel

For information on the structure and parameters, look at the source file CreateCustomer.java
located in BRM_SDK_home/source/samples/apps/Java.

Creating Events by Using the CreateCustomUsageEvent.java Program
The CreateCustomUsageEvent.java program simulates customer activity by creating an
activity event for an email service object. Use this program to generate any number of email
events.

For information on the structure, see the source file CreateCustomUsageEvent.java located
in BRM_SDK_home/source/samples/apps/Java.

Running the CreateCustomUsageEvent Program
1. Create the storable class of type event/activity/email and these custom fields.

EMAIL_EVENT_INFO PIN_FLDT_SUBSTRUCT [0] ID# 10001
EMAIL_FROM PIN_FLDT_STR [0] 10002

Chapter 5
About Using the PCM Java Sample Programs

5-15

EMAIL_TO PIN_FLDT_STR [0] 10003

For information, see "Creating, Editing, and Deleting Fields and Storable Classes" in BRM
Developer's Guide.

2. Follow the instructions in "Making Custom Fields Available to Your Applications" in BRM
Developer's Guide to make the custom fields available to your applications.

3. Restart the CM, the client tools, and other components.

4. Run CreateCustomUsageEvent to generate email activity events:

java CreateCustomUsageEvent

About Using the PCM Perl Sample Programs
BRM SDK includes a set of sample applications using the PCM Perl API. You can use these
sample programs in the following ways:

• Use the sample programs as code samples for extending BRM components and
applications and for writing custom applications.

• Run the corresponding executable application with a sample program to observe the
changes it makes in BRM.

These samples are supported on Linux. Compile these sample programs using the appropriate
compiler for your platform.

Finding the Sample PCM Perl Programs
When you install BRM SDK on Linux, the sample programs are installed by default in
BRM_home/InfranetSDK/source/samples.

You can also display the sample programs by clicking the links in this document.

Note:

The installation directory is called BRM_SDK_home in the documentation.

You can install BRM SDK on the BRM server at the same time as you install BRM, or
independently as an individual component. See "About BRM Install Package" and "Installing
Individual BRM Components" in BRM Installation Guide for more information.

Description of the Sample PCM Perl Programs
The sample programs demonstrate how to write code for various tasks when customizing
BRM.

Each sample includes these supporting files:

• Source files to view or modify for your own applications

• A compiled application that you can run to verify that the sample programs work as
expected and to observe the changes the program makes in BRM

Chapter 5
About Using the PCM Perl Sample Programs

5-16

• A configuration file pin.conf where you specify the configuration information for the sample
application to connect to BRM

The following tables provide:

• A list of the sample programs

• A description of each sample program

• Information on any executable program that you can run to observe the results

Table 5-21 lists the sample files for creating an flist.

Table 5-21 Creating an Flist (Files Located in BRM_SDK_home/source/samples/flists/perl)

Sample Description

simple_flist.pl Shows how to create an flist with simple fields.

Run simple_flist.pl to see a printout of the flist created, which contains a POID and two
strings containing the first and last names.

flist_with_arrays.pl Shows how to create flists with arrays containing a single element.

Run flist_with_arrays.pl to see the flist created by this sample.

flist_with_substruct.pl Shows how to create an flist with a substructure.

Run flist_with_substruct.pl to see the flist created by this sample

Table 5-22 lists the sample files for creating a context.

Table 5-22 Creating a Context (Files Located in BRM_SDK_home/source/samples/context/perl)

Sample Description

connect.pl Shows you how to open a context, connect to BRM using pin.conf parameters, perform
operations, test if the connection is open, and close the context.

Run contect.pl to verify that the program returns input flist as the output.

For information on how to run connect.pl, see "Running the Sample PCM C Programs".

create_context.pl Shows you how to open a context, connect to BRM using logon information within the
program, perform operations, test if the connection is open, and close the context.

Run create_context.pl to demonstrate how to open a context.

For information on how to run create_context.pl, see "Running the Sample PCM C
Programs".

Table 5-23 lists the sample file for calling an opcode.

Table 5-23 Calling an Opcode (Files Located in BRM_SDK_home/source/samples/callopcode/perl)

Sample Description

test_loopback.pl Shows you how to call an opcode.

This sample calls the PCM_OP_TEST_LOOPBACK opcode which just returns the flist that
you pass in as the input.

Run test_loopback.pl to verify that the program returns input flist as the output.

For information on how to run test_loopback.pl, see "Running the Sample PCM C
Programs".

Chapter 5
About Using the PCM Perl Sample Programs

5-17

Running the Sample PCM Perl Programs
The executable versions of the sample programs are provided. To see the output generated by
a sample program, follow these basic steps:

1. Go to the directory where the sample program is located. The default structure is:
BRM_home/InfranetSDK/source/samples.

2. Edit the entry in the configuration file pin.conf to point to the CM.

3. Run the program by executing the program name under Perl, for example:

perl create_context.pl

Note:

Use the Perl installed by the SDK (or with the BRM server), located in
BRM_home/perl/bin/perl. This version of Perl is preconfigured for BRM.

Chapter 5
About Using the PCM Perl Sample Programs

5-18

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 PIN Libraries Reference
	Configuration File-Reading Functions
	pin_conf
	pin_conf_beid
	pin_conf_multi

	Decimal Data Type Manipulation Functions
	About Using the API
	International Platform Issues
	About Rounding Modes
	About Scaling
	About Memory Management

	pbo_decimal_abs
	pbo_decimal_abs_assign
	pbo_decimal_add
	pbo_decimal_add_assign
	pbo_decimal_compare
	pbo_decimal_copy
	pbo_decimal_destroy
	pbo_decimal_divide
	pbo_decimal_divide_assign
	pbo_decimal_from_double
	pbo_decimal_from_double_round
	pbo_decimal_from_str
	pbo_decimal_is_null
	pbo_decimal_is_zero
	pbo_decimal_multiply
	pbo_decimal_multiply_assign
	pbo_decimal_negate
	pbo_decimal_negate_assign
	pbo_decimal_round
	pbo_decimal_round_assign
	pbo_decimal_sign
	pbo_decimal_subtract
	pbo_decimal_subtract_assign
	pbo_decimal_to_double
	pbo_decimal_to_str
	psiu_currency_append_currency_exchange_rate

	Error-Handling Macros
	PIN_ERR_LOG_EBUF
	PIN_ERR_LOG_FLIST
	PIN_ERR_LOG_MSG
	PIN_ERR_LOG_POID
	PIN_ERR_SET_LEVEL
	PIN_ERR_SET_LOGFILE
	PIN_ERR_SET_PROGRAM
	PIN_ERRBUF_CLEAR
	PIN_ERRBUF_IS_ERR
	PIN_ERRBUF_RESET
	pin_set_err

	Flist Field-Handling Macros
	PIN_FLIST_ANY_GET_NEXT
	PIN_FLIST_ELEM_ADD
	PIN_FLIST_ELEM_COPY
	PIN_FLIST_ELEM_COUNT
	PIN_FLIST_ELEM_DROP
	PIN_FLIST_ELEM_GET
	PIN_FLIST_ELEM_GET_NEXT
	PIN_FLIST_ELEM_MOVE
	PIN_FLIST_ELEM_PUT
	PIN_FLIST_ELEM_SET
	PIN_FLIST_ELEM_TAKE
	PIN_FLIST_ELEM_TAKE_NEXT
	PIN_FLIST_FLD_COPY
	PIN_FLIST_FLD_DROP
	PIN_FLIST_FLD_GET
	PIN_FLIST_FLD_MOVE
	PIN_FLIST_FLD_PUT
	PIN_FLIST_FLD_RENAME
	PIN_FLIST_FLD_SET
	PIN_FLIST_FLD_TAKE
	PIN_FLIST_SUBSTR_ADD
	PIN_FLIST_SUBSTR_DROP
	PIN_FLIST_SUBSTR_GET
	PIN_FLIST_SUBSTR_PUT
	PIN_FLIST_SUBSTR_SET
	PIN_FLIST_SUBSTR_TAKE

	Flist Management Macros
	PIN_FLIST_CONCAT
	PIN_FLIST_COPY
	PIN_FLIST_COUNT
	PIN_FLIST_CREATE
	PIN_FLIST_DESTROY
	PIN_FLIST_DESTROY_EX
	PIN_FLIST_PRINT
	PIN_FLIST_SORT
	PIN_FLIST_SORT_REVERSE
	PIN_STR_TO_FLIST
	PIN_FLIST_TO_STR
	PIN_FLIST_TO_STR_COMPACT_BINARY
	PIN_FLIST_TO_XML

	POID Management Macros
	PIN_POID_COMPARE
	PIN_POID_COPY
	PIN_POID_CREATE
	PIN_POID_DESTROY
	PIN_POID_FROM_STR
	PIN_POID_GET_DB
	PIN_POID_GET_ID
	PIN_POID_GET_REV
	PIN_POID_GET_TYPE
	PIN_POID_IS_NULL
	PIN_POID_LIST_ADD_POID
	PIN_POID_LIST_COPY
	PIN_POID_LIST_COPY_NEXT_POID
	PIN_POID_LIST_COPY_POID
	PIN_POID_LIST_CREATE
	PIN_POID_LIST_DESTROY
	PIN_POID_LIST_REMOVE_POID
	PIN_POID_LIST_TAKE_NEXT_POID
	PIN_POID_PRINT
	PIN_POID_TO_STR

	String Manipulation Functions
	About the String Manipulation Functions
	String Manipulation Functions
	pcm_get_localized_string_list
	pin_string_list_destroy
	pin_string_list_get_next

	Validity Period Manipulation Macros
	About Relative Offset Values
	PIN_VALIDITY_GET_UNIT
	PIN_VALIDITY_GET_OFFSET
	PIN_VALIDITY_GET_MODE
	PIN_VALIDITY_SET_UNIT
	PIN_VALIDITY_SET_OFFSET
	PIN_VALIDITY_SET_MODE
	PIN_VALIDITY_DECODE_FIELD
	PIN_VALIDITY_ENCODE_FIELD

	2 Storable Class Definitions
	Fields Common to All Storable Classes

	3 Perl Extensions to the PCM Libraries
	Connection Functions
	Error-Handling Functions
	Flist Conversion Functions
	PCM Opcode Functions
	Example Perl Scripts
	Perl Script Example 1
	Perl Script Example 2

	pcm_context_close
	pcm_perl_connect
	pcm_perl_context_open
	pcm_perl_destroy_ebuf
	pcm_perl_ebuf_to_str
	pcm_perl_get_session
	pcm_perl_get_userid
	pcm_perl_is_err
	pcm_perl_new_ebuf
	pcm_perl_op
	pcm_perl_print_ebuf
	pin_flist_destroy
	pin_flist_sort
	pin_perl_flist_to_str
	pin_perl_str_to_flist
	pin_perl_time
	pin_set_err

	4 Storable Class-to-SQL Mapping
	Storable Class-to-SQL Mapping
	SQL Mapping Matrix
	SQL Mapping Notes

	Doing SQL Joins
	Reserved Tables
	SQL Statement Information at Runtime

	5 Sample Applications
	About Using the PCM C Sample Programs
	Finding the PCM C Sample Programs
	Description of the PCM C Sample Programs
	Compiling the Sample PCM C Programs
	Running the Sample PCM C Programs
	Using the FM and DM Templates
	Creating Accounts by Using the sample_app.c Program
	Syntax for sample_app.c

	Removing Accounts by Using the sample_del.c Program
	Syntax for sample_del.c

	Searching by Using the sample_search.c Program
	Syntax for sample_search.c

	Displaying Current Users by Using the sample_who.c Program
	Syntax for sample_who.c

	Troubleshooting the sample_app.c Application
	Problem: Test Failed
	Problem: Bad Port Number
	Problem: Customer Account Creation Error

	About Using the PCM C++ Sample Programs
	Finding the Sample PCM C++ Programs
	Description of the Sample PCM C++ Programs
	Compiling the Sample PCM C++ Programs
	Running the Sample PCM C++ Programs

	About Using the PCM Java Sample Programs
	Finding the Sample PCM Java Programs
	Description of the Sample PCM Java Programs
	Compiling the Sample PCM Java Programs
	Running the Sample PCM Java Programs
	Creating Accounts by Using the CreateCustomer.java Program
	Creating Events by Using the CreateCustomUsageEvent.java Program
	Running the CreateCustomUsageEvent Program

	About Using the PCM Perl Sample Programs
	Finding the Sample PCM Perl Programs
	Description of the Sample PCM Perl Programs
	Running the Sample PCM Perl Programs

