
Oracle® Communications Billing and
Revenue Management
Billing Care SDK Guide

Release 15.0
F86200-03
September 2024

Oracle Communications Billing and Revenue Management Billing Care SDK Guide, Release 15.0

F86200-03

Copyright © 2017, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xv

Documentation Accessibility xv

Diversity and Inclusion xv

Part I About the Billing Care SDK

1 About Billing Care SDK

About the Billing Care SDK 1-1

About the References Directory 1-1

Installing the Billing Care SDK 1-2

2 About Billing Care Architecture

Billing Care Architecture Overview 2-1

About the Billing Care REST Framework 2-2

About Open Source Libraries Used by Billing Care 2-3

Part II Basic Billing Care SDK Components

3 Setting Up the Development Environment

About the Billing Care Development Environment 3-1

Configuring NetBeans IDE for Billing Care Development 3-1

Downloading and Installing NetBeans IDE 3-1

Configuring the NetBeans IDE Connection to WebLogic Server 3-2

Setting Up a Billing Care Customization Project 3-2

Creating the Billing Care SDK Directory Structure 3-2

Creating the Billing Care NetBeans IDE Project 3-4

iii

4 Customizing Billing Care

About Billing Care Customization Concepts 4-1

About Billing Care Modules 4-2

About Views 4-2

About View Models 4-2

About Data Binding between Views and View Models 4-2

About the customModule.properties File 4-2

About the Configuration.xml File 4-3

About the Registry File 4-4

Managing Billing Care Modules Using the Registry File 4-4

About Billing Care View Model JavaScript Framework 4-5

Access to the Open Account 4-5

About AJAX Calls 4-5

Object IDs 4-6

About Error Handling in REST Operations 4-6

Invoking Error Handing in Customizations 4-6

About Custom Resource Authorization 4-7

Performing Authorization in the Actions Menu 4-7

Performing Authorization on the UI 4-7

Performing Authorization on the REST Framework 4-8

Using REST Authorization without Obligations 4-8

Using REST Authorization with Obligations 4-8

5 Customizing Billing Care Templates

About Billing Care Templates 5-1

Customizing Templates 5-3

Removing Columns from a Template 5-4

Adding Columns to a Template 5-4

Extending the REST Framework to Support New Column Fields 5-5

Creating a customModule.properties File 5-6

Example 1: Event Template Customization 5-6

Example 2: Event Template Customization with New Fields 5-7

Example 3: Newsfeed Template Customization 5-10

6 Customizing Billing Care Themes and Logo

About Billing Care Themes and Logo 6-1

About Customizing Billing Care Themes 6-1

Adding a New Theme 6-2

Overriding Themes 6-2

iv

Setting Which Billing Care Theme to Use 6-2

Changing the Default Logo 6-3

7 Editing the Billing Care Configuration File

About the Billing Care Configuration File 7-1

Creating a Custom Configuration File 7-1

Default Configuration File Entries 7-2

8 Using an Exploded Archive during Customization

About Using an Exploded Archive 8-1

Configuring WebLogic Server to Use an Exploded Archive 8-1

Creating a Manifest for your Shared Library 8-1

Rebuilding your Project after Creating the Manifest File 8-3

Creating a New Deployment Plan for Billing Care with your Shared Library 8-3

Deploying your Shared Library on your Billing Care Domain 8-4

Redeploying Billing Care to Use your Shared Library 8-5

9 Packaging and Deploying Customizations

About Packaging and Deploying Customizations for Production 9-1

Creating Production Versions of the Manifest File and Deployment Plan 9-1

Using the Java JAR Utility to Package Your Shared Library 9-2

Deploying the Shared Library .war 9-2

Redeploying Billing Care to Use Your Shared Library 9-3

Part III Customizing Billing Care Screens and Fields

10

Customizing the Billing Care Account Home Page

Customizing the Billing Care Account Home Page 10-1

About Customizing the Billing Care Home Tab 10-1

Customizing the Billing Care Home Tab 10-2

Creating a Summary and Detailed Link View 10-3

Creating an All Bill Units Summary View 10-3

Creating a Bill Unit Summary View 10-4

Overriding the Billing Care Home Tab Theme 10-5

Configuring the Custom Home Tab in the Registry 10-6

Creating a HomeTabBillUnitsViewModel 10-6

About Customizing the Bills Graph 10-7

Customizing Bills Graph 10-7

v

Creating Custom Home Tab View Model 10-7

Creating Custom View Model HTML Template for Customizing Bills Graph 10-8

Configuring Custom View Models for Customizing Bills Graph in the Registry 10-9

11

Customizing the Billing Care Account Banner

About the Billing Care Account Banner 11-1

Customizing the Billing Care Account Banner 11-1

Creating Configuration Files for Account Banner Customization 11-2

Rearranging Account Banner Tiles 11-3

Removing Account Banner Tiles 11-3

12

Customizing the Balances Area

About Customizing the Balances Area 12-1

Replacing the Balances Area with Custom Account Information 12-1

Customizing the Balances Area 12-2

Creating a View for the Balances Area 12-2

Creating a Custom Balances Area View Model 12-2

Configuring the Custom Balances Area in the Registry 12-3

Customizing the Data Displayed in the Balances Area 12-3

Creating Custom View Model HTML Template for the Balances Area 12-3

Adding customBalancesView and CustomBalancesViewModel to the Registry 12-4

13

Adding Custom Payment Types

About Custom Payment Types 13-1

Creating Custom Payment Types in BRM 13-1

Creating Custom Payment Type Event Subclasses 13-2

Updating the /config/paymenttool Object with Custom Payment Types 13-3

Updating the /config/payment Object with Custom Payment Type Event 13-3

Customizing Billing Care to Support Custom BRM Payment Types 13-4

Extending the Billing Care Data Model with XSD and JSON Files 13-4

Adding the XSD and JSON Files to NetBeans Project 13-5

Enabling Custom Payment Types in Batch Payment Processing 13-5

Deploying Customizations 13-6

14

Customizing the Make a Payment Screen

About the Make a Payment Screen 14-1

Customizing the Fields Displayed for a Payment Method 14-2

Creating a Custom View Model for a Payment Method 14-2

vi

Configuring the Custom Payment Type in the Registry 14-2

15

Displaying Success Toast Messages in Billing Care

About Displaying Success Toast Messages 15-1

Adding Success Toast Messages to Billing Care Screens 15-1

Creating a Success Toast Message View 15-2

Creating a Custom View Model for Success Toast Messages 15-2

Creating a Custom View Model for Your Payment and Adjustment Screens 15-3

Configuring the Registry for Success Toast Messages 15-5

Specifying the Path to Check Mark Graphic 15-6

16

Customizing Purchase Deal and Assets Action Menu

About Customizing Purchase Deal Configuration and Assets Action Menu 16-1

Customizing Purchase Deal Configuration 16-1

Extending the Data Model With the XSD and Java Class files 16-2

Creating a Custom Purchase Deal Configuration View Model 16-3

Creating Custom Purchase Configure View Model HTML Templates 16-3

Customizing Assets Action Menu 16-4

Creating a Custom Asset View Model 16-4

Creating Custom Asset View Model HTML Templates 16-4

Deploying Customizations 16-5

17

Customizing Billing Care to Display Child Accounts

About Displaying Child Accounts 17-1

Customizing Billing Care to Display Child Accounts 17-1

Customizing the Organization Hierarchy Screen 17-2

Creating Custom View Models 17-3

Configuring a Custom Module in the Registry 17-3

Adding the Data Model JAR File 17-3

Deploying Customizations 17-4

18

Customizing Billing Care Invoice Presentation

About Billing Care Invoice Presentation 18-1

Customizing Billing Care Invoice Presentation 18-1

Setting Up NetBeans IDE for Customizing Invoice Presentation 18-1

Presenting Invoices in a Dialog Box 18-2

Retrieving Invoices from Third-Party Repositories 18-3

vii

19

Adding an Event Details Column to the Events Table

About the Events Table 19-1

About Adding an Event Details Column to the Events Table 19-1

Adding an Event Details Column to the Events Table 19-1

About the Sample Files 19-1

Creating the Event Details Column in the Events Table Using the Sample 19-2

20

Customizing Reason Codes List in Event Adjustments

About Displaying Reason Codes 20-1

Customizing Reason Codes List in Event Adjustments 20-1

Creating the Custom Event Adjustment View Model 20-2

Configuring the Custom Event Adjustment View Model in the Registry 20-2

Deploying Customizations 20-3

21

Restricting Debit and Credit Event Adjustment Options

About Debit and Credit Event Adjustments 21-1

Restricting Debit and Credit Adjustment for Events 21-1

Creating a Custom View Model for Restricting Debit and Credit Adjustments 21-2

Configuring the Custom View Model for Debit and Credit Adjustments 21-3

22

Customizing Billing Care to Display Only Event Adjustments

About Displaying Event Adjustments 22-1

Customizing Billing Care to Display Only Event Adjustments 22-1

Creating Custom View Models to Display Only Event Adjustments 22-2

Configuring Custom Bill and Bill Item View Models in the Registry 22-3

23

Customizing Account Creation Service Fields

About Customizing Account Creation 23-1

Creating Custom View Models 23-1

Extending the New Account Configuration View Model 23-2

Creating a Custom Service Configuration View Model 23-3

Creating a Custom Service View Model HTML Template 23-4

Extending the Service Validator for Custom Fields 23-4

Configuring a Custom Module in the Registry 23-5

Deploying Customizations 23-5

viii

24

Creating Custom Billing Care Credit Profiles

About Credit Profiles 24-1

Customizing Billing Care to Store Credit Profiles 24-1

Creating Custom Profile Storable Classes in BRM 24-1

Importing Credit Profile Class Definitions into BRM 24-2

Creating Credit Profile Objects Using Developer Center 24-2

Creating the Credit Profile Class and Field 24-2

Generating the Required JAR File and Infranet.properties 24-3

Extending the Billing Care Data Model with XSD and JSON Files 24-3

Adding the Required Files to the NetBeans Project 24-4

Updating the MANIFEST.MF File 24-4

Adding the Required View Module and Configuration Files 24-4

Adding the Required JAR and JSON Files 24-4

Deploying Customizations 24-5

25

Customizing the Billing Care Actions Menu

About the Billing Care Actions Menu 25-1

Mapping Label and Description Key Values to the Resource Bundle 25-2

About Customizing the Actions Menu 25-3

Setting Up NetBeans IDE for Customizing the Actions Menu 25-3

Removing Actions Menu Items 25-3

Removing an Existing Actions Menu Submenu 25-3

Removing an Existing Actions Menu 25-4

Rearranging Actions Menu Items 25-4

Rearranging Actions Menu Submenu Items 25-5

Rearranging Actions Menu Items 25-5

Renaming Actions Menu and Submenu Items 25-6

Renaming Actions Menu Submenu Items 25-6

Renaming Actions Menu Items 25-6

Adding Actions Menu Items 25-6

Adding Action Menu Items in Payment Suspense 25-8

26

Opening Custom Views From Landing Page

About Customizing the Landing Page 26-1

Customizing the Landing Page 26-1

Creating a Custom Landing Page View Model 26-1

Creating a Custom Landing Page View Model HTML Template 26-2

Opening Custom Views in Full Screen Mode 26-2

Creating a Custom Full Page View Model 26-2

ix

Creating a Custom Full Page View Model HTML Template 26-3

Creating a Custom Router View Model 26-3

Creating a Custom Router Helper 26-3

Configuring the Custom Full Page View Model in the Registry 26-4

Opening a Dialog Box From Landing Page 26-4

Creating a Custom Dialog View Model 26-5

Creating a Custom Dialog View Model HTML Template 26-5

Configuring the Custom Dialog View Model in the Registry 26-5

27

Customizing Billing Care Labels

About the Billing Care Resource Bundle 27-1

Customizing the Resource Bundle 27-1

Creating a Custom XLF File 27-1

Modifying Existing Labels 27-2

Adding New Labels 27-2

Creating Required JavaScript Files for Deployment 27-3

Localizing Billing Care into Other Languages 27-3

28

Customizing Billing Care to Disable Links in the Bills Tab

About Disabling Links 28-1

Disabling Links in the Bills Tab 28-1

Creating Custom View Models to Disable Links in the Bills Tab 28-2

Configuring Custom Bill, Charges, and Payment Detail View Models in the Registry 28-5

29

Separating Event Adjustment Amount and Percentage Fields

About Event Adjustments using Amount and Percentage 29-1

Separating Amount and Percentage Fields 29-1

Creating Custom View Model to Separate Amount and Percentage Fields 29-1

Adding CustomEventAdjustmentViewModel to the Registry 29-2

30

Embedding Billing Care Screens in External Applications

About Embeddable Billing Care Screens 30-1

Embedding Billing Care Screens 30-2

Understanding the index_embedded.html File 30-2

Configuring Your External Application to Access Billing Care 30-4

Configuring Security for External Application Access 30-4

x

Part IV Customizing Searches and Filters in Billing Care

31

Searching for Accounts by Payment ID

About Account Searches in Billing Care 31-1

Adding a Payment ID Field to the Account Search Screen 31-1

Naming the Custom Account Search Template in the CustomConfigurations.xml File 31-2

Creating a Custom Account Search Template 31-3

Creating a Custom Account Search View Model 31-4

Creating a Custom Search View Model 31-4

Creating a Custom Router View Model 31-4

Creating a Custom Router Helper 31-5

Creating a Custom Account Search View Model HTML Template 31-5

Replacing the Default Method for Showing Recently Opened Accounts 31-5

Configuring a Custom Module in the Registry 31-6

Creating a customized_en.xlf File Entry for Payment ID Search Field 31-6

Getting Payment Item POIDs from BRM 31-7

Deploying Customizations 31-8

32

Filtering Bundles Available for Purchase

About Filtering Bundles 32-1

Filtering Bundles List in Billing Care 32-1

Creating CustomPCMSubscriptionModule.java Class 32-1

Creating a CustomSubscriptionWorker.java Class 32-2

Updating the customModule.properties File 32-2

33

Filtering Start and End Dates for Additional Purchase

About Customizing Purchase Configuration 33-1

Filtering Start and End Date Options 33-1

Creating a Custom Purchase Deal Configuration View Model 33-2

Configuring the Custom Purchase Configuration View Model in the registry 33-4

34

Customizing Search Filter for Suspended Payments

About Suspended Payment Search Filter 34-1

Adding Search Criteria 34-1

Creating a CustompaymentSuspenseSearch.xml File 34-2

Creating a CustomTemplatePaymentSuspenseWorker.java Class 34-3

Creating a CustomPCMTemplateModule.java Class 34-3

Creating a customModule.properties File 34-4

xi

Updating Registry 34-4

Updating customPaymentSuspenseSearchView.html 34-5

Updating View Model 34-5

Localizing New Criteria into Other Languages 34-6

Creating Deployment Plan 34-6

Creating .war File 34-6

35

Exporting Billing Care Search Results

About Billing Care Search 35-1

Enabling Search Results Export with the SDK 35-1

Creating Custom Search Templates 35-1

Creating Custom Search View Models 35-2

Configuring Custom Search Modules in the Registry 35-2

Deploying Customizations 35-3

Part V Controlling Access to Billing Care Functionality

36

Limiting Event Adjustment Percentage Entered by CSRs

About Adjustments 36-1

Limiting Event Adjustments Entered by CSRs 36-1

Updating CustomExtendAdjustmentModule.java Class 36-1

Creating CustomAdjustmentWorker.java Class 36-2

Creating a customized_en.xlf File Entry for the Error Message 36-3

37

Setting Adjustment Limit for Event Adjustments

About Adjustment Limits 37-1

Setting Event Adjustment Limit for CSRs 37-1

Creating customAdjustmentResource.java Class 37-2

Creating the Custom Event Adjustment View Model 37-3

Configuring the Custom Event Adjustment View Model in the Registry 37-4

38

Enabling Authorization in Test Installations

About Enabling Authorization in Test Installations 38-1

Enabling Authorization in Test Installations 38-1

Modifying Default Authorization Policies 38-2

Adding Custom Authorization Resources and Actions 38-3

Deploying Customizations 38-4

xii

39

Restricting Bundle Validity Based on Roles

About Restricting Bundle Validity 39-1

Restricting Bundle Validity 39-1

Creating CustomAccountResource.java Class 39-2

Creating a Custom Purchase View Model 39-4

Configuring the Custom Purchase View Model in the Registry 39-5

40

Restricting Additional Bundles Purchase Based on Roles

About Restricting Bundles 40-1

Restricting Bundles Based on Roles 40-1

Creating the Custom Bundle Selection View Model 40-2

Configuring the Custom Bundle Selection View Model in the Registry 40-2

41

Making Notes Field Mandatory

Making Notes Mandatory for Additional Product Purchase 41-1

Creating a Custom Purchase Deal View Model 41-1

Configuring the Custom Purchase View Model in the Registry 41-2

Making Notes Mandatory for Event Adjustments 41-2

Creating a Custom Event Adjustment View Model 41-2

Configuring the Custom Event Adjustment View Model in the Registry 41-3

42

Customizing Suspended Payment Allocations

About Suspended Payment Allocation 42-1

Forbidding Partial Allocation of Suspended Payments 42-1

Creating a CustomPCMPaymentModule.java Class 42-2

Creating a Custom Payment Suspense View Model 42-2

Creating a customModule.properties File 42-2

Configuring a Custom Module in the Registry 42-3

Deploying Customizations 42-3

43

Disabling Event Adjustment Options Based on Roles

About Event Adjustment Options 43-1

Disabling Event Adjustment Options Based on User Roles 43-1

Creating a Custom View Model for Disabling Adjustment Options 43-2

Configuring the Custom View Model for Disabling Event Adjustment Options 43-3

xiii

44

Logging Additional CSR Activity Details (Release 15.0.1 or later)

About User Context Fields in the /user_activity Object 44-1

Overriding the Default User Context 44-1

Part VI Customizing the Billing Care REST API

45

Using Custom OAuth Providers with Billing Care REST API

About OAuth Token Management Tools 45-1

Creating a Custom Token Module 45-2

Adding a Custom OAuth Token Module to the customModule.properties File 45-3

46

Extending and Creating Billing Care REST Resources

About Extending and Creating Billing Care REST Resources 46-1

About Billing Care Sample SDK REST Customizations 46-1

Extending REST Services to Filter Custom Headers 46-2

Creating a Custom Storable Class in the BRM Data Dictionary 46-2

Processing Billing Care REST API Requests and Responses 46-3

Configuring WebLogic Server to Use an Exploded Archive 46-3

Sending a Test HTTP Request with the Custom Header 46-5

Extending REST Services 46-5

47

Extending REST API Response Objects

About Enriching REST API Response Objects 47-1

Enriching Response Objects 47-1

Example: Enriching the Response Object for the Account Module 47-2

48

Recording Billing Care REST API Request Failures

About Recording Billing Care REST API Request Failures 48-1

Enabling the Recording of REST Request Failures 48-1

Customizing REST Request Failure Details 48-2

Customizing the Request Record Logic 48-2

Customizing the Headers and Payload to Record 48-4

Overriding the Default Request Record Logic 48-4

xiv

Preface

This guide describes how to customize and extend Oracle Communications Billing Care.

This guide has been updated to include changes and new feature content added for release
15.0.1.

Audience
This document is intended for developers and user interface designers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
About the Billing Care SDK

This part describes the Billing Care SDK and its architecture. It contains the following chapters:

• About Billing Care SDK

• About Billing Care Architecture

1
About Billing Care SDK

Learn about the contents included with the Oracle Communications Billing Care SDK.

Topics in this document:

• About the Billing Care SDK

• Installing the Billing Care SDK

About the Billing Care SDK
The Billing Care SDK provides tools, libraries, and samples that you can use to customize
Billing Care. Use the SDK with NetBeans IDE to set up a development environment for
customizing Billing Care. The SDK includes the directories listed in Table 1-1.

Table 1-1 Billing Care SDK Directories

Directory Description

libs Contains the library JARs required to customize Billing Care.

references Contains the default versions of the configuration and metadata files
used to customize Billing Care. See "About the References Directory"
for more information.

samples Contains code and configuration file samples to assist you in
customizing Billing Care. Each sample includes a README.txt file
describing the implementation in the example.

About the References Directory
The references directory contains the default versions of the configuration and metadata files
used to customize Billing Care. When customizing Billing Care, you create new versions of
many of the files in this directory. These custom files are packaged in the customizations
shared library you deploy to the Billing Care domain.

Table 1-2 lists the files in the Billing Care SDK references directory.

Table 1-2 Billing Care SDK references Directory Files

File or Directory Description

ActionMenu.xml Contains the metadata describing the contents of the Action
menu in the main Billing Care toolbar. You work with this file to
add, remove, rename, or rearrange menu entries. When
customizing, create a CustomActionMenu.xml file.

See "Customizing the Billing Care Actions Menu" for more
information.

Configurations.xml Contains flags controlling the display of specific account
attributes, timeout values, and BRM-related enum mappings.
When customizing, create a CustomConfigurations.xml file.

1-1

Table 1-2 (Cont.) Billing Care SDK references Directory Files

File or Directory Description

BillingCareResources_en.xlf Contains all text labels in the application. You can use this file to
change labels in the application. When customizing, create a
customized_en.xlf file.

See "Customizing Billing Care Labels" for more information.

eventtemplates Contains the metadata describing the fields displayed for BRM
events (associated with bill items). You work with event
templates to display data from custom usage events or to alter
the default template. When you create custom event templates,
you must prefix template names with Custom.

See "Customizing Billing Care Templates" for more information.

newsfeedtemplates Contains the metadata describing the data displayed in the
Newsfeed. You work with Newsfeed templates to alter the
default templates. When you create custom event templates,
you must prefix template names with Custom.

See "Customizing Billing Care Templates" for more information.

AuthorizationDataModel Contains the Oracle Platform Security Services Entitlements
Server (OPSS) seed data describing the authorization policies
and resources.

registry.js Contains the definitions for and association between Billing Care
views and view models (HTML and JavaScript). When
customizing, create a customRegistry.js file.

See "About the Registry File" for more information.

Installing the Billing Care SDK
Use the Billing Care installer (BillingCare_generic.jar) from Oracle Software Delivery Cloud to
install the Billing Care SDK and create the BillingCare_SDK folder on your NetBeans IDE
host. Alternatively, if you included the SDK when installing Billing Care, copy the
BillingCare_SDK folder from your Billing Care host to your NetBeans IDE host.

See Billing Care Installation Guide for more information about downloading and running the
Billing Care installer.

Chapter 1
Installing the Billing Care SDK

1-2

2
About Billing Care Architecture

Learn about the Oracle Communications Billing Care architecture.

Topics in this document:

• Billing Care Architecture Overview

• About the Billing Care REST Framework

• About Open Source Libraries Used by Billing Care

Billing Care Architecture Overview
Billing Care is an application deployed to an Oracle WebLogic Server domain. Customizations
are deployed to the same domain as a customizations shared library. A Billing Care
deployment plan, referencing the customizations shared library, implements your
customizations.

Users connect to Billing Care with a web browser where modules are presented for performing
billing and customer care operations. See "About Billing Care Modules" for more information
about modules.

Billing Care's REST framework communicates with web browsers and Oracle Communications
Billing and Revenue Management (BRM) using a connection pool to the Connection Manager.

Figure 2-1 shows the described architecture in a topological view.

2-1

Figure 2-1 Billing Care Topology

About the Billing Care REST Framework
The REST framework includes several modules to perform billing and customer care
transactions with BRM. Each module consists of four tiers, each with its own set of
responsibilities:

• The Resource tier manages RESTful client requests and responses.

• The Module tier coordinates transformation of RESTful operations and payload into BRM
native formats.

• The Worker tier contains methods for converting data between Billing Care and BRM
formats.

• The PCM tier manages the connections between Billing Care and the BRM Connection
Manager.

Figure 2-2 shows the Billing Care REST framework tiers and a sample account module. The
column on the left describes the tiers in general. The column on the right provides a specific
example of the tiers for the Account REST module where:

• The Account Resource is the Resource tier.

• The PCMAccountModule is the Module tier.

• The AccountWorker is the Worker tier.

• The PCM tier is represented in the same way in both columns, as connections to BRM are
shared by all resources.

Chapter 2
About the Billing Care REST Framework

2-2

Figure 2-2 Billing Care REST Framework

About Open Source Libraries Used by Billing Care
Billing Care is a web-based application built using the open-source libraries listed in Table 2-1.
The table describes how each library is used. For more information on each library, see the
library-specific documentation at the provided links.

Table 2-1 Open Source Libraries Used for Billing Care

Library Description

jQuery General purpose API and DOM manipulation. For more information on
jQuery, see:

https://jquery.com/
Underscore For inserting HTML pages (templates) into the application (browser

DOM). For more information on Underscore, see:

http://underscorejs.org/
RequireJS Dynamic loading of modules (JavaScript, HTML). For more information

on RequireJS, see:

https://requirejs.org/

Knockout Provides data binding between JavaScript view models and HTML
views. Changes in the view are automatically reflected in the view
model, and vice versa. For more information on Knockout, see:

https://knockoutjs.com/
Jersey Provides the basis for the REST web services. For more information on

Jersey, see:

https://eclipse-ee4j.github.io/jersey/

Chapter 2
About Open Source Libraries Used by Billing Care

2-3

https://jquery.com/
http://underscorejs.org/
https://requirejs.org/
https://knockoutjs.com/
https://eclipse-ee4j.github.io/jersey/

Part II
Basic Billing Care SDK Components

This part describes the basic Billing Care SDK components that you use to customize Oracle
Communications Billing Care and the Billing Care REST API. In contains the following
chapters:

• Setting Up the Development Environment

• Customizing Billing Care

• Customizing Billing Care Templates

• Customizing Billing Care Themes and Logo

• Editing the Billing Care Configuration File

• Using an Exploded Archive during Customization

• Packaging and Deploying Customizations

3
Setting Up the Development Environment

Learn how to set up your Integrated Development Environment (IDE) for customizing Oracle
Communications Billing Care.

Topics in this document:

• About the Billing Care Development Environment

• Configuring NetBeans IDE for Billing Care Development

About the Billing Care Development Environment
You customize Billing Care using an IDE configured to work with the Oracle WebLogic Server
domain on which Billing Care is deployed. Typically, you connect to a development Billing Care
domain, perform your customizations, test, and then package and deploy your customizations
as a shared library to your production Billing Care domain. Billing Care references the
customization shared library when rendering the user interface (UI) and performing Billing Care
operations.

To increase efficiency during development and testing, use an exploded archive deployment of
your customizations. Exploded archive deployments enable WebLogic Server to reference
customized files on a local file system instead of a deployed customization shared library in the
domain. You can change the referenced files seen in Billing Care without having to package
and deploy a customizations shared library each time you make changes. See "Using an
Exploded Archive during Customization" for more information on using exploded archives
during customization.

Oracle recommends NetBeans IDE for customizing Billing Care. The following sections explain
configuring NetBeans IDE to customize Billing Care. For more information on NetBeans IDE
see:

https://netbeans.apache.org

Configuring NetBeans IDE for Billing Care Development
To use NetBeans IDE for Billing Care customization, you must complete the following tasks:

• Downloading and Installing NetBeans IDE

• Configuring the NetBeans IDE Connection to WebLogic Server

• Setting Up a Billing Care Customization Project

Downloading and Installing NetBeans IDE
Download and install NetBeans IDE on the same server hosting your Billing Care domain
before configuring a connection to your Billing Care WebLogic server.

For detailed instructions, including additional software requirements, on downloading and
installing NetBeans IDE, see:

https://netbeans.org/community/releases/80/install.html

3-1

https://netbeans.apache.org
https://netbeans.org/community/releases/80/install.html

Configuring the NetBeans IDE Connection to WebLogic Server
After installing NetBeans IDE, you configure a connection to the running WebLogic Server
domain on which Billing Care is deployed. For information on installing Billing Care and starting
your domain see Billing Care Installation Guide.

To configure a NetBeans IDE connection to the Billing Care domain:

1. Start the NetBeans IDE.

2. Select the Services tab.

3. Right-click Servers and select Add Server.

4. In the Choose Server screen, select Oracle WebLogic Server. Provide a name in the
Name field and click Next.

5. In the Server Location screen, enter the path or browse to the wlserver folder of the
WebLogic Server installation containing the Billing Care domain, then click Next.

6. In the Instance Properties screen, provide the path to the domain folder where Billing
Care is deployed in the Domain field.

7. Enter the Username and Password for your domain's administrative user, then click
Finish.

NetBeans IDE configures the connection to the domain. Verify that the connection is
successful by expanding the Servers node in the Services tab. Your domain should be
listed.

Setting Up a Billing Care Customization Project
You perform customizations to Billing Care in a NetBeans IDE project containing the Billing
Care SDK. Complete the following required tasks to set up your Billing Care customization
project:

• Creating the Billing Care SDK Directory Structure

• Creating the Billing Care NetBeans IDE Project

Creating the Billing Care SDK Directory Structure
The Billing Care customization NetBeans IDE project requires a specific directory structure,
described in Table 3-1, for proper packaging of the customizations shared library you build and
deploy to the Billing Care domain.

To create the required directory structure on your NetBeans IDE host:

1. Create a project directory (For example, myproject).

2. Within your project directory, create the following subdirectories listed in Table 3-1.

Table 3-1 Required Billing Care Customization Directories

Directory Description

myproject/web/custom Location for customRegistry.js and
customModule.properties used when overriding the
default modules.

Chapter 3
Configuring NetBeans IDE for Billing Care Development

3-2

Table 3-1 (Cont.) Required Billing Care Customization Directories

Directory Description

myproject/web/custom/css Location for required CSS files required by your
customizations.

myproject/web/custom/jsons Location for any JSON files generated by the Data
Model Generator for custom UI elements.

myproject/web/custom/images Recommended location for image files referenced in
your HTML and CSS files.

myproject/web/custom/js Location for custom JavaScript files used by your
customizations.

myproject/web/custom/js/templates/area/configure

where area is the customization type.

Location for custom HTML files used by your
customizations. Create a unique subdirectory in this
folder for each customization type. For example, create
an accountCreation folder for customizations done to
the account creation HTML file.

myproject/web/custom/js/validations/area/configure

where area is the customization type.

Location for custom validation files used by your
customizations. Create a unique subdirectory in this
folder for each customization type. For example, create
an accountCreation folder for customizations done to
the account creation JavaScript files.

myproject/web/custom/js/viewmodels/area/configure

where area is the customization type.

Location for custom view model files used by your
customizations. Create a unique subdirectory in this
folder for each customization type. For example, create
an accountCreation folder for customizations done to
the account creation view model files.

myproject/web/lib You must copy the contents of the BillingCare_SDK/
libs folder into the myproject/web/lib directory where
myproject is the project directory previously created.
The libs directory contains the jar files required for
customizing Billing Care provided by the Billing Care
installer. See "Installing the Billing Care SDK" for
information about installing the SDK.

myproject/web/META-INF Location for the manifest file describing the name and
version of the shared library containing your
customizations.

myproject/web/resources/public/css Location of the overrides-login.css file where you
specify a custom logo image file for the Billing Care
login page.

myproject/web/resources/public/images Location where you copy your custom logo image file
used when overriding the default Oracle log on the
Billing Care login page.

myproject/web/resources/translation Location of your custom resource bundle.

myproject/web/WEB-INF/classes/com Location of the .class files compiled from any custom
Java code used in your customizations. The directory
structure in this directory reflects the package name
you use in your custom Java code.

myproject/web/WEB-INF/classes/custom Location of the customModule.properties file.

myproject/web/WEB-INF/classes/custom/configurations Location where you place your
CustomConfigurations.xml and
CustomActionMenu.xml files.

Chapter 3
Configuring NetBeans IDE for Billing Care Development

3-3

Table 3-1 (Cont.) Required Billing Care Customization Directories

Directory Description

myproject/src Create custom Java files in the src directory, within any
Java Package you want.

However, any REST web services you create for Billing
Care must be placed within the
com.oracle.communications.brm.cc.ws package
(myproject/src/com/oracle/communications/brm/cc/
ws). This will ensure your REST web service can be
deployed within the customizations shared library.

Company-specific subpackages are supported and
recommended, for example:

com.oracle.communications.brm.cc.ws.compan
y
where company is your company's name.

Creating the Billing Care NetBeans IDE Project
After creating the Billing Care customization project directory structure and copying the
required jars into your myproject/web/lib directory, create a new project in NetBeans IDE for
your customizations.

To create a NetBeans IDE project for your Billing Care customizations:

1. Start the NetBeans IDE.

2. Select the Projects tab.

3. Right-click within the Projects tab and select New Project....

4. In the New Project window, select Java Web under Categories. Select Web Application
with Existing Sources under Projects.

5. Click Next.

6. In the Name and Location screen, enter the path or browse to the myproject folder where
myproject is the folder you previously created for your Billing Care customizations. Specify
a name and location in the Project Name and Project Folder fields.

See "Creating the Billing Care SDK Directory Structure" for information on creating your
project folder.

7. Click Next.

8. In the Server and Settings screen, select the WebLogic Server you previously connected
to NetBeans IDE.

See "Configuring the NetBeans IDE Connection to WebLogic Server" for more information
on configuring your NetBeans IDE connection to your Billing Care domain.

9. Click Next.

10. In the Existing Sources and Libraries screen, verify the paths to your Web Page Folder,
WEB-INF Content, and Libraries Folder are correct.

11. Click Finish.

NetBeans IDE configures the new project. Verify that the project creation is successful by
confirming your project is listed in the Projects tab.

Chapter 3
Configuring NetBeans IDE for Billing Care Development

3-4

4
Customizing Billing Care

Learn about customization concepts for Oracle Communications Billing Care.

Topics in this document:

• About Billing Care Customization Concepts

• About Billing Care Modules

• About the customModule.properties File

• About the Configuration.xml File

• About the Registry File

• About Billing Care View Model JavaScript Framework

• About Error Handling in REST Operations

• About Custom Resource Authorization

About Billing Care Customization Concepts
You customize Billing Care by modifying or creating configuration files, Java classes,
JavaScript, HTML, and CSS. Customizations are performed in NetBeans IDE, packaged into a
customizations shared library using the Java jar utility, and deployed to the Billing Care domain
as a referenced shared library.

To customize Billing Care, you perform the following tasks:

• Download and install the Billing Care SDK. See "Installing the Billing Care SDK" for
information.

• Download and install NetBeans IDE. See "Setting Up the Development Environment" for
more information.

• Configure a NetBeans IDE project for your customization. See "Setting Up a Billing Care
Customization Project" for more information.

• Connect NetBeans IDE to your development Billing Care domain. See "Configuring the
NetBeans IDE Connection to WebLogic Server" for more information.

• Perform your customizations.

• Package and deploy your customizations either as an exploded archive or web
application .war shared library to your Billing Care domain. See "Using an Exploded
Archive during Customization" and "Packaging and Deploying Customizations" for more
information.

• Test your customizations.

• Package production customizations in a .war file and deploy the shared library to all of
your Billing Care instances.

4-1

About Billing Care Modules
Billing Care is composed of unique functional modules. Each module includes an HTML view
and a JavaScript view model. Some modules may also contain a validation definition
specifying a module's field validation rules.

You configure module definitions in the registry file where a module's view, view model, and
validation rules are defined. When you customize a Billing Care module, you create a custom
registry file (customRegistry.js) defining your module configuration. See "About the Registry
File" for more information.

About Views
A view is the visible, interactive manifestation of the view model, written in HTML. The web
browser renders a view as a module's user interface (UI). It displays information from the view
model, triggers operations on the view model, and updates itself when the data in the view
model is changed.

About View Models
A view model is a JavaScript representation of the data and operations for your module. A view
model is independent of your page's controls (buttons, menus, fields), which are defined by
your HTML view.

You can reuse a view model with multiple views because of this independence. For example,
UI interfaces for your customer service representatives (CSRs) and self-care subscribers that
expose similar functionality can use the same view model while using unique views to provide
different functions to each user, depending on your business requirements.

When you create a custom view model, you create the view model's JavaScript file to support
any custom functionality you add to Billing Care. The JavaScript file is referenced in your
customRegistry.js and packaged and deployed in your Billing Care domain as part of the
customizations shared library.

About Data Binding between Views and View Models
Data is synchronized between views and view models within a module through the Knockout
open-source library. Data attributes in the view model are exposed as Knockout Observables.
The various HTML elements in the view bind themselves to these Observables so that the
server and UI updates are reflected in each other.

About the customModule.properties File
Configure Billing Care to override the default module logic with your customizations by creating
a customModule.properties file in the myproject/web/WEB-INF/classes/custom folder,
where myproject is your NetBeans IDE project folder containing your Billing Care
customizations.

You can override the default Billing Care logic in the following modules by specifying a
customized alternative for each of the following module keys in customModule.properties:

• account

• adjustment

Chapter 4
About Billing Care Modules

4-2

• allocation

• billing

• billunit

• collection

• dispute

• item

• notes

• oauthtoken

• payment

• paymentmethod

• requestinfo

• search

• service

• status

• subscription

• template

• writeoff

Each override you configure must contain an entry of the following format:

billingcare.rest.modulekey.module = com.company.module.custom

where:

• modulekey is the module for which you are overriding default logic.

• company is the name of the folder in your NetBeans IDE project myproject/src directory
structure where you place the source code for your overriding Java classes.

• custom is the subdirectory folder name in your NetBeans IDE project myproject/src
directory.

For example, if a company named samplecompany is overriding the default account module
with a custom account module named CustomAccountModule, use the following entry in
customModule.properties:

billingcare.rest.account.module = com.samplecompany.module.CustomAccountModule

This example assumes your custom module Java code is stored in the myproject/src/com/
samplecompany/modules directory.

See "Customizing Billing Care Templates" and "Extending and Creating Billing Care REST
Resources" for examples of when using a customModule.properties file are required.

About the Configuration.xml File
The Configurations.xml file contains flags controlling the display of specific account
attributes, timeout values, and BRM-related ENUM mappings. See "Editing the Billing Care
Configuration File" for more information.

Chapter 4
About the Configuration.xml File

4-3

About the Registry File
The registry file (Registry.js) dynamically loads dependencies, which avoids including hard-
coded paths for dependencies in the Billing Care files. The registry file provides a default
configuration, which the SDK can override.

To override the key and values of the Registry.js, create a customRegistry.js file with the
same given keys but new values. Include only the entries that need to be overridden in the
customRegistry.js file.

Note:

The key names in the registry.js file are subject to change. Refer to the latest
packaged registry.js file to view the registry key changes and then update your
custom code.

Managing Billing Care Modules Using the Registry File
The registry file is strictly a repository for describing a module. The registry has no logic for
invoking (displaying) the modules.

The following shows the accountBanner module definition in the default registry.js:

accountBanner: {
 view: 'text!templates/home/accountBannerView.html',
 viewmodel: 'viewmodels/home/accountBanner/AccountBannerViewModel'
}

You create a customRegistry.js file when:

• Replacing the view, view model, or validation logic for a Billing Care module. For example,
your business requires a different adjustment REST operation from the default Billing Care
operation, which also changes the fields defined in the UI. You can create a view model
(and optional validation rules) and then create a customRegistry.js to reference your files.

All elements within Billing Care that provide access to the edited module automatically use
your custom module.

• Adding custom modules to Billing Care. For example, you develop a new module for a
business requirement and add the module to Billing Care.

Because view model references retrieved through the registry are loaded using RequireJS,
they must conform to the asynchronous module definition (AMD) format.

Chapter 4
About the Registry File

4-4

Note:

The Billing Care view models are the modules' core elements that form the
application's body (Home tab, Bills tab, Assets, News Feed) and Billing Care overlays
(dialog boxes).

Common functionality across the overlays in Billing Care, including validation, data
saving, and navigation between the pages within the overlay, has been captured in a
reusable overlay view model that you should use when you create a custom overlay.
This helps ensure your module behaves like the rest of Billing Care.

About Billing Care View Model JavaScript Framework
This section provides an overview of the Billing Care JavaScript framework used in view
models and how to use an account record key across modules.

Access to the Open Account
The current account record is critical to most modules in Billing Care and will be equally crucial
to any custom modules developed with the SDK. A view model representing the open account
can be accessed using the following JavaScript code:

globalAppContext.currentAccountViewModel

About AJAX Calls
To improve security, the Billing Care SDK requires all AJAX requests to include cross-site
request forgery (CSRF) tokens.

You must add CSRF tokens to all your custom AJAX requests sent to the Billing Care SDK.
The Billing Care SDK will not authorize your custom AJAX requests without the token.

The following shows sample code for adding a CSRF token to an AJAX request:

$.ajax({
 type: "GET",
 dataType: "json",
 url: urlToFetch,
 beforeSend: function (xhr) {
 util.setRequestHeader(xhr)
 },
 contentType: "application/json; charset=utf-8"

}).done(function (data) {

}).fail(function (errorThrown) {

}).always(function () {

});

Chapter 4
About Billing Care View Model JavaScript Framework

4-5

Object IDs
Objects in the BRM database contain a unique identifier called a POID. The Billing Care REST
framework refers to these identifiers as references or refs. Table 4-1 displays a POID and its
equivalent reference ID.

Table 4-1 Example POID and Reference ID

POID Reference ID

0.0.0.1 /service/email12345 0.0.0.1+-service-email+12345

There are reference IDs throughout the Billing Care data model. POIDs are used when
interacting with BRM opcode input and output parameter lists (flists), but reference IDs are
used in the JavaScript layer.

The POID format is not suitable for a web application, so the REST framework provides two
static utility methods (restIdFromPoid and poidFromRestId) for converting a POID to and from
its own REST format. Sample syntax for calling the methods is provided below:

String BRMUtility.restIdFromPoid(String poid);
Poid BRMUtility.poidFromRestId(String restId);

About Error Handling in REST Operations
Error handling is a crucial aspect of Billing Care REST customization, and it has multiple
benefits, for example:

• Indicating the exact error to the application user

• Helping the application developer to debug the issues

The default Billing Care REST operations return an ErrorInfo object with an error code and
error message in case of any exception. The error object contains the following components:

• errorCode: A key used to retrieve a localized error message from the Billing Care
resource bundle.

Note:

A custom error code must start from the 70000 series. For example, 70001,
70002, and so on.

• errorMessage: The raw error message from the Billing Care REST layer.

• isValidationError: A true value indicates the error results from a BRM validation issue (for
example, an invalid country is specified).

Invoking Error Handing in Customizations
Invoke method buildErrorInfo() in ExceptionHelper.java to build the ErrorInfo object and return
the error object to the caller of the REST services when extending the Billing Care REST
framework with custom classes.

Chapter 4
About Error Handling in REST Operations

4-6

The method buildErrorInfo() in ExceptionHelper.java takes the error code and error message
as mandatory arguments and optional parameters like the response status, a Boolean value to
indicate validation error, an flist containing error parameters, and a list of error parameters in
the order mentioned.

By default, buildErrorInfo() builds and returns an error info object with a Boolean value of false
for the isValidationError attribute and an HTTP response status of BAD REQUEST (400).

About Custom Resource Authorization
Your customizations may require authorization configuration in Oracle Platform Security
Services (OPSS). See "Billing Care Security" for information on securing your Billing Care
installation.

The following sections provide general guidelines on how to perform authorization for protected
resources.

Performing Authorization in the Actions Menu
ActionsMenu.xml contains the tags <permission-key> and <action-key> to authorize menus.

For more information, see "Customizing the Billing Care Actions Menu".

Performing Authorization on the UI
To perform authorization on custom UI resources:

1. Define new ResourceTypes, Resources, and corresponding actions in the OPSS Server.

2. Add the new ResourceType to CustomConfigurations.xml.

For example, use the following definition when creating two new ResourceTypes that
control both your custom REST API (MyCustomRESTResourceType) and your custom
views (MyCustomViewResourceType):

<keyvals>
 <key>authorizationResourceTypes</key>
 <value>MyCustomRESTResourceType, MyCustomViewResourceType</value>
 <desc>Add comma separated OPSS Resource Types(values) for authorization. Define
these resource types in OPSS. Please note that the key should not be changed here.</
desc>
</keyvals>

3. Use the Billing Care JavaScript utility functions listed in Table 4-2 when performing
authorization on UI resources.

Table 4-2 Billing Care JavaScript Utility Functions

Resource Description

util.getAllResourceGrants() Gets all resource grants for UI authorization.

util.getGrantedActionsByResource(res
ourceName)

Gets granted actions for the given resourceName.

For example:

util.getGrantedActionsByResource('PaymentReso
urce);

Chapter 4
About Custom Resource Authorization

4-7

Table 4-2 (Cont.) Billing Care JavaScript Utility Functions

Resource Description

util.isGrantedResourceAction(action,
resourceName)

Checks whether the given action is granted for the given
resource.

For example:

util.isGrantedResourceAction('Make';'PaymentR
esource')

Performing Authorization on the REST Framework
To perform authorization on the REST framework:

1. Define ResourceTypes, Resources, and corresponding actions in OPSS Server.

2. In the REST resource operation that requires authorization, call
EnforcementUitl.checkAccess() by passing the required subject, Application Name, Action,
Resource Type, Resource, Error, and optional UIRequestValue objects as parameters.

UIRequestValue parameters are optional and used for handling obligations.

Note:

EnforcementUitl.checkAccess() returns an ‘ErrorInfo' object with status 401
Unauthorized when no grant exists on the requested resource for the specified
action.

Using REST Authorization without Obligations
To use REST authorization without obligations:

Subject subject = Security.getCurrentSubject();

 // create new error object

 EnforcementError error = new EnforcementError(20020,"You are not authorized to save
credit profile");

 EnforcementUtil.checkAccess(subject,
EnforcementConstants.APPLICATION,"make","CreditProfileResourceType","CreditProfileResourc
e",error);

Using REST Authorization with Obligations
To use REST authorization with obligations:

Subject subject = Security.getCurrentSubject();
 // create new error objects
EnforcementError ERROR_MIN_AMOUNT_LIMIT = new EnforcementError(20014, "The amount fall
short of your authorized limit.");
EnforcementError ERROR_MAX_AMOUNT_LIMIT = new EnforcementError(20015, "The amount
exceeds your authorized limit.");
UIRequestValue minCurrencyLimit = new UIRequestValue("Minimum Currency Adjustment
Amount",
adjustment.getAmount(), ConstraintOperator.LESS_THAN,

Chapter 4
About Custom Resource Authorization

4-8

ERROR_MIN_AMOUNT_LIMIT);
//If entered amount(UI value) is greater than OPSS 'max currency adjustment limit' then
throw error
UIRequestValue maxCurrencyLimit = new UIRequestValue("Maximum Currency Adjustment
Amount",
adjustment.getAmount(), ConstraintOperator.GREATER_THAN,
ERROR_MAX_AMOUNT_LIMIT);

Chapter 4
About Custom Resource Authorization

4-9

5
Customizing Billing Care Templates

Learn how to customize Oracle Communications Billing Care account search, event, and
Newsfeed templates.

Topics in this document:

• About Billing Care Templates

• Customizing Templates

• Example 1: Event Template Customization

• Example 2: Event Template Customization with New Fields

• Example 3: Newsfeed Template Customization

About Billing Care Templates
Templates define which columns Billing Care displays in account search, event, and Newsfeed
results tables and enable you to add and remove displayed data depending on your business
requirements. Event templates are specific to the Oracle Billing and Revenue Management
(BRM) /event storable class. You may use one or more event templates depending on the
supported events in BRM. A single template determines the displayed columns in the
Newsfeed, and displays data from the /newsfeed storable class. The account search template
is defined in the accountSearch.xml file.

See "Understanding Flists and Storable Classes" and "Creating Custom Fields and Storable
Classes" in BRM Developer's Guide for more information about BRM storable classes.

Templates can specify both BRM data in storable classes, and data from external sources. If
the data you want to display is not provided by default storable classes available in Billing
Care, extend the REST framework to retrieve the required data.

A template file contains four types of elements. Each <columnHeader> defined in the template
file contains a corresponding storable class <column> data definition of the type of data
contained in the column. The <filter> elements define search fields available to the user to
filter displayed data. The <sortbyFields> elements specifies field sorting behavior.

Table 5-1 lists the <columnHeader> properties in a template file.

Table 5-1 <columnHeader> Properties in Template Files

Property Description

alignment String specifying how to align column text with a cell

icon Boolean specifying if an image icon is used in the header

label String used as column header label

resizable Boolean specifying if the column width is resizable by user

sortable Boolean specifying if the results table is sortable by the column

tooltip String used for hover over tool tip for the column

5-1

Table 5-1 (Cont.) <columnHeader> Properties in Template Files

Property Description

visible Boolean specifying if the column is visible

width Width of column specified as percentage

Table 5-2 lists the <column> properties in a template file. See the genericTemplate.xml file
included in the SDK_home/references/eventtemplates, where SDK_home is the Billing Care
SDK installation directory, for an example of how column properties are specified.

Table 5-2 <column> Properties in Template Files

Property Description

column name Specifies the ID used to map between the column header and column
definitions.

fields Specifies the BRM fields that will be displayed in the column.

format Specifies the format of the text to be displayed. Used exclusively when
type is text.

formula Optional. If specified, the formula is applied on the specified <field>
entries. Can be useful to perform math with multiple fields and display
the calculated result.

styles Specifies the CSS style for the data in a given column.

type Specifies the data type of the column. Billing Care performs formatting
appropriate to the data type. Supported data types include:

• id
• date
• time
• currency
• text
• image
• multi
• Boolean
• enum
• duration
• phoneNumber

types Used when type is multi, this enables you to specify the data types of
the specified fields

Table 5-3 lists the <filter> properties in a template file. Each filter contains one or more
<criteria> definitions using the properties listed.

Note:

The filter definition applies only to events templates.

Chapter 5
About Billing Care Templates

5-2

Table 5-3 <filter> Properties in Template Files

Property Description

fieldGroups Groups listed <criteria> together into a single filter.

groupLabel Specifies the name of the grouped <criteria>.

groupOperator Supports AND and OR values for setting the exclusivity of the grouped
<criteria> when filtering results.

inputType Specifies the type of data used in <criteria>.

visible Boolean specifying if a <criteria> is visible in Billing Care.

Table 5-4 lists the <sortbyFields> properties in a template file.

Table 5-4 <sortbyFields> Properties in Template Files

Property Description

defaultSort Specifies the default sorting behavior.

sortingOrder Specifies either ascending or descending sort order.

sortingPriority Lists the fields and priority (by order listed) used to sort displayed
results

Customizing Templates
You customize the columns displayed for events and in the Newsfeed by creating custom
template files and including these templates, and any required Java code extensions, in your
deployed customizations shared library.

The Billing Care SDK includes the default templates used by Billing Care in the SDK_home/
references/eventtemplates and SDK_home/references/newsfeedtemplates directories,
where SDK_home is the directory in which you installed the SDK. The account search
template is defined in the SDK_home/references/accountSearch.xml file.

The SDK_home/samples/SDKTemplatesCustomization directory includes sample templates
for customized events and the Newsfeed, and sample Java code for extending the REST
framework to retrieve additional data. Use these samples as guidelines when creating custom
templates and REST extensions. A README.txt file is provided with additional detail on
creating custom templates.

Customize Event and Newsfeed templates by:

• Removing Columns from a Template

• Adding Columns to a Template

• Extending the REST Framework to Support New Column Fields

• Creating a customModule.properties File

Example procedures for customizing templates are provided in the following reference sections
at the end of this chapter:

• Example 1: Event Template Customization

• Example 2: Event Template Customization with New Fields

Chapter 5
Customizing Templates

5-3

• Example 3: Newsfeed Template Customization

Removing Columns from a Template
Remove unwanted events and Newsfeed columns from displaying in Billing Care by either
deleting the column entries from the template file for or setting the visible property for the
column to false.

To remove a column from an event or Newsfeed template and prevent the column from
displaying in Billing Care:

1. Make a copy of a default event or Newsfeed template in your myproject/web/WEB-INF/
classes/custom/eventtemplates or myproject/web/WEB-INF/classes/custom/
newsfeedtemplates, where myproject is the directory for your NetBeans IDE
customization project. Preface the template name with Custom. For example, to
customize the template for the /event/delayed/session/telco/gsm/sms event, use
CustomserviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml.

2. Open your template file in a text editor.

3. Do one of the following:

• Remove both the <columnHeader> and storable class <column> elements from your
template for the column you want to remove.

• Set the <columnHeader> visible property to false for the column you want to hide.

4. Save and close the file.

5. Do one of the following:

• If you are using an exploded archive for your shared library, log out of and back into
Billing Care to verify your updated template. See "About Using an Exploded Archive"
for more information about using exploded archives.

• Package your customizations shared library and deploy it to your Billing Care domain.
Redeploy Billing Care and login to verify your updated template. See "Packaging and
Deploying Customizations" for more information on packaging and deploying your
customizations.

Adding Columns to a Template
Add columns in an events or the Newsfeed template for display in Billing Care by adding
elements for the new columns in a template file. The new columns can contain BRM fields in
the /event or /newsfeed storable classes or custom classes. Custom /event classes require
extension of the REST framework to retrieve required data for display.

To add additional columns in a template and display the column in Billing Care:

1. Make a copy of a default event or Newsfeed template (or create a template for a custom
event) in your myproject/web/WEB-INF/classes/custom/eventtemplates or
myproject/web/WEB-INF/classes/custom/newsfeedtemplates, where myproject is the
directory for your NetBeans IDE customization project. Preface the template name with
Custom. For example, to customize the template for the /event/delayed/session/
telco/gsm/sms event, use
CustomserviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml.

2. Open your template file in a text editor.

3. Add both the <columnHeader> and storable class <column> elements from your template
for the new column you want to add.

Chapter 5
Customizing Templates

5-4

4. Save and close the file.

5. If necessary, extend the REST framework to retrieve any data unavailable in the default
storable classes. See "Extending the REST Framework to Support New Column Fields" for
more information on extending the REST framework.

6. If necessary, create a customModule.properties entry specifying when Billing Care
should override a module's default logic with your customizations. See "Creating a
customModule.properties File" for more information.

7. Do one of the following:

• If you are using an exploded archive for your shared library, log out of and back into
Billing Care to verify your updated template. See "About Using an Exploded Archive"
for more information about using exploded archives.

• Package your customizations shared library and deploy it to your Billing Care domain.
Redeploy Billing Care and login to verify your updated template. See "Packaging and
Deploying Customizations" for more information on packaging and deploying your
customizations.

Extending the REST Framework to Support New Column Fields
Create custom Java classes to retrieve and display new fields for columns you add. The
following procedure provides an overview of the required classes. See the following examples
for sample classes:

• Example 2: Event Template Customization with New Fields

• Example 3: Newsfeed Template Customization

To add custom fields to an event template and customize the REST framework to support the
new field:

1. Create a custom event template in your NetBeans IDE customization project. See "Adding
Columns to a Template" for more information.

2. Create a custom event worker Java class in myproject/src/com/company/templates to
retrieve the data for the new field, where company is a folder named for your company,
that extends from
com.oracle.communications.brm.cc.modules.pcm.workers.TemplateEventWorker.

3. Create a custom event template factory Java class in myproject/src/com/company/
templates to return an instance of your custom worker from step 2.

4. Create a custom template module class in myproject/src/com/company/templates to
return an instance of your custom event template factory from step 3.

5. Compile your custom Java classes using NetBeans IDE.

6. Add your customization files to your NetBeans IDE project (myproject):

• Add the customModule.properties in the myproject/web/WEB-INF/classes/custom
folder.

• Add the custom template file in the myproject/web/WEB-INF/classes/custom/
eventtemplates folder.

7. Right-click your NetBeans IDE project and select Clean and Build.

8. Package and deploy your custom templates to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

9. Verify your changes in Billing Care.

Chapter 5
Customizing Templates

5-5

Creating a customModule.properties File
Configure an entry in the customModule.properties file for each Billing Care module where
you override default logic with your customizations. See "About the customModule.properties
File" for more information on specifying custom module behavior in
customModule.properties.

Example 1: Event Template Customization
This example includes changing the events template for SMS usage. In this example
procedure:

• The new field rum_name is added to show the value of the BRM PIN_FLD_RUM_NAME
field. RUM refers to the ratable usage metric in BRM.

• The existing field destination_network is removed.

To customize the events template with the stated changes:

1. Create a CustomserviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml template
file in the myproject/web/custom/eventtemplates folder by copying the default
serviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml available in the
SDK_home/references/eventtemplates folder.

2. Add new <columnHeader> and <column> elements to
CustomserviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml.

Add the <columnHeader> in the <column> in the appropriate location. For example, if you
add the <columnHeader> as the fifth element, make sure you add the <column> as the fifth
column element.

<columnHeader name="rum_name">
 <label>Rum Name</label>
 <width>10%</width>
 <visible>true</visible>
 <sortable>false</sortable>
 <tooltip>Rum Name of the event</tooltip>
 <resizable>true</resizable>
 <alignment>center</alignment>
 </columnHeader>
……..
<column name="rum_name">
 <type>text</type>
 <fields>rumName</fields>
 </column>

3. Remove the existing destination_network column from the template by removing the
<columnHeader> and <column> elements named destination_network as shown:

<columnHeader name="destination_network">
 <label>DESTINATION_NETWORK</label>
 <width>10%</width>
 <visible>true</visible>
 <sortable>true</sortable>
 <tooltip>DESTINATION_NETWORK_HINT</tooltip>
 <resizable>true</resizable>
 <alignment>left</alignment>
 </columnHeader>
……..

Chapter 5
Example 1: Event Template Customization

5-6

 <column name="destination_network">
 <type>text</type>
 <styles>template-subtle-text</styles>
 <fields>telcoInfo.destinationNetwork</fields>
 <types>string</types>
 </column>

4. Save your template file.

5. Add your customization files to your NetBeans IDE project folder (myproject), by adding
the custom template file in the myproject/web/WEB-INF/classes/custom/eventtemplates
folder.

6. Right-click your NetBeans IDE project and select Clean and Build.

7. Package and deploy your custom templates to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

8. Verify your changes in Billing Care.

Example 2: Event Template Customization with New Fields
This example shows how to customize the REST code to support a new field. In this example
procedure:

• A custom template is created with new <columnHeader> and <column> elements to display
a new column called adjustments.

• The destination_network column is removed from the template.

• Required custom Java classes are coded to retrieve the new data for display in Billing
Care

To add and delete fields in the event template and customize the REST code to support the
new field:

1. Create a CustomserviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml template
file in the myproject/web/custom/eventtemplates folder by copying the default
serviceTelcoGsmSms_eventDelayedSessionTelcoGsm.xml available in the
SDK_home/references/eventtemplates folder.

2. Add a new <columnHeader> and <column> for Event Adjustments to the XML file.

Make sure you add the <columnHeader> and <column> in the appropriate location. For
example if you have added the <columnHeader> as the fifth element, make sure you add
the <column> as the fifth column element.

<columnHeader name="adjustments">
 <label>Event Adjustments</label>
 <width>10%</width>
 <visible>true</visible>
 <sortable>false</sortable>
 <tooltip>Event Adjustments</tooltip>
 <resizable>true</resizable>
 <alignment>left</alignment>
 </columnHeader>
……..

<column name="adjustments">
 <type>currency</type>
 <format>{0}</format>
 <fields>accountObj</fields>

Chapter 5
Example 2: Event Template Customization with New Fields

5-7

 <fields>id</fields>
 </column>

3. Remove the existing destination_network column from the template by removing the
<columnHeader> and <column> elements named destination_network as shown:

<columnHeader name="destination_network">
 <label>DESTINATION_NETWORK</label>
 <width>10%</width>
 <visible>true</visible>
 <sortable>true</sortable>
 <tooltip>DESTINATION_NETWORK_HINT</tooltip>
 <resizable>true</resizable>
 <alignment>left</alignment>
 </columnHeader>
……..
 <column name="destination_network">
 <type>text</type>
 <styles>template-subtle-text</styles>
 <fields>telcoInfo.destinationNetwork</fields>
 <types>string</types>
 </column>

4. Save your template file.

5. To add custom logic to retrieve the data needed for the adjustments column, create a
custom TemplateMyCustomEventWorker class.

In this example, a new BRM opcode AR_RESOURCE_AGGREGATION is called to
retrieve the adjustment made for an event, which overrides the
processFieldForColumnName() method of the default TemplateEventWorker class. If
the column name is adjustments, then the opcode AR_RESOURCE_AGGREGATION is
called:

public class TemplateMyCustomEventWorker extends TemplateEventWorker{

 @Override
protected void processFieldForColumnName(ColumnarRecord.Entries.Cells viCol, String
storableClassType, FList flist, ColumnarRecord.Entries row, String field, Object
value) throws Exception {
if ("adjustments".equalsIgnoreCase(viCol.getName())) {
 if (field.equals("id")) {
 Poid acctPoid =flist.get(FldAccountObj.getInst());
 Poid eventPoid =flist.get(FldPoid.getInst());
 FList inputFlist = new FList();
 inputFlist.set(FldPoid.getInst(),acctPoid);
 inputFlist.set(FldPoid.getInst(),acctPoid);
 FList eventInfo = new FList();
 eventInfo.set(FldPoid.getInst(),eventPoid);
 inputFlist.setElement(FldEvents.getInst(), 0, eventInfo);
 FList outFlist = opcode(PortalOp.AR_RESOURCE_AGGREGATION, inputFlist);
 BigDecimal adjustAmount = getAdjustmenAmount(outFlist);
 viCol.getArgs().add(adjustAmount.toString());
 }
 }else {
 super.processFieldForColumnName(viCol, storableClassType, flist, row,
field, value);
 }
 }
 private BigDecimal getAdjustmenAmount(FList flist) throws EBufException {
 BigDecimal amountAdjustValue = new BigDecimal(0);
 if (flist.hasField(FldResults.getInst())) {
 SparseArray resultsArray = flist.get(FldResults.getInst());
 Enumeration results = resultsArray.elements();

Chapter 5
Example 2: Event Template Customization with New Fields

5-8

 while (results.hasMoreElements()) {
 FList balFlist = (FList) results.nextElement();
 if (balFlist.hasField(FldAdjusted.getInst()) &&
balFlist.hasField(FldResourceId.getInst())) {
 Integer resourceId = balFlist.get(FldResourceId.getInst());
 if (BEIDManager.isCurrency(resourceId)) {
 amountAdjustValue = balFlist.get(FldAdjusted.getInst());
 break;
 }
 }
 }
 }
 return amountAdjustValue;
 }
}

6. Create a custom CustomTemplateFactory class and override its getTemplate() method
to return the TemplateMyCustomEventWorker class (instead of the default
TemplateEventWorker.java class):

public class CustomTemplateFactory extends TemplateFactory {

 @Override
 public TemplateBaseWorker getTemplateWorker(String templateType){
 if(BillingCareConstants.EVENT.equalsIgnoreCase(templateType)){
 return new TemplateMyCustomEventWorker();
 }else {
 return super.getTemplateWorker(templateType);
 }
 }
}

7. Create a custom template module class by extending the PCMTemplateModule class to
override the getTemplate() method to return the new CustomTemplateFactory:

 public class CustomPCMTemplateModule extends PCMTemplateModule {
 @Override
 protected TemplateFactory getTemplateFactoryInstance(){
 return new CustomTemplateFactory();
 }
}

8. In the NetBeans IDE, create a new Java project with all the mentioned Java files and XML
files in the appropriate folders and include the jars required to compile and build the
project.

9. Add your customization files to your NetBeans IDE project folder (myproject):

• Add an entry in the customModule.properties in the myproject/web/WEB-INF/
classes/custom folder to override the default template module as follows:

billingcare.rest.template.module=com.company.modules.CustomPCMTemplateModul
e
where company is the company name used in your myproject/src directory.

• Add the custom template file in the myproject/web/WEB-INF/classes/custom/
eventtemplates folder.

10. Right-click your NetBeans IDE project and select Clean and Build.

11. Package and deploy your custom templates to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

12. Verify your changes in Billing Care.

Chapter 5
Example 2: Event Template Customization with New Fields

5-9

Example 3: Newsfeed Template Customization
The following procedure shows how to customize the Newsfeed template by providing an
example of adding a new column named billStatus. In this example procedure:

• A custom template is created with new <columnHeader> and <column> elements to display
a new column called billStatus.

• Required custom Java classes are coded to retrieve the new data for display in Billing
Care

To add a field in the Newsfeed template and customize the REST code to support the new
field:

1. Create a Customnewsfeed.xml template file in the myproject/web/custom/
newsfeedtemplates folder by copying the default newsfeed.xml available in the
SDK_home/reference/newsfeedtemplates folder.

2. Add a new <columnHeader> and <column> in the XML file Customnewsfeed.xml.

In this example, the field object is added as a BRM field to retrieve the billStatus of a /bill
object.

 <columnHeader name="billStatus">
 <label>Bill Status</label>
 <width>10%</width>
 <visible>true</visible>
 <sortable>false</sortable>
 <tooltip>Status of the Bill</tooltip>
 <resizable>true</resizable>
 <alignment>left</alignment>
 </columnHeader>
……..
<column name="billStatus">
 <type>text</type>
 <fields>object</fields>
 </column>

3. Save your template file.

4. Create a custom TemplateMyCustomNewsfeedWorker class to add custom logic to
retrieve the data needed for the billStatus column.

In this example, a new BRM opcode PCM_OP_READ_READS opcode is used to retrieve
the status of a bill object, then overrides the processFieldForColumnName() method of
the TemplateNewsfeedWorker class. This method checks if the column name is
billStatus. If so, then the method gets the FLD_DUE amount by calling the opcode
PCM_OP_READ_READS.

public class TemplateMyCustomNewsfeedWorker extends TemplateNewsFeedWorker {
 @Override
 protected void processFieldForColumnName(ColumnarRecord.Entries.Cells viCol,
String storableClassType, FList flist, ColumnarRecord.Entries row, String field,
Object value) throws Exception {
 if ("billStatus".equalsIgnoreCase(viCol.getName())) {
 if (flist.hasField(FldObject.getInst())) {
 String billType = null;
 billType = flist.get(FldObject.getInst()).getType();
 if (billType != null && billType.equalsIgnoreCase("/bill")) {
 FList billDueinputFList = new FList();
 billDueinputFList.set(FldPoid.getInst(),
flist.get(FldObject.getInst()));

Chapter 5
Example 3: Newsfeed Template Customization

5-10

 billDueinputFList.set(FldDue.getInst());
 FList billDueOutputFList = opcode(PortalOp.READ_FLDS,
billDueinputFList);
 BigDecimal billDue =
billDueOutputFList.get(FldDue.getInst());
 if (!billDue.equals(BigDecimal.ZERO)) {
 viCol.getArgs().add("Pending");
 return;
 } else {
 viCol.getArgs().add("Paid");
 return;
 }
 }
 }else {
 viCol.getArgs().add("");
 }
 }else {
 super.processFieldForColumnName(viCol, storableClassType, flist, row,
field, value);
 }
 }
}

5. Create a custom CustomTemplateFactory Java class and override the getTemplate()
method to return the TemplateMyCustomNewsfeedWorker Java class (instead of the
default TemplateNewsfeedWorker Java class).

public class CustomTemplateFactory extends TemplateFactory {

 @Override
 public TemplateBaseWorker getTemplateWorker(String templateType){
 if(BillingCareConstants.NEWSFEED.equalsIgnoreCase(templateType)){
 return new TemplateMyCustomNewsfeedWorker();
 } else {
 return super.getTemplateWorker(templateType);
 }
 }
}

6. Create a custom template module class by extending the PCMTemplateModule Java
class and overriding its getTemplate() method:

public class CustomPCMTemplateModule extends PCMTemplateModule {

 @Override
 protected TemplateFactory getTemplateFactoryInstance(){
 return new CustomTemplateFactory();
 }
}

7. In the NetBeans IDE, create a new Java project with all the mentioned Java files and XML
files in the appropriate folders and include the jars required to compile and build the
project.

8. Add your customization files to your NetBeans IDE project folder (myproject):

• Add the customModule.properties in the myproject/web/WEB-INF/classes/custom
folder.

• Add the custom template file in the myproject/web/WEB-INF/classes/custom/
eventtemplates folder.

9. Right-click your NetBeans IDE project and select Clean and Build.

10. Package and deploy your custom templates to your Billing Care domain.

Chapter 5
Example 3: Newsfeed Template Customization

5-11

For more information, see "Packaging and Deploying Customizations".

11. Verify your changes in Billing Care.

Chapter 5
Example 3: Newsfeed Template Customization

5-12

6
Customizing Billing Care Themes and Logo

Learn how to customize the appearance of Oracle Communications Billing Care by using
themes and changing the login screen logo.

Topics in this document:

• About Billing Care Themes and Logo

• About Customizing Billing Care Themes

• Adding a New Theme

• Overriding Themes

• Setting Which Billing Care Theme to Use

• Changing the Default Logo

About Billing Care Themes and Logo
Billing Care includes two theme cascading style sheet (CSS) that determine the Billing Care
look and feel. CSS enables you to alter Billing Care's appearance (for example, colors and
fonts) for your business needs. By default, theme_alta.css is enabled. An alternative theme
named theme_default.css is also included. An entry in the registry file specifies which CSS
file Billing Care uses.

Additionally, override CSS files can be used to change the appearance of specific elements in
Billing Care when needed. For example, the Billing Care login page uses a CSS that specifies
the displayed logo graphic file. See "Changing the Default Logo" for more information on using
a custom logo.

The Billing Care SDK includes sample CSS files named customTheme.css and override.css
in the SDK_home/samples/Themes/css directory, where SDK_home is the directory where
you installed the SDK. Use these files when creating custom themes and overrides to change
the Billing Care look and feel.

Note:

The theme_default.css and theme_alta.css files are not included in the Billing Care
SDK. To retrieve these files for customization, set the desired theme using the
registry file, then view and download the CSS using your browsers development
tools.

About Customizing Billing Care Themes
You can customize Billing Care in the following ways:

• Adding a New Theme

• Overriding Themes

6-1

• Setting Which Billing Care Theme to Use

Adding a New Theme
Add a new theme to Billing Care by creating a CSS file and including it in your customizations
shared library. The SDK includes a sample custom theme named customTheme.css in the
SDK_home/samples/Themes/css directory, where SDK_home is the directory where you
installed the SDK. Use this sample theme when creating your custom theme.

To add a theme:

1. Create a new CSS file (for example, mytheme.css).

2. Copy your custom CSS file to the myproject/web/css directory, where myproject is the
NetBeans IDE project directory containing your Billing Care customizations.

3. Set Billing Care to use your custom theme in the registry file and deploy your custom
theme to your Billing Care domain. See "Setting Which Billing Care Theme to Use" for
instructions on specifying a theme in the registry and deploying your theme in the Billing
Care domain.

Overriding Themes
You can override and add styles to the existing theme's CSS file. Billing Care applies the
registry's configured theme first, then applies any override theme modifications. The SDK
includes a sample override CSS file named override.css in the SDK_home/samples/
Themes/css directory, where SDK_home is the directory where you installed the SDK.

To override and add styles to an existing theme:

1. Write a CSS file that overrides or adds styles (for example, theme_custom.css).

2. In the customRegistry.js file, add an entry under cssFiles for your override CSS file in
the others parameter as shown in Example 6-1. See "About the Registry File" for more
information on how to create a custom registry file.

3. Copy your override CSS file to the myproject/web/css directory, where myproject is the
NetBeans IDE project directory containing your Billing Care customizations.

4. Confirm Billing Care is configured to use your custom theme and overrides in the registry
file and deploy your overrides to the Billing Care domain. See "Setting Which Billing Care
Theme to Use" for instructions on specifying a theme in the registry and deploying your
theme to the Billing Care domain.

Example 6-1 Theme Override Registry File Example

var CustomRegistry= {
 cssFiles: {
 themeCss: 'css/theme_default.css', //switching among the existing themes
 others: ['css/theme_custom.css'] //then overriding/adding to it
 }
};

Setting Which Billing Care Theme to Use
Switch between themes by adding an entry in customRegistry.js using the same key as used
in Registry.js, which points to the required theme's CSS file. See "About the Registry File" for
information on creating the customRegistry.js file and including it in your shared library for
deployment to your Billing Care domain.

Chapter 6
Adding a New Theme

6-2

Example 6-2 shows the entry in the registry file where a custom theme is specified.

Example 6-2 Billing Care Theme Registry Entry

var CustomRegistry= {
cssFiles: {
themeCss: 'css/theme_default.css'
}
 };

To switch Billing Care themes:

1. Create a customRegistry.js file in a text editor. See "About the Registry File" for more
information on how to create a custom registry file.

2. Update the customRegistry.js file specifying your CSS file in the themeCss entry.

3. Save and close the file.

4. Do one of the following:

• If you are using an exploded archive for your shared library, log out of and back into
Billing Care to see the new theme. See "About Using an Exploded Archive" for more
information about using exploded archives.

• Package your customizations shared library and deploy it to your Billing Care domain.
Redeploy Billing Care and login to see the new theme. See "Packaging and Deploying
Customizations" for more information on packaging and deploying your
customizations.

Changing the Default Logo
By default, Billing Care displays the Oracle logo on the login page and in the header section
that appears after you login.

To change the default logo:

1. Copy your custom logo into the myproject/web/resources/public/images directory, where
myproject is the NetBeans IDE project directory containing your Billing Care
customizations.

2. To change the default logo that appears on the login page, do the following:

a. Using the NetBeans IDE text editor, create an overrides-login.css file in the
myproject/web/resources/public/css directory.

Ensure that the overrides-login.css file contains the location and size of your custom
logo image file as shown in Example 6-3.

b. Adjust the margin, width, height, and float values in overrides-login.css so that your
image renders properly.

c. Save and close the file.

3. To change the default logo in the header section that appears after you login, do the
following:

a. Using the NetBeans IDE text editor, create an overrides.css file in the
myproject/web/css directory.

b. Add the entries as shown in Example 6-3.

c. Change the following entry:

 background: url("../images/imagefile") no-repeat;!important;

Chapter 6
Changing the Default Logo

6-3

To this:

 background: url(""../../resources/public/images/imagefile") no-repeat !
important;

where imagefile references your custom logo image file located in your NetBeans
project.

d. Adjust the margin, width, height, and float values in overrides.css so that your image
renders properly.

e. Save and close the file.

4. Do one of the following:

• If you are using an exploded archive for your shared library, log out of and back into
Billing Care to see the new theme. See "About Using an Exploded Archive" for more
information about using exploded archives.

• Package your customizations shared library and deploy it to your Billing Care domain.
Redeploy Billing Care and login to see the new theme. See "Packaging and Deploying
Customizations" for more information on packaging and deploying your
customizations.

Example 6-3 Sample overrides-login.css File

/**
 This is the CSS where an SDK developer can do out of box logo header changes.
 Below example shows how to override the oracle logo that comes with
 default Billing Care package.
**/
#logoHeader{
 height: auto;
}
#logoHeader .row .col span.logo-oracle {
 background: url("../images/star-shape.png") no-repeat;
 margin: -3px 24px 0 12px;
 width: 100px;
 height: 80px;
 float: left;
}

Chapter 6
Changing the Default Logo

6-4

7
Editing the Billing Care Configuration File

Learn how to customize the Oracle Communications Billing Care interface by creating a
custom version of the Configurations.xml file.

Topics in this document:

• About the Billing Care Configuration File

• Creating a Custom Configuration File

• Default Configuration File Entries

About the Billing Care Configuration File
The Configurations.xml file controls the following elements of Billing Care:

• Mappings that determine what values are displayed for module keys. See Table 7-1.

• Flags for showing or hiding module elements. See Table 7-2.

• Threshold values for connection timeouts and pagination. See Table 7-3.

• Registry values that determine how Billing Care renders modules. See Table 7-4.

• Keyval categories displayed in the newsfeed. See Table 7-5.

Creating a Custom Configuration File
To change default behavior, create a CustomConfigurations.xml file, and package it in the
customizations shared library that you deploy to the Billing Care domain.

To create a CustomConfigurations.xml file:

1. Copy the SDK_home/references/Configurations.xml file to the myproject/web/custom/
configurations directory.

where:

• SDK_home is the directory in which you installed the Billing Care SDK.

• myproject is your NetBeans IDE Billing Care customizations project.

2. Open the CustomConfigurations.xml file, and edit the entries you want to change.

For a list of the default configuration file entries, see "Default Configuration File Entries".

3. Save and close the file.

4. Include the CustomConfigurations.xml file when you package your customizations
shared library for deployment to your Billing Care domain.

For more information on packaging and deploying your customizations, see "Packaging
and Deploying Customizations".

7-1

Default Configuration File Entries
The following tables show the default values in the Configurations.xml file.

Table 7-1 lists the configurable mappings and their default values.

Table 7-1 Mapping Values in Configuration File

Configuration Key and
Description

Default Values Types

account.contact.phone.typ
es
Phone types displayed in the
Account Profile overlay.

Permits adding, rearranging,
and renaming the phone
types.

<mapping>
 <key>account.contact.phone.types</key>
 <map>
 <id>1</id>
 <key>HOME</key>
 </map>
 <map>
 <id>2</id>
 <key>WORK</key>
 </map>
 <map>
 <id>3</id>
 <key>FAX</key>
 </map>
 <map>
 <id>4</id>
 <key>PAGER</key>
 </map>
 <map>
 <id>5</id>
 <key>MOBILE</key>
 </map>
 <map>
 <id>6</id>
 <key>POP</key>
 </map>
 <map>
 <id>7</id>
 <key>SUPPORT</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

Chapter 7
Default Configuration File Entries

7-2

Table 7-1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description

Default Values Types

account.contact.types
Contact types displayed in
the Account Profile overlay.

Permits adding, rearranging,
and renaming the contact
types.

<mapping>
 <key>account.contact.types</key>
 <map>
 <id>1</id>
 <key>PRIMARY</key>
 </map>
 <map>
 <id>2</id>
 <key>ADDITIONAL</key>
 </map>
 <map>
 <id>3</id>
 <key>ACCOUNTHOLDER</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

account.customer.types
Customer types displayed in
the Account Profile overlay.

Permits adding, rearranging,
and renaming the customer
types.

<mapping>
 <key>account.customer.types</key>
 <map>
 <id>1</id>
 <key>PLATINUM</key>
 </map>
 <map>
 <id>2</id>
 <key>GOLD</key>
 </map>
 <map>
 <id>3</id>
 <key>SILVER</key>
 </map>
 <map>
 <id>4</id>
 <key>BRONZE</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

Chapter 7
Default Configuration File Entries

7-3

Table 7-1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description

Default Values Types

account.locale.mapping
Because browser and BRM
language codes are different,
this configuration acts like a
mapping.

<mapping>
 <key>account.locale.mapping</key>
 <map>
 <id>cs</id>
 <key>cz</key>
 </map>
 <map>
 <id>bg</id>
 <key>bg_BG</key>
 </map>
 <map>
 <id>hr</id>
 <key>hr_HR</key>
 </map>
 <map>
 <id>sl</id>
 <key>sl_SI</key>
 </map>
 <map>
 <id>nb</id>
 <key>no</key>
 </map>
 <map>
 <id>nn</id>
 <key>no_NY</key>
 </map>
 <map>
 <id>sv</id>
 <key>sve</key>
 </map>
 <map>
 <id>en_GB</id>
 <key>en_UK</key>
 </map>
 <map>
 <id>he</id>
 <key>iw_IL</key>
 </map>
 <desc></desc>
</mapping>

id: String that
represents the browser
language.

key: String that
represents the BRM
language (BRM locale
value).

Chapter 7
Default Configuration File Entries

7-4

Table 7-1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description

Default Values Types

account.status.types
Status types displayed in the
Account Status overlay and
the account banner.

Permits rearranging and
renaming the status types.

<mapping>
 <key>account.status.types</key>
 <map>
 <id>10100</id>
 <key>ACTIVE</key>
 </map>
 <map>
 <id>10102</id>
 <key>INACTIVE</key>
 </map>
 <map>
 <id>10103</id>
 <key>CLOSED</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

Chapter 7
Default Configuration File Entries

7-5

Table 7-1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description

Default Values Types

account.taxExemptions.typ
es
Tax exemption types
displayed in the Tax Setup
overlay.

Permits adding, rearranging,
and renaming the tax
exemptions.

Note: Make sure BRM
supports the tax exemption
when you add a new type.

<mapping>
 <key>account.taxExemptions.types</key>
 <map>
 <id>0</id>
 <key>FEDERAL</key>
 </map>
 <map>
 <id>1</id>
 <key>STATE</key>
 </map>
 <map>
 <id>2</id>
 <key>COUNTRY</key>
 </map>
 <map>
 <id>3</id>
 <key>CITY</key>
 </map>
 <map>
 <id>4</id>
 <key>SECONDARY_COUNTRY</key>
 </map>
 <map>
 <id>5</id>
 <key>SECONDARY_CITY</key>
 </map>
 <map>
 <id>6</id>
 <key>TERRITORY</key>
 </map>
 <map>
 <id>7</id>
 <key>SECONDARY_STATE</key>
 </map>
 <map>
 <id>8</id>
 <key>DISTRICT</key>
 </map>
 <map>
 <id>9</id>
 <key>SECONDARY_FEDERAL</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

Chapter 7
Default Configuration File Entries

7-6

Table 7-1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description

Default Values Types

billUnit.accountingTypes
Accounting types in the Bill
Unit overlay.

Permits adding, rearranging,
and renaming the accounting
types.

Note: By default, BRM
supports only balance
forward and open item
accounting. Before adding an
accounting type, do the
necessary customizations in
BRM.

<mapping>
 <key>billUnit.accountingTypes</key>
 <map>
 <id>1</id>
 <key>OPEN_ITEM</key>
 </map>
 <map>
 <id>2</id>
 <key>BALANCE_FORWARD</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

billUnit.billingFrequencyIn
Months
Billing frequency in the Bill
Unit overlay.

Permits adding, rearranging,
and renaming the billing
frequency.

Example: An SDK developer
can add "6 months" as an
option in the drop-down.

<mapping>
 <key>billUnit.billingFrequencyInMonths</key>
 <map>
 <id>1</id>
 <key>MONTHLY</key>
 </map>
 <map>
 <id>2</id>
 <key>BI_MONTHLY</key>
 </map>
 <map>
 <id>3</id>
 <key>QUARTERLY</key>
 </map>
 <map>
 <id>12</id>
 <key>ANNUAL</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

billUnit.correctiveInvoiceTy
pe
Corrective invoice types
supported for bill units.

<mapping>
 <key>billUnit.correctiveInvoiceType</key>
 <map>
 <id>0</id>
 <key>REPLACEMENT_INVOICE</key>
 </map>
 <map>
 <id>4</id>
 <key>CORRECTIVE_INVOICE</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

Chapter 7
Default Configuration File Entries

7-7

Table 7-1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description

Default Values Types

billunit.status
The status type that
represents the state of the bill
units in collections.

Permits rearranging and
renaming of the values.

<mapping>
 <key>billunit.status</key>
 <map>
 <id>0</id>
 <key>DEFUNCT</key>
 </map>
 <map>
 <id>10100</id>
 <key>ACTIVE</key>
 </map>
 <map>
 <id>10200</id>
 <key>INACTIVE</key>
 </map>
 <map>
 <id>10300</id>
 <key>CLOSED</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

collections.action.status
Displays the action status for
collections.

<mapping>
 <key>collections.action.status</key>
 <map>
 <id>0</id>
 <key>PENDING</key>
 </map>
 <map>
 <id>1</id>
 <key>CANCELLED</key>
 </map>
 <map>
 <id>2</id>
 <key>COMPLETED</key>
 </map>
 <map>
 <id>5</id>
 <key>WAITING_FOR_DEPENDENTS</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

Chapter 7
Default Configuration File Entries

7-8

Table 7-1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description

Default Values Types

device.sim.status
The state of the Subscriber
Identity Module (SIM) in the
device.

<mapping>
 <key>device.sim.status</key>
 <map>
 <id>1</id>
 <key>NEW</key>
 </map>
 <map>
 <id>2</id>
 <key>RELEASED</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String.

device.sim.networkElement
The available wireless
network element that is used
for associating the SIM or the
device number (NUM) with
the Telco service.

<mapping>
 <key>device.sim.networkElement</key>
 <map>
 <id>sample_network_element_1</id>
 <key>SAMPLE_NETWORK_ELEMENT_1</key>
 </map>
 <map>
 <id>sample_network_element_2</id>
 <key>SAMPLE_NETWORK_ELEMENT_2</key>
 </map>
 <desc></desc>
</mapping>

id: String.

key: String.

device.num.status
The status type that
represents the state of the
device number.

<mapping>
 <key>device.num.status</key>
 <map>
 <id>1</id>
 <key>NEW</key>
 </map>
 <map>
 <id>4</id>
 <key>UNASSIGNED</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String.

device.num.category
The default number of
categories for the device
number.

<mapping>
 <key>device.num.category</key>
 <map>
 <id>0</id>
 <key>NONE</key>
 </map>
 <map>
 <id>1</id>
 <key>RESERVED</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String.

Chapter 7
Default Configuration File Entries

7-9

Table 7-1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description

Default Values Types

device.num.vanity
The value of the vanity key
that is used for the device
number.

<mapping>
 <key>device.num.vanity</key>
 <map>
 <id>0</id>
 <key>NONE</key>
 </map>
 <map>
 <id>1</id>
 <key>SAMPLE_VANITY_1</key>
 </map>
 <map>
 <id>2</id>
 <key>SAMPLE_VANITY_2</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String.

payment.debit.accountType
s
Direct debit accounting types
displayed in the Payment
Setup, Make Payment, and
Bill Unit overlays.

Permits adding, rearranging,
and renaming the direct debit
types.

Note: Adding an accounting
type to Billing Care also
requires customizations in
BRM.

<mapping>
 <key>payment.debit.accountTypes</key>
 <map>
 <id>1</id>
 <key>ACCOUNT_TYPE_CHECKING</key>
 </map>
 <map>
 <id>2</id>
 <key>ACCOUNT_TYPE_SAVINGS</key>
 </map>
 <map>
 <id>3</id>
 <key>ACCOUNT_TYPE_CORPORATE</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

paymentMethods.invoice.d
eliverPreferTypes
Invoice delivery preferences
in the Payment Setup and Bill
Unit overlays.

Permits adding, rearranging,
and renaming the delivery
preferences.

Note: BRM supports the key
FAX with the ID 2 as a
preference type. You can add
this mapping to the
CustomConfigurations.xml
file.

<mapping>
 <key>paymentMethods.invoice.deliverPreferTypes</key>
 <map>
 <id>0</id>
 <key>EMAIL</key>
 </map>
 <map>
 <id>1</id>
 <key>POSTAL</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

Chapter 7
Default Configuration File Entries

7-10

Table 7-1 (Cont.) Mapping Values in Configuration File

Configuration Key and
Description

Default Values Types

product.customization.dela
yed.reasons
Reasons for product or
discount activation delays.

 <mapping>
 <key>product.customization.delayed.reasons</key>
 <map>
 <id>2</id>
 <key>WAITING_FOR_NETWORK_CONFIGURATION</key>
 </map>
 <map>
 <id>4</id>
 <key>WAITING_FOR_MAINTENANCE</key>
 </map>
 <map>
 <id>1</id>
 <key>WAITING_FOR_INSTALLATION</key>
 </map>
 <desc></desc>
 </mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

serviceTypes.icons
Service icons to display in the
asset cards.

An icon exists for account
products and for GSM
services.

If no icon is provided for a
service, the default icon is
used.

The image can be placed in
any folder but must be in the
WAR file.

Optimum image dimension is
116 x 116 pixels.

<mapping>
 <key>serviceTypes.icons</key>
 <map>
 <id>serviceIp</id>
 <key>resources/images/star-shape.png</key>
 </map>
 <map>
 <id>serviceEmail</id>
 <key>resources/images/star-shape.png</key>
 </map>
 <map>
 <id>accountProduct</id>
 <key>resources/images/hexagon-shape.png</key>
 </map>
 <map>
 <id>serviceTelcoGsm</id>
 <key>resources/images/audio-call.png</key>
 </map>
 <map>
 <id>defaultService</id>
 <key>resources/images/star-shape.png</key>
 </map>
 <desc></desc>
</mapping>

id: String.

key: Icon associated
with the specified
service.

Table 7-2 lists the configurable flags and their default values.

Chapter 7
Default Configuration File Entries

7-11

Table 7-2 Flags in Configuration File

Configuration Key and
Description

Default Values Types

accountbanner.showcurren
cycode
Flag that determines whether
the ISO currency code (such
as USD) is displayed in the
account banner.

<flags>
 <key>accountbanner.showcurrencycode</key>
 <value>false</value>
 <desc></desc>
</flags>

key: String.

value: Boolean.

If the value is true, the
code is displayed.

Default value is false.

account.contact.showsalut
ation
Flag that determines whether
the salutation field is
displayed in the account
profile, the account banner,
and all dialog titles.

<flags>
 <key>account.contact.showsalutation</key>
 <value>false</value>
 <desc></desc>
</flags>

key: String.

value: Boolean.

If the value is true, the
field is displayed.

Default value is false.

batch.payments.autoproce
ss
Flag that determines whether
batch payment files uploaded
in the UI are automatically
processed.

<flags>
 <key>batch.payments.autoprocess</key>
 <value>false</value>
 <desc></desc>
</flags>

key: String.

value: Boolean.

If the value is true, the
files are automatically
processed.

Default value is false.

billinvoice.use.modaldialog
Flag that determines whether
invoices viewed in Billing
Care are display in a dialog
box.

 <flags>
 <key>billinvoice.use.modaldialog</key>
 <value>false</value>
 <desc></desc>
</flags>

key: String.

value: Boolean.

If the value is true,
invoices are display in
a dialog box.

Default value is false.

graph.notes.indicators
Flag that determines whether
notes indicators are displayed
on top of graphs.

When accounts have lots of
activity or lots of notes, too
many indicators may be
shown. Setting this value to
false enables you to remove
the indicators, reducing visual
clutter.

<flags>
 <key>graph.notes.indicators</key>
 <value>true</value>
 <desc></desc>
</flags>

key: String.

value: Boolean.

If the value is false, the
indicators are not
displayed.

Default value is true.

request.record.failure
Flag that determines whether
to record in the BRM
database all Billing Care
REST API transactions that
failed.

Only requests that are
changing resources are
recorded.

<flags>
 <key>request.record.failure</key>
 <value>false</value>
 <desc></desc>
</flags>

key: String.

value: Boolean.

If the value is true,
failed transactions are
recorded.

Default value is false.

Table 7-3 lists the configurable thresholds and their default values.

Chapter 7
Default Configuration File Entries

7-12

Table 7-3 Thresholds in Configuration File

Configuration Key and
Description

Default Values Types

accountsearch.limit
Number of account search
results shown by default. The
number of search results
shown can be increased or
decreased by editing the
value field.

Note: The limit set for the
account search results must
be a non-zero positive
integer.

<thresholds>
 <key>accountsearch.limit</key>
 <value>50</value>
 <desc>
</desc>
</thresholds>

key: String.

value: Number.

assets.servicetypes.size
Maximum number of service
types shown by default in
Assets section. Additional
service types can be shown
by clicking a Show More link.

<thresholds>
 <key>assets.servicetypes.size</key>
 <value>6</value>
 <desc></desc>
</thresholds>

key: String.

value: Number.

balances.services.size
Maximum number of services
shown by default in Balances
section. Additional services
can be shown by clicking a
Show More link.

<thresholds>
 <key>balances.services.size</key>
 <value>4</value>
 <desc></desc>
</thresholds>

key: String.

value: Number.

batch.payments.threshold
Maximum percentage of
payments in a batch that can
be suspended. If this value is
exceeded, batch processing
stops.

<thresholds>
 <key>batch.payments.threshold</key>
 <value>50</value>
 <desc></desc>
</thresholds>

key: String.

value: Number.

collections.pagination
Maximum number of
collections bill units displayed
in a table on a page.

For example, if 150 records
exist, only the first 25 are
initially displayed. When you
click Show More, the next 25
are retrieved and appended
to the initial results. You can
repeat this to retrieve the
remaining records.

<thresholds>
 <key>collections.pagination.size</key>
 <value>25</value>
 <desc></desc>
</thresholds>

key: String.

value: Number.

creditcard.alert.expirydays
Number of days before credit
card expiration that an alert is
shown in the card tile in Make
Payment and Payment Setup
overlays.

<thresholds>
 <key>creditcard.alert.expirydays</key>
 <value>60</value>
 <desc></desc>
</thresholds>

key: String.

value: Number.

Chapter 7
Default Configuration File Entries

7-13

Table 7-3 (Cont.) Thresholds in Configuration File

Configuration Key and
Description

Default Values Types

devicesearch.limit
Number of records to be
retrieved in device search
dialog. By default, 50 records
are displayed. The number of
search results shown can be
increased or decreased by
editing the value field.

Note:The limit set for the
device search results must
be a non-zero positive
integer.

<thresholds>
 <key>deviceearch.limit</key>
 <value>50</value>
 <desc>
</desc>
</thresholds>

key: String.

value: Number.

package.alert.expirydays
Number of days before
expiration a package can be
purchased during account
creation or add-on package
purchase.

<thresholds>
<key>package.alert.expirydays</key>
<value>60</value>
<desc></desc>
</thresholds>

key: String.

value: Number.

pagination.size
Maximum number of records
initially displayed in a table on
a page.

For example, if 150 records
exist, only the first 50 are
initially displayed. When you
click Show More, the next 50
are retrieved and appended
to the initial results. Clicking
Show More one more time
retrieves the final 50. All 150
records are now displayed.

<thresholds>
 <key>pagination.size</key>
 <value>50</value>
 <desc></desc>
</thresholds>

key: String.

value: Number.

paymentsuspense.paginati
on.size
Maximum number of records
initially displayed in a table on
a page in the payment
suspense search results.

For example, if 50 records
exist, only the first 25 are
initially retrieved and
displayed. To see the next 25
records, you must click Show
More.

<thresholds>
 <key>paymentsuspense.pagination.size</key>
 <value>25</value>
 <desc></desc>
</thresholds>

key: String.

value: Number.

Chapter 7
Default Configuration File Entries

7-14

Table 7-3 (Cont.) Thresholds in Configuration File

Configuration Key and
Description

Default Values Types

pcm.connection.timeout
Maximum number of
milliseconds in which an
opcode must return results
before the connection times
out.

If you change this value, you
must restart the server to
reinitialize the connection
pool.

<thresholds>
 <key>pcm.connection.timeout</key>
 <value>15000</value>
 <desc></desc>
</thresholds>

key: String.

value: Number.

recent.records.size
Maximum number of recently
opened accounts displayed in
the Search overlay.

<thresholds>
 <key>recent.records.size</key>
 <value>5</value>
 <desc></desc>
</thresholds>

key: String.

value: Number.

session.timeout.advancewa
rningtime
Advance warning time for
session time out in seconds.

<thresholds>
 <key>session.timeout.advancewarningtime</key>
 <value>60</value>
 <desc></desc>
</thresholds>

key: String.

value: Number.

roles.batchsize
Maximum number of roles
that can be retrieved in a
batch when a search
operation is performed to find
roles; for example, roles with
permissions to manage
suspended payments.

Note: There will no visible
changes to the UI for any
change made for role batch
size retrieval.

<thresholds>
 <key>roles.batchsize</key>
 <value>100</value>
 <desc></desc>
</thresholds>

key: String.

value: Number.

Table 7-4 lists the configurable registry keys and their default values.

Table 7-4 Registry Entries in Configuration File

Configuration Key and
Description

Default Values Types

accountBannerSections
Sections displayed in the
account banner.

Permits rearranging (by
modifying the order of the
registry keys), deleting, and
adding sections.

See "Customizing the Billing
Care Account Banner".

<keyvals>
 <key>accountBannerSections</key>

<value>accountBannerContact,accountBannerAccountInfo,acc
ountBannerCollections,accountBannerBillUnits,accountBann
erVIPInfo</value>
 <desc></desc>
</keyvals>

key: String.

value: Comma-
separated strings.

Chapter 7
Default Configuration File Entries

7-15

Table 7-4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description

Default Values Types

accountCreation.packageLi
st
Name of the package list
containing the packages
displayed during account
creation. Default is CSR.

To enable Billing Care to
display a different package
list, replace the default
package list name with one of
the following package list
names:

• default, which displays
packages from the
default-new package list

• Any custom package list
name

If no package list name is
specified, packages from the
default-new package list are
displayed.

<keyvals>
 <key>accountCreation.packageList</key>
 <value>CSR</value>
 <desc></desc>
</keyvals>

key String.

value: String.

accountCreation.tabs
Account creation framework
configuration used to render
train stops and labels for the
footer.

The key is also used as a
registry entry to fetch views
or view models for the
corresponding train stops.

<keyvals>
 <key>accountCreation.tabs</key>
 <value>
 [{"key": "generalInfo", "value":{
 "label":"PROFILE",
 "msg":"COMPLETE_PROFILE_THEN",
 "title":"PROFILE_SHORT_DESCRIPTION"
 }
 },
 {"key": "accountCreationSelect", "value":{
 "label":"SELECT",
 "msg":"SELECT_THEN"
 }
 },
 {"key": "accountCreationConfigure", "value": {
 "label" : "CONFIGURE",
 "msg" : "COMPLETE_CONFIGURATION_THEN",
 "title": "CONFIGURE_SHORT_DESCRIPTION"
 }
 },
 {"key": "accountCreationPay", "value": {
 "label" : "PAY",
 "msg" : "COMPLETE_PAYMENTINFORMATION_THEN",
 "title": "PAY_SHORT_DESCRIPTION"
 }
 }]
 </value>
 <desc></desc>
</keyvals>

key: String.

value: String.

Chapter 7
Default Configuration File Entries

7-16

Table 7-4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description

Default Values Types

accountCreation.tagsMappi
ng
Mapping for tagging a
package.

<keyvals>
 <key>accountCreation.tagsMapping</key>
 <value>[{"key": ".*GSM.*|.*[Mm]obile.*",
"value":"Mobile"},
 {"key": ".*[Cc]able.*", "value":"Cable,TV"},
 {"key": ".*[Ff]iber.*|.*[Ww]eb.*|.*GPRS.*",
"value": "Internet"},
 {"key": ".*[Cc]orporate.*", "value": "Corporate"},
 {"key": ".*[Tt]ax.*", "value": "Tax"},
 {"key": "*", "value": "Uncategorized"}]
 </value>
 <desc></desc>
</keyvals>

key: String.

value: Regular
expression.

The key is a regular
expression to match
the package name or
Uncategorized, and
the value is the tag
name. If a package
name matches the
regular expression, it is
tagged with the
corresponding tags.
Packages that do not
match mapping rules
are categorized under
the "*" pattern value.

authorizationResourceType
s
Custom authorization
resource types.

The resource types should be
defined in OPSS.

<keyvals>
 <key>authorizationResourceTypes</key>
 <value></value>
 <desc></desc>
</keyvals>

key String.

value: Comma-
separated string.

Note: The key should
not be changed here.

batchPaymentsDateFormat
Format of batch payment
date.

The default supports the
following date formats:

23-December-30

23-December-2030

To abbreviate the month,
change MMMM to MMM,
which supports the following
date formats:

23-Dec-30

23-Dec-2030

To use four digits instead of
two for the date, change y to
yyyy.

<keyvals>
 <key>batchPaymentsDateFormat</key>
 <value>d-MMMM-y</value>
 <desc></desc>
</keyvals>

key: String.

value: String.

batchPaymentsDirectoryNa
me
Batch payment parent
directory name.

<keyvals>
 <key>batchPaymentsDirectoryName</key>
 <value>BatchPaymentFiles</value>
 <desc></desc>
</keyvals>

key: String.

value: String.

Chapter 7
Default Configuration File Entries

7-17

Table 7-4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description

Default Values Types

batchPaymentsTabs
List of tabs displayed in the
batch payments page.

<keyvals>
 <key>batchPaymentsTabs</key>
 <value>[{"id": "active", "label": "ACTIVE"},{"id":
"history", "label": "HISTORY"}]</value>
 <desc></desc>
</keyvals>

id: String.

key: String.

batchPaymentTypes
Supported batch payment
types.

By default, the following
payment types are
supported:

• Cash
• Check
• Failed
• Interbank transfer
• Postal order
• Wire transfer

 <keyvals>
 <key>batchPaymentTypes</key>
 <value>[{"type": "Cash Payment Batch","code":
"10011","templateName":"cash_payment_template.pit"},
{"type": "Check Payment Batch","code":
"10012","templateName":"check_payment_template.pit"},
{"type": "Wire-Transfer Payment Batch","code":
"10013","templateName":"wire-
transfer_payment_template.pit"},{"type": "Inter Bank
Payment order Payment Batch","code":
"10014","templateName":"interbankpayorder_payment_templa
te.pit"},{"type": "Postal order Payment Batch","code":
"10015","templateName":"postalorder_payment_template.pit
"},{"type": "Failed Payment Batch","code":
"10017","templateName":"failed_payment_template.pit"}]</
value>
 <desc></desc>
</keyvals>

key: String.

value: String (includes
payment type, payment
ID, and the name of a
template file (.pit) for
batch processing).

brmserver.timezone
The time zone configuration
for displaying the time in
Billing Care.

Use one of these options for
the time zone:

• Location: Enter the
timezone name (from the
tz database) in the
format area/location,
such as America/
New_York. Use this
format if your timezone
supports Daylight Saving
Time (DST).

• UTC Offset: Enter the
UTC offset value, such
as +0430. Use this
format if the timezone is
fixed.

If the value is empty, the
WebLogic Server's timezone
is used.

<keyvals>
 <key>brmserver.timezone</key>
 <value>America/Los_Angeles</value>
 <desc></desc>
</keyvals>

key: String.

value: String.

Chapter 7
Default Configuration File Entries

7-18

Table 7-4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description

Default Values Types

collections.icon
Displays the Collections icon.

<keyvals>
 <key>collections.icon</key>
 <value>[{"key": "*", "value":"resources/images/
collections.png"}]</value>
 <desc></desc>
</keyvals>

key: String.

value: Complex array
containing an icon.

cssFiles
All available CSS files.

"activeTheme" : true
represents the active theme.

<keyvals>
 <key>cssFiles</key>
 <value>{"availablethemes": [{"name" :"css/
theme_.css" ,"activeTheme" : true}, {"name" :"css/
theme_default.css", "activeTheme" : false}]}</value>
 <desc></desc>
</keyvals>

key: String.

value: Boolean.

financialSetup.tabs
Used to configure the page
navigator.

Order of each entry is the
order in which the tabs are
shown.

<keyvals>
 <key>financialSetup.tabs</key>
 <value>[{"key": "paymentMethods", "editable": false,
"subcontent":[{"key":"newPaymentMethod", "editable":
true}, {"key":"editPaymentMethod", "editable": true}]} ,
{"key":"billUnits","editable": false,"subcontent":
[{"key":"newBillUnit", "editable": true},{"key":
"editBillUnit", "editable": true}]},{"key": "taxSetup",
"editable": true}]</value>
 <desc></desc>
</keyvals>

key: String.

value: Boolean.

"editable": true shows
the Apply or Cancel
link with a save
message after saving.

"editable": false
shows the Close
button.

organizationHierarchyType
s
Organization hierarchy types
include the name, ID, and
icon.

<keyvals>
 <key>organizationHierarchyTypes</key>
 <value>
 [
 {"key": "site", "value":{"name":"SITE","value":
1,"icon":"resources/images/site.png"}},
 {"key": "legalEntity", "value":
{"name":"LEGAL_ENTITY","value": 2,"icon":"resources/
images/legal-entity.png"}},
 {"key": "billingAccount", "value": {"name" :
"BILLING_ACCOUNT","value": 3,"icon" : "resources/images/
billing-account.png"}},
 {"key": "serviceAccount", "value": {"name" :
"SERVICE_ACCOUNT","value": 4,"icon" : "resources/images/
service-accounts.png"}}
]
 </value>
 <desc></desc>
</keyvals>

key: String.

value: Complex array
containing type, ID,
and an icon.

Chapter 7
Default Configuration File Entries

7-19

Table 7-4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description

Default Values Types

paymentsuspense.exclude
dpaymenttypes
Comma-separated list of
payment types excluded from
the payment suspense flow.

By default, credit card and
direct debit payment types
(that is, 10003, 10005) are
excluded because they are
BRM-initiated.

<keyvals>
 <key>paymentsuspense.excludedpaymenttypes</key>
 <value>10003,10005</value>
 <desc></desc>
</keyvals>

key: String.

value: String.

paymentSuspense.reason
Mapping
Mapping for two-tier
suspense reason filtering.

The key is a regular
expression to match the
detailed reason description,
and the value is the higher-
level reason.

If a reason description
matches the regular
expression, the reason is
grouped with corresponding
higher-level reasons.
Otherwise, it is grouped
under Uncategorized.

If an icon property is
available in a resource path,
corresponding grouped
payments are shown with it.
Otherwise, uncategorized
icons are shown by default.

Note: The "*" key should be
the last entry in the value
because it is the broadest
group.

<keyvals>
 <key>paymentSuspense.reasonMapping</key>
 </value>[
 {"key": ".*[Tt]echnical.*", "value":"Technical",
"icon": "resources/images/unable-to-process-icon.png"}
 ,
 {"key": ".*[Bb]usiness.*", "value":"Business",
"icon": "resources/images/business-rule-match-icon.png"}
 ,
 {"key": ".*[Mm]ultiple.*", "value": "Unable to
Process", "icon": "resources/images/unable-to-process-
icon.png"}
 ,
 {"key": "*", "value": "Unclassified", "icon":
"resources/images/unable-to-process-icon.png"}
]</value>
 <desc></desc>
</keyvals>

key: Regular
expression.

value: String.

Chapter 7
Default Configuration File Entries

7-20

Table 7-4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description

Default Values Types

paymentTypes
Registry keys for rendering
payment type views in the Bill
Unit screen, Payment
Methods screen, and Make
Payment dialog box.

This is also used for
retrieving localized values
from XLF files.

Though paymentTypes has
an entry for invoice, when
this is used in the Make
Payment dialog box, invoice
payments are ignored while
the payment method view is
rendered.

Note: Do not change these
values unless you are
removing a payment type not
used in your environment.

<mapping>
 <key>paymentTypes</key>
 <map>
 <id>10003</id>
 <key>creditCard</key>
 </map>
 <map>
 <id>10005</id>
 <key>directDebit</key>
 </map>
 <map>
 <id>10001</id>
 <key>invoice</key>
 </map>
 <map>
 <id>10018</id>
 <key>sepa</key>
 </map>
 <map>
 <id>0</id>
 <key>noPaymentMethod</key>
 </map>
 <desc></desc>
</mapping>

id: Number.

key: String (must
match appropriate key
in the Billing Care
resource bundle).

purchase.bundleTagsMappi
ng
Mapping for tagging the
bundle.

<keyvals>
 <key>purchase.bundleTagsMapping</key>
 <value>[{"key": ".*GSM.*|.*[Mm]obile.*",
"value":"Mobile"},
 {"key": ".*[Cc]able.*", "value":"Cable,TV"},
 {"key": ".*[Ff]iber.*|.*[Ww]eb.*|.*GPRS.*",
"value": "Internet"},
 {"key": ".*[Cc]orporate.*", "value": "Corporate"},
 {"key": ".*[Tt]ax.*", "value": "Tax"},
 {"key": ".*[Dd]iscount*.", "value": "Discounts"},
 {"key": ".*[Ii]nternet*.", "value": "Internet"},
 {"key": "*", "value": "Uncategorized"}]
 </value>
 <desc></desc>
</keyvals>

key: Regular
expression.

value: String.

The key is a regular
expression to match
the bundle name or
Uncategorized, and
the value is the tag
name.

If a bundle name
matches the regular
expression, the bundle
is tagged with the
corresponding tags.

Bundles that do not
match mapping rules
are categorized under
the "*" pattern value.

Chapter 7
Default Configuration File Entries

7-21

Table 7-4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description

Default Values Types

purchase.packageList
Name of the package list
containing the packages
displayed during purchase of
an add-on package. Default
is default.

To enable Billing Care to
display a different package
list, replace the default
package list name with one of
the following package list
names:

• CSR, which displays
packages from the
default-new package list

• Any custom package list
name

If no package list name is
specified, packages from the
default-new package list are
displayed.

<keyvals>
 <key>purchase.packageList</key>
 <value>default</value>
 <desc></desc>
</keyvals>

key: String.

value: String.

Default value is
default.

Other possible value is
CSR.

If the package list
name is not specified,
packages from the
default-new list are
displayed.

purchase.tabs
Product catalog framework
configuration used to render
the train stops and labels for
the footer.

The keys are also used as
registry entries to fetch views
or view models for the
corresponding train stops.

<keyvals>
 <key>purchase.tabs</key>
 <value>
 [
 {"key": "purchaseSelection", "value":{
 "label":"SELECT",
 "msg":"SELECT_PURCHASE",
 "title":"SELECT_SHORT_DESCRIPTION"
 }
 }
 ,
 {"key": "purchaseConfiguration", "value": {
 "label" : "CONFIGURE",
 "msg" : "COMPLETE_CONFIGURATION_THEN",
 "title": "CONFIGURE_SHORT_DESCRIPTION",
 "disabled": true
 }
 }
]
 </value>
 <desc></desc>
</keyvals>

key: String.

value: Complex string
containing a label,
message, and title.

Chapter 7
Default Configuration File Entries

7-22

Table 7-4 (Cont.) Registry Entries in Configuration File

Configuration Key and
Description

Default Values Types

search.options <keyvals>
 <key>search.options</key>
 <value>[{"searchTemplateKey": "accountSearch",
"searchTemplateName":"SEARCH_OPTION_ACCOUNTS",
"defaultSearch": true}]</value>
 <desc></desc>
</keyvals>

key: String.

value: String.

searchTemplateKey
acts as the value of the
search drop-down
option.

The value of
searchTemplateKey
(that is,
accountSearch) acts
as the search template
name

The
searchTemplateName
value corresponds to
the text of the search
drop-down option.

The value of
searchTemplateName
(that is,
SEARCH_OPTION_A
CCOUNTS)
corresponds to a key in
the resource bundle.

Table 7-5 lists the configurable keyval categories and their default values.

Chapter 7
Default Configuration File Entries

7-23

Table 7-5 Keyvals in Configuration File

Configuration Key and
Description

Default Value Type

newsfeed.categories <keyvals>
 <key>newsfeed.categories</key>
 <value>[{"key":"ALL","newsfeedTypes":
"ADJUSTMENT:true, NCR_ADJUSTMENT:true,
OPEN_DISPUTE:true, CLOSED_DISPUTE:true, WRITEOFF:true,
REFUND:true, COLLECTIONS:true, PAYMENT:true,
PAYMENT_REVERSAL:true,
PAYMENT_METHOD_ASSIGNMENT_CHANGE:true, PAYINFO:true,
NAMEINFO:true, ACCT_STATUS:true, BILLINFO:true,
BILLINFO_CREATED:true, BILLINFO_DELETED:true,
DEFERRED:true, SRVC_STATUS:true, SRV_TO_DEV:true,
PURCHASE:true, CANCEL:true, CORRECTIVE_BILL:true,
RECURRING_CHARGE:true, BILL_ISSUED:true,
BILL_ISSUED_MID_CYCLE:true, ONE_TIME_CHARGE:true",
"selected": true},{"key": "AR", "newsfeedTypes":
"ADJUSTMENT:true, NCR_ADJUSTMENT:true,
OPEN_DISPUTE:true, CLOSED_DISPUTE:true, WRITEOFF:true,
REFUND:true, COLLECTIONS:true"},
{"key":"PAYMENTS","newsfeedTypes": "PAYMENT:true,
PAYMENT_REVERSAL:true,
PAYMENT_METHOD_ASSIGNMENT_CHANGE:true, PAYINFO:true"},
{"key":"CHARGES","newsfeedTypes": "PURCHASE:true,
CANCEL:true, CORRECTIVE_BILL:true,
RECURRING_CHARGE:true, BILL_ISSUED:true,
BILL_ISSUED_MID_CYCLE:true, ONE_TIME_CHARGE:true"},
{"key":"ACCOUNT","newsfeedTypes": "NAMEINFO:true,
ACCT_STATUS:true, DEFERRED:true, SRVC_STATUS:true,
SRV_TO_DEV:true, BILLINFO:true, BILLINFO_CREATED:true,
BILLINFO_DELETED:true"}]</value>
 <desc></desc>
</keyvals>

key: String.

value: String (must
match appropriate key
in the Billing Care
resource bundle).

See "Customizing
Billing Care
Templates".

Chapter 7
Default Configuration File Entries

7-24

8
Using an Exploded Archive during
Customization

Learn how to use an exploded archive when customizing Oracle Communications Billing Care.

Topics in this document:

• About Using an Exploded Archive

• Configuring WebLogic Server to Use an Exploded Archive

About Using an Exploded Archive
You deploy Billing Care customizations as a customizations shared library to the same Oracle
WebLogic Server domain where Billing Care is running. During customization, Oracle
recommends using an exploded archive containing your shared library. An exploded archive
represents your customizations in a local file system instead of a packaged archive (.war).

Using an exploded archive of your customizations enables you to update them and
automatically deploy them to the Billing Care domain without having to package your
customizations' shared library after each change. Your Billing Care customizations can be
viewed by logging out and back into Billing Care in the web browser.

Use exploded archives during development and testing of your customizations. For production
instances of Billing Care, package your customizations as a .war file and deploy this file using
WebLogic Server administration tools to your Billing Care domain. See "Packaging and
Deploying Customizations" for more information on packaging and deploying production
customizations.

Configuring WebLogic Server to Use an Exploded Archive
To use an exploded archive with WebLogic Server, configure your Billing Care domain with the
location of your previously created NetBeans IDE project. The project location acts as the
exploded archive of the customizations shared library and is used by Billing Care to display
your customizations.

Configure WebLogic Server to use your exploded archive shared library by completing the
following procedures:

• Creating a Manifest for your Shared Library

• Creating a New Deployment Plan for Billing Care with your Shared Library

• Deploying your Shared Library on your Billing Care Domain

• Redeploying Billing Care to Use your Shared Library

Creating a Manifest for your Shared Library
WebLogic Server requires a manifest file (MANIFEST.mf) for your exploded archive. The
manifest includes information about the customizations shared library contained in the
exploded archive including the entries listed in Table 8-1.

8-1

See the following link for additional information on manifest files:

https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#JAR_Manifest

Table 8-1 MANIFEST.mf Entries for Billing Care Customization

Entry Description

Manifest-Version Numerical version of the manifest file

Built-By Name of library builder

Specification-Title String that defines the title of the extension specification

Specification-Version String that defines the version of the extension specification

Implementation-Title String that defines the title of the extension implementation

Implementation-Version String that defines the version of the extension implementation

Implementation-Vendor String that defines the vendor of the extension implementation

Extension-Name String that defines a unique of the extension

To create a MANIFEST.mf file for your exploded archive:

1. Start NetBeans IDE.

2. Select the Files tab.

3. Expand the project directory to view the myproject/web/META-INF/ directory where
myproject is the previously created project directory.

4. Right-click the META-INF folder and select New.

5. Select Other.

6. Under Categories, select Other.

7. Under File Types, select Empty File.

8. Click Next.

9. In the File Name field, enter MANIFEST.MF.

10. Click Finish.

The MANIFEST.MF file is shown in the NetBeans IDE text editor.

11. Create your manifest file with the entries shown in Table 8-1. A sample manifest file is
shown in Example 8-1.

Note:

Oracle recommends you use Specification-Title and Extension-Name values
clearly identifying your shared library as a development version.

12. Click File, then Save.

Example 8-1 Sample MANIFEST.MF File for Billing Care Customizations

Manifest-Version: 1.0
Built-By: Oracle
Specification-Title: BillingCareSDKDevelopment
Specification-Version: 1.0
Implementation-Title: Custom SDK WAR file for Billing Care

Chapter 8
Configuring WebLogic Server to Use an Exploded Archive

8-2

https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#JAR_Manifest

Implementation-Version: 1.0
Implementation-Vendor: Oracle
Extension-Name: BillingCareSDKDevelopment

Rebuilding your Project after Creating the Manifest File
Rebuild your Billing Care customization project in NetBeans IDE after creating and saving your
manifest file.

To rebuild your project in NetBeans IDE:

1. Click the Projects tab.

2. Right-click your project.

3. Select Clean and Build.

Creating a New Deployment Plan for Billing Care with your Shared Library
Create a new Billing Care deployment plan that includes your customizations shared library.
The deployment plan includes an entry for your customizations shared library referencing the
exploded archive NetBeans IDE project. When the Billing Care application starts, the exploded
archive contents are also loaded providing access to your customizations.

See "Deployment Plans" in Oracle Fusion Middleware Developing Applications for Oracle
WebLogic Server for more information on deployment plans.

To create a new deployment plan:

1. Start NetBeans IDE.

2. Select the Files tab.

3. Right-click the myproject folder and select New.

4. Select Other.

5. Under Categories, select Other.

6. Under File Types, select Empty File.

7. Click Next.

8. In the File Name field, enter a name for your deployment plan with an .xml extension. For
example:

billingCareSDKDeploymentPlan.xml
9. Click Finish.

The deployment plan is shown in the NetBeans IDE text editor.

10. Create your deployment plan using the sample shown in Example 8-2.

Note:

Use the same string in the Custom-LibraryName element in your deployment
plan as the Extension-Name parameter in the MANIFEST.MF file you previously
created. For example, the string in the sample files provided is:

BillingCareSDKDevelopment

11. Click File, then Save.

Chapter 8
Configuring WebLogic Server to Use an Exploded Archive

8-3

https://docs.oracle.com/cd/E29542_01/web.1111/e13706/overview.htm#WLPRG133

Example 8-2 Sample Billing Care Customizations Deployment Plan

<?xml version="1.0" encoding="UTF-8"?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
xmlns.oracle.com/weblogic/deployment-plan http://xmlns.oracle.com/weblogic/deployment-
plan/1.0/deployment-plan.xsd" global-variables="false">
 <application-name>BillingCare.war</application-name>
 <variable-definition>
 <variable>
 <name>Custom-ImplementationVersion</name>
 <value xsi:nil="false">1.0</value>
 </variable>
 <variable>
 <name>Custom-SpecificationVersion</name>
 <value xsi:nil="false">1.0</value>
 </variable>
 <variable>
 <name>Custom-LibraryName</name>
 <value xsi:nil="false">BillingCareSDKDevelopment</value>
 </variable>
 <variable>
 <name>Custom-ExactMatch</name>
 <value xsi:nil="false">true</value>
 </variable>
 <variable>
 <name>Custom-ContextPath</name>
 <value />
 </variable>
 </variable-definition>
 <module-override>
 <module-name>BillingCare.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="true">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 <variable-assignment>
 <name>Custom-LibraryName</name>
 <xpath>/weblogic-web-app/library-ref/library-name</xpath>
 </variable-assignment>
 </module-descriptor>
 </module-override>
</deployment-plan>

Deploying your Shared Library on your Billing Care Domain
After creating your manifest file and new deployment plan for Billing Care, deploy the exploded
archive shared library to your Billing Care domain.

To deploy your shared library to your Billing Care domain:

1. In your browser, navigate to the Administration Console of your Billing Care domain.

2. Log in using administrative credentials for the Billing Care domain.

3. In Domain Structure, click Deployments.

4. Select the BillingCare deployment and click Stop, then Force Stop Now to stop Billing
Care.

5. In the Control tab, click Install in the Deployments table.

Chapter 8
Configuring WebLogic Server to Use an Exploded Archive

8-4

6. In the Path: field, enter (or browse to) the location of the web directory of your NetBeans
IDE project containing your Billing Care project. For example, myproject/web, where
myproject is the Billing Care project directory.

Confirm that the option for web is selected.

7. Click Next.

8. In the Choose targeting style screen, select Install this deployment as a library.

9. Click Next.

10. In the Optional Settings screen, enter the Name using the same string used in the
Custom-LibraryName element in your deployment plan and the Extension-Name
parameter in the MANIFEST.MF file you previously created. For example, the string in the
sample files provided is:

BillingCareSDKDevelopment
11. Click Next.

12. In the Review your choices and click Finish screen, click Finish.

Confirm in the Deployments screen that your customizations shared library is deployed to
your Billing Care domain as in an Active state.

Redeploying Billing Care to Use your Shared Library
After deploying the exploded archive as a customizations shared library, redeploy Billing Care
using the new deployment plan created in "Creating a New Deployment Plan for Billing Care
with your Shared Library". Redeploying Billing Care using the new deployment plan configures
Billing Care to use the exploded archive customizations shared library in your NetBeans IDE
project and restarts Billing Care.

After successful deployment, customize Billing Care by editing the configuration files in the
NetBeans IDE project.

To redeploy Billing Care:

1. In your browser, navigate to the Administration Console of your Billing Care domain.

2. Log in using administrative credentials for the Billing Care domain.

3. In Domain Structure, click Deployments.

4. In the Control tab, select BillingCare in the Deployments table.

5. Click Update.

6. In the Update Application Assistant screen, select Redeploy this application using the
following deployment files:.

7. For the Deployment plan path:, click Change Path.

8. Enter (or browse to) the location where your new deployment plan (for example, the
myproject folder) is and select the new deployment plan, then click Next.

9. In the Review your choices screen, click Finish.

Confirm in the Deployments screen that Billing Care redeploys successfully and is in an
Active state.

Chapter 8
Configuring WebLogic Server to Use an Exploded Archive

8-5

9
Packaging and Deploying Customizations

Learn how to deploy Oracle Communications Billing Care customizations to production Billing
Care domains.

Topics in this document:

• About Packaging and Deploying Customizations for Production

• Creating Production Versions of the Manifest File and Deployment Plan

• Using the Java JAR Utility to Package Your Shared Library

• Deploying the Shared Library .war

• Redeploying Billing Care to Use your Shared Library

About Packaging and Deploying Customizations for Production
After testing and verifying your Billing Care customizations, create a packaged archive (.war)
file of your exploded archive shared library to deploy in your production Billing Care domain.
Using a .war containing your customizations enables you to quickly deploy your
customizations to multiple Billing Care instances.

Deploying customizations to production environments requires that you complete the following
procedures:

• Creating Production Versions of the Manifest File and Deployment Plan

• Using the Java JAR Utility to Package Your Shared Library

• Deploying the Shared Library .war

• Redeploying Billing Care to Use Your Shared Library

Creating Production Versions of the Manifest File and
Deployment Plan

Before running the jar command, create production versions of the manifest file and
deployment plan.

To create production manifest and deployment plan files:

1. In a terminal session, change directory to the myproject/web/META-INF directory, where
myproject is the NetBeans IDE project directory containing your Billing Care
customizations.

2. Create a copy of the MANIFEST.MF file in the myproject/build/web directory in the
myproject/web/META-INF directory named manfiest.txt.

3. Open the manifest.txt file in an editor.

4. Edit the values of the Custom-LibraryName and the Extension-Name parameters to a
string for your production shared library. For example:

9-1

BillingCareCustomizations
See "Creating a Manifest for your Shared Library" for more information on creating a
manifest file for your shared library.

5. Save and close the manifest.txt file.

6. Copy the edited manifest.txt file to the myproject/build/web directory.

7. Create a copy of the deployment plan you created for your exploded archive shared library
deployment in "Creating a New Deployment Plan for Billing Care with your Shared Library"
named prodplan.xml. Use this deployment plan for your production Billing Care
deployments.

8. Edit the Custom-LibraryName element in prodplan.xml using the same string you
provided in step 4.

Note:

Use the same string in the Custom-LibraryName element in your deployment
plan as the Extension-Name parameter in the MANIFEST.MF file you previously
created. For example, the string in this procedure is:

BillingCareCustomizations

9. Save and close the prodplan.xml file.

Using the Java JAR Utility to Package Your Shared Library
The JAR command packages all of the required contents of your exploded archive shared
library into a .war file that can be deployed in the Oracle WebLogic Server Administration
Console.

For more information on the Java JAR utility see:

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jar.html
To create your BillingCareCustomizations.war using the jar utility:

1. In a terminal session, change directory to the myproject/build/web directory, where
myproject is the NetBeans IDE project directory containing your Billing Care
customizations.

2. Verify that the manifest.txt file is in the directory.

3. Run the following JAR command to package the manifest.txt file and the subfolders
contained in your myproject/web directory into a .war file:

jar cfm BillingCareCustomizations.war manifest.txt css custom js lib resources
WEB-INF

4. Verify that the BillingCareCustomizations.war is created.

Deploying the Shared Library .war
After creating your BillingCareCustomization.war and production deployment plan, deploy
the .war in your Billing Care domain.

To deploy your shared library in your Billing Care domain:

Chapter 9
Using the Java JAR Utility to Package Your Shared Library

9-2

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jar.html

1. In your browser, navigate to the Administration Console of your Billing Care domain.

2. Log in using administrative credentials for the Billing Care domain.

3. In Domain Structure, click Deployments.

4. Select the BillingCare deployment and click Stop, then Force Stop Now to stop Billing
Care.

5. In the Control tab, click Install in the Deployments table.

6. In the Path: field, enter (or browse to) the location of the BillingCareCustomization.war.

Confirm that the option for BillingCareCustomization.war is selected.

7. Click Next.

8. In the Choose targeting style screen, select Install this deployment as a library.

9. Click Next.

10. In the Optional Settings screen, enter the Name using the same string used in the
Custom-LibraryName element in your deployment plan and the Extension-Name
parameter in the MANIFEST.MF file you previously created. For example, the string used
in this chapter is:

BillingCareCustomizations
11. Click Next.

12. In the Review your choices and click Finish screen, click Finish.

Confirm in the Deployments screen that your shared library is deployed in your Billing
Care domain and is in an Active state.

Redeploying Billing Care to Use Your Shared Library
After deploying the BillingCareCustomizations.war, redeploy Billing Care using the
production deployment plan. Redeploying Billing Care using the production plan restarts and
configures Billing Care to use the .war shared library you previously deployed.

To redeploy Billing Care:

1. In your browser, navigate to the Administration Console of your Billing Care domain.

2. Log in using administrative credentials for the Billing Care domain.

3. In Domain Structure, click Deployments.

4. In the Control tab, select BillingCare in the Deployments table.

5. Click Update.

6. In the Update Application Assistant screen, select Redeploy this application using the
following deployment files:.

7. For the Deployment plan path:, click Change Path.

8. Enter (or browse to) the location where your production prodplan.xml deployment plan is
and select the production deployment plan.

9. Click Next.

10. In the Review your choices screen, click Finish.

Confirm in the Deployments screen that Billing Care redeploys successfully and is in an
Active state.

Chapter 9
Redeploying Billing Care to Use Your Shared Library

9-3

Part III
Customizing Billing Care Screens and Fields

This part includes instructions for customizing the screens and fields in Oracle
Communications Billing Care GUI. It contains the following chapters:

• Customizing the Billing Care Account Home Page

• Customizing the Billing Care Account Banner

• Customizing the Balances Area

• Adding Custom Payment Types

• Customizing the Make a Payment Screen

• Displaying Success Toast Messages in Billing Care

• Customizing Purchase Deal and Assets Action Menu

• Customizing Billing Care to Display Child Accounts

• Customizing Billing Care Invoice Presentation

• Customizing Reason Codes List in Event Adjustments

• Restricting Debit and Credit Event Adjustment Options

• Customizing Billing Care to Display Only Event Adjustments

• Customizing Account Creation Service Fields

• Creating Custom Billing Care Credit Profiles

• Customizing the Billing Care Actions Menu

• Opening Custom Views From Landing Page

• Customizing Billing Care Labels

• Customizing Billing Care to Disable Links in the Bills Tab

• Separating Event Adjustment Amount and Percentage Fields

• Embedding Billing Care Screens in External Applications

10
Customizing the Billing Care Account Home
Page

Learn how to use the Oracle Communications Billing Care SDK to customize the Billing Care
account home page.

Topics in this document:

• Customizing the Billing Care Account Home Page

• About Customizing the Billing Care Home Tab

• About Customizing the Bills Graph

Customizing the Billing Care Account Home Page
You can customize the Billing Care account home page in the following ways:

• Add links to the Billing Care Home tab for switching between a summary and detailed view
of a customer's account balance. See "About Customizing the Billing Care Home Tab".

• Customize the data displayed in the Bills graph. See "About Customizing the Bills Graph".

About Customizing the Billing Care Home Tab
The Billing Care Home tab provides a high-level overview of an account's assets, account
history, current balances, and News Feed of account and status change activity. The Bill Unit
section of the Home tab displays detailed information about the amount due for a bill, such as
the amount past due, the unallocated payments, the unallocated accounts receivable, the
amount owed for this billing cycle, and the total due.

You can customize the Billing Care Home tab to display:

• Summary account balance information in its Bill Unit section

• Detailed account balance information in its Bill Unit section

• Links for switching between the summary and detailed views on the Home tab

For example, Figure 10-1 shows a Home tab with links for switching between summary and
detailed views of a bill unit.

10-1

Figure 10-1 Home Tab with Sample Summary and Detailed Links

Adding the ability to switch between the summary view and the detailed view requires you to
create the resources used by the Bill Unit section. For example, you need to create multiple
views, a view model, and a custom CSS file for displaying a bill unit's account balance
information correctly. See "Customizing Billing Care" for more information about customizing
Billing Care resources

The Billing Care SDK includes sample Home tab customizations, including a README.txt file
explaining the samples, in the SDK_home/samples/HomeTabCustomization directory, where
SDK_home is the directory in which you installed the Billing Care SDK. Use these samples
when developing your own customizations.

Customizing the Billing Care Home Tab
To customize the Billing Care Home tab to display summary and detailed bill unit information:

1. Create a view that contains links to the summary and detailed views. See "Creating a
Summary and Detailed Link View".

2. Create a view for displaying summary information for all bill units in an account. See
"Creating an All Bill Units Summary View".

Chapter 10
About Customizing the Billing Care Home Tab

10-2

3. Create a view for displaying summary information for a single bill unit. See "Creating a Bill
Unit Summary View".

4. Create a custom view model for the Billing Care Home tab. See "Creating a
HomeTabBillUnitsViewModel".

5. Override the registry values for the Billing Care Home tab. See "Configuring the Custom
Home Tab in the Registry".

6. Modify the appearance of the Billing Care Home tab. See "Overriding the Billing Care
Home Tab Theme".

Creating a Summary and Detailed Link View
Create a view that displays the links to your summary bill unit view and detailed bill unit view.
These links should appear at the top of the Billing Care Home tab. See "About Views" for more
information about views.

To create a view that displays the Summary and Detailed links:

1. Create a switchLinkView.html file in the myproject/projectname/web/custom/templates/
directory.

2. Add criteria to the view for displaying a Summary link and a Detailed link. For example:

<div id="switchViewHeader" class="bu-switch-view-section">
 <div id="switchLinks" style="display:flex; justify-content:space-
around">
 <a href="javascript:void(0);" id="summary_link" class="sidebar-news-
feed-link" data-bind="click: $root.viewSwitched">Summary
 <a href="javascript:void(0);" id="detailed_link" class="sidebar-news-
feed-link" data-bind="click: $root.viewSwitched">Detailed
 </div>
</div>

3. Save the file in your NetBeans IDE project.

Creating an All Bill Units Summary View
Billing Care uses an HTML view file to render the Bill Unit section of the Home tab. When an
account contains multiple bill units, the Bill Unit section displays a panel that details the
amount due for all bill units. You can create a custom view that displays summary information
for all bill units, such as the total account balance for all bill units.

A sample allBillUnitSummaryView.html file is provided in the SDK_home/samples/
HomeTabCustomization/web/custom/templates directory. Use this sample to create a view
for displaying summary information for all bill units in an account.

To create a view for displaying summary balance information for all bill units in an account:

1. Create an allBillUnitSummaryView.html file in the myproject/web/custom/js/
viewmodels/templates/area/ directory, where area is the customization type.

2. Define the fields to display in the summary view for all bill units in an account.

For example, this shows how to add a Total Account Balance field that displays the total
account balance for all bill units.

Chapter 10
About Customizing the Billing Care Home Tab

10-3

Note:

In this example, the Total Account Balance field is the custom field. The other
code is mandatory for the Billing Care SDK to work and should not be changed.

<div class="css_table streatch_width marginTop10px">
 <div class="css_table marginBottom10px">
 <div class="css_row">
 <h3 class="css_cell text_left_align tab_heading marginBottom6px"
 role="heading" id="homeTab_AllBillUnitsWithCnt"
 data-bind = "text : '<%= homeTab.ALL_BILL_UNITS %> (' +
numBillingUnits() + ')' " >
 </h3>
 </div>
 </div>

 <!-- Custom field : START -->
 <div class="tab-area-table-section-3-left tab-area-table-section-3-left-
no-margin marginTop10px marginBottom10px">
 <div class="tab-area-table-left fontBold">Total Account Balance
 </div>
 <div class="tab-area-table-right-note">
 </div>
 <div class="tab-area-table-right redColor numberFormat"
 id="totalAccountBalance" data-bind="text : totalAccountBalance">
 </div>
 </div>
 <!-- Custom field : END -->

 <div id="bu_footer_all" class="css_row streatch_width tab-area-section-
more tab-area-section-more-2" data-bind="visible : showAllBUFooter ">
 <a role="button" id="makePymt" title="<%= homeTab.MAKE_PAYMENT_TITLE
%>"
 tabindex="0" class="cmd-button"
 data-bind="click : openMakePaymentsDlg ,event: {keypress :
openMakePaymentsDlgOnKeypress},authorize_command:{make:'hide',
resource:PAYMENT_RESOURCE, action:MAKE_ACTION}">
 <%= homeTab.MAKE_PAYMENT %>

 </div>
</div>

3. Save the file in your NetBeans IDE project.

Creating a Bill Unit Summary View
Billing Care uses an HTML view file to render the Bill Unit section of the Home tab. When an
account contains a single bill unit, the Bill Unit section displays a detailed view of the amount
due for the bill unit. You can create a custom view for the Bill Unit section that displays
summary information for a bill unit, as shown in Figure 10-2.

Chapter 10
About Customizing the Billing Care Home Tab

10-4

Figure 10-2 Bill Unit Summary Information

A sample BillUnitSummaryView.html file is provided in the SDK_home/samples/
HomeTabCustomization/web/custom/templates directory. Use this sample to create a view
for displaying summary information for a bill unit.

To create a view for displaying summary balance information for a bill unit:

1. Create a BillUnitSummaryView.html file in the myproject/web/custom/js/viewmodels/
templates/area/ directory, where area is the customization type.

2. Add criteria to the view for displaying summary account balance information, such as the
amount due and total due.

3. Save the file in your NetBeans IDE project.

Overriding the Billing Care Home Tab Theme
You must override the appearance of the Billing Care Home tab to make room for the new
Detailed and Summary links you created in "Creating a Summary and Detailed Link View".
See "Customizing Billing Care Themes and Logo" for more information about CSS files.

A sample override CSS file named override.css is provided in the SDK_home/samples/
Themes/css directory, where SDK_home is the directory in which you installed the SDK. Use
this sample to create a custom CSS file.

To override the theme used by the Billing Care Home tab:

1. Create an override.css file in the myproject/web/css directory, where myproject is the
NetBeans IDE project directory containing your Billing Care customizations.

2. Add entries to the CSS file for overriding styles in the Billing Care Home tab.

.bu-switch-view-section {
 border-bottom: 1px solid #CCC4C4;
 padding: 10px 0 10px 0;
 width: 100%;
}

3. In the customRegistry.js file, add an entry under cssFiles for your override CSS file in
the others parameter. For example:

var CustomRegistry= {
 cssFiles: {
 themeCss: 'css/theme_default.css',

Chapter 10
About Customizing the Billing Care Home Tab

10-5

 others: ['css/override.css']
 };

Configuring the Custom Home Tab in the Registry
After creating the required views and custom view model, create a custom module entry in the
customRegistry.js file to use when opening the Billing Care Home tab. Billing Care uses the
custom views and view model instead of the default entries when rendering the Home tab.

A sample customRegistry.js file is provided in the SDK_home/samples/
HomeTabCustomization/web/custom directory, where SDK_home is the Billing Care SDK
installation directory. Use this sample to create the customRegistry.js file with your custom
views.

To add an entry in the customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom by copying the reference
registry file.

2. Define the custom views and view models in the file. For example:

var CustomRegistry = {
 homeTabBillUnits: {
 viewmodel: 'custom/viewmodels/CustomHomeTabBillUnitsViewModel.js'
 },
 summaryViews: {
 switchView: 'text!../custom/templates/switchLinkView.html',
 allBUSummaryView: 'text!../custom/templates/
allBillUnitSummaryView.html',
 individualBUSummaryView: 'text!../custom/templates/
billUnitSummaryView.html',
 },
};

3. Save the file in your NetBeans IDE project.

Creating a HomeTabBillUnitsViewModel
Billing Care uses the HomeTabBillUnitsViewModel.js file to define what fields to display in
the Billing Care Home tab. The fields defined in the view model are bound in the HTML file
used to render the custom view or page. See "About View Models" for more information about
Billing Care view models.

A sample CustomHomeTabBillUnitsViewModel.js file is provided in the SDK_home/
samples/HomeTabCustomization/web/custom/viewmodels directory. Use this sample
create a custom view model.

To create a custom view model for the Billing Care Home tab:

1. Create a CustomHomeTabBillUnitsViewModel.js file in the myproject/web/custom/js/
viewmodels/customHomeTab directory, where myproject is the folder containing your
NetBeans IDE project.

2. Define the custom fields in this file, as required.

3. Save the file in your NetBeans IDE project.

Chapter 10
About Customizing the Billing Care Home Tab

10-6

About Customizing the Bills Graph
The Bills graph provides a visual overview of account activity, including billing and customer
interactions. The horizontal axis shows information about the last 12 bills and the bill in
progress. The vertical axis shows account information regarding customer communication and
A/R.

You can customize the information displayed in the Bills graph based on your requirements.

Customizing Bills Graph
To customize the Bills graph:

1. Create a custom view model to define the override for the default Home tab. See "Creating
Custom Home Tab View Model".

2. Create a custom view model to define the override for the Bills graph based on your
requirements. For example, create a file named CenterViewModel.js in the
myproject/web/custom/viewmodels directory, where myproject is the folder containing
your NetBeans IDE project. See "About View Models" for more information on creating
view models.

3. Create a custom view model HTML template for overriding the Bills graph. See "Creating
Custom View Model HTML Template for Customizing Bills Graph".

4. Create a customRegistry.js file configuring Billing Care to use your custom view models.
See "Configuring Custom View Models for Customizing Bills Graph in the Registry".

5. Package and deploy your customization to your Billing Care domain using one of the
methods described in "Using an Exploded Archive during Customization" or "Packaging
and Deploying Customizations".

Creating Custom Home Tab View Model
Billing Care uses HomeTabBillUnitsViewModel to determine how to the display the Home
tab. To change the Home tab, create a custom view model, such as
CustomHomeTabBillUnitsViewModel, that contains overrides for the default display.

To create a custom Home tab view model:

1. Create the CustomHomeTabBillUnitsViewModel.js file in the myproject/web/custom/
viewmodels/homeTab directory.

2. Open the CustomHomeTabBillUnitsViewModel.js file using a text editor and add the
following code:

define([
 'jquery',
 'underscore',
 'knockout',
 'knockout-mapping',
 Registry.base.viewmodel,
 'viewmodels/hometab/HomeTabBillUnitsViewModel'
],
 function ($, _, ko, komapping, BaseViewModel, HomeTabBillUnitsViewModel)
{
 function CustomHomeTabBillUnitsViewModel() {
 HomeTabBillUnitsViewModel.apply(this, arguments);
 var self = this;

Chapter 10
About Customizing the Bills Graph

10-7

 /* This function overrides OOTB renderGraph function to replace the
Bills graph and balances
 * section from the desired custom view.
 */
 self.renderGraph = function () {

 /* This is the function which renders the custom View model (
referred to CenterSectionViewModel in the CustomRegistry)
 * replacing the bills graph section.
 */
 self.renderCenterSection();

 /* This is the function which renders the custom View (referred
to customView in the CustomRegistry balances entry)
 * replacing the OOTB balances section.
 */
 self.renderBalances();

 };

 self.renderCenterSection = function(){
 // The centerSection is the CustomRegistry entry which refers to the
Custom section replacing OOTB Bills Graph Section.
 require([CustomRegistry.centerSection.viewmodel,
CustomRegistry.centerSection.view],
 function (CurrentViewModel, page) {
 var template = _.template(page);
 // HTML id where the Bills and Graph is attached to DOM is
"chartContent"
 // The custom view needs to be attached to same place for
replacing OOTb Bills Graph section
 var mainDiv = document.getElementById("chartContent");
 $(mainDiv).empty();
 var viewElem = $(mainDiv).get(0);
 ko.cleanNode(viewElem);
 $(mainDiv).append(template);
 var currentVM = new CurrentViewModel();
 // This initialize method will contain basic steps to render
the CustomViewModel
 currentVM.initialize();
 ko.applyBindings(currentVM, viewElem);
 });
 };
 }
 CustomHomeTabBillUnitsViewModel.prototype = new
HomeTabBillUnitsViewModel();
 return CustomHomeTabBillUnitsViewModel;
 }
);

3. Save the file in your NetBeans IDE project.

Creating Custom View Model HTML Template for Customizing Bills Graph
Billing Care uses an HTML view file to customize the Bills graph in the Home tab. The
template file contains the override for the Bills graph as defined in the custom view model.

To create a custom view model HTML template for customizing the Bills graph:

1. Create the centerView.html file in the myproject/web/custom/templates directory.

Chapter 10
About Customizing the Bills Graph

10-8

2. Define the override for the center section of the Home tab by using the centerView.html
file.

3. Save the file in your NetBeans IDE project.

Configuring Custom View Models for Customizing Bills Graph in the
Registry

Create custom entries in your customRegistry.js file. Billing Care uses the custom view
models instead of the default entries and renders the custom Bills graph in the Home tab.

To configure the custom view model entries to customize the Bills Graph section in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom view models in this file:

var CustomRegistry = {
 homeTabBillUnits: {
 viewmodel: 'custom/viewmodels/homeTab/CustomHomeTabBillUnitsViewModel.js' //
CustomViewModel which will handle replacing of the OOTB Hometab bills graph
with custom view
 },
 centerSection : {
 view: 'text!../custom/templates/centerView.html', // This is the custom
view which would replace the OOTB bills graph section
 viewmodel: 'custom/viewmodels/CenterViewModel.js' // This is the custom
view model which handles rendering of custom view replacing the OOTB bills
graph section
 }
};

3. Save the file in your NetBeans IDE project.

Chapter 10
About Customizing the Bills Graph

10-9

11
Customizing the Billing Care Account Banner

Learn how to customize the Oracle Communications Billing Care Account Banner.

Topics in this document:

• About the Billing Care Account Banner

• Customizing the Billing Care Account Banner

• Rearranging Account Banner Tiles

• Removing Account Banner Tiles

About the Billing Care Account Banner
The Account Banner displays the following default set of views as tiles in the Billing Care
interface listed in Table 11-1.

Table 11-1 Default Billing Care Account Banner Tiles

Tile Registry Key Description

accountBannerContact Displays account contact information

accountBannerAccountInfo Displays account information such as plan and status

accountBannerCollections Displays account collections information

accountBannerBillUnits Displays a summary of account bill unit information

accountBannerVIPInfo Displays account VIP status if applicable

Each tile displays the information from the Billing Care module responsible for the type of data.
For example, the accountBannerContact tile displays data from the account module.

The accountBannerSections key in the Billing Care registry file contains the list of tiles to
display in the Account Banner.

Customizing the Billing Care Account Banner
Customize the Account Banner tiles by:

• Rearranging Account Banner Tiles

• Removing Account Banner Tiles

Creating custom tiles requires the creation of the resources required by the tile. For example,
you may need to create a custom module, or view model and possibly CSS, to display custom
tile information correctly. See "About Billing Care Modules" for more information on Billing Care
modules and the resources you need to create when using custom tiles.

The Billing Care SDK includes sample Account Banner customizations, including a
README.txt file explaining the samples, in the SDK_home/samples/AccountBanner
directory, where SDK_home is the directory where you installed the Billing Care SDK. Use
these samples when developing your own Account Banner customizations.

11-1

Creating Configuration Files for Account Banner Customization
The Account Banner tiles displayed, and their display order, are defined in the Billing Care
configuration file, Configurations.xml. This file includes key values specifying which tiles to
display, and their order, in the accountBannerSections key as shown in Example 11-1.

Example 11-1 Configurations.xml accountBannerSections Sample

<configuration key="accountBannerSections">

<value>accountBannerContact,accountBannerAccountInfo,accountBannerCollections,accountBann
erBillUnits,accountBannerVIPInfo</value>
</configuration>

Each value represents a tile and is a key in the default registry file, registry.js. The registry.js
file defines views and view models. For example, Example 11-2 shows the view definition in
the registry for the accountBannerVIPInfo tile.

Example 11-2 registry.js Account Banner Tile Entry Sample

accountBannerVIPInfo: {
 view: 'text!templates/home/accountBanner/vipInfoView.html'
}

The Billing Care SDK includes the default configuration file (Configurations.xml) and the
default registry file (registry.js) in the SDK_home/references directory, where SDK_home is
the location where you installed the SDK.

To customize the Account Banner, you create a custom version of the Billing Care
configuration file named CustomConfigurations.xml, and a custom version of the registry file
named customRegistry.js. The custom configuration file specifies your tiles to display and
their display order. The custom registry file includes view and view model definitions for each
tile you want to display.

To customize the account banner:

1. Copy the default Configurations.xml file from SDK_home/references to a custom
configuration file named CustomConfigurations.xml in your myproject/web/WEB-INF/
classes/custom/configurations directory, where myproject is your NetBeans IDE project
containing your Billing Care customizations.

2. Copy the default registry.js file from SDK_home/references to a custom registry file
named customRegistry.js in your myproject/web/custom directory, where myproject is
your NetBeans IDE project containing your Billing Care customizations.

3. Edit the accountBannerSections key in the CustomConfigurations.xml file with your
customizations as described in the following sections.

4. If adding new tiles, define the view and view model for your new tiles in the
customRegistry.js file.

5. Add your customization files to your NetBeans IDE project (myproject):

• Add the CustomConfigurations.xml file in the myproject/web/WEB-INF/custom/
configurations folder.

• Add the customRegistry.js file in the myproject/web/custom/ folder.

• Add any new view html files to support your custom tile in the myproject/web/custom
folder.

Chapter 11
Customizing the Billing Care Account Banner

11-2

• Add any new JavaScript to support your custom view model in the myproject/web/js
directory.

• Add any new CSS to support your custom view in the myproject/web/css directory.
Custom CSS must be properly configured in the registry to override the default CSS.
See "Overriding Themes" for more information on overriding the default CSS.

6. Right-click your NetBeans IDE project and select Clean and Build.

7. Package and deploy your Account Banner customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

8. Verify your changes in Billing Care.

Rearranging Account Banner Tiles
The tile display order in the Account Banner is defined by the order of the listed values in the
accountBannerSections key in the CustomConfigurations.xml file.

To rearrange the tile order in the Account Banner:

1. Open the CustomConfigurations.xml file in your myproject/web/WEB-INF/custom/
configurations directory, where myproject is your NetBeans IDE project containing your
Billing Care customizations with an editor.

2. Edit the accountBannerSections key in the CustomConfigurations.xml file listing the
Account Banner tiles in the order you want displayed in Billing Care.

For example, if you want the accountBannerVIPInfo tile to be displayed first change the
following accountBannerSections key value from:

<value>accountBannerAccountInfo,accountBannerContact,accountBannerCollections,account
BannerBillUnits,accountBannerVIPInfo</value>

to:

<value>accountBannerVIPInfo,
accountBannerAccountInfo,accountBannerContact,accountBannerCollections,accountBannerB
illUnits</value>

3. Save and close your CustomConfigurations.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your Account Banner customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Removing Account Banner Tiles
The tiles displayed in the Account Banner are defined by the included values in the
accountBannerSections key in the CustomConfigurations.xml file.

To remove a tile from the Account Banner:

1. Open the CustomConfigurations.xml file in your myproject/web/WEB-INF/classes/
custom/configurations directory, where myproject is your NetBeans IDE project
containing your Billing Care customizations with an editor.

2. Edit the accountBannerSections key in the CustomConfigurations.xml file, removing the
Account Banner tiles you do not want displayed in Billing Care.

Chapter 11
Rearranging Account Banner Tiles

11-3

For example, to remove the accountBannerVIPInfo tile, change the following
accountBannerSections key value from:

<value>accountBannerAccountInfo,accountBannerContact,accountBannerCollections,account
BannerBillUnits,accountBannerVIPInfo</value>

to:

<value>accountBannerAccountInfo,accountBannerContact,accountBannerCollections,account
BannerBillUnits</value>

3. Save and close your CustomConfigurations.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your Account Banner customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Chapter 11
Removing Account Banner Tiles

11-4

12
Customizing the Balances Area

Learn how to use the Oracle Communications Billing Care SDK to customize the Balances
area in the Billing Care account home page.

Topics in this document:

• About Customizing the Balances Area

• Replacing the Balances Area with Custom Account Information

• Customizing the Data Displayed in the Balances Area

About Customizing the Balances Area
The Balances area of the Billing Care account home page shows what the customer owes and
what credit limits the customer has. It shows the customer's currency balance, which is shown
in green and has a currency symbol, and noncurrency balance, which is shown in blue.

Figure 12-1 shows the Balances area for a sample customer.

Figure 12-1 Balances Area in Account Home Page

You can customize the Balances area in the following ways:

• Remove it completely and replace it with custom account information. See "Replacing the
Balances Area with Custom Account Information".

• Customize the data that is displayed in it. See "Customizing the Data Displayed in the
Balances Area".

Replacing the Balances Area with Custom Account Information
You can remove the Balances area from the Billing Care account home page and display
custom account information instead. This requires you to create the resources used by the

12-1

Balances area. For example, you need to create a view and view model for displaying your
custom account information correctly. See "Customizing Billing Care" for more information
about customizing Billing Care resources.

The Billing Care SDK includes sample Balances area customizations, including a
README.txt file explaining the samples, in the SDK_home/samples/
BalancesCustomization directory, where SDK_home is the directory in which you installed
the Billing Care SDK. Use these samples when developing your own customizations.

Customizing the Balances Area
To remove the Balances area from the Billing Care account home page and display custom
account information instead:

1. Create a view for displaying your custom account information . See "Creating a View for
the Balances Area".

2. Create a custom view model for your custom account information. See "Creating a Custom
Balances Area View Model".

3. Override the registry values for the Billing Care Balances tab. See "Configuring the
Custom Balances Area in the Registry".

Creating a View for the Balances Area
Billing Care uses an HTML view file to render the Balances area of the account home page.
You can create a custom view that displays custom account information rather than balance
information.

A sample balances.html file is provided in the SDK_home/samples/
BalancesCustomization/web/custom/templates directory. Use this sample to create a view
for displaying your custom account information.

To create a view for the Balances area:

1. Create a balances.html file in the myproject/web/custom/js/viewmodels/templates/
area/configure directory, where area is the customization type.

2. Define the fields to display in your view.

3. Save the file in your NetBeans IDE project.

Creating a Custom Balances Area View Model
Billing Care uses the balances.js file to define what fields to display in the Billing Care
Balances area. The fields defined in the view model are bound in the HTML file used to render
the custom view or page. See "About View Models" for more information about Billing Care
view models.

A sample balances.js file is provided in the SDK_home/samples/
BalancesCustomization/web/custom/viewmodels directory. Use this sample create a
custom view model.

To create a custom view model for the Billing Care Home tab:

1. Create a balances.js file in the myproject/web/custom/js/viewmodels/
BalancesCustomization directory, where myproject is the folder containing your
NetBeans IDE project.

2. Define the custom fields in this file, as required.

Chapter 12
Replacing the Balances Area with Custom Account Information

12-2

3. Save the file in your NetBeans IDE project.

Configuring the Custom Balances Area in the Registry
After creating your custom view and view model, create a custom module entry in the
customRegistry.js file to use when displaying the Balances area on the Billing Care account
home page. Billing Care uses the custom view and view model instead of the default entries
when rendering the Balances area.

A sample customRegistry.js file is provided in the SDK_home/samples/
BalancesCustomization/web/custom directory, where SDK_home is the Billing Care SDK
installation directory. Use this sample to create the customRegistry.js file with your custom
views.

To add an entry in the customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom by copying the reference
registry file.

2. Define the custom view and view model in the file. For example:

var CustomRegistry = {
 balances: {
 view: 'text!../custom/templates/customView.html',
 viewmodel: 'custom/viewmodels/CustomViewModel.js'
 },
};

3. Save the file in your NetBeans IDE project.

Customizing the Data Displayed in the Balances Area
To customize the data that is displayed in the Balances area:

1. Create a custom view model to define the override for the Balances area based on your
requirement, such as CustomBalancesViewModel.js, in the myproject/web/custom/
viewmodels directory. See "About View Models" for information on creating the view
models.

2. Create a custom Balances view model HTML Template. See "Creating Custom View Model
HTML Template for the Balances Area".

3. Create a customRegistry.js file configuring Billing Care to use your custom view model.
See "Adding customBalancesView and CustomBalancesViewModel to the Registry".

4. Package and deploy your customization to your Billing Care domain using one of the
methods described in "Using an Exploded Archive during Customization" or "Packaging
and Deploying Customizations".

Creating Custom View Model HTML Template for the Balances Area
Billing Care uses an HTML view file to customize the Balances area in the Home tab. The
template file contains the override for the Balances area as defined in the custom view model.

To create a custom view model HTML template for customizing Balances area:

1. Create the customBalancesView.html file in the myproject/web/custom/templates
directory.

Chapter 12
Customizing the Data Displayed in the Balances Area

12-3

2. Define the override for the Balances area in the customBalancesView.html file in HTML
required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Adding customBalancesView and CustomBalancesViewModel to the
Registry

Create a custom entry in your customRegistry.js file. Billing Care uses the custom view model
instead of the default entry and renders the Balances section in the Home tab. See "About the
Registry File" for more information.

To configure custom view model to customize the Balances area in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom view model in this file:

var CustomRegistry = {
 balances: {
 view: 'text!../custom/templates/customBalancesView.html', // This is the custom
view which would replace the OOTB balances section
 viewmodel: 'custom/viewmodels/CustomBalancesViewModel.js' // This is the custom
view model which handles rendering of custom view replacing the OOTB balances
section
 },
};

3. Save the file in your NetBeans IDE project.

Chapter 12
Customizing the Data Displayed in the Balances Area

12-4

13
Adding Custom Payment Types

Learn how to add the custom payment types that you configured in Oracle Communications
Billing and Revenue Management (BRM) to Oracle Communications Billing Care.

Topics in this document:

• About Custom Payment Types

• Creating Custom Payment Types in BRM

• Customizing Billing Care to Support Custom BRM Payment Types

• Extending the Billing Care Data Model with XSD and JSON Files

• Adding the XSD and JSON Files to NetBeans Project

• Enabling Custom Payment Types in Batch Payment Processing

• Deploying Customizations

About Custom Payment Types
Billing Care supports the following default payment types:

• Credit Card

• Debit Card

• Cash

• Check

• Wire-Transfer

• Interbank Payment Order

• Postal Order

BRM supports the creation of custom payment types, such as cryptocurrency, required by your
business. Use the SDK to customize Billing Care to support custom payment types configured
in your BRM. Adding custom BRM payment types to Billing Care enables the payment type to
be selected when creating new accounts, adding payment methods, or processing manual
payments.

Creating Custom Payment Types in BRM
Create custom BRM payment types using the Developer Center. This section provides a high-
level overview of the process, including a general overview of creating and updating the
required objects and classes. For detailed information on using Developer Center to create
custom payment types, see "Creating Custom Fields and Storable Classes" in BRM
Developer's Guide.

To create a custom payment type in BRM:

1. Create the custom payment type payment and reversal event subclasses. See "Creating
Custom Payment Type Event Subclasses" for more information.

13-1

2. Update the BRM /config/paymenttool object with the required custom payment fields.
See "Updating the /config/paymenttool Object with Custom Payment Types" for more
information.

3. Update the BRM /config/payment object with the custom payment and reversal events.
See "Updating the /config/payment Object with Custom Payment Type Event" for more
information.

Creating Custom Payment Type Event Subclasses
To create the custom payment type event subclasses:

1. Start Developer Center.

2. Open the Class Browser.

3. Select the /event/billing/payment, /event/billing/reversal, and /event/billing/refund
classes sequentially.

4. Create the following new subclasses in the above classes:

• /event/billing/payment/external

• /event/billing/reversal/external

• /event/billing/refund/external

• /event/billing/payment/external/payment_type

• /event/billing/reversal/external/payment_type

• /event/billing/refund/external/payment_type

where payment_type is the name of your custom payment type.

5. Commit the new subclasses.

To add the required fields to the new custom payment type subclasses:

1. Select the /event/billing/payment/external/payment_type class.

2. Add the required fields for the custom payment type to the payment subclass. For
example, if you are creating a new check payment type, add the PIN_FLD_CHECK_ID
field.

3. Commit the subclass changes to the database.

4. Select the /event/billing/reversal/external/payment_type class.

5. Add the required fields for the custom payment type to the reversal subclass. For example,
if you are creating a new check payment type, add the PIN_FLD_CHECK_ID field.

6. Select the /event/billing/refund/external/payment_type class.

7. Add the required fields for the custom payment type to the refund subclass. For example, if
you are creating a new check payment type, add the PIN_FLD_CHECK_ID field.

8. Commit the subclass changes to the database.

9. To make the custom fields available in your application, refer to the steps in "Making
Custom Fields Available to Your Applications" in Developer's Guide.

Chapter 13
Creating Custom Payment Types in BRM

13-2

Updating the /config/paymenttool Object with Custom Payment Types
Billing Care uses the /config/paymenttool object configuration to determine each payment
type's required fields. Update this object with the required fields for your custom payment type
after creating the subclasses.

To update the /config/paymenttool object:

1. In the Object Browser, select /config/paymenttool.

2. Find the /config/paymenttool object with a FLD_NAME value of PaymentTool payment
Types: Default.

3. Copy the /config/paymenttool object into the Opcode Work Bench.

4. Add the required custom payment type fields to the object. Example 13-1 shows a sample
flist for a new payment type with ID 11000 named External Check. This payment type has
a new field called PIN_FLD_CHECK_ID.

5. Use WRITE_FLDS with flag=32 to update the object with the new fields for your custom
payment type.

Example 13-1 Sample /config/paymenttool fields for External Check Payment Type

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/paymenttool 8398 0
 0 PIN_FLD_PAY_TYPES ARRAY [11000] allocated 2, used 2
 1 PIN_FLD_NAME STR [0] "External Check"
 1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [0] allocated 4, used 4
 2 PIN_FLD_BATCH_TYPE INT [0] 0
 2 PIN_FLD_COLUMN_NAME STR [0] "check_No"
 2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_CHECK_ID"
 2 PIN_FLD_PURPOSE INT [0] 0
 1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [1] allocated 4, used 4
 2 PIN_FLD_BATCH_TYPE INT [0] 1
 2 PIN_FLD_COLUMN_NAME STR [0] "check_No"
 2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_CHECK_ID"
 2 PIN_FLD_PURPOSE INT [0] 1

Updating the /config/payment Object with Custom Payment Type Event
BRM stores payment events in the /config/payment object. Update this object with the new
payment, reversal, and refund events you created for custom payment type.

To update the /config/payment object:

1. In the Object Browser, select /config/payment.

2. Copy the /config/payment object into the Opcode Work Bench.

3. Add the required custom payment events to the object. Example 13-2 shows a sample flist
for a new /event/billing/payment/external/check and /event/billing/refund/external/
check events.

4. Use WRITE_FLDS with flag=32 to update the object with the new fields for your custom
payment type.

5. Stop and start your BRM services.

Example 13-2 Sample /config/payment fields for External Check Payment Type

 0 PIN_FLD_POID POID [0] 0.0.0.1 /config/payment 200 0
 0 PIN_FLD_PAY_TYPES ARRAY [11000] allocated 4, used 4
 1 PIN_FLD_PAYINFO_TYPE STR [0] "/payinfo"

Chapter 13
Creating Custom Payment Types in BRM

13-3

 1 PIN_FLD_PAYMENT_EVENT_TYPE STR [0]
 "/event/billing/payment/external/check"
 1 PIN_FLD_REFUND_EVENT_TYPE STR [0]
 "/event/billing/refund/external/check"
 1 PIN_FLD_OPCODES ARRAY [0] allocated 4, used 4
 2 PIN_FLD_EVENT_TYPE STR [0] ""
 2 PIN_FLD_FLAGS INT [0] 0
 2 PIN_FLD_NAME STR [0] "PCM_OP_INVALID"
 2 PIN_FLD_OPCODE INT [0] 0
 1 PIN_FLD_OPCODES ARRAY [1] allocated 4, used 4
 2 PIN_FLD_EVENT_TYPE STR [0] ""
 2 PIN_FLD_FLAGS INT [0] 0
 2 PIN_FLD_NAME STR [0] "PCM_OP_INVALID"
 2 PIN_FLD_OPCODE INT [0] 0
 1 PIN_FLD_OPCODES ARRAY [2] allocated 4, used 4
 2 PIN_FLD_EVENT_TYPE STR [0] ""
 2 PIN_FLD_FLAGS INT [0] 0
 2 PIN_FLD_NAME STR [0] "PCM_OP_INVALID"
 2 PIN_FLD_OPCODE INT [0] 0

Customizing Billing Care to Support Custom BRM Payment
Types

The Billing Care SDK includes a sample custom payment type customization in the
SDK_home/samples/CustomPaymentMethodType directory, where SDK_home is the
directory where you installed the SDK. Use this sample to assist you in customizing Billing
Care with custom payment types.

Extending the Billing Care Data Model with XSD and JSON Files
The Billing Care SDK includes a Data Model Generator utility for generating the required XSD
and JSON files containing the custom payment type definitions. The Data Model Generator is
located in the SDK_home/samples/data_model_generator directory. Use this sample to
assist you in customizing Billing Care with custom payment types.

Note:

The Data Model Generator utility requires an Infranet.properties file configured with
BRM connection information in the local user's home directory. The utility connects to
the BRM system defined in this file to retrieve the object configuration before
generating the required XSD and JSON files. See "Configuring Additional Settings in
the Infranet.properties File" in Billing Care Installation Guide for more information.

To create the required XSD and JSON files for your custom payment type:

1. Open a command-line interface on the system where the Billing Care SDK is installed.

2. Change to the SDK_home/samples/data_model_generator directory.

3. Run the DatamodelGenerator.bat (Windows) or DataModelGenerator.sh (Linux) script to
generate the XSD and JSON files.

The Data Model Generator outputs the extensionDataModel.jar containing the XSD files and
an XSD file containing the definition of your custom payment type. Add these files to your

Chapter 13
Customizing Billing Care to Support Custom BRM Payment Types

13-4

NetBeans IDE project. See "Adding the XSD and JSON Files to NetBeans Project" for more
information on adding the files to your project.

Adding the XSD and JSON Files to NetBeans Project
To add the extensionDataModel.jar containing the XSD files for your custom payment type,
and the JSON files created by the Data Model Generator:

1. Add the extensionDataModel.jar to your Billing Care customization NetBeans IDE project
using the NetBeans Library Manager.

2. Copy the JSON file to myproject/web/custom/js/autoui/jsons where myproject is the
project directory of your Billing Care customizations NetBeans IDE project.

3. Deploy your custom payment type customizations. See "Deploying Customizations" for
more information.

Enabling Custom Payment Types in Batch Payment Processing
Batch payment files using custom payment types require the creation of a template file (.pit)
before processing by Billing Care. Default template files are provided in SDK_home/
references/paymentbatchtemplates. Use a default template to create a template file
supporting your custom payment types.

To create a custom payment type template file for batch processing:

1. Copy an existing default template file from the SDK references directory.

2. Rename the file for your custom payment type.

3. Open the file in a text editor.

4. Update the template file by customizing the sections described in Table 13-1 as needed.
You must provide a unique Batch Name for your custom payment type batch file.
Example 13-3 shows sample template file for a custom external payment batch.

5. Copy the custom payment type batch file into the Middleware_home/
BatchPaymentTemplates directory, where Middleware_home is the home directory of the
Oracle WebLogic Server installation where Billing Care is installed. This is the default
location for unprocessed batch payment files. The Billing Care installation enables you to
specify an alternative location. Confirm with your administrator to determine where your
templates folder is located.

Table 13-1 Configurable Fields in Batch Payment Template File

Section Description

Import Contains the Batch Name, Data Type, and Start Row fields used to
identify the batch type, data type, and file row to start processing from.

Delimiter Contains a list of supported delimiters. Set the delimiter used in your
custom payment type batch file by changing the value of the proper
delimiter to 1. By default, the delimiter is set to Tab.

Header Contains fields used to specify whether to import the file header, and
the header start and end rows.

Footer Contains fields used to specify whether to import the file footer, and the
footer start and end rows.

Chapter 13
Adding the XSD and JSON Files to NetBeans Project

13-5

Example 13-3 Sample Custom External Check Payment Batch Template File

Modifying this file is not recommended.
[Import]
Batch Name External Check Payment Batch
Data Type 0
Start Row 1
[Delimiter]
Comma 0
Consecutive 0
Other 0
Semicolon 0
Space 0
MultiSpaces 0
Tab 1
OtherSep
Qualifier \"
[Link]
[Header]
ImportHeaderData 0
HeaderStart Row 1
HeaderEnd Row 1
[Header Link]
[Footer]
ImportFooterData 0
FooterStart Row 1
FooterEnd Row 1
[Footer Link]

Deploying Customizations
Package and deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying Customizations".

Chapter 13
Deploying Customizations

13-6

14
Customizing the Make a Payment Screen

Learn how to use the Oracle Communications Billing Care SDK to customize the fields
displayed in the Billing Care Make a Payment screen according to the selected payment
method.

Topics in this document:

• About the Make a Payment Screen

• Customizing the Fields Displayed for a Payment Method

About the Make a Payment Screen
The Billing Care Make a Payment screen displays different fields based on the payment
method selected by the user. For example, a credit card payment method contains the Card
number, CVV2/CID, and Card expiration fields, but the check payment method contains the
Check Date, Check Number, Bank Code, and Bank Account Number fields. Figure 14-1
shows the fields for the check payment method.

Figure 14-1 Check Payment Type Fields

You can customize the Make a Payment screen in one or more of the following ways:

• Modify or remove existing fields based on the payment method

• Add custom fields based on the payment method

• Specify whether a field is optional or mandatory

• Specify the valid range of dates for fields with a date data type

• Validate whether a user has entered all required information for a specified payment
method

14-1

Customizing the Fields Displayed for a Payment Method
The Billing Care SDK includes sample payment customizations, including a README.txt file
explaining the samples, in the SDK_home/samples/ValidationOnPaymentInfo directory,
where SDK_home is the directory where you installed the Billing Care SDK. Use these
samples when developing your own payment customizations.

To customize which fields are displayed in the Make a Payment screen based on the payment
method:

1. Create a custom view model for the Make a Payment screen. See "Creating a Custom
View Model for a Payment Method".

2. Override the registry value for the Billing Care payment type. See "Configuring the Custom
Payment Type in the Registry".

3. Package and deploy your payment type changes. See "Packaging and Deploying
Customizations".

Creating a Custom View Model for a Payment Method
Billing Care uses AutoGeneratedUIViewModel.js to render the UI fields specific to each
payment method. Customizing the Billing Care fields displayed for each payment method
requires overriding the default view model behavior.

A sample CustomAutoGeneratedUIVM.js file is provided in the SDK_home/samples/
ValidationOnPaymentInfo/web/custom/viewmodels/payment directory. The sample file
does the following based on the field name or payment method:

• For check payment methods, changes the bankCode field to a drop-down list of bank
names. It does this by using the oj-select-single tag. For more information, see "Select
(Single)" in OJET Cookbook Forms.

• Specifies that fields with a string data type are mandatory. It does this by using the
required attribute.

• Specifies a valid date range of 15 days before the current date through 15 days after the
current date for all fields with a date data type.

• Validates that users have entered values into all mandatory fields. It does this by overriding
the isValid function.

To create a custom view model for a Billing Care payment type:

1. Create the CustomAutoGeneratedUIVM.js file in the myproject/web/custom/
viewmodels directory, where myproject is the folder containing your NetBeans IDE
project.

2. Make your changes to the preAddElement function, which is called after the DOM
element is created but before it is added to the actual DOM.

The README.txt file in SDK_home/samples/ValidationOnPaymentInfo contains details
on how the preAddElement function works and the functions it accepts.

3. Save the file in your NetBeans IDE project.

Configuring the Custom Payment Type in the Registry
Create a custom module entry in the customRegistry.js file to use when rendering the Make a
Payment screen for a particular payment method.

Chapter 14
Customizing the Fields Displayed for a Payment Method

14-2

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=selectSingle&demo=states
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=selectSingle&demo=states

A sample customRegistry.js file is provided in the SDK_home/samples/
ValidationOnPaymentInfo/web/custom directory, where SDK_home is the Billing Care SDK
installation directory. Use this sample to create the customRegistry.js file with your custom
view model.

To add an entry in the customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom by copying the reference
registry file.

2. Specify to use your custom view model. For example:

varCustomRegistry = {
 customPaymentType: {
 customViewModel: '../custom/viewmodels/payment/
CustomAutoGeneratedUIVM'
 }
};

3. Close and save the customRegistry.js file.

4. Save the file in your NetBeans IDE project.

Chapter 14
Customizing the Fields Displayed for a Payment Method

14-3

15
Displaying Success Toast Messages in Billing
Care

Learn how to customize Oracle Communications Billing Care to display a toast message when
a user submits a payment or adjustment successfully.

Topics in this document:

• About Displaying Success Toast Messages

• Adding Success Toast Messages to Billing Care Screens

About Displaying Success Toast Messages
Billing Care displays error messages when an adjustment or payment transaction fails. If there
is no message and control moves to the next screen, it implicitly means that the transaction
was successful.

To have Billing Care explicitly display success messages for these transactions, customize
Billing Care to display a Success toast message after each successful adjustment or payment.
Success toast messages appear at the top of the page and then disappear after a few
seconds.

Figure 15-1 shows a sample toast message for a successful adjustment.

Figure 15-1 Sample Success Toast Message

Adding Success Toast Messages to Billing Care Screens
To add Success toast messages to your Billing Care payment and adjustment screens:

1. Create a custom view HTML file for rendering the Success toast message. See "Creating a
Success Toast Message View".

2. Create a custom view model for each payment and adjustment screen in which to display
the Success toast message. See "Creating a Custom View Model for Your Payment and
Adjustment Screens".

3. Create a custom view model for the Success toast message. See "Creating a Custom
View Model for Success Toast Messages".

4. Override the registry values for your custom view and view models. See "Configuring the
Registry for Success Toast Messages".

15-1

5. Update the path to the green check mark graphic in the overrides.css file. See
"Specifying the Path to Check Mark Graphic".

6. Package and deploy your Billing Care SDK. See "Packaging and Deploying
Customizations".

The Billing Care SDK includes a sample Success toast message, including a README.txt file
explaining the sample, in the SDK_home/samples/CustomToastMessages directory, where
SDK_home is the directory where you installed the Billing Care SDK. Use these samples when
developing your own customizations.

Creating a Success Toast Message View
Create an HTML view file for rendering the Success toast message on Billing Care screens.
For more information about views, see "About Views".

A sample toastMessagesView.html file is provided in the SDK_home/samples/
CustomToastMessages/web/custom/templates/toastMessages directory. Use this sample
to create your own custom HTML file.

To create a view for rendering the Success toast message:

1. Create a toastMessagesView.html file in your myproject/web/custom/templates/
toastMessages/ directory.

2. In the file, specify the type of message to display on the Billing Care screen. To do so, use
the oj-messages component and set its display attribute to notification. For example:

<divid="successMsg" style="display:none;">
 <oj-messages id="oj-messages-id" messages="[[messagesDataprovider]]"
display="notification"
 position='{"my":{"vertical" :"top", "horizontal":
"center"},
 "at": {"vertical": "top", "horizontal": "center"}}'>

 </oj-messages>
</div>

For more information about the oj-messages component, see "Messages" in OJET
Cookbook Forms.

3. Save the file in your NetBeans IDE project.

Creating a Custom View Model for Success Toast Messages
Create a view model that specifies the text to display in the Success toast message as well as
how long Billing Care waits before closing the message.

A sample toastMessagesViewModel.js file is provided in the SDK_home/samples/
CustomToastMessages/web/custom/js/viewmodels/toastMessages directory. The sample
view model file specifies to do the following:

• Display the text "message Successful" in the Success toast message, where message is
the Billing Care screen-dependent text defined in the payment or adjustment view model
(see "Creating a Custom View Model for Your Payment and Adjustment Screens").

• Automatically close the Success toast message after 6000 milliseconds (6 seconds).

To create a custom view model for the Success toast message:

Chapter 15
Adding Success Toast Messages to Billing Care Screens

15-2

https://www.oracle.com/webfolder/technetwork/jet-1000/jetCookbook.html?component=messages&demo=notification

1. Create the toastMessagesViewModel.js file in your myproject/web/custom/js/
viewmodels/toastMessages directory, where myproject is the folder containing your
NetBeans IDE project.

2. In the file's successMessageData function, specify the text to display and how long to
wait before closing the message:

this.successMessageData=function(){
 return [{
 summary: message + " Successful",
 autoTimeout: parseInt(6000)
 }];
}.bind(this);

3. Save the file in your NetBeans IDE project.

Creating a Custom View Model for Your Payment and Adjustment Screens
To customize a Billing Care adjustment or payment screen to display a Success toast
message, create a custom view model that contains overrides for the default display.

The Billing Care SDK includes sample custom view models for the payment and adjustment
screens listed in Table 15-1. The sample files are located in SDK_home/samples/
CustomToastMessages/web/custom/js/viewmodels/path, where path is the view model
directory and file name in Table 15-1. The sample files specify the screen-specific text to
include in the toast message, such as Adjustment, Payment, or Suspense Payment.

Table 15-1 Payment and Adjustment Screens that Support Success Toast Messages

Billing Care Screen View Model Directory and File Name

Account Adjustment screen

See "Making Currency Adjustment" in
Billing Care Online Help.

accountAdjustment/
CustomAccountAdjustmentViewModel.js

Allocate Adjustment screen with
Advanced View

See "Allocating Currency Adjustments"
in Billing Care Online Help.

allocateAdjustment/
CustomAllocateAdjustmentAdvancedViewModel.js

Allocate Adjustment screen with Simple
View

See "Allocating Currency Adjustments"
in Billing Care Online Help.

allocateAdjustment/
CustomAllocateAdjustmentViewModel.js

Bill Adjustment screen

See "Adjusting a Bill" in Billing Care
Online Help.

allocateBillAdjustment/
CustomAllocateBillAdjustmentViewModel.js

Allocate Payment screen with Advanced
View

See "Allocating a Payment" in Billing
Care Online Help.

allocatePayment/
CustomAllocatePaymentAdvancedViewModel.js

Allocate Payment screen with Simple
View

See "Allocating a Payment" in Billing
Care Online Help.

allocatePayment/CustomAllocatePaymentViewModel.js

Chapter 15
Adding Success Toast Messages to Billing Care Screens

15-3

Table 15-1 (Cont.) Payment and Adjustment Screens that Support Success Toast
Messages

Billing Care Screen View Model Directory and File Name

Make a Payment screen

See "Making a Payment" in Billing Care
Online Help.

allocatePayment/CustomMakePaymentViewModel.js

Bill Adjustment screen

See "Adjusting a Bill" in Billing Care
Online Help.

billAdjustment/CustomBillAdjustmentViewModel.js

Event Adjustment screen

See "Adjusting an Event" in Billing Care
Online Help.

eventAdjustment/CustomEventAdjustmentViewModel.js

Item Adjustment screen

See "Adjusting an Item" in Billing Care
Online Help.

itemAdjustment/CustomItemAdjustmentViewModel.js

Make a Payment screen

See "Making a Payment" in Billing Care
Online Help.

makePayment/CustomMakePaymentViewModel.js

Make a Suspense Payment screen

See "Working with Suspended
Payments" in Billing Care Online Help.

makePaymentSuspense/
CustomMakePaymentSuspenseOverlayViewModel.js

Noncurrency Adjustment screen

See "Making a Noncurrency
Adjustment" in Billing Care Online Help.

nonCurrencyAdjustment/
CustomNonCurrencyAdjustmentViewModel.js

To create a custom view model for a Billing Care payment or adjustment screen:

1. Create a custom view model file (myproject/web/custom/js/viewmodels/path directory,
where path is the view model directory and file name in Table 15-1).

2. Set message to the screen-specific text you want displayed in the Success toast
message. For example:

functionCustomEventAdjustmentViewModel() {
 EventAdjustmentViewModel.apply(this, arguments);
 var self = this;
 self.msg = null;

 // This is to enable rendering a toast message on successful 'event
adjustment' action
 self.showToastMessages = function (data) {
 var message = "Adjustment";
 // example for calling custom methods to render the success toast
message
 self.msg = new ToastMessageVM(message);
 self.msg.loadMessage();
 };
}

3. Save the file in your NetBeans IDE project.

Chapter 15
Adding Success Toast Messages to Billing Care Screens

15-4

Configuring the Registry for Success Toast Messages
To configure Billing Care to use your custom view and view models when rendering the
payment and adjustment screens:

1. Create a customRegistry.js file in myproject/web/custom by copying the reference
registry file.

Note:

A sample customRegistry.js file is provided in the SDK_home/samples/
CustomToastMessages/web/custom directory.

2. Specify to use your custom view and view models for the payment and adjustment
screens.

The following shows sample entries in the customRegistry.js file for overriding the toast
message view, the toast message view model, all adjustment view models, and all
payment view models:

varCustomRegistry = {

 toastMessages: {
 view: '../custom/templates/toastMessages/
toastMessagesView.html',
 viewmodel: '../custom/js/viewmodels/toastMessages/
ToastMessagesViewModel'
 },
 makePayment: {
 viewmodel: '../custom/js/viewmodels/makePayment/
CustomMakePaymentViewModel'
 },
 allocatePayment: {
 simpleviewmodel: '../custom/js/viewmodels/allocatePayment/
CustomAllocatePaymentViewModel',
 advancedviewmodel: '../custom/js/viewmodels/allocatePayment/
CustomAllocatePaymentAdvancedViewModel'
 },
 makePaymentSuspense: {
 overlayviewmodel: '../custom/js/viewmodels/makePaymentSuspense/
CustomMakePaymentSuspenseOverlayViewModel'
 },
 itemAdjustment: {
 viewmodel: '../custom/js/viewmodels/itemAdjustment/
CustomItemAdjustmentViewModel'
 },
 eventAdjustment: {
 viewmodel: '../custom/js/viewmodels/eventAdjustment/
CustomEventAdjustmentViewModel'
 },
 accountAdjustment: {
 viewmodel: '../custom/js/viewmodels/accountAdjustment/
CustomAccountAdjustmentViewModel'

Chapter 15
Adding Success Toast Messages to Billing Care Screens

15-5

 },
 billAdjustment: {
 viewmodel: '../custom/js/viewmodels/billAdjustment/
CustomBillAdjustmentViewModel'
 },
 allocateBillAdjustment: {
 viewmodel: '../custom/js/viewmodels/allocateBillAdjustment/
CustomAllocateBillAdjustmentViewModel'
 },
 allocateAdjustment: {
 simpleviewmodel: '../custom/js/viewmodels/allocateAdjustment/
CustomAllocateAdjustmentViewModel',
 advancedviewmodel :'../custom/js/viewmodels/allocateAdjustment/
CustomAllocateAdjustmentAdvancedViewModel'
 },
 nonCurrencyAdjustment: {
 viewmodel: '../custom/js/viewmodels/nonCurrencyAdjustment/
CustomNonCurrencyAdjustmentViewModel'
 }
};

3. Save the customRegistry.js file in your NetBeans IDE project.

Specifying the Path to Check Mark Graphic
The Billing Care SDK includes a sample green check mark graphic that you can include in your
toast messages. The sample graphic is located in the SDK_home/samples/
CustomToastMessages/web/custom/resources/images directory.

You can include this graphic in your toast messages or create your own graphic. You can also
change the colors, font size, and border used in the toast message.

To specify the path to the check mark graphic:

1. Copy the contents from the sample overrides.css file to your myproject/web/custom/css/
overrides.css file.

2. In the file, update the background-image URL to the relative path of your graphic:

.oj-messages-notification .oj-message-header {
 background-image: url(../resources/images/green-check.png);
 background-color: #d7efdf;
 font-size: large;
 height: 40px;
 background-repeat: no-repeat;
 background-position: left;

3. (Optional) Make any other customizations to the toast message.

4. Save and close the file.

Chapter 15
Adding Success Toast Messages to Billing Care Screens

15-6

16
Customizing Purchase Deal and Assets Action
Menu

Learn how to customize how you configure deals and display the Actions menu in Oracle
Communications Billing Care.

Topics in this document:

• About Customizing Purchase Deal Configuration and Assets Action Menu

• Customizing Purchase Deal Configuration

• Customizing Assets Action Menu

• Deploying Customizations

About Customizing Purchase Deal Configuration and Assets
Action Menu

You configure new or additional deals added to an account by clicking Configure in the
Purchase Catalogue screen. Your deals may require additional fields for capturing custom
configuration attributes during the purchase.

You can customize Billing Care to add custom fields for configuring the deal purchase and
display the newly added custom fields in the assets action menu by using the Billing Care
SDK.

For more information, see the following:

• Customizing Purchase Deal Configuration

• Customizing Assets Action Menu

Customizing Purchase Deal Configuration
The Billing Care SDK includes the sample SDK in the SDK_home/samples/
PurchaseDealAndAssetsActionMenuCustomization directory, where SDK_home is the
directory where you installed the SDK. Extend the sample with additional fields if required by
your business. Use this sample to assist you in customizing the deal purchase configuration in
Billing Care.

To customize the purchase deal configuration:

1. Extend the Billing Care data model by creating the custom data model JAR file (for
example,customDataModel.jar) and add the JAR file to your Billing Care customization
NetBeans IDE project. See "Extending the Data Model With the XSD and Java Class files"
for more information.

2. Create custom purchase configuration view models to override the default purchase
configuration flow. See "Creating a Custom Purchase Deal Configuration View Model" for
more information.

16-1

3. Create a custom view model HTML template to display the fields in the Configure screen
during deal purchase. See "Creating Custom Purchase Configure View Model HTML
Templates" for more information.

4. Deploy your custom payment type projects to your application server. See "Deploying
Customizations" for more information.

Extending the Data Model With the XSD and Java Class files
To extend the data model with the XSD and Java class files:

1. Create the customPurchaseBundle.xsd file by using the sample
customPurchaseBundle.xsd file in the SDK_home/samples/
PurchaseDealAndAssetsActionMenuCustomization/customSchema/ directory. The
sample customPurchaseBundle.xsd file includes the following custom fields:
productDescription and overridingAmount.

2. Create the jaxb_bindings.xml file by using the sample jaxb_bindings.xml file in the
SDK_home/samples/PurchaseDealAndAssetsActionMenuCustomization/
customSchema/ directory.

3. Generate a JAXB class from the schema by using XJC (XJC is available as part of Java):

Note:

It is assumed that the jaxb_bindings.xml and customPurchaseBundle.xsd
files are available in the same directory in which the customPurchaseBundle
XSD schema is stored.

xjc path_of_XSD_file -p package_path -b bindings_file

where:

• path_of_XSD_file is the path to the customPurchaseBundle.xsd file.

• package_path is the path to the Billing Care package.

• bindings_file is the path to the jaxb_bindings.xml file.

For example:

xjc . -p com.oracle.communications.brm.cc.model -b jaxb_bindings.xml

The customPurchaseBundle.java file is created in the directory in which the
jaxb_bindings.xml and customPurchaseBundle.xsd files are stored.

4. Create a Java class file by running the following command:

javac java_file_Path -cp path to dataModel.jar

where path to dataModel.jar is the path to the dataModel.jar available in Billing Care.

For example:

javac com\oracle\communications\brm\cc\model* -cp ..\..\lib\dataModel.jar

The CustomPurchaseBundle.class file is generated.

5. Do one of the following:

Chapter 16
Customizing Purchase Deal Configuration

16-2

• If you already have a customized data model JAR file, add the
CustomPurchaseBundle.class to that JAR file.

• If the customized data model JAR is not available, create a customDataModel.jar by
running the following command:

jar -cf customDataModel.jar com*
6. Copy the customized data model jar file (for example,customDataModel.jar) to your

Billing Care customization NetBeans IDE project myproject/web/lib directory where
myproject is the project directory of your Billing Care customizations NetBeans IDE project.

Creating a Custom Purchase Deal Configuration View Model
Billing Care uses the PurchaseConfigurationViewModel and PurchaseViewModel to define
the purchase configuration flow for the deal purchase. You must create these view models
containing the override functions.

The PurchaseConfigurationViewModel contains the processBundlePurchasePayload()
function, which captures the values entered in the custom fields in the Configure page and
adds it to the accountModel as array. The PurchaseViewModel contains the
purchaseBundle() function, which retrieves the data and calls the Custom REST Resource.
The CustomAccountResource handles the custom REST call by accepting the
customPurchaseBundle from the user interface.

See "About View Models" for more information about Billing Care view models.

The sample CustomPurchaseConfigurationViewModel.js and
CustomPurchaseViewModel.js files are provided in the SDK_home/samples/
PurchaseDealAndAssetsActionMenuCustomization/web/custom/viewmodels directory.
These samples contain the necessary override functions to add custom fields for purchase
deal configuration. Use these samples to create the custom purchase deal configuration view
models.

To create the purchase deal configuration view models with the override functions:

1. Create a CustomPurchaseConfigurationViewModel.js file in myproject/web/custom/
viewModels directory, where myproject is the folder containing your NetBeans IDE project.

2. Create a CustomPurchaseViewModel.js file in myproject/web/custom/viewModels
directory.

3. Save the files in your NetBeans IDE project.

Creating Custom Purchase Configure View Model HTML Templates
Billing Care uses an HTML view file to render the Configure screen in the purchase flow. You
must create a custom purchase configuration view model HTML template to display any
additional fields during new or additional deals purchase configuration. The template file
contains the additional fields defined in the custom purchase configuration view model created
in "Creating a Custom Purchase Deal Configuration View Model".

A sample purchaseConfigureAdditionalFieldsView.html file is provided in the SDK_home/
samples/PurchaseDealAndAssetsActionMenuCustomization directory. This sample
defines how to render additional attributes for the purchase configuration. Use this sample to
create a custom purchase configuration HTML template for displaying the additional fields
required for the deal purchase configuration.

To create a purchase configuration HTML template for rendering the additional fields you need
to capture:

Chapter 16
Customizing Purchase Deal Configuration

16-3

1. Create a purchaseConfigureAdditionalFieldsView.html file in myproject/web/custom/
templates directory.

2. Define the new fields in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Customizing Assets Action Menu
The Billing Care SDK includes a sample custom assets action menu in the SDK_home/
samples/PurchaseDealAndAssetsActionMenuCustomization directory. Use this sample to
assist you in customizing the assets action menu to display the newly added custom fields for
purchasing deals in Billing Care.

To customize the assets action menu:

1. Create a custom asset view model to override the default assets action menu view. See
"Creating a Custom Asset View Model" for more information.

2. Create custom view model HTML templates for customizing the assets action menu. See
"Creating Custom Asset View Model HTML Templates" for more information.

3. Deploy your custom payment type projects to your application server. See "Deploying
Customizations" for more information.

Creating a Custom Asset View Model
Billing Care uses AssetViewModel to define the assets action menu. You must create a
custom asset view model containing the override editProductParams() function. The
editProductParams() function renders links for each product in the assets card to edit the
product details.

See "About View Models" for more information about Billing Care view models.

The sample CustomAssetViewModel.js is provided in the SDK_home/samples/
PurchaseDealAndAssetsActionMenuCustomization/web/custom/viewmodels directory.
This sample contains the necessary overrides for the default assets action menu. Use this
sample to create the custom view models for retrieving and displaying the custom fields in the
assets action menu.

To create the asset view model with the override functions:

1. Create a CustomAssetViewModel.js file in myproject/web/custom/viewModels
directory, where myproject is the folder containing your NetBeans IDE project.

2. Save the file in your NetBeans IDE project.

Creating Custom Asset View Model HTML Templates
Billing Care uses an HTML view file to customize the assets action menu. You must create a
custom asset view model HTML template to display any custom fields that you added for the
deal purchase configuration. The template file contains the additional fields defined in the
custom asset view model created in "Creating a Custom Asset View Model".

The sample editProductParametersView.html and
customAssetsActionMenuOptions.html files are provided in the SDK_home/samples/
PurchaseDealAndAssetsActionMenuCustomization directory. The
editProductParametersView.html file defines how to render the additional attributes when the
custom Change Product Parameters entry is selected from the assets action menu. The

Chapter 16
Customizing Assets Action Menu

16-4

customAssetsActionMenuOptions.html file defines the assets action menu options to be
displayed. Use these samples to create the custom asset view HTML templates for
customizing the assets action menu.

In the sample customAssetsActionMenuOptions.html file, the custom menu entry to be
displayed is added in the <!-- Custom Menu Entry for Assets Action Menu SDK : START -->
section. In the sample editProductParametersView.html file, the product parameters for the
custom menu are listed in the "<!-- Dialog Contents for the Product Parameters : Added for
Assets Actions Menu SDK : START -->" section.

To create an asset view HTML template:

1. Create a editProductParametersView.html file in myproject/web/custom/templates
directory.

2. Define the new fields in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

4. Create a customAssetsActionMenuOptions.html file in myproject/web/custom/
templates directory.

5. Define the new fields in HTML required for rendering in this file.

6. Save the file in your NetBeans IDE project.

Deploying Customizations
Package and deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying Customizations".

Chapter 16
Deploying Customizations

16-5

17
Customizing Billing Care to Display Child
Accounts

Learn how to customize Oracle Communications Billing Care to display child accounts in the
Organization Hierarchy screen of the parent account.

Topics in this document:

• About Displaying Child Accounts

• Customizing Billing Care to Display Child Accounts

• Customizing the Organization Hierarchy Screen

• Creating Custom View Models

• Configuring a Custom Module in the Registry

• Adding the Data Model JAR File

• Deploying Customizations

About Displaying Child Accounts
By default, Billing Care does not display the list of child accounts from the parent account.

However, you can customize Billing Care to display the list of child accounts in the
Organization Hierarchy screen of the parent account by using the Billing Care SDK. This lets
you view the list of child accounts and also navigate to the child accounts from the parent
account.

You can view the list of child accounts by clicking the Show Children link in the Organization
Hierarchy screen of the parent account.

Customizing Billing Care to Display Child Accounts
This section provides a high level overview of the process on how to customize Billing Care to
display the list of child accounts in the Organization Hierarchy screen.

To customize Billing Care to display child accounts:

1. Create a java class to retrieve the child accounts from Oracle Communications Billing and
Revenue Management (BRM) and display them from the Organization Hierarchy screen of
the parent account. See "Customizing the Organization Hierarchy Screen" for more
information.

2. Create custom view models to define the display of the Organization Hierarchy screen.
See "Creating Custom View Models" for more information.

3. Create a customRegistry.js file configuring Billing Care to use the custom view models
created in step 2. See "Configuring a Custom Module in the Registry" for more information.

4. Add the data model JAR file to your NetBeans IDE project. See "Adding the Data Model
JAR File" for more information.

17-1

5. Deploy your customization to your Billing Care domain. See "Deploying Customizations"
for more information.

Customizing the Organization Hierarchy Screen
Customize the Organization Hierarchy screen by creating a custom resource class containing
the logic to retrieve and display all the child accounts for a parent account.

To customize the Organization Hierarchy screen:

1. Create a CustomHierarchyResource.java file in myproject/projectname/src/java/com/
rest/sdk, where myproject is the folder containing your NetBeans IDE project, using the
sample shown in Example 17-1.

You can extend the REST framework to call BRM opcodes (for example,
PCM_OP_SEARCH) to retrieve the child account details from BRM by using account
numbers. See "Extending and Creating Billing Care REST Resources" for more
information about extending the REST framework.

2. Save the file in your NetBeans IDE project.

3. Copy the file to com.oracle.communications.brm.cc.ws package (myproject/src/com/
oracle/communications/brm/cc/ws).

Example 17-1 Sample CustomHierarchyResource.java Class

/**
* Custom hierarchy resource
*
*/
@Path("hierarchy")
public class CustomHierarchyResource {
 /**
 * sample rest API to retrieve child accounts
 * refer to the documentation for more details.
 * @return String
 */
 private static CCLogger logger =
 CCLogger.getCCLogger(CustomHierarchyResource.class);
 @Path("/children/{id}")
 @GET
 @Produces({"application/xml", "application/json"})
 public String getChildAccountsInHierarchy(@PathParam("id") String id) {
 logger.entering("CustomHierarchyResource", "getChildAccountsInHierarchy");
 try {
//method implementation to fetch child accounts goes here. Refer to documentation for
more details.
 System.out.println("Custom Hierarchy Resource "+id);
 } catch (ApplicationException e) {
 ExceptionHelper.handleException(e);
 }
 logger.exiting("CustomHierarchyResource",
 "getChildAccountsInHierarchy");
 ChildrenAccount obj = new ChildrenAccount(id,"Dummy Account");
 return obj;
 }
}

Chapter 17
Customizing the Organization Hierarchy Screen

17-2

Creating Custom View Models
Billing Care uses view model to define the display of the Organization Hierarchy screen. You
must create the custom view model CustomOrganizationHierarchyViewModel containing
overrides for the default Organization Hierarchy screen. See "About View Models" for more
information about Billing Care view models.

The sample customOrganization HierarchyViewModel.js file is provided in the SDK_home/
samples/DisplayChildAccountsInHierarchy/web/js/viewmodel directory. Use the samples
to create the custom view models for displaying child accounts.

To create custom view models:

1. Create the customOrganizationHierarchyViewModel.js file in the myproject/web/
custom/js/viewmodels/area/configure directory, where area is the customization type.

2. Save the files in your NetBeans IDE project.

The view model customOrganizationHierarchyViewModel.js adds the required HTML from
the JS side and applies binding to the same for Show All Children button.

Configuring a Custom Module in the Registry
Create a custom organization hierarchy module entry in your customRegistry.js file for
displaying child accounts from the parent account. Billing Care uses the custom module
instead of the default entry and renders the Organization Hierarchy screen containing your
custom fields. See "About the Registry File" for more information.

To create a custom module entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/.

2. Define the custom organization hierarchy module in this file. Example 17-2 shows a
definition of the custom organization hierarchy module in the registry using the SDK
samples.

3. Save the file in your NetBeans IDE project.

Example 17-2 Sample Custom Organization Hierarchy Registry Entry

var CustomRegistry = {

 organizationHierarchy: {
 viewmodel: 'viewmodel/CustomOrganizationHierarchyViewModel',
 removeFromHierarchyOverlayView:
 'text!templates/organizationHierarchy/overlays/removeFromHierarchyOverlayView.html',
 removeFromHierarchyOverlayViewModel: 'overlayviewmodels/organizationHierarchy/
RemoveFromHierarchyOverlayViewModel',
 }
};

Adding the Data Model JAR File
To add the data model JAR file to your NetBeans IDE project, copy the
extensionDataModel.jar from SDK_home/libs to your Billing Care customization NetBeans
IDE project (myproject/web/lib).

Chapter 17
Creating Custom View Models

17-3

Deploying Customizations
Package and deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying Customizations".

Chapter 17
Deploying Customizations

17-4

18
Customizing Billing Care Invoice Presentation

Learn how to customize how Oracle Communications Billing Care retrieves and presents
invoices for display.

Topics in this document:

• About Billing Care Invoice Presentation

• Customizing Billing Care Invoice Presentation

• Presenting Invoices in a Dialog Box

• Retrieving Invoices from Third-Party Repositories

About Billing Care Invoice Presentation
Billing Care retrieves invoices from external invoice repositories, such as Oracle Analytics
Publisher, and displays the supported invoice formats (for example, PDF and HTML) in the
web browser. When a user views an invoice, Billing Care retrieves the invoice identifier for the
active bill unit from BRM and sends a request to the invoice repository for the invoice
document.

By default, BRM integrates with Oracle Analytics Publisher for generating and storing PDF
invoices of customer bill units retrievable in Billing Care. See "Using Oracle Analytics Publisher
for Invoicing" in BRM Designing and Generating Invoices for more information on this
integration.

Customizing Billing Care Invoice Presentation
Customize Billing Care invoice presentation in the following ways using the Billing Care SDK:

• Presenting Invoices in a Dialog Box

• Retrieving Invoices from Third-Party Repositories

The Billing Care SDK includes sample invoice presentation customizations in the SDK_home/
samples/InvoiceRepository directory, where SDK_home is the directory where you installed
the SDK. Use the samples as guidelines for developing your own customizations.

Setting Up NetBeans IDE for Customizing Invoice Presentation
Customizing Billing Care invoice presentation requires overriding default view model
(BillInvoiceViewModel.js) behavior and adding the custom JavaScript to the customizations
shared library deployed to the Billing Care domain. See "About Billing Care Modules" for more
information on how view models use JavaScript to perform functions.

See "Setting Up the Development Environment" for information on setting up NetBeans IDE.
See "Packaging and Deploying Customizations" for more information on packaging and
deploying your invoice presentation changes.

To customize Billing Care invoice presentation:

18-1

1. Create a customModule.properties file in your myproject/web/WEB-INF/classes/
custom/ directory, where myproject is your NetBeans IDE project containing your Billing
Care customizations. This file will contain a reference to the location of the custom Java
classes you create.

2. Copy the default registry.js file from SDK_home/references to a custom registry file
named customregistry.js in your myproject/web/custom directory. This file contains the
billInvoice module definition using your custom view model (JavaScript).

3. Customize invoice presentation by creating the Java classes and necessary resources
(JavaScript view model) as described in the following sections.

4. Add your customization files to your NetBeans IDE project (myproject). Add new
JavaScript to support your custom view model in the myproject/web/js/viewmodels/
billinvoice directory.

5. Right-click your NetBeans IDE project and select Clean and Build.

6. Package and deploy your invoice presentation customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

7. Verify your changes in Billing Care.

Presenting Invoices in a Dialog Box
The default invoice presentation displays PDF invoices in an iframe (inline frame) within the
active Billing Care browser window. Billing Care also supports presentation of invoices in a
dialog box.

To present invoices in a dialog box:

1. In a text editor, open your CustomConfigurations.xml file. This file contains configuration
entries for Billing Care behavior. See "Creating a Custom Configuration File" for more
information on creating a custom configuration file in your NetBeans IDE project.

2. Set the value for the billinvoice.use.modaldialog flag to true as shown:

<flags>
 <key>billinvoice.use.modaldialog</key>
 <value>false</value>
 <desc>If value is true then displays the bill invoice in a modal
 dialog.</desc>
</flags>

3. Save the configuration file.

4. Do one of the following:

• If you are using an exploded archive for your shared library, log out of and back into
Billing Care to see the new theme. See "About Using an Exploded Archive" for more
information about using exploded archives.

• Package your customizations shared library and deploy it to your Billing Care domain.
Redeploy Billing Care and login to see the new theme. See "Packaging and Deploying
Customizations" for more information on packaging and deploying your
customizations.

5. Verify your changes in Billing Care.

Chapter 18
Presenting Invoices in a Dialog Box

18-2

Retrieving Invoices from Third-Party Repositories
By default, Billing Care retrieves invoices from Oracle Analytics Publisher. The logic to retrieve
an invoice identifier for the active bill unit and request the PDF invoice from Oracle Analytics
Publisher is contained in the PCMBillModule class. This class contains the following methods:

• getInvoicePDF(String id)

It contains the code to invoke the worker method to retrieve the Invoice ID and template
name from the bill ID passed from BRM.

• runReport (String invoiceId,String templateName)

This method is called from the getInvoicePDF method. It contains the code to retrieve the
PDF invoice from Oracle Analytics Publisher using the invoice ID and template name by
calling the Oracle Analytics Publisher web service.

To use an invoice repository other than Oracle Analytics Publisher, override the getInvoicePDF
and runReport methods in the PCMBillModule class.

The override implementation depends on how your invoice repository's API retrieves and
sends invoices to external clients. A simple REST example is included in the SDK and
includes:

• A sample Java class (CustomPCMBillModule.java), which extends runReport to connect
to a basic local invoice file system repository. This class is located in the SDK_home/
samples/InvoiceRepository/rest/src/com/oracle directory.

• A test resource Java class to use with CustomPCMBillModule.java, which provides a
local file PDF for retrieval. This class is located in the SDK_home/samples/
InvoiceRepository/TestResource/src/com/oracle directory.

To retrieve an invoice from a repository other than Oracle Analytics Publisher:

1. Create a CustomPCMBillModule.java file in the myproject/src/ directory, where myproject
is your NetBeans IDE project containing your Billing Care customizations, to override the
original PCMBillModule.

Use the sample provided in the SDK as an example. Your implementation will depend on
your invoice repository's API.

2. Compile your custom classes using NetBeans IDE.

3. Add your customization files to your NetBeans IDE project (myproject):

• Add an entry in the customModule.properties in the myproject/web/WEB-INF/
classes/custom folder to override the default billing module as follows:

billingcare.rest.billing.module=com.company.modules.CustomPCMBillModule
where company is the company name used in your myproject/src directory.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Chapter 18
Retrieving Invoices from Third-Party Repositories

18-3

19
Adding an Event Details Column to the Events
Table

Learn how to add an extra column to the Oracle Communications Billing Care Event Details
table to display event details.

Topics in this document:

• About the Events Table

• About Adding an Event Details Column to the Events Table

• Adding an Event Details Column to the Events Table

• About the Sample Files

• Creating the Event Details Column in the Events Table Using the Sample

About the Events Table
You can view the usage events for a bill in the Events table. See "Working with Events" in
Billing Care Online Help for more information about viewing this table.

About Adding an Event Details Column to the Events Table
You can add an additional column called "Event Details" to the Events table. This column will
contain a View link for each event in the table. When you click the View link, a dialog box
displays the event flist for the event. The dialog box also contains a Copy button which copies
the entire flist.

Adding an Event Details Column to the Events Table
Billing Care provides an SDK sample to enable adding the event details column into the table.
You can use the sample files to implement the new column using your own custom project.

About the Sample Files
The sample is located in the SDK_home/samples/EventDialogCustomizations directory,
where SDK_home is the directory where the SDK is installed. This directory contains a
readme.txt file and directories containing supporting files.

The sample contains the following supporting files:

• In the SDK_home/samples/SampleSDK/EventDialogCustomizations/web/custom
directory:

– customRegistry.js: This file supplies a sample entry to include the custom view model
code.

• In the SDK_home/samples/SampleSDK/EventDialogCustomizations/web/custom/
viewmodels/events directory:

19-1

– CustomEventsViewModel.js: This file contains code to implement the custom view
model with the Event Details column.

• In the SDK_home/samples/EventDialogCustomizations/src/java/com/oracle/
communications/brm/cc/ws directory:

– CustomEventResource.java: This file contains the REST call to retrieve the event
details.

– CustomEventWorker.java: This code calls the appropriate opcode and reads the
event object.

Creating the Event Details Column in the Events Table Using the
Sample

1. Create a custom web project named, for example, EventDialogCustomizations.

2. Copy the sample CustomEventResource.java file to the com/oracle/
communications/brm/cc/ws directory in your project to incorporate a new REST method.

3. Copy the sample CustomEventWorker.java file to the com/oracle/
communications/brm/cc/ws directory in your project to introduce logic for calling the
opcode to read event objects.

4. Add your custom project, for example, EventDialogCustomizations, to the web/custom/
customRegistry.js file in your project to override the standard view model file. See "About
the Registry File" for more information.

5. Copy the sample CustomEventsViewmodel.js file to your project to customize the
viewmodel file to include an additional column and dialog in the DOM.

6. Create a MANIFEST.MF file in the src/conf folder using the instructions in "Creating a
Manifest for your Shared Library".
You can use the SDK_home/samples/FiltersAndCustomHeaders/src/conf/
MANIFEST.MF file as a sample.

7. Use the instructions in "Packaging and Deploying Customizations" to create a production
deployment plan and a .war file containing your customizations.

Chapter 19
Creating the Event Details Column in the Events Table Using the Sample

19-2

20
Customizing Reason Codes List in Event
Adjustments

Learn how to customize the Oracle Communications Billing Care Event Adjustments dialog box
to display specific reason codes.

Topics in this document:

• About Displaying Reason Codes

• Customizing Reason Codes List in Event Adjustments

• Creating the Custom Event Adjustment View Model

• Configuring the Custom Purchase View Model in the Registry

• Deploying Customizations

About Displaying Reason Codes
By default, all the reason codes configured for adjustments are displayed in the Event
Adjustment dialog box. When you perform adjustments for events, you can select a reason
code from this list to specify the reason for the adjustment.

Customizing Reason Codes List in Event Adjustments
You can customize the Event Adjustment dialog box using OPSS policies to display only
specific reason codes in the list.

To customize the reason codes list displayed in the Event Adjustments dialog box:

1. Create a custom ResourceType and Resource for reason codes in the OPSS Server. For
example, ReasonCodeResourceType, ReasonCodeResource.

2. Define the reason codes as corresponding actions for the ResourceType in the OPSS
Server.
You can specify Reason ID as the action name when you define the actions.

3. Add the new ResourceType to the CustomConfigurations.xml file. For example:

<keyvals>
<key>authorizationResourceTypes</key>
<value>ReasonCodeResourceType</value>
<desc>Add comma separated OPSS Resource Types(values) for authorization.
Also these resource types should be defined in OPSS.
Please note that the key should not be changed here.
</desc>
</keyvals>

4. Create a custom view model to define the display of Event Adjustment dialog box. See
"Creating the Custom Event Adjustment View Model" for more information.

5. Create a customRegistry.js file to configure Billing Care to use the custom view model
that you created. See "Configuring the Custom Event Adjustment View Model in the
Registry" for more information.

20-1

6. Deploy your custom event adjustment project to your application server. See "Deploying
Customizations" for more information.

Creating the Custom Event Adjustment View Model
Billing Care uses view model to define the display of the screens in Billing Care. You must
create the custom view model, CustomEventAdjustmentViewModel, containing the details to
customize the display of reason codes in the Event Adjustment dialog box.

See "About View Models" for more information about Billing Care view models.

To create the custom event adjustment view model:

1. Create the customEventAdjustmentViewModel.js file in myproject/web/custom/
viewmodels directory, where myproject is the folder containing your NetBeans IDE
project.

2. Add the following code in the customEventAdjustmentViewModel.js file using a text
editor:

define(['jquery', 'knockout',
 'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'
],
 function($, ko, EventAdjustmentViewModel) {
 function customEventAdjustmentViewModel() {
 EventAdjustmentViewModel.apply(this, arguments);
 self = this;
 self.notesReasonCodes = ko.computed(function() {
 if (self.domainId() !== null) {
 self.selectedReasonCode("");
 reasonCodes =
Configurations.getReasonCodes(self.domainId());
 filterReasonCodes = [];
 for (i = 0; i < reasonCodes.length; i++) {

if(util.isGrantedResourceAction(reasonCodes[i].ReasonID,
"ReasonCodeResource")){ //Use newly created resource here
 filterReasonCodes.push(reasonCodes[i]);
 }
 }
 }
 return filterReasonCodes;
 });
 }
 customEventAdjustmentViewModel.prototype = new
EventAdjustmentViewModel();
 return customEventAdjustmentViewModel;
 });

3. Save the file in your NetBeans IDE project.

Configuring the Custom Event Adjustment View Model in the
Registry

After creating the required custom view model, create a custom event adjustment view model
entry in the customRegistry.js file. Billing Care uses the custom event adjustment view model
instead of the default event adjustment view model during adjustments and renders the Event
Adjustment dialog box containing your customization.

Chapter 20
Creating the Custom Event Adjustment View Model

20-2

To create the custom event adjustment view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom event adjustment view model in this file. For example:

eventAdjustment: {
 viewmodel: 'custom/viewmodels/customEventAdjustmentViewModel.js'
 }

3. Save the file in your NetBeans IDE project.

Deploying Customizations
Package and deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying Customizations".

Chapter 20
Deploying Customizations

20-3

21
Restricting Debit and Credit Event Adjustment
Options

Learn how to customize Oracle Communications Billing Care to restrict debit and credit
adjustment options in the Event Adjustment dialog box based on user roles.

Topics in this document:

• About Debit and Credit Event Adjustments

• Restricting Debit and Credit Adjustment for Events

• Creating a Custom View Model for Restricting Debit and Credit Adjustments

• Configuring the Custom View Model for Debit and Credit Adjustments

About Debit and Credit Event Adjustments
To perform debit or credit event adjustments, you enter the adjustment amount in the
Adjustment field in the Event Adjustment dialog box. For credit adjustment, you enter a
positive amount or percentage. For debit adjustment or to increase the amount due, you enter
a negative amount. You can restrict the debit or credit event adjustments based on user roles
by customizing Billing Care using the SDK and OPSS policies.

Restricting Debit and Credit Adjustment for Events
You can customize the Event Adjustment dialog box using OPSS policies to restrict the debit
and credit adjustment options for events based on user roles.

To customize debit and credit adjustment options in the Event Adjustment dialog box:

1. Define a new ResourceType in the OPSS Server. For example,
AdjustmentActionResourceType.

2. Define the debit and credit options as corresponding actions for the ResourceType in the
OPSS Server.

3. Add the new ResourceType to the CustomConfigurations.xml file. For example:

<keyvals>
<key>authorizationResourceTypes</key>
<value>AdjustmentActionResourceType</value>
<desc>Add comma separated OPSS Resource Types(values) for authorization.
Also these resource types should be defined in OPSS.
Please note that the key should not be changed here.
</desc>
</keyvals>

4. Create a custom view model to define the display of Event Adjustment dialog box. See
"Creating a Custom View Model for Restricting Debit and Credit Adjustments" for more
information.

21-1

5. Create a customRegistry.js file to configure Billing Care to use the custom view model
that you created. See "Configuring the Custom View Model for Debit and Credit
Adjustments" for more information.

6. Deploy your customizations using one of the methods described in "Using an Exploded
Archive during Customization" or "Packaging and Deploying Customizations".

Creating a Custom View Model for Restricting Debit and Credit
Adjustments

Billing Care uses view model to define the display of the screens in Billing Care. You must
create or update the custom view model, CustomEventAdjustmentViewModel, and add the
details containing the logic to check if the adjustment is a debit or credit adjustment and
determine if that adjustment is allowed for the specific user role.

See "About View Models" for more information about Billing Care view models.

To create a custom model for customizing debit and credit event adjustment options:

1. Create or update the customEventAdjustmentViewModel.js file in myproject/web/
custom/viewmodels directory, where myproject is the folder containing your NetBeans
IDE project.

2. Add the following code in the customEventAdjustmentViewModel.js file using a text
editor:

define(['jquery', 'knockout',
 'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'
],
 function($, ko, EventAdjustmentViewModel) {

 function customEventAdjustmentViewModel() {
 EventAdjustmentViewModel.apply(this, arguments);
 self = this;
 self.isValid = function () {
 var actionName;
 if (self.adjustmentAmount().indexOf(')') > -1)
 actionName = "Debit"; // write debit action name
created in OPSS
 else
 actionName = "Credit"; // write credit action name
created in OPSS
 if (self.note.isValid() && self.validator &&
self.validator.form()) {
//Write resourcename which include credit and debit actions
 if (!util.isGrantedResourceAction(actionName,
"customResource"))
 {
 alert(actionName + " adjustment is not allowed");
 return false;
 }
 return true;
 }

 return false;
 };
 }
 customEventAdjustmentViewModel.prototype = new
EventAdjustmentViewModel();

Chapter 21
Creating a Custom View Model for Restricting Debit and Credit Adjustments

21-2

 return customEventAdjustmentViewModel;
 });

3. Save the file in your NetBeans IDE project.

Configuring the Custom View Model for Debit and Credit
Adjustments

After creating or updating the required custom view model, ensure that the custom event
adjustment view model entry is created in the customRegistry.js file. Billing Care uses the
custom event adjustment view model instead of the default event adjustment view model
during adjustments and renders the Event Adjustment dialog box containing your
customization.

To create the custom event adjustment view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom event adjustment view model in this file. For example:

eventAdjustment: {
 viewmodel: 'custom/viewmodels/customEventAdjustmentViewModel.js'
 }

3. Save the file in your NetBeans IDE project.

Chapter 21
Configuring the Custom View Model for Debit and Credit Adjustments

21-3

22
Customizing Billing Care to Display Only Event
Adjustments

Learn how to customize Oracle Communications Billing Care to display only event adjustments
in the Bills section for performing adjustments.

Topics in this document:

• About Displaying Event Adjustments

• Customizing Billing Care to Display Only Event Adjustments

• Creating Custom View Models to Display Only Event Adjustments

• Configuring Custom Bill and Bill Item View Models in the Registry

About Displaying Event Adjustments
By default, Billing Care display all the adjustment options, such as bill, item, and event, for
performing adjustments. However, you can customize Billing Care to display only the list of
event adjustment options and hide bill and item adjustment options by using the Billing Care
SDK. This lets you perform only event adjustments for the selected account.

Customizing Billing Care to Display Only Event Adjustments
You can customize Billing Care using OPSS policies to display only event adjustments for
performing adjustments.

To customize Billing Care to display only event adjustments:

1. Create a custom ResourceType and Resource for event adjustments in the OPSS server.
For example, AdjustmentResourceType, AdjustmentResource.

2. Define Make as the corresponding action for the custom ResourceType in the OPSS
server.

3. Add the new ResourceType to the CustomConfigurations.xml file. For example:

 <key>authorizationResourceTypes</key>
 <value>customResourceType</value>
 <desc>Add comma separated OPSS Resource Types(values) for
authorization.
 Also these resource types should be defined in OPSS.
 Please note that the key should not be changed here.
 </desc>
 </keyvals>

See "Editing the Billing Care Configuration File" for customization of the
configurations.xml file.

4. Create custom view models containing overrides to hide bill and item adjustments. See
"Creating Custom View Models to Display Only Event Adjustments" for more information.

22-1

5. Create a customRegistry.js file configuring Billing Care to use the custom view models
that you created. See "Configuring Custom Bill and Bill Item View Models in the Registry"
for more information.

6. Deploy your customizations using one of the methods described in "Using an Exploded
Archive during Customization" or "Packaging and Deploying Customizations".

Creating Custom View Models to Display Only Event
Adjustments

Billing Care uses view model to define the display of the Item Adjustment, Bill Adjustment, and
Event Adjustment dialog boxes. You must create the custom view models,
CustomBillItemChargesViewModel and CustomBillChargesViewModel, containing
overrides to hide bill and item adjustments. See "About View Models" for more information
about Billing Care view models.

To create custom view models to display only event adjustments:

1. Create the customBillItemChargesViewModel.js and customBillChargesViewModel.js
files in the myproject/web/custom/js/viewmodels directory, where myproject is the folder
containing your NetBeans IDE project.

2. Add the following code in the customBillItemChargesViewModel.js file using a text
editor:

define(['jquery', 'knockout',
 'viewmodels/billMainPanel/BillItemChargesViewModel'
],
 function($, ko, BillItemChargesViewModel) {

 function CustomBillItemChargesViewModel() {
 BillItemChargesViewModel.apply(this, arguments);
 self = this;
 self.showARActionMenu = function(data, event) {

 self.__proto__.showARActionMenu(data,event);

 // write custom action name and resource. Item adjustment
can be hide by not granting make permission to customResource.
 if (!util.isGrantedResourceAction("make",
"customResource")){
 $("#billItemFlyoverNewAdjustment").hide();
 }
 };

 }
 CustomBillItemChargesViewModel.prototype = new
BillItemChargesViewModel();
 return CustomBillItemChargesViewModel;
 });

3. Save the file in your NetBeans IDE project.

4. Add the following code in the customBillChargesViewModel.js file using a text editor:

define(['jquery', 'knockout',
 'viewmodels/billtab/BillChargesViewModel'
],
 function($, ko, BillChargesViewModel) {
 function customBillChargesViewModel() {
 BillChargesViewModel.apply(this, arguments);

Chapter 22
Creating Custom View Models to Display Only Event Adjustments

22-2

 $(function() {
 var myVar = setInterval(function() {
 if ($('#adjustbillListMenu').length > 0)
 {

 // write custom action name and resource. Bill
adjustment
 //can be hide by not granting make permission to
customResource.
 if (!util.isGrantedResourceAction("make",
"customResource")) {
 $('#adjustbillListMenu').remove();

 if
($("#actionsmenu").next().children("li.ui-menu-item").length < 1) {
 $("#actionsmenu").children("span").remove();
 }
 clearInterval(myVar);
 }
 }, 20);

 });

 }
 customBillChargesViewModel.prototype = new
BillChargesViewModel();
 return customBillChargesViewModel;
 });

5. Save the file in your NetBeans IDE project.

Configuring Custom Bill and Bill Item View Models in the Registry
After creating CustomBillItemChargesViewModel and CustomBillChargesViewModel view
models, create custom view model entries in the customRegistry.js file to use when
performing adjustments. Billing Care uses the custom bill tab view model and bill item charges
view model instead of the default entries when rendering the Adjustments screen.

To create custom view model entries in a customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom by copying the reference
registry file.

2. Define the entries referencing the custom view models in this file. For example:

billTab: {

billChargesViewModel:'custom/js/viewmodels/customBillChargesViewModel.js'

 },

 billItemCharges: {

 viewmodel: 'custom/js/viewmodels/customBillItemChargesViewModel.js'
 }

3. Save the file in your NetBeans IDE project.

Chapter 22
Configuring Custom Bill and Bill Item View Models in the Registry

22-3

23
Customizing Account Creation Service Fields

Learn how to add custom account creation fields to Oracle Communications Billing Care for
capturing required service configuration information.

Topics in this document:

• About Customizing Account Creation

• Creating Custom Search View Models

• Creating a Custom Service View Model HTML Template

• Extending the Service Validator for Custom Fields

• Configuring a Custom Module in the Registry

• Deploying Customizations

About Customizing Account Creation
Users create new subscriber accounts by clicking New Account on the Billing Care home
page. New accounts require creating new subscriber profiles, selecting offers, and configuring
services and payments. Your offers may require additional fields for capturing custom service
configuration attributes during account creation.

Use the Billing Care SDK to customize new account service configuration to capture such
information. For example, use the SDK to add fields for capturing mailbox message limits to
set when configuring a messaging service. The SDK includes a sample for adding fields to
account creation in SDK_home/samples/AccountCreation_CustomizeServices, where
SDK_home is the Billing Care SDK installation directory.

Adding custom service configuration fields requires:

1. Creating Custom View Models

2. Creating a Custom Service View Model HTML Template

3. Extending the Service Validator for Custom Fields

4. Configuring a Custom Module in the Registry

5. Deploying Customizations

Creating Custom View Models
Billing Care renders account creation screens using view models that define graphical
elements including service configuration fields. See "About View Models" for a description of
view models. Adding additional fields for account creation requires:

• Extending the New Account Configuration View Model

• Creating a Custom Service Configuration View Model

Both view models must be included in your NetBeans IDE project in the myproject/web/
custom/viewmodels/accountCreation/configure folder where myproject is the base

23-1

directory of your Net Beans IDE project. See "Setting Up the Development Environment" for
more information on setting up your project.

Extending the New Account Configuration View Model
Billing Care uses NewAccountConfigureViewModel.js during account creation to identify
configurable services. This file selects a registry key based on the service being configured
and maps this registry key to a module (view, view model, and validator) configuration defined
in the registry. Billing Care then renders the appropriate service configuration screen based on
the mapped module during account creation.

Adding additional fields to capture during service configuration requires extending
NewAccountConfigureViewModel.js with additional registry keys for custom services. This
enables Billing Care to select the correct registry key defining the custom service configuration.

A sample CustomNewAccountConfigureViewModel.js file is provided in the SDK_home/
samples/AccountCreation_CustomizeServices/web/custom/js/viewmodels/
accountCreation/configure directory.

To extend NewAccountConfigureViewModel.js:

1. Create a CustomNewAccountConfigureViewModel.js file in myproject/web/custom/js/
viewmodels/area/configure where myproject is the folder containing your NetBeans IDE
project and area is the customization type.

2. Define new registry keys that map to Oracle Communications Billing and Revenue
Management (BRM) service types. Example 23-1 shows an additional registry key
definition for /service/email.

3. Save the file in your NetBeans IDE project.

Example 23-1 Sample New Account Configure View Model

define(['knockout', 'underscore', 'viewmodels/accountCreation/configure/
NewAccountConfigureViewModel'], function(ko, _, NewAccountConfigureViewModel) {
 function CustomNewAccountConfigureViewModel() {
 NewAccountConfigureViewModel.apply(this, arguments);

 var self = this;

 /**
 * Get registryKey for service type from the activePageKey.
 * @param {type} apKey
 * @returns {String}
 */
 self.getRegistryKeyForServiceType = function(apKey){
 var registryKey = null;
 if(apKey != null && apKey.indexOf("/service/telco") !== -1){
 registryKey = "telcoServiceConfiguration";
 }else if(apKey != null && apKey.indexOf("/service/email") !== -1){
 registryKey = "emailServiceConfiguration";
 }
 return registryKey;
 };

 }

 CustomNewAccountConfigureViewModel.prototype = new NewAccountConfigureViewModel();
 return CustomNewAccountConfigureViewModel;
});

Chapter 23
Creating Custom View Models

23-2

Creating a Custom Service Configuration View Model
Billing Care uses a service configuration view model to define what fields to capture during
service configuration. The fields defined in the service configuration view model are bound in
the HTML file used to render the service configuration screen. You must create a custom
service configuration view model to capture additional fields during account creation for any
custom services.

A sample CustomEmailServiceConfigurationViewModel.js file is provided in the
SDK_home/samples/AccountCreation_CustomizeServices/web/custom/js/viewmodels/
accountCreation/configure directory. This sample defines three mailbox attributes usable for
a custom messaging service. Use this sample to create a custom service configuration view
model for defining the fields required by your service.

To create a custom service configuration view model defining the additional fields you need to
capture:

1. Create a CustomServiceConfigurationViewModel.js file in myproject/web/custom/js/
viewmodels/area/configure where myproject is the folder containing your NetBeans IDE
project and area is the customization type.

2. Define the new fields required for capture in this file.

3. Define the BRM service type using the @class property in the self.isValid function in this
file. Following are the supported @class services:

com.oracle.communications.brm.cc.model.ServiceEmailType
com.oracle.communications.brm.cc.model.ServiceBroadbandType
com.oracle.communications.brm.cc.model.ServiceDataType
com.oracle.communications.brm.cc.model.ServiceLdapType
com.oracle.communications.brm.cc.model.ServiceMmsType
com.oracle.communications.brm.cc.model.ServiceEmailType
com.oracle.communications.brm.cc.model.ServiceProviderType
com.oracle.communications.brm.cc.model.ServiceSpcontentType
com.oracle.communications.brm.cc.model.ServiceInstantchatType
com.oracle.communications.brm.cc.model.ServicePsmcontentproviderType
com.oracle.communications.brm.cc.model.ServiceContentproviderType
com.oracle.communications.brm.cc.model.ServiceConfchatType
com.oracle.communications.brm.cc.model.ServiceProviderProdType
com.oracle.communications.brm.cc.model.ServiceInternettvType
com.oracle.communications.brm.cc.model.ServiceAdminClientType
com.oracle.communications.brm.cc.model.ServiceCableType
com.oracle.communications.brm.cc.model.ServiceVideochatType
com.oracle.communications.brm.cc.model.ServiceCloudType
com.oracle.communications.brm.cc.model.ServiceStreamType
com.oracle.communications.brm.cc.model.ServiceTelephonyType
com.oracle.communications.brm.cc.model.ServiceContentType
com.oracle.communications.brm.cc.model.ServicePcmClientType
com.oracle.communications.brm.cc.model.ServiceIpType
com.oracle.communications.brm.cc.model.ServiceSsgType
com.oracle.communications.brm.cc.model.ServiceFaxType
com.oracle.communications.brm.cc.model.ServiceSettlementType
com.oracle.communications.brm.cc.model.ServiceVpdnType
com.oracle.communications.brm.cc.model.ServiceTelcoType

Chapter 23
Creating Custom View Models

23-3

com.oracle.communications.brm.cc.model.ServiceTelcoVoipType
com.oracle.communications.brm.cc.model.ServiceTelcoGprsType
com.oracle.communications.brm.cc.model.ServiceTelcoGsmType

4. Save the file in your NetBeans IDE project.

Creating a Custom Service View Model HTML Template
Billing Care uses an HTML view file to render the service configuration screen during account
creation. You must create a custom service view model HTML template to display any
additional fields during service configuration. The template file contains the additional fields
defined in the custom service configuration view model created in "Creating a Custom Service
Configuration View Model".

A sample customEmailServiceConfigView.html file is provided in the SDK_home/samples/
AccountCreation_CustomizeServices/web/custom/templates/accountCreation/configure
directory where SDK_home is the Billing Care SDK installation directory. This sample defines
how to render three mailbox attributes usable for a custom messaging service and the data
binding values. Use this sample to create a custom service configuration HTML template for
displaying the fields required by your service.

To create a custom service configuration HTML template for rendering the additional fields you
need to capture:

1. Create a CustomServiceConfigView.html file in myproject/web/custom/templates/area/
configure where myproject is the folder containing your NetBeans IDE project and area is
the customization type.

2. Define the new fields in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Extending the Service Validator for Custom Fields
Billing Care uses a JavaScript-based validator for validating field entry in the service
configuration screen during account creation. You must create a custom field validator for any
additional fields you add in your HTML template to assure that entered values are properly
formatted. The registry key entry that defines the custom module includes the validator
JavaScript file.

A sample CustomEmailServiceFieldsValidatory.js file is provided in the SDK_home/
samples/AccountCreation_CustomizeServices/web/custom/js/validations/
accountCreation/configure directory. This sample defines the required format of each custom
field and the error message that appears if the user enters an incorrect format. Use this sample
to create a custom service fields validator for your service.

To create a custom service fields validator:

1. Create a CustomServiceFieldsValidator.js file in myproject/web/custom/js/validations/
area/configure where myproject is the folder containing your NetBeans IDE project and
area is the customization type.

2. Define the required field validations in this file.

3. Save the file in your NetBeans IDE project.

Chapter 23
Creating a Custom Service View Model HTML Template

23-4

Configuring a Custom Module in the Registry
After creating the required custom view models, HTML template, and validator, create a
custom account creation module entry in the customRegistry.js file to use when creating a
new account. Billing Care uses the custom account creation module instead of the default
entry during account creation and renders the service configuration screen containing your
custom fields.

A sample customRegistry.js file is provided in the SDK_home/samples/
AccountCreation_CustomizeServices/web/custom directory. This sample defines the
custom account creation module containing the previously referenced sample view models,
HTML template, and validator.

To create a custom account creation module entry in the customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom/ where myproject is the folder
containing your NetBeans IDE project.

2. Define the custom account creation module in this file. Example 23-2 shows a definition of
the custom account creation module in the registry using the SDK samples.

3. Save the file in your NetBeans IDE project.

Example 23-2 Sample Custom Account Creation Module Registry Entry

var CustomRegistry = {
 accountCreationConfigure: {
 viewmodel: '../custom/js/viewmodels/accountCreation/configure/
CustomNewAccountConfigureViewModel',
 emailServiceConfiguration:{
 view: 'text!../custom/templates/accountCreation/configure/
customEmailServiceConfigView.html',
 viewmodel: '../custom/js/viewmodels/accountCreation/configure/
CustomEmailServiceConfigurationViewModel',
 validator: '../custom/js/validations/accountCreation/configure/
CustomEmailServiceFieldsValidator'
 }
 }
};

Deploying Customizations
Package and deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying Customizations".

Chapter 23
Configuring a Custom Module in the Registry

23-5

24
Creating Custom Billing Care Credit Profiles

Learn how to customize Oracle Communications Billing Care to store subscriber credit profiles.

Topics in this document:

• About Credit Profiles

• Customizing Billing Care to Store Credit Profiles

• Creating Custom Profile Storable Classes in BRM

• Extending the Billing Care Data Model with XSD and JSON Files

• Adding the Required Files to the NetBeans Project

• Deploying Customizations

About Credit Profiles
Billing Care uses credit profiles to store subscriber information related to credit worthiness
including social security numbers and credit scores. By default, Billing Care does not store or
display credit profile information. You customize Billing Care to display credit profile information
stored in Oracle Communications Billing and Revenue Management (BRM) using the SDK.

Customizing Billing Care to Store Credit Profiles
Support for credit profiles requires customizations in both BRM and Billing Care.

To add credit profile support in Billing Care:

1. Create the required credit profile objects in BRM by importing the SDK sample
configuration or manually creating the objects using Developer Center. See "Creating
Custom Profile Storable Classes in BRM" for more information.

2. Generate the required XSD and JSON files using the Data Model Generator utility. See
"Extending the Billing Care Data Model with XSD and JSON Files" for more information.

3. Add the generated XSD, JSON, and Java JAR files to your NetBeans IDE project. See
"Adding the Required Files to the NetBeans Project" for more information.

4. Deploy your custom payment-type projects to your application server. See "Deploying
Customizations" for more information.

The Billing Care SDK includes a sample credit profile customization in the SDK_home/
samples/EndToEndUseCase directory. The credit profile sample stores only the social
security number and credit score. Extend the sample with additional fields if required by your
business. Use this sample to assist you in customizing Billing Care with credit profile support.

Creating Custom Profile Storable Classes in BRM
Credit profile support requires creating the credit profile object in the BRM database where
Billing Care stores subscriber credit profile data. The SDK sample includes a PODL file
containing the credit profile object definitions which can be imported into BRM using the

24-1

pin_deploy utility. Alternatively, you can create the required objects manually using Developer
Center.

To create the credit profile object in the BRM database, select one of the following methods:

• Importing Credit Profile Class Definitions into BRM

• Creating Credit Profile Objects Using Developer Center

Importing Credit Profile Class Definitions into BRM
To import the sample PODL definition file into BRM:

1. Copy the credit_profileObj.podl file located in SDK_home/samples/EndToEndUseCase/
BRM_CreditProfileObject to your BRM_home/test folder, where BRM_home is the home
directory of your BRM installation.

2. Run the following command:

pin_deploy create credit_ProfileObj.podl

3. Start Developer Center.

4. Open the Class Browser and verify that the /profile/credit_check object is present.

The SDK sample includes a pre-compiled JAR file that must be added to your NetBeans IDE
project for Billing Care to use the new credit profile class. This JAR is located in the
SDK_home/samples/EndToEndUseCase/web/WEB-INF/lib folder.

Creating Credit Profile Objects Using Developer Center
Use Developer Center to manually create the credit profile object and fields in BRM. See
"Creating the Credit Profile Class and Field " for more information on using Developer Center
to create the required object and fields.

If you choose to create the credit profile class manually, you must use the Generate Custom
Fields Source utility to create source files containing the new custom fields. Compile these
source files into a JAR file and add the JAR file to your NetBeans IDE project. See "Generating
the Required JAR File and Infranet.properties" for more information on generating the required
JAR file.

Creating the Credit Profile Class and Field
Create the credit profile object and fields in BRM using Developer Center. This section
provides a high level overview of the process including a general overview on how to create
and update the required objects. For detailed information on using the Developer Center to
create a custom credit profile see "Creating Custom Fields and Storable Classes" in BRM
Developer's Guide.

To create the credit profile class:

1. Start Developer Center.

2. Open the Class Browser.

3. Create the /profile/credit_check class.

4. Commit the new class.

To create the required fields for the new credit profile class:

Chapter 24
Creating Custom Profile Storable Classes in BRM

24-2

1. Open the Storable Class Editor.

2. Create the required fields listed in Table 24-1 for the credit profile class.

Table 24-1 /profile/credit_check Class Fields

Field Type

PIN_FLD_CREDIT_INFO SUBSTRUCT

PIN_FLD_SSN STRING

PIN_FLD_CREDIT_SCORE INT

3. Commit the subclass changes to the database.

To add the created fields to the new credit profile class:

1. Open the Class Browser.

2. Select the /profile/credit_check class.

3. Add the fields listed in Table 24-1 to the credit profile class.

4. Commit the subclass changes to the database.

Generating the Required JAR File and Infranet.properties
To create the required JAR containing the compiled credit profile Java source code:

1. Open the Class Browser.

2. Select the /profile/credit_check class.

3. Select File and then select Generate Custom Fields Source. See "Making Custom Fields
Available to Your Applications" in BRM Developer's Guide.

The utility generates the required Java class files and the
InfranetPropertiesAdditions.properties file.

4. Copy the contents of the InfranetPropertiesAdditions.properties file into the
Infranet.properties file located in the home directory of the Billing Care WebLogic Server
administrative user.

5. Compile the Java class files into a JAR file named Custom.jar. Include the SDK_home/
libs/pcm.jar file in the classpath option when compiling.

Extending the Billing Care Data Model with XSD and JSON Files
The Billing Care SDK includes a Data Model Generator utility for generating the required XSD
and JSON files containing the credit profile definitions. The Data Model Generator is located in
the SDK_home/samples/data_model_generator directory.

Note:

The Data Model Generator utility requires an Infranet.properties file configured with
BRM connection information in the local user's home directory. The utility connects to
the BRM system defined in this file to retrieve the object configuration before
generating the required XSD and JSON files. See "Configuring Additional Settings in
the Infranet.properties File" in Billing Care Installation Guide for more information.

Chapter 24
Extending the Billing Care Data Model with XSD and JSON Files

24-3

To create the required XSD and JSON files for credit profile:

1. Open a command-line interface on the system where the Billing Care SDK is installed.

2. Change to the SDK_home/samples/data_model_generator directory.

3. Run the DatamodelGenerator.bat (Windows) or DataModelGenerator.sh (Linux) script to
generate the XSD and JSON files.

The Data Model Generator outputs the extensionDataModel.jar containing the XSD files and
an XSD file containing the definition of your custom payment type. Add these files to your
NetBeans IDE project. See "Adding the Required Files to the NetBeans Project" for more
information on adding the files to your project.

Adding the Required Files to the NetBeans Project
The EndToEndUseCase sample includes sample customized JavaScript view modules (views,
view models, validators, and HTML view template files) for Billing Care to properly render the
credit profile in the account banner. Additionally, the sample also includes customized Action
Menu and Configuration XML files enabling the entry and display of credit profile fields.

Sample JavaScript and configuration files can be customized to your needs. See "About Billing
Care Modules" for more information on customizing view modules. See "Customizing the
Billing Care Actions Menu" and "Editing the Billing Care Configuration File" for more
information about customizing the configuration files.

The following sections indicate the locations for where the sample files should be added in
your NetBeans IDE project. Place customized versions of the view module or configuration
files in the same locations. See "Setting Up a Billing Care Customization Project" for more
information on creating the proper project directory structure.

Updating the MANIFEST.MF File
To update the NetBeans IDE project MANIFEST.MF file:

1. Open your project's MANIFEST.MF file and append the contents of the SDK_home/
samples/EndToEndUseCase/src/conf/MANIFEST.MF to the end of the file.

2. Save the file.

Adding the Required View Module and Configuration Files
To add the sample view module and configuration files to your NetBeans IDE project, copy the
files located in SDK_home/samples/EndToEndUseCase/ into their corresponding NetBeans
IDE project directories.

For example, copy the SDK_home/samples/EndToEndUseCase/web/custom directory to
your myproject/web/custom directory.

Adding the Required JAR and JSON Files
To add required JAR files to your NetBeans IDE project:

1. Copy the extensionDataModel.jar and Custom.jar to your Billing Care customization
NetBeans IDE project myproject/web/lib directory where myproject is the project directory
of your Billing Care customizations NetBeans IDE project.

Chapter 24
Adding the Required Files to the NetBeans Project

24-4

2. Copy the JSON file to myproject/web/custom/jsons where myproject is the project
directory of your Billing Care customizations NetBeans IDE project.

Deploying Customizations
Package and deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying Customizations".

Chapter 24
Deploying Customizations

24-5

25
Customizing the Billing Care Actions Menu

Learn how to use the Oracle Communications Billing Care SDK to customize the Billing Care
Actions menu.

Topics in this document:

• About the Billing Care Actions Menu

• About Customizing the Actions Menu

• Removing Actions Menu Items

• Rearranging Actions Menu Items

• Renaming Actions Menu and Submenu Items

• Adding Actions Menu Items

• Adding Action Menu Items in Payment Suspense

About the Billing Care Actions Menu
The Billing Care Actions menu is defined in XML format. Example 25-1 shows a sample
portion of the XML Actions menu definition file. The <menu> tags represent a menu, and the
<item> tags inside <menu> tags represent the submenus of that menu.

Example 25-1 Sample Portion of the Actions Menu Definitions XML File

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<menu-definition xmlns="http://xmlns.oracle.com/cgbu/schemas/BusinessObjs">
 <menu id="menu-general">
 <header-key>actions_menu.ACCOUNT</header-key>
 <contents>
 <item id="menu-item-account-profile">
 <label-key>actions_menu.ACCOUNT_PROFILE</label-key>
 <description-key>actions_menu.ACCOUNT_PROFILE_SHORT_DESCRIPTION</
description-key>
 <!--"permission-key" and "action-key" are used for enabling/disabling
menu using Authorization
 The corresponding values should not be modified.
 This applies to every entry in the xml
 -->
 <permission-key>AccountResource</permission-key>
 <action-key>View</action-key>
 <version>1.0</version>
 </item>
 <item id="menu-item-account-status">
 <label-key>actions_menu.ACCOUNT_STATUS</label-key>
 <description-key>actions_menu.ACCOUNT_STATUS_SHORT_DESCRIPTION</
description-key>
 <permission-key>AccountResource</permission-key>
 <action-key>Transition</action-key>
 <version>1.0</version>
 </item>
 </contents>
 </menu>

25-1

 <menu id="menu-pay">
 <header-key>actions_menu.PAYMENTS</header-key>
 <contents>
 <item id="menu-item-make-payment">
 <label-key>actions_menu.MAKE_PAYMENT</label-key>
 <description-key>actions_menu.MAKE_PAYMENT_SHORT_DESCRIPTION</
description-key
 <permission-key>PaymentResource</permission-key>
 <action-key>Make</action-key>
 <version>1.0</version>
 </item>
 <item id="menu-item-allocate-payment">
 <label-key>actions_menu.ALLOCATE</label-key>
 <description-key>actions_menu.ALLOCATE_SHORT_DESCRIPTION</description-
key>
 <permission-key>PaymentResource</permission-key>
 <action-key>Allocate</action-key>
 <version>1.0</version>
 </item>
 </contents>
 </menu>
</menu-definition>

The following Actions menu element definitions are provided to assist you with customizing
the Actions menu:

• action-key holds the action value for the corresponding resource (for example, Make,
Allocate, and so on).

• contents.item.label-key represents the resource bundle key for entries within the
submenus.

• description-key represents a submenu description that appears below a menu label.

• header-key represents the resource bundle key for the entries in the Actions menu
(Account, Payments, and so on) and the header within the submenus.

• id is used as the element ID for the menus and anchor links representing the menu entries.
This may be useful for the associated JavaScript code that you can write for custom menu
entries.

• label-key represents the menu label.

• permission-key reflects the authorization key that controls access to the menu entry. This
is used to hold the resource value (for example, PaymentResource, AdjustmentResource,
and so on).

Mapping Label and Description Key Values to the Resource Bundle
The label-key and description-key values use either the text string included within the tag, or a
referenced value mapped to the Billing Care resource bundle. When mapping these keys to
the resource bundle, use the following format:

actions_menu.trans-unit ID
where trans-unit ID represents the label defined in the resource bundle. See "Customizing
Billing Care Labels" for more information on customizing the resource bundle for your
environment.

Chapter 25
About the Billing Care Actions Menu

25-2

About Customizing the Actions Menu
You can customize the Actions menu in the following ways:

• Removing Actions Menu Items

• Rearranging Actions Menu Items

• Renaming Actions Menu and Submenu Items

• Adding Actions Menu Items

The Billing Care SDK includes a sample Actions menu customization in the SDK_home/
samples/ActionMenu directory. Use this sample to assist you in customizing the Actions
menu.

Setting Up NetBeans IDE for Customizing the Actions Menu
Customizing Billing Care Actions menu requires creating a custom XML configuration file
(CustomActionMenu.xml). This file contains the configuration for your custom menu
structure.

To customize Billing Care invoice presentation:

1. Copy the default ActionMenu.xml file from SDK_home/references to a custom file named
CustomActionMenu.xml in your myproject/web/WEB-INF/custom/configurations
directory.

2. Customize the Actions menu by using the CustomActionMenu.xml file as described in
the following sections.

3. Save and close the CustomActionMenu.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Removing Actions Menu Items
Use the following procedures to remove Actions menu items:

• Removing an Existing Actions Menu Submenu

• Removing an Existing Actions Menu

Removing an Existing Actions Menu Submenu
To remove an existing Actions menu submenu:

1. Open the CustomActionMenu.xml file in an editor.

2. Delete the corresponding <item> element in CustomActionMenu.xml for the submenu
you want to remove.

For example, to remove Account Status from Account menu, remove the following
<item> element:

Chapter 25
About Customizing the Actions Menu

25-3

<item id="menu-item-account-status">
 <label-key>actions_menu.ACCOUNT_STATUS</label-key>
 <permission-key>AccountResource</permission-key>
 <action-key>Transition</action-key>
 <version>1.0</version>
</item>

3. Save and close the CustomActionMenu.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Removing an Existing Actions Menu
To remove an existing menu:

1. Open the CustomActionMenu.xml file in an editor.

2. Delete the corresponding <menu> block for the menu you want to remove.

For example, to remove the Account menu, remove the following <menu> element:

<menu id="menu-general">
 <header-key>actions_menu.ACCOUNT</header-key>
 <contents>
 <item id="menu-item-account-profile">
 <label-key>actions_menu.ACCOUNT_PROFILE</label-key>
 <!--"permission-key" and "action-key" are used for enabling/disabling
menu using Authorization
 The corresponding values should not be modified.
 This applies to every entry in the xml
 -->
 <permission-key>AccountResource</permission-key>
 <action-key>View</action-key>
 <version>1.0</version>
 </item>
 <item id="menu-item-account-status">
 <label-key>actions_menu.ACCOUNT_STATUS</label-key>
 <permission-key>AccountResource</permission-key>
 <action-key>Transition</action-key>
 <version>1.0</version>
 </item>
 </contents>
 </menu>

3. Save and close to CustomActionMenu.xml file.

4. Package and deploy your invoice presentation customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

5. Verify your changes in Billing Care.

Rearranging Actions Menu Items
Use the following procedures to remove Actions menu items:

• Rearranging Actions Menu Submenu Items

• Rearranging Actions Menu Items

Chapter 25
Rearranging Actions Menu Items

25-4

Rearranging Actions Menu Submenu Items
To rearrange Actions menu submenu items:

1. Open the CustomActionMenu.xml file in an editor.

2. Change the order of corresponding submenu <item> tags.

For example, to get Account Status first and then Account Profile second in the
Account menu:

<menu id="menu-general">
 <header-key>actions_menu.ACCOUNT</header-key>
 <contents>
 <!-- Account status comes first -->
 <item id="menu-item-account-status">
 <label-key>actions_menu.ACCOUNT_STATUS</label-key>
 <permission-key>AccountResource</permission-key>
 <action-key>Transition</action-key>
 <version>1.0</version>
 </item>
 <item id="menu-item-account-profile">
 <label-key>actions_menu.ACCOUNT_PROFILE</label-key>
 <!--"permission-key" and "action-key" are used for enabling/
disabling menu using Authorization
 The corresponding values should not be modified.
 This applies to every entry in the xml
 -->
 <permission-key>AccountResource</permission-key>
 <action-key>View</action-key>
 <version>1.0</version>
 </item>
 </contents>
 </menu>

3. Save and close to CustomActionMenu.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Rearranging Actions Menu Items
To rearrange Actions menu items:

1. Open the CustomActionMenu.xml file in an editor.

2. Change the order of corresponding <menu> tags to the order you want the menus to be
displayed.

For example, to get Payments as the first menu and Account as the second menu:

<menu id="menu-pay">
 <!--content of Payments menu -->
 </menu>
 <menu id="menu-general">
 <!--content of Account menu -->
 </menu>

Chapter 25
Rearranging Actions Menu Items

25-5

3. Save and close to CustomActionMenu.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Renaming Actions Menu and Submenu Items
Use the following procedures to rename Actions menu items:

• Renaming Actions Menu Submenu Items

• Renaming Actions Menu Items

Renaming Actions Menu Submenu Items
To rename an Actions menu submenu item:

1. Open the CustomActionMenu.xml file in an editor.

2. Change the value of <label-key> for the submenu item you want to rename.

3. Save and close to CustomActionMenu.xml file.

4. Right-click your NetBeans IDE project and select Clean and Build.

5. Package and deploy your invoice presentation customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Renaming Actions Menu Items
To rename an Actions menu item:

1. Open the CustomActionMenu.xml file in an editor.

2. Change the value of <header-key> for the menu item you want to rename. Note the
header key for the menu changed.

3. Save and close to CustomActionMenu.xml file.

4. Find the header key in the resource bundle and follow the steps in "Customizing the
Resource Bundle" to rename the Actions menu items.

5. Right-click your NetBeans IDE project and select Clean and Build.

6. Package and deploy your invoice presentation customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

7. Verify your changes in Billing Care.

Adding Actions Menu Items
Adding Actions menu and submenu items requires you to add new <menu> and <item>
elements in your CustomActionMenu.xml file and create a custom view model to support
your new menus and submenus.

Chapter 25
Renaming Actions Menu and Submenu Items

25-6

To add Actions menu or submenu items:

1. Open the CustomActionMenu.xml file in an editor.

2. Add new <menu> and <item> elements as required under the <!-- existing content
remains --> comment.

For example:

<!-- Custom block to be added in the CustomActionsMenu.xml -->
 <menu id="menu-pay">
 <header-key>actions_menu.PAYMENTS</header-key>
 <contents>
 <!-- existing content remains -->
 <!-- Add a new menu item under payments -->
 <item id="menu-item-new-custom-item">
 <label-key>New Custom Menu Item</label-key>
 <permission-key>PaymentResource</permission-key>
 <!-- If we are not using ant existing action-key, this
NewCustomActionKey must be configured in the OPSS environment -->
 <action-key>NewCustomActionKey</action-key>
 <version>1.0</version>
 </item>
 </contents>
 </menu>

3. Create a new custom view model file to support the new Actions menu items you created
(for example, customMenuViewModel.js) in the myproject/web/js directory where
myproject is the NetBeans IDE project containing your Billing Care customizations.

4. Write and bind click events in the custom view model file using the same ids that you used
in the CustomActionMenu.xml file:

$('#menu-item-new-custom-item').click(function(e){
 //implementation goes here.
 }
);

5. If your menu or submenu additions require custom logic, extend Billing Care using the SDK
to support the required functions. See "Extending and Creating Billing Care REST
Resources" for more information on extending Billing Care.

6. Copy the default registry.js file from SDK_home/references to a custom registry file
named customRegistry.js in your myproject/web/custom directory, where myproject is
your NetBeans IDE project containing your Billing Care customizations. This file contains
the module definition using your custom view model (JavaScript).

7. Add the definition for your custom view model in the customRegistry.js file, located in
your myproject/web/custom directory.

For example:

var CustomRegistry = {
 customActionMenus: {
 viewmodel: '../custom/viewmodels/MenuEventHandlerViewModel'
 }
};

8. Right-click your NetBeans IDE project and select Clean and Build.

9. Package and deploy your invoice presentation customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

10. Verify your changes in Billing Care.

Chapter 25
Adding Actions Menu Items

25-7

Adding Action Menu Items in Payment Suspense
The Payment Suspense action menu can be customized with additional menu items. To add
custom Payment Suspense action menu items, use the same procedure described in "Adding
Actions Menu Items".

The Billing Care SDK includes a sample Payment Suspense Actions menu customization in
the SDK_home/samples/PaymentSuspenseDetailsActionsMenu directory. Use this sample
to assist you in customizing the Payment Suspense Actions menu.

Chapter 25
Adding Action Menu Items in Payment Suspense

25-8

26
Opening Custom Views From Landing Page

Learn how to customize Oracle Communications Billing Care to open custom views in full
screen mode or dialog boxes from the landing page.

Topics in this document:

• About Customizing the Landing Page

• Customizing the Landing Page

• Opening Custom Views in Full Screen Mode

• Opening a Dialog Box From Landing Page

About Customizing the Landing Page
Billing Care displays default views and pages in full screen mode. You can customize Billing
Care to open custom views and pages from the landing page in full screen mode by using the
Billing Care SDK and routers. You can also open a custom dialog box from the landing page by
using the Billing Care SDK.

Customizing the Landing Page
To add custom buttons to the landing page for opening a custom view or dialog box, you must
customize the landing page.

To customize the landing page:

1. Create a custom landing page view model for extending the default landing page. See
"Creating a Custom Landing Page View Model".

2. Create a custom landing page view model HTML template for displaying custom buttons
on the landing page. See "Creating a Custom Landing Page View Model HTML Template".

Creating a Custom Landing Page View Model
Billing Care uses a landing page view model to define the buttons displayed in the landing
page. The buttons are bound in the HTML file used to render the landing page. To add custom
buttons to the landing page, create a custom landing page view model.

A sample LandingPageExtensionViewModel.js file is provided in the SDK_home/samples/
LandingPageCustomizations/web/custom/js/viewmodels/home directory. This sample
defines the custom buttons and methods to open custom views or pages (in full screen mode)
and dialog boxes from the landing page. Use this sample to extend the landing page view
model for defining the custom views, pages, or dialog boxes required by your service.

To create a custom landing page view model:

1. Create a LandingPageExtensionViewModel.js file in the myproject/web/custom/js/
viewmodels/home directory, where myproject is the folder containing your NetBeans IDE
project.

26-1

2. Define the custom buttons, as required.

3. Save the file in your NetBeans IDE project.

Creating a Custom Landing Page View Model HTML Template
Billing Care uses an HTML view file to render the landing page. To display your custom buttons
for opening custom views, pages, or dialog boxes, you create a custom landing page view
model HTML template.

A sample LandingPageExtensionView.html file is provided in the SDK_home/samples/
LandingPageCustomizations/web/custom/templates/home directory. This sample defines
how to render the custom buttons in the landing page. Use this sample to create a custom
landing page HTML template for opening the custom views or dialog boxes from the landing
page.

To create a custom landing page view model HTML template:

1. Create a LandingPageExtensionView.html file in the myproject/web/custom/js/
templates/home directory.

2. Define the custom buttons in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Opening Custom Views in Full Screen Mode
You can add custom views or pages and directly open them from the landing page in full
screen mode.

To open custom views in full screen mode:

1. Customize the landing page, if you have not done so already. See "Customizing the
Landing Page".

2. Create a custom view model to define your custom view or page. See "Creating a Custom
Full Page View Model".

3. Create a custom view model HTML template to render your custom view or page in the full
screen mode. See "Creating a Custom Full Page View Model HTML Template".

4. Create a custom router view model to call the custom router helper when users click the
custom button that you created. See "Creating a Custom Router View Model".

5. Create a custom router helper to add a router-specific functions that display the custom
view in full screen mode when users click the custom button. See "Creating a Custom
Router Helper ".

6. Create a customRegistry.js file to configure Billing Care to use the custom view models
that you created. See "Configuring the Custom Full Page View Model in the Registry".

7. Package and deploy your customization to your Billing Care domain using one of the
methods described in "Using an Exploded Archive during Customization" or "Packaging
and Deploying Customizations".

Creating a Custom Full Page View Model
Billing Care uses the view model to define the fields to capture in your custom view or page.
The fields defined in the view model are bound in the HTML file used to render the custom
view or page. You must create a custom view model to define your custom view or page.

Chapter 26
Opening Custom Views in Full Screen Mode

26-2

A sample customFullPageViewModel.js file is provided in the SDK_home/samples/
LandingPageCustomizations/web/custom/js/viewmodels/customFullPage directory. Use
this sample to extend the default view model for defining the custom view or page required by
your service.

To create a custom full page view model:

1. Create a customFullPageViewModel.js file in the myproject/web/custom/js/
viewmodels/customFullPage directory.

2. Define the custom fields in this file as required.

3. Save the file in your NetBeans IDE project.

Creating a Custom Full Page View Model HTML Template
Billing Care uses an HTML view file to render your custom view or page. You must create a
custom full page view model HTML template to display the custom view or page in the full
screen mode. The template file contains the custom fields as defined in the custom full page
view model created in "Creating a Custom Full Page View Model".

A sample customFullPageView.html file is provided in the SDK_home/samples/
LandingPageCustomizations/web/custom/templates/customFullPage directory. Use this
sample to create a custom full page HTML template for rendering the custom views or pages
you want to view in the full screen mode.

To create a custom full page view model HTML template:

1. Create a customFullPageView.html file in the myproject/web/custom/js/templates/
customFullPage directory.

2. Define the custom fields in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Creating a Custom Router View Model
Billing Care uses a router view model to call the route helper, a set of router-specific functions,
to complete the routing request. You can define these functions to open the custom view or
page in the full screen mode.

You can use the sample customRouterViewModel.js file in the SDK_home/samples/
LandingPageCustomizations/web/custom/js/viewmodels/router directory to create your
router view model.

To create a custom router view model:

1. Create a customRouterViewModel.js file in the myproject/web/custom/js/viewmodels/
router directory.

2. Define the functions for opening the custom view or page in the full screen mode as
required.

3. Save the file in your NetBeans IDE project.

Creating a Custom Router Helper
You must create a custom router helper to view your custom views or pages in the full screen
mode. You can use the sample customRouterHelper.js file in the SDK_home/samples/

Chapter 26
Opening Custom Views in Full Screen Mode

26-3

LandingPageCustomizations/web/custom/js/viewmodels/router directory to create your
router helper.

To create a custom router helper:

1. Create a customRouterHelper.js file in the myproject/web/custom/js/viewmodels/router
directory.

2. Define the functions for opening the custom view or page in the full screen mode as
required.

3. Save the file in your NetBeans IDE project.

Configuring the Custom Full Page View Model in the Registry
After creating the required custom view model, create a custom module entry in the
customRegistry.js file to use when opening the custom views or pages. Billing Care uses the
custom view model instead of the default entry when rendering the specific screen.

A sample customRegistry.js file is provided in the SDK_home/samples/
LandingPageCustomizations/web/custom directory. Use this sample to create the
customRegistry.js file containing your custom view model.

To create a custom view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom by copying the reference
registry file.

2. Define the custom view models in the file. For example:

var CustomRegistry = {
 landingPageView: {
 viewExtension: 'text!custom/../../custom/templates/home/
landingPageExtensionView.html',
 viewmodel: '../custom/js/viewmodels/home/
LandingPageExtensionViewModel'
 },
 router: {
 viewmodel: '../custom/js/viewmodels/router/customRouterViewModel'
 },
 customFullPage: {
 view: 'text!../custom/templates/customFullPage/
customFullPageView.html',
 viewmodel: '../custom/js/viewmodels/customFullPage/
customFullPageViewModel'
 }
};

3. Save the file in your NetBeans IDE project.

Opening a Dialog Box From Landing Page
You can open a custom dialog box by clicking the custom button on the landing page.

To open a custom dialog box from the landing page:

1. Create a custom landing page view model and custom landing page view model HTML
template for displaying custom button on the landing page. See "Customizing the Landing
Page".

Chapter 26
Opening a Dialog Box From Landing Page

26-4

2. Create a custom dialog view model to define your custom dialog box. See "Creating a
Custom Dialog View Model".

3. Create a custom dialog view model HTML template for rendering your custom dialog box.
See "Creating a Custom Dialog View Model HTML Template".

4. Create a customRegistry.js file to configure Billing Care to use the custom view model
that you created. See "Configuring the Custom Dialog View Model in the Registry".

5. Package and deploy your customization to your Billing Care domain using one of the
methods described in "Using an Exploded Archive during Customization" or "Packaging
and Deploying Customizations".

Creating a Custom Dialog View Model
Billing Care uses the view model to define the fields to capture in your custom dialog box. The
fields defined in the view model are bound in the HTML file used to render the custom dialog
box. You must create a custom view model to define your custom dialog box.

A sample customDialogViewModel.js file is provided in the SDK_home/samples/
LandingPageCustomizations/web/custom/js/viewmodels/customDialogView directory.
Use this sample to extend the default view model for defining the custom dialog box required
by your service.

To create a custom dialog view model:

1. Create a customDialogViewModel.js file in the myproject/web/custom/js/viewmodels/
customDialogView directory.

2. Define the custom fields in this file as required.

3. Save the file in your NetBeans IDE project.

Creating a Custom Dialog View Model HTML Template
Billing Care uses an HTML view file to render your custom dialog box. You must create a
custom dialog view model HTML template to display the custom dialog box in full screen mode.
The template file contains the custom fields as defined in the custom dialog view model
created in "Creating a Custom Dialog View Model".

A sample customDialogView.html file is provided in the SDK_home/samples/
LandingPageCustomizations/web/custom/templates/customDialogView directory. Use
this sample to create a custom dialog HTML template for rendering the custom dialog box you
want to view from the landing page.

To create a custom dialog view model HTML template:

1. Create a customDialogView.html file in the myproject/web/custom/js/templates/
customDialogView directory.

2. Define the custom fields in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Configuring the Custom Dialog View Model in the Registry
After creating the required custom view model, create a custom module entry in the
customRegistry.js file to use when opening the custom dialog box. Billing Care uses the
custom view model instead of the default entry when rendering the specific screen.

Chapter 26
Opening a Dialog Box From Landing Page

26-5

A sample customRegistry.js file is provided in the SDK_home/samples/
LandingPageCustomizations/web/custom directory. Use this sample to create the
customRegistry.js file containing your custom view model.

To create a custom dialog view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom by copying the reference
registry file.

2. Define the custom view models in the file. For example:

var CustomRegistry = {
 landingPageView: {
 viewExtension: 'text!custom/../../custom/templates/home/
landingPageExtensionView.html',
 viewmodel: '../custom/js/viewmodels/home/LandingPageExtensionViewModel'
 },
 customDialogView: {
 view: 'text!../custom/templates/customDialogView/customDialogView.html',
 viewmodel: '../custom/js/viewmodels/customDialogView/customDialogViewModel'
 }
};

3. Save the file in your NetBeans IDE project.

Chapter 26
Opening a Dialog Box From Landing Page

26-6

27
Customizing Billing Care Labels

Learn how to use the SDK to customize Oracle Communications Billing Care labels.

Topics in this document:

• About the Billing Care Resource Bundle

• Customizing the Resource Bundle

• Localizing Billing Care into Other Languages

About the Billing Care Resource Bundle
Billing Care uses an XML Localization Interchange File Format (XLF) file resource bundle for
customization of Billing Care labels and localization. The default English language XLF file
(BillingCareResources_en.xlf) is available in the SDK_home/references folder, where
SDK_home is the directory where you installed the SDK. This file contains Billing Care key-
value mappings for Billing Care labels, organized into functional group elements.

Customizing the Resource Bundle
Customize the Billing Care labels by creating a custom XLF file containing your label values.
After creating your XLF file, use the orai18n-js.jar, included in the Billing Care SDK, to
generate the required JavaScript files for the customizations shared library deployed in the
Billing Care domain.

The following XLF customizations are supported:

• Modifying Existing Labels

• Adding New Labels

Creating a Custom XLF File
Label customizations are configured in a custom XLF file.

To create a custom XLF file:

1. Create the customized_en.xlf file in your myproject/web/resources/translation/
directory, where myproject is your NetBeans IDE project containing your Billing Care
customizations.

2. Open the customized_en.xlf file in an editor and add the following text:

<?xml version="1.0" encoding="utf-8" ?>
<xliff version="1.0">
<file original="test_en.js" source-language="EN-US" target-language="EN-US"
datatype="JavaScript">
<header/>
<body>
</body>
</file>
</xliff>

27-1

Modifying Existing Labels
Modify an existing label by adding a group element in your custom XLF file containing <trans-
unit> elements for the labels you are changing. <trans-unit> elements specify the source
and target of a label to modify. For more information on the <trans-unit> element, see:

http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#trans-unit
Example 27-1 shows a sample <trans-unit> element.

Example 27-1 Sample trans-unit Element for Modifying an Existing Label

<group id="common" restype="common">
 <trans-unit id="INVALID_VALUE" translate="yes">
 <source>Invalid MODIFIED</source>
 <target>Invalid MODIFIED</target>
 </trans-unit>
</group>

To modify existing labels:

1. In the body section of the customized_en.xlf file, add a group element with the same
name as the label you want to update (for example, common).

2. Add a <trans-unit> element using the same label name as the default label you are
modifying.

3. Add the new custom label (for example, Invalid MODIFIED).

4. Save your customized_en.xlf file.

Adding New Labels
Add new labels by adding a custom_extensions group containing your new labels in your
customized_en.xlf file.

Example 27-2 shows a sample new <group> element.

Example 27-2 Sample group Element for Adding New Label

<group>
<group id="custom_extensions" restype="sdk">
<trans-unit id="TEST_CUSTOM" translate="yes">
<source>Custom New Value</source>
<target>Custom New Value</target>
</trans-unit>
</group>

To add a new label:

1. Add a new <group> element with a custom_extensions <group id> value in your
customized_en.xlf file inside the <body> element. See the BillingCareResources_en.xlf
file for group element examples.

Note:

The <group id> must be custom_extensions.

Chapter 27
Customizing the Resource Bundle

27-2

http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#trans-unit

2. Add the new labels inside your <group> element.

3. Save your customized_en.xlf file.

Creating Required JavaScript Files for Deployment
After completing your label customizations, generate the required JavaScript files to add to
your customizations shared library deployed to the Billing Care domain.

To generate the required JavaScript files:

1. Add the customized_en.xlf and default BillingCareResources_en.xlf files to the
myproject/web/resources/translation folder, where myproject is the NetBeans IDE project
folder containing your Billing Care customizations.

2. Open a shell or command window, and change directory to the myproject/web/resources/
translation folder.

3. Enter the following command using an absolute path to orai18n-js.jar.

java –jar full_path/orai18n-js.jar –from XLF –to JS -file
BillingCareResources_en.xlf Customized_en.xlf

where full_path is the directory where orail8n-js.jar is stored. This JAR is included in the
SDK_home/libs directory.

Two JavaScript files are created. One file contains the default resources of Billing Care,
and the other file contains your customizations.

4. Delete the BillingCareResources_en.xlf file.

5. Package and deploy your resource bundle customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

6. Verify your changes in Billing Care.

Localizing Billing Care into Other Languages
You can customize Billing Care to use alternative language labels by translating the
BillingCareResources_en.xlf file into another language. For example, create a file named
BillingCareResources_is.xlf to localize Billing Care in Icelandic.

To configure Billing Care with an alternative language localization:

1. Translate the BillingCareResources_en.xlf file into a version specific to the language you
are enabling. For example, create a file named BillingCareResources_XX.xlf, where XX
is the two-character language code you are enabling.

2. Copy the BillingCareResources_XX.xlf file to the myproject/web/resources/translation
directory, where myproject is your NetBeans IDE project directory containing your Billing
Care customizations.

3. Run the conversion utility using orail8n-js.jar to create the JavaScript for the language you
are enabling:

java -jar full_path/orai18n-js.jar -from XLF -to JS -file BillingCareResources_XX.xlf

where full_path is the directory where orail8n-js.jar is stored. This JAR is included in the
SDK_home/libs directory.

4. Package and deploy your resource bundle customizations to your Billing Care domain.

Chapter 27
Localizing Billing Care into Other Languages

27-3

For more information, see "Packaging and Deploying Customizations".

5. Verify your changes in Billing Care.

Chapter 27
Localizing Billing Care into Other Languages

27-4

28
Customizing Billing Care to Disable Links in
the Bills Tab

Learn how to customize Oracle Communications Billing Care to disable the Charges not
related to services link and the link to child accounts in the Bills tab, My Charges area, and
Payment Details dialog box.

Topics in this document:

• About Disabling Links

• Disabling Links in the Bills Tab

• Creating Custom View Models to Disable Links in the Bills Tab

• Configuring Custom Bill, Charges, and Payment Detail View Models in the Registry

About Disabling Links
By default, Billing Care displays the link to child accounts in the Bills tab, My Charges area,
and Payment Details dialog box to navigate to the child accounts and the Charges not related
to services link in the My Charges area to view the account-level charges.

However, you can customize Billing Care to disable these links displayed in the parent account
by using the Billing Care SDK.

Disabling Links in the Bills Tab
You can customize Billing Care using the Billing Care SDK to disable the following:

• Link to the child accounts in the Bills tab and Payment Details dialog box.

• Charges not related to services link in the My Charges area in the Bills tab.

To customize Billing Care to disable links in the Bills tab:

1. Create a custom ResourceType and Resource in the OPSS server for disabling links. For
example, BillsResourceType, BillsResource.

2. Define the corresponding action for the custom ResourceType in the OPSS server.

3. Add the new ResourceType to the CustomConfigurations.xml file. For example:

</keyvals>
 <key>authorizationResourceTypes</key>
 <value>BillsResourceType</value>
 <desc>Add comma separated OPSS Resource Types(values) for authorization. Also
these resource types should be defined in OPSS. Please note that the key should not
be changed here.</desc>
</keyvals>

See "Editing the Billing Care Configuration File" for customization of the
configurations.xml file.

28-1

4. Create custom view models containing overrides to hide the link in the Bills tab. See
"Creating Custom View Models to Disable Links in the Bills Tab" for more information.

5. Create a customRegistry.js file configuring Billing Care to use the custom view models
that you created. See "Configuring Custom Bill, Charges, and Payment Detail View Models
in the Registry" for more information.

6. Deploy your customizations using one of the methods described in "Using an Exploded
Archive during Customization" or "Packaging and Deploying Customizations".

Creating Custom View Models to Disable Links in the Bills Tab
Billing Care uses view model to define the display of the Bills tab, My Charges area, and
Payment Details dialog box. You must create or update the custom view models,
CustomPaymentDetailsViewModel , CustomBillDetailsViewModel, and
CustomBillChargesViewModel, containing overrides to disable Charges not related to
services link and link to child accounts in these screens. See "About View Models" for more
information about Billing Care view models.

To create custom view models to disable links in the Bills tab:

1. Create or update the customPaymentDetailsViewModel.js ,
customBillDetailsViewModel.js , and customBillChargesViewModel.js files in the
myproject/web/custom/js/viewmodels directory, where myproject is the folder containing
your NetBeans IDE project.

2. To disable link to child accounts, do the following:

a. Add the following code in the customPaymentDetailsViewModel.js file using a text
editor:

define(['jquery', 'knockout',
 'viewmodels/payment/allocations/PaymentDetailsViewModel'
],
 function($, ko, PaymentDetailsViewModel) {

 function customPaymentDetailsViewModel() {
 PaymentDetailsViewModel.apply(this, arguments);
 $(function() {
 var myVar = setInterval(function() {
 if ($("strong:contains(Associated to)").length > 0)
 {
 if
(!util.isGrantedResourceAction("parentAccountLink", "customResource")){
 $("strong:contains(Associated
to)").each(function() {
 $(this).next().off("click");
 });
 }
 clearInterval(myVar);
 }

 }, 20);

 });

 }
 customPaymentDetailsViewModel.prototype = new PaymentDetailsViewModel();
 return customPaymentDetailsViewModel;
 });

b. Save the file in your NetBeans IDE project.

Chapter 28
Creating Custom View Models to Disable Links in the Bills Tab

28-2

c. Add the following code in the customBillDetailsViewModel.js file using a text editor:

define(['jquery', 'knockout',
 'viewmodels/billtab/BillDetailsViewModel'
],
 function($, ko, BillDetailsViewModel) {
 function customBillDetailsViewModel() {
 BillDetailsViewModel.apply(this, arguments);
 $(function() {
 var myVar = setInterval(function() {
 if ($("a#childAccountLink").length > 0)
 {
 if
(!util.isGrantedResourceAction("parentAccountLink", "customResource")) {
 $("a#childAccountLink").each(function(index)
{
 $(this).off("click");
 });
 }
 clearInterval(myVar);
 }
 }, 20);
 });
 }
 customBillDetailsViewModel.prototype = new
BillDetailsViewModel();
 return customBillDetailsViewModel;
 });

d. Save the file in your NetBeans IDE project.

e. Add the following code in the customBillChargesViewModel.js file using a text editor:

define(['jquery', 'knockout',
 'viewmodels/billtab/BillChargesViewModel'
],
 function($, ko, BillChargesViewModel) {
 function customBillChargesViewModel() {
 BillChargesViewModel.apply(this, arguments);
 $(function() {
 var myVar = setInterval(function() {
 if ($('#adjustbillListMenu').length > 0)
 {

 if (!util.isGrantedResourceAction("parentAccountLink",
"customResource")) {
 if ($("a#parentAccountLink").length > 0) {
 $("a#parentAccountLink").off("click");
 });
 }
 clearInterval(myVar);
 }
 }, 20);

 });

 }
 customBillChargesViewModel.prototype = new
BillChargesViewModel();
 return customBillChargesViewModel;
 });

f. Save the file in your NetBeans IDE project.

Chapter 28
Creating Custom View Models to Disable Links in the Bills Tab

28-3

3. To disable Charges not related to services link in the My Charges area, do the following:

a. Update the code in the customBillChargesViewModel.js file using a text editor as
follows:

define(['jquery', 'knockout',
 'viewmodels/billtab/BillChargesViewModel'
],
 function($, ko, BillChargesViewModel) {
 function customBillChargesViewModel() {
 BillChargesViewModel.apply(this, arguments);
 $(function() {
 var myVar = setInterval(function() {
 if ($('#adjustbillListMenu').length > 0 || $
("a#parentAccountLink").length >
0)
 {

 if (!util.isGrantedResourceAction("parentAccountLink",
"customResource")) {
 if ($("a#parentAccountLink").length > 0) {
 $("a#parentAccountLink").off("click");
 });
 }
 clearInterval(myVar);
 }
 }, 20);

 });
 $(function() {
 var myVar = setInterval(function() {
 if ($('#accountChargesHeader').length > 0)
 {
 if (!util.isGrantedResourceAction("otherCharges",
"customResource")){
 $('#accountChargesHeader').remove();
 $('#accountCharges').remove();
 }
 clearInterval(myVar);
 }

 }, 40);

 });

 $(function() {
 var myVar = setInterval(function() {
 if ($('#otherAccountChargesHeader').length > 0)
 {
 if (!util.isGrantedResourceAction("otherCharges",
"customResource")){
 $('#otherAccountChargesHeader').remove();
 $('#otherAccountCharges').remove();
 }
 clearInterval(myVar);
 }

 }, 40);

 });

 }
 customBillChargesViewModel.prototype = new

Chapter 28
Creating Custom View Models to Disable Links in the Bills Tab

28-4

BillChargesViewModel();
 return customBillChargesViewModel;
 });

b. Save the file in your NetBeans IDE project.

c. Add the following function to the code in the customBillDetailsViewModel.js file
using a text editor:

self.openChildAccount = function(data, event) {
 if (!util.isGrantedResourceAction("parentAccountLink",
"customResource")) {
 return false;
 }
 self.__proto__.openChildAccount(data, event);
 };

d. Save the file in your NetBeans IDE project.

Configuring Custom Bill, Charges, and Payment Detail View
Models in the Registry

After creating or updating the CustomPaymentDetailsViewModel ,
CustomBillDetailsViewModel, and CustomBillChargesViewModel view models, create the
custom view model entries in the customRegistry.js file to use the custom view models when
displaying bill and payment details. Billing Care uses the custom bill tab and payment details
view models instead of the default entries when displaying the bill and payment details.

To create the bill tab, bill charges, and payment details view model entries in a
customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom .

2. Define the entries referencing the custom view models in this file. For example:

billTab: {

 billChargesViewModel:
'custom/js/viewmodel/customBillChargesViewModel.js'

 billDetailsViewModel:
'custom/js/viewmodels/CustomBillDetailsViewModel.js'

 }

 allocatePaymentDetails: {
 viewmodel: 'custom/js/viewmodels/CustomPaymentDetailsViewModel.js'
 }

3. Save the file in your NetBeans IDE project.

Chapter 28
Configuring Custom Bill, Charges, and Payment Detail View Models in the Registry

28-5

29
Separating Event Adjustment Amount and
Percentage Fields

Learn how to customize the Oracle Communications Billing Care Event Adjustment dialog box
to provide separate adjustment amount and percentage fields.

Topics in this document:

• About Event Adjustments using Amount and Percentage

• Separating Amount and Percentage Fields

• Creating Custom View Model to Separate Amount and Percentage Fields

• Adding CustomEventAdjustmentViewModel to the Registry

About Event Adjustments using Amount and Percentage
The Billing Care Event Adjustment dialog box provides only one field, the Adjustment field, in
which to enter an adjustment amount or percentage for an event.

You can customize the dialog box to display separate amount adjustment and percent
adjustment fields by using the Billing Care SDK. You can also make the fields independent of
each other, such that entering a value in one field disables the other field.

Separating Amount and Percentage Fields
To separate the amount and percentage fields in the Event Adjustment dialog box:

1. Create a custom view model for the Event Adjustment dialog box. See "Creating Custom
View Model to Separate Amount and Percentage Fields".

2. Create a customRegistry.js file that configures Billing Care to use your custom view
model. See "Adding CustomEventAdjustmentViewModel to the Registry".

3. Package and deploy your customization to your Billing Care domain using one of the
methods described in "Using an Exploded Archive during Customization" or "Packaging
and Deploying Customizations".

Creating Custom View Model to Separate Amount and
Percentage Fields

Billing Care uses the EventAdjustmentViewModel.js file to determine what fields to display in
the Event Adjustment dialog box. The fields defined in the view model are bound in the HTML
file used to render the custom view or page. To change what fields are displayed, create a
custom view model, such as CustomEventAdjustmentViewModel.js, that overrides the
dialog box's default display. See "About View Models" for more information about Billing Care
view models.

To create a custom view model for the Event Adjustment dialog box:

29-1

1. Create a CustomEventAdjustmentViewModel.js file in the myproject/web/custom/
viewmodels/ARActions/adjustments directory, where myproject is the folder containing
your NetBeans IDE project.

2. Open the CustomEventAdjustmentViewModel.js file using a text editor and define your
custom fields. For example:

define(['jquery', 'knockout',
 'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'],
 function ($, ko, EventAdjustmentViewModel) {

 function CustomEventAdjustmentViewModel() {
 EventAdjustmentViewModel.apply(this, arguments);
 self = this;
 self.percentValue = 0;
 self.amountValue = 0;
self.adjustmentPercentage = ko.observable(0).extend({notify:
"always"}).extend({numeric: 2});
 self.amountStateController = ko.computed(function () {
 if ((Number(self.adjustmentAmount()) === 0) &&
 (Number(self.adjustmentPercentage()) === 0)) {
 self.enablePercentage(true);
 self.enableAmount(true);
 } else if (Number(self.adjustmentPercentage()) === 0) {
 self.enablePercentage(false);
 self.enableAmount(true);
 } else {
 self.enablePercentage(true);
 self.enableAmount(false);
 }
 });
 }
 CustomEventAdjustmentViewModel.prototype = new
EventAdjustmentViewModel();
 return CustomEventAdjustmentViewModel;
 }
);

3. Save the file in your NetBeans IDE project.

Adding CustomEventAdjustmentViewModel to the Registry
Configure Billing Care to override the default EventAdjustmentViewModel with your custom
view model when rendering the Event Adjustment dialog box. To do so, add the name and path
to your custom view model to the customRegistry.js file. For more information about the
registry file, see "About the Registry File".

To add CustomEventAdjustmentViewModel to the registry:

1. Create a customRegistry.js file in the myproject/web/custom/ directory.

2. Add the following lines to the file:

eventAdjustment: {
 viewmodel: 'custom/viewmodels/ARActions/adjustments/

Chapter 29
Adding CustomEventAdjustmentViewModel to the Registry

29-2

CustomEventAdjustmentViewModel'
}

3. Save the file in your NetBeans IDE project.

Chapter 29
Adding CustomEventAdjustmentViewModel to the Registry

29-3

30
Embedding Billing Care Screens in External
Applications

Learn how to use the SDK to embed Oracle Communications Billing Care screens in external
applications such as customer relationship management (CRM) applications or online account
management interfaces.

Topics in this document:

• About Embeddable Billing Care Screens

• Embedding Billing Care Screens

• Configuring Security for External Application Access

About Embeddable Billing Care Screens
Billing Care supports embedding screens into CRM applications and online account
management interfaces using inline frames (iframe) or pop-up windows. Embedding screens
gives external applications direct access to Billing Care functionality without requiring complex
integration.

Subscriber information stored in your Oracle Communications Billing and Revenue
Management (BRM) system, and Billing Care account management screens, can be displayed
in external applications without creating custom interfaces for retrieving such data or
performing account management actions.

Use this functionality to expose Billing Care screens in your application's business workflow.
For example, configure your CRM application to display the Billing Care payments interface
when adding a new payment type for a subscriber.

The following Billing Care screens can be exposed and embedded in external applications:

• Account Adjustment

• Account Profile

• Account Status

• Account Transactions Graph

• Account Transactions Table

• Billing Information

• Financial Setup (including Payment Methods)

• Make a Payment

• Payments Summary

• Purchased Products

• Write Off Account

• Purchase Package/Purchase Deal

30-1

See the relevant chapter in Billing Care Online Help for more information on each screen and
what account actions can be performed.

Embedding Billing Care Screens
Embedding Billing Care screens in external applications requires the following:

• Understanding the index_embedded.html File

• Configuring Your External Application to Access Billing Care

You can embed Billing Care screens in test installations not using Oracle Identity and Access
Management (IAM) when developing your external application integration. User authentication
and resource authorization are not required with test installations. Billing Care displays the
requested screen without requiring credentials. See "About Test Installations" and "Configuring
WebLogic Server for a Test Installation" in Billing Care Installation Guide for more information
on test installations.

Production Billing Care installations require IAM. An external application and its users must be
authenticated and authorized by Billing Care before embedded screens can be displayed. See
"Configuring Security for External Application Access" for information on embedding Billing
Care screens in external applications in production installations.

Understanding the index_embedded.html File
External applications call the index_embedded.html file when retrieving a Billing Care screen
for display. By default, Billing Care exposes this file without additional configuration on the
application server.

This file contains the information required by Billing Care to render the requested screen
properly for the queried account. External applications send Billing Care an
index_embedded.html URL request containing a unique query string for the required screen,
and the account or bill numbers for the subscriber using the following format:

https://host:port/bc/index_embedded.html#query_string
where:

• host is the Billing Care application host.

• port is the port on which Billing Care is listening on.

• query_string is the string containing the desired embeddable screen and account and bill
details. You can use either account ID or account number, and bill ID or bill number in the
request.

If you are using account ID and bill ID in the request, the query_string format is:

Screen?accountId=BRM_db#+-account+AccountID&billId=BRM_db+-bill+BillID
where:

• Screen is the requested screen for the queried account.

• BRM_db# is the BRM database number containing the queried account or bill.

• AccountID is the unique BRM subscriber account ID to query.

• BillID is the bill ID to query when requesting bill-related screens.

Chapter 30
Embedding Billing Care Screens

30-2

For example, to request the Billing Information overlay for the BRM bill number
0.0.0.1-1115086, owned by the BRM account number 0.0.0.1-1117902, use the following URL
request:

https://example.com:7001/bc/index_embedded.html#overlay/billDetails?
accountId=0.0.0.1+-account+1117902&billId=0.0.0.1+-bill+1115086
If you are using account number and bill number in the request, the query_string format is:

Screen?accountId=AccountNumber&billId=BillNumber
For example, to request the Billing Information overlay for the BRM bill number B1-8839,
owned by the BRM account number 123456, use the following URL request:

https://example.com:7001/bc/index_embedded.html#overlay/billDetails?
accountId=123456&billId=B1-8839

Note:

Embedded screens do not include the Billing Care application banner, search
functionality, or Actions menu.

Table 30-1 lists the URL request strings used to call each embeddable Billing Care screen.

Table 30-1 Sample URL Request Query Strings for Embeddable Billing Care Screens

Screen Sample URL Query String Used by External Application

Account Adjustment https://example.com:7001/bc/index_embedded.html#overlay/
accountAdjustment?accountId=BRM_db+-account+AccountID

Account Profile https://example.com:7001/bc/index_embedded.html#overlay/generalInfo?
accountId=BRM_db+-account+AccountID

Account Status https://example.com:7001/bc/index_embedded.html#overlay/
accountStatusChange?accountId=BRM_db+-account+AccountID

Account Transactions Table https://example.com:7001/bc/index_embedded.html#newsfeed?
accountId=BRM_db+-account+AccountID

Account Transactions Graph https://example.com:7001/bc/index_embedded.html#billUnitGraph?
accountId=BRM_db+-account+AccountID

Billing Information https://example.com:7001/bc/index_embedded.html#/billDetails?
accountId=BRM_db+-account+AccountID&billId=BRM_db+-bill+BillID
If only the account ID is passed then the Bill in progress bill is shown. If any specific bill must
shown, the bill id must be passed.

Financial Setup https://example.com:7001/bc/index_embedded.html#overlay/paymentMethods?
accountId=BRM_db+-account+AccountID

Make a Payment https://example.com:7001/bc/index_embedded.html#overlay/makePayment?
accountId=BRM_db+-account+AccountID

Payments Summary https://example.com:7001/bc/index_embedded.html#newsfeed/payments?
accountId=BRM_db+-account+AccountID

Purchased Products https://example.com:7001/bc/index_embedded.html#customerAssets?
accountId=BRM_db+-account+AccountID

Chapter 30
Embedding Billing Care Screens

30-3

Table 30-1 (Cont.) Sample URL Request Query Strings for Embeddable Billing Care Screens

Screen Sample URL Query String Used by External Application

Write Off Account https://example.com:7001/bc/index_embedded.html#overlay/
writeOffAccount?accountId=BRM_db+-account+AccountID

Purchase Package/Purchase
Deal

https://example.com:7001/bc/index_embedded.html#overlay/purchase?
accountId=BRM_db+-account+AccountID

Configuring Your External Application to Access Billing Care
Configure external applications to request an embeddable Billing Care screen by creating a
link on the application's screen, from where users initiate the request. For example, create a
clickable text, image, or button on your application's screen with an html href attribute
containing the embeddable screen overlay listed in Table 30-1.

Example 30-1 contains sample html code for a text link which opens the Account Status screen
in a new window.

Example 30-1 Sample Account Status Screen Link Code

<a href ="http://example.com:7001/bc/index_embedded.html#overlay/accountStatusChange?
accountId=0.0.0.1+-account+1117902" onclick="openWindow(this.href);
 return false;">Click to open Account status Dialog

Configuring Security for External Application Access
Production Billing Care installations use Oracle Identity and Access Management (IAM) to
authenticate users using single sign-on (SSO) and authorize access to Billing Care screens
and resources. You must configure the required authentication and authorization policies in
IAM before embedding Billing Care screens in external applications in production
environments. Doing so enables embedded screens to be displayed without requiring Billing
Care user credentials and ensures that a failed permissions error message is not displayed on
the embedded screen.

Note:

With configured IAM, Billing Care returns an error message if the user or external
application does not have the correct permissions to access or view the requested
embedded screen. For example, if the external user or application has not been
configured with access to the Billing Care payments resource, the following error
message error message is displayed:

You do not have permission to make payments

Billing Care enforces a single security configuration of user access and resource permissions
for both the native Billing Care application and any embedded screens exposed within external
applications.

See "Billing Care Preinstallation Tasks" in Billing Care Installation Guide for more information
on installing the required IAM components for a secure Billing Care installation, and

Chapter 30
Configuring Security for External Application Access

30-4

"Implementing Billing Care Security" in BRM Security Guide for more information on how to
configure authentication and authorization for external users and applications.

Chapter 30
Configuring Security for External Application Access

30-5

Part IV
Customizing Searches and Filters in Billing
Care

This part describes how to customize the search and filter functionality in Oracle
Communications Billing Care. It contains the following chapters:

• Searching for Accounts by Payment ID

• Filtering Bundles Available for Purchase

• Filtering Start and End Dates for Additional Purchase

• Customizing Search Filter for Suspended Payments

• Exporting Billing Care Search Results

31
Searching for Accounts by Payment ID

Learn how to customize the Oracle Communications Billing Care account search screen to
support searches by Payment ID.

Topics in this document:

• About Account Searches in Billing Care

• Adding a Payment ID Field to the Account Search Screen

• Naming the Custom Account Search Template in the CustomConfigurations.xml File

• Creating a Custom Account Search Template

• Creating a Custom Account Search View Model

• Creating a Custom Search View Model

• Creating a Custom Router View Model

• Creating a Custom Router Helper

• Creating a Custom Account Search View Model HTML Template

• Replacing the Default Method for Showing Recently Opened Accounts

• Configuring a Custom Module in the Registry

• Creating a customized_en.xlf File Entry for Payment ID Search Field

• Getting Payment Item POIDs from BRM

• Deploying Customizations

About Account Searches in Billing Care
The Billing Care account search screen includes multiple fields on which searches can be
performed. For example, you can search for accounts by entering account numbers, last
names, or addresses in designated fields on the screen. The default account search screen
does not, however, support searches by payment ID.

Adding a Payment ID Field to the Account Search Screen
To enable users to search for accounts by payment ID, you can add a Payment ID field to the
account search screen.

To add a Payment ID field to the Billing Care account search screen:

1. Specify the name of the custom account search template in the
CustomConfigurations.xml file. See "Naming the Custom Account Search Template in
the CustomConfigurations.xml File".

2. Create the custom account search template containing the payment ID search criteria. See
"Creating a Custom Account Search Template".

3. Create a custom account search view model to override the default Billing Care account
search behavior. See "Creating a Custom Account Search View Model".

31-1

4. Create a custom search view model to display the related payment details when an
account is opened from the results of a search based on payment ID. See "Creating a
Custom Search View Model".

5. Create a custom router view model to accept a query parameter and route to a custom
router helper function when users search for an account by payment ID. See "Creating a
Custom Router View Model".

6. Create a custom router helper to add a function that displays the related payment details
when an account is opened from the results of a search based on payment ID. See
"Creating a Custom Router Helper ".

7. Create the account search view model HTML template to display the new Payment ID
search field. See "Creating a Custom Account Search View Model HTML Template".

8. Replace the default method for listing the most recently opened account in the account
search screen. See "Replacing the Default Method for Showing Recently Opened
Accounts".

9. Create a customRegistry.js file configuring Billing Care to use the custom account search
view model created in step 3. See "Configuring a Custom Module in the Registry".

10. Create a customized_en.xlf file containing a localizable value for the new Payment ID
search field in the Billing Care account search screen. See "Creating a customized_en.xlf
File Entry for Payment ID Search Field".

11. Configure Billing Care to get the appropriate payment item Portal object ID (POID) from
BRM when users search for an account by payment ID. See "Getting Payment Item POIDs
from BRM".

Naming the Custom Account Search Template in the
CustomConfigurations.xml File

Before creating a custom search template to search for accounts by payment ID, you must
specify the template's name in the custom Billing Care configuration file.

To name the custom account search template in the CustomConfigurations.xml file:

1. If your system does not have a CustomConfigurations.xml file, create the file. See
"Creating a Custom Configuration File".

2. Open the CustomConfigurations.xml file in an editor.

Note:

By default, the CustomConfigurations.xml file is in the myproject/web/custom/
configurations/ directory, where myproject is your NetBeans IDE Billing Care
customizations project.

3. In the file's search.options key, specify a name for your custom account search template.

Example 31-1 shows the search.options key with My Custom Search specified as the
search template name:

4. Set the default search option using the defaultSearch attribute.

5. Save the file in your NetBeans IDE project.

Chapter 31
Naming the Custom Account Search Template in the CustomConfigurations.xml File

31-2

Example 31-1 CustomConfigurations.xml search.options Key with "My Custom
Search" as Search Template Name

 [{"searchTemplateKey": "accountSearch", "searchTemplateName":"SEARCH_OPTION_ACCOUNTS",
"defaultSearch": false},{"searchTemplateKey": "CustomAccountSearch",
"searchTemplateName":"My Custom Search", "defaultSearch": true}]

Creating a Custom Account Search Template
The Billing Care account search screen uses a template that defines what search fields to
display. To add the Payment ID field in the account search screen, you must create a custom
account search template containing the Payment ID field in the filter element in your
NetBeans IDE project.

For more information on customizing templates, see "Customizing Billing Care Templates".

When creating your custom account search template, use the reference accountSearch.xml
template file located in the SDK_home/references directory.

To create an account search template with the Payment ID field:

1. Create a custom account search template file for the account search screen by using the
reference example in myproject/src/custom.

Use a descriptive name for your file such as CustomAccountSearch.xml.

2. Define the Payment ID criteria in the filter element.

Example 31-2 shows the code to add for the Payment ID filter.

3. Add a column in the CustomAccountSearch.xml file to store payment item POIDs, which
are used to open the appropriate payment details overlay for accounts returned by
searches based on payment IDs.

Example 31-3 shows the code to add for the payment item POID column.

4. Save the file in your NetBeans IDE project.

Example 31-2 Payment ID Filter

 <criteria name="paymentID">
 <label></label>
 <inputType>Text</inputType>
 <width>245</width>
 <placeHolder>PAYMENTID</placeHolder>
 <fieldKey>payment.transId</fieldKey>
 <storableClass>eventBillingPayment</storableClass>
 <visible>true</visible>

Example 31-3 Payment Item POID Column

 <column name="eventId">
 <type>text</type>
 <fields>itemObj</fields>
 </column>
 <columnHeader name="eventId">
 <label>EVENT_ID_UC</label>
 <width>15%</width>
 <visible>true</visible>
 <sortable>false</sortable>
 <tooltip>EVENT_ID_UC</tooltip>
 <resizable>false</resizable>
 <alignment>left</alignment>
 </column>

Chapter 31
Creating a Custom Account Search Template

31-3

Creating a Custom Account Search View Model
Billing Care uses an account search view model to define account search behavior.

Create a custom account search view model containing the Payment ID search filter by using
the sample customAccountSearch.js file. This sample contains the override functions to add
payment ID criteria to the custom account search template.

To create a custom account search view model:

1. Copy the SDK_home/samples/AccountSearchCustomization/web/custom/js/
viewmodels/search/customAccountSearch.js file to the myproject/web/custom/js/
viewmodels/area/configure directory.

where area is the customization type (for example, accountSearch for customizations
done to account search view model files).

2. Include the customAccountSearch.js file when you package your customizations shared
library for deployment to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

Creating a Custom Search View Model
Billing Care uses a search view model to open an account from the results of an account
search.

Create a custom search view model to support searches based on payment IDs by using the
sample customSearchViewModel.js file in the Billing Care SDK. This sample contains code
that displays the payment details overlay when an account is opened from the results of a
search based on a payment ID.

To create a custom search view model:

1. Copy the SDK_home/samples/AccountSearchCustomization/web/custom/js/
viewmodels/customSearchViewModel.js file to the myproject/web/custom/js/
viewmodels/area/configure directory.

2. Include the customSearchViewModel.js file when you package your customizations
shared library for deployment to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

Creating a Custom Router View Model
Billing Care uses a router view model to route patterns to a function.

Create a custom router view model to support searches based on payment IDs by using the
sample customRouterViewModel.js file in the Billing Care SDK. This sample contains code
that overrides the default open account router URL to accept a payment item POID as a query
parameter when an account search is based on a payment ID.

To create a custom router view model:

1. Copy the SDK_home/samples/AccountSearchCustomization/web/custom/js/
viewmodels/customRouterViewModel.js file to the myproject/web/custom/js/
viewmodels/area/configure directory.

Chapter 31
Creating a Custom Account Search View Model

31-4

2. Include the customRouterViewModel.js file when you package your customizations
shared library for deployment to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

Creating a Custom Router Helper
In Billing Care, a router helper routes the router view model request to a function that opens an
account.

Create a custom router helper to support searches based on payment IDs by using the sample
customRouterHelper.js file in the Billing Care SDK. This sample contains code that routes the
router view model request to a function that displays the related payment details when an
account is opened from the results of a search based on payment ID.

To create a custom router helper:

1. Copy the SDK_home/samples/AccountSearchCustomization/web/custom/js/routers/
customRouterHelper.js file to the myproject/web/custom/js/viewmodels/area/configure
directory.

2. Include the customRouterHelper.js file when you package your customizations shared
library for deployment to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

Creating a Custom Account Search View Model HTML Template
Billing Care uses an HTML view file to render the account search screen during. You must
create a custom account search view model HTML template to display the Payment ID search
field.

A sample customAccountSearch.html file is provided in the SDK_home/samples/
AccountSearchCustomization/web/custom/templates/search directory. Use this sample to
create a custom account search HTML template for displaying the Payment ID search field
and the required data binding.

To create a custom account search HTML template for rendering the Payment ID field:

1. Create a customAccountSearch.html file in the myproject/web/custom/js/templates/
area/configure directory.

2. Define the Payment ID field in HTML required for rendering in this file.

3. Save the file in your NetBeans IDE project.

Replacing the Default Method for Showing Recently Opened
Accounts

When you open an account from the default search results and then return to the search
screen, the recently opened account is listed at the bottom of the screen.

To continue listing the most recently opened account after customizing the account search
template, replace the RecentRecordsModel.js file in your NetBeans IDE Billing Care
customizations project with the sample customRecentRecordsModel.js file. This sample
contains an updated method that supports the recently opened account feature in the custom
account search flow.

Chapter 31
Creating a Custom Router Helper

31-5

To replace the default method for showing recently opened accounts:

1. Copy the SDK_home/samples/AccountSearchCustomization/web/custom/js/
viewmodels/customRecentRecordsModel.js file to the myproject/web/custom/js/
viewmodels/area/configure directory.

2. Include the customRecentRecordsModel.js file when you package your customizations
shared library for deployment to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

Configuring a Custom Module in the Registry
After creating the required custom account search view model, create a custom module entry
in the customRegistry.js file to use when searching for accounts. Billing Care uses the
custom account search module instead of the default entry when rendering the account search
screen.

A sample registry.js file is provided in the SDK_home/references directory, where SDK_home
is the directory in which you installed the Billing Care SDK. Use this sample to create the
customRegistry.js file containing your custom account search module.

To create a custom account search module entry in a customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom by copying the reference
registry file.

2. Define the custom account search module referencing the custom view model and HTML
template previously created.

Example 31-4 shows a definition of the custom account creation module in the registry.

3. Save the file in your NetBeans IDE project.

Example 31-4 Sample Custom Account Search Module Registry Entry

var CustomRegistry = {
 customAccountSearch: {
 view : 'text!../custom/templates/search/customAccountSearch.html',
 viewmodel: '../custom/js/viewmodels/search/customAccountSearch'
 }
 search: {
 viewmodel: '../custom/js/viewmodels/customSearchViewModel'
 }
 router: {
 viewmodel: '../custom/js/viewmodels/customRouterViewModel'
 }
 recentRecords: {
 recentRecordsModel: '../../../custom/js/viewmodels/customRecentRecordsModel'
 }
};

Creating a customized_en.xlf File Entry for Payment ID Search
Field

You must provide a localized English entry for the Payment ID search field in the
customized_en.xlf file to provide a translatable text string in Billing Care.

For more information on the customized_en.xlf file and how to add a new entry, see
"Customizing Billing Care Labels".

Chapter 31
Configuring a Custom Module in the Registry

31-6

Example 31-5 shows a sample entry for the Payment ID field to add in the customized_en.xlf
file.

Example 31-5 Sample Payment ID XLF Entry

<trans-unit id="PAYMENT_ID_UC" translate="yes">
 <source>Payment ID</source>
 <target>Payment ID</target>
 <note from="dev">
 Comments for file
 </note>
</trans-unit>

Getting Payment Item POIDs from BRM
When users search for an account by payment ID, Billing Care must get the payment item
POID so that it can display the appropriate payment details when the account is opened.

To configure Billing Care to get payment item POIDs from BRM:

1. Add a customModule.properties file containing the following entry to the myproject/web/
WEB-INF/classes/custom directory:

billingcare.rest.template.module = rest.CustomPCMTemplateModule

This entry instructs Billing Care to load the CustomPCMTemplateModule class instead of
the default PCMTemplateModule class.

The SDK_home/samples/AccountSearchCustomization/src/java/custom/
customModule.properties sample file contains this entry, where SDK_home is the
directory in which you installed the Billing Care SDK.

For more information about the custom module properties file, see "About the
customModule.properties File".

2. Create a custom PCMTemplateModule Java class named CustomPCMTemplateModule
and override its getRecordsForTemplate() method to return the
TemplateMyCustomAccountSearchWorker Java class instead of the default
TemplateAccountSearchWorker Java class.

For a sample of the required override code, see the SDK_home/samples/
AccountSearchCustomization/src/java/rest/CustomPCMTemplateModule.java sample
class.

Note:

Save the custom class in the rest folder containing the sample class.

For more information, see "Customizing Billing Care Templates".

3. Create a custom template worker Java class named
TemplateMyCustomAccountSearchWorker that gets the corresponding payment item
POID from BRM when users search for accounts by payment ID.

For a sample of the required override code, see the SDK_home/samples/
AccountSearchCustomization/src/java/rest/
TemplateMyCustomAccountSearchWorker.java sample class.

Chapter 31
Getting Payment Item POIDs from BRM

31-7

Note:

Save the custom class in the rest folder containing the sample class.

For more information, see "Customizing Billing Care Templates".

Deploying Customizations
Package and deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying Customizations".

Chapter 31
Deploying Customizations

31-8

32
Filtering Bundles Available for Purchase

Learn how to customize Oracle Communications Billing Care to filter the bundles displayed in
the Purchase Catalog screen.

Topics in this document:

• About Filtering Bundles

• Filtering Bundles List in Billing Care

• Creating CustomPCMSubscriptionModule.java Class

• Creating a CustomSubscriptionWorker.java Class

• Updating the customModule.properties File

About Filtering Bundles
In BRM, the PCM_OP_CUST_POL_GET_DEALS opcode enables you to retrieve a
customized list of bundles from the BRM database for customer purchase. Similarly, you can
retrieve the bundles from the BRM database and filter the list of bundles available for purchase
in Billing Care by using the Billing Care SDK. For example, you can customize Billing Care to
display only the manually added discount bundles in the bundles list.

Filtering Bundles List in Billing Care
To filter the bundles list in Billing Care:

1. Create a custom template model to override the default subscription flow. See "Creating
CustomPCMSubscriptionModule.java Class " for more information.

2. Create a custom template worker class to add custom logic to the subscription flow. See
"Creating a CustomSubscriptionWorker.java Class" for more information.

3. Add your customization files to your NetBeans IDE project. See "Updating the
customModule.properties File" for more information.

4. Deploy your customizations using one of the methods described in "Using an Exploded
Archive during Customization" or "Packaging and Deploying Customizations".

Creating CustomPCMSubscriptionModule.java Class
Create a custom subscription module class, CustomPCMSubscriptionModule.java, and
override the getBundles() method.

To create the CustomPCMSubscriptionModule.java class:

1. Create the CustomPCMSubscriptionModule.java file in myproject//src/java/com/rest/
sdk, where myproject is the folder containing the NetBeans IDE project containing your
Billing Care customizations.

2. Override the getBundles() method as shown in this example:

32-1

@Override
 public BundleList getBundles(String id, String expand) {
 //method code
 }

3. Save the file in your NetBeans IDE project.

Creating a CustomSubscriptionWorker.java Class
Create a custom template worker class containing logic to retrieve and filter the bundles
available for purchase.

To create the CustomSubscriptionWorker.java class:

1. Create the CustomSubscriptionWorker.java file in myproject/projectname/src/java/com/
rest/sdk.

2. Override the following methods as appropriate:

• convertToInputFListToGetBundleList(). This method takes the service type as input
and returns the input flist. For example, you can pass "0.0.0.1+-service-email+62503"
as an input to retrieve only the bundles that are associated with the service type,
email.

• invokeOpcodeToGetBundleList().This method takes the flist returned by the
convertToInputFListToGetBundleList() method as input and triggers the
PCM_OP_CUST_POL_GET_DEALS opcode to return the output flist.

• convertToOutputFListToGetBundleList(). This method takes the flist returned by
the invokeOpcodeToGetBundleList() method and a flag that indicates whether
charge or discount offers to be retrieved as input and returns the list of bundles
associated with the service type.

3. Save the file in your NetBeans IDE project.

Updating the customModule.properties File
Create or update the custom module property file to override the default subscription module
logic with your customizations.

To update the custom module property file:

1. Open the customModule.properties file in myproject/projectname/src/java/custom.

2. Add the following entry:

billingcare.rest.subscription.module=com.rest.sdk.CustomPCMSubscriptionModule
3. Save the file in your NetBeans IDE project.

Chapter 32
Creating a CustomSubscriptionWorker.java Class

32-2

33
Filtering Start and End Dates for Additional
Purchase

Learn how to customize Oracle Communications Billing Care to filter the Purchase, Recurring
(cycle), and Usage start and end dates that are displayed during additional purchase
configuration.

Topics in this document:

• About Customizing Purchase Configuration

• Filtering Start and End Date Options

• Creating a Custom Purchase Deal Configuration View Model

• Configuring the Custom Purchase Configuration View Model in the registry

About Customizing Purchase Configuration
You configure new or additional products or services added to an account by clicking
Configure in the Purchase Catalogue screen. In the Configure screen, multiple start and end
date options are displayed for configuring activation, recurring cycles, and usage of the
selected product or service.

You can customize Billing Care to filter these start and end date options to display only
calendar days for the start date and the number of months for the end date by using the Billing
Care SDK. You can also hide the Recurring (cycle) and Usage sections by using the Billing
Care SDK.

Filtering Start and End Date Options
You can customize the purchase configuration screen using the Billing Care SDK to display
only the specific start and end date options for activation, recurring fees, and usage of the
selected additional product or service.

To filter start and end date options:

1. Create a custom purchase configuration view model to override the default purchase
configuration flow. See "Creating a Custom Purchase Deal Configuration View Model" for
more information.

2. Configure the custom purchase configuration view model entry in the customRegistry.js
file to use the custom view model that you created. See "Configuring the Custom Purchase
Configuration View Model in the registry" for more information.

3. Deploy your custom project to your application server by using one of the methods
described in "Using an Exploded Archive during Customization" or "Packaging and
Deploying Customizations".

33-1

Creating a Custom Purchase Deal Configuration View Model
Billing Care uses view model to define the display of the screens in Billing Care. You must
create or update the custom view model, CustomPurchaseConfigurationViewModel, and
add the details containing the logic to filter Purchase, Recurring (cycle), and Usage start and
end dates.

See "About View Models" for more information about Billing Care view models.

To create a custom purchase deal configuration view model:

1. Create or update the customPurchaseConfigurationViewModel.js file in myproject/web/
custom/viewmodels directory, where myproject is the folder containing your NetBeans
IDE project.

2. Add the following code in the customPurchaseConfigurationViewModel.js file using a
text editor:

define(['knockout',
 'jquery',
 'underscore',
 Registry.accountCreation.wizardBase,
 Registry.accountCreationConfigure.purchaseConfiguration.validator,
 'viewmodels/accountCreation/configure/PurchaseConfigurationViewModel',
 'ojs/ojcore', 'ojs/ojknockout', 'ojs/ojdatetimepicker',
'ojs/ojcheckboxset', 'knockout-extension'],
 function (ko, $, _, WizardBaseViewModel,
ProductCustomizationValidator, PurchaseConfigurationViewModel, oj) {
 function CustomPurchaseConfigurationViewModel() {
 PurchaseConfigurationViewModel.apply(this, arguments);
...
...
 }
 CustomPurchaseConfigurationViewModel.prototype = new
PurchaseConfigurationViewModel();
 return CustomPurchaseConfigurationViewModel;
 }
);

// Below observable arrays hold the options to be shown in the Product
Configuration Screen
// Each entry in the Observable Array is stored as an Object which has
three attributes
// label : the text which will be shown in the UI dropdown
// value : this attribute stores the value of the option used in viewmodel
to create the JSON to be sent to REST
// disable : this attribute tells the dropdown whether it will be enabled
to click or not
// The SUPERSET for the dropdown options in OOTB is below.
// ([
// {label: util.getLocalizedValue(productCustomization, 'TODAY'),
value:TODAY,disable: ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization, 'NEVER'),
value:NEVER,disable: ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'WHEN_PURCHASE_ACTIVATION_BEGINS'),value:WHEN_PURCHASE_ACTIVATION_BEGINS,
disable: ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'CALENDAR_DAY'),value:CALENDER_DAY, disable: ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'DELIMITER_OPTION'),value:'-1', disable: ko.observable(true)},

Chapter 33
Creating a Custom Purchase Deal Configuration View Model

33-2

// {label: util.getLocalizedValue(productCustomization,
'CYCLES_AFTER_ACTIVATION'),value:CYCLES_AFTER_ACTIVATION, disable:
ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'MONTHS_AFTER_ACTIVATION'),value:MONTHS_AFTER_ACTIVATION, disable:
ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'DAYS_AFTER_ACTIVATION'),value:DAYS_AFTER_ACTIVATION, disable:
ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'HOURS_AFTER_ACTIVATION'),value:HOURS_AFTER_ACTIVATION, disable:
ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'MINUTES_AFTER_ACTIVATION'),value:MINUTES_AFTER_ACTIVATION, disable:
ko.observable(false)},
// {label: util.getLocalizedValue(productCustomization,
'SECONDS_AFTER_ACTIVATION'),value:SECONDS_AFTER_ACTIVATION, disable:
ko.observable(false)}
//]);
// The values which are used in VM for JSON creation are :
// NOTE : do not override these variables
// var TODAY = "today";
// var CALENDAR_DAY = "calendar-day";
// var NEVER = "never";
// var SECONDS_AFTER_ACTIVATION = "seconds";
// var MINUTES_AFTER_ACTIVATION = "minutes";
// var DAYS_AFTER_ACTIVATION = "days";
// var HOURS_AFTER_ACTIVATION = "hours";
// var MONTHS_AFTER_ACTIVATION = "months";
// var CYCLES_AFTER_ACTIVATION = "cycles";
// var
WHEN_PURCHASE_ACTIVATION_BEGINS="when-purchase-activation-begins";

 self.productActivationDateOptions - observable array which should be
overridden dropdown options for Product Activation
 self.productDeactivationDateOptions - observable array which should be
overridden dropdown options for Product De-activation
 self.productStartCycleDateOptions - observable array which should be
overridden dropdown options for Cycle/Recurring Start
 self.productStopCycleDateOptions - observable array which should be
overridden dropdown options for Cycle/Recurring Stop
 self.productStartUsageDateOptions - observable array which should be
overridden dropdown options for Usage Start
 self.productStopUsageDateOptions - observable array which should be
overridden dropdown options for Usage Stop

3. Modify the following entries in the file as required to filter the date options displayed in the
Configure screen:

• productActivationDateOptions

• productDeactivationDateOptions

• productStartCycleDateOptions

• productStopCycleDateOptions

• productStartUsageDateOptions

• productStopUsageDateOptions

For example, if product deactivation list in the Configure screen has to be modified to
include only CYCLES_AFTER_ACTIVATION and MONTHS_AFTER_ACTIVATION
options, override the productDeactivationDateOptions entry in the file to include only
these options:

Chapter 33
Creating a Custom Purchase Deal Configuration View Model

33-3

self.productDeactivationDateOptions = ko.observableArray([
 {label: util.getLocalizedValue(productCustomization,
'CYCLES_AFTER_ACTIVATION'), value: 'cycles', disable: ko.observable(false)},
 {label: util.getLocalizedValue(productCustomization,
'MONTHS_AFTER_ACTIVATION'), value: 'months', disable: ko.observable(false)},
]);

4. (Optional) To hide the complete Recurring (cycle) section, set the
showProductConfigureCycleSection entry in the file to false:

self.showProductConfigureCycleSection = ko.observable(false);
5. (Optional) To hide the complete Usage section, set the

showProductConfigureUsageSection entry in the file to false:

self.showProductConfigureUsageSection = ko.observable(false);

 // BRM mandates that -
 // Cycle/Usage START is always greater than or equal to Purchase START
 // Cycle/Usage END is always less than or equal to Purchase END
 // If Cycle/Usage section is hidden, then their START and END must be set
same
 // as that of Purchase START and END
 // Override Cycle/Usage variables as below to map it to Purchase

 self.cycleStart = ko.computed(function(){
 return self.purchaseStart();
 });
 self.cycleEnd = ko.computed(function(){
 return self.purchaseEnd();
 });
 self.cycleEndRelativeValue = ko.computed(function(){
 return self.purchaseDeactivationRelativeValue();
 });
 self.usageStart = ko.computed(function(){
 return self.purchaseStart();
 });
 self.usageEnd = ko.computed(function(){
 return self.purchaseEnd();
 });
 self.usageEndRelativeValue = ko.computed(function(){
 return self.purchaseDeactivationRelativeValue();
 });

6. Save the file in your NetBeans IDE project.

Configuring the Custom Purchase Configuration View Model in
the registry

After creating the required custom view model, create a custom purchase configuration view
model entry in the customRegistry.js file. Billing Care uses the custom purchase configuration
view model instead of the default view model during additional product purchase and renders
the Configure screen containing your customization.

To create the custom purchase configuration view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom purchase configuration view model in this file. For example:

accountCreationConfigure: {
 purchaseConfiguration:

Chapter 33
Configuring the Custom Purchase Configuration View Model in the registry

33-4

 {
 viewmodel: "custom/viewmodels/
CustomPurchaseConfigurationViewModel.js"
 },
 },

3. Save the file in your NetBeans IDE project.

Chapter 33
Configuring the Custom Purchase Configuration View Model in the registry

33-5

34
Customizing Search Filter for Suspended
Payments

Learn how to customize the Oracle Communications Billing Care search filter to find
suspended payments.

Topics in this document:

• About Suspended Payment Search Filter

• Adding Search Criteria

• Creating a CustompaymentSuspenseSearch.xml File

• Creating a CustomTemplatePaymentSuspenseWorker.java Class

• Creating a CustomPCMTemplateModule.java Class

• Creating a customModule.properties File

• Updating Registry

• Updating customPaymentSuspenseSearchView.html

• Updating View Model

• Localizing New Criteria into Other Languages

• Creating Deployment Plan

• Creating .war File

About Suspended Payment Search Filter
Oracle Communications Billing and Revenue Management (BRM) automatically suspends
subscriber payments that do not include sufficient information to associate the payment with an
account. For example, BRM suspends payments made to unidentifiable accounts or incorrect
bill numbers.

You can use the Payment filter to find suspended payments. To narrow your suspended
payment search results, use the filters provided under Payment, Suspense, and Account
groups. Each search group has a set of default search criteria. See the discussion about
working with suspended payments in Oracle Communications Billing Care Online Help for
more information on searching suspended payments.

Adding Search Criteria
Search filter includes groups and criteria. You can add custom criteria to the following groups
to customize search filter:

• Payment

• Suspense

• Account

34-1

To add search criteria to search groups:

1. Create a template with new search criteria. See "Creating a
CustompaymentSuspenseSearch.xml File" for more information.

2. Create a java class file to add custom logic. See "Creating a
CustomTemplatePaymentSuspenseWorker.java Class" for more information.

3. Create a custom template module class file to override default search criteria. See
"Creating a CustomPCMTemplateModule.java Class" for information.

4. Create a properties file to mention the custom Template Module class. See "Creating a
customModule.properties File" for more information.

5. Add an entry in the registry to override the out-of-the-box view and filter files. See
"Updating Registry" for more information.

6. Add new criteria for payment suspense search to the interface. See "Updating
customPaymentSuspenseSearchView.html" for more information.

7. Edit view model to handle new criteria. See "Updating View Model" for more information.

8. Localize the new criteria to other languages. See "Localizing New Criteria into Other
Languages" for more information.

9. Create a deployment plan for your customizations. See "Creating Deployment Plan" for
more information.

10. Create a .war file to deploy your customizations. See "Creating .war File" for more
information.

Creating a CustompaymentSuspenseSearch.xml File
Create a copy of the default template paymentSuspenseSearch.xml file and add new search
criteria to the filter section of the file.

To create a custom payment suspense search template:

1. Copy paymentSuspenseSearch.xml file from SDK_home/BillingCareSDK/references/
paymentsuspensetemplates directory to myproject/projectname/src/java/custom/
paymentsuspensetemplates directory,

where:

• SDK_home is the Billing Care SDK installation directory

• myproject is the folder containing your NetBeans IDE project

• projectname is the name of your custom project. For example, SuspenseSearchFilter.

2. Rename the copied XML file to CustompaymentSuspenseSearch.xml.

3. Edit CustompaymentSuspenseSearch.xml and add the new search criteria in the filter
section of the XML file. Example 34-1 shows an example of adding bank account criteria to
the filter.

4. Save the file in your NetBeans IDE project.

Example 34-1 Sample Search Criteria in CustompaymentSuspenseSearch.xml

<filter>
………
………
………
<criteria name="bankAccountNo">
 <inputType>Text</inputType>

Chapter 34
Creating a CustompaymentSuspenseSearch.xml File

34-2

 <fieldKey>checkInfo.bankAccountNo</fieldKey>
 <storableClass>/event/billing/payment</storableClass>
 </criteria>……..
…….. ……
</filter>

Note:

Ensure the storable class for new criteria is base class. In this example, base class
is /event/billing/payment. Do not add the subclass directly, such as /event/billing/
payment/check.

Creating a CustomTemplatePaymentSuspenseWorker.java Class
Create a custom template worker class containing logic to search suspense payments based
on new criteria. A sample CustomTemplatePaymentSuspenseWorker.java file is provided in
the SDK_home/BillingCareSDK/samples/PaymentSuspenseSearchFilter /src/java/
custom/com/rest/sdk directory.

To create a custom payment suspense worker class:

1. Create a CustomTemplatePaymentSuspenseWorker.java file in myproject/projectname/
src/java/com/rest/sdk.

2. Override buildPaymentSuspenseInputFList and constructFilterForInputFlist as shown
in the sample CustomTemplatePaymentSuspenseWorker.java file.

3. Add the custom storable classes for the payment based on the new payment criteria
subclass. Example 34-2 shows an example of adding bank account criteria to the filter.

4. Save the file in your NetBeans IDE project.

Example 34-2 Sample Custom Payment Suspense Storable Class

if (strKey.contains("cashInfo")) {
 if (!storableClass.equals("") && !storableClass.equals("/cash"))
{
 return null;
 }
 storableClass = "/cash";

Creating a CustomPCMTemplateModule.java Class
Create a custom template module class and override the getRecordsForTemplate() method.

To create a custom template module class:

1. Create CustomPCMTemplateModule.java file in myproject//src/java/com/rest/sdk.

2. Override the getRecordsForTemplate() method as shown in Example 34-3.

3. Call CustomTemplatePaymentSuspenseWorker.java class as shown in Example 34-4.

4. Save the file in your NetBeans IDE project.

Example 34-3 Override getRecordsForTemplate()

@Override
 public List<ColumnarRecord> getRecordsForTemplate(String templateType, String id,

Chapter 34
Creating a CustomTemplatePaymentSuspenseWorker.java Class

34-3

String secondaryId, int offset, int limit, SearchCriterias searchCriteria,
List<GenericTemplate.SortbyFields> sortByFields) {
 PortalContext ctx = null;
 try {
 BaseOps baseOps = getBaseOps();
 if (baseOps instanceof PCMBaseOps) {
 ctx = BRMUtility.getConnection();
 ((PCMBaseOps) baseOps).setContext(ctx);
 }
 }
 }

Example 34-4

if (templateType.equalsIgnoreCase("paymentsuspensesearch")) {
 templateWorker = new CustomTemplatePaymentSuspenseWorker();
 }

Creating a customModule.properties File
Create a custom module property file to override the default module logic with your
customizations.

To create a custom module property file:

1. Create customModule.properties file in myproject/projectname/src/java/custom.

2. Add the following entry:

billingcare.rest.template.module = com.rest.sdk.CustomPCMTemplateModule
3. Save the file in your NetBeans IDE project.

Updating Registry
After creating the required custom view model, add a custom module entry in the
customRegistry.js file to include the new criteria to the filter. Use the correct registry key to
add the custom module in the customRegistry.js file.

The available registry keys are:

• paymentFilter

• suspenseFilter

• accountFilter

To add an entry in the customRegistry.js file:

1. Edit the customRegistry.js file in myproject/projectname/web/custom.

2. Add an entry as shown in Example 34-5. In this example, the customRegistry contains
accountFilter registry key because the new criteria is added to account group of filter
section.

3. Save the file in your NetBeans IDE project.

Example 34-5 Sample Custom Payment Suspense Module Registry Entry to Filter
Accounts

var CustomRegistry = { paymentSuspenseSearch: {
 view: 'text!../custom/templates/paymentSuspense/
customPaymentSuspenseSearchView.html',

Chapter 34
Creating a customModule.properties File

34-4

 accountFilter: 'custom/viewmodels/paymentSuspense/
customPaymentSuspenseSearchAccountFilterViewModel.js'
 }
};

Updating customPaymentSuspenseSearchView.html
Customize customPaymentSuspenseSearchView.html to add a new criteria for payment
suspense search.

To add new criteria for payment suspense search in the
customPaymentSuspenseSearchView.html file:

1. Edit the customPaymentSuspenseSearchView.html file in myproject/projectname/web/
custom/templates/paymentSuspense.

2. Add new criteria for payment suspense search as shown in Example 34-6.

3. Save the file in your NetBeans IDE project.

Example 34-6 Sample Custom Payment Suspense Search View Criteria

<div class="oj-row filter-header">
 <div class="oj-col oj-lg-12">
 <label id="payment-filter-bank-account-number-label" data-
bind="text: bankAccountNoHeading, attr: {'for': 'selected-bill-account-number'}"
class="payment-suspense-search-filter-label"></label>
 </div>
 </div>
 <div class="oj-row">
 <div class="oj-col oj-lg-12">
 <div id="selected-bank-account-number" class="items-wrapper"
data-bind="foreach: bankAccountNo">
 <div class="token-item">
 </
span>
 <i class="icon" tabindex="0" data-
bind="click: $parent.removeBankAccountNo, event:
{ keyup : $parent.removeBankAccountNoOnEnterOrSpace} "></i>
 </div>
 </div>
 </div>
 </div>

Updating View Model
Update the view model to handle new criteria. For example, update
CustomPaymentSuspenseSearchAccountFilterViewModel.js to handle new criteria in
account group. If a criteria is added to suspense or payment group then update the
corresponding custom view model.

The available filter view models are:

• PaymentSuspenseSearchPaymentFilterViewModel

• PaymentSuspenseSearchSuspenseFilterViewModel

• PaymentSuspenseSearchAccountFilterViewModel

To update a view model:

1. Go to myproject/projectname/web/custom/viewmodels/paymentSuspense.

Chapter 34
Updating customPaymentSuspenseSearchView.html

34-5

2. Edit view model to handle new criteria as shown in Example 34-7.

3. Save the file in your NetBeans IDE project.

Example 34-7 Sample Custom Payment Suspense Search Account Filter View Model

define(['jquery', 'knockout',
 'viewmodels/paymentSuspense/PaymentSuspenseSearchAccountFilterViewModel'
],
 function ($, ko,PaymentSuspenseSearchAccountFilterViewModel) {
 function customPaymentSuspenseSearchAccountFilterViewModel() {
 PaymentSuspenseSearchAccountFilterViewModel.apply(this, arguments);
….
..}

Note:

The reset and sync functions should be available in all view models. Entries present
in each function are dependent on the search criteria. You can change the name of
the function and entries as per search criteria.

Localizing New Criteria into Other Languages
Localize the new criteria headings and label into other languages. See "Customizing the
Resource Bundle" for more information.

Creating Deployment Plan
Create a production deployment plan named plan.xml for your production Billing Care
deployment. See "Packaging and Deploying Customizations" for more information.

Creating .war File
Create a .war file containing your customizations to deploy to multiple Billing Care instances.
See "Packaging and Deploying Customizations" for more information.

Chapter 34
Localizing New Criteria into Other Languages

34-6

35
Exporting Billing Care Search Results

Learn how to enable the export of Oracle Communications Billing Care accounts, events, and
payments search results to PDF files by using the SDK.

Topics in this document:

• About Billing Care Search

• Enabling Search Results Export with the SDK

• Creating Custom Search Templates

• Creating Custom Search View Models

• Configuring Custom Search Modules in the Registry

• Deploying Customizations

About Billing Care Search
Billing Care provides search functionality for querying accounts, subscriber events, and
payments. By default, Billing Care search results cannot be exported. Results are viewable
only in the Billing Care application.

Enabling Search Results Export with the SDK
The SDK provides the ability to expose an embedded export link on Billing Care search results
screens. Use the SDK to enable export links in the Billing Care search screens.

The Billing Care SDK includes sample search results export implementation in the SDK_home/
samples/SaveSearchResults directory. Use the samples as a guideline for enabling search
results export.

To enable search results export to PDF in Billing Care:

1. Create custom search templates with the element saveResults set to true to enable the
Export link. See "Creating Custom Search Templates" for more information.

2. Create custom search view models containing the savetoFile function. See "Creating
Custom Search View Models" for more information.

3. Create a customRegistry.js file configuring Billing Care to use the custom search view
models created in step 2. See "Configuring Custom Search Modules in the Registry" for
more information.

4. Deploy your customizations to your application server. See "Deploying Customizations" for
more information.

Creating Custom Search Templates
Each Billing Care search screen (accounts, events, and payments) uses a template that
defines what information to display. By default, the saveResults element is set to false in each
search template, which hides the Export link. To enable the Export link in each search screen,

35-1

you must create custom search templates for each search screen you want to enable export
for in your NetBeans IDE project.

See "Customizing Billing Care Templates" for more information on customizing templates.

The SDK includes sample accounts, events, and payments search templates in SDK_home/
samples/SaveSearchResults/src/java/custom. Use this sample as an example on how to
configure Billing Care to enable only complete allocation of suspended payments.

To enable the search screen Export link Billing Care:

1. Create custom template files for each search screen using the SDK samples in
myproject/src/custom where myproject is the folder containing your NetBeans IDE project.

2. In each search screen XML template file set the saveResults element to true.

3. Save the file in your NetBeans IDE project.

Creating Custom Search View Models
Billing Care uses search view models to define search screen behavior. You must create
custom accounts, events, and payments view models containing the savetoFile function to
enable search results export to PDF.

See "About View Models" for more information about Billing Care view models.

The following sample view models in the SDK_home/samples/SaveSearchResults/web/js/
viewmodels directory contain the savetoFile function for enabling search results export:

• CustomEventsViewModel.js

• CustomPaymentSuspenseSearchViewModel.js

• CustomSearchViewModel.js

Use the sample view models to create your custom models.

To create a custom search view models with enabled Export links:

1. Create the required custom search view model JavaScript files in myproject/web/
custom/js/viewmodels/area/configure where myproject is the folder containing your
NetBeans IDE project and area is the customization type (for example, search).

2. Include the savetoFile function in your custom search view models.

3. Save the file in your NetBeans IDE project.

Configuring Custom Search Modules in the Registry
After creating the required custom search view models, create custom module entries in the
customRegistry.js file to use when using Billing Care search screens. Billing Care uses the
custom search modules instead of the default entries when searching.

A sample customRegistry.js file is provided in the SDK_home/samples/
SaveSearchResults/web/custom directory where SDK_home is the Billing Care SDK
installation directory. This sample defines the custom search modules containing the search
results export functionality.

To create custom search module entries in the customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom/ where myproject is the folder
containing your NetBeans IDE project.

Chapter 35
Creating Custom Search View Models

35-2

2. Define the custom search modules in this file. Example 35-1 shows a definition of custom
modules for accounts, events, and payments module in the registry using the SDK
samples.

3. Save the file in your NetBeans IDE project.

Example 35-1 Sample Custom Search Modules Registry Entry

var CustomRegistry = {
 search: {
 viewmodel: 'viewmodels/CustomSearchViewModel'
 },
 events: {
 viewmodel: 'viewmodels/CustomEventsViewModel'
 },
 paymentSuspenseSearch: {
 viewmodel: 'viewmodels/CustomPaymentSuspenseSearchViewModel'
 }
};

Deploying Customizations
Package and deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying Customizations".

Chapter 35
Deploying Customizations

35-3

Part V
Controlling Access to Billing Care Functionality

This part describes how to limit user access to screens, fields, and functionality in Oracle
Communications Billing Care. It contains the following chapters:

• Limiting Event Adjustments Entered by CSRs

• Setting Adjustment Limit for Event Adjustments

• Enabling Authorization in Test Installations

• Restricting Bundle Validity Based on Roles

• Restricting Additional Bundles Purchase Based on Roles

• Making Notes Mandatory for Additional Product Purchase

• Customizing Suspended Payment Allocations

• Disabling Event Adjustment Options Based on Roles

• Logging Additional CSR Activity Details (Release 15.0.1 or later)

36
Limiting Event Adjustment Percentage Entered
by CSRs

Learn how to limit the event adjustment percentage entered by CSRs using the Oracle
Communications Billing Care SDK and OPSS policies.

Topics in this document:

• About Adjustments

• Limiting Event Adjustments Entered by CSRs

• Updating CustomExtendAdjustmentModule.java Class

• Creating CustomAdjustmentWorker.java Class

• Creating a customized_en.xlf File Entry for the Error Message

About Adjustments
Typically, CSRs perform the adjustments to satisfy an unhappy customer or correct a problem.
For example, a CSR might give an adjustment when the entire monthly fee is charged for a
service that was unavailable for a few days. You customize Billing Care to limit the percentage
of event adjustment allowed for a CSR by using the SDK and OPSS policies.

Limiting Event Adjustments Entered by CSRs
To limit the event adjustment percentage entered by a CSR:

1. Add an obligation for the OPSS authorization policy; for example, Maximum Adjustment
Amount Percentage. For more information on adding obligations, see the OPSS
documentation.

2. Update the CustomExtendAdjustmentModule.java class file to override the default event
adjustment flow. See "Updating CustomExtendAdjustmentModule.java Class" for more
information.

3. Create a custom adjustment worker class to add custom logic. See "Creating
CustomAdjustmentWorker.java Class" for more information.

4. Create or update the customized_en.xlf file to add an error code and message for limiting
adjustments. See "Creating a customized_en.xlf File Entry for the Error Message" for more
information.

Updating CustomExtendAdjustmentModule.java Class
Update the CustomExtendAdjustmentModule.java class to override the adjustEvent ()
method.

To update the CustomExtendAdjustmentModule.java class:

36-1

1. Open the CustomExtendAdjustmentModule.java file in myproject/projectname/src/
java/com/rest/sdk.

2. Override the adjustEvent () method as shown in this example:

@Override
public void adjustEvent(AdjustmentEvent adjustEvent) {
CustomAdjustmentWorker worker = new CustomAdjustmentWorker();
boolean isAllowed;

isAllowed = worker.isAllowedForAdjustment(adjustEvent);
if (isAllowed) {
super.adjustEvent(adjustEvent);
} else {
ExceptionHelper.buildErrorInfo(70001,
"More than allowed Percentage", Response.Status.BAD_REQUEST);
}
}

3. Save the file in your NetBeans IDE project.

Creating CustomAdjustmentWorker.java Class
Create a custom template worker class containing logic to calculate the percentage of
adjustment allowed and limit the adjustment amount entered by a CSR in Billing Care if it is
more than the percentage allowed.

To create the CustomAdjustmentWorker.java Class:

1. Create the CustomAdjustmentWorker.java file in myproject/src/java/com/rest/sdk.

2. Extend AdjustmentWorker as shown in this example:

public class CustomAdjustmentWorker extends AdjustmentWorker {

/*
 *Check if the amount is more than allowed percentage
 */

public boolean isAllowedForAdjustment(AdjustmentEvent adjustEvent){
boolean isAllowed = true;

//Get total amount available for adjustment from BRM
BigDecimal availableAmountForAdjustment =
getAvailableAmountForEventAdjustment(adjustEvent);

//String configured as obligation in OPSS Admin
String obligationString = "Maximum Adjustment Amount Percentage";
Subject subject = Security.getCurrentSubject();
String action = "Make";
Map<String, String> env = new HashMap<>(0);
Map<String, String> obligationNameValueMap = new HashMap<>();
Integer obligationPer = 0;

//Getting obligation allowed percentage value from OPSS
String resourceString = "BillingCare" + "/" +
"AdjustmentCurrencyResourceType" + "/" + "AdjustmentResource";
try {
PepResponse response =
PepRequestFactoryImpl.getPepRequestFactory().newPepRequest(subject, action,
resourceString, env).decide();
Map<String, Obligation> obligations = response.getObligations();
for (String name : obligations.keySet()) {

Chapter 36
Creating CustomAdjustmentWorker.java Class

36-2

obligationNameValueMap = obligations.get(name).getStringValues();
obligationPer =
Integer.parseInt(obligationNameValueMap.get(obligationString));
break;
}

} catch (PepException ex) {
Logger.getLogger(AdjustmentWorker.class.getName()).log(Level.SEVERE, null,
ex);
}

//Calculate the allowed amount using obligationPer retrieved from OPSS and
availableAmountForAdjustment retrieved from BRM
double allowedAmountInDouble = (obligationPer *
availableAmountForAdjustment.doubleValue()) / 100;
BigDecimal allowedAmount = new BigDecimal(allowedAmountInDouble);

//If amount is greater than allowed amount return false
//Note: Please handle the decimal case as per the requirement if only first
2 decimal needed etc..

if(adjustBill.getAmount().compareTo(allowedAmount)==1)
{
isAllowed=false;
}

return isAllowed;

}

Note:

The JAR files required for this customization are available in the SDK_home/libs
directory.

3. Save the file in your NetBeans IDE project.

Creating a customized_en.xlf File Entry for the Error Message
You must provide a localized English entry for the new adjustment error code and message in
the customized_en.xlf file to provide a translatable text string in Billing Care. For more
information on the customized_en.xlf file and how to add a new entry, see "Customizing
Billing Care Labels".

This example shows a sample entry for the error code and message to add in the
customized_en.xlf file:

<?xml version="1.0" encoding="utf-8" ?>
<xliff version="1.0">
 <file original="test_en.js" source-language="EN-US"
 target-language="EN-US" datatype="JavaScript">
 <header/>
 <body>
 <group id="errors" restype="errors">
 <trans-unit id="70001" translate="yes">
 <source>More than allowed Percentage.</source>
 <target>More than allowed Percentage.</target>
 </trans-unit>

Chapter 36
Creating a customized_en.xlf File Entry for the Error Message

36-3

 </group>
 </body>
 </file>
</xliff>

Note:

For custom error codes, the series must start from 70000; for example, 70001,
70002, and so on.

Chapter 36
Creating a customized_en.xlf File Entry for the Error Message

36-4

37
Setting Adjustment Limit for Event
Adjustments

Learn how to customize Oracle Communications Billing Care to set the maximum adjustment
limit based on the currency resources used for event adjustments.

Topics in this document:

• About Adjustment Limits

• Setting Event Adjustment Limit for CSRs

• Creating customAdjustmentResource.java Class

• Creating the Custom Event Adjustment View Model

• Configuring the Custom Event Adjustment View Model in the Registry

About Adjustment Limits
Typically, customer service representatives (CSRs) perform the adjustments by providing the
adjustment amount to be applied for the customer. You can set an adjustment limit for a CSR
to control the adjustment amount entered by the CSR. For event adjustments, you can
customize Billing Care to set the maximum adjustment limit allowed for a CSR based on the
currency resources used for the adjustments. For example, you can set an adjustment limit
of $10 for USD and 5 euro for EUR for a CSR to perform event adjustments.

Setting Event Adjustment Limit for CSRs
To set the event adjustment limit for a CSR:

1. If not already created, create a custom ResourceType and Resource (for example,
AdjustmentResourceType, AdjustmentResource) with the adjustment action in the OPSS
Server and add the ResourceType to the CustomConfigurations.xml file. See "Creating a
Custom Configuration File" for more information.

2. Add an obligation (for example, Maximum Adjustment Limit) in the custom adjustment
resource with a string (for example, 840, the currency code for US dollars) for a policy
using OPSS. For more information on adding obligations, see the OPSS documentation.

3. Set the maximum adjustment limit you want to allow for the CSR for a currency resource
as the obligation value in the OPSS Server. For example, $10 for USD.

4. Create a custom REST resource to validate the adjustment amount entered in the Event
Adjustment dialog box. See "Creating customAdjustmentResource.java Class" for more
information.

5. Create or update the CustomEventAdjustmentViewModel.js class file to override the
default event adjustment flow. See "Creating the Custom Event Adjustment View Model"
for more information.

37-1

6. Configure the custom view model entry in the customRegistry.js file to use the custom
view model that you created or updated. See "Configuring the Custom Event Adjustment
View Model in the Registry" for more information.

7. Deploy your customizations using one of the methods described in "Using an Exploded
Archive during Customization" or "Packaging and Deploying Customizations".

8. Verify the changes in Billing Care by doing the following:

a. Log into Billing Care as a CSR who has adjustments action granted and maximum
adjustment limit set.

b. In the Events dialog box, select events and click Adjust.
The Event Adjustment dialog box appears.

c. Select an adjustment option and enter the adjustment amount you want to adjust.

If the amount entered is less than the obligation value, the specified amount is adjusted. If
the amount entered is more than the obligation value, an error message is displayed. For
example: "You have exceeded the maximum adjustment limit for this currency."

Creating customAdjustmentResource.java Class
You can override the existing event adjustment flow with your customization by using REST
resources. Create a custom resource Java class to validate the event adjustment amount
against the obligation value.

To create the customAdjustmentResource.java class:

1. Create the customAdjustmentResource.java class file in myproject/projectname/src/
java/com/oracle/communications/brm/cc/ws/account, where myproject is your
NetBeans IDE Billing Care customizations project and projectname is the name of your
custom project.

2. Add the following code in the customAdjustmentResource.java class file using a text
editor:

//Create a custom REST with class named as "customAdjustmentResource"
// Add method "adjustEvent" which takes parameter "AdjustmentEvent"
//This custom REST validates entered amount to adjust with the obligation and
then calls the OOTB REST resource.
@Path("customadjustment")
public class CustomAdjustmentResource {

 @Context
 HttpServletRequest servletRequest;

 @Path("/event")
 @POST
 @Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
 public void eventAdjustment(AdjustmentEvent adjustEvent) throws
JSONException, IOException {

 UIRequestValue maxAdjustmentLimit = new
UIRequestValue(adjustEvent.getResourceId().toString(),
 adjustEvent.getAmount(), ConstraintOperator.GREATER_THAN,
 new EnforcementError(40010,"For this currency you have
exceed Max adjustment limit."));
 //Checks if user is not super csr and UI value is greater than OPSS
obligation value and throws error "For this currency you have exceed Max
limit."
 if (!EnforcementUtil.isResourceGranted(servletRequest, subject,

Chapter 37
Creating customAdjustmentResource.java Class

37-2

"BillingCare", EnforcementConstants.SUPERUSER_RESOURCE)) {
 EnforcementUtil.checkAccess(subject, "BillingCare", "adjustment",
 "AdjustmentResourceType","AdjustmentResource",
 new EnforcementError(20000, "You do not have permission to perform an
adjustment."), maxAdjustmentLimit);
 }
 }

 /*
 *After validating maximum validity end month criteria invoke out of the
box code to perform adjustment.
 */

 }

3. Save the file in your NetBeans IDE project.

Creating the Custom Event Adjustment View Model
Billing Care uses view model to define the display of the screens in Billing Care. You must
create or update the custom view model, CustomEventAdjustmentViewModel, containing
the details to set the adjustment limit for CSRs performing event adjustments.

See "About View Models" for more information about Billing Care view models.

To create the custom event adjustment view model:

1. Create or update the customEventAdjustmentViewModel.js file in the myproject/web/
custom/viewmodels directory, where myproject is the folder containing your NetBeans
IDE project.

2. Add the following code in the customEventAdjustmentViewModel.js file using a text
editor:

define(['knockout', 'jquery', 'underscore',
Registry.accountCreation.wizardBase,
'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'],
 function (ko, $, _, WizardBaseViewModel, EventAdjustmentViewModel) {
 customEventAdjustmentViewModel.prototype = new
WizardBaseViewModel();
 function customEventAdjustmentViewModel() {
 EventAdjustmentViewModel.apply(this, arguments);
 var self = this;

 self.persistData = function (eventAdjustmentObj) {
 var ajaxDef = $.ajax({
 type: "POST",
 url: baseURL + "/customadjustment/event/",
 data: ko.toJSON(eventAdjustmentObj),
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 processData: false
 });

 ajaxDef.done(function (completeResponse) {

 });

 ajaxDef.fail(function (errorThrown) {
 alert(errorThrown.responseJSON.errorMessage);
 });

Chapter 37
Creating the Custom Event Adjustment View Model

37-3

 return ajaxDef;
 };

 }
 return customEventAdjustmentViewModel;
 });

3. Save the file in your NetBeans IDE project.

Configuring the Custom Event Adjustment View Model in the
Registry

After creating the required custom view model, create a custom event adjustment view model
entry in the customRegistry.js file. Billing Care uses the custom event adjustment view model
instead of the default event adjustment view model during adjustments and renders the Event
Adjustment dialog box containing your customization.

To create the custom event adjustment view model entry in the registry:

1. Create a customRegistry.js file in the myproject/web/custom/ directory.

2. Define the custom event adjustment view model in this file. For example:

eventAdjustment: {
 viewmodel: 'custom/viewmodels/customEventAdjustmentViewModel.js'
}

3. Save the file in your NetBeans IDE project.

Chapter 37
Configuring the Custom Event Adjustment View Model in the Registry

37-4

38
Enabling Authorization in Test Installations

Learn how to use the SDK to enable authorization in an Oracle Communications Billing Care
test installation.

Topics in this document:

• About Enabling Authorization in Test Installations

• Enabling Authorization in Test Installations

• Modifying Default Authorization Policies

• Adding Custom Authorization Resources and Actions

• Deploying Customizations

About Enabling Authorization in Test Installations
You use authorization to grant users the privileges appropriate for their job functions, while
denying access to other functionality. Billing Care uses Oracle Platform Security Services
(OPSS) to handle all authorization tasks.

By default, Billing Care test installations are installed without OPSS. The authorization feature
is also disabled in the test installations. This enables the testing Billing Care instances to
connect directly to your BRM system using the native WebLogic server user management.

However, if you want to test authorization in your Billing Care test installation without installing
OPSS, you can enable authorization in Billing Care by using the Billing Care SDK. See
"Enabling Authorization in Test Installations".

Note:

Use the Billing Care SDK to enable authorization only in your test or development
installation. Do not use this customization in production installations.

Enabling Authorization in Test Installations
This section provides a high level overview of the process on how to enable authorization in a
Billing Care test installation by using the Billing Care SDK.

The Billing Care SDK includes a sample OPSS manager (CustomOPSSManager) in the
SDK_home/samples directory, where SDK_home is the directory where you installed the SDK.
This sample contains the necessary configuration to enable authorization. Use this sample to
enable authorization in the Billing Care test installation.

To enable authorization in the Billing Care test installation:

1. Using the SDK_home/samples/CustomOPSSManager directory, create a NetBeans IDE
project with the same folder structure of the CustomOPSSManager directory. See
"Creating the Billing Care NetBeans IDE Project" for more information.

38-1

2. (Optional) Modify the default authorization policies in your CustomConfigurations.xml
file. See "Modifying Default Authorization Policies" for more information.

3. (Optional) Add custom authorization resources or actions in your
CustomConfigurations.xml file. See "Adding Custom Authorization Resources and
Actions" for more information.

4. Deploy your customizations to your Billing Care domain. See "Deploying Customizations"
for more information.

Modifying Default Authorization Policies
To modify default authorization policies:

1. In a text editor, open the myproject/src/java/custom/configurations/
CustomConfigurations.xml file, where myproject is the NetBeans IDE project that you
created using the sample OPSS manager.

2. Search for the authorizationJSON key in the file:

<keyvals>
 <key>authorizationJSON</key>
 <value>[{"extension":null,"resourceName":"SuperUserResource","grantedActions":
[],"deniedActions":["ANY"]},...</value>
 <desc>...</desc>
</keyvals>

3. Change the default actions for the authorization resources in the authorizationJSON key
value as required.

To authorize the logged in user to perform adjustments, change the actions for the
adjustment resource as shown in the following example:

{"extension":null,"resourceName":"AdjustmentResource","grantedActions":
["Allocate","Make"],"deniedActions":[]}

To deny the logged in user to perform adjustments, change the actions for the adjustment
resource as shown in the following example:

{"extension":null,"resourceName":"AdjustmentResource","grantedActions":
[],"deniedActions":["Allocate","Make"]}

See the discussion about Billing Care authorization resources in Billing Care Security
Guide for more information on the default authorization resources and actions supported in
Billing Care.

4. Change or add transaction limits (obligations) for authorization by doing the following:

a. Search for the transaction limit mapping in the file. For example:

<mapping>
 <key>weblogic</key>
 <map>
 <id>Maximum Currency Adjustment Amount</id>
 <key>4</key>
 </map>
...
 <desc>Obligation mapping for user. If there are multiple users for which
obligation has to be mapped replicate the mapping section change the key to the
username to which obligation is required.
 Also edit the obligation values as per requirement. Note that the
obligation field that is the id should be as per BillingCare documentation.

Chapter 38
Modifying Default Authorization Policies

38-2

 </desc>
</mapping>

b. Change transaction limit values for authorizing users as required. For example, to
authorize the WebLogic user to make payment only up to $50, change the maximum
payment amount value under the WebLogic key to 50 in the mapping:

<key>weblogic</key>
<map>
 <id>Maximum Payment Amount</id>
 <key>50</key>
</map>

Note:

Do not change the mapping ID for the transaction limit; for example,
Maximum Currency Adjustment Amount.

c. (Optional) Add new transaction limits for authorizing users as required. See the
discussion about policies on transaction limits in Billing Care Security Guide for the list
of transaction limits supported in Billing Care.

5. Save and close the file.

Adding Custom Authorization Resources and Actions
To add custom authorization resources and actions:

1. In a text editor, open the myproject/src/java/custom/configurations/
CustomConfigurations.xml file, where myproject is the NetBeans IDE project that you
created using the sample OPSS manager.

2. Search for the authorizationJSON key in the file:

<keyvals>
 <key>authorizationJSON</key>
 <value>[{"extension":null,"resourceName":"SuperUserResource","grantedActions":
[],"deniedActions":["ANY"]},...</value>
 <desc>...</desc>
</keyvals>

3. Add custom authorization resources and actions in the authorizationJSON key value as
required. For example, to authorize the logged in user to view invoices, add the authorize
resource and action as shown in the following example:

{"extension":null,"resourceName":"InvoiceImageResource","grantedActions":
["View"],"deniedActions":[]}

Note:

Ensure that the key value structure is the same.

When you migrate from the Billing Care test installation to the production
installation, make sure that the custom resources are added in OPSS.

4. Save and close the file.

See "About Custom Resource Authorization" for more information.

Chapter 38
Adding Custom Authorization Resources and Actions

38-3

Deploying Customizations
Package and deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying Customizations".

Chapter 38
Deploying Customizations

38-4

39
Restricting Bundle Validity Based on Roles

Learn how to restrict the validity or end date set by CSRs while purchasing additional products
or services.

Topics in this document:

• About Restricting Bundle Validity

• Restricting Bundle Validity

• Creating CustomAccountResource.java Class

• Creating a Custom Purchase View Model

• Configuring the Custom Purchase View Model in the Registry

About Restricting Bundle Validity
Typically, CSRs set the validity or end date of a product or service in a bundle (/deal object)
during purchase. For additional purchases, you can customize Billing Care to restrict the
validity or end date set by the CSR based on the CSR's role by using the OPSS policies and
the Billing Care SDK.

For example, for an additional discount purchased from a bundle, you can allow a CSR with
the super user role to set an end date up to a maximum of 12 months, and allow a CSR with a
basic role to set an end date only up to a maximum of 6 months.

Restricting Bundle Validity
You can customize the Purchase Catalogue screen using OPSS policies to restrict the end
date set by CSRs for additional purchases.

To restrict bundle validity:

1. Define a new ResourceType and Resource in the OPSS Server for restricting bundle
validity, such as DealResourceType and DealResource.

2. Define purchase as the corresponding action for the ResourceType in the OPSS Server.

3. Associate the new resource that you created to a CSR who has permission to purchase
products or services.

4. Add the new ResourceType to the CustomConfigurations.xml file. For example:

<keyvals>
 <key>authorizationResourceTypes</key>
 <value>DealResourceType</value>
 <desc>Add comma separated OPSS Resource Types(values) for authorization.
 Also these resource types should be defined in OPSS.
 Please note that the key should not be changed here.
 </desc>
</keyvals>

39-1

5. To set the validity allowed for a CSR, add an obligation with a string (for example,
maximum validity end month) for a policy using OPSS and set a numeric value to the string
(for example, 6).

6. Create a custom REST resource for validating the end date entered in the Purchase
Catalogue screen. See "Creating CustomAccountResource.java Class" for more
information.

7. Create a custom view model to override the default additional purchase logic with your
customization. See "Creating a Custom Purchase View Model" for more information.

8. Create a customRegistry.js file to configure Billing Care to use the custom view model
that you created. See "Configuring the Custom Purchase View Model in the Registry" for
more information.

9. Deploy your customizations using one of the methods described in "Using an Exploded
Archive during Customization" or "Packaging and Deploying Customizations".

10. Verify your changes in Billing Care by doing the following:

a. Log in to Billing Care as a CSR who has the permission to purchase products or
services and obligation to validate end date during purchase.

b. Purchase an additional charge or discount offer. For more information, see the Billing
Care Online Help.

c. In the Configure screen, enter an end date for the purchased offer.

If the end date exceeds the end date specified in the obligation associated with the CSR,
an error is displayed. If it matches or less than the end date in the obligation, CSR is
allowed to configure the offer.

Creating CustomAccountResource.java Class
Create a custom resource Java class to get the list of all customized charge offers and
discount offers in Billing Care and validate their end dates.

To create the customAccountResource.java class:

1. Create the CustomAccountResource.java file in myproject/projectname//src/java/com/
oracle/communications/brm/cc/ws/account, where myproject is your NetBeans IDE
Billing Care customizations project and projectname is the name of your custom project.

2. Add the following code in the CustomAccountResource.java file using a text editor:

//This custom REST validates the deal end month with the obligation and then
calls the OOTB REST resource.

@Path("customaccounts")
public class CustomAccountResource {

 @Context
 HttpServletRequest servletRequest;

 @Path("{id}/custombundle")
 @POST
 @Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
 public void purchaseCustomizedBundle(@PathParam("id") String id,
CustomizedBundleForPurchase custbundle) throws JSONException, IOException {

/*
* Get the list of all CustomizedChargeOffers using

Chapter 39
Creating CustomAccountResource.java Class

39-2

getCustomizedChargeOffers() method of CustomizedBundleForPurchase class.
*/
List <CustomizedChargeOffers> custoffer =
custbundle.getCustomizedChargeOffers();
 List <CustomizedDiscountOffers> custDistOffer =
custbundle.getCustomizedDiscountOffers();

/*
* Iterate through each charge offer and get the purchaseEnd months and
validate the same against OPSS obligation
*/
for (CustomizedChargeOffers i : custoffer)
{
purchaseEnd=i.getPurchaseEnd();
months=purchaseEnd.getUnitSettings().getOffset();

UIRequestValue maxValidityEndMonthLimit = new UIRequestValue("Maximum
validity end month",
 new BigDecimal(months), ConstraintOperator.GREATER_THAN,
new EnforcementError(40002,"Maximum validity end month exceeded"));

//Checks if user is not super csr and UI value is greater than OPSS
obligation value and throws error "Maximum validity end month exceeded"
if (!EnforcementUtil.isResourceGranted(servletRequest, subject,
"BillingCare", EnforcementConstants.SUPERUSER_RESOURCE)) {
 EnforcementUtil.checkAccess(subject, "BillingCare", "Purchase",
"DealResourceType","DealResource",
error, maxValidityEndMonthLimit);
}
}

Repeat the above validations for all the discount offers as well by
iterating through custDistOffer.

/*
*After validating maximum validity end month criteria invoke out of the
box code to perform purchase.In below steps
*we have used jersey clients to achieve the same.
*/

1. Create a new Jersey Client
2. Create a webresource passing the baseURI (
host:port/bc/webresources/v1.0/accounts/id/bundle).
3. Convert custbundle java object to json object.

String scheme = servletRequest.getScheme(); // http or https
String serverName = servletRequest.getServerName(); // hostname.com
int serverPort = servletRequest.getServerPort(); // port
String BASE_URI = scheme + " + serverName + ":" + serverPort + "/bc/webresources/
v1.0/accounts/";
Client client = Client.create();
ObjectMapper mapper = new ObjectMapper();
String jsonInString = mapper.writeValueAsString(custbundle);
JSONObject object = new JSONObject(jsonInString);

javax.servlet.http.Cookie[] cookies=servletRequest.getCookies();
WebResource webResource2 =
client.resource(BASE_URI).path(id).path("bundle");
WebResource.Builder webresourceBuilder =
webResource2.accept(MediaType.APPLICATION_JSON);

Chapter 39
Creating CustomAccountResource.java Class

39-3

Cookie cookieObject =null;

for(javax.servlet.http.Cookie cookie: cookies)
 {
 if(cookie.getName().contains("JSESSIONID"))
 {
 cookieObject = new
Cookie(cookie.getName(),cookie.getValue());
 webresourceBuilder.cookie(cookieObject);
 }
 }
webresourceBuilder.post(ClientResponse.class, object);

}
}

3. Save the file in your NetBeans IDE project.

Creating a Custom Purchase View Model
Billing Care uses view model to define the display of the screens in Billing Care. You must
create or update the custom view model, CustomPurcahseViewModel, and add the details
containing the logic to validate the end date for offers and allow purchase.

See "About View Models" for more information about Billing Care view models.

To create a custom purchase view model:

1. Create or update the customPurchaseViewModel.js file in myproject/web/custom/
viewmodels directory.

2. Add the following code in the customPurchaseViewModel.js file using a text editor:

 define(['knockout',
 'jquery',
 'underscore',
 Registry.accountCreation.wizardBase,
 'viewmodels/purchase/PurchaseViewModel',
 Registry.purchase.wizardView,
 'viewmodels/purchase/PurchaseCatalogue'
],
 function (ko, $, _, WizardBaseViewModel, PurchaseViewModel,
wizardTempl, PurchaseCatalogue) {

 CustomPurchaseViewModel.prototype = new WizardBaseViewModel();

 function CustomPurchaseViewModel(title, content, messages) {
 WizardBaseViewModel.apply(this, arguments);
 PurchaseViewModel.apply(this, arguments);

 var self = this;
 self.sharedData = {};
 self.purchaseCatalogue = new PurchaseCatalogue();

 self.purchaseBundle = function (stepObj) {
 var id = self.sharedData.selectedServiceId ||
globalAppContext.currentAccountViewModel().account().id();
 var urlToFetch = baseURL + "/customaccounts/" + id +
"/custombundle";
 var data =
ko.toJSON(self.purchaseCatalogue.bundlePurchaseData);

Chapter 39
Creating a Custom Purchase View Model

39-4

 util.showBusyCursor();
 var ajaxDef = $.ajax({
 type: "POST",
 url: urlToFetch,
 data: data,
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 processData: false
 });
 ajaxDef.done(function (completeResponse) {
 self.updateStatus(stepObj, 'confirmation');
 EventNotifier.assetsUpdated.dispatch("all");
 EventNotifier.billUnitsUpdated.dispatch();
 self.isInProgress(false);
 util.resetCursor();
 self.close();
 });
 ajaxDef.fail(function (errorThrown) {
 alert(util.getLocalizedValue(purchasePackage,
"UNABLE_TO_PURCHASE_BUNDLE"));
 self.updateStatus(stepObj, 'error');
 self.isInProgress(false);
 util.resetCursor();
 });
 return ajaxDef;
 };
 }
 return CustomPurchaseViewModel;
 });

3. Save the file in your NetBeans IDE project.

Configuring the Custom Purchase View Model in the Registry
After creating the required custom view model, create a custom purchase view model entry in
the customRegistry.js file. Billing Care uses the custom purchase view model instead of the
default view model during additional product purchase and renders the Purchase Add on Deal
Confirmation screen containing your customization.

To create the custom purchase view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom purchase view model in this file. For example:

purchaseConfiguration: {
 viewModel: 'custom/viewModels/purchase/customPurchaseViewModel.js'
}

3. Save the file in your NetBeans IDE project.

Chapter 39
Configuring the Custom Purchase View Model in the Registry

39-5

40
Restricting Additional Bundles Purchase
Based on Roles

Learn how to customize Oracle Communications Billing Care to restrict the purchase of
additional bundles based on user roles or permissions.

Topics in this document:

• About Restricting Bundles

• Restricting Bundles Based on Roles

• Creating the Custom Bundle Selection View Model

• Configuring the Custom Bundle Selection View Model in the Registry

About Restricting Bundles
By default, the Billing Care Purchase Catalogue screen displays all bundles (/deal objects)
retrieved from the BRM database. Customer service representatives (CSRs) can select these
bundles for purchase. You can customize Billing Care to display any additional bundles that
can be purchased based on a CSR's role or permission.

Restricting Bundles Based on Roles
You can use the Billing Care SDK and OPSS policies to customize the Purchase Catalogue
screen to display bundles for additional purchase based on CSR roles or permissions.

To restrict the bundles displayed for additional purchase:

1. Define a new ResourceType and Resource for bundles in the OPSS Server, such as
DealNameResourceType and DealNameResource.

2. Add the new ResourceType to the CustomConfigurations.xml file. For example:

<keyvals>
 <key>authorizationResourceTypes</key>
 <value>DealnameResourceType</value>
 <desc>Add comma separated OPSS Resource Types(values) for authorization.
 Also these resource types should be defined in OPSS.
 Please note that the key should not be changed here.
 </desc>
</keyvals>

For more information about updating the CustomConfigurations.xml file, see "Editing the
Billing Care Configuration File".

3. Create a custom view model to define the display of bundles in the Purchase Catalogue
screen. See "Creating the Custom Bundle Selection View Model".

4. Configure Billing Care to use the custom view model that you created. See "Configuring
the Custom Bundle Selection View Model in the Registry".

40-1

5. Deploy your customizations using one of the methods described in "Using an Exploded
Archive during Customization" or "Packaging and Deploying Customizations".

Creating the Custom Bundle Selection View Model
Billing Care uses view models to define the display of screens in Billing Care. You must create
the custom view model, customBundleSectionViewModel, containing the details to
customize the display of bundles in the Purchase Catalogue screen for additional purchase.

See "About View Models" for more information about Billing Care view models.

To create the custom bundle selection view model:

1. Create the customBundleSectionViewModel.js file in myproject/web/custom/
viewmodels/purchase directory, where myproject is the folder containing your NetBeans
IDE project.

2. Add the following code in the customBundleSectionViewModel.js file using a text editor:

define(['knockout',
 'jquery',
 'underscore',
 Registry.accountCreation.wizardBase,
 'viewmodels/purchase/BundleSelectionViewModel'
],
 function(ko, $, _, WizardBaseViewModel, BundleSelectionViewModel) {
 customBundleSelectionViewModel.prototype = new WizardBaseViewModel();
 function customBundleSelectionViewModel(params) {
 BundleSelectionViewModel.apply(this, arguments);
 var self = this;
 self.filterDealsList = function(loadedData) {
 1. call the function
util.getGrantedActionsByResource("DealNameResource") and store its return
 value in an array (eg. arr).
 2. make a set and store array in set.
 3. run a loop from var i =0 to i = loadedData.bundle.length and
check the value of loadedData.bundle[i].name in set.
 4. if value is not present in set then remove it from
loadedData.bundle also.
 5. return the modified loadedData .
 };
 }
 return customBundleSelectionViewModel;
);

3. Save the file in your NetBeans IDE project.

Configuring the Custom Bundle Selection View Model in the
Registry

After creating the required custom view model, create a custom bundle selection view model
entry in the customRegistry.js file. Billing Care uses the custom bundle selection module
instead of the default view model during additional purchase and renders the Purchase
Catalogue screen containing your customization.

To create the custom bundle selection view model entry in the registry:

1. Create a customRegistry.js file in your myproject/web/custom/ directory.

2. Define the custom event adjustment module in this file. For example:

Chapter 40
Creating the Custom Bundle Selection View Model

40-2

var CustomRegistry = {
 purchaseSelection: {
 bundleviewmodel: 'custom/viewmodels/purchase/customBundleSectionViewModel.js'
 }
};

3. Save the file in your NetBeans IDE project.

Chapter 40
Configuring the Custom Bundle Selection View Model in the Registry

40-3

41
Making Notes Field Mandatory

Learn how to make the Notes field mandatory for additional product purchase and event
adjustments in Oracle Communications Billing Care.

Topics in this document:

• Making Notes Mandatory for Additional Product Purchase

• Making Notes Mandatory for Event Adjustments

Making Notes Mandatory for Additional Product Purchase
You can use the Billing Care SDK to make the Notes field mandatory on the Purchase Add
on Deal Confirmation screen.

To make the Notes field mandatory:

1. Create a custom view model to override the default view of the Purchase Add on Deal
Confirmation screen. See "Creating a Custom Purchase Deal View Model" for more
information.

2. Create a customRegistry.js file to configure Billing Care to use the custom view model
that you created. See "Configuring the Custom Purchase View Model in the Registry" for
more information.

3. Deploy your customizations using one of the methods described in "Using an Exploded
Archive during Customization" or "Packaging and Deploying Customizations".

Creating a Custom Purchase Deal View Model
Billing Care uses view model to define the display of the screens in Billing Care. You must
create or update the custom view model, CustomPurchaseViewModel, and add the details
containing the logic to make the Notes field mandatory.

See "About View Models" for more information about Billing Care view models.

To create a custom purchase deal view model:

1. Create or update the CustomPurchaseViewModel.js file in myproject/web/custom/
viewmodels directory, where myproject is the folder containing your NetBeans IDE
project.

2. Add the following code in the CustomPurchaseViewModel.js file using a text editor:

define(['jquery', 'knockout',
'viewmodels/purchase/PurchaseConfigurationViewModel'],
 function ($, ko, PurchaseConfigurationViewModel) {

 function customPurchaseViewModel() {
 PurchaseConfigurationViewModel.apply(this, arguments);
 self = this;

 self.isValid = function () {
 $("#enterNotesTextArea").attr('name',

41-1

'enterNotesWithoutReason');
 if (self.note.isValid() && self.note.validator &&
self.note.validator.form() && self.note.comments.comment()) {
 return true;
 }
 return false;
 };

 }
 customPurchaseViewModel.prototype = new
PurchaseConfigurationViewModel();
 return customPurchaseViewModel;
 });

3. Save the file in your NetBeans IDE project.

Configuring the Custom Purchase View Model in the Registry
After creating the required custom view model, create a custom purchase view model entry in
the customRegistry.js file. Billing Care uses the custom purchase view model instead of the
default view model during additional product purchase and renders the Purchase Add on Deal
Confirmation screen containing your customization.

To create the custom purchase view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom purchase module in this file. For example:

purchaseConfiguration: {
 viewmodel: 'custom/viewmodels/customPurchaseViewModel.js'
}

3. Save the file in your NetBeans IDE project.

Making Notes Mandatory for Event Adjustments
You can use the Billing Care SDK to make the Notes field mandatory in the Event Adjustment
dialog box.

To make the Notes field mandatory:

1. Create a custom view model to override the default view of the Event Adjustment dialog
box. See "Creating a Custom Event Adjustment View Model" for more information.

2. Create a customRegistry.js file to configure Billing Care to use the custom view model
that you created. See "Configuring the Custom Event Adjustment View Model in the
Registry" for more information.

3. Deploy your customizations using one of the methods described in "Using an Exploded
Archive during Customization" or "Packaging and Deploying Customizations".

Creating a Custom Event Adjustment View Model
Billing Care uses view models to define the display of its screens. You must create or update
the custom view model, CustomEventAdjustmentViewModel, and add the details containing
the logic to make the Notes field mandatory.

See "About View Models" for more information about Billing Care view models.

To create a custom purchase deal view model:

Chapter 41
Making Notes Mandatory for Event Adjustments

41-2

1. Create or update the customEventAdjustmentViewModel.js file in the myproject/web/
custom/viewmodels directory, where myproject is the folder containing your NetBeans
IDE project.

2. Add the following code in the customEventAdjustmentViewModel.js file using a text
editor:

define(['jquery', 'knockout',
 'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'
],
 function($, ko, EventAdjustmentViewModel) {

 function customEventAdjustmentViewModel() {
 EventAdjustmentViewModel.apply(this, arguments);
 self = this;
 self.isValid = function() {

 /**
 * Here "if(isGranted)" condition is added for authorization.
 * create customAction in resource and use it in below function
 * util.isGrantedResourceAction("customAction", "NoteResource");
 *
 * Use below line directly without "if(isGranted)" condition if OPSS enforcement
is not needed
 * $("#enterNotesTextArea").attr('name', 'enterNotesWithoutReason');
 *
 */

 var isGranted = util.isGrantedResourceAction("customAction",
"NoteResource");
 if (isGranted) {
 $("#enterNotesTextArea").attr('name',
'enterNotesWithoutReason');
 }
 if (self.note.isValid() && self.validator &&
 self.validator.form()) {
 return true;
 }
 return false;
 };
 }
 customEventAdjustmentViewModel.prototype = new
EventAdjustmentViewModel();
 return customEventAdjustmentViewModel;
 });

3. Save the file in your NetBeans IDE project.

Configuring the Custom Event Adjustment View Model in the Registry
After creating the required custom view model, create a custom event adjustment model entry
in the customRegistry.js file. Billing Care uses the custom event adjustment view model
instead of the default event adjustment view model during adjustments and renders the Event
Adjustment dialog box containing your customization.

To create the custom event adjustment view model entry in the registry:

1. Create a customRegistry.js file in the myproject/web/custom/ directory.

2. Define the custom event adjustment module in this file. For example:

Chapter 41
Making Notes Mandatory for Event Adjustments

41-3

eventAdjustment: {
 viewmodel: 'custom/viewmodels/customEventAdjustmentViewModel.js'
}

3. Save the file in your NetBeans IDE project.

Chapter 41
Making Notes Mandatory for Event Adjustments

41-4

42
Customizing Suspended Payment Allocations

Learn how to customize how Oracle Communications Billing Care allocates partial suspended
payments.

Topics in this document:

• About Suspended Payment Allocation

• Forbidding Partial Allocation of Suspended Payments

• Creating a CustomPCMPaymentModule.java Class

• Creating a Custom Payment Suspense View Model

• Creating a customModule.properties File

• Configuring a Custom Module in the Registry

• Deploying Customizations

About Suspended Payment Allocation
Oracle Communications Billing and Revenue Management (BRM) automatically suspends
subscriber payments that do not meet certain criteria when the optional Suspense Manager is
installed. For example, BRM suspends payments made to unidentifiable bill numbers.

Payments administrators use Billing Care to correct payments for either automatic or manual
allocation to the intended bill or account. By default, Billing Care enables either partial or
complete allocation of a suspended payment to a subscriber's bill or account. See "Working
with Suspended Payments" in Billing Care Online Help for more information on using Billing
Care to manage suspended payments.

Forbidding Partial Allocation of Suspended Payments
You can forbid partial allocation of suspended payments using the Billing Care SDK if your
business policies require only complete allocation of suspended payments. Billing Care will
reject attempted allocations of any suspended payment amount that does not match the
amount of the entire suspended payment.

The SDK includes a sample for configuring Billing Care to reject partial suspended payment
allocation in SDK_home/samples/partialSuspenseAllocation. Use this sample as an
example on how to configure Billing Care to enable only complete allocation of suspended
payments.

To forbid the partial allocation of suspended payments in Billing Care:

1. Create a java class that prevents partial allocation of suspended payments in Billing Care.
See "Creating a CustomPCMPaymentModule.java Class" for more information.

2. Create a custom payment suspense view model to override the default Billing Care
allocation behavior. See "Creating a Custom Payment Suspense View Model" for more
information.

42-1

3. Create a customModule.properties file configuring Billing Care to override the default
payment module logic with the custom payment module created in step 1. See "Creating a
customModule.properties File" for more information.

4. Create a customRegistry.js file configuring Billing Care to use the custom payment
suspense view model created in step 4. See "Configuring a Custom Module in the
Registry" for more information.

5. Deploy your customizations to your application server. See "Deploying Customizations" for
more information.

Creating a CustomPCMPaymentModule.java Class
Configure Billing Care to forbid partial allocation of suspended payments by creating a custom
payment module class containing logic to reject partial allocations.

A sample CustomPCMPaymentModule.java file is provided in the SDK_home/samples/
partialSuspenseAllocation/src/java/custom/com/rest/sdk directory where SDK_home is the
Billing Care SDK installation directory. This sample contains logic forbidding partial suspended
payment allocation.

To create a custom payment module class:

1. Create a CustomPCMPaymentModule.java file in myproject/src/com/rest/sdk where
myproject is the folder containing your NetBeans IDE project.

2. Save the file in your NetBeans IDE project.

Creating a Custom Payment Suspense View Model
Billing Care uses a payment suspense view model to define suspended payment allocation
behavior. You must create a custom payment suspense view model containing overrides for
the openAllocationOverlayForSuspense and autoAllocate functions.

See "About View Models" for more information about Billing Care view models.

A sample CustomPaymentSuspenseAllocationViewModel.js file is provided in the
SDK_home/samples/partialSuspenseAllocation/web/custom/js/viewmodel directory. This
sample contains the necessary override functions to forbid partial suspended payment
allocation. Use this sample to create a custom payment suspense view model.

To create a custom payment suspense view model with partial suspended payment override
functions:

1. Create a CustomPaymentSuspenseAllocationViewModel.js file in myproject/web/
custom/js/viewmodels/area/configure where myproject is the folder containing your
NetBeans IDE project and area is the customization type.

2. Save the file in your NetBeans IDE project.

Creating a customModule.properties File
After creating the required custom payment suspense model, create a custom module entry in
the customRegistry.js file to use when allocating suspended payments. Billing Care uses the
custom payment suspense module instead of the default entry during suspended payment
allocation.

A sample customModule.properties file is provided in the SDK_home/samples/
partialSuspenseAllocation/src/java/custom directory. This sample contains an override

Chapter 42
Creating a CustomPCMPaymentModule.java Class

42-2

entry for using the previously created custom payment module. See "About the
customModule.properties File" for more information about this file.

To create a custom payment suspense override in the customModule.properties file:

1. Create a customModule.properties file in myproject/web/WEB-INF/classes/custom
where myproject is the folder containing your NetBeans IDE project.

2. Specify the custom payment module override in the file. Example 42-1 shows an example
of an override where the custom class is located in the ./custom/com/rest/sdk/
CustomPCMPaymentModule directory relative to the location of the
customModule.properties file.

3. Save the file in your NetBeans IDE project.

Example 42-1 Sample Custom Payment Suspense customModule.properties Entry

billingcare.rest.payment.module=custom.com.rest.sdk.CustomPCMPaymentModule

Configuring a Custom Module in the Registry
After creating the required custom payment suspense view model, create a custom module
entry in the customRegistry.js file to use when allocating suspended payments. Billing Care
uses the custom payment suspense module instead of the default entry during suspended
payment allocation and prevents partial allocations.

A sample customRegistry.js file is provided in the SDK_home/samples/
partialSuspenseAllocation/web/custom directory. This sample defines the custom payment
suspense module containing the previously created custom payment suspense view model.

To create a custom payment suspense module entry in the customRegistry.js file:

1. Create a customRegistry.js file in myproject/web/custom/ where myproject is the folder
containing your NetBeans IDE project.

2. Define the custom payment suspense module in this file. Example 42-2 shows a definition
of the custom account creation module in the registry using the SDK samples.

3. Save the file in your NetBeans IDE project.

Example 42-2 Sample Custom Payment Suspense Module Registry Entry

var CustomRegistry = {
 paymentSuspenseAllocation: {
 viewmodel: '../custom/js/viewmodel/CustomPaymentSuspenseAllocationViewModel'
 }
};

Deploying Customizations
Package and deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying Customizations".

Chapter 42
Configuring a Custom Module in the Registry

42-3

43
Disabling Event Adjustment Options Based on
Roles

Learn how to customize Oracle Communications Billing Care to support the disabling of event
adjustment options based on customer service representatives (CSRs) roles.

Topics in this document:

• About Event Adjustment Options

• Disabling Event Adjustment Options Based on User Roles

• Creating a Custom View Model for Disabling Adjustment Options

• Configuring the Custom View Model for Disabling Event Adjustment Options

About Event Adjustment Options
By default, the following options in the Event Adjustment dialog box are enabled and CSRs can
select these options to adjust events:

• Adjust amount and tax

• Adjust amount only

• Adjust tax only

CSRs can also backdate an adjustment if required. You can customize Billing Care using the
SDK to disable these options based on the user roles.

Disabling Event Adjustment Options Based on User Roles
You can customize the Event Adjustment dialog box using the SDK and Oracle Platform
Security Services Entitlements Server (OPSS) policies to disable or enable the event
adjustment options.

To disable the event adjustment or backdate options in the Event Adjustments dialog box:

1. Define a new ResourceType and Resource for event adjustment options in the OPSS
Server. For example, EventAdjustmentResourceType, EventAdjustmentResource .

2. Define the following as corresponding actions for the ResourceType in the OPSS Server
as required:

• AmountAndTax

• AmountOnly

• TaxOnly

• backDateEventAdjustment

3. Associate the new Resource to the new ResourceType.

4. Add the new ResourceType to the CustomConfigurations.xml file. For example:

43-1

<keyvals>
 <key>authorizationResourceTypes</key>
 <value>EventAdjustmentResourceType</value>
 <desc>Add comma separated OPSS Resource Types(values) for authorization. Also
these resource types should be defined in OPSS. Please note that the key should not
be changed here.</desc>
</keyvals>

5. Create a custom view model to disable the options in the Event Adjustment dialog box.
See "Creating a Custom View Model for Disabling Adjustment Options" for more
information.

6. Create a customRegistry.js file to configure Billing Care to use the custom view model
that you created. See "Configuring the Custom View Model for Disabling Event Adjustment
Options".

7. Deploy your customizations using one of the methods described in "Using an Exploded
Archive during Customization" or "Packaging and Deploying Customizations".

Creating a Custom View Model for Disabling Adjustment Options
Billing Care uses view model to define the display of the screens in Billing Care. You must
create or update the custom view model, CustomEventAdjustmentViewModel, and add the
details to customize the display of event adjustment or backdate options in the Event
Adjustment dialog box.

See "About View Models" for more information about Billing Care view models.

To create a custom model for disabling event adjustment or backdate options:

1. Create or update the customEventAdjustmentViewModel.js file in myproject/web/
custom/viewmodels directory, where myproject is the folder containing your NetBeans
IDE project.

2. To disable the amount and tax adjustment options based on the user role, add the
following code in the customEventAdjustmentViewModel.js file using a text editor:

define(['jquery',
 'underscore',
 'knockout',
 'knockout-mapping',
 'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'

],
 function ($, _, ko, komapping, EventAdjustmentViewModel) {
 function customEventAdjustmentViewModel() {
 EventAdjustmentViewModel.apply(this, arguments);

 $(function() {
 var myVar= setInterval(function() {

 if($('#lblAdjustAmountAndTax').length>0)
 {

if(!util.isGrantedResourceAction('AmountAndTax','EventAdjustmentResource'))
 {

$('#lblAdjustAmountAndTax').parent().hide();
 }

if(!util.isGrantedResourceAction('AmountOnly','EventAdjustmentResource'))

Chapter 43
Creating a Custom View Model for Disabling Adjustment Options

43-2

 {

$('#lblAdjustAmountOnly').parent().hide();
 }

if(!util.isGrantedResourceAction('TaxOnly','EventAdjustmentResource'))
 {

$('#lblAdjustTaxOnly').parent().hide();
 }
 clearInterval(myVar);
 }

 }, 20);

 });

 }
 customEventAdjustmentViewModel.prototype = new
EventAdjustmentViewModel();
 return customEventAdjustmentViewModel;
 });

3. To disable the backdate option based on the user role, add the following code in the
customEventAdjustmentViewModel.js file using a text editor:

define(['jquery', 'knockout',
 'viewmodels/ARActions/adjustments/EventAdjustmentViewModel'
],
 function($, ko, EventAdjustmentViewModel) {
 function CustomEventAdjustmentViewModel() {
 EventAdjustmentViewModel.apply(this, arguments);
 $(function() {
 var myVar1 = setInterval(function() {
 if ($('#eventAdjustmentEffectiveDate').length > 0)
 {
 if
(!util.isGrantedResourceAction("backDateEventAdjustment", "customResource"))
{

$('#eventAdjustmentEffectiveDate').attr('disabled', true);

$("#eventAdjustmentEffectiveDate").next("img").off("click")
 }
 clearInterval(myVar1);
 }
 }, 40);
 });
 }
 CustomEventAdjustmentViewModel.prototype = new
EventAdjustmentViewModel();
 return CustomEventAdjustmentViewModel;
 });

4. Save the file in your NetBeans IDE project.

Configuring the Custom View Model for Disabling Event
Adjustment Options

After creating or updating the required custom view model, ensure that the custom event
adjustment view model entry is created in the customRegistry.js file. Billing Care uses the

Chapter 43
Configuring the Custom View Model for Disabling Event Adjustment Options

43-3

custom event adjustment view model instead of the default event adjustment view model
during adjustments and renders the Event Adjustment dialog box containing your
customization.

To create the custom event adjustment view model entry in the registry:

1. Create a customRegistry.js file in myproject/web/custom/ directory.

2. Define the custom event adjustment view model entry in this file. For example:

eventAdjustment: {
 viewmodel: 'custom/viewmodels/customEventAdjustmentViewModel.js'
}

3. Save the file in your NetBeans IDE project.

Chapter 43
Configuring the Custom View Model for Disabling Event Adjustment Options

43-4

44
Logging Additional CSR Activity Details
(Release 15.0.1 or later)

Learn how to enhance user activity tracking in Oracle Communications Billing Care by
capturing and logging detailed customer service representative (CSR) information, including
client IP address.

This chapter outlines how you can override additional CSR activity details in the Billing Care
SDK.

Topics in this document:

• About User Context Fields in the /user_activity Object

• Overriding the Default User Context

About User Context Fields in the /user_activity Object
You can customize Billing Care to store user context information, such as the CSR's client
machine IP address, in /user_activity object fields. You can override the following fields using
the Billing Care SDK:

• PIN_FLD_API_USER: Contains the Web Services Manager user.

• PIN_FLD_EXTERNAL_USER: Contains the external CSR's login or ID. By default, it is set
to the external login ID.

• PIN_FLD_NAP_IP_ADDRESS: Contains the client machine's IP address. By default,
Billing Care attempts to set it to the client machine's IP address by looking up the X-
Forwarded-For header value. If it is not found, it is set to the Billing Care service's IP
address.

• PIN_FLD_CORRELATION_ID: Contains an ID to tag for collating an operation.

Overriding the Default User Context
Configure the Billing Care user context information to use the logic from your custom request
module:

1. Open the myproject/web/WEB-INF/classes/custom/customModule.properties file in a
text editor, where myproject is the location of your NetBeans IDE Billing Care
customizations project.

2. Add the following entry to the file, where base_location is the package name where the
module implementation class is placed, for example, myproject.com.rest.sdk:

billingcare.rest.baseops.module = base_location.CustomPCMBaseOps
3. Save and close the customModule.properties file.

4. Create a CustomPCMBaseOps.java file in the location you entered into the
customModule.properties file, for example, myproject/com/rest/sdk.

44-1

5. In the file, override the addcontextInfo() method with your customizations to add one or
more of the user context fields above.

For a sample, see the SDK_home/samples/AddingContextInfo/src/java/com/rest/sdk/
worker/CustomPCMBaseOps.java file, where SDK_home is the directory in which you
installed the Billing Care SDK.

6. Package and deploy your Billing Care SDK. See "Using an Exploded Archive during
Customization" or "Packaging and Deploying Customizations".

Chapter 44
Overriding the Default User Context

44-2

Part VI
Customizing the Billing Care REST API

This part describes how to customize the Oracle Communications Billing Care REST API. It
contains the following chapters:

• Using Custom OAuth Providers with Billing Care REST API

• Extending and Creating Billing Care REST Resources

• Extending REST API Response Objects

• Recording Billing Care REST API Request Failures

45
Using Custom OAuth Providers with Billing
Care REST API

Learn how to customize the Billing Care REST API to authenticate your client applications with
an OAuth token management tool other than Oracle Access Manager.

Topics in this document:

• About OAuth Token Management Tools

• Creating a Custom Token Module

• Adding a Custom OAuth Token Module to the customModule.properties File

About OAuth Token Management Tools
The Billing Care REST API authenticates requests from your client applications by using
OAuth 2.0. By default, it uses Oracle Access Manager to generate, manage, and validate
OAuth tokens. However, you can customize the Billing Care REST API to use a different OAuth
token management tool by using the Billing Care SDK.

For more information about the Billing Care REST API, see REST API Reference for Billing
Care .

The Billing Care SDK includes samples that you can use for developing your own
customizations in the SDK_home/samples/OAuthTokenCustomization directory, where
SDK_home is the Billing Care SDK installation directory.

To use a different OAuth token management tool with the Billing Care REST API:

1. Create a custom OAuth token module that defines the logic for generating and validating
OAuth access tokens. See "Creating a Custom Token Module".

2. Create wrapper Java classes. These classes reflect the JSON or XML response
specification for your OAuth token management tool, which are required to convert the
response into a Java Object for further actions. The variables in the wrapper classes will
vary according to the different fields that the response contains.

You can use the sample wrapper files in the SDK_home/samples/
OAuthTokenCustomization/src/java/com/oracle/communications/brm/sdk/model
directory for guidance.

3. Configure the Billing Care REST API to use your custom OAuth token module. See
"Adding a Custom OAuth Token Module to the customModule.properties File".

4. Deploy your customizations as a shared library to the Billing Care REST API. See
"Packaging and Deploying Customizations".

45-1

Note:

Ensure that any third-party libraries or JARs required by the OAuth token
management tool are packaged in the SDK .war file.

Creating a Custom Token Module
Create a new CustomTokenModule.java class that extends the default
PCMOAuthTokenModule.java class. The new class should override the token management
logic used in the default class's queryAccessToken() and validateToken() methods.

To create a custom token module:

1. Create a CustomTokenModule.java file in your myproject/src/com/oracle/
communications/brm/sdk/modules/ directory, where myproject is the IDE project folder
containing your Billing Care REST API customizations.

2. Open the CustomTokenModule.java file in an editor.

3. Override the queryAccessToken() method to implement the logic for sending a request to
create an OAuth 2.0 token with your OAuth token management tool. This method needs to
return a response with the token.

For example:

@Override
public Response queryAccessToken(HttpServletRequest servletRequest) throws
ApplicationException, JsonProcessingException {
 logger.entering("queryAccessToken");
 loadOAUTHAttributes();
 String BASE_64_CREDENTIALS = servletRequest.getHeader(HttpHeaders.AUTHORIZATION);

 Feature feature = new LoggingFeature(logger.getLogger(), Level.FINE,
 LoggingFeature.Verbosity.PAYLOAD_ANY, null);
 Client client = ClientBuilder.newBuilder().register(feature).build();

 System.setProperty("sun.net.http.allowRestrictedHeaders", "true");
 Response response = client.target(OAM_OAUTH_URL + "/token")
 .queryParam("grant_type", "CLIENT_CREDENTIALS")
 .queryParam("scope", OAM_OAUTH_BC_RESOURCE_SCOPE)
 .request()
 .header(HttpHeaders.AUTHORIZATION, BASE_64_CREDENTIALS)
 .header(HttpHeaders.CONTENT_TYPE, MediaType.APPLICATION_FORM_URLENCODED)
 .header("X-OAUTH-IDENTITY-DOMAIN-NAME", OAM_OAUTH_ID_DOMAIN)
 .post(Entity.entity("", MediaType.APPLICATION_FORM_URLENCODED),
Response.class);
 String responseString = response.readEntity(String.class);
 ObjectMapper mapper = new ObjectMapper();
 Response.ResponseBuilder builder;
 if (response.getStatus() == Response.Status.OK.getStatusCode()) {
 OAuthTokenWrapper tokenWrapper = mapper.readValue(responseString,
OAuthTokenWrapper.class);
 builder = Response.status(response.getStatus()).entity(tokenWrapper);
 } else {
 OAuthTokenErrorMsgWrapper tokenErrorMsgWrapper =
mapper.readValue(responseString, OAuthTokenErrorMsgWrapper.class);
 builder = Response.status(response.getStatus()).entity(tokenErrorMsgWrapper);
 }
 logger.exiting("queryAccessToken");

Chapter 45
Creating a Custom Token Module

45-2

 return builder.build();

}
4. Override the validateToken() method to use the OAuth token returned in step 2 for

validation. If validation is successful, this method needs to return the CLIENT_ID.

The CLIENT_ID must then be added to the Oracle Unified Directory and assigned to
groups according to their expected permissions.

This example shows remote validation using Oracle Access Manager to validate the token,
but your implementation can validate the token locally without a REST API call.

@Override
public String validateToken(HttpServletRequest servletRequest) throws
InvalidTokenException, JsonProcessingException {
 logger.entering("validateToken");
 loadOAUTHAttributes();
 String clientId = "";
 String token = getTokenFromRequest(servletRequest);

 Feature feature = new LoggingFeature(logger.getLogger(), Level.INFO,
LoggingFeature.Verbosity.PAYLOAD_ANY, null);
 Client client = ClientBuilder.newBuilder().register(feature).build();

 System.setProperty("sun.net.http.allowRestrictedHeaders", "true");
 Response response = client.target(OAM_OAUTH_URL + "/token/info")
 .queryParam("access_token", token)
 .request()
 .header("X-OAUTH-IDENTITY-DOMAIN-NAME", OAM_OAUTH_ID_DOMAIN)
 .header(HttpHeaders.CONTENT_TYPE, MediaType.APPLICATION_JSON)
 .get(Response.class);
 ObjectMapper objectMapper = new ObjectMapper();
 if (response.getStatus() == Response.Status.OK.getStatusCode()) {
 String responseString = response.readEntity(String.class);
 objectMapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES,
false);

objectMapper.configure(JsonParser.Feature.ALLOW_BACKSLASH_ESCAPING_ANY_CHARACTER,
true);
 objectMapper.configure(JsonParser.Feature.ALLOW_UNQUOTED_CONTROL_CHARS,
true);
 OAuthTokenValidationWrapper validationResponse = objectMapper.readValue(
 responseString, OAuthTokenValidationWrapper.class);
 clientId = validationResponse.client;
 } else {
 logger.exiting("validateToken");
 throw new InvalidTokenException(response.readEntity(String.class));
 }
 logger.exiting("validateToken");
 return clientId;
}

5. Save the file in your NetBeans IDE project.

Adding a Custom OAuth Token Module to the
customModule.properties File

Configure the Billing Care REST API to use your custom OAuth token module by editing the
customModule.properties file. See "About the customModule.properties File" for more
information.

Chapter 45
Adding a Custom OAuth Token Module to the customModule.properties File

45-3

To add a custom OAuth token module:

1. Open the myproject/src/java/custom/customModule.properties file in a text editor.

2. Add the following entry:

billingcare.rest.oauthtoken.module=com.oracle.communications.brm.sdk.modules.CustomTo
kenModule

3. Save the file in your NetBeans IDE project.

Chapter 45
Adding a Custom OAuth Token Module to the customModule.properties File

45-4

46
Extending and Creating Billing Care REST
Resources

Learn how to extend the Oracle Communications Billing Care REST framework and create
new REST resources for use with Billing Care.

Topics in this document:

• About Extending and Creating Billing Care REST Resources

• About Billing Care Sample SDK REST Customizations

• Extending REST Services to Filter Custom Headers

• Extending REST Services

About Extending and Creating Billing Care REST Resources
Billing Care supports extending the REST framework and creating new REST resources as
required by your business needs. The following customizations are supported:

• Manipulating Workflow

For example, customizing Billing Care to invoke different Oracle Communications Billing
and Revenue Management (BRM) opcodes, either for data retrieval or persistence. A
typical scenario is a customer who has created a custom opcode similar to one provided
by Oracle but with alternate business logic that cannot not otherwise be provided through
the associated policy opcode. An alternate scenario might involve invocation of an API
from an application other than BRM.

• Payload Manipulation

For example, manipulating or inspecting the payload before invocation of an opcode. An
example scenario involves a web service that returns an error condition after validating the
payload, before invoking the opcode. Another scenario might involve custom logic applied
to the data before submission of a payload to BRM.

• Filtering Custom HTTP Headers

For example, adding a filter that intercepts HTTP requests and makes decisions based on
the custom HTTP header value. An example scenario involves a filter that checks whether
an order ID passed in the HTTP header is a duplicate and, if so, rejects the request.

• Creating New REST Resources

For example, a new REST resource used by a customized module to retrieve additional
data for display.

About Billing Care Sample SDK REST Customizations
The Billing Care SDK contains the following example REST customizations located in the
SDK_home/samples/REST_Scenarios/src/java/com/rest/sdk, where SDK_home is the
directory where you installed the SDK:

46-1

• To call a new opcode in a customized module, refer to
CustomNewOpCodeBillUnitModule.java and CustomBillUnitWorker.java.

• To modify data sent to BRM, refer to CustomPaymentModule.java.

• To alter the application logic or support subclassing ready to use module classes, refer to
CustomExtendAdjustmentModule.java.

For more information on invoking BRM opcodes through the Java API, see "About the PCM
API" in BRM Developer's Guide and Billing Care Java API Reference.

Extending REST Services to Filter Custom Headers
You can extend the Billing Care REST framework to process custom headers sent in HTTP
requests and responses and then perform additional functionality such as order tracking. You
do this by adding filters to the Billing Care SDK that do the following:

• Intercept HTTP requests before they are sent to the resource, and then make decisions
based on the header value. For example, a filter could check whether the request is a
duplicate and, if so, reject the request.

• Intercept HTTP responses before they are sent to the client, and then make decisions
based on the header value. For example, a filter could construct tracking objects and
persist them in the BRM database.

To customize the Billing Care REST framework to support custom headers, perform these
tasks:

1. Creating a Custom Storable Class in the BRM Data Dictionary

2. Processing Billing Care REST API Requests and Responses

3. Configuring WebLogic Server to Use an Exploded Archive

4. Sending a Test HTTP Request with the Custom Header

Note:

The samples that are referenced in this document use predefined Order ID patterns
to simulate duplicate request identification and depend on BRM base opcodes for
simple order management.

Creating a Custom Storable Class in the BRM Data Dictionary
If you want to persist the custom header data in the BRM database, create a custom storable
class.

To create a custom storable class:

1. In the Oracle DM configuration file (BRM_home/sys/dm_oracle/pin.conf), do this:

• Set the dd_write_enable_objects entry to 1. This allows you to create, edit, and
delete custom storable classes in the data dictionary.

• Set the sm_oracle_ddl entry to 1. This configures the Oracle DM to run Data
Definition Languages (DDLs) when updating object types in data dictionary tables.

- dm dd_write_enable_objects 1
- dm sm_oracle_ddl 1

Chapter 46
Extending REST Services to Filter Custom Headers

46-2

2. Create a PODL storable class definition file for your custom storable class. For example,
create a file named order_tracker.podl.

You can refer to the sample PODL file (SDK_home/samples/FiltersAndCustomHeaders/
order_tracker.podl) when creating your storable class definition. In the sample PODL file,
ensure that you replace all instances of __TABLESPACE__ with the name of the
tablespace in which to store the header data.

3. Run pin_deploy in verify mode to see the changes that will be caused by importing new
storable class definitions and to verify that there are no conflicts.

pin_deploy verify fileName

where fileName is the file name of the storable class definition, such as
order_tracker.podl.

4. Import the definition for your custom storable class into the BRM data dictionary:

pin_deploy create fileName
See "pin_deploy" and "Creating Custom Fields and Storable Classes" in BRM Developer's
Guide for more information about using the utility.

Processing Billing Care REST API Requests and Responses
Create a filter and wrapper object for retrieving and processing your custom headers.

1. Create a custom filter object that reads the request headers, resource paths, and attributes
as well as the response status codes. Add functionality for making decisions based on the
header value.

You can refer to the sample filter object (SDK_home/samples/
FiltersAndCustomHeaders/src/java/com/oracle/communications/brm/cc/util/
CustomHeaderSampleFilter.java) when creating your filter object.

2. Create a wrapper object that intercepts Billing Care REST API responses before they are
submitted to the client.

You can refer to the sample wrapper Java class (SDK_home/samples/
FiltersAndCustomHeaders/src/java/com/oracle/communications/brm/cc/util/
MultiReadResponseWrapper.java) when creating your wrapper Java class.

Configuring WebLogic Server to Use an Exploded Archive
To configure WebLogic server to use an exploded archive:

1. Create a manifest file by following the instructions in "Creating a Manifest for your Shared
Library".

You can use the SDK_home/samples/FiltersAndCustomHeaders/src/conf/
MANIFEST.MF file as a sample.

2. Create a deployment plan by following the instructions in "Creating a New Deployment
Plan for Billing Care with your Shared Library".

The following shows a sample deployment plan:

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/
deployment-plan http://xmlns.oracle.com/weblogic/deployment-plan/1.0/

Chapter 46
Extending REST Services to Filter Custom Headers

46-3

deployment-plan.xsd"
 global-variables="false">
 <application-name>BillingCareREST.war</application-name>
 <variable-definition>
 <variable>
 <name>SDKLibraryName</name>
 <value>BillingCareCustomizations</value>
 </variable>
 <variable>
 <name>CUSTOM_HEADER_FILTER_NAME</name>
 <value>CustomHeaderSampleFilter</value>
 </variable>
 <variable>
 <name>CUSTOM_HEADER_FILTER_CLASS_NAME</name>

<value>com.oracle.communications.brm.cc.util.CustomHeaderSampleFilter</
value>
 </variable>
 <variable>
 <name>CUSTOM_HEADER_FILTER_URL_PATTERN</name>
 <value>/webresources/v1.0/*</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>BillingCareREST.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="true">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 <variable-assignment>
 <name>SDKLibraryName</name>
 <xpath>/weblogic-web-app/library-ref/library-name</xpath>
 <operation>add</operation>
 </variable-assignment>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 <variable-assignment>
 <name>CUSTOM_HEADER_FILTER_NAME</name>
 <xpath>/web-app/filter/filter-name</xpath>
 <operation>add</operation>
 </variable-assignment>
 <variable-assignment>
 <name>CUSTOM_HEADER_FILTER_CLASS_NAME</name>
 <xpath>/web-app/filter/[filter-
name="CustomHeaderSampleFilter"]/filter-class</xpath>
 <operation>add</operation>
 </variable-assignment>
 <variable-assignment>
 <name>CUSTOM_HEADER_FILTER_NAME</name>
 <xpath>/web-app/filter-mapping/filter-name</xpath>
 <operation>add</operation>
 </variable-assignment>
 <variable-assignment>
 <name>CUSTOM_HEADER_FILTER_URL_PATTERN</name>

Chapter 46
Extending REST Services to Filter Custom Headers

46-4

 <xpath>/web-app/filter-mapping/[filter-
name="CustomHeaderSampleFilter"]/url-pattern</xpath>
 <operation>add</operation>
 </variable-assignment>
 </module-descriptor>
 </module-override>
</deployment-plan>

3. Deploy the exploded archive shared library to your Billing Care domain by following the
instructions in "Deploying your Shared Library on your Billing Care Domain".

4. Redeploy Billing Care using the deployment plan you created in step 2. To do so, follow the
instructions in "Redeploying Billing Care to Use Your Shared Library".

Sending a Test HTTP Request with the Custom Header
Verify that your filter processes the custom header correctly by sending a test HTTP request to
the Billing Care REST API. For more information, see REST API Reference for Billing Care .

For example, you could submit this POST request to the /accounts resource using cURL:

curl -X POST \
'https://hostname:port/bcws/webresources/v1.0/accounts' \
-H 'content-type: application/json' \
-H 'Accept: application/json' \
-H 'customHeader: value' \
-d
'{"locale":"en_US","customerTypeCode":"","organizationHierarchyTypeCode":"-1",
"securityCode1":"","securityCode2":"","contacts":
[{"firstName":"a","lastName":"a","middleName":"a","salutation":"","address":"a
","city":"a","company":"a","emailAddress":"","state":"a","zip":"a","deleted":f
alse,"newlyCreated":true,"elem":1,"contactType":"Primary","country":"IN","phon
enumbers":[]}],"billUnits":[{"name":"Bill

Unit(1)","billingFrequencyInMonths":1,"accountingType":2,"accountingCycleDom":
1,"currency":"840","balanceGroups":
[],"paymentType":"10001","walletPaymentInstrumentIndex":0}],"paymentMethod":
[{"invoice":{"details":{"invoiceId":"inv-
a-4","deliveryPrefer":"1","emailAddr":"","name":"a

a","address":"a","city":"a","state":"a","zip":"a","country":"IN"}},"paymentTyp
e":"10001"}]}'

where:

• hostname:port is the host and port number on which the Billing Care REST API instance is
deployed and running.

• customHeader is the name of your custom header.

• value is a sample value to send with the custom header.

Extending REST Services
To extend REST services:

Chapter 46
Extending REST Services

46-5

1. Create the Java classes and necessary resources (views, view models, CSS, validations)
in the appropriate myproject/src/package directory for your implementation (for example,
myproject/src/com/company/billingcare where company is the name of your company).

You can implement new functionality, override existing functionality, or add functionality by
extending the Billing Care classes (from the JAR files added to CLASSPATH).

Note:

Any REST resources you create for Billing Care must be placed within the
com.oracle.communications.brm.cc.ws package (myproject/src/com/oracle/
communications/brm/cc/ws). This ensures that your REST resource can be
deployed within the customizations shared library.

2. Compile the new Java classes.

3. Create a customModule.properties file in your myproject/web/WEB-INF/classes/
custom/ directory, where myproject is your NetBeans IDE project containing your Billing
Care customizations. This file will contain a reference to the location of the custom Java
classes you create. See "About the customModule.properties File" for more information
about specifying module overrides with customModule.properties.

4. Copy the default registry.js file from SDK_home/BillingCare_SDK/references to a
custom registry file named customRegistry.js in your myproject/web/custom directory,
where myproject is your NetBeans IDE project containing your Billing Care customizations.
This file contains the module definitions for your custom view models (JavaScript). See
"About the Registry File" for more information on using a custom registry file.

5. Add your customization files to your NetBeans IDE project (myproject):

• Add any JavaScript to support your custom view models in the myproject/web/js
directory.

6. Right-click your NetBeans IDE project and select Clean and Build.

7. Package and deploy your customizations to your Billing Care domain.

For more information, see "Packaging and Deploying Customizations".

8. Verify your changes in Billing Care.

Chapter 46
Extending REST Services

46-6

47
Extending REST API Response Objects

Learn how to extend the Oracle Communications Billing Care REST API to return data from
BRM storable objects in its response objects.

Topics in this document:

• About Enriching REST API Response Objects

• Enriching Response Objects

• Example: Enriching the Response Object for the Account Module

About Enriching REST API Response Objects
You can extend the Billing Care REST API to return complex data, such as all data stored in a
BRM storable class, in a JAXB-annotated class. For example, it could return all fields in an /
account object or the /profile object linked with an account.

When you extend the BRM REST API to enrich response data, it returns object information in
the extension field of response objects in JSON or XML format.

The Billing Care SDK includes a sample response object customization, including a
README.txt file explaining the sample, in the SDK_home/samples/ExtensionFields
directory where SDK_home is the directory in which you installed the Billing Care SDK. Use
this sample when developing your own customizations.

For more information about the Billing Care REST API, see REST API Reference for Billing
Care .

Enriching Response Objects
To customize the Billing Care REST API to enrich response objects:

1. Create an extended Java class to hold your fields in a single object. For example, create a
Java class named classNameExtension.java.

2. Add JAXB annotations that indicate how to translate the fields in your extended Java class.

3. Create an ObjectFactory Java class that provides the factory method for creating an
object of your extended class.

4. Create a package-info Java class that provides name space information to JAXB.

5. Create a custom module that extends the default BRM module and overrides its default
method.

The custom module should do the following:

• Invoke default methods

• Fetch additional data from the BRM database

• Wrap the additional data in the extended Java class object

• Set the additional data in the extension field

47-1

6. Create a customModule.properties file that specifies the resource group your custom
module will override.

For more information, see "About the customModule.properties File".

7. (Optional) To serialize the data added through your extended Java class in XML format,
create JAXBContext with the default package
"com.oracle.communications.brm.cc.model" and include the custom package that holds
the extended field Java objects. You can do this by using a provider of Jersey that
implements the ContextResolver<T> interface.

8. Package and deploy your SDK as a shared library to SDK_home/libs/
BillingCareREST.war using one of the methods described in "Using an Exploded Archive
during Customization" or "Packaging and Deploying Customizations".

To support responses in XML format, register your ContextResolver provider with Jersey.

Example: Enriching the Response Object for the Account Module
In the Billing Care REST API, the Get Details for an Account endpoint returns account details
such as contact information, billing profiles, registered payment methods, and so on. The
following example shows how to enrich the REST API response for the account module so that
it returns other fields from the /account database object, such as PIN_FLD_AAC_ACCESS,
PIN_FLD_AAC_PACKAGE, and PIN_FLD_AAC_PROMO_CODE.

To extend the response object for the account module so that it retrieves additional fields:

1. Open the myproject/web/WEB-INF/classes/custom/customModule.properties file in a
text editor.

2. Add the following entry, where company is the company name used in your myproject/src
directory.

billingcare.rest.account.module=com.company.modules.CustomAccountModule
3. Create a CustomAccountModule.java file in your myproject/src/modules directory,

where myproject is your NetBeans IDE project folder containing your Billing Care REST
API customizations.

This Java class extends PCMAccountModule and appends all fields from the specified /
account object to the extension key in the response object.

For a sample of the override code, see the SDK_home/samples/ExtensionFields/src/
java/com/oracle/communications/brm/sdk/modules/CustomAccountModule.java
sample class.

4. Create an AccountExtension.java file that defines the fields to return in the extension
object.

For a sample of the code, see the SDK_home/samples/ExtensionFields/src/java/com/
oracle/communications/brm/sdk/model/AccountExtension.java sample class.

5. Create an ObjectFactory Java class that programmatically constructs new instances of
the Java representation for XML content. The Java representation of XML content can
consist of schema-derived interfaces and classes representing the binding of schema type
definitions, element declarations, and model groups.

For a sample of the code, see the SDK_home/samples/ExtensionFields/src/java/com/
oracle/communications/brm/sdk/model/ObjectFactory.java sample class.

6. Create a package-info Java class that provides name space information to the JAXB
model class defined in the com.oracle.communications.brm.sdk.model package.

Chapter 47
Example: Enriching the Response Object for the Account Module

47-2

For a sample of the code, see the SDK_home/samples/ExtensionFields/src/java/com/
oracle/communications/brm/sdk/model/package-info.java sample class.

7. If you want the Billing Care REST API to be able to send the response in XML format,
create a custom JAXBContextProvider Java class that understands Billing Care-defined
default and custom response objects and converts them into XML format.

For a sample of the override code, see the SDK_home/samples/ExtensionFields/src/
java/com/oracle/communications/brm/sdk/util/CustomJAXBContextProvider.java
sample class.

8. Package and deploy your customizations using one of the methods described in "Using an
Exploded Archive during Customization" or "Packaging and Deploying Customizations".

The following shows a sample deployment plan that links the SDK .war as a shared library
to the Billing Care REST API. It also adds a Jersey Provider package to the existing list of
packages for identifying resource classes, which is required to support serialization in XML
format.

<deployment-plan xmlns="http://xmlns.example.com/weblogic/deployment-plan"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.example.com/weblogic/
deployment-plan http://xmlns.example.com/weblogic/deployment-plan/1.0/
deployment-plan.xsd"
 global-variables="false">
 <application-name>BillingCareREST.war</application-name>
 <variable-definition>
 <variable>
 <name>SDKLibraryName</name>
 <value>BillingCareCustomizations</value>
 </variable>
 <variable>
 <name>PROVIDER_PACKAGE</name>

<value>com.oracle.communications.brm.cc.ws,com.oracle.communications.brm.cc
.authentication,com.oracle.communications.brm.sdk.util</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>BillingCareREST.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="true">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 <variable-assignment>
 <name>SDKLibraryName</name>
 <xpath>/weblogic-web-app/library-ref/library-name</xpath>
 <operation>add</operation>
 </variable-assignment>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 <variable-assignment>
 <name>PROVIDER_PACKAGE</name>
 <xpath>/web-app/servlet[servlet-name='jersey']/init-
param[param-name='jersey.config.server.provider.packages']/param-value</
xpath>

Chapter 47
Example: Enriching the Response Object for the Account Module

47-3

 <operation>replace</operation>
 </variable-assignment>
 </module-descriptor>
 </module-override>
</deployment-plan>

Chapter 47
Example: Enriching the Response Object for the Account Module

47-4

48
Recording Billing Care REST API Request
Failures

Learn how to customize the Oracle Communications Billing Care REST API to record
information about request failures in the Oracle Communications Billing and Revenue
Management (BRM) database.

Topics in this document:

• About Recording Billing Care REST API Request Failures

• Enabling the Recording of REST Request Failures

• Customizing REST Request Failure Details

About Recording Billing Care REST API Request Failures
Billing Care REST API requests may occasionally fail to process completely. For example, a
payment request could fail due to an incorrect account address or because a network
connection dropped. You can configure the Billing Care REST API to store information about
failed REST requests in the BRM database, so you can view them for analysis and reporting,
or reprocess them at a later time.

When a Billing Care REST API request fails, BRM stores the following details about the failure
in /request/failed/rest objects:

• The request's basic header information, such as Content-Type, Accept, and Content-
Length

• The request payload, removing any sensitive information such as card numbers and
expiration dates

In multischema systems, the object is stored in the schema in which the failed request
occurred. For more information about the /request/failed/rest object, see Storable Class
Reference.

To enable the Billing Care REST API to record request failures, see "Enabling the Recording of
REST Request Failures".

To customize the details recorded for a REST request failure, see "Customizing REST Request
Failure Details".

Enabling the Recording of REST Request Failures
To enable the Billing Care REST API to record details about REST request failures:

1. If your system does not have a CustomConfigurations.xml file, create the file. See
"Creating a Custom Configuration File".

2. Open the CustomConfigurations.xml file in an editor.

48-1

Note:

By default, the CustomConfigurations.xml file is in the myproject/src/java/
custom/configurations directory, where myproject is your NetBeans IDE Billing
Care customizations project.

3. In the file, set the request.record.failure key to true:

<flags>
 <key>request.record.failure</key>
 <value>true</value>
</flags>

4. Save and close your CustomConfigurations.xml file.

5. Save the file in your NetBeans IDE project.

Customizing REST Request Failure Details
You can customize the Billing Care REST API to perform additional tasks when recording
request failures, such as:

• Storing additional headers from the failed request

• Removing additional sensitive data from the request payload

• Changing how the request payload is serialized for storage in the /request/failed/rest
object

• Overriding fields in the /request/failed/rest object

• Specifying to record request failures for only specified Billing Care REST API endpoints

To customize the details recorded for a REST request failure:

1. Customize the logic for recording request failures. See "Customizing the Request Record
Logic".

2. Customize which headers to record and the information to remove from request payloads.
See "Customizing the Headers and Payload to Record".

3. Configure the Billing Care REST API to use your custom logic for recording request
failures. See "Overriding the Default Request Record Logic".

The Billing Care SDK includes sample Record Request customizations, including a
README.txt file explaining the samples, in the SDK_home/samples/
RecordRequestsCustomization directory, where SDK_home is the directory in which you
installed the Billing Care SDK. Use these samples when developing your own Record Request
customizations.

Customizing the Request Record Logic
To customize the logic for recording request failures:

1. Create a CustomPCMRequestInfoModule.java file in your myproject/src/java/com/
oracle/communications/brm/sdk directory, where myproject is the folder containing your
NetBeans IDE project.

Chapter 48
Customizing REST Request Failure Details

48-2

Note:

A sample CustomPCMRequestInfoModule.java file is provided in the
SDK_home/samples/RecordRequestsCustomization/src/java/com/oracle/
communications/brm/sdk directory.

2. In the file, implement your custom logic by overriding the recordFailure() method.

The sample logic below calls the custom method from customRecordFailureWorker to
do the following:

• Record additional headers

• Remove additional information from the request payload

• Create an input flist for the PCM_OP_ACT_REQUEST_OPCODE opcode

• Call the PCM_OP_ACT_REQUEST_OPCODE opcode to record the failed request in
a /request/failed/rest object

@override
public void recordFailure(String id, String descr, String correlationId, String
errorCode, Exception ex, Object payload) throws EBufException {
 if(!BRMUtility.getRecordFailureFlag()){
 return;
 }
 PortalContext ctx = null;
 BaseOps baseops = getBaseOps();
 try {
 if (baseOps instanceof PCMBaseOps) {
 logger.fine("Setting BRM Connection Object to BaseOps");
 ctx = BRMUtility.getConnection();
 ((PCMBaseOps) baseOps).setContext(ctx);
 }
 HttpServletRequest request = getUserContext().getRequest();
 CustomRequestInfoWorker customRecordFailureWorker = new
CustomRequestInfoWorker();
 customRecordFailureWorker.setBaseOps(baseops);
 customRecordFailureWorker.setUserContext(getUserContext());
 Map<String, String> headerInfoMap = new HashMap<>();
 customRecordFailureWorker.addHeaders(request, headerInfoMap);
 int partial =
customRecordFailureWorker.truncateSensitiveInfo(payload);
 String payloadStr = customRecordFailureWorker.preparePayload(payload,
request);
 FList inputFList =
customRecordFailureWorker.convertToInputFListForRecordFailure(id, correlationId,
partial, errorCode, ex, headerInfoMap, payloadStr, request, descr);
 customRecordFailureWorker.invokeRequestCreate(inputFList);
 } catch (EBufException excp) {
 throw excp;
 } finally {
 if (ctx != null) {
 BRMUtility.releaseConnection(ctx);
 }
 }
}

3. Save the file in your NetBeans IDE project.

Chapter 48
Customizing REST Request Failure Details

48-3

Customizing the Headers and Payload to Record
You can customize the Billing Care REST API to record additional headers or to remove
additional information from the request payload. To do so, perform the following:

1. Copy the sample CustomRequestInfoWorker.java file from the SDK_home/samples/
RecordRequestsCustomization/src/java/com/oracle/communications/brm/sdk
directory to your myproject/src/java/com/oracle/communications/brm/sdk directory.

2. To add custom headers to the operation failure record, override the addHeaders()
method. For example:

@Override
public void addHeaders(HttpServletRequest request, Map<String, String>
headerInfoMap) {
 super.addHeaders(request, headerInfoMap);
 //Your custom logic here
 logger.fine("Adding custom headers");
}

3. To modify what information is removed from the request payload, override the
truncateSensitiveInfo() method. This method must return isPayloadPartial when
sensitive information is removed from the payload. For example:

@Override
public int truncateSensitiveInfo(Object payloadObj) {
 int isPayloadPartial = super.truncateSensitiveInfo(payloadObj);
 logger.fine("Truncating sensitive information from payload");
 //Your Custom Logic here
 return isPayloadPartial;
}

4. Save the file in your NetBeans IDE project.

Overriding the Default Request Record Logic
You configure the Billing Care REST API to use the logic from your custom request module
rather than the default request module by editing the customModule.properties file.

To override the default Billing Care REST API request record logic:

1. Open the customModule.properties file from the myproject/src/java/custom directory.

2. Add the following entry to the file:

billingcare.rest.requestinfo.module=com.oracle.communications.brm.sdk.CustomPCMReques
tInfoModule

3. Save and close the customModule.properties file.

4. Save the file in your NetBeans IDE project.

5. Package and deploy your Billing Care SDK. See "Packaging and Deploying
Customizations".

Chapter 48
Customizing REST Request Failure Details

48-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	Part I About the Billing Care SDK
	1 About Billing Care SDK
	About the Billing Care SDK
	About the References Directory

	Installing the Billing Care SDK

	2 About Billing Care Architecture
	Billing Care Architecture Overview
	About the Billing Care REST Framework
	About Open Source Libraries Used by Billing Care

	Part II Basic Billing Care SDK Components
	3 Setting Up the Development Environment
	About the Billing Care Development Environment
	Configuring NetBeans IDE for Billing Care Development
	Downloading and Installing NetBeans IDE
	Configuring the NetBeans IDE Connection to WebLogic Server
	Setting Up a Billing Care Customization Project
	Creating the Billing Care SDK Directory Structure
	Creating the Billing Care NetBeans IDE Project

	4 Customizing Billing Care
	About Billing Care Customization Concepts
	About Billing Care Modules
	About Views
	About View Models
	About Data Binding between Views and View Models

	About the customModule.properties File
	About the Configuration.xml File
	About the Registry File
	Managing Billing Care Modules Using the Registry File

	About Billing Care View Model JavaScript Framework
	Access to the Open Account
	About AJAX Calls
	Object IDs

	About Error Handling in REST Operations
	Invoking Error Handing in Customizations

	About Custom Resource Authorization
	Performing Authorization in the Actions Menu
	Performing Authorization on the UI
	Performing Authorization on the REST Framework
	Using REST Authorization without Obligations
	Using REST Authorization with Obligations

	5 Customizing Billing Care Templates
	About Billing Care Templates
	Customizing Templates
	Removing Columns from a Template
	Adding Columns to a Template
	Extending the REST Framework to Support New Column Fields
	Creating a customModule.properties File

	Example 1: Event Template Customization
	Example 2: Event Template Customization with New Fields
	Example 3: Newsfeed Template Customization

	6 Customizing Billing Care Themes and Logo
	About Billing Care Themes and Logo
	About Customizing Billing Care Themes
	Adding a New Theme
	Overriding Themes
	Setting Which Billing Care Theme to Use
	Changing the Default Logo

	7 Editing the Billing Care Configuration File
	About the Billing Care Configuration File
	Creating a Custom Configuration File
	Default Configuration File Entries

	8 Using an Exploded Archive during Customization
	About Using an Exploded Archive
	Configuring WebLogic Server to Use an Exploded Archive
	Creating a Manifest for your Shared Library
	Rebuilding your Project after Creating the Manifest File

	Creating a New Deployment Plan for Billing Care with your Shared Library
	Deploying your Shared Library on your Billing Care Domain
	Redeploying Billing Care to Use your Shared Library

	9 Packaging and Deploying Customizations
	About Packaging and Deploying Customizations for Production
	Creating Production Versions of the Manifest File and Deployment Plan
	Using the Java JAR Utility to Package Your Shared Library
	Deploying the Shared Library .war
	Redeploying Billing Care to Use Your Shared Library

	Part III Customizing Billing Care Screens and Fields
	10 Customizing the Billing Care Account Home Page
	Customizing the Billing Care Account Home Page
	About Customizing the Billing Care Home Tab
	Customizing the Billing Care Home Tab
	Creating a Summary and Detailed Link View
	Creating an All Bill Units Summary View
	Creating a Bill Unit Summary View
	Overriding the Billing Care Home Tab Theme
	Configuring the Custom Home Tab in the Registry
	Creating a HomeTabBillUnitsViewModel

	About Customizing the Bills Graph
	Customizing Bills Graph
	Creating Custom Home Tab View Model
	Creating Custom View Model HTML Template for Customizing Bills Graph
	Configuring Custom View Models for Customizing Bills Graph in the Registry

	11 Customizing the Billing Care Account Banner
	About the Billing Care Account Banner
	Customizing the Billing Care Account Banner
	Creating Configuration Files for Account Banner Customization

	Rearranging Account Banner Tiles
	Removing Account Banner Tiles

	12 Customizing the Balances Area
	About Customizing the Balances Area
	Replacing the Balances Area with Custom Account Information
	Customizing the Balances Area
	Creating a View for the Balances Area
	Creating a Custom Balances Area View Model
	Configuring the Custom Balances Area in the Registry

	Customizing the Data Displayed in the Balances Area
	Creating Custom View Model HTML Template for the Balances Area
	Adding customBalancesView and CustomBalancesViewModel to the Registry

	13 Adding Custom Payment Types
	About Custom Payment Types
	Creating Custom Payment Types in BRM
	Creating Custom Payment Type Event Subclasses
	Updating the /config/paymenttool Object with Custom Payment Types
	Updating the /config/payment Object with Custom Payment Type Event

	Customizing Billing Care to Support Custom BRM Payment Types
	Extending the Billing Care Data Model with XSD and JSON Files
	Adding the XSD and JSON Files to NetBeans Project
	Enabling Custom Payment Types in Batch Payment Processing
	Deploying Customizations

	14 Customizing the Make a Payment Screen
	About the Make a Payment Screen
	Customizing the Fields Displayed for a Payment Method
	Creating a Custom View Model for a Payment Method
	Configuring the Custom Payment Type in the Registry

	15 Displaying Success Toast Messages in Billing Care
	About Displaying Success Toast Messages
	Adding Success Toast Messages to Billing Care Screens
	Creating a Success Toast Message View
	Creating a Custom View Model for Success Toast Messages
	Creating a Custom View Model for Your Payment and Adjustment Screens
	Configuring the Registry for Success Toast Messages
	Specifying the Path to Check Mark Graphic

	16 Customizing Purchase Deal and Assets Action Menu
	About Customizing Purchase Deal Configuration and Assets Action Menu
	Customizing Purchase Deal Configuration
	Extending the Data Model With the XSD and Java Class files
	Creating a Custom Purchase Deal Configuration View Model
	Creating Custom Purchase Configure View Model HTML Templates

	Customizing Assets Action Menu
	Creating a Custom Asset View Model
	Creating Custom Asset View Model HTML Templates

	Deploying Customizations

	17 Customizing Billing Care to Display Child Accounts
	About Displaying Child Accounts
	Customizing Billing Care to Display Child Accounts
	Customizing the Organization Hierarchy Screen
	Creating Custom View Models
	Configuring a Custom Module in the Registry
	Adding the Data Model JAR File
	Deploying Customizations

	18 Customizing Billing Care Invoice Presentation
	About Billing Care Invoice Presentation
	Customizing Billing Care Invoice Presentation
	Setting Up NetBeans IDE for Customizing Invoice Presentation

	Presenting Invoices in a Dialog Box
	Retrieving Invoices from Third-Party Repositories

	19 Adding an Event Details Column to the Events Table
	About the Events Table
	About Adding an Event Details Column to the Events Table
	Adding an Event Details Column to the Events Table
	About the Sample Files
	Creating the Event Details Column in the Events Table Using the Sample

	20 Customizing Reason Codes List in Event Adjustments
	About Displaying Reason Codes
	Customizing Reason Codes List in Event Adjustments
	Creating the Custom Event Adjustment View Model
	Configuring the Custom Event Adjustment View Model in the Registry
	Deploying Customizations

	21 Restricting Debit and Credit Event Adjustment Options
	About Debit and Credit Event Adjustments
	Restricting Debit and Credit Adjustment for Events
	Creating a Custom View Model for Restricting Debit and Credit Adjustments
	Configuring the Custom View Model for Debit and Credit Adjustments

	22 Customizing Billing Care to Display Only Event Adjustments
	About Displaying Event Adjustments
	Customizing Billing Care to Display Only Event Adjustments
	Creating Custom View Models to Display Only Event Adjustments
	Configuring Custom Bill and Bill Item View Models in the Registry

	23 Customizing Account Creation Service Fields
	About Customizing Account Creation
	Creating Custom View Models
	Extending the New Account Configuration View Model
	Creating a Custom Service Configuration View Model

	Creating a Custom Service View Model HTML Template
	Extending the Service Validator for Custom Fields
	Configuring a Custom Module in the Registry
	Deploying Customizations

	24 Creating Custom Billing Care Credit Profiles
	About Credit Profiles
	Customizing Billing Care to Store Credit Profiles
	Creating Custom Profile Storable Classes in BRM
	Importing Credit Profile Class Definitions into BRM
	Creating Credit Profile Objects Using Developer Center
	Creating the Credit Profile Class and Field
	Generating the Required JAR File and Infranet.properties

	Extending the Billing Care Data Model with XSD and JSON Files
	Adding the Required Files to the NetBeans Project
	Updating the MANIFEST.MF File
	Adding the Required View Module and Configuration Files
	Adding the Required JAR and JSON Files

	Deploying Customizations

	25 Customizing the Billing Care Actions Menu
	About the Billing Care Actions Menu
	Mapping Label and Description Key Values to the Resource Bundle

	About Customizing the Actions Menu
	Setting Up NetBeans IDE for Customizing the Actions Menu

	Removing Actions Menu Items
	Removing an Existing Actions Menu Submenu
	Removing an Existing Actions Menu

	Rearranging Actions Menu Items
	Rearranging Actions Menu Submenu Items
	Rearranging Actions Menu Items

	Renaming Actions Menu and Submenu Items
	Renaming Actions Menu Submenu Items
	Renaming Actions Menu Items

	Adding Actions Menu Items
	Adding Action Menu Items in Payment Suspense

	26 Opening Custom Views From Landing Page
	About Customizing the Landing Page
	Customizing the Landing Page
	Creating a Custom Landing Page View Model
	Creating a Custom Landing Page View Model HTML Template

	Opening Custom Views in Full Screen Mode
	Creating a Custom Full Page View Model
	Creating a Custom Full Page View Model HTML Template
	Creating a Custom Router View Model
	Creating a Custom Router Helper
	Configuring the Custom Full Page View Model in the Registry

	Opening a Dialog Box From Landing Page
	Creating a Custom Dialog View Model
	Creating a Custom Dialog View Model HTML Template
	Configuring the Custom Dialog View Model in the Registry

	27 Customizing Billing Care Labels
	About the Billing Care Resource Bundle
	Customizing the Resource Bundle
	Creating a Custom XLF File
	Modifying Existing Labels
	Adding New Labels
	Creating Required JavaScript Files for Deployment

	Localizing Billing Care into Other Languages

	28 Customizing Billing Care to Disable Links in the Bills Tab
	About Disabling Links
	Disabling Links in the Bills Tab
	Creating Custom View Models to Disable Links in the Bills Tab
	Configuring Custom Bill, Charges, and Payment Detail View Models in the Registry

	29 Separating Event Adjustment Amount and Percentage Fields
	About Event Adjustments using Amount and Percentage
	Separating Amount and Percentage Fields
	Creating Custom View Model to Separate Amount and Percentage Fields
	Adding CustomEventAdjustmentViewModel to the Registry

	30 Embedding Billing Care Screens in External Applications
	About Embeddable Billing Care Screens
	Embedding Billing Care Screens
	Understanding the index_embedded.html File
	Configuring Your External Application to Access Billing Care

	Configuring Security for External Application Access

	Part IV Customizing Searches and Filters in Billing Care
	31 Searching for Accounts by Payment ID
	About Account Searches in Billing Care
	Adding a Payment ID Field to the Account Search Screen
	Naming the Custom Account Search Template in the CustomConfigurations.xml File
	Creating a Custom Account Search Template
	Creating a Custom Account Search View Model
	Creating a Custom Search View Model
	Creating a Custom Router View Model
	Creating a Custom Router Helper
	Creating a Custom Account Search View Model HTML Template
	Replacing the Default Method for Showing Recently Opened Accounts
	Configuring a Custom Module in the Registry
	Creating a customized_en.xlf File Entry for Payment ID Search Field
	Getting Payment Item POIDs from BRM
	Deploying Customizations

	32 Filtering Bundles Available for Purchase
	About Filtering Bundles
	Filtering Bundles List in Billing Care
	Creating CustomPCMSubscriptionModule.java Class
	Creating a CustomSubscriptionWorker.java Class
	Updating the customModule.properties File

	33 Filtering Start and End Dates for Additional Purchase
	About Customizing Purchase Configuration
	Filtering Start and End Date Options
	Creating a Custom Purchase Deal Configuration View Model
	Configuring the Custom Purchase Configuration View Model in the registry

	34 Customizing Search Filter for Suspended Payments
	About Suspended Payment Search Filter
	Adding Search Criteria
	Creating a CustompaymentSuspenseSearch.xml File
	Creating a CustomTemplatePaymentSuspenseWorker.java Class
	Creating a CustomPCMTemplateModule.java Class
	Creating a customModule.properties File
	Updating Registry
	Updating customPaymentSuspenseSearchView.html
	Updating View Model
	Localizing New Criteria into Other Languages
	Creating Deployment Plan
	Creating .war File

	35 Exporting Billing Care Search Results
	About Billing Care Search
	Enabling Search Results Export with the SDK
	Creating Custom Search Templates
	Creating Custom Search View Models
	Configuring Custom Search Modules in the Registry
	Deploying Customizations

	Part V Controlling Access to Billing Care Functionality
	36 Limiting Event Adjustment Percentage Entered by CSRs
	About Adjustments
	Limiting Event Adjustments Entered by CSRs
	Updating CustomExtendAdjustmentModule.java Class
	Creating CustomAdjustmentWorker.java Class
	Creating a customized_en.xlf File Entry for the Error Message

	37 Setting Adjustment Limit for Event Adjustments
	About Adjustment Limits
	Setting Event Adjustment Limit for CSRs
	Creating customAdjustmentResource.java Class
	Creating the Custom Event Adjustment View Model
	Configuring the Custom Event Adjustment View Model in the Registry

	38 Enabling Authorization in Test Installations
	About Enabling Authorization in Test Installations
	Enabling Authorization in Test Installations
	Modifying Default Authorization Policies
	Adding Custom Authorization Resources and Actions
	Deploying Customizations

	39 Restricting Bundle Validity Based on Roles
	About Restricting Bundle Validity
	Restricting Bundle Validity
	Creating CustomAccountResource.java Class
	Creating a Custom Purchase View Model
	Configuring the Custom Purchase View Model in the Registry

	40 Restricting Additional Bundles Purchase Based on Roles
	About Restricting Bundles
	Restricting Bundles Based on Roles
	Creating the Custom Bundle Selection View Model
	Configuring the Custom Bundle Selection View Model in the Registry

	41 Making Notes Field Mandatory
	Making Notes Mandatory for Additional Product Purchase
	Creating a Custom Purchase Deal View Model
	Configuring the Custom Purchase View Model in the Registry

	Making Notes Mandatory for Event Adjustments
	Creating a Custom Event Adjustment View Model
	Configuring the Custom Event Adjustment View Model in the Registry

	42 Customizing Suspended Payment Allocations
	About Suspended Payment Allocation
	Forbidding Partial Allocation of Suspended Payments
	Creating a CustomPCMPaymentModule.java Class
	Creating a Custom Payment Suspense View Model
	Creating a customModule.properties File
	Configuring a Custom Module in the Registry
	Deploying Customizations

	43 Disabling Event Adjustment Options Based on Roles
	About Event Adjustment Options
	Disabling Event Adjustment Options Based on User Roles
	Creating a Custom View Model for Disabling Adjustment Options
	Configuring the Custom View Model for Disabling Event Adjustment Options

	44 Logging Additional CSR Activity Details (Release 15.0.1 or later)
	About User Context Fields in the /user_activity Object
	Overriding the Default User Context

	Part VI Customizing the Billing Care REST API
	45 Using Custom OAuth Providers with Billing Care REST API
	About OAuth Token Management Tools
	Creating a Custom Token Module
	Adding a Custom OAuth Token Module to the customModule.properties File

	46 Extending and Creating Billing Care REST Resources
	About Extending and Creating Billing Care REST Resources
	About Billing Care Sample SDK REST Customizations
	Extending REST Services to Filter Custom Headers
	Creating a Custom Storable Class in the BRM Data Dictionary
	Processing Billing Care REST API Requests and Responses
	Configuring WebLogic Server to Use an Exploded Archive
	Sending a Test HTTP Request with the Custom Header

	Extending REST Services

	47 Extending REST API Response Objects
	About Enriching REST API Response Objects
	Enriching Response Objects
	Example: Enriching the Response Object for the Account Module

	48 Recording Billing Care REST API Request Failures
	About Recording Billing Care REST API Request Failures
	Enabling the Recording of REST Request Failures
	Customizing REST Request Failure Details
	Customizing the Request Record Logic
	Customizing the Headers and Payload to Record
	Overriding the Default Request Record Logic

