
Oracle® Communications Billing and
Revenue Management
Cloud Native Deployment Guide

Release 15.0
F86189-04
September 2024

Oracle Communications Billing and Revenue Management Cloud Native Deployment Guide, Release 15.0

F86189-04

Copyright © 2019, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

Documentation Accessibility x

Diversity and Inclusion x

Part I Overview of BRM Cloud Native

1 Overview of the BRM Cloud Native Deployment

About the BRM Cloud Native Deployment 1-1

BRM Cloud Native Deployment Architecture 1-1

Images and Containers 1-3

Images and Containers with Non-WebLogic Server Pattern 1-3

Images and Containers for Applications Using WebLogic 1-3

2 About the BRM Cloud Native Deployment Packages

Overview of the BRM Cloud Native Deployment Package 2-1

About BRM Pods 2-1

About Client Pods and Images 2-3

About BRM PVCs and Pods 2-5

Part II Getting Started with BRM Cloud Native Deployment

3 About Configuring and Deploying Your BRM Cloud Native Environment

About Configuring and Deploying BRM Cloud Native 3-1

High-Level Installation Tasks 3-2

4 Setting Up Prerequisite Software

BRM Cloud Native Prerequisite Tasks 4-1

Software Compatibility 4-2

iii

Creating a Kubernetes Cluster 4-2

Installing Podman 4-3

Installing Helm 4-4

Creating and Configuring Your BRM Database 4-4

Installing an External Provisioner 4-5

Installing WebLogic Kubernetes Operator 4-6

Installing an Ingress Controller 4-6

Setting Up ECE Cloud Native Ingress and Egress Flows 4-7

5 Preparing Your BRM Cloud Native Environment

Tasks for Preparing Your BRM Cloud Native Environment 5-1

Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files 5-1

Pulling BRM Images from the Oracle Container Registry 5-3

Downloading BRM Images from Oracle Software Delivery Website 5-6

Pulling WebLogic Images for PDC, Billing Care, Billing Care REST API, and Business
Operations Center 5-8

Part III Configuring and Deploying BRM Cloud Native

6 Deploying the BRM Database Schema

Deploying BRM with a New Database Schema 6-1

Deploying BRM with an Existing Schema 6-7

7 Configuring BRM Server, PDC, and PCC Services

About Configuring BRM Cloud Native Services 7-1

Creating Secrets for Docker Registry Authorization 7-1

Configuring Global Values 7-2

Specifying the BRM Services to Deploy 7-3

Configuring the BRM Server 7-5

Configuring BRM for a Multischema Database 7-12

Configuring Pricing Design Center 7-15

Adding PDC Keys for oc-cn-helm-chart 7-15

Adding PDC Keys for oc-cn-op-job-helm-chart 7-22

Setting Up SSO for PDC Cloud Native 7-33

Configuring Pipeline Configuration Center 7-34

Adding Pipeline Configuration Center Keys for oc-cn-op-job-helm-chart 7-35

Adding Pipeline Configuration Center Keys for oc-cn-helm-chart 7-38

About PCC Volume Mounts 7-40

Creating a WebLogic Domain and Installing the PCC Application 7-40

iv

Setting Up SSO for PCC 7-41

Setting Up Local Users and Groups for PCC 7-42

Starting and Stopping WebLogic Servers 7-43

Configuring SSL in PCC 7-43

8 Configuring REST Services

Configuring BRM REST Services Manager 8-1

Generating an SSL Certificate for BRM REST Services Manager 8-1

Configuring the SDK (Optional) 8-2

Configuring the Oracle Unified Directory HTTPS Port 8-2

Connecting to a Separate BRM Cluster 8-2

Adding BRM REST Services Manager Keys 8-3

Sample override-values for IDCS Security Type 8-5

Sample override-values.yaml for OAM Security Type 8-6

Sample BRM RSM override-values for Separate BRM Cluster 8-6

Configuring PDC REST Services Manager 8-7

Adding PDC REST Services Manager Keys 8-8

Configuring OAuth Authentication in PDC REST Services Manager 8-9

Configuring Requests to the Enterprise Product Catalog 8-11

Enabling TLS in PDC REST Services Manager 8-12

Enabling T3S in PDC REST Services Manager 8-13

Configuring Mapping of TMF620 priceType to BRM Events 8-14

9 Configuring the Billing Care, Billing Care REST API, and Business
Operations Center Services

About Configuring Business Operations Center, Billing Care, and Billing Care REST API 9-1

Configuring Business Operations Center 9-2

Adding Business Operations Center Keys for oc-cn-op-job-helm-chart 9-3

Adding Business Operations Center Keys for oc-cn-helm-chart 9-6

Updating Infranet.properties for Business Operations Center 9-7

Adding Custom Configuration to Deployment Workflow for Business Operations Center 9-8

About Business Operations Center Volume Mounts 9-8

Creating a WebLogic Domain and Installing the Business Operations Center Application 9-8

Setting Up SSO for Business Operations Center 9-9

Setting Up Local Users and Groups for Business Operations Center 9-10

Starting and Stopping WebLogic Servers 9-11

Configuring Billing Care 9-12

Adding Billing Care Keys for oc-cn-op-job-helm-chart 9-12

Adding Billing Care Keys for oc-cn-helm-chart 9-15

Updating Infranet.properties for Billing Care 9-17

v

Adding Custom Configuration to Deployment Workflow for Billing Care 9-18

About Billing Care Volume Mounts 9-18

Creating a WebLogic Domain and Installing the Billing Care Application 9-19

Setting Up SSO for Billing Care 9-19

Setting Up Local Users and Groups for Billing Care 9-21

Starting and Stopping WebLogic Servers 9-21

Configuring the Billing Care REST API 9-22

Adding Billing Care REST API Keys for oc-cn-op-job-helm-chart 9-22

Adding Billing Care REST API Keys for oc-cn-helm-chart 9-25

Updating Infranet Properties for the Billing Care REST API 9-26

Adding Custom Configuration to Deployment Workflow for Billing Care REST API 9-27

About Billing Care REST API Volume Mounts 9-27

Creating a WebLogic Domain and Installing the Billing Care REST API 9-28

Setting Up Local Users and Groups for Billing Care REST API 9-28

Starting and Stopping WebLogic Servers 9-29

10

Configuring ECE Services

Adding Elastic Charging Engine Keys 10-1

Enabling SSL in Elastic Charging Engine 10-7

Connecting ECE Cloud Native to an SSL-Enabled Database 10-7

About Elastic Charging Engine Volume Mounts 10-10

Loading Custom Diameter AVP 10-10

Generating CDRs for Unrated Events 10-10

Scaling the cdrgateway and cdrFormatter Pods 10-14

Configuring ECE to Support Prepaid Usage Overage 10-15

Recording Failed ECE Usage Requests 10-15

Loading BRM Configuration XML Files 10-16

Setting Up Notification Handling in ECE 10-16

Creating an Apache Kafka Notification Topic 10-16

Creating an Oracle WebLogic Notification Queue 10-17

Configuring ECE for a Multischema BRM Environment 10-19

11

Deploying BRM Cloud Native Services

Deploying BRM Cloud Native Services 11-1

12

Deploying into Oracle Cloud Infrastructure

Deploying into Oracle Cloud Infrastructure 12-1

vi

13

Uninstalling Your BRM Cloud Native Deployment

Uninstalling Your BRM Cloud Native Deployment 13-1

Uninstalling Selected BRM Cloud Native Services 13-1

Part IV Customizing BRM Cloud Native

14

Customizing BRM Cloud Native Services

Customizing BRM Server 14-1

Customizing Billing Care 14-4

Customizing ECE 14-5

15

Building Your Own Images

Building BRM Server Images 15-1

Building Your BRM Server Base Image 15-2

Building Images of BRM Server Components 15-3

Building Web Services Manager Images 15-4

Building and Deploying Web Services Manager for Apache Tomcat Image 15-4

Building and Deploying Web Services Manager for WebLogic Server Image 15-6

Containerization of Email Data Manager 15-9

Containerization of Roaming Pipeline 15-10

Building and Deploying Vertex Manager 15-11

Deploying with Vertex Communications Tax Q Series 15-11

Deploying with Vertex Sales Tax Q Series 15-13

Building BRM REST Services Manager Images 15-15

Building PDC REST Services Manager Images 15-15

Building PDC Images 15-16

Building Pipeline Configuration Center Images 15-18

Pulling the Fusion Middleware Infrastructure Image 15-18

Building the Pipeline Configuration Center Image 15-18

Building Billing Care Images 15-18

Building the Billing Care Image 15-18

Building the Billing Care REST API Image 15-19

Building Business Operations Center Images 15-19

Part V Upgrading BRM Cloud Native

vii

16

Upgrading Your BRM Cloud Native Environment

Tasks for the BRM Cloud Native Upgrade 16-1

Upgrading Your Database Schema 16-2

Upgrading Your BRM Cloud Native Services 16-3

Upgrading Your ECE Cloud Native Services 16-5

Upgrading ECE Cloud Native to the Latest Interim Patch 16-6

Upgrading Your PDC Cloud Native Services 16-7

Upgrading BRM REST Services Manager 16-10

Upgrading Your Business Operations Center Cloud Native Services 16-11

Upgrading Your Business Operations Center Cloud Native Service from 12.0.0.7.0
or Earlier to 15.0.x.0.0 16-11

Upgrading Your Business Operations Center Cloud Native Service from 12.0.0.8.0
to 15.0.x.0.0 16-13

Upgrading Your PCC Cloud Native Services 16-14

Upgrading Your PCC Cloud Native Services from 12.0.0.x.0 or Earlier to 15.0.0.0.0 16-14

Upgrading Your PCC Cloud Native Services from 15.0.0.0.0 to 15.0.x.0.0 16-15

Upgrading Your Billing Care and Billing Care REST API Cloud Native Services 16-17

Upgrading Your Billing Care and Billing Care REST API Cloud Native Services from
12.0.0.7.0 or Earlier to 15.0.x.0.0 16-17

Upgrading Your Billing Care and Billing Care REST API Cloud Native Services from
12.0.0.8.0 to 15.0.x.0.0 16-19

17

Performing Zero-Downtime Upgrades

Performing a Zero-Downtime Upgrade of BRM 17-1

Performing a Zero Downtime Upgrade of PDC 17-4

18

Performing Zero-Downtime Upgrades of Disaster Recovery Cloud Native
Systems

About the Zero-Downtime Upgrade of an Active-Active Disaster Recovery System 18-1

Tasks for Upgrading a BRM Cloud Native Active-Active System 18-1

Switching Off Site 2 18-2

Uninstalling BRM and ECE from Site 2 18-3

Upgrading Your BRM Database Schema in Site 2 18-4

Installing BRM 15.0.x Cloud Native on Site 2 18-5

Dropping the ECE Persistence Database Schema from Site 2 18-6

Installing ECE 15.0.x Cloud Native on Site 2 18-7

Failing Over Site 1 to Site 2 18-7

Uninstalling BRM and ECE from Site 1 18-9

Installing BRM Cloud Native on Site 1 18-9

Dropping the ECE Persistence Database Schema from Site 1 18-11

viii

Installing ECE 15.0.x Cloud Native on Site 1 18-11

Federating ECE Cache Data Between Site 1 and Site 2 18-12

19

Rolling Back Your Patch Set Upgrade

Rolling Back Your Upgrade of BRM Server 19-1

Rolling Back Your Upgrade of PDC 19-4

Rolling Back Your BRM and PDC Upgrades 19-4

Manually Rolling Back Your PDC Upgrade 19-5

Rolling Back Your Upgrade of ECE 19-6

20

Migrating from On-Premise BRM to BRM Cloud Native

Migrating to BRM Cloud Native 20-1

Migrating from PDC On Premises to PDC Cloud Native 20-1

Part VI Troubleshooting BRM Cloud Native Deployments

21

Troubleshooting Your BRM Cloud Native Deployment

Problems with the Helm Installation 21-1

Helm Installation Fails with Time-Out Error 21-2

BRM Cloud Native Deployment Out of Memory Errors 21-3

PDC Messages Stuck in Rating Engine Queues 21-3

PDC Interceptor Pod is Started But Went to Error State 21-3

eceTopology.conf Errors While Restarting Pods 21-4

ix

Preface

This guide describes how to install and administer Oracle Communications Billing and
Revenue Management (BRM) Cloud Native Deployment Option.

This guide has been updated to include changes and new feature content added for release
15.0.1.

Audience
This document is intended for DevOps administrators and those involved in installing and
maintaining an Oracle Communications Billing and Revenue Management (BRM) Cloud Native
Deployment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
Overview of BRM Cloud Native

This part provides an overview of the Oracle Communications Billing and Revenue
Management (BRM) cloud native deployment. It contains the following chapters:

• Overview of the BRM Cloud Native Deployment

• About the BRM Cloud Native Deployment Packages

1
Overview of the BRM Cloud Native
Deployment

Learn about configuring Oracle Communications Billing and Revenue Management (BRM) to
run as a cloud native application in a containerized and orchestrated deployment architecture.

Topics in this document:

• About the BRM Cloud Native Deployment

• BRM Cloud Native Deployment Architecture

About the BRM Cloud Native Deployment
Oracle Communications Billing and Revenue Management (BRM), along with the following
BRM applications, are available in a cloud native deployment option, supporting a Kubernetes-
orchestrated containerized multi-service architecture to facilitate continuous integration,
continuous delivery, and DevOps practices. This allows you to harness the benefits of the
cloud with BRM's services.

• Oracle Communications Pricing Design Center (PDC)

• Oracle Communications Elastic Charging Engine (ECE)

• Oracle Communications Pipeline Configuration Center (PCC)

• Oracle Communications Billing Care

• Oracle Communications Business Operations Center

Note:

You can also deploy Oracle Communications Offline Mediation Controller on a cloud
native environment. See "About the Offline Mediation Controller Cloud Native
Deployment" in Offline Mediation Controller Cloud Native Installation and
Administration Guide for more information.

You can set up your own BRM cloud native environment or build your own images of BRM and
its applications. You use the cloud native deployment package to automate the deployment of
BRM products and speed up the process to get services up and running, with product
deployments preconfigured to communicate with each other through Helm charts.

BRM Cloud Native Deployment Architecture
In the BRM cloud native architecture, each BRM service runs as a container and deploys as a
Kubernetes pod, which is the fundamental building block of Kubernetes. Many core BRM
services can be deployed and managed as multiple replicas within a Kubernetes replica set.

Figure 1-1 shows the pods and other components in a typical BRM cloud native deployment.

1-1

Note:

Not all pods are shown for clarity. Pod names are descriptive and may differ from
actual names in some cases.

Figure 1-1 BRM Cloud Native Deployment Architecture

In this figure:

• Pricing Design Center, Billing Care, Business Operations Center, and Pipeline
Configuration Center are client applications. They connect to the CM, which represents the
business logic layer of BRM, by using the Portal Communications Protocol (PCP).

• The CM communicates with other pods, which represent the data management layer of
BRM, by using the PCP protocol.

• All PCP protocol communication is encrypted using TLS.

• The data managers (DMs) interact with other downstream products that run the business
logic.

The downstream products can be containers or an on-premise system.

• ECE rates events and applies charges.

• Rating files for the batch pipeline are fed in through a Kubernetes PersistentVolumeClaim
(PVC). The batch pipeline output is also available in a PVC for consumption by the Rated
Event (RE) Loader pod.

Note:

BRM services are not exposed outside of the cluster to improve security. Only PDC,
PCC, Web Services Manager, Billing Care, and Business Operations Center are
exposed.

Chapter 1
BRM Cloud Native Deployment Architecture

1-2

Images and Containers
BRM has a multi-service architecture, with each service provided as an image for deploying as
a run-time container in a Kubernetes cluster on cloud infrastructure. An image consists of read-
only layers, each representing a Dockerfile instruction. The layers are stacked, and each is a
delta of the changes from the previous layer. BRM cloud native deployment images are built by
stacking multiple layers, extending an operating system image with a dependent library image,
and then with an image packaging the application.

Images and Containers with Non-WebLogic Server Pattern
BRM cloud native images that do not use WebLogic Server, such as the BRM base image, use
the layering pattern shown in Figure 1-2.

If you want to build your own BRM images, you must layer the images in this pattern.

Figure 1-2 Base Image Layering with Non-WebLogic Server Pattern

Images and Containers for Applications Using WebLogic
Some applications that use WebLogic have images based on the WebLogic image, and some
applications use an external WebLogic image.

The following images are based on the WebLogic image:

• Web Services Manager image

• Pipeline Configuration Center (PCC)

Figure 1-3 shows the layering pattern for a PCC application image, but a similar image stack
also applies to the Web Services Manager image.

If you want to build your own PCC or Web Services Manager images, you must layer the
images in this pattern.

Chapter 1
BRM Cloud Native Deployment Architecture

1-3

Figure 1-3 Images Based on a WebLogic Image

In this figure:

• Fusion Middleware Infrastructure 12.2.1.x is the base image. This image is available from
the Oracle Container Registry (https://container-registry.oracle.com).

The Fusion Middleware Infrastructure image is based on Oracle Linux and Oracle JDK 8
(Server JRE). It's regularly patched with critical security fixes until the release date.

• The PCC application image extends the Fusion Middleware Infrastructure image, which
provides WebLogic Server and JRF for OPSS for authorized access to the application.

Figure 1-4 shows the layering pattern for a Billing Care image, but a similar image stack also
applies to the Billing Care REST API and Business Operations Center images.

If you want to build your own Billing Care, Billing Care REST API, or Business Operations
Center images, you must layer the images in this pattern.

Figure 1-4 Images Using an External WebLogic Image

In this figure:

Chapter 1
BRM Cloud Native Deployment Architecture

1-4

https://container-registry.oracle.com

• Oracle Linux 8 is the base image. This image is available from the Oracle Container
Registry (https://container-registry.oracle.com). The Oracle Linux image is regularly
patched with critical security fixes until the release date.

• The Billing Care image extends the Oracle Linux image. It references an external image
(not part of the stack) for WebLogic functions, like WebLogic Server and JRF for OPSS for
authorized access to the application.

Figure 1-5 shows the layering pattern for a Billing Care image, but a similar image stack also
applies to the Billing Care REST API and Business Operations Center images.

If you want to build your own PDC images, you must layer the images in this pattern.

Figure 1-5 PDC Images Using an External WebLogic Image

In this figure:

• The Server JRE image is the base image. This image is available from the Oracle
Container Registry (https://container-registry.oracle.com).

• The PDC image extends the Server JRE image. It references an external image (not part
of the stack) for WebLogic functions, like WebLogic Server and JRF for OPSS for
authorized access to the application.

Chapter 1
BRM Cloud Native Deployment Architecture

1-5

https://container-registry.oracle.com
https://container-registry.oracle.com

2
About the BRM Cloud Native Deployment
Packages

Learn about the Helm charts and images in the Oracle Communications Billing and Revenue
Management (BRM) cloud native deployment package that help you deploy and manage pods
of BRM product services in Kubernetes.

Topics in this document:

• Overview of the BRM Cloud Native Deployment Package

• About BRM Pods

• About Client Pods and Images

• About BRM PVCs and Pods

Overview of the BRM Cloud Native Deployment Package
The BRM cloud native deployment package includes the following:

• Ready-to-use images and Helm charts to help you orchestrate containers in Kubernetes.

• Sample Dockerfiles and scripts that you can use as a reference for building your own
images.

You can use the images and Helm charts to help you deploy and manage pods of BRM
product services in Kubernetes. Communication between pods of services of BRM products is
preconfigured in the Helm charts.

About BRM Pods
Table 2-1 lists the pods for BRM whose containers are created and services are exposed
through them.

Table 2-1 BRM Pods

Pod Name Replica Type
(1)

Container Port Container Port Name Service Type

cm Multi-replica 11960 (cm)

11961 (perflib, metrics)

11932 (eai-java-server,
metrics)

cm-pcp-port

cm-perflib-port

eai-prom-port

ClusterIP

dm-kafka Multi-replica 12010

12012 (metrics)

dm-pcp-port

dm-prom-port

ClusterIP

dm-oracle Multi-replica 12950

12951 (perflib, metrics)

dm-pcp-port

dm-perflib-port

ClusterIP

brm-sdk Single-replica N/A N/A ClusterIP

2-1

Table 2-1 (Cont.) BRM Pods

Pod Name Replica Type
(1)

Container Port Container Port Name Service Type

init-db Single-replica N/A N/A ClusterIP

dm-vertex Single-replica 31247 dm-vertex-port ClusterIP

dm-eai Multi-replica 11970 dm-pcp-port ClusterIP

dm-invoice Multi-replica 27777 dm-pcp-port ClusterIP

dm-ldap Multi-replica 12850 dm-pcp-port ClusterIP

dm-prov-telco Multi-replica 20315 dm-pcp-port ClusterIP

ecs Multi-replica 9999 N/A NodePort

configloader Single-replica 9999 N/A NodePort

pricingupdate
r

Single-replica 9999 N/A NodePort

brmgateway Multi-
instance, 1
instance per
schema

9999 N/A NodePort

customerupd
ater

Multi-
instance, 1
instance per
schema

9999 N/A NodePort

diametergate
way

Multi-
instance,
each instance
can have 1
replica

9999 N/A NodePort

emgateway Multi-replica 9999 N/A NodePort

httpgateway Multi-replica 9999 N/A NodePort

radiusgatewa
y

Multi-replica 9999 N/A NodePort

ratedeventfor
matter

Multi-
instance, 1
instance
required for
each role on
each schema
(2)

9999 N/A NodePort

realtime-pipe Multi-replica 24000 rtp ClusterIP

batch-
wireless-pipe

Single-replica 24001 batchpipe ClusterIP

roampipe Single-replica 24002 roampipe ClusterIP

rel-daemon Multi-replica N/A N/A ClusterIP

rem Multi-
instance, 1
instance per
schema

8080 rem-metrics ClusterIP

batch-
controller

Multi-replica N/A N/A ClusterIP

Chapter 2
About BRM Pods

2-2

Table 2-1 (Cont.) BRM Pods

Pod Name Replica Type
(1)

Container Port Container Port Name Service Type

formatter Multi-replica 22272 formatter-port ClusterIP

fusa-simulator Single-replica 9780 (answer_s, online
simulator)

8780 (answer_b, online
simulator)

answer-s-port

answer-b-port

ClusterIP

dm-fusa Multi-replica 15772 dm-fusa-port ClusterIP

dm-email Multi-replica 17777 cm-pcp-port ClusterIP

pje Multi-replica 31960 pje-pcp-port ClusterIP

amt Single-replica N/A N/A ClusterIP

brm_apps_jo
bs

N/A N/A N/A N/A

config_job N/A N/A N/A ClusterIP

Note:

1. The BRM cloud native pods support the following replica types:

• Multi-replica: You can scale these pods at the Kubernetes level to the number of
replicas needed.

• Single-replica: You cannot scale these pods.

• Multi-instance: You can scale these pods but not at the Kubernetes level. Instead, a
new instance needs to be created and scaling is usually limited.

2. The ratedeventformatter pod requires one instance for each role on each schema. For
example, suppose you have two schemas on two sites. In that case, you create primary
and secondary instances for each schema in site 1 and primary and secondary instances
for each schema in site 2, for a total of 8 instances.

About Client Pods and Images
Table 2-2 lists the pods and images for PDC, PDC REST Services Manager, Pipeline
Configuration Center, Billing Care, Business Operations Center, and BRM REST Services
Manager.

Note:

For the list of pods and images for Offline Mediation Controller, see "About Offline
Mediation Controller Pods and Images" in Offline Mediation Controller Cloud Native
Installation and Administration Guide.

Chapter 2
About Client Pods and Images

2-3

Table 2-2 Client Pods and Images

Pod Replica
Type (1)

Image Container Port Service Type Access URL

pdc Single-
replica

pdc:15.0.x.0.0 8001 (HTTP) (2) NodePort host:port/pdc

pdcrsm Multi-
replica

pdcrsm:15.0.x.0.0 31000

8080

Container
Port,

ClusterIP

host:port/
productCatalogM
anagement

pcc Single-
replica

pcc:15.0.x.0.0 7012 (HTTPS) NodePort host:port/pcc

billingcar
e

Multi-
replica
(3)

billingcare:15.0.x.0.0 7011 (admin-
server)

8001 (managed-
serverN and
cluster-1)

8080 (monitoring-
exporter, if
monitoring is
enabled)

ClusterIP host:port/bc

bcws Multi-
replica
(3)

bcws:15.0.x.0.0 7011 (admin-
server)

8001 (managed-
serverN and
cluster-1)

8080 (monitoring-
exporter, if
monitoring is
enabled)

ClusterIP host:port/bcws

boc multi-
replica

boc:15.0.x.0.0 7011 (admin-
server)

8001 (managed-
serverN and
cluster-1)

8080 (monitoring-
exporter, if
monitoring is
enabled)

ClusterIP host:port/
opsdashboard

brm-
rest-
services
-
manager

Multi-
replica

brm-rest-services-
manager:15.0.x.0.0

30000/30001 NodePort host:port/brm

wsm-wls Multi-
replica

brm_wsm_wls:15.0.x.0.
0

7001 (admin-
server)

8001 (managed-
serverN and
cluster-1)

8080 (monitoring-
exporter, metrics)

default

default

metrics

host:port/
BrmWebServices

N/A N/A webhook:15.0.x.0.0 N/A N/A N/A

Note:

Chapter 2
About Client Pods and Images

2-4

1. The BRM cloud native pods support the following replica types:

• Multi-replica: You can scale these pods at the Kubernetes level to the number of
replicas needed.

• Single-replica: You cannot scale these pods.

• Multi-instance: You can scale these pods but not at the Kubernetes level. Instead, a
new instance needs to be created and scaling is usually limited.

2. If the PDC user sets the t3ChannelPort and t3sChannelPort keys in the values.yaml file,
the HTTP, HTTPS, t3Channel, and t3sChannel ports will be NodePort.

3. The Billing Care and Billing Care REST API pods support multi-replica managed services
with scaling done through WebLogic Kubernetes Operator.

About BRM PVCs and Pods
Table 2-3 lists the PVCs and pods in a BRM cloud native deployment.

Table 2-3 List of PVCs in BRM Server

PVC Name Pods

bcws-domain-domain-pvc bcws-domain-deployer

bcws-domain-admin-server

bcws-domain-managed-serverN

bcws-domain-batch-payment-pvc bcws-domain-deployer

bcws-domain-admin-server

bcws-domain-managed-serverN

billingcare-domain-domain-pvc billingcare-domain-deployer

billingcare-domain-admin-server

billingcare-domain-managed-serverN

billingcare-domain-batch-payment-pvc billingcare-domain-deployer

billingcare-domain-admin-server

billingcare-domain-managed-serverN

boc-domain-domain-pvc boc-domain-deployer

boc-domain-admin-server

boc-domain-managed-serverN

common-semaphore batch-wireless-pipe

realtime-pipe

roampipe

ctqdir dm-vertex

custom-job-file brm-apps-job

cm

data batch-wireless-pipe

roampipe

fusa-temp dm-fusa

oms-rel-archive rel-daemon

oms-rel-input rel-daemon

oms-rel-reject rel-daemon

Chapter 2
About BRM PVCs and Pods

2-5

Table 2-3 (Cont.) List of PVCs in BRM Server

PVC Name Pods

oms-uel-archive batch-controller

oms-uel-input batch-controller

oms-uel-reject batch-controller

outputcdr batch-wireless-pipe

rel-daemon

outputreject batch-wireless-pipe

rel-daemon

pipelinelog batch-wireless-pipe

roampipe

pdc-app-pvc PDC pod (PDC Application Container)

pdc-brm-pvc PDC pod (PDC BRM Integration Pack)

roamoutputcdr roampipe

rel-daemon

roamoutputreject roampipe

rel-daemon

service-order dm-prov-telco

brm-apps-job

virtual-time All pods

Table 2-4 lists the services associated with ECE.

Table 2-4 ECE Services

Service Name Service Type Port Description

ece-brmgateway NodePort External port BRM Gateway service

ece-dgw NodePort External port Diameter Gateway
service

ece-emg NodePort External port EM Gateway service

ece-http NodePort External port HTTP Gateway service

ece-rgw NodePort External port RADIUS Gateway
service

Chapter 2
About BRM PVCs and Pods

2-6

Part II
Getting Started with BRM Cloud Native
Deployment

This part provides information about getting started with your Oracle Communications Billing
and Revenue Management (BRM) cloud native deployment, including installing the
prerequisite software and downloading the deployment package. It contains the following
chapters:

• About Configuring and Deploying Your BRM Cloud Native Environment

• Setting Up Prerequisite Software

• Preparing Your BRM Cloud Native Environment

3
About Configuring and Deploying Your BRM
Cloud Native Environment

Learn about the high-level steps for configuring and deploying your Oracle Communications
Billing and Revenue Management (BRM) cloud native environment.

Topics in this document:

• About Configuring and Deploying BRM Cloud Native

• High-Level Installation Tasks

About Configuring and Deploying BRM Cloud Native
You install the BRM cloud native deployment package by configuring and deploying its Helm
charts. The Helm charts include YAML template descriptors for all Kubernetes resources and a
values.yaml file that provides default configuration values for each chart.

Installing a Helm chart generates valid Kubernetes manifest files by replacing default values
from the values.yaml file with custom values from your override-values.yaml file, and creates
Kubernetes resources. Helm calls this a new release. You use the release name to track and
maintain this installation.

Note:

This documentation uses the override-values.yaml file name for ease of use, but
you can name the file whatever you want.

The BRM cloud native deployment package includes the Helm charts in Table 3-1.

Table 3-1 BRM Cloud Native Helm Charts

Chart Name Description When to Use

oc-cn-init-db-helm-chart This chart initializes and upgrades the
database schema for the BRM server.

• In initialize mode, it:

– Creates tables, views,
procedures, indexes, and other
database objects needed by
BRM Server

– Loads seed data
• In upgrade mode, it modifies the

existing database schema to match
the current release's data model.

Use this chart in initialize mode when
preparing a new BRM setup and have an
empty database schema.

Use this chart in upgrade mode when
upgrading your schema to the latest
release.

3-1

Table 3-1 (Cont.) BRM Cloud Native Helm Charts

Chart Name Description When to Use

oc-cn-op-job-helm-chart This chart does the following:

• Creates WebLogic Server domains
for PDC, Billing Care, the Billing Care
REST API, and Business Operations
Center.

• Installs PDC, Billing Care, the Billing
Care REST API, and Business
Operations Center in their respective
domains.

• Populates persistent volumes with
domain and application files for
sharing between WebLogic Server
runtimes.

• (Release 15.0.1 or later) Creates the
following PDC groups:

– PricingDesignAdmin: This
group's users have
administrative privileges on PDC.
They can perform operations on
all PDC UI screens, pricing
components, and setup
components.

– PricingAnalyst: This group's
users have administrative
privileges for pricing components
and view-only privileges for
setup components.

– PricingReviewer: This group's
users have view-only privileges
for all pricing and setup
components.

If you want to use Billing Care, Business
Operations Center, Pricing Design Center,
or the Billing Care REST API, install this
chart before you install oc-cn-helm-
chart.

oc-cn-helm-chart This chart does the following:

• Deploys BRM server, PDC, and PCC.
• Starts the WebLogic servers for

Billing Care, the Billing Care REST
API, and Business Operations
Center.

• Exposes web clients as services
outside of the cluster.

• Shares persistent volumes between
its services through persistent
volume claims.

Install this chart to use the services of the
BRM server, PDC, PCC, Billing Care,
Business Operations Center, or the Billing
Care REST API.

oc-cn-ece-helm-chart This chart does the following:

• Deploys ECE and its services.
• Sets up the connection with the BRM

server and PDC.
• Configures sharing of persistent

volumes with the BRM server.

Install this chart to use ECE as your
convergent charging solution.

High-Level Installation Tasks
You install BRM cloud native on your system by performing these high-level tasks:

Chapter 3
High-Level Installation Tasks

3-2

1. Install all prerequisite software for your BRM cloud native environment.

See "Setting Up Prerequisite Software".

2. Prepare your deployment environment by downloading the BRM cloud native deployment
package, extracting the Helm charts, and loading the BRM component images.

See "Preparing Your BRM Cloud Native Environment".

3. Configure and deploy the BRM database schema in your cloud native environment.

See "Deploying the BRM Database Schema".

4. Configure the BRM cloud native services that you want to include in your system,
including:

• BRM server, PDC, and PCC services. See "Configuring BRM Server, PDC, and PCC
Services".

• BRM and PDC REST services. See "Configuring REST Services".

• BRM client services such as Billing Care and Business Operations Center. See
"Configuring the Billing Care, Billing Care REST API, and Business Operations Center
Services".

• ECE services. See "Configuring ECE Services".

5. Deploy the BRM cloud native services in your cloud native environment.

See "Deploying BRM Cloud Native Services".

Chapter 3
High-Level Installation Tasks

3-3

4
Setting Up Prerequisite Software

Learn about prerequisite tasks to perform before installing the Oracle Communications Billing
and Revenue Management (BRM) cloud native deployment package, such as installing
Podman and Helm.

Topics in this document:

• BRM Cloud Native Prerequisite Tasks

• Software Compatibility

• Creating a Kubernetes Cluster

• Installing Podman

• Installing Helm

• Creating and Configuring Your BRM Database

• Installing an External Provisioner

• Installing WebLogic Kubernetes Operator

• Installing an Ingress Controller

• Setting Up ECE Cloud Native Ingress and Egress Flows

Caution:

Oracle does not provide support for any prerequisite third-party software installation
or configuration. The customer must handle any installation or configuration issues
related to non-Oracle prerequisite software.

BRM Cloud Native Prerequisite Tasks
As part of preparing your environment for BRM cloud native, you choose, install, and set up
various components and services in ways that are best suited for your cloud native
environment. The following shows the high-level prerequisite tasks for BRM cloud native:

1. Ensure you have downloaded the latest supported software that is compatible with BRM
cloud native.

2. Create a Kubernetes cluster.

3. Install Podman and a container runtime supported by Kubernetes.

4. Install Helm.

5. Create and configure a BRM database.

6. Install and configure an external provisioner.

7. If you plan to deploy Pricing Design Center (PDC), Billing Care, the Billing Care REST API,
Web Services Manager, or Business Operations Center:

4-1

• Install and configure WebLogic Kubernetes Operator.

• Install an ingress controller.

8. If you plan to deploy Elastic Charging Engine (ECE), install and set up an ingress controller
and an egress controller.

9. If you plan to deploy the Billing Care REST API or the BRM REST Services Manager API,
install Oracle Access Management. See the "Install Oracle Access Management 12c"
tutorial for installation instructions.

10. If you plan to integrate your BRM cloud native deployment with a Kafka Server, install the
Apache Kafka software. See "Apache Kafka Quickstart" on the Apache Kafka website for
installation instructions.

11. If you plan to integrate your BRM cloud native deployment with Oracle Analytics Publisher,
install Oracle Analytics Publisher. See "Installing the Oracle Analytics Server Software" in
Oracle Analytics Installing and Configuring Oracle Analytics Server for installation
instructions.

Note:

The Oracle Analytics Publisher software was previously named Oracle Business
Intelligence (BI) Publisher.

Prepare your environment with these technologies installed, configured, and tuned for
performance, networking, security, and high availability. Make sure backup nodes are available
in case of system failure in any of the cluster's active nodes.

The following sections provide more information about the required components and services,
the options you can choose from, and how you must set them up for your BRM cloud native
environment.

Software Compatibility
To run, manage, and monitor your BRM cloud native deployment, ensure you use the latest
versions of all compatible software. See "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

Creating a Kubernetes Cluster
Kubernetes is an open-source system for automating the deployment, scaling, and
management of containerized applications. It groups containers into logical units for easy
management and discovery. When you deploy Kubernetes, you get a physical cluster with
machines called nodes. A reliable cluster must have multiple worker nodes spread over
separate physical infrastructure, and a very reliable cluster must have multiple primary nodes
spread over separate physical infrastructure.

Figure 4-1 illustrates the Kubernetes cluster and the components that it interacts with.

Chapter 4
Software Compatibility

4-2

https://kafka.apache.org/quickstart
https://docs.oracle.com/en/middleware/bi/analytics-server/install-config-oas/installing-product-software.html

Figure 4-1 Overview of the Kubernetes Cluster

Set up a Kubernetes cluster for your BRM cloud native deployment, securing access to the
cluster and its objects with the help of service accounts and proper authentication and
authorization modules. Also, set up the following in your cluster:

• Volumes: Volumes are directories that are accessible to the containers in a pod and
provide a way to share data. The BRM cloud native deployment package uses persistent
volumes for sharing data in and out of containers, but does not enforce any particular type.
You can choose from the volume type options available in Kubernetes.

• A networking model: Kubernetes assumes that pods can communicate with other pods,
regardless of which host they land on. Every pod gets its own IP address, so you do not
need to explicitly create a link between pods or map container ports to host ports. Several
implementations are available that meet the fundamental requirements of Kubernetes’
networking model. Choose the networking model depending on the cluster requirement.

For more information about Kubernetes, see "Kubernetes Concepts" in the Kubernetes
documentation.

Installing Podman
You use the Podman platform to containerize BRM products. Install Podman if you want to do
one of these:

• Use the prebuilt images provided with the BRM cloud native deployment package.

• Build your own BRM images by writing your own Dockerfiles using the sample Dockerfiles
from the BRM cloud native deployment package.

You can use Podman or any container runtime that supports the Open Container Initiative if it
supports the Kubernetes version specified in "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

Chapter 4
Installing Podman

4-3

https://kubernetes.io/docs/concepts/

Installing Helm
Helm is a package manager that helps you install and maintain software on a Kubernetes
system. In Helm, a package is called a chart, which consists of YAML files and templates
rendered into Kubernetes manifest files. The BRM cloud native deployment package includes
Helm charts that help create Kubernetes objects, such as ConfigMaps, Secrets, controller sets,
and pods, with a single command.

The following shows sample steps for installing and validating Helm:

1. Download the Helm software from https://github.com/helm/helm/releases.

For the list of supported Helm versions, see "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix.

2. Extract the Helm files from the archive:

tar -zxvf helm-version-linux-amd64.tar.gz

where version is the Helm version number.

3. Find the helm binary in the unpacked directory and move it to your desired directory. For
example:

mv linux-amd64/helm /usr/local/bin/helm
4. Check the version of Helm:

helm version
Helm leverages kubeconfig for users running the helm command to access the Kubernetes
cluster. By default, this is $HOME/.kube/config. Helm inherits the permissions set up for this
access into the cluster. If role-based access control (RBAC) is configured, you must grant
Helm users sufficient cluster permissions.

For more information about installing Helm, see "Installing Helm" in the Helm documentation.

Creating and Configuring Your BRM Database
You must install an Oracle database accessible through the Kubernetes network so BRM cloud
native pods can perform database operations. The Oracle database you use can be:

• On-premises, which can be either physical or VM

• Cloud-based, such as Bare Metal, VM, or DBaaS on Oracle Cloud Infrastructure

You can use an existing BRM database or create a new one. See "BRM Software
Compatibility" in BRM Compatibility Matrix for the latest supported database versions.

To create and configure a new BRM database:

1. When you install and create your database, pay particular attention to the following
requirements:

• Install Oracle Enterprise Edition

• Install the following Oracle components: Oracle XML DB, Oracle XML Developer's
Kit (XDK), and Oracle JServer

• To partition the tables in your BRM database, install the Oracle Partitioning
component

• Set the Character Set to AL32UTF8

Chapter 4
Installing Helm

4-4

https://github.com/helm/helm/releases
https://helm.sh/docs/intro/install/

• Set the National Character Set to UTF8

2. (Optional) Set up TLS authentication in the BRM database. See "Configuring Transport
Layer Security Authentication" in Oracle Database Security Guide. Also, ensure that you:

• Create a TLS certificate or obtain one from a certificate provider

• Install the certificate in the Oracle Database Server

3. Set your LD_LIBRARY_PATH environment variable to $ORACLE_HOME/lib.

4. You can configure your database manually or let the BRM installer configure the database
for you. You can do one of the following:

• Use the BRM installer to configure a demonstration database for you

The BRM installer can automatically configure your database for demonstration or
development systems. The BRM installer configures your database by:

– Creating the following tablespaces: pin00 (for data), pinx00 (for indexes), and
PINTEMP (for a temporary tablespace)

– Creating a BRM user named pin

– Granting connection privileges to the pin user

• Configure a demonstration database manually

You can configure your database manually so it contains additional or larger
tablespaces. For more information, see "Configuring Your Database Manually for
Demonstration Systems" in BRM Installation Guide.

• Configure a production database manually

For production systems, you must create multiple tablespaces for the BRM data and
indexes. For information on estimating your database size, creating multiple
tablespaces, and mapping the tablespaces to BRM tables, see "Planning Your
Database Configuration" in BRM Installation Guide.

5. Grant the BRM schema user select permission on the V$SESSION database table. To do
so, connect to the Oracle database with SQL*Plus as the system user and then enter this
command:

SQL> GRANT SELECT ON TABLE V$SESSION TO brmSchemaUser;
The installers for PDC, Billing Care, and all other products automatically create the
tablespaces and users that are required for those products.

Installing an External Provisioner
An external provisioner creates shared, persistent storage for the containers in your BRM
cloud native environment. It stores:

• Input data, such as pricing XML files

• Output data, such as archive files and reject files from Rated Event Loader and Universal
Event Loader

• Data that needs to be shared between containers, such as pin_virtual_time

Install and set up an external provisioner with ReadWriteMany access in your system that
provisions volumes dynamically.

Chapter 4
Installing an External Provisioner

4-5

https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-secure-sockets-layer-authentication.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-secure-sockets-layer-authentication.html

Installing WebLogic Kubernetes Operator
Oracle WebLogic Kubernetes Operator helps you to deploy and manage WebLogic domains in
your Kubernetes environment. It consists of several parts:

• The operator runtime

• The model for a Kubernetes customer resource definition (CRD)

• A Helm chart for installing the operator

In the BRM cloud native environment, you use WebLogic Kubernetes Operator to maintain the
domains and services for Billing Care, the Billing Care REST API, Web Services Manager,
PDC, and Business Operations Center.

The following shows sample steps for installing WebLogic Kubernetes Operator on your BRM
cloud native environment:

1. Add the Helm repository for WebLogic Kubernetes Operator:

helm repo add weblogic-operator https://oracle.github.io/weblogic-kubernetes-
operator/charts

2. Create a new namespace for WebLogic Kubernetes Operator. For example, this kubectl
command creates the namespace operator:

kubectl create namespace operator
3. Install WebLogic Kubernetes Operator:

helm install weblogic-operator weblogic-operator/weblogic-operator --namespace
operator --version version

where version is the version of WebLogic Kubernetes Operator, such as 2.5.0 or 3.0.0.
See "BRM Cloud Native Deployment Software Compatibility" in BRM Compatibility Matrix
for a list of supported versions.

If the installation is successful, you will see something similar to this:

NAME: weblogic-operator
LAST DEPLOYED: Tue Oct 6 08:29:03 2020
NAMESPACE: weblogic-operator
STATUS: deployed
REVISION: 1
TEST SUITE: None

4. Check the pod:

kubectl get pods

You should see something similar to this:

NAME READY STATUS RESTARTS AGE
weblogic-operator-849cc6bdd8-vkx7n 1/1 Running 0 57s

For more information about WebLogic Kubernetes Operator, see "Introduction" in the
WebLogic Kubernetes Operator documentation.

Installing an Ingress Controller
Using an ingress controller exposes BRM services outside the Kubernetes cluster and allows
clients to communicate with BRM.

Chapter 4
Installing WebLogic Kubernetes Operator

4-6

https://oracle.github.io/weblogic-kubernetes-operator/introduction/

The ingress controller monitors the ingress objects and acts on the configuration embedded in
these objects to expose BRM HTTP and T3 services to the external network. Adding an
external load balancer provides highly reliable single-point access to the services exposed by
the Kubernetes cluster. In this case, the ingress controller exposes the services on behalf of
the BRM cloud native instance. Using a load balancer removes the need to expose Kubernetes
node IPs to the larger user base, insulates users from changes (in terms of nodes appearing or
being decommissioned) to the Kubernetes cluster, and enforces access policies.

If you are using Billing Care, the Billing Care REST API, or Business Operations Center, you
must add a load balancer to your BRM cloud native system that has:

• Path-based routing for the WebLogic Cluster service.

• Sticky sessions enabled. That is, if the load balancer redirects a client’s login request to
Managed Server 1, all subsequent requests from that client are redirected to Managed
Server 1.

• TLS enabled between the client and the load balancer to secure communications outside
of the Kubernetes cluster.

Business Operations Center and Billing Care use HTTP and rely on the load balancer to
terminate HTTPS.

See "Ingress" in the WebLogic Kubernetes Operator documentation for more information about
setting up an ingress controller and sample load balancers.

Setting Up ECE Cloud Native Ingress and Egress Flows
Ingress and egress controllers expose ECE services outside the Kubernetes cluster, allowing
external networks to communicate with ECE. For example, an ingress controller can route
requests from Diameter and 5G HTTP clients to the httpgateway and diametergateway pods
for processing. Likewise, an egress controller can send CDR records from the cdrformatter pod
to the ECE database.

You can expose external network IPs for ingress traffic from external clients using the
following:

• A load balancer exposing the IPs on the external network. The load balancer sends
ingress traffic to Kubernetes services or node ports.

• Kubernetes service IPs or worker node IPs residing on the external network.

You can route egress traffic through an external network IP that is hosted by a worker node
interface.

Figure 4-2 shows an ECE cloud native deployment with sample ingress and egress flows.

Chapter 4
Setting Up ECE Cloud Native Ingress and Egress Flows

4-7

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/accessing-the-domain/ingress/

Figure 4-2 ECE Cloud Native Ingress and Egress Flows

In this figure:

• The ingress flows traverse a load balancer, but you can use an alternate ingress flow to
meet your business requirements.

• The egress flows are depicted generically. Network source addressing and routing may
vary based on your business requirements.

• ECE cloud native uses logical external networks. The number and content of these
networks may vary depending on your business requirements.

Table 4-1 describes the egress flow from each ECE pod to an endpoint.

Table 4-1 ECE Cloud Native Egress Flows

ECE Pod Egress Endpoints

brmgateway ECE database

BRM database

Note: The BRM database is accessed during installation.

cdrformatter ECE database

Note: The ECE database is used for CDR management.

cdrgateway ECE database

Note: The ECE database is used for CDR management.

Chapter 4
Setting Up ECE Cloud Native Ingress and Egress Flows

4-8

Table 4-1 (Cont.) ECE Cloud Native Egress Flows

ECE Pod Egress Endpoints

configloader ECE database

customerupdater ECE database

BRM database

diametergateway Remote HTTP Gateway (for active-active deployments only)

Remote Kafka server (for active-active deployments only)

Note: This pod does not initiate Diameter connections to Diameter
signaling clients.

ece-customerloader-job ECE database

BRM database

ece-persistence-job ECE database

ece-persistence-upgrade-job ECE database

ecs ECE database

BRM database

Remote ECE Coherence Federation (for active-active and active-
standby deployments only)

Note: The BRM database is accessed during customer loading.

emgateway BRM database

Remote HTTP Gateway (for active-active deployments only)

Note: This pod forwards requests to the remote HTTP Gateway. This is
optional for active-active deployments.

httpgateway Charging signaling clients

Remote HTTP Gateway (for active-active deployments only)

Remote Kafka server (for active-active deployments only)

Note: This pod sends HTTP/2 requests to 5G clients.

Note: The httpgateway pod's egress to a remote ECE HTTP Gateway is
needed only if it is processing 5G charging traffic.

monitoringagent Monitoring Agents

Remote Monitoring Agent (for active-active and active-standby
deployments only)

pricingupdater Pricing Design Center

ratedeventformatter ECE database

BRM database (for Rated Event Manager plug-in only)

Note: Direct access to the BRM database occurs only when the Rated
Event Manager plug-in is configured to write rated events directly to the
BRM database.

Chapter 4
Setting Up ECE Cloud Native Ingress and Egress Flows

4-9

5
Preparing Your BRM Cloud Native
Environment

Learn how to prepare your system for the Oracle Communications Billing and Revenue
Management (BRM) cloud native deployment by downloading the BRM cloud native Helm
charts and BRM images.

Topics in this document:

• Tasks for Preparing Your BRM Cloud Native Environment

• Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files

• Pulling BRM Images from the Oracle Container Registry

• Downloading BRM Images from Oracle Software Delivery Website

• Pulling WebLogic Images for PDC, Billing Care, Billing Care REST API, and Business
Operations Center

Tasks for Preparing Your BRM Cloud Native Environment
Prepare your system for the BRM cloud native deployment by performing the following high-
level tasks:

1. Downloading the Helm charts for the BRM cloud native deployment. See "Downloading
Packages for the BRM Cloud Native Helm Charts and Docker Files".

2. Downloading the BRM cloud native images in one of these ways:

• From the Oracle Container Registry. To do so, see "Pulling BRM Images from the
Oracle Container Registry".

• From the Oracle Software Delivery website. To do so, see "Downloading BRM Images
from Oracle Software Delivery Website".

3. If you plan to deploy Pricing Design Center (PDC), Billing Care, the Billing Care REST API,
or Business Operations Center, downloading the Oracle WebLogic cloud native image.
See "Pulling WebLogic Images for PDC, Billing Care, Billing Care REST API, and Business
Operations Center".

Downloading Packages for the BRM Cloud Native Helm Charts
and Docker Files

To download the BRM cloud native Helm charts and Docker files:

1. Go to https://edelivery.oracle.com.

2. Sign in to the Oracle Software Delivery website using an Oracle account.

3. Search for and select Oracle Communications Billing and Revenue Management
Cloud Native Deployment Option 15.0.x.0.0, and then click Continue.

4. Select the following and then click Continue:

5-1

https://edelivery.oracle.com

• Oracle Communications Billing and Revenue Management Cloud Native Deployment
Option 15.0.x.0.0-CN

• Oracle Communications Elastic Charging Engine Cloud Native Deployment Option
15.0.x.0.0-CN

• Oracle Communications Pricing Design Center Cloud Native Deployment Option
15.0.x.0.0-CN

5. Accept the Oracle standard terms and restrictions and then click Continue.

6. Select the following packages and then click Download:

• Oracle Communications Cloud Native Helm Chart 15.0.x.0.0

• Oracle Communications Elastic Charging Engine Cloud Native Deployment Option
Helm Chart 15.0.x.0.0

• Oracle Communications Cloud Native Operator Job Helm Chart 15.0.x.0.0

• Oracle Communications Cloud Native Database Initializer Helm Chart 15.0.x.0.0

• Oracle Communications Cloud Native Docker Build Files 15.0.x.0.0

• Oracle Communications Elastic Charging Engine Cloud Native Docker Files 15.0.x.0.0

• Oracle Communications Cloud Native Pricing Design Center 15.0.x.0.0

Each package is downloaded to a separate Zip file.

7. Extract the following Helm chart and Docker archive files from each Zip file:

• BRM Helm Chart: oc-cn-helm-chart-15.0.x.0.0.tgz

• ECE Helm Chart: oc-cn-ece-helm-chart-15.0.x.0.0.tgz

• Operator Job Helm Chart: oc-cn-op-job-helm-chart-15.0.x.0.0.tgz

• Database Initializer Helm Chart: oc-cn-init-db-helm-chart-15.0.x.0.0.tgz

• BRM Dockerfiles: oc-cn-docker-files-15.0.x.0.0.tgz

• ECE Dockerfiles: oc-cn-ece-docker-files-15.0.x.0.0.tgz

8. Extract the Helm charts and Dockerfiles from the archive files by running these commands:

tar xvzf oc-cn-helm-chart-15.0.x.0.0.tgz

tar xvzf oc-cn-ece-helm-chart-15.0.x.0.0.tgz

tar xvzf oc-cn-op-job-helm-chart-15.0.x.0.0.tgz

tar xvzf oc-cn-init-db-helm-chart-15.0.x.0.0.tgz

tar xvzf oc-cn-docker-files-15.0.x.0.0.tgz

tar xvzf oc-cn-ece-docker-files-15.0.x.0.0.tgz

Table 5-1 lists the files and directories extracted from the archive files.

Chapter 5
Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files

5-2

Table 5-1 Extracted Files

Archive File Extracted Directories

oc-cn-helm-chart-15.0.x.0.0.tgz oc-cn-helm-chart directory: Contains the BRM Helm chart
files.

sample_configurations directory: This directory contains
the default configuration XML files, such as
bus_params_AR.xml and pin_config_export_gl.xml.

oc-cn-ece-helm-chart-15.0.x.0.0.tgz oc-cn-ece-helm-chart directory: Contains the ECE Helm
chart files.

oc-cn-op-job-helm-
chart-15.0.x.0.0.tgz

oc-cn-op-job-helm-chart directory: Contains the
WebLogic Operator Job Helm chart files.

oc-cn-init-db-helm-
chart-15.0.x.0.0.tgz

oc-cn-init-db-helm-chart directory: Contains the
Database Initializer Helm chart files.

oc-cn-docker-files-15.0.x.0.0.tgz oc-cn-docker-files directory: Contains the Dockerfiles for
BRM, PDC, PDC REST Services Manager, Pipeline
Configuration Center, Business Operations Center, and
Billing Care.

oc-cn-ece-docker-files-15.0.x.0.0.tgz docker_files directory: Contains the Dockerfiles for ECE.

Pulling BRM Images from the Oracle Container Registry
To pull BRM cloud native images, such as the Connection Manager (CM) image and the Data
Manager (DM) image, from the Oracle Container Registry, do the following:

1. In a web browser, go to https://container-registry.oracle.com.

2. Sign in to the Oracle Container Registry using an Oracle account.

Note:

To pull images for licensed software on the Oracle Container Registry, you must
have an Oracle account. You can create an Oracle account at https://
profile.oracle.com/myprofile/account/create-account.jspx.

3. Select the Oracle Communications Cloud Scale Monetization container.

The Oracle Communications Cloud Scale Monetization page appears.

4. Select one of the repository names from Table 5-2.

The repository page appears.

5. Accept the Oracle terms and restrictions by:

a. (For non-CPU images) Selecting your desired language.

b. Clicking Continue.

c. Scrolling to the bottom of the terms and restrictions pages and clicking Accept.

If successful, you will see something similar to this:

Chapter 5
Pulling BRM Images from the Oracle Container Registry

5-3

https://container-registry.oracle.com
https://profile.oracle.com/myprofile/account/create-account.jspx
https://profile.oracle.com/myprofile/account/create-account.jspx

6. On your host system, log in to the Oracle Container Registry using the Podman command-
line interface (CLI):

podman login container-registry.oracle.com
7. When prompted for a user name and password, enter your Oracle credentials.

8. Pull the BRM cloud native image from the registry:

podman pull container-registry.oracle.com/communications_monetization/imageName:tag

where:

• imageName is the name of a software image listed in Table 5-2.

• tag is the tag name for the BRM cloud native image, such as 15.0.x.0.0.

For example, to pull the CM cloud native image from the registry:

podman pull container-registry.oracle.com/communications_monetization/cm:15.0.x.0.0

The image is pulled from the Oracle Container Registry and stored locally, where it is ready
to be used to deploy containers.

9. Confirm the images have been pulled from the Oracle Container Registry:

podman images

If successful, you will see something similar to this:

REPOSITORY TAG
IMAGE ID CREATED
container-registry.oracle.com/communications_monetization/cm 15.0.x.0.0
133dd3580b87 2 seconds ago
container-registry.oracle.com/communications_monetization/dm_kafka 15.0.x.0.0
136dd3593b47 3 seconds ago

10. Log out of the registry to prevent unauthorized access and to remove any record of sign-in
credentials that Podman might store for future operations:

podman logout container-registry.oracle.com
Table 5-2 lists the image names for the BRM cloud native components.

Table 5-2 BRM Cloud Native Images

Component Name Image Name

Batch Controller batch_controller

Batch Pipeline batch_pipeline

Chapter 5
Pulling BRM Images from the Oracle Container Registry

5-4

Table 5-2 (Cont.) BRM Cloud Native Images

Component Name Image Name

Billing Care billingcare

Billing Care REST API bcws

BRM Applications brm_apps

BRM REST Services Manager brm-rest-services-manager

BRM SDK brm_sdk

Business Operations Center boc

Connection Manager cm

Database Initializer init_db

Database Upgrade upgrade

Elastic Charging Engine oc-cn-ece

Email Data Manager dm_email

Enterprise Application Integration Data Manager dm_eai

Enterprise Application Integration Java Server eai_js

Invoice Data Manager dm_invoice

Invoice Formatter formatter

Kafka Data Manager dm_kafka

LDAP Data Manager dm_ldap

Oracle Data Manager dm_oracle

Paymentech Data Manager dm_fusa

Paymentech Simulator answer

Performance Libraries perflib

Pipeline Configuration Center pcc

Pricing Design Center pdc

Pricing Design Center REST Services Manager pdcrsm

Provisioning Data Manager dm_prov_telco

Rated Event Loader rel_daemon

Rated Event Manager rem

Real-Time Pipeline realtimepipe

Roaming Manager roam_pipeline

Vertex Data Manager dm_vertex

Webhook webhook

Web Services Manager brm_wsm_wls
brm_wsm_wl_init

Chapter 5
Pulling BRM Images from the Oracle Container Registry

5-5

Downloading BRM Images from Oracle Software Delivery
Website

To download BRM cloud native images, such as the Billing Care image, from the Oracle
Software Delivery website:

1. Go to https://edelivery.oracle.com.

2. Sign in to the Oracle Software Delivery website using an Oracle account.

3. Search for and select Oracle Communications Billing and Revenue Management
Cloud Native Deployment Option 15.0.x.0.0 and then click Continue.

4. Select the following and then click Continue:

• Oracle Communications Billing and Revenue Management Cloud Native Deployment
Option 15.0.x.0.0-CN

• Oracle Communications Pricing Design Center Cloud Native Deployment Option
15.0.x.0.0-CN

• Oracle Communications Elastic Charging Engine Cloud Native Deployment Option
15.0.x.0.0-CN

5. Accept the Oracle standard terms and restrictions and then click Continue.

6. Select the packages listed in Table 5-3 and then click Download.

Each package is downloaded to a separate Zip file.

7. Extract the package files listed in Table 5-3 from each Zip file.

Table 5-3 BRM Cloud Native Packages and Package Files

BRM Package Name Package File Name

Oracle Communications Cloud Native Batch Controller oc-cn-brm-batch-
controller-15.0.x.0.0.tar

Oracle Communications Cloud Native Batch Pipeline oc-cn-brm-batch-
pipeline-15.0.x.0.0.tar

Oracle Communications Cloud Native Billing Care oc-cn-billingcare-15.0.x.0.0.tar

Oracle Communications Cloud Native Billing Care REST
API

oc-cn-bcws-15.0.x.0.0.tar

Oracle Communications Cloud Native BRM Applications oc-cn-brm-apps-15.0.x.0.0.tar

Oracle Communications Cloud Native BRM REST
Services Manager

oc-cn-brm-rest-services-
manager-15.0.x.0.0.tar

Oracle Communications Cloud Native BRM SDK oc-cn-brm-sdk-15.0.x.0.0.tar

Oracle Communications Cloud Native Business Operations
Center

oc-cn-boc-15.0.x.0.0.tar

Oracle Communications Cloud Native Connection
Manager

oc-cn-brm-cm-15.0.x.0.0.tar

Oracle Communications Cloud Native Database Upgrade oc-cn-brm-upgrade-15.0.x.0.0.tar

Oracle Communications Cloud Native Elastic Charging
Engine Cloud Native Deployment Option

oc-cn-ece-15.0.x.0.0.tar

Oracle Communications Cloud Native Email Data Manager oc-cn-brm-dm-email-15.0.x.0.0.tar

Chapter 5
Downloading BRM Images from Oracle Software Delivery Website

5-6

https://edelivery.oracle.com

Table 5-3 (Cont.) BRM Cloud Native Packages and Package Files

BRM Package Name Package File Name

Oracle Communications Cloud Native Enterprise
Application Integration Data Manager

oc-cn-brm-dm-eai-15.0.x.0.0.tar

Oracle Communications Cloud Native Enterprise
Application Integration Java Server

oc-cn-brm-eai-js-15.0.x.0.0.tar

Oracle Communications Cloud Native Fusa Data Manager oc-cn-brm-dm-fusa-15.0.x.0.0.tar

Oracle Communications Cloud Native Fusa Simulator oc-cn-brm-fusa-
simulator-15.0.x.0.0.tar

Oracle Communications Cloud Native Invoice Data
Manager

oc-cn-brm-dm-invoice-15.0.x.0.0.tar

Oracle Communications Cloud Native Invoice Formatter oc-cn-brm-invoice-
formatter-15.0.x.0.0.tar

Oracle Communications Cloud Native Kafka Data Manager oc-cn-brm-dm-kafka-15.0.x.0.0.tar

Oracle Communications Cloud Native LDAP Data Manager oc-cn-brm-dm-ldap-15.0.x.0.0.tar

Oracle Communications Cloud Native Oracle Database
Manager

oc-cn-brm-dm-oracle-15.0.x.0.0.tar

Oracle Communications Cloud Native Performance
Profiling Toolkit

oc-cn-brm-perflib-15.0.x.0.0.tar

Oracle Communications Cloud Native Pipeline
Configuration Center

oc-cn-pcc-15.0.x.0.0.tar

Oracle Communications Cloud Native Pricing Design
Center

oc-cn-pdc-15.0.x.0.0.tar

oc-cn-pdc-rsm-15.0.x.0.0.tar

oc-cn-pdc-rsm-jars-15.0.x.0.0.tar.gz

Oracle Communications Cloud Native Provisioning Data
Manager

oc-cn-brm-dm-prov-
telco-15.0.x.0.0.tar

Oracle Communications Cloud Native Rated Event Loader oc-cn-brm-rel-15.0.x.0.0.tar

Oracle Communications Cloud Native Rated Event
Manager

oc-cn-brm-rem-15.0.x.0.0.tar

Oracle Communications Cloud Native Real-Time Pipeline oc-cn-brm-realtime-
pipeline-15.0.x.0.0.tar

Oracle Communications Cloud Native Roaming Manager oc-cn-brm-roam-
pipeline-15.0.x.0.0.tar

Oracle Communications Cloud Native Vertex Data
Manager

oc-cn-brm-dm-vertex-15.0.x.0.0.tar

Oracle Communications Cloud Native Webhook oc-cn-brm-webhook-15.0.x.0.0.tar

Oracle Communications Cloud Native Web Services
Manager

oc-cn-brm-wsm-wls-15.0.x.0.0.tar

oc-cn-brm-wsm-wl-init-15.0.x.0.0.tar

8. Load each package file as an image into the Podman system using the following
command:

podman load --input fileName

where fileName is the package file name listed in Table 5-3.

For example, to load the Kafka DM image in the Podman system, enter this command:

podman load --input oc-cn-brm-dm-kafka-15.0.x.0.0.tar

Chapter 5
Downloading BRM Images from Oracle Software Delivery Website

5-7

If you use an internal registry to access images from different Kubernetes nodes, push the
images from your local system to the registry server. For example, if the registry is identified by
RepoHost:RepoPort, you'd push the Kafka DM image to the registry using the Podman CLI like
this:

1. Tag the Kafka DM image with the registry server:

podman tag dm-kafka:15.0.x.0.0 RepoHost:RepoPort/dm-kafka:15.0.x.0.0
2. Push the Kafka DM image to the registry server:

podman push RepoHost:RepoPort/dm-kafka:15.0.x.0.0

Pulling WebLogic Images for PDC, Billing Care, Billing Care
REST API, and Business Operations Center

If you use PDC, Billing Care, Billing Care REST API, or Business Operations Center, pull the
Oracle WebLogic image from the Oracle Container Registry into your private repository.

To load the Oracle WebLogic image into your private repository:

1. In a web browser, go to https://container-registry.oracle.com.

2. Sign in to the Oracle Container Registry using an Oracle account.

Note:

To pull images for licensed software on the Oracle Container Registry, you must
have an Oracle account. You can create an Oracle account at https://
profile.oracle.com/myprofile/account/create-account.jspx.

3. Click the Middleware container, and then click the fmw-infrastructure_cpu CPU
repository.

The repository page appears.

4. Accept the Oracle terms and restrictions by clicking Continue and, on the next page,
clicking Accept.

If successful, you will see something similar to this:

Chapter 5
Pulling WebLogic Images for PDC, Billing Care, Billing Care REST API, and Business Operations Center

5-8

https://container-registry.oracle.com
https://profile.oracle.com/myprofile/account/create-account.jspx
https://profile.oracle.com/myprofile/account/create-account.jspx

5. On the host system, log in to the Oracle Container Registry using the Podman CLI:

podman login container-registry.oracle.com
6. When prompted for a user name and password, enter your Oracle credentials.

7. Pull the WebLogic image into your local system using the following command:

podman pull container-registry.oracle.com/middleware/fmw-infrastructure_cpu:12.2.1.4-
jdk8-ol8

8. Tag the image with the registry server using the following command, where RepoHost and
RepoPort are the host and port of your private repository:

podman tag container-registry.oracle.com/middleware/fmw-infrastructure_cpu:12.2.1.4-
jdk8-ol8 RepoHost:RepoPort/middleware/fmw-infrastructure_cpu:12.2.1.x-jdk8-ol8

9. Push the image to the registry server using the following command, where RepoHost and
RepoPort are the host and port of your private repository:

podman push RepoHost:RepoPort/middleware/fmw-infrastructure_cpu:12.2.1.4-jdk8-ol8

Chapter 5
Pulling WebLogic Images for PDC, Billing Care, Billing Care REST API, and Business Operations Center

5-9

Part III
Configuring and Deploying BRM Cloud Native

This part provides information about configuring and deploying Oracle Communications Billing
and Revenue Management (BRM) in your cloud native environment. It contains the following
chapters:

• Deploying the BRM Database Schema

• Configuring BRM Server, PDC, and PCC Services

• Configuring REST Services

• Configuring the Billing Care, Billing Care REST API, and Business Operations Center
Services

• Configuring ECE Services

• Deploying BRM Cloud Native Services

• Deploying into Oracle Cloud Infrastructure

• Uninstalling Your BRM Cloud Native Deployment

6
Deploying the BRM Database Schema

Learn how to deploy a new or existing database schema in the Oracle Communications Billing
and Revenue Management (BRM) cloud native environment.

Topics in this document:

• Deploying BRM with a New Database Schema

• Deploying BRM with an Existing Schema

Deploying BRM with a New Database Schema
To deploy BRM with a new BRM and pipeline database schema:

1. If you have not already done so, create a BRM database and schema users for the BRM
Server and pipeline. See "Creating and Configuring Your BRM Database".

2. Create a new Kubernetes namespace for oc-cn-init-db-helm-chart:

kubectl create namespace InitDbNameSpace
3. Create an override-values.yaml file for oc-cn-init-db-helm-chart, and add keys from

Table 6-1.

Note:

This documentation uses the override-values.yaml file name for ease of use,
but you can name the file whatever you want.

4. If you want to deploy the BRM cloud native schema into a multischema database, do the
following in your override-values.yaml file:

a. Set the ocbrm.db.skipPrimary key to false.

b. For each secondary schema in your system, add an
ocbrm.db.multiSchemas.secondaryN block, where N is 1 for the first secondary
schema, 2 for the next secondary schema, and so on.

c. In each ocbrm.db.multiSchemas.secondaryN block, set the following keys:

Note:

If the host, port, and service keys are not defined, the secondary schema
uses the same host name, service, and port number as the primary schema.

• deploy: Set this to true to deploy this secondary schema.

• host: Set this to the host name of the secondary schema. This key is optional.

• port: Set this to the port number for the secondary schema. This key is optional.

6-1

• service: Set this to the service name for the secondary schema. This key is
optional.

• schemauser: Set this to the schema user name.

• schemapass: Set this to the schema password.

• schematablespace: Set this to the name of the schema tablespace, such as
pin01.

• indextablespace: Set this to the name of the index tablespace, such as pinx01.

d. Enable account migration between your schemas by setting the ocbrm.isAmt key to
true.

See "Understanding Account Migration" in BRM Moving Accounts Between Database
Schemas for more information.

This shows example entries for a BRM database with one primary schema, two secondary
schemas, and account migration enabled:

ocbrm:
 isAmt: true
ocbrm:
 db:
 host: hostname
 port: 12345
 service: serviceName
 schemauser: pin01
 schemapass: password
 schematablespace: pin01
 indextablespace: pinx01
 skipPrimary: false
 multiSchemas:
 secondary1:
 deploy: true
 schemauser: pin02
 schemapass: password
 schematablespace: pin02
 indextablespace: pinx02
 secondary2:
 deploy: true
 schemauser: pin03
 schemapass: password
 schematablespace: pin03
 indextablespace: pinx03

5. To commit seed data to the BRM database, modify the init-db container
(configmap_create_obj_2.yaml) to add the corresponding PCM_OP_CREATE_OBJ
input flist. For example:

<PCM_OP $PIN_OPNAME=$PIN_CONF_INIT_OPNAME; $PIN_OPFLAGS=0>
0 PIN_FLD_POID POID [0] $DB_NUMBER /config/recharge_card_type 0 0
0 PIN_FLD_NAME STR [0] "-"
0 PIN_FLD_PROGRAM_NAME STR [0] "load_pin_recharge_card_type"
0 PIN_FLD_HOSTNAME STR [0] "-"
0 PIN_FLD_VERSION STR [0] "1"
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0
</PCM_OP>

6. Initialize the BRM database schema by running this command from the helmcharts
directory:

helm install InitDbReleaseName oc-cn-init-db-helm-chart --namespace InitDbNameSpace
--values OverrideValuesFile

Chapter 6
Deploying BRM with a New Database Schema

6-2

where:

• InitDbReleaseName is the release name for oc-cn-init-db-helm-chart and is used to
track this installation instance.

• InitDbNameSpace is the namespace for oc-cn-init-db-helm-chart.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the values.yaml file for oc-cn-init-db-helm-chart.

The init-db Helm chart creates an init-db pod and job for each schema.

7. After the init-db Helm chart deploys successfully, delete the Helm chart from your
namespace by running this command from the helmcharts directory:

helm delete InitDbReleaseName -n InitDbNameSpace
Table 6-1 lists the keys that directly impact the BRM database schema and pipeline database
schema. Add these keys to your override-values.yaml file with the same path hierarchy.

Caution:

Some keys hold sensitive data. They must be handled carefully with controlled
access to the file containing its values. Encode all of these values in Base64. See
"Secrets" in Kubernetes Concepts.

Table 6-1 oc-cn-init-db-helm-chart Keys

Key Purpose

imageRepository The registry server where you have pushed images. Typically, in the
format “RepoHost:RepoPort/”.

The value is added as a prefix to all image names when you install or
upgrade Helm charts.

This key is empty by default.

imagePullSecrets The name of the Secret containing credentials for accessing images
from your private image server.

This is added to each pod to give it permission to pull the image from
your private registry server. See "Creating Secrets for Docker Registry
Authorization" for more information.

uniPass Use this key to apply a uniform password to all BRM cloud native
services, including:

• Database Schemas
• BRM Root Login
• Oracle Wallets
• WebLogic User
To override this password for a specific service, specify a different
password in the service's key.

Note: Use this key for test or demonstration systems only.

db.sslMode The type of SSL connection required for connecting to the database:
TWO_WAY, ONE_WAY, or NO. The default is ONE_WAY.

ocbrm.imagePullPolicy Specify when to pull images:

• IfNotPresent: Pulls an image only if one is not present locally. This
is the default.

• Always: Always pulls an image.

Chapter 6
Deploying BRM with a New Database Schema

6-3

https://kubernetes.io/docs/concepts/configuration/secret/

Table 6-1 (Cont.) oc-cn-init-db-helm-chart Keys

Key Purpose

ocbrm.isAmt Specify whether account migration is enabled in your BRM multischema
database:

• True: Account migration is enabled.
• False: Account migration is disabled. This is the default.

ocbrm.isIPV6Enabled Specify whether IPV6 is enabled in your Kubernetes environment:

• True: IPV6 is enabled.
• False: IPV6 is disabled. This is the default.

ocbrm.ece_deployed Specify whether to deploy ECE in your BRM cloud native environment:

• True: ECE configurations will be loaded into your environment. This
is the default.

• False: ECE configurations will not be loaded into your environment.

ocbrm.pdc_deployed Specify whether to deploy PDC in your BRM cloud native environment:

• True: PDC configurations will be loaded into your environment.
• False: PDC configurations will not be loaded into your environment.

This is the default.

ocbrm.existing_rootkey_wa
llet

Specify whether you are using an existing BRM database or an existing
root key wallet:

• True: Uses your existing BRM database or root key wallet.
• False: Performs a fresh database initialization. This is the default.

When set to false, the init-db Helm chart runs lds-config-job to
load default strings into the BRM database during deployment.
Manually delete lds-config-job after BRM deploys successfully.

ocbrm.is_upgrade Specify whether to upgrade the existing database schema:

• True: Upgrades your existing database schema.
• False: Deploys a new BRM database schema. This is the default.

ocbrm.isSSLEnabled Specify whether SSL is enabled in the BRM database. The default is
true.

ocbrm.cmSSLTermination Specify whether to disable SSL between the CM and DM/EM.

• true: The CM is the SSL endpoint. Set it to true when using a
custom TLS certificate for the CM.
When set to true, also set the isSSLEnabled key to true.

• false: SSL is enabled across all components, from client to CM to
DMs and EMs. This is the default.

ocbrm.customSSLWallet Whether to use a custom TLS certificate for the CM.

• true: A custom TLS certificate is used for the CM.

When set to true, also set the cmSSLTermination key to true and
move the Oracle wallet (brm_custom_wallet) containing the custom
TLS certificate to the top level of the Helm chart.

• false: The default TLS certificate is used for the CM. This is the
default.

ocbrm.root_key_rotate Whether to rotate the BRM root key. The default is false.

For more information, see "Rotating the BRM Root Key" in BRM Cloud
Native System Administrator's Guide.

ocbrm.brm_root_pass The BRM root password. The value can be per user.

You must generate a Secret. Add this key to your override-values.yaml
file with the same path hierarchy.

ocbrm.rotate_brm_role_pas
swords

Whether to rotate the BRM role passwords. The default is false.

Chapter 6
Deploying BRM with a New Database Schema

6-4

Table 6-1 (Cont.) oc-cn-init-db-helm-chart Keys

Key Purpose

ocbrm.brm_role_pass.* The initial passwords for each BRM role. The roles grant users the
permission to access different BRM components, such as Customer
Center or Pipeline Configuration Center (PCC).

Note: You must set all of these passwords when the unipass key is not
set.

You set passwords for the following roles:

• acct_recv.0.0.0.1: Accounts receivable
• bc_client.0.0.0.1: Billing Care
• bill_inv_pymt_sub.0.0.0.1: Invoice payments
• billing.0.0.0.1: Billing
• boc_client.0.0.0.1: Business Operations Center
• collections.0.0.0.1: Collections
• crypt_utils.0.0.0.1: Encryption utilities
• cust_center.0.0.0.1: Customer Center
• cust_mgnt.0.0.0.1: Customer management
• invoicing.0.0.0.1: Invoicing
• java_client.0.0.0.1: Java clients
• load_utils.0.0.0.1: Load utilities
• payments.0.0.0.1: Payments
• pcc_client.0.0.0.1: PCC
• rerating.0.0.0.1: Rerating
• rsm.0.0.0.1: BRM REST Services Manager
• super_user.0.0.0.1: Super User
• ui_client.0.0.0.1: All thick clients
• ece.0.0.0.1: ECE
Note: After you deploy or upgrade the database schema, you should
rotate the role passwords regularly to improve security. To do so, see
"Rotating BRM Role Passwords" in BRM Cloud Native System
Administrator's Guide.

ocbrm.wallet.* Specify the passwords for these wallets:

• client: The password for the client wallet.
• server: The password for the server wallet.
• root: The password for the root wallet.
You must generate Secrets for these keys.

Chapter 6
Deploying BRM with a New Database Schema

6-5

Table 6-1 (Cont.) oc-cn-init-db-helm-chart Keys

Key Purpose

ocbrm.db.* The details for connecting to a shared database. The keys in this section
take precedence over other database connection keys.

Add these keys only if your system uses a shared database:

• host: The host name of the machine on which the BRM database is
configured.

• port: The port on which the BRM database is configured.
• service: The BRM database service name.
• sslMode: The type of SSL connection required for connecting to

the database: TWO_WAY, ONE_WAY, or NO. The default is
ONE_WAY.

• walletPassword: The password for accessing the database
certificates from the TrustStore and KeyStore.

• walletType: The type of file specified as the TrustStore or KeyStore
for database SSL connections: SSO or pkcs12.

• enable_partition: Whether partitioning is enabled in your BRM
database: Yes or No. The default is Yes.

• storage_model: The size of the BRM database tablespaces: Test
(less than 700 MB), Small (less than 1.5 GB), Medium (less than
30 GB), or Large (greater than 30 GB).

• schemauser: The user name for the primary BRM schema. The
user name should be pre-created with all of the required grants.

• schemapass: The password for the database schema.
• schematablespace: The name of the schema tablespace.
• indextablespace: The name of the index tablespace.
• nls_lang: The language, territory, and character set. Set this to

American_America.characterset, where characterset is either
UTF8 or AL32UTF8.
Note: You must use American_America as the language and
territory, regardless of your locale.

• pipelineschemauser: The BRM pipeline schema user name, which
should be pre-created with all of the required grants.

• pipelineschemapass: The BRM pipeline schema password. You
must generate a Secret. Add this key to your override-values.yaml
file with the same path hierarchy.

• pipelineschematablespace: The name of the tablespace for the
BRM pipeline schema. This field is case-sensitive.

• pipelineindextablespace: The name of the index tablespace for
the BRM pipeline schema. This field is case-sensitive.

• skipPrimary: Whether to skip the deployment of the primary
schema: False (deploy the primary schema) or True (do not deploy
the primary schema).
Set skipPrimary to true only if you are adding a schema to an
existing BRM multischema system. See "Adding Schemas to a
Multischema System" in BRM Cloud Native System Administrator's
Guide.

Chapter 6
Deploying BRM with a New Database Schema

6-6

Table 6-1 (Cont.) oc-cn-init-db-helm-chart Keys

Key Purpose

ocbrm.db.multiSchemas.se
condaryN

The details for connecting to your secondary schemas, where N is 1 for
the first secondary schema, 2 for the next secondary schema, and so
on.

Add this block only if your BRM database contains multiple schemas.
This section will be commented out by default:

multiSchemas:
 secondary1:
 deploy: true
 host: localhost
 port: 1521
 service: pindb
 schemauser:
 schemapass:
 schematablespace:
 indextablespace:

Deploying BRM with an Existing Schema
To deploy BRM with an existing schema and with default Oracle images:

1. Copy the root-key wallet files from the $BRM_WALLET/client directory to the oc-cn-helm-
chart/existing_wallet directory.

2. In your override-values.yaml file for oc-cn-helm-chart, set the
ocbrm.existing_rootkey_wallet key to true.

3. Deploy oc-cn-helm-chart.

Alternatively, you could deploy BRM with an existing schema by doing this:

1. Create images for each BRM Server component in the installed BRM staging area (using
the same staging area that initialized the database).

2. In your override-values.yaml file for oc-cn-helm-chart, update the keys with the existing
schema credentials and also set the following keys:

• ocbrm.existing_rootkey_wallet: Set this to true.

• ocbrm.use_oracle_brm_images: Set this to false.

• ocbrm.db.queuename: Set this to match the queue name in the existing database.

• obcrm.db.roamqueuename: If you want a database queue for Roaming Pipeline,
create another queue in the Oracle database by following the instructions in "Creating
Additional Queues for Multischema BRM Systems" in BRM Installation Guide. Then,
set the roamqueuename key to the name of the queue you created.

3. Deploy oc-cn-helm-chart.

Chapter 6
Deploying BRM with an Existing Schema

6-7

7
Configuring BRM Server, PDC, and PCC
Services

Learn how to configure the Oracle Communications Billing and Revenue Management (BRM)
server, Pricing Design Center (PDC), and Pipeline Configuration Center (PCC) in your cloud
native environment.

Topics in this document:

• About Configuring BRM Cloud Native Services

• Creating Secrets for Docker Registry Authorization

• Configuring Global Values

• Specifying the BRM Services to Deploy

• Configuring the BRM Server

• Configuring BRM for a Multischema Database

• Configuring Pricing Design Center

• Configuring Pipeline Configuration Center

About Configuring BRM Cloud Native Services
You configure and deploy BRM cloud native services, such as BRM, PDC, and PCC, by using
the BRM Helm chart (oc-cn-helm-chart). YAML descriptors in the oc-cn-helm-chart/
templates directory use the oc-cn-helm-chart/values.yaml file for most of the values. The
values.yaml file itself includes comments that describe each key. You can override the values
by creating an override-values.yaml file.

Oracle recommends that you read the values.yaml file at least once to become familiar with all
of the options available.

Creating Secrets for Docker Registry Authorization
You can automatically pull images from your private container registry by creating an
ImagePullSecrets, which contains a list of authorization tokens (or Secrets) for accessing a
private container registry. You then add references to the ImagePullSecrets in your BRM
Helm chart's override-values.yaml file. This allows pods to submit the Secret to the private
container registry whenever they want to pull images.

Automatically pulling images from a private container registry involves these high-level steps:

1. Create a Secret outside of the Helm chart by entering this command:

kubectl create secret docker-registry SecretName --docker-server=RegistryServer --
docker-username=UserName --docker-password=Password --namespace NameSpace

where:

• SecretName is the name of your Kubernetes Secret

7-1

• RegistryServer is your private container registry's FQDN (repoHost:repoPort)

• UserName and Password are your private container registry's user name and
password

• NameSpace is the namespace you will use for installing BRM Helm charts

For example:

kubectl create secret docker-registry cgbu-docker-registry --docker-
server=mydockerimages.com:2660/ --docker-username=xyz --docker-password=password --
namespace oms

2. Add the imagePullSecrets key to your override-values.yaml file for oc-cn-helm-chart:

imagePullSecrets:
 -name "SecretName1"
 -name "SecretName2"

3. Add the ocbrm.imageRepository key to your override-values.yaml file:

imageRepository: "RegistryServer"
4. Deploy oc-cn-helm-chart.

Configuring Global Values
Table 7-1 lists the keys that apply to all BRM components. To set or change the values, add
them to your override_values.yaml file for oc-cn-helm-chart.

Table 7-1 Global Keys in Values.yaml File

Key Description

imageRepository The registry server where you have pushed images. Typically, in the
format “RepoHost:RepoPort/”.

The value is added as a prefix to all image names when you install or
upgrade Helm charts.

This key is empty by default.

imagePullSecrets The name of the Secret that contains credentials for accessing images
from your private image server.

This is added to each pod to give it permission to pull the image from
your private registry server. See "Creating Secrets for Docker Registry
Authorization" for more information.

This key is empty by default.

uniPass Use this key to apply a uniform password to all BRM cloud native
services, including:

• Database Schemas
• BRM Root Login
• Oracle Wallets
• WebLogic User
To override this password for a specific service, specify a different
password in the service's key.

Note: Use this key for test or demonstration systems only.

Chapter 7
Configuring Global Values

7-2

Table 7-1 (Cont.) Global Keys in Values.yaml File

Key Description

db.* The details for connecting to a shared database. The keys in this section
take precedence over other database connection keys.

Add these keys only if your system uses a shared database:

• sslMode: The type of SSL connection required for connecting to
the database:

– TWO_WAY: Two-way SSL authentication is required. In this
case, both the client and server must authenticate each others
identity.

– ONE_WAY: One-way SSL authentication is required. In this
case, the client must authenticate the server's identity. This is
the default.

– NO: SSL authentication is not required.
• host: The host name or IP address of the database server.
• port: The port number of the database server.
• user: The user name of the database administrator.
• password: The password of the database system administrator.
• serviceName: The service name that identifies the database.
• role: The role assigned to the DBA user.
• walletPassword: The password for accessing the certificates from

the TrustStore and KeyStore. This is required if sslMode is set to
ONE_WAY or TWO_WAY.

• walletType: The type of file specified as the TrustStore or KeyStore
for SSL connections: SSO or pkcs12.

security.java.overrideSecuri
tyProperties

Whether to override the default Java security property (true) or no
(false). The default is true.

monitoring.prometheus.jmx
_exporter.enable

Whether to enable the JMX exporter for Prometheus (true) or not
(false). The default is false.

See "Monitoring BRM Cloud Native Services" in BRM Cloud Native
System Administrator's Guide for more information.

monitoring.prometheus.ope
rator.*

The details for monitoring BRM cloud native services using Prometheus:

• enable: Whether to use Prometheus Operator (true) or standalone
Prometheus (false). The default is false.

• namespace: The namespace in which Prometheus Operator is
deployed. The default is prometheus.

• release: The release name for Prometheus Operator. The default is
prometheus.

See "Monitoring BRM Cloud Native Services" in BRM Cloud Native
System Administrator's Guide for more information.

Specifying the BRM Services to Deploy
Some BRM cloud native services are enabled by default, while others are disabled. Ensure
that your override-values.yaml file is set up to deploy the services that you want to include in
your BRM cloud native environment.

BRM Cloud Native Services Enabled by Default

Table 7-2 lists the BRM cloud native services that are deployed by default. To exclude them
from your deployment, set the keys to false in your override-values.yaml file for oc-cn-helm-
chart.

Chapter 7
Specifying the BRM Services to Deploy

7-3

Table 7-2 BRM Services Enabled By Default

BRM Service override-values.yaml Key

Batch Pipeline ocbrm.batchpipe.isEnabled

BRM REST Services Manager ocrsm.rsm.isEnabled

Connection Manager ocbrm.cm.isEnabled

Oracle Data Manager ocbrm.dm_oracle.isEnabled

Pipeline Configuration Center ocpcc.pcc.isEnabled

Pricing Design Center ocpdc.isEnabled

Rated Event Loader ocbrm.rel_daemon.isEnabled

Realtime Pipeline ocbrm.realtimepipe.isEnabled

BRM Cloud Native Services Disabled By Default

Table 7-3 lists the BRM cloud native services that are not deployed by default. To include them
in your BRM cloud native deployment, set the keys to true in your override-values.yaml file
for oc-cn-helm-chart.

Table 7-3 BRM Services Disabled By Default

BRM Service override-values.yaml Key

Batch Controller ocbrm.batch_controller.isEnabled

BRM Apps Jobs ocbrm.brm_apps.job.isEnabled

Email Data Manager ocbrm.dm_email.isEnabled

Enterprise Application Integration Data Manager ocbrm.dm_eai.isEnabled

Invoicing Formatter ocbrm.formatter.isEnabled

Invoicing Data Manager ocbrm.dm_invoice.isEnabled

Kafka Data Manager ocbrm.dm_kafka.isEnabled

LDAP Data Manager ocbrm.dm_ldap.isEnabled

Paymentech Data Manager ocbrm.dm_fusa.isEnabled

PDC REST Services Manager ocpdcrsm.isEnabled

Provisioning Data Manager ocbrm.dm_prov_telco.isEnabled

RE Loader Daemon Job ocbrm.rel_daemon.job.isEnabled

RE Loader Manager Job ocbrm.rel_manager.job.isEnabled

Rated Event Manager ocbrm.rem.isEnabled

Roaming Pipeline ocbrm.roampipe.isEnabled

Vertex Data Manager ocbrm.dm_vertex.isEnabled

Webhook webhook.isEnabled

Web Services Manager with WebLogic ocbrm.wsm.deployment.weblogic.isEn
abled

Web Services Manager with TomCat ocbrm.wsm.deployment.tomcat.isEna
bled

Chapter 7
Specifying the BRM Services to Deploy

7-4

Configuring the BRM Server
To configure the BRM server to run in your cloud native environment, you override the BRM
server-specific keys in the values.yaml file for oc-cn-helm-chart. Table 7-4 lists the keys that
directly impact BRM Server pods. Add these keys to your override-values.yaml file with the
same path hierarchy.

Note:

You can optionally deploy a simple demonstration version of BRM cloud native by
using the sample override_values.yaml file that is packaged with oc-cn-helm-
chart. This sample override file contains the bare minimum keys that you need to
update to create a simple BRM cloud native system with the following services
enabled by default: Account Synchronization DM, Batch Pipeline, CM, Oracle DM,
RE Loader, Realtime Pipeline, Billing Care, Billing Care REST API, Business
Operations Center, and PDC.

Table 7-4 BRM Server Keys

Key Path in
values.yaml File

Description

isAmt ocbrm Whether account migration is enabled in your BRM database
(true) or not (false). The default is false.

isIPV6Enabled ocbrm Whether IPV6 is enabled in your Kubernetes environment
(true) or not (false). The default is false.

ece_deployed ocbrm Whether ECE is going to be deployed in your BRM cloud
native environment (true) or not (false). The default is true.

pdc_deployed ocbrm Whether PDC is going to be deployed:

• true: Configuration data is not loaded into the BRM
database. Only mandatory configuration records are
loaded into the BRM database for starting the realtime
pipeline pod.

For the batch pipeline and roaming pipeline pods, you
must load the required configuration data using PDC
before deploying the pods.

• false: Configuration data is loaded into the BRM
database during deployment. This is the default.

use_oracle_brm_i
mages

ocbrm Whether to use the default BRM images (true) or not (false).
Set this to false if you are building custom images. The
default is true.

Chapter 7
Configuring the BRM Server

7-5

Table 7-4 (Cont.) BRM Server Keys

Key Path in
values.yaml File

Description

existing_rootkey_
wallet

ocbrm Whether you are deploying with an existing database or using
an existing root key wallet:

• true: You are deploying with an existing database or are
using an existing root key wallet.

• false: You are deploying with a new database and are
using a new root key wallet. This is the default.

When set to false, the BRM Helm chart runs lds-config-
job to load default strings into BRM during the
deployment process. Manually delete lds-config-job
after BRM is deployed successfully.

See "Rotating the BRM Root Key" in BRM Cloud Native
System Administrator's Guide for more information.

is_upgrade ocbrm Whether to upgrade the Helm chart (true) or not (false).

See "Upgrading Your BRM Cloud Native Services".

isSSLEnabled ocbrm For SSL-enabled deployment required in Infranet.properties.

cmSSLTerminatio
n

ocbrm Whether to make the CM the SSL endpoint for the BRM cloud
native deployment.

• true: The CM is the SSL endpoint. In this case, TLS can
be enabled only between BRM client applications and the
CM. TLS is disabled between CM and all downstream
components such as DMs and EMs. Communication
between external clients and the CM will still be
encrypted by TLS 1.2. This setting can increase
performance, because it eliminates the overhead needed
to handle TLS before processing the PCP packets.

When set to true, also set the isSSLEnabled key to
true.

• false: SSL is enabled across all components, from client
to CM to DMs and EMs. This is the default.

customSSLWallet ocbrm Whether to use a custom TLS certificate for the CM:

• true: A custom TLS certificate is used for the CM.

When set to true, also set the cmSSLTermination key to
true and move the Oracle wallet (brm_custom_wallet)
containing the custom TLS certificate to the top level of
the Helm chart.

• false: The default TLS certificate is used for the CM. This
is the default.

See "Using a Custom TLS Certificate" in BRM Cloud Native
System Administrator's Guide.

EnableSecurityCo
ntext

ocbrm Whether to enable a security context in the cluster (true) or
not (false). The default is false.

root_key_rotate ocbrm Whether to rotate the BRM root key (true) or not (false). The
default is false.

See "Rotating the BRM Root Key" in BRM Cloud Native
System Administrator's Guide.

brm_root_pass ocbrm The root password.

See "Rotating the BRM Root Password" in BRM Cloud Native
System Administrator's Guide.

Chapter 7
Configuring the BRM Server

7-6

Table 7-4 (Cont.) BRM Server Keys

Key Path in
values.yaml File

Description

rotate_password ocbrm Whether to rotate the BRM root password:

• true: The BRM root password is replaced with the one
specified in the new_brm_root_password key.

• false: The BRM root password is not changed. This is
the default.

See "Rotating the BRM Root Password" in BRM Cloud Native
System Administrator's Guide.

new_brm_root_pa
ssword

ocbrm The new BRM root password. Use this key only when
ocbrm.rotate_password is set to true.

See "Rotating the BRM Root Password" in BRM Cloud Native
System Administrator's Guide.

rotate_brm_role_
passwords

ocbrm Whether to rotate the BRM role passwords. The default is
false.
See "Rotating BRM Role Passwords" in BRM Cloud Native
System Administrator's Guide.

brm_role_pass.* ocbrm The passwords for each BRM role. The roles grant users the
permission to access different BRM components, such as
Customer Center or Pipeline Configuration Center (PCC).

Note: You must set all of these passwords when the unipass
key is not set.

You set passwords for the following roles:

• acct_recv.0.0.0.1: Accounts receivable
• bc_client.0.0.0.1: Billing Care
• bill_inv_pymt_sub.0.0.0.1: Invoice payments
• billing.0.0.0.1: Billing
• boc_client.0.0.0.1: Business Operations Center
• collections.0.0.0.1: Collections
• crypt_utils.0.0.0.1: Encryption utilities
• cust_center.0.0.0.1: Customer Center
• cust_mgnt.0.0.0.1: Customer management
• invoicing.0.0.0.1: Invoicing
• java_client.0.0.0.1: Java clients
• load_utils.0.0.0.1: Load utilities
• payments.0.0.0.1: Payments
• pcc_client.0.0.0.1: PCC
• rerating.0.0.0.1: Rerating
• rsm.0.0.0.1: BRM REST Services Manager
• super_user.0.0.0.1: Super User
• ui_client.0.0.0.1: All GUI clients
• ece.0.0.0.1: ECE
The passwords in this key must match the passwords in oc-
cn-init-db-helm-chart.

See "Rotating BRM Role Passwords" in BRM Cloud Native
System Administrator's Guide.

Chapter 7
Configuring the BRM Server

7-7

Table 7-4 (Cont.) BRM Server Keys

Key Path in
values.yaml File

Description

wallet.* ocbrm Specify the passwords for these wallets:

• client: The password for the client wallet.
• server: The password for the server wallet.
• root: The password for the root wallet.
You must generate Secrets for these keys.

deployment.* ocbrm.cm • enable_publish: Whether to publish events (1) or not
(0). The default is 0.

• enable_prefs_enrichment: Whether to enrich
notifications with subscriber preferences (true) or not
(false). The default is false.

• prefs_enabled_publisher_list: The list of publishers
with enrichment enabled. The default is 0.0.9.6.

• prefs_phone_no_location: Where to retrieve the phone
numbers for subscribers. The default is 0.

• provisioning_enabled: Whether to enable provisioning
of service orders (true) or not (false). The default is
false.

• simulate_agent: Whether to publish service orders (0)
or not (1). The default is 1.

enable ocbrm.cm.custom
_files

Whether to expose the oc-cn-helm-chart/cm_custom_files
directory as a ConfigMap (true) or not (false). The default is
false.

See "Exposing Directories as ConfigMaps" in BRM Cloud
Native System Administrator's Guide.

perflib_enabled ocbrm.component.
deployment

Whether to enable monitoring of the BRM service using the
performance library (Perlib), where component is cm or
dm_oracle.

• true: PerfLib is enabled for the specified component. The
PerfLib container will expose the metrics for the specified
component, which can be scraped by Prometheus.

• false: PerfLib is disabled for the specified component.
This is the default.

See "Monitoring BRM Cloud Native Services" in BRM Cloud
Native System Administrator's Guide.

isEnabled ocbrm.dm_kafka Whether to enable the Kafka DM (true) or not (false). The
default is false.

For more information about integrating BRM cloud native with
a Kafka Server, see "Integrating with Kafka Servers" in BRM
Cloud Native System Administrator's Guide.

Chapter 7
Configuring the BRM Server

7-8

Table 7-4 (Cont.) BRM Server Keys

Key Path in
values.yaml File

Description

deployment.* ocbrm.dm_kafka The details for configuring the Kafka DM.

• kafka_bootstrap_server_list: Set this to a comma-
separated list of addresses for the Kafka brokers in this
format: hostname1:port1, hostname2:port2.

• poolSize: Set this to the number of threads that can run
in the JS server to accept requests from the CM. Enter a
number from 1 through 2000. The default is 64.

• topicName: Set this to the name of the default Kafka
topic. The default name is BRM.

• topicFormat: Set this to the format of the payload that is
published to the default Kafka topic: XML or JSON.

• topicStyle: The style of XML payloads: ShortName,
CamelCase, NewShortName, or OC3CNotification.

• isSecurityEnabled: Whether to enable SSL between
Kafka DM and Kafka Server (true) or not (false).

• trustStorePassword: The TrustStore password in
Base64 format. Required only if SSL is enabled.

• keyStorePassword: The KeyStore password in Base64
format. Required only if SSL is enabled.

• keyPassword: The password of a key in the KeyStore in
Base64 format. Required only if SSL is enabled.

• password: The password in Base64 format. Required
only if SSL is enabled.

For more information about integrating BRM cloud native with
a Kafka Server, see "Integrating with Kafka Servers" in BRM
Cloud Native System Administrator's Guide.

smtpServer ocbrm.dm_email.
deployment

Set this to your SMTP server name, such as
ocbrm.us.example.com.

create ocbrm.storage_cl
ass

Whether to create a Kubernetes StorageClass (true) or not
(false).

virtual_time.* ocbrm The details for configuring the pin_virtual_time utility.

• enabled: Set this to true to enable pin_virtual_time.
• sync_pvt_time: Set this to the number of seconds

between each synchronization of pin_virtual_time with
all pods. The default is 0 seconds.

Chapter 7
Configuring the BRM Server

7-9

Table 7-4 (Cont.) BRM Server Keys

Key Path in
values.yaml File

Description

db.* ocbrm The details for connecting to the BRM database:

• host: The host name or IP address of the database
server.

• port: The port number of the database server.
• service: The service name that identifies the database.
• sslMode: The type of SSL connection required for

connecting to the database: TWO_WAY, ONE_WAY, or
NO.

• walletPassword: The password for accessing the
certificates from the TrustStore and KeyStore. This is
required if sslMode is set to ONE_WAY or TWO_WAY.

• walletType: The type of file specified as the TrustStore
or KeyStore for SSL connections: SSO or pkcs12. The
default is SSO.

• enable_partition: Whether partitioning is enabled at the
database level (Yes) or disabled (No). The default is Yes.

• storage_model: The size of the BRM database
tablespaces:

– Test: Less than 700 MB.
– Small: Less than 1.5 GB.
– Medium: Less than 30 GB.
– Large: Greater than 30 GB.

• schemauser: The user name of the primary BRM
schema. The default is pin.

• schemapass: The password for the BRM schema.
• schematablespace: The name of the tablespace for the

primary BRM schema. This field is case-sensitive. The
default is pin.

• indextablespace: The name of the index tablespace for
the primary BRM schema. This field is case-sensitive.
The default is pinx.

• nls_lang: The language, territory, and character set. Set
this to American_America.AL32UTF8. You must use
American_America as the language and territory,
regardless of your locale.

• pipelineschemauser: The BRM pipeline schema user
name, which should be pre-created with all of the
required grants.

• pipelineschemapass: The BRM pipeline schema
password. You must generate a Secret. Add this key to
your override-values.yaml file with the same path
hierarchy.

• pipelineschematablespace: The name of the
tablespace for the BRM pipeline schema. This field is
case-sensitive.

• pipelinesindextablespace: The name of the index
tablespace for the BRM pipeline schema. This field is
case-sensitive.

• skipPrimary: Whether to deploy the primary schema
(false) or skip the deployment of the primary schema
(true). Set it to true only if you are adding a schema to

Chapter 7
Configuring the BRM Server

7-10

Table 7-4 (Cont.) BRM Server Keys

Key Path in
values.yaml File

Description

an existing BRM multischema system. The default is
false.

Ensure these values match the ocbrm.db.* keys from oc-cn-
init-db-helm-chart. See Table 6-1 for more information.

secondaryN.* ocbrm.db.multiSc
hemas

The details for connecting to your secondary database
schemas, where N is 1 for the first secondary schema, 2 for
the next secondary schema, and so on.

Add this block only if your BRM database contains multiple
schemas. This section will be commented out by default:

multiSchemas:
 secondary1:
 deploy:
 host: localhost
 port: 1521
 service: pindb
 schemauser:
 schemapass:
 schematablespace:
 indextablespace:

See "Configuring BRM for a Multischema Database".

mountOptions ocbrm.storage_cl
ass

Set this to the version of the external provisioner.

provisioner ocbrm.dynamic_p
rovisioner

Set this to the name of the external provisioner.

enabled ocbrm.cmt Set this to true to run the Conversion Manager pin_cmt
utility.

config_jobs.* ocbrm The details for running a configurator job, which allows you to
run BRM load utilities on demand without entering into a pod.

• run_apps: Set to true to enable a configurator job.
• isMultiSchema: Specifies whether to run the commands

in the loadme.sh script on the secondary schemas.
• restart_count: Increment this count by 1 to restart the

CM.
• script_name: The name of the script that contains the

load utilities you want to run. The default is loadme.sh.
See "Running Load Utilities through Configurator Jobs" in
BRM Cloud Native System Administrator's Guide.

brm_apps.job.* ocbrm The details for running a brm-apps job, which allows you to
run BRM applications and utilities on demand without
entering into a pod.

• isEnabled: Set to true to enable a brm-apps job.
• script_name: The name of the script that contains the

utilities and applications you want to run. The default is
loadme.sh.

• configmap_path: The path to the ConfigMap file.
See "Running Applications and Utilities through BRM-Apps
Jobs" in BRM Cloud Native System Administrator's Guide.

Chapter 7
Configuring the BRM Server

7-11

Table 7-4 (Cont.) BRM Server Keys

Key Path in
values.yaml File

Description

brm_apps.deploy
ment.isEnabled

ocbrm Whether to enable the brm-apps pod.

utilityName.* ocbrm.brm_apps.
deployment

The configuration details for running BRM utilities and
applications, such as pin_billd, pin_export_price, and
pin_rerate.

For example, you can configure performance parameters for
multithreaded applications (MTA). See "Configuring MTA
Performance Parameters" in BRM Cloud Native System
Administrator's Guide.

Configuring BRM for a Multischema Database
Using a BRM multischema database lets you distribute customer accounts among several
database schemas, providing increased storage capacity, higher performance, and easier
maintenance. For more information, see "A BRM Multischema Production System" in BRM
Installation Guide.

To configure your BRM cloud native environment to connect to a multischema database, do
this:

1. Ensure that you deployed a multischema database in your BRM cloud native environment.
See "Deploying BRM with a New Database Schema".

2. Using SQL*Plus, grant each database schema the privilege to insert and update tables on
the other schemas:

a. Connect to the BRM database with SQL*Plus as sysdba:

sqlplus system@databaseAlias as sysdba
Enter password: password

where:

• databaseAlias is the Oracle system database alias.

• password is the Oracle system database user password.

b. From the primary database schema, enter the following:

SQL> GRANT INSERT ANY TABLE TO SecondarySchema;
SQL> GRANT UPDATE ANY TABLE TO SecondarySchema;

where SecondarySchema is the name of the secondary schema.

c. From each secondary database schema, enter the following:

SQL> GRANT INSERT ANY TABLE TO PrimarySchema;
SQL> GRANT UPDATE ANY TABLE TO PrimarySchema;

where PrimarySchema is the name of the primary schema.

3. Connect the BRM server to each secondary schema:

Chapter 7
Configuring BRM for a Multischema Database

7-12

a. Open your override-values.yaml file for oc-cn-helm-chart.

b. Enable account migration by setting the ocbrm.isAmt key to true.

c. Set the ocbrm.db.skipPrimary key to false.

d. For each secondary schema in your system, add a
ocbrm.db.multiSchemas.secondaryN block, where N is 1 for the first secondary
schema, 2 for the next secondary schema, and so on.

e. In each ocbrm.db.multiSchemas.secondaryN block, set the following keys:

• deploy: Set this to true.

• host: Set this to the hostname of the secondary schema. This key is optional.

• port: Set this to the port number for the secondary schema. This key is optional.

• service: Set this to the service name for the secondary schema. This key is
optional.

• schemauser: Set this to the schema user name.

• schemapass: Set this to the schema password.

• schematablespace: Set this to the name of the schema tablespace, such as
pin01.

• indextablespace: Set this to the name of the index tablespace, such as pinx01.

f. Deploy oc-cn-helm-chart by running this command from the helmcharts directory:

helm install BrmReleaseName oc-cn-helm-chart --namespace BrmNameSpace --values
OverrideValuesFile

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track
this installation instance. It must be different from the one used for oc-cn-init-db-
helm-chart.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for
the BRM Helm chart.

• OverrideValuesFile is the path to a YAML file that overrides the default
configurations in the values.yaml file for oc-cn-helm-chart.

The BRM Helm chart deploys new dm-oracle, amt, and rel-dameon pods, Rated Event
(RE) Loader PVCs, services, ConfigMaps, and secrets. It also updates their
corresponding schema entries in the primary CM and Oracle DM and deploys multiple
containers for the batch-wireless-pipe pod.

4. Set each database schema's status and priority. BRM cloud native assigns accounts to an
open schema with the highest priority.

a. Open the configmap_pin_conf_testnap.yaml file.

b. Under the config_dist.conf section, add the following entries for each secondary
schema in your database:

DB_NO = "schema_number" ; # database config. block
PRIORITY = priority ;
MAX_ACCOUNT_SIZE = 100000 ;
STATUS = "status" ;
SCHEMA_NAME = "schema_name" ;

c. Set the STATUS and PRIORITY entries for each primary and secondary schema:

Chapter 7
Configuring BRM for a Multischema Database

7-13

DB_NO = "0.0.0.1" ; # Primary schema configuration block
PRIORITY = priority;
MAX_ACCOUNT_SIZE = 100000 ;
STATUS = "status" ;
SCHEMA_NAME = "schema_name" ;

DB_NO = "0.0.0.2" ; # Secondary schema configuration block
PRIORITY = priority;
MAX_ACCOUNT_SIZE = 50000 ;
STATUS = "status" ;
SCHEMA_NAME = "schema_name" ;

where:

• priority is a number representing the schema's priority, with the highest number
having the most priority. For example, 5 indicates a greater priority than a value of
1. For more information, see "Modifying Database Schema Priorities" in BRM
Cloud Native System Administrator's Guide.

• status specifies whether the schema is open, closed, or unavailable. For more
information, see "Modifying Database Schema Status" in BRM Cloud Native
System Administrator's Guide.

d. Set up the configurator job to run the load_config_dist utility by adding the following
lines to the oc-cn-helm-chart/config_scripts/loadme.sh script:

#!/bin/sh

#cp /oms/config_dist.conf /oms/sys/test/config_dist.conf
cd /oms/sys/test ; load_config_dist
exit 0;

e. In the override-values.yaml file for oc-cn-helm-chart, set this key:

ocbrm.config_jobs.run_apps: Set this to true.

f. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

The distribution information is loaded into the primary schema.

g. Update these keys in the override-values.yaml file for oc-cn-helm-chart:

• ocbrm.config_jobs.restart_count: Increment the existing value by 1.

• ocbrm.config_jobs.run_apps: Set this to false.

h. Update the Helm release again:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

The CM is restarted.

5. Configure the account-router Pipeline Manager to route CDRs to pipelines based on the
database schema POID. To do so, edit the ConfigMap file
configmap_acc_router_reg.yaml.

Based on the configuration, the account router Pipeline Manager does the following:

• Moves input files to the data PVC directory. The input file names have a prefix of
router and a suffix of .edr.

• Moves the rated output files to the input of the Rating pipeline.

Chapter 7
Configuring BRM for a Multischema Database

7-14

• Replicates the Rating pipeline based on the multischema entry. The Range function is
used to replicate the rating pipeline.

• Moves the output files from the Rating pipeline to the outputcdr PVC directory.

Your BRM cloud native environment is connected to your BRM multischema database. To
manage your multischema environment, see "Managing a BRM Cloud Native Multischema
System" in BRM Cloud Native System Administrator's Guide.

Configuring Pricing Design Center
Pricing Design Center (PDC) is a Web-based client application that you use to create and
manage the product offerings that you sell to your customers. A product offering represents the
services available to your customers and the price of those services. For more information
about PDC, see Pricing Design Center Online Help.

You can optionally deploy a simple demonstration version of Pricing Design Center cloud
native by using the sample PDC_OverrideValues.yaml file provided with oc-cn-helm-chart.
This simple demonstration version has both SSL and ECE enabled, uploads a sample JKS
certificate file, loads sample RUMs and balance elements, and starts the BRM-to-PDC
synchronization process with SyncPDC.

To configure PDC to run in your BRM cloud native environment:

1. Override the PDC-specific keys in the values.yaml file for oc-cn-helm-chart. See "Adding
PDC Keys for oc-cn-helm-chart".

2. Override the PDC-specific keys in the values.yaml file for oc-cn-op-job-helm-chart. See
"Adding PDC Keys for oc-cn-op-job-helm-chart".

3. Set up SAML for SSO in PDC. See "Setting Up SSO for PDC Cloud Native".

After you deploy PDC in your cloud native environment, you can access the PDC GUI at one of
the following URLs:

• http://kubernetesHost:pdcPort/pdc

where:

– kubernetesHost is the host name of the machine on which Kubernetes is deployed.

– pdcPort is the PDC service node port.

• http://LoadBalancerHost:pdcNodePort/pdc

where:

– LoadBalancerHost is the host name of the machine on which the load balancer is
deployed.

– pdcNodePort is the number assigned to the PDC node port.

Adding PDC Keys for oc-cn-helm-chart
Table 7-5 describes the most common PDC keys that you need to override. Add these keys to
your override-values.yaml file for oc-cn-helm-chart with the same path hierarchy.

For information about all PDC-specific keys, see the descriptions in the oc-cn-helm-chart/
values.yaml file.

Chapter 7
Configuring Pricing Design Center

7-15

Caution:

Keys with the path ocpdc.secretValue hold sensitive data. Handle them carefully
with controlled access to the file containing their values. Encode all of these values in
Base64. See "Secrets" in Kubernetes Concepts.

Table 7-5 Pricing Design Center Keys for oc-cn-helm-chart

Key Path in
values.yaml

Description

isEnabled ocpdc Whether to enable and deploy PDC:

• true: Enables PDC and deploys the PDC application.
This is the default.

• false: Disables the PDC application.

lang ocpdc The Linux system locale. The default is en_US.UTF-8.

tz ocpdc The Linux time zone. The default is UTC.

pdcBrmVolHostPa
th

ocpdc The host path for RRE, Import-Export, BRE, or SyncPDC. To
use a dynamic provisioner, leave it empty.

The default is empty.

Note: Provide the required permissions to the volume path by
following the guidelines in "Persistent Volume Storage
Locations" in the WebLogic Kubernetes Operator
documentation.

storageSize ocpdc The size of the storage path for pdcBrmHostPath.

enableSecurityCo
ntext

ocpdc Whether to enable PDC pod-level security attributes and
common container settings.

The default is false.

deployment.* ocpdc The details for deploying the PDC image:

• imageName: The name of the PDC image. The default is
oracle/pdc.

• imageTag: The tag name for the PDC image. The default
is 15.0.x.0.0.

• imagePullPolicy: When to pull images: only when one is
not present locally (IfNotPresent) or always (Always).
The default is IfNotPresent.

fmw.* ocpdc.deploymen
t

The details for pulling WebLogic images for PDC from a
container registry:

• imageRepository: The name of the container registry
from which to pull the WebLogic image. The default is
container-registry.oracle.com/.

• imageName: The name of the container repository from
which to pull the WebLogic image. The default is
middleware/fmw-infrastructure_cpu.

• imageTag: The tag name for the WebLogic image. The
default is 12.2.1.4-jdk8-ol8.

See "Pulling WebLogic Images for PDC, Billing Care, Billing
Care REST API, and Business Operations Center" for more
information.

Chapter 7
Configuring Pricing Design Center

7-16

https://kubernetes.io/docs/concepts/configuration/secret/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/persistent-storage/pv-pvc/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/persistent-storage/pv-pvc/

Table 7-5 (Cont.) Pricing Design Center Keys for oc-cn-helm-chart

Key Path in
values.yaml

Description

nodeSelector ocpdc The name of the node on which to run the following PDC
pods:

• pdc
• RRE
• BRE
• SyncPDC
• Import-Export
Set this key if you want to constrain the PDC pods to run only
on the node you specify.

For more information, see "nodeSelector" in the Kubernetes
documentation.

Note: To override the rules for a specific PDC pod, specify a
different value for the pod's nodeSelector key. For example,
set the
ocpdc.configEnv.transformation.syncPDC.nodeSelector
key to apply rules specifically to the SyncPDC pod.

affinity ocpdc The rules for running the following PDC pods on specific
nodes:

• pdc
• RRE
• BRE
• SyncPDC
• Import-Export
Set this key if you want to constrain the PDC pod to run only
on the nodes that meet your criteria.

For more information about this key, see "Node Affinity" in the
Kubernetes documentation.

Note: To override the rules for a specific PDC pod, specify a
different value for the pod's affinity key. For example, set the
ocpdc.configEnv.transformation.importExport.affinity key
to apply rules specifically to the Import-Export pod.

domainUID ocpdc.wop The name of this PDC WebLogic Server domain.

isVPAEnabled ocpdc.wop (Release 15.0.1 or later) Whether to enable resource limits for
the PDC domain pod. The default is false.

isVPAEnabled ocpdc.configEnv Whether to enable Vertical Pod autoscaling for the RRE,
BRE, SyncPDC, and JobIE pods. The default is false.

dbHostName ocpdc.configEnv The host name of the PDC and cross-reference database.
The value must match that of oc-cn-op-job-helm-chart.

dbPort ocpdc.configEnv The port for the PDC and cross-reference database. The
value must match that of oc-cn-op-job-helm-chart.

dbService ocpdc.configEnv The service name for the PDC and cross-reference database.
The value must match that of oc-cn-op-job-helm-chart.

Chapter 7
Configuring Pricing Design Center

7-17

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity

Table 7-5 (Cont.) Pricing Design Center Keys for oc-cn-helm-chart

Key Path in
values.yaml

Description

dbSSLMode ocpdc.configEnv The type of SSL connection required for connecting to the
cross-reference database:

• TWO_WAY: Two-way SSL authentication is required.
• ONE_WAY: One-way SSL authentication is required.
• NO: SSL authentication is not required. This is the

default.
Note: This value must match that of the dbSSLMode key for
oc-cn-op-job-helm-chart.

Realtime rating
engine and batch
rating engine log
file rotation

ocpdc.configEnv.t
ransformation

The settings for rotating RRE and BRE log files:

• logLevel: The logging level, which can be SEVERE,
WARNING, INFO, CONFIG, FINE, FINER, or FINEST.
The default is WARNING.

• logFileSize: The maximum file size, in bytes, of the log
files. After the log file meets the maximum, PDC closes
the log file and creates a new log file. The default is
500000.

• logFileCount: The maximum number of log files to retain
for the application. The default is 10.

• persistTransactionLogs: Whether to persist log files in
the database after they are closed. Possible values are
all, disabled, and failed. The default is failed.

See "Rotating PDC Log Files" in BRM Cloud Native System
Administrator's Guide for more information.

MEM_ARGS ocpdc.configEnv.t
ransformation

The memory argument, surrounded by quotes. For example:
"-Xms1024m -Xmx2048m -XX:CompileThreshold=8000".

persistOutFiles ocpdc.configEnv.t
ransformation

Whether to persist the output files generated by the
transformation engine:

• enabled: Keeps the output and payload files in the out
directory. This is not recommended.

• disabled: Removes the output and payload files from the
out directory. This is the default.

upgrade ocpdc.configEnv.t
ransformation

Whether to upgrade from a previous release to PDC 15.0.

nodeSelector ocpdc.configEnv.t
ransformation

The name of the node on which to run the RRE and BRE
pods.

affinity ocpdc.configEnv.t
ransformation

The rules for running the RRE and BRE pods on specific
nodes.

BE ocpdc.configEnv.
seedData

Whether to load sample balance elements into the PDC
database when PDC is deployed:

• true: Loads the sample balance elements.
• false: Does not load the sample balance elements. This

is the default.
Note: If balance element data already exists in the PDC
database, it is not overwritten.

Chapter 7
Configuring Pricing Design Center

7-18

Table 7-5 (Cont.) Pricing Design Center Keys for oc-cn-helm-chart

Key Path in
values.yaml

Description

RUM ocpdc.configEnv.
seedData

Whether to load sample RUMs into the PDC database when
PDC is deployed:

• true: Loads the sample RUMs.
• false: Does not load the sample RUMs. This is the

default.
Note: If RUM data already exists in the PDC database, it is
not overwritten.

IE_Operation.* ocpdc.configEnv.i
mportExport

The operation for the ImportExportPricing utility to perform:

• Empty value: No operation is performed. This is the
default.

• export: The utility exports data from the PDC database
into an XML file.

• import: The utility imports data from the XML file into the
PDC database.

• publish: The utility publishes components from PDC to
the batch rating engine, real-time rating engine, or ECE.

• keep: The utility retains the latest version of successfully
promoted PDC components.

• deleteprofile: The utility deletes pricing profiles from
PDC.

• type: The utility displays the pricing or setup components
available in PDC.

When you deploy PDC, ensure that this key has an empty
value.

Before doing a Helm upgrade to run ImportExportPricing,
delete the pdc-import-export-job Kubernetes job.

Don't include the hyphen (-) prefix with the value.

For more information, see "Running PDC Applications" in
BRM Cloud Native System Administrator's Guide.

IE_Component.* ocpdc.configEnv.i
mportExport

The type of components and objects to import or export using
the ImportExportPricing utility:

• config: Imports or exports setup components, such as
tax codes, business profiles, and general ledger IDs.

• pricing: Imports or exports pricing components, such as
events, charges, and chargeshares.

• metadata: Imports or exports the event, service,
account, and profile attribute specifications.

• profile: Imports or exports pricing profile data.
• customfields: Imports or exports custom fields.
• brmobject: Exports BRM-mastered configuration objects

such as services, events, and G/L IDs.
• all: Imports or exports all objects and components.
Don't include the hyphen (-) prefix with the value.

For more information, see "Running PDC Applications" in
BRM Cloud Native System Administrator's Guide.

Chapter 7
Configuring Pricing Design Center

7-19

Table 7-5 (Cont.) Pricing Design Center Keys for oc-cn-helm-chart

Key Path in
values.yaml

Description

IE_File_OR_Dir_N
ame

ocpdc.configEnv.i
mportExport

The name of the XML file or ImportExport directory that
contains the list of components and objects to import into the
PDC database. This XML file is used by the
ImportExportPricing utility.

If importing or deleting components, copy the XML file to the
HostPath specified in pdcIEHostPath or in pdc-ie-pvc.

Set the file's or directory's ownership and permissions to
chown 1000:0 and chmod 755.

extraCmdLineArg
s

ocpdc.configEnv.i
mportExport

The extra command-line arguments for the
ImportExportPricing utility, apart from operation,
component, and file name.

The value must be surrounded by quotes. For example, "-n
ObjectName".

See "ImportExportPricing" in PDC Creating Product Offerings
for more information.

ImportExport Log
Rotation

ocpdc.configEnv.i
mportExport

The settings for rotating ImportExport log files:

• logLevel: Sets the logging level, which can be SEVERE,
WARNING, INFO, CONFIG, FINE, FINER, or FINEST.
The default is WARNING.

• logSize: Sets the maximum file size, in bytes, of the log
files. After the log file meets the maximum, PDC closes
the log file and creates a new log file.

• logCount: Specifies the maximum number of log files to
retain for the application.

• persistIELogs: Specifies whether to persist log files in
the database after they are closed. Possible values are
all, disabled, and failed.

See "Rotating PDC Log Files" in BRM Cloud Native System
Administrator's Guide for more information.

nodeSelector
affinity

ocpdc.configEnv.i
mportExport

The rules for deploying the Import-Export pod on specific
nodes.

upgradeFromPS2 ocpdc.configEnv.
syncPDC

Whether to upgrade SyncPDC during the PDC upgrade
process. Set this to true only if you are upgrading from Patch
Set 2 to Patch Set 4.

The default is false.

See "Upgrading Your PDC Cloud Native Services" for more
information.

skipBREMigration ocpdc.configEnv.
syncPDC

Skips the synchronization of pipeline configuration data. The
default is false.

This key is ignored when ECE is enabled in a PDC system.

Chapter 7
Configuring Pricing Design Center

7-20

Table 7-5 (Cont.) Pricing Design Center Keys for oc-cn-helm-chart

Key Path in
values.yaml

Description

syncPDCStartAt ocpdc.configEnv.
syncPDC

The scheduled time for running the SyncPDC utility. This key
is set at deployment time only. Valid values include:

• startAt: The utility runs at the time the job was
submitted.

• "HH:MM": The utility runs at the specified time, where
HH is an hour between 0 and 23, and MM is the minutes
between 0 and 59. For example, enter "12:00" to
schedule the utility to run at noon.

For more information, see "Running PDC Applications" in
BRM Cloud Native System Administrator's Guide.

syncPDCInterval ocpdc.configEnv.
syncPDC

The scheduled frequency for running the SyncPDC utility.
This key is set at deployment time only.

Enter a value in the format "N:U", where N is a valid number
and U is one of these units: D (Daily), H (Hourly), or M
(Minute).

For example, enter "2:D" to run the utility every other day.

Note: A value of "24:H" is not the same as "1:D" due to
daylight savings time (DST).

enrichmentFileNa
me

ocpdc.configEnv.
syncPDC

Set this to ECEEventEnrichmentSpec.xml.

Store the enrichment file in the path specified in
pdcBrmHostPath. This is applicable at both PDC
deployment time and individual SyncPDC runtime.

runSyncPDC ocpdc.configEnv.
syncPDC

Whether to create the SyncPDC pod:

• true: Creates the SyncPDC pod and starts the BRM-to-
PDC synchronization process. This is the default.

• false: Deletes the SyncPDC pod and stops the
synchronization process.

SyncPDC Log
Rotation

ocpdc.configEnv.
syncPDC

The settings for rotating SyncPDC log files:

• logLevel: Sets the logging level, which can be SEVERE,
WARNING, INFO, CONFIG, FINE, FINER, or FINEST.
The default is WARNING.

• logFileSize: Sets the maximum file size, in bytes, of the
log files. After the log file meets the maximum, PDC
closes the log file and creates a new log file. The default
is 20000.

• logFileCount: Specifies the maximum number of log
files to retain for the application. The default is 10.

See "Rotating PDC Log Files" in BRM Cloud Native System
Administrator's Guide for more information.

nodeSelector
affinity

ocpdc.configEnv.
syncPDC

The rules for deploying the SyncPDC pod on specific nodes.

Chapter 7
Configuring Pricing Design Center

7-21

Table 7-5 (Cont.) Pricing Design Center Keys for oc-cn-helm-chart

Key Path in
values.yaml

Description

operator.* ocpdc.configEnv.
monitoring.prome
theus

The details for monitoring PDC cloud native services using
Prometheus:

• isEnabled: Whether to enable monitoring of PDC by
using Prometheus and Grafana.

• namespace: The namespace in which Prometheus
Operator is deployed. The default is prometheus.

For more information, see "Monitoring PDC in a Cloud Native
Environment" in BRM Cloud Native System Administrator's
Guide.

walletPassword ocpdc.secretValu
e

The passwords for the PDC application wallet and PDC BRM
integration wallet.

Adding PDC Keys for oc-cn-op-job-helm-chart
You must create an override-values.yaml for oc-cn-op-job-helm-chart and then add the
PDC-specific keys in Table 7-6.

For information about all PDC-specific keys, see the descriptions in the oc-cn-op-job-helm-
chart/values.yaml file.

Caution:

Keys with the path ocpdc.secretValue hold sensitive data. Handle them carefully
with controlled access to the file containing their values. Encode all of these values in
Base64 format. See "Secrets" in Kubernetes Concepts.

Table 7-6 Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

isEnabled ocpdc Whether to enable PDC jobs:

• true: Enables PDC jobs. This
is the default.

• false: Disables PDC jobs.

isClean ocpdc Whether to clean old PDC
deployment and instance logs:

• true: Removes all existing
PDC deployment and
instance logs. This is the
default.

• false: Keeps all existing PDC
logs.

lang ocpdc The Linux system locale. The
default is en_US.UTF-8.

tz ocpdc The Linux time zone. The default
is UTC.

Chapter 7
Configuring Pricing Design Center

7-22

https://kubernetes.io/docs/concepts/configuration/secret/

Table 7-6 (Cont.) Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

pdcAppVolHostPath ocpdc The host path for pdc-domain.

To use a dynamic provisioner,
leave it empty. The default is
empty.

Note: For a dynamic provisioner,
ensure that oc-cn-helm-chart is
deployed and that the storage
class is reused.

Note: Provide the required
permissions to the volume path by
following the guidelines in
"Persistent Volume Storage
Locations" in the WebLogic
Kubernetes Operator
documentation.

storageSize ocpdc The size of the storage path for
pdcHostPath.

enableSecurityContext ocpdc Whether to enable PDC pod-level
security attributes and common
container settings.

The default is false.

deployment.* ocpdc The details for deploying the PDC
image:

• imageName: The name of
the PDC image. The default
is oracle/pdc.

• imageTag: The tag name for
the PDC image. The default
is 15.0.0.0.0.

• imagePullPolicy: When to
pull images: only when one is
not present locally
(IfNotPresent) or always
(Always). The default is
IfNotPresent.

Chapter 7
Configuring Pricing Design Center

7-23

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/persistent-storage/pv-pvc/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/persistent-storage/pv-pvc/

Table 7-6 (Cont.) Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

fmw.* ocpdc.deployment The details for pulling WebLogic
images for PDC from a container
registry:

• imageRepository: The name
of the container registry from
which to pull the WebLogic
image. The default is
container-
registry.oracle.com/.

• imageName: The name of
the container repository from
which to pull the WebLogic
image. The default is
middleware/fmw-
infrastructure_cpu.

• imageTag: The tag name for
the WebLogic image. The
default is 12.2.1.4-jdk8-ol8.

See "Pulling WebLogic Images for
PDC, Billing Care, Billing Care
REST API, and Business
Operations Center" for more
information.

nodeSelector ocpdc The rules for scheduling a PDC
job pod on a particular node using
nodeSelector or affinity.

pdc-domain-job: Set this key to
constrain the PDC pods to run
only on the node you specify. For
more information, see
"nodeSelector" in the Kubernetes
documentation.

Note: To override the rules for a
specific PDC pod, specify a
different value for the pod's
nodeSelector key. For example,
set the
ocpdc.configEnv.transformatio
n.syncPDC.nodeSelector key to
apply rules specifically to the
SyncPDC pod.

Chapter 7
Configuring Pricing Design Center

7-24

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector

Table 7-6 (Cont.) Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

affinity ocpdc The rules for scheduling a PDC
job pod on a particular node using
nodeSelector or affinity.

pdc-domain-job: Set this key if
you want to constrain the PDC
pod to run only on nodes that
meet your criteria. For more
information, see "Node Affinity" in
the Kubernetes documentation.

Note: To override the rules for a
specific PDC pod, specify a
different value for the pod's affinity
key. For example, set the
ocpdc.configEnv.transformatio
n.importExport.affinity key to
apply rules specifically to the PDC
Import Export pod.

domainUID ocpdc.wop The name of this PDC WebLogic
Server domain.

includeServerOutInPodLog ocpdc.wop Whether to include the server out
file in the pod's stdout log:

• true: The server out file is
included. This is the default.

• false: The server out file is
excluded.

jtaTimeoutSeconds ocpdc.wop The maximum amount of time, in
seconds, an active transaction is
allowed to be in the first phase of
a two-phase commit transaction.
The default is 10000.

If the time expires, the transaction
is automatically rolled back.

jtaAbandonTimeoutSeconds ocpdc.wop The maximum amount of time, in
seconds, a transaction manager
continues to attempt completing
the second phase of a two-phase
commit transaction.

The default is 10000.

stuckThreadMaxTime ocpdc.wop The number of seconds a thread
must be continually working
before the server considers the
thread to be stuck.

The default is 20000.

idlePeriodsUntilTimeout ocpdc.wop The number of idle periods until
the peer is considered to be
unreachable. The default is 40.

Chapter 7
Configuring Pricing Design Center

7-25

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity

Table 7-6 (Cont.) Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

dataSourceXaTxnTimeout ocpdc.wop The number of seconds until the
data source transaction times out.
The default is 0.

When set to 0, the WebLogic
Server Transaction Manager
passes the global WebLogic
Server transaction timeout in
seconds in the method.

pdcAppSesTimeOut ocpdc.wop The PDC application
(pricingui.ear) session time out,
in seconds. The default is 36000.

pdcAppSesInvInterTimeOut ocpdc.wop The PDC application
(pricingui.ear) session invalid
interval time out, in seconds. The
default is 3000.

maxMessageSize ocpdc.wop (Release 15.0.1 or later) The
maximum number of bytes
allowed in messages that are
received over supported
protocols. The default is
10000000.

isVPAEnabled ocpdc.wop (Release 15.0.1 or later) Whether
to enable resource limits for the
PDC domain job pod.

The default file is present in oc-
cn-op-job-helm-chart/pdc/
vpa_values.yaml.

For more information, see "Using
Resource Limits in PDC Domain
Pods" in BRM Cloud Native
System Administrator's Guide.

users ocpdc.wop (Release 15.0.1 or later) The
users to add to the PDC domain.
Add the following sub-fields for
each:

• name: The name of the user.
• description: A brief

description of the user.
• password: The Base64-

encoded password for the
user.

• groups: The list of groups
that the user belongs to. The
available PDC groups are
PricingAnalyst,
PricingDesignAdmin, and
PricingReviewer.

For more information, see
"Creating PDC Users" in BRM
Cloud Native System
Administrator's Guide.

Chapter 7
Configuring Pricing Design Center

7-26

Table 7-6 (Cont.) Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

exposePorts ocpdc.configEnv Exposes the SSL HTTPS port, the
HTTP port, or both:

• yes: Exposes the SSL
HTTPS port only.

• no: Exposes the HTTP port
only.

• all: Exposes both the HTTP
port and the SSL HTTPS
port. This is the default.

t3ChannelPort ocpdc.configEnv The port number for the t3
channel. The default is 30799.

Use this key if PDC needs to use
the t3 protocol to communicate
with an external system, such as
Elastic Charging Engine (ECE).
Set this to a Kubernetes port
number from 30000 through
32767 that is not in use.

This key is mandatory.

t3ChannelAddress ocpdc.configEnv The IP address for the primary
node or load balancer.

This key is optional.

t3sChannelPort ocpdc.configEnv The port number for the t3s
channel. The default is 30800.

Use this key if PDC needs to use
the t3s protocol to communicate
with an external system such as
ECE. Set this to a Kubernetes
port number from 30000 through
32767 that is not in use.

This key is mandatory.

t3sChannelAddress ocpdc.configEnv If SSL is enabled in the WebLogic
domain, set this to the IP address
for the primary node or load
balancer.

This key is optional.

USER_MEM_ARGS ocpdc.configEnv The custom memory arguments
for WebLogic Admin Server.

USER_JAVA_OPTIONS ocpdc.configEnv The custom Java options for
WebLogic Admin Server.

tlsVersions ocpdc.configEnv (Release 15.0.1 or later) The list
of TLS versions to support for
connection with the WebLogic
domain. List the version numbers
in order, from lowest to highest,
separated by a comma. For
example: TLSv1.2, TLSv1.3.

Chapter 7
Configuring Pricing Design Center

7-27

Table 7-6 (Cont.) Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

pdcAppLogLevel
pdcAppLogFileSize
pdcAppLogFileCount

ocpdc.configEnv The settings for rotating Pricing
Server log and tracing log files:

• pdcAppLogLevel: Sets the
logging level, which can be
SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, or
FINEST. The default is
WARNING.

• pdcAppLogFileSize: Sets
the maximum file size, in
bytes, of the log files. After
the log file meets the
maximum, PDC closes the
log file and creates a new log
file.

• pdcAppLogFileCount:
Specifies the maximum
number of log files to retain
for the application.

See "Rotating PDC Log Files" in
BRM Cloud Native System
Administrator's Guide for more
information.

rcuJdbcURL ocpdc.configEnv The connection string for
connecting to a database where
schemas needed by Oracle
Fusion Middleware products will
be created, especially OPSS. Use
the format "host:port/service".

rcuPrefix ocpdc.configEnv The prefix for the PDC domain
RCU schema.

For example, if the prefix is XYZ
and the schema name is STB, the
PDC domain RCU schema name
will be XYZ_STB.

rcuRecreate ocpdc.configEnv Whether to re-create the PDC
domain.

• true: If the PDC domain is
present, the RCU drops and
re-creates the domain. This is
the default.

• false: The PDC domain is left
alone.

Chapter 7
Configuring Pricing Design Center

7-28

Table 7-6 (Cont.) Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

isCustomWLSPython ocpdc.configEnv Whether to run your custom
WebLogic Python files:

• true: Run your custom
WebLogic Python files
located in oc-cn-op-job-
chart/pdc/
customWLSPython.

• false: Do not run a custom
WebLogic Python file.

Set each file's ownership and
permissions to chown 1000:0
and chmod 777.

honorOMF ocpdc.configEnv Whether the RDS database
honors the Oracle-Managed Files
(OMF) naming format:

• true: OMF format is used.
• false: OMF format is not

used. This is the default.

keyStoreType ocpdc.configEnv The SSL KeyStore type for the
PDC domain. The default is JKS.

keyStoreAlias ocpdc.configEnv The alias name for the PDC
domain SSL KeyStore. The
default is
WeblogicPDCTestAlias.

keyStoreIdentityFileName ocpdc.configEnv The name of the PDC domain
SSL KeyStore Identity file. The
default is defaultserver.jks.

The defaultserver.jks file is
created during PDC deployment if
it does not already exist.

keyStoreTrustFileName ocpdc.configEnv The name of the PDC domain
SSL TrustStore file. The default is
defaultclient.jks.

The defaultclient.jks file is
created during PDC deployment if
it does not already exist.

isSSOEnabled ocpdc.configEnv Set to true to configure and use
SAML 2.0 SSO service. The
default is false.

samlAsserterName ocpdc.configEnv The name of the SAML Asserter.
It should be the same as OEM or
IDCS.

The default is
pdcSAML2IdentityAsserter.

Chapter 7
Configuring Pricing Design Center

7-29

Table 7-6 (Cont.) Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

ssoPublishedSiteURL ocpdc.configEnv The base URL used to construct
endpoint URLs, typically, the load
balancer host and port at which
the server is visible externally. It
must be appended with /saml2.
For example: https://
LoadBalancerHost:LoadBalancer
Port/saml2.

ssoDefaultURL ocpdc.configEnv The URL to which unsolicited
authentication responses are sent
if they do not contain an
accompanying target URL.

ssoLogoutURL ocpdc.configEnv The URL where users are
redirected after they log out from
the application (OEM or IDCS log
out).

dbHostName ocpdc.configEnv The host name of the PDC and
cross-reference database.

dbPort ocpdc.configEnv The port for the PDC and cross-
reference database.

dbService ocpdc.configEnv The service name for the PDC
and cross-reference database.

dbSysDBAUser ocpdc.configEnv The SYS, System, or Sys DBA
user for the PDC and cross-
reference database.

If this key is not configured, PDC
assumes that
pdcSchemaUserName and
crossRefSchemaUserName are
already present on the database
with the required permissions.

dbSysDBARole ocpdc.configEnv The role of the PDC and cross-
reference database SYS, System,
or Sys DBA user.

Chapter 7
Configuring Pricing Design Center

7-30

Table 7-6 (Cont.) Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

dbSSLMode ocpdc.configEnv The type of SSL connection
required for connecting to the
database:

• TWO_WAY: Two-way SSL
authentication is required. In
this case, both the client and
server must authenticate
each others identity.

• ONE_WAY: One-way SSL
authentication is required. In
this case, the client must
authenticate the server's
identity.

• NO: SSL authentication is not
required. This is the default.

If set to ONE_WAY or TWO_WAY,
place the database wallet in the
oc-cn-helm-chart/pdc/
pdc_db_wallet directory. Create
the directory structure if it is not
present and do not change the
directory name.

dbWalletType ocpdc.configEnv The type of file specified as the
TrustStore for SSL connections:
SSO or pkcs12. SSO is the
recommended value.

crossRefSchemaPDCTableSpa
ce

ocpdc.configEnv The name of the PDC tablespace
for the transformation cross-
reference schema. This field is
case-sensitive.

crossRefSchemaTempTableSp
ace

ocpdc.configEnv The name of the temporary
tablespace for the transformation
cross-reference schema. This
field is case-sensitive.

crossRefSchemaUserName ocpdc.configEnv The cross-reference database
schema user name.

pdcSchemaPDCTableSpace ocpdc.configEnv The tablespace name of the PDC
schema. This field is case-
sensitive.

pdcSchemaTempTableSpace ocpdc.configEnv The tablespace name of the
temporary schema. This field is
case-sensitive.

pdcSchemaUserName ocpdc.configEnv The PDC database schema user
name.

Chapter 7
Configuring Pricing Design Center

7-31

Table 7-6 (Cont.) Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

rcuWalletSchemaUserName ocpdc.configEnv The RCU wallet schema user
name. The default schema user
name is PDCRCUWALLET.

Note: The OPSS wallet file
created for the RCU schema is
stored in the
RCU_WALLET_DETAILS table
during the first run. If the wallet
file is available for the given RCU
prefix, it is reused in subsequent
runs and the RCU schema is not
re-created. If the OPSS wallet file
is present in oc-cn-op-job-helm-
chart/pdc/opss_wallet, it takes
precedence.

pdcAdminUser ocpdc.configEnv The PDC admin user name, which
includes the Pricing Design Admin
role.

supportECE ocpdc.configEnv The charging engine to use:
Elastic Charging Engine (true) or
the real-time and batch rating
engine (false). The default is true.

adminPassword ocpdc.secretValue The password for the WebLogic
domain's administrative user,
which is used for accessing the
WebLogic Console for
administrative operations.

rcuSchemaPassword ocpdc.secretValue The password for the Oracle
Fusion Middleware product
schemas that will be created by
RCU and used by OPSS.

keyStoreIdentityKeyPass ocpdc.secretValue The password for the PDC
domain SSL identity key.

keyStoreIdentityStorePass ocpdc.secretValue The password for the PDC
domain SSL identity store.

keyStoreTrustStorePass ocpdc.secretValue The password for the PDC
domain SSL TrustStore.

dbPassword ocpdc.secretValue The Sys or System user password
for the PDC and Cross Reference
schema.

pdcSchemaPassword ocpdc.secretValue The password for the PDC
database schema user.

crossRefSchemaPassword ocpdc.secretValue The password for the
transformation cross-reference
database schema user.

rcuWalletSchemaPassword ocpdc.secretValue The password for the PDC RCU
OPSS wallet schema.

dbWalletPassword ocpdc.secretValue The password for the database
SSL wallet. This key is required if
dbWalletType is set to pkcs12.

Chapter 7
Configuring Pricing Design Center

7-32

Table 7-6 (Cont.) Pricing Design Center Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml Description

walletPassword ocpdc.secretValue The passwords for the PDC
application wallet and PDC BRM
integration wallet.

pdcAdminUserPassword ocpdc.secretValue The password for the PDC admin
user, which includes the Pricing
Design Admin role.

Setting Up SSO for PDC Cloud Native
SSO allows users to log in to applications using a single user name and password
combination. You set up SSO for PDC cloud native services by using SAML 2.0.

To set up SSO for PDC:

1. Export the SAML 2.0 metadata XML file from your identity and access management (IAM)
system.

For example, if you are using Oracle Access Management, you can export the file by
following the instructions in "Exporting Metadata" in Oracle Fusion Middleware
Administering Oracle Access Management.

2. Rename the metadata XML file to metadata.xml, and then move metadata.xml to the oc-
cn-op-job-helm-chart/pdc/idp directory.

3. Configure the KeyStores needed by SAML 2.0:

a. Generate Identity and Trust KeyStores.

b. Move your KeyStore files, such as identity.p12 and trust.p12, to the oc-cn-op-job-
helm-chart/pdc/pdc_keystore directory.

4. In your override-values.yaml file for oc-cn-op-job-helm-chart, set the following keys:

• ocpdc.configEnv.isSSOEnabled: Set this to true.

• ocpdc.configEnv.keyStoreAlias: Set this to the private key alias of the KeyStore.

• ocpdc.configEnv.keyStoreType: Set this to the file type of the SSL Identity and Trust
KeyStore, which is either PKCS12 or JKS. The default is PKCS12.

• ocpdc.configEnv.keyStoreIdentityFileName: Set this to the name of the Identity
KeyStore file.

• ocpdc.configEnv.keyStoreTrustFileName: Set this to the name of the Trust
KeyStore file.

• ocpdc.configEnv.samlAsserterName: Set this to the name of the SAML Asserter.
The default is pdcSAML2IdentityAsserter.

• ocpdc.configEnv.ssoPublishedSiteURL: Set this to the base URL used to construct
endpoint URLs. This is typically the load balancer host and port where the server is
visible externally. It must be appended with /saml2. For example: https://
LoadBalancerHost:LoadBalancerPort/saml2.

• ocpdc.configEnv.ssoDefaultURL: Set this to the URL where unsolicited
authentication responses are sent if they do not contain an accompanying target URL.

• ocpdc.secretValue.keyStoreIdentityStorePass: Set this to the StorePass for the
Identity KeyStore.

Chapter 7
Configuring Pricing Design Center

7-33

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/aiaag/managing-settings-identity-federation.html#GUID-019544AA-1090-46F4-9C0E-D421A26C56D8

• ocpdc.secretValue.keyStoreIdentityKeyPass: Set this to the KeyPass for the
Identity KeyStore.

• ocpdc.secretValue.keyStoreTrustStorePass: Set this to the StorePass for the Trust
KeyStore.

5. Configure your load balancer's rules to send responses to the PDC WebLogic domain
with /saml2 appended to the URL path.

Note:

Add this rule to your existing load balancer rules for routing responses to PDC (/
pdc), the load balancer host name, and so on.

See "Installing an Ingress Controller".

6. Deploy your PDC cloud native services by following the instructions in "Deploying BRM
Cloud Native Services".

7. After PDC is deployed, retrieve the sp-metadata-admin-server.xml file from the /shared/
domains/domainUID directory in your container, where domainUID is the name of your
PDC domain specified in the ocpdc.wop.domainUID key.

The XML file configures the Web SSO Provider Partner. It contains the partner's KeyStore
certificates, SAML assertion details, and the URLs where the SAML Identity Provider
redirects to provide access to PDC.

8. Create a profile for your identity provider partner by loading the sp-metadata-admin-
server.xml file into your IAM system.

For example, if you are using Oracle Access Management, you can load the file by
following the instructions in "Creating Remote Identity Provider Partners" in Oracle Fusion
Middleware Administering Oracle Access Management.

Configuring Pipeline Configuration Center
To configure Pipeline Configuration Center (PCC) to run in your BRM cloud native
environment:

1. Override the PCC-specific keys in the values.yaml file for oc-cn-op-job-helm-chart. See
"Adding Pipeline Configuration Center Keys for oc-cn-op-job-helm-chart".

2. Override the PCC-specific keys in the values.yaml file for oc-cn-helm-chart. See "Adding
Pipeline Configuration Center Keys for oc-cn-helm-chart".

3. Set up volume mounts. See "About PCC Volume Mounts".

4. Create a WebLogic domain and install the PCC application. See "Creating a WebLogic
Domain and Installing the PCC Application".

5. Set up SAML for SSO in PCC. See "Setting Up SSO for PCC".

6. Set up local users and groups for PCC. See "Setting Up Local Users and Groups for PCC".

7. Start and stop your WebLogic servers. See "Starting and Stopping WebLogic Servers".

8. Enable SSL in PCC. See "Configuring SSL in PCC".

Chapter 7
Configuring Pipeline Configuration Center

7-34

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/aiaag/managing-identity-federation-partners.html#GUID-B982AEAC-5ED6-4978-9BAE-D0F19CCB06B5

Adding Pipeline Configuration Center Keys for oc-cn-op-job-helm-chart
Table 7-7 lists the keys that directly impact PCC deployment. Add these keys to your override-
values.yaml file for oc-cn-op-job-helm-chart.

Table 7-7 PCC Keys for oc-cn-op-job-helm-chart

Key Paths in values.yaml File Description

isEnabled ocpcc.pcc Whether to deploy, configure, and
start PCC services:
• false: Does not create the

Kubernetes resources for
using PCC.

• true: Creates the
Kubernetes resources for
using PCC. This is the
default.

imageName ocpcc.pcc.deployment.app The name of the PCC image,
such as oracle/pcc

imageTag ocpcc.pcc.deployment.app The tag associated with the
image. This is generally the patch
set number prefixed with a colon
(:). For example, :15.0.1.0.0

dbSSLMode ocpcc.pcc.configEnv The type of connection required
to connect to the database:
• TWO_WAY: Two-way SSL

authentication is required. In
this case, both the client and
server must authenticate
each others identity.

• ONE_WAY: One-way SSL
authentication is required. In
this case, the client must
authenticate the server's
identity. This is the default.

• NO: SSL authentication is
not required.

dbWalletType ocpcc.pcc.configEnv The type of TrustStore and
KeyStore file that is used for the
SSL connection: SSOor
PKCS12.

rcuJdbcURL ocpcc.pcc.configEnv The connection string for
connecting to the database
where schemas needed by
Oracle Fusion Middleware
products will be created,
especially OPSS.

rcuDBARole ocpcc.pcc.configEnv The role of the database
administrator user.

rcuArgs ocpcc.pcc.configEnv The additional arguments for
creating the RCU.

Chapter 7
Configuring Pipeline Configuration Center

7-35

Table 7-7 (Cont.) PCC Keys for oc-cn-op-job-helm-chart

Key Paths in values.yaml File Description

ldapHost ocpcc.pcc.configEnv The host name or IP address of
the LDAP Server (for example,
OUD) where users and groups
will be configured for access to
PCC.

ldapPort ocpcc.pcc.configEnv The port number on which the
LDAP server is listening.

ldapGroupBase ocpcc.pcc.configEnv The LDAP base DN that contains
groups.

ldapUserBase ocpcc.pcc.configEnv The LDAP base DN that contains
users.

keystoreAlias ocpcc.pcc.configEnv The private key alias of the
KeyStore.

keystoreType ocpcc.pcc.configEnv The file type of the SSL Identity
and TrustStore, which is either
PKCS12or JKS. The default is
PKCS12.

keystoreIdentityFileName ocpcc.pcc.configEnv The file name of the Identity
KeyStore.

keystoreTrustFileName ocpcc.pcc.configEnv The file name of the Trust
KeyStore.

isSSOEnabled ocpcc.pcc.configEnv Whether to enable single sign-on
(SSO) for PCC cloud native
services through SAML 2.0:
• true: SSO is enabled for

PCC cloud native services.
• false: SSO is disabled. This

is the default.

samlAsserterName ocpcc.pcc.configEnv The name of the SAML Asserter.
The default is
samlPCCAsserter.

ssoPublishedSiteURL ocpcc.pcc.configEnv The base URL that is used to
construct endpoint URLs. This is
typically the Load Balancer host
and port at which the server is
visible externally. It must be
appended with /saml2. For
example: https://
LoadBalancerHost:LoadBalancer
Port/saml2.

ssoDefaultURL ocpcc.pcc.configEnv The URL where unsolicited
authentication responses are
sent if they do not contain an
accompanying target URL.

reloadVersion ocpcc.pcc.configEnv Update this value with any value
different from the current value to
force a restart of the deployer.

Chapter 7
Configuring Pipeline Configuration Center

7-36

Table 7-7 (Cont.) PCC Keys for oc-cn-op-job-helm-chart

Key Paths in values.yaml File Description

adminPassword ocpcc.pcc.secretVal The password of the WebLogic
domain's administrative user,
which is used for accessing the
WebLogic Console for
administrative operations.

ldapPassword ocpcc.pcc.secretVal The password of the LDAP
Server admin user.

rcuSysDBAPassword ocpcc.pcc.secretVal The password for the
rcuJdbcURL database
administrator.

rcuSchemaPassword ocpcc.pcc.secretVal The passwords for the schemas
of Oracle Fusion Middleware
products that will be created by
RCU, which is used by OPSS.

dbWalletPassword ocpcc.pcc.secretVal The password for accessing the
certificates from the TrustStore
and KeyStore.

keystoreIdentityPassword ocpcc.pcc.secretVal The StorePass for the Identity
KeyStore.

keystoreKeyPassword ocpcc.pcc.secretVal The KeyPass for the Identity
KeyStore.

keystoreTrustPassword ocpcc.pcc.secretVal The StorePass for the Trust
KeyStore.

domainUID ocpcc.pcc.wop The name of the domain. The
default is pcc-domain.

adminChannelPort ocpcc.pcc.wop The NodePort where the admin-
server's HTTP service will be
accessible.

serverStartPolicy ocpcc.pcc.wop The WebLogic servers that the
Operator starts when it discovers
the domain:
• NEVER: Does not start any

server in the domain.
• ADMIN_ONLY: Starts only

the administration server (no
managed servers will be
started).

• IF_NEEDED: Starts the
administration server and
clustered servers up to the
replica count.

nodeSelector ocpcc.pcc The node selector rules for
scheduling WebLogic Server
pods on particular nodes using
simple selectors.

affinity ocpcc.pcc The affinity rules for scheduling
WebLogic Server pods on
particular nodes using more
powerful selectors.

Chapter 7
Configuring Pipeline Configuration Center

7-37

Adding Pipeline Configuration Center Keys for oc-cn-helm-chart
Table 7-8 lists the keys that directly impact PCC deployment. Add these keys to your override-
values.yaml file for oc-cn-helm-chart.

Table 7-8 Pipeline Configuration Center Keys

Key Path in Values.yaml File Description

appLogLevel ocpcc The logging level at which application logs must be
captured in log files: SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST, and ALL.

isEnabled ocpcc.pcc Whether to deploy, configure, and start PCC
services:

• false: Does not create the Kubernetes
resources for using PCC.

• true: Creates the Kubernetes resources for
using PCC. This is the default.

imageName ocpcc.pcc.deployment.app The name of the PCC image, such as oracle/pcc.

imageTag ocpcc.pcc.deployment.app The tag associated with the image. This is
generally the patch set number, prefixed with a
colon (:). For example, :15.0.1.0.0

keystoreAlias ocpcc.pcc.configEnv The private key alias of the KeyStore.

dbSSLMode ocpcc.pcc.configEnv The type of connection required to connect to the
database:
• TWO_WAY: Two-way SSL authentication is

required. In this case, both the client and
server must authenticate each other’s identity.

• ONE_WAY: One-way SSL authentication is
required. In this case, the client must
authenticate the server's identity. This is the
default.

• NO: SSL authentication is not required.

dbWalletType ocpcc.pcc.configEnv The type of TrustStore and KeyStore file that is
used for the SSL connection: SSO or PKCS12.

tlsVersions ocpcc.pcc.configEnv (Release 15.0.1 or later) The list of TLS versions to
support for connection with the WebLogic domain.
List the version numbers in order, from lowest to
highest, separated by a comma. For example:
TLSv1.2, TLSv1.3.

login ocpcc.pcc.infranet.user The username of the service that has permission
to access BRM.

serviceType ocpcc.pcc.infranet.user The POID type of the service that has permission
to access BRM.

serviceID ocpcc.pcc.infranet.user The POID ID of the service that has permission to
access BRM.

minSize ocpcc.pcc.infranet.connecti
onpool

The minimum size of the connection pool.

maxSize ocpcc.pcc.infranet.connecti
onpool

The maximum size of the connection pool.

loglevel ocpcc.pcc.infranet The log level for the infranet properties.

Chapter 7
Configuring Pipeline Configuration Center

7-38

Table 7-8 (Cont.) Pipeline Configuration Center Keys

Key Path in Values.yaml File Description

addOnProperties ocpcc.pcc.infranet Empty by default, you can use this key to specify
custom infranet properties.

domainUID ocpcc.pcc.wop The name of the domain. The default is pcc-
domain.

adminChannelPor
t

ocpcc.pcc.wop The NodePort where the admin-server's HTTP
service will be accessible.

serverStartPolicy ocpcc.pcc.wop The WebLogic servers that the Operator starts
when it discovers the domain:
• NEVER: Does not start any server in the

domain.
• ADMIN_ONLY: Starts only the administration

server (no managed servers will be started).
• IF_NEEDED: Starts the administration server

and clustered servers up to the replica count.

isEnabled ocpcc.pcc.monitoring Whether to enable monitoring of PCC.

nodeSelector ocpcc.pcc The node selector rules for scheduling WebLogic
Server pods on particular nodes using simple
selectors.

affinity ocpcc.pcc The affinity rules for scheduling WebLogic Server
pods on particular nodes using more powerful
selectors.

Table 7-9 lists the secret keys that directly impact PCC deployment. These keys hold sensitive
data and must be handled carefully with controlled access to the file containing its values. See
"Secrets" in Kubernetes Concepts.

Add these secret keys to your override-values.yaml file, and encode all of their values in
Base64.

Note:

• You can encode strings in Linux by using this command:

echo -n 'string' | base64
• You can decode strings in Linux by using this command:

echo 'encoded_string' | base64 --decode

Table 7-9 Pipeline Configuration Center Secret Keys

Key Description

ocpcc.pcc.secretVal.adminPassword The WebLogic Server administrative password encoded in
Base64.

ocpcc.pcc.secretVal.walletPassword The PCC wallet password encoded in Base64.

ocpcc.pcc.secretVal.rcuSysDBAPass
word

The Database Administrator password encoded in Base64.

Chapter 7
Configuring Pipeline Configuration Center

7-39

https://kubernetes.io/docs/concepts/configuration/secret/

Table 7-9 (Cont.) Pipeline Configuration Center Secret Keys

Key Description

ocpcc.pcc.secretVal.rcuSchemaPass
word

The password for schemas of Oracle Fusion Middleware
products that will be created by RCU, which is used by OPSS.
The value must be Base64-encoded.

ocpcc.pcc.secretVal.keystoreIdentity
Password

The KeyPass of Identity Keystore, which is used for setting up
the SSL-enabled domain. The value must be Base64-
encoded.

ocpcc.pcc.secretVal.keystoreKeyPas
sword

The StorePass of Identity Keystore, which is used for setting
up the SSL-enabled domain. This value must be Base64-
encoded.

ocpcc.pcc.secretVal.keystoreTrustPa
ssword

The StorePass of the Trust Keystore, which is used for setting
up the SSL-enabled domain. This value must be Base64-
encoded.

ocpcc.pcc.secretVal.pccUserPasswor
d

The PCC user password encoded in Base64.

About PCC Volume Mounts
The PCC container requires Kubernetes volume mounts for sharing the domain and
application file system between the WebLogic Cluster servers. There is one volume for the
domain. By default, these are created dynamically, using the provisioner defined in BRM, in the
storage-class key in oc-cn-op-job-helm-chart.

To change the volume type or provider, modify the following keys in the override-values.yaml
file for oc-cn-op-job-helm-chart.

• ocpcc.pcc.volume.domain.createOption for the domain file system for PCC.

Creating a WebLogic Domain and Installing the PCC Application
The WebLogic domain is created by a Kubernetes Deployment when oc-cn-op-job-helm-
chart is installed. The same job also installs the PCC application and deploys the application
EAR file onto the WebLogic Cluster.

The oc-cn-op-job-helm-chart chart also:

• Creates a Kubernetes ConfigMap and Secrets, which are used throughout the life-cycle of
the WebLogic domain.

• Initializes the PersistentVolumeClaim for the domain and application file system as well
as third-party libraries.

Note:

The override-values.yaml file that you use for this chart must include BRM override
values.

After you install oc-cn-op-job-helm-chart, wait until the Kubernetes deployment has reached
the 1/1 Running status. Then, you can install or upgrade oc-cn-helm-chart for PCC services.

Chapter 7
Configuring Pipeline Configuration Center

7-40

After the deployment is running, don't delete the chart. Its resources will be used for starting
and stopping the servers through oc-cn-helm-chart.

Setting Up SSO for PCC
SSO allows users to log in to applications using a single user name and password
combination. You set up SSO for PCC cloud native services by using SAML 2.0.

To set up SSO for PCC:

1. Export the SAML 2.0 metadata XML file from your identity and access management (IAM)
system.

For example, if you are using Oracle Access Management, you can export the file by
following the instructions in "Exporting Metadata" in Oracle Fusion Middleware
Administering Oracle Access Management.

2. Rename the metadata XML file to metadata.xml, and then move metadata.xml to the oc-
cn-op-job-helm-chart/pcc/idp directory.

3. Configure the KeyStores needed by SAML 2.0:

a. Generate identity and trust KeyStores.

b. Move your KeyStore files, such as identity.p12 and trust.p12, to the oc-cn-op-job-
helm-chart/pcc/keystore directory.

4. In your override-values.yaml file for oc-cn-helm-chart, set the isSSOEnabled key to
true.

5. In your override-values.yaml file for oc-cn-op-job-helm-chart, set the following keys:

• ocpcc.pcc.configEnv.isSSOEnabled: Set this to true.

• ocpcc.pcc.configEnv.keystoreAlias: Set this to the private key alias of the KeyStore.

• ocpcc.pcc.configEnv.keystoreType: Set this to the file type of the SSL Identity and
Trust store, which is either PKCS12 or JKS. The default is PKCS12.

• ocpcc.pcc.configEnv.keystoreIdentityFileName: Set this to the name of the Identity
KeyStore file.

• ocpcc.pcc.configEnv.keystoreTrustFileName: Set this to the name of the Trust
KeyStore file.

• ocpcc.pcc.configEnv.samlAsserterName: Set this to the name of the SAML
Asserter. The default is samlPCCAsserter.

• ocpcc.pcc.configEnv.ssoPublishedSiteURL: Set this to the base URL that is used
to construct endpoint URLs. This is typically the load balancer host and port at which
the server is visible externally. It must be appended with /saml2. For example: https://
LoadBalancerHost:LoadBalancerPort/saml2.

• ocpcc.pcc.configEnv.ssoDefaultURL: Set this to the URL where unsolicited
authentication responses are sent if they do not contain an accompanying target URL.

• ocpcc.pcc.secretVal.keystoreIdentityPassword: Set this to the StorePass for the
Identity KeyStore.

• ocpcc.pcc.secretVal.keystoreKeyPassword: Set this to the KeyPass for the Identity
KeyStore.

• ocpcc.pcc.secretVal.keystoreTrustPassword: Set this to the StorePass for the Trust
KeyStore.

Chapter 7
Configuring Pipeline Configuration Center

7-41

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/aiaag/managing-settings-identity-federation.html#GUID-019544AA-1090-46F4-9C0E-D421A26C56D8

6. Configure your load balancer's rules to send responses to the PCC WebLogic domain
with /saml2 appended to the URL path.

Note:

Add this rule to your existing load balancer rules for routing responses to PCC (/
pcc), the load balancer host name, and so on.

See "Installing an Ingress Controller".

7. Deploy your PCC cloud native services by following the instructions in "Deploying BRM
Cloud Native Services".

8. After PCC is deployed, retrieve the sp-metadata-admin-server.xml file from the /shared/
domains/domainUID directory in your container, where domainUID is the name of your
PCC domain specified in the ocpcc.pcc.wop.domainUID key.

The XML file configures the Web SSO Provider Partner. It contains the partner's KeyStore
certificates, SAML assertion details, and the URLs where the SAML Identity Provider
redirects to provide access to PCC.

9. Create a profile for your identity provider partner by loading the sp-metadata-admin-
server.xml file into your IAM system.

For example, if you are using Oracle Access Management, you can load the file by
following the instructions in "Creating Remote Identity Provider Partners" in Oracle Fusion
Middleware Administering Oracle Access Management.

Setting Up Local Users and Groups for PCC
You have the option to customize the values for oc-cn-op-job-helm-chart to create users and
groups locally in Oracle WebLogic Server. This would be especially useful for test
environments where you might not have Identity Providers or LDAPs available. The groups for
the admin user for WebLogic Server cannot be modified using this procedure.

Any passwords must be encoded using Base64. You can leave the password blank, but then
the user will not be able to log in to the application directly.

To set up local users and groups for PCC, define the keys under ocpcc.pcc.wlsUserGroups
in the override-values.yaml file for oc-cn-op-job-helm-chart.

A group has to be the Config Admin to access the PCC UI. Only a user associated with the
Config Admin group has full access to the PCC user interface. For example:

Add users and groups to domain's DefaultAuthenticator (local)
 wlsUserGroups:
 groups:
 - name: Config Admin
 description: PCC Admin
 # Each element for this takes "name", "description", "password" (base64
encoded) and list of "groups" that he is part of, like:
 # - name:
 # description:
 # password:
 # groups:
 # - "Regular CSR"
 users:
 - name: pccuser

Chapter 7
Configuring Pipeline Configuration Center

7-42

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/aiaag/managing-identity-federation-partners.html#GUID-B982AEAC-5ED6-4978-9BAE-D0F19CCB06B5

 description: pccuser
 password: QzFnMmIzdTQj
 groups:
 - "Config Admin"

Starting and Stopping WebLogic Servers
When you install oc-cn-op-job-helm-chart, the default configuration sets up a WebLogic
Cluster with five Managed Servers. When you install or upgrade oc-cn-helm-chart for the
PCC service, two of the Managed Servers and one Admin Server are started.

By modifying the override-values.yaml file for oc-cn-helm-chart, you can control:

• The total number of Managed Servers and the initial server start up by using the
totalManagedServers and initialServerCount keys.

• Whether the servers are started or stopped by using the serverStartPolicy key. To start
the Admin Servers and the Managed Servers in a Cluster, set the key to IF_NEEDED. To
stop all servers, set the key to NEVER.

Note:

The keys in the override-values.yaml file should be the same as the ones used in
oc-cn-op-job-helm-chart for keys that are common in both charts.

After you modify the override-values.yaml file, update the Helm release for the changes to
take effect:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations in
the values.yaml file for oc-cn-helm-chart.

Configuring SSL in PCC
To access PCC over the HTTPS port, SSL must be enabled in the WebLogic domain where
PCC is deployed. The BRM cloud native deployment package takes care of the configuration
necessary to equip the WebLogic domain with SSL access.

To complete the configuration for SSL setup:

1. Copy PKCS12 files with valid certificates to the oc-cn-op-job-helm-chart/pcc/keystore
directory:

• identity.p12: Provides the certificate to identify the server.

• trust.p12: Establishes trust for the certificate.

Chapter 7
Configuring Pipeline Configuration Center

7-43

If your KeyStore files have different file names or file types, such as JKS, override the
keyStoreIdentityFileName, keyStoreTrustFileName, and keyStoreType keys in the
override-values.yaml file for oc-cn-helm-chart.

The keystoreAlias key is also mandatory along with keyStoreIdentityFileName,
keystoreTrustFileName to enable SSL.

Chapter 7
Configuring Pipeline Configuration Center

7-44

8
Configuring REST Services

Learn how to integrate external applications with your Oracle Communications Billing and
Revenue Management (BRM) cloud native environment by using the BRM and PDC REST
services.

Topics in this document:

• Configuring BRM REST Services Manager

• Configuring PDC REST Services Manager

Configuring BRM REST Services Manager
You use BRM REST Services Manager to integrate an external customer experience
application with BRM. This allows you to manage billing and rating in BRM and then view your
customers' account balances and bills in your external client. For more information, see REST
Services Manager API for Billing and Revenue Management.

To configure BRM REST Services Manager in BRM cloud native:

1. Generate an SSL certificate. See "Generating an SSL Certificate for BRM REST Services
Manager".

2. Optionally, configure the BRM REST Services Manager SDK. See "Configuring the SDK
(Optional)".

3. Configure the HTTPS port for Oracle Unified Directory. See "Configuring the Oracle Unified
Directory HTTPS Port".

4. If BRM and REST Services Manager are located in separate clusters, connect BRM REST
Services Manager to BRM. See "Connecting to a Separate BRM Cluster".

5. Override the BRM REST Services Manager-specific keys in the values.yaml file. See
"Adding BRM REST Services Manager Keys".

Generating an SSL Certificate for BRM REST Services Manager
The following shows the steps for generating a sample SSL certificate:

1. Create a directory named rsm_keystore under the oc-cn-helm-chart/rsm directory.

2. Generate an SSL certificate. For example:

openssl req -x509 -newkey rsa:4096 -keyout openSSLKey.pem -out cert.pem -days 365 -
nodes

3. Generate a PKCS12 KeyStore file. For example, this creates a KeyStore file named
keystore.p12:

openssl pkcs12 -export -out keyStore.p12 -inkey openSSLKey.pem -in cert.pem
4. Copy your SSL certificate file to the oc-cn-helm-chart/rsm/rsm_keystore directory.

8-1

Configuring the SDK (Optional)
To integrate the SDK with BRM REST Services Manager, generate an SDK image as follows:

1. Copy your extended SDK JAR oc-cn-docker-files-15.0.x.0.0/oc-cn-docker-files/ocrsm/
brm_rest_services_manager/SDK/libs to the oc-cn-docker-files-15.0.x.0.0/oc-cn-
docker-files/ocrsm/brm_rest_services_manager/SDK directory.

Note:

The SDK JAR can be used directly from oc-cn-docker-files-15.0.x.0.0/oc-cn-
docker-files/ocrsm/brm_rest_services_manager/SDK/libs if no changes are
required. If you need to make further customizations, follow the instructions in
REST Services Manager API for Billing and Revenue Management and then
copy the updated SDK JAR to the oc-cn-docker-files-15.0.x.0.0/oc-cn-docker-
files/ocrsm/brm_rest_services_manager/SDK directory.

2. In your override-values.yaml file for oc-cn-helm-chart, set the
ocrsm.rsm.configEnv.rsmExtensionJar key to the name of your extended SDK JAR file,
such as BRMRESTExtension.jar.

3. Go to the oc-cn-docker-files-15.0.x.0.0/oc-cn-docker-files/ocrsm/
brm_rest_services_manager/SDK directory.

4. Build the Podman image by running this command:

podman build --format docker --tag imagerepo/brm-rest-services-manager-extension:1 .
5. Push the SDK image to the repository by running this command:

podman login --username user --password password imagerepo
podman push imagerepo/brm-rest-services-manager-extension:1

Configuring the Oracle Unified Directory HTTPS Port
If an HTTPS port is used for Oracle Unified Directory, do the following:

1. Create a directory named rsm_oud_keystore under the oc-cn-helm-chart/rsm directory.

2. Copy the Oracle Unified Directory certificate to the oc-cn-helm-chart/rsm/
rsm_oud_keystore directory.

Connecting to a Separate BRM Cluster
If BRM is located in a separate cluster from BRM REST Services Manager, do the following to
connect BRM REST Services Manager to BRM:

1. Open the configmap_env_brmrsm.yaml file in a text editor.

2. Set BRM_HOST_NAME to the host name of the cluster on which BRM is located. The
default value is cm.

3. Save and close the file.

Chapter 8
Configuring BRM REST Services Manager

8-2

Adding BRM REST Services Manager Keys
Table 8-1 lists the keys that directly impact BRM REST Services Manager. Add these keys to
your override-values.yaml file with the same path hierarchy.

Caution:

Keys with the path ocrsm.rsm.secretVal hold sensitive data. Handle them carefully
with controlled access to the override file containing their values. Encode all of these
values in Base64. See "Secrets" in Kubernetes Concepts.

Table 8-1 BRM REST Services Manager Keys

Key Path in
Values.yaml File

Description

isEnabled ocrsm.rsm The flag to indicate if BRM REST Services Manager should
be deployed with BRM cloud native.

imageName ocrsm.rsm.deploy
ment

The name of the BRM REST Services Manager image, such
as oracle/brm-rest-services-manager.

imageTag ocrsm.rsm.deploy
ment

The tag associated with the image, such as 15.0.0.0.0.

imageName ocrsm.rsm.deploy
ment.sdk

The name of the BRM REST Services Manager SDK image,
such as brm-rest-services-manager-extension.

imageTag ocrsm.rsm.deploy
ment.sdk

The tag associated with the BRM Services Manager SDK
image, such as 1.

httpPort ocrsm.rsm.config
Env

The HTTP port in the container on which to deploy BRM
REST Services Manager.

Note: Set this to a port number from 30000 through 32767
that is not in use.

httpsPort ocrsm.rsm.config
Env

The HTTPS port in the container on which to deploy BRM
REST Services Manager.

Note: Set this to a port number from 30000 through 32767
that is not in use.

tlsVersions ocrsm.rsm.config
Env

(Release 15.0.1 or later) The list of TLS versions to support
for connection with the WebLogic domain. List the version
numbers in order, from lowest to highest, separated by a
comma. For example: TLSv1.2, TLSv1.3.

rsmCertificateFile
Name

ocrsm.rsm.config
Env

The SSL certificate file name for BRM REST Services
Manager.

baseURL ocrsm.rsm.config
Env

The base URL with resource details to return in the response
of BRM REST Services Manager requests.

Note: After deployment, you can update this value by editing
your override-values.yaml file and then doing a Helm
upgrade.

brmLogin ocrsm.rsm.config
Env

The user name of the service with permission to access
BRM, such as rsm.0.0.0.1.

brmServiceType ocrsm.rsm.config
Env

The BRM service type, such as /service/admin_client.

Chapter 8
Configuring BRM REST Services Manager

8-3

https://kubernetes.io/docs/concepts/configuration/secret/

Table 8-1 (Cont.) BRM REST Services Manager Keys

Key Path in
Values.yaml File

Description

brmServicePoidId ocrsm.rsm.config
Env

The BRM service POID, such as 1.

brmSSLWalletFile
Name

ocrsm.rsm.config
Env

The BRM SSL wallet file name.

rsmExtensionJar ocrsm.rsm.config
Env

The file name of the BRM REST Service Manager SDK JAR,
such as BRMRESTExtension.jar.

bipURL ocrsm.rsm.config
Env

The Oracle Analytics Publisher URL.

bipUserId ocrsm.rsm.config
Env

The Oracle Analytics Publisher user ID.

securityEnabled ocrsm.rsm.config
Env

The flag to indicate if token-based authentication is enabled
for BRM REST Services Manager.

idcsURI ocrsm.rsm.config
Env.idcs

The Oracle Identity Cloud Service (IDCS) URL.

clientID ocrsm.rsm.config
Env.idcs

The IDCS client ID.

proxyHost ocrsm.rsm.config
Env.idcs

The IDCS proxy host.

scopeAudience ocrsm.rsm.config
Env.idcs

The primary audience configured in IDCS.

audience ocrsm.rsm.config
Env.idcs

The secondary audience configured in IDCS. If a secondary
audience is not configured, enter the primary audience.

domainName ocrsm.rsm.config
Env.oam

The Oracle Access Manager domain name.

audience ocrsm.rsm.config
Env.oam

The Oracle Access Manager OAuth server name.

endpointURL ocrsm.rsm.config
Env.oam

The Oracle Access Manager OAuth token endpoint URL.

oudHostName ocrsm.rsm.config
Env.oam

The Oracle Unified Directory host name.

oudRootUserDN ocrsm.rsm.config
Env.oam

The Oracle Unified Directory root user domain name.

oudHttpPort ocrsm.rsm.config
Env.oam

The Oracle Unified Directory HTTP port.

oudHttpsPort ocrsm.rsm.config
Env.oam

The Oracle Unified Directory HTTPS port.

oudUserBaseDN ocrsm.rsm.config
Env.oam

The Oracle Unified Directory user domain name.

oudGroupDN ocrsm.rsm.config
Env.oam

The Oracle Unified Directory group domain name.

logLevel ocrsm.rsm.config
Env

The application log level: SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, FINEST.

helidonSecurityL
ogLevel

ocrsm.rsm.config
Env

The security log level: SEVERE, WARNING, INFO, CONFIG,
FINE, FINER, or FINEST.

helidonWebServe
rLogLevel

ocrsm.rsm.config
Env

The server log level: SEVERE, WARNING, INFO, CONFIG,
FINE, FINER, or FINEST.

Chapter 8
Configuring BRM REST Services Manager

8-4

Table 8-1 (Cont.) BRM REST Services Manager Keys

Key Path in
Values.yaml File

Description

helidonConfigLog
Level

ocrsm.rsm.config
Env

The Helidon configuration log level: SEVERE, WARNING,
INFO, CONFIG, FINE, FINER, or FINEST.

helidonMicroProfi
leLogLevel

ocrsm.rsm.config
Env

Helidon MP log level SEVERE, WARNING, INFO, CONFIG,
FINE, FINER, or FINEST.

helidonCommonL
ogLevel

ocrsm.rsm.config
Env

The Helidon common log level: SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, or FINEST.

nettyServerLogLe
vel

ocrsm.rsm.config
Env

The embedded netty server log level: SEVERE, WARNING,
INFO, CONFIG, FINE, FINER, or FINEST.

jerseyLogLevel ocrsm.rsm.config
Env

The jersey log level: SEVERE, WARNING, INFO, CONFIG,
FINE, FINER, or FINEST.

jbossWeldLogLev
el

ocrsm.rsm.config
Env

The Helidon JBossWeld log level: SEVERE, WARNING,
INFO, CONFIG, FINE, FINER, or FINEST.

auditLogLevel ocrsm.rsm.config
Env

The audit log level: SEVERE, WARNING, INFO, CONFIG,
FINE, FINER, or FINEST.

rsmCertificatePas
sword

ocrsm.rsm.secret
Val

The Base64-encoded certificate password for BRM REST
Services Manager.

brmInfranetWallet
Password

ocrsm.rsm.secret
Val

The Base64-encoded wallet password. You can use any
password.

This password will be used to store the Oracle Analytics
Publisher and Infranet connections in the wallet and can be
used to access the same.

bipPassword ocrsm.rsm.secret
Val

The Base64-encoded Oracle Analytics Publisher password.

clientSecret ocrsm.rsm.secret
Val

The Base64-encoded IDCS client secret.

oudCertificateAlia
s

ocrsm.rsm.secret
Val

The certificate alias is any unique name that is Base64-
encoded for JDK KeyStore. This key is required for Oracle
Unified Directory HTTPS protocols.

oudRootUserPass
word

ocrsm.rsm.secret
Val

The Base64-encoded Oracle Unified Directory root password.

You can use the following commands to encode and decode passwords in Base64 format:

• To encode strings in Linux:

echo -n 'password' | base64
• To decode strings in Linux:

echo 'encoded_password' | base64 --decode

Sample override-values for IDCS Security Type
This shows sample content in the override-values.yaml for BRM REST Services Manager
when the security type is Oracle Identity Cloud Service (IDCS):

ocrsm:
 rsm:
 configEnv:
 securityEnabled: true
 bipUrl: http://xxxxxxx:xxxxx/xmlpserver/services/PublicReportService_v11

Chapter 8
Configuring BRM REST Services Manager

8-5

 bipUserId: weblogic
 baseURL: xxxxx.xxx.xxxxx.xxx
 idcs:
 idcsURI: "https://xxxxx.xxxx.xxxxx.xxxxx.xxxx"
 clientID: xxxxxx
 scopeAudience: "https://xxxxx:xxxxx:xxxx:xxxxx::"
 audience: "https://xxxxx:xxx:xxxxx:xxxxx::"
 rsmExtensionJar: brm-rest-extension.jar
 rsmCertificateFileName: keyStore.p12
 secretVal:
 rsmCertificatePassword: xxxxxx
 brmInfranetWalletPassword: xxxxxx
 bipPassword: xxxxxx
 clientSecret: xxxxxx

Sample override-values.yaml for OAM Security Type
This shows sample content in the override-values.yaml for BRM REST Services Manager
when the security type is Oracle Access Manager:

ocrsm:
 rsm:
 configEnv:
 securityEnabled: true
 bipUrl: http://xxxxxx:xxxxxx/xmlpserver/services/PublicReportService_v11
 bipUserId: weblogic
 securityType: OAM
 baseURL: xxxxx.xxx.xxxxx.xxx
 oam:
 domainName: TMFOAuthOIDCDomain
 audience: TMFResourceServer
 endpointURL: "http://xxxx.xxxx.xxxx.xxx:14100/oauth2/rest/token/info"
 oudHostName: xxxx.xxxx.xxxx.xxx
 oudRootUserDN: cn=MyRootUser
 oudHttpPort: 9090
 oudUserBaseDN: ou=people,dc=tmf,dc=com
 oudGroupDN: ou=Groups,dc=tmf,dc=com
 rsmExtensionJar: brm-rest-extension.jar
 rsmCertificateFileName: keyStore.p12
 secretVal:
 rsmCertificatePassword: xxxxx
 brmInfranetWalletPassword: xxxxx
 bipPassword: xxxxx
 oudRootUserPassword: xxxxx

Sample BRM RSM override-values for Separate BRM Cluster
This shows sample content in the override-values.yaml for BRM REST Services Manager
when BRM is deployed in a separate cluster:

Chapter 8
Configuring BRM REST Services Manager

8-6

Note:

• Pass the values for idcsURI, scopeAudience, audience, and OAM
endpointURL in quotes when the URL ends with characters such as colon colon
(::).

• Ensure that you provide the hostname for connecting to the BRM cluster in the
configmap_env_brmrsm.yaml file. See "Connecting to a Separate BRM
Cluster".

ocbrm:
 brm_root_pass: xxxxx
 isSSLEnabled: true

ocrsm:
 rsm:
 configEnv:
 securityEnabled: true
 bipUrl: http://xxxxx:xxxx/xmlpserver/services/PublicReportService_v11
 bipUserId: weblogic
 baseURL: xxxxx.xxx.xxxxx.xxx
 idcs:
 idcsURI: "https://xxxxx.xxxx.xxxxx.xxxxx.xxxx"
 clientID: xxxx
 scopeAudience: "https://xxxxx:xxxxx:xxxx:xxxxx::"
 audience: "https://xxxxx:xxx:xxxxx:xxxxx::"
 rsmExtensionJar: brm-rest-extension.jar
 rsmCertificateFileName: keyStore.p12
 secretVal:
 rsmCertificatePassword: xxxxx
 brmInfranetWalletPassword: xxxxx
 bipPassword: xxxxx
 clientSecret: xxxxx

Configuring PDC REST Services Manager
You use PDC REST Services Manager to integrate an enterprise product catalog, such as
Oracle Digital Experience for Communications Launch Experience, with PDC. This enables
you to create a variety of product offerings in your enterprise product catalog and then have all
of the rating and billing performed by PDC and BRM. For more information, see "About PDC
REST Services Manager" in PDC REST Services Manager Integration Guide.

To configure PDC REST Services Manager in BRM cloud native:

1. Override the PDC REST Services Manager-specific keys in the values.yaml file. See
"Adding PDC REST Services Manager Keys".

2. Configure OAuth authentication:

a. If you are using Oracle Access Management for OAuth, create an identity domain,
resource server, and OAuth client for PDC REST Services Manager in Oracle Access
Management as described in "Setting Up OAuth for PDC REST Services Manager with
Oracle Access Management" in BRM Security Guide.

b. Configure the keys in the override-values.yaml file for OAuth with either Oracle
Identity Cloud Service or Oracle Access Management as described in "Configuring
OAuth Authentication in PDC REST Services Manager".

Chapter 8
Configuring PDC REST Services Manager

8-7

3. Configure outbound communication to the enterprise product catalog. See "Configuring
Requests to the Enterprise Product Catalog".

4. Enable TLS encryption in PDC REST Services Manager to secure the communications it
receives from your enterprise product catalog. See "Enabling TLS in PDC REST Services
Manager".

5. Enable the T3S protocol in PDC REST Services Manager to secure its communications to
PDC. See "Enabling T3S in PDC REST Services Manager".

6. Map TMF620 priceType values to BRM events to ensure that PDC REST Services
Manager triggers the correct charging events for your pricing components. See
"Configuring Mapping of TMF620 priceType to BRM Events".

Adding PDC REST Services Manager Keys
Table 8-2 lists the keys that directly impact PDC REST Services Manager. Add these keys to
your override-values.yaml file with the same path hierarchy.

Caution:

Keys with the path ocpdcrsm.secretValue hold sensitive data. Handle them
carefully with controlled access to the override file containing their values. Encode all
of these values in Base64. See "Secrets" in Kubernetes Concepts.

Table 8-2 PDC REST Services Manager Keys

Key Path in
Values.yaml File

Description

isEnabled ocpdcrsm.labels Whether to enable and deploy PDC REST Services Manager
with BRM cloud native:
• true: Enables and deploys PDC REST Services

Manager.
• false: Does not deploy PDC REST Services Manager.

This is the default.

imageName ocpdcrsm.deploy
ment

The name of the PDC REST Services Manager image, such
as oracle/pdcrsm.

imageTag ocpdcrsm.deploy
ment

The tag associated with the image.

rsmListenerPort ocpdcrsm.config
Env

The HTTPS port number assigned to listen for API requests
from the enterprise product catalog.

baseUrl ocpdcrsm.config
Env

The base URL with resource details to return in the response
of PDC REST Services Manager requests.

Note: After deployment, you can update this value by editing
your override-values.yaml file and then doing a Helm
upgrade.

securityEnabled ocpdcrsm.config
Env

Whether to enable token-based authentication for PDC REST
Services Manager.

securityType ocpdcrsm.config
Env

Which OAuth provider to use for token-based authentication.
Set this to oam for Oracle Access Management or idcs for
Oracle Identity Cloud Service.

Chapter 8
Configuring PDC REST Services Manager

8-8

https://kubernetes.io/docs/concepts/configuration/secret/

Sample PDC REST Services Manager override-values.yaml Entries

The following shows sample content in the override-values.yaml for PDC REST Services
Manager, when Oracle Access Management is used for OAuth authentication:

ocpdcrsm:
 labels:
 name: "pdc-rsm"
 version: "15.0.0.0.0"
 isEnabled: true
 deployment:
 deadlineSeconds: 60
 revisionHistLimit: 10
 imageName: "oracle/pdcrsm"
 imageTag: ":15.0.0.0.0"
 imagePullPolicy: IfNotPresent
 configEnv:
 name: "pdcrsm-configmap-env"
 rsmListenerPort:
 baseURL: xxxxx.xxx.xxxxx.xxx
 securityEnabled: true
 securityType: oam
 oam:
 domainName: PDCRSMDomain
 audience: PDCRSMResourceServer
 endpointURL: http://oam_host:oam_port/oauth2/rest/token
 introspectendpointuri: http://oam_host:oam_port/oauth2/rest/token/info
 scopeaudience: http://oam_host:oam_port/
 authorizationendpointuri: http://oam_host:oam_port/oauth2/authorize
 proxyhost: http://proxyhost:proxyport/
 frontenduri: http://oam_host:oam_port
 secretValue:
 name: "pdcrsm-secret-env"
 service:
 name: "pdcrsm"
 type: "NodePort"
 nodePort: 31000

Configuring OAuth Authentication in PDC REST Services Manager
PDC REST Services Manager uses the OAuth 2.0 protocol to authenticate an enterprise
product catalog's identity and to authorize the enterprise product catalog to access the PDC
REST Services Manager API. It does this by validating an OAuth access token that is passed
in the header of every HTTP/HTTPS request to the PDC REST Services Manager API.

To configure OAuth authentication in PDC REST Services Manager:

1. Add these keys to your override-values.yaml file for oc-cn-helm-chart:

• If you are using Oracle Identity Cloud Service (IDCS) for OAuth:

– ocpdcrsm.configEnv.isInboundOauthEnabled: Set this to true to enable OAuth
authentication.

– ocpdcrsm.configEnv.inboundOauthUri: Set this to the base URL of your Oracle
Identity Cloud Service (IDCS) instance in this format:

https://idcs-TenantID.identity.oraclecloud.com
– ocpdcrsm.configEnv.inboundOauthClientId: Set this to the client ID of your

confidential application.

Chapter 8
Configuring PDC REST Services Manager

8-9

– ocpdcrsm.secretValue.inboundOauthClientSecret: Set this to the Base64-
encrypted client secret obtained from your IDCS application.

– ocpdcrsm.configEnv.inboundOauthFrontendUri: Set this to the base URL of
your confidential application when run, such as http://myapp.example.com:8080.

– ocpdcrsm.configEnv.inboundOauthAudience: Set this to the primary audience
as provisioned for the PDC REST Services Manager application in IDCS.

– ocpdcrsm.configEnv.inboundOauthProxyHost: Set this to the host name of
your proxy server, if required.

– ocpdcrsm.configEnv.inboundOauthPubEventScope: Set this to the name of
the scope for accessing the TMF620 Publish Event endpoint for inbound OAuth
authentication, such as pubevent.

– ocpdcrsm.configEnv.inboundOauthMetricsScope: Set this to the name of the
scope for accessing the metrics endpoint for inbound OAuth authentication, such
as metrics.

• If you are using Oracle Access Management for OAuth:

– ocpdcrsm.configEnv.oam.domainName: Set this to the name of the OAuth
identity domain created in Oracle Access Management for PDC REST Services
Manager.

– ocpdcrsm.configEnv.oam.audience: Set this to the name of the OAuth resource
server created in Oracle Access Management for PDC REST Services Manager.

– ocpdcrsm.configEnv.oam.endpointURL: Set this to the URL for requesting an
OAuth token from Oracle Access Management.

– ocpdcrsm.configEnv.oam.introspectendpointuri: Set this to the URL for
validating an OAuth token from Oracle Access Management.

– ocpdcrsm.configEnv.oam.scopeaudience: Set this to the primary audience for
PDC REST Services Manager in the Oracle Access Management resource, used
for error handling. This is the same as ocpdcrsm.configEnv.oam.frontenduri,
ending with /.

– ocpdcrsm.configEnv.oam.authorizationendpointuri: The URL for authorizing
role-based access. PDC REST Services Manager does not support role-based
access, so this will not be used.

– ocpdcrsm.configEnv.oam.proxyhost: Set this to the URL for your Oracle Access
Management proxy server, if needed.

– ocpdcrsm.configEnv.oam.frontenduri: Set this to the URL for of the OAuth client
created in Oracle Access Management for PDC REST Services Manager.

2. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

3. Restart the PDC REST Services Manager pods. If downtime is not a concern, both pods
can be deleted and re-created by running the following command. Otherwise, delete one
pod at a time, waiting for its replacement pod to become "Running" before deleting the
next one.

kubectl -n BrmNameSpace delete pods --selector=app.kubernetes.io/name=pdcrsm

Chapter 8
Configuring PDC REST Services Manager

8-10

Configuring Requests to the Enterprise Product Catalog
PDC REST Services Manager sends requests to the enterprise product catalog when calling
the enterprise product catalog's REST API and when publishing acknowledgment notifications.

To configure PDC REST Services Manager to send requests to the enterprise product catalog:

1. Open the override-values.yaml file for oc-cn-helm-chart.

2. Edit the keys in the file based on the type of authentication required by your enterprise
product catalog:

• For OAuth 2.0 authentication, edit the keys in Table 8-3.

Table 8-3 OAuth 2.0 Keys

Key Path in Values.yaml file Description

tokenEndpoint ocpdcrsm.configEnv.http
Clients.security.oauth2

The endpoint used to retrieve a token from.

clientId ocpdcrsm.configEnv.http
Clients.security.oauth2

The client ID used to authenticate the request
from PDC REST Services Manager.

username ocpdcrsm.configEnv.http
Clients.security.oauth2

The user name required for accessing the
enterprise product catalog.

scope ocpdcrsm.configEnv.http
Clients.security.oauth2

The scopes required by the enterprise product
catalog.

grantType ocpdcrsm.configEnv.http
Clients.security.oauth2

The grant type to be used for the OAuth flow:
client_credentials or password.

clientsecret ocpdcrsm.secretValue.ht
tpClients.security.oauth2

The encrypted client secret used to
authenticate the request from PDC REST
Services Manager.

password ocpdcrsm.secretValue.ht
tpClients.security.oauth2

The encrypted password required for
accessing the enterprise product catalog.

• For basic authentication, edit the keys in Table 8-4.

Table 8-4 basicAuth Keys

Key Path in Values.yaml file Description

username ocpdcrsm.configEnv.http
Clients.security.basicAut
h

The user name required for accessing the
enterprise product catalog.

password ocpdcrsm.secretValue.ht
tpClients.security.basicA
uth

The password required for accessing the
enterprise product catalog.

3. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

4. Restart the PDC REST Services Manager pods. If downtime is not a concern, both pods
can be deleted and re-created by running the following command. Otherwise, delete one
pod at a time, waiting for its replacement pod to have a "Running" status before deleting
the next one.

Chapter 8
Configuring PDC REST Services Manager

8-11

kubectl --namespace BrmNameSpace delete pods --selector=app.kubernetes.io/name=pdcrsm
The following shows an example configuration for OAuth 2.0 authentication.

Note:

All urlRegex values in the file must be properly escaped with \\. The characters that
must be escaped are: \.[]{}()<>*+-=!? ^$|.

configEnv:
 httpClients:
 - urlRegex: "http://hostname:port/mobile/custom/catalogManagement/.*"
 security:
 oauth2:
 tokenEndpoint: "https://idcs_hostname/oauth2/v1/token"
 clientId: "fcb3443f6c504ed789ba38a78341b88a"
 username: "user"
 scope: "https://hostnameurn:opc:resource:consumer::all"
 grantType: "password"
secretValue:
 httpClients:
 - urlRegex: "http://hostname:port/mobile/custom/catalogManagement/.*"
 security:
 oauth2:
 clientSecret: client_secret
 password: password

The following shows an example configuration for Basic authentication:

Note:

All urlRegex values in the file must be properly escaped with \\. The characters that
must be escaped are: \.[]{}()<>*+-=!? ^$|.

configEnv:
 httpClients:
 - urlRegex: "http://hostname:port/mobile/custom/PublishingAPI.*"
 security:
 basicAuth:
 username: eccUser
secretValue:
 httpClients:
 - urlRegex: "http://hostname:port/mobile/custom/PublishingAPI.*"
 security:
 basicAuth:
 password: password

Enabling TLS in PDC REST Services Manager
You can enable TLS encryption in PDC REST Services Manager to secure the
communications it receives from your enterprise product catalog.

To enable TLS in PDC REST Services Manager:

1. Generate a self-signed SSL certificate:

Chapter 8
Configuring PDC REST Services Manager

8-12

a. Create a directory for storing your SSL certificate that is accessible by the BRM Helm
chart, such as oc-cn-helm-chart/rsm_cert.

b. Generate an SSL certificate. For example, this creates a certificate file named
cert.pem:

openssl req -x509 -newkey rsa:4096 -keyout openSSLKey.pem -out cert.pem -days
365 -nodes

c. Generate a PKCS12 KeyStore file. For example, this creates a KeyStore file named
keystore.p12:

openssl pkcs12 -export -out keyStore.p12 -inkey openSSLKey.pem -in cert.pem
2. Add these keys to your override-values.yaml file for oc-cn-helm-chart:

• security.tlsVersions: Set this to the list of TLS versions supported by PDC REST
Services Manager, such as TLSv1.2,TLSv1.3. This is the default global value for PDC
REST Services Manager.

• ocpdcrsm.configEnv.isTlsEnabled: Set this to true to enable TLS encryption for
PDC REST Services Manager.

• ocpdcrsm.configEnv.tlsVersions: Set this to the list of supported TLS versions, such
as TLSv1.2,TLSv1.3.

Note:

Set this key if you want to override the value set it security.tlsVersions for
communication with PDC or an enterprise product catalog.

• ocpdcrsm.configEnv.tlsCertificatePath: Set this to the path of the TLS certificate
bundle relative to this Helm chart, such as rsm_cert/keyStore.p12.

• ocpdcrsm.secretValue.tlsCertificatePassphrase: Set this to the Base64-encrypted
passphrase for the TLS certificate.

3. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

4. To apply the changes, re-create any previously existing PDC REST Services Manager
pods:

kubectl --namespace BrmNameSpace delete pods --selector=app.kubernetes.io/name=pdcrsm
After you enable TLS, connect to PDC REST Services Manager services using HTTPS only.

Enabling T3S in PDC REST Services Manager
Enable the T3S protocol in PDC REST Services Manager to secure its communications to
PDC.

To enable T3S in PDC REST Services Manager:

1. Add these keys to your override-values.yaml file for oc-cn-helm-chart:

• ocpdcrsm.configEnv.useT3s: Set this to true.

• ocpdcrsm.configEnv.jksTrustStorePath: Set this to the path of the JKS TrustStore
for the PDC T3S connection, such as rsm/truststore.jks.

Chapter 8
Configuring PDC REST Services Manager

8-13

2. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

3. To apply the changes, re-create any previously existing PDC REST Services Manager
pods:

kubectl --namespace BrmNameSpace delete pods --selector=app.kubernetes.io/name=pdcrsm

Configuring Mapping of TMF620 priceType to BRM Events
If you are using PDC REST Services Manager, you must configure the mappings of BRM
event names to the values your enterprise product catalog sends in the priceType property of
the ProductOfferingPrice element of the TMF620 payload.

The mappings are configured in configmap_pdcrsm_appeventCfg.yaml. You can add
mappings as needed for your deployment or use the default mappings provided at installation.

To add or edit mappings:

1. Open the configmap_pdcrsm_appeventCfg.yaml file.

2. Edit the existing mappings, or use them as templates to add new ones. Use the following
format:

pricetype : "eventname"

where:

• pricetype is the value sent in the priceType property of the ProductOfferingPrice
element of the TMF620 payload.

• eventname is the name of the BRM event the price type should be mapped to.

For example, the default mappings for one-time fees and usage events are:

ONE_TIME : "EventBillingProductFeePurchase"
ONE_TIME_PRICE_PLAN : "EventBillingProductFeePurchase"
USAGE : "EventSession"
USAGE_PRICE_PLAN : "EventSession"

3. Run the helm upgrade command to update the Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

4. Restart the PDC REST Services Manager pods. If downtime is not a concern, both pods
can be deleted and re-created by running the following command. Otherwise, delete one
pod at a time, waiting for its replacement pod to become "Running" before deleting the
next one.

kubectl --namespace BrmNameSpace delete pods --selector=app.kubernetes.io/name=pdcrsm

Chapter 8
Configuring PDC REST Services Manager

8-14

9
Configuring the Billing Care, Billing Care
REST API, and Business Operations Center
Services

Learn how to configure Billing Care, Billing Care REST API, and Business Operations Center
to run in your Oracle Communications Billing and Revenue Management (BRM) cloud native
environment.

Topics in this document:

• About Configuring Business Operations Center, Billing Care, and Billing Care REST API

• Configuring Business Operations Center

• Configuring Billing Care

• Configuring the Billing Care REST API

About Configuring Business Operations Center, Billing Care, and
Billing Care REST API

Business Operations Center, Billing Care, and the Billing Care REST API all of them share a
similar image stack.

Figure 9-1 shows the process for deploying Billing Care using WebLogic Operator. The same
process is used for the Billing Care REST API. The only difference is the name of the deployer:
bcws-domain-deployer.

Figure 9-1 Billing Care Deployment Flow

Figure 9-2 shows the process for deploying Business Operations Center using WebLogic
Operator. It is similar to the Billing Care process.

9-1

Figure 9-2 Business Operations Center Deployment Flow

Note:

It is important to wait until the component-domain-deployer process is in the 1/1
Running status before running oc-cn-helm-chart.

You deploy these services by using the following Helm charts:

• oc-cn-op-job-helm-chart: This chart creates and configures the WebLogic domain,
deploys the application, deploys and links the SDK (for Billing Care and Billing Care REST
API), and loads the authorization policies.

• oc-cn-helm-chart: This chart starts the rolling restart of the WebLogic servers and the
application update.

• WebLogic Operator chart: This chart manages the application domain, controlling the
service availability when managed server pods are scaled up or down.

Configuring Business Operations Center
Business Operations Center is a Web-based client application that you use to run business
operations such as billing, invoicing, and payment collections. For more information, see
"Using Business Operations Center" in BRM System Administrator's Guide.

To configure Business Operations Center to run in your BRM cloud native environment:

1. Override the Business Operations Center-specific keys in the values.yaml file for oc-cn-
op-job-helm-chart. See "Adding Business Operations Center Keys for oc-cn-op-job-helm-
chart".

2. Override the Business Operations Center-specific keys in the values.yaml file for oc-cn-
helm-chart. See "Adding Business Operations Center Keys for oc-cn-helm-chart".

3. Set up volume mounts. See "About Business Operations Center Volume Mounts".

4. Create a WebLogic domain and install the Business Operations Center application. See
"Creating a WebLogic Domain and Installing the Business Operations Center Application".

5. Set up SAML for SSO in Business Operations Center. See "Setting Up SSO for Business
Operations Center".

Chapter 9
Configuring Business Operations Center

9-2

6. Start and stop your WebLogic servers. See "Starting and Stopping WebLogic Servers".

Note:

To set up Business Operations Center, ensure that you successfully complete the
installation of oc-cn-op-job-helm-chart before you install or upgrade oc-cn-helm-
chart.

Adding Business Operations Center Keys for oc-cn-op-job-helm-chart
Table 9-1 lists the keys that directly impact Business Operations Center. Add these keys to
your override-values.yaml file for oc-cn-op-job-helm-chart with the same path hierarchy.

For a complete set of keys to personalize Business Operations Center deployment, see the
keys with the path ocboc.boc in the oc-cn-op-job-helm-chart/values.yaml file.

Caution:

Keys with the path ocboc.boc.secretVal hold sensitive data. Handle them carefully
with controlled access to the file containing their values. Encode all of these values in
Base64 format. See "Secrets" in Kubernetes Concepts.

Table 9-1 Keys for oc-cn-op-job-helm-chart

Key Path in Values.yaml
file

Description

isEnabled ocboc.boc Whether to deploy, configure, and start Business
Operation Center services.

• false: Kubernetes resources meant for the
Business Operation Center application will not
be created.

• true: Creates the necessary Kubernetes
resources for using Business Operation
Center. This is the default.

imageTag ocboc.boc.deployment
.app

The tag associated with the image. This is
generally the release number prefixed with a colon
(:). For example: :15.0.0.0.0.

rcuDBARole ocboc.boc.configEnv The role of the database administrator user.

rcuArgs ocboc.boc.configEnv The additional arguments for creating the RCU.

dbURL ocboc.boc.configEnv Used to create the WebLogic data source for
connecting to the Business Operations Center
schema.

This is also the connection string for the database
where schemas needed by Oracle Fusion
Middleware products are created, especially
OPSS.

Use one of these formats:

• DatabaseHost:DatabasePort/ServiceName
• DatabaseHost:DatabasePort:ServiceID

Chapter 9
Configuring Business Operations Center

9-3

https://kubernetes.io/docs/concepts/configuration/secret/

Table 9-1 (Cont.) Keys for oc-cn-op-job-helm-chart

Key Path in Values.yaml
file

Description

dbSSLMode ocboc.boc.configEnv The type of connection required to connect to the
database:

• Yes-Two Way: Two-way SSL authentication is
required.

• Yes-One Way: One-way SSL authentication is
required. This is the default.

• No: SSL authentication is not required.

dbWalletType ocboc.boc.configEnv The type of TrustStore and KeyStore file that is
used for the SSL connection: SSO or PKCS12.

dbWalletPassword ocboc.boc.secretVal The password for accessing the certificates from
the TrustStore and KeyStore.

ldapHost ocboc.boc.configEnv The host name or IP address of the LDAP Server
(for example, OUD) where users and groups are
configured for access to Business Operations
Center.

ldapPort ocboc.boc.configEnv The port number on which the LDAP server is
listening.

ldapGroupBase ocboc.boc.configEnv The LDAP base DN that contains groups.

ldapUserBase ocboc.boc.configEnv The LDAP base DN that contains users.

bocSchemaUserName ocboc.boc.configEnv The Business Operations Center database schema
user name.

bocSchemaBocTables
pace

ocboc.boc.configEnv The default tablespace for the Business Operations
Center database administrator.

bocSchemaTempTable
space

ocboc.boc.configEnv The temp tablespace for the Business Operations
Center database administrator.

billingCareUrl ocboc.boc.configEnv The URL of the Billing Care instance that is used
with your BRM Server.

Leave this blank if Billing Care isn't installed in your
environment.

isSSOEnabled ocboc.boc.configEnv Whether to enable single sign-on (SSO) for
Business Operations Center cloud native services
using SAML 2.0:

• true: SSO is enabled for Business Operations
Center cloud native services.

• false: SSO is disabled. This is the default.

keystoreAlias ocboc.boc.configEnv The private key alias of the KeyStore.

keystoreType ocboc.boc.configEnv The file type of the SSL Identity and Trust store,
which is either PKCS12 or JKS. The default is
PKCS12.

keystoreIdentityFileNa
me

ocboc.boc.configEnv The file name of the Identity KeyStore.

keystoreTrustFileName ocboc.boc.configEnv The file name of the Trust KeyStore.

tlsVersions ocboc.boc.configEnv (Release 15.0.1 or later) The list of TLS versions to
support for connection with the WebLogic domain.
List the version numbers in order, from lowest to
highest, separated by a comma. For example:
TLSv1.2, TLSv1.3.

Chapter 9
Configuring Business Operations Center

9-4

Table 9-1 (Cont.) Keys for oc-cn-op-job-helm-chart

Key Path in Values.yaml
file

Description

samlAsserterName ocboc.boc.configEnv The name of the SAML Asserter. The default is
samlBOCAsserter.

ssoPublishedSiteURL ocboc.boc.configEnv The base URL that is used to construct endpoint
URLs. This is typically the Load Balancer host and
port at which the server is visible externally. It must
be appended with /saml2. For example: https://
LoadBalancerHost:LoadBalancerPort/saml2.

ssoDefaultURL ocboc.boc.configEnv The URL where unsolicited authentication
responses are sent if they do not contain an
accompanying target URL.

reloadVersion ocboc.boc.configEnv Update this value with any value different from the
current value to force a restart of the deployer.

adminPassword ocboc.boc.secretVal The Base64-encoded password for the WebLogic
domain's administrative user. This is used for
accessing the WebLogic Server Administration
Console for administrative operations.

ldapPassword ocboc.boc.secretVal The Base64-encoded password of the LDAP
Server admin user.

rcuSysDBAPassword ocboc.boc.secretVal The Base64-encoded database administrator's
password.

bocSchemaPassword ocboc.boc.secretVal The Base64-encoded Business Operations Center
database schema password.

rcuSchemaPassword ocboc.boc.secretVal The Base64-encoded password for schemas of
Oracle Fusion Middleware products that will be
created by RCU, which is used by OPSS.

keystoreIdentityPassw
ord

ocboc.boc.secretVal The StorePass for the Identity KeyStore.

keystoreKeyPassword ocboc.boc.secretVal The KeyPass for the Identity KeyStore.

keystoreTrustPasswor
d

ocboc.boc.secretVal The StorePass for the Trust KeyStore.

domainUID ocboc.boc.wop The name of the domain.

The default is boc-domain.

adminChannelPort ocboc.boc.wop The NodePort where the admin-server's HTTP
service will be accessible.

serverStartPolicy ocboc.boc.wop The WebLogic servers that the Operator starts
when it discovers the domain:

• NEVER: Does not start any server in the
domain.

• ADMIN_ONLY: Starts only the administration
server (no managed servers will be started).

• IF_NEEDED: Starts the administration server
and clustered servers up to the replica count.

nodeSelector ocboc.boc The rules for scheduling WebLogic Server pods on
particular nodes using simple selectors using Node
Selector rules.

affinity ocboc.boc The rules for scheduling WebLogic Server pods on
particular nodes using more powerful selectors
using affinity rules.

Chapter 9
Configuring Business Operations Center

9-5

Adding Business Operations Center Keys for oc-cn-helm-chart
Table 9-2 lists the keys that directly impact Business Operations Center. Add these keys to
your override-values.yaml file for oc-cn-helm-chart with the same path hierarchy.

For a complete set of keys to personalize Business Operations Center deployment, see the
keys with the path ocboc.boc in the oc-cn-helm-chart/values.yaml file.

Caution:

Keys with the path ocboc.boc.secretVal hold sensitive data. Handle them carefully
with controlled access to the file containing their values. Encode all of these values in
Base64 format. See "Secrets" in Kubernetes Concepts.

Table 9-2 Keys for oc-cn-helm-chart

Key Path in Values.yaml
file

Description

isEnabled ocboc.boc Whether to deploy, configure, and start Business
Operation Center services.

• false: Kubernetes resources meant for the
Business Operation Center application will not
be created.

• true: Creates the necessary Kubernetes
resources for using Business Operation
Center. This is the default.

imageTag ocboc.boc.deployment
.app

The tag associated with the image. This is
generally the release number prefixed with a colon
(:). For example, :15.0.0.0.0.

login ocboc.boc.infranet.use
r

The user name of the service with permission to
access BRM, such as boc_client.0.0.0.1.

serviceType ocboc.boc.infranet.use
r

The POID type of the service that has permission
to access BRM.

serviceID ocboc.boc.infranet.use
r

The POID ID of the service that has permission to
access BRM.

minSize ocboc.boc.infranet.con
nectionpool

Minimum size of the connection pool.

maxSize ocboc.boc.infranet.con
nectionpool

Maximum size of the connection pool.

loglevel ocboc.boc.infranet The log level for the infranet properties.

addOnProperties ocboc.boc.infranet Empty by default, you can use this key to specify
custom infranet properties.

domainUID ocboc.boc.wop The name of the domain.

The default is boc-domain.

adminChannelPort ocboc.boc.wop The NodePort where the admin-server's http
service will be accessible.

Chapter 9
Configuring Business Operations Center

9-6

https://kubernetes.io/docs/concepts/configuration/secret/

Table 9-2 (Cont.) Keys for oc-cn-helm-chart

Key Path in Values.yaml
file

Description

serverStartPolicy ocboc.boc.wop The WebLogic servers that the Operator starts
when it discovers the domain:

• NEVER: Does not start any server in the
domain.

• ADMIN_ONLY: Starts only the administration
server (no managed servers will be started).

• IF_NEEDED: Starts the administration server
and clustered servers up to the replica count.

isEnabled ocboc.boc.monitoring Whether to enable monitoring of Business
Operations Center.

See "Monitoring and Autoscaling Business
Operations Center Cloud Native" in BRM Cloud
Native System Administrator's Guide.

nodeSelector ocboc.boc The rules for scheduling WebLogic Server pods on
particular nodes using simple selectors using Node
Selector rules.

affinity ocboc.boc The rules for scheduling WebLogic Server pods on
particular nodes using more powerful selectors
using affinity rules.

Updating Infranet.properties for Business Operations Center
The Infranet.properties file entries are located in the values.yaml file. This makes it easier to
update them.

Following is a sample configuration block (located in the ocboc.boc path in oc-cn-helm-chart)
for the Infranet.properties entries:

infranet:
 user:
 login: 'boc_client.0.0.0.1'
 serviceType: '/service/admin_client'
 serviceId: 2
 connectionpool:
 minSize: 25
 maxSize: 50
 logLevel: 3
 addOnProperties: ""

If you have custom properties, they should be defined here using the addOnProperties key.
For example:

addOnProperties: |-
 infranet.connectionpool.timeout=90000
 infranet.pcp.debug.flags=0x3FFF
 infranet.pcp.debug.enabled=true

To update these properties, update the values in oc-cn-helm-chart and change the value of
ocboc.boc.wop.restartVersion in oc-cn-helm-chart to any new value. This will force a pod
restart and the new values will be used.

Chapter 9
Configuring Business Operations Center

9-7

Adding Custom Configuration to Deployment Workflow for Business
Operations Center

You can provide additional configuration to be applied at particular checkpoints in the Business
Operations Center deployment workflow. These checkpoints are:

• ext_deployer_pre_exit: Called after the standard configuration in deployer.sh in oc-cn-
op-job-helm-chart

• ext_init_app_pre_exit: Called after the standard configuration in the init-app
initContainer container in both oc-cn-op-job-helm-chart and oc-cn-helm-chart

• ext_init_config_pre_exit: Called after the standard configuration in the init-config
initContainer container in both oc-cn-op-job-helm-chart and oc-cn-helm-chart

• ext_init_upgrade_pre_exit: Called after the standard configuration in the upgrade
container

Create a ConfigMap with your configuration scripts, including a shell script named
run_hooks.sh that calls your other scripts. For example:

apiVersion: v1
kind: ConfigMap
metadata:
 name: ext-scripts
data:
 run_hooks.sh: |+
 #!/bin/bash
 echo "executing extension for: $@"
 CURRENT_CHECKPOINT=$1
 if ["$CURRENT_CHECKPOINT" == "ext_deployer_pre_exit"] ; then
 sh my_deployer_extension.sh
 fi
 my_deployer_extension.sh: |+
 #!/bin/bash
 echo "executing my_deployer_extension"
...

Specify the name of your ConfigMap in the ocboc.boc.extensions.scriptsConfigName key in
the override-values.yaml file for oc-cn-op-job-helm-chart.

About Business Operations Center Volume Mounts
The Business Operations Center container requires Kubernetes volume mounts for sharing the
domain and application file system between the WebLogic Cluster servers. Business
Operations Center requires a volume for the domain. By default, this is created dynamically,
using the provisioner defined in BRM, in the storage-class key in oc-cn-op-job-helm-chart.

To change the volume type or provider, modify the ocboc.boc.volume.domain.createOption
key in the override-values.yaml file for oc-cn-op-job-helm-chart.

Creating a WebLogic Domain and Installing the Business Operations Center
Application

The WebLogic domain is created by a Kubernetes Deployment when oc-cn-op-job-helm-
chart is installed. The same job also installs the Business Operations Center application and
deploys the application WAR file onto the WebLogic Cluster.

Chapter 9
Configuring Business Operations Center

9-8

The oc-cn-op-job-helm-chart chart also:

• Creates a Kubernetes ConfigMap and Secrets, which are used throughout the life-cycle of
the WebLogic domain.

• Initializes the PersistentVolumeClaim for the domain and application file system as well
as third-party libraries.

Note:

The override-values.yaml file that you use for this chart must include BRM override
values.

After you install oc-cn-op-job-helm-chart, wait until the Kubernetes deployment has reached
the 1/1 Running status. Then, you can install or upgrade oc-cn-helm-chart for Business
Operations Center services.

After the deployment is running, don't delete the chart. Its resources will be used for starting
and stopping the servers through oc-cn-helm-chart.

Setting Up SSO for Business Operations Center
SSO allows users to log in to applications using a single user name and password
combination. You set up SSO for Business Operations Center cloud native services by using
SAML 2.0.

To set up SSO for Business Operations Center:

1. Export the SAML 2.0 metadata XML file from your identity and access management (IAM)
system.

For example, if you are using Oracle Access Management, you can export the file by
following the instructions in "Exporting Metadata" in Oracle Fusion Middleware
Administering Oracle Access Management.

2. Rename the metadata XML file to metadata.xml, and then move metadata.xml to the oc-
cn-op-job-helm-chart/boc/idp directory.

3. Configure the KeyStores needed by SAML:

a. Generate identity and trust KeyStores.

b. Move your KeyStore files, such as identity.p12 and trust.p12, under the oc-cn-op-
job-helm-chart/boc/keystore directory.

4. In your override-values.yaml file for oc-cn-op-job-helm-chart, set the following keys:

• ocboc.boc.configEnv.isSSOEnabled: Set this to true.

• ocboc.boc.configEnv.keystoreAlias: Set this to the private key alias of the KeyStore.

• ocboc.boc.configEnv.keystoreType: Set this to the file type of the SSL Identity and
Trust store, which is either PKCS12 or JKS. The default is PKCS12.

• ocboc.boc.configEnv.keystoreIdentityFileName: Set this to the name of the Identity
KeyStore file.

• ocboc.boc.configEnv.keystoreTrustFileName: Set this to the name of the Trust
KeyStore file.

Chapter 9
Configuring Business Operations Center

9-9

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/aiaag/managing-settings-identity-federation.html#GUID-019544AA-1090-46F4-9C0E-D421A26C56D8

• ocboc.boc.configEnv.samlAsserterName: Set this to the name of the SAML
Asserter. The default is samlBOCAsserter.

• ocboc.boc.configEnv.ssoPublishedSiteURL: Set this to the base URL that is used
to construct endpoint URLs. This is typically the load balancer host and port at which
the server is visible externally. It must be appended with /saml2. For example: https://
LoadBalancerHost:LoadBalancerPort/saml2.

• ocboc.boc.configEnv.ssoDefaultURL: Set this to the URL where unsolicited
authentication responses are sent if they do not contain an accompanying target URL.

• ocboc.boc.secretVal.keystoreIdentityPassword: Set this to the StorePass for the
Identity KeyStore.

• ocboc.boc.secretVal.keystoreKeyPassword: Set this to the KeyPass for the Identity
KeyStore.

• ocboc.boc.secretVal.keystoreTrustPassword: Set this to the StorePass for the Trust
KeyStore.

5. Configure your load balancer's rules to send responses to the Business Operations Center
WebLogic domain with /saml2 appended to the URL path.

Note:

Add this rule to your existing load balancer rules for routing responses to
Business Operations Center (/opsdashboard), the host name, and so on.

See "Installing an Ingress Controller".

6. Deploy your Business Operations Center cloud native services by following the instructions
in "Deploying BRM Cloud Native Services".

7. After Business Operations Center is deployed, retrieve the sp-metadata-admin-
server.xml file from the /shared/domains/domainUID directory in your container, where
domainUID is the name of your Business Operations Center domain specified in the
ocboc.boc.wop.domainUID key.

The XML file configures the Web SSO Provider Partner. It contains the partner's KeyStore
certificates, SAML assertion details, and the URLs where the SAML Identity Provider
redirects to provide access to Business Operations Center.

8. Create a profile for your identity provider partner by loading the sp-metadata-admin-
server.xml file into your IAM system.

For example, if you are using Oracle Access Management, you can load the file by
following the instructions in "Creating Remote Identity Provider Partners" in Oracle Fusion
Middleware Administering Oracle Access Management.

Setting Up Local Users and Groups for Business Operations Center
You have the option to customize the values for oc-cn-op-job-helm-chart to create users and
groups locally in Oracle WebLogic Server. This would be especially useful for test
environments where you might not have Identity Providers or LDAPs available. The groups for
the admin user for WebLogic Server cannot be modified using this procedure.

Any passwords must be encoded using Base64. You can leave the password blank, but then
the user will not be able to log in to the application directly.

Chapter 9
Configuring Business Operations Center

9-10

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/aiaag/managing-identity-federation-partners.html#GUID-B982AEAC-5ED6-4978-9BAE-D0F19CCB06B5

To set up local users and groups for Billing Care, define the keys under
ocboc.boc.wlsUserGroups in the override-values.yaml file for oc-cn-op-job-helm-chart.
For example:

ocboc:
 boc:
 wlsUserGroups:
 groups:
 - name: "GroupA"
 description: "GroupA Description"
 - name: "GroupB"
 description: "GroupB Description"
 users:
 - name: csr1
 description: "csr1 description"
 password: "Base64_password"
 groups:
 - "GroupA"
 - "GroupB"
 - name: csr2
 description: "csr2 description"
 password: "Base64_password"
 groups:
 - "GroupB"

Starting and Stopping WebLogic Servers
When you install oc-cn-op-job-helm-chart, the default configuration sets up a WebLogic
Cluster with five Managed Servers. When you install or upgrade oc-cn-helm-chart for the
Business Operations Center service, two of the managed servers and one Admin Server are
started.

By modifying the override-values.yaml file for oc-cn-helm-chart, you can control:

• The total number of Managed Servers and the initial server start up by using the
totalManagedServers and initialServerCount keys.

• Whether the servers are started or stopped by using the serverStartPolicy key. To start
the Admin Servers and the Managed Servers in a Cluster, set the key to IF_NEEDED. To
stop all servers, set the key to NEVER.

Note:

The keys in the override-values.yaml file should be the same as the ones used in
oc-cn-op-job-helm-chart for keys that are common in both charts.

Before installing or upgrading oc-cn-helm-chart for Business Operations Center, ensure that
the brm_apps values are configured correctly. If there is a change in any brm_apps values, use
serverStartPolicy to restart and have the changes take effect.

After you modify the override-values.yaml file, update the Helm release for the changes to
take effect:

Chapter 9
Configuring Business Operations Center

9-11

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations in
the values.yaml file for oc-cn-helm-chart.

Configuring Billing Care
Billing Care is a Web-based client application that CSRs use to manage billing, payments, and
accounts receivable for your customers. For more information about using Billing Care, see
Billing Care Online Help.

To configure Billing Care to run in your BRM cloud native environment:

1. Override the Billing Care-specific keys from the values.yaml file for oc-cn-op-job-helm-
chart. See "Adding Billing Care Keys for oc-cn-op-job-helm-chart".

2. Override the Billing Care-specific keys from the values.yaml file for oc-cn-helm-chart.
See "Adding Billing Care Keys for oc-cn-helm-chart".

3. Set up volume mounts for Billing Care. See "About Billing Care Volume Mounts".

4. Create a WebLogic domain and install Billing Care. See "Creating a WebLogic Domain and
Installing the Billing Care Application".

5. Set up SAML for SSO in Billing Care. See "Setting Up SSO for Billing Care".

6. Start and stop your WebLogic servers. See "Starting and Stopping WebLogic Servers".

Note:

To set up Billing Care, ensure that you successfully complete the installation of oc-
cn-op-job-helm-chart before you install or upgrade oc-cn-helm-chart.

Adding Billing Care Keys for oc-cn-op-job-helm-chart
Table 9-3 lists a few important keys that directly impact Billing Care. Add these keys to your
override-values.yaml file for oc-cn-op-job-helm-chart with the same path hierarchy.

For the complete set of keys to personalize your Billing Care deployment, see the keys with the
path ocbc.bc in the oc-cn-op-job-helm-chart/values.yaml file.

Caution:

Keys with the path ocbc.bc.secretVal hold sensitive data. Handle them carefully with
controlled access to the override file containing their values. Encode all of these
values in Base64 format. See "Secrets" in Kubernetes Concepts.

Chapter 9
Configuring Billing Care

9-12

https://kubernetes.io/docs/concepts/configuration/secret/

Table 9-3 Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml File Description

isEnabled ocbc.bc Whether to deploy, configure, and start
Billing Care services:

• false: Does not create the
Kubernetes resources for using
Billing Care.

• true: Creates the Kubernetes
resources for using Billing Care.
This is the default.

imageName ocbc.bc.deployment.app The name of the Billing Care image,
such as oracle/billingcare.

imageTag ocbc.bc.deployment.app The tag associated with the image. This
is generally the release number prefixed
with a colon (:). For
example, :15.0.x.0.0.

dbSSLMode ocbc.bc.configEnv The type of connection required to
connect to the database:

• TWO_WAY: Two-way SSL
authentication is required. In this
case, both the client and server
must authenticate each others
identity.

• ONE_WAY: One-way SSL
authentication is required. In this
case, the client must authenticate
the server's identity. This is the
default.

• NO: SSL authentication is not
required.

dbWalletType ocbc.bc.configEnv The type of TrustStore and KeyStore file
that is used for the SSL connection:
SSO or PKCS12.

rcuJdbcURL ocbc.bc.configEnv The connection string for connecting to
the database where schemas needed by
Oracle Fusion Middleware products will
be created, especially OPSS.

rcuDBARole ocbc.bc.configEnv The role of the database administrator
user.

rcuArgs ocbc.bc.configEnv The additional arguments for creating
the RCU.

ldapHost ocbc.bc.configEnv The host name or IP address of the
LDAP Server (for example, OUD) where
users and groups will be configured for
access to Billing Care.

ldapPort ocbc.bc.configEnv The port number on which the LDAP
server is listening.

ldapGroupBase ocbc.bc.configEnv The LDAP base DN that contains
groups.

ldapUserBase ocbc.bc.configEnv The LDAP base DN that contains users.

keystoreAlias ocbc.bc.configEnv The private key alias of the KeyStore.

Chapter 9
Configuring Billing Care

9-13

Table 9-3 (Cont.) Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml File Description

keystoreType ocbc.bc.configEnv The file type of the SSL Identity and
Trust store, which is either PKCS12 or
JKS. The default is PKCS12.

keystoreIdentityFileName ocbc.bc.configEnv The file name of the Identity KeyStore.

keystoreTrustFileName ocbc.bc.configEnv The file name of the Trust KeyStore.

tlsVersions ocbc.bc.configEnv (Release 15.0.1 or later) The list of TLS
versions to support for connection with
the WebLogic domain. List the version
numbers in order, from lowest to
highest, separated by a comma. For
example: TLSv1.2, TLSv1.3.

isSSOEnabled ocbc.bc.configEnv Whether to enable single sign-on (SSO)
for Billing Care cloud native services
through SAML 2.0:

• true: SSO is enabled for Billing
Care cloud native services.

• false: SSO is disabled. This is the
default.

samlAsserterName ocbc.bc.configEnv The name of the SAML Asserter. The
default is samlBCAsserter.

ssoPublishedSiteURL ocbc.bc.configEnv The base URL that is used to construct
endpoint URLs. This is typically the
Load Balancer host and port at which
the server is visible externally. It must be
appended with /saml2. For example:
https://
LoadBalancerHost:LoadBalancerPort/
saml2.

ssoDefaultURL ocbc.bc.configEnv The URL where unsolicited
authentication responses are sent if they
do not contain an accompanying target
URL.

reloadVersion ocbc.bc.configEnv Update this value with any value
different from the current value to force a
restart of the deployer.

adminPassword ocbc.bc.secretVal The password of the WebLogic domain's
administrative user, which is used for
accessing the WebLogic Console for
administrative operations.

ldapPassword ocbc.bc.secretVal The password of the LDAP Server
admin user.

rcuSysDBAPassword ocbc.bc.secretVal The password for the rcuJdbcURL
database administrator.

rcuSchemaPassword ocbc.bc.secretVal The passwords for the schemas of
Oracle Fusion Middleware products that
will be created by RCU, which is used by
OPSS.

Chapter 9
Configuring Billing Care

9-14

Table 9-3 (Cont.) Keys for oc-cn-op-job-helm-chart

Key Path in values.yaml File Description

dbWalletPassword ocbc.bc.secretVal The password for accessing the
certificates from the TrustStore and
KeyStore.

keystoreIdentityPassword ocbc.bc.secretVal The StorePass for the Identity KeyStore.

keystoreKeyPassword ocbc.bc.secretVal The KeyPass for the Identity KeyStore.

keystoreTrustPassword ocbc.bc.secretVal The StorePass for the Trust KeyStore.

domainUID ocbc.bc.wop The name of the domain. The default is
billingcare-domain.

adminChannelPort ocbc.bc.wop The NodePort where the admin-server's
HTTP service will be accessible.

serverStartPolicy ocbc.bc.wop The WebLogic servers that the Operator
starts when it discovers the domain:

• NEVER: Does not start any server
in the domain.

• ADMIN_ONLY: Starts only the
administration server (no managed
servers will be started).

• IF_NEEDED: Starts the
administration server and clustered
servers up to the replica count.

nodeSelector ocbc.bc The node selector rules for scheduling
WebLogic Server pods on particular
nodes using simple selectors.

affinity ocbc.bc The affinity rules for scheduling
WebLogic Server pods on particular
nodes using more powerful selectors.

Adding Billing Care Keys for oc-cn-helm-chart
Table 9-4 lists a few important keys that directly impact Billing Care. Add these keys to your
override-values.yaml file for oc-cn-helm-chart with the same path hierarchy.

For the complete set of keys to personalize your Billing Care deployment, see the keys with the
path ocbc.bc in the oc-cn-helm-chart/values.yaml file.

Caution:

Keys with the path ocbc.bc.secretVal hold sensitive data. Handle them carefully with
controlled access to the override file containing their values. Encode all of these
values in Base64 format. See "Secrets" in Kubernetes Concepts.

Chapter 9
Configuring Billing Care

9-15

https://kubernetes.io/docs/concepts/configuration/secret/

Table 9-4 Keys for oc-cn-helm-chart

Key Path in values.yaml File Description

appLogLevel ocbc The logging level at which application
logs must be captured in log files:
SEVERE, WARNING, INFO, CONFIG,
FINE, FINER, FINEST, and ALL.

isEnabled ocbc.bc Whether to deploy, configure, and start
Billing Care services:

• false: Does not create the
Kubernetes resources for using
Billing Care.

• true: Creates the Kubernetes
resources for using Billing Care.
This is the default.

imageName ocbc.bc.deployment.app The name of the Billing Care image,
such as oracle/billingcare.

imageTag ocbc.bc.deployment.app The tag associated with the image. This
is generally the release number, prefixed
with a colon (:). For
example, :15.0.0.0.0.

keystoreAlias ocbc.bc.configEnv The private key alias of the KeyStore.

dbSSLMode ocbc.bc.configEnv The type of connection required to
connect to the database:

• TWO_WAY: Two-way SSL
authentication is required. In this
case, both the client and server
must authenticate each others
identity.

• ONE_WAY: One-way SSL
authentication is required. In this
case, the client must authenticate
the server's identity. This is the
default.

• NO: SSL authentication is not
required.

dbWalletType ocbc.bc.configEnv The type of TrustStore and KeyStore file
that is used for the SSL connection:
SSO or PKCS12.

login ocbc.bc.infranet.user The user name of the service that has
permission to access BRM, such as
bc_client.0.0.0.1.

serviceType ocbc.bc.infranet.user The POID type of the service that has
permission to access BRM.

serviceID ocbc.bc.infranet.user The POID ID of the service that has
permission to access BRM.

minSize ocbc.bc.infranet.connection
pool

Minimum size of the connection pool.

maxSize ocbc.bc.infranet.connection
pool

Maximum size of the connection pool.

loglevel ocbc.bc.infranet The log level for the infranet properties.

Chapter 9
Configuring Billing Care

9-16

Table 9-4 (Cont.) Keys for oc-cn-helm-chart

Key Path in values.yaml File Description

addOnProperties ocbc.bc.infranet Empty by default, you can use this key
to specify custom infranet properties.

domainUID ocbc.bc.wop The name of the domain. The default is
billingcare-domain.

adminChannelPort ocbc.bc.wop The NodePort where the admin-server's
http service will be accessible.

serverStartPolicy ocbc.bc.wop The WebLogic servers that the Operator
starts when it discovers the domain:

• NEVER: Does not start any server
in the domain.

• ADMIN_ONLY: Starts only the
administration server (no managed
servers will be started).

• IF_NEEDED: Starts the
administration server and clustered
servers up to the replica count.

isEnabled ocbc.bc.monitoring Whether to enable monitoring of Billing
Care.

See "Monitoring and Autoscaling Billing
Care Cloud Native" in BRM Cloud
Native System Administrator's Guide.

nodeSelector ocbc.bc The node selector rules for scheduling
WebLogic Server pods on particular
nodes using simple selectors.

affinity ocbc.bc The affinity rules for scheduling
WebLogic Server pods on particular
nodes using more powerful selectors.

Updating Infranet.properties for Billing Care
The Infranet.properties file entries are located in the values.yaml file. This makes it easier to
update them.

Following is a sample configuration block (located in the ocbc.bc path in oc-cn-helm-chart)
for the Infranet.properties entries:

infranet:
 user:
 login: 'boc_client.0.0.0.1'
 serviceType: '/service/admin_client'
 serviceId: 2
 connectionpool:
 minSize: 25
 maxSize: 50
 logLevel: 3
 ssoLogoutURL:
 addOnProperties: ""

If you have custom field classes, they should be provided through the SDK .war file and
defined here using the addOnProperties key. For example:

Chapter 9
Configuring Billing Care

9-17

addOnProperties:|-
 infranet.custom.field.package=com.portal.custom
 infranet.custom.field.100011=PIN_FLD_ABC

To update these properties, update the values in override-values.yaml file for oc-cn-helm-
chart. If this is an upgrade, also update the ocbc.bc.wop.restartVersion key in the same file.
This will force a pod restart and the new values will be used.

Adding Custom Configuration to Deployment Workflow for Billing Care
You can provide additional configuration to be applied at particular checkpoints in the Billing
Care deployment workflow. These checkpoints are:

• ext_deployer_pre_exit: Called after the standard configuration in deployer.sh in oc-cn-
op-job-helm-chart

• ext_init_app_pre_exit: Called after the standard configuration in the init-app
initContainer container in both oc-cn-op-job-helm-chart and oc-cn-helm-chart

• ext_init_config_pre_exit: Called after the standard configuration in the init-config
initContainer container in both oc-cn-op-job-helm-chart and oc-cn-helm-chart

Create a ConfigMap with your configuration scripts, including a shell script named
run_hooks.sh that calls your other scripts. For example:

apiVersion: v1
kind: ConfigMap
metadata:
 name: ext-scripts
data:
 run_hooks.sh: |+
 #!/bin/bash
 echo "executing extension for: $@"
 CURRENT_CHECKPOINT=$1
 if ["$CURRENT_CHECKPOINT" == "ext_deployer_pre_exit"] ; then
 sh my_deployer_extension.sh
 fi
 my_deployer_extension.sh: |+
 #!/bin/bash
 echo "executing my_deployer_extension"
...

Specify the name of your ConfigMap in the ocbc.bc.extensions.scriptsConfigName key in
the override-values.yaml file for oc-cn-op-job-helm-chart.

Since Billing Care is a web application that is deployed on WebLogic Server, refer to the
WebLogic Server documentation for information about overriding timeouts, cookie attributes,
and so on. See "web.xml Deployment Descriptor Elements" and "weblogic.xml Deployment
Descriptor Elements" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic
Server for more information about these configurations. You can find files to help you with this
configuration in the oc-cn-op-job-helm-chart/templates directory.

About Billing Care Volume Mounts
The Billing Care container requires Kubernetes volume mounts for sharing the domain and
application file system between the WebLogic Cluster servers. There is one volume for the
domain and one for batch payments. By default, these are created dynamically, using the
provisioner defined in BRM, in the storage-class key in oc-cn-op-job-helm-chart.

Chapter 9
Configuring Billing Care

9-18

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wbapp/web_xml.html#GUID-9D291544-165B-490C-BE61-51789CA8544F
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wbapp/weblogic_xml.html#GUID-DF15D0D7-44EF-4E8E-B182-46C14F737A73
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wbapp/weblogic_xml.html#GUID-DF15D0D7-44EF-4E8E-B182-46C14F737A73

To change the volume type or provider, modify the following keys in the override-values.yaml
file for oc-cn-op-job-helm-chart.

• ocbc.bc.volume.domain.createOption for the domain file system for Billing Care.

• ocbc.bc.volume.batchPayment.createOption for the batch payments file system.

Creating a WebLogic Domain and Installing the Billing Care Application
The WebLogic domain is created by a Kubernetes Deployment when oc-cn-op-job-helm-
chart is installed. The same job also installs the Billing Care application and deploys the
application WAR file onto the WebLogic Cluster.

The oc-cn-op-job-helm-chart chart also:

• Creates a Kubernetes ConfigMap and Secrets, which are used throughout the life-cycle of
the WebLogic domain.

• Initializes the PersistentVolumeClaim for the domain and application file system as well
as third-party libraries.

Note:

The override-values.yaml file that you use for this chart must include BRM override
values.

After you install oc-cn-op-job-helm-chart, wait until the Kubernetes deployment has reached
the 1/1 Running status. Then, you can install or upgrade oc-cn-helm-chart for Billing Care
services.

After the deployment is running, don't delete the chart. Its resources will be used for starting
and stopping the servers through oc-cn-helm-chart.

Setting Up SSO for Billing Care
SSO allows users to log in to applications using a single user name and password
combination. You set up SSO for Billing Care cloud native services by using SAML 2.0.

To set up SSO for Billing Care:

1. Export the SAML 2.0 metadata XML file from your identity and access management (IAM)
system.

For example, if you are using Oracle Access Management, you can export the file by
following the instructions in "Exporting Metadata" in Oracle Fusion Middleware
Administering Oracle Access Management.

2. Rename the metadata XML file to metadata.xml, and then move metadata.xml to the oc-
cn-op-job-helm-chart/billingcare/idp directory.

3. Configure the KeyStores needed by SAML 2.0:

a. Generate identity and trust KeyStores.

b. Move your KeyStore files, such as identity.p12 and trust.p12, to the oc-cn-op-job-
helm-chart/billingcare/keystore directory.

4. In your override-values.yaml file for oc-cn-op-job-helm-chart, set the following keys:

Chapter 9
Configuring Billing Care

9-19

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/aiaag/managing-settings-identity-federation.html#GUID-019544AA-1090-46F4-9C0E-D421A26C56D8

• ocbc.bc.configEnv.isSSOEnabled: Set this to true.

• ocbc.bc.configEnv.keystoreAlias: Set this to the private key alias of the KeyStore.

• ocbc.bc.configEnv.keystoreType: Set this to the file type of the SSL Identity and
Trust store, which is either PKCS12 or JKS. The default is PKCS12.

• ocbc.bc.configEnv.keystoreIdentityFileName: Set this to the name of the Identity
KeyStore file.

• ocbc.bc.configEnv.keystoreTrustFileName: Set this to the name of the Trust
KeyStore file.

• ocbc.bc.configEnv.samlAsserterName: Set this to the name of the SAML Asserter.
The default is samlBCAsserter.

• ocbc.bc.configEnv.ssoPublishedSiteURL: Set this to the base URL that is used to
construct endpoint URLs. This is typically the load balancer host and port at which the
server is visible externally. It must be appended with /saml2. For example: https://
LoadBalancerHost:LoadBalancerPort/saml2.

• ocbc.bc.configEnv.ssoDefaultURL: Set this to the URL where unsolicited
authentication responses are sent if they do not contain an accompanying target URL.

• ocbc.bc.secretVal.keystoreIdentityPassword: Set this to the StorePass for the
Identity KeyStore.

• ocbc.bc.secretVal.keystoreKeyPassword: Set this to the KeyPass for the Identity
KeyStore.

• ocbc.bc.secretVal.keystoreTrustPassword: Set this to the StorePass for the Trust
KeyStore.

5. Configure your load balancer's rules to send responses to the Billing Care WebLogic
domain with /saml2 appended to the URL path.

Note:

Add this rule to your existing load balancer rules for routing responses to Billing
Care (/bc), the load balancer host name, and so on.

See "Installing an Ingress Controller".

6. Deploy your Billing Care cloud native services by following the instructions in "Deploying
BRM Cloud Native Services".

7. After Billing Care is deployed, retrieve the sp-metadata-admin-server.xml file from the /
shared/domains/domainUID directory in your container, where domainUID is the name of
your Billing Care domain specified in the ocbc.bc.wop.domainUID key.

The XML file configures the Web SSO Provider Partner. It contains the partner's KeyStore
certificates, SAML assertion details, and the URLs where the SAML Identity Provider
redirects to provide access to Billing Care.

8. Create a profile for your identity provider partner by loading the sp-metadata-admin-
server.xml file into your IAM system.

For example, if you are using Oracle Access Management, you can load the file by
following the instructions in "Creating Remote Identity Provider Partners" in Oracle Fusion
Middleware Administering Oracle Access Management.

Chapter 9
Configuring Billing Care

9-20

https://docs.oracle.com/en/middleware/idm/access-manager/12.2.1.4/aiaag/managing-identity-federation-partners.html#GUID-B982AEAC-5ED6-4978-9BAE-D0F19CCB06B5

Setting Up Local Users and Groups for Billing Care
You have the option to customize the values for oc-cn-op-job-helm-chart to create users and
groups locally in Oracle WebLogic Server. This would be especially useful for test
environments where you might not have Identity Providers or LDAPs available. The groups for
the admin user for WebLogic Server cannot be modified using this procedure.

Any passwords must be encoded using Base64. You can leave the password blank, but then
the user will not be able to log in to the application directly.

To set up local users and groups for Billing Care, define the keys under
ocbc.bc.wlsUserGroups in the override-values.yaml file for oc-cn-op-job-helm-chart. For
example:

ocbc:
 bc:
 wlsUserGroups:
 groups:
 - name: "GroupA"
 description: "GroupA Description"
 - name: "GroupB"
 description: "GroupB Description"
 users:
 - name: csr1
 description: "csr1 description"
 password: "Base64_password"
 groups:
 - "GroupA"
 - "GroupB"
 - name: csr2
 description: "csr2 description"
 password: "Base64_password"
 groups:
 - "GroupB"

Starting and Stopping WebLogic Servers
When you install oc-cn-op-job-helm-chart, the default configuration sets up a WebLogic
Cluster with five Managed Servers. When you install or upgrade oc-cn-helm-chart for the
Billing Care service, two of the Managed Servers and one Admin Server are started.

By modifying the override-values.yaml file for oc-cn-helm-chart, you can control:

• The total number of Managed Servers and the initial server start up by using the
totalManagedServers and initialServerCount keys.

• Whether the servers are started or stopped by using the serverStartPolicy key. To start
the Admin Servers and the Managed Servers in a Cluster, set the key to IF_NEEDED. To
stop all servers, set the key to NEVER.

Note:

The keys in the override-values.yaml file should be the same as the ones used in
oc-cn-op-job-helm-chart for keys that are common in both charts.

Chapter 9
Configuring Billing Care

9-21

After you modify the override-values.yaml file, update the Helm release for the changes to
take effect:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations in
the values.yaml file for oc-cn-helm-chart.

Configuring the Billing Care REST API
You use the Billing Care REST API to integrate an external customer management application
with BRM. This allows you to manage billing and rating in BRM and then manage your
customers' accounts and bills in your external application. For more information, see REST API
Reference for Billing Care.

To configure the Billing Care REST API to work with BRM cloud native:

1. Override the Billing Care REST API-specific keys from the values.yaml file for oc-cn-op-
job-helm-chart. See "Adding Billing Care REST API Keys for oc-cn-op-job-helm-chart".

2. Override the Billing Care REST API-specific keys from the values.yaml file for oc-cn-
helm-chart. See "Adding Billing Care REST API Keys for oc-cn-helm-chart".

3. Set up volume mounts for the Billing Care REST API. See "About Billing Care REST API
Volume Mounts".

4. Create a WebLogic domain and install the Billing Care REST API. See "Creating a
WebLogic Domain and Installing the Billing Care REST API".

5. Start and stop your WebLogic servers. See "Starting and Stopping WebLogic Servers".

Note:

To set up the Billing Care REST API, ensure that you successfully complete the
installation of oc-cn-op-job-helm-chart before you install or upgrade oc-cn-helm-
chart.

Adding Billing Care REST API Keys for oc-cn-op-job-helm-chart
Table 9-5 lists a few important keys that directly impact the Billing Care REST API. Add these
keys to your override-values.yaml file for oc-cn-op-job-helm-chart.

For the complete set of keys to personalize your Billing Care REST API deployment, see the
keys with the path ocbc.bcws in the oc-cn-op-job-helm-chart/values.yaml file.

Chapter 9
Configuring the Billing Care REST API

9-22

Caution:

Keys with the path ocbc.bcws.secretVal hold sensitive data. Handle them carefully
with controlled access to the override file containing their values. Encode all of these
values in Base64 format. See "Secrets" in Kubernetes Concepts.

Table 9-5 Billing Care REST API Keys for oc-cn-op-job-helm-chart

Key Path in
values.yaml File

Description

isEnabled ocbc.bcws Whether to deploy, configure, and start Billing Care REST API
services:

• false: Does not create the Kubernetes resources for
using the Billing Care REST API.

• true: Creates the Kubernetes resources for using the
Billing Care REST API. This is the default.

imageName ocbc.bcws.deploy
ment.app

The name of the Billing Care REST API image, such as
oracle/bcws.

imageTag ocbc.bcws.deploy
ment.app

The tag associated with the image. This is generally the
release number. Prefix the value with a colon (:). For
example, :15.0.x.0.0.

dbSSLMode ocbc.bcws.config
Env

The type of connection required to connect to the database:

• TWO_WAY: Two-way SSL authentication is required. In
this case, both the client and server must authenticate
each others identity.

• ONE_WAY: One-way SSL authentication is required. In
this case, the client must authenticate the server's
identity. This is the default.

• NO: SSL authentication is not required.

dbWalletType ocbc.bcws.config
Env

The type of TrustStore and KeyStore file that is used for the
SSL connection: SSO or PKCS12.

dbWalletPasswor
d

ocbc.bcws.config
Env

The password for accessing the certificates from the
TrustStore and KeyStore.

rcuJdbcURL ocbc.bcws.config
Env

The connection string for connecting to the database where
schemas needed by Oracle Fusion Middleware products will
be created, especially OPSS.

rcuDBARole ocbc.bcws.config
Env

The role of the database administrator user.

rcuArgs ocbc.bcws.config
Env

The additional arguments for creating the RCU.

ldapHost ocbc.bcws.config
Env

The host name or IP address of the LDAP Server (for
example, OUD) where users and groups will be configured for
access to the Billing Care REST API.

ldapPort ocbc.bcws.config
Env

The port number on which the LDAP server is listening.

ldapGroupBase ocbc.bcws.config
Env

The LDAP base DN that contains groups.

ldapUserBase ocbc.bcws.config
Env

The LDAP base DN that contains users.

keystoreAlias ocbc.bcws.config
Env

The private key alias of the KeyStore.

Chapter 9
Configuring the Billing Care REST API

9-23

https://kubernetes.io/docs/concepts/configuration/secret/

Table 9-5 (Cont.) Billing Care REST API Keys for oc-cn-op-job-helm-chart

Key Path in
values.yaml File

Description

keystoreType ocbc.bcws.config
Env

The file type of SSL Identity and Trust store, either PKCS12
or JKS.

keystoreIdentityFi
leName

ocbc.bcws.config
Env

The file name of the Identity KeyStore.

keystoreTrustFile
Name

ocbc.bcws.config
Env

The file name of the Trust KeyStore.

tlsVersions ocbc.bcws.config
Env

(Release 15.0.1 or later) The list of TLS versions to support
for connection with the WebLogic domain. List the version
numbers in order, from lowest to highest, separated by a
comma. For example: TLSv1.2, TLSv1.3.

reloadVersion ocbc.bcws.config
Env

Update this value with any value different from the current
value to force a restart of the deployer.

adminPassword ocbc.bcws.secret
Val

The password of the WebLogic domain's administrative user,
which is used for accessing the WebLogic Console for
administrative operations.

ldapPassword ocbc.bcws.secret
Val

The password of the LDAP Server admin user.

rcuSysDBAPassw
ord

ocbc.bcws.secret
Val

The password for the rcuJdbcURL database administrator.

rcuSchemaPassw
ord

ocbc.bcws.secret
Val

The passwords for the schemas of Oracle Fusion Middleware
products that will be created by RCU, which is used by OPSS.

dbWalletPasswor
d

ocbc.bcws.secret
Val

The password for accessing the certificates from the
TrustStore and KeyStore.

keystoreIdentityP
assword

ocbc.bcws.secret
Val

The storepass of the Identity KeyStore.

keystoreKeyPass
word

ocbc.bcws.secret
Val

The KeyPass of the Identity KeyStore.

keystoreTrustPas
sword

ocbc.bcws.secret
Val

The storepass of Trust KeyStore.

domainUID ocbc.bcws.wop The name of the domain. The default is bcws-domain.

adminChannelPor
t

ocbc.bcws.wop The NodePort where the admin-server's HTTP service will be
accessible.

serverStartPolicy ocbc.bcws.wop The WebLogic servers that the Operator starts when it
discovers the domain:

• NEVER: Does not start any server in the domain.
• ADMIN_ONLY: Starts only the administration server (no

managed servers will be started).
• IF_NEEDED: Starts the administration server and

clustered servers up to the replica count.

nodeSelector ocbc.bcws The node selector rules for scheduling WebLogic Server pods
on particular nodes using simple selectors.

affinity ocbc.bcws The affinity rules for scheduling WebLogic Server pods on
particular nodes using more powerful selectors.

Chapter 9
Configuring the Billing Care REST API

9-24

Adding Billing Care REST API Keys for oc-cn-helm-chart
Table 9-6 lists a few important keys that directly impact the Billing Care REST API. Add these
keys to your override-values.yaml file for oc-cn-helm-chart.

For the complete set of keys to personalize your Billing Care REST API deployment, see the
keys with the path ocbc.bcws in the oc-cn-helm-chart/values.yaml file.

Caution:

Keys with the path ocbc.bcws.secretVal hold sensitive data. Handle them carefully
with controlled access to the override file containing their values. Encode all of these
values in Base64 format. See "Secrets" in Kubernetes Concepts.

Table 9-6 Billing Care REST API Keys for oc-cn-helm-chart

Key Path in
values.yaml File

Description

appLogLevel ocbc The logging level at which application logs must be captured
in log files: SEVERE, WARNING, INFO, CONFIG, FINE,
FINER, FINEST, and ALL.

isEnabled ocbc.bcws Whether to deploy, configure, and start Billing Care REST API
services:

• false: Does not create the Kubernetes resources for
using the Billing Care REST API.

• true: Creates the Kubernetes resources for using the
Billing Care REST API. This is the default.

imageName ocbc.bcws.deploy
ment.app

The name of the Billing Care REST API image, such as
oracle/bcws.

imageTag ocbc.bcws.deploy
ment.app

The tag associated with the image. This is generally the
release number. Prefix the value with a colon (:). For
example, :15.0.0.0.0.

keystoreAlias ocbc.bcws.config
Env

The private key alias of the KeyStore.

dbSSLMode ocbc.bcws.config
Env

The type of connection required to connect to the database:

• TWO_WAY: Two-way SSL authentication is required. In
this case, both the client and server must authenticate
each others identity.

• ONE_WAY: One-way SSL authentication is required. In
this case, the client must authenticate the server's
identity. This is the default.

• NO: SSL authentication is not required.

dbWalletType ocbc.bcws.config
Env

The type of TrustStore and KeyStore file that is used for the
SSL connection: SSO or PKCS12.

login ocbc.bcws.infran
et.user

The username of the service that has permission to access
BRM.

serviceType ocbc.bcws.infran
et.user

The POID type of the service that has permission to access
BRM.

serviceID ocbc.bcws.infran
et.user

The POID ID of the service that has permission to access
BRM.

Chapter 9
Configuring the Billing Care REST API

9-25

https://kubernetes.io/docs/concepts/configuration/secret/

Table 9-6 (Cont.) Billing Care REST API Keys for oc-cn-helm-chart

Key Path in
values.yaml File

Description

minSize ocbc.bcws.infran
et.connectionpool

Minimum size of the connection pool.

maxSize ocbc.bcws.infran
et.connectionpool

Maximum size of the connection pool.

loglevel ocbc.bcws.infran
et

The log level for the infranet properties.

addOnProperties ocbc.bcws.infran
et

Empty by default, you can use this key to specify custom
infranet properties.

domainUID ocbc.bcws.wop The name of the domain. The default is bcws-domain.

adminChannelPor
t

ocbc.bcws.wop The NodePort where the admin-server's HTTP service will be
accessible.

serverStartPolicy ocbc.bcws.wop The WebLogic servers that the Operator starts when it
discovers the domain:

• NEVER: Does not start any server in the domain.
• ADMIN_ONLY: Starts only the administration server (no

managed servers will be started).
• IF_NEEDED: Starts the administration server and

clustered servers up to the replica count.

isEnabled ocbc.bc.monitorin
g

Whether to enable monitoring of Billing Care REST API.

See "Monitoring and Autoscaling Billing Care Cloud Native" in
BRM Cloud Native System Administrator's Guide.

nodeSelector ocbc.bcws The node selector rules for scheduling WebLogic Server pods
on particular nodes using simple selectors.

affinity ocbc.bcws The affinity rules for scheduling WebLogic Server pods on
particular nodes using more powerful selectors.

Updating Infranet Properties for the Billing Care REST API
The Infranet.properties file entries are located in the values.yaml file. This makes it easier to
update them.

Following is a sample configuration block (located in the ocbc.bcws path in oc-cn-helm-
chart) for the Infranet.properties entries:

infranet:
 user:
 login: 'root.0.0.0.1'
 serviceType: '/service/admin_client'
 serviceId: 2
 connectionpool:
 minSize: 25
 maxSize: 50
 logLevel: 3
 addOnProperties: ""

If you have custom field classes, they should be provided through the SDK .war file and
defined here using the addOnProperties key. For example:

Chapter 9
Configuring the Billing Care REST API

9-26

addOnProperties:|-
 infranet.custom.field.package=com.portal.custom
 infranet.custom.field.100011=PIN_FLD_ABC

To update any of these properties after an install or upgrade, update the values in override-
values.yaml file for oc-cn-helm-chart. If this is an upgrade, also update the
ocbc.bcws.wop.restartVersion key in the same file. This will force a pod restart and the new
values will be used.

Adding Custom Configuration to Deployment Workflow for Billing Care
REST API

You can provide additional configuration to be applied at particular checkpoints in the Billing
Care REST API deployment workflow. These checkpoints are:

• ext_deployer_pre_exit: Called after the standard configuration in deployer.sh in oc-cn-
op-job-helm-chart

• ext_init_app_pre_exit: Called after the standard configuration in the init-app
initContainer container in both oc-cn-op-job-helm-chart and oc-cn-helm-chart

• ext_init_config_pre_exit: Called after the standard configuration in the init-config
initContainer container in both oc-cn-op-job-helm-chart and oc-cn-helm-chart

Create a ConfigMap with your configuration scripts, including a shell script named
run_hooks.sh that calls your other scripts. For example:

apiVersion: v1
kind: ConfigMap
metadata:
 name: ext-scripts
data:
 run_hooks.sh: |+
 #!/bin/bash
 echo "executing extension for: $@"
 CURRENT_CHECKPOINT=$1
 if ["$CURRENT_CHECKPOINT" == "ext_deployer_pre_exit"] ; then
 sh my_deployer_extension.sh
 fi
 my_deployer_extension.sh: |+
 #!/bin/bash
 echo "executing my_deployer_extension"
...

Specify the name of your ConfigMap in the ocbc.bcws.extensions.scriptsConfigName key
in the override-values.yaml file for oc-cn-op-job-helm-chart.

About Billing Care REST API Volume Mounts
The Billing Care REST API container requires Kubernetes volume mounts for sharing the
domain and application file system between the WebLogic Cluster servers. There is one
volume for the domain and one for batch payments. By default, these are created dynamically,
using the provisioner defined in BRM, in the storage-class key in oc-cn-op-job-helm-chart.

Chapter 9
Configuring the Billing Care REST API

9-27

Note:

The selected location must be accessible on all worker nodes across which
WebLogic Servers will be distributed based on defined nodeSelector or affinity rules.

To change the volume type or provider, modify the following keys in the override-values.yaml
file for oc-cn-op-job-helm-chart.

• ocbc.bcws.volume.domain.createOption for the domain file system for Billing Care.

• ocbc.bcws.volume.batchPayment.createOption for the batch payments file system.

Creating a WebLogic Domain and Installing the Billing Care REST API
The WebLogic domain is created by a Kubernetes Deployment when oc-cn-op-job-helm-
chart is installed. The same job also installs the Billing Care REST API and deploys the
application WAR file onto the WebLogic Cluster.

The oc-cn-op-job-helm-chart chart also:

• Creates a Kubernetes ConfigMap and Secrets, which are used throughout the life-cycle of
the WebLogic domain.

• Initializes the PersistentVolumeClaim for the domain and application file system as well
as third-party libraries.

Note:

The override-values.yaml file that you use for this chart must include BRM override
values.

After you install oc-cn-op-job-helm-chart, wait until the Kubernetes deployment has reached
the 1/1 Running status. Then, you can install or upgrade oc-cn-helm-chart for Billing Care
REST API services.

After the deployment is running, don't delete the chart. Its resources will be used for starting
and stopping the servers through oc-cn-helm-chart.

Setting Up Local Users and Groups for Billing Care REST API
You have the option to customize the values for oc-cn-op-job-helm-chart to create users and
groups locally in Oracle WebLogic Server. This would be especially useful for test
environments where you might not have Identity Providers or LDAPs available. The groups for
the admin user for WebLogic Server cannot be modified using this procedure.

Any passwords must be encoded using Base64. You can leave the password blank, but then
the user will not be able to log in to the application directly.

To set up local users and groups for Billing Care, define the keys under
ocbc.bcws.wlsUserGroups in the override-values.yaml file for oc-cn-op-job-helm-chart.
For example:

ocbc:
 bcws:

Chapter 9
Configuring the Billing Care REST API

9-28

 wlsUserGroups:
 groups:
 - name: "GroupA"
 description: "GroupA Description"
 - name: "GroupB"
 description: "GroupB Description"
 users:
 - name: csr1
 description: "csr1 description"
 password: "Base64_password"
 groups:
 - "GroupA"
 - "GroupB"
 - name: csr2
 description: "csr2 description"
 password: "Base64_password"
 groups:
 - "GroupB"

Starting and Stopping WebLogic Servers
When you install oc-cn-op-job-helm-chart, the default configuration sets up a WebLogic
Cluster with five Managed Servers. When you install or upgrade oc-cn-helm-chart for the
Billing Care REST API service, two of the Managed Servers and one Admin Server are started.

By modifying the override-values.yaml file for oc-cn-helm-chart, you can control:

• The total number of Managed Servers and the initial server start up by using the
totalManagedServers and initialServerCount keys.

• Whether the servers are started or stopped by using the serverStartPolicy key. To start
the Admin Servers and the Managed Servers in a Cluster, set the key to IF_NEEDED. To
stop all servers, set the key to NEVER.

Note:

The keys in the override-values.yaml file should be the same as the ones used in
oc-cn-op-job-helm-chart for keys that are common in both charts.

After you modify the override-values.yaml file, update the Helm release for the changes to
take effect:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations in
the values.yaml file for oc-cn-helm-chart.

Chapter 9
Configuring the Billing Care REST API

9-29

10
Configuring ECE Services

Learn how to configure Oracle Communications Elastic Charging Engine (ECE) services by
configuring and deploying the ECE Helm chart.

Topics in this document:

• Adding Elastic Charging Engine Keys

• Enabling SSL in Elastic Charging Engine

• Connecting ECE Cloud Native to an SSL-Enabled Database

• About Elastic Charging Engine Volume Mounts

• Loading Custom Diameter AVP

• Generating CDRs for Unrated Events

• Configuring ECE to Support Prepaid Usage Overage

• Recording Failed ECE Usage Requests

• Loading BRM Configuration XML Files

• Setting Up Notification Handling in ECE

• Configuring ECE for a Multischema BRM Environment

For information about performing administrative tasks on your ECE cloud native services, see
"Administering ECE Cloud Native Services" in BRM Cloud Native System Administrator's
Guide.

Before installing the ECE Helm chart, you must first publish the metadata, config, and pricing
data from the PDC pod.

Note:

Kubernetes looks for the CPU limit setting for pods. If it's not set, Kubernetes
allocates a default value of 1 CPU per pod, which causes CPU overhead and
Coherence scalability issues. To prevent this from happening, override each ECE
pod's CPU limit to be the maximum CPU available on the node.

Adding Elastic Charging Engine Keys
Table 10-1 lists the keys that directly impact ECE deployment. Add these keys to your
override-values.yaml file for oc-cn-ece-helm-chart. In the table, component-name should be
replaced with the name of the ECE component, such as emgateway, radiusgateway,
diametergateway, httpgateway, and ratedeventformatter.

10-1

Table 10-1 Elastic Charging Engine Keys

Key Path in values.yaml
File

Description

imagePullPolicy container The default value is IfNotPresent, which specifies
to not pull the image if it's already present.
Applicable values are IfNotPresent and Always.

containerPort container The port number that is exposed by this container.

chargingSettingManag
ementPath

volume The location of the management folder, which
contains the charging-settings.xml, test-
tools.xml, and migration-configuration.xml files.

The default is /home/charging/opt/ECE/
oceceserver/config/management.

chargingSettingPath volume The location of the configuration folder for ECE.
The default is /home/charging/opt/ECE/
oceceserver/config.

walletPassword secretEnv The string password for opening the wallet.

JMSQUEUEPASSWOR
D

secretEnv The password for the JMS queue, which is stored
under the key jms.queue.notif.pwd in the wallet.

RADIUSSHAREDSECR
ET

secretEnv The RADIUS secret password, which is stored as
radius.secret.pwd in the wallet.

BRMGATEWAYPASSW
ORD

secretEnv The BRM Gateway password.

PDCPASSWORD secretEnv The PDC password, which is stored as pdc.pwd in
the wallet.

Note: This key must match the
pdcAdminUserPassword key in the override-
values.yaml file for oc-cn-helm-chart.

PDCKEYSTOREPASS
WORD

secretEnv The PDC KeyStore password, which is stored as
pdc.keystore.pwd in the wallet.

Note: This key must match the
keyStoreIdentityStorePass key in the override-
values.yaml file for oc-cn-helm-chart.

PERSISTENCEDATAB
ASEPASSWORD

secretEnv The database schema user password. This user is
created using ece-persistence-job if it doesn't exist
in the database.

ECEHTTPGATEWAYSE
RVERSSLKEYSTOREP
ASSWORD

secretEnv The server SSL KeyStore password for the HTTP
Gateway.

BRM_SERVER_WALLE
T_PASSWD

secretEnv The password to open the BRM server wallet.

BRM_ROOT_WALLET_
PASSWD

secretEnv The root wallet password of the BRM wallet.

Chapter 10
Adding Elastic Charging Engine Keys

10-2

Table 10-1 (Cont.) Elastic Charging Engine Keys

Key Path in values.yaml
File

Description

BRMDATABASEPASS
WORD

secretEnv The password for the BRM database.

If you are connecting ECE to a BRM multischema
database, use these entries instead:

BRMDATABASEPASSWORD:
 - schema: 1
 PASSWORD: Password
 - schema: 2
 PASSWORD: Password

where:

• schema is the schema number. Enter 1 for the
primary schema, 2 for the secondary schema,
and so on.

• PASSWORD is the schema password.

SSLENABLED sslconnectioncertificat
es

Whether SSL is enabled in ECE (true) or not
(false).

DNAME sslconnectioncertificat
es

The domain name. For example: "CN=Admin,
OU=Oracle Communication Application, O=Oracle
Corporation, L=Redwood Shores, S=California,
C=US"

SSLKEYSTOREVALIDI
TY

sslconnectioncertificat
es

The validity of the KeyStore, in days. A value of
200 indicates that the validity is 200 days.

runjob job.sdk Whether the SDK job needs to be run as part of
the deployment (true) or not (false). The default
value is false.

If set to true, a default SDK job is run as part of the
Helm installation or upgrade.

serviceFqdn emgateway The default is ece-emg.

tlsVersion customerUpdater.cust
omerUpdaterList.oracl
eQueueConnectionCo
nfiguration

(Release 15.0.1 or later) The TLS version to
support, such as 1.2 or 1.3

replicas component-
name.component-
nameList

The number of replicas to be created while
deploying the chart. The default replica count is 3
for ecs server, and 1 for all other components.

coherenceMemberNam
e

component-
name.component-
nameList

The Coherence member name under which this
component will be added to the Coherence cluster.

jmxEnabled component-
name.component-
nameList

Whether the component is JMX-enabled (true) or
not (false).

coherencePort component-
name.component-
nameList

The optional value indicating the Coherence port
used by the component.

jvmGCOpts component-
name.component-
nameList

This field helps to provide the Java JVM options
such as GC details, max memory, and min
memory.

Chapter 10
Adding Elastic Charging Engine Keys

10-3

Table 10-1 (Cont.) Elastic Charging Engine Keys

Key Path in values.yaml
File

Description

jvmJMXOpts component-
name.component-
nameList

This field helps to provide the JMX-related option.

jvmCoherenceOpts component-
name.component-
nameList

This field helps to provide the Coherence-related
options such as the override file and cache config
file.

jvmOpts component-
name.component-
nameList

This field is empty by default, and any additional
JVM arguments can be provided here.

labels charging The label for all pods in the deployment. The
default value is ece.

jmxport charging The JMX port exposed by ece, which can be used
to log in to JConsole. The default is 31022.

terminationGracePerio
dSeconds

charging Used for graceful shutdown of the pods. The
default value is 180 seconds.

persistenceEnabled charging Whether to persist the ECE cache data into the
Oracle database. The default is true.

See "Enabling Persistence in ECE" in BRM Cloud
Native System Administrator's Guide for more
information.

hpaEnabled charging Whether to enable autoscaling using Kubernetes
Horizontal Pod Autoscaler.

See "Setting Up Autoscaling of ECE Pods" in BRM
Cloud Native System Administrator's Guide for
more information.

timeoutSurvivorQuoru
m

charging The minimum number of cluster members that
must remain in the cluster when the cluster service
is terminating suspect members, without data loss.
The default is 3.

To calculate the minimum number, use this
formula:

(chargingServerWorkerNodes – 1) * (sum of all
ecs pods/chargingServerWorkerNodes)

chargingServerWorker
Nodes

charging The number of charging server worker nodes. The
default is 3.

primary.* charging.cluster The details about your primary cluster:
• clusterName: The name of the primary

cluster.
• eceServiceName: The ECE service name

that creates the Kubernetes cluster with all of
the ECE components in the primary cluster.
The default is ece-server.

• eceServicefqdnOrExternalIP: The fully
qualified domain name (FQDN) or external IP
address of the ECE service running in the
primary cluster. For example: ece-
server.NameSpace.svc.cluster.local.

Chapter 10
Adding Elastic Charging Engine Keys

10-4

Table 10-1 (Cont.) Elastic Charging Engine Keys

Key Path in values.yaml
File

Description

secondary.* charging.cluster The details about your secondary cluster:
• clusterName: The name of the secondary

cluster.
• eceServiceName: The ECE service name

that creates the Kubernetes cluster with all of
the ECE components in the secondary cluster.
The default is ece-server.

• eceServicefqdnOrExternalIP: The fully
qualified domain name (FQDN) or external IP
address of the ECE service running in the
secondary cluster. For example: ece-
server.NameSpace.svc.cluster.local.

<tags> migration The different tags indicating the values that will be
stored under migration-configuration.xml. The
tag names are the same as the ones used in the
migration-configuration.xml file for ease of
mapping.

<tags> testtools The different tags indicating the values that will be
stored under test-tools.xml. The tag names are
the same as the ones used in the test-tools.xml
file for ease of mapping.

<module> log4j2.logger The different log levels for each module represents
the logging level for the corresponding module.

<tags> eceproperties The different tags indicating the values that will be
stored under ece.properties. The tag names are
the same as the ones used in the ece.properties
file for ease of mapping.

<tags> JMSConfiguration The different tags indicating the values that will be
stored under JMSConfiguration.xml. The tag
names are the same as the ones used in the
JMSConfiguration.xml file for ease of mapping.

name secretEnv The user-defined name to give for the Secrets. The
default is secret-env.

SSLENABLED sslconnectioncertificat
es

Whether to install ECE under SSL mode (true) or
not (false). The default is true.

name pv.external The name of the external PV. The default is
external-pv.

hostpath pv.external The location on the host system of the external PV.
The default is /scratch/qa/ece_config/.

accessModes pv.external The access mode for the PV. The default is
ReadWriteMany.

capacity pv.external The maximum capacity of the external PV.

name pvc.logs The name for the ECE log files. The default is
logs-pv.

hostPath pvc.logs The location on the host system for the ECE log
files.

Chapter 10
Adding Elastic Charging Engine Keys

10-5

Table 10-1 (Cont.) Elastic Charging Engine Keys

Key Path in values.yaml
File

Description

accessModes pvc.logs The access mode for the PVC. The default is
ReadWriteMany, since all of the different
component pods will be writing their respective log
files into a single logs directory.

storage pvc.logs The storage space required initially to create this
PVC. If the storage specified here is not available
in the machine, ensure that the PVC is not created
and that the pods do not get initialized.

name pvc.brmconfig The name of the BRM Config PVC, in which all
BRM configuration files such as the payload config
file are exposed outside of the pod.

accessModes pvc.brmconfig The access mode for the PVC. The default is
ReadWriteMany.

storage pvc.brmconfig The storage space required initially to create this
PVC. If the storage specified here is not available
in the machine, ensure that the PVC is not created
and that the pods do not get initialized.

name pvc.sdk The name for the SDK PVC, in which all of the
SDK files such as the config, sample scripts, and
source files are exposed to the user.

accessModes pvc.sdk The access mode for the PVC. The default is
ReadWriteMany.

storage pvc.sdk The storage space required initially to create this
PVC. If the storage specified here is not available
in the machine, ensure that the PVC is not created
and that the pods do not get initialized.

name pvc.wallet The name for the wallet PVC, in which the wallet
directory will be stored and shared by all of the ecs
pods. The default is ece-wallet-pvc.

accessModes pvc.wallet The access mode for the PVC. The default is
ReadWriteMany.

storage pvc.wallet The storage space required initially to create this
PVC. If the storage specified here is not available
in the machine, ensure that the PVC is not created
and that the pods do not get initialized.

name pvc.external The name for the external PVC, in which the third-
party JARs can be placed to share with the pods.
The default is external-pvc.

accessModes pvc.external The access mode for the PVC. The default is
ReadWriteMany.

storage pvc.external The storage space required initially to create this
PVC. If the storage specified here is not available
in the machine, ensure that the PVC is not created
and that the pods do not get initialized.

name pvc.rel The name of the RE Loader PVC as created in the
BRM deployment.

name storageClass The name of the storage class.

Chapter 10
Adding Elastic Charging Engine Keys

10-6

Enabling SSL in Elastic Charging Engine
To complete the configuration for SSL setup in ECE:

1. Set these keys in the override-values.yaml file for oc-cn-ece-helm-chart:

• sslconnectioncertificates.SSLENABLED: Set this to true.

• sslEnabled: Set this to true in emGatewayConfigurations,
httpGatewayConfigurations, and BRMConnectionConfiguration.

• migration.pricingUpdater.keyStoreLocation: Set this to /home/charging/opt/ECE/
oceceserver/config/client.jks.

• charging.brmWalletServerLocation: Set this to /home/charging/wallet/brmwallet/
server/cwallet.sso.

• charging.brmWalletClientLocation: Set this to /home/charging/wallet/brmwallet/
client/cwallet.sso.

• charging.brmWalletLocation: Set this to /home/charging/wallet/brmwallet.

• charging.emGatewayConfigurations.emGatewayConfigurationList.emGateway1C
onfig.wallet: Set this to the BRM wallet location.

• charging.emGatewayConfigurations.emGatewayConfigurationList.emGateway2C
onfig.wallet: Set this to the BRM wallet location.

• charging.radiusGatewayConfigurations.wallet: Set this to the BRM wallet location.

• charging.connectionConfigurations.BRMConnectionConfiguration.brmwallet:
Set this to the BRM wallet location.

2. Copy the SSL certificates, such as client.jks and public-admin.cer, generated from PDC
to the pdc_ssl_keystore directory in the external PVC.

3. Configure the connectionURL, port, and protocol as per the PDC-configured t3s
channel.

Connecting ECE Cloud Native to an SSL-Enabled Database
To connect your ECE cloud native services to an SSL-enabled Oracle database:

1. Prepare for persistence schema creation.

a. Go to the oc-cn-ece-helm-chart directory, and then create a directory named
ece_ssl_db_wallet/schema1:

cd oc-cn-ece-helm-chart
mkdir -p ece_ssl_db_wallet/schema1

b. Save the contents of the ECE SSL database wallet to the schema1 directory.

c. Grant the necessary permissions to the ece_ssl_db_wallet directory:

chmod -R 775 ece_ssl_db_wallet
d. For multischema systems only, create a directory named schema2 in the

ece_ssl_db_wallet directory and then copy the ECE SSL database wallet to the
schema2 directory.

2. Configure the SSL database wallets in the external volume mount.

a. Go to the external volume mount location (external-pvc).

Chapter 10
Enabling SSL in Elastic Charging Engine

10-7

b. Create a directory named ece_ssl_db_wallet/schema1:

mkdir -p ece_ssl_db_wallet/schema1
c. Save the contents of the ECE SSL database wallet to the ece_ssl_db_wallet/

schema1 directory.

d. Create a directory named brm_ssl_db_wallet/schema1:

mkdir -p brm_ssl_db_wallet/schema1
e. Save the contents of the BRM SSL database to the brm_ssl_db_wallet/schema1

directory.

f. Grant the necessary permissions to both new directories:

chmod -R 775 ece_ssl_db_wallet brm_ssl_db_wallet
g. For multischema systems only, create a schema2 directory inside both

ece_ssl_db_wallet and brm_ssl_db_wallet directories. Then, copy the contents of
the ECE SSL database to the ece_ssl_db_wallet/schema2 directory, and copy the
contents of the BRM SSL database to the brm_ssl_db_wallet/schema2 directory.

3. Configure ECE for an SSL-enabled Oracle persistence database.

Under the
charging.connectionConfigurations.OraclePersistenceConnectionConfigurations
section, set the following keys:

• dbSSLEnabled: Set this to true.

• dbSSLType: Set this to the type of SSL connection required for connecting to the
database: oneway, twoway, or none.

• sslServerCertDN: Set this to the SSL server certificate distinguished name (DN). The
default is DC=local,DC=oracle,CN=pindb.

• trustStoreLocation: Set this to /home/charging/ext/ece_ssl_db_wallet/schema1/
cwallet.sso.

• trustStoreType: Set this to the type of file specified as the TrustStore for SSL
connections: SSO or pkcs12.

4. Configure customerUpdater for an SSL-enabled Oracle AQ database queue.

Under the
customerUpdater.customerUpdaterList.oracleQueueConnectionConfiguration
section, set the following keys:

• dbSSLEnabled: Set this to true.

• dbSSLType: Set this to the type of SSL connection required for connecting to the
database: oneway, twoway, or none.

• sslServerCertDN: Set this to the SSL server certificate distinguished name (DN). The
default is DC=local,DC=oracle,CN=pindb.

• trustStoreLocation: Set this to /home/charging/ext/brm_ssl_db_wallet/schema1/
cwallet.sso.

• trustStoreType: Set this to the type of file specified as the TrustStore for SSL
connections: SSO or pkcs12.

Chapter 10
Connecting ECE Cloud Native to an SSL-Enabled Database

10-8

Note:

For database connectivity, ECE supports only the database service name and
not the database service ID. Therefore, set the following keys to the database
service name:

• charging.connectionConfigurations.OraclePersistenceConnectionConfi
gurations.sid

• customerUpdater.customerUpdaterList.oracleQueueConnectionConfigu
ration.sid

5. Configure your Oracle database configuration files to connect to the SSL-enabled BRM
and ECE databases:

a. Copy the tnsnames.ora and sqlnet.ora files from your SSL database host to your
ECE cloud native instance.

b. On your ECE cloud native instance, go to the ECE Helm chart directory:

cd oc-cn-ece-helm-chart
c. Create the ora_files/ece and ora_files/brm directories:

mkdir -p ora_files/ece/
mkdir -p ora_files/brm/

d. Copy the ECE database tnsnames.ora and sqlnet.ora files to the oc-cn-ece-helm-
chart/ora_files/ece/ directory.

e. In the oc-cn-ece-helm-chart/ora_files/ece/sqlnet.ora file, set the wallet location to /
home/charging/opt/ECE/oceceserver/config/ece_ssl_db_wallet/schema1:

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /home/charging/opt/ECE/oceceserver/config/ece_ssl_db_wallet/
schema1)
)
)

f. Copy the BRM database tnsnames.ora and sqlnet.ora files to the oc-cn-ece-helm-
chart/ora_files/brm.

g. In the oc-cn-ece-helm-chart/ora_files/brm/sqlnet.ora file, set the wallet location to /
home/charging/opt/ECE/oceceserver/config/brm_ssl_db_wallet/schema1:

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /home/charging/opt/ECE/oceceserver/config/brm_ssl_db_wallet/
schema1)
)
)

h. Set the permissions for the ora_files directory:

chmod -R 775 ora_files/
i. Copy the ora_files directory to the external PV mount location:

cp -rf ora_files externalPvMountLocation

Chapter 10
Connecting ECE Cloud Native to an SSL-Enabled Database

10-9

About Elastic Charging Engine Volume Mounts

Note:

You must use a provisioner that has ReadWriteMany access and sharing between
pods.

The ECE container requires Kubernetes volume mounts for third-party libraries. The third-party
volume mount shares the third-party libraries required by ECE from the host system with the
container file system. For the list of third-party libraries to download, see "ECE Software
Compatibility" in BRM Compatibility Matrix. Place the library files under the third-party volume
mount.

The default configuration comes with a hostPath PersistentVolume. For more information, see
"Configure a Pod to Use a PersistentVolume for Storage" in Kubernetes Tasks.

To use a different type of PersistentVolume, modify the oc-cn-ece-helm-chart/templates/ece-
pvc.yaml file.

Loading Custom Diameter AVP
To load custom Diameter AVPs into your ECE cloud native environment:

1. Create a diameter directory inside external-pvc.

2. Move the custom AVP file, such as dictionary_custom.xml, to the diameter directory.

3. If you need to load a custom AVP after ECE is set up, restart the diametergateway pod by
doing the following:

a. Increment the diametergateway.diametergatewayList..restartCount key by 1.

b. Run the helm upgrade command to update the release.

Generating CDRs for Unrated Events
By default, the httpgateway pod sends all 5G usage requests to the ecs pod for online and
offline charging.

You can configure httpgateway to convert some 5G usage requests into call detail record
(CDR) files based on the charging type. You can then send the CDR files to roaming partners,
a data warehousing system, or legacy billing systems for rating. For more information, see
"About Generating CDRs" in ECE Implementing Charging.

You use the following to generate CDRs:

• httpgateway pod

• cdrgateway pod

• cdrFormatter pod

• CDR database

Chapter 10
About Elastic Charging Engine Volume Mounts

10-10

https://kubernetes.io/docs/tasks/configure-pod-container/configure-persistent-volume-storage/

The cdrgateway and cdrFormatter pods can be scaled together, with one each per schema, or
independently of the schemas. For more information, see "Scaling the cdrgateway and
cdrFormatter Pods".

For details about the CDR format, see "CHF-CDR Format" in ECE 5G CHF Protocol
Implementation Conformance Statement.

To set up ECE cloud native to generate CDRs:

1. Configure your httpgateway pod to do the following:

• Generate CDRs (set cdrGenerationEnabled to true).

• Route offline charging requests to the ecs pod for rating (set
rateOfflineCDRinRealtime to true) or to the cdrgateway pod for generating CDRs (set
rateOfflineCDRinRealtime to false).

• Route online charging requests to the ecs pod for rating (set
generateCDRsForOnlineRequests to false) or to the cdrgateway pod for generating
CDRs (set generateCDRsForOnlineRequests to true).

2. Configure the cdrgateway pod to connect to the CDR database and do the following:

• Generate individual CDR records for each request (set individualCdr to true) or
aggregate multiple requests into a CDR record based on trigger criteria (set
individualCdr to false). For information about the trigger criteria, see "About Trigger
Types" in ECE Implementing Charging.

• Store CDR records in an Oracle NoSQL database (set isNoSQLConnection to true)
or in an Oracle database (set isNoSQLConnection to false).

3. Configure the cdrFormatter pod to do the following:

• Retrieve batches of CDR records from the CDR database and pass them to a
specified cdrFormatter plug-in for processing.

• Purge processed CDR records from the CDR database older than a specified number
of days (configured in retainDuration).

• Purge orphan CDR records from the CDR database.

Orphan CDR records are incomplete ones that are older than a specified number of
seconds (configured in cdrOrphanRecordCleanupAgeInSec). Orphan CDR records
can be created when your ECE system goes down due to maintenance or failure.

4. Configure the cdrFormatter plug-in to do the following:

• Write a specified number of CDR records to each CDR file (set maxCdrCount to the
maximum number).

• Create JSON-formatted CDR files and then store them in your file system (set
enableDiskPersistence to true) or send them to your Kafka messaging service (set
enableKafkaIntegration to true).

To generate CDRs in ECE cloud native, you configure the following entries in your override-
values.yaml file. This example configures:

• httpgateway to route both online and offline charging requests to cdrgateway.

• cdrgateway to aggregate multiple requests into a CDR record and then store it in an Oracle
NoSQL database.

• cdrFormatter to retrieve CDR records in batches of 2500 from the Oracle NoSQL database
and then send them to the default plug-in module. Immediately after CDR records are
retrieved, cdrFormatter purges them from the database. It would also purge orphan
records older than 200 seconds from the database.

Chapter 10
Generating CDRs for Unrated Events

10-11

• The cdrFormatter plug-in to create CDR files with a maximum of 20000 CDR records and
an .out file name extension. It would store them in your file system in the path /home/
charging/cdr_input.

cdrFormatter:
 cdrFormatterList:
 - schemaNumber: "1"
 replicas: 1
 coherenceMemberName: "cdrformatter1"
 jmxEnabled: true
 jvmGCOpts: "-XX:+UnlockExperimentalVMOptions -XX:+AlwaysPreTouch -
XX:G1RSetRegionEntries=2048 -XX:ParallelGCThreads=10 -XX:+ParallelRefProcEnabled -
XX:MetaspaceSize=100M -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps -
XX:+PrintTenuringDistribution -XX:+PrintAdaptiveSizePolicy -XX:-UseGCLogFileRotation -
XX:+UseG1GC -XX:NumberOfGCLogFiles=99"
 jvmOpts: "-Xms16g -Xmx20g -Dece.metrics.http.service.enabled=true"
 cdrFormatterConfiguration:
 name: "cdrformatter1"
 clusterName: "BRM"
 primaryInstanceName: "cdrformatter1"
 partition: "1"
 isNoSQLConnection: "true"
 noSQLConnectionName: "noSQLConnection"
 connectionName: "oraclePersistence1brm"
 threadPoolSize: "6"
 retainDuration: "0"
 ripeDuration: "60"
 checkPointInterval: "6"
 maxPersistenceCatchupTime: "0"
 pluginPath: "ece-cdrformatter.jar"
 pluginType:
"oracle.communication.brm.charging.cdr.formatterplugin.internal.SampleCdrFormatterCustomP
lugin"
 pluginName: "cdrFormatterPlugin1"
 noSQLBatchSize: "2500"
 cdrStoreFetchSize: "2500"
 cdrOrphanRecordCleanupAgeInSec:"200"
 cdrOrphanRecordCleanupSleepIntervalInSec: "200"
 enableIncompleteCdrDetection: "false"

cdrgateway:
 cdrgatewayList:
 - coherenceMemberName: "cdrgateway1"
 replicas: 6
 jmxEnabled: true
 jvmGCOpts: "-XX:+UnlockExperimentalVMOptions -XX:+AlwaysPreTouch -
XX:G1RSetRegionEntries=2048 -XX:ParallelGCThreads=10 -XX:+ParallelRefProcEnabled -
XX:MetaspaceSize=100M -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps -
XX:+PrintTenuringDistribution -XX:+PrintAdaptiveSizePolicy -XX:-UseGCLogFileRotation -
XX:+UseG1GC -XX:NumberOfGCLogFiles=99"
 jvmJMXOpts: "-Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.local.only=false"
 jvmCoherenceOpts: "-Dpof.config=charging-pof-config.xml -
Dcoherence.override=charging-coherence-override-dev.xml -Dcoherence.security=false -
Dsecure.access.name=admin"
 jvmOpts: "-Xms6g -Xmx8g -Dece.metrics.http.service.enabled=true -
DcdrServerCorePoolSize=64 -Dserver.sockets.metrics.bind-address=0.0.0.0 -
Dece.metrics.http.port=19612"
 restartCount: "0"
 cdrGatewayConfiguration:
 name: "cdrgateway1"

Chapter 10
Generating CDRs for Unrated Events

10-12

 clusterName: "BRM"
 primaryInstanceName: "cdrgateway1"
 schemaNumber: "1"
 isNoSQLConnection: "true"
 noSQLConnectionName: "noSQLConnection"
 connectionName: "oraclePersistence1"
 cdrPort: "8084"
 cdrHost: "ece-cdrgatewayservice"
 individualCdr: "false"
 cdrServerCorePoolSize: "32"
 cdrServerMaxPoolSize: "256"
 enableIncompleteCdrDetection: "false"
 retransmissionDuplicateDetectionEnabled: "false"

httpgateway:
 cdrGenerationEnabled: "true"
 cdrGenerationStandaloneMode: "true"
 rateOfflineCDRinRealtime: "false"
 generateCDRsForOnlineRequests: "true"
 httpgatewayList:
 - coherenceMemberName: "httpgateway1"
 replicas: 8
 maxreplicas: 8
 jvmGCOpts: "-XX:+AlwaysPreTouch -XX:G1RSetRegionEntries=2048 -
XX:ParallelGCThreads=10 -XX:+ParallelRefProcEnabled -XX:MetaspaceSize=100M -
XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps -
XX:+PrintTenuringDistribution -XX:+PrintAdaptiveSizePolicy -XX:-UseGCLogFileRotation -
XX:+UseG1GC -XX:NumberOfGCLogFiles=99"
 jvmOpts: "-Xms10g -Xmx14g -Djava.net.preferIPv4Addresses=true -
Dece.metrics.http.service.enabled=true -Dserver.sockets.metrics.bind-address=0.0.0.0 -
Dece.metrics.http.port=19612"
 httpGatewayConfiguration:
 name: "httpgateway1"
 processingThreadPoolSize: "200"
 processingQueueSize: "32768"
 kafkaBatchSize: "10"

 connectionConfigurations:
 OraclePersistenceConnectionConfigurations:
 retryCount: "1"
 retryInterval: "1"
 maxStmtCacheSize: "100"
 connectionWaitTimeout: "3000"
 timeoutConnectionCheckInterval: "3000"
 inactiveConnectionTimeout: "3000"
 databaseConnectionTimeout: "6000"
 persistenceInitialPoolSize: "4"
 persistenceMinPoolSize: "4"
 persistenceMaxPoolSize: "20"
 reloadInitialPoolSize: "0"
 reloadMinPoolSize: "0"
 reloadMaxPoolSize: "20"
 ratedEventFormatterInitialPoolSize: "6"
 ratedEventFormatterMinPoolSize: "6"
 ratedEventFormatterMaxPoolSize: "24"

charging:
 cdrFormatterPlugins:
 cdrFormatterPluginConfigurationList:
 cdrFormatterPluginConfiguration:
 name: "cdrFormatterPlugin1"
 tempDirectoryPath: "/tmp/tmp"

Chapter 10
Generating CDRs for Unrated Events

10-13

 doneDirectoryPath: "/home/charging/cdr_input"
 doneFileExtension: ".out"
 enableKafkaIntegration: "false"
 enableDiskPersistence: "true"
 maxCdrCount: "20000"
 staleSessionCauseForRecordClosingString: "PARTIAL_RECORD"
 enableStaleSessionCleanupCustomField: "false"

Scaling the cdrgateway and cdrFormatter Pods
To increase performance and throughput, you can scale the cdrgateway and cdrFormatter
pods together, with one each per schema, or scale them independently of the schemas.

Figure 10-1 shows an example of scaled cdrgateway and cdrFormatter pods that have CDR
storage in an Oracle Database. This example contains:

• One cdrgateway multi-replica deployment for all ECE schemas. All cdrgateway replicas
have a single CDR Gateway service acting as a front end to httpgateway.

• One cdrFormatter single-replica deployment for each ECE schema. Each cdrFormatter
reads persisted CDRs from its associated ECE schema.

httpgateway forwards CDR requests to cdrgateway replicas in round-robin fashion. In this
example, cdrgateway replicas 1-0, 1-1, and 1-2 persist CDRs in schema 1 tables, and replicas
1-3, 1-4, and 1-5 persist CDRs in schema 2 tables.

Figure 10-1 Scaled Architecture with an Oracle Database

Figure 10-2 shows an example of scaled cdrgateway and cdrFormatter pods that have CDR
storage in an Oracle NoSQL Database. This example contains:

• One cdrgateway multi-replica deployment for all ECE schemas. All cdrgateway replicas
have a single CDR Gateway service acting as a front end to the httpgateway.

• One cdrFormatter single-replica deployment for each major key partition in the ECE
schema. Each cdrFormatter reads persisted CDRs from its associated partition.

Chapter 10
Generating CDRs for Unrated Events

10-14

Figure 10-2 Scaled Architecture with a NoSQL Database

Configuring ECE to Support Prepaid Usage Overage
You can configure ECE cloud native to capture any overage amounts by prepaid customers
during an active session, which can help you prevent revenue leakage. If the network reports
that the number of used units during a session is greater than a customer's available
allowance, ECE cloud native charges the customer up to the available allowance. It then
creates an overage record with information about the overage amount and sends it to the ECE
Overage topic. You can create a custom solution for reprocessing the overage amount later on.

For example, assume a customer has a prepaid balance of 100 minutes, but uses 130 minutes
during a session. ECE cloud native would charge the customer for 100 minutes, create an
overage record for the remaining 30 minutes of usage, and then write the overage topic to the
ECE Overage Kafka topic.

When the prepaid usage overage is disabled, ECE cloud native charges the customer for the
full amount regardless of the amount of funds in the customer's balance.

To configure ECE cloud native to support prepaid usage overage, do the following:

• Ensure that ECE cloud native is connected to your Kafka Server

• Enable ECE cloud native to support prepaid usage overage

• Create an ECE Overage topic in your Kafka Server

To do so, set the following keys in your override-values.yaml file for oc-cn-helm-chart:

• charging.kafkaConfigurations.kafkaConfigurationList.*: Specify how to connect ECE
to your Kafka Server.

• charging.server.checkReservationOverImpact: Set this to true.

• charging.kafkaConfigurations.kafkaConfigurationList.overageTopicName: Set this to
the name of the Kafka topic where ECE will publish overage records.

Recording Failed ECE Usage Requests
ECE cloud native may occasionally fail to process usage requests. For example, a data usage
request could fail because a customer has insufficient funds. You can configure ECE cloud
native to publish details about failed usage requests, such as the user ID and request payload,
to the ECE failure topic in your Kafka server. Later on, you can reprocess the usage requests
or view the failure details for analysis and reporting.

To configure ECE cloud native to record failed ECE usage requests:

Chapter 10
Configuring ECE to Support Prepaid Usage Overage

10-15

• Ensure that ECE cloud native is connected your Kafka Server

• Enable the recording of failed ECE usage requests

• Create an ECE failure topic in your Kafka Server

To do so, set the following keys in your override-values.yaml file for oc-cn-helm-chart:

• charging.kafkaConfigurations.kafkaConfigurationList.*: Specify how to connect ECE
to your Kafka Server.

• charging.kafkaConfigurations.kafkaConfigurationList.persistFailedRequestsToKafka
Topic: Set this to true.

• charging.kafkaConfigurations.kafkaConfigurationList.failureTopicName: Set this to
the name of the topic that stores information about failed ECE usage requests.

Loading BRM Configuration XML Files
BRM is configured by using the pin_notify and payloadconfig_ece_sync.xml files. To ensure
that the BRM pod can access these files for configuring the EAI Java Server (eai_js), they are
exposed through the brm_config PVC within the pricingupdater pod. When new metadata is
synchronized with ECE, if there are updates to the payload configuration file, it will create a
new file in the location which can be accessed and configured in BRM.

For more information, see "Enabling Real-Time Synchronization of BRM and ECE Customer
Data Updates" in ECE Implementing Charging.

Setting Up Notification Handling in ECE
You can configure ECE cloud native to send notifications to a client application or an external
application during an online charging session. For example, ECE cloud native could send a
notification when a customer has breached a credit threshold or when a customer needs to
request reauthorization.

You can set up ECE cloud native to send notifications by using either Apache Kafka topics or
Oracle WebLogic queues:

• Creating an Apache Kafka Notification Topic

• Creating an Oracle WebLogic Notification Queue

Creating an Apache Kafka Notification Topic
To create notification topics in Apache Kafka:

1. Create these Kafka topics either in the Kafka entrypoint.sh script or after the Kafka pod is
ready:

• kafka.topicName: ECENotifications

• kafka.suspenseTopicName: ECESuspenseQueue

2. In the ZooKeeper runtime ConfigMap, set the ece-zookeeper-0.ece-
zookeeper.ECENameSpace.svc.cluster.local key to the name of the Kafka Cluster.

3. Set these Kafka and ZooKeeper-related environment variables appropriately:

• KAFKA_PORT: Set this to the port number in which Apache Kafka is up and running.

Chapter 10
Loading BRM Configuration XML Files

10-16

• KAFKA_HOST_NAME: Set this to the host name of the machine in which Apache
Kafka is up and running. If it contains multiple Kafka brokers, create a comma-
separated list.

• REPLICATION_FACTOR: Set this to the number of topic replications to create.

• PARTITIONS: Set this to the total number of Kafka partitions to create in your topics.
The recommended number to create is calculated as follows:

[(Max Diameter Gateways * Max Peers Per Gateway) + (1 for BRM Gateway) +
Internal Notifications]

• TOPIC_NAME: Set this to ECENotifications. This is the name of the Kafka topic
where ECE will publish notifications.

• SUSPENSE_TOPIC_NAME: Set this to ECESuspenseQueue. This is the name of the
Kafka topic where BRM will publish failed notifications and will retry later.

• ZK_CLUSTER: Set this to the name of your ZooKeeper cluster. This should match the
value you set in step 2.

• ZK_CLIENT_PORT: Set this to the port number in which ZooKeeper listens for client
connections.

• ZK_SERVER_PORT: Set this to the port number of the ZooKeeper server.

4. Ensure that the Kafka and ZooKeeper pods are in a READY state.

5. Set these keys in your override-values.yaml file for oc-cn-ece-helm-chart:

• charging.server.kafkaEnabledForNotifications: Set this to true.

• charging.server.kafkaConfigurations.name: Set this to the name of your ECE
cluster.

• charging.server.kafkaConfigurations.hostname: Set this to the host name of the
machine on which Kafka is up and running.

• charging.server.kafkaConfigurations.topicName: Set this to ECENotifications.

• charging.server.kafkaConfigurations.suspenseTopicName: Set this to
ECESuspenseQueue.

6. Install the ECE cloud native service by entering this command from the helmcharts
directory:

helm install EceReleaseName oc-cn-ece-helm-chart --namespace BrmNameSpace --values
OverrideValuesFile

The notification topics are created in Apache Kafka.

Creating an Oracle WebLogic Notification Queue
To create notification queues and topics in Oracle WebLogic:

1. Ensure the following:

• Oracle WebLogic is running in your Kubernetes cluster.

• A separate WebLogic domain for the ECE Notification queues has been created.

Chapter 10
Setting Up Notification Handling in ECE

10-17

Note:

Do not create your ECE notification queues in an existing WebLogic domain.
For example, do not use the Billing Care, Business Operations Center, PDC,
or Billing Care REST API domains.

• The following third-party libraries are in the 3rdparty_jars directory inside external-
pvc:

– external-pvc: com.oracle.weblogic.beangen.general.api.jar

– wlthint3client.jar

• For SSL-enabled WebLogic in a disaster recovery environment, move a common JKS
certificate file for all sites to the ece_ssl_keystore directory inside external-pvc.

2. Create an override-values.yaml file for oc-cn-ece-helm-chart.

3. Set the following keys in your override-values.yaml file:

• Set the secretEnv.JMSQUEUEPASSWORD key to the WebLogic user password.

• If WebLogic SSL is enabled, set the secretEnv.NOTIFYEVENTKEYPASS key to the
KeyStore password.

• Set the job.jmsconfig.runjob key to true.

• If the job needs to create the ECE JMS module and subdeployment, set the
job.jmsconfig.preCreateJmsServerAndModule key to true.

• Set the charging.server.weblogic.jmsmodule key to ECE.

• Set the charging.server.weblogic.subdeployment key to ECEQueue.

• Set the charging.server.kafkaEnabledForNotifications key to false.

• In the JMSConfiguration section, set the HostName, Port, Protocol,
ConnectionURL, and KeyStoreLocation keys to the appropriate values for your
system.

For more information about these keys, see Table 10-1.

4. Copy the SSL certificate file (client.jks) to the ece_ssl_keystore directory in the external
PVC.

5. Install the ECE cloud native service by entering this command from the helmcharts
directory:

helm install EceReleaseName oc-cn-ece-helm-chart --namespace BrmNameSpace --values
OverrideValuesFile

The following are created in the ECE domain of your WebLogic Server:

• A WebLogic notification topic named NotificationTopic.

• A WebLogic notification queue named SuspenseQueue.

• A WebLogic connection factory named NotificationFactory.

Next, configure the connection factory resource so your clients can connect to the ECE
notification queues and topics in Oracle WebLogic.

To configure the connection factory resource:

1. On the WebLogic Server in which the JMS ECE notification queue resides, sign in to
WebLogic Server Administration Console.

Chapter 10
Setting Up Notification Handling in ECE

10-18

2. In the Domain Structure tree, expand Services, expand Messaging, and then click JMS
Modules.

The Summary of JMS Modules page appears.

3. In the JMS Modules table, click on the name ECE.

The Settings for ECE page appears.

4. In the Summary of Resources table, click on the name NotificationFactory.

The Settings for NotificationFactory page appears.

5. Click the Configuration tab, and then click the Client tab.

6. On the Client page, do the following:

a. In Client ID Policy, select Unrestricted.

b. In Subscription Sharing Policy, select Sharable.

c. In Reconnect Policy, select None.

d. Click Save.

7. Click the Transactions tab.

8. On the Transactions page, do the following:

a. In Transaction Timeout, enter 2147483647 which is the maximum timeout value.

b. Click Save.

For more information, see Oracle WebLogic Administration Console Online Help.

Configuring ECE for a Multischema BRM Environment
If your BRM database contains multiple schemas, you must configure ECE to connect to each
schema.

To configure ECE for a BRM multischema database:

1. Open your override-values.yaml file for the oc-cn-ece-helm-chart chart.

2. Specify the password for accessing each schema in the BRM database. To do so,
configure these keys for each schema:

• secretEnv.BRMDATABASEPASSWORD.schema: Set this to the schema number.
Enter 1 for the primary schema, 2 for the secondary schema, and so on.

• secretEnv.BRMDATABASEPASSWORD.PASSWORD: Set this to the schema
password.

This shows example settings for two schemas:

secretEnv:
 BRMDATABASEPASSWORD:
 - schema: 1
 PASSWORD: Password
 - schema: 2
 PASSWORD: Password

3. Configure a customerUpdater pod for each schema. To do so, add a -schemaNumber list
for each schema. In the list:

• Set the SchemaNumber key to 1 for the primary schema, 2 for the secondary
schema, and so on.

Chapter 10
Configuring ECE for a Multischema BRM Environment

10-19

https://docs.oracle.com/middleware/12213/wls/WLACH/index.html

• Set the amtAckQueueName key to the fully qualified name of the acknowledgment
queue to which the pin_amt utility listens to Account Migration Manager (AMM)-related
acknowledgment events. The value is in the format
primarySchema.ECE_AMT_ACK_QUEUE, where primarySchema is the name of the
primary schema.

• Set the hostName and jdbcUrl keys to their corresponding values for each schema.

This shows example settings for two schemas:

customerUpdater:
 customerUpdaterList:
 - schemaNumber: "1"
 coherenceMemberName: "customerupdater1"
 replicas: 1
 jmxEnabled: true
 coherencePort: ""
 jvmGCOpts: ""
 jvmJMXOpts: ""
 jvmCoherenceOpts: ""
 jvmOpts: ""
 jmxport: ""
 restartCount: "0"
 oracleQueueConnectionConfiguration:
 name: "customerupdater1"
 gatewayName: "customerupdater1"
 hostName: ""
 port: "1521"
 sid: "pindb"
 userName: "pin"
 jdbcUrl: ""
 queueName: "IFW_SYNC_QUEUE"
 suspenseQueueName: "ECE_SUSPENSE_QUEUE"
 ackQueueName: "ECE_ACK_QUEUE"
 amtAckQueueName: "pin0101.ECE_AMT_ACK_QUEUE"
 batchSize: "1"
 dbTimeout: "900"
 retryCount: "10"
 retryInterval: "60"
 walletLocation: "/home/charging/wallet/ecewallet/"

 - schemaNumber: "2"
 coherenceMemberName: "customerupdater2"
 replicas: 1
 jmxEnabled: true
 coherencePort: ""
 jvmGCOpts: ""
 jvmJMXOpts: ""
 jvmCoherenceOpts: ""
 jvmOpts: ""
 jmxport: ""
 oracleQueueConnectionConfiguration:
 name: "customerupdater2"
 gatewayName: "customerupdater2"
 hostName: ""
 port: "1521"
 sid: "pindb"
 userName: "pin"
 jdbcUrl: ""
 queueName: "IFW_SYNC_QUEUE"
 suspenseQueueName: "ECE_SUSPENSE_QUEUE"
 ackQueueName: "ECE_ACK_QUEUE"
 amtAckQueueName: "pin0101.ECE_AMT_ACK_QUEUE"

Chapter 10
Configuring ECE for a Multischema BRM Environment

10-20

 batchSize: "1"
 dbTimeout: "900"
 retryCount: "10"
 retryInterval: "60"
 walletLocation: "/home/charging/wallet/ecewallet/"

4. Configure a ratedEventFormatter pod for processing rated events belonging to each BRM
schema. To do so, add a -schemaNumber list for each schema. In the list, set the
schemaNumber and partition keys to 1 for the primary schema, 2 for the secondary
schema, and so on.

This shows example settings for two schemas:

ratedEventFormatter:
 ratedEventFormatterList:
 - schemaNumber: "1"
 replicas: 1
 coherenceMemberName: "ratedeventformatter1"
 jmxEnabled: true
 coherencePort:
 jvmGCOpts: ""
 jvmJMXOpts: ""
 jvmCoherenceOpts: ""
 jvmOpts: ""
 jmxport: ""
 restartCount: "0"
 ratedEventFormatterConfiguration:
 name: "ratedeventformatter1"
 primaryInstanceName: "ratedeventformatter1"
 partition: "1"
 noSQLConnectionName: "noSQLConnection"
 connectionName: "oraclePersistence1"
 threadPoolSize: "6"
 retainDuration: "0"
 ripeDuration: "600"
 checkPointInterval: "6"
 maxPersistenceCatchupTime: "60"
 siteName: ""
 pluginPath: "ece-ratedeventformatter.jar"
 pluginType:
"oracle.communication.brm.charging.ratedevent.formatterplugin.internal.BrmCdrPluginDi
rect"
 pluginName: "brmCdrPlugin1"
 noSQLBatchSize: "25"

 - schemaNumber: "2"
 replicas: 1
 coherenceMemberName: "ratedeventformatter2"
 jmxEnabled: true
 coherencePort:
 jvmGCOpts: ""
 jvmJMXOpts: ""
 jvmCoherenceOpts: ""
 jvmOpts: ""
 jmxport: ""
 ratedEventFormatterConfiguration:
 name: "ratedeventformatter2"
 primaryInstanceName: "ratedeventformatter2"
 partition: "2"
 noSQLConnectionName: "noSQLConnection"
 connectionName: "oraclePersistence1"
 threadPoolSize: "6"
 retainDuration: "0"

Chapter 10
Configuring ECE for a Multischema BRM Environment

10-21

 ripeDuration: "600"
 checkPointInterval: "6"
 maxPersistenceCatchupTime: "60"
 siteName: ""
 pluginPath: "ece-ratedeventformatter.jar"
 pluginType:
"oracle.communication.brm.charging.ratedevent.formatterplugin.internal.BrmCdrPluginDi
rect"
 pluginName: "brmCdrPlugin1"
 noSQLBatchSize: "25"

5. Save and close your override-values.yaml file for oc-cn-ece-helm-chart.

6. In the oc-cn-ece-helm-chart/templates/charging-settings.yaml ConfigMap, add
poidIdConfiguration in itemAssignmentConfig for each schema.

This shows example settings for three schemas:

<itemAssignmentConfigconfig-
class="oracle.communication.brm.charging.appconfiguration.beans.item.ItemAssignmentCo
nfig" itemAssignmentEnabled="true" delayToleranceIntervalInDays="0"
poidPersistenceSafeCount="12000">
 <schemaConfigurationGroup config-class="java.util.ArrayList">
 <poidIdConfigurationconfig-
class="oracle.communication.brm.charging.appconfiguration.beans.item.PoidIdConfigurat
ion" schemaName="1" poidQuantity="2000000">
 </poidIdConfiguration>
 <poidIdConfigurationconfig-
class="oracle.communication.brm.charging.appconfiguration.beans.item.PoidIdConfigurat
ion" schemaName="2" poidQuantity="2000000">
 </poidIdConfiguration>
 <poidIdConfigurationconfig-
class="oracle.communication.brm.charging.appconfiguration.beans.item.PoidIdConfigurat
ion" schemaName="3" poidQuantity="2000000">
 </poidIdConfiguration>
 </schemaConfigurationGroup>
</itemAssignmentConfig>

After you deploy oc-cn-ece-helm-chart in "Deploying BRM Cloud Native Services", the ECE
pods will be connected to your BRM database schemas.

Chapter 10
Configuring ECE for a Multischema BRM Environment

10-22

11
Deploying BRM Cloud Native Services

Learn how to deploy Oracle Communications Billing and Revenue Management (BRM) cloud
native services by running the Helm install command.

Topics in this document:

• Deploying BRM Cloud Native Services

Deploying BRM Cloud Native Services

Note:

The oc-cn-init-db-helm-chart and oc-cn-helm-chart charts must be deployed in
different namespaces.

To deploy BRM cloud native services, do this:

1. Create a namespace for the BRM Helm chart.

kubectl create namespace BrmNameSpace

where BrmNameSpace is the namespace in which to create BRM Kubernetes objects for
the BRM Helm chart.

2. Validate the content of your Helm charts by using the Helm lint command.

• For Helm 3.6.0 and later releases, enter these commands from the helmcharts
directory:

helm lint --strict oc-cn-helm-chart --values oc-cn-helm-chart/values.yaml --
values OverrideValuesFile
helm lint --strict oc-cn-ece-helm-chart --values oc-cn-ece-helm-chart/
values.yaml --values OverrideValuesFile
helm lint --strict oc-cn-op-job-helm-chart --values oc-cn-op-job-helm-chart/
values.yaml --values OverrideValuesFile

• For previous Helm releases, enter these commands from the helmcharts directory:

helm lint --strict oc-cn-helm-chart
helm lint --strict oc-cn-ece-helm-chart
helm lint --strict oc-cn-op-job-helm-chart

You'll see this if the commands complete successfully:

3 chart(s) listed, no failures
3. If you are using Pricing Design Center (PDC), Billing Care, the Billing Care REST API,

Web Services Manager, or Business Operations Center, do this:

a. Ensure BRM images are available and BRM is deployed successfully, for PDC pods to
deploy successfully

b. Direct WebLogic Kubernetes Operator to monitor the BRM namespace:

11-1

helm upgrade weblogic-operator weblogic-operator/weblogic-operator \
--namespace Operator \
--reuse-values \
--set "domainNamespaces={BrmNameSpace}" \
--wait

where Operator is the namespace you created for WebLogic Kubernetes Operator as
part of the prerequisite tasks.

c. Create WebLogic domains by entering this command from the helmcharts directory:

helm install OpJobReleaseName oc-cn-op-job-helm-chart --namespace BrmNameSpace --
values OverrideValuesFile

where OpJobReleaseName is the release name for oc-cn-op-job-helm-chart and is
used to track this installation instance. It must be different from the one used for the
BRM Helm chart.

4. Install BRM cloud native services by entering this command from the helmcharts
directory:

helm install BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

where BrmReleaseName is the release name for oc-cn-helm-chart and is used to track
this installation instance. It must be different from the one used for oc-cn-init-db-helm-
chart.

5. To install the ECE cloud native service, enter this command from the helmcharts directory:

helm install EceReleaseName oc-cn-ece-helm-chart --namespace BrmNameSpace --values
OverrideValuesFile

where EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to
track this installation instance. It must be different from the one used for the BRM Helm
chart.

Chapter 11
Deploying BRM Cloud Native Services

11-2

12
Deploying into Oracle Cloud Infrastructure

Learn how to deploy Oracle Communications Billing and Revenue Management (BRM) cloud
native services into Oracle Cloud Infrastructure.

Topics in this document:

• Deploying into Oracle Cloud Infrastructure

Deploying into Oracle Cloud Infrastructure
Oracle Cloud Infrastructure is a set of complementary cloud services that enable you to run a
wide range of applications and services in a highly available hosted environment. It offers high-
performance computing capabilities (as physical hardware instances) and storage capacity in a
flexible overlay virtual network that is securely accessible from your on-premise network. BRM
cloud native deployment is tested in Oracle Cloud Infrastructure for the following services both
on Virtual Machine and Bare Metal:

• BRM cloud native application and database running on IaaS

• BRM cloud native application managed by Oracle Kubernetes Engine and database on
IaaS

• BRM cloud native application managed by Oracle Kubernetes Engine and database on
DBaaS

Deploying the BRM cloud native services into Oracle Cloud Infrastructure involves these high-
level steps:

Note:

These are the bare minimum tasks for deploying BRM cloud native services in Oracle
Cloud Infrastructure. Your steps may vary from the ones listed below.

1. Sign up for Oracle Cloud Infrastructure.

2. Create a database system on a bare metal or virtual machine instance.

Select a database version that is compatible with the BRM cloud native software
requirements. See "BRM Software Compatibility" in BRM Compatibility Matrix.

3. Create a Kubernetes cluster and deselect the Tiller (Helm) Enabled option. The version of
Helm used by Oracle Cloud Infrastructure isn't compatible with the BRM cloud native
software requirements.

4. Install and configure the Oracle Cloud Infrastructure Command Line Interface (CLI).

CLI is a small footprint tool that you can use on its own or with the Console to complete
OCI tasks. It's needed here to download the kubeconfig file.

5. Install and configure kubectl on your system to perform operations on your cluster in
Oracle Cloud Infrastructure.

12-1

6. The kubeconfig file (by default named config and stored in the $HOME/.kube directory)
provides the necessary details to access the cluster using kubectl and the Kubernetes
Dashboard.

Download kubeconfig to access your cluster on Oracle Cloud Infrastructure by entering
this command:

oci ce cluster create-kubeconfig --cluster-id ClusterId --file $HOME/.kube/
config --region RegionId --token-version 2.0.0

where ClusterId is the Oracle Cloud Identifier (OCID) of the cluster, and RegionId is the
region identifier such as us-phoenix-1 and us-ashburn-1.

7. Set the $KUBECONFIG environment variable to the downloaded kubeconfig file by
entering this command:

export KUBECONFIG=$HOME/.kube/config

8. Verify access to your cluster. You can enter this command and then match the output
Internal IP Addresses and External IP Addresses against the nodes in your cluster in the
Oracle Cloud Infrastructure Console.

kubectl get node -o wide

9. Download and configure Helm in your local system.

10. Place the BRM cloud native Helm chart on your system where you have downloaded and
configured kubectl and Helm. Then, follow the instructions in "Configuring and Deploying
BRM Cloud Native" in BRM Cloud Native Deployment Guide.

Chapter 12
Deploying into Oracle Cloud Infrastructure

12-2

13
Uninstalling Your BRM Cloud Native
Deployment

Learn how to uninstall the Oracle Communications Billing and Revenue Management (BRM)
cloud native deployment from your system.

Topics in this document:

• Uninstalling Your BRM Cloud Native Deployment

• Uninstalling Selected BRM Cloud Native Services

Uninstalling Your BRM Cloud Native Deployment
When you uninstall a Helm chart from your BRM cloud native deployment, it removes only the
Kubernetes objects that it created during installation.

To uninstall, enter this command:

helm delete ReleaseName --namespace NameSpace

where:

• ReleaseName is the name you assigned to this installation instance.

• NameSpace is the namespace in which the BRM Kubernetes objects reside.

Uninstalling Selected BRM Cloud Native Services
Depending on the scenario, you might need to temporarily or permanently uninstall BRM cloud
native services, such as Billing Care, the Billing Care REST API, or Business Operations
Center, while retaining other BRM services. To do this, you upgrade your oc-cn-helm-chart
release by disabling the service you intend to remove.

For example, to remove only the Billing Care REST API service, you would set the
ocbc.bcws.isEnabled key to false in your override-values.yaml file and then upgrade your
release of oc-cn-helm-chart:

helm upgrade --namespace NameSpace ReleaseName oc-cn-helm-chart --values override-
values.yaml

This would bring down the WebLogic servers that are hosting the Billing Care REST API and
remove all resources created for this service through oc-cn-helm-chart.

13-1

Part IV
Customizing BRM Cloud Native

This part provides information about customizing Oracle Communications Billing and Revenue
Management (BRM) cloud native. It contains the following chapters:

• Customizing BRM Cloud Native Services

• Building Your Own Images

14
Customizing BRM Cloud Native Services

Learn how to customize the Oracle Communications Billing and Revenue Management (BRM)
server and clients in a cloud native environment to meet your business needs.

The Podman build commands in this chapter reference Dockerfile and related scripts as is
from the oc-cn-docker-files-15.0.x.0.0.tgz package. Ensure you use your own version of
Dockerfile and related scripts before running the build command.

Topics in this document:

• Customizing BRM Server

• Customizing Billing Care

• Customizing ECE

Caution:

The Dockerfiles and related scripts are provided for reference only. You can refer to
them to build or extend your own images. Support is restricted to core product issues
only and no support will be provided for custom Dockerfiles and scripts.

Customizing BRM Server
You can customize BRM Server by layering the BRM cloud native image with a customized
library file.

For example, you could extend the fm_subsciption_pol_custom.so library file and layer it
with the BRM cloud native image by doing this:

1. Customize your lib/fm_subscription_pol_custom.so library file as follows:

a. Enable the BRM SDK by setting the following keys in your override-values.yaml file
for oc-cn-helm-chart:

brm_sdk:
 isEnabled: true
 deployment:
 imageName: brm_sdk
 imageTag: 15.0.x.0.0
 pvc:
 storage: 50Mi

b. Run the helm upgrade command to deploy the brm-sdk pod:

helm upgrade BrmReleaseName oc-cn-helm-chart --values
OverrideValuesFile --namespace BrmNameSpace

14-1

c. Run the following kubectl command to retrieve the brm-sdk pod name:

kubectl get pods --namespace BrmNameSpace | grep brm-sdk

If successful, you should see something similar to this:

NAME READY STATUS RESTARTS AGE
brm-sdk-f67b95777-bf8j5 1/1 Running 0 18m

d. Run the following kubectl command to retrieve the name of the PVC volume for brm-
sdk:

kubectl get pvc --namespace BrmNameSpace | grep brm-sdk

If successful, you should see something similar to this:

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE
brm-sdk Bound pvc-094feae0-4d11-4887-83a0-b47a0fc6a3f4 50Mi
RWX myclass 23h

e. List the files and folders in /mnt/oke_test/brm to verify that the PVC volume is
present:

ls /mnt/oke_test/brm/ | grep pvc-094feae0-4d11-4887-83a0-b47a0fc6a3f4

If successful, you should see something similar to this:

brm-sdk-pvc-094feae0-4d11-4887-83a0-b47a0fc6a3f4

f. Do one of the following:

• Copy the custom C file to the PVC:

cp customFile nfsMountPath/BrmNameSpace/pvcVolumePath/

For example:

cp fm_cust_pol_valid_billinfo.c /mnt/oke_test/brm/brm-sdk-
pvc-094feae0-4d11-4887-83a0-b47a0fc6a3f4/

• Copy the custom C file to the oc-cn-helm-chart/brm_sdk_scripts/ directory and
run the helm upgrade command:

cp customFile oc-cn-helm-chart/brm_sdk_scripts/
helm upgrade BrmReleaseName oc-cn-helm-chart --namespace
BrmNameSpace --values oc-cn-helm-chart/override_values.yaml

Chapter 14
Customizing BRM Server

14-2

For example:

cp fm_cust_pol_valid_billinfo.c oc-cn-helm-chart/brm_sdk_scripts/
helm upgrade release oc-cn-helm-chart --namespace brm --values oc-
cn-helm-chart/override_values.yaml

The files from oc-cn-helm-chart/brm_sdk_scripts/ will be present at /oms/load
in the brm-sdk pod.

g. Run the kubectl command to get a shell to a running container:

kubectl exec --namespace BrmNameSpace -it brmSDKPod bash

For example:

kubectl exec --namespace brm -it brm-sdk-f67b95777-bf8j5 bash

h. Build your custom library file in one of these ways:

• If you copied your custom C file to the PVC in step 1.f, do this:

cd source/sys/libraryName
cp /oms/ext/fileName .
make

For example:

cd source/sys/fm_cust_pol/
cp /oms/ext/fm_cust_pol_valid_billinfo.c .
make

• If you copied your custom C file to oc-cn-helm-chart/brm_sdk_scripts/ in step
1.f, do this:

cd source/sys/libraryName
cp /oms/load/fileName .
make

For example:

cd source/sys/fm_cust_pol/
cp /oms/load/fm_cust_pol_valid_billinfo.c .
make

i. Copy the generated library file to the PVC:

cp customLibrary.so /oms/ext/

For example:

cp fm_cust_pol_custom.so /oms/ext/

Chapter 14
Customizing BRM Server

14-3

j. Copy the library file from the PVC to the $PIN_HOME/lib directory:

cp nfsMountPath/BrmNameSpace/brmSDKPod/customLibrary.so $PIN_HOME/lib

For example:

cp /mnt/oke_test/brm/brm-sdk-pvc-094feae0-4d11-4887-83a0-b47a0fc6a3f4/
fm_cust_pol_custom.so $PIN_HOME/lib

2. Build the custom Connection Manager (CM) image using the Dockerfile:

FROM cm:15.0.x.0.0
USER root
COPY lib/fm_subscription_pol_custom.so $PIN_HOME/lib/fm_subscription_pol_custom.so
RUN chown -R omsuser:root $PIN_HOME/lib/fm_subscription_pol_custom.so && \
 chmod 755 ${PIN_HOME}/lib/fm_subscription_pol_custom.so
USER omsuser

3. Build the BRM Server image by entering this command:

podman build --format docker --tag cm:imageTag --file Dockerfile_cm .
4. Push the image to the image repository:

podman tag cm:imageTag imageRepository/cm:imageTag
podman push imageRepository/cm:imageTag

5. Update the custom image name in the override-values.yaml file. For example:

cm:
 isEnabled: true
 deployment:
 replicaCount: 1
 imageName: cm
 imageTag: imageTag

where imageTag must match the value used in step 4.

6. Add the custom configuration for the CM pin.conf to the configmap_pin_conf_cm.yaml
file.

For example, for the fm_cust_pol_custom library:

- cm fm_module ${PIN_HOME}/lib/fm_cust_pol_custom${LIBRARYEXTENSION}
fm_cust_pol_custom_config fm_cust_pol_init pin

7. Run the helm upgrade command to update the release with the new CM image:

helm upgrade BrmReleaseName oc-cn-helm-chart --namespace BrmNameSpace --
values oc-cn-helm-chart/override_values.yaml

Customizing Billing Care
Extensibility is one of the biggest features of on-premise Billing Care, and this same
extensibility is available in the Billing Care cloud native deployment. You can override the

Chapter 14
Customizing Billing Care

14-4

existing Billing Care behavior, such as changing labels and icons, add new flows and screens,
and so on, by using the Billing Care SDK.

To use the Billing Care SDK in a cloud native environment, do this:

1. Build the Billing Care SDK WAR the same way as described in "Packaging and Deploying
Customizations" in Billing Care SDK Guide.

2. Create a Billing Care SDK image by using the Linux image as a base.

3. Update the override-values.yaml file to direct oc-cn-op-job-helm-chart to deploy the
SDK WAR file and link it with Billing Care or the Billing Care REST API WAR after
deploying them.

The cloud native package includes all of the scripts necessary to prepare and run an SDK
image. For example, if your SDK WAR is named BillingCareCustomizations.war, you would
build the Billing Care SDK image like this:

1. Go to the oc-cn-docker-files/ocbc/billing_care_sdk directory.

2. Copy the BillingCareCustomizations.war file to your current working directory (oc-cn-
docker-files/ocbc/billing_care_sdk).

3. Build the SDK image by entering this command:

podman build --format docker --build-arg SDK_WAR=BillingCareCustomizations.war --tag
oracle/billingcare_sdk:15.0.x.0.0 .

4. In your override-values.yaml file for oc-cn-op-job-helm-chart, edit the keys shown in
Table 14-1. This directs oc-cn-op-job-helm-chart to deploy the Billing Care SDK image
rather than the Billing Care image and to include additional files that are needed for
successful deployment of SDK.

Table 14-1 Billing Care SDK Keys

Key Path Description

imageName ocbc.bc.deployment.sdk
ocbc.bcws.deployment.sdk

Set this to oracle/
billingcare_sdk.

This is the name of the image,
which must be used for the
billingcare pod.

imageTag ocbc.bc.deployment.sdk
ocbc.bcws.deployment.sdk

Set this to 15.0.x.0.0.

This tags the image used for
the billingcare pod.

isEnabled ocbc.bc.sdk
ocbc.bcws.sdk

Set this key to true if you want
to deploy SDK.

deployName ocbc.bc.sdk
ocbc.bcws.sdk

The name of the SDK Library in
the Manifest.MF file. The
default is
BillingCareCustomizations.

5. Install oc-cn-op-job-helm-chart followed by oc-cn-helm-chart to customize Billing Care
or the Billing Care REST API with SDK.

Customizing ECE
You can customize the ECE image by layering the native image with the customized code.

For example:

Chapter 14
Customizing ECE

14-5

 > cat Dockerfile_custom_ece
FROM oc-cn-ece:15.0.x.0.0
USER root
#commands that need to be run
USER eceuser

To build the image, run this Podman command:

podman build --format docker --tag customECE:15.0.x.0.0 --file customECEDockerfile .

where customECE is the name of your custom ECE Helm chart, and customECEDockerfile is
the name of your custom Dockerfile.

For the Helm chart to take the new custom image for installation, set these keys in your
override-values.yaml file for the ECE Helm chart:

imageRepository: "imageRepo:imagePort"
container:
 image: "customECEImageName"

Chapter 14
Customizing ECE

14-6

15
Building Your Own Images

Learn how to build your own images of the Oracle Communications Billing and Revenue
Management (BRM), Elastic Charging Engine (ECE), Pipeline Configuration Center, Pricing
Design Center (PDC), Billing Care, and Business Operations Center applications.

The Podman build commands in this chapter reference Dockerfile and related scripts as is
from the oc-cn-docker-files-15.0.x.0.0.tgz package. Ensure you use your own version of
Dockerfile and related scripts before running the build command.

Topics in this document:

• Building BRM Server Images

• Building BRM REST Services Manager Images

• Building PDC REST Services Manager Images

• Building PDC Images

• Building Pipeline Configuration Center Images

• Building Billing Care Images

• Building Business Operations Center Images

Sample Dockerfiles included in the BRM cloud native deployment package (oc-cn-docker-
files-15.0.x.0.0.tgz) are examples that depict how default images are built for BRM. If you want
to build your own images, refer to the sample Dockerfiles shipped with the product as a
reference. Create your own Dockerfiles and then build your images.

Caution:

The Dockerfiles and related scripts are provided for reference only. You can refer to
them to build or extend your own images. Support is restricted to core product issues
only and no support will be provided for custom Dockerfiles and scripts.

Building BRM Server Images
To build images for BRM Server, your staging area ($PIN_HOME) must be available from
where the images are built. After you unpack oc-cn-docker-files-15.0.x.0.0.tgz, the BRM
Server directory structure will be oc-cn-docker-files/ocbrm.

Note:

If you are using Podman to build your images, pass the --format docker flag with the
podman build command.

Building your own BRM Server images involves these high-level steps:

15-1

1. You build the BRM Server base image. See "Building Your BRM Server Base Image".

2. You build images for each BRM Server component. See "Building Images of BRM Server
Components".

3. You build the Web Services Manager image. See "Building Web Services Manager
Images".

4. You build the BRM REST Services Manager image. See "Building BRM REST Services
Manager Images".

5. You containerize the Email Data Manager. See "Containerization of Email Data Manager".

6. You containerize the roaming pipeline. See "Containerization of Roaming Pipeline".

7. You build and deploy Vertex Manager. See "Building and Deploying Vertex Manager".

Building Your BRM Server Base Image
To make your directory structure ready for building base images:

1. Edit the $PIN_HOME/bin/orapki binary to replace the staging Java path with $
{JAVA_HOME}.

2. Create the $PIN_HOME/installer directory.

3. If you're behind a proxy server, set the $PROXY variable:

export PROXY=ProxyHost:Port
4. Download the Java binary and then copy it to $PIN_HOME. See "BRM Software

Compatibility" for the latest supported version of Java.

5. Download the Perl binary and then copy it to $PIN_HOME. See "BRM Software
Compatibility" for the latest supported version of Perl.

6. For your database client:

a. Copy oracle_client_response_file.rsp (64 bit), downloadOracleClient.sh, and
waitForOracleClientInst.sh from oc-cn-docker-files/ocbrm/base_images
to $PIN_HOME.

b. Modify these parameters in the downloadOracleClient.sh file:

• ORACLE_CLIENT_ZIP: Enter the binary name.

• REPOSITORY_URL: Enter the location to fetch the database client binary.

c. If the db_client binary is already downloaded, copy the binary to the $PIN_HOME/
installer directory.

After preparing your directory structure, build your BRM Server base image:

• For database client 12CR2 (64 Bit) + Java + Perl, enter this command:

podman build --format docker --build-arg PROXY=$PROXY --tag
db_client_and_java_perl:15.0.x.0.0 --file DockerFileLocation/
Dockerfile_db_client_and_java_perl .

• For database client 12CR2 (64 Bit) + Java, enter this command:

podman build --format docker --build-arg PROXY=$PROXY --tag
db_client_and_java:15.0.x.0.0 --file DockerFileLocation/
Dockerfile_db_client_and_java .

• For Java, enter this command:

Chapter 15
Building BRM Server Images

15-2

podman build --format docker --build-arg PROXY=$PROXY --tag java:15.0.x.0.0 --file
DockerFileLocation/Dockerfile_java .

• For Java + Perl, enter this command:

podman build --format docker --build-arg PROXY=$PROXY --tag java_perl:15.0.x.0.0 --
file DockerFileLocation/Dockerfile_java_perl .

Note:

If the existing database is used with custom build images, do this:

• Override the ocbrm.use_oracle_brm_images key in the Helm chart with a
value of false.

• Set the ocbrm.existing_rootkey_wallet key to true.

• Copy your client wallet files to the oc-cn-helm-chart/existing_wallet directory.

Building Images of BRM Server Components
The oc-cn-docker-files-15.0.x.0.0.tgz package includes references to all of the Dockerfiles
and scripts needed to build images of BRM Server components (except for oraclelinux:8).

To build an image of a BRM Server component:

1. Copy these scripts from the oc-cn-docker-files/ocbrm directory to your staging area
at $PIN_HOME:

• entrypoint.sh

• createWallet.sh

• cm/preStopHook.sh_cm

• cm/postStartHook.sh

• cm/updatePassword.sh

• eai_js/preStopHook.sh_eai

2. Do one of these:

• For the batch pipeline, roaming pipeline, and real-time pipeline, copy entrypoint.sh
and createWallet.sh to $PIN_HOME/.., and copy $PIN_HOME/../setup/
BRMActions.jar to the $PIN_HOME/jars directory for building the images.

• For all other components, copy the $PIN_HOME/../setup/BRMActions.jar file
to $PIN_HOME.

3. Set these environment variables:

• $PIN_HOME: Set this to your staging area.

• $PERL_HOME: Set this to the path of Perl. See "BRM Software Compatibility" for the
latest supported version of Perl.

• $JAVA_HOME: Set this to the Java path. See "BRM Software Compatibility" for the
latest supported version of Java.

4. Build the image for your BRM component.

For example, to build a CM image, you'd enter this:

Chapter 15
Building BRM Server Images

15-3

podman build --format docker --tag cm:15.0.x.0.0 --build-arg
STAGE_PIN_HOME=$PIN_HOME --build-arg STAGE_JAVA_HOME=$JAVA_HOME --build-arg
STAGE_PERL_HOME=$PERL_HOME --file DockerfileLocation/Dockerfile .

To build a roaming pipeline image, you'd enter this:

podman build --format docker --tag roam_pipeline:$BRM_VERSION --build-arg
STAGE_PERL_HOME=StagePerlPath .

where StagePerlPath is the path to the Perl files in your staging area at $PIN_HOME.

To build a dm-oracle image, you'd enter this:

podman build --format docker --force-rm=true --no-cache=true --tag
dm_oracle:15.0.x.0.0 --file DockerfileLocation/Dockerfile .

where DockerfileLocation is the path to the Dockerfiles for your BRM component.

Note:

Build batch and realtime pipeline images from the $PIN_HOME/.. directories.

Building Web Services Manager Images
To containerize images for Web Services Manager, your staging area ($PIN_HOME) must be
available from where the Docker images are built.

You can create one of these Web Services Manager containers:

• Building and Deploying Web Services Manager for Apache Tomcat Image

• Building and Deploying Web Services Manager for WebLogic Server Image

Building and Deploying Web Services Manager for Apache Tomcat Image
The Web Services Manager Dockerfile is based on the official Apache Tomcat image. The
sample Web Services Manager Dockerfile includes both the XML element-based and XML
string-based SOAP Web Services implementation. Use this Dockerfile to build an image that
can call any standard BRM opcode that is exposed as a SOAP Web service.

The Web Services Manager Infranet.properties configuration is available as a Kubernetes
ConfigMap. To expose a custom opcode as a Web service, place your customized WAR
filepath in the Dockerfile. When multiple pod replicas are configured, each pod runs its own
copy of Apache Tomcat. By default, Web Services Manager is exposed as a Kubernetes
NodePort service running on port 30080.

Containerizing the Web Services Manager for Tomcat image involves these high-level steps:

1. Building the Web Services Manager Tomcat Image

2. Deploying the Web Services Manager Tomcat Image in Kubernetes

Building the Web Services Manager Tomcat Image

To build the Web Services Manager for Apache Tomcat image:

1. Download the JAX-WS reference implementation JARs from JAX-WS Java API for XML
Web Services (https://javaee.github.io/metro-jax-ws/).

2. Copy the jaxws-ri-2.3.x.zip file to your staging area at $PIN_HOME.

Chapter 15
Building BRM Server Images

15-4

https://javaee.github.io/metro-jax-ws/

3. Unzip the jaxws-ri-2.3.x.zip file.

4. Download Apache Tomcat 9 from the Apache Tomcat website:
https://tomcat.apache.org/download-90.cgi

See "Additional BRM Software Requirements" in BRM Compatibility Matrix for information
about compatible versions of Apache Tomcat.

5. Copy apache-tomcat-9.x.tar.gz to your staging area at $PIN_HOME.

6. Copy these files from the oc-cn-docker-files directory to your staging area
at $PIN_HOME.

• wsm_entrypoint.sh

• Dockerfile

• context.xml

• BRMActions.jar

7. Update Tomcat in the Dockerfile to the latest version.

8. Build the Web Services Manager image by entering this command:

podman build --format docker --tag brm_wsm:$BRM_VERSION .

Deploying the Web Services Manager Tomcat Image in Kubernetes

To deploy the Web Services Manager for Tomcat image in Kubernetes:

1. Configure your Web services by updating the
configmap_infranet_properties_wsm.yaml file.

2. In the override-values.yaml file for oc-cn-helm-chart, set the following values:

• ocbrm.wsm.deployment.tomcat.isEnabled: Set this to true.

• ocbrm.wsm.deployment.tomcat.walletPassword: Set this to the Base64-encoded
wallet password for the Web Services Manager image.

• ocbrm.wsm.deployment.tomcat.basicAuth: Optionally, set this to true to enable
BASIC authentication.

3. Optionally, for BASIC authentication, configure users in the wsm_config/tomcat-
users.xml file for oc-cn-helm-chart:

a. Open tomcat-users.xml in a text editor.

b. Locate the following lines and specify the login details of the user:

<role rolename="role"/>
<user username="username" password="password" roles="role"/>

where:

• role is the role with permissions to access Web services, for example, brmws.

• username is the user name for accessing Web services.

• password is the password for accessing Web services.

c. Save and close the file.

See "User File Format" under MemoryRealm in the Apache Tomcat documentation for
more information about the format of tomcat-users.xml.

4. Deploy the BRM Helm chart:

Chapter 15
Building BRM Server Images

15-5

https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/tomcat-9.0-doc/realm-howto.html#MemoryRealm

helm install ReleaseName oc-cn-helm-chart --namespace NameSpace --values
OverrideValuesFile

where:

• ReleaseName is the release name, which is used to track this installation instance.

• NameSpace is the namespace in which to create BRM Kubernetes objects.

• OverrideValuesFile is the path to the YAML file that overrides the default configurations
in the BRM helm chart's values.yaml file.

Building and Deploying Web Services Manager for WebLogic Server Image
To deploy and use Web Services Manager on WebLogic Server, you should be familiar with:

• Oracle WebLogic Server 12.2.1.3. See the Oracle WebLogic Server 12.2.1.3
documentation (https://docs.oracle.com/middleware/12213/wls/index.html).

• Oracle WebLogic Kubernetes Operator. See the WebLogic Kubernetes Operator
documentation (https://oracle.github.io/weblogic-kubernetes-operator/).

The image for deploying BRM Web Services Manager on Oracle Weblogic Server 12.2.1.3
uses the domain in image approach. The image includes a WebLogic domain named
brmdomain. When you build the image, the BRM SOAP Web Services application WAR files
get deployed in this domain.

Containerizing the Web Services Manager for WebLogic Server image involves these high-
level steps:

1. Building the Web Services Manager WebLogic Image

2. Deploying the Web Services Manager WebLogic Image in Kubernetes

3. Updating the BRM Web Services Manager Configuration

4. Restarting the WebLogic Server Pods

5. Scaling Your WebLogic Managed Server

Building the Web Services Manager WebLogic Image

The BRM Web Services Manager on WebLogic Server image uses two images that run two
containers inside each WebLogic Server pod.

To build the brm_wsm_wls15.0.x.0.0 image:

1. Copy the contents of the oc-cn-docker-files/ocbrm/brm_soap_wsm/weblogic/
dockerfiles directory to your staging area at $PIN_HOME.

2. Customize the WebLogic domain-related properties by editing the dockerfiles/properties/
docker-build/domain.properties file. For example:

DOMAIN_NAME=brmdomain
ADMIN_PORT=7111
ADMIN_NAME=admin-server
ADMIN_HOST=wlsadmin
MANAGED_SERVER_PORT=8111
MANAGED_SERVER_NAME_BASE=managed-server
CONFIGURED_MANAGED_SERVER_COUNT=3
CLUSTER_NAME=cluster-1
DEBUG_PORT=8453
DB_PORT=1527
DEBUG_FLAG=true
PRODUCTION_MODE_ENABLED=true

Chapter 15
Building BRM Server Images

15-6

https://docs.oracle.com/middleware/12213/wls/index.html
https://oracle.github.io/weblogic-kubernetes-operator/

CLUSTER_TYPE=DYNAMIC
JAVA_OPTIONS=-Dweblogic.StdoutDebugEnabled=false
T3_CHANNEL_PORT=30012
T3_PUBLIC_ADDRESS=kubernetes
IMAGE_TAG=brm_wsm_wls:$BRM_VERSION

3. Set the WebLogic domain user name and password by editing the dockerfiles/properties/
docker-build/domain_security.properties file. For example:

username=UserName
password=Password

Note:

It is strongly recommended that you set a new user name and password when
building the image.

For details about securing the domain_security.properties file, see https://github.com/
oracle/docker-images/tree/master/OracleWebLogic/samples/12213-domain-home-in-
image.

4. Build the brm_wsm_wls:15.0.x.0.0 image by running the build.sh script.

The script creates an image based on the custom tag defined in dockerfiles/properties/
docker-build/domain.properties. By default, it creates the brm_wsm_wls:15.0.x.0.0
image and then deploys the BRMWebServices.war and infarnetwebsvc.war files.

Note:

If you don't want to deploy either BRMWebServices.war or
infarnetwebsvc.war, modify the dockerfiles/container-scripts/app-deploy.py
script.

5. Build the brm_wsm_wl_init:15.0.x.0.0 image by running this command:

podman build --format docker --tag brm_wsm_wl_init:15.0.x.0.0 --file
Dockerfile_init_wsm .

This image runs an init container, which populates the Oracle wallet that is used by Web
Services Manager to connect to the CM.

Deploying the Web Services Manager WebLogic Image in Kubernetes

You deploy the WebLogic Operator Helm chart so that Web Services Manager can work in a
Kubernetes environment.
To deploy the Web Services Manager for WebLogic Server image in Kubernetes:

1. Clone the Oracle WebLogic Kubernetes Operator Git project:

git clone https://github.com/oracle/weblogic-kubernetes-operator
2. Modify these keys in the override-values.yaml file for oc-cn-helm-chart:

Chapter 15
Building BRM Server Images

15-7

https://github.com/oracle/docker-images/tree/master/OracleWebLogic/samples/12213-domain-home-in-image
https://github.com/oracle/docker-images/tree/master/OracleWebLogic/samples/12213-domain-home-in-image
https://github.com/oracle/docker-images/tree/master/OracleWebLogic/samples/12213-domain-home-in-image

Note:

Ensure that you set the wsm.deployment.weblogic.enabled key to true.

wsm:
 deployment:
 weblogic:
 enabled:true
 imageName:brm_wsm_wls
 initImageName:brm_wsm_wl_init
 imageTag:$BRM_VERSION
 username:d2VibG9naWM=
 password:password
 replicaCount:1
 adminServerNodePort:30611
 log_enabled:false
 minPoolSize:1
 maxPoolSize:8
 poolTimeout:30000

3. If the WebLogic user name and password was updated when building the
brm_wsm_wls:15.0.x.0.0 image, also update the base64-encoded WebLogic user name
and password in these keys:

.Values.ocbrm.wsm.deployment.weblogic.username

.Values.ocbrm.wsm.deployment.weblogic.password
4. Add the BRM WebLogic Server namespace in the kubernetes/charts/weblogic-operator/

values.yaml file:

domainNamespaces:
 - "default"
 - "NameSpace"

5. Deploy the WebLogic Operator Helm chart:

helm install weblogic-operator kubernetes/charts/weblogic-operator --namespace
WebOperatorNameSpace --values WebOperatorOverrideValuesFile --wait

where:

• WebOperatorNameSpace is the namespace in which to create WebLogic Operator
Kubernetes objects.

• WebOperatorOverrideValuesFile is the path to a YAML file that overrides the default
configurations in the WebLogic Operator Helm chart's values.yaml file.

6. Deploy the BRM helm chart:

helm install ReleaseName oc-cn-helm-chart --namespace NameSpace --values
OverrideValuesFile

where:

• ReleaseName is the release name, which is used to track this installation instance.

• NameSpace is the namespace in which oc-cn-helm-chart will be installed.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the BRM Helm chart's values.yaml file.

Chapter 15
Building BRM Server Images

15-8

Updating the BRM Web Services Manager Configuration

Update the basic configurations for BRM Web Services Manager by editing the Kubernetes
ConfigMap (configmap_infranet_properties_wsm_wl.yaml). After updating the
configuration, restart your WebLogic Server pods.

Restarting the WebLogic Server Pods

To restart your WebLogic Server pods:

1. Stop the WebLogic Server pods by doing this:

a. In the domain_brm_wsm.yaml file, set the serverStartPolicy key to NEVER.

b. Update your Helm release.

helm upgrade ReleaseName oc-cn-helm-chart --namespace NameSpace --values
OverrideValuesFile

where NameSpace is the namespace in which oc-cn-helm-chart will be installed.

2. Start the WebLogic Server pods by doing this:

a. In the domain_brm_wsm.yaml file, set the serverStartPolicy key to IF_NEEDED.

b. Update your Helm release:

helm upgrade ReleaseName oc-cn-helm-chart --namespace NameSpace --values
OverrideValuesFile

Scaling Your WebLogic Managed Server

The default configuration starts one WebLogic Managed Server pod. To modify the
configuration to start up to three pods, do this:

1. In the oc-cn-helm-chart/values.yaml file, set
the .Values.ocbrm.wsm.deployment.weblogic.replicaCount key to 1, 2, or 3 WebLogic
Managed Server pods.

2. Update your Helm release:

helm upgrade ReleaseName oc-cn-helm-chart --namespace NameSpace --values
OverrideValuesFile

You set the maximum number of managed servers in the BRM Web Services Manager image
by modifying the CONFIGURED_MANAGED_SERVER_COUNT property in the dockerfiles/
properties/docker-build/domain.properties file.

Containerization of Email Data Manager
The Email Data Manager (DM) enables you to send customer notifications and invoices to your
customers through email automatically. The Email DM uses the Sendmail client to forward
emails to Postfix, which is the SMTP server. In-turn, Postfix sends the emails to your
customers.

The Email DM will have the Sendmail client, and the Kubernetes host will have Postfix running.
You must install and configure Postfix on your Kubernetes host.

To configure your cm pod to point to the Email DM, add this key to the oc-cn-helm-chart/
values.yaml file:

ocbrm.dm_email.deployment.smtp: EmailHostName

Chapter 15
Building BRM Server Images

15-9

where EmailHostName is the hostname of the server on which the Email DM is deployed. For
example: em389.us.example.com.

To configure the Kubernetes host or SMTP server to accept data from the Email DM, do this:

1. Log in as the root user to the Kubernetes host.

2. Add the IP address for the Kubernetes host to the /etc/postfix/main.cf file:

inet_interfaces=localhost, HostIPAddress

For example, if the Kubernetes host is 10.242.155.149.

inet_interfaces=localhost, 10.242.155.149
3. Retrieve the container network configuration by running this command on the Kubernetes

host:

/sbin/ifconfig cni0 | grep netmask | awk '{print$2"\n"$4}'

The output will be similar to this:

10.244.0.1 ← The Kubernetes host IP, which is in the container network.
255.255.255.0

4. Edit the mynetworks field in the /etc/postfix/main.cf file to include the Kubernetes
network in the list of trusted SMTP clients. If the Kubernetes host IP and Email DM
container IP are in different networks, add both networks to the mynetworks field:

mynetworks = TrustedNetworks

where TrustedNetworks is the IP addresses for the SMTP clients that are allowed to relay
mail through Postfix.

For example:

mynetworks = 168.100.189.0/28, 127.0.0.0/8, 10.244.0.0/24
5. Do one of these:

• If Postfix is already running in the host, run this command:

systemctl restart postfix.service
• If Postfix isn't running in the host, run this command:

systemctl start postfix.service

Note:

In case of a multi-node environment, you can configure Postfix on the primary node
(or any one node).

Containerization of Roaming Pipeline
Roaming allows a wireless network operator to provide services to mobile customers from
another wireless network. For example, when a mobile customer makes a phone call from
outside the home network, roaming allows the customer to access the same wireless services
that he has with his home network provider through a visited wireless network operator.

You feed the input files for the roaming pipeline through a Kubernetes PersistentVolumeClaim
(PVC). The EDR output files will be available in a PVC for consumption of the rel-daemon pod.

Chapter 15
Building BRM Server Images

15-10

When building the roaming pipeline image, pass the Perl path in these files as part of build-
arg.

To containerize the roaming pipeline, update the
configmap_infranet_properties_rel_daemon.yaml file to specify how to load your rated
CDR output files. For example:

batch.random.events TEL, ROAM
ROAM.max.at.highload.time 4
ROAM.max.at.lowload.time 2
ROAM.file.location /oms/ifw/data/roamout
ROAM.file.pattern test*.out
ROAM.file.type STANDARD

Note:

The input file to the splitter pipeline must start with Roam_.

Building and Deploying Vertex Manager
To deploy Vertex Manager (dm-vertex), you layer the dm-vertex image with the libraries for
Vertex Communications Tax Q Series (CTQ) or Vertex Sales Tax Q Series (STQ). For the list of
supported library versions, see "Additional BRM Software Requirements" in BRM Compatibility
Matrix.

Deploying with Vertex Communications Tax Q Series
You deploy Vertex Manager with Vertex CTQ by doing the following:

1. Building the new Vertex Manager image by layering it with Vertex CTQ libraries.

a. Copy the entire Vertex CTQ installation directory to the $PIN_HOME directory,
where $PIN_HOME is set to the path of your staging area.

b. Update the paths in the 64bit/bin/ctqcfg.xml, 64bit/cfg/ctqcfg.xml, and other Vertex
CTQ files present in the Vertex CTQ installation directory. For example:

<configuration name="CTQ Test">
<fileControl>
 <updatePath>/oms/vertex/64bit/dat</updatePath>
 <archivePath>/oms/vertex/64bit/dat</archivePath>
 <callFilePath>/oms/vertex/64bit/dat</callFilePath>
 <reportPath>/oms/vertex/64bit/rpt</reportPath>
 <logPath>/oms/vertex/64bit/log</logPath>
</fileControl>

c. In your copied Vertex CTQ installation directory, update the 64bit/bin/odbc/odbc.ini
file. For example:

Note:

Set the Driver and TNSNamesFile entries to the file system path inside the
pod.

Chapter 15
Building BRM Server Images

15-11

[CtqTestOracle]
Description=Vertex, Inc. 8.0 Oracle Wire Protocol
Driver=/oms/vertex/64bit/bin/odbc/lib/VXor827.so
…
HostName=DBhostname
LogonID=DBuser
PortNumber=1521
Password=DBpassword
ServerName=//IPaddress:1521/DBalias
SID=DBalias
TNSNamesFile=/oms/ora_k8/tnsnames.ora

where:

• DBhostname is the host name of the machine on which the Vertex tax calculation
database is installed.

• DBuser is the Vertex database schema user name.

• DBpassword is the password for the Vertex database schema user.

• IPaddress is the IP address of the machine on which the Vertex tax calculation
database is installed.

• DBalias is the Vertex database alias name, which is defined in your tnsnames.ora
file.

d. Layer the default images provided by Oracle.

For example, to layer dm-vertex with Vertex CTQ, you could add these sample
commands to its Dockerfile. In this example, $PIN_HOME is set to /oms inside the
pod.

FROM dm_vertex:15.0.x.0.0

USER root
RUN mkdir -p /oms/vertex/64bit/cfg
RUN chown -R omsuser:root /oms/vertex/64bit/cfg
COPY ./Vertex_CTQ_30206/ /oms/vertex
COPY Vertex_CTQ_30206/64bit/lib/libctq.so /oms/lib/
COPY Vertex_CTQ_30206/64bit/bin/odbc/lib/libodbc.so /oms/lib/libodbc.so

RUN chown -R omsuser:root /oms/vertex
RUN chown -R omsuser:root /oms/lib/libctq.so
RUN chown -R omsuser:root /oms/lib/libodbc.so
USER omsuser

e. Build your new Vertex Manager image. For example:

podman build --format docker --tag dm_vertex_ctq:15.0.x.0.0 --file
Dockerfile_vertex_ctq .

2. Enabling and configuring Vertex Manager in your BRM cloud native deployment.

a. Set these environment variables in your oc-cn-helm-chart/templates/
dm_vertex.yaml file:

- name: LD_LIBRARY_PATH
 value: "/oms/vertex/64bit/bin/odbc:/oms/lib:/oms/sys/dm_vertex:/oms/vertex/
64bit/lib"
- name: CTQ_CFG_HOME
 value: "/oms/vertex/64bit/bin"
- name: ODBCINI
 value: "/oms/vertex/64bit/bin/odbc/odbc.ini"

Chapter 15
Building BRM Server Images

15-12

b. Uncomment these entries in your oc-cn-helm-chart/templates/
configmap_pin_conf_dm_vertex.yaml file:

- dm_vertex commtax_sm_obj ${DM_VERTEX_CTQ_SM}
- dm_vertex commtax_config_name ${DM_VERTEX_CTQ_CFG_NAME}
- dm_vertex commtax_config_path ${DM_VERTEX_CTQ_CFG_PATH}

c. Update these key in your override-values.yaml file for oc-cn-helm-chart:

dm_vertex:
 isEnabled: true
 deployment:
 replicaCount: 1
 imageName: dm_vertex_ctq
 imageTag: 15.0.x.0.0
 quantum_db_password: password
 ctqCfg: /oms/vertex/64bit/cfg
 ctqCfgName: CTQ Test
 ctqSmObj: ./dm_vertex_ctq30206.so

d. Run the helm upgrade command to update your BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track
this installation instance.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for
the BRM Helm chart.

• OverrideValuesFile is the path to a YAML file that overrides the default
configurations in the values.yaml file for oc-cn-helm-chart.

Deploying with Vertex Sales Tax Q Series
You deploy Vertex Manager with Vertex STQ by doing the following:

1. Copying the required libraries from the Vertex STQ installation directory to
your $PIN_HOME/req_libs directory.

2. Layer the default images provided by Oracle. For example, to layer dm-vertex with Vertex
STQ, you could add these sample commands to its Dockerfile:

FROM dm_vertex:15.0.x.0.0

USER root
COPY ["req_libs/libvst*.so", "req_libs/libqutil*.so", "req_libs/libloc*.so",
"/oms/lib/"]
RUN chown omsuser:root -R /oms/lib/ /lib64
USER omsuser

3. Build your new Vertex Manager image. For example:

podman build --format docker --tag dm_vertex_stq:15.0.x.0.0 --file
Dockerfile_vertex_stq .

4. Update these key in your override-values.yaml file for oc-cn-helm-chart:

dm_vertex:
 isEnabled: true
 deployment:
 replicaCount: 1
 imageName: dm_vertex

Chapter 15
Building BRM Server Images

15-13

 imageTag: 15.0.x.0.0
 quantum_db_password: password

5. Update these entries in your oc-cn-helm-chart/templates/
configmap_env_dm_vertex.yaml file:

SERVICE_FQDN: dm-vertex
QUANTUM_DB_SOURCE: quantum
QUANTUM_DB_SERVER: qsu122a
QUANTUM_DB_USER: quantum

6. Update these entries in your oc-cn-helm-chart/templates/
configmap_odbc_ini_dm_vertex.yaml file:

data:
 odbc.ini: |
 [ODBC Data Sources]
 Server = Oracle Server v12.2
 [Server]
 Description = Oracle Server v12.2
 Driver = /usr/lib/oracle/19.20/client64/lib/libsqora.so.19.1
 Servername = PINDB
 UserID = DBuser
 Password = DBpassword
 Port = 1521
 Trace = yes
 TraceFile = /oms_logs/odbc.log
 Database = //DBhostname:DBport

where:

• Server is the name of the server on which the Vertex database is installed.

• DBuser is the Vertex database schema user name.

• DBpassword is the password for the Vertex database schema user.

• DBhostname is the host name of the machine on which the Vertex tax calculation
database is installed.

• DBport is the port number of the Vertex tax calculation database.

7. Set these entries in your oc-cn-helm-chart/templates/
configmap_pin_conf_dm_vertex.yaml file:

- dm_vertex quantum_sm_obj ./dm_vertex_stq100.so
- dm_vertex quantumdb_source ${QUANTUM_DB_SOURCE}
- dm_vertex quantumdb_server ${QUANTUM_DB_SERVER}
- dm_vertex quantumdb_user ${QUANTUM_DB_USER}

8. Run the helm upgrade command to update the BRM Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the values.yaml file for oc-cn-helm-chart.

Chapter 15
Building BRM Server Images

15-14

Building BRM REST Services Manager Images
In a production deployment, containers for BRM REST Services Manager will run in their own
pods on a Kubernetes node. Figure 15-1 shows how to stack images for BRM REST Services
Manager.

Figure 15-1 Image Stack for BRM REST Services Manager

In this figure:

• container-registry.oracle.com/java/serverjre:8: The base image on which BRM REST
Services Manager will be deployed. The official image is available at https://container-
registry.oracle.com/.

• oracle/brm-rest-services-manager:15.0.x.0.0: The sample Dockerfile and related scripts
used for creating the BRM REST Services Manager image (oracle/brm-rest-services-
manager:15.0.x.0.0).

The oc-cn-docker-files/ocrsm/brm_rest_services_manager directory in the oc-cn-docker-
files-15.0.x.0.0.tgz package contains a Dockerfile, container scripts, and an API JAR file.

You can load or build the BRM REST Services Manager image in the following ways:

• The oc-cn-brm-rest-services-manager-15.0.x.0.0.tar image is included in the package.
Apply the image in your machine by running this command:

podman load < oc-cn-brm-rest-services-manager-15.0.x.0.0.tar
• If the image needs customization, modify the Dockerfile and then deploy it using this

command:

podman build --format docker --tag oracle/brm-rest-services-manager:15.0.x.0.0 .

Building PDC REST Services Manager Images
In a production deployment, containers for PDC REST Services Manager will run in their own
pods on a Kubernetes node. You create PDC REST Services Manager images by stacking
these Dockerfiles in the following order:

1. container-registry.oracle.com/java/serverjre:8: The base image on which PDC REST
Services Manager will be deployed. The official image is available at https://container-
registry.oracle.com/.

2. oracle/pdcrsm:15.0.x.0.0: The sample Dockerfile and related scripts used for creating the
PDC REST Services Manager image (oracle/pdcrsm:15.0.x.0.0).

Chapter 15
Building BRM REST Services Manager Images

15-15

https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://container-registry.oracle.com/

To build PDC REST Services Manager images:

1. Copy the Dockerfile and the oc-cn-pdc-rsm-jars-15.0.x.0.0 file into the current working
directory.

2. Run the following commands:

tar xvf oc-cn-pdc-rsm-jars-15.0.x.0.0.tar
podman build --format docker --tag oracle/pdcrsm:15.0.x.0.0 .

Building PDC Images
To build the PDC image:

1. (Release 15.0.0 only) Layer the brm-apps and realtimepipe images by doing the following:

a. Download the brm-apps and realtimepipe images from the repository by entering this
command:

podman pull RepoHost:RepoPort/ImageName

where:

• RepoHost is the IP address or host name of the repository.

• RepoPort is the port number for the repository.

• ImageName is either brm_apps:15.0.0.0.0 or realtimepipe:15.0.0.0.0.

b. Tag the images by entering these commands:

podman tag RepoHost:RepoPort/brm_apps:15.0.0.0.0 brm_apps:1515.0.0.0.0
podman tag RepoHost:RepoPort/realtimepipe:15.0.0.0.0 realtimepipe:15.0.0.0.0

2. Download PricingDesignCenter-15.0.x.0.0.zip to the ParentFolder/Docker_files/
PDCImage/other-files directory.

3. Pull the Java Image from the Oracle Container Registry (https://container-
registry.oracle.com). This image is regularly updated with the latest security fixes. You can
pull this image to your local system, where you will build other images, with the name
container-registry.oracle.com/java/serverjre:JavaVersion.

where JavaVersion is the Oracle Java version number. See "Additional BRM Software
Requirements" in BRM Compatibility Matrix for supported versions.

4. Set the following environment variables:

• HTTP_PROXY: Set this to the host name or IP address of your proxy server

• JAVA_VERSION: Set this to container-registry.oracle.com/java/
serverjre:JavaVersion

• BRM_VERSION: Set this to 15.0.x.0.0

5. Build your Oracle PDC BRM integration image by entering this command from the
ParentFolder/Docker_files/PDCImage directory:

• For release 15.0.0 only, run this command:

podman build --format docker --force-rm=true --no-cache=true --build-arg
DB_VERSION=DBRelease --build-arg HTTP_PROXY=$HTTP_PROXY --build-arg
JAVA_VERSION=$JAVA_VERSION --build-arg BRM_VERSION=$BRM_VERSION --
tag $IMAGE_NAME --file Dockerfile .

where DBRelease is the Oracle database version number.

• For release 15.0.1 or later, run this command:

Chapter 15
Building PDC Images

15-16

https://container-registry.oracle.com
https://container-registry.oracle.com

podman build --format docker --force-rm=true --no-cache=true --build-arg
HTTP_PROXY=$HTTP_PROXY --build-arg JAVA_VERSION=$JAVA_VERSION --tag $IMAGE_NAME
--file Dockerfile .

6. (Optional) To use custom fields in your PDC RUM expressions:

a. Create a custom_flds.h file that contains your custom fields.

For information about the syntax to use in a header file, view the BRM_home/include/
pin_flds.h file in the brm-sdk pod.

b. Parse the custom_flds.h file and generate a custom_flds.bat file.

c. Layer the BRM_home/lib/custom_flds.bat file in the following images: brm-apps, pdc,
and cm.

For example, to layer the file in the pdc image:

FROM pdc:15.0.x.0.0

USER root
COPY custom_flds.bat ${PIN_HOME}/lib/custom_flds.bat
RUN chown=oracle:root ${PIN_HOME}/lib/custom_flds.bat

d. In your brm-apps-2 ConfigMap (configmap_pin_conf_brm_apps_2.yaml), add the
following entry under the load_config.conf section:

load_config.conf: |
Making custom fields entry
 - - ops_fields_extension_file ${PIN_HOME}/lib/custom_flds.h

e. In your CM ConfigMap (configmap_pin_conf_cm.yaml), add the following entry
under the pin.conf section:

data:
 pin.conf:
 # Making custom fields entry
 - - ops_fields_extension_file ${PIN_HOME}/lib/custom_flds.h

f. In your testnap ConfigMap (configmap_pin_conf_testnap), add the following entry
under the pin.conf section:

data:
 pin.conf: |
 # Making custom fields entry
 - - ops_fields_extension_file ${PIN_HOME}/lib/custom_flds.h

g. In your override-values.yaml file for oc-cn-helm-chart, update the imageTag keys to
point to the new cm, brm-apps and pdc images.

Note:

Skip this step if your override-values.yaml file does not already contain
imageTag keys for the cm, brm-apps, and pdc images.

h. Run the helm upgrade command to update your Helm release:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

Chapter 15
Building PDC Images

15-17

Building Pipeline Configuration Center Images
The Pipeline Configuration Center image extends the Fusion Middleware Infrastructure image
by packaging its own installer PipelineConfigurationCenter_15.0.x.0.0_generic.jar file along
with scripts and configurations.

To build your own image of Pipeline Configuration Center, you must have these base images
ready. The oc-cn-docker-files-15.0.x.0.0.tgz package includes references to all Dockerfiles
and scripts that are needed to build images of Pipeline Configuration Center. You can refer to
them when building a Pipeline Configuration Center image in your own environment.

Pulling the Fusion Middleware Infrastructure Image
The Fusion Middleware Infrastructure Image is available on the Oracle Container Registry
(https://container-registry.oracle.com). This image is regularly updated with the latest security
fixes. You can pull this image to your local system, where you will build other images, with the
name container-registry.oracle.com/middleware/fmw-infrastructure_cpu:12.2.1.4-jdk8-
ol7.

Building the Pipeline Configuration Center Image
To build the Pipeline Configuration Center image, do this:

1. Go to the oc-cn-docker-files/ocpcc/pcc directory.

2. Download the Oracle Communications Pipeline Configuration Center installation JAR file.

3. Copy PipelineConfigurationCenter_15.0.x.0.0_generic.jar to the current working
directory (oc-cn-docker-files/ocpcc/pcc).

4. Build the Pipeline Configuration Center image by entering this command:

podman build --format docker --tag oracle/pcc:15.0.x.0.0 .

Building Billing Care Images
The Billing Care image extends the Linux image by packaging the application archive along
with scripts and configurations.

To build your own image of Billing Care, you need the Linux and JRE images, available on the
Oracle Container Registry (https://container-registry.oracle.com). These images are regularly
updated with the latest security fixes. You can pull these images to your local system, where
you will build other images, with the names:

• container-registry.oracle.com/os/oraclelinux:8

• container-registry.oracle.com/java/serverjre:8-oraclelinux8

The oc-cn-docker-files-15.0.x.0.0.tgz package includes references to all Dockerfiles and
scripts that are needed to build images of Billing Care. You can refer to them when building a
Billing Care image in your own environment.

Building the Billing Care Image
To build the Billing Care image, do this:

1. Go to the oc-cn-docker-files/ocbc/billing_care directory.

Chapter 15
Building Pipeline Configuration Center Images

15-18

https://container-registry.oracle.com
https://container-registry.oracle.com

2. Download the Oracle Communications Billing Care installation JAR file.

3. Copy BillingCare_generic.jar to the current working directory (oc-cn-docker-files/ocbc/
billing_care).

4. Build the Billing Care image by entering this command:

podman build --format docker --tag oracle/billingcare:15.0.x.0.0 .

Building the Billing Care REST API Image
To build the Billing Care REST API image:

1. Go to the oc-cn-docker-files/ocbc/bcws directory.

2. Download the Oracle Communications Billing Care REST API installation JAR file.

3. Copy BillingCare_generic.jar to the current working directory (oc-cn-docker-files/ocbc/
bcws).

4. Build the Billing Care REST API image by entering this command:

podman build --format docker --tag oracle/bcws:15.0.x.0.0 .

Building Business Operations Center Images
The Business Operations Center image extends the Linux image by packaging the application
archive along with scripts and configurations.

To build your own image of Business Operations Center, you need the Linux and JRE images,
available on the Oracle Container Registry (https://container-registry.oracle.com). These
images are regularly updated with the latest security fixes. You can pull these images to your
local system, where you will build other images, with the names:

• container-registry.oracle.com/os/oraclelinux:8

• container-registry.oracle.com/java/serverjre:8-oraclelinux8

The oc-cn-docker-files-15.0.x.0.0.tgz package includes references to all of the Dockerfiles
and scripts needed to build images of Business Operations Center. You can refer to them when
building a Business Operations Center image in your own environment.

To build the Business Operations Center image, do this:

1. Go to the oc-cn-docker-files/ocboc/boc directory.

2. Download the Oracle Communications Business Operations Center installation JAR file.

3. Copy BusinessOperationsCenter_generic.jar to the current working directory (oc-cn-
docker-files/ocboc/boc).

4. Build the Business Operations Center image by entering this command:

podman build --format docker --tag oracle/boc:15.0.x.0.0 .

Chapter 15
Building Business Operations Center Images

15-19

https://container-registry.oracle.com

Part V
Upgrading BRM Cloud Native

This part provides information about upgrading your Oracle Communications Billing and
Revenue Management (BRM) cloud native environment to the latest patch set or interim patch
release. It contains the following chapters:

• Upgrading Your BRM Cloud Native Environment

• Performing Zero-Downtime Upgrades

• Performing Zero-Downtime Upgrades of Disaster Recovery Cloud Native Systems

• Rolling Back Your Patch Set Upgrade

• Migrating from On-Premise BRM to BRM Cloud Native

16
Upgrading Your BRM Cloud Native
Environment

Learn how to upgrade your Oracle Communications Billing and Revenue Management (BRM)
cloud native environment to the latest release.

Topics in this document:

• Tasks for the BRM Cloud Native Upgrade

In this document, the BRM release currently running on your production system is called the
old release. The release you are upgrading to is called the new release. For example, if you
upgrade from BRM 12.0.0.x.0 to BRM 15.0.x.0.0, 12.0.0.x.0 is the old release and 15.0.x.0.0 is
the new one.

Tasks for the BRM Cloud Native Upgrade
This section provides a list of tasks required to upgrade your BRM cloud native deployment to
the latest release, patch set, or interim patch release. All patch sets and interim patches are
cumulative, so they include the fixes from previous patch sets and interim patches. You can
perform a direct upgrade from one patch set to another. For example, you can perform a direct
upgrade of BRM cloud native from 12.0.0.x.0 to 15.0.x.0.0.

To upgrade your BRM cloud native deployment, complete these tasks in the specified order:

1. If you are upgrading from 12.0.0.2.0 to 12.0.0.3.0 or later, migrate your BRM cloud native
Helm charts to the v3.x format by using the helm2to3 utility. The Helm charts in BRM
cloud native 12.0.0.2.0 use Helm v2.x, and later patch set releases use Helm v3.x. Helm
v3.x doesn't readily understand the releases created by Helm v2.x.

For more information, see "Migrating Helm v2 to v3" in the Helm documentation. The
documentation contains references to the migration plugin and to a blog with a
comprehensive walk-through of steps using a sample chart.

2. Upgrade your BRM cloud native database schema. See "Upgrading Your Database
Schema".

3. Upgrade your BRM cloud native services. See "Upgrading Your BRM Cloud Native
Services".

4. Upgrade your Elastic Charging Engine (ECE) cloud native services. See "Upgrading Your
ECE Cloud Native Services".

5. Upgrade your client application services in any order:

• Upgrade your Pricing Design Center (PDC) service and database schema. See
"Upgrading Your PDC Cloud Native Services".

• Upgrade your BRM REST Services Manager service. See "Upgrading BRM REST
Services Manager".

• Upgrade your Business Operations Center service and database schema. See
"Upgrading Your Business Operations Center Cloud Native Services".

16-1

https://helm.sh/docs/topics/v2_v3_migration/

• Upgrade your Pipeline Configuration Center (PCC) service. See "Upgrading Your PCC
Cloud Native Services".

• Upgrade your Billing Care and Billing Care REST API services. See "Upgrading Your
Billing Care and Billing Care REST API Cloud Native Services".

Upgrading Your Database Schema
To upgrade your BRM cloud native database schema to the 15.0.x.0.0 release:

1. Download Oracle Communications Cloud Native Database Initializer Helm Chart 15.0.x.0.0
from the Oracle Software Delivery Cloud website. See "Downloading Packages for the
BRM Cloud Native Helm Charts and Docker Files".

2. Download and load the BRM 15.0.x.0.0 cloud native component images in one of these
ways:

• From the Oracle Container Registry. To do so, see "Pulling BRM Images from the
Oracle Container Registry".

• From the Oracle Software Delivery website. To do so, see "Downloading BRM Images
from Oracle Software Delivery Website".

3. Extract the BRM database initializer Helm chart from the archive. For example:

tar xvzf oc-cn-init-db-helm-chart-15.0.x.0.0.tgz

where x is 0 for the 15.0.0.0.0 release, 1 for BRM 15.0.1.0.0 release, and so on. If you are
extracting an interim patch, the file name will also have the interim patch number
appended to it, such as oc-cn-init-db-helm-chart-15.0.x.0.0-12345678.tgz.

4. Copy the /oms/wallet/client files (ewallet.p12 and cwallet.sso) from the BRM 12.0.0.x.0
version of the dm-oracle pod to the BRM 15.0.x.0.0 oc-cn-init-db-helm-chart/
existing_wallet/ directory.

Note:

This step is only required if you are upgrading from 12.0.0.x.0 to 15.0.x.0.0. Skip
this step if you are upgrading from 15.0.0.0.0 to 15.0.x.0.0.

5. Create an override-init-db-15.yaml file for the 15.0.x.0.0 version of oc-cn-init-db-helm-
chart.

6. In the override-init-db-15.yaml file, do the following:

• Set the ocbrm.is_upgrade key to true.

• Set the existing_rootkey_wallet key to true.

• Set the other keys in Table 6-1 as needed.

Note:

The BRM root password, wallet passwords, and database details should be
the same as in your old release.

7. Validate the oc-cn-init-db-helm-chart 15.0.x.0.0 chart's content by using the helm lint
command.

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-2

• For Helm 3.6.0 and later releases, enter this command from the helmcharts directory:

helm lint --strict oc-cn-init-db-helm-chart --values oc-cn-init-db-helm-chart/
values.yaml --values override-init-db-15.yaml

• For previous Helm releases, enter this command from the helmcharts directory:

helm lint --strict oc-cn-init-db-helm-chart
You'll see this if the command completes successfully:

1 chart(s) listed, no failures
8. Upgrade the database schema by entering this command from the helmcharts directory.

Ensure that you run the Helm chart with a new release name and namespace.

helm install newRelease oc-cn-init-db-helm-chart --namespace newNameSpace --values
override-init-db-15.yaml

where:

• newRelease is the release name for your new 15.0.x.0.0 release. This release name
must be different from that of your old release.

• newNameSpace is the namespace in which to create BRM Kubernetes objects for the
new 15.0.x.0.0 release. This namespace must be different from that of your old
release.

Your BRM cloud native database schema is upgraded to the new 15.0.x.0.0 release.

To determine if the upgrade was successful, enter the following:

kubectl --namespace newNameSpace get pods

If successful, you will see something similar to this:

NAME READY STATUS RESTARTS AGE
upgrade-wc6sx 0/1 Completed 0 22h

Upgrading Your BRM Cloud Native Services

Note:

The steps for upgrading your BRM cloud native services are the same for old and
new schemas.

When you upgrade your BRM cloud native services, it upgrades all BRM core services in your
BRM cloud native environment.

To upgrade your BRM cloud native services to the 15.0.x.0.0 release:

1. Download and install Oracle Communications Cloud Native Helm Chart 15.0.x.0.0 from the
Oracle Software Delivery Cloud website. See "Downloading Packages for the BRM Cloud
Native Helm Charts and Docker Files".

2. Download and load the BRM 15.0.x.0.0 cloud native images in one of these ways:

• From the Oracle Container Registry. To do so, see "Pulling BRM Images from the
Oracle Container Registry".

• From the Oracle Software Delivery website. To do so, see "Downloading BRM Images
from Oracle Software Delivery Website".

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-3

3. Extract the BRM 15.0.x.0.0 Helm chart from the archive:

tar xvzf oc-cn-helm-chart-15.0.x.0.0.tgz

where x is 0 for the 15.0.0.0.0 release, 1 for BRM 15.0.1.0.0 release, 2 for BRM 15.0.2.0.0
release, and so on. If you are extracting an interim patch, the file name will also have the
interim patch number appended to it, such as oc-cn-helm-chart-15.0.x.0.0-12345678.tgz.

4. Create an upgrade-brm-15.yaml file for the 15.0.x.0.0 version of oc-cn-helm-chart.

5. In the upgrade-brm-15.yaml file, set the following keys:

• Set the ocbrm.is_upgrade key to true.

• Set the ocbrm.existing_rootkey_wallet key to false.

• Set the other keys in Table 7-4 as needed.

6. Run the helm upgrade command for the 15.0.x.0.0 version of oc-cn-helm-chart using the
same release name and namespace that you used for your old release:

helm upgrade oldBrmReleaseName oc-cn-helm-chart --values oldOverrideValues --values
upgrade-brm-15.yaml --namespace oldBrmNamespace

where:

• oldBrmReleaseName is the release name assigned to your old oc-cn-helm-chart
installation.

• oldOverrideValues is the file name and path to the override-values.yaml file for your
old BRM installation.

• oldBrmNamespace is the same namespace as for your old BRM deployment.

7. If you are upgrading a multischema system, do the following:

a. Add the following lines to the 15.0.x.0.0 version of the oc-cn-helm-chart/
brmapps_scripts/loadme.sh script:

#!/bin/sh

cd /oms/setup/scripts; perl pin_multidb.pl -i
cd /oms/setup/scripts; perl pin_multidb.pl -f
cd /oms/setup/scripts; perl pin_amt_install.pl
exit 0;

b. Enable the brm-apps job by setting these keys in your override-values.yaml file for
the 15.0.x.0.0 version of oc-cn-helm-chart:

• ocbrm.brm_apps.job.isEnabled: Set this to true

• ocbrm.brm_apps.job.isMultiSchema: Set this to false

c. Run the helm upgrade command for oc-cn-helm-chart:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace BrmNameSpace

Your BRM core services have been upgraded to the latest 15.0.x.0.0 release.

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-4

Note:

The first time you run pin_virtual_time after upgrading the BRM core services to the
15.0.x.0.0 release, it generates a new 64-bit pin_virtual_time_file utility. You must
restart the CM after the 64-bit pin_virtual_time_file is created. To do so:

1. In the override-values.yaml for oc-cn-helm-chart, set the following keys:

• ocbrm.config_jobs.restart_count: Increment the value by 1.

• ocbrm.config_jobs.run_apps: Set this to true.

2. Run the helm upgrade command for oc-cn-helm-chart using the same release
name and namespace that you used for your old release:

helm upgrade oldBrmReleaseName oc-cn-helm-chart --values oldOverrideValues
--values upgrade-brm.yaml --namespace oldBrmNamespace

Upgrading Your ECE Cloud Native Services
To upgrade your ECE cloud native services to the 15.0.x.0.0 release:

1. Download the ECE cloud native Helm chart. See "Downloading Packages for the BRM
Cloud Native Helm Charts and Docker Files".

2. Extract the ECE Helm chart from the archive into a separate staging area. For example:

tar xvzf oc-cn-ece-helm-chart-15.0.x.0.0.tgz StagingArea
3. In your staging area, create a diff between the new values.yaml file and your old oc-cn-

ece-helm-chart/values.yaml file. For example, if you are upgrading from 12.0.0.5.0 to
15.0.x.0.0, do a diff between the 12.0.0.5.0 and 15.0.x.0.0 versions of the values.yaml file.

4. Using the diff, make a list of the keys that were added, changed, and removed in the new
release.

5. Open your old release's override-values.yaml file for oc-cn-ece-helm-chart. This file
contains all of the customizations that you made in previous releases.

6. Do the following:

• Add and configure any new keys that you want to use.

• Delete the keys that were removed.

• If a key's default value changed, determine whether you want to modify the key's
value.

7. Ensure that you have at least three ecs and ecs1 pod replicas configured in the file:

• charging.ecs1.replicas: Set this to a value of 3 or greater.

• charging.ecs.replicas: Set this to a value of 3 or greater.

8. If your current ECE cloud native deployment does not support cdrstore tablespaces and
you are upgrading to a version that requires them, do one of the following:

• Continue without separate tablespaces for cdrstore. To do so, in your override-
values.yaml file, set the cdrstoretablespace and cdrstoreindexspace keys to an
empty value:

cdrstoretablespace: ""
cdrstoreindexspace: ""

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-5

• Use separate tablespaces for cdrstore. To do so, in override-values.yaml file, set the
cdrstoretablespace and cdrstoreindexspace keys to the tablespace names.

Also, grant quota on the new tablespaces to the ECE schema user. Connect to your
database as the system user using SQL*Plus, and enter these commands:

SQL> ALTER USER EceSchemaUser quota unlimited on ECECDRTABLESPACE;
SQL> ALTER USER EceSchemaUser quota unlimited on ECECDRINDEXSPACE;

9. Save and close your override-values.yaml file to your staging area.

10. Delete all old ECE template files from your staging area's oc-cn-ece-helm-chart/
templates directory.

11. Copy the new ECE template files to your staging area's oc-cn-ece-helm-chart/templates
directory.

12. Upgrade your ECE cloud native services by running these commands:

cd StagingArea/oc-cn-ece-helm-chart/
sh upgradeECE_15.0.x.0.0.sh -o OverrideValuesFile -n BrmNameSpace -r EceReleaseName -
s y

where:

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the oc-cn-ece-helm-chart/values.yaml file.

• BrmNameSpace is the namespace in which BRM Kubernetes objects reside for the
BRM Helm chart.

• EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to track
this installation instance. It must be different from the one used for the BRM Helm
chart.

Upgrading ECE Cloud Native to the Latest Interim Patch
To upgrade your ECE cloud native services from 15.0 to the latest 15.0 interim patch:

1. Delete any existing ECE Kubernetes jobs:

kubectl --namespace BrmNameSpace get job
kubectl --namespace BrmNameSpace delete job JobName

where BrmNameSpace is the namespace in which BRM Kubernetes objects reside for the
BRM Helm chart, and JobName is the name of the Kubernetes job.

2. Download the latest 15.0 interim patch release from the My Oracle Support website
(https://support.oracle.com).

3. Extract the interim patch's ECE Helm chart from the archive into a separate staging area.
For example:

tar xvzf oc-cn-ece-helm-chart-15.0.0.0.0.xyz.tgz StagingArea

where xyz is the interim patch number.

4. In your staging area, create a diff between the 15.0 interim patch values.yaml file and your
old 15.0 oc-cn-ece-helm-chart/values.yaml file.

5. Using the diff, make a list of the keys that were added, changed, and removed in the 15.0
interim patch release.

6. Open your 15.0 override-values.yaml file for oc-cn-ece-helm-chart.

7. Do the following:

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-6

https://support.oracle.com/

• Add and configure any new keys that you want to use.

• Delete the keys that were removed.

• If a key's default value changed, determine whether you want to override the key's
value.

8. Ensure that you have at least three ecs and ecs1 pod replicas configured in the file:

• charging.ecs1.replicas: Set this to a value of 3 or greater.

• charging.ecs.replicas: Set this to a value of 3 or greater.

9. Save and close your override-values.yaml file.

10. Upgrade your ECE cloud native services to the latest 15.0 interim patch release by running
these commands:

cd StagingArea/oc-cn-ece-helm-chart/
sh upgradeECE_15.0.0.0.0.sh --override OverrideValuesFile --namespace BrmNameSpace --
release EceReleaseName

where:

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the oc-cn-ece-helm-chart/values.yaml file.

• EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to track
this installation instance. It must be different from the one used for the BRM Helm
chart.

Upgrading Your PDC Cloud Native Services

Note:

• When you upgrade your PDC cloud native services, your PDC database is also
upgraded.

• If you reuse an old PDC schema, you must choose the same rating engine as the
old PDC installation. That is, if your old PDC installation uses Elastic Charging
Engine (ECE) for usage rating, you cannot switch to the Real-time Rating and
Batch Rating Engines. Likewise, you cannot switch to ECE if your old PDC
installation uses the Real-time Rating and Batch Rating Engines for usage rating.
If you attempt to switch rating engines, the PDC upgrade fails and generates an
error message.

• You cannot migrate pricing data to PDC cloud native systems, because the PDC
MigrateBRMPricing utility is not supported in cloud native environments.

To upgrade your PDC cloud native services and the PDC database to the latest 15.0.x.0.0
release:

1. Download and extract the BRM 15.0.x.0.0 cloud native Helm charts. See "Downloading
Packages for the BRM Cloud Native Helm Charts and Docker Files".

2. Download and push the PDC 15.0.x.0.0 component images into your repository in one of
these ways:

• From the Oracle Container Registry. To do so, see "Pulling BRM Images from the
Oracle Container Registry".

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-7

• From the Oracle Software Delivery website. To do so, see "Downloading BRM Images
from Oracle Software Delivery Website".

3. Remove all PDC pods, services, and volume mounts from your PDC 12.0.0.x.0 release by
doing the following:

a. In your override-values.yaml file for the 12.0.0.x.0 version of oc-cn-helm-chart, set
the ocpdc.isEnabled key to false.

b. Run the helm upgrade command for the 12.0.0.x.0 release of oc-cn-helm-chart:

helm upgrade oldBrmReleaseName oc-cn-helm-chart --values
oldBrmOverrideValuesFile --namespace oldBrmNameSpace

where:

• oldBrmReleaseName is the release name assigned to your 12.0.0.x.0 version of
the oc-cn-helm-chart installation.

• oldBrmOverrideValuesFile is the file name and path of your 12.0.0.x.0 version of
the override-values.yaml file for oc-cn-helm-chart.

• oldBrmNameSpace is the namespace for your 12.0.0.x.0 version of the BRM
deployment.

Note:

Ensure that all PDC pods, services, and volume mounts have been deleted.

4. If you are upgrading from PDC 12.0.0.8.0 or later to PDC 15.0.x.0.0, do the following:

a. In your override-values.yaml file for your old release of oc-cn-op-job-helm-chart, set
the ocpdc.isEnabled key to false.

b. Run the helm upgrade command for your old release of oc-cn-op-job-helm-chart:

helm upgrade oldOpJobReleaseName oc-cn-op-job-helm-chart --values
oldOpJobOverrideValuesFile --namespace oldBrmNameSpace

where:

• oldOpJobReleaseName is the release name assigned to your old release of the
oc-cn-op-job-helm-chart installation.

• oldOpJobOverrideValuesFile is the file name and path of your old release of the
override-values.yaml file for oc-cn-op-job-helm-chart.

• oldBrmNameSpace is the namespace for your old BRM deployment.

Ensure all PDC jobs are deleted.

c. Compare your old release's oc-cn-op-job-helm-chart/values.yaml file with the
15.0.x.0.0 version of that file.

• Create a diff between your old release's values.yaml file and the 15.0.x.0.0
release's values.yaml file.

• Using the diff, make a list of the keys that were added, changed, and removed in
the 15.0.x.0.0 release.

• Open oldOpJobOverrideValuesFile. This file contains all of the customizations that
you made in previous releases.

• Do the following:

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-8

– Add and configure any new keys that you want to use.

– Delete the keys that were removed.

– If a key's default value changed, determine whether you want to modify the
key's value.

• Close and save the file as new-op-job-override-values.yaml.

5. Do one of the following:

• If you are upgrading from 12.0 Patch Set 8 or later, open your new-op-job-override-
values.yaml file.

• If you are upgrading from 12.0 Patch Set 7 or earlier, create an override-values.yaml
file for the 15.0.x.0.0 version of oc-cn-op-job-helm-chart named new-op-job-
override-values.yaml.

6. In new-op-job-override-values.yaml, set the following keys:

• ocpdc.isEnabled: Set this to true.

• ocpdc.configEnv.upgrade: Set this to true.

• ocpdc.configEnv.deployAndUpgradeSite2: Set this to false.

7. Run the helm upgrade command for the 15.0.x.0.0 version of oc-cn-op-job-helm-chart:

helm upgrade oldOpJobReleaseName oc-cn-op-job-helm-chart --values new-op-job-
override-values.yaml --namespace oldBrmNameSpace

Wait for the PDC domain job to complete.

8. Compare your 12.0.0.x.0 release's oc-cn-helm-chart/values.yaml file with the 15.0.x.0.0
version of the file.

• Create a diff between your old release's values.yaml file and the 15.0.x.0.0 release's
values.yaml file.

• Using the diff, make a list of the keys that were added, changed, and removed in the
15.0.x.0.0 release.

• Open your 12.0.0.x.0 release's override-values.yaml file. This file contains all of the
customizations that you made in previous releases.

• Do the following:

– Add and configure any new keys that you want to use.

– Delete the keys that were removed.

– If a key's default value changed, determine whether you want to modify the key's
value.

• Close and save the file as new-brm-override-values.yaml.

9. In new-brm-override-values.yaml, set the following keys:

• ocbrm.pdc_deployed: Set this to true.

• ocpdc.configEnv.upgrade: Set this to true.

This value must match the one set in your override-values.yaml file for oc-cn-op-job-
helm-chart (in Step 6).

• ocpdc.isEnabled: Set this to true.

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-9

10. Run the helm upgrade command for the 15.0.x.0.0 version of oc-cn-helm-chart:

helm upgrade oldBrmReleaseName oc-cn-helm-chart --values new-brm-override-
values.yaml --namespace oldBrmNameSpace

Upgrading BRM REST Services Manager
To upgrade your BRM REST Services Manager cloud native services to the 15.0.x.0.0 release:

1. Download and extract the BRM cloud native Helm charts. See "Downloading Packages for
the BRM Cloud Native Helm Charts and Docker Files".

2. Download and push the BRM REST Services Manager component image to your
repository in one of these ways:

• From the Oracle Container Registry. To do so, see "Pulling WebLogic Images for PDC,
Billing Care, Billing Care REST API, and Business Operations Center".

• From the Oracle Software Delivery website. To do so, see "Downloading BRM Images
from Oracle Software Delivery Website".

3. Disable the brm-rest-services-manager service in your BRM cloud native environment.

a. Create an upgrade-brm-rsm.yaml file. This file will be used by oc-cn-helm-chart.

b. In your upgrade-brm-rsm.yaml file, set the ocrsm.rsm.isEnabled key to false.

c. Stop the brm-rest-services-manager pod by running the Helm upgrade command for
the oc-cn-helm-chart:

helm upgrade oldBrmReleaseName oc-cn-helm-chart --values oldOverrideValues --
values upgrade-brm-rsm.yaml --namespace oldBrmNamespace

where:

• oldBrmReleaseName is the BRM release name for your old release.

• oldOverrideValues is the file name and path to the override-values.yaml file for
your old brm-rest-services-manager installation.

• oldBrmNamespace is the BRM namespace for your old release.

4. Wait for the brm-rest-services-manager pod to stop.

5. In your upgrade-brm-rsm.yaml file, set the these keys:

• ocrsm.rsm.isEnabled: Set this to true.

• ocrsm.rsm.deployment.imageTag: Set this to the new release number in the format
15.0.x.0.0 or 15.0.x.0.0-nnnnnnnn for interim patches.

6. Copy the SSL Certificate for BRM REST Services Manager.

a. Create a directory named rsm_keystore under the newly extracted oc-cn-helm-
chart/rsm directory.

b. Copy the files created in the step "Generating an SSL Certificate for BRM REST
Services Manager" to the newly created oc-cn-helm-chart/rsm directory.

c. Start your brm-rest-services-manager services by running the Helm upgrade command
for oc-cn-helm-chart:

helm upgrade oldBRMReleaseName oc-cn-helm-chart --values oldOverrideValues --
values upgrade-brm-rsm.yaml --namespace oldBrmNamespace

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-10

Upgrading Your Business Operations Center Cloud Native Services
The instructions to upgrade your Business Operations Center services differ depending on the
patch set you are upgrading to or from.

• To upgrade the Business Operations Center service from 12.0.0.7.0 or earlier to 15.0.x.0.0,
follow the instructions in "Upgrading Your Business Operations Center Cloud Native
Service from 12.0.0.7.0 or Earlier to 15.0.x.0.0".

• To upgrade the Business Operations Center service from 12.0.0.8.0 to 15.0.x.0.0, follow
the instructions in "Upgrading Your Business Operations Center Cloud Native Service from
12.0.0.8.0 to 15.0.x.0.0".

Note:

When you upgrade your Business Operations Center cloud native service, you can
also upgrade your Business Operations Center database schema.

Upgrading Your Business Operations Center Cloud Native Service from 12.0.0.7.0 or
Earlier to 15.0.x.0.0

To upgrade your Business Operations Center cloud native service and database schema from
12.0.0.7.0 or earlier to 15.0.x.0.0:

1. Download and extract the 15.0.x.0.0 versions of the BRM cloud native Helm chart (oc-cn-
helm-chart) and the cloud native operator job chart (oc-cn-op-job-helm-chart).

See "Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files".

2. Download and push the Business Operations Center component image (boc) to your
repository in one of these ways:

• From the Oracle Container Registry. To do so, see "Pulling BRM Images from the
Oracle Container Registry".

• From the Oracle Software Delivery website. To do so, see "Downloading BRM Images
from Oracle Software Delivery Website".

3. Disable all Business Operations Center 12.0.0.x.0 services in your BRM cloud native
environment.

a. Create an upgrade-boc.yaml file and then set the ocboc.boc.isEnabled key to false.

The upgrade-boc.yaml file will be used with both oc-cn-helm-chart and oc-cn-op-
job-helm-chart.

b. Stop the WebLogic domain by running the helm upgrade command for oc-cn-helm-
chart:

helm upgrade oldBrmReleaseName oc-cn-helm-chart --values oldOverrideValues --
values upgrade-boc.yaml --namespace oldBrmNamespace

where:

• oldBrmReleaseName is the BRM release name for your old release.

• oldOverrideValues is the override-values.yaml file for your 12.0.0.x.0 release.

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-11

• oldBrmNamespace is the BRM namespace for your old release.

c. Remove the WebLogic domain by running the helm upgrade command for oc-cn-op-
job-helm-chart:

helm upgrade oldOpJobReleaseName oc-cn-op-job-helm-chart --values
oldOverrideValues --values upgrade-boc.yaml --namespace oldBrmNameSpace

where oldOpJobReleaseName is the oc-cn-op-job-helm-chart release name for the
old release.

4. Clean up the data in your Business Operations Center 12.0.0.x.0 persistent volumes
(PVs).

a. Clean up the domain home from the PV for Business Operations Center 12.0.0.x.0:

rm -rf Domain_home/domains/domainUID

where:

• Domain_home is the location specified in the
ocboc.boc.wop.domainVolHostPath key.

• domainUID is the domain name specified in the ocboc.boc.wop.domainUID key.
The default is boc-domain.

See Table 9-1 for more information.

b. Clean up the application home from the PV for Business Operations Center:

rm -rf Application_home/BOC

where Application_home is the path specified in the ocboc.boc.wop.appVolHostPath
key.

5. Compare your old 12.0.0.x.0 versions of the oc-cn-helm-chart/values.yaml and oc-cn-
op-job-helm-chart/values.yaml files with the 15.0.x.0.0 versions of those files.

• Create a diff between the 15.0.x.0.0 values.yaml file and your old 12.0.0.x.0
values.yaml file.

• Using the diff, make a list of the keys that were added, changed, and removed in the
new release.

• Open your old 12.0.0.x.0 release's override-values.yaml file. This file contains all of
the customizations that you made in previous releases.

• Do the following:

– Add and configure any new keys that you want to use.

– Delete the keys that were removed.

– If a key's default value changed, determine whether you want to modify the key's
value.

• Close and save the files as updatedoldOverrideValues.

6. Deploy Business Operations Center 15.0.x.0.0 with the latest changes and upgrade the
Business Operations Center database schema.

a. In your upgrade-boc.yaml file, set these Business Operations Center keys:

• ocboc.boc.isEnabled: Set this to true.

• ocboc.boc.deployment.imageTag: Set this to the new release number in the
format 15.0.x.0.0 for patch sets and 15.0.x.0.0-nnnnnnnn for interim patches.

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-12

b. Run the helm upgrade command for oc-cn-op-job-helm-chart:

helm upgrade oldOpJobReleaseName oc-cn-op-job-helm-chart --values
updatedoldOverrideValues --values upgrade-boc.yaml --namespace oldBrmNameSpace

Wait for the jobs to complete their tasks.

7. Start your Business Operations Center 15.0.x.0.0 services by running the helm upgrade
command for oc-cn-helm-chart:

helm upgrade oldBRMReleaseName oc-cn-helm-chart --values updatedoldOverrideValues --
values upgrade-boc.yaml --namespace oldBrmNamespace

Upgrading Your Business Operations Center Cloud Native Service from 12.0.0.8.0 to
15.0.x.0.0

To upgrade your Business Operations Center cloud native service and database schema from
12.0.0.8.0 to 15.0.x.0.0:

1. Download and extract the 15.0.x.0.0 versions of the BRM cloud native Helm chart (oc-cn-
helm-chart) and the cloud native operator job chart (oc-cn-op-job-helm-chart).

See "Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files".

2. Download and push the Business Operations Center 15.0.x.0.0 image (boc) to your
repository in one of these ways:

• From the Oracle Container Registry. To do so, see "Pulling BRM Images from the
Oracle Container Registry".

• From the Oracle Software Delivery website. To do so, see "Downloading BRM Images
from Oracle Software Delivery Website".

3. Compare your old 12.0.0.8.0 versions of the oc-cn-helm-chart/values.yaml and oc-cn-
op-job-helm-chart/values.yaml files with the 15.0.x.0.0 versions of those files.

• Create a diff between the 15.0.x.0.0 values.yaml file and your old 12.0.0.8.0
values.yaml file.

• Using the diff, make a list of the keys that were added, changed, and removed in the
new release.

• Open your old 12.0.0.8.0 release's override-values.yaml file. This file contains all of
the customizations that you made in previous releases.

• Do the following:

– Add and configure any new keys that you want to use.

– Delete the keys that were removed.

– If a key's default value changed, determine whether you want to modify the key's
value.

• Close and save the files as updatedOldOverrideValues.

4. Deploy Business Operations Center 15.0.x.0.0 with the latest changes and upgrade the
Business Operations Center database schema.

a. In your upgrade-boc.yaml file, set the ocboc.boc.deployment.app.imageTag key to
the new release number in the format 15.0.x.0.0 or 15.0.x.0.0-nnnnnnnn for interim
patches.

The upgrade-boc.yaml file will be used with both oc-cn-helm-chart and oc-cn-op-
job-helm-chart.

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-13

b. Run the helm upgrade command for oc-cn-op-job-helm-chart:

helm upgrade oldOpJobReleaseName oc-cn-op-job-helm-chart --values
updatedOldOverrideValues --values upgrade-boc.yaml --namespace oldBrmNameSpace

Wait for the jobs to complete their tasks.

5. Start your Business Operations Center 15.0.x.0.0 services by running the helm upgrade
command for oc-cn-helm-chart:

helm upgrade oldBRMReleaseName oc-cn-helm-chart --values updatedOldOverrideValues --
values upgrade-boc.yaml --namespace oldBrmNamespace

Upgrading Your PCC Cloud Native Services
The instructions to upgrade your PCC cloud native services differ depending on the release
you are upgrading from.

• To upgrade your PCC cloud native services from 12.0.0.x.0 or earlier to 15.0.0.0.0, follow
the instructions in "Upgrading Your PCC Cloud Native Services from 12.0.0.x.0 or Earlier to
15.0.0.0.0".

• To upgrade your PCC cloud native services from 15.0.0.0.0 to 15.0.x.0.0, follow the
instructions in "Upgrading Your PCC Cloud Native Services from 15.0.0.0.0 to 15.0.x.0.0".

Upgrading Your PCC Cloud Native Services from 12.0.0.x.0 or Earlier to 15.0.0.0.0
To upgrade your PCC cloud native services from 12.0.0.x.0 or earlier to the 15.0.0.0.0 release:

1. Download and extract the BRM 15.0.0.0.0 cloud native Helm chart (oc-cn-helm-chart).

See "Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files".

2. Download and push the PCC 15.0.0.0.0 component image (oracle/pcc:15.0.0.0.0) to your
repository in one of these ways:

• From the Oracle Container Registry. To do so, see "Pulling BRM Images from the
Oracle Container Registry".

• From the Oracle Software Delivery website. To do so, see "Downloading BRM Images
from Oracle Software Delivery Website".

3. Disable the PCC 12.0.0.x.0 cloud native services in your BRM cloud native environment:

a. Create an upgrade-pcc.yaml file for oc-cn-helm-chart.

b. In your upgrade-pcc.yaml file, set the ocpcc.pcc.isEnabled key to false.

c. Stop the running pcc pod by running the helm upgrade command for the 12.0.0.x.0
version of oc-cn-helm-chart:

helm upgrade oldBrmReleaseName oc-cn-helm-chart --values oldOverrideValues --
values upgrade-pcc.yaml --namespace oldBrmNamespace

where:

• oldBrmReleaseName is the BRM release name for your 12.0.0.x.0 release.

• oldOverrideValues is the file name and path to the override-values.yaml file for
your 12.0.0.x.0 BRM installation.

• oldBrmNamespace is the BRM namespace for your 12.0.0.x.0 release.

4. Wait for the pcc pod to stop.

5. Copy the SSL Certificate for PCC:

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-14

a. Create a keystore_pcc directory under oc-cn-helm-chart/pcc.

b. Copy the default PKCS12 certificate and KeyStore files to the oc-cn-helm-chart/pcc
directory.

During deployment, Helm uses the KeyStore files to create a Secret, which will be
mounted as a volume inside the pcc pod.

c. If your KeyStore files have file names different from what is specified in the
values.yaml file, update the keyStoreType, keyStoreIdentityFileName, and
keyStoreTrustFileName keys in your override-values.yaml file.

6. Compare your 12.0.0.x.0 release's oc-cn-helm-chart/values.yaml file with the 15.0.0.0.0
version of the file.

• Create a diff between your 12.0.0.x.0 release's values.yaml file and the 15.0.0.0.0
release's values.yaml file.

• Using the diff, make a list of the keys that were added, changed, and removed in the
15.0.0.0.0 release.

• Open your 12.0.0.x.0 release's override-values.yaml file. This file contains all of the
customizations that you made in previous releases.

• Do the following:

– Add and configure any new keys that you want to use.

– Delete the keys that were removed.

– If a key's default value changed, determine whether you want to modify the key's
value.

• Close and save the file as new-brm-override-values.yaml.

7. In your upgrade-pcc.yaml file, set the following keys:

• ocpcc.pcc.isEnabled: Set this to true.

• ocpcc.pcc.deployment.imageTag: Set this to the new release number in the format
15.0.0.0.0 or 15.0.0.0.0-nnnnnnnn for interim patches.

8. Start your PCC cloud native services by running the helm upgrade command for the
15.0.0.0.0 version of oc-cn-helm-chart:

helm upgrade oldBRMReleaseName oc-cn-helm-chart --values new-brm-override-
values.yaml --values upgrade-pcc.yaml --namespace oldBrmNamespace

Upgrading Your PCC Cloud Native Services from 15.0.0.0.0 to 15.0.x.0.0
To upgrade your PCC cloud native services from 15.0.0.0.0 to 15.0.x.0.0:

1. Download and extract the BRM 15.0.x.0.0 cloud native Helm charts (oc-cn-helm-chart
and oc-cn-op-job-helm-chart).

See "Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files".

2. Download and push the PCC 15.0.x.0.0 component image (pcc) to your repository in one
of these ways:

• From the Oracle Container Registry. To do so, see "Pulling BRM Images from the
Oracle Container Registry".

• From the Oracle Software Delivery website. To do so, see "Downloading BRM Images
from Oracle Software Delivery Website".

3. Disable all PCC 15.0.0.0.0 cloud native services in your BRM cloud native environment:

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-15

a. Create an upgrade-pcc.yaml file and then set the ocpcc.pcc.isEnabled key to false.

The upgrade-pcc.yaml file will be used with both oc-cn-helm-chart and oc-cn-op-
job-helm-chart.

b. Stop the WebLogic domain by running the helm upgrade command for the 15.0.0.0.0
version of oc-cn-helm-chart:

helm upgrade oldBrmReleaseName oc-cn-helm-chart --values
oldOverrideValues --values upgrade-pcc.yaml --namespace oldBrmNamespace

where:

• oldBrmReleaseName is the BRM release name for your 15.0.0.0.0 release.

• oldOverrideValues is the override-values.yaml file for your 15.0.0.0.0 release.

• oldBrmNamespace is the BRM namespace for your 15.0.0.0.0 release.

c. Remove the WebLogic domain by running the helm upgrade command for the
15.0.0.0.0 version of oc-cn-op-job-helm-chart:

helm upgrade oldOpJobReleaseName oc-cn-op-job-helm-chart --values
oldOverrideValues --values upgrade-pcc.yaml --namespace oldBrmNameSpace

where oldOpJobReleaseName is the oc-cn-op-job-helm-chart release name for the
15.0.0.0.0 release.

4. Clean up the data in your PCC 15.0.0.0.0 persistent volumes (PVs).

a. Clean up the domain home from the PV for PCC 15.0.0.0.0:

rm -rf Domain_home/domains/domainUID

where:

• Domain_home is the location specified in the
ocpcc.pcc.wop.domainVolHostPath key.

• domainUID is the domain name specified in the ocpcc.pcc.wop.domainUID key.
The default is pcc-domain.

b. Clean up the application home from the PV for PCC 15.0.0.0.0:

rm -rf Application_home/PCC

where Application_home is the path specified in the ocpcc.pcc.wop.appVolHostPath
key.

5. Compare your 15.0.0.0.0 version of the oc-cn-helm-chart/values.yaml file with the
15.0.x.0.0 version of that file.

• Create a diff between the 15.0.x.0.0 values.yaml file and the 15.0.0.0.0 values.yaml
file.

• Using the diff, make a list of the keys that were added, changed, and removed in the
15.0.x.0.0 release.

• Open your 15.0.0.0.0 release's override-values.yaml file. This file contains all of the
customizations that you made in previous releases.

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-16

• Do the following:

– Add and configure any new keys that you want to use.

– Delete the keys that were removed.

– If a key's default value changed, determine whether you want to modify the key's
value.

• Close and save the file as new-brm-override-values.yaml.

6. Configure the 15.0.x.0.0 version of oc-cn-op-job-helm-chart:

a. Create an op-job-override-values.yaml file.

b. In the file, set the PCC-related keys for oc-cn-op-job-helm-chart. See "Adding
Pipeline Configuration Center Keys for oc-cn-op-job-helm-chart".

7. In your upgrade-pcc.yaml file, set these PCC keys:

• ocpcc.pcc.isEnabled: Set this to true.

• ocpcc.pcc.deployment.imageTag: Set this to the new release number in the format
15.0.x.0.0 for patch sets and 15.0.x.0.0-nnnnnnnn for interim patches.

8. Deploy PCC 15.0.x.0.0 with the latest changes by running the helm upgrade command for
oc-cn-op-job-helm-chart:

helm upgrade oldOpJobReleaseName oc-cn-op-job-helm-chart --values op-job-override-
values.yaml --values upgrade-pcc.yaml --namespace oldBrmNameSpace

9. Start your PCC 15.0.x.0.0 cloud native services by running the helm upgrade command
for oc-cn-helm-chart:

helm upgrade oldBRMReleaseName oc-cn-helm-chart --values new-brm-override-
values.yaml --values upgrade-pcc.yaml --namespace oldBrmNamespace

Upgrading Your Billing Care and Billing Care REST API Cloud Native
Services

The instructions to use to upgrade your Billing Care and Billing Care REST API services are
different, depending on the patch set you are upgrading from.

• To upgrade Billing Care and Billing Care REST API services from 12.0 Patch Set 7 or
earlier, follow the instructions in "Upgrading Your Billing Care and Billing Care REST API
Cloud Native Services from 12.0.0.7.0 or Earlier to 15.0.x.0.0".

• To upgrade the Billing Care and Billing Care REST API services from 12.0 Patch Set 8 or
later, follow the instructions in "Upgrading Your Billing Care and Billing Care REST API
Cloud Native Services from 12.0.0.8.0 to 15.0.x.0.0".

Upgrading Your Billing Care and Billing Care REST API Cloud Native Services from
12.0.0.7.0 or Earlier to 15.0.x.0.0

To upgrade Billing Care and Billing Care REST API from 12.0.0.7.0 or earlier to 15.0.x.0.0:

1. Download and extract the 15.0.x.0.0 versions of the BRM cloud native Helm chart (oc-cn-
helm-chart) and the cloud native operator job chart (oc-cn-op-job-helm-chart).

See "Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files".

2. Download and push the 15.0.x.0.0 versions of the Billing Care image (billingcare) and the
Billing Care REST API image (bcws) to your repository in one of these ways:

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-17

• From the Oracle Container Registry. To do so, see "Pulling BRM Images from the
Oracle Container Registry".

• From the Oracle Software Delivery website. To do so, see "Downloading BRM Images
from Oracle Software Delivery Website".

3. Disable all Billing Care and Billing Care REST API services in your BRM 12.0.0.x.0 cloud
native environment.

a. Create an upgrade-billing.yaml file.

This file will be used with both oc-cn-helm-chart and oc-cn-op-job-helm-chart.

b. In your upgrade-billing.yaml file, set these keys:

• ocbc.bc.isEnabled: Set this to false.

• ocbc.bcws.isEnabled: Set this to false.

c. Stop the WebLogic domain by running the Helm upgrade command for oc-cn-helm-
chart:

helm upgrade oldBrmReleaseName oc-cn-helm-chart --values oldOverrideValues --
values upgrade-billing.yaml --namespace oldBrmNamespace

where:

• oldBrmReleaseName is the BRM release name for your old release.

• oldOverrideValues is the file name and path to the override-values.yaml file for
your old Billing Care installation.

• oldBrmNamespace is the BRM namespace for your old release.

d. Remove the WebLogic domain by running the Helm upgrade command for oc-cn-op-
job-helm-chart:

helm upgrade oldOpJobReleaseName oc-cn-op-job-helm-chart --values
oldOverrideValues --values upgrade-billing.yaml --namespace oldBrmNameSpace

where oldOpJobReleaseName is the oc-cn-op-job-helm-chart release name for the
old release.

4. Clean up the data in the 12.0.0.x.0 versions of the Billing Care and Billing Care REST API
persistent volumes (PVs).

a. Clean up the domain home from the PV for Billing Care and Billing Care REST API:

rm -rf Domain_home/domains/domainUID

where:

• Domain_home is the location specified in the ocbc.bc.wop.domainVolHostPath
and ocbc.bcws.wop.domainVolHostPath keys.

• domainUID is the domain name specified in the ocbc.bc.wop.domainUID and
ocbc.bcws.wop.domainUID keys. The defaults are billingcare-domain and
bcws-domain.

See Table 9-3 and Table 9-5.

b. Clean up the application home from the PV for Billing Care and Billing Care REST API:

rm -rf Application_home/billingcare

where Application_home is the path specified in the ocbc.bc.wop.appVolHostPath
and ocbc.bcws.wop.appVolHostPath keys.

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-18

5. Compare your old 12.0.0.x.0 versions of the oc-cn-helm-chart/values.yaml and oc-cn-
op-job-helm-chart/values.yaml files with the 15.0.x.0.0 versions of those files.

• Create a diff between the 15.0.x.0.0 values.yaml file and your old 12.0.0.x.0
values.yaml file.

• Using the diff, make a list of the keys that were added, changed, and removed in the
new release.

• Open your old 12.0.0.x.0 release's override-values.yaml file. This file contains all of
the customizations that you made in previous releases.

• Do the following:

– Add and configure any new keys that you want to use.

– Delete the keys that were removed.

– If a key's default value changed, determine whether you want to modify the key's
value.

• Close and save the files as updatedOldOverrideValues.

6. In your upgrade-billing.yaml file, set these Billing Care and Billing Care REST API keys:

• ocbc.bc.isEnabled: Set this to true.

• ocbc.bcws.isEnabled: Set this to true.

• ocbc.bc.deployment.imageTag: Set this to the new release number in the format
15.0.x.0.0 or 15.0.x.0.0-nnnnnnnn for interim patches.

• ocbc.bcws.deployment.imageTag: Set this to the new release number in the format
15.0.x.0.0 or 15.0.x.0.0-nnnnnnnn for interim patches.

7. Deploy the 15.0.x.0.0 versions of the Billing Care and Billing Care REST API with the latest
changes by running the Helm upgrade command for oc-cn-op-job-helm-chart:

helm upgrade oldOpJobReleaseName oc-cn-op-job-helm-chart --values
updatedOldOverrideValues --values upgrade-billing.yaml --namespace oldBrmNameSpace

Wait for the jobs to complete their tasks.

8. Start your 15.0.x.0.0 versions of the Billing Care and Billing Care REST API services by
running the Helm upgrade command for oc-cn-helm-chart:

helm upgrade oldBRMReleaseName oc-cn-helm-chart --values updatedOldOverrideValues --
values upgrade-billing.yaml --namespace oldBrmNamespace

Upgrading Your Billing Care and Billing Care REST API Cloud Native Services from
12.0.0.8.0 to 15.0.x.0.0

To upgrade Billing Care and Billing Care REST API cloud native from the 12.0.0.8.0 release to
15.0.x.0.0:

1. Download and extract the 15.0.x.0.0 versions of the BRM cloud native Helm chart (oc-cn-
helm-chart) and the cloud native operator job chart (oc-cn-op-job-helm-chart).

See "Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files".

2. Download and push the 15.0.x.0.0 versions of the Billing Care image (billingcare) and the
Billing Care REST API image (bcws) to your repository in one of these ways:

• From the Oracle Container Registry. To do so, see "Pulling BRM Images from the
Oracle Container Registry".

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-19

• From the Oracle Software Delivery website. To do so, see "Downloading BRM Images
from Oracle Software Delivery Website".

3. Compare your old 12.0.0.8.0 versions of the oc-cn-helm-chart/values.yaml and oc-cn-
op-job-helm-chart/values.yaml files with the 15.0.x.0.0 versions of those files.

• Create a diff between the 15.0.x.0.0 values.yaml file and your old 12.0.0.8.0
values.yaml file.

• Using the diff, make a list of the keys that were added, changed, and removed in the
new release.

• Open your old 12.0.0.8.0 release's override-values.yaml file. This file contains all of
the customizations that you made in previous releases.

• Do the following:

– Add and configure any new keys that you want to use.

– Delete the keys that were removed.

– If a key's default value changed, determine whether you want to modify the key's
value.

• Close and save the files as updatedOldOverrideValues.

4. Create an upgrade-billing.yaml file and set these Billing Care and Billing Care REST API
keys:

• ocbc.bc.deployment.app.imageTag: Set this to the new release number in the format
15.0.x.0.0 for patch sets and 15.0.x.0.0-nnnnnnnn for interim patches.

• ocbc.bcws.deployment.app.imageTag: Set this to the new release number in the
format 15.0.x.0.0 for patch sets and 15.0.x.0.0-nnnnnnnn for interim patches.

The upgrade-billing.yaml file will be used with both oc-cn-helm-chart and oc-cn-op-job-
helm-chart.

5. Deploy the 15.0.x.0.0 versions of Billing Care and Billing Care REST API with the latest
changes by running the Helm upgrade command for oc-cn-op-job-helm-chart:

helm upgrade oldOpJobReleaseName oc-cn-op-job-helm-chart --values
updatedOldOverrideValues --values upgrade-billing.yaml --namespace oldBrmNameSpace

Wait for the jobs to complete their tasks.

6. Start your 15.0.x.0.0 versions of the Billing Care and Billing Care REST API services by
running the Helm upgrade command for oc-cn-helm-chart:

helm upgrade oldBRMReleaseName oc-cn-helm-chart --values updatedOldOverrideValues --
values upgrade-billing.yaml --namespace oldBrmNamespace

Chapter 16
Tasks for the BRM Cloud Native Upgrade

16-20

17
Performing Zero-Downtime Upgrades

Learn how to upgrade an Oracle Communications Billing and Revenue Management (BRM)
cloud native deployment without having to take the environment offline. A zero-downtime
upgrade allows your customers to continue using BRM's major services during the upgrade
process.

Topics in this document:

• Performing a Zero-Downtime Upgrade of BRM

• Performing a Zero Downtime Upgrade of PDC

In this document, the BRM release running on your production system is called the existing
release. The release you are upgrading to is called the new release. For example, if you
upgrade from BRM 12.0 Patch Set 5 to BRM 15.0, 12.0 Patch Set 5 is the existing release and
15.0 is the new one.

Performing a Zero-Downtime Upgrade of BRM
You can perform a zero-downtime upgrade of your BRM cloud native services and the BRM
database schema from 12.0.0.x.0 to 15.0.x.0.0.

To perform a zero-downtime upgrade of BRM cloud native:

1. Download the BRM 15.0.x.0.0 cloud native package from the Oracle Software Delivery
website (https://support.oracle.com) or the Oracle Support website (https://
support.oracle.com).

2. Configure and deploy the BRM 12.0.0.x.0 oc-cn-helm-chart Helm chart on your cloud
native environment by doing the following:

a. In your override-values.yaml file for the BRM 12.0.0.x.0 oc-cn-helm-chart, set the
following keys:

ocbrm:
 refreshInterval: 10
 terminationGracePeriodSeconds: 120
 pcpReconnectDelayOnSocketError: 10
 pcpConnectRetryDelayOnError: 10

b. In your oc-cn-helm-chart/templates/configmap_pin_conf_cm.yaml file, set the
following key:

- cm pcm_connect_max_retries 10

c. Ensure that at least two replica pods of cm, dm-oracle, dm-ifw-sync, and realtime-
pipeline are up and running.

d. (BRM 12.0.0.7.0 only) Apply BRM 12.0.0.7.0 Interim Patch 34939558 to your cloud
native environment.

e. (BRM 12.0.0.7.0 or later) In your BRM 12.0.0.x.0 oc-cn-helm-chart/templates/
configmap_pin_conf_dm_oracle.yaml file, set the following key:

- dm dm_ignore_fld_mismatch_err 1

17-1

https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/

f. Run the helm upgrade command for the 12.0.0.x.0 oc-cn-helm-chart:

helm upgrade Brm_12_ReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace Brm_12_NameSpace

where:

• Brm_12_ReleaseName is the release name assigned to your existing 12.0.0.x.0
oc-cn-helm-chart installation.

• OverrideValuesFile is the file name and path to the file that overrides the oc-cn-
helm-chart/values.yaml file.

• Brm_12_NameSpace is the namespace for your existing 12.0.0.x.0 BRM
deployment.

g. Back up your existing BRM 12.0.0.x.0 Helm charts.

h. Copy the 15.0.x.0.0 oc-init-db-helm-chart and oc-cn-helm-chart Helm charts to your
BRM cloud native environment.

i. (12.0.0.6.0 or earlier) Upgrade only the dm-oracle pod from 12.0.0.x.0 to 15.0.x.0.0 by
doing the following:

i. In your override-values.yaml file for the 15.0.x.0.0 oc-cn-helm-chart, set the
ocbrm.dm_oracle.deployment.imageTag key to 15.0.x.0.0.

ii. Run the helm upgrade command for the 15.0.x.0.0 oc-cn-helm-chart:

helm upgrade Brm_12_ReleaseName oc-cn-helm-chart --values OverrideValuesFile
--namespace Brm_12_NameSpace

Verify that only the dm-oracle pod is running with the 15.0.x.0.0 image. The
remaining pods run with 12.0.0.x.0 images.

3. Upgrade the BRM cloud native database schema to 15.0.x.0.0 by doing the following:

a. Ensure that the ConfigCacheRefreshInterval business parameter in
bus_params_system.xml is set to 0.

For information about how to set business parameters, see "Running Load Utilities
through Configurator Jobs" in BRM Cloud Native System Administrator's Guide.

b. In your override-values.yaml file for the 15.0.x.0.0 oc-cn-init-db-helm-chart, set the
following keys:

ocbrm:
 is_upgrade: true
 existing_rootkey_wallet: true

c. Copy the wallet files (ewallet.p12 and cwallet.sso) from the /oms/wallet/client/
directory of the 12.0.0.x.0 primary dm-oracle pod to the 15.0.x.0.0 oc-cn-init-db-helm-
chart/existing_wallet directory.

d. Upgrade the cloud native database to 15.0.x.0.0 using the helm install command:

helm install Brm_New_ReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace Brm_New_NameSpace

where:

• Brm_New_ReleaseName is the release name assigned to your new 15.0.x.0.0 oc-
cn-helm-chart installation.

• Brm_New_NameSpace is the namespace for your new 15.0.x.0.0 BRM
deployment.

Chapter 17
Performing a Zero-Downtime Upgrade of BRM

17-2

Verify that the database has upgraded successfully.

e. (12.0.0.6.0 or earlier) Restart the 15.0.x.0.0 dm-oracle pod.

4. Upgrade the BRM cloud native server to 15.0.x.0.0 by doing the following:

Note:

To run billing during the BRM cloud native server upgrade for non-production
systems, set the next billing date in the oc-cn-helm-chart/templates/
configmap_env_common.yaml file to the following:

VIRTUAL_TIME_SETTING: "-m 2 billingDate"

For example, to set the next billing date to Feb 12, 2030, set billingDate to
021210002030.

a. Ensure the ConfigCacheRefreshInterval business parameter in
bus_params_system.xml is set to 0.

For information about how to set business parameters, see "Running Load Utilities
through Configurator Jobs" in BRM Cloud Native System Administrator's Guide.

b. In your override-values.yaml file for the 15.0.x.0.0 oc-cn-helm-chart, set the
following keys:

ocbrm:
 refreshInterval: 10
 terminationGracePeriodSeconds: 120
 pcpReconnectDelayOnSocketError: 10
 pcpConnectRetryDelayOnError: 10
 virtual_time:
 enabled: true
 sync_pvt_time: 5

c. In the 15.0.x.0.0 oc-cn-helm-chart/templates/configmap_pin_conf_cm.yaml file,
set the following:

- cm pcm_connect_max_retries 10
- cm pcm_em_proto_vers 0

d. In the 15.0.x.0.0 oc-cn-helm-chart/templates/
configmap_pin_conf_rtp_pipeline.yaml file, set the following:

- cm-em pcm_em_proto_vers 0
e. In the 15.0.x.0.0 oc-cn-helm-chart/templates/cm.yaml file, set the following:

spec.template.spec.containers(- name: cm).livenessProbe.initialDelaySeconds: 60
f. In the 15.0.x.0.0 oc-cn-helm-chart/templates/

configmap_pin_conf_dm_oracle.yaml file, set the following:

- dm dm_ignore_fld_mismatch_err 1
g. Upgrade the BRM cloud native server to 15.0.x.0.0 using the helm upgrade

command:

helm upgrade Brm_12_ReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace Brm_12_NameSpace

Chapter 17
Performing a Zero-Downtime Upgrade of BRM

17-3

Verify that all 12.0.0.x.0 pods terminate and all 15.0.x.0.0 pods come up and run with
15.0.x.0.0 images.

5. Revert the configuration values in your override-values.yaml file for the 15.0.x.0.0 oc-cn-
helm-chart:

a. In non-production systems, set the VIRTUAL_TIME_SETTING parameter to the
default value in your oc-cn-helm-chart/templates/configmap_env_common.yaml
file:

VIRTUAL_TIME_SETTING: "-m 0"

b. In your oc-cn-helm-chart/templates/configmap_pin_conf_rtp_pipeline.yaml file,
remove or comment out the following entry:

- cm-em pcm_em_proto_vers 0

c. In your oc-cn-helm-chart/templates/configmap_pin_conf_cm.yaml file, remove or
comment out the following entry:

- cm pcm_em_proto_vers 0

d. In your override-values.yaml file for oc-cn-helm-chart, set the
ocbrm.refreshInterval key to its original value.

e. Set the ConfigCacheRefreshInterval business parameter in
bus_params_system.xml to its original value.

For information about how to set business parameters, see "Running Load Utilities
through Configurator Jobs" in BRM Cloud Native System Administrator's Guide.

f. Run the helm upgrade command for the 15.0.x.0.0 oc-cn-helm-chart:

helm upgrade Brm_12_ReleaseName oc-cn-helm-chart --values OverrideValuesFile --
namespace Brm_12_NameSpace

Performing a Zero Downtime Upgrade of PDC
You can perform a zero downtime upgrade of your PDC cloud native services and the PDC
database schema from the 12.0 or 12.0 Patch Set release to a 15.0.x release.

You do so using a two-namespace approach in which you create an instance of PDC cloud
native in a standby namespace, redirect PDC traffic to services in the standby namespace,
upgrade PDC cloud native to release 15.0.x in your original namespace, and then redirect PDC
traffic back to your original namespace.

To upgrade PDC in zero downtime upgrade mode:

1. Create a temporary namespace, such as BrmStandbyNameSpace.

2. Clone your PDC OverrideValuesFile file to StandbyOverrideValuesFile.

3. In your StandbyOverrideValuesFile file for oc-cn-op-job-helm-chart, set the following
keys:

ocpdc:
 configEnv:
 rcuPrefix: NewPrefix
 crossRefSchemaUserName: XrefSchema
 pdcSchemaUserName: PdcSchema

Chapter 17
Performing a Zero Downtime Upgrade of PDC

17-4

 deployAndUpgradeSite2: true
 upgrade: true

where:

• NewPrefix is the new prefix for the PDC domain RCU schema.

• XrefSchema is the same XREF schema name used for deploying PDC in
BrmNameSpace.

• PdcSchema is the same PDC schema name used for deploying PDC in
BrmNameSpace.

4. In your StandbyOverrideValuesFile file for oc-cn-helm-chart, set the following keys:

ocpdc:
 configEnv:
 upgrade: true

These settings will upgrade the PDC and XREF schema.

5. Copy the following templates from your BrmNameSpace Helm chart template directory to
the BrmStandbyNameSpace Helm chart template directory:

• secret_env_brm.yaml

• configmap_pin_conf_brm_apps_2.yaml

• configmap_loadifwconfig_reg.yaml

• configmap_env_common.yaml

• virtual_time_pvc.yaml

• configmap_infranet_properties_brm_apps.yaml

• config_jobs.yaml

• storage_class_green.yaml

• realtime_pipeline_common_pvc.yaml

• configmap_tns_admin.yaml

• secret_wallet_db.yaml

• _helpers_utils.tpl

• configmap_pdc_aux_engines.yaml

• configmap_log_properties_pdc.yaml

• configmap_env_pdc.yaml

• configmap_env_pdc_rre.yaml

• job_ie_pdc.yaml

• domain_pdc.yaml

• _pdchelpers.tpl

• pdc_domain_monitoring_role.yaml

• pdc_domain_monitoring_rbac.yaml

• service_monitor_pdc_domain.yaml

• secret_pdc.yaml

• volume_pdc_brm.yaml

Chapter 17
Performing a Zero Downtime Upgrade of PDC

17-5

• deployment_pdc_rre.yaml

• deployment_pdc_bre.yaml

• deployment_pdc_syncpdc.yaml

6. Create a configuration file named cm-service-external-name.yaml and add the following
content:

apiVersion: v1
kind: Service
metadata:
 name: cm
 namespace: BrmStandbyNameSpace
spec:
 externalName: cm.BrmNameSpace.svc.cluster.local
 internalTrafficPolicy: Cluster
 ports:
 - port: 11960
 protocol: TCP
 targetPort: 11960
 sessionAffinity: None
 type: ExternalName

7. Apply the configuration file to a resource:

kubectl apply -f cm-service-external-name.yaml
8. Deploy the PDC 12.0 Patch Set 7 or 8 Helm charts in your standby namespace:

helm install OpJobStandbyReleaseName oc-cn-op-job-helm-chart --values
StandbyOverrideValuesFile --namespace BrmStandbyNameSpace

helm install BrmStandbyReleaseName oc-cn-helm-chart --values
StandbyOverrideValuesFile --namespace BrmStandbyNameSpace

9. Redirect PDC traffic to services in BrmStandbyNameSpace.

10. Upgrade your PDC cloud native services to release 15.0.x in BrmNameSpace while
requests are temporarily routed to BrmStandbyNameSpace.

a. Set the following keys in your override-values.yaml file for oc-cn-op-job-helm-chart:

ocpdc:
 configEnv:
 deployAndUpgradeSite2: false
 upgrade: true

b. Follow the instructions in "Upgrading Your PDC Cloud Native Services" to upgrade
your original namespace to 15.0.x.

11. Redirect PDC traffic back to services in your original namespace (BrmNameSpace).

Chapter 17
Performing a Zero Downtime Upgrade of PDC

17-6

18
Performing Zero-Downtime Upgrades of
Disaster Recovery Cloud Native Systems

You can perform a zero-downtime upgrade of an Oracle Communications Billing and Revenue
Management (BRM) cloud native deployment in an active-active disaster recovery system.

Topics in this document:

• About the Zero-Downtime Upgrade of an Active-Active Disaster Recovery System

• Tasks for Upgrading a BRM Cloud Native Active-Active System

About the Zero-Downtime Upgrade of an Active-Active Disaster
Recovery System

The steps for performing a zero-downtime cloud native upgrade of an active-active disaster
recovery system assume that you are upgrading from the BRM 12.0 Patch Set 3 release to a
BRM 15.0.x release. It also assumes that your system contains a secondary BRM and ECE
instance, which can be on a disaster recovery site or the primary site.

Caution:

Be aware that during the upgrade process:

• Usage processing is done in a single instance only.

• PDC is not available.

• ECE cache federation is supported from the old to the new version but not from
the new to the old version.

• If an Oracle Data Guard role reversal is required for the BRM database, a short
(few minutes) downtime occurs for provisioning.

For information about the supported software versions in BRM 15.0.x, see "BRM Cloud Native
Deployment Software Compatibility" in BRM Compatibility Matrix.

Tasks for Upgrading a BRM Cloud Native Active-Active System
To upgrade your BRM cloud native active-active disaster recovery system using the zero-
downtime upgrade process:

1. Turn off Site 2. See "Switching Off Site 2".

2. From Site 2, uninstall the 12.0 Patch Set 3 version of BRM and ECE. See "Uninstalling
BRM and ECE from Site 2".

18-1

3. On Site 2, upgrade the Kubernetes platform and all prerequisite software to the versions
required by the 15.0.x release. See "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix for the list of supported software versions.

For information, see "Upgrade a Cluster" in the Kubernetes documentation.

4. On Site 2, upgrade the BRM database schema to the 15.0.x release. See "Upgrading Your
BRM Database Schema in Site 2".

5. On Site 2, install the BRM 15.0.x cloud native software. See "Installing BRM 15.0.x Cloud
Native on Site 2".

6. From Site 2, drop the ECE 12.0 Patch Set 3 persistence database schema. See "Dropping
the ECE Persistence Database Schema from Site 2".

7. On Site 2, install ECE 15.0.x. See "Installing ECE 15.0.x Cloud Native on Site 2".

8. Transfer usage processing from Site 1 to Site 2. See "Failing Over Site 1 to Site 2".

9. From Site 1, uninstall the 12.0 Patch Set 3 version of BRM and ECE. See "Uninstalling
BRM and ECE from Site 1".

10. On Site 1, upgrade the Kubernetes platform and all prerequisite software to the versions
required by the 15.0.x release. See "BRM Cloud Native Deployment Software
Compatibility" in BRM Compatibility Matrix for the list of supported software versions.

For information, see "Upgrade a Cluster" in the Kubernetes documentation.

11. From Site 1, drop the ECE 12.0 Patch Set 3 persistence database schema. See "Dropping
the ECE Persistence Database Schema from Site 1".

12. On Site 1, install ECE 15.0.x. See "Installing ECE 15.0.x Cloud Native on Site 1".

13. Restart the federation process between Site 1 and Site 2. See "Federating ECE Cache
Data Between Site 1 and Site 2".

14. If required, move the provisioning flow back to Site 1 and do an Oracle Data Guard role
reversal.

Note:

The Data Guard role reversal may cause a few minutes of downtime in the
provisioning flow, but it does not impact the usage flow.

Switching Off Site 2
During the first phase of the upgrade process, Site 1 processes usage requests while you
upgrade the software in Site 2.

To switch off Site 2:

1. Stop all usage requests to Site 2 and direct all usage requests to Site 1.

2. Stop the connection from BRM on Site 1 to ECE on Site 2. To do so:

• On ECE Site 2, stop the EM Gateway.

• On BRM Site 1, remove any connection to the EM Gateway on Site 2.

3. On ECE Site 1, mark Site 2 as failed.

This stops ECE from forwarding rating requests to Site 2 for subscribers with Site 2 as their
preferred site. Usage requests are now rated on Site 1.

Chapter 18
Tasks for Upgrading a BRM Cloud Native Active-Active System

18-2

https://kubernetes.io/docs/tasks/administer-cluster/cluster-upgrade/
https://kubernetes.io/docs/tasks/administer-cluster/cluster-upgrade/

4. Disable the federation from ECE Site 1 to Site 2.

Note:

Keep the Site 2 to Site 1 federation active to drain any remaining data from Site
2.

5. Check that the federation backlog from Site 2 to Site 1 has been cleared.

All traffic to Site 2 is stopped. Ensure all data from Site 2 has been synchronized with Site
1. The Coherence Federation Metrics should show as IDLE instead of YIELDING.

6. On Site 2, check that all rated events in the ECE cache have been extracted by running
the following with the query.sh utility:

./query.sh
Coherence Command Line Tool
CohQl> select value() from AggregateObjectUsage

If successful, the query displays zero entries. See "query" in ECE Implementing Charging
for information about the utility's syntax and parameters.

7. On Site 2, use SQL*Plus to check that all Site 2 rated events have been extracted from the
persistence database and are present in BRM:

sqlplus pin@databaseName
Enter password: password

SQL> select count(*) from ratedevent_site2Name

where databaseName is the service name or database alias of the BRM database, and
password is the password for the pin user.

Note:

The Site 2 persistence database might contain some Site 1 events. After the Site
2 to Site 1 federation process is stopped, these events are not extracted or
purged. However, they will be processed on Site 1. You can ignore these events
because they get purged when you re-create the Site 2 persistence database
later.

8. Stop the federation process from Site 2 to Site 1.

All data is now synchronized with Site 1. Site 2 is isolated and ready for the upgrade.

Uninstalling BRM and ECE from Site 2
To uninstall BRM and ECE from Site 2:

1. Uninstall BRM 12.0 Patch Set 3 cloud native from Site 2:

helm uninstall BrmReleaseName --namespace BrmNameSpace

Chapter 18
Tasks for Upgrading a BRM Cloud Native Active-Active System

18-3

2. Uninstall ECE 12.0 Patch Set 3 cloud native from Site 2:

helm uninstall EceReleaseName --namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to track this
installation instance.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

These commands delete all the resources associated with the chart's last release and the
release history.

Upgrading Your BRM Database Schema in Site 2
To upgrade your BRM database schema in Site 2 to release BRM 15.0.x:

1. Download and extract the BRM 15.0.x cloud native database initializer Helm chart (oc-cn-
op-job-helm-chart) from Oracle Software Delivery Cloud (https://edelivery.oracle.com).

See "Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files" for
more information.

2. Copy your BRM 12.0 Patch Set 3 wallet files (ewallet.p12 and cwallet.sso) from the dm-
oracle pod's /oms/wallet/client directory to the BRM 15.0.x Helm chart's oc-cn-init-db-
helm-chart/existing_wallet/ directory.

3. Create an override-init-db-15.yaml file for the 15.0.x version of oc-cn-init-db-helm-
chart.

4. In your override-init-db-15.yaml file, set the following keys:

• ocbrm.is_upgrade: Set this to true.

• ocbrm.existing_rootkey_wallet: Set this to true.

• ocbrm.wallet.client: Set this to the password for the client wallet. This value must
match that of your 12.0 Patch Set 3 release.

• ocbrm.wallet.server: Set this to the password for the server wallet. This value must
match that of your 12.0 Patch Set 3 release.

• ocbrm.wallet.root: Set this to the password for the root wallet. This value must match
that of your 12.0 Patch Set 3 release.

5. Enter this command from the helmcharts directory to upgrade the database schema.
Ensure you run the 15.0.x oc-cn-init-db-helm-chart Helm chart with a new release name
and namespace.

helm install newInitDbReleaseName oc-cn-init-db-helm-chart --namespace
newInitDbNameSpace --values oldOverrideValues --values override-init-
db-15.yaml

where:

• newInitDbReleaseName is the new release name for the 15.0.x version of oc-cn-init-
db-helm-chart.

Chapter 18
Tasks for Upgrading a BRM Cloud Native Active-Active System

18-4

https://edelivery.oracle.com

• newInitDbNameSpace is the new namespace for the 15.0.x version of oc-cn-init-db-
helm-chart.

• oldOverrideValues is the name and path to your 12.0 Patch Set 3 override-
values.yaml file for oc-cn-init-db-helm-cart.

Installing BRM 15.0.x Cloud Native on Site 2
To configure and deploy BRM 15.0.x on your cloud native system on Site 2:

1. Download and extract the BRM 15.0.x cloud native (oc-cn-helm-chart) and BRM 15.0.x
Operator Job Helm Chart (oc-cn-op-job-helm-chart) from Oracle Software Delivery Cloud
(https://edelivery.oracle.com).

See "Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files" for
more information.

2. To reuse your 12.0 Patch Set 3 SSL KeyStore with the new release, copy the PDC
KeyStore files from the 12.0 Patch Set 3 Helm chart to the 15.0.x oc-cn-op-job-helm-
chart/pdc/pdc_keystore/ directory.

3. Create an override-values-15.yaml file.

You will use this file with the 15.0.x version of oc-cn-helm-chart and oc-cn-op-job-helm-
chart.

4. In your override-values-15.yaml file, set the following keys:

• In the BRM section:

– ocbrm.is_upgrade: Set this to true.

– ocbrm.existing_rootkey_wallet: Set this to false.

– ocbrm.db.*: Set the BRM database schema details to the same values as your
12.0 Patch Set 3 release.

• In the PDC section:

– ocpdc.configEnv.pdcSchemaUserName: Set this to the same value as your
12.0 Patch Set 3 release.

– ocpdc.configEnv.crossRefSchemaUserName: Set this to the same value as
your 12.0 Patch Set 3 release.

– ocpdc.configEnv.rcuPrefix: Set this key to a new prefix to create a new RCU
schema.

– ocpdc.configEnv.transformation.upgrade: Set this to true. (For upgrades to
15.0.0 only)

– ocpdc.secretValue.walletPassword: Set this to the same value as your 12.0
Patch Set 3 release.

– ocpdc.configEnv.deployAndUpgradeSite2: Set this to true. (For upgrades to
15.0.1 only)

– ocpdc.configEnv.upgrade: Set this to true. (For upgrades to 15.0.1 only)

• In the Business Operations Center section:

– ocboc.boc.configEnv.bocSchemaUserName: Set this to the same value as your
12.0 Patch Set 3 release.

– ocboc.boc.configEnv.runUpgrade: Set this to true.

Chapter 18
Tasks for Upgrading a BRM Cloud Native Active-Active System

18-5

https://edelivery.oracle.com

– ocboc.boc.configEnv.rcuPrefix: Set this to a new prefix to create a new RCU
schema.

– ocboc.boc.secretVal.*: Set the Business Operations Center passwords to the
same values as your 12.0 Patch Set 3 release.

• In the Billing Care section:

– ocbc.bc.configEnv.rcuPrefix: Set this to a new prefix to create a new RCU
schema.

– ocbc.bc.secretVal.*: Set the Billing Care passwords to the same values as your
12.0 Patch Set 3 release.

• In the Billing Care REST API section:

– ocbc.bcws.configEnv.rcuPrefix: Set this to a new prefix to create a new RCU
schema.

– ocbc.bcws.secretVal.*: Set the Billing Care REST API passwords to the same
values as your 12.0 Patch Set 3 release.

5. Create WebLogic domains by running the 15.0.x version of oc-cn-op-job-helm-chart from
the helmcharts directory:

helm install oldOpJobReleaseName oc-cn-op-job-helm-chart --namespace
oldBrmNameSpace --namespace oldOverrideValuesFile --values override-
values-15.yaml

6. Install BRM cloud native services by running the 15.0.x version of oc-cn-helm-chart from
the helmcharts directory:

helm install oldBrmReleaseName oc-cn-helm-chart --namespace
oldBrmNameSpace --values oldOverrideValuesFile --values override-
values-15.yaml

Dropping the ECE Persistence Database Schema from Site 2
To drop the ECE persistence database schema from Site 2:

1. Uninstall the ECE 12.0 Patch Set 3 Helm chart:

helm uninstall oldEceReleaseName

where oldEceReleaseName is the release name for your 12.0 Patch Set 3 version of oc-
cn-ece-helm-chart.

2. Delete the 12.0 Patch Set 3 version of ece-persistence-job from your system by running
this command:

kubectl delete job ece-persistence-job --namespace oldBrmNameSpace

where oldBrmNameSpace is the namespace for your 12.0 Patch Set 3 version of your
BRM Helm release.

Chapter 18
Tasks for Upgrading a BRM Cloud Native Active-Active System

18-6

Note:

The ECE 15.0.x Helm chart re-creates the persistence database schema when you
install it later.

Installing ECE 15.0.x Cloud Native on Site 2
To install ECE 15.0.x cloud native on Site 2:

1. Download and extract the ECE 15.0.x cloud native (oc-cn-ece-helm-chart) from Oracle
Software Delivery Cloud (https://edelivery.oracle.com).

See "Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files" for
more information.

2. Create an override-values-ece-15.yaml file.

3. In the file, configure your ECE 15.0.x cloud native services by following the instructions in
"Configuring ECE Services".

4. Deploy the ECE 15.0.x cloud native services by entering this command from the
helmcharts directory:

helm install oldEceReleaseName oc-cn-ece-helm-chart --namespace
oldBrmNameSpace --values oldOverrideValuesFile --values override-values-
ece-15.yaml

where:

• oldEceReleaseName is the release name for your 12.0 Patch Set 3 version of oc-cn-
ece-helm-chart.

• oldBrmNameSpace is the namespace for your 12.0 Patch Set 3 oc-cn-helm-chart
deployment.

• oldOverrideValuesFile is the file name and path to the 12.0 Patch Set 3 version of your
override-values.yaml file for oc-cn-ece-helm-chart.

Failing Over Site 1 to Site 2
Site 2 has been upgraded at this stage, but it is not handling any usage requests. You now
switch usage request processing from Site 1 to Site 2.

To fail over from Site 1 to Site 2:

1. Start the Coherence federation process from Site 1 to Site 2. This provisions the empty
ECE Site 2 cache with the latest data from Site 1.

2. On Site 2, mark Site 1 inactive to ensure no preferred site routing occurs from Site 2 to Site
1.

Note:

Site 1 also has Site 2 marked as inactive.

Chapter 18
Tasks for Upgrading a BRM Cloud Native Active-Active System

18-7

https://edelivery.oracle.com

3. Check that the federation process is up to date. After the federation process completes
successfully:

• The ECE pods in Site 2 transition to the Running state.

• Site 2 transitions to the Usage Processing state and spawns Monitoring Agent pods.

4. Stop all usage requests to Site 1 and then redirect them to Site 2.

5. Switch provisioning to BRM on Site 2. To do so:

a. On BRM Site 2, remove any connections to EM Gateway on Site 1.

b. On the client side, switch provisioning to BRM on Site 2.

c. On ECE Site 1, stop the EM Gateway.

Note:

If latency between Site 1 and Site 2 is too high to give you acceptable
performance for the provisioning flow, reverse the Oracle Data Guard roles and
make the BRM database on Site 2 active. Be aware that this can cause a service
interruption of a few minutes for provisioning.

6. Check that the federation process from Site 1 to Site 2 has completed.

Now that all traffic to Site 1 has stopped, ensure all data from Site 1 has been
synchronized with Site 2. The Coherence Federation Metrics should display IDLE instead
of YIELDING.

7. Check that all rated events in the ECE Site 1 cache have been extracted by running the
query utility:

./query.sh
Coherence Command Line Tool
CohQl> select value() from AggregateObjectUsage

If successful, this command returns zero entries.

8. On Site 1, check that all Site 1 rated events have been extracted from the persistence
database and are present in BRM by using SQL*Plus:

sqlplus pin@databaseName
Enter password: password

SQL> select count(*) from ratedevent_site1Name

where databaseName is the service name or database alias of the BRM database, and
password is the password for the pin user.

Chapter 18
Tasks for Upgrading a BRM Cloud Native Active-Active System

18-8

Note:

The Site 1 persistence database might contain some Site 2 events. After the Site
2 to Site 1 federation process is stopped, these events are not extracted or
purged. However, they will be processed on Site 2. You can ignore these events
because they get purged when you re-create the Site 1 persistence database
later.

9. Stop the federation process from Site 1 to Site 2.

Site 1 is isolated and ready for the upgrade.

Uninstalling BRM and ECE from Site 1
Uninstall the 12.0 Patch Set 3 version of BRM and ECE from Site 1.

To do so, perform the following steps on Site 1:

1. Uninstall BRM 12.0 Patch Set 3 cloud native:

helm uninstall BrmReleaseName --namespace BrmNameSpace

2. Uninstall ECE 12.0 Patch Set 3 cloud native

helm uninstall EceReleaseName --namespace BrmNameSpace

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance.

• EceReleaseName is the release name for oc-cn-ece-helm-chart and is used to track this
installation instance.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM Helm chart.

These commands delete all of the resources associated with the chart's last release and the
release history.

Installing BRM Cloud Native on Site 1
To configure and deploy BRM 15.0.x cloud native on Site 1:

1. Download and extract the BRM 15.0.x cloud native Helm chart (oc-cn-helm-chart) and
BRM Operator Job Helm Chart (oc-cn-op-job-helm-chart) from Oracle Software Delivery
Cloud (https://edelivery.oracle.com).

See "Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files" for
more information.

2. To reuse your 12.0 Patch Set 3 SSL KeyStore, copy the PDC KeyStore files from the 12.0
Patch Set 3 Helm chart to the 15.0.x oc-cn-op-job-helm-chart/pdc/pdc_keystore/
directory.

3. Create an override-values-15.yaml file.

You will use this file with the 15.0.x version of oc-cn-helm-chart and oc-cn-op-job-helm-
chart.

Chapter 18
Tasks for Upgrading a BRM Cloud Native Active-Active System

18-9

https://edelivery.oracle.com

4. In your override-values-15.yaml file, set the following keys:

• In the BRM section:

– ocbrm.is_upgrade: Set this to true.

– ocbrm.existing_rootkey_wallet: Set this to false.

– ocbrm.db.*: Set the BRM database schema details to the same values as your
12.0 Patch Set 3 release.

• In the PDC section:

– ocpdc.configEnv.pdcSchemaUserName: Set this to the same value as your
12.0 Patch Set 3 release.

– ocpdc.configEnv.crossRefSchemaUserName: Set this to the same value as
your 12.0 Patch Set 3 release.

– ocpdc.configEnv.rcuPrefix: Set this key to a new prefix to create a new RCU
schema. The value must be different from the one used in Site 2.

– ocpdc.configEnv.transformation.upgrade: Set this to true. (For upgrades to
15.0.0 only)

– ocpdc.secretValue.walletPassword: Set this to the same value as your 12.0
Patch Set 3 release.

– ocpdc.configEnv.deployAndUpgradeSite2: Set this to false. (For upgrades to
15.0.1 only)

– ocpdc.configEnv.upgrade: Set this to true. (For upgrades to 15.0.1 only)

• In the Business Operations Center section:

– ocboc.boc.configEnv.bocSchemaUserName: Set this to the same value as your
12.0 Patch Set 3 release.

– ocboc.boc.configEnv.runUpgrade: Set this to true.

– ocboc.boc.configEnv.rcuPrefix: Set this to a new prefix for the RCU schema.
The value must be different from the one used in Site 2.

– ocboc.boc.secretVal.*: Set the Business Operations Center passwords to the
same values as your 12.0 Patch Set 3 release.

• In the Billing Care section:

– ocbc.bc.configEnv.rcuPrefix: Set this to a new prefix for the RCU schema. This
value must be different from the one used in Site 2.

– ocbc.bc.secretVal.*: Set the passwords to the same values as your 12.0 Patch
Set 3 release.

• In the Billing Care REST API section:

– ocbc.bcws.configEnv.rcuPrefix: Set this to a new prefix for the RCU schema.
This value must be different from the one used in Site 2.

– ocbc.bcws.secretVal.*: Set the passwords to the same values as your 12.0 Patch
Set 3 release.

5. Save and close the file.

Chapter 18
Tasks for Upgrading a BRM Cloud Native Active-Active System

18-10

6. Create WebLogic domains by running the 15.0.x version of oc-cn-op-job-helm-chart from
the helmcharts directory:

helm install oldOpJobReleaseName oc-cn-op-job-helm-chart --namespace
oldBrmNameSpace --namespace oldOverrideValuesFile --values override-
values-15.yaml

where:

• oldOpJobReleaseName is the release name assigned to your 12.0 Patch Set 3
release of the oc-cn-op-job-helm-chart installation.

• oldBrmNameSpace is the namespace for your 12.0 Patch Set 3 version of the BRM
deployment.

• oldOverrideValuesFile is the file name and path of your 12.0 Patch Set 3 version of the
override-values.yaml file for oc-cn-op-job-helm-chart.

7. Install BRM cloud native services by running the 15.0.x version of oc-cn-helm-chart from
the helmcharts directory:

helm install oldBrmReleaseName oc-cn-helm-chart --namespace
oldBrmNameSpace --values oldOverrideValuesFile --values override-
values-15.yaml

where oldBrmReleaseName is the release name assigned to your 12.0 Patch Set 3
version of the oc-cn-helm-chart installation.

Dropping the ECE Persistence Database Schema from Site 1
To drop the ECE 12.0 Patch Set 3 persistence database schema from Site 1:

1. Uninstall the ECE 12.0 Patch Set 3 Helm chart:

helm uninstall oldEceReleaseName

oldEceReleaseName is the release name for the 12.0 Patch Set 3 version of oc-cn-ece-
helm-chart.

2. Uninstall the 12.0 Patch Set 3 version of ece-persistence-job from your system by
running this command:

kubectl delete job ece-persistence-job --namespace oldBrmNameSpace

where BrmNameSpace is the namespace for the 12.0 Patch Set 3 version of the BRM
Helm chart.

Note:

The ECE Helm chart re-creates the database schema when you install it later.

Installing ECE 15.0.x Cloud Native on Site 1
To install ECE 15.0.x cloud native on Site 1:

Chapter 18
Tasks for Upgrading a BRM Cloud Native Active-Active System

18-11

1. Download and extract the ECE 15.0.x cloud native (oc-cn-ece-helm-chart) from Oracle
Software Delivery Cloud (https://edelivery.oracle.com).

See "Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files" for
more information.

2. Create an override-values-ece-15.yaml file.

3. In the file, configure your ECE 15.0.x cloud native services by following the instructions in
"Configuring ECE Services".

4. Deploy the ECE 15.0.x cloud native services by entering this command from the
helmcharts directory:

helm install oldEceReleaseName oc-cn-ece-helm-chart --namespace
oldBrmNameSpace --values oldOverrideValuesFile --values override-values-
ece-15.yaml

where:

• oldEceReleaseName is the release name for your 12.0 Patch Set 3 version of oc-cn-
ece-helm-chart.

• oldBrmNameSpace is the release name for your 12.0 Patch Set 3 oc-cn-helm-chart
deployment.

• oldOverrideValuesFile is the file name and path to the 12.0 Patch Set 3 version of your
override-values.yaml file for oc-cn-ece-helm-chart.

Site 1 is now upgraded, but it is idle.

Federating ECE Cache Data Between Site 1 and Site 2
Now that Site 1 and Site 2 have been upgraded to release 15.0.x, you can restart the
federation process between them.

To start the federation process of ECE cache data between Site 1 and Site 2:

1. Enable the two-way federation process between Site 1 and Site 2.

2. Check that the federation backlog is processed successfully.

After the federation process completes, ECE in Site 1 transitions to the Usage Processing
state and spawns the Monitoring Agent pods.

3. In ECE Site 1, mark ECE in Site 2 as active. Likewise, in ECE Site 2, mark ECE in Site 1
as active.

This enables usage rating requests to be forwarded to the subscriber's preferred site.

4. Enable usage requests to Site 2.

5. Enable failover connection to the EM Gateway. On both sides, ensure the CM has a
failover EM connection to the EM Gateway on the other site.

Chapter 18
Tasks for Upgrading a BRM Cloud Native Active-Active System

18-12

https://edelivery.oracle.com

19
Rolling Back Your Patch Set Upgrade

Learn how to roll back your Oracle Communications Billing and Revenue Management (BRM)
cloud native upgrade to a previous patch set release.

Topics in this document:

• Rolling Back Your Upgrade of BRM Server

• Rolling Back Your Upgrade of PDC

• Rolling Back Your Upgrade of ECE

In this document, the patch set release you are rolling back from is called the new release. The
patch set release you are rolling back to is called the old release. For example, if you are
rolling back the Patch Set 8 upgrade to the Patch Set 7 release, Patch Set 8 is the new release
and Patch Set 7 is the old release.

Note:

The steps in this document assume that you have already downloaded the old and
new Patch Set releases.

Rolling Back Your Upgrade of BRM Server
To roll back your upgrade of the BRM cloud native server:

1. Install the old release of BRM cloud native server.

a. Initialize the database schema for the old release:

helm install oldInitDbRelease --namespace oldInitDbNameSpace oc-cn-init-db-helm-
chart --values oc-cn-init-db-helm-chart/override_values.yaml

where oldInitDbRelease is the release name for the old version of oc-cn-init-db-helm-
chart, and oldInitDbNameSpace is the namespace for the old version of oc-cn-init-
db-helm-chart.

b. Deploy the BRM Helm chart for the old release:

helm install oldBrmRelease --namespace oldBrmNameSpace oc-cn-helm-chart --values
oc-cn-helm-chart/override_values.yaml --wait --timeout 1200s

where oldBrmRelease is the release name for the old version of oc-cn-helm-chart,
and oldBrmNameSpace is the namespace for the old version of oc-cn-helm-chart.

2. Back up the DD* database tables for the old release:

CREATE TABLE DD_OBJECTS_T_PSO AS SELECT * FROM DD_OBJECTS_T;
CREATE TABLE DD_FIELDS_T_PSO AS SELECT * FROM DD_FIELDS_T;
CREATE TABLE DD_OBJECTS_FIELDS_T_PSO as select * from DD_OBJECTS_FIELDS_T;
CREATE TABLE DD_TYPES_T_PSO as select * from DD_TYPES_T;
CREATE TABLE BRM_PS_T_PSO as select * from BRM_PS_T;

19-1

where O is the patch set release number you are rolling back to. For example, if you are
rolling back from Patch Set 6 to Patch Set 5, O would be 5.

3. Upgrade your BRM server to the new release.

a. In your override_values.yaml files for both oc-cn-init-db-helm-chart and oc-cn-
helm-chart, set the ocbrm.is_upgrade key to true.

b. Deploy the BRM database initializer Helm chart for the new release:

helm install newInitDbRelease --namespace newInitDbNameSpace oc-cn-init-db-helm-
chart --values oc-cn-init-db-helm-chart/override_values.yaml

where newInitDbRelease is the release name for the new version of oc-cn-init-db-
helm-chart, and newInitDbNameSpace is the namespace for the new version of oc-
cn-init-db-helm-chart.

c. Deploy the BRM Helm chart for the new release:

helm upgrade newBrmRelease --namespace newBrmNameSpace oc-cn-helm-chart --values
oc-cn-helm-chart/override_values.yaml --wait --timeout 1200s

where newBrmRelease is the release name for the new version of oc-cn-helm-chart,
and newBrmNameSpace is the namespace in which to create the new version of oc-
cn-helm-chart.

d. Check the revision history:

helm history oldBrmRelease --namespace oldBrmNameSpace

If successful, you will see something similar to this:

REVISION UPDATED STATUS CHART APP
VERSION DESCRIPTION
1 Thu May 5 07:12:46 2030 superseded oc-cn-helm-chart-1.0
12.0.0.4.0 Install complete
2 Thu May 5 08:32:09 2030 deployed oc-cn-helm-chart-1.0
12.0.0.5.0 Upgrade complete

4. Back up the DD* database tables for the new release:

CREATE TABLE DD_OBJECTS_T_PSN AS SELECT * FROM DD_OBJECTS_T;
CREATE TABLE DD_FIELDS_T_PSN AS SELECT * FROM DD_FIELDS_T;
CREATE TABLE DD_OBJECTS_FIELDS_T_PSN as select * from DD_OBJECTS_FIELDS_T;
CREATE TABLE DD_TYPES_T_PSN as select * from DD_TYPES_T;
CREATE TABLE BRM_PS_T_PSN as select * from BRM_PS_T;

where N is the patch set release number you are rolling back from. For example, if you are
rolling back from Patch Set 6 to Patch Set 5, N would be 6.

5. Roll back your BRM server from the new release to the old release.

a. Roll back your BRM Helm release to the previous revision:

helm rollback newBrmRelease --namespace newBrmNameSpace
b. Retrieve the history for the BRM Helm release:

helm history newBrmNameSpace --namespace newBrmNameSpace

If successful, you will see something similar to this:

REVISION UPDATED STATUS CHART APP
VERSION DESCRIPTION
1 Thu May 5 07:12:46 2030 superseded oc-cn-helm-chart-1.0
12.0.0.4.0 Install complete
2 Thu May 5 08:32:09 2030 superseded oc-cn-helm-chart-1.0

Chapter 19
Rolling Back Your Upgrade of BRM Server

19-2

12.0.0.5.0 Upgrade complete
3 Thu May 5 08:35:49 2030 deployed oc-cn-helm-chart-1.0
12.0.0.4.0 Rollback to 1

6. Restore the DD* database tables from the old release, and then start the pods.

a. Drop the DD* database tables for the new release:

drop table DD_OBJECTS_T;
drop table DD_FIELDS_T;
drop table DD_OBJECTS_FIELDS_T;
drop table DD_TYPES_T;
drop table brm_ps_t;

b. Rename the backed up DD* database tables you created in step 2 to their original
names:

RENAME DD_OBJECTS_T_PSO TO DD_OBJECTS_T;
RENAME DD_FIELDS_T_PSO TO DD_FIELDS_T;
RENAME DD_OBJECTS_FIELDS_T_PSO TO DD_OBJECTS_FIELDS_T;
RENAME DD_TYPES_T_PSO TO DD_TYPES_T;
RENAME BRM_PS_T_PSO TO BRM_PS_T;

where O is the patch set release number you are rolling back to. For example, if you
are rolling back from Patch Set 6 to Patch Set 5, O would be 5.

7. Run the /oms/sys/dm_oracle/data/create_procedures_AL32UTF8.plb script through a
brm-apps job.

a. Add the following lines to the oc-cn-helm-chart/brmapps_scripts/loadme.sh script:

#!/bin/sh

cd /oms/sys/dm_oracle/data;
sqlplus $ORACLE_USER_PIN/$ORACLE_USER_PIN@$ORACLE_SID
<create_procedures_AL32UTF8.plb
exit 0;

b. In the override-values.yaml file for oc-cn-helm-chart, set ocbrm.brm_apps.job to
true.

c. Run the helm upgrade command for the old release of the BRM Helm chart:

helm upgrade oldBrmRelease oc-cn-helm-chart --values OverrideValuesFile --
namespace oldBrmNameSpace

8. (Optional) Create an account and run billing.

9. Upgrade your BRM Server to the new release.

a. In your override-values.yaml files for both oc-cn-init-db-helm-chart and oc-cn-
helm-chart, set the ocbrm.is_upgrade key to true.

b. Deploy the BRM database initializer Helm chart for the new release:

helm install newInitDbRelease --namespace newInitDbNameSpace oc-cn-init-db-helm-
chart --values oc-cn-init-db-helm-chart/override_values.yaml

c. Deploy the BRM Helm chart for the new release:

helm upgrade newBrmRelease --namespace newBrmNameSpace oc-cn-helm-chart --values
oc-cn-helm-chart/override_values.yaml --wait --timeout 1200s

10. Restore the DD* database tables from the new release, and then start the pods.

a. Create a backup of the current DD* database tables from the new release:

CREATE TABLE DD_OBJECTS_T_PSN_2 AS SELECT * FROM DD_OBJECTS_T;
CREATE TABLE DD_FIELDS_T_PSN_2 AS SELECT * FROM DD_FIELDS_T;

Chapter 19
Rolling Back Your Upgrade of BRM Server

19-3

CREATE TABLE DD_OBJECTS_FIELDS_T_PSN_2 as select * from DD_OBJECTS_FIELDS_T;
CREATE TABLE DD_TYPES_T_PSN_2 as select * from DD_TYPES_T;
CREATE TABLE BRM_PS_T_PSN_2 as select * from BRM_PS_T;

where N is the patch set release number you are rolling back from. For example, if you
are rolling back from Patch Set 6 to Patch Set 5, N would be 6.

b. Drop the current DD* database tables from the new release:

drop table DD_OBJECTS_T;
drop table DD_FIELDS_T;
drop table DD_OBJECTS_FIELDS_T;
drop table DD_TYPES_T;

c. Rename the backed up DD* database tables that you created in step 4 to their original
names:

RENAME DD_OBJECTS_T_PSN TO DD_OBJECTS_T;
RENAME DD_FIELDS_T_PSN TO DD_FIELDS_T;
RENAME DD_OBJECTS_FIELDS_T_PSN TO DD_OBJECTS_FIELDS_T;
RENAME DD_TYPES_T_PSN TO DD_TYPES_T;

where N is the patch set release number you are rolling back from. For example, if you
are rolling back from Patch Set 6 to Patch Set 5, N would be 6.

d. Delete the dm-oracle and cm pods:

kubectl --namespace newBrmRelease delete pod dm-oracle
kubectl --namespace newBrmRelease delete pod cm

11. Test that the rollback was successful by creating an account and running billing.

Rolling Back Your Upgrade of PDC
You can roll back a PDC upgrade using one of these options:

• To roll back your BRM and PDC upgrade at the same time. See "Rolling Back Your BRM
and PDC Upgrades".

• To manually roll back your PDC upgrade after already rolling back a BRM upgrade. See
"Manually Rolling Back Your PDC Upgrade".

Rolling Back Your BRM and PDC Upgrades
The following shows steps for rolling back your BRM and PDC Patch Set 8 upgrade to BRM
and PDC Patch Set 7, but you can use these steps to roll back any patch set release.

To roll back your BRM and PDC upgrades from Patch Set 8 to Patch Set 7:

1. Deploy both BRM and PDC Patch Set 7:

helm install oldBrmRelease oc-cn-helm-chart --values oldOverrideValuesFile --
namespace oldBrmNameSpace

where:

• oldBrmRelease is the Helm release name for Patch Set 7.

• oldBrmNameSpace is the name for your BRM Patch Set 7 namespace.

• oldOverrideValuesFile is the override-values.yaml file for Patch Set 7.

2. Back up your BRM Patch Set 7 database tables:

Chapter 19
Rolling Back Your Upgrade of PDC

19-4

CREATE TABLE DD_OBJECTS_T_PSO AS SELECT * FROM DD_OBJECTS_T;
CREATE TABLE DD_FIELDS_T_PSO AS SELECT * FROM DD_FIELDS_T;
CREATE TABLE DD_OBJECTS_FIELDS_T_PSO as select * from DD_OBJECTS_FIELDS_T;
CREATE TABLE DD_TYPES_T_PSO as select * from DD_TYPES_T;
CREATE TABLE BRM_PS_T_PSO as select * from BRM_PS_T;

where O is the patch set release number you are rolling back to. For example, if you are
rolling back from Patch Set 8 to Patch Set 7, O would be 7.

3. Back up your PDC Patch Set 7 database schema. Refer to the Oracle database
documentation for information about backing up the schema.

4. Upgrade your BRM server and PDC to Patch Set 8 by following these instructions:

• Upgrading Your BRM Cloud Native Services

• Upgrading Your PDC Cloud Native Services

5. Back up your BRM Patch Set 8 database tables:

CREATE TABLE DD_OBJECTS_T_PSN AS SELECT * FROM DD_OBJECTS_T;
CREATE TABLE DD_FIELDS_T_PSN AS SELECT * FROM DD_FIELDS_T;
CREATE TABLE DD_OBJECTS_FIELDS_T_PSN as select * from DD_OBJECTS_FIELDS_T;
CREATE TABLE DD_TYPES_T_PSN as select * from DD_TYPES_T;
CREATE TABLE BRM_PS_T_PSN as select * from BRM_PS_T;

where N is the patch set release number you are rolling back from. For example, if you are
rolling back from Patch Set 8 to Patch Set 7, N would be 8.

6. Back up your PDC Patch Set 8 database schema. Refer to the Oracle database
documentation for information about backing up the schema.

7. Drop your PDC Patch Set 7 database schema. Refer to the Oracle database
documentation for information about dropping the schema.

8. Rename your PDC Patch Set 7 back up schema files to Patch Set 7 version. For example:

• Rename PDCPS7bkup.dmp to PDCPS7

• Rename PDCPS_XREFPS7bkup.dmp to PDCPS_XREFPS7

9. Roll back to the BRM and PDC Patch Set 7 release:

helm rollback oldReleaseName oldRevisionNumber --namespace oldNameSpace

where:

• oldReleaseName is the release name for Patch Set 7 .

• oldRevisionNumber is the value from the Helm history command.

• oldNameSpace is the Patch Set 7 namespace.

BRM and PDC are rolled back. The PDC schema will point to Patch Set 7.

Manually Rolling Back Your PDC Upgrade
If you already rolled back your BRM upgrade, you can also roll back the PDC upgrade
manually. For example, after rolling back your BRM Patch Set 8 upgrade to BRM Patch Set 7,
you can manually roll back your PDC Patch Set 8 upgrade to PDC Patch Set 7.

The following shows steps for rolling back PDC Patch Set 8 to PDC Patch Set 7, but you can
use these steps to roll back any patch set release.

Chapter 19
Rolling Back Your Upgrade of PDC

19-5

Note:

Perform this procedure only if you already rolled back your BRM upgrade to an old
patch set or interim patch set release.

To manually roll back your PDC upgrade from Patch Set 8 to Patch Set 7:

1. If you have not already done so, back up your PDC Patch Set 7 database schema. Refer
to the Oracle database documentation for information about backing up your schema.

2. Back up your PDC Patch Set 8 database schema. Refer to the Oracle database
documentation for information about backing up your schema.

3. Drop the PDC schema user and PDC XREF schema user for Patch Set 8.

4. Create the PDC schema user and PDC XREF schema user for Patch Set 7.

5. Import the PDC Patch Set 7 schema into your database. Refer to the Oracle database
documentation for information about importing schemas.

6. Run the helm upgrade command to update to the Patch Set 7 release:

helm upgrade oldBrmRelease oc-cn-helm-chart --values oldOverrideValuesFile --
namespace oldBrmNameSpace

where:

• oldBrmRelease is the Helm release name for Patch Set 7.

• oldOverrideValuesFile is the override-values.yaml file for Patch Set 7.

• oldBrmNameSpace is the name for your BRM Patch Set 7 namespace.

Rolling Back Your Upgrade of ECE
The following procedure assumes that you have upgraded ECE from Patch Set 5 (Revision 1),
to Patch Set 6 (Revision 2), and then to Patch Set 7 (Revision 3). To roll back your upgrade
from Patch Set 7 to Patch Set 6, you would do this:

1. Check the revision history of the ECE release:

helm history ECEReleaseName --namespace BrmNamespace

You should see something similar to this:

REVISION UPDATED STATUS CHART APP
VERSION DESCRIPTION
1 Thu May 5 07:12:46 2030 superseded oc-cn-helm-chart-1.0
12.0.0.5.0 Initial install
2 Thu May 5 08:32:09 2030 superseded oc-cn-helm-chart-1.0
12.0.0.6.0 Upgraded successfully
3 Thu May 5 09:50:00 2030 deployed oc-cn-helm-chart-1.0
12.0.0.7.0 Upgraded successfully

2. Roll back the release to ECE 12.0 Patch Set 6:

helm rollback ECEReleaseName 2 --namespace BrmNamespace

If successful, you will see this:

Rollback was a success! Happy Helming!

Chapter 19
Rolling Back Your Upgrade of ECE

19-6

3. Check the revision history of the ECE release:

helm history ECEReleaseName --namespace BrmNamespace

If successful, you should see something similar to this:

REVISION UPDATED STATUS CHART APP
VERSION DESCRIPTION
1 Thu May 5 07:12:46 2030 superseded oc-cn-helm-chart
12.0.0.5.0 Initial install
2 Thu May 5 08:32:09 2030 superseded oc-cn-helm-chart
12.0.0.6.0 Upgraded successfully
3 Thu May 5 09:50:00 2030 superseded oc-cn-helm-chart
12.0.0.7.0 Upgraded successfully
4 Thu May 5 11:25:00 2030 deployed oc-cn-helm-chart
12.0.0.6.0 Roll back to 2

Chapter 19
Rolling Back Your Upgrade of ECE

19-7

20
Migrating from On-Premise BRM to BRM
Cloud Native

Learn how to migrate from an on-premise release of Oracle Communications Billing and
Revenue Management (BRM) 7.5.x or 12.x to a BRM 15.0 cloud native release.

Topics in this document:

• Migrating to BRM Cloud Native

• Migrating from PDC On Premises to PDC Cloud Native

Migrating to BRM Cloud Native
To migrate from an on-premises release to BRM cloud native:

1. Upgrade your BRM and PDC database schemas to release 15.0:

• If you are upgrading from a 12.0 or 12.0 Patch Set 1 database schema, follow the
instructions in "Installing BRM 12.0 Patch Sets" in BRM Patch Set Installation Guide.

• If you are upgrading from a 12.0 Patch Set 2 or later database schema, follow the
instructions in "Upgrading Your Database Schema".

Note:

• To use an existing BRM database schema with your cloud native
deployment, follow the instructions in "Deploying BRM with an Existing
Schema".

• To use an existing Business Operations Center database schema, point to
your existing Business Operations Center schema in the override-
values.yaml file for oc-cn-op-job-helm-chart. See "Adding Business
Operations Center Keys for oc-cn-op-job-helm-chart".

2. If you customized BRM or Billing Care, layer your customizations on top of the images
provided with this release before deploying the images. For guidelines about
customization, see "Customizing BRM Cloud Native Services".

Migrating from PDC On Premises to PDC Cloud Native
Before migrating your system, perform these steps:

• Ensure you have upgraded your PDC on-premises release to version 12.0 Patch Set 3 or
later. Follow the instructions in "Upgrading Pricing Design Center Software".

• Back up your existing PDC and cross-reference database schemas.

• Download and load the PDC 15.0.x cloud native images to the image repository or to the
virtual machine (VM) where PDC is deployed.

20-1

https://docs.oracle.com/en/industries/communications/billing-revenue/12.0/patch-set-install-guide/installing-brm-12.0-patch-sets.html
https://docs.oracle.com/en/industries/communications/billing-revenue/12.0/pdc-install-guide/upgrading-pricing-design-center-software1.html#GUID-0AF01A52-80CF-473A-B83B-E32C187D7A9B

• Download and extract the BRM 15.0.x Helm charts.

• Verify that BRM has been upgraded to the same 15.0.x cloud native version as PDC cloud
native.

The following are the high-level steps for migrating PDC from an on-premises release to cloud
native:

1. Do the following on your PDC on-premises system:

a. Stop your on-premises PDC domain.

b. (Release 15.0.0 only) Connect to your PDC database schema and rename the
following tables:

• Rename the PDCJD_WLSTORE table to PDCJD_WLSTORE_BACKUP

• Rename the WL_LLR_ADMINSERVER table to
WL_LLR_ADMINSERVER_BACKUP

2. In your override-values.yaml file for oc-cn-op-job-helm-chart, set the following keys to
match the PDC and cross-reference database schema details for your existing on-
premises release:

ocpdc:
 configEnv:
 crossRefSchemaPDCTableSpace:
 crossRefSchemaTempTableSpace:
 crossRefSchemaUserName: UserName
 pdcSchemaPDCTableSpace:
 pdcSchemaTempTableSpace:
 pdcSchemaUserName: UserName
 secretValue:
 crossRefSchemaPassword: Password
 pdcSchemaPassword: Password

3. Set any other mandatory keys in your override-values.yaml file. For more information,
refer to "Adding PDC Keys for oc-cn-op-job-helm-chart".

4. Deploy the PDC 15.0.x domain to your cloud native environment:

helm install OpJobReleaseName oc-cn-op-job-helm-chart --namespace
BrmNameSpace --values OverrideValuesFile

where:

• OpJobReleaseName is the release name for oc-cn-op-job-helm-chart and is used to
track this installation instance. It must be different from the one used for the BRM Helm
chart.

• BrmNameSpace is the namespace in which to create BRM Kubernetes objects for the
BRM and Job Helm charts.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the oc-cn-op-job-helm-chart/values.yaml file.

5. In your override-values.yaml file for oc-cn-helm-chart, set the
ocpdc.configEnv.upgrade key to true.

Chapter 20
Migrating from PDC On Premises to PDC Cloud Native

20-2

6. Deploy the PDC 15.0.x cloud native services to your cloud native environment, and ensure
that the pdc-domain pod is in completed status:

helm install BrmReleaseName oc-cn-helm-chart --namespace BrmNameSpace --
values OverrideValuesFile

where:

• BrmReleaseName is the release name for oc-cn-helm-chart and is used to track this
installation instance. It must be different from the one used for oc-cn-op-job-helm-
chart.

• OverrideValuesFile is the path to a YAML file that overrides the default configurations
in the oc-cn-helm-chart/values.yaml file.

7. Ensure all files are upgraded successfully. To do so, check the status of the SQL upgrade
log files in pdc-brm-pvc. If there is no failure message, all files upgraded successfully.

Chapter 20
Migrating from PDC On Premises to PDC Cloud Native

20-3

Part VI
Troubleshooting BRM Cloud Native
Deployments

This part provides information about troubleshooting issues that may occur while deploying
Oracle Communications Billing and Revenue Management (BRM) cloud native in your system.
It contains the following chapters:

• Troubleshooting Your BRM Cloud Native Deployment

21
Troubleshooting Your BRM Cloud Native
Deployment

Learn how to solve problems that may occur after the installation or upgrade of your Oracle
Communications Billing and Revenue Management (BRM) cloud native system.

Topics in this document:

• Problems with the Helm Installation

• Helm Installation Fails with Time-Out Error

• BRM Cloud Native Deployment Out of Memory Errors

• PDC Messages Stuck in Rating Engine Queues

• PDC Interceptor Pod is Started But Went to Error State

• eceTopology.conf Errors While Restarting Pods

Problems with the Helm Installation
If a Helm installation encounters errors, such as an incorrect namespace, follow these steps to
get back to a state where you can fix the issue and do a new installation.

Note:

For more information about Kubernetes commands, see "kubectl Cheat Sheet" in the
Kubernetes documentation.

1. Check the state of the deployment:

kubectl get pods --output wide --namespace NameSpace

To see information about a specific pod:

kubectl describe pod PodName --namespace NameSpace
2. Use the helm rollback command to go back to a previous revision of the chart, or use the

helm uninstall command to uninstall the chart. See "Rolling Back A Release To A
Previous Revision" in BRM Cloud Native System Administrator’s Guide, or see "Helm
Uninstall" in the Helm documentation.

3. If neither rolling back nor uninstalling the chart are successful, do the following to identify
Kubernetes resources that did not install correctly and then delete them:

• Check and delete all other stateful set components from the cluster:

kubectl get sts

If you identify a stateful set that you want to delete, scale the number of replicas:

kubectl scale statefulsets StatefulSetName --replicas=n

21-1

https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://helm.sh/docs/helm/helm_uninstall/
https://helm.sh/docs/helm/helm_uninstall/

where StatefulSetName is the name of a stateful set, and n is the number of replicas
you are scaling to. For more information, see "Scale a StatefulSet" in the Kubernetes
documentation.

Then, delete the stateful set:

kubectl delete StatefulSetName

You can run kubectl get sts again to verify the deletions.

• If you need to clean up Apache Kafka and Apache ZooKeeper, scale to 0 and then
delete:

kubectl scale sts/kafka_pod --replicas=0
kubectl scale sts/zookeeper_pod --replicas=0
kubectl get pods
kubectl get sts
kubectl delete sts kafka_pod zookeeper_pod

• If necessary, check any PVC, Secret, ConfigMap, or service that was created by the
deployment. If the output from any of these commands shows something that you want
to clean up, you can use kubectl delete to remove it.

For example:

kubectl get pvc --all-namespaces
kubectl delete pvc PVCName

kubectl get secrets --all-namespaces
kubectl delete secret SecretName

kubectl get configmap --all-namespaces
kubectl delete configmap ConfigMapName

kubectl get svc --all-namespaces
kubectl delete svc SVC1 SVC2

Helm Installation Fails with Time-Out Error
After you deploy a Helm chart, you may receive the following error message indicating that the
Helm chart installation failed:

Error: failed post-install: timed out waiting for the condition

This occurs because a post-installation job took longer than five minutes to complete.

To resolve the issue:

1. Purge your Helm release:

helm delete BrmReleaseName --purge

This removes and purges all resources associated with the last revision of the release.

2. Run the Helm install command again.

If that does not fix the problem, increase the amount of time Kubernetes waits for a command
to complete by including the --timeout duration argument with the helm install command. For
example, to set the timeout duration to 10 minutes, you would enter this command:

helm install BrmReleaseName oc-cn-helm-chart --namespace BrmNameSpace --timeout 10m --
values OverrideValuesFile

Chapter 21
Helm Installation Fails with Time-Out Error

21-2

https://kubernetes.io/docs/tasks/run-application/scale-stateful-set/

BRM Cloud Native Deployment Out of Memory Errors
After you deploy BRM cloud native, you may receive an error message similar to the following:

ERROR: cm_cache_heap_malloc: name="fm_bparams_cache" - out of memory, size
requested=2216,high val=960
cm_cache_flist: PIN_ERR_NO_MEM:requested=2216, used=121456, allocated=122880, chunk=30,
cache name="fm_bparams_cache"

To resolve the issue:

1. In your oc-cn-helm-chart directory, open your CM ConfigMap file
(configmap_pin_conf_cm.yaml).

2. Add the following fm_bparams_cache entry to the file:

- cm_cache fm_bparams_cache 40,245760,23
3. Save and close the file.

4. Run the helm upgrade command for oc-cn-helm-chart:

helm upgrade BrmReleaseName oc-cn-helm-chart --values OverrideValuesFile --namespace
BrmNameSpace

PDC Messages Stuck in Rating Engine Queues
Occasionally, PDC messages and changesets may become stuck in the rating engine queues.

To resolve the issue, delete both the RRE and BRE pods by running the following command:

kubectl --namespace BrmNameSpace delete pod PdcPodName

where:

• BrmNameSpace is the namespace in which the BRM Kubernetes objects reside.

• PdcPodName is the name of the pod.

Kubernetes automatically restarts the deleted pod, which restarts the transformation engine.
Messages should start flowing again.

PDC Interceptor Pod is Started But Went to Error State
After you deploy PDC, the Interceptor pod may start but immediately transition to an error
state.

This may occur because the RCU prefix is configured incorrectly. To find out if this is the case,
run the following command:

kubectl describe domain DomainName --namespace NameSpace

If the issue is related to the RCU prefix, you will see something similar to the following:

WLSDPLY-12409: createDomain failed to create the domain: Failed to get FMW
infrastructure database defaults from the service table : Got exception when auto
configuring the schema component(s) with data obtained from shadow table:
Failed to build JDBC Connection object:

To resolve the issue:

Chapter 21
BRM Cloud Native Deployment Out of Memory Errors

21-3

1. Make sure that the RCU prefix is configured successfully as part of oc-cn-op-job-helm-
chart. To do so, run the following command:

kubectl get pod --namespace BrmNameSpace

If it is configured correctly, pdc-configure-rcu-xxxxx will show a Completed status.

2. Make sure that the RCU prefix and Password configured in the override-values.yaml file
for oc-cn-helm-chart and oc-cn-op-job-helm-chart matches, and that a valid host name,
port, and service name have been configured in the values.yaml file.

If the values are not configured properly, do the following:

1. Uninstall PDC and then set the ocpdc.isEnabled key to false in your override-
values.yaml file for oc-cn-helm-chart.

2. Run the Helm upgrade command for oc-cn-helm-chart.

Wait until the PDC pods have stopped.

3. In the override-values.yaml file for oc-cn-helm-chart and oc-cn-op-job-helm-chart,
configure the ocpdc.configEnv.rcuPrefix key and set the ocpdc.isEnabled key to true.

4. Run the helm upgrade command for oc-cn-helm-chart and oc-cn-op-job-helm-chart.

Wait until the PDC pods are in Running status.

For more information about troubleshooting pod errors, see "Troubleshooting" in Oracle
WebLogic Kubernetes Operator Samples.

eceTopology.conf Errors While Restarting Pods
While restarting the pricingupdater and brmgateway pods in your ECE cloud native
deployment, you may receive an error message similar to the following:

ERROR MonitorFrameworkMessagesBundle-31300: Failed to initialize grid manager based on
topology file: eceTopology.conf property file:
ece.propertiesjava.lang.IllegalArgumentException: Nodes on a given host must be assigned
unique JMX ports
(check nodes: '[PricingUpdater node pricingupdater-6d575bf75b-r5q2t on Host
pricingupdater.ece-server.cluster,
PricingUpdater node pricingupdater-fbb9d7fb7-kqmxv on Host pricingupdater.ece-
server.cluster]')

This occurs because ECE cloud native has written invalid entries to the eceTopology.conf
property file during the startup process.

To resolve the issue, do not restart the pricingupdater and brmgateway pods. Instead, scale
down and then scale up those pods.

For example, to scale down and scale up the brmgateway pod:

1. Scale down the brmgateway pod to 0:

kubectl --namespace BrmNameSpace scale deploy brmgateway1 --replicas=0

Wait for the brmgateway pod to stop.

2. Scale back up the brmgateway pod to 1:

kubectl --namespace BrmNameSpace scale deploy brmgateway1 --replicas=1

Chapter 21
eceTopology.conf Errors While Restarting Pods

21-4

https://oracle.github.io/weblogic-kubernetes-operator/samples/azure-kubernetes-service/troubleshooting/

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	Part I Overview of BRM Cloud Native
	1 Overview of the BRM Cloud Native Deployment
	About the BRM Cloud Native Deployment
	BRM Cloud Native Deployment Architecture
	Images and Containers
	Images and Containers with Non-WebLogic Server Pattern
	Images and Containers for Applications Using WebLogic

	2 About the BRM Cloud Native Deployment Packages
	Overview of the BRM Cloud Native Deployment Package
	About BRM Pods
	About Client Pods and Images
	About BRM PVCs and Pods

	Part II Getting Started with BRM Cloud Native Deployment
	3 About Configuring and Deploying Your BRM Cloud Native Environment
	About Configuring and Deploying BRM Cloud Native
	High-Level Installation Tasks

	4 Setting Up Prerequisite Software
	BRM Cloud Native Prerequisite Tasks
	Software Compatibility
	Creating a Kubernetes Cluster
	Installing Podman
	Installing Helm
	Creating and Configuring Your BRM Database
	Installing an External Provisioner
	Installing WebLogic Kubernetes Operator
	Installing an Ingress Controller
	Setting Up ECE Cloud Native Ingress and Egress Flows

	5 Preparing Your BRM Cloud Native Environment
	Tasks for Preparing Your BRM Cloud Native Environment
	Downloading Packages for the BRM Cloud Native Helm Charts and Docker Files
	Pulling BRM Images from the Oracle Container Registry
	Downloading BRM Images from Oracle Software Delivery Website
	Pulling WebLogic Images for PDC, Billing Care, Billing Care REST API, and Business Operations Center

	Part III Configuring and Deploying BRM Cloud Native
	6 Deploying the BRM Database Schema
	Deploying BRM with a New Database Schema
	Deploying BRM with an Existing Schema

	7 Configuring BRM Server, PDC, and PCC Services
	About Configuring BRM Cloud Native Services
	Creating Secrets for Docker Registry Authorization
	Configuring Global Values
	Specifying the BRM Services to Deploy
	Configuring the BRM Server
	Configuring BRM for a Multischema Database
	Configuring Pricing Design Center
	Adding PDC Keys for oc-cn-helm-chart
	Adding PDC Keys for oc-cn-op-job-helm-chart
	Setting Up SSO for PDC Cloud Native

	Configuring Pipeline Configuration Center
	Adding Pipeline Configuration Center Keys for oc-cn-op-job-helm-chart
	Adding Pipeline Configuration Center Keys for oc-cn-helm-chart
	About PCC Volume Mounts
	Creating a WebLogic Domain and Installing the PCC Application
	Setting Up SSO for PCC
	Setting Up Local Users and Groups for PCC
	Starting and Stopping WebLogic Servers
	Configuring SSL in PCC

	8 Configuring REST Services
	Configuring BRM REST Services Manager
	Generating an SSL Certificate for BRM REST Services Manager
	Configuring the SDK (Optional)
	Configuring the Oracle Unified Directory HTTPS Port
	Connecting to a Separate BRM Cluster
	Adding BRM REST Services Manager Keys
	Sample override-values for IDCS Security Type
	Sample override-values.yaml for OAM Security Type
	Sample BRM RSM override-values for Separate BRM Cluster

	Configuring PDC REST Services Manager
	Adding PDC REST Services Manager Keys
	Configuring OAuth Authentication in PDC REST Services Manager
	Configuring Requests to the Enterprise Product Catalog
	Enabling TLS in PDC REST Services Manager
	Enabling T3S in PDC REST Services Manager
	Configuring Mapping of TMF620 priceType to BRM Events

	9 Configuring the Billing Care, Billing Care REST API, and Business Operations Center Services
	About Configuring Business Operations Center, Billing Care, and Billing Care REST API
	Configuring Business Operations Center
	Adding Business Operations Center Keys for oc-cn-op-job-helm-chart
	Adding Business Operations Center Keys for oc-cn-helm-chart
	Updating Infranet.properties for Business Operations Center
	Adding Custom Configuration to Deployment Workflow for Business Operations Center
	About Business Operations Center Volume Mounts
	Creating a WebLogic Domain and Installing the Business Operations Center Application
	Setting Up SSO for Business Operations Center
	Setting Up Local Users and Groups for Business Operations Center
	Starting and Stopping WebLogic Servers

	Configuring Billing Care
	Adding Billing Care Keys for oc-cn-op-job-helm-chart
	Adding Billing Care Keys for oc-cn-helm-chart
	Updating Infranet.properties for Billing Care
	Adding Custom Configuration to Deployment Workflow for Billing Care
	About Billing Care Volume Mounts
	Creating a WebLogic Domain and Installing the Billing Care Application
	Setting Up SSO for Billing Care
	Setting Up Local Users and Groups for Billing Care
	Starting and Stopping WebLogic Servers

	Configuring the Billing Care REST API
	Adding Billing Care REST API Keys for oc-cn-op-job-helm-chart
	Adding Billing Care REST API Keys for oc-cn-helm-chart
	Updating Infranet Properties for the Billing Care REST API
	Adding Custom Configuration to Deployment Workflow for Billing Care REST API
	About Billing Care REST API Volume Mounts
	Creating a WebLogic Domain and Installing the Billing Care REST API
	Setting Up Local Users and Groups for Billing Care REST API
	Starting and Stopping WebLogic Servers

	10 Configuring ECE Services
	Adding Elastic Charging Engine Keys
	Enabling SSL in Elastic Charging Engine
	Connecting ECE Cloud Native to an SSL-Enabled Database
	About Elastic Charging Engine Volume Mounts
	Loading Custom Diameter AVP
	Generating CDRs for Unrated Events
	Scaling the cdrgateway and cdrFormatter Pods

	Configuring ECE to Support Prepaid Usage Overage
	Recording Failed ECE Usage Requests
	Loading BRM Configuration XML Files
	Setting Up Notification Handling in ECE
	Creating an Apache Kafka Notification Topic
	Creating an Oracle WebLogic Notification Queue

	Configuring ECE for a Multischema BRM Environment

	11 Deploying BRM Cloud Native Services
	Deploying BRM Cloud Native Services

	12 Deploying into Oracle Cloud Infrastructure
	Deploying into Oracle Cloud Infrastructure

	13 Uninstalling Your BRM Cloud Native Deployment
	Uninstalling Your BRM Cloud Native Deployment
	Uninstalling Selected BRM Cloud Native Services

	Part IV Customizing BRM Cloud Native
	14 Customizing BRM Cloud Native Services
	Customizing BRM Server
	Customizing Billing Care
	Customizing ECE

	15 Building Your Own Images
	Building BRM Server Images
	Building Your BRM Server Base Image
	Building Images of BRM Server Components
	Building Web Services Manager Images
	Building and Deploying Web Services Manager for Apache Tomcat Image
	Building and Deploying Web Services Manager for WebLogic Server Image

	Containerization of Email Data Manager
	Containerization of Roaming Pipeline
	Building and Deploying Vertex Manager
	Deploying with Vertex Communications Tax Q Series
	Deploying with Vertex Sales Tax Q Series

	Building BRM REST Services Manager Images
	Building PDC REST Services Manager Images
	Building PDC Images
	Building Pipeline Configuration Center Images
	Pulling the Fusion Middleware Infrastructure Image
	Building the Pipeline Configuration Center Image

	Building Billing Care Images
	Building the Billing Care Image
	Building the Billing Care REST API Image

	Building Business Operations Center Images

	Part V Upgrading BRM Cloud Native
	16 Upgrading Your BRM Cloud Native Environment
	Tasks for the BRM Cloud Native Upgrade
	Upgrading Your Database Schema
	Upgrading Your BRM Cloud Native Services
	Upgrading Your ECE Cloud Native Services
	Upgrading ECE Cloud Native to the Latest Interim Patch

	Upgrading Your PDC Cloud Native Services
	Upgrading BRM REST Services Manager
	Upgrading Your Business Operations Center Cloud Native Services
	Upgrading Your Business Operations Center Cloud Native Service from 12.0.0.7.0 or Earlier to 15.0.x.0.0
	Upgrading Your Business Operations Center Cloud Native Service from 12.0.0.8.0 to 15.0.x.0.0

	Upgrading Your PCC Cloud Native Services
	Upgrading Your PCC Cloud Native Services from 12.0.0.x.0 or Earlier to 15.0.0.0.0
	Upgrading Your PCC Cloud Native Services from 15.0.0.0.0 to 15.0.x.0.0

	Upgrading Your Billing Care and Billing Care REST API Cloud Native Services
	Upgrading Your Billing Care and Billing Care REST API Cloud Native Services from 12.0.0.7.0 or Earlier to 15.0.x.0.0
	Upgrading Your Billing Care and Billing Care REST API Cloud Native Services from 12.0.0.8.0 to 15.0.x.0.0

	17 Performing Zero-Downtime Upgrades
	Performing a Zero-Downtime Upgrade of BRM
	Performing a Zero Downtime Upgrade of PDC

	18 Performing Zero-Downtime Upgrades of Disaster Recovery Cloud Native Systems
	About the Zero-Downtime Upgrade of an Active-Active Disaster Recovery System
	Tasks for Upgrading a BRM Cloud Native Active-Active System
	Switching Off Site 2
	Uninstalling BRM and ECE from Site 2
	Upgrading Your BRM Database Schema in Site 2
	Installing BRM 15.0.x Cloud Native on Site 2
	Dropping the ECE Persistence Database Schema from Site 2
	Installing ECE 15.0.x Cloud Native on Site 2
	Failing Over Site 1 to Site 2
	Uninstalling BRM and ECE from Site 1
	Installing BRM Cloud Native on Site 1
	Dropping the ECE Persistence Database Schema from Site 1
	Installing ECE 15.0.x Cloud Native on Site 1
	Federating ECE Cache Data Between Site 1 and Site 2

	19 Rolling Back Your Patch Set Upgrade
	Rolling Back Your Upgrade of BRM Server
	Rolling Back Your Upgrade of PDC
	Rolling Back Your BRM and PDC Upgrades
	Manually Rolling Back Your PDC Upgrade

	Rolling Back Your Upgrade of ECE

	20 Migrating from On-Premise BRM to BRM Cloud Native
	Migrating to BRM Cloud Native
	Migrating from PDC On Premises to PDC Cloud Native

	Part VI Troubleshooting BRM Cloud Native Deployments
	21 Troubleshooting Your BRM Cloud Native Deployment
	Problems with the Helm Installation
	Helm Installation Fails with Time-Out Error
	BRM Cloud Native Deployment Out of Memory Errors
	PDC Messages Stuck in Rating Engine Queues
	PDC Interceptor Pod is Started But Went to Error State
	eceTopology.conf Errors While Restarting Pods

