
Oracle® Communications Billing and
Revenue Management
Opcode Guide

Release 12.0
E56573-12
September 2024

Oracle Communications Billing and Revenue Management Opcode Guide, Release 12.0

E56573-12

Copyright © 2017, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxix

Documentation Accessibility xxix

Diversity and Inclusion xxix

Part I Opcode Reference

1 Opcode Descriptions

About Using Opcodes 1-1

About the Opcode Visibility Value 1-1

About the Opcode Transaction Value 1-2

Account Dump FM Policy Opcodes 1-2

Account Dump FM Standard Opcode 1-3

Accounts Receivable FM Policy Opcodes 1-3

Accounts Receivable FM Standard Opcodes 1-3

Account Synchronization FM Opcodes 1-6

Activity FM Policy Opcodes 1-7

Activity FM Standard Opcodes 1-8

Balance FM Policy Opcodes 1-9

Balance FM Standard Opcodes 1-10

Base Opcodes 1-11

Batch Suspense Manager FM Standard Opcodes 1-14

Billing FM Policy Opcodes 1-14

Billing FM Standard Opcodes 1-16

Channel FM Standard Opcodes 1-19

Collections Manager FM Policy Opcodes 1-19

Collections Manager FM Standard Opcodes 1-21

Contract FM Policy Opcodes 1-24

Contract FM Standard Opcodes 1-25

Customer FM Policy Opcodes 1-26

Customer FM Standard Opcodes 1-30

Customer Care FM Standard Opcodes 1-35

iii

Deposit FM Policy Opcodes 1-35

Deposit FM Standard Opcodes 1-36

Device FM Policy Opcodes 1-39

Device FM Standard Opcodes 1-39

Email Data Manager Opcodes 1-40

General Ledger FM Policy Opcodes 1-40

General Ledger FM Standard Opcode 1-41

GPRS Manager 3.0 FM Policy Opcode 1-41

GPRS Manager 3.0 FM Standard Opcode 1-41

Group FM Standard Opcodes 1-42

GSM Manager FM Policy Opcode 1-42

GSM Manager FM Standard Opcode 1-43

Installment FM Policy Opcodes 1-43

Installment FM Standard Opcodes 1-44

Invoicing FM Policy Opcodes 1-45

Invoicing FM Standard Opcodes 1-46

IP Address Manager APN FM Policy Opcodes 1-46

IP Address Manager FM Policy Opcodes 1-47

IP Address Manager FM Standard Opcodes 1-48

Job FM Standard Opcodes 1-48

LDAP Base Opcodes 1-49

Loan FM Policy Opcodes 1-50

Loan FM Standard Opcodes 1-50

Monitor FM Standard Opcodes 1-51

Notification FM Standard Opcodes 1-52

Notification FM Policy Opcodes 1-53

Number Manager FM Policy Opcodes 1-54

Number Manager FM Standard Opcodes 1-54

Offer Profile FM Standard Opcode 1-55

Order FM Policy Opcodes 1-55

Order FM Standard Opcodes 1-56

Payment FM Policy Opcodes 1-57

Payment FM Standard Opcodes 1-58

Permissioning FM Standard Opcodes 1-61

Process Audit FM Policy Opcodes 1-62

Process Audit FM Standard Opcodes 1-63

Provisioning FM Policy Opcode 1-64

Provisioning FM Standard Opcodes 1-64

Publish FM Policy Opcodes 1-65

Rating FM Policy Opcodes 1-65

Rating FM Standard Opcodes 1-66

Remittance FM Policy Opcodes 1-67

iv

Remittance FM Standard Opcodes 1-67

Replication FM Policy Opcode 1-67

Rerating FM Standard Opcode 1-68

SDK FM Standard Opcodes 1-68

Services Framework Manager FM Policy Opcodes 1-69

Services Framework Manager FM Provisioning Opcodes 1-70

SIM Manager FM Policy Opcodes 1-71

SIM Manager FM Standard Opcodes 1-71

Subscription Management FM Policy Opcodes 1-72

Subscription Management FM Standard Opcodes 1-74

Suspense Manager FM Standard Opcodes 1-79

Universal Message Store (UMS) FM Standard Opcodes 1-80

2 Context Management Opcodes

Context Management Opcodes 2-1

PCM_CONNECT 2-1

PCM_CONTEXT_CLOSE 2-3

PCM_CONTEXT_OPEN 2-4

PCM_OP 2-7

PCM_OPREF 2-9

Part II Opcode Workflows

3 About Opcode Workflows

4 Accounts Receivable Opcode Workflows

Opcodes Described in This Chapter 4-1

Getting a List of A/R Items 4-5

Reversing Refunds 4-6

Transferring Amounts between Items 4-7

Transferring Balances between Items 4-7

Transferring From a Negative to a Positive Balance 4-9

Transferring Balances between Balance Groups 4-9

Customizing Item Transfer Validation 4-10

Managing Currency and Non-Currency Balance Transfers between Accounts or Services 4-10

Transferring Balances between Accounts or Services 4-11

Customizing Balance Transfers 4-12

Transferring Services between Balance Groups 4-12

Performing Adjustments 4-16

v

Adjusting Accounts, Subscription Services, and Member Services 4-16

Fields You Should Include in the Flist for Account, Subscription Service, and
Member Service Adjustments 4-17

Flags for Account, Subscription Service, and Member Service Adjustments 4-18

Adjusting Bills 4-18

Fields You Should Include in the Flist for Bill Adjustments 4-19

Flags for Bill Adjustments 4-20

Adjusting Items 4-21

Fields You Should Include in the Input Flist for Item Adjustments 4-23

Flags for Item Adjustments 4-23

Customizing Item Adjustments 4-23

Adjusting Events 4-24

Fields You Should Include in the Input Flist for Event Adjustments 4-25

Flags for Event Adjustments 4-25

Categorizing Unbilled Event Adjustments in G/L Reports 4-26

Including Taxes in the Adjustment 4-27

Tax Processing for Account Adjustments 4-27

Tax Processing for Bill and Item Level Adjustments 4-27

Tax Processing for Event Adjustments 4-28

Including Reason Codes in the Adjustment 4-28

Assigning G/L IDs for an Adjustment 4-29

Applying Debits and Credits 4-29

Flags for Applying Debits and Credits 4-30

Performing Disputes and Settlements 4-30

Disputing Bills 4-31

Fields You Should Include in the Input Flist for Bill Disputes 4-32

Flags for Bill Disputes 4-33

Settling Disputed Bills 4-33

Fields You Should Include in the Input Flist 4-34

Flags for Bill Settlements 4-34

Disputing Items 4-35

Fields You Should Include in the Input Flist 4-36

Flags for Item Disputes 4-37

Customizing Item Disputes 4-37

Settling Disputed Items 4-38

Fields You Should Include in the Input Flist for Item Settlements 4-39

Flags for Item Settlements 4-40

Customizing Item Settlements 4-40

Disputing Events 4-40

Fields You Should Include in the Input Flist for Event Disputes 4-41

Flags for Event Disputes 4-42

Settling Disputed Events 4-42

vi

Fields You Should Include in the Input Flist for Event Settlements 4-44

Flags for Event Settlements 4-44

Configuring the Tax Treatment for Adjustments, Disputes, and Settlements 4-45

Including Taxes in the Dispute or Settlement 4-45

Tax Processing for Disputes 4-45

Tax Processing for Settlements 4-46

Including Reason Codes in the Dispute or Settlement 4-47

Assigning G/L IDs for a Dispute or Settlement 4-47

Writing Off Debts and Reversing Write-Offs 4-47

About Initiating Write-Offs 4-47

Performing Write Offs 4-48

About Account Write-Offs 4-49

About Bill Unit Write-Offs 4-50

About Bill Write-Offs 4-50

Flags You Should Use for Write-Offs 4-50

About Taxes for Write-Offs 4-51

Customizing Write-Off Validation 4-51

About Initiating Write-Off Reversals 4-51

Reversing Write-Offs 4-52

Reversing a Write-Off Reversal 4-53

Customizing Write-Off Reversals 4-53

Customizing the Rules for Performing Write-Off Reversals 4-53

About Automatic Write-Off Reversals during Payment Collection 4-54

Customizing Reversal of Payments Allocated to Written-Off Accounts 4-54

Retrieving A/R Information 4-56

Finding a Bill 4-56

Finding a Bill Unit 4-57

Finding a Balance Group and Its Balances 4-57

Finding a Balance Group and Service for Bill Units 4-58

Getting a List of Bills 4-59

Getting Bill Items 4-60

Getting Bills 4-60

Finding Items 4-61

Finding Discounts in Bill Items 4-62

Retrieving a Balance Summary 4-62

Retrieving a List of Bills for a Bill Unit 4-63

About the Bill Data Retrieved 4-63

Specifying the Search Criteria for Retrieving Bills 4-63

Retrieving A/R Items That Apply to a Bill Unit 4-64

About the Item Data Retrieved 4-65

Specifying Search Criteria for Retrieving Items 4-66

Retrieving a List of Bill Items for a Bill Unit 4-67

vii

About the Bill Item Data Retrieved 4-67

Customizing the Number of Items to Retrieve in a Search 4-68

Specifying Search Criteria for Bill Items 4-68

Retrieving Details about a Specific A/R Item or Bill Item 4-69

About the Item Data Retrieved 4-69

About the Item Detail Data Retrieved 4-70

Specifying Search Criteria for Retrieving Items 4-71

Retrieving Dispute Details for a Bill Unit 4-71

Retrieving a Full Set of Dispute Data 4-72

Data Retrieved by PCM_OP_AR_GET_DISPUTES 4-72

Specifying Search Criteria for PCM_OP_AR_GET_DISPUTE_DETAILS 4-72

Returning a Limited Set of Dispute Data 4-73

Data Retrieved by PCM_OP_AR_GET_DISPUTES 4-73

Specifying Search Criteria for PCM_OP_AR_GET_DISPUTES 4-73

Retrieving Details on Available Balances 4-74

Finding Events Associated with an Account 4-74

Finding Events Associated with Bill Items 4-75

Performing Rollover Transfers 4-75

5 Activity Opcode Workflows

Opcodes Described in This Chapter 5-1

Managing Sessions 5-2

Starting Sessions 5-2

Recording the Start of a Session 5-3

Updating a Session Event 5-3

Recording the End of a Session 5-4

Recording Session Events 5-4

Loading Sessions 5-4

Customizing News Feed Values and Events 5-4

Managing Operation Failure Records 5-5

Recording Failed Operations 5-6

Retrieving Operation Failure Records 5-6

6 Billing Opcode Workflows

Opcodes Described in This Chapter 6-1

Creating Bills 6-4

Modifying a Bill Object 6-5

Calculating When a Bill is Due 6-5

Customizing Bill Due Date Calculations for Payment Terms 6-6

Customizing the Format of Bill and Invoice Numbers 6-9

viii

Running Bill Now 6-10

Customizing Bill Now 6-11

Running Bill Now for a Service 6-11

Applying Discounts and Folds with Bill Now 6-11

Changing the Bill Now Due Date 6-12

On-Purchase Billing 6-12

Creating /item/sponsor Objects 6-12

Customizing Billing 6-13

Customizing the Minimum Amount to Charge 6-13

Customizing Accounting Cycles 6-14

Customizing How to Bill Events That Occur between Billing Cycles 6-14

Customizing Credit Limit and Consumption Rules 6-15

Customizing Client Applications to Modify Fixed Thresholds 6-15

About Currency Conversion 6-15

Managing Bill Units 6-16

Creating Bill Units 6-16

Setting the Billing Day of Month 6-17

Updating Bill Units 6-17

Preparing Bill Unit Data 6-18

How BRM Calculates Long Billing Cycles 6-19

Setting the Billing DOM According to the Payment Method 6-21

Assigning Default Billing Information 6-21

Determining the Accounting Type 6-21

Assigning Billing DOMs to Bill Units 6-21

Assigning Billing DOMs Based on the Billing Segment 6-22

Customizing the DOM Assignment Process 6-23

Validating Bill Unit Data 6-24

Validating Billing Segment Information 6-25

Suspending and Resuming Billing of Closed Accounts 6-25

Suspending Billing of Closed Accounts 6-25

Resuming Billing When Closed Accounts Are Reactivated 6-26

Deleting Bill Units 6-27

Setting Up Hierarchical and Sharing Relationships among Bill Units 6-27

Setting Up Hierarchical Relationships among Bill Units 6-27

Setting Up Sharing Relationships among Bill Units 6-28

Changing Hierarchical and Sharing Relationships among Bill Units 6-28

Billing Delays for Moved Bill Units 6-28

Suppressing Bills 6-28

Determining Whether Bills Should Be Suppressed 6-29

Manually Suppressing Bills 6-31

Suppressing Accounts 6-32

Ending Manual Account Suppression 6-33

ix

Adding Bill Suppression Exceptions 6-34

Deleting Bill Suppression Exceptions 6-35

Making Trial Bills 6-36

Collecting Split Revenue Assurance Data 6-37

Corrective Billing 6-37

Making a Corrective Bill 6-38

Validating Bills for the Corrective Billing Process 6-39

Standard Bill Validations 6-40

Policy Bill Validations 6-40

Payment Due Dates for Corrective Bills 6-40

Using Revenue Assurance Manager 6-41

Customizing Revenue Assurance Manager 6-41

Customizing Audit Object Validation 6-42

Customizing Alert Behavior 6-42

Customizing the Revenue Assurance Written-Off Event Record Summaries 6-42

7 Charging Opcode Workflows

Opcodes Described in This Chapter 7-1

Subscription Rating Opcodes 7-4

Implementing Custom Rating 7-4

Getting ERAs for an Event 7-5

Modifying Rated Events 7-5

Modifying ERAs 7-6

Managing Credit Limits and Sub-Balance Consumption Rules 7-6

How BRM Handles Consumption Rules and Credit Limits 7-7

Retrieving Credit Limits 7-8

Maintaining Subscriber's Charging Preferences Data 7-9

Modifying Events before Sending Them to ECE 7-9

Processing BRM Events That Make Up Account Synchronization Business Events 7-10

Modifying BRM Events That Make Up Account Synchronization Business Events 7-10

Rerating Opcodes 7-11

How BRM Tracks Rerated Events 7-11

How BRM Creates Rerate Jobs 7-12

How BRM Handles Duplicate Rerate Jobs 7-14

Rerating Cycle Forward and Cycle Forward Arrears Events 7-15

Customizing Event Searches for Rerating 7-16

Customizing Automatic Creation of Rerate Jobs 7-17

Creating a Custom Opcode for Rerating 7-18

Specifying a Rerate Reason Code 7-19

Specifying Selection Criteria 7-19

Specifying Price Overrides 7-20

x

Configuring Event Notification for Customized Automatic Rerating 7-21

Configuring Event Notification for Override Pricing 7-21

Suspense Management 7-22

Suspended Call Record States 7-22

Recycling Suspended Records 7-23

Searching for Records in a CDR File 7-23

Searching for Records with a Recycle Key 7-23

Initiating Suspense Recycling 7-23

Resubmitting Suspended Batches 7-24

Changing the Contents of Fields in Suspended Event Records 7-25

Undoing Edits to Suspended Event Records 7-26

Deleting Suspended Records 7-26

Deleting Records for Suspended Batches 7-27

Deleting Call Records with a Specific Recycle Key and a Status of Succeeded or
Written-Off 7-27

Deleting Records in a CDR File 7-28

Writing Off Suspended Records 7-28

Writing Off Suspended Batches 7-29

Processing Suspended Records in Bulk 7-29

Processing Suspended Records in Multiple Steps 7-29

Editing Suspended Records in Bulk 7-30

Writing Off Suspended Records in Bulk 7-31

Deleting Suspended Records in Bulk 7-32

Provisioning Process Opcode Flow 7-33

About Creating Service Orders for Profile Changes 7-35

GPRS Opcodes 7-35

About Associating APNs and QoS with GPRS Services 7-35

Associating APNs and QoS with GPRS Services 7-36

Mapping Service Types to Service-Specific Opcodes 7-36

Associating APN and QoS Pairs with GPRS Services 7-37

Updating Custom GPRS Service Fields 7-37

Updating Custom GSM Service Fields 7-37

8 Collections Opcode Workflows

Opcodes Described in This Chapter 8-1

Customizing Collections Manager 8-4

Configuring the Currency Used in Collections 8-4

Customizing Due Dates 8-4

Customizing Dunning Letters 8-4

Applying Finance Charges 8-5

Applying Late Fees 8-6

xi

Assigning Bill Units Automatically 8-6

Assigning Bill Units to a Debt Collections Agency 8-7

Customizing How to Apply Collections Actions to Collections Group Members 8-7

Mapping Bill Units to Collections Profiles 8-7

Performing Custom Collections Actions 8-8

Performing Custom Actions when a Bill Unit Leaves Collections 8-8

Managing Overdue Balance Collection 8-8

Creating or Updating Collections Actions 8-8

Creating or Updating Collections Profiles 8-9

Getting All Currently Defined Collections Actions 8-9

Getting All Currently Defined Collections Profiles 8-10

Getting All Currently Defined Collections Scenarios 8-10

Getting Details of a Collections Scenario 8-10

Getting a List of Message Templates 8-11

Deleting an Existing Collections Action 8-11

Deleting an Existing Collections Profile 8-11

Deleting an Existing Collections Scenario 8-12

Managing Promise-to-Pay Agreements 8-12

Creating a System-Configured Promise-to-Pay Agreement 8-13

Creating a Manually Configured Promise-to-Pay Agreement 8-14

Updating Amount and Payment Details 8-15

Canceling a Promise-to-Pay Agreement 8-15

Breaking a Promise-to-Pay Agreement 8-16

Rescheduling a Promise-to-Pay Action 8-16

Changing the Status of a Promise-to-Pay Action 8-16

Completing Promise-to-Pay Installments during Payment Processing 8-16

Managing Collections Groups 8-17

Creating a Collections Group 8-17

Adding Members to a Collections Group 8-18

Removing a Member from a Collections Group 8-18

Deleting a Collections Group 8-18

Retrieving a Collections Group 8-18

Modifying a Collections Group 8-19

Changing the Parent of a Collections Group 8-19

Performing Manual Collections Actions 8-19

Assigning Bill Units to a Collections Agent 8-20

Adding Actions to a Collections Scenario 8-20

Exempting Bill Units from Collections 8-21

Rescheduling an Action Scheduled for a Bill Unit 8-22

Changing the Status of a Collections Action 8-22

Replacing a Collections Scenario 8-23

Performing System Collections Actions 8-24

xii

Executing Automatic Collections Actions 8-24

Preparing Invoice Reminders 8-26

Gathering and Storing Data for Dunning Letters 8-26

Retrieving Dunning Letters 8-26

Executing Pending Actions for a Bill Unit 8-27

Retrieving Collections Information 8-28

Retrieving a List of Bill Units in Collections 8-28

Retrieving Aging Buckets Information 8-29

Retrieving Scenario Information 8-29

Getting All Valid Collections Scenarios 8-30

Retrieving a List of Collections Actions 8-30

Retrieving Collections Action History Information 8-31

9 Customer Management Opcode Workflows

Opcodes Described in This Chapter 9-1

About Account Locking 9-8

Transaction Handling During Account Creation 9-8

Creating Accounts 9-9

Customizing Account Numbers 9-12

Customizing the Introductory Message 9-12

Sending the Introductory Message 9-13

Customizing Account Creation Charges 9-14

Creating Multiple Accounts in One Transaction 9-14

Creating Accounts with Backdated Services or Balances 9-14

Creating Customer's Collections Profiles at the Time of Customer Account Creation 9-15

Customizing Automatic Account Creation (AAC) Information 9-16

Adding Custom Account Creation Steps Before the Account Is Committed 9-16

Adding Custom Account Creation Steps After the Account Is Committed 9-16

Integrating BRM With an External Account Creation Application 9-17

Sending Account Information to Your Application when an Account is Created 9-17

Sending Account Information to Your Application when an Account is Modified 9-17

Returning a Point-of-Presence (POP) List 9-17

Creating Accounts in a Multischema System 9-18

Getting a List of Database Schemas 9-19

Selecting a Database Schema 9-19

Managing Name and Address Information 9-19

Customizing Name and Address Information 9-20

Customizing Locale Information 9-20

Creating Custom Country Aliases 9-21

Authenticating and Authorizing Customers 9-21

Customizing Login Names 9-21

xiii

Requiring Login Names for Email and Broadband Services 9-22

Creating Logins for Prepaid Services 9-22

Creating Logins for Email Services 9-22

Creating Passwords 9-23

Customizing Passwords 9-23

Implementing Password Encryption 9-23

Creating Passwords for Prepaid Services 9-24

Customizing Password Expiration 9-24

Authenticating Customers 9-24

Authenticating User Actions 9-24

Customizing Authentication Checks 9-25

Enabling Duplicate Session Checking 9-26

Managing and Customizing Profiles 9-27

Retrieving Account Profile Information 9-28

Modifying an Account 9-28

Changing a Bill's Payment Method 9-30

Creating Services 9-31

Modifying Services 9-32

Finding Accounts 9-33

Finding a Customer's Account Information 9-33

Deleting Accounts 9-34

Customizing Customer Payment Information 9-34

Customizing Payment Method Data Preparation 9-35

Specifying the Payment Processor Vendor 9-36

Customizing Payment Method Validation 9-36

Default /payinfo Validation 9-36

CVV2/CID Fraud Prevention Functionality 9-37

Verifying the Maximum Number of CVV2 Digits 9-37

Disabling the Credit Card Checksum 9-38

Customizing the Banking Information for US and Canadian Direct Debit 9-38

Customizing the Account Used for Credit Card Validation 9-38

Managing Mandate Information 9-38

Registering a Mandate 9-39

Updating a Mandate 9-39

Canceling a Mandate 9-39

Setting Account, Service, and Bill Unit Status 9-40

Changing the Status of an Account, Bill Unit, or Service 9-40

PIN_FLD_STATUS Field Values for PCM_OP_CUST_SET_STATUS 9-41

PIN_FLD_STATUS_FLAG Field Values for PCM_OP_CUST_SET_STATUS 9-41

About Deferred Actions When Using PCM_OP_CUST_SET_STATUS 9-42

Setting, Resetting, or Unsetting a Deferred CLOSE 9-43

Customizing Status Changes 9-43

xiv

Inactivating Accounts that Exceed a Specified Limit 9-43

Backdating Status Changes 9-43

Getting Life Cycle States 9-44

Amending Creditor Information 9-44

Amending a Mandate 9-44

Canceling a Mandate 9-45

Managing Deferred Actions 9-45

Scheduling Deferred Actions 9-45

Modifying Deferred Actions 9-46

Deleting Deferred Actions 9-46

Executing Deferred Actions 9-46

Performing Policy Checks before Scheduling Deferred Actions 9-46

Managing Service Groups 9-46

Creating a Service Group 9-47

Configuring Extended Rating Attributes for a Service Group 9-48

Associating a Device with a Service Group 9-48

Adding a Service to an Existing Service Group 9-49

Canceling a Service Group 9-49

Transferring Service Groups between Accounts in the Same Schema 9-50

Enabling Transfer of Pending Scheduled Actions during Service Group Transfers 9-52

Transferring Service Groups between Accounts in Different Schemas 9-52

Enabling Transfer of Service Groups between Accounts in Multiple Schemas 9-52

Transferring Service Groups across Schemas 9-53

Managing Profile Sharing Groups 9-55

Creating a Profile Sharing Group 9-55

Validating Profile Sharing Group Members 9-56

Modifying a Profile Sharing Group 9-56

Adding Members to a Profile Sharing Group 9-57

Adding Profiles to a Profile Sharing Group 9-58

Deleting Members and Profiles from a Profile Sharing Group 9-59

Changing the Owner of a Profile Sharing Group 9-60

Deleting a Profile Sharing Group 9-61

Using Access Control Lists 9-61

Managing ACL Groups 9-61

Accessing /group/acl Data 9-62

Finding CSR Membership 9-62

Customizing the Account Dump Utility (ADU) 9-62

Business Profile Opcode Workflows 9-63

Creating Business Profiles 9-63

Assigning Bill Units to Business Profiles 9-63

Changing a Bill Unit's Business Profile 9-64

Getting Information about a Business Profile 9-65

xv

Creating and Managing Account Hierachies 9-66

Creating Account Hierarchies 9-67

Adding Accounts to Account Hierarchies 9-67

Moving Accounts from One Account Hierarchy to Another 9-68

Deleting Accounts from Account Hierarchies 9-69

Deleting Account Hierarchies 9-69

Finding the Parent of an Account Hierarchy 9-69

Getting a List of Child Accounts in an Account Hierarchy 9-69

About the PCM_OP_GROUP Opcodes 9-70

Creating Groups 9-70

Adding Members to Groups 9-70

Deleting Members from Groups 9-70

Setting a Group Parent 9-71

Deleting Groups 9-71

Updating Inheritance Fields in Groups 9-71

10

Deposit Opcode Workflows

Opcodes Described in This Chapter 10-2

Creating Deposit Specification Profiles 10-3

Validating Deposit Specification Profiles 10-4

Getting Deposit Specification Profiles 10-4

Modifying Deposit Specification Profiles 10-4

Creating Deposit Specifications 10-5

Validating Deposit Specifications 10-5

Getting Deposit Specifications 10-5

Modifying Deposit Specifications 10-6

Deleting Draft Deposit Specifications 10-6

Purchasing Deposits 10-6

Validating a Deposit Purchase 10-7

Getting Deposits 10-7

Updating Deposits 10-8

Validating Deposit Updates 10-8

Collecting Deposit Payments 10-8

Validating Deposit Payment Collections 10-9

Reversing Deposits 10-9

Validating a Deposit Reversal 10-10

Releasing Deposits 10-10

Validating a Deposit Release 10-11

Transferring Deposits 10-11

Validating a Deposit Transfer 10-11

Adding Interest to a Deposit 10-12

xvi

Customizing the Interest Calculation 10-12

Requesting Deposit Refunds 10-12

Validating a Deposit Refund Request 10-13

Getting Refund Requests 10-13

Updating Refund Requests 10-13

Updating Received Deposits 10-14

Triggering Deposits 10-14

Retrieving Transaction Details of a Deposit 10-14

11

Device Management Opcodes

Opcodes Described in This Chapter 11-1

About the Device Management Opcodes 11-2

Creating /device Objects 11-2

Changing Device Attributes and States 11-3

Changing the Attributes of /device Objects 11-4

Changing the State of a /device Object 11-4

Associating /service and /device Objects 11-6

Deleting /device Objects 11-7

12

General Ledger Opcode Workflows

Opcodes Described in This Chapter 12-1

How G/L IDs Affect Storage and Reporting of G/L Data 12-2

How BRM Records the Difference between Rounded and Unrounded Items 12-2

Customizing G/L Data Stored in /journal Objects 12-3

Customizing G/L Reports for Export 12-4

Customizing G/L Export Report Contents 12-4

Mapping BRM G/L Account Names to Third-Party Account Names 12-4

Mapping BRM Balance Element IDs to Third-Party Balance Element IDs 12-5

Customizing the G/L Report XML File Names 12-6

Assigning G/L IDs to Prerated Events 12-6

How BRM Exports G/L Reports 12-6

How BRM Stores General Ledger Reports 12-7

13

Group Opcode Workflows

Opcodes Described in This Chapter 13-1

Managing Sharing Groups 13-3

Creating a Sharing Group 13-3

Creating a Discount Sharing Group 13-4

Creating a Charge Sharing Group 13-5

xvii

Creating a Product Sharing Group 13-6

Creating a Balance Monitor Group 13-7

Validating the Members of a Balance Monitor Group 13-8

Modifying a Sharing Group 13-8

Adding Members to a Discount or Charge Sharing Group 13-9

Adding Discounts to a Discount Sharing Group 13-10

Adding Sponsored Charges to a Charge Sharing Group 13-10

Deleting a Sharing Group 13-10

Deleting a Discount Sharing Group 13-11

Deleting a Charge Sharing Group 13-11

Deleting a Member from a Discount Sharing Group 13-11

Deleting a Member from a Charge Sharing Group 13-11

Deleting a Shared Discount from a Discount Sharing Group 13-12

Deleting a Sponsored Charge from a Charge Sharing Group 13-12

Changing the Owner of a Sharing Group 13-13

Changing the Owner of a Discount Sharing Group 13-13

Changing the Owner of a Charge Sharing Group 13-14

Changing the Owner of a Balance Monitor 13-14

Adding a Monitor Group to a Member's /ordered_balgrp Object 13-15

Getting a List of Charges Available for Charge Sharing 13-15

Managing Ordered Balance Groups 13-16

Creating an Ordered Balance Group 13-17

Adding a Sharing Group to an Ordered Balance Group 13-17

Deleting a Sharing Group from an Ordered Balance Group 13-18

Customizing the Order in Which to Apply Sharing Groups 13-18

Deleting an Ordered Balance Group 13-19

Creating and Modifying Multiple Ordered Balance Groups Simultaneously 13-19

Adding and Removing Members Automatically to Sharing Groups 13-20

Adding Members to Newly Created Sharing Groups Automatically 13-21

Adding Members to Hierarchy-Type Balance Monitors 13-21

Adding Members to Payment Responsibility-Type Balance Monitors 13-22

Adding Members to Hierarchy-Type Sharing Groups Automatically 13-22

Adding Members to Paying Responsibility-Type Sharing Groups Automatically 13-23

Updating Subscription-Type Monitors Automatically 13-24

Removing Members from Balance Monitor Groups 13-25

Removing Members from Sharing Groups 13-25

Displaying Balance Monitor Information in Client Applications 13-26

Retrieving the Balances for a Monitor Group 13-26

Retrieving the Balance Monitors Owned by an Account or Service 13-26

Updating Monitor Balances and Sending Credit Limit/Threshold Breach Notifications 13-27

Example of Credit Threshold Notification Event Generation 13-28

Managing Balance Monitors 13-28

xviii

Creating and Updating Balance Monitors 13-28

Deactivating Balance Monitors 13-29

Managing Balance Groups 13-29

Creating Balance Groups 13-30

Customizing the Default Balance Group of a Bill Unit 13-30

Moving a Balance Group from One Bill Unit to Another 13-31

Deleting a Balance Group 13-31

Modifying Sub-balances 13-31

Modifying the Sub-balance Validity Period 13-32

Converting an Account Hierarchy to Wholesale Billing 13-32

14

Installment Opcode Workflows

Opcodes Described in This Chapter 14-1

Creating Installment Schedule Specifications 14-3

Validating Installment Schedule Specifications 14-4

Preparing Installment Schedule Specifications 14-4

Modifying Installment Schedule Specifications 14-4

Retrieving Installment Schedule Specifications 14-5

Getting Installment Schedule Specifications 14-5

Creating Installments 14-5

Validating Installments 14-5

Preparing Installments 14-6

Applying Installment Charge 14-6

Updating Installment Status 14-6

Retrieving Installments 14-6

Updating Installments 14-7

Canceling Installments 14-7

Installment Proposal 14-8

15

Invoice Opcode Workflows

Opcodes Described in This Chapter 15-1

Setting the Default Payment Due Date 15-3

Making Invoices 15-3

Displaying Invoices 15-5

Defining the Invoice Type 15-6

How Invoices Are Formatted 15-7

Customizing the Layout of Bill Items in Invoices 15-8

Customizing the Format for Printed Invoices 15-8

Customizing the Format for HTML Invoices 15-8

Customizing the Format for XML Invoices 15-9

xix

Customizing the Invoice Format by Using an XSL Style Sheet 15-9

Customizing the Format for DOC1 Invoices 15-9

Displaying an Invoice On Demand 15-9

Including Custom Data in Invoices 15-10

Changing the Trial Billing Watermark 15-11

Including the Time Zone in Invoices 15-11

Adding Soft Descriptors to Invoices 15-11

Specifying Event Fields to Cache for Invoicing 15-12

Decoding Cached Event Data for Invoicing 15-14

How Invoices Are Generated 15-14

Customizing Invoice Search Operations 15-16

Creating Custom Search Templates 15-16

Example: Generating Invoices Based on Event Types 15-17

Configuring Error Checking for Customized Invoicing 15-18

Generating Trial Invoices 15-18

How Trial Invoicing Works for Hierarchical Bill Units in BI Publisher 11g 15-19

About Associating Bill Units with a BI Publisher Invoice and Report 15-20

About the /associated_bus_profile Object 15-21

Creating /associated_bus_profile Objects 15-21

16

Job Opcode Workflows

Opcodes Described in This Chapter 16-1

Running BRM Applications 16-2

Running Business Operation Jobs 16-3

Managing Business Operations Job Templates 16-4

17

Loan Opcode Workflows

Opcodes Described in This Chapter 17-1

Granting a Loan 17-2

Customizing Loan Grants 17-3

Granting a Channel Loan 17-3

Resetting a Loan Cycle and Other Loan Profile Fields 17-3

Checking a Customer's Eligibility for a Loan 17-3

Customizing Loan Eligibility Checks 17-5

Retrieving Loan Information 17-5

Creating and Modifying a Customer's Loan Profile 17-5

Customizing Loan Recovery 17-7

xx

18

Notification Opcode Workflows

Opcodes Described in This Chapter 18-1

Creating Notification Specifications 18-2

Modifying Notification Specifications 18-2

Retrieving Notification Specifications 18-3

Managing In-Advance and Post-Expiration Notifications 18-3

Calculating the Notification Delivery Time 18-4

Verifying Customer Opt-In Preferences 18-4

Retrieving Last Notification Time and Offset 18-4

Customizing Notifications 18-5

Customizing Notification Retrieval 18-5

Preparing Notification Specifications 18-5

Validating Notification Specifications 18-5

19

Number Manager and SIM Card Manager Opcode Workflows

Opcodes Described in This Chapter 19-1

Number Manager Opcodes 19-2

Creating Blocks of Numbers 19-3

Modifying Blocks of Numbers 19-3

Splitting Blocks of Numbers 19-3

Managing Number Quarantine 19-3

Managing Number Portability 19-4

Customizing Number Manager 19-5

Customizing Number Normalization 19-5

Customizing How Numbers Are Associated with Services 19-5

Customizing Telephone Number Attributes 19-6

Customizing How a Number Can Be Changed 19-6

Deleting a Number 19-7

SIM Card Manager Opcodes 19-7

Creating and Updating SIM Card Orders 19-7

Creating SIM Cards 19-7

Provisioning SIM Cards 19-8

Customizing SIM Card Manager 19-8

Customizing SIM Card Service Association 19-8

Customizing SIM Card Validation 19-9

Customizing SIM Card Number Changes 19-9

20

Payment Opcode Workflows

Opcodes Described in This Chapter 20-1

xxi

Collecting Payments 20-7

Finding Payments 20-8

BRM-Initiated Payment Processing 20-8

Initiating a Charge 20-11

Processing Credit Card Charges 20-12

Processing the Results of Credit Card Transactions 20-13

Processing Paymentech Address Validation Return Codes 20-15

Processing AVS Validations for International Credit Cards 20-16

Processing Direct Debit Charges 20-16

About Paymentech Direct Debit Implementation 20-17

Creating a Custom Direct Debit Implementation 20-17

Processing a Batch of Direct Debit Charges 20-18

Checking the Results of BRM-Initiated Batch Payment Operations 20-18

Validating Credit Card and Direct Debit Transactions 20-19

Processing Credit Card Information during Account Creation 20-19

Storing Card Credentials for Future Transactions 20-20

Purging Card Credentials 20-21

About Credit Card Payment Confirmation Numbers 20-21

Externally Initiated Payment Processing 20-21

Receiving Payments 20-22

Validating Payments 20-23

About the Default Payment Validation Process 20-24

About Payment Validation Flags 20-26

Configuring Unconfirmed Payment Processing 20-26

Handling Overpayments and Underpayments 20-28

Calculating Payment Collection Dates 20-28

How BRM Selects the Items to Which Payments Are Applied 20-29

Allocating Account Payments to Multiple Bill Units 20-31

Allocating Externally Initiated Payments by Due Amount 20-33

Reversing Payments 20-33

Refunding Payments 20-35

Writing Off Payments 20-36

Finding Payment Info 20-37

Adding a Custom Payment Method 20-37

Creating a /config/payment Object 20-37

Viewing Payment Information for a Custom Payment Method 20-38

Configuring Payment Center for Custom Payment Methods 20-38

How Opcodes Read the Payment Method 20-39

Processing Payment Fees 20-40

Applying Payment Fees 20-40

Customizing Payment Fees 20-42

Using Custom Reason Codes to Customize Payment Fees 20-42

xxii

Customization example: Charging a fee based on the customer segment 20-43

Storing Additional Information with Payment Fees 20-43

Processing Payment Incentives 20-44

Triggering Payment Incentives 20-44

Granting Payment Incentives 20-45

Reversing Payment Incentives 20-46

Customizing Payment Incentives 20-46

Customizing How to Trigger Payment Incentives 20-47

Customizing How to Grant Payment Incentives 20-47

Manually Reversing a Payment Incentive 20-48

Managing Top-Ups 20-49

Setting Up Top-Up Information in an Account 20-49

Preparing an Account's Top-Up Information 20-49

Validating an Account's Top-Up Information 20-51

Finding Top-Up Events 20-51

Creating an Account's Top-Up Information 20-51

Modifying an Account's Top-Up Information 20-52

Deleting Top-Ups 20-53

Finding Sponsored Top-Up Groups 20-53

Setting a Customer's Automatic Top-Up Threshold 20-54

Processing Top-Ups 20-54

Triggering Top-ups 20-54

How BRM Handles Manual Standard Top-Ups 20-54

How BRM Handles Automatic Standard Top-Ups 20-56

How BRM Handles Recurring Standard Top-Ups 20-56

How BRM Handles Manual Sponsored Top-Ups 20-58

How BRM Handles Automatic Sponsored Top-Ups 20-58

Implementing Top-Ups in Custom Client Applications 20-60

Implementing Manual Standard Top-Ups 20-60

Implementing Automatic Standard Top-Ups 20-61

Implementing Recurring Standard Top-Ups 20-62

Implementing Manual Sponsored Top-Ups 20-63

Implementing Automatic Sponsored Top-Ups 20-64

Viewing Sponsored Top-Up History 20-65

About Transferring Sponsored Top-Ups from Debit Balances 20-66

Setting an Account's Sponsored Top-Up Member Status and PIN 20-67

Activating Sponsored Top-Up Group Members 20-67

Inactivating Sponsored Top-Up Group Members 20-67

Setting Sponsored Top-Up Member PINs 20-68

Offering Discount Incentives with Top-Ups 20-68

Suspending and Recycling Payments 20-68

How BRM Tracks Suspended Payments 20-68

xxiii

Customizing Payment Suspense 20-71

Customizing Payment Suspense Validation 20-72

Customizing Suspended Payment Distribution 20-74

Customizing Payment Failure Reason Codes 20-74

Customizing Payment Tool 20-75

Handling Custom Payment Methods 20-76

About the Suspense Account 20-77

Suspending Payments during Payment Processing 20-77

How Payments Are Recycled to and from Suspense 20-78

Understanding Payment Recycling 20-80

About Original Payments 20-80

About Payment Transfer Direction and Verification 20-80

About Recycling Payments from Suspense 20-81

About Recycling Payments to Suspense 20-81

How Payment Reversals Work with Suspense and Recycling 20-82

About Directly Reversing Payments from BRM 20-82

Retrieving Recycled Payments 20-83

How Suspended Payments Are Reversed 20-84

How Payments Are Reversed During Recycling 20-84

How Payments Are Removed As Unallocatable 20-84

How BRM Handles Mandate Information for SEPA Processing 20-85

How BRM Registers a Mandate 20-85

How BRM Updates a Mandate 20-85

Updating Creditor Information 20-86

How BRM Cancels a Mandate 20-86

21

Subscription Opcode Workflows

Opcodes Described in This Chapter 21-1

Pricing Component Object Names 21-6

Managing Charge Offers 21-6

Purchasing Charge Offers 21-7

Applying Deferred Charge Offer Purchase Fees 21-9

About Delayed Cycle Start and End Times 21-10

Handling Purchase, Cycle, and Usage Start and End Times 21-10

Purchasing the Same Charge Offer Multiple Times 21-10

Backdating Charge Offer, Discount Offer, Bundle, or Package Purchases 21-12

How Sub-balance Buckets Are Created for Backdated Charge Offer Purchases 21-12

How Cycle Fees Are Calculated for Backdated Purchase or Activation 21-13

Applying Purchase and Cycle Fees to the Balance 21-13

How Charge Offers Are Modified 21-14

How BRM Changes Charge Offer Status 21-14

xxiv

How Charge Offers Are Canceled 21-15

Customizing Charge Offer Cancellation 21-17

Customizing How to Apply Folds 21-18

Managing Discount Offers 21-18

How Discount Offers Are Purchased 21-18

How Discount Offer Purchase, Cycle, and Usage Validity Is Modified 21-21

How BRM Changes Discount Offer Status 21-22

How Discount Offers Are Canceled 21-23

Validating Discount Offer Dependencies 21-24

About Optional and Required Service Types 21-25

About Closing a Required Service 21-25

Customizing Snowball Discounts 21-26

Customizing Discount Offer Cancellation 21-26

Managing Bundles 21-27

How Bundles Are Purchased 21-27

Validating Changes to Bundles 21-29

How Bundles Are Modified 21-30

How Bundles Are Transitioned 21-30

Customizing Bundle Transitions 21-31

How Bundle Dependencies Are Validated 21-32

Validating Bundle Transitions 21-33

How Bundles Are Canceled 21-33

Overriding Deal Settings at Customer Level 21-34

Overriding Add-On Product Validity Dates in a Deal 21-34

Overriding Bundle Proration Settings at Customer Level 21-35

Managing Packages 21-35

How BRM Transitions Accounts from Source Packages to Target Packages 21-35

Transition Type API Considerations 21-38

Customizing Package Transitions without Configuring /transition Objects 21-38

About Providing Transition Rules Using Policy Opcodes 21-39

Customizing Account Bundles during Package Transitions 21-40

Managing Contracts 21-40

Creating Contracts 21-40

Modifying Contracts 21-41

Canceling Contracts 21-41

Renewing Contracts 21-41

Managing Purchase, Cycle, and Usage Charges in Purchased Offers 21-42

Changing the Purchase, Usage, and Cycle Start and End Times 21-43

Overriding Charges and Discounts for a Period of Time 21-44

Specifying Purchase, Cycle, and Usage Start and End Times 21-45

Calculating the Cycle Forward Fee 21-46

Calculating the Cycle Arrears Fee 21-46

xxv

Cycle Arrears Charge Offer Limitations 21-47

About Backdated Purchase, Usage, or Cycle End Dates 21-47

Storing Relative Start and End Times for an Account's Charge Offers and Discount
Offers 21-49

How Cycle Fees Are Calculated for Backdated Cancellation or Inactivation 21-50

How Earned and Unearned Revenue Is Set for Backdated Period 21-50

Applying Recurring Charges 21-51

Applying Cycle Forward Fees 21-51

Applying Cycle Arrears Fees 21-52

Applying Folds 21-52

Customizing How Folds Are Applied 21-53

Customizing the Order to Apply Folds 21-53

Specifying Which Balances to Fold 21-53

Customizing Which Balances to Fold When Charge Offers Are Canceled 21-53

Getting Data about Bundles, Charge Offers, Discount Offers, and Services 21-54

Getting Purchased Offers 21-54

Getting Packages, Bundles, and Charge Offers for Purchase 21-56

Getting a List of Bundles, Charge Offers, Discount Offers, and Services 21-57

Getting a List of Packages and Bundles That an Account Owns 21-57

Reading Data for All Valid Purchased Charge Offers and Discount Offers 21-58

Finding Events Associated with Bundles, Charge Offers, Discount Offers, and Services 21-60

Getting a Life-Cycle State 21-60

Applying Promotions for Special Dates, Events, or Actions 21-61

Customizing Special Date, Event, or Action Promotions 21-62

Managing Promotions with Siebel CRM 21-62

Managing Provisioning 21-65

Customizing Provisioning When a Charge Offer Is Purchased 21-65

Getting a List of Provisioning Tags 21-66

Customizing Provisioning When Canceling a Charge Offer 21-66

Managing GSM Service Provisioning 21-67

Validating Product Specification Attributes for Pricing Components 21-68

22

Tax Calculation Opcode Workflows

Opcodes Described in This Chapter 22-1

Calculating Taxes during Billing 22-2

How PCM_OP_RATE_TAX_CALC Calculates Taxes 22-3

How PCM_OP_RATE_TAX_CALC Validates Addresses and VAT Certificates 22-4

Policy Opcodes Called by PCM_OP_RATE_TAX_CALC 22-5

Modifying Tax Data Before Calculating Taxes 22-5

Customizing Vertex Communications Tax Q Series to Override ZIP Codes 22-5

Customizing Vertex Communications Tax Q Series to Provide Custom Input Tax Data 22-6

xxvi

Source Code for Customizing PCM_OP_RATE_POL_PRE_TAX 22-6

Modifying Tax Data After Calculating Taxes 22-10

Overriding Customer Tax Locale for Purchases 22-10

Using Custom Tax Rates 22-12

Using Geocodes to Calculate Taxes 22-13

Adding Tax Information to Accounts 22-14

Validating Tax Information 22-14

Retrieving Tax Calculation Data 22-15

Retrieving a List of Tax Codes 22-15

Retrieving a List of Tax Suppliers 22-15

Retrieving Tax Supplier Data 22-16

Retrieving Tax Location Data 22-16

Retrieving Additional Tax Data from Vertex Communications Tax Q Series 22-17

Default Tax Data Returned by Vertex Communications Tax Q Series 22-18

Requesting Additional Data from Vertex Communications Tax Q Series 22-19

Retrieving Additional Tax Data 22-20

Storing the Requested Vertex Tax Data in the BRM Database 22-22

Creating a Custom Storable Class for Vertex Tax Data 22-22

Storing Vertex Tax Data in Your Custom Storable Class 22-23

23

Using the IP Address Manager APIs

Opcodes Described in This Chapter 23-1

Managing Your IP Address Device Life Cycle 23-2

Creating a Single IP Address Device 23-2

Creating a Range of IP Address Devices 23-3

Creating a Range of IP Addresses with a Subnet Mask 23-4

Customizing IP Address Creation 23-4

Associating an IP Address with Accounts or Services 23-4

Disassociating an IP Address Device from Accounts or Services 23-4

Changing IP Device States from Unallocated to Returned 23-4

Modifying an IP Address Device 23-5

Sorting IP Devices by Using Canonical IP Address 23-5

Deleting an IP Address Device 23-6

Managing your APN Device Life Cycle 23-6

Creating an APN Device 23-6

Associating APN with an Account or Service 23-6

Modifying an APN Device 23-7

Changing the APN Device State 23-7

Deleting an APN Device 23-8

Extending the IP Address Manager Storable Classes 23-8

xxvii

Adding Business Logic to the IP Address and APN Policy FMs 23-8

xxviii

Preface

This guide provides workflow and reference information about Oracle Communications Billing
and Revenue Management (BRM) opcodes.

Audience
This guide is intended for developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

xxix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
Opcode Reference

This part provides Oracle Communications Billing and Revenue Management (BRM) opcode
reference information.

Part I contains the following chapters:

• Opcode Descriptions

• Context Management Opcodes

1
Opcode Descriptions

Learn about the Oracle Communications Billing and Revenue Management (BRM) opcodes.

About Using Opcodes
For information about using opcodes, see the following discussions in BRM Developer's Guide:

• About customizing BRM

• Writing a custom Facilities Module (FM)

• Understanding the Portal Communications Module (PCM) application programming
interface (API) and the Portal Information Network (PIN) library

• Understanding API error handling and logging

• Header files

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

You can find information about the input and output fields required for each opcode in the
opcode flist specifications. See BRM Opcode Flist Reference for more information.

Each opcode flist specification also specifies the following information:

• The opcode's visibility. See "About the Opcode Visibility Value".

• The opcode's transaction handling. See "About the Opcode Transaction Value".

About the Opcode Visibility Value
An opcode's visibility field can have one of these values:

• Public: This is a recommended opcode. Oracle will strive to keep the interface intact.

• Private: Call this opcode only if absolutely necessary. This opcode may change from
release to release.

• Deprecated: This opcode is deprecated. Either the functionality is being discontinued or
other opcodes may provide equivalent or better functionality.

• Obsolete: This opcode is obsolete and should no longer be used. It is no longer
supported.

1-1

About the Opcode Transaction Value
An opcode's transaction field can have one of these values:

• Required: The transaction for this opcode can be wrapped in a transaction opened by
another opcode.

If a read-write transaction is already open when this opcode is run, all data modifications
take place within the open transaction. The modifications are committed or canceled along
with all other changes when the transaction is committed or canceled.

If no transaction is open when the opcode is called, a read-write transaction is opened. All
actions are performed within this transaction, ensuring that the entire operation is
performed atomically. If an error occurs during the execution of the opcode, all changes
are canceled when the transaction is canceled. If no error occurs, the transaction is
committed at the end of the operation.

This opcode requires a read-write transaction. It is therefore an error to have a read-only
transaction open when this opcode is called.

• Requires New: This opcode manages transactions internally to ensure absolute integrity
of the database. A transaction for this opcode cannot be wrapped in another transaction.

If no transaction is open when the opcode is called, a read-write transaction is
automatically opened and all actions are performed within this transaction.

If a transaction is already open when the opcode is called, an error occurs.

• Supports: This opcode does not modify object data. If it is called while a transaction is not
already open, the operation is run without transactional control.

If a read-write or read-only transaction is already open when this opcode is called, the
opcode is run as part of the transaction and reads the in-process state of the data.

If the opcode is called when a separate, unrelated transaction is taking place, it reads the
last saved state of the database.

Account Dump FM Policy Opcodes
Use the account dump policy opcodes to customize Account Dump Utility (ADU) validation and
output file format. The Account Dump utility (ADU) is a diagnostics tool that enables you to
validate account information before or after certain business processes (for example, after
completion of a migration or upgrade or before billing or payment allocation).

See BRM Customer Management for information about ADU.

Include the ops/cust.h header file in all applications that call these opcodes.

Table 1-1 Account Dump FM Policy Opcodes

Opcode Description

PCM_OP_ADU_POL_DUMP Recommended.

Enables you to convert the ADU output format to a format other than
XML.

See "Customizing the Account Dump Utility (ADU)".

Chapter 1
Account Dump FM Policy Opcodes

1-2

Table 1-1 (Cont.) Account Dump FM Policy Opcodes

Opcode Description

PCM_OP_ADU_POL_VALIDATE Recommended.

Enables you to define custom validations for validating account data.

See "Customizing the Account Dump Utility (ADU)".

Account Dump FM Standard Opcode
Use the account dump policy opcodes to customize Account Dump Utility (ADU) validation and
output file format. The Account Dump utility (ADU) is a diagnostics tool that enables you to
validate account information before or after certain business processes (for example, after
completion of a migration or upgrade or before billing or payment allocation).

See BRM Customer Management for information about ADU.

Include the ops/cust.h header file in all applications that call these opcodes.

Table 1-2 Account Dump FM Standard Opcode

Opcode Description

PCM_OP_ADU_VALIDATE Recommended.

Dumps the contents of objects for an account into an output file and
validates the contents of the output file.

Accounts Receivable FM Policy Opcodes
Use the accounts receivable policy opcodes to manage accounts receivable (A/R) functions
such as adjustments, disputes, and write-offs.

Include the ops/ar.h header file in all applications that call these opcodes.

Table 1-3 Accounts Receivable FM Policy Opcodes

Opcode Description

PCM_OP_AR_POL_PRE_EVENT_ADJUSTME
NT

Recommended.

Enables you to customize the input flist by adding or deleting events.
Customizing the input flist allows you to include amounts from events into
the total amount available for adjustments.

PCM_OP_AR_POL_REVERSE_WRITEOFF Recommended.

Enables you to customize how to retrieve write-off reversal items from
the /profile/writeoff object.

See "Reversing Write-Offs".

Accounts Receivable FM Standard Opcodes
The accounts receivable standard opcodes take PIN_FLD_END_T as an optional field in the
input flist to determine when an A/R operation needs to be done. If this field is not passed in
the input flist, the A/R operation is carried out with the current time. If PIN_FLD_END_T is

Chapter 1
Account Dump FM Standard Opcode

1-3

specified, the date must be earlier than or equal to the current date. BRM does not support
future dating an A/R operation.

Include the ops/ar.h header file in all applications that call these opcodes.

Table 1-4 Accounts Receivable FM Standard Opcodes

Opcode Description

PCM_OP_AR_ACCOUNT_ADJUSTMENT Recommended.

Debits or credits an account balance for currency adjustments.

See "Adjusting Accounts, Subscription Services, and Member Services".

PCM_OP_AR_ACCOUNT_WRITEOFF Recommended.

Performs write-off of one or more A/R bill units (/billinfo objects) for an
account.

See "About Initiating Write-Offs" and "About Account Write-Offs".

PCM_OP_AR_BILL_ADJUSTMENT Recommended.

Credits the currency balance of an account's AR bill.

See "Adjusting Bills".

PCM_OP_AR_BILL_CREDIT_TRANSFER Recommended.

Transfers the amount from a bill that has a negative balance to one or
more bills that have a positive balance.

See "Transferring From a Negative to a Positive Balance".

PCM_OP_AR_BILL_DISPUTE Recommended.

Opens a dispute against the account's A/R bill.

See "Disputing Bills".

PCM_OP_AR_BILL_SETTLEMENT Recommended.

Settles an A/R bill that is in dispute.

See "Settling Disputed Bills".

PCM_OP_AR_BILL_WRITEOFF Recommended.

Performs write-off adjustments against a specified bill.

See "About Bill Write-Offs".

PCM_OP_AR_BILLINFO_WRITEOFF Recommended.

Performs write-off adjustments for a specific bill unit.

See "About Bill Unit Write-Offs".

PCM_OP_AR_EVENT_ADJUSTMENT Recommended.

Adjusts the balance impact of an event on an account's balance.

See "Adjusting Events".

PCM_OP_AR_EVENT_DISPUTE Recommended.

Opens a dispute against one or more events associated with an account.

See "Disputing Events".

PCM_OP_AR_EVENT_SETTLEMENT Recommended.

Settles dispute events associated with an account.

See "Settling Disputed Events".

PCM_OP_AR_GET_ACCT_ACTION_ITEMS Recommended.

Retrieves the list of A/R items applied to all bill units in an account or to a
single bill unit.

See "Retrieving A/R Items That Apply to a Bill Unit".

Chapter 1
Accounts Receivable FM Standard Opcodes

1-4

Table 1-4 (Cont.) Accounts Receivable FM Standard Opcodes

Opcode Description

PCM_OP_AR_GET_ACCT_BAL_SUMMARY Recommended.

Retrieves the consolidated unapplied, open bill due, pending bill due, and
total dispute balances for the all the bill units in an account or for a
specified bill unit in an account.

See "Retrieving a Balance Summary".

PCM_OP_AR_GET_ACCT_BILLS Recommended.

Retrieves the list of bills for all bill units in an account or for a single bill
unit.

See "Retrieving a List of Bills for a Bill Unit".

PCM_OP_AR_GET_ACTION_ITEMS Recommended.

Retrieves the list of A/R items applied to a bill unit.

See "Returning a Limited Set of Dispute Data" and "Retrieving Dispute
Details for a Bill Unit".

PCM_OP_AR_GET_BAL_SUMMARY Recommended.

Retrieves the applied, unapplied, open bill due, pending bill due, and total
dispute balances for a specified bill unit.

See "Retrieving a Balance Summary".

PCM_OP_AR_GET_BILL_ITEMS Recommended.

Retrieves the list of bill items for a bill unit.

See "Retrieving a List of Bills for a Bill Unit".

PCM_OP_AR_GET_BILLS Recommended.

Retrieves a list of bills for a bill unit based on the start time and end time
search criteria.

See "Retrieving a List of Bills for a Bill Unit".

PCM_OP_AR_GET_DISPUTE_DETAILS Recommended.

Retrieves all event and item disputes and the aggregated disputed
amount for the events associated with a dispute item (/item/dispute
object).

See "Retrieving Dispute Details for a Bill Unit".

PCM_OP_AR_GET_DISPUTES Recommended.

Retrieves details of all disputed bill items for a bill unit.

See "Retrieving Dispute Details for a Bill Unit".

PCM_OP_AR_GET_ITEM_DETAIL Recommended.

Retrieves details for the specified A/R item or bill item.

See "Retrieving Details about a Specific A/R Item or Bill Item".

PCM_OP_AR_GET_ITEMS Recommended.

Retrieves details for the specified A/R item or bill item.

See "Retrieving Details about a Specific A/R Item or Bill Item".

PCM_OP_AR_ITEM_ADJUSTMENT Recommended.

Makes adjustments against an item.

See "Adjusting Items".

PCM_OP_AR_ITEM_DISPUTE Recommended.

Files a dispute against an item.

See "Disputing Items".

Chapter 1
Accounts Receivable FM Standard Opcodes

1-5

Table 1-4 (Cont.) Accounts Receivable FM Standard Opcodes

Opcode Description

PCM_OP_AR_ITEM_SETTLEMENT Recommended.

Settles an item that is in dispute.

See "Settling Disputed Items".

PCM_OP_AR_ITEM_WRITEOFF Recommended.

Performs a write-off adjustment of an item.

See "Performing Write Offs".

PCM_OP_AR_RESOURCE_AGGREGATION Limited.

Calculates the aggregated amount of event balance impacts for each
balance affected by the event.

See "Retrieving Details about a Specific A/R Item or Bill Item".

PCM_OP_AR_REVERSE_REFUND Limited.

Reverses failed refunds on accounts.

See "Reversing Refunds".

PCM_OP_AR_REVERSE_WRITEOFF Limited.

Reverses write-offs on all written-off bills and bill items associated with a
written-off account or bill unit when a payment for the account or bill unit
is received.

See "Reversing Write-Offs".

Account Synchronization FM Opcodes
The account synchronization opcodes synchronize BRM and Elastic Charging Engine (ECE)
data. BRM events that trigger event notification for account synchronization make up the
business events that the Oracle Data Manager (DM) sends to ECE via an Oracle DM database
queue.

See BRM Installation Guide for information about account synchronization.

Include the ops/ifw_sync.h header file in all applications that call these opcodes.

Table 1-5 Account Synchronization FM Opcodes

Opcode Description

PCM_OP_IFW_SYNC_PUBLISH_EVENT Limited

Passes events associated with this opcode in your system's event
notification list to PCM_OP_IFW_SYNC_POL_PUBLISH_EVENT for
processing.

PCM_OP_IFW_SYNC_PUBLISH_EVENT does not modify events.

See "About Synchronizing Account Data between the BRM Database
and ECE" in BRM Installation Guide.

PCM_OP_IFW_SYNC_POL_PUBLISH_EVENT Recommended.

Enables you to modify account synchronization events before they are
sent to ECE.

See "Modifying Events before Sending Them to ECE".

Chapter 1
Account Synchronization FM Opcodes

1-6

Activity FM Policy Opcodes
Uses the activity policy opcodes to manage event creation, event recording, and event
notification.

Include the ops/act.h header file in all applications that call these opcodes.

Table 1-6 Activity FM Policy Opcodes

Opcode Description

PCM_OP_ACT_POL_CONFIG_BILLING_CYCL
E

Recommended.

Enables you to specify in which billing cycle to apply an event when an
event occurs between the end of a billing cycle and when billing
applications are run.

See "Customizing How to Bill Events That Occur between Billing Cycles".

PCM_OP_ACT_POL_EVENT_LIMIT Recommended.

Enables you to inactivate an account or account hierarchy, and send a
notification that a limit has been reached.

See "Inactivating Accounts that Exceed a Specified Limit".

PCM_OP_ACT_POL_EVENT_NOTIFY Recommended.

Enables you to implement custom event notification.

See "Using Event Notification" in BRM Developer's Guide.

PCM_OP_ACT_POL_LOCK_SERVICE Recommended.

Enables you to customize how to lock an account for /service/
pcm_client and /service/admin_client after a specified number of
invalid login attempts.

See "Managing Login Names and Passwords" in BRM System
Administrator's Guide.

PCM_OP_ACT_POL_LOG_USER_ACTIVITY Recommended.

Enables you to add details for the events that must be logged.

See "Logging Customer Service Representative Activity Events" in BRM
System Administrator's Guide.

PCM_OP_ACT_POL_PROCESS_EVENTS Recommended.

Processes events and updates the database with news feed entries.

See "Customizing News Feed Values and Events".

PCM_OP_ACT_POL_REQUEST_CREATE Recommended.

Enables you to customize operation failure records before they are stored
in the database.

See "Recording Failed Operations".

PCM_OP_ACT_POL_SPEC_EVENT_CACHE Recommended.

Enables you to define which balance impact fields are cached for
invoicing.

See "Specifying Event Fields to Cache for Invoicing".

PCM_OP_ACT_POL_SPEC_GLID Recommended.

Enables you to customize how BRM assigns a G/L ID to an event.

See "Assigning G/L IDs for an Adjustment".

Chapter 1
Activity FM Policy Opcodes

1-7

Table 1-6 (Cont.) Activity FM Policy Opcodes

Opcode Description

PCM_OP_ACT_POL_SPEC_RATES Recommended.

Enables you to implement custom rating.

See "Implementing Custom Rating".

PCM_OP_ACT_POL_SPEC_VERIFY Recommended.

Enables you to customize authentication checks.

See "Customizing Authentication Checks".

PCM_OP_ACT_POL_VALIDATE_SCHEDULE Recommended.

Enables you to customize policy checks before creating /schedule
objects.

See "Performing Policy Checks before Scheduling Deferred Actions".

Activity FM Standard Opcodes
The activity standard opcodes manage sessions.

Include the ops/act.h header file in all applications that call these opcodes.

Table 1-7 Activity FM Standard Opcodes

Opcode Description

PCM_OP_ACT_END_SESSION Recommended.

Logs the end of a session event.

See "Recording the End of a Session " and "Recording Session Events".

PCM_OP_ACT_FIND Recommended.

Finds a customer's account.

See "Finding a Customer's Account Information".

PCM_OP_ACT_FIND_VERIFY Recommended.

Authenticates a user action.

See "Starting Sessions ".

PCM_OP_ACT_LOAD_SESSION Recommended.

Creates and records a session event as a single operation.

See "Loading Sessions".

PCM_OP_ACT_LOGIN Recommended.

Authorizes users to start login sessions.

See "Starting Sessions ".

PCM_OP_ACT_LOGOUT Recommended.

Records the end of a login session.

See "Recording the End of a Session ".

PCM_OP_ACT_REQUEST_CREATE Recommended.

Creates a /request object, which records information about a failed
operation.

See "Recording Failed Operations".

Chapter 1
Activity FM Standard Opcodes

1-8

Table 1-7 (Cont.) Activity FM Standard Opcodes

Opcode Description

PCM_OP_ACT_REQUEST_RETRIEVE Recommended.

Retrieves /request objects.

See "Retrieving Operation Failure Records".

PCM_OP_ACT_SCHEDULE_CREATE Recommended.

Creates a /schedule object, which defers a single action to a
predetermined date and time.

See "Scheduling Deferred Actions".

PCM_OP_ACT_SCHEDULE_DELETE Recommended.

Deletes a /schedule object.

See "Managing Deferred Actions".

PCM_OP_ACT_SCHEDULE_EXECUTE Recommended.

Runs any deferred actions in specified /schedule objects.

See "Executing Deferred Actions ".

PCM_OP_ACT_SCHEDULE_MODIFY Recommended.

Modifies the text description of an existing /schedule object.

See "Modifying Deferred Actions".

PCM_OP_ACT_START_SESSION Recommended.

Creates session events and records their start times.

See "Recording the Start of a Session".

PCM_OP_ACT_UPDATE_SESSION Recommended.

Updates session event information.

See "Updating a Session Event".

PCM_OP_ACT_USAGE Last resort

Manages session events.

See "Managing Sessions".

Balance FM Policy Opcodes
Use the balance policy opcodes to trigger service life cycle state changes based on balance
adjustments or to customize algorithms to select the default balance group of a bill unit.

Include the ops/bal.h header file in all applications that call these opcodes.

Table 1-8 Balance FM Policy Opcodes

Opcode Description

PCM_OP_BAL_POL_APPLY_MULTI_BAL_IMP
ACTS

Recommended.

Enables you to customize threshold processing for policy-driven charging.

When you start your BRM system, BRM caches the set of unique balance
element IDs that you configured in your offer profiles. This opcode
processes the threshold calculation logic only if the balance element ID is
one of the entries in its cache.

This opcode is called by PCM_OP_BAL_APPLY_MULTI_BAL_IMPACTS.

Chapter 1
Balance FM Policy Opcodes

1-9

Table 1-8 (Cont.) Balance FM Policy Opcodes

Opcode Description

PCM_OP_BAL_POL_CHECK_LIFECYCLE_ST
ATE

Recommended.

Enables you to customize how to get life-cycle states.

See "Creating Custom Service Life Cycles" in BRM Managing
Customers.

PCM_OP_BAL_POL_GET_BAL_GRP_AND_S
VC

Recommended.

Enables you to customize how to select the default balance group of a bill
unit and the default service of the default balance group.

See "Customizing the Default Balance Group of a Bill Unit".

PCM_OP_BAL_POL_SET_SUB_BALANCES Recommended.

Enables you to customize an account's or service's sub-balance before it
is transferred.

See "Customizing Balance Transfers".

Balance FM Standard Opcodes
The balance standard opcodes adjust account balances.

Include the ops/bal.h header file in all applications that call these opcodes.

Table 1-9 Balance FM Standard Opcodes

Opcode Description

PCM_OP_BAL_CHANGE_VALIDITY Recommended.

Changes a sub-balance's validity period.

See "Modifying the Sub-balance Validity Period".

PCM_OP_BAL_GET_ACCT_BAL_GRP_AND_
SVC

Recommended.

Returns the balance groups and services for all the account's bill units or
for a single bill unit.

See "Finding a Balance Group and Service for Bill Units".

PCM_OP_BAL_GET_ACCT_BILLINFO Recommended.

Returns the main contact information for an account and a list of the
account's bill units with the default bill unit marked.

See "Finding a Bill Unit".

PCM_OP_BAL_GET_BALANCES Recommended.

Returns the POID of a /balance_group object and, optionally, the
balances it contains.

See "Finding a Balance Group and Its Balances".

PCM_OP_BAL_GET_BAL_GRP_AND_SVC Recommended.

Gets the balance groups and services for a bill unit

See "Finding a Balance Group and Service for Bill Units".

PCM_OP_BAL_GET_ECE_BALANCES Recommended.

Gets the real-time balances for a service from ECE. This opcode can be
called by a custom application.

Chapter 1
Balance FM Standard Opcodes

1-10

Table 1-9 (Cont.) Balance FM Standard Opcodes

Opcode Description

PCM_OP_BAL_TRANSFER_BALANCE Recommended.

Transfers currency and non-currency balances from one account or
service to another.

See "Transferring Balances between Accounts or Services".

Base Opcodes
The base opcodes can be used by any opcode. Unlike all other opcodes, which belong to the
Connection Manager, the base opcodes are run by data managers.

Each DM included with BRM uses a different implementation of the base opcodes. For
example, the base opcode PCM_OP_SEARCH is implemented differently for the Oracle DM
and the LDAP DM. For information, see:

• LDAP Base Opcodes

• Email Data Manager Opcodes

Include the ops/base.h header file in all applications that call these opcodes.

Table 1-10 Base Opcodes

Base Opcodes Description

PCM_OP_BULK_CREATE_OBJ Recommended.

Creates a large number of objects of the same type.

See the discussion on creating a large number of objects in BRM
Developer's Guide.

PCM_OP_BULK_DELETE_OBJ Recommended.

Deletes a large number of objects of the same type.

See the discussion on deleting a large number of objects in BRM
Developer's Guide.

PCM_OP_BULK_WRITE_FLDS Recommended.

Updates the value of the same fields in a large number of objects that
meet the conditions you specify in the query in the input flist.

See the discussion on editing large numbers of objects in BRM
Developer's Guide and "Editing Suspended Records in Bulk" for more
information.

PCM_OP_CREATE_OBJ Recommended.

Creates an object.

See the discussion on creating objects in BRM Developer's Guide.

PCM_OP_DELETE_FLDS Recommended.

Deletes arrays or array elements from an object.

See the discussion on deleting fields in objects in BRM Developer's
Guide.

PCM_OP_DELETE_OBJ Recommended.

Deletes a specified object and all its fields.

See the discussion on deleting objects in BRM Developer's Guide.

Chapter 1
Base Opcodes

1-11

Table 1-10 (Cont.) Base Opcodes

Base Opcodes Description

PCM_OP_GET_DD Recommended.

Retrieves the Data Dictionary.

Oracle recommends using the pin_deploy utility to invoke this opcode.
See the discussion on the pin_deploy utility in BRM Developer's Guide.

PCM_OP_GET_PIN_VIRTUAL_TIME Recommended.

Retrieves the virtual time that is set in the BRM Connection Manager
(CM).

Use this opcode only in a test environment when you want to retrieve the
virtual time for a custom application that is connected to the CM.

Oracle recommends using the pin_virtual_time utility to invoke this
opcode. See the discussion on the pin_deploy utility in BRM Developer's
Guide.

PCM_OP_GLOBAL_SEARCH Recommended.

To perform a global search, use PCM_OP_GLOBAL_SEARCH.

See the discussion on performing a global search in BRM Developer's
Guide.

PCM_OP_GLOBAL_STEP_END Recommended.

Ends global step-searching initiated by
PCM_OP_GLOBAL_STEP_SEARCH.

See the discussion on performing a global step search in BRM
Developer's Guide.

PCM_OP_GLOBAL_STEP_NEXT Recommended.

Receives the next set of search results from a step search.

See the discussion on getting the next set of search results from a global
step search in BRM Developer's Guide.

PCM_OP_GLOBAL_STEP_SEARCH Recommended.

Step-searches for objects across multiple BRM database schemas.

See the discussion on performing a global step search in BRM
Developer's Guide.

PCM_OP_INC_FLDS Recommended.

Increments or decrements one or more fields in an object.

See the discussion on incrementing fields in objects in BRM Developer's
Guide.

PCM_OP_READ_FLDS Recommended.

Reads one or more fields in an object.

See the discussion on reading fields in an object BRM Developer's
Guide.

PCM_OP_READ_OBJ Recommended.

Reads an entire object.

See the discussion on reading an entire object in BRM Developer's
Guide.

PCM_OP_SEARCH Recommended.

Searches for objects in a single BRM database schema.

See the discussion on performing single-schema searches in BRM
Developer's Guide.

Chapter 1
Base Opcodes

1-12

Table 1-10 (Cont.) Base Opcodes

Base Opcodes Description

PCM_OP_SET_DD Recommended.

Modifies the Data Dictionary.

Oracle recommends using the pin_virtual_time utility to invoke this
opcode. See the discussion on the pin_deploy utility in BRM Developer's
Guide.

PCM_OP_STEP_END Recommended.

Ends a step search initiated by PCM_OP_STEP_SEARCH.

See the discussion on ending a step search in BRM Developer's Guide.

PCM_OP_STEP_NEXT Recommended.

Retrieves the next set of search results from a step search.

See the discussion on getting the next set of search results from a step
search in BRM Developer's Guide.

PCM_OP_STEP_SEARCH Recommended.

Step-searches for objects in a BRM database schema.

See the discussion on performing single-schema step searches in BRM
Developer's Guide.

PCM_OP_TEST_LOOPBACK Recommended.

Tests directory server connections.

See the discussion on the noop testnap command in the chapter about
testing applications in BRM Developer's Guide.

PCM_OP_TRANS_ABORT Recommended.

Ends an open PCM transaction.

See the discussion on cancelling transactions in BRM Developer's Guide.

PCM_OP_TRANS_COMMIT Recommended.

Commits an open transaction on a PCM context.

See the discussion on committing transactions in BRM Developer's
Guide.

PCM_OP_TRANS_OPEN Recommended.

Opens a transaction.

See the discussion on using transactions in BRM Developer's Guide.

PCM_OP_TRANS_POL_ABORT Recommended.

Enables you to customize how to cancel a transaction.

See the discussion on cancelling transactions in BRM Developer's Guide

PCM_OP_TRANS_POL_COMMIT Recommended.

Enables you to customize how to commit an open transaction.

See the discussion on committing transactions in BRM Developer's
Guide.

PCM_OP_TRANS_POL_OPEN Recommended.

Enables you to customize how to open a transaction.

See the discussion on using transactions in BRM Developer's Guide.

Chapter 1
Base Opcodes

1-13

Table 1-10 (Cont.) Base Opcodes

Base Opcodes Description

PCM_OP_TRANS_POL_PREP_COMMIT Recommended.

Enables you to customize how to verify that a transaction can be
committed.

See the discussion on customizing how to verify the readiness of an
external system to commit a transaction opcode in BRM Developer's
Guide.

PCM_OP_WRITE_FLDS Recommended.

Writes fields in an object.

See the discussion on writing fields in objects in BRM Developer's Guide.

Batch Suspense Manager FM Standard Opcodes
The batch suspense manager standard opcodes manage batch files for suspended event
records stored in the BRM database as /suspended_batch objects.

For information about suspending and recycling event records, see ECE Implementing
Charging.

Include the ops/batch_suspense.h header file in all applications that call these opcodes.

Table 1-11 Batch Suspense Manager FM Standard Opcodes

Opcode Description

PCM_OP_BATCH_SUSPENSE_DELETE_BAT
CHES

Recommended.

Deletes suspended batches from the BRM database.

See "Deleting Records for Suspended Batches".

PCM_OP_BATCH_SUSPENSE_RESUBMIT_B
ATCHES

Recommended.

Resubmits the batches that have been suspended.

See "Resubmitting Suspended Batches".

PCM_OP_BATCH_SUSPENSE_WRITE_OFF_
BATCHES

Recommended.

Writes off the batches which are at the “Suspended" stage because of
some business rule.

See "Writing Off Suspended Batches".

Billing FM Policy Opcodes
Use the billing policy opcodes to customize billing and A/R processes.

Include the ops/bill.h header file in all applications that call these opcodes.

Chapter 1
Batch Suspense Manager FM Standard Opcodes

1-14

Table 1-12 Billing FM Policy Opcodes

Opcode Description

PCM_OP_BILL_POL_BILL_PRE_COMMIT Recommended.

Enables you to perform custom modifications to a bill object before it is
committed to the BRM database.

See "Modifying a Bill Object".

PCM_OP_BILL_POL_CALC_PYMT_DUE_T Recommended.

Enables you to customize how to calculate the due date and the payment
collection date of a bill (/bill object).

See the following topics:

• Calculating When a Bill is Due
• Payment Due Dates for Corrective Bills
• Calculating Payment Collection Dates

PCM_OP_BILL_POL_CHECK_SUPPRESSION Recommended.

Enables you to customize exceptions to bill suppressions.

See "Determining Whether Bills Should Be Suppressed" and
"Suppressing Bills".

PCM_OP_BILL_POL_EVENT_SEARCH Recommended.

Enables you to customize how to search for events associated with an
account.

See "Finding Events Associated with an Account".

PCM_OP_BILL_POL_GET_EVENT_SPECIFIC
_DETAILS

Recommended.

Enables you to customize how to get event specific details based on the
type of the event.

This opcode is called by
PCM_OP_BILL_GET_ITEM_EVENT_CHARGE_DISCOUNT.

PCM_OP_BILL_POL_GET_ITEM_TAG Recommended.

Enables you to customize the event attributes that set and return a
customized item tag.

See the discussion on creating custom bill items in BRM Configuring and
Running Billing.

PCM_OP_BILL_POL_GET_PENDING_ITEMS Recommended.

Enables you to customize how to select the pending items to be included
in a bill.

See "Customizing Bill Now"

PCM_OP_BILL_POL_POST_BILLING Recommended.

Enables you to perform custom processing on a bill unit at the time of
billing.

See "About Suspending Billing of Accounts and Bills"

PCM_OP_BILL_POL_POST_SET_LIMIT_AND
_CR

Recommended.

Enables you to customize the notification sent after a temporary credit
limit is created or modified.

See "Managing Credit Limits and Sub-Balance Consumption Rules".

PCM_OP_BILL_POL_PRE_SET_LIMIT_AND_
CR

Recommended.

Enables you to modify the validity dates for a temporary credit limit.

See "Managing Credit Limits and Sub-Balance Consumption Rules".

Chapter 1
Billing FM Policy Opcodes

1-15

Table 1-12 (Cont.) Billing FM Policy Opcodes

Opcode Description

PCM_OP_BILL_POL_REVERSE_PAYMENT Recommended.

Enables you to implement additional rules for performing write-off
reversals and allocating funds to written-off accounts and bill units.

See "Customizing Reversal of Payments Allocated to Written-Off
Accounts".

PCM_OP_BILL_POL_SPEC_BILLNO Recommended.

Enables you to customize bill numbers.

See "Customizing the Format of Bill and Invoice Numbers".

PCM_OP_BILL_POL_SPEC_FUTURE_CYCLE Recommended.

Enables you to customize accounting cycles.

See "Customizing Accounting Cycles"

PCM_OP_BILL_POL_VALID_ADJUSTMENT Recommended.

Enables you to customize item adjustment validation criteria.

See "Customizing Item Adjustments".

PCM_OP_BILL_POL_VALID_CORRECTIVE_BI
LL

Recommended.

Enables you to customize how BRM determines if a corrective bill can be
generated.

See "Validating Bills for the Corrective Billing Process" and "Policy Bill
Validations".

PCM_OP_BILL_POL_VALID_DISPUTE Recommended.

Enables you to customize how to validate fields in an /item object when a
dispute is made.

See "Customizing Item Disputes".

PCM_OP_BILL_POL_VALID_SETTLEMENT Recommended.

Enables you to customize how to validate the information used for settling
an item which is in dispute.

See "Customizing Item Disputes" and "Settling Disputed Items".

PCM_OP_BILL_POL_VALID_TRANSFER Recommended.

Enables you to customize how to validate the information used for
transferring money from the payment item to the target item.

See "Customizing Item Transfer Validation".

PCM_OP_BILL_POL_VALID_WRITEOFF Recommended.

Enables you to customize how items are validated for a write-off.

See "Customizing Write-Off Validation".

Billing FM Standard Opcodes
The billing standard opcodes manage billing and billing group processes, as well as some A/R
and payment processes.

To customize groups, use the billing opcodes, such as PCM_OP_BILL_GROUP_CREATE. The
billing opcodes call the group opcodes.

Include the ops/bill.h header file in all applications that call these opcodes.

Chapter 1
Billing FM Standard Opcodes

1-16

Table 1-13 Billing FM Standard Opcodes

Opcode Description

PCM_OP_BILL_CREATE_SPONSORED_ITEM
S

Recommended.

Creates /item/sponsor objects for sponsoring accounts.

See "Creating /item/sponsor Objects".

PCM_OP_BILL_CURRENCY_CONVERT_AMO
UNTS

Recommended.

Converts currency amounts from a source currency to a destination
currency.

See "About Currency Conversion".

PCM_OP_BILL_CURRENCY_QUERY_CONVE
RSION_RATES

Recommended.

Supplies currency conversion rates.

See "About Currency Conversion".

PCM_OP_BILL_CYCLE_TAX Last Resort.

Calculates tax on deferred taxable amounts.

See "Calculating Taxes during Billing".

PCM_OP_BILL_DEBIT Recommended.

Debits or credits a noncurrency balance.

See "Applying Debits and Credits".

PCM_OP_BILL_FIND Recommended.

Locates a /bill object, given a bill number.

See "Finding a Bill".

PCM_OP_BILL_GET_ITEM_EVENT_CHARGE
_DISCOUNT

Limited.

Retrieves the discount for events of a given bill item.

See "Finding Discounts in Bill Items".

PCM_OP_BILL_GET_LIMIT Recommended.

Retrieves the permanent and temporary credit limits for an account.

See "Retrieving Credit Limits".

PCM_OP_BILL_GROUP_ADD_MEMBER Last Resort.

Adds one or more accounts to an existing account group.

See "Adding Accounts to Account Hierarchies".

PCM_OP_BILL_GROUP_CREATE Last Resort.

Creates a new account group (/group object.) for billing purposes.

See "Creating Account Hierarchies".

PCM_OP_BILL_GROUP_DELETE Last Resort.

Deletes an existing /group object.

See "Deleting Accounts from Account Hierarchies".

PCM_OP_BILL_GROUP_DELETE_MEMBER Last Resort.

Deletes an account from an existing group.

See "Deleting Accounts from Account Hierarchies".

PCM_OP_BILL_GROUP_GET_CHILDREN Last Resort.

Gets child accounts of a specified account group.

See "Getting a List of Child Accounts in an Account Hierarchy".

Chapter 1
Billing FM Standard Opcodes

1-17

Table 1-13 (Cont.) Billing FM Standard Opcodes

Opcode Description

PCM_OP_BILL_GROUP_GET_PARENT Last Resort.

Gets the parent account of a given account group.

See "Finding the Parent of an Account Hierarchy".

PCM_OP_BILL_GROUP_MOVE_MEMBER Recommended.

Moves a group member; deletes the group if it is empty, and creates the
new group if it does not exist.

See "Moving Accounts from One Account Hierarchy to Another".

PCM_OP_BILL_ITEM_EVENT_SEARCH Recommended.

Searches the /event object for details related to a specific item.

See "Finding Events Associated with Bill Items".

PCM_OP_BILL_ITEM_REFUND Recommended.

Creates a refund item for a bill or bill unit.

See "Refunding Payments".

PCM_OP_BILL_ITEM_TRANSFER Limited.

Transfers money from a source item to a target item.

See "Transferring Balances between Items".

PCM_OP_BILL_MAKE_BILL Last Resort.

Creates a bill for a specified bill unit

See "Creating Bills".

PCM_OP_BILL_MAKE_BILL_NOW Last Resort.

Bills a specified bill unit immediately.

See "Running Bill Now".

PCM_OP_BILL_MAKE_BILL_ON_DEMAND Last Resort.

Creates a bill immediately after a bill unit is created or when a bundle is
purchased.

See "On-Purchase Billing".

PCM_OP_BILL_MAKE_CORRECTIVE_BILL Recommended.

Creates a corrective bill for a bill unit.

See "Making a Corrective Bill".

PCM_OP_BILL_MAKE_TRIAL_BILL Limited.

Creates a trial invoice and collects revenue assurance data for trial billing.

See "Making Trial Bills".

PCM_OP_BILL_RCV_PAYMENT Limited.

Creates a payment item and records that currency has been received.

See "Receiving Payments".

PCM_OP_BILL_REMOVE_ACCOUNT_SUPPR
ESSION

Recommended.

Deactivates manual account suppression immediately or on a specified
future date.

See "Ending Manual Account Suppression".

PCM_OP_BILL_REVERSE Last Resort.

Opens a closed payment item and removes the credit. This opcode is a
wrapper for PCM_OP_BILL_REVERSE_PAYMENT.

See "Reversing Payments".

Chapter 1
Billing FM Standard Opcodes

1-18

Table 1-13 (Cont.) Billing FM Standard Opcodes

Opcode Description

PCM_OP_BILL_REVERSE_PAYMENT Limited.

Reverses a payment.

See "Reversing Payments".

PCM_OP_BILL_SET_ACCOUNT_SUPPRESSI
ON

Recommended.

Activates manual account suppression immediately or on a specified
future date.

See "Suppressing Accounts".

PCM_OP_BILL_SET_BILL_SUPPRESSION Recommended.

Handles manual bill suppression.

See "Manually Suppressing Bills".

PCM_OP_BILL_SET_LIMIT_AND_CR Recommended.

Sets a permanent credit limit, a temporary credit limit, and/or a
consumption rule for both currency and noncurrency sub-balances.

See "Customizing Credit Limit and Consumption Rules".

PCM_OP_BILL_TRANSFER_BALANCE Recommended.

Transfers balances from one balance group to another balance group.

See "Transferring Balances between Balance Groups".

PCM_OP_BILL_VIEW_INVOICE Recommended.

Retrieves a formatted invoice from the database. This opcode is
deprecated and included only for backward compatibility. Use
PCM_OP_INV_VIEW_INVOICE instead.

Channel FM Standard Opcodes
The channel standard opcodes propagate object changes from BRM to a directory server.

See the discussion about the channel framework in BRM LDAP Manager.

Include the ops/channel.h header file in all applications that call these opcodes.

Table 1-14 Channel FM Standard Opcodes

Opcode Description

PCM_OP_CHANNEL_PUSH Recommended.

Creates /channel_event objects whenever a change occurs to a
specified /account or /service object. You specify which events trigger
the opcode to create /channel_event objects by using event notification.

PCM_OP_CHANNEL_SYNC Limited

Propagates /channel_event objects to the LDAP Server. BRM does not
use this opcode, but you can use it for custom applications.

Collections Manager FM Policy Opcodes
Use the collections policy opcodes to customize collections features.

Chapter 1
Channel FM Standard Opcodes

1-19

For information about Collections Manager, see "Understanding Collections Manager" in BRM
Collections Manager.

Include the ops/collections.h header file in all applications that call these opcodes.

Table 1-15 Collections Manager FM Policy Opcodes

Opcode Description

PCM_OP_COLLECTIONS_POL_APPLY_FINA
NCE_CHARGES

Recommended.

Enables you to customize how a finance charge is calculated or add
collections functionality.

See "Applying Finance Charges".

PCM_OP_COLLECTIONS_POL_APPLY_LATE
_FEES

Recommended.

Enables you to customize how the late fee is calculated or to add
functionality.

See "Applying Late Fees".

PCM_OP_COLLECTIONS_POL_ASSIGN_AGE
NT

Recommended.

Enables you to customize how account bill units are assigned to
collections agents.

See "Assigning Bill Units Automatically".

PCM_OP_COLLECTIONS_POL_ASSIGN_DCA Recommended.

Enables you to automate the logic of selecting a debt collections agent
(DCA) when multiple DCAs are configured.

See "Assigning Bill Units to a Debt Collections Agency".

PCM_OP_COLLECTIONS_POL_CALC_DUE_
DATE

Recommended.

Enables you to customize how due dates are set.

"Customizing Due Dates".

PCM_OP_COLLECTIONS_POL_EXEC_POLIC
Y_ACTION

Recommended.

Enables your custom application to perform custom collections actions.

See "Performing Custom Collections Actions".

PCM_OP_COLLECTIONS_POL_EXIT_SCENA
RIO

Recommended.

Enables your custom application to perform cleanup or other tasks when
a bill unit leaves a collections scenario.

See "Performing Custom Actions when a Bill Unit Leaves Collections".

PCM_OP_COLLECTIONS_POL_GET_GROUP
_TARGET_ACTIONS

Recommended.

Enables you to customize how to assign bill units to collection actions.

See "Customizing How to Apply Collections Actions to Collections Group
Members".

PCM_OP_COLLECTIONS_POL_GET_VALID_
SCENARIOS

Recommended.

Enables you to customize how to validate if a scenario is valid for a bill
unit.

See "Getting All Valid Collections Scenarios".

PCM_OP_COLLECTIONS_POL_HANDLE_BR
EACH_PROMISE_TO_PAY

Recommended.

Enables you to break a promise-to-pay agreement when a customer
misses an installment payment.

See "Breaking a Promise-to-Pay Agreement".

Chapter 1
Collections Manager FM Policy Opcodes

1-20

Table 1-15 (Cont.) Collections Manager FM Policy Opcodes

Opcode Description

PCM_OP_COLLECTIONS_POL_INITIATE_PAY
MENT

Recommended.

Enables you to customize auto-collect of the due amount for
promise_to_pay and collect_payment actions, if the customer has
opted to pay off the due amount through credit card or direct debit.

See "Executing Pending Actions for a Bill Unit".

PCM_OP_COLLECTIONS_POL_INVOKE_PRO
MISE_TO_PAY

Recommended.

Enables you to perform additional validation before invoking promise
obligation for a bill unit.

See "Creating a System-Configured Promise-to-Pay Agreement" and
"Creating a Manually Configured Promise-to-Pay Agreement".

PCM_OP_COLLECTIONS_POL_PREP_DUNNI
NG_DATA

Recommended.

Enables you to customize dunning letter data.

See "Customizing Dunning Letters".

PCM_OP_COLLECTIONS_POL_PROCESS_BI
LLINFO

Recommended.

Enables you to include additional criteria to determine whether bill units
should enter and exit collections.

Important: The source code for this opcode is not shipped with BRM.

See "Executing Automatic Collections Actions".

PCM_OP_COLLECTIONS_POL_SELECT_PR
OFILE

Recommended.

Enables you to group bill units into collections profiles based on any
criteria you choose.

See "Mapping Bill Units to Collections Profiles".

Collections Manager FM Standard Opcodes
The collections standard opcodes identify account bill units with overdue balances and
manage activities to collect those balances.

For information about Collections Manager, see "Understanding Collections Manager" in BRM
Collections Manager.

Include the ops/collections.h header file in all applications that call these opcodes.

Table 1-16 Collections Manager FM Standard Opcodes

Opcode Description

PCM_OP_COLLECTIONS_ADD_ACTION Recommended.

Adds collections actions to a collections scenario of a bill unit.

See "Adding Actions to a Collections Scenario".

PCM_OP_COLLECTIONS_ASSIGN_AGENT Recommended.

Assigns bill units to a collections agent.

See "Assigning Bill Units to a Collections Agent".

PCM_OP_COLLECTIONS_CALC_AGING_BUC
KETS

Recommended.

Gets aging bucket details for a bill unit.

See "Retrieving Aging Buckets Information".

Chapter 1
Collections Manager FM Standard Opcodes

1-21

Table 1-16 (Cont.) Collections Manager FM Standard Opcodes

Opcode Description

PCM_OP_COLLECTIONS_CONFIG_DELETE_
ACTION

Recommended.

Deletes a collections action.

See "Deleting an Existing Collections Action".

PCM_OP_COLLECTIONS_CONFIG_DELETE_
PROFILE

Recommended.

Deletes a collections profile.

See "Deleting an Existing Collections Profile".

PCM_OP_COLLECTIONS_CONFIG_DELETE_
SCENARIO

Recommended.

Deletes an existing collections scenario.

See "Deleting an Existing Collections Scenario".

PCM_OP_COLLECTIONS_CONFIG_GET_ACT
IONS

Recommended.

Gets a list of all currently defined collections actions.

See "Getting All Currently Defined Collections Actions".

PCM_OP_COLLECTIONS_CONFIG_GET_PR
OFILES

Recommended.

Retrieves a list of currently defined collections profiles.

See "Getting All Currently Defined Collections Profiles".

PCM_OP_COLLECTIONS_CONFIG_GET_SC
ENARIOS

Recommended.

Gets a list of all collections scenarios and associated profiles.

See "Getting All Currently Defined Collections Scenarios".

PCM_OP_COLLECTIONS_CONFIG_GET_SC
ENARIO_DETAIL

Recommended.

Gets details of a particular collections scenario.

See "Getting Details of a Collections Scenario".

PCM_OP_COLLECTIONS_CONFIG_GET_TE
MPLATES

Recommended.

Gets a list of templates.

See "Getting a List of Message Templates".

PCM_OP_COLLECTIONS_CONFIG_SET_ACT
ION

Recommended.

Creates or updates a collections action.

See "Creating or Updating Collections Actions".

PCM_OP_COLLECTIONS_CONFIG_SET_PRO
FILE

Recommended.

Creates or updates a collections profile.

See "Creating or Updating Collections Profiles".

PCM_OP_COLLECTIONS_EXEMPT_BILLINF
O

Recommended.

Exempts bill units from collections.

See "Exempting Bill Units from Collections".

PCM_OP_COLLECTIONS_GET_ACTION_HIS
TORY

Recommended.

Finds historic information about a particular collections action.

See "Retrieving Collections Action History Information".

PCM_OP_COLLECTIONS_GET_AGENTS_AC
TIONS

Recommended.

Retrieves a list of collections actions assigned to collections agents.

See "Retrieving a List of Collections Actions".

PCM_OP_COLLECTIONS_GET_BILLINFOS Recommended.

Gets a list of bill units that are in collections.

See "Retrieving a List of Bill Units in Collections".

Chapter 1
Collections Manager FM Standard Opcodes

1-22

Table 1-16 (Cont.) Collections Manager FM Standard Opcodes

Opcode Description

PCM_OP_COLLECTIONS_GET_DUNNING_LE
TTER

Recommended.

Creates formatted dunning letters.

See "Retrieving Dunning Letters".

PCM_OP_COLLECTIONS_GET_SCENARIO_
DETAIL

Recommended.

Gets details of the collections scenario for a bill unit.

See "Getting Details of a Collections Scenario".

PCM_OP_COLLECTIONS_GET_VALID_SCEN
ARIOS

Recommended.

Determines all the eligible collections scenarios for a bill unit.

See "Getting All Valid Collections Scenarios".

PCM_OP_COLLECTIONS_GROUP_ADD_ME
MBER

Recommended.

Adds members to a collections group.

See "Adding Members to a Collections Group".

PCM_OP_COLLECTIONS_GROUP_CREATE Recommended.

Creates the collections group.

See "Creating a Collections Group".

PCM_OP_COLLECTIONS_GROUP_DELETE Recommended.

Deletes the collections group.

See "Deleting a Collections Group".

PCM_OP_COLLECTIONS_GROUP_DELETE_
MEMBER

Recommended.

Deletes members from the collections group.

See "Removing a Member from a Collections Group".

PCM_OP_COLLECTIONS_GROUP_GET_BILL
INFO

Recommended.

Verifies whether a bill unit belongs to a collections group or not. It also
provides information about the pending receivables for each bill unit. If
the bill unit is a parent of a collection group, it provides the name of the
group and its members.

See "Retrieving a Collections Group".

PCM_OP_COLLECTIONS_GROUP_MODIFY Recommended.

This opcode is used to rename the group, change parent, or replace
existing members. While replacing the existing members, this opcode
validates all the members and replaces the existing set of group
members.

See "Modifying a Collections Group".

PCM_OP_COLLECTIONS_GROUP_SET_PAR
ENT

Recommended.

Sets the parent for a collections group. Validation is performed to verify if
the bill unit is already a parent of another collections group. A bill unit can
be the owner or parent of only one collections group.

See "Changing the Parent of a Collections Group".

PCM_OP_COLLECTIONS_INVOKE_PROMISE
_TO_PAY

Recommended.

For a bill unit that is already in collections, creates a promise-to-pay
agreement.

See "Creating a System-Configured Promise-to-Pay Agreement" and
"Creating a Manually Configured Promise-to-Pay Agreement".

Chapter 1
Collections Manager FM Standard Opcodes

1-23

Table 1-16 (Cont.) Collections Manager FM Standard Opcodes

Opcode Description

PCM_OP_COLLECTIONS_PROCESS_BILLINF
O

Recommended.

Determines whether bill units enter or exit collections and performs
collections actions.

See "Executing Automatic Collections Actions".

PCM_OP_COLLECTIONS_RESCHEDULE_AC
TION

Recommended.

Reschedules an action that was scheduled by a bill unit's collections
scenario.

See "Rescheduling an Action Scheduled for a Bill Unit".

PCM_OP_COLLECTIONS_REPLACE_SCENA
RIO

Recommended.

Replaces the existing collections scenario for a bill unit with a new
collections scenario.

See "Replacing a Collections Scenario".

PCM_OP_COLLECTIONS_REVOKE_PROMIS
E_TO_PAY

Recommended.

Cancels the promise-to-pay agreement, by canceling the outstanding
payment milestones, deleting the corresponding schedule objects,
rescheduling the scenario actions to start from the next day, and updating
the scenario objects.

See "Breaking a Promise-to-Pay Agreement".

PCM_OP_COLLECTIONS_SET_ACTION_STA
TUS

Recommended.

Changes the status of a collections action.

See "Changing the Status of a Collections Action".

PCM_OP_COLLECTIONS_SET_DUNNING_LE
TTER

Recommended.

Gathers data for system-generated dunning letters.

See "Gathering and Storing Data for Dunning Letters".

PCM_OP_COLLECTIONS_SET_INVOICE_RE
MINDER

Recommended.

Prepares an invoice reminder message.

See "Preparing Invoice Reminders".

PCM_OP_COLLECTIONS_TAKE_ACTION Recommended.

Runs pending actions for a bill unit.

See "Executing Pending Actions for a Bill Unit".

PCM_OP_COLLECTIONS_UPDATE_ACTION_
PAYMENT_DETAILS

Recommended.

Updates the amount and payment details for Promise to Pay and
Collect Payment actions.

See "Updating Amount and Payment Details".

Contract FM Policy Opcodes
Use the contract policy opcodes to customize contracts.

Include the ops/contract.h header file in all applications that call these opcodes.

Chapter 1
Contract FM Policy Opcodes

1-24

Table 1-17 Contract FM Policy Opcodes

Opcode Description

PCM_OP_CONTRACT_POL_POST_CREATE_
CONTRACT

Recommended.

Enables you to customize how contracts are created. By default, the
opcode does nothing.

PCM_OP_CONTRACT_POL_PREP_CONTRA
CT

Recommended.

Enables you to customize how contracts are created. By default, the
opcode does nothing.

PCM_OP_CONTRACT_POL_VALID_CONTRA
CT

Recommended.

Validates a customer's contract for valid start and end dates, pricing
objects, account objects, and contract objects (during modification). The
opcode is triggered during contract creation, modification, and renewal.

Contract FM Standard Opcodes

Note:

The contract opcodes are supported only in BRM 12.0.0.3.0 with Interim Patch
31426340 and later releases, and PDC 12.0.0.3.0 with Interim Patch 31426374 and
later releases.

Use the contract standard opcodes to manage customer contracts.

Include the ops/contract.h header file in all applications that call these opcodes.

Table 1-18 Contract FM Policy Opcodes

Opcode Description

PCM_OP_CONTRACT_CANCEL_CONTRACT Recommended.

Cancels a customer's existing contract and applies an early termination
fee if required by the contract terms.

See "Canceling Contracts".

PCM_OP_CONTRACT_CREATE_CONTRACT Recommended.

Creates a contract for a customer.

See "Creating Contracts".

PCM_OP_CONTRACT_MODIFY_CONTRACT Recommended.

Modifies a customer's existing contract.

See "Modifying Contracts".

PCM_OP_CONTRACT_RENEW_CONTRACT Recommended.

Renews a customer's contract.

See "Renewing Contracts".

Chapter 1
Contract FM Standard Opcodes

1-25

Customer FM Policy Opcodes
Use the customer policy opcodes to customize the business logic to process account
information during customer account creation.

Include the ops/cust.h header file in all applications that call these opcodes.

Table 1-19 Customer FM Policy Opcodes

Opcode Description

PCM_OP_CUST_POL_CANONICALIZE Recommended.

Enables you to customize canonicalization when you create a localized
version of BRM.

See the discussion on creating a localized version of BRM in BRM
Developer's Guide.

PCM_OP_CUST_POL_COMPARE_PASSWD Recommended.

Enables you to customize the password encryption mechanism.

See "Implementing Password Encryption".

PCM_OP_CUST_POL_DECRYPT_PASSWD Recommended.

Enables you to customize how to decrypt a password.

See "Implementing Password Encryption".

PCM_OP_CUST_POL_ENCRYPT_PASSWD Recommended.

Enables you to customize password encryption.

See "Implementing Password Encryption".

PCM_OP_CUST_POL_EXPIRATION_PASSWD Recommended.

Enables you to customize how passwords are expired.

See "Customizing Password Expiration".

PCM_OP_CUST_POL_GET_CONFIG Recommended.

Enables you to customize the configuration data that should be returned
to an external customer management system.

See "Sending Account Information to Your Application when an Account
is Created".

PCM_OP_CUST_POL_GET_DB_LIST Recommended.

Enables you to create and customize a list of schemas to use when
creating accounts.

See "Getting a List of Database Schemas".

PCM_OP_CUST_POL_GET_DB_NO Recommended.

Enables you to choose which schema to use when creating accounts.

See "Selecting a Database Schema"

PCM_OP_CUST_POL_GET_DEALS Recommended.

Enables you to retrieve a customized list of bundles from the BRM
database.

See "Getting Data about Bundles, Charge Offers, Discount Offers, and
Services".

PCM_OP_CUST_POL_GET_INTRO_MSG Recommended.

Enables you to customize how to send an introductory message to a
customer.

See "Customizing the Introductory Message".

Chapter 1
Customer FM Policy Opcodes

1-26

Table 1-19 (Cont.) Customer FM Policy Opcodes

Opcode Description

PCM_OP_CUST_POL_GET_PLANS Recommended.

Enables you to retrieve a customized list of packages from the BRM
database.

See "Getting Data about Bundles, Charge Offers, Discount Offers, and
Services".

PCM_OP_CUST_POL_GET_POPLIST Recommended.

Enables you to customize how to return a point-of-presence (POP) list.

See "Returning a Point-of-Presence (POP) List".

PCM_OP_CUST_POL_GET_PRODUCTS Recommended.

Enables you to retrieve a customized list of charge offers from the BRM
database.

See "Getting Data about Bundles, Charge Offers, Discount Offers, and
Services".

PCM_OP_CUST_POL_GET_SUBSCRIBED_P
LANS

Recommended.

Enables you to retrieve a customized list of packages, bundles, or both
that an account owns.

See "Getting a List of Packages and Bundles That an Account Owns"

PCM_OP_CUST_POL_POST_COMMIT Recommended.

Enables you to customize interactions with an external account creation
application before an account is committed during customer account
creation.

See:

• Adding Custom Account Creation Steps After the Account Is
Committed

• Creating Accounts
• Customizing the Introductory Message

PCM_OP_CUST_POL_POST_MODIFY_CUST
OMER

Recommended.

Enables you to send information to an external account creation
application when an account is modified.

See "Sending Account Information to Your Application when an Account
is Modified".

PCM_OP_CUST_POL_PRE_COMMIT Recommended.

Enables you to customize interactions with an external account creation
application after an account is committed during customer account
creation.

See "Adding Custom Account Creation Steps Before the Account Is
Committed".

PCM_OP_CUST_POL_PRE_DELETE_PAYINF
O

Recommended.

Enables you to add custom actions before a /payinfo object is deleted.

See "Customizing Customer Payment Information".

PCM_OP_CUST_POL_PREP_AACINFO Recommended.

Enables you to prepare automatic account creation (AAC) data for
validation.

See "Customizing Automatic Account Creation (AAC) Information".

Chapter 1
Customer FM Policy Opcodes

1-27

Table 1-19 (Cont.) Customer FM Policy Opcodes

Opcode Description

PCM_OP_CUST_POL_PREP_ACCTINFO Recommended.

Enables you to customize account numbers.

See "Customizing Account Numbers".

PCM_OP_CUST_POL_PREP_BILLINFO Recommended.

Enables you to customize the creation of a /billinfo object during
customer account creation or while updating billing information to prepare
for validation.

See "Preparing Bill Unit Data".

PCM_OP_CUST_POL_PREP_INHERITED Recommended.

Enables you to customize inherited information when a service object is
created.

See "Creating Services".

PCM_OP_CUST_POL_PREP_LIMIT Recommended.

Enables you to customize credit limit information prior to validation.

See "Managing Credit Limits and Sub-Balance Consumption Rules".

PCM_OP_CUST_POL_PREP_LOCALE Recommended.

Enables you to customize how to set the locale for an account.

See "Customizing Locale Information".

PCM_OP_CUST_POL_PREP_LOGIN Recommended.

Enables you to customize login names for services.

See "Customizing Login Names".

PCM_OP_CUST_POL_PREP_NAMEINFO Recommended.

Enables you to customize how name and address information is
processed.

See "Customizing Name and Address Information".

PCM_OP_CUST_POL_PREP_PASSWD Recommended.

Enables you to customize password creation.

See "Customizing Passwords".

PCM_OP_CUST_POL_PREP_PAYINFO Limited

Enables you to customize how /payinfo objects are created.

See "Customizing Payment Method Data Preparation".

PCM_OP_CUST_POL_PREP_PROFILE Limited

Enables you to customize how profiles are created.

See "Managing and Customizing Profiles".

PCM_OP_CUST_POL_PREP_STATUS Limited

Enables you to customize status data before modifying the status.

See "Customizing Status Changes".

PCM_OP_CUST_POL_PREP_TOPUP Recommended.

Enables you to customize how to set up and modified.

See "Preparing an Account's Top-Up Information".

Chapter 1
Customer FM Policy Opcodes

1-28

Table 1-19 (Cont.) Customer FM Policy Opcodes

Opcode Description

PCM_OP_CUST_POL_READ_PLAN Recommended.

Enables you to retrieve a customized list of services, bundles, and charge
offers for purchase.

See "Getting Packages, Bundles, and Charge Offers for Purchase".

PCM_OP_CUST_POL_TAX_CALC Recommended.

Enables you to customize tax calculation.

See "Using Custom Tax Rates".

PCM_OP_CUST_POL_TAX_INIT Recommended.

Enables you to customize tax calculation.

See "Using Custom Tax Rates".

PCM_OP_CUST_POL_TRANSITION_DEALS Recommended.

Enables you to create and customize a list of bundles and charge offers
available for transition.

See "Customizing Bundle Transitions".

PCM_OP_CUST_POL_TRANSITION_PLANS Recommended.

Enables you to customize how bundles in a specified package are
transitioned.

See "Customizing Bundle Transitions".

Note: To customize how to transition a package from one account to
another, use
PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN. See
"Customizing Package Transitions without Configuring /transition
Objects".

PCM_OP_CUST_POL_VALID_AACINFO Recommended.

Enables you to validate data in the automatic account creation (AAC)
fields.

See "Customizing Automatic Account Creation (AAC) Information".

PCM_OP_CUST_POL_VALID_ACCTINFO Recommended.

Enables you to customize account numbers.

See "Customizing Account Numbers".

PCM_OP_CUST_POL_VALID_BILLINFO Recommended.

Enables you to customize how to validate billing informaiton in a /billinfo
object.

See "Validating Bill Unit Data".

PCM_OP_CUST_POL_VALID_LIMIT Recommended.

Enables you to validate custom credit limit information before it is set in
the account.

See "Managing Credit Limits and Sub-Balance Consumption Rules".

PCM_OP_CUST_POL_VALID_LOCALE Recommended.

Enables you to customize how to validate locale information before it is
set in the account.

See "Customizing Locale Information".

PCM_OP_CUST_POL_VALID_LOGIN Recommended.

Enables you to Enables you to customize how to validate login names.

See "Customizing Login Names".

Chapter 1
Customer FM Policy Opcodes

1-29

Table 1-19 (Cont.) Customer FM Policy Opcodes

Opcode Description

PCM_OP_CUST_POL_VALID_NAMEINFO Recommended.

Enables you to customize how customer contact information is validated.

See "Customizing Name and Address Information".

PCM_OP_CUST_POL_VALID_PASSWD Recommended.

Enables you to customize how passwords are validated.

See "Customizing Passwords".

PCM_OP_CUST_POL_VALID_PAYINFO Limited

Enables you to customize how payment methods are validates.

See "Customizing Payment Method Validation".

PCM_OP_CUST_POL_VALID_PROFILE Limited

Enables you to customize how profiles are validated.

See "Managing and Customizing Profiles".

PCM_OP_CUST_POL_VALID_STATUS Limited

Enables you to customize how status changes are validated.

See "Customizing Status Changes".

PCM_OP_CUST_POL_VALID_TAXINFO Recommended.

Enables you to customize how to validate the VAT certificate number
provided during account creation.

See "Validating Tax Information".

PCM_OP_CUST_POL_VALID_TOPUP Recommended.

Enables you to customize how top-up data is validated.

See "Validating an Account's Top-Up Information".

Customer FM Standard Opcodes
The customer standard opcodes manage the creation, deletion, and modification of account
information during customer account creation.

Include the ops/cust.h header file in all applications that call these opcodes.

Important:

To create an account, use PCM_OP_CUST_COMMIT_CUSTOMER. This wrapper
opcode performs all of the tasks necessary to create an active and billable account in
the database. The value of its PIN_FLD_TXN_FLAGS input flist field determines how
the opcode handles transactions. See "Transaction Handling During Account
Creation" for more information.

Chapter 1
Customer FM Standard Opcodes

1-30

Table 1-20 Customer FM Standard Opcodes

Opcode Description

PCM_OP_CUST_CHANGE_BUSINESS_PROF
ILE

Recommended.

Changes a bill unit's business profile.

See "Changing a Bill Unit's Business Profile".

PCM_OP_CUST_COMMIT_CUSTOMER Recommended.

Creates an account. This opcode is a wrapper opcode that performs all
the tasks necessary to create an account.

See "Creating Accounts".

PCM_OP_CUST_CREATE_ASSOCIATED_BUS
_PROFILE

Recommended.

Creates one /associated_bus_profile object for each bill unit in the
account.

See "Creating Business Profiles".

PCM_OP_CUST_CREATE_BAL_GRP Limited

Creates an active /balance_group object. Use
PCM_OP_CUST_SET_BAL_GRP to create the /balance_group object.

See "Creating Balance Groups ".

PCM_OP_CUST_CREATE_BILLINFO Limited

Creates an active bill unit.

See "Creating Bill Units".

PCM_OP_CUST_CREATE_CUSTOMER Limited

Creates an active customer account, including creating and initializing
an /account object and one or more /service objects.

See "Creating Accounts".

PCM_OP_CUST_CREATE_PAYINFO Limited

Creates an active /payinfo object.

See "Creating Accounts".

PCM_OP_CUST_CREATE_PROFILE Limited

Creates a /profile object.

See "Managing and Customizing Profiles".

PCM_OP_CUST_CREATE_SERVICE Last Resort

Creates a service object with inheritance pass through.

See "Creating Services".

PCM_OP_CUST_CREATE_TOPUP Limited

Creates /topup and /group/topup objects.

See "Setting Up Top-Up Information in an Account".

PCM_OP_CUST_DELETE_ACCT Last Resort

Deletes the specified /account object and all related objects (such as
events, bill items, bill history, balances, and notes) and disassociates
devices that are assigned to the services.

See "Deleting Accounts".

PCM_OP_CUST_DELETE_BAL_GRP Last Resort

Deletes a /balance_group object.

See "Deleting a Balance Group".

Chapter 1
Customer FM Standard Opcodes

1-31

Table 1-20 (Cont.) Customer FM Standard Opcodes

Opcode Description

PCM_OP_CUST_DELETE_BILLINFO Last Resort

Deletes the specified bill unit and the balance groups associated with it.

See "Deleting Bill Units".

PCM_OP_CUST_DELETE_PAYINFO Recommended.

Deletes the specified /payinfo object.

See "Customizing Customer Payment Information".

PCM_OP_CUST_DELETE_PROFILE Limited

Deletes the specified /profile object.

See "Managing and Customizing Profiles".

PCM_OP_CUST_DELETE_TOPUP Limited

Deletes /topup objects.

See "Deleting Top-Ups".

PCM_OP_CUST_FIND Recommended.

Searches for information in an /account object given an account number.

See "Finding Accounts".

PCM_OP_CUST_FIND_PAYINFO Recommended.

Finds /payinfo objects that belong to a specified account.

See "Finding Payment Info".

PCM_OP_CUST_FIND_PROFILE Recommended.

Retrieves the /profile objects associated with a specified account.

See "Retrieving Account Profile Information".

PCM_OP_CUST_GET_BUSINESS_PROFILE_I
NFO

Recommended.

Gets the value of a key in the business profile and validation templates
associated with an object.

See "Getting Information about a Business Profile".

PCM_OP_CUST_GET_LIFECYCLE_STATES Recommended.

Gets information from the life cycle states configuration object (/config/
lifecycle_states) associated with a specified service type or gets the
configuration object itself.

See "Getting Life Cycle States".

PCM_OP_CUST_GET_NEWSFEED Recommended.

Retrieves and returns the news feed information stored in the /newsfeed
object.

See BRM Managing Customers.

PCM_OP_CUST_GET_NOTE Recommended.

Gets notes and note exchanges based on any of the /note object fields,
such as the date, the type of note, the status, the CSR who wrote the
note, and so on.

PCM_OP_CUST_GET_SUBSCRIBER_PREFE
RENCES

Recommended.

Retrieves the subscriber's preferences from the /profile/
subscriber_preferences object for a subscriber's service or account.

See "Maintaining Subscriber's Charging Preferences Data".

Chapter 1
Customer FM Standard Opcodes

1-32

Table 1-20 (Cont.) Customer FM Standard Opcodes

Opcode Description

PCM_OP_CUST_INIT_SERVICE Last Resort

Initializes a service object.

See "Maintaining Subscriber's Charging Preferences Data".

PCM_OP_CUST_MODIFY_BAL_GRP Limited

Modifies the specified /balance_group object.

See "Creating Balance Groups ".

PCM_OP_CUST_MODIFY_CUSTOMER Recommended.

Modifies customer account information.

See "Modifying an Account" and "Moving a Balance Group from One Bill
Unit to Another".

PCM_OP_CUST_MODIFY_PAYINFO Limited

Modifies selected fields in the /payinfo object.

See "Customizing Customer Payment Information".

PCM_OP_CUST_MODIFY_PROFILE Limited

Modifies the specified /profile object.

See "Managing and Customizing Profiles".

PCM_OP_CUST_MODIFY_SERVICE Limited

Modifies the specified /service object.

See "Modifying Services".

PCM_OP_CUST_MODIFY_TOPUP Limited

Modifies /topup and /group/topup objects.

See "Setting Up Top-Up Information in an Account".

PCM_OP_CUST_PREP_CUSTOMER Recommended.

Validates customer information prior to account creation.

See "Creating Accounts".

PCM_OP_CUST_SET_ACCTINFO Limited

Initializes an /account object with generic fields passed in on the input
flist.

See "Customizing Account Numbers".

PCM_OP_CUST_SET_ASSOCIATED_BUS_PR
OFILE

Recommended.

Updates the /associated_bus_profile objects whenever invoice
business profiles are modified in the /config/business_profile object.

See "Assigning Bill Units to Business Profiles".

PCM_OP_CUST_SET_BAL_GRP Limited

Performs all necessary tasks to set up the /balance_group object and
create a link to the customer account.

See "Creating Balance Groups ".

PCM_OP_CUST_SET_BILLINFO Limited

Updates billing information in a bill unit for a specified account.

See "Updating Bill Units".

PCM_OP_CUST_SET_LOCALE Limited

Sets the Locale field of a specified /account object.

See "Customizing Locale Information".

Chapter 1
Customer FM Standard Opcodes

1-33

Table 1-20 (Cont.) Customer FM Standard Opcodes

Opcode Description

PCM_OP_CUST_SET_LOGIN Limited

Updates the service login.

See "Customizing Login Names".

PCM_OP_CUST_SET_NAMEINFO Limited

Sets account contact information such as customer name, address, and
phone number.

See "Managing Name and Address Information".

PCM_OP_CUST_SET_NOTE Recommended.

Creates a /note object or modifies an existing one. If you pass in a type-
only POID, a /note object is created. Otherwise, this opcode modifies
the /note object.

This opcode generates the following events:

• /event/customer/note/create
• /event/customer/note/modify

PCM_OP_CUST_SET_PASSWD Limited

Updates the service password for a customer.

See "Creating Passwords".

PCM_OP_CUST_SET_PAYINFO Limited

Adds or updates the payment information for a bill unit.

See "Customizing Customer Payment Information".

PCM_OP_CUST_SET_STATUS Limited

Sets the status of an /account, /billinfo, or /service object.

See "Changing the Status of an Account, Bill Unit, or Service".

PCM_OP_CUST_SET_SUBSCRIBER_PREFE
RENCES

Recommended.

Creates, modifies, or deletes a /profile/subscriber_preferences object
for a specified service or account.

See "Maintaining Subscriber's Charging Preferences Data".

PCM_OP_CUST_SET_TAXINFO Recommended.

Adds or updates the tax information in the account object.

See "Adding Tax Information to Accounts".

PCM_OP_CUST_SET_TOPUP Recommended.

Sets up standard top-ups and sponsored top-ups.

See "Setting Up Top-Up Information in an Account".

PCM_OP_CUST_UPDATE_CUSTOMER Recommended.

Updates several pieces of customer information in one operation.

See "Modifying an Account".

PCM_OP_CUST_UPDATE_SERVICES Recommended.

Modifies service information for multiple services in one operation.

See "Modifying Services".

PCM_OP_CUST_VALID_FLD Recommended.

Validates fields on the input flist based on the information contained in
the /config/fld_validate object.

Chapter 1
Customer FM Standard Opcodes

1-34

Table 1-20 (Cont.) Customer FM Standard Opcodes

Opcode Description

PCM_OP_CUST_VALIDATE_CUSTOMER Recommended.

Validates customer information during account creation. This opcode is
called by several different opcodes when account information is created
or changed.

See "Customer Management Opcode Workflows".

Customer Care FM Standard Opcodes
Use the customer care standard opcodes to manage customers. These opcodes are used by
the Billing Care and Customer Center applications.

Include the ops/custcare.h header file in all applications that call these opcodes.

Table 1-21 Device FM Policy Opcodes

Opcode Description

PCM_OP_CUSTCARE_MOVE_ACCT Recommended.

Moves an account into or out of an account hierarchy.

Deposit FM Policy Opcodes
Use the deposit policy opcodes to customize deposits.

See "About Deposits" in BRM Managing Customers.

Include the ops/deposit.h header file in all applications that call these opcodes.

Table 1-22 Deposit FM Policy Opcodes

Opcode Description

PCM_OP_DEPOSIT_POL_POST_ADD
_INTEREST

Recommended.

Enables you to add information to the calculated interest
amount and interest period.

See "Customizing the Interest Calculation".

PCM_OP_DEPOSIT_POL_PRE_ADD_I
NTEREST

Recommended.

Enables you to update the EFFECTIVE_T for interest
calculation. Any changes to the EFFECTIVE_T from this
opcode impacts the interest calculation such that the interest
is applied on per-day basis.

See "Customizing the Interest Calculation".

PCM_OP_DEPOSIT_POL_VALID_COL
LECT_PAYMENT

Recommended.

Enables you to validate the
PCM_OP_DEPOSIT_COLLECT_PAYMENT opcode.

See "Validating Deposit Payment Collections".

Chapter 1
Customer Care FM Standard Opcodes

1-35

Table 1-22 (Cont.) Deposit FM Policy Opcodes

Opcode Description

PCM_OP_DEPOSIT_POL_VALID_PUR
CHASE_DEPOSIT

Recommended.

Enables you to validate the deposit purchase.

See "Validating a Deposit Purchase".

PCM_OP_DEPOSIT_POL_VALID_REF
UND_REQUEST

Recommended.

Enables you to validate the deposit refund request.

See "Validating a Deposit Refund Request".

PCM_OP_DEPOSIT_POL_VALID_REL
EASE_DEPOSIT

Recommended.

Enables you to validate the deposit release.

See "Validating a Deposit Release".

PCM_OP_DEPOSIT_POL_VALID_REV
ERSE_DEPOSIT

Recommended.

Enables you to validate a deposit reversal.

See "Validating a Deposit Reversal".

PCM_OP_DEPOSIT_POL_VALID_SPE
CIFICATION

Recommended.

Enables you to validate the /deposit_specification object.

See "Validating Deposit Specifications

PCM_OP_DEPOSIT_POL_VALID_SPE
CIFICATION_PROFILE

Recommended.

Enables you to validate the input flist for
PCM_OP_DEPOSIT_CREATE_SPECIFICATION_PROFILE
opcode.

See "Validating Deposit Specification Profiles".

PCM_OP_DEPOSIT_POL_VALID_TRA
NSFER_DEPOSIT

Recommended.

Enables you to validate a deposit transfer.

See "Validating a Deposit Transfer".

PCM_OP_DEPOSIT_POL_VALID_UPD
ATE_DEPOSIT

Recommended.

Enables you to validate a request to update a deposit with
PCM_OP_DEPOSIT_UPDATE_DEPOSIT.

See "Validating Deposit Updates".

Deposit FM Standard Opcodes
The deposit opcodes manage customer deposits.

See "About Deposits" in BRM Managing Customers.

Include the ops/deposit.h header file in all applications that call these opcodes.

Table 1-23 Deposit FM Standard Opcodes

Opcode Description

PCM_OP_DEPOSIT_ADD_INTEREST Limited.

Calculates the interest amount for a given
purchased deposit and period. Used during deposit
release, reversal, transfer, update or refund, and
called by the pin_deposit_calc_interest utility.

See "Adding Interest to a Deposit".

Chapter 1
Deposit FM Standard Opcodes

1-36

Table 1-23 (Cont.) Deposit FM Standard Opcodes

Opcode Description

PCM_OP_DEPOSIT_COLLECT_PAYMENT Recommended.

Makes the up-front payment for a deposit.

See "Collecting Deposit Payments".

PCM_OP_DEPOSIT_CREATE_SPECIFICATION Recommended.

Creates the /deposit_specification object.

See "Creating Deposit Specifications".

PCM_OP_DEPOSIT_CREATE_SPECIFICATION_
PROFILE

Recommended.

Creates the /config/deposit_spec_profile object.

See "Creating Deposit Specification Profiles".

PCM_OP_DEPOSIT_DELETE_DRAFT Recommended.

Deletes a /deposit_specification object that is in
draft state.

See "Deleting Draft Deposit Specifications".

PCM_OP_DEPOSIT_GET_DEPOSITS Limited.

Get the purchased deposits of the given account,
service, or bill unit from the /purchased_deposit
object.

See "Getting Deposits".

PCM_OP_DEPOSIT_GET_REFUND_REQUEST Recommended.

Gets all deposit refund requests.

See "Getting Refund Requests".

PCM_OP_DEPOSIT_GET_SPECIFICATION Recommended.

Gets the /deposit_specification object.

See "Getting Deposit Specifications".

PCM_OP_DEPOSIT_GET_SPECIFICATION_PRO
FILE

Recommended.

Gets the /config/deposit_spec_profile objects.

See "Getting Deposit Specification Profiles".

PCM_OP_DEPOSIT_GET_TRANSACTIONS Recommended.

Gets the transaction details of a purchased
deposit. It returns the complete details of the
events.

See "Retrieving Transaction Details of a Deposit".

PCM_OP_DEPOSIT_MODIFY_SPECIFICATION Recommended.

Modifies the /deposit_specification object.

See "Modifying Deposit Specifications".

PCM_OP_DEPOSIT_MODIFY_SPECIFICATION_
PROFILE

Recommended.

Updates the /config/deposit_spec_profile object.

See "Modifying Deposit Specification Profiles".

Chapter 1
Deposit FM Standard Opcodes

1-37

Table 1-23 (Cont.) Deposit FM Standard Opcodes

Opcode Description

PCM_OP_DEPOSIT_PURCHASE_DEPOSIT Recommended.

Creates a deposit for a given customer. This
opcode triggers a deposit charge event and deposit
charge item, creates the /purchased_deposit
object, and makes the up-front payment for the
deposit.

See "Purchasing Deposits".

PCM_OP_DEPOSIT_REFUND_REQUEST Recommended.

Creates a deposit refund request.

See "Requesting Deposit Refunds".

PCM_OP_DEPOSIT_RELEASE_DEPOSIT Recommended.

Releases an existing deposit as follows, depending
on the request type:

• Prepayment : Creates /item/payment
immediately.

• Refund Request: Creates /
deposit_refund_request, which can then be
approved if needed. Once approved, the
opcode creates /item/payment and /item/
refund.

• Zeroize: Settles dues and raises a refund
request for the remaining amount. Creates /
item/payment immediately, makes a call to
PCM_OP_BILL_MAKE_BILL_NOW to bill the
pending items, allocates the /item/payment to
the bill items, and refunds the remaining
balance to the customer.

See "Releasing Deposits".

PCM_OP_DEPOSIT_REVERSE_DEPOSIT Recommended.

Reverses deposits by opening the /item/payment
made against /item/deposit_charge.

See "Reversing Deposits".

PCM_OP_DEPOSIT_TRANSFER_DEPOSIT Recommended.

Transfers deposit from one account to another
account.

See "Transferring Deposits".

PCM_OP_DEPOSIT_TRIGGER_DEPOSIT Limited.

Creates a /purchased_deposit object when any
charge offers with event type of /event/billing/
product/fee/purchase/deposit are created as part
of a deal purchase.

See "Triggering Deposits".

PCM_OP_DEPOSIT_UPDATE_DEPOSIT Recommended.

Increases or decreases the amount of an already
purchased deposit. This opcode reverses the
existing deposit charge item, creates a new deposit
charge for the given amount, and updates the
same purchased deposit object.

See "Updating Deposits".

Chapter 1
Deposit FM Standard Opcodes

1-38

Table 1-23 (Cont.) Deposit FM Standard Opcodes

Opcode Description

PCM_OP_DEPOSIT_UPDATE_DEPOSIT_RECEI
VED

Recommended.

Called through event notification for /event/billing/
item/transfer to update the received amount and
balance amount, and to map /event/billing/item/
transfer to this PIN_FLD_EVENTS array.

See "Updating Received Deposits".

PCM_OP_DEPOSIT_UPDATE_REFUND_REQUE
ST

Recommended.

Updates the deposit refund review request.

See "Updating Refund Requests".

Device FM Policy Opcodes
Use the device policy opcodes to customize device management.

See the discussion about device management in BRM Developer's Guide.

Include the ops/device.h header file in all applications that call these opcodes.

Table 1-24 Device FM Policy Opcodes

Opcode Description

PCM_OP_DEVICE_POL_ASSOCIATE Recommended.

Enables you to customize validation during device-to-service association
and disassociation.

See "Associating /service and /device Objects".

PCM_OP_DEVICE_POL_CREATE Recommended.

Enables you to customize validation during device creation.

See "Creating /device Objects".

PCM_OP_DEVICE_POL_DELETE Recommended.

Enables you to customize validation during device deletion.

See "Deleting /device Objects".

PCM_OP_DEVICE_POL_SET_ATTR Recommended.

Enables you to customize validation of device attribute changes.

See "Changing the Attributes of /device Objects".

PCM_OP_DEVICE_POL_SET_STATE Recommended.

Enables you to customize validation during device state changes.

See "Changing the State of a /device Object".

Device FM Standard Opcodes
The device standard opcodes run device management processes.

See the discussion about device management in BRM Developer's Guide.

Include the ops/device.h header file in all applications that call these opcodes.

Chapter 1
Device FM Policy Opcodes

1-39

Table 1-25 Device FM Standard Opcodes

Opcode Description

PCM_OP_DEVICE_ASSOCIATE Recommended.

Associates or disassociates /service objects with /device objects.

See "Associating /service and /device Objects".

PCM_OP_DEVICE_CREATE Recommended.

Creates a /device object of the type specified in the input flist.

See "Creating /device Objects".

PCM_OP_DEVICE_DELETE Recommended.

Deletes a /device object.

See "Deleting /device Objects".

PCM_OP_DEVICE_SET_ATTR Recommended.

Changes the attributes for a /device object.

See "Changing the Attributes of /device Objects".

PCM_OP_DEVICE_SET_STATE Recommended.

Sets the state for a /device object.

See "Changing the State of a /device Object".

PCM_OP_DEVICE_UPDATE Recommended.

Changes any combination of attribute values tate of a device in a single
transaction.

See "Changing Device Attributes and States".

Email Data Manager Opcodes
The Email Data Manager opcodes are base opcodes. They provide a different implementation
from the standard BRM base opcodes. Unlike FM opcodes, which belong to the Connection
Manager, the Email DM opcodes are part of the Email DM.

Include the ops/base.h header file in all applications that call these opcodes.

Table 1-26 Email Data Manager Base Opcodes

Email Data Manager base opcode Description

PCM_OP_CREATE_OBJ Recommended.

Provides a platform-independent interface to dm_email for sending one
or more email attachments.

See "Sending the Introductory Message".

PCM_OP_DELIVERY_MAIL_SENDMSGS Recommended.

Queries the pin.conf file for the location of the Email DM, and ensures
the data in the PIN_FLD_MESSAGES array is valid.

See "Sending the Introductory Message".

General Ledger FM Policy Opcodes
Use the general ledger policy opcodes to customize the data in exported G/L reports.

Chapter 1
Email Data Manager Opcodes

1-40

See BRM Collecting General Ledger Data for more information.

Include the ops/gl.h header file in all applications that call these opcodes.

Table 1-27 General Ledger FM Policy Opcodes

Opcode Description

PCM_OP_GL_POL_EXPORT_GL Recommended.

Enables you to customize data in the exported G/L reports.

See "Customizing G/L Reports for Export".

PCM_OP_GL_POL_PRE_UPDATE_JOURNAL Recommended.

Enables you to customize general ledger data before it is recorded into /
journal objects.

See "Customizing G/L Data Stored in /journal Objects".

General Ledger FM Standard Opcode
The general ledger standard opcodes calculate account information and create /ledger_report
objects.

See BRM Collecting General Ledger Data for more information.

Include the ops/gl.h header file in all applications that call these opcodes.

Table 1-28 General Ledger FM Standard Opcode

Opcode Description

PCM_OP_GL_LEDGER_REPORT Recommended.

Creates /ledger_report objects, which store general ledger reports. .

See "How BRM Stores General Ledger Reports".

GPRS Manager 3.0 FM Policy Opcode
Use the GPRS policy opcodes to customize the GPRS service extensions.

See the discussion on GPRS Manager in BRM Telco Integration.

Include the ops/gprs.h header file in all applications that call these opcodes.

Table 1-29 GPRS Manager 3.0 FM Policy Opcode

Opcode Description

PCM_OP_GPRS_POL_APPLY_PARAMETER Recommended.

Enables you to customize GPRS service extensions.

See "Updating Custom GPRS Service Fields".

GPRS Manager 3.0 FM Standard Opcode
The GPRS standard opcodes add GPRS-specific service extensions.

Chapter 1
General Ledger FM Standard Opcode

1-41

See the discussion on GPRS Manager in BRM Telco Integration.

Include the ops/gprs.h header file in all applications that call these opcodes.

Table 1-30 GPRS Manager 3.0 FM Standard Opcode

Opcode Description

PCM_OP_GPRS_APPLY_PARAMETER Recommended.

Reads the service extensions from the input flist and adds
corresponding GPRS service values.

See "Updating Custom GPRS Service Fields".

Group FM Standard Opcodes
The group standard opcodes create and delete account groups and account group members.

To customize groups, use the billing opcodes, such as PCM_OP_BILL_GROUP_CREATE. The
billing opcodes call the group opcodes.

For information about groups, see "Managing Account and Bill Unit Hierarchies" in BRM
Managing Customers.

Include the ops/group.h header file in all applications that call these opcodes.

Table 1-31 Group FM Standard Opcodes

Opcode Description

PCM_OP_GROUP_ADD_MEMBER Limited

Adds members to a group.

See "Adding Members to Groups".

PCM_OP_GROUP_CREATE_GROUP Limited

Creates a new group object.

See "Creating Groups".

PCM_OP_GROUP_DELETE_GROUP Limited

Deletes an existing /group object from the database.

See"Deleting Groups" .

PCM_OP_GROUP_DELETE_MEMBER Limited

Deletes members from a group.

See "Deleting Members from Groups".

PCM_OP_GROUP_SET_PARENT Limited

Sets the parent object of a group.

See "Setting a Group Parent".

PCM_OP_GROUP_UPDATE_INHERITED Limited

Updates the inheritance fields of an existing group.

See "Updating Inheritance Fields in Groups".

GSM Manager FM Policy Opcode
Use the GSM Manager policy opcode to add custom service attributes.

Chapter 1
Group FM Standard Opcodes

1-42

See the discussion on GSM Manager in BRM Telco Integration.

Include the ops/gsm.h header file in all applications that call this opcode.

Table 1-32 GSM Manager FM Policy Opcode

Opcode Description

PCM_OP_GSM_POL_APPLY_PARAMETER Recommended.

Enables you to customize GSM service extensions.

See "Updating Custom GSM Service Fields".

GSM Manager FM Standard Opcode
The GSM Manager standard opcode performs telco provisioning functions.

See the discussion on GSM Manager in BRM Telco Integration.

Include the ops/tcf.h header file in all applications that call these opcodes.

Table 1-33 GSM Manager FM Standard Opcode

Opcode Description

PCM_OP_GSM_APPLY_PARAMETER Recommended.

Reads the service extensions from the input flist and adds corresponding
GSM service values.

See "Updating Custom GSM Service Fields".

Installment FM Policy Opcodes
Use the installment policy opcodes to customize installments.

See "About Installments" in BRM Configuring and Collecting Payments.

Include the ops/installment.h header file in all applications that call these opcodes.

Table 1-34 Installment FM Policy Opcodes

Opcode Description

PCM_OP_INSTALLMENT_POL_GET_SCHED
ULE_SPEC

Recommended.

Enables you to customize getting installment schedule specifications.

See "Getting Installment Schedule Specifications".

PCM_OP_INSTALLMENT_POL_PREP_INSTAL
LMENT

Recommended.

Enables you to customize installment fields.

See "Preparing Installments".

PCM_OP_INSTALLMENT_POL_PREP_SCHED
ULE_SPEC

Recommended.

Enables you to customize installment schedule specification creation
fields.

See "Preparing Installment Schedule Specifications".

Chapter 1
GSM Manager FM Standard Opcode

1-43

Table 1-34 (Cont.) Installment FM Policy Opcodes

Opcode Description

PCM_OP_INSTALLMENT_POL_VALID_INSTAL
LMENT

Recommended.

Enables you to validate the information in an installment.

See "Validating Installments".

PCM_OP_INSTALLMENT_POL_VALID_SCHE
DULE_SPEC

Recommended.

Enables you to validats the installment schedule specification information
in the /config/installment/schedule_spec object.

See "Validating Installment Schedule Specifications".

Installment FM Standard Opcodes
The installment opcodes manage installment processes.

See "About Installments" in BRM Configuring and Collecting Payments.

Include the ops/installment.h header file in all applications that call these opcodes.

Table 1-35 Installment FM Standard Opcodes

Opcode Description

PCM_OP_INSTALLMENT_APPLY_CHARGE Recommended.

Applies the installment amount on the effective date.

See "Applying Installment Charge".

PCM_OP_INSTALLMENT_CANCEL_INSTALLM
ENT

Recommended.

Cancels the remaining installments and charges the customer for the
total amount due.

See "Canceling Installments".

PCM_OP_INSTALLMENT_CREATE_INSTALLM
ENT

Recommended.

Create an installment schedule for a customer.

See "Creating Installments".

PCM_OP_INSTALLMENT_CREATE_SCHEDUL
E_SPEC

Recommended.

Creates an installment schedule specification, including minimum
installment amount, the maximum number of unequal installments,
unequal installment frequency, installment type, and eligibility criteria.

See "Creating Installment Schedule Specifications".

PCM_OP_INSTALLMENT_GET_INSTALLMENT
S

Recommended.

Retrieves information about all the installments associated with an
account and service.

See "Retrieving Installments".

PCM_OP_INSTALLMENT_GET_SCHEDULE_S
PEC

Recommended.

Retrieves information about the installment schedule specification.

See "Retrieving Installment Schedule Specifications".

PCM_OP_INSTALLMENT_MODIFY_SCHEDUL
E_SPEC

Recommended.

Modifies an existing installment schedule specification object.

See "Modifying Installment Schedule Specifications".

Chapter 1
Installment FM Standard Opcodes

1-44

Table 1-35 (Cont.) Installment FM Standard Opcodes

Opcode Description

PCM_OP_INSTALLMENT_PROPOSAL Recommended.

Prepares an installment proposal based on the installment amount, term
(the number of months), and start date.

See "Installment Proposal".

PCM_OP_INSTALLMENT_UPDATE_INSTALLM
ENT

Recommended.

Updates the /installment object for open installments.

See "Updating Installments".

PCM_OP_INSTALLMENT_UPDATE_INSTALLM
ENT_STATUS

Recommended.

Changes the status of an installment after a payment is allocated.

See "Updating Installment Status".

Invoicing FM Policy Opcodes
The invoicing standard opcodes generate invoices in different formats.

For more information, see BRM Designing and Generating Invoices.

Include the ops/inv.h header file in all applications that call these opcodes.

Table 1-36 Invoicing FM Policy Opcodes

Opcode Description

PCM_OP_INV_POL_FORMAT_INVOICE Recommended.

Specifies the format in which to store invoices.

See "How Invoices Are Formatted".

PCM_OP_INV_POL_FORMAT_INVOICE_DOC1 Limited

Enables you to customize invoices that use the DOC1 format.

See "Customizing the Format for DOC1 Invoices".

PCM_OP_INV_POL_FORMAT_INVOICE_HTML Limited

Enables you to customize HTML invoices.

See "Customizing the Format for HTML Invoices".

PCM_OP_INV_POL_FORMAT_INVOICE_XSLT Limited

Enables you to customize invoices that use an XSL style sheet.

See "Customizing the Invoice Format by Using an XSL Style
Sheet".

PCM_OP_INV_POL_FORMAT_INVOICE_XML Limited

Enables you to customize XML invoices.

See "Customizing the Format for XML Invoices".

PCM_OP_INV_POL_FORMAT_VIEW_INVOICE Recommended.

Enables you to generate a custom invoice.

See "Displaying an Invoice On Demand".

Chapter 1
Invoicing FM Policy Opcodes

1-45

Table 1-36 (Cont.) Invoicing FM Policy Opcodes

Opcode Description

PCM_OP_INV_POL_POST_MAKE_INVOICE Recommended.

Enables you to capture and return errors that were created due
to custom invoicing operations defined in
PCM_OP_INV_POL_SELECT.

See "Configuring Error Checking for Customized Invoicing".

PCM_OP_INV_POL_PREP_INVOICE Recommended.

Enables you to customize invoice formatting prior to formatting
and storing.

See "Adding Soft Descriptors to Invoices".

PCM_OP_INV_POL_SELECT Recommended.

Enables you to write custom search templates for items and
events to be displayed on invoices.

See "Customizing Invoice Search Operations" and "Configuring
Error Checking for Customized Invoicing".

Invoicing FM Standard Opcodes
The invoicing standard opcodes create and format invoices.

For more information, see BRM Designing and Generating Invoices.

Include the ops/inv.h header file in all applications that call these opcodes.

Table 1-37 Invoicing FM Standard Opcodes

Opcode Description

PCM_OP_INV_DECODE_INVOICE_DATA Recommended.

Decodes the value of the PIN_FLD_INVOICE_DATA field in the /event
object, which contains cached items and events to be displayed on the
invoice.

See "Decoding Cached Event Data for Invoicing".

PCM_OP_INV_FORMAT_INVOICE Limited

Performs XSL Transformation on an invoice.

See "How Invoices Are Formatted".

PCM_OP_INV_MAKE_INVOICE Recommended.

Creates an invoice for a specified regular or corrective bill object.

See "How Invoices Are Generated".

PCM_OP_INV_VIEW_INVOICE Recommended.

Retrieves an invoice from the database.

See "Displaying Invoices".

IP Address Manager APN FM Policy Opcodes
Use the IP Address Manager APN policy opcodes to perform various checks and maintenance
on the APN device.

Chapter 1
Invoicing FM Standard Opcodes

1-46

See the discussion on IP Address Manager in BRM Telco Integration.

Include the ops/apn.h header file in all applications that call these opcodes.

Table 1-38 IP Address Manager APN FM Policy Opcodes

Opcode Description

PCM_OP_APN_POL_DEVICE_ASSOCIATE Recommended.

Enables you to customize verification checks on the APN device and
the account or service being associated.

See "Associating APN with an Account or Service".

PCM_OP_APN_POL_DEVICE_CREATE Recommended.

Enables you to customize verification checks during APN device
creation.

See "Creating an APN Device".

PCM_OP_APN_POL_DEVICE_DELETE Recommended.

Enables you to customize verification checks during APN device
deletion.

See "Deleting an APN Device".

PCM_OP_APN_POL_DEVICE_SET_ATTR Recommended.

Enables you to customize how to verify that an APN device is in a
state to accept changes.

See "Changing the APN Device State".

PCM_OP_APN_POL_DEVICE_SET_STATE Recommended.

Enables you to customize how to verify that an APN device is eligible
to accept a device state change.

See "Changing the APN Device State".

IP Address Manager FM Policy Opcodes
Use the IP Address Manager policy opcodes to perform various checks and maintain the state
of the IP address device.

See the discussion on IP Address Manager in BRM Telco Integration.

Include the ops/ip.h header file in all applications that call these opcodes.

Table 1-39 IP Address Manager FM Policy Opcodes

Opcode Description

PCM_OP_IP_POL_DEVICE_ASSOCIATE Recommended.

Enables you to customize how to verify that an IP address device is in a
state to accept changes.

See "Associating an IP Address with Accounts or Services".

PCM_OP_IP_POL_DEVICE_CREATE Recommended.

Enables you to customize verification checks during IP address device
creation.

See "Creating a Single IP Address Device" and "Creating a Range of IP
Address Devices".

Chapter 1
IP Address Manager FM Policy Opcodes

1-47

Table 1-39 (Cont.) IP Address Manager FM Policy Opcodes

Opcode Description

PCM_OP_IP_POL_DEVICE_DELETE Recommended.

Enables you to customize verification checks during IP address device
deletion.

See "Deleting an IP Address Device".

PCM_OP_IP_POL_DEVICE_SET_ATTR Recommended.

Enables you to customize how to verify that an IP address device is in a
state to accept changes.

See "Modifying an IP Address Device".

PCM_OP_IP_POL_DEVICE_SET_STATE Recommended.

Enables you to customize how to verify that an IP address device is
eligible to accept a device state change.

See "Changing IP Device States from Unallocated to Returned".

IP Address Manager FM Standard Opcodes
The IP Address Manager standard opcodes create, delete, and maintain the attributes and
state of one or more IP address devices.

See the discussion on IP Address Manager in BRM Telco Integration.

Include the ops/ip.h header file in all applications that call these opcodes.

Table 1-40 IP Address Manager FM Standard Opcodes

Opcode Description

PCM_OP_IP_DEVICE_CREATE Recommended.

Creates one or more IP address devices.

See "Creating a Single IP Address Device" and "Creating a Range of IP Address
Devices".

PCM_OP_IP_DEVICE_DELETE Recommended.

Deletes one or more IP address devices.

See "Deleting an IP Address Device".

PCM_OP_IP_DEVICE_SET_ATTR Recommended.

Sets the attributes for one or more IP address devices.

See "Modifying an IP Address Device".

PCM_OP_IP_DEVICE_SET_STATE Recommended.

Sets the device state for one or more IP devices.

See "Changing IP Device States from Unallocated to Returned".

Job FM Standard Opcodes
Use the Job standard opcodes to run BRM applications and business operations jobs.

Include the ops/job.h header file in all applications that call these opcodes.

Chapter 1
IP Address Manager FM Standard Opcodes

1-48

Table 1-41 Job FM Standard Opcodes

Opcode Description

PCM_OP_JOB_EXECUTE Recommended

Runs business operations jobs or BRM applications.

See the following:

• "How Business Operations Center Runs Jobs" in BRM System
Administrator's Guide.

• "Running Business Operation Jobs"
• "Running BRM Applications"

PCM_OP_JOB_PROCESS_TEMPLATE Recommended

Creates, modifies, or deletes /job_template objects.

See "Managing Business Operations Job Templates".

LDAP Base Opcodes
The LDAP opcodes are the base opcodes as implemented by LDAP Manager. These Base
opcodes may be used by any of the opcodes in the BRM system to perform basic operations.
Unlike all other opcodes, which belong to the Connection Manager, the base opcodes are part
of the Data Manager.

For more information, see BRM LDAP Manager and "Base Opcodes".

Include the ops/base.h header file in all applications that call these opcodes.

Table 1-42 LDAP Base Opcodes

Opcode Description

PCM_OP_CREATE_OBJ Recommended.

Creates new directory server entries or reuses entries in the directory server for
replication purposes.

PCM_OP_DELETE_FLDS Recommended.

Deletes values and attributes in a directory server entry.

This opcode performs the delete operation by using the LDAP modify operation, which
imposes delete semantics.

PCM_OP_DELETE_OBJ Recommended.

Deletes an entire entry from the directory server.

Invokes the delete entry semantics of the LDAP modify operation in the directory server.

PCM_OP_READ_FLDS Recommended.

Reads attributes from a directory server entry from the database using the LDAP search
operation.

PCM_OP_READ_OBJ Recommended.

Reads an entire object from the database using the LDAP search operation.

PCM_OP_SEARCH Recommended.

Searches the directory server based on a specified search criteria.

Only those objects and attributes that you define in the mapping file can be returned by
the LDAP Data Manager in the output flist.

Chapter 1
LDAP Base Opcodes

1-49

Table 1-42 (Cont.) LDAP Base Opcodes

Opcode Description

PCM_OP_TEST_LOOPBACK Recommended.

Tests directory server connections.

Verifies that the LDAP Data Manager and the directory server daemon/service
processes are running and communicating with each other.

PCM_OP_WRITE_FLDS Recommended.

Updates attributes in a directory server entry or renames entries.

This opcodes performs the following operations:

• Updates attributes by using the LDAP modify operation.
• Uses the replace semantics of the LDAP modify operation.
• Renames directory server entries

Loan FM Policy Opcodes
Use the loan policy opcodes to customize loan eligibility, granting, recovery, and reset fields in
loan profiles.

See "Configuring Loans" in BRM Configuring and Collecting Payments.

Include the ops/loan.h header file in all applications that call these opcodes.

Table 1-43 Loan FM Policy Opcodes

Opcode Description

PCM_OP_LOAN_POL_ELIGIBILITY Recommended.

Enables you to customize the eligibility verification for loans.

See "Customizing Loan Eligibility Checks."

PCM_OP_LOAN_POL_PRE_APPLY_LOAN Recommended.

Enables you to customize the loan grant process.

See "Customizing Loan Grants."

PCM_OP_LOAN_POL_PRE_RECOVER_LOAN Recommended.

Enables you to customize the loan recovery process.

See "Customizing Loan Recovery."

PCM_OP_LOAN_POL_RESET_CYCLE Recommended

Enables you to reset fields in the /profile/loan object.

See "Resetting a Loan Cycle and Other Loan Profile Fields".

Loan FM Standard Opcodes
The loan standard opcodes verify loan eligibility, apply loans, retrieve loans, and manage the
loan cycle.

See the "Configuring Loans" in BRM Configuring and Collecting Payments.

Include the ops/loan.h header file in all applications that call these opcodes.

Chapter 1
Loan FM Policy Opcodes

1-50

Table 1-44 Loan FM Standard Opcodes

Opcode Description

PCM_OP_LOAN_ELIGIBILITY Recommended.

Checks whether a customer is eligible for a requested loan.

See "Checking a Customer's Eligibility for a Loan".

PCM_OP_LOAN_APPLY_LOAN Recommended.

Grants a loan to an eligible customer.

See "Granting a Loan".

PCM_OP_LOAN_GET_LOAN Recommended.

Retrieves the list of loans for an account.

See "Retrieving Loan Information".

PCM_OP_LOAN_POL_RESET_CYCLE Recommended

Resets the loan cycle date.

See "Resetting a Loan Cycle and Other Loan Profile Fields".

Monitor FM Standard Opcodes
The monitor standard opcodes enable your customers to monitor the balance of a group of
accounts in near real time.

See "Managing Balance Monitoring Groups" in BRM Managing Customers.

Include the ops/monitor.h header file in all applications that call these opcodes.

Table 1-45 Monitor FM Standard Opcodes

Opcode Description

PCM_OP_MONITOR_ACCOUNT_HIERARCHY Recommended.

Adds members to hierarchy-type balance monitors when an account
hierarchy changes.

See the following:

• Adding Members to Newly Created Sharing Groups Automatically
• Adding Members to Hierarchy-Type Sharing Groups Automatically

PCM_OP_MONITOR_BILLING_HIERARCHY Recommended.

Adds members to paying responsibility-type monitors when changes
occur in an account hierarchy.

See the following:

• Adding Members to Newly Created Sharing Groups Automatically
• Adding Members to Paying Responsibility-Type Sharing Groups

Automatically

PCM_OP_MONITOR_HIERARCHY_CLEANUP Recommended.

Removes members from hierarchy-type or paying responsibility-type
monitors when an account hierarchy changes.

See the following:

• Adding Members to Newly Created Sharing Groups Automatically
• Removing Members from Balance Monitor Groups

Chapter 1
Monitor FM Standard Opcodes

1-51

Table 1-45 (Cont.) Monitor FM Standard Opcodes

Opcode Description

PCM_OP_MONITOR_PROCESS_BILLING_MO
NITORS

Recommended.

Adds members to payment responsibility-type balance monitors.

See the following:

• Adding Members to Newly Created Sharing Groups Automatically
• Adding Members to Payment Responsibility-Type Balance Monitors

PCM_OP_MONITOR_PROCESS_HIERARCHY
_MONITORS

Recommended.

Adds members to hierarchy-type balance monitors.

See the following:

• Adding Members to Newly Created Sharing Groups Automatically
• Adding Members to Hierarchy-Type Balance Monitors

PCM_OP_MONITOR_PROCESS_SERVICE_M
ONITORS

Recommended.

Adds the following members to the balance monitor: the parent
subscription service and all member services.

See "Adding Members to Newly Created Sharing Groups Automatically".

PCM_OP_MONITOR_SERVICE_HIERARCHY Recommended.

Adds members to subscription-type monitors when a subscription group
changes.

See "Updating Subscription-Type Monitors Automatically".

PCM_OP_MONITOR_SETUP_MEMBERS Recommended.

Automatically adds members to a balance monitor when it is first created.
This opcode is a wrapper opcode that, according to monitor group type,
calls other standard monitor opcodes.

See "Adding Members to Newly Created Sharing Groups Automatically".

PCM_OP_MONITOR_UPDATE_MONITORS Recommended.

Generates these events:

• /event/billing/monitor/update when an /ordered_balgrp object is
created or modified.

• /event/billing/monitor/delete when an /ordered_balgrp object is
deleted.

See "Adding a Monitor Group to a Member's /ordered_balgrp Object".

Notification FM Standard Opcodes
Use the notification standard opcodes to manage messages that are sent to your customers
through external notification applications.

See "Sending Messages to Customers through External Notification Applications" in BRM
Managing Customers.

Include the ops/notification.h header file in all applications that call these opcodes.

Chapter 1
Notification FM Standard Opcodes

1-52

Table 1-46 Notification FM Standard Opcodes

Opcode Description

PCM_OP_NOTIFICATION_CALC_DELIVE
RY_TIME

Recommended.

Calculates the customer's message delivery time.

See "Calculating the Notification Delivery Time".

PCM_OP_NOTIFICATION_CREATE_SPE
CIFICATION

Recommended.

Creates a notification specification.

See "Creating Notification Specifications".

PCM_OP_NOTIFICATION_GET_LASTNO
TIFY_TSTAMP

Recommended.

Retrieves a customer's message delivery time range and offset value.

See "Retrieving Last Notification Time and Offset".

PCM_OP_NOTIFICATION_GET_SPECIFI
CATION

Recommended.

Retrieves the specified notification specification.

See "Retrieving Notification Specifications".

PCM_OP_NOTIFICATION_MODIFY_SPEC
IFICATION

Recommended.

Modifies the specified notification specification.

See "Modifying Notification Specifications".

PCM_OP_NOTIFICATION_PROCESS_NO
TIFICATION

Recommended.

Manages in-advance and post-expiration notifications.

See "Managing In-Advance and Post-Expiration Notifications".

PCM_OP_NOTIFICATION_VERIFY_PUBLI
SH_REQUIRED

Recommended.

Verifies a customer's opt-in or opt-out preferences for receiving notification
messages.

See "Verifying Customer Opt-In Preferences".

Notification FM Policy Opcodes
Use the notification policy opcodes to customize messages that are sent to your customers
through external notification applications.

See "Sending Messages to Customers through External Notification Applications" in BRM
Managing Customers.

Include the ops/notification.h header file in all applications that call these opcodes.

Table 1-47 Notification FM Standard Opcodes

Opcode Description

PCM_OP_NOTIFICATION_POL_GET_SPE
CIFICATION

Recommended.

Enables you to customize the notification specification retrieval process.

See "Customizing Notification Retrieval".

PCM_OP_NOTIFICATION_POL_PREP_SP
ECIFICATION

Recommended.

Enables you to customize notification specifications.

See "Preparing Notification Specifications".

Chapter 1
Notification FM Policy Opcodes

1-53

Table 1-47 (Cont.) Notification FM Standard Opcodes

Opcode Description

PCM_OP_NOTIFICATION_POL_VALID_S
PECIFICATION

Recommended.

Enables you to customize validation of the notification specifications.

See "Validating Notification Specifications".

Number Manager FM Policy Opcodes
Use the Number Manager policy opcodes to customize Number Manager.

See the discussion on Number Manager in BRM Telco Integration.

Include the ops/num.h header file in all applications that call these opcodes.

Table 1-48 Number Manager FM Policy Opcodes

Opcode Description

PCM_OP_NUM_POL_CANONICALIZE Recommended.

Enables you to customize number normalization when receiving
numbers from applications and outputting numbers to other opcodes
or applications.

See "Customizing Number Normalization".

PCM_OP_NUM_POL_DEVICE_ASSOCIATE Recommended.

Enables you to customize the rules for associating or disassociate a
number and a service.

See "Customizing How Numbers Are Associated with Services".

PCM_OP_NUM_POL_DEVICE_CREATE Recommended.

Enables you to customize number validation to make sure the
number is unique in the database.

See "Customizing Telephone Number Attributes".

PCM_OP_NUM_POL_DEVICE_DELETE Recommended.

Enables you to customize number deletion.

See "Deleting a Number".

PCM_OP_NUM_POL_DEVICE_SET_ATTR Recommended.

Enables you to customize which digits in a number can be changed.

See "Customizing How a Number Can Be Changed".

Number Manager FM Standard Opcodes
The Number Manager standard opcodes create and modify blocks of numbers, manage
number quarantine, and manage number portability.

See the discussion on Number Manager in BRM Telco Integration.

Include the ops/num.h header file in all applications that call these opcodes.

Chapter 1
Number Manager FM Policy Opcodes

1-54

Table 1-49 Number Manager FM Standard Opcodes

Opcode Description

PCM_OP_NUM_CREATE_BLOCK Recommended.

Creates a block of telephone numbers.

See "Creating Blocks of Numbers".

PCM_OP_NUM_MODIFY_BLOCK Recommended.

Modifies a block of numbers, for example, changes the block name or
numbers.

See "Modifying Blocks of Numbers".

PCM_OP_NUM_PORT_IN Limited

Creates a number device by using the provided number.

See "Managing Number Portability".

PCM_OP_NUM_PORT_OUT Limited

Sets the status of the provided number device to quarantine_port_out.

See "Managing Number Portability".

PCM_OP_NUM_QUARANTINE Recommended.

Either creates or deletes a /schedule/device object to manage the telephone
number quarantine.

See "Managing Number Quarantine".

PCM_OP_NUM_SPLIT_BLOCK Recommended.

Splits an existing block of numbers into two or more blocks.

See "Splitting Blocks of Numbers".

Offer Profile FM Standard Opcode
The offer profile standard opcodes create and manage the offer profile.

See the discussion on managing offer profiles with offer profile opcodes in BRM Setting Up
Pricing and Rating.

Include the ops/offer_profile.h header file in all applications that call these opcodes.

Table 1-50 Offer Profile FM Standard Opcode

Opcode Description

PCM_OP_OFFER_PROFILE_SET_OFFER_PROFIL
E

Limited

Creates, modifies, or deletes the offer profiles (/offer_profile
objects).

Order FM Policy Opcodes
Use the order policy opcodes to customize order management.

See the discussion on managing orders in BRM Developer's Guide.

Include the ops/device.h header file in all applications that call these opcodes.

Chapter 1
Offer Profile FM Standard Opcode

1-55

Table 1-51 Order FM Policy Opcodes

Opcode Description

PCM_OP_ORDER_POL_ASSOCIATE Recommended.

Enables you to customize validation during order association and
disassociation.

PCM_OP_ORDER_POL_CREATE Recommended.

Enables you to customize validation during order creation.

PCM_OP_ORDER_POL_DELETE Recommended.

Enables you to customize validation during order deletion.

PCM_OP_ORDER_POL_PROCESS Recommended.

Enables you to customize processing of the order response.

This opcode is called by PCM_OP_ORDER_PROCESS.

PCM_OP_ORDER_POL_SET_ATTR Recommended.

Enables you to customize how to validate order attribute changes.

This opcode is called by PCM_OP_ORDER_SET_ATTR.

PCM_OP_ORDER_POL_SET_STATE Recommended.

Enables you to customize order state changes.

This opcode is called by PCM_OP_ORDER_SET_STATE. Policy opcodes
called during state changes are specified in the /config/order_state object.

Order FM Standard Opcodes
The order standard opcodes create, delete, and update /order objects.

See the discussion on orders in BRM Developer's Guide.

Include the ops/order.h header file in all applications that call these opcodes.

Table 1-52 Order FM Standard Opcodes

Opcode Description

PCM_OP_ORDER_ASSOCIATE Recommended.

Associates or disassociates an order with a master /order object.

PCM_OP_ORDER_CREATE Recommended.

Creates an /order object.

PCM_OP_ORDER_DELETE Recommended.

Deletes an /order object.

PCM_OP_ORDER_PROCESS Recommended.

Processes the response of the order.

PCM_OP_ORDER_SET_ATTR Limited

Sets attribute values for an /order object.

PCM_OP_ORDER_SET_STATE Limited

Sets the state for an /order object.

PCM_OP_ORDER_UPDATE Recommended.

Updates the state or attributes for an /order object.

Chapter 1
Order FM Standard Opcodes

1-56

Payment FM Policy Opcodes
Use the payment policy opcodes to manipulate A/R functions and collect payments from
customers.

See BRM Configuring and Collecting Payments for more information.

Include the ops/pymt.h header file in all applications that call these opcodes.

Table 1-53 Payment FM Policy Opcodes

Opcode Description

PCM_OP_PYMT_POL_APPLY_FEE Recommended.

Enables you to customize payment fees by preprocessing, filtering, and
extending the information available in failed payment fee events.

See "Applying Payment Fees " and "Customizing Payment Fees" for
more information.

PCM_OP_PYMT_POL_CHARGE Limited.

Enables you to map the online and offline payment result to the payment
status and the reason IDs defined in the /strings object.

See "BRM-Initiated Payment Processing" for more information.

PCM_OP_PYMT_POL_COLLECT Recommended.

Enables you to customize the results of a credit card transaction.

See "Processing the Results of Credit Card Transactions" for more
information.

PCM_OP_PYMT_POL_EXEC_COLLECTIONS
_ACTION

Recommended.

Completes a promise-to-pay installment as part of the payment process.

See "Completing Promise-to-Pay Installments during Payment
Processing".

PCM_OP_PYMT_POL_GRANT_INCENTIVE Recommended.

Enables you to enrich the PCM_OP_PYMT_GRANT_INCENTIVE input
flist by specifying additional event attributes used to determine whether a
payment incentive is granted.

See "Customizing Payment Incentives".

PCM_OP_PYMT_POL_MBI_DISTRIBUTE Recommended.

Enables you to customize the default payment distribution logic to
distribute the submitted account payment to multiple bill units.

See "Allocating Externally Initiated Payments by Due Amount" for more
information.

PCM_OP_PYMT_POL_OVER_PAYMENT Recommended.

Enables you to customize how to allocate payments when there is an
overpayment.

See "How BRM Selects the Items to Which Payments Are Applied" for
more information.

PCM_OP_PYMT_POL_PRE_COLLECT Recommended.

Enables you to check a batch of charges and refunds for any amounts
below minimums before charging and refunding customers.

See "BRM-Initiated Payment Processing" and "Externally Initiated
Payment Processing" for more information.

Chapter 1
Payment FM Policy Opcodes

1-57

Table 1-53 (Cont.) Payment FM Policy Opcodes

Opcode Description

PCM_OP_PYMT_POL_PROVISION_INCENTIV
E

Recommended.

Enables you to customize how to determine the payment date that should
be considered when provisioning incentives.

See "Customizing Payment Incentives".

PCM_OP_PYMT_POL_PURCHASE_DEAL Recommended.

Enables you to customize how to apply custom discounts and incentives
to account balances when an account is topped up.

See "Processing Top-Ups" for more information.

PCM_OP_PYMT_POL_SPEC_COLLECT Recommended.

Enables you to customize how much should be collected from an account
after a specified action has been performed.

See "Processing Credit Card Information during Account Creation" for
more information.

PCM_OP_PYMT_POL_SPEC_VALIDATE Recommended.

Enables you to customize how to change the account used for credit card
validation.

See "Validating Credit Card and Direct Debit Transactions" for more
information.

PCM_OP_PYMT_POL_SUSPEND_PAYMENT Recommended.

Enables you to customize how to send a payment marked for suspense
to the payment suspense account.

See "Validating Payments" for more information.

PCM_OP_PYMT_POL_UNDER_PAYMENT Recommended.

Enables you to customize how to allocate payments when there is an
underpayment.

See "How BRM Selects the Items to Which Payments Are Applied" for
more information.

PCM_OP_PYMT_POL_VALID_VOUCHER Recommended.

Enables you to customize how to interact with voucher management
systems to validate vouchers.

See "How BRM Handles Manual Standard Top-Ups" and the discussion
on vouchers in BRM Telco Integration.

PCM_OP_PYMT_POL_VALIDATE Recommended.

Enables you to customize the result of validating a credit card transaction,
including a description of that result.

See "Validating Credit Card and Direct Debit Transactions" for more
information.

PCM_OP_PYMT_POL_VALIDATE_PAYMENT Recommended.

Enables you to customize how to validate payments to determine whether
they can be successfully posted or whether a failed, unconfirmed
payment needs reversal.

See "Validating Payments" for more information.

Payment FM Standard Opcodes
The payment standard opcodes collect payments and validate payment methods.

Chapter 1
Payment FM Standard Opcodes

1-58

See BRM Configuring and Collecting Payments for more information.

Include the ops/pymt.h header file in all applications that call these opcodes.

Table 1-54 Payment FM Standard Opcodes

Opcode Description

PCM_OP_PYMT_APPLY_FEE Recommended.

Creates payment fees for payments that fail, for example, due to
insufficient account funds or an expired credit card.

See "Processing Payment Fees" for more information.

PCM_OP_PYMT_CHARGE Limited.

Performs a BRM-initiated payment transaction.

See:

• BRM-Initiated Payment Processing
• Initiating a Charge
• Processing Credit Card Charges
• Processing Direct Debit Charges

PCM_OP_PYMT_CHARGE_CC Last Resort.

Performs an online credit card transaction.

See "Processing Credit Card Charges" for more information.

PCM_OP_PYMT_CHARGE_DD Recommended.

Performs a batch of Paymentech direct debit transactions.

See "Processing Direct Debit Charges" for more information.

PCM_OP_PYMT_CHARGE_DDEBIT Recommended.

Performs a debit card transaction. This opcode is used for the
Paymentech direct debit implementation.

See "About Paymentech Direct Debit Implementation".

PCM_OP_PYMT_COLLECT Recommended.

Performs payment collections and refunds.

See:

• Collecting Payments
• Allocating Account Payments to Multiple Bill Units

PCM_OP_PYMT_FIND_TOPUP_EVENTS Limited.

Finds the /event/billing/adjustment/account event associated with
sponsored top-ups.

See "Finding Top-Up Events".

PCM_OP_PYMT_GET_ACH_INFO Recommended.

Retrieves the database ID of the DM interfacing with the automated
clearing house using available information such as vendor name or
element ID in the /config/ach object.

See "Processing Credit Card Information during Account Creation" for
more information.

PCM_OP_PYMT_GRANT_INCENTIVE Limited.

Applies a payment incentive to a bill during the billing run.

See "Granting Payment Incentives" for more information.

Chapter 1
Payment FM Standard Opcodes

1-59

Table 1-54 (Cont.) Payment FM Standard Opcodes

Opcode Description

PCM_OP_PYMT_ITEM_SEARCH Limited.

Searches for /item objects with a variable number of input parameters.
This opcode calls PCM_OP_SEARCH based on the input argument
fields.

See "Finding Payments" for more information.

PCM_OP_PYMT_MBI_DISTRIBUTE Limited.

Distributes the account payment to multiple bill units.

See "Allocating Externally Initiated Payments by Due Amount" for more
information.

PCM_OP_PYMT_MBI_ITEM_SEARCH Limited.

Gets all the items of the bill units in a tree view.

See "Allocating Account Payments to Multiple Bill Units".

PCM_OP_PYMT_PROVISION_INCENTIVE Limited.

Evaluates a payment to determine whether a payment incentive should
be provisioned and, if so, sets the payment incentive trigger.

See "Processing Payment Incentives" for more information.

PCM_OP_PYMT_RECOVER Recommended.

Checks results of charges sent in a batch and posts results of charges for
which no information was returned.

See "Checking the Results of BRM-Initiated Batch Payment Operations"
for more information.

PCM_OP_PYMT_RECOVER_CC Limited.

Checks results of credit card charges sent in a batch and posts results of
credit card charges for which no information was returned.

See "Checking the Results of BRM-Initiated Batch Payment Operations"
for more information.

PCM_OP_PYMT_RECOVER_DD Limited.

Checks results of direct debit charges sent in a batch. The results are
passed back and used for transaction reconciliation.

This opcode is specific to the Paymentech DM.

See "Checking the Results of BRM-Initiated Batch Payment Operations"
for more information.

PCM_OP_PYMT_RECYCLE_PAYMENT Limited.

Processes payment reversals during payment recycling and assigns
action owner codes to suspended payments.

See "How Payments Are Recycled to and from Suspense" for more
information.

PCM_OP_PYMT_RECYCLED_PAYMENTS_SE
ARCH

Limited.

Searches for recycled payments that have not been reversed, including
those recycled to the payment suspense account.

See "Retrieving Recycled Payments" for more information.

PCM_OP_PYMT_REVERSE_INCENTIVE Limited.

Reverses a payment incentive, provided the incentive has not yet been
applied.

See "Reversing Payment Incentives" for more information.

Chapter 1
Payment FM Standard Opcodes

1-60

Table 1-54 (Cont.) Payment FM Standard Opcodes

Opcode Description

PCM_OP_PYMT_SELECT_ITEMS Limited.

Identifies a list of items based on the input fields and the accounting type
of the account.

See "How BRM Selects the Items to Which Payments Are Applied" for
more information.

PCM_OP_PYMT_TOPUP Recommended.

Performs standard top-ups and sponsored top-ups.

See "Processing Top-Ups" for more information.

PCM_OP_PYMT_VALIDATE Recommended.

Validates a credit card or direct debit transaction.

See "Validating Payments" and "About the Default Payment Validation
Process " for more information.

PCM_OP_PYMT_VALIDATE_CC Limited.

Performs a batch of credit card validations and applies the validation
policy to the results.

See "Validating Credit Card and Direct Debit Transactions" for more
information.

PCM_OP_PYMT_VALIDATE_DD Limited.

Performs a batch of online direct debit validations and applies the
validation policy to the results.

See "Validating Credit Card and Direct Debit Transactions" for more
information.

PCM_OP_PYMT_VALIDATE_PAYMENT Recommended.

Validates payment records.

See "Validating Payments" and "About the Default Payment Validation
Process " for more information.

Permissioning FM Standard Opcodes
The permissioning standard opcodes create and manage Access Control Lists (ACLs), which
specify the CSRs that can access customer accounts in an account group.

Include the ops/perm.h header file in all applications that call these opcodes.

Table 1-55 Permissioning FM Standard Opcodes

Opcode Description

PCM_OP_PERM_ACL_GET_SUBGROUPS Limited

Retrieves a particular account group (/group/billing hierarchy)
beneath the provided access control list.

See "Managing ACL Groups".

PCM_OP_PERM_ACL_GROUP_CREATE Limited

Creates a /group/acl object.

Chapter 1
Permissioning FM Standard Opcodes

1-61

Table 1-55 (Cont.) Permissioning FM Standard Opcodes

Opcode Description

PCM_OP_PERM_ACL_GROUP_DELETE Limited

Deletes a /group/acl object.

Deleting an ACL does not affect services. It simply removes the
ACL.

PCM_OP_PERM_ACL_GROUP_MODIFY Limited

Modifies a /group/acl object.

PCM_OP_PERM_ACL_GROUP_ADD_MEMBER Limited

Adds a group member to a /group/acl.

PCM_OP_PERM_ACL_GROUP_DELETE_MEMBER Limited

Deletes a group member from a /group/acl

PCM_OP_PERM_FIND Limited

Retrieves a list of Access Control Lists (ACLs) to which a CSR
belongs and returns user specified information about each
ACL.

See "Finding CSR Membership".

PCM_OP_PERM_GET_CREDENTIALS Limited

Retrieves a list of ACLs and billing groups that can access an
application.

PCM_OP_PERM_SET_CREDENTIALS Limited

Sets the current connection scope. Scope is defined by the
billing group.

Process Audit FM Policy Opcodes
Use the process audit policy opcodes to create audit objects with revenue assurance data.

For more information about collecting revenue assurance data, see the discussion on
understanding Revenue Assurance Manager in BRM Collecting Revenue Assurance Data.

Include the BRM_home/include/ops/process_audit.h header file in all applications that call
these opcodes.

Table 1-56 Process Audit FM Policy Opcodes

Opcode Description

PCM_OP_PROCESS_AUDIT_POL_CREATE Recommended.

Checks for duplicate audit objects and validates audit data.

You can customize this opcode by modifying the fields in the
flist, modifying duplicate checks, and adding validation checks.

This opcode is called by
PCM_OP_PROCESS_AUDIT_CREATE.

The transaction handling for this opcode is done in the
standard opcode.

Chapter 1
Process Audit FM Policy Opcodes

1-62

Table 1-56 (Cont.) Process Audit FM Policy Opcodes

Opcode Description

PCM_OP_PROCESS_AUDIT_POL_ALERT Recommended.

Sends email messages when threshold values are crossed.

You can customize this opcode to notify an external system and
change the message body or subject of the email.

This opcode is not called by any opcode.

PCM_OP_PROCESS_AUDIT_POL_CREATE_WRITEOFF
_SUMMARY

Recommended.

Called by
PCM_OP_PROCESS_AUDIT_CREATE_WRITEOFF_SUMMA
RY opcode to map the fields of /suspended_usage/telco to
fields of /process_audit/batchstat/status.

You can customize this opcode to read and aggregate any
fields of the /suspended_usage/xxx storable class, where xxx
are subclasses of /suspended_usage, and map them to
corresponding fields in the /process_audit/batchstat/status
storable class.

This opcode is called by
PCM_OP_PROCESS_AUDIT_CREATE_WRITEOFF_SUMMA
RY.

The transaction handling for this opcode is done in the
standard opcode.

Process Audit FM Standard Opcodes
The process audit standard opcodes are called by billing utilities to create audit objects with
revenue assurance data.

For more information about collecting revenue assurance data, see the discussion on
understanding Revenue Assurance Manager in BRM Collecting Revenue Assurance Data.

Include the BRM_home/include/ops/process_audit.h header file in all applications that call
these opcodes.

Table 1-57 Process Audit FM Standard Opcodes

Opcode Description

PCM_OP_PROCESS_AUDIT_CREATE Recommended.

Creates audit objects for revenue assurance.

Called by the BRM billing applications.

Chapter 1
Process Audit FM Standard Opcodes

1-63

Table 1-57 (Cont.) Process Audit FM Standard Opcodes

Opcode Description

PCM_OP_PROCESS_AUDIT_CREATE_WRITEOFF_SUMMA
RY

Recommended.

Creates /process_audit/batchstat/status objects with
revenue assurance data for written-off records.

Checks the PIN_FLD_FLG in the input flist during bulk
suspense operations:

• If PIN_FLD_FLG is zero, generates a normal
summary.

• If PIN_FLD_FLG is nonzero, creates a /schedule
object after checking the mandatory fields.

• If PIN_FLD_FLG is nonzero and the calling opcode is
PCM_OP_ACT_SCHEDULE_EXECUTE, creates a
bulk write-off summary.

PCM_OP_PROCESS_AUDIT_SEARCH Recommended.

Retrieves summary and detail data for control points for /
process_audit/batchstat objects and subclasses.

Provisioning FM Policy Opcode
Use the provisioning policy opcode to customize provisioning.

See the discussion on managing GSM service provisioning in BRM Managing Customers.

Include the ops/prov.h header file in all applications that call these opcodes.

Table 1-58 Provisioning FM Policy Opcode

Opcode Description

PCM_OP_PROV_POL_UPDATE_SVC_ORDER Recommended.

Enables you to customize how to validate and modify
parameters for updating service orders.

See "Managing GSM Service Provisioning".

Provisioning FM Standard Opcodes
The provisioning standard opcodes manage service order provisioning.

See the discussion on managing GSM service provisioning in BRM Managing Customers.

Include the ops/prov.h header file in all applications that call these opcodes.

Table 1-59 Provisioning FM Standard Opcodes

Opcode Description

PCM_OP_PROV_PUBLISH_SVC_ORDER Recommended.

Sends a /event/provisioning/service_order/* event to the Provisioning
Data Manager.

See "Managing GSM Service Provisioning".

Chapter 1
Provisioning FM Policy Opcode

1-64

Table 1-59 (Cont.) Provisioning FM Standard Opcodes

Opcode Description

PCM_OP_PROV_UPDATE_SVC_ORDER Recommended.

Updates the status of an /event/provisioning/service_order/* event.

See "Managing GSM Service Provisioning".

Publish FM Policy Opcodes
Use the publish policy opcodes to customize the notifications being published to the EAI
Framework.

Include the ops/fm_publish_pol.h header file in all applications that call these opcodes.

Table 1-60 Publish FM Policy Opcode

Opcode Description

PCM_OP_PUBLISH_POL_PREP_EVENT Recommended.

Enables you to customize the notifications that are published to
the EAI Framework.

See "Customizing Notification Enrichment" in BRM Developer's
Guide.

Rating FM Policy Opcodes
The rating policy opcodes are called by Activity FM opcodes to calculate charges and taxes for
an event.

Include the ops/rate.h header file in all applications that call these opcodes.

Table 1-61 Rating FM Policy Opcodes

Opcode Description

PCM_OP_RATE_POL_GET_TAXCODE Recommended.

Enables you to customize the tax code information from the
taxcodes.map file.

See "Retrieving a List of Tax Codes".

PCM_OP_RATE_POL_GET_TAX_SUPPLIER Recommended.

Enables you to customize a list of tax suppliers retrieved from the /
profile/tax_supplier object.

See "Retrieving a List of Tax Suppliers".

PCM_OP_RATE_POL_MAP_TAX_SUPPLIER Recommended.

Enables you to customize how a tax supplier is chosen for an event.

See "Retrieving a List of Tax Suppliers".

PCM_OP_RATE_POL_POST_RATING Recommended.

Enables you to modify rated /event objects, for example, change
the G/L ID of an event.

See "Modifying Rated Events".

Chapter 1
Publish FM Policy Opcodes

1-65

Table 1-61 (Cont.) Rating FM Policy Opcodes

Opcode Description

PCM_OP_RATE_POL_PRE_RATING Recommended.

Enables you to modify subscription events before rating.

See "Modifying Rated Events".

PCM_OP_RATE_POL_PROCESS_ERAS Recommended.

Enables you to add extended rating attribute (ERA) information to
an event.

See "Modifying ERAs".

PCM_OP_RATE_POL_POST_TAX Recommended.

Enables you to modify data after taxes are calculated.

See "Modifying Tax Data After Calculating Taxes".

PCM_OP_RATE_POL_PRE_TAX Recommended.

Enables you to modify data before you send the data to the taxation
DM for calculating taxes.

See "Modifying Tax Data Before Calculating Taxes".

PCM_OP_RATE_POL_TAX_LOC Last Resort

Enables you to retrieve locations for an event, which are then used
to establish jurisdictions for tax calculation.

See "Retrieving Tax Location Data".

Rating FM Standard Opcodes
The rating standard opcodes are called by Activity FM opcodes to calculate charges and taxes
for an event.

Include the ops/rate.h header file in all applications that call these opcodes.

Table 1-62 Rating FM Standard Opcodes

Opcode Description

PCM_OP_RATE_EVENT Last Resort

Applies pricing and taxes to a subscription event.

See "Subscription Rating Opcodes".

PCM_OP_RATE_GET_ERAS Last Resort

Retrieves the extended rating attribute (ERAs) for an event.

See "Getting ERAs for an Event".

PCM_OP_RATE_GET_PRODLIST Last Resort

Retrieves the list of charge offers owned by an account and filters them with input
criteria.

See "Subscription Rating Opcodes".

PCM_OP_RATE_TAX_CALC Last Resort

Calculates taxes due at the time of purchase or billing.

See "How PCM_OP_RATE_TAX_CALC Calculates Taxes".

Chapter 1
Rating FM Standard Opcodes

1-66

Table 1-62 (Cont.) Rating FM Standard Opcodes

Opcode Description

PCM_OP_RATE_TAX_EVENT Last Resort

Directs the calculation of taxes.

See "Subscription Rating Opcodes".

Remittance FM Policy Opcodes
Use the remittance policy opcode to customize remittance criteria.

Include the ops/remit.h header file in all applications that call these opcodes.

Table 1-63 Remittance FM Policy Opcodes

Opcode Description

PCM_OP_REMIT_POL_SPEC_QTY Recommended.

Retrieves the quantity to be rated for a customized RUM.

See "Customizing Remittance" in BRM Configuring and Running
Billing.

Remittance FM Standard Opcodes
The remittance standard opcodes manage remittance.

Include the ops/remit.h header file in all applications that call these opcodes.

Table 1-64 Remittance FM Standard Opcodes

Opcode Description

PCM_OP_REMIT_GET_PROVIDER Limited

Retrieves a list of remittance accounts that need to be remitted when a particular
event occurs.

See "Retrieving Remittance Accounts" in BRM Configuring and Running Billing.

PCM_OP_REMIT_REMIT_PROVIDER Limited

Calculates the remittance amount.

See "Calculating the Remittance Amount" in BRM Configuring and Running
Billing.

PCM_OP_REMIT_VALIDATE_SPEC_F
LDS

Limited

Validates remittance criteria.

See "Verifying the Remittance Specification File" in BRM Configuring and
Running Billing.

Replication FM Policy Opcode
The replication policy opcode implements the translation logic for /account and /service
objects.

Chapter 1
Remittance FM Policy Opcodes

1-67

Include the ops/repl.h header file in all applications that call these opcodes.

Table 1-65 Replication FM Policy Opcode

Opcode Description

PCM_OP_REPL_POL_PUSH Recommended.

Enables you to implement the translation logic for /account and /service
objects.This opcode is the BRM interface for the LDAP Data Manager mapping
operations. By default, the LDAP Data Manager implements a single-entry
mapping operation.

See the discussion on understanding the replication policy push operation in BRM
LDAP Manager.

Rerating FM Standard Opcode
The rerating standard opcode calls other standard opcodes to create /job/rerate objects and /
job_batch/rerate objects.

Include the ops/rerate.h header file in all applications that call these opcodes.

Table 1-66 Rerating FM Standard Opcode

Opcode Description

PCM_OP_RERATE_INSERT_RERATE_REQUEST Recommended.

Calls other opcodes to create /job/rerate objects and /
job_batch/rerate objects.

See "How BRM Creates Rerate Jobs".

SDK FM Standard Opcodes
The SDK standard opcodes add, delete, and modify data dictionary components, including
opcode mapping, storable classes, and fields.

See the discussion on the BRM SDK in BRM Developer's Guide.

Include the ops/sdk.h header file in all applications that call these opcodes.

Table 1-67 SDK FM Standard Opcodes

Opcode Description

PCM_OP_SDK_DEL_FLD_SPECS Limited.

Deletes field specifications from all database schemas in your BRM system.

Caution: If you delete field specifications for fields that have been instantiated,
you will corrupt your database. For example, never delete PIN_FLD_POID
from a base BRM system. Because of this danger, we recommend that you do
not use this opcode on a production system.

Chapter 1
Rerating FM Standard Opcode

1-68

Table 1-67 (Cont.) SDK FM Standard Opcodes

Opcode Description

PCM_OP_SDK_DEL_OBJ_SPECS Limited.

Deletes storable class specifications from the data dictionary of all database
schemas in your BRM system.

Caution: If you delete a storable class that has been instantiated, you will
corrupt your database. For example, never delete the /account object.
Because of this danger, we recommend that you do not use this opcode on a
production system.

PCM_OP_SDK_GET_FLD_SPECS Limited.

Retrieves one or more field specifications.

PCM_OP_SDK_GET_OBJ_SPECS Limited.

Retrieves one or more storable class specifications.

PCM_OP_SDK_SET_FLD_SPECS Limited.

Creates or modifies field specifications.

Caution: If you change field specifications for fields that have been
instantiated, you will corrupt your database. Instead of using this opcode, it is
safer and more reliable to create or modify field specifications by using the
Storable Class Editor in Developer Center.

PCM_OP_SDK_SET_OBJ_SPECS Limited.

Creates or modifies a storable class.

Caution: If you change field specifications for fields that have been
instantiated, you will corrupt your database. Instead of using this opcode, it is
safer and more reliable to create or modify field specifications by using the
Storable Class Editor in Developer Center.

Services Framework Manager FM Policy Opcodes
The services framework opcodes are used for provisioning any prepaid service type.

See the discussion on the BRM SDK in BRM Developer's Guide.

Include the ops/tcf.h header file in all applications that call these opcodes.

Table 1-68 Services Framework Manager FM Policy Opcodes

Opcode Description

PCM_OP_TCF_POL_APPLY_PARAMETER Recommended.

Enables you to to map service types to specific opcodes when
associating APNs and QoS values with GPRS services.

See "Mapping Service Types to Service-Specific Opcodes".

PCM_OP_TCF_POL_PROV_HANDLE_SVC_ORDER Recommended.

Enables you to perform custom actions to a provisioning
service order before it is passed to dm_prov_telco.

See "Provisioning Process Opcode Flow".

Chapter 1
Services Framework Manager FM Policy Opcodes

1-69

Services Framework Manager FM Provisioning Opcodes
The service framework provisioning opcodes perform provisioning functions.

See the discussion on provisioning in BRM Telco Integration.

Include the ops/tcf.h header file in all applications that call these opcodes.

Table 1-69 Services Framework Manager FM Provisioning Opcodes

Opcode Description

PCM_OP_TCF_APPLY_PARAMETER Recommended.

Updates the objects impacted by the charge offer provisioning
update.

See "Associating APNs and QoS with GPRS Services".

PCM_OP_TCF_SVC_LISTENER Recommended.

Checks the action's start and end date and performs one of the
following:

• If it is a current action, this opcode calls
PCM_OP_TCF_APPLY_PARAMETER.

• If the action is deferred for the future, this opcode creates
a /schedule object for executing
PCM_OP_TCF_APPLY_PARAMETER at the scheduled
time.

See "Associating APNs and QoS with GPRS Services".

PCM_OP_TCF_PROPAGATE_STATUS Recommended.

When the service status changes to inactive, active, or closed,
this opcode propagates the status to any associated features
and extended rating attributes (ERAs). When the status
changes to closed, this opcode also disassociates any existing
devices from the service.

PCM_OP_TCF_PROV_CREATE_SVC_ORDER Recommended.

Creates service orders for provisioning prepaid services,
devices, and profiles.

See "Provisioning Process Opcode Flow".

PCM_OP_TCF_PROV_HANDLE_SVC_ORDER Recommended.

Prepares provisioning event data for publishing to the
provisioning DM and initiates status change to
PROVISIONING.

See "Provisioning Process Opcode Flow".

PCM_OP_TCF_PROV_UPDATE_PROV_OBJECT Recommended.

Updates the status of the /service/device object upon
receiving the response from the provisioning platform.

See "Provisioning Process Opcode Flow".

PCM_OP_TCF_PROV_UPDATE_SVC_ORDER Recommended.

Updates the /event/provisioning/service_order/telco object
with the provisioning response specified in the opcode input
flist.

See "Provisioning Process Opcode Flow".

Chapter 1
Services Framework Manager FM Provisioning Opcodes

1-70

Table 1-69 (Cont.) Services Framework Manager FM Provisioning Opcodes

Opcode Description

PCM_OP_TCF_PROV_SERVICE_ORDER_NOTIFY Recommended.

Performs service order state changes.

See "Provisioning Process Opcode Flow".

PCM_OP_TCF_PROV_SERVICE_ORDER_SET_ATTR Recommended.

Updates a service order object.

See "Provisioning Process Opcode Flow".

PCM_OP_TCF_PROV_SERVICE_ORDER_SET_STATE Recommended.

Sets the state for service order objects and validates the
service order state transition using information stored in the
configuration object.

See "Provisioning Process Opcode Flow".

SIM Manager FM Policy Opcodes
Use the SIM Manager policy opcodes to customize SIM Manager.

See the discussion on SIM Card Manager in BRM Telco Integration.

Include the ops/sim.h header file in all applications that call these opcodes.

Table 1-70 SIM Manager FM Policy Opcodes

Opcode Description

PCM_OP_SIM_POL_DEVICE_ASSOCIATE Recommended.

Enables you to customize how SIM cards and services are
associated.

See "Customizing SIM Card Number Changes".

PCM_OP_SIM_POL_DEVICE_CREATE Recommended.

Enables you to customize validation rules for creating SIM card
devices.

See "Customizing SIM Card Validation".

PCM_OP_SIM_POL_DEVICE_SET_ATTR Recommended.

Enables you to customize how SIM cards are associated with
services.

See "Customizing SIM Card Number Changes".

PCM_OP_SIM_POL_ORDER_CREATE Recommended.

Enables you to customize how to validate SIM card orders.

See "Creating SIM Cards".

SIM Manager FM Standard Opcodes
The SIM Manager standard opcodes create and manage SIM card objects in the BRM
database.

See the discussion on SIM Card Manager in BRM Telco Integration.

Chapter 1
SIM Manager FM Policy Opcodes

1-71

Include the ops/sim.h header file in all applications that call these opcodes.

Table 1-71 SIM Manager FM Standard Opcodes

Opcode Description

PCM_OP_SIM_CREATE_ORDER Recommended.

Creates a SIM card order object (/order/sim).

See "Creating and Updating SIM Card Orders".

PCM_OP_SIM_DEVICE_PROVISION Recommended.

Moves the device state from New to Provisioning, associates a
service, and disassociates the pre-provisioning service.

See "Provisioning SIM Cards".

PCM_OP_SIM_PROCESS_ORDER_RESPONSE Recommended.

Processes a vendor response file.

See "Creating SIM Cards".

PCM_OP_SIM_UPDATE_ORDER Recommended.

Updates an existing SIM card order object (/order/sim).

See "Creating and Updating SIM Card Orders".

Subscription Management FM Policy Opcodes
Use the subscription management policy opcodes to customize subscription services.

Include these header files in all applications that call these opcodes:

• ops/subscription.h

• ops/bill.h

See the header file for a list of the Subscription Management FM opcodes defined in that file.

Table 1-72 Subscription Management FM Policy Opcodes

Opcode Description

PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_M
EMBERS

Recommended.
Enables you to customize how to add sharing groups to
ordered balance groups.

See "Adding Members to a Profile Sharing Group".

PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_S
ERVICE

Recommended.

Enables you to customize how to add ordered balance groups.

See "Adding Members to a Profile Sharing Group".

PCM_OP_SUBSCRIPTION_POL_CANCEL_PROD_PRO
VISIONING

Limited.

Enables you to clear fields in a /service object when you
cancel a charge offer.

See "Customizing Provisioning When Canceling a Charge
Offer".

PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_
REQUEST

Recommended.

Enables you to customize automatic rerating or handle your
own automatic rerating scenarios.

See "How BRM Creates Rerate Jobs".

Chapter 1
Subscription Management FM Policy Opcodes

1-72

Table 1-72 (Cont.) Subscription Management FM Policy Opcodes

Opcode Description

PCM_OP_SUBSCRIPTION_POL_GET_PROD_PROVISI
ONING_TAGS

Limited.

Enables you to customize provisioning.

See "Getting a List of Provisioning Tags".

PCM_OP_SUBSCRIPTION_POL_GET_SPONSORS Recommended.

Enables you to filter or return a subset of /sponsorship objects
from the list of all available /sponsorship objects.

See "Getting a List of Charges Available for Charge Sharing".

PCM_OP_SUBSCRIPTION_POL_POST_PROMO_EVEN
T

Recommended.

Enables you to customize how promotions are applied to
accounts.

See "Customizing Special Date, Event, or Action Promotions".

PCM_OP_SUBSCRIPTION_POL_PRE_FOLD Limited.

Enables you to customize how folds are applied to currency
and noncurrency balances.

See "Customizing How Folds Are Applied".

PCM_OP_SUBSCRIPTION_POL_PRE_PROMO_EVENT Recommended.

Enables you to customize how promotions are rated.

See "Customizing Special Date, Event, or Action Promotions".

PCM_OP_SUBSCRIPTION_POL_PREP_FOLD Recommended.

Enables you to customize the list of balances that must be
folded when a charge offer is canceled.

See "Customizing Which Balances to Fold When Charge
Offers Are Canceled".

PCM_OP_SUBSCRIPTION_POL_PREP_MEMBERS Recommended.

Enables you to customize how to validate the members of a
profile sharing group.

See "Validating Profile Sharing Group Members ".

PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_D
EAL

Recommended.

Enables you to customize validation based on account data
during bundle-to-bundle transition.

See "Customizing Bundle Transitions".

PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PL
AN

Recommended.

Enables you to customize validation based on account data
during package-to-package transition.

See "Customizing Package Transitions without Configuring /
transition Objects".

PCM_OP_SUBSCRIPTION_POL_PURCHASE_PROD_P
ROVISIONING

Limited.

Enables you to customize provisioning when a charge offer is
purchased.

See "Customizing Provisioning When a Charge Offer Is
Purchased".

PCM_OP_SUBSCRIPTION_POL_SNOWBALL_DISCOU
NT

Recommended.

Enables you to specify the distribution of group discounts to
group members.

See "Customizing Snowball Discounts".

Chapter 1
Subscription Management FM Policy Opcodes

1-73

Table 1-72 (Cont.) Subscription Management FM Policy Opcodes

Opcode Description

PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL Recommended.

Enables you to customize how charge offers are canceled.

See "Customizing Charge Offer Cancellation".

PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL_DISC
OUNT

Recommended.

Enables you to customize how discount offers are canceled.

See "Customizing Discount Offer Cancellation".

PCM_OP_SUBSCRIPTION_POL_SPEC_CYCLE_FEE_I
NTERVAL

Recommended.

Enables you to customize the time interval for applying cycle
forward and cycle arrears fees for a specified charge offer.

See "Customizing Accounting Cycles."

PCM_OP_SUBSCRIPTION_POL_SPEC_FOLD Recommended.

Enables you to specify the order in which to fold balances in a
balance group.

See "Customizing the Order to Apply Folds."

PCM_OP_SUBSCRIPTION_POL_SPEC_RERATE Recommended.

Enables you to define custom searches for rerating events for
selected accounts.

See "Customizing Event Searches for Rerating."

PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING Recommended.
Enables you to define custom validation of product specification
attributes for pricing components.

See "Validating Product Specification Attributes for Pricing
Components."

Subscription Management FM Standard Opcodes
The subscription management standard opcodes manage subscription services.

Include these header files in all applications that call these opcodes:

• ops/subscription.h

• ops/bill.h

• ops/cust.h

See the header file for a list of the Subscription Management FM opcodes defined in that file.

Table 1-73 Subscription Management FM Standard Opcodes

Opcode Description

PCM_OP_SUBSCRIPTION_CANCEL_DEAL Recommended.

Cancels ownership of a bundle for a specified account or
service.

See "How Bundles Are Canceled".

Chapter 1
Subscription Management FM Standard Opcodes

1-74

Table 1-73 (Cont.) Subscription Management FM Standard Opcodes

Opcode Description

PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT Recommended.

Cancels the discount instances associated with the /account
object or /service object specified in the input flist.

See "How Discount Offers Are Canceled".

PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT Recommended.

Cancels the charge offers for the /account object specified in
the input flist.

See "How Charge Offers Are Canceled".

PCM_OP_SUBSCRIPTION_CANCEL_SUBSCRIPTION Recommended.

Cancels a subscription service and its member services.

PCM_OP_SUBSCRIPTION_CHANGE_DEAL Recommended.

Changes the charge offers associated with a bundle for an
account.

See "How Bundles Are Modified".

PCM_OP_SUBSCRIPTION_CHANGE_OPTIONS Recommended.

Validates changes to bundles (for example, to check for
prerequisite or mutually exclusive bundles).

See "Validating Changes to Bundles".

PCM_OP_SUBSCRIPTION_CRUD_OFFER_OVERRIDE Recommended.

Specifies how and when to override charges and discounts
during specified time periods.

See "Overriding Charges and Discounts for a Period of Time".

PCM_OP_SUBSCRIPTION_CYCLE_ARREARS Last Resort.

Applies cycle arrears charges to an account.

See "Applying Cycle Arrears Fees".

PCM_OP_SUBSCRIPTION_CYCLE_FOLD Last Resort.

Applies cycle fold events for an account. If successful, it returns
the POIDs of the /account object and the /event/billing/
product/fee/cycle/fold event.

See "Applying Folds".

PCM_OP_SUBSCRIPTION_CYCLE_FORWARD Last Resort.

Applies cycle forward charges or refunds to an account.

See "Applying Cycle Forward Fees".

PCM_OP_SUBSCRIPTION_GET_HISTORY Recommended.

Retrieves the event history for a bundle, charge offer, discount
offer, or service instance associated with an account.

See "Finding Events Associated with Bundles, Charge Offers,
Discount Offers, and Services".

PCM_OP_SUBSCRIPTION_GET_PURCHASED_OFFERI
NGS

Recommended.

Retrieves the purchased charge offers and discount offers
associated with an account.

See "Reading Data for All Valid Purchased Charge Offers and
Discount Offers".

Chapter 1
Subscription Management FM Standard Opcodes

1-75

Table 1-73 (Cont.) Subscription Management FM Standard Opcodes

Opcode Description

PCM_OP_SUBSCRIPTION_HANDLE_PROMO_EVENT Recommended.

Applies promotions to accounts.

See "Applying Promotions for Special Dates, Events, or
Actions".

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP Recommended.

Creates, modifies, or deletes the ordered balance group (/
ordered_balgrp object) for an account or service that is a
member of a charge, discount, or profile sharing group.

See "Managing Ordered Balance Groups".

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK
_MODIFY

Recommended.

Creates one or more ordered balance groups (/
ordered_balgrp objects) for an account or service.

See "Creating and Modifying Multiple Ordered Balance Groups
Simultaneously".

PCM_OP_SUBSCRIPTION_PREP_RATE_CHANGE Recommended.

Creates the /rate_change object, which stores details about
the charge offers affected by a pricing change, including the
price tiers and charges in the charge offer.

See "Rerating Cycle Forward and Cycle Forward Arrears
Events".

PCM_OP_SUBSCRIPTION_PROVISION_ERA Recommended.

This opcode creates, modifies, or deletes /profile objects.
When specified in a /config/provisioning_tag object, this
opcode runs when a charge offer or discount offer containing
the provisioning tag is purchased or canceled. Profiles can
store extended rating attributes (ERAs) and other custom
attributes.

See "Managing Provisioning" in BRM Implementing Charging.

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL Recommended.

Purchases the charge offers and discount offers in a bundle for
the account or service object specified in the input flist.

See "How Bundles Are Purchased".

PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT Limited

Allows purchase of a discount offer in a bundle.

Important: Do not call this opcode directly. This opcode is
always called by
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL.

See "How Discount Offers Are Purchased".

PCM_OP_SUBSCRIPTION_PURCHASE_FEES Recommended.

Applies deferred purchase fees for a charge offer with an
expired purchase start time.

See "Applying Deferred Charge Offer Purchase Fees".

Chapter 1
Subscription Management FM Standard Opcodes

1-76

Table 1-73 (Cont.) Subscription Management FM Standard Opcodes

Opcode Description

PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT Limited.

Purchases a charge offer for an account or service.

Important: Do not call this opcode directly. This opcode is
always called by
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL.

See "Purchasing Charge Offers".

PCM_OP_SUBSCRIPTION_RATE_CHANGE Recommended.

Creates rerating requests when there is a cycle forward or
cycle forward arrears event pricing change in the middle of the
current cycle.

See "Rerating Cycle Forward and Cycle Forward Arrears
Events".

PCM_OP_SUBSCRIPTION_READ_ACCT_PRODUCTS Recommended.

Retrieves the hierarchical relationships of bundles, charge
offers, discount offers, and services for an account.

See "Getting a List of Bundles, Charge Offers, Discount Offers,
and Services".

PCM_OP_SUBSCRIPTION_RERATE_REBILL Recommended.

Rerates events for a specified account.

See "Customizing Event Searches for Rerating".

PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANS
FER

Recommended.

A wrapper opcode that performs all the tasks necessary to
transfer a service from one balance group to another.

See "Transferring Services between Balance Groups".

PCM_OP_SUBSCRIPTION_SET_BUNDLE Recommended.

Creates, modifies, and deletes /purchased_bundle objects.
Use this opcode to add promotion names and details to BRM
invoices.

See "Managing Promotions with Siebel CRM".

PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO Recommended.

Modifies or sets a discount's purchase, cycle, or usage date
information.

See "How Discount Offer Purchase, Cycle, and Usage Validity
Is Modified".

PCM_OP_SUBSCRIPTION_SET_DISCOUNT_STATUS Recommended.

Changes the status of a /purchased_discount object in a
bundle for an account or service.

See "How BRM Changes Discount Offer Status".

PCM_OP_SUBSCRIPTION_SET_PRODINFO Recommended.

Changes the information for a specified charge offer in an
account.

See "Changing the Purchase, Usage, and Cycle Start and End
Times".

Chapter 1
Subscription Management FM Standard Opcodes

1-77

Table 1-73 (Cont.) Subscription Management FM Standard Opcodes

Opcode Description

PCM_OP_SUBSCRIPTION_SET_PRODUCT_STATUS Recommended.

Sets the charge offer status of a /purchased_product object
owned by an account.

See "How BRM Changes Charge Offer Status".

PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREAT
E

Recommended.

Creates a discount sharing group, charge sharing group, or
profile sharing group.

See "Creating a Sharing Group".

PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELET
E

Recommended.

Deletes a discount sharing group or charge sharing group.

See "Deleting a Sharing Group".

PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIF
Y

Recommended.

Modifies sharing groups.

See "Modifying a Sharing Group".

PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PA
RENT

Recommended.

Changes the owner of a discount sharing group, charge
sharing group, or profile sharing group.

See "Changing the Owner of a Sharing Group".

PCM_OP_SUBSCRIPTION_TRANSFER_ROLLOVER Recommended.

Checks the rollover-transfer profile object, /profile/
rollover_transfer, to make sure it is configured and valid for
the balance and receiver, and then transfers the entire rollover
amount to the receiver.

See "Performing Rollover Transfers".

PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTIO
N

Recommended.

Transfers a subscription service to another subscriber account.

See "Transferring Service Groups between Accounts in
Different Schemas".

PCM_OP_SUBSCRIPTION_TRANSITION_DEAL Recommended.

Transitions a bundle from one account to another.

See "How Bundles Are Transitioned".

PCM_OP_SUBSCRIPTION_TRANSITION_PLAN Recommended.

Transitions one package to another.

See "How BRM Transitions Accounts from Source Packages to
Target Packages".

PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPEND
ENCY

Recommended.

Validates bundle-to-bundle dependency rules.

See "How Bundle Dependencies Are Validated".

PCM_OP_SUBSCRIPTION_VALIDATE_DISCOUNT_DEP
ENDENCY

Recommended.

Validates a discount to see whether it can be used with other
discounts or packages. Mutually exclusive dependencies are
configured in the /dependency storable class.

See "Validating Discount Offer Dependencies".

Chapter 1
Subscription Management FM Standard Opcodes

1-78

Suspense Manager FM Standard Opcodes
The Suspense Manager standard opcodes manage suspended event records stored in the
BRM database as /suspended_usage objects. The opcodes are available only if you have
purchased Suspense Manager.

For information about suspense manager, see BRM Implementing Charging.

Include the ops/suspense.h header file in all applications that call these opcodes.

Table 1-74 Suspense Manager FM Standard Opcodes

Opcode Description

PCM_OP_SUSPENSE_DEFERRED_DELETE Recommended.

Deletes event records in a written-off state or a succeeded state.

See "Deleting Suspended Records in Bulk".

PCM_OP_SUSPENSE_DELETE_USAGE Recommended.

Deletes event records in a written-off state or a succeeded state.

See "Deleting Suspended Records".

PCM_OP_SUSPENSE_EDIT_USAGE Recommended.

Changes the contents of event record fields for a suspended call
record. Suspense Management Center calls this opcode to edit a
suspended call record.

See "Changing the Contents of Fields in Suspended Event
Records".

PCM_OP_SUSPENSE_RECYCLE_USAGE Recommended.

Initiates event record recycling.

See "Initiating Suspense Recycling".

PCM_OP_SUSPENSE_SEARCH_DELETE Recommended.

Deletes call records with a status of succeeded or written off that
match criteria specified in the input flist.

See "Deleting Call Records with a Specific Recycle Key and a
Status of Succeeded or Written-Off".

PCM_OP_SUSPENSE_SEARCH_EDIT Recommended.

Changes fields in a large number of suspended records in one
database operation.

See "Editing Suspended Records in Bulk".

PCM_OP_SUSPENSE_SEARCH_RECYCLE Recommended.

Searches for and queues suspended call records for recycling
based on criteria specified in the input flist.

See "Recycling Suspended Records".

PCM_OP_SUSPENSE_SEARCH_WRITE_OFF Recommended.

Writes off a large number of suspended records in one database
operation.

See "Writing Off Suspended Records in Bulk".

PCM_OP_SUSPENSE_UNDO_EDIT_USAGE Recommended.

Undoes edits to suspended call records used by Suspense
Manager.

See "Undoing Edits to Suspended Event Records".

Chapter 1
Suspense Manager FM Standard Opcodes

1-79

Table 1-74 (Cont.) Suspense Manager FM Standard Opcodes

Opcode Description

PCM_OP_SUSPENSE_WRITTEN_OFF_USAGE Recommended.

Writes off suspended event records. When a suspended event
record is written off, they cannot be edited or recycled.

See "Writing Off Suspended Records in Bulk".

Universal Message Store (UMS) FM Standard Opcodes
The UMS standard opcodes support Universal Message Store functionality.

See the discussion of BRM message services in BRM Developer's Guide for more information.

Include the ops/ums.h header file in all applications that call these opcodes.

Table 1-75 Universal Message Store FM Standard Opcodes

Opcode Description

PCM_OP_UMS_GET_MESSAGE Recommended.

Retrieves /message objects. An application that consumes
messages from the UMS framework uses this opcode to
retrieve messages that match the scope specified in the input
flist.

PCM_OP_UMS_GET_MESSAGE_TEMPLATE Recommended.

Retrieves message templates from /strings objects.
Applications that produce messages for the UMS framework
call this opcode to retrieve message templates.

PCM_OP_UMS_GET_MESSAGE_TEMPLATES Recommended.

Retrieves a list of message templates.

PCM_OP_UMS_SET_MESSAGE Recommended.

Creates a /message object from the message template, filling
in placeholders with supplied data.

Chapter 1
Universal Message Store (UMS) FM Standard Opcodes

1-80

2
Context Management Opcodes

Learn about the Oracle Communications Billing and Revenue Management (BRM) context
management opcodes.

Topics in this document:

• Context Management Opcodes

• PCM_CONNECT

• PCM_CONTEXT_CLOSE

• PCM_CONTEXT_OPEN

• PCM_OP

• PCM_OPREF

Context Management Opcodes
The context management opcodes manage the communication between a client application
and the BRM database.

Include the pcm.h header file in all applications that call these opcodes. See the discussion on
header files in BRM Developer's Guide.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 2-1 Context Management Opcodes

Opcode Description

PCM_CONNECT Opens a PCM context in a BRM application.

PCM_CONTEXT_CLOSE Closes a PCM context.

PCM_CONTEXT_OPEN Opens a PCM context.

PCM_OP Runs a PCM opcode by passing a copy of the input flist.

PCM_OPREF Runs a PCM opcode by passing a reference to the input flist.

PCM_CONNECT
PCM_CONNECT simplifies opening a PCM context in a BRM application program. Instead of
having to manually create an input flist for PCM_CONTEXT_OPEN, you can put all information

2-1

necessary for opening a context in the application's pin.conf file. PCM_CONNECT reads
those entries from the application's pin.conf file, creates an input flist with that information, and
then calls PCM_CONTEXT_OPEN to open the context.

PCM_CONNECT first looks in the application's pin.conf file for the userid and login_type
entries. If login_type is 0 (no login and password required), PCM_CONNECT calls
PCM_CONTEXT_OPEN with a NULL input flist. The POID from the userid entry is used to
route the context open request to the desired database schema. See
"PCM_CONTEXT_OPEN" for details on userid values.

If login_type is 1, PCM_CONNECT also reads the login_name and login_pw entries. It then
calls PCM_CONTEXT_OPEN with an input flist containing values for PIN_FLD_POID,
PIN_FLD_TYPE, PIN_FLD_LOGIN, and PIN_FLD_PASSWD_CLEAR, which it got from the
userid, login_type, login_name, and login_pw pin.conf entries, respectively.

Note:

In your application, when you open a context and connect to the BRM server, run all
the opcodes before closing the context. Connections add a significant overhead to
the system, which affects performance. Therefore, to improve performance, run all
the opcodes in an open context instead of opening and closing contexts frequently.
Use CM proxy for applications that cannot maintain an open context for a long time.
See the discussion on using cm_proxy to allow unauthenticated logins in BRM
System Administrator's Guide.

See "PCM_CONTEXT_OPEN" for a full description of opening contexts.

Syntax

#include "pcm.h"
void
PCM_CONNECT(
 pcm_context_t **ctxp,
 int64 *db_no,
 pin_errbuf_t *ebufp);

Parameters

pcm_ctxp
A pointer to an open PCM context, which is returned by a successful call.

db_no
If 0 is passed in by using (int64) 0, 0 is returned. Otherwise, the number of the database
schema to which this context has been opened is returned. The database number comes from
the userid entry in the calling application's pin.conf file.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

See "PCM_CONTEXT_OPEN".

Error-Handling

See "PCM_CONTEXT_OPEN".

Chapter 2
PCM_CONNECT

2-2

Examples

The sample_app.c file and the accompanying makefile illustrate how to use this opcode when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

Here is an additional example of how to use PCM_CONNECT:

PIN_ERR_CLEAR_ERR(&ebuf);

PCM_CONNECT(&ctxp, &db_no, &ebuf);

if (PIN_ERR_IS_ERR(&ebuf)) {

...

}

PCM_CONTEXT_CLOSE
PCM_CONTEXT_CLOSE closes a context to the BRM system. The context should be closed
after it is no longer needed by an application. This opcode breaks the connection to the BRM
system and frees all memory associated with the context.

If an application exits, all open contexts are automatically closed by the BRM system.

See the discussion on the PCM API in BRM Developer's Guide for more information on
contexts.

Syntax

#include "pcm.h"
void
PCM_CONTEXT_CLOSE(
 pcm_context_t *pcm_ctxp,
 int32 how,
 pin_errbuf_t *ebufp);

Parameters

pcm_ctxpp
A pointer to an open PCM context.

how
The how parameter tells how to close the connection. The normal choice is to completely
close the connection by passing in a (int32) 0. However, if you fork a process, the process
that does not continue making PCM calls (usually the child process) should at least close all
open FDs. This can be done by passing PCM_CONTEXT_CLOSE_FD_ONLY as the value of
how. This has the benefit of allowing the child process (in most cases) to close the FDs
without closing the PCM connection in the parent that spawned it. If the child process wants to
continue to make PCM calls, it should open another PCM connection.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

PCM_CONTEXT_CLOSE returns nothing.

Chapter 2
PCM_CONTEXT_CLOSE

2-3

Error status is passed back to the caller using the error buffer.

Error-Handling

PCM_CONTEXT_CLOSE uses individual-style ebuf error handling. This means the application
must explicitly test for an error condition recorded in the error buffer before making other calls
to the BRM API. See the discussion on understanding API error handling and logging for
details on error handling algorithms in BRM Developer's Guide.

Examples

The sample_app.c file and the accompanying makefile illustrate how to use this opcode when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PCM_CONTEXT_OPEN
PCM_CONTEXT_OPEN opens a context to the BRM database. All data in the BRM database
is accessed using an open context. A dynamically allocated context structure is passed back
and is used in subsequent PCM calls to identify the open context. The context structure is
opaque to the application and is used only to identify the context for other calls.

Note:

• In your application, when you open a context and connect to the BRM server, run
all the opcodes before closing the context. Connections add a significant
overhead to the system, which affects performance. To improve performance, run
all the opcodes in an open context instead of opening and closing contexts
frequently. If a context is opened from within a CM, it must remain open during
the entire client life cycle. Use CM proxy for applications that cannot maintain an
open context for a long time. See the discussion on using cm_proxy to allow
unauthenticated logins in BRM System Administrator's Guide.

• If you have client applications running on the same server as the CM or DM, you
still must use a TCP/IP connection for invoking opcodes. You also must establish
a PCM connection to obtain a context for invoking opcodes.

A context can only have one outstanding operation at a time. Even if the asynchronous
routines are used to launch an operation, another one cannot be started until the outstanding
one is either completed or canceled.

If parallel operations are required (in the same or a different database schema), the application
can open multiple contexts to the BRM database. There is no limit to the number of contexts
an application can open.

When a context is no longer needed, it should be closed using PCM_CONTEXT_CLOSE. The
open context can survive any errors (except losing the socket), so it can still be used even after
one operation has failed.

A single context is normally opened by a client to access a single database schema. The client
application is responsible for including a POID in its PCM library calls. Each POID contains a
database number. The CM uses this schema number to route the client's request (the
operation) to the proper DM.

Chapter 2
PCM_CONTEXT_OPEN

2-4

A single context can support access to many database schemas simultaneously, but the client
is responsible for passing the correct database schema IDs. Furthermore, the CM handling
requests for the client must be configured to access multiple database schemas. That is, it
must have the schema numbers and IP addresses. This information is passed to the CM by
using the dm_pointer entries in the CM's pin.conf file.

Only one transaction can be open at a time, and object manipulation functions performed while
a transaction is open must apply to the same database schema. If a transaction is opened and
you must access another schema, open another context and access it through the new
context. See the discussion on the PCM API document in BRM Developer's Guide for more
information on contexts.

For PCM_CONTEXT_OPEN inside an FM, always use (pin_flist_t*)NULL for in_flistp.

The BRM base database does not support transactions across database systems.

By default, CMs require a user login and password when requesting an open context using
PCM_CONTEXT_OPEN. However, you can remove this authentication requirement by
configuring the CM with a cm_login_module of cm_login_null.so. The cm_login_module
entry in the CM's pin.conf file is explained in the comments in that file. When the CM is
configured to require a password and login, the input flist (in_flistp) for
PCM_CONTEXT_OPEN must be constructed as explained below.

Syntax

#include "pcm.h"
void
PCM_CONTEXT_OPEN(
 pcm_context_t **pcm_ctxpp,
 pin_flist_t *in_flistp,
 pin_errbuf_t *ebufp);

Parameters

pcm_ctxpp
A pointer to an open PCM context.

in_flistp
Two types of login are supported:

• type = 0 base level security: verify the specified service by type and ID.

• type = 1 login/password security: look up the specified service by login name and validate
the password.

If in_flistp is NULL, type 0 login is attempted. Otherwise, the input flist can specify either type
0 or type 1 login.

For type 0 login, the following two fields are required:

• PIN_FLD_POID

The portions of the POID that are used during login verification are database number,
service, and ID. The specified service with the specified ID is looked up in the BRM
database. If this service does not exist, the login is denied. The root account's /service/
pcm_client service can be used for the service and its ID of 1 can be used for the ID.

Any valid service type and ID could be used instead of the root account's /service/
pcm_client service.

• PIN_FLD_TYPE

Chapter 2
PCM_CONTEXT_OPEN

2-5

The login type is 0.

For type 1 login, the following four fields are required:

• PIN_FLD_POID

The portions of the POID used during login verification are database number, service, and
ID. In the case of type 1 login, the database number and service type are significant. The
ID is required because the POID requires one, but any value can be used (usually 1). The
BRM database is searched for a service object (matching the service type contained in
PIN_FLD_POID) that has a login that matches the login value for the PIN_FLD_LOGIN
field. If no service with the specified login exists, the login is denied. Otherwise, the
password is checked.

The root account's /service/pcm_client service can be used for the service type, and its
ID of 1 can be used for the ID. You are free to create other /service objects that can be
used for login verification.

• PIN_FLD_TYPE

The login type is 1.

• PIN_FLD_LOGIN

A login name.

Note:

The login cannot contain the characters : and @. The / character is allowed.

• PIN_FLD_PASSWD_CLEAR

The cleartext password for login.

Note:

The password cannot contain the characters : and @. The / character is allowed.

See PCM_CONTEXT_OPEN.input, the input flist specification, for more details on in_flistp.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

PCM_CONTEXT_OPEN returns nothing.

Error status is passed back to the caller using the error buffer.

The context structure used to identify the open context is passed back using pcm_ctxpp. If an
error occurred, NULL is passed back.

Error-Handling

PCM_CONTEXT_OPEN uses individual-style ebuf error handling. This means the application
must explicitly test for an error condition recorded in the error buffer before making other calls
to the BRM API. See the discussion on understanding API error handling and logging for
details on error handling algorithms in BRM Developer's Guide.

Chapter 2
PCM_CONTEXT_OPEN

2-6

The following codes may be returned in ebufp->pin_err:

PIN_ERR_BAD_ARG

Indicates one of the following conditions:

• The flags parameter was not set properly.

• The PCM ctxpp or ebufp structures are NULL.

• The configuration information does not point to a valid Connection Manager.

• Unable to open a socket to the Connection Manager.

• Too many sessions are open.

PIN_ERR_NONE

Opcode successful; operation is complete.

PIN_ERR_NO_MEM

A memory allocation failed.

PIN_ERR_BAD_LOGIN_RESULT

The login failed.

PCM_OP
PCM_OP is a wrapper function for all PCM opcodes. This opcode performs a PCM opcode
operation on an open context. The operation is done synchronously, so the calling process
waits until the operation is complete and has the return flist immediately available for
inspection.

All PCM opcode operations can be performed using this opcode. The specific fields required
and allowed on the input and return flists depend on the operation being performed.

If a PCM base opcode operation is run using PCM_OP when no transaction is open on the
context, the operation is implicitly wrapped in a transaction so all effects of the operation occur
atomically. If a PCM FM opcode operation is run when no transaction is open on the context, it
may or may not implicitly wrap all changes in a transaction. This is dependent on the FM
operation being performed.

Syntax

#include "pcm.h"
void
PCM_OP(
 pcm_context_t *pcm_ctxp,
 int32 opcode,
 int32 flags,
 pin_flist_t *in_flistp,
 pin_flist_t **ret_flistpp,
 pin_errbuf_t *ebufp);

Parameters

pcm_ctxp
A pointer to an open PCM context.

Chapter 2
PCM_OP

2-7

opcode
The opcode to call. See "Base Opcodes" for choices.

flags
The flags supported by the opcode being called. See the opcode descriptions for information
on the flags they take. Most opcodes take no flags, which is input as (int32) 0.

in_flistp
A pointer to the input flist.

ret_flistpp
A pointer to a pointer for passing back the return flist. All opcodes produce a return flist with at
least the PIN_FLD_POID field on it. Other fields on the return flist depend on the opcode
being called. The return flist is passed back even if an error occurred during the operation. It is
the responsibility of the caller to destroy the return flist when it is no longer needed.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Return Values

PCM_OP returns nothing.

Error status is passed back to the caller using the error buffer.

The return flist is passed back using ret_flistpp. A return flist is always passed back, even if an
error occurs. It is the responsibility of the caller to destroy both the input and return flists.

The following codes may be returned:

PIN_ERR_NONE

Opcode successful; operation is complete.

other codes

Opcode failed; see the "Error-Handling" section.

Error-Handling

PCM_OP uses individual-style ebuf error handling. This means the application must explicitly
test for an error condition recorded in the error buffer before making other calls to the BRM
API. See the discussion on understanding API error handling and logging for details on error
handling algorithms in BRM Developer's Guide.

The following error codes returned from PCM_OP indicate an error in the PCP transmission
protocol:

PIN_ERR_BAD_XDR

PIN_ERR_STREAM_EOF

PIN_ERR_STREAM_IO

PIN_ERR_TRANS_LOST

PIN_ERR_CM_ADDRESS_LOOKUP_FAILED

If you see one of these errors, close the context on which the error occurred and open a new
one. The output flist is undefined, but the input flist is still valid.

Chapter 2
PCM_OP

2-8

Examples

The sample_app.c file and the accompanying makefile illustrate how to use this opcode when
setting up a generic BRM account and service. The files are located in BRM_SDK_home/
source/samples/app/c.

PCM_OPREF
You use PCM_OPREF to call FM opcodes in the same way as PCM_OP. The opcode syntax
and input parameters are the same as PCM_OP. The only difference between them is that
PCM_OPREF passes a reference to the input flist whereas PCM_OP passes a copy of the
input flist to the called opcode.

PCM_OPREF should be used to call opcodes that won't modify the input flist.

When you have large input flists (for example, invoice flists), using PCM_OPREF is a more
efficient than PCM_OP because it passes the flist by reference and does not make a copy of
the input flist, which saves memory.

Syntax

#include "pcm.h"
void
PCM_OPREF(
 pcm_context_t *pcm_ctxp,
 int32 opcode,
 int32 flags,
 pin_flist_t *in_flistp,
 pin_flist_t **ret_flistpp,
 pin_errbuf_t *ebufp);

Parameters

pcm_ctxp
A pointer to an open PCM context.

opcode
The opcode to be performed. See "Base Opcodes" for choices.

flags
The flags supported by the opcode being called. See the opcode descriptions for information
on the flags they take. Most opcodes take no flags, which is input as (int32) 0.

in_flistp
A pointer to the input flist.

ret_flistpp
A pointer to a pointer for passing back the return flist. All opcodes produce a return flist with at
least the PIN_FLD_POID field on it. Other fields on the return flist depend on the opcode
being called. The return flist is passed back even if an error occurred during the operation. It is
the responsibility of the caller to destroy the return flist when it is no longer needed.

ebufp
A pointer to an error buffer. Used to pass status information back to the caller.

Chapter 2
PCM_OPREF

2-9

Return Values

PCM_OPREF returns nothing.

The return flist is passed back using ret_flistpp. A return flist is always passed back, even if an
error occurs. It is the responsibility of the caller to destroy both the input and return flists.

Error status is passed back to the caller using the error buffer.

The following codes may be returned:

• PIN_ERR_NONE

Opcode successful; operation is complete.

• other codes

Opcode failed; see the "Error-Handling" section.

Error-Handling

PCM_OPREF uses individual-style ebuf error handling. This means the application must
explicitly test for an error condition recorded in the error buffer before making other calls to the
BRM API. See the discussion on understanding API error handling and logging for details on
error handling algorithms in BRM Developer's Guide.

The following error codes returned from PCM_OPREF indicate an error in the PCP
transmission protocol:

PIN_ERR_BAD_XDR

PIN_ERR_STREAM_EOF

PIN_ERR_STREAM_IO

PIN_ERR_TRANS_LOST

PIN_ERR_CM_ADDRESS_LOOKUP_FAILED

If you see one of these errors, close the context on which the error occurred and open a new
one. The output flist is undefined, but the input flist is still valid.

Chapter 2
PCM_OPREF

2-10

Part II
Opcode Workflows

This part describes Oracle Communications Billing and Revenue Management (BRM) opcode
workflows.

Part II contains the following chapters:

• About Opcode Workflows

• Accounts Receivable Opcode Workflows

• Activity Opcode Workflows

• Billing Opcode Workflows

• Charging Opcode Workflows

• Collections Opcode Workflows

• Customer Management Opcode Workflows

• Deposit Opcode Workflows

• Device Management Opcodes

• General Ledger Opcode Workflows

• Group Opcode Workflows

• Installment Opcode Workflows

• Invoice Opcode Workflows

• Job Opcode Workflows

• Loan Opcode Workflows

• Notification Opcode Workflows

• Number Manager and SIM Card Manager Opcode Workflows

• Payment Opcode Workflows

• Subscription Opcode Workflows

• Tax Calculation Opcode Workflows

• Using the IP Address Manager APIs

3
About Opcode Workflows

Learn about Oracle Communications Billing and Revenue Management opcode workflow
concepts. For a list of opcodes with descriptions, see "Opcode Descriptions".

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

An opcode workflow describes the opcodes that perform BRM operations (for example,
creating accounts, purchasing bundles, and running billing). Therefore, in this document,
workflow descriptions are organized not according to opcodes, but instead, according to types
of BRM operations, such as billing and customer management.

An opcode workflow can describe:

• The main opcode that performs the operation. For example,
PCM_OP_CUST_COMMIT_CUSTOMER is the main opcode for creating accounts.

• Additional opcodes that are called during the opcode flow. For example, before creating an
account, PCM_OP_CUST_COMMIT_CUSTOMER calls
PCM_OP_CUST_POL_PRE_COMMIT to enable customization.

• The actions the opcode performs (for example, retrieve data, change data, or delete data).

• When an opcode is called (for example, by another opcode).

• Important fields in input and output flist that can be used.

• Customizations that can be performed by using the opcodes.

• Conditions that cause an opcode to fail.

Use opcode workflows for the following purposes:

• To find out which opcodes to use when customizing BRM.

• To learn how BRM works.

• To troubleshoot BRM by tracking the progress of operations. For example, you can
determine which opcode is failing if you know what the sequence of opcode calls is.

3-1

4
Accounts Receivable Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) accounts
receivable (A/R) opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Getting a List of A/R Items

• Reversing Refunds

• Transferring Amounts between Items

• Managing Currency and Non-Currency Balance Transfers between Accounts or Services

• Transferring Services between Balance Groups

• Performing Adjustments

• Performing Disputes and Settlements

• Writing Off Debts and Reversing Write-Offs

• Retrieving A/R Information

• Performing Rollover Transfers

Opcodes Described in This Chapter
Table 4-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 4-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_POL_SPEC_GLID Assigning G/L IDs for an Adjustment

Assigning G/L IDs for a Dispute or Settlement

Performing Write Offs

PCM_OP_ACT_USAGE Tax Processing for Account Adjustments

PCM_OP_AR_ACCOUNT_ADJUSTMENT Transferring Balances between Balance Groups

Adjusting Accounts, Subscription Services, and Member
Services

4-1

Table 4-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_AR_ACCOUNT_WRITEOFF About Account Write-Offs

About Initiating Write-Offs

Performing Write Offs

About Bill Unit Write-Offs

PCM_OP_AR_BILL_ADJUSTMENT Adjusting Bills

Adjusting Items

Tax Processing for Bill and Item Level Adjustments

PCM_OP_AR_BILL_CREDIT_TRANSFER Transferring From a Negative to a Positive Balance

PCM_OP_AR_BILL_DISPUTE Disputing Bills

Disputing Items

PCM_OP_AR_BILL_SETTLEMENT Settling Disputed Bills

PCM_OP_AR_BILL_WRITEOFF About Bill Write-Offs

About Initiating Write-Offs

Performing Write Offs

Flags You Should Use for Write-Offs

PCM_OP_AR_BILLINFO_WRITEOFF About Bill Unit Write-Offs

About Initiating Write-Offs

Performing Write Offs

About Account Write-Offs

PCM_OP_AR_EVENT_ADJUSTMENT Adjusting Events

Transferring Balances between Items

Tax Processing for Account Adjustments

Tax Processing for Bill and Item Level Adjustments

Tax Processing for Event Adjustments

Including Reason Codes in the Adjustment

PCM_OP_AR_EVENT_DISPUTE Disputing Events

Transferring Balances between Items

PCM_OP_AR_EVENT_SETTLEMENT Settling Disputed Events

Transferring Balances between Items

PCM_OP_AR_GET_ACCT_ACTION_ITEMS Getting a List of A/R Items

Retrieving A/R Items That Apply to a Bill Unit

Returning a Limited Set of Dispute Data

PCM_OP_AR_GET_ACCT_BAL_SUMMARY Retrieving a Balance Summary

PCM_OP_AR_GET_ACCT_BILLS Getting a List of Bills

Retrieving a List of Bills for a Bill Unit

PCM_OP_AR_GET_ACTION_ITEMS Retrieving A/R Items That Apply to a Bill Unit

PCM_OP_AR_GET_BAL_SUMMARY Retrieving a Balance Summary

PCM_OP_AR_GET_BILL_ITEMS Getting Bill Items

Retrieving a List of Bill Items for a Bill Unit

Chapter 4
Opcodes Described in This Chapter

4-2

Table 4-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_AR_GET_BILLS Getting a List of Bills

Getting Bills

Retrieving a List of Bills for a Bill Unit

PCM_OP_AR_GET_DISPUTE_DETAILS Retrieving Dispute Details for a Bill Unit

Retrieving Details on Available Balances

PCM_OP_AR_GET_DISPUTES Retrieving Dispute Details for a Bill Unit

PCM_OP_AR_GET_ITEM_DETAIL Retrieving Details about a Specific A/R Item or Bill Item

Returning a Limited Set of Dispute Data

PCM_OP_AR_GET_ITEMS Retrieving Details about a Specific A/R Item or Bill Item

Retrieving Details on Available Balances

PCM_OP_AR_ITEM_ADJUSTMENT Adjusting Items

Transferring Balances between Items

Adjusting Bills

Tax Processing for Bill and Item Level Adjustments

PCM_OP_AR_ITEM_DISPUTE Disputing Items

Settling Disputed Bills

Disputing Bills

PCM_OP_AR_ITEM_SETTLEMENT Settling Disputed Items

Settling Disputed Bills

Transferring Balances between Items

PCM_OP_AR_ITEM_WRITEOFF About Initiating Write-Offs

Performing Write Offs

About Bill Unit Write-Offs

About Bill Write-Offs

About Taxes for Write-Offs

Customizing Write-Off Validation

Transferring Balances between Items

PCM_OP_AR_POL_REVERSE_WRITEOFF Reversing Write-Offs

Customizing the Rules for Performing Write-Off Reversals

PCM_OP_AR_RESOURCE_AGGREGATION Retrieving Details on Available Balances

Retrieving Details about a Specific A/R Item or Bill Item

Retrieving a Full Set of Dispute Data

PCM_OP_AR_REVERSE_REFUND Reversing Refunds

PCM_OP_AR_REVERSE_WRITEOFF Reversing Write-Offs

About Initiating Write-Off Reversals

Customizing the Rules for Performing Write-Off Reversals

Transferring Balances between Items

PCM_OP_BAL_CHANGE_VALIDITY Modifying the Sub-balance Validity Period

PCM_OP_BAL_GET_ACCT_BILLINFO Finding a Bill Unit

PCM_OP_BAL_POL_SET_SUB_BALANCES Customizing Balance Transfers

PCM_OP_BAL_TRANSFER_BALANCE Transferring Balances between Accounts or Services

Chapter 4
Opcodes Described in This Chapter

4-3

Table 4-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_BILL_DEBIT Adjusting Accounts, Subscription Services, and Member
Services

Applying Debits and Credits

PCM_OP_BILL_FIND Finding a Bill

PCM_OP_BILL_GET_ITEM_EVENT_CHARGE_DISCOUNT Finding Discounts in Bill Items

PCM_OP_BILL_ITEM_EVENT_SEARCH Finding Events Associated with Bill Items

PCM_OP_BILL_ITEM_REFUND Transferring Balances between Items

PCM_OP_BILL_ITEM_TRANSFER Reversing Refunds

Transferring Balances between Items

Disputing Events

Settling Disputed Events

PCM_OP_BILL_POL_EVENT_SEARCH Finding Events Associated with an Account

PCM_OP_BILL_POL_ITEM_VALID_SETTLEMENT Settling Disputed Items

PCM_OP_BILL_POL_ITEM_VALID_WRITEOFF Performing Write Offs

PCM_OP_BILL_POL_REVERSE_PAYMENT Customizing Reversal of Payments Allocated to Written-Off
Accounts

About Initiating Write-Off Reversals

Reversing a Write-Off Reversal

PCM_OP_BILL_POL_VALID_ADJUSTMENT Adjusting Items

Customizing Item Adjustments

PCM_OP_BILL_POL_VALID_DISPUTE Disputing Items

Customizing Item Disputes

Customizing Item Settlements

PCM_OP_BILL_POL_VALID_SETTLEMENT Disputing Items

Customizing Item Settlements

PCM_OP_BILL_POL_VALID_TRANSFER Customizing Item Transfer Validation

PCM_OP_BILL_POL_VALID_WRITEOFF Customizing Write-Off Validation

PCM_OP_BILL_RCV_PAYMENT Transferring Balances between Items

PCM_OP_BILL_REVERSE_PAYMENT Reversing a Write-Off Reversal

Customizing Reversal of Payments Allocated to Written-Off
Accounts

Transferring Balances between Items

PCM_OP_BILL_SET_LIMIT_AND_CR Creating Balance Groups

Modifying Sub-balances

PCM_OP_BILL_TAX_EVENT Tax Processing for Bill and Item Level Adjustments

Tax Processing for Disputes

Tax Processing for Settlements

Chapter 4
Opcodes Described in This Chapter

4-4

Table 4-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_BILL_TRANSFER Adjusting Items

Disputing Items

Settling Disputed Items

Performing Write Offs

Customizing Reversal of Payments Allocated to Written-Off
Accounts

PCM_OP_BILL_TRANSFER_BALANCE Transferring Balances between Balance Groups

PCM_OP_GROUP_UPDATE_INHERITED Updating Inheritance Fields in Groups

PCM_OP_IFW_SYNC_PUBLISH_EVENT Transferring Services between Balance Groups

PCM_OP_PYMT_COLLECT About Initiating Write-Off Reversals

Reversing Write-Offs

PCM_OP_PYMT_ITEM_SEARCH Finding Items

PCM_OP_SUBSCRIPTION_CANCEL_DEAL Transferring Services between Balance Groups

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL Transferring Services between Balance Groups

PCM_OP_SUBSCRIPTION_READ_ACCT_PRODUCTS Transferring Services between Balance Groups

PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFE
R

Transferring Services between Balance Groups

PCM_OP_SUBSCRIPTION_TRANSFER_ROLLOVER Performing Rollover Transfers

PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION Transferring Services between Balance Groups

Getting a List of A/R Items
PCM_OP_AR_GET_ACCT_ACTION_ITEMS retrieves the list of A/R items applied to all bill
units (/billinfo objects) in an account or to a single bill unit.

You can restrict the search by various means, such as date, status, and bill unit POID.

You can find items for the specific bill unit or for it and its nonpaying child bill units.

PCM_OP_AR_GET_ACCT_ACTION_ITEMS uses the PIN_FLD_FLAGS both as an input and
output field.

PCM_OP_AR_GET_ACCT_ACTION_ITEMS uses the input PIN_FLD_FLAGS value to select
and/or mark the required items:

• When PIN_FLD_FLAGS contains PIN_AR_BILLED_ITEM, it selects the billed items that
are allocated to the specified bill and marks each item as "billed."

• When PIN_FLD_FLAGS contains PIN_AR_UNBILLED_ITEM, it selects the unbilled items
that are allocated to the specified bill and marks each item as "unbilled."

• If PIN_FLD_FLAGS is not present or is present but does not have either value, this opcode
selects both billed and unbilled items allocated to the bill, but does not mark the A/R items.

If the PIN_FLD_FLAGS field is present, PCM_OP_AR_GET_ACCT_ACTION_ITEMS expects
a value for the PIN_FLD_BILL_OBJ input field, or it returns an error.

PCM_OP_AR_GET_ACCT_ACTION_ITEMS determines that a special item is a “billed" item if
it is allocated to a bill before the bill is finalized or before the corrective bill is created.

Chapter 4
Getting a List of A/R Items

4-5

The PIN_FLD_RESULTS output array contains the PIN_FLD_FLAGS which indicates whether
the allocated item is billed (PIN_AR_BILLED_ITEM) or unbilled (PIN_AR_UNBILLED_ITEM).
This output array contains the PIN_FLD_FLAGS entry if the input flist contained
PIN_FLD_FLAGS field and if a special item is allocated to the bill.

The special items that PCM_OP_AR_GET_ACCT_ACTION_ITEMS considers include all of
the following:

• PIN_OBJ_TYPE_ITEM_PAYMENT

• PIN_OBJ_TYPE_ITEM_REVERSAL

• PIN_OBJ_TYPE_ITEM_REFUND

• PIN_OBJ_TYPE_ITEM_ADJUSTMENT

• PIN_OBJ_TYPE_ITEM_DISPUTE

• PIN_OBJ_TYPE_ITEM_SETTLEMENT

• PIN_OBJ_TYPE_ITEM_WRITEOFF

• PIN_OBJ_TYPE_ITEM_WRITEOFF_REVERSAL

Reversing Refunds
If a refund fails, you can reverse the refund. Refunds can fail because of returned checks and
invalid credit cards.

• You can reverse only failed refunds.

• A refund can be reversed only once. You cannot reverse a refund that has been reversed
before.

To reverse a refund, use PCM_OP_AR_REVERSE_REFUND.

PCM_OP_AR_REVERSE_REFUND does the following:

1. Takes as input one or more /item/refund POIDs in the input flist.

2. For each PIN_FLD_REVERSALS array, PCM_OP_AR_REVERSE_REFUND does the
following:

• Checks if the refund is already reversed

Refunds that are already reversed cannot be reversed again.

• Checks if the refund is a failed refund

3. Fetches the /event/billing/transfer/item event for each /item/refund in the input flist.

The PIN_FLD_ACTION_INFO field of the /event/billing/transfer/item event contains the
details of the /item/refund item from which the amount is transferred and the details of
the /item/refund item to which the amount is transferred.

4. Creates the /event/billing/refund/reversal event that points to the /item/refund item in
the input flist.

The input does not contain the BALANCE_IMPACTS array. The PIN_FLD_REFUND
substruct contains the amount that is being reversed.

The SESSION_OBJ field of /event/billing/refund/reversal points to the corresponding /
event/billing/refund/cc that failed.

Chapter 4
Reversing Refunds

4-6

5. Debits the refund amount from the /item/refund item and calls
PCM_OP_BILL_ITEM_TRANSFER to transfer the refund amount back to the original items
(for example, a credit amount to the /item/payment item).

6. Sets /item/refund to 0 and closes /item/refund.

The PIN_FLD_SESSION_OBJ field of the transfer events point to /event/billing/refund/
reversal.

7. Creates an /event/billing/refund/reversal event.

The /event/billing/refund/reversal event does not contain the BALANCE_IMPACTS array.

Transferring Amounts between Items
During A/R operations, such as settlements and refunds, balances are transferred between
items and between balance groups.

BRM uses the following opcodes for transfers:

• PCM_OP_BILL_ITEM_TRANSFER

See "Transferring Balances between Items".

• PCM_OP_BILL_TRANSFER_BALANCE

See "Transferring Balances between Balance Groups".

• PCM_OP_BILL_POL_VALID_TRANSFER

See "Customizing Item Transfer Validation".

Transferring Balances between Items
To transfer balances between items, BRM uses PCM_OP_BILL_ITEM_TRANSFER. This
opcode can accept items from multiple A/R bills and creates one transfer event for each A/R
bill.

PCM_OP_BILL_ITEM_TRANSFER is called by the following opcodes:

• PCM_OP_BILL_RCV_PAYMENT

• PCM_OP_BILL_REVERSE_PAYMENT

• PCM_OP_AR_EVENT_ADJUSTMENT

• PCM_OP_AR_EVENT_DISPUTE

• PCM_OP_AR_EVENT_SETTLEMENT

• PCM_OP_AR_ITEM_ADJUSTMENT

• PCM_OP_AR_ITEM_DISPUTE

• PCM_OP_AR_ITEM_SETTLEMENT

• PCM_OP_AR_ITEM_WRITEOFF

• PCM_OP_AR_REVERSE_WRITEOFF

• PCM_OP_BILL_ITEM_REFUND

The POID of the source item is specified in the PIN_FLD_ITEM_OBJ field in the input flist.
Each target item is specified in its own PIN_FLD_ITEMS array in the input flist. This array also
includes the POID of the item's bill object and A/R bill object.

Chapter 4
Transferring Amounts between Items

4-7

The POID of the corresponding A/R event is specified in the PIN_FLD_SESSION_OBJ field in
the input flist and is stored in the PIN_FLD_SESSION_OBJ field of the transfer event. This
associates the adjustment, dispute, or settlement event with the event that was used to
transfer the A/R amount from an A/R item to the appropriate bill item.

Note:

If the transfer is not made as a result of an A/R operation, the value is the session in
which the event took place; payment batch event, refund batch event, or reversal
batch event.

Each call to PCM_OP_BILL_ITEM_TRANSFER makes a single transfer to an A/R bill. Each
bill can include multiple target items. Amounts are allocated to items in the bill starting with the
lowest-level items.

PCM_OP_BILL_ITEM_TRANSFER:

• Reads the target item

• Changes the target item's fields. The fields changed depend on the source item. For
example, if the source item is an adjustment, the PIN_FLD_ADJUSTED field of the target
item is changed.

• Changes the source item fields as follows:

– PIN_FLD_DUE -= PIN_FLD_AMOUNT

– PIN_FLD_TRANSFERED += PIN_FLD_AMOUNT

• If PCM_OP_BILL_ITEM_TRANSFER was called as part of settling a dispute, checks the
PIN_FLD_DISPUTED field in the flist to determine the dispute amount.
The PIN_FLD_DISPUTED field is only populated in the flist if
PCM_OP_BILL_ITEM_TRANSFER is called by an item and event settlement, and it is
used to prevent misdirection of settlement balances. It ensures proper application of the
settlement in cases where a single item may be disputed by both an item dispute and an
event dispute.

For item settlements, the amount in this field is the dispute amount that originated solely
from the item dispute. This amount does not include any contribution from an event
dispute. For event settlements, the PIN_FLD_DISPUTED field provides the dispute
amount that originated solely from the event dispute being settled.

Using this information, PCM_OP_BILL_ITEM_TRANSFER populates the settled amount in
the original item's PIN_FLD_ADJUSTED field to record the balance impact of the
settlement. If any of the disputed amount was denied in the settlement, this opcode also
increases the PIN_FLD_DUE field in the original item by the denied amount. These
activities are summarized as follows:

– PIN_FLD_DISPUTED -= PIN_FLD_DISPUTED

– PIN_FLD_ADJUSTED += PIN_FLD_AMOUNT

– PIN_FLD_DUE += (PIN_FLD_DISPUTED - PIN_FLD_AMOUNT)

• Writes the /event/billing/item/transfer event, which includes the following fields in
addition to those it inherits:

– PIN_FLD_BUFFER: List of all items or bills affected

– PIN_FLD_AMOUNT: Amount of the transfer

Chapter 4
Transferring Amounts between Items

4-8

– PIN_FLD_AR_BILL_OBJECT: A/R bill object of the items in the transfer

– PIN_FLD_SESSION_OBJ: The associated A/R event or batch event in which the A/R
action took place (payment batch event, refund batch event, or reversal batch event.

• If (PIN_FLD_DUE == PIN_FLD_DISPUTED == 0) marks the status
PIN_ITEM_STATUS_CLOSED.

• Writes the modified source and target items.

• Sets the bill's PIN_FLD_STATE field to one of the following:

– PARTIALLYPAID: If the value of PIN_FLD_DUE for the bill is greater than 0 and less
than the value of PIN_FLD_CURRENT_TOTAL.

– SETTLED: If the value of PIN_FLD_DUE for the bill is equal to 0 and the value of
PIN_FLD_CURRENT_TOTAL is greater than 0.

Transferring From a Negative to a Positive Balance
PCM_OP_AR_BILL_CREDIT_TRANSFER transfers the amount from a bill that has a negative
balance to one or more bills that have a positive balance.

This opcode allocates credit amounts to bills that have a positive balance. This opcode takes
as input the /bill object and corresponding /billinfo object of both the source bill and
destination bill or bills.

Transferring Balances between Balance Groups
To transfer balances between balance groups, BRM uses
PCM_OP_BILL_TRANSFER_BALANCE.

For example, BRM uses this opcode to transfer funds from one account to another.

PCM_OP_BILL_TRANSFER_BALANCE transfers an asset from a credit balance to another
balance by debiting the source balance and crediting the target balance with the
PIN_FLD_AMOUNT specified in the input flist. For example:

• Balance group A has a credit balance of $100 (represented for accounting purposes as
-100).

• Balance group B has a credit balance of $2 (-2).

• If PIN_FLD_AMOUNT is 30, PCM_OP_BILL_TRANSFER_BALANCE transfers $10 from
balance group A to balance group B with these results:

– Balance group A now has a credit balance of $70 (-70).

– Balance group B now has a credit balance of $32 (-32).

If the PIN_FLD_VERIFY_BALANCE setting in the PCM_OP_BILL_TRANSFER_BALANCE
input flist is set to PIN_BOOLEAN_FALSE, PCM_OP_BILL_TRANSFER_BALANCE can also
transfer an asset from a debit balance. For example:

• Balance group A has a debit balance of $10 (represented as +10).

• Balance group B has a credit balance of $2 (-2).

• If PIN_FLD_AMOUNT is 30 and PIN_FLD_VERIFY_BALANCE is PIN_BOOLEAN_FALSE,
PCM_OP_BILL_TRANSFER_BALANCE transfers $30 from balance group A to balance
group B with these results:

– Balance group A now has a debit balance of $40 (+40).

Chapter 4
Transferring Amounts between Items

4-9

– Balance group B now has a credit balance of $32 (-32).

If the PIN_FLD_VERIFY_BALANCE field is not set (default) or is set to
PIN_BOOLEAN_TRUE, PCM_OP_BILL_TRANSFER_BALANCE cannot transfer assets from
post-paid balances.

If the PIN_FLD_AMOUNT field is greater than or equal to 0, the transfer succeeds. If the
PIN_FLD_AMOUNT field is less than 0, the PIN_FLD_RESULT value in the output flist is set to
2.

Table 4-2 lists the entries for the PIN_FLD_RESULT field:

Table 4-2 PIN_FLD_RESULT Values

Value Meaning

0 Balance transfer was successful

1 Insufficient funds in the source account

2 Transfer amount was less than 0

These values are passed to PCM_OP_AR_ACCOUNT_ADJUSTMENT, which debits and
credits the source and target accounts respectively.

Note:

When you use PCM_OP_BILL_TRANSFER_BALANCE, billing items are left
unallocated as a result of the PCM_OP_AR_ACCOUNT_ADJUSTMENT calls.

Customizing Item Transfer Validation
To customize how to validate amounts being transferred, use
PCM_OP_BILL_POL_VALID_TRANSFER.

Changing a result from PIN_BOOLEAN_FALSE to PIN_BOOLEAN_TRUE enables the
specified field value to pass. Changing a result from PIN_BOOLEAN_TRUE to
PIN_BOOLEAN_FALSE causes the specified field value to fail.

PCM_OP_BILL_POL_VALID_TRANSFER is called by PCM_OP_BILL_ITEM_TRANSFER.

Managing Currency and Non-Currency Balance Transfers
between Accounts or Services

Use the following opcodes to transfer currency or non-currency balances from one account or
service to another account or service:

• PCM_OP_BAL_TRANSFER_BALANCE

See "Transferring Balances between Accounts or Services".

• PCM_OP_BAL_POL_SET_SUB_BALANCES

See "Customizing Balance Transfers".

Chapter 4
Managing Currency and Non-Currency Balance Transfers between Accounts or Services

4-10

Transferring Balances between Accounts or Services
To transfer currency or non-currency balances from one account or service to another, use
PCM_OP_BAL_TRANSFER_BALANCE. This opcode transfers balances regardless of the
source's and target's balance type: postpaid, prepaid, or hybrid. For example, this opcode
could transfer 200 free minutes from a prepaid balance to a postpaid balance.

This opcode is called by Billing Care, Customer Center, and the Billing Care REST API.

When the opcode is called, pass the following information in the opcode's input flist:

• The POID of the source account, service, or balance group you are transferring from. If
you specify the POID of an account or service, its default balance group is used.

• The POID of the destination account, service, or balance group you are transferring to. If
you specify the POID on an account or service, its default balance group is used.

• The transfer amount and resource ID.

• By default, the transfer balance keeps the source's validity period. To modify the validity
period of the transfer balance's validity period, pass in the PIN_FLD_SUB_BALANCES
array with the following input flist fields:

– PIN_FLD_VALID_FROM: Set this to the timestamp of the validity's start date and time.

– PIN_FLD_VALID_TO: Set this to the timestamp of the validity's end date and time.

– PIN_FLD_ELEMENT_ID: Set this to the balance element ID.

• Whether to charge a transaction fee to the source, destination, both, or none. To do so, set
the PIN_FLD_FEE_FLAG input flist field to 0 (do not apply a fee), 1 (apply a fee to the
source), 2 (apply a fee to the destination), or 3 (apply a fee to both the source and
destination). If charging a transaction fee, also include the flat amount or percentage of the
balance transfer to apply:

To apply a flat fee, set these input flist fields:

– PIN_FLD_CHARGE_AMT: The amount of the transaction fee.

– PIN_FLD_CHARGE_RESOURCE_ID: The currency or non-currency resource ID of
the transaction fee, such as 840 for USD or 111055 for free minutes.

To apply a percentage of the balance transfer amount, set the PIN_FLD_PERCENT field to
the percentage, such as 3 for 3%.

After it receives the input flist, PCM_OP_BAL_TRANSFER_BALANCE performs the following
tasks:

1. Opens a global transaction.

2. If an /account or /service POID is passed in, calls PCM_OP_BAL_GET_BALANCES to
retrieve its default /balance_group POID and its current currency or non-currency
balance.

3. Generates an audit event (/event/audit/transfer_balance object).

4. Calls PCM_OP_BAL_POL_SET_SUB_BALANCES to perform any customizations to the
transfer balance being debited from the source.

5. Calls PCM_OP_BILL_DEBIT to debit the transfer amount from the source account,
service, or balance group.

6. Calls PCM_OP_BAL_POL_SET_SUB_BALANCES to perform any customizations to the
transfer balance being credited to the destination.

Chapter 4
Managing Currency and Non-Currency Balance Transfers between Accounts or Services

4-11

7. Calls PCM_OP_BILL_DEBIT to credit the transfer amount to the destination account,
service, or balance group.

8. If there is a transfer fee, calls the PCM_OP_ACT_USAGE to generate a balance transfer
event (/event/billing/fee/balance_transfer object).

9. Closes the global transaction.

Customizing Balance Transfers
To customize balances before they are debited from the source account, service, or balance
group, or after they are credited to the destination account, service, or balance group, use the
PCM_OP_BAL_POL_SET_SUB_BALANCES policy opcode. By default, this policy opcode
does nothing.

This policy opcode is called by PCM_OP_BAL_TRANSFER_BALANCE.

Transferring Services between Balance Groups
Use PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER to transfer a service from
one balance group to another in the same account or in a different account. You must create a
custom application to implement this functionality.

When transferring services between balance groups of different accounts, be aware of the
following limitations:

• The service's existing balance is transferred to the new balance group.

• Only one service can be transferred at a time, except for line services. For line service
transfers, the entire line is transferred.

• Services cannot be transferred to an existing balance group.

When a service transfers to a new balance group in the same account, each balance group
keeps its existing balance. Events and call detail records (CDRs) with a time stamp before the
transfer continue to impact the old balance group, and events and CDRs with a time stamp
after the transfer impact the new balance group.

For example, assume that an account owns two services: email and broadband access. Each
is assigned its own balance group. On June 1, balance group A has a balance of $30, and
balance group B has a balance of $20. On June 15, the account transfers the email service to
balance group A. Balance group A still has a balance of $30, and balance group B still has a
balance of $20 as shown in Table 4-3.

Table 4-3 Multiple Balance Groups Example

Balance Group June 1 June 15

A Service /service/ip /service/ip
/service/email

 Balance $30 $30

B Service /service/email None

 Balance $20 $20

In this example, all email-related charges that occur on or after June 15 impact balance group
A, and those that occurred before June 15 impact balance group B.

Chapter 4
Transferring Services between Balance Groups

4-12

Table 4-4 shows how transferring services between balance groups impacts other BRM
features:

Table 4-4 Impact of Transferring Services between Balance Groups

Affected Feature Description

Charge and discount sharing
groups

The way transfers affect charge and discount sharing groups depends on whether the
service is transferring to a balance group in the same account or in a different account:

• In the same account: If the service being transferred is the owner of a charge or
discount sharing group, the charges or discounts are shared by the new balance group.

• To a different account: If the service being transferred is the owner of a charge or
discount sharing group, the group is unlinked and you must create a new group.

See "Managing Sharing Groups".

Delayed CDRs The way transfers affect delayed CDRs depends on whether the event occurred before or
after the service was transferred:

• Before: Balance impacts are applied to the old balance group.
• After: Balance impacts are applied to the new balance group.

Subscriptions The way transfers affect subscriptions depends on whether you are transferring a
subscription service or a member service:

• Subscription services: BRM transfers all member services that share the same
balance group to the new balance group.

• Member services: BRM does not transfer the other member services in the
subscription.

Note: Subscription services and their member services must all point to the same balance
group.

See "Managing Customers' Subscription Services" in BRM Managing Customers.

Bill items When a service transfers to a new balance group, BRM creates bill items for the new
balance group. Events and CDRs with a time stamp before the transfer continue to impact
the old bill items, and events and CDRs with a time stamp after the transfer impact the new
bill items.

See “About Bill Items" in BRM Configuring and Running Billing.

Backdating After a service transfers to a new balance group, the service can no longer be backdated.
Also, the service transfer cannot be backdated or future dated.

PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER stores data about a service's
old and new balance groups and the time stamp of when the transfer occurred in the /service
object's PIN_FLD_TRANSFER_LIST array.

When BRM applies balance impacts or retrieves balance group information,
PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER automatically checks the /
service object's PIN_FLD_TRANSFER_LIST array to determine which balance group it should
use based on the event time stamp. If the array does not list a balance group, this opcode
automatically uses the service's default balance group.

PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER is a wrapper opcode that calls
other opcodes to perform the following:

• Transfer a service between balance groups in the same account or transfer services when
an account purchases a bundle.

• Transfer services from the balance group of one account to the balance group of a different
account.

• Reassign a balance group of one bill unit to another bill unit in the same account.

Chapter 4
Transferring Services between Balance Groups

4-13

Note:

Use PCM_OP_CUST_MODIFY_CUSTOMER to reassign balance groups to a
different bill unit because it performs additional validations during the
reassignment process. See "Moving a Balance Group from One Bill Unit to
Another".

PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER performs the following tasks:

1. Closes the service's accounting cycle and locks the balance group that the service is
transferring from.

2. Generates the event/notification/service_balgrp_transfer/start notification event.

Note:

By default, this notification event does not trigger an action. However, you can
use event notification to perform custom actions before the transfer occurs.

3. Determines whether the service is transferring to a new balance group by checking the
PIN_FLD_TO_BAL_GRP_OBJ input flist field:

• If the field contains a type-only POID, the service is transferring to a new balance
group. The opcode calls PCM_OP_CUST_SET_BAL_GRP (see step 7).

• If the field contains a complete POID, continues to the next step.

4. Determines whether a balance group is being reassigned to a different bill unit in the same
account by comparing the PIN_FLD_TO_BAL_GRP_OBJ and
PIN_FLD_FROM_BAL_GRP_OBJ fields.

• If the fields are different, determines whether the service to be transferred is a
subscription service (see step 5).

• If the fields are the same and neither the PIN_FLD_BILLINFO_OBJ field nor the
PIN_FLD_BILLINFO array are passed in, determines whether the service to be
transferred is a subscription service (see step 5).

• If the fields are the same and the PIN_FLD_BILLINFO_OBJ field is passed in, the
balance group is being reassigned to an existing bill unit.
PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER locks the balance
group that the service is transferring to (see step 8).

• If the fields are the same and the PIN_FLD_BILLINFO array is passed in, the balance
group is being reassigned to a new bill unit.
PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER creates the bill unit by:

a. Calling PCM_OP_CUST_SET_PAYINFO to add the bill unit's payment information.

b. Calling PCM_OP_CUST_SET_BILLINFO to update the bill unit's billing
information.

c. Calling PCM_OP_CUST_SET_BAL_GRP (see step 7).

5. Determines whether the service to be transferred is a subscription service.

If it is, all member services must be transferred and reassigned. The opcode performs the
following validations:

Chapter 4
Transferring Services between Balance Groups

4-14

• If the transfer is across accounts, it validates that the member services were not
passed in the input flist, that the subscription service and member services are
assigned to the same balance group, and that the services passed in the input flist all
point to PIN_FLD_FROM_BALANCE_GROUP.

• If the transfer is in the same account, it validates that the services passed in the input
flist all point to PIN_FLD_FROM_BALANCE_GROUP.

6. Determines whether a new bundle was purchased by checking if the PIN_FLD_DEALS
array was passed in the input flist for the /service object.

If the array was passed in, a new bundle was purchased and all of the service's existing
bundles must be canceled. PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER
performs the following:

a. Calls PCM_OP_SUBSCRIPTION_READ_ACCT_PRODUCTS to retrieve the account's
hierarchical relationships of bundles, charge offers, discount offers, and services.

b. Calls PCM_OP_SUBSCRIPTION_CANCEL_DEAL to cancel all of the service's
existing bundles and, if it is a subscription service, to cancel all of the member service
bundles.

7. Calls PCM_OP_CUST_SET_BAL_GRP.

PCM_OP_CUST_SET_BAL_GRP performs one of the following:

• If the PIN_FLD_TO_BAL_GRP_OBJ input flist field contains a type-only POID, creates
a new balance group and then associates the service with the new balance group.

• If the PIN_FLD_TO_BAL_GRP_OBJ input flist field contains a complete POID,
associates the service with the specified balance group.

• If the PIN_FLD_TO_BAL_GRP_OBJ input flist field contains a complete POID and the
PIN_FLD_BILLINFO_OBJ field or PIN_FLD_BILLINFO array is passed in, associates
the balance group with the specified bill unit.

Note:

If it is a subscription service, PCM_OP_CUST_SET_BAL_GRP is called for
each member service as well.

8. Locks the balance group that the service is transferring to.
PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER then does the following:

9. Determines whether the service that is being transferred is the owner of a sharing group.

If it is, this opcode updates the /group/sharing object's PIN_FLD_BAL_GRP_OBJ field
with the new balance group.

10. Determines whether the transfer is to a different account by checking the
PIN_FLD_TO_BAL_GRP_OBJ and PIN_FLD_FROM_BAL_GRP_OBJ fields.

If the fields are different, this opcode calls
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION to transfer the service and any
member services from one account to another.

11. Determines whether a new bundle was purchased by checking if the PIN_FLD_DEALS
array was passed in the input flist for the /service object.

If the array was passed in, this opcode calls
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL to purchase the new bundle.

12. Creates the /event/audit/service_balgrp_transfer audit event.

Chapter 4
Transferring Services between Balance Groups

4-15

13. Generates the /event/notification/service_balgrp_transfer/data notification event. This
triggers a call to PCM_OP_IFW_SYNC_PUBLISH_EVENT.

14. Generates the /event/notification/service_balgrp_transfer/end notification event.

Note:

By default, this notification event does not trigger an action. However, you can
use event notification to perform custom actions after the transfer occurs.

Performing Adjustments
You use Billing Care or Customer Center to make adjustments. You can create a custom
application to handle specialized adjustment scenarios, such as low-level adjustments against
specific events or high-level adjustments distributed across an A/R account and its child
accounts. For example, you might implement different adjustment levels to enable the CSR to
help a customer who was charged too many minutes for a call and a customer whose prepaid
service experienced a 3-day outage.

Use the following opcodes to perform and customize adjustments:

• PCM_OP_AR_ACCOUNT_ADJUSTMENT

See "Adjusting Accounts, Subscription Services, and Member Services".

• PCM_OP_AR_BILL_ADJUSTMENT

See "Adjusting Bills".

• PCM_OP_AR_ITEM_ADJUSTMENT

See "Adjusting Items".

• PCM_OP_BILL_POL_VALID_ADJUSTMENT

See "Customizing Item Adjustments".

• PCM_OP_AR_EVENT_ADJUSTMENT

See "Adjusting Events".

• PCM_OP_ACT_POL_SPEC_GLID

See "Assigning G/L IDs for an Adjustment".

Adjusting Accounts, Subscription Services, and Member Services
To adjust accounts, subscription services, or member services, BRM uses
PCM_OP_AR_ACCOUNT_ADJUSTMENT. This opcode debits or credits the currency balance
for the specified account. This opcode is called by BRM client applications to adjust the
balance impacts of an event.

If the input flist specifies a balance group, BRM debits or credits that /balance_group object. If
the input flist specifies a bill unit, the adjustment is applied to the default balance group of the
bill unit. If the input flist specifies account only, it debits or credits the account default balance
group.

You can open an account adjustment with or without tax. For information on how
PCM_OP_AR_ACCOUNT_ADJUSTMENT performs adjustments taxation, see "Including
Taxes in the Adjustment".

Chapter 4
Performing Adjustments

4-16

The /event/billing/adjustment/account object records the balance impact. The item_total
and due fields of the adjustment item show the amount of adjustment. The adjustment item is
billed immediately after the transaction occurs. The status of the item is set to
PIN_ITEM_STATUS_OPEN.

If a balance group is not specified in the input flist, PCM_OP_AR_ACCOUNT_ADJUSTMENT
adjusts the account default balance group. If the input flist identifies a balance group,
PCM_OP_AR_ACCOUNT_ADJUSTMENT updates the matching sub-balance or creates a
new sub-balance if it cannot find a match. The sub-balance that must be updated is also
specified in the input flist.

If your client application enables you to specify a subscription service and a member service in
the input flist, you can perform subscription service adjustments and member service
adjustments. These adjustment levels use PCM_OP_AR_ACCOUNT_ADJUSTMENT to
perform adjustments against all the services that belong to the balance group, which the /
service object supplies.

If an account, subscription service, or member service adjustment is for noncurrency balances,
use PCM_OP_BILL_DEBIT to adjust the noncurrency balance. For more information on how
PCM_OP_BILL_DEBIT works with balances, see "Applying Debits and Credits".

BRM creates a G/L ID for every account adjustment. For information on adjustments and G/L
IDs, see "Assigning G/L IDs for an Adjustment".

Fields You Should Include in the Flist for Account, Subscription Service, and Member
Service Adjustments

When performing account, subscription service, and member service adjustments, set these
fields in the PCM_OP_AR_ACCOUNT_ADJUSTMENT input flist:

• PIN_FLD_POID for the account to which the adjustment applies. You obtain this value
from the /account object that the CSR selects. Account, subscription service, and member
service adjustments require this field.

• PIN_FLD_BILLINFO_OBJ for the bill unit to which the adjustment applies. The adjustment
balance impact is applied to the default balance group of the bill unit.

• PIN_FLD_BAL_GRP_OBJ for the balance group to which the adjustment applies. You
obtain this value from the /account or /service object that the CSR selects.

This field is used for account, subscription service, and member service adjustments. If
you omit this field from the input flist for an account adjustment, the adjustment uses the
default balance group of the bill unit specified. Otherwise, it uses the account default
balance group. Subscription service and member service adjustments require
PIN_FLD_BAL_GRP_OBJ in the input flist.

• PIN_FLD_AMOUNT for the adjustment amount. The value supplied for this field should be
negative when crediting and positive when debiting.

• PIN_FLD_CURRENCY for the balance to adjust.

• PIN_FLD_FLAGS for the tax treatment:

– PIN_AR_WITHOUT_TAX: The account adjustment is nontaxable.

– If the PIN_AR_WITH_TAX: The account adjustment is taxable.

Chapter 4
Performing Adjustments

4-17

Note:

If the tax flag is not set, BRM refers to the pin.conf entry, fm_ar
tax_reversal_with_tax, to determine the default tax reversal behavior. The
adjustment is nontaxable if the pin.conf entry is absent.

PCM_OP_AR_ACCOUNT_ADJUSTMENT accepts a variety of other fields used to define tax
treatment, adjustment time, adjustment description, reason code, and so on.

• For information on tax treatment, see "Including Taxes in the Adjustment".

• For information on reason codes, see "Including Reason Codes in the Adjustment".

Flags for Account, Subscription Service, and Member Service Adjustments
Use these flags with PCM_OP_AR_ACCOUNT_ADJUSTMENT:

• If the PCM_OPFLG_READ_RESULT flag is set, all the fields in the event object are
returned in addition to the POID.

• If the PCM_OPFLG_CALC_ONLY flag is set, no fields in the database are changed and
the event object is not created. The fields that would have been used to create the event
object and adjustment item are returned to the caller.

• If the PCM_OPFLG_CALC_ONLY flag is not set, the /event/billing/adjustment/account
object is created to record details of the operation.

Adjusting Bills
To make adjustments at the bill level, BRM uses PCM_OP_AR_BILL_ADJUSTMENT. This
opcode is called by BRM client applications to adjust the balance impacts of items associated
with the specified bill.

PCM_OP_AR_BILL_ADJUSTMENT debits or credits a currency balance for the specified /bill
object. You can open a bill adjustment with or without tax. For information on how
PCM_OP_AR_BILL_ADJUSTMENT performs adjustment taxation, see "Including Taxes in the
Adjustment".

Note:

PCM_OP_AR_BILL_ADJUSTMENT does not check to determine whether the item
you are adjusting is billed yet. However, using this opcode to adjust pending items is
not recommended. If you try to adjust pending items, you may introduce problems if
you move the balance group to a new bill unit and there may be issues with G/L
reporting.

Note:

You cannot move a balance group to a new bill unit if there are any adjustments
against pending bill items. Otherwise, there may be issues with G/L reporting. You
can move the balance group when the items are billed.

Chapter 4
Performing Adjustments

4-18

PCM_OP_AR_BILL_ADJUSTMENT does not make adjustments when:

• The specified bill is not an A/R bill (for example, a bill from a nonpaying bill unit).

• The amount of the adjustment exceeds the total amount of the bill. For example, if the bill
due is $5, you cannot perform a credit adjustment for $6. Similarly, if the bill due -$5, you
cannot perform a debit adjustment for $6.

Bill adjustments can be performed against the entire bill or just specific bill items. When it
receives an input flist, PCM_OP_AR_BILL_ADJUSTMENT creates a single, umbrella
adjustment item for all bill items that require adjustment, as follows:

• If the input flist specifies individual bill items, the adjustment item is associated with each of
these bill items. You must specify the adjustment amount for each bill item in the flist.

• If the flist does not specify any bill items, all bill items are eligible for adjustment.
PCM_OP_AR_BILL_ADJUSTMENT opens adjustments for as many bill items as it can
before it consumes the adjustment amount or percentage. In this case, the adjustment item
covers only those bill items that PCM_OP_AR_BILL_ADJUSTMENT was able to fully or
partially adjust before using up the adjustment amount or, if the adjustment is defined as a
percentage of the bill, the specified percentage.

In either case, PCM_OP_AR_BILL_ADJUSTMENT passes the POID of the adjustment item
and the appropriate adjustment amount to PCM_OP_AR_ITEM_ADJUSTMENT, which
performs the adjustment for each of the associated bill items. An /event/billing/adjustment/
item object is created for each adjusted item in the bill, recording the balance impact. The due
fields of the adjustment items become 0 after the adjustment and the status of the item is set to
PIN_ITEM_STATUS_CLOSED. For details on how PCM_OP_AR_ITEM_ADJUSTMENT
works, see "Adjusting Items".

Before passing the adjustment item and amount to PCM_OP_AR_ITEM_ADJUSTMENT,
PCM_OP_AR_BILL_ADJUSTMENT determines whether the adjustment has tax implications.
If so, it checks the original /item object to determine the taxable portion of the item:

• If the item object stores only an amount generated by a tax event, the opcode omits it from
tax calculation.

• If the item object stores only an amount generated by a usage event, the opcode
calculates taxes for the amount.

• If the item object stores an amount generated by a tax event and an amount generated by
a usage event, the opcode calculates the adjustment tax reversal only for the usage
amount and not the tax amount.

For each item that can be adjusted, the opcode checks the events that make up the item to
determine whether any of the events are tax exempt. If so, it omits these events from the
amount it uses when calculating the adjustment tax reversal. As a result of eliminating any
nontaxable components of the original item, the adjustment tax is calculated proportionally to
the actual taxable amount of the item.

If the adjustment fails, PCM_OP_AR_BILL_ADJUSTMENT returns the reason in the
PIN_FLD_DESCR field of the PIN_FLD_RESULTS array on the output flist.

BRM creates a G/L ID for every bill adjustment. For information on adjustments and G/L IDs,
see "Assigning G/L IDs for an Adjustment".

Fields You Should Include in the Flist for Bill Adjustments
When performing bill adjustments, set the following fields in the
PCM_OP_AR_BILL_ADJUSTMENT input flist:

Chapter 4
Performing Adjustments

4-19

• PIN_FLD_POID for the bill to which the adjustment applies. You obtain this from the /bill
object that the CSR identifies. The adjusted amount is applied to the default balance group
of the bill unit associated with the bill.

• PIN_FLD_POID for the items to be adjusted under the PIN_FLD_ITEMS array. This array
is required only to adjust a particular set of bill items in the bill.

Note:

This field must be at level 1 of the input flist for the item adjustment to work.

• PIN_FLD_AMOUNT for the adjustment amount. The value supplied for this field should be
negative when crediting and positive when debiting.

You can specify the adjustment amount through either PIN_FLD_AMOUNT or
PIN_FLD_PERCENT. The PIN_FLD_AMOUNT field is mandatory and the
PIN_FLD_PERCENT field is optional. If the input flist includes both fields, BRM uses the
value in PIN_FLD_PERCENT and ignores the value in PIN_FLD_AMOUNT.

You can provide the PIN_FLD_AMOUNT field for the bill itself or, if the adjustment is
against an array of bill items, for the individual bill items. If you are performing an
adjustment that credits the bill, the absolute value of PIN_FLD_AMOUNT must be greater
than 0 and less than the total bill amount and its sign should be negative.

• PIN_FLD_FLAGS for the tax treatment:

– PIN_AR_WITHOUT_TAX: The bill adjustment is nontaxable.

– If the PIN_AR_WITH_TAX: The bill adjustment is taxable.

Note:

If the tax flag is not set, BRM refers to the pin.conf entry, fm_ar
tax_reversal_with_tax, to determine the default tax reversal behavior. The
adjustment is nontaxable if the pin.conf entry is absent.

PCM_OP_AR_BILL_ADJUSTMENT accepts a variety of other fields used to define tax
treatment, adjustment time, adjustment description, reason code, and so on.

• For information on tax treatment, see "Including Taxes in the Adjustment".

• For information on reason codes, see "Including Reason Codes in the Adjustment".

BRM creates a G/L ID for every bill adjustment. For information on adjustments and G/L IDs,
see "Assigning G/L IDs for an Adjustment".

Flags for Bill Adjustments
Use these flags with PCM_OP_AR_BILL_ADJUSTMENT:

• If the PCM_OPFLG_READ_RESULT flag is set, all the fields in the event object are
returned in addition to the POID.

• If the PCM_OPFLG_CALC_ONLY flag is set, no fields in the database are changed and
the event object is not created. The fields that would have been used to create the event
object and adjustment item are returned to the caller.

Chapter 4
Performing Adjustments

4-20

If the PCM_OPFLG_CALC_ONLY flag is not set, the /event/billing/adjustment/item
object is created to record details of the operation.

Adjusting Items
To adjust items, BRM uses PCM_OP_AR_ITEM_ADJUSTMENT. This opcode debits or credits
a currency balance for the bill item specified in the input flist. The item adjustment balance
impact is applied to the default balance group of the bill unit that is associated with the bill item.
This opcode is also called by PCM_OP_AR_BILL_ADJUSTMENT to adjust items in a bill.

Note:

PCM_OP_AR_ITEM_ADJUSTMENT does not check to determine whether the item
you are adjusting is billed yet. However, using this opcode to adjust pending items is
not recommended. If you try to adjust pending items, you may introduce problems if
you move the balance group to a new bill unit and there may be issues with G/L
reporting.

Note:

You cannot move a balance group to a new bill unit if there are any adjustments
against pending bill items. Otherwise, there may be issues with G/L reporting. You
can move the balance group when the items are billed.

PCM_OP_AR_ITEM_ADJUSTMENT does the following:

1. Reads the original /item object and prepares the changes to reflect the balance impact of
the adjustment.

For credit adjustments, these changes reduce the Due amount (PIN_FLD_DUE) for the
item. For debit adjustments, the opposite occurs.

2. Calls PCM_OP_BILL_POL_VALID_ADJUSTMENT to validate the changes.

You can customize the validation criteria for PCM_OP_BILL_POL_VALID_ADJUSTMENT.
For information on customizing the opcode, see "Customizing Item Adjustments".

3. Checks to see if the PIN_FLD_ITEM_OBJ field is present in the input flist.

If so, PCM_OP_AR_ITEM_ADJUSTMENT checks the contents of the field to determine:

• Whether the field contains a POID, indicating that the opcode is being called by
PCM_OP_AR_BILL_ADJUSTMENT to complete a bill adjustment.

This POID identifies the /item/adjustment object that
PCM_OP_AR_BILL_ADJUSTMENT created to store information on the bill
adjustment. This is the /item/adjustment object that
PCM_OP_AR_ITEM_ADJUSTMENT associates with each of the adjustment events it
creates for the bill adjustment.

• Whether the field is NULL, indicating that the opcode is being called directly from the
client application to perform an item adjustment. In this case,
PCM_OP_AR_ITEM_ADJUSTMENT creates its own /item/adjustment object. This
object is exclusive to the individual item being adjusted.

Chapter 4
Performing Adjustments

4-21

4. If the adjustment has tax implications and PCM_OP_AR_ITEM_ADJUSTMENT is not
being called as part of a bill adjustment, PCM_OP_AR_ITEM_ADJUSTMENT checks the
original /item object to determine the taxable portion of the item:

• If the item object stores only an amount generated by a tax event, the opcode omits it
from tax calculation.

• If the item object stores only an amount generated by a usage event, the opcode
calculates taxes for the amount.

• If the item object stores an amount generated by a tax event and an amount generated
by a usage event, the opcode calculates the adjustment tax reversal only for the usage
amount and not the tax amount.

For each item that it can adjust, PCM_OP_AR_ITEM_ADJUSTMENT checks the events
that make up the item to determine whether any of the events are tax exempt. If so, it omits
these events from the amount it uses when calculating the adjustment tax reversal.

As a result of eliminating any nontaxable components of the original item, the adjustment
tax is calculated proportionally to the actual taxable amount of the item.

Note:

If the item adjustment is being performed as part of a bill adjustment,
PCM_OP_AR_BILL_ADJUSTMENT performs this step before calling
PCM_OP_AR_ITEM_ADJUSTMENT.

5. Creates an /event/billing/adjustment/item object.

If the item adjustment is part of a bill adjustment, the event object for each adjusted item is
associated with a single, umbrella /item/adjustment object.

6. Examines the flags in the input flist to determine whether the adjustment has any tax
implications.

For information on how PCM_OP_AR_ITEM_ADJUSTMENT performs adjustment
taxation, see "Including Taxes in the Adjustment".

7. Calls PCM_OP_BILL_TRANSFER to transfer funds to the A/R bill.

8. If the Due amount after adjustment is 0 and there are no open disputes,
PCM_OP_AR_ITEM_ADJUSTMENT sets the PIN_ITEM_STATUS field to CLOSED.

If an over-adjustment is made on an item, the following occurs:

• For deferred taxation, the adjustment amount is left unallocated in the adjustment item.
If the tax to be adjusted is greater than the cycle tax amount, then the cycle tax item is
adjusted for its due amount.

• For tax now taxation, the excess adjustment amount is left unallocated in the
adjustment item.

9. Writes the modified version of the original /item object.

10. Provides feedback on whether the adjustment was successfully created.

If the adjustment creation failed, it indicates the reason for the failure.

BRM creates a G/L ID for item adjustments. For information on adjustments and G/L IDs, see
"Assigning G/L IDs for an Adjustment".

Chapter 4
Performing Adjustments

4-22

Fields You Should Include in the Input Flist for Item Adjustments
When performing item adjustments, set these fields in the input flist:

• PIN_FLD_POID for the item to be adjusted. The adjusted amount is applied to the default
balance group of the bill unit associated with the item.

• PIN_FLD_AMOUNT for the adjustment amount. The value should be negative when
crediting and positive when debiting.

• PIN_FLD_CURRENCY for the balance to adjust.

PCM_OP_AR_ITEM_ADJUSTMENT accepts a variety of other fields used to define tax
treatment, adjustment time, adjustment description, reason code, and so on.

• For information on tax treatment, see "Including Taxes in the Adjustment".

• For information on reason codes, see "Including Reason Codes in the Adjustment".

Flags for Item Adjustments
Use these flags with PCM_OP_AR_ITEM_ADJUSTMENT:

• If the PCM_OPFLG_READ_RESULT flag is set, PCM_OP_AR_ITEM_ADJUSTMENT
returns not only the POID, but all the fields in the /event/billing/adjustment/item object as
well.

• If the PCM_OPFLG_CALC_ONLY flag is set, PCM_OP_AR_ITEM_ADJUSTMENT does
not change any fields in the database and does not create an /event/billing/adjustment/
item object. However, it does provide an adjustment calculation to the caller by returning
the fields that would have been used to create the event object and adjustment item.

Note:

If the PCM_OPFLG_CALC_ONLY flag is not set,
PCM_OP_AR_ITEM_ADJUSTMENT behaves in a standard manner, creating
an /event/billing/adjustment/item object to record details of the operation.

• PIN_FLD_FLAGS for the tax treatment:

– PIN_AR_WITHOUT_TAX flag: The item adjustment is nontaxable.

– PIN_AR_WITH_TAX flag: The item adjustment is taxable. Tax is reversed on an item-
by-item basis.

Note:

If the tax flag is not set, BRM refers to the pin.conf entry, fm_ar
tax_reversal_with_tax, to determine the default tax reversal behavior. The
adjustment is nontaxable if the pin.conf entry is absent.

Customizing Item Adjustments
PCM_OP_BILL_POL_VALID_ADJUSTMENT validates information to make adjustments
against an item.

Chapter 4
Performing Adjustments

4-23

This opcode is called by PCM_OP_AR_ITEM_ADJUSTMENT and
PCM_OP_AR_ACCOUNT_ADJUSTMENT.

When you initiate a bill or item adjustment, PCM_OP_AR_ITEM_ADJUSTMENT calls
PCM_OP_BILL_POL_VALID_ADJUSTMENT to validate all proposed changes to the fields in
the original /item object. This opcode checks the validity of field values before processing.
Field values either pass or fail. If one field fails, the entire operation fails.

To customize the adjustment validation criteria, use
PCM_OP_BILL_POL_VALID_ADJUSTMENT. Changing a result from PIN_BOOLEAN_FALSE
to PIN_BOOLEAN_TRUE enables the specified field value to pass. Changing a result from
PIN_BOOLEAN_TRUE to PIN_BOOLEAN_FALSE causes the specified field value to fail.

Adjusting Events
To adjust events, BRM uses PCM_OP_AR_EVENT_ADJUSTMENT. This opcode debits or
credits a balance for a specified event.

PCM_OP_AR_EVENT_ADJUSTMENT receives a list of events to be adjusted as a batch on
the input flist, and returns the adjusted /event/billing/adjustment/event data on the output
flist. Events that can be adjusted are stored in the /config/adjustment/event object. There can
be multiple events in a given batch, and the events to be adjusted do not need to belong to the
same account specified in the PIN_FLD_POID for PCM_OP_AR_EVENT_ADJUSTMENT.
Events that can be adjusted are defined in the init_objects.source file and stored in the /
config/adjustment/event object.

If you are adjusting pending items, you can ensure proper recording of the adjustment in the
General Ledger by using PCM_OP_AR_EVENT_ADJUSTMENT to create a shadow
adjustment rather than the standard event adjustment you would normally want to create for a
billed item. For information on adjustments and G/L IDs, see "Assigning G/L IDs for an
Adjustment" and "Categorizing Unbilled Event Adjustments in G/L Reports".

By default, the adjustable events are:

• /event/billing/debit

• /event/billing/product/fee/cycle/cycle_arrear

• /event/session/dialup

• /event/billing/product/fee/purchase

• /event/billing/product/fee/cancel

• /event/billing/product/fee/cycle/cycle_forward_monthly

• /event/billing/product/fee/cycle/cycle_forward_bimonthly

• /event/billing/product/fee/cycle/cycle_forward_quarterly

• /event/billing/product/fee/cycle/cycle_forward_semiannual

• /event/billing/product/fee/cycle/cycle_forward_annual

• /event/billing/product/fee/cycle/cycle_forward_arrear

If you create custom events that you must adjust or if you must adjust additional events, use
PCM_OP_WRITE_FLDS to add additional event types to the /config/adjustment/event
object.

When PCM_OP_AR_EVENT_ADJUSTMENT receives a batch of events, it:

1. Identifies all events in the batch to be adjusted, and runs the validation checks against
those events.

Chapter 4
Performing Adjustments

4-24

2. If the event has any tax implications, the tax implications must be adjusted.

For information on how PCM_OP_AR_EVENT_ADJUSTMENT performs adjustment
taxation, see "Including Taxes in the Adjustment".

3. Creates a single /item/adjustment object for all the events in the batch for the account.

4. For each event to be adjusted for an account, a new /event/billing/adjustment/event
object containing the amount to be adjusted is created.

The /event/billing/adjustment/event object has the PIN_FLD_ITEM_OBJ pointing to the
adjustment item created in step 3.

5. After the adjustment item and the /event/billing/adjustment/event object are created, the
amount is transferred from the adjustment item to the original item where the adjusted
event belongs.

The original item may or may not be open. If the transfer happens to a closed item, the
closed item is reopened automatically.

Note:

After the entire Due amount from the adjustment item is transferred to other
items, the adjustment item is closed.

BRM creates a G/L ID for event adjustments.

For information on adjustments and G/L IDs, see "Assigning G/L IDs for an Adjustment" and
"Categorizing Unbilled Event Adjustments in G/L Reports".

Fields You Should Include in the Input Flist for Event Adjustments
When performing adjustment, set these fields in the PCM_OP_AR_EVENT_ADJUSTMENT
input flist:

• PIN_FLD_POID for each of the events to be adjusted. The adjusted amount is applied to
the default balance group of the bill unit associated with the /item object that the event
belongs to.

• PIN_FLD_AMOUNT or PIN_FLD_PERCENT for the adjustment amount. The value
supplied for this field should be positive for adjustments that credit the event and negative
for adjustments that debit the event. If you omit both of these fields, BRM adjusts the entire
amount for each event.

• PIN_FLD_RESOURCE_ID for the balance to adjust.

PCM_OP_AR_EVENT_ADJUSTMENT accepts a variety of other fields used to define tax
treatment, adjustment time, adjustment description, reason code, and so on.

• For information on tax treatment, see "Including Taxes in the Adjustment".

• For information on reason codes, see "Including Reason Codes in the Adjustment".

Flags for Event Adjustments
Use these flags with PCM_OP_AR_EVENT_ADJUSTMENT:

• If the PCM_OPFLG_READ_RESULT flag is set, PCM_OP_AR_EVENT_ADJUSTMENT
returns not only the POID, but all the fields in the /event/billing/adjustment/event object
as well.

Chapter 4
Performing Adjustments

4-25

• If the PCM_OPFLG_CALC_ONLY flag is set, PCM_OP_AR_EVENT_ADJUSTMENT does
not change any fields in the database and does not create an /event/billing/adjustment/
event object. However, it does provide an adjustment calculation to the caller by returning
the fields that would have been used to create the event object and adjustment item.

Note:

If the PCM_OPFLG_CALC_ONLY flag is not set,
PCM_OP_AR_EVENT_ADJUSTMENT behaves in a standard manner, creating
an /event/billing/adjustment/event object to record details of the operation.

• If the PIN_ADJ_NO_TAX flag is set, the event adjustment is nontaxable. If this flag is not
set, the adjustment is taxable.

• If the PIN_ADJ_TAX_ONLY flag is set, only the tax on the original event is adjusted; not
the event itself.

Note:

Do not set this flag for adjustments against unbilled events that use deferred
taxation.

• If the PIN_EVENT_ADJ_BATCH is set, the adjustment amount is distributed among the
events in the batch on a first-come-first-serve basis until the adjustment amount is
consumed.

• If the PIN_EVENT_ADJ_EVENT is set, the adjustment amount is applied individually to
each of the events in the batch.

• If the PIN_EVENT_ADJ_FOR_RERATE flag is set, the adjustment is the result of rerating
the original event.

• If the PIN_AR_RECORD_SHADOW_ADJUSTMENT_EVENT is set, BRM creates a
shadow adjustment instead of an /event/billing/adjustment/event object. This flag should
be set when the event being adjusted is pending and results in the adjustment being
recorded as unbilled in the General Ledger.

Categorizing Unbilled Event Adjustments in G/L Reports
To report adjustments as unbilled in the G/L, BRM uses
PCM_OP_AR_EVENT_ADJUSTMENT to create shadow event objects instead of adjustment
event objects. A shadow event object is a new version of the original event object. It is identical
to the original event object except for a new creation timestamp and a new balance impact
resulting from the event adjustment.

To create shadow adjustments, set the value of the PIN_FLD_FLAGS field at the top level to 1
(PIN_AR_RECORD_SHADOW_ADJUSTMENT_EVENT) on the
PCM_OP_AR_EVENT_ADJUSTMENT input flist. The shadow object is created only if the
original event to be adjusted has not been billed or posted to a G/L report.

Chapter 4
Performing Adjustments

4-26

Note:

When the PIN_FLD_FLAGS field is not present in the input flist, BRM creates an /
event/billing/adjustment/event object.

Unlike standard event adjustments, when creating shadow events, only one event should be
present on the input flist.

As with standard event adjustments, you can adjust both currency and noncurrency balances.
Regardless of whether PCM_OP_AR_EVENT_ADJUSTMENT is performing a standard or
shadow adjustment, it adjusts only the balances specified in the input flist; it does not
automatically adjust all balances for an event.

For information on the shadow adjustment flags, see "Flags for Event Adjustments".

Including Taxes in the Adjustment
You can configure tax calculation on adjustments, as described in "Calculating Taxes for
Accounts Receivable Actions" in BRM Calculating Taxes. You can specify an optional tax
treatment for adjustments by using flags in the PCM_OP_AR_EVENT_ADJUSTMENT input
flist. See the following topics:

• Flags for Account, Subscription Service, and Member Service Adjustments

• Flags for Bill Adjustments

• Flags for Item Adjustments

• Flags for Event Adjustments

Tax Processing for Account Adjustments
If the PCM_OP_AR_EVENT_ADJUSTMENT input flist flags the adjustment as taxable or the
pin.conf file specifies that BRM tax all adjustments, PCM_OP_AR_EVENT_ADJUSTMENT
obtains tax information from a configuration file read into BRM when Connection Manager
starts.

PCM_OP_AR_ACCOUNT_ADJUSTMENT uses this information as follows:

• If adjustment tax method is tax now, it uses this information to calculate the tax and apply it
immediately.

• If adjustment tax method is tax deferred, it enriches the input flist with this information, and
then passes it to PCM_OP_ACT_USAGE for deferred tax calculation.

Tax Processing for Bill and Item Level Adjustments
If the PCM_OP_AR_EVENT_ADJUSTMENT input flist flags the adjustment as taxable or the
pin.conf file specifies that BRM tax all adjustments, PCM_OP_AR_EVENT_ADJUSTMENT
obtains tax information from a configuration file read into BRM when Connection Manager
starts.

PCM_OP_AR_ITEM_ADJUSTMENT and PCM_OP_AR_BILL_ADJUSTMENT perform one of
two steps:

Chapter 4
Performing Adjustments

4-27

• If adjustment tax method is tax now, it uses information from the event associated with the
original bill item to calculate taxes and apply the amount immediately with the adjustment
amount.

• If adjustment tax method is tax deferred, The taxes are contained in the tax item. In such
cases, PCM_OP_AR_ITEM_ADJUSTMENT does the following to handle the taxes:

– Calls PCM_OP_BILL_TAX_EVENT to calculate the tax amount.

– Compares the calculated tax with the due amount of the tax item to determine the
amount to reverse.

– Creates the /event/billing/adjustment/tax_event event to contain the tax amount.

– Transfers the calculated tax amount to the original tax item.

The due amount is reduced by the adjustment amount.

Validations are made to ensure that an item's net amount and cycle tax amount are not over-
adjusted during an adjustment. If the adjustment amount is greater than the item's due amount,
the excess amount is left unallocated in the adjustment item and must be allocated either
manually or when the next payment is applied on the account. The tax amount is always
adjusted to the maximum amount due in the tax item.

Note:

The adjustment tax method (tax now or tax deferred) is determined based on whether
the events associated with the item are taxed at event time or at bill time.

Tax Processing for Event Adjustments
If the PCM_OP_AR_EVENT_ADJUSTMENT input flist flags the adjustment as taxable,
PCM_OP_AR_EVENT_ADJUSTMENT performs one of two steps:

• If adjustment tax method is tax now, the opcode uses information from the adjusted event
to calculate the tax and apply it immediately.

• If adjustment tax method is tax deferred, the opcode uses information from the /event/
billing/cycle/tax object to calculate the adjustment tax. When it has calculated the tax, it
creates the /event/billing/adjustment/tax_event event.

Note:

If the adjustment is created in the same billing cycle as the adjusted item, the
original item will not have been taxed yet. In this case, there is no need to create
the /event/billing/adjustment/tax_event event because the adjustment
precedes initial tax calculation for the original item.

Including Reason Codes in the Adjustment
Reason codes explain why an adjustment is being granted. In typical implementations, the
BRM client application provides a selectable set of reasons appropriate to the event type. You
choose a reason that matches the situation or, in some cases, compose a new reason. The
client application populates the input flist for the opcode with this information, and BRM records
the reason in the adjustment event object (for example, /event/billing/adjustment/item or /

Chapter 4
Performing Adjustments

4-28

event/billing/adjustment/event). The flist fields that provide reason code information are
PIN_FLD_REASON_ID and PIN_FLD_REASON_DOMAIN_ID. These fields are optional.

For event adjustments, you can filter a batch of adjustments based on the reason code
supplied in the input flist. If the PCM_OP_AR_EVENT_ADJUSTMENT input flist includes a
reason code and domain, PCM_OP_AR_EVENT_ADJUSTMENT performs a validation check
of the reason code. It does so by comparing the reason code in its input flist against a stored
global flist created by reading reason code configuration information from the /config/
reason_code_scope object at Connection Manager (CM) start time. The global flist serves as
a filter that indicates all the reason codes that are valid for a given event and service type.

Reason code validation produces these results:

• For all instances where the reason code is valid for the event and associated service, the
opcode proceeds with the adjustment.

• For each instance where the reason code is not valid, the opcode indicates the failure in
the PIN_FLD_RESULTS field for the output flist and describes the problem in the
PIN_FLD_DESCR field.

For general information about reason codes, see "String Manipulation Functions"in BRM
Developer's Reference.

Assigning G/L IDs for an Adjustment
The G/L ID for an adjustment event is assigned like other pre-rated events in the BRM system.
PCM_OP_ACT_POL_SPEC_GLID assigns the G/L ID for the adjustment. Based on the event
type, this opcode retrieves a G/L ID from the /config/map_glid object. The PIN_FLD_GL_ID
field in the /event/billing/adjustment/event object points to the same G/L ID as the original
event, ensuring that both the original event and the adjustment are correctly recorded in the
general ledger.

Applying Debits and Credits
To apply debits and credits to noncurrency balances, BRM uses PCM_OP_BILL_DEBIT.

PCM_OP_BILL_DEBIT debits sub-balances for a specific /balance_group object associated
with an account.

There are three ways to use PCM_OP_BILL_DEBIT:

• Pass in the POID of an account to impact that account's default /balance_group object.

• Pass in the POID of a specific balance group to impact that /balance_group object.

• For either the account or a balance group, pass in a specific sub-balance to impact that
sub-balance.

The PIN_FLD_DEBIT array on the input object contains the amount of the balance to debit.
The amount is a signed value, so the result can be a debit (positive value) or a credit (negative
value) to the balance.

The PIN_FLD_SUB_BALANCES array contains a specific element ID, or uses
PIN_ELEMID_ASSIGN to identify or create the specific sub-balance to receive the debit.

You specify validity information using the VALID_FROM and VALID_TO fields on the
PIN_FLD_SUB_BALANCES array to credit or debit a sub-balance for specific dates. These are
usually used with the PIN_ELEMID_ASSIGN field to specify a sub-balance to credit or debit.

Chapter 4
Performing Adjustments

4-29

Note:

If you are performing a noncurrency account or service adjustment,
PCM_OP_BILL_DEBIT determines whether the sub-balance being adjusted is still
open. Open sub-balances are those whose VALID_TO date has not yet been
reached. If the sub-balance is no longer open, the opcode creates a new sub-
balance for the adjustment. This sub-balance has the same validity period as the
sub-balance you were trying to adjust.

If validity information is not specified, PCM_OP_BILL_DEBIT updates the "most valid" sub-
balance first, and then continues through the rest of the sub-balances until the debit amount is
used up. If no other sub-balances are left, or if there were no valid sub-balances to begin with,
PCM_OP_BILL_DEBIT it creates a new sub-balance to hold the debit amount.

Note:

• You can change the order in which PCM_OP_BILL_DEBIT updates sub-
balances.

• PCM_OP_BILL_DEBIT opens a local transaction.

Flags for Applying Debits and Credits
• If the PCM_OPFLG_READ_RESULT flag is set, all the fields in the event object are

returned and not just the POID.

• If the PCM_OPFLG_CALC_ONLY flag is set, no fields in the database are changed and
the event object is not actually created. The fields that would have been used to create the
event object are returned to the caller.

• If the PCM_OPFLG_CALC_ONLY flag is not set, the /event/billing/debit object is created
to record the details of the operation.

Performing Disputes and Settlements
You use Billing Care or Customer Center to manage disputes and settlements. BRM uses the
following opcodes to perform and customize disputes and settlements:

• PCM_OP_AR_BILL_DISPUTE

See "Disputing Bills".

• PCM_OP_AR_BILL_SETTLEMENT

See "Settling Disputed Bills".

• PCM_OP_AR_ITEM_DISPUTE

See "Disputing Items".

• PCM_OP_AR_ITEM_SETTLEMENT

See "Settling Disputed Items".

• PCM_OP_BILL_POL_VALID_DISPUTE

Chapter 4
Performing Disputes and Settlements

4-30

See "Customizing Item Disputes".

• PCM_OP_AR_EVENT_DISPUTE

See "Disputing Events".

• PCM_OP_AR_EVENT_SETTLEMENT

See "Settling Disputed Events".

• PCM_OP_ACT_POL_SPEC_GLID

See "Assigning G/L IDs for a Dispute or Settlement".

Disputing Bills
To open a dispute at the bill level, BRM uses PCM_OP_AR_BILL_DISPUTE. This opcode
debits or credits a currency balance for the specified /bill object. You can open a bill dispute
with or without tax. This opcode is called by BRM client applications to dispute the items
associated with the specified bill. For information on how PCM_OP_AR_BILL_DISPUTE
performs dispute taxation, see "Including Taxes in the Dispute or Settlement".

Note:

PCM_OP_AR_BILL_DISPUTE does not check to determine whether the item you are
disputing is billed yet. However, using PCM_OP_AR_BILL_DISPUTE to dispute
pending items is not recommended. If you try to dispute pending items, you may
introduce problems if you move the balance group to a new bill unit and there may be
issues with G/L reporting.

Note:

You cannot move a balance group to a new bill unit if there are any disputes against
pending bill items. Otherwise, there may be issues with G/L reporting. You can move
the balance group when the items are billed.

PCM_OP_AR_BILL_DISPUTE does not create disputes when:

• The specified bill is not an A/R bill (for example, a bill from a nonpaying bill unit).

• The amount of the dispute exceeds the total amount of the bill against which the dispute
applies. For example, if the bill due is $5, you cannot open a credit dispute for $6. Similarly,
if the bill due -$5, you cannot open a debit dispute for $6.

Bill disputes can apply to the entire bill or to specific bill items. When
PCM_OP_AR_BILL_DISPUTE receives an input flist, it creates a single, umbrella dispute item
for all bill items covered by the dispute, as follows:

• If the input flist specifies individual bill items, the dispute item is associated with each of
these bill items. Further, the dispute amount for each bill item is equivalent to the entire
due for that item unless otherwise specified in the input flist.

• If the flist does not specify any bill items, all bill items are eligible for dispute.
PCM_OP_AR_BILL_DISPUTE opens disputes for as many bill items as it can before it
consumes the dispute amount. In this case, the dispute item will cover only those bill items
that the opcode was able to fully or partially dispute before using up the dispute amount. If

Chapter 4
Performing Disputes and Settlements

4-31

the input flist does not supply a dispute amount, BRM uses amounts equivalent to the
entire due for each dispute item.

In either case, PCM_OP_AR_BILL_DISPUTE passes the POID of the dispute item and the
appropriate dispute amount to PCM_OP_AR_ITEM_DISPUTE, which opens the dispute for
each of the associated bill items and creates the dispute events. An /event/billing/dispute/
item object is created for each disputed item in the bill, recording the balance impact. The bill
dispute event balance impact is applied to the default balance group of the bill unit associated
with the bill. For details on how PCM_OP_AR_ITEM_DISPUTE works, see "Disputing Items".

Before passing the dispute item and amount to PCM_OP_AR_ITEM_DISPUTE,
PCM_OP_AR_BILL_DISPUTE determines whether the dispute has tax implications. If so, it
checks the original /item object to determine the taxable portion of the item:

• If the item object stores only an amount generated by a tax event, the opcode omits it from
tax calculation.

• If the item object stores only an amount generated by a usage event, the opcode
calculates taxes for the amount.

• If the item object stores an amount generated by a tax event and an amount generated by
a usage event, the opcode calculates the dispute tax reversal only for the usage amount
and not the tax amount.

For each item that can be disputed, PCM_OP_AR_BILL_DISPUTE checks the events that
make up the item to determine whether any of the events are tax exempt. If so, it omits these
events from the amount it uses when calculating the dispute tax reversal. As a result of
eliminating any nontaxable components of the original item, the dispute tax is calculated
proportionally to the actual taxable amount of the item.

If the dispute fails, PCM_OP_AR_BILL_DISPUTE returns the reason in the PIN_FLD_DESCR
field of the PIN_FLD_RESULTS array on the output flist.

BRM creates a G/L ID for every bill dispute. For information on disputes and G/L IDs, see
"Assigning G/L IDs for a Dispute or Settlement".

Fields You Should Include in the Input Flist for Bill Disputes
Set these fields in the PCM_OP_AR_BILL_DISPUTE input flist when creating bill disputes:

• PIN_FLD_POID for the bill under dispute. You obtain this from the /bill object that the CSR
identifies through the client application. The disputed amount is applied to the default
balance group of the bill unit associated with the bill.

• PIN_FLD_POID for the item under dispute. This field is only required to dispute a particular
set of bill items in the bill.

• PIN_FLD_AMOUNT for the dispute amount. The value supplied for this field should be
negative when crediting and positive when debiting. This field is optional.

You can provide the PIN_FLD_AMOUNT field for the bill itself or, if the dispute is against
an array of bill items, for the individual bill items. If PIN_FLD_AMOUNT is NULL for a
dispute, BRM assumes that the dispute is for the entire amount of the bill or the individual
bill items, as appropriate. If you are performing a dispute that credits the bill, the absolute
value of PIN_FLD_AMOUNT must be greater than 0 and less than the total bill amount and
its sign should be negative.

• PIN_FLD_CURRENCY for the balance to dispute.

PCM_OP_AR_BILL_DISPUTE accepts a variety of other fields used to define tax treatment,
dispute time, reason code, and so on.

Chapter 4
Performing Disputes and Settlements

4-32

• For information on tax treatment, see "Including Taxes in the Dispute or Settlement".

• For information on reason codes, see "Including Reason Codes in the Dispute or
Settlement".

Flags for Bill Disputes
Use the following flags with PCM_OP_AR_BILL_DISPUTE:

• If the PIN_AR_WITHOUT_TAX flag is set, the dispute is nontaxable.

• If the PIN_AR_WITH_TAX flag is set, the dispute is taxable. Tax is reversed on an item-by-
item basis.

Note:

If the tax flag is not set, BRM refers to the pin.conf entry, fm_ar
tax_reversal_with_tax, to determine the default tax reversal behavior. The
dispute is nontaxable if the pin.conf entry is absent.

For information on flags that indirectly affect PCM_OP_AR_BILL_DISPUTE, see "Flags for
Item Disputes".

Settling Disputed Bills
To settle a dispute at the bill level, BRM uses PCM_OP_AR_BILL_SETTLEMENT. This opcode
debits or credits a currency balance for the specified /bill object. You can create a bill
settlement with or without tax. This opcode is called by BRM client applications to settle the
disputed items associated with the specified bill.

For information on how PCM_OP_AR_BILL_SETTLEMENT performs settlement taxation, see
"Including Taxes in the Dispute or Settlement".

Note:

PCM_OP_AR_BILL_SETTLEMENT does not check to determine whether the item
you are settling is billed yet. However, using this opcode to settle pending items is not
recommended. If you try to settle pending items, you may introduce problems if you
move the balance group to a new bill unit and there may be issues with G/L reporting.

Note:

You cannot move a balance group to a new bill unit if there are any disputes settled
against pending bill items. Otherwise, there may be issues with G/L reporting. You
can move the balance group when the items are billed.

PCM_OP_AR_BILL_SETTLEMENT does not create settlements in these cases:

• The specified bill is not an A/R bill (for example, a bill from a nonpaying bill unit).

• The amount of the settlement exceeds the amount of the associated dispute.

Chapter 4
Performing Disputes and Settlements

4-33

Bill settlements can apply to the entire bill or to specific bill items. When
PCM_OP_AR_BILL_SETTLEMENT receives an input flist, it creates a single, umbrella
settlement item for all bill items covered by the settlement, as follows:

• If the input flist specifies individual bill items, the settlement item is associated with each of
these bill items. The settlement amount for each bill item must be specified in the input flist.

• If the flist does not specify any bill items, all disputed items in the bill are eligible for
settlement. PCM_OP_AR_BILL_SETTLEMENT opens settlements for as many disputed
items as it can before it consumes the settlement amount. After it uses up the settlement
amount, it continues to open settlements for the remaining disputed items, but with a
settlement amount of 0.

For each bill item it must settle, PCM_OP_AR_BILL_SETTLEMENT passes the POID of the
settlement item and the appropriate settlement amount to
PCM_OP_AR_ITEM_SETTLEMENT, which creates a settlement event for each bill item it
receives. An /event/billing/settlement/item object is created for each settled item in the bill,
recording the balance impact. For details on how PCM_OP_AR_ITEM_SETTLEMENT works,
see "Settling Disputed Items".

If the settlement fails, PCM_OP_AR_BILL_SETTLEMENT returns the reason in the
PIN_FLD_DESCR field of the PIN_FLD_RESULTS array on the output flist.

BRM creates a G/L ID for every bill settlement. For information on settlements and G/L IDs,
see "Assigning G/L IDs for a Dispute or Settlement".

Fields You Should Include in the Input Flist
Set these fields in the PCM_OP_AR_BILL_SETTLEMENT input flist when creating bill
settlements:

• PIN_FLD_POID for the bill under dispute or settlement. You obtain this from the /bill object
that the CSR identifies through the BRM client application. The settled amount is applied to
the default balance group of the bill unit associated with the bill.

• PIN_FLD_POID for the item to be settled. This field is only required to settle a particular
set of bill items in the bill.

• PIN_FLD_AMOUNT for the settlement amount. The value supplied for this field should be
negative when crediting and positive when debiting.

You can provide the PIN_FLD_AMOUNT field for the bill itself or, if the settlement is
against an array of bill items, for the individual bill items. If you supply a value for
PIN_FLD_AMOUNT, it must be less than the dispute amount.

PCM_OP_AR_BILL_SETTLEMENT accepts a variety of other fields used to define tax
treatment, settlement time, reason code, and so on.

• For information on tax treatment, see "Including Taxes in the Dispute or Settlement".

• For information on reason codes, see "Including Reason Codes in the Dispute or
Settlement".

Flags for Bill Settlements
Use this flags with PCM_OP_AR_BILL_SETTLEMENT:

• If the PIN_AR_WITHOUT_TAX flag is set, the settlement is nontaxable. This is the default.

• If the PIN_AR_WITH_TAX flag is set, the settlement is taxable. Tax is reversed on an item-
by-item basis.

Chapter 4
Performing Disputes and Settlements

4-34

Note:

If the tax flag is not set, BRM refers to the pin.conf entry, fm_ar
tax_reversal_with_tax, to determine the default tax reversal behavior. The
settlement is nontaxable if the pin.conf entry is absent.

For information on flags that indirectly affect PCM_OP_AR_BILL_SETTLEMENT, see "Flags
for Item Settlements".

Disputing Items
To open an item dispute, BRM uses PCM_OP_AR_ITEM_DISPUTE. This opcode debits or
credits a currency balance for a particular bill item. This opcode is also called by
PCM_OP_AR_BILL_DISPUTE to dispute items in a bill.

Note:

PCM_OP_AR_ITEM_DISPUTE does not check to determine whether the item you
are disputing is billed yet. However, using this opcode to dispute pending items is not
recommended. If you try to dispute pending items, you may introduce problems if you
move the balance group to a new bill unit and there may be issues with G/L reporting.

Note:

You cannot move a balance group to a new bill unit if there are any disputes against
pending bill items. Otherwise, there may be issues with G/L reporting. You can move
the balance group when the items are billed.

PCM_OP_AR_ITEM_DISPUTE does the following:

1. Reads the original /item object and prepares the changes to reflect the balance impact of
the dispute.

For credit disputes, these changes reduce the Due amount (PIN_FLD_DUE) for the item.
For debit disputes, the opposite occurs.

2. Calls PCM_OP_BILL_POL_VALID_DISPUTE to validate the changes.

You can customize the validation criteria for PCM_OP_BILL_POL_VALID_SETTLEMENT.
For information on customizing the opcode, see "Customizing Item Disputes".

3. Checks to see if the PIN_FLD_ITEM_OBJ field is present in the input flist.

If so, PCM_OP_AR_ITEM_DISPUTE checks the contents of the field to determine:

• Whether the field contains a POID, indicating that the opcode is being called by
PCM_OP_AR_BILL_DISPUTE to complete a bill dispute.

This POID identifies the /item/dispute object that PCM_OP_AR_BILL_DISPUTE
created to store information on the bill dispute. This is the /item/dispute object that
PCM_OP_AR_ITEM_DISPUTE will associate with each of the dispute events it
creates for the bill adjustment.

Chapter 4
Performing Disputes and Settlements

4-35

• Whether the field is NULL, indicating that PCM_OP_AR_ITEM_DISPUTE is being
called directly from the client application to perform an item dispute. In this case,
PCM_OP_AR_ITEM_DISPUTE will create its own /item/dispute object. This object is
exclusive to the individual item being disputed.

4. If the dispute has tax implications and the opcode is not being called as part of a bill
dispute, checks the original /item object to determine the taxable portion of the item:

• If the item object stores only an amount generated by a tax event, the opcode omits it
from tax calculation.

• If the item object stores only an amount generated by a usage event, the opcode
calculates taxes for the amount.

• If the item object stores an amount generated by a tax event and an amount generated
by a usage event, the opcode calculates the dispute tax reversal only for the usage
amount and not the tax amount.

For each item that it can dispute, PCM_OP_AR_ITEM_DISPUTE checks the events that
make up the item to determine whether any of the events are tax exempt. If so, it omits
these events from the amount it uses when calculating the dispute tax reversal.

As a result of eliminating any nontaxable components of the original item, the dispute tax is
calculated proportionally to the actual taxable amount of the item.

Note:

If the item dispute is being performed as part of a bill dispute,
PCM_OP_AR_BILL_DISPUTE performs this step before calling
PCM_OP_AR_ITEM_DISPUTE.

5. Creates an /event/billing/dispute/item object.

The item dispute event balance impact is applied to the default balance group of the bill
unit associated with the item. If the item dispute is part of a bill dispute, the event object for
each disputed item is associated with a single, umbrella /item/dispute object.

6. Examines the flags in the input flist to determine whether the dispute has any tax
implications.

For information on how the opcode performs dispute taxation, see "Including Taxes in the
Dispute or Settlement".

7. Calls PCM_OP_BILL_TRANSFER to transfer funds to the A/R bill.

8. Writes the modified version of the original /item object.

9. Provides feedback on whether the dispute was successfully created.

If the dispute creation failed, it indicates the reason for the failure.

BRM creates a G/L ID for item disputes. For information on disputes and G/L IDs, see
"Assigning G/L IDs for a Dispute or Settlement".

Fields You Should Include in the Input Flist
Set these fields in the PCM_OP_AR_ITEM_DISPUTE input flist when creating item disputes:

• PIN_FLD_POID for the item under dispute. The disputed amount is applied to the default
balance group of the bill unit associated with the item.

Chapter 4
Performing Disputes and Settlements

4-36

• PIN_FLD_AMOUNT for the dispute amount. The value for this field should be negative
when crediting and positive when debiting.

• PIN_FLD_CURRENCY for the balance to dispute.

PCM_OP_AR_ITEM_DISPUTE accepts a variety of other fields used to define tax treatment,
dispute time, reason code, and so on.

• For information on tax treatment, see "Including Taxes in the Dispute or Settlement".

• For information on reason codes, see "Including Reason Codes in the Dispute or
Settlement".

Flags for Item Disputes
Use the following flags with PCM_OP_AR_ITEM_DISPUTE:

• If the PCM_OPFLG_READ_RESULT flag is set, PCM_OP_AR_ITEM_DISPUTE returns
not only the POID, but all the fields in the /event/billing/dispute/item object as well.

• If the PCM_OPFLG_CALC_ONLY flag is set, PCM_OP_AR_ITEM_DISPUTE does not
change any fields in the database and does not create an /event/billing/dispute/item
object. However, it does provide a dispute calculation to the caller by returning the fields
that would have been used to create the event object and dispute item.

Note:

If the PCM_OPFLG_CALC_ONLY flag is not set, PCM_OP_AR_ITEM_DISPUTE
behaves in a standard manner, creating an /event/billing/dispute/item object to
record details of the operation.

• If the PIN_AR_WITHOUT_TAX flag is set, the item dispute is nontaxable.

• If the PIN_AR_WITH_TAX flag is set, the item dispute is taxable. Tax is reversed on an
item-by-item basis.

Note:

If the tax flag is not set, BRM refers to the pin.conf entry, fm_ar
tax_reversal_with_tax, to determine the default tax reversal behavior. The
dispute is nontaxable if the pin.conf entry is absent.

Customizing Item Disputes
When you initiate a bill or item dispute, PCM_OP_AR_ITEM_DISPUTE calls
PCM_OP_BILL_POL_VALID_DISPUTE to validate all proposed changes to the fields in the
original /item object. PCM_OP_BILL_POL_VALID_DISPUTE checks the validity of field values
before processing. Field values either pass or fail. If one field fails, the entire operation fails.

You can customize the validation criteria for PCM_OP_BILL_POL_VALID_SETTLEMENT by
modifying the policy source file. Changing a result from PIN_BOOLEAN_FALSE to
PIN_BOOLEAN_TRUE enables the specified field value to pass. Changing a result from
PIN_BOOLEAN_TRUE to PIN_BOOLEAN_FALSE causes the specified field value to fail.
PCM_OP_BILL_POL_VALID_SETTLEMENT is called by PCM_OP_AR_ITEM_SETTLEMENT.

Chapter 4
Performing Disputes and Settlements

4-37

Settling Disputed Items
To settle a dispute at the item level, BRM uses PCM_OP_AR_ITEM_SETTLEMENT. This
opcode debits or credits the currency balance of a particular item to settle a dispute against
that item. PCM_OP_AR_ITEM_SETTLEMENT is also called by
PCM_OP_AR_BILL_SETTLEMENT to settle the dispute items associated with a bill.

Note:

PCM_OP_AR_ITEM_SETTLEMENT does not check to determine whether the item
you are settling is billed yet. However, using this opcode to settle pending items is not
recommended. If you try to settle pending items, you may introduce problems if you
move the balance group to a new bill unit and there may be issues with G/L reporting.

Note:

You cannot move a balance group to a new bill unit if there are any disputes settled
against pending bill items. Otherwise, there may be issues with G/L reporting. You
can move the balance group when the items are billed.

PCM_OP_AR_ITEM_SETTLEMENT does the following:

1. Reads the original /item object and prepares the changes to reflect the balance impact
based on the settlement amount.

Settlement amounts have components:

• Granted amount: The portion of the disputed amount granted by the settlement. This
is the amount in the PIN_FLD_DISPUTED field of the
PCM_OP_AR_ITEM_SETTLEMENT input flist.

• Denied amount: The portion of the disputed amount that was denied by the
settlement. This is the original dispute amount minus the granted amount. Settlements
always work with the denied amount.

For credit settlements, PCM_OP_AR_ITEM_SETTLEMENT makes the following changes
to the balance impact:

• Increases the Due amount (PIN_FLD_DUE) for the item by adding the amount denied
during the settlement, if any.

• For item disputes, it impacts the Adjusted amount (PIN_FLD_ADJUSTED) of the bill
item by adding the settled amount and zeroing out the disputed amount
(PIN_FLD_DISPUTED). Any dispute amount due to event disputes is not touched.

For debit settlements, the opposite occurs.

2. Calls PCM_OP_BILL_POL_ITEM_VALID_SETTLEMENT to validate the changes.

You can customize the validation criteria for
PCM_OP_BILL_POL_ITEM_VALID_SETTLEMENT.

For information on customizing the opcode, see "Customizing Item Settlements".

3. Checks to see if the PIN_FLD_ITEM_OBJ field is present in the input flist.

Chapter 4
Performing Disputes and Settlements

4-38

If so, PCM_OP_AR_ITEM_SETTLEMENT checks the contents of the field to determine:

• Whether the field contains a POID, indicating that PCM_OP_AR_ITEM_SETTLEMENT
is being called by PCM_OP_AR_BILL_SETTLEMENT to complete a bill settlement.

This POID identifies the /item/settlement object that
PCM_OP_AR_BILL_SETTLEMENT created to store information on the bill settlement.
This is the /item/settlement object that PCM_OP_AR_ITEM_SETTLEMENT
associates with each of the settlement events it creates for the bill settlement.

• Whether the field is NULL, indicating that PCM_OP_AR_ITEM_SETTLEMENT is being
called directly from the client application to perform an item settlement. In this case,
PCM_OP_AR_ITEM_SETTLEMENT creates its own /item/settlement object. This
object is exclusive to the individual item being settled.

4. Creates an /event/billing/settlement/item object.

If the item settlement is part of a bill settlement, the event object for each settled item is
associated with a single, umbrella /item/settlement object.

5. Examines the flags in the input flist to determine whether the dispute has any tax
implications.

For information on how PCM_OP_AR_ITEM_SETTLEMENT performs settlement taxation,
see "Including Taxes in the Dispute or Settlement".

6. Calls PCM_OP_BILL_TRANSFER to transfer funds to the A/R bill.

Before transferring the funds, PCM_OP_AR_ITEM_SETTLEMENT filters disputed events
that were created by event disputes and subtracts the amount associated with these
events from the PIN_FLD_DISPUTED of the disputed item. What remains is the amount
associated solely with the item dispute, with no contribution from event disputes.

7. If the Due amount after settlement is 0 and there are no other open disputes,
PCM_OP_AR_ITEM_SETTLEMENT sets the PIN_ITEM_STATUS field to CLOSED.

8. Writes the modified version of the original /item object.

9. Provides feedback on whether the settlement was successfully created.

If the settlement creation failed, the opcode indicates the reason for the failure.

BRM creates a G/L ID for item settlements. For information on settlements and G/L IDs, see
"Assigning G/L IDs for a Dispute or Settlement".

Fields You Should Include in the Input Flist for Item Settlements
Set these fields in the PCM_OP_AR_ITEM_SETTLEMENT input flist when creating item
settlements:

• PIN_FLD_POID for the item to be settled. The settled amount is applied to the default
balance group of the bill unit associated with the item.

• PIN_FLD_AMOUNT for the settlement amount. The value for this field should be negative
when crediting and positive when debiting.

• PIN_FLD_CURRENCY for the balance to settle.

PCM_OP_AR_ITEM_SETTLEMENT accepts a variety of other fields used to define tax
treatment, settlement time, reason code, and so on.

• For information on tax treatment, see "Including Taxes in the Dispute or Settlement".

• For information on reason codes, see "Including Reason Codes in the Dispute or
Settlement".

Chapter 4
Performing Disputes and Settlements

4-39

Flags for Item Settlements
Use these flags with PCM_OP_AR_ITEM_SETTLEMENT:

• If the PCM_OPFLG_READ_RESULT flag is set, PCM_OP_AR_ITEM_SETTLEMENT
returns not only the POID, but all the fields in the /event/billing/settlement/item object as
well.

• If the PCM_OPFLG_CALC_ONLY flag is set, PCM_OP_AR_ITEM_SETTLEMENT does
not change any fields in the database and does not create an /event/billing/settlement/
item object. However, it does provide a settlement calculation to the caller by returning the
fields that would have been used to create the event object and settlement item.

Note:

If the PCM_OPFLG_CALC_ONLY flag is not set,
PCM_OP_AR_ITEM_SETTLEMENT behaves in a standard manner, creating
an /event/billing/settlement/item object to record details of the operation.

• If the PIN_AR_WITHOUT_TAX flag is set, the item settlement is nontaxable.

• If the PIN_AR_WITH_TAX flag is set, the item settlement is taxable. Tax is reversed on an
item-by-item basis.

Note:

If the tax flag is not set, BRM refers to the pin.conf entry, fm_ar
tax_reversal_with_tax, to determine the default tax reversal behavior. The
settlement is nontaxable if the pin.conf entry is absent.

Customizing Item Settlements
When you initiate a bill or item settlement, PCM_OP_AR_ITEM_SETTLEMENT calls
PCM_OP_BILL_POL_VALID_DISPUTE to validate all proposed changes to the fields in the
original /item object. This opcode checks the validity of field values before processing. Field
values either pass or fail. If one field fails, the entire operation fails.

You can customize the validation criteria for PCM_OP_BILL_POL_VALID_SETTLEMENT by
modifying the policy source file. Changing a result from PIN_BOOLEAN_FALSE to
PIN_BOOLEAN_TRUE enables the specified field value to pass. Changing a result from
PIN_BOOLEAN_TRUE to PIN_BOOLEAN_FALSE causes the specified field value to fail.

Disputing Events
To open a dispute at the event level, BRM uses PCM_OP_AR_EVENT_DISPUTE.

This opcode receives a batch of events on the input flist, and returns the disputed /event/
billing/dispute/event data on the output flist. There can be multiple events in a given batch,
and the events to be disputed do not need to belong to the account specified in the
PIN_FLD_POID for PCM_OP_AR_EVENT_DISPUTE. The input flist can optionally include a
reason code domain and descriptive string that indicates why the dispute is being made.

Chapter 4
Performing Disputes and Settlements

4-40

Caution:

PCM_OP_AR_EVENT_DISPUTE does not verify whether there are other disputes
against the events it processes. Multiple disputes for the same event can cause
conflicts in BRM, so make sure your client application prevents the CSR from logging
more than one dispute for an event.

When it receives a batch of events, PCM_OP_AR_EVENT_DISPUTE performs these tasks:

1. It reads the batch, identifying all events to be disputed

2. It examines the flags in the input flist to determine whether the dispute has any tax
implications.

For information on how the opcode performs dispute taxation, see "Including Taxes in the
Dispute or Settlement".

3. It creates a single dispute item, /item/dispute, for all the disputed events in the batch.

4. For each event to be disputed, it creates a new /event/billing/dispute/event object
containing the dispute amount.

The PIN_FLD_ITEM_OBJ field of /event/billing/dispute/event points to the dispute item
created in step 3.

5. After the /item/dispute and /event/billing/dispute/event objects are created, it calls
PCM_OP_BILL_ITEM_TRANSFER to transfer the dispute amount from the dispute item to
the original item that owns the disputed event.

Note:

If the opcode transfer targets a closed item, that item is reopened automatically.

6. It creates a notification event (/event/billing/dispute/notify).

If event notification is enabled in your system, this triggers the reservation of the disputed
balances until the dispute is settled.

7. When it finishes, it provides feedback on whether the dispute was successfully created or,
if dispute creation failed, the reason for the failure.

BRM creates a G/L ID for event disputes. For information on disputes and G/L IDs, see
"Assigning G/L IDs for a Dispute or Settlement".

Fields You Should Include in the Input Flist for Event Disputes
Set these fields in the PCM_OP_AR_EVENT_DISPUTE input flist when creating event
disputes:

• PIN_FLD_POID for each of the events to be disputed. These fields form a
PIN_FLD_EVENTS array. The disputed amount is applied to the default balance group of
the bill unit associated with the /item object that the event belongs to.

• PIN_FLD_AMOUNT for the dispute amount. The value supplied for this field should be
positive for adjustments that credit the event and negative for adjustments that debit the
event.

Chapter 4
Performing Disputes and Settlements

4-41

You can specify the dispute amount through either PIN_FLD_AMOUNT or
PIN_FLD_PERCENT. If you omit both of these fields, BRM disputes the entire amount for
each event.

• PIN_FLD_RESOURCE_ID for the disputed balance.

PCM_OP_AR_EVENT_DISPUTE accepts a variety of other fields used to define tax treatment,
dispute time, reason code, and so on.

• For information on tax treatment, see "Including Taxes in the Dispute or Settlement".

• For information on reason codes, see "Including Reason Codes in the Dispute or
Settlement".

Flags for Event Disputes
Use the following flags with PCM_OP_AR_EVENT_DISPUTE:

• If the PCM_OPFLG_READ_RESULT flag is set, PCM_OP_AR_EVENT_DISPUTE returns
not only the POID, but all the fields in the /event/billing/dispute/event object as well.

• If the PCM_OPFLG_CALC_ONLY flag is set, PCM_OP_AR_EVENT_DISPUTE does not
change any fields in the database and does not create an /event/billing/dispute/event
object. However, it does provide a dispute calculation to the caller by returning the fields
that would have been used to create the event object and dispute item.

Note:

If the PCM_OPFLG_CALC_ONLY flag is not set,
PCM_OP_AR_EVENT_DISPUTE behaves in a standard manner, creating an /
event/billing/dispute/event object to record details of the operation.

• If the PIN_ADJ_NO_TAX flag is set, the event dispute is nontaxable. If this flag is not set,
the dispute is taxable.

• If the PIN_ADJ_TAX_ONLY flag is set, only the tax on the original event is disputed; not
the event itself.

Note:

Do not set this flag for disputes against unbilled events that use deferred
taxation.

• If the PIN_EVENT_ADJUST_BATCH is set, the dispute amount is distributed among the
events in the batch on a first-come-first-serve basis until the dispute amount is consumed.

• If the PIN_EVENT_ADJUST_EVENT is set, the dispute amount is applied individually to
each of the events in the batch.

Settling Disputed Events
To settle a dispute at the event level, BRM uses PCM_OP_AR_EVENT_SETTLEMENT. This
opcode debits or credits the balances of an event to settle a dispute against that event.

Chapter 4
Performing Disputes and Settlements

4-42

Note:

You cannot settle an event more than once. If PCM_OP_AR_EVENT_SETTLEMENT
settles an event that has more than one open dispute, it settles all the disputes for
that event.

PCM_OP_AR_EVENT_SETTLEMENT receives dispute item POID in the input flists and
retrieves the associated dispute events. It returns the settled /event/billing/settlement/event
data on the output flist. The input flist can optionally include a reason code domain and
descriptive string that indicates why the settlement is being made.

When it receives a batch of events, PCM_OP_AR_EVENT_SETTLEMENT performs these
tasks:

1. It verifies that, for backdated settlements, the settlement date falls after the dispute date.

2. It examines the flags in the input flist to determine whether the settlement has any tax
implications.

For information on how the opcode performs dispute taxation, see "Including Taxes in the
Dispute or Settlement".

3. It searches for all dispute events whose PIN_FLD_ITEM_OBJ field points to the dispute
item and creates a single settlement item, /item/settlement, for all these events.

4. For each dispute event to be settled, it creates a new /event/billing/settlement/event
object containing the denied amount.

The PIN_FLD_SESSION_OBJ field of /event/billing/settlement/event points to the
corresponding dispute event.

5. After the /item/settlement and /event/billing/settlement/event objects are created, it
calls PCM_OP_BILL_ITEM_TRANSFER to transfer the denied amount from the settlement
item to the original item against which the settlement was filed and recalculate the Due of
the original item accordingly.

Note:

If PCM_OP_AR_EVENT_SETTLEMENT transfer targets a closed item, that item
is reopened automatically.

To prevent misallocation of balances during settlement,
PCM_OP_AR_EVENT_SETTLEMENT calculates the combined dispute amount for the all
of the dispute events with respect to the original disputed item. This amount is associated
solely with the event dispute being settled. It has no contribution from any item disputes or
any event disputes other than the one being settled. It is this amount that
PCM_OP_BILL_ITEM_TRANSFER works with when transferring the item.

6. It creates a notification event (/event/billing/settlement/notify).

If event notification is enabled in your system, this triggers the release of disputed
balances.

7. When it finishes, PCM_OP_AR_EVENT_SETTLEMENT provides feedback on whether the
settlement was successfully created or, if settlement creation failed, the reason for the
failure.

Chapter 4
Performing Disputes and Settlements

4-43

BRM creates a G/L ID for event settlements. For information on settlements and G/L IDs, see
"Assigning G/L IDs for a Dispute or Settlement".

Fields You Should Include in the Input Flist for Event Settlements
Set these fields in the PCM_OP_AR_EVENT_SETTLEMENT input flist when creating event
settlements:

• PIN_FLD_ITEM_OBJ for the dispute item.

• PIN_FLD_AMOUNT for the settlement amount. The value supplied for this field should be
positive for settlements that credit the event and negative for settlements that debit the
event.

You can specify the settlement amount through the PIN_FLD_AMOUNT field or omit the
field altogether. If you omit this field, BRM settles the entire amount for each event.

• PIN_FLD_RESOURCE_ID for the balance to settle.

PCM_OP_AR_EVENT_SETTLEMENT accepts a variety of other fields used to define tax
treatment, settlement time, reason code, and so on.

• For information on tax treatment, see "Including Taxes in the Dispute or Settlement".

• For information on reason codes, see "Including Reason Codes in the Dispute or
Settlement".

Flags for Event Settlements
Use the following flags with PCM_OP_AR_EVENT_SETTLEMENT:

• If the PCM_OPFLG_READ_RESULT flag is set, PCM_OP_AR_EVENT_SETTLEMENT
returns not only the POID, but all the fields in the /event/billing/settlement/event object
as well.

• If the PCM_OPFLG_CALC_ONLY flag is set, PCM_OP_AR_EVENT_SETTLEMENT does
not change any fields in the database and does not create an /event/billing/settlement/
event object. However, it does provide a settlement calculation to the caller by returning
the fields that would have been used to create the event object and settlement item.

Note:

If the PCM_OPFLG_CALC_ONLY flag is not set,
PCM_OP_AR_EVENT_SETTLEMENT behaves in a standard manner, creating
an /event/billing/settlement/event object to record details of the operation.

• If the PIN_ADJ_NO_TAX flag is set, the event settlement is nontaxable. If this flag is not
set, the settlement is taxable.

• If the PIN_ADJ_TAX_ONLY flag is set, only the tax on the original event is settled; not the
event itself.

Note:

Do not set this flag for settlements against unbilled events that use deferred
taxation.

Chapter 4
Performing Disputes and Settlements

4-44

• If the PIN_EVENT_ADJUST_BATCH is set, the settlement amount is distributed among
the events in the batch on a first-come-first-serve basis until the settlement amount is
consumed.

• If the PIN_EVENT_ADJUST_EVENT is set, the settlement amount is applied individually to
each of the events in the batch.

Configuring the Tax Treatment for Adjustments, Disputes, and Settlements
To ensure that you can control whether BRM applies adjustment, dispute, and settlement tax
reversals, your custom CRM implementation should set the following flags in the input flists for
all account, bill, and item level adjustment, dispute, and settlement opcodes:

• PIN_AR_WITH_TAX: Set this flag for all adjustments, disputes, and settlements that
involve a tax reversal.

• PIN_AR_WITHOUT_TAX: Set this flag for adjustments, disputes, and settlements that do
not require a tax reversal.

If you do not pass in one of the flags, BRM uses the fm_ar tax_reversal_with_tax entry in the
CM configuration file to determine the default behavior. This entry takes one of the tax flags
(PIN_AR_WITH_TAX or PIN_AR_WITHOUT_TAX). If you do not pass in one of the flags and
this entry is not present, BRM does not perform a tax reversal.

Note:

Event adjustments, disputes, and settlements use different flags for tax reversal. For
more information on tax flags for event opcodes, see "Flags for Event Adjustments",
"Flags for Event Disputes", and "Flags for Event Settlements".

Including Taxes in the Dispute or Settlement
You specify an optional tax treatment for disputes and settlements through flags in the dispute
and settlement opcode input flists. For information, see:

• Flags for Bill Disputes

• Flags for Bill Settlements

• Flags for Item Disputes

• Flags for Item Settlements

• Flags for Event Disputes

• Flags for Event Settlements

Tax Processing for Disputes
The dispute opcodes calculate taxes when the dispute is created. Before calculating taxes,
they validate that the item due is not zero. If it is zero, the dispute is not allowed.

If the input flist flags the dispute or settlement as taxable, the dispute opcode either includes or
excludes the tax:

• If it is tax now, the opcode uses information from the disputed event to calculate the tax
and apply it immediately.

Chapter 4
Performing Disputes and Settlements

4-45

• If it is tax deferred, taxes are contained in the tax item. In such cases, the opcode does the
following to handle the taxes:

– Calls PCM_OP_BILL_TAX_EVENT to calculate the tax amount.

– Compares the calculated tax with due amount of the tax item to determine the amount
to reverse.

– Creates the /event/billing/dispute/tax_event event to contain the tax amount.

– Transfers the calculated tax amount to the original tax item.

Note:

If the dispute is created in the same billing cycle as the disputed item, the
original item will not have been taxed yet. In this case, there is no need to
create the /event/billing/dispute/tax_event or /event/billing/settlement/
tax_event event because the dispute or settlement precedes initial tax
calculation for the original item.

Tax Processing for Settlements
The settlement opcodes calculates taxes when the settlement is created. Before calculating
taxes, they validate that the settlement amount is less than or equal to the disputed amount. If
the settlement amount is greater, the settlement is not allowed.

If the original bill item uses taxation, the tax is considered tax inclusive or tax exclusive,
depending on the amount of the dispute:

• If the disputed amount is partially granted, the settlement amount is considered to be tax-
exclusive. The amount due on the bill item is increased by the net denied amount and the
amount due on the cycle tax item is increased by the denied tax amount.

• If the disputed amount is completely granted (there is no denied amount), the settlement
amount is considered to be tax-inclusive. The amount due on the bill item does change for
taxes.

Note:

If the disputed amount is completely denied, the amount due on the bill item is
increased by the net amount and the amount due on the tax item is increased by
the tax amount.

If the input flist flags the settlement as taxable, the settlement opcode determines whether the
tax method is tax now or tax deferred.

• If the tax method is tax now, the settlement opcodes use information from the event
associated with the original bill item to calculate taxes and apply the amount immediately
with the settlement amount.

• If the tax method is tax deferred, taxes are contained in the tax item associated with the
dispute. In such cases, the opcode does the following to handle the taxes:

– Calls PCM_OP_BILL_TAX_EVENT to calculate the net and tax amount from the total
settlement amount. If a denied amount exists, it then calculates the net and tax amount
from the total denied amount.

Chapter 4
Performing Disputes and Settlements

4-46

– Creates the /event/billing/settlement/tax_event event to contain the denied tax
amount.

– Transfers the denied net amount to the original item and the denied tax amount to the
tax item.

Including Reason Codes in the Dispute or Settlement
Reason codes explain why a dispute is being opened or settled. In typical implementations, the
BRM client application provides a selectable set of reasons appropriate to the event type. You
choose a reason that matches the situation or, in some cases, compose a new reason. The
client application populates the input flist for the opcode with this information, and BRM records
the reason in the dispute or settlement event object (for example, /event/billing/dispute/item
or /event/billing/settlement/event). The dispute and settlement opcode flist fields that provide
reason code information are PIN_FLD_REASON_ID and PIN_FLD_REASON_DOMAIN_ID.
These fields are optional.

For general information about reason codes, see "String Manipulation Functions" in BRM
Developer's Reference.

Assigning G/L IDs for a Dispute or Settlement
The G/L ID for an dispute or settlement event is assigned like other pre-rated events in the
BRM system. PCM_OP_ACT_POL_SPEC_GLID assigns the G/L ID for the adjustment.

Writing Off Debts and Reversing Write-Offs
Write-offs remove A/R amounts that your company determines will never be paid. Write-off
reversals allocate payments to accounts, bills, bill units, and items that have been previously
written off. Write-offs are a standard feature of your BRM system.

About Initiating Write-Offs
BRM uses the following opcodes to perform write-offs:

• PCM_OP_AR_ACCOUNT_WRITEOFF. Writes off all A/R bill units for an account and each
bill unit's nonpaying children. This opcode performs a write-off when there are open items
with due amounts and your company has determined that these items will never be paid by
the customer. To have your client application initiate an A/R account write-off, it should call
this opcode and the input flist should specify the account POID.

• PCM_OP_AR_BILLINFO_WRITEOFF. Writes off an A/R bill units for an account. To have
your client application perform an A/R bill unit write-off, it should call this opcode with the
bill unit specified in the input flist.

• PCM_OP_AR_BILL_WRITEOFF. Writes off a bill. To have your client application perform a
bill write-off, it should call this opcode with the bill specified in the input flist.

• PCM_OP_AR_ITEM_WRITEOFF. Writes off a bill item. To have your client application
perform an item write-off, it should call this opcode with one or more items specified in the
input flist.

Chapter 4
Writing Off Debts and Reversing Write-Offs

4-47

Note:

– Before you write off an account or bill unit, ensure that all items have been
billed and that there are no pending items for the account or bill unit.

– To ensure that you can reverse a write-off on an account, the account status
must be inactive before you write off the account.

Performing Write Offs
Though you can initiate a write-off by using opcodes for the account, bill unit, bill, or item, most
write-offs are performed by using PCM_OP_AR_ITEM_WRITEOFF. This opcode is called in
one of the following ways:

• By using PCM_OP_AR_BILLINFO_WRITEOFF and PCM_OP_AR_BILL_WRITEOFF
when you perform an account, bill unit, or bill write-off

Note:

PCM_OP_AR_ACCOUNT_WRITEOFF, PCM_OP_AR_BILLINFO_WRITEOFF,
and PCM_OP_AR_BILL_WRITEOFF perform several initial steps before calling
PCM_OP_AR_ITEM_WRITEOFF. For more information, see "About Account
Write-Offs", "About Bill Unit Write-Offs", and "About Bill Write-Offs".

• Independently when you perform an item write-off

Note:

PCM_OP_AR_ITEM_WRITEOFF performs write-offs on pending items with
nonzero balances only.

PCM_OP_AR_ITEM_WRITEOFF does the following:

1. Prepares the charges for the /item object (for example, /item/misc).

2. Calls PCM_OP_BILL_POL_ITEM_VALID_WRITEOFF to validate the changes.

For information on how to customize write-off validation, see "Customizing Write-Off
Validation".

3. Creates the new write-off item (/item/writeoff).

For an account or bill write-off, the item total is the sum of all item charges in the account
or bill.

4. Creates the /event/billing/writeoff/item object.

The balance impact of the write-off event is the sum of all amounts due for all open items
in the bill unit.

• If an account is written off, an /event/billing/writeoff/account object is created for the
account and an /event/billing/writeoff/billinfo object is created for each bill unit.

• If a bill is written off, an /event/billing/writeoff/bill object is created.

Chapter 4
Writing Off Debts and Reversing Write-Offs

4-48

5. If you have specified to store the tax amount of the write-off in a separate event,
PCM_OP_AR_ITEM_WRITEOFF creates one of the following event objects:

• /event/billing/writeoff/tax_billinfo

• /event/billing/writeoff/tax_bill

• /event/billing/writeoff/tax_item

For information on tax treatments for write-offs, see "About Taxes for Write-Offs".

6. Calls PCM_OP_BILL_TRANSFER to transfer funds to the A/R bill.

Multiple transfer events (/event/billing/item/transfer) are created to move the credit from
the write-off item to all the open items for the bill unit.

7. If the item has no due or disputed amount, PCM_OP_AR_ITEM_WRITEOFF closes the
item.

8. Writes the modified /item object.

When this process is complete, all the open items, including the write-off item, are closed. The
G/L ID for the account write-off is assigned by calling PCM_OP_ACT_POL_SPEC_GLID,
which assigns the G/L ID for the write-off event (/event/billing/item/writeoff).

If write-off reversal is enabled, PCM_OP_AR_ITEM_WRITEOFF stores the write-off item in the
write-off profile object of the account.

Note:

• Before you write off an account or bill unit, ensure that all items have been billed
and that no pending or unbilled items for the account or bill unit remain.

• To ensure that you can reverse a write-off on an account, the account status
must be inactive before you write off the account.

About Account Write-Offs
To write off an account, PCM_OP_AR_ACCOUNT_WRITEOFF writes off all the bill units
associated with the account.

This opcode performs the following error checks before performing the item write-offs for the
account:

• Ensures the due amount is not zero. Bill units with zero due are fully paid and do not need
to be written off.

• Ensures that there are no partially allocated items (for example, a refund must be allocated
before the write-off is performed).

PCM_OP_AR_ACCOUNT_WRITEOFF then calls PCM_OP_AR_BILLINFO_WRITEOFF to
write off all the open items for each bill unit of the account.

The /event/billing/writeoff/account event is created to record the account write-off. The /
event/billing/writeoff/billinfo event is created to record each bill unit write-off, and /event/
billing/writeoff/tax_billinfo is created for each bill if a separate event for tax is required. A
separate tax event can be generated by passing the PIN_FLD_FLAG as
PIN_BILL_WRITEOFF_TAX in the input flist.

Chapter 4
Writing Off Debts and Reversing Write-Offs

4-49

Your custom application should call PCM_OP_AR_ACCOUNT_WRITEOFF, not
PCM_OP_AR_BILLINFO_WRITEOFF, to write off all bill units in an account.

About Bill Unit Write-Offs
PCM_OP_AR_BILLINFO_WRITEOFF performs write-off adjustments for a specific bill unit
when there are open items with due amounts and it has been determined that these items will
never be paid by a customer.

To write-off all bill units of an account, use PCM_OP_AR_ACCOUNT_WRITEOFF.

To write off a bill unit, PCM_OP_AR_BILLINFO_WRITEOFF performs the following error
checks before performing the item write-offs for the bill unit:

• Ensures the due amount is not zero. Bill units with zero due are fully paid and do not need
to be written off.

• Ensures that there are no partially allocated items (for example, a refund must be allocated
before the write-off is performed).

PCM_OP_AR_BILLINFO_WRITEOFF then calls PCM_OP_AR_ITEM_WRITEOFF to write off
each of the bill items in the bill unit.

When a bill unit is written off, a write-off item (/item/writeoff) is created. The total for this item
is the sum of the balance due from all the open items for the A/R bill units and its nonpaying
child bill units. This is the balance impact of the write-off. The write-off decreases the account
balances and the transfer event moves the credit from the write-off item to the items being
written off.

The /event/billing/writeoff/billinfo event is created to record a bill unit write-off, and the /
event/billing/writeoff/tax_billinfo event is created for the bill unit if a separate event for tax is
required. A separate tax event can be generated by passing the PIN_FLD_FLAG as
PIN_BILL_WRITEOFF_TAX in the input flist.

About Bill Write-Offs
PCM_OP_AR_BILL_WRITEOFF performs write-off adjustments against a specified bill when
there are open items with due amounts and it has been determined that these items will never
be paid by a customer. The write-off decreases the account balances associated with the
specified bill, and the transfer event moves the credit from the write-off item to the item being
written off. To write off a bill, PCM_OP_AR_BILL_WRITEOFF ensures the due amount is not
zero. Bills with a zero due are fully paid and do not need to be written off.

PCM_OP_AR_BILL_WRITEOFF then calls PCM_OP_AR_ITEM_WRITEOFF to write off each
of the bill items in the bill.

When a bill is written off, a write-off item (/item/writeoff) is created. The write-off decreases
the account balances associated with the specified bill, and the transfer event moves the credit
from the write-off item to the item being written off.

The /event/billing/writeoff/bill event is created to record a bill write-off, and /event/billing/
writeoff/tax_bill is created for the bill if a separate event for tax is required. A separate tax
event can be generated by passing the PIN_FLD_FLAG as 1 in the input flist.

Flags You Should Use for Write-Offs
Set flags in the PIN_FLD_FLAGS field for the PCM_OP_AR_BILL_WRITEOFF input flist when
creating write-offs. You can include these flags in any of the write-off opcodes.

Chapter 4
Writing Off Debts and Reversing Write-Offs

4-50

• If the PIN_BILL_WRITEOFF_TAX flag is set, BRM creates a separate write-off event for
taxes.

About Taxes for Write-Offs
To write off tax, BRM selects all the open items. For all open items,
PCM_OP_AR_ITEM_WRITEOFF selects all events that point to these items, except for the tax
events. After the events are selected, it calculates the sum of the total initial net and tax
amount and groups the events based on tax rate. The write-off process starts with the lowest
tax rate first and continues with the next lowest rate until it reaches the total write-off amount.
The total write-off amount (VAT included) is the total due amount of the bill.

The following types of events are created for a write-off with tax:

• A write-off event holding the total net amount of the write-off with a G/L ID for the net
amount

• A tax write-off event holding the VAT amount of the write-off with a G/L ID for tax amount

• Transfer events to close all the remaining open items of the bill

Customizing Write-Off Validation
You use PCM_OP_BILL_POL_VALID_WRITEOFF to customize how the item is validated for a
write-off. The default implementation is:

• The item must be open.

• The write-off amount must be less than or equal to the amount due.

PCM_OP_BILL_POL_VALID_WRITEOFF is called by PCM_OP_AR_ITEM_WRITEOFF. It
checks the validity of field values before processing. Field values either pass or fail. If one field
fails, the entire operation fails.

You can customize the validation criteria for PCM_OP_BILL_POL_VALID_WRITEOFF by
modifying the policy source file. Changing a result from PIN_BOOLEAN_FALSE to
PIN_BOOLEAN_TRUE enables the specified field value to pass. Changing a result from
PIN_BOOLEAN_TRUE to PIN_BOOLEAN_FALSE causes the specified field value to fail.

About Initiating Write-Off Reversals
Write-off reversals are initiated when PCM_OP_PYMT_COLLECT encounters a payment for
an account or bill unit that has been written off. PCM_OP_PYMT_COLLECT runs automatically
as part of the payment collection process or can be called manually.
PCM_OP_PYMT_COLLECT calls PCM_OP_AR_REVERSE_WRITEOFF to perform the write-
off reversal.

The following opcodes perform the actual reversal:

• PCM_OP_AR_REVERSE_WRITEOFF: This opcode reverses the write-off and opens the
original bill items so that the payment can be allocated.

Note:

Write-off reversals should only be performed automatically; you should not call
PCM_OP_AR_REVERSE_WRITEOFF directly.

Chapter 4
Writing Off Debts and Reversing Write-Offs

4-51

• PCM_OP_BILL_POL_REVERSE_PAYMENT: This opcode writes off an account that was
previously written off, but which then received a payment that reversed the original write-
off. For example, if a payment that reversed the write-off of an account is determined to be
fraudulent, the account will again be written off.

Reversing Write-Offs
To reverse a write-off, BRM uses PCM_OP_AR_REVERSE_WRITEOFF. This opcode is called
by PCM_OP_PYMT_COLLECT.

PCM_OP_AR_REVERSE_WRITEOFF reverses write-offs on all written-off bills and bill items
associated with a written-off account or bill unit when a payment for the account or bill unit is
received.

PCM_OP_AR_REVERSE_WRITEOFF accepts an array of written-off items to be reversed.

To perform a reversal of a written-off bill unit, specify the POID of the written-off bill unit.

Note:

If you want a separate event to record the tax amount, set the
PIN_BILL_WRITEOFF_TAX flag in the input flist.

Note:

Write-off reversals can only be performed automatically; do not call
PCM_OP_AR_REVERSE_WRITEOFF directly. The automatic write-off reversal
feature must be enabled for this opcode to perform write-off reversals.

PCM_OP_AR_REVERSE_WRITEOFF performs the following tasks:

1. Validates that the item in the input flist is a written-off item.

If the input flist contains no written-off items, PCM_OP_AR_REVERSE_WRITEOFF calls
PCM_OP_AR_POL_REVERSE_WRITEOFF to supply a list of write-off items that require
reversal if that list is not provided by any other means.

2. Opens the originally written-off items so that funds can be allocated.

3. Creates a write-off reversal item (/item/writeoff_reversal).

4. Creates a write-off reversal event (/event/billing/writeoff_reversal) that points to the
write-off reversal item.

5. Updates the account's balance.

6. (Account write-off reversal only) Sets the value of the /profile/writeoff object's
PIN_FLD_ITEM_OBJ field to NULL.

PCM_OP_AR_REVERSE_WRITEOFF also sets the PIN_FLD_WRITEOFF_INFO flag in
this object to the reversed state (2). If the payment is not equal to or greater than the sum
of the written-off items, this flag is reset to the write-off state (1).

Chapter 4
Writing Off Debts and Reversing Write-Offs

4-52

Reversing a Write-Off Reversal
When BRM receives a payment for a written-off account or bill unit, it reverses the account or
bill unit write-off and then allocates the payment. If that payment must later be reversed (for
example, if it fails financially), BRM must then write off the account or bill unit a second time.

This activity is performed by PCM_OP_BILL_POL_REVERSE_PAYMENT. This opcode is
called by PCM_OP_BILL_REVERSE_PAYMENT, and the input flist for the opcode includes
any flags passed by the standard opcode.

Note:

If any open unallocated items are in the account or bill unit at the time of the reversal,
the second write-off on the account does not occur. You can either allocate and close
the open items before performing the reversal or customize this opcode to perform
the task.

PCM_OP_BILL_POL_REVERSE_PAYMENT performs the following operations if the
PIN_FLD_STATUS value on the input flist is PIN_PYMT_WRITEOFF_SUCCESS and if the
transaction ID of the payment to be reversed is valid and applied to a written-off amount.

1. Write off the account or bill unit again (if the original payment was an underpayment).

2. Assign a reason code for the second write-off.

3. Set the value of the PIN_FLD_FLAGS field to PIN_BILL_WRITEOFF_TAX to generate a
separate tax event (if necessary), and assign a reason code for the tax event.

The PIN_FLD_INHERITED_INFO substruct in the output flist passes additional information to
the calling opcode. If necessary, PCM_OP_BILL_REVERSE_PAYMENT returns any
information in this substruct to the calling opcode.

Customizing Write-Off Reversals
You can customize two aspects of write-off reversals:

• Use PCM_OP_AR_POL_REVERSE_WRITEOFF to customize the rules that govern how
BRM performs write-off reversals.

See "Customizing the Rules for Performing Write-Off Reversals".

• Use PCM_OP_BILL_POL_REVERSE_PAYMENT to customize the way that BRM
processes payments that reverse account write-offs but that are, in turn, reversed.
Payments of this sort result in a second write-off of the account.

See "Customizing Reversal of Payments Allocated to Written-Off Accounts".

Customizing the Rules for Performing Write-Off Reversals
You can customize PCM_OP_AR_POL_REVERSE_WRITEOFF to implement additional rules
for performing write-off reversals and allocating funds to written-off accounts and bill units. For
example, you can perform the write-off reversal only for accounts that were written off during a
specified time period or for a minimum amount.

PCM_OP_AR_POL_REVERSE_WRITEOFF is called by
PCM_OP_AR_REVERSE_WRITEOFF during the write-off reversal process.

Chapter 4
Writing Off Debts and Reversing Write-Offs

4-53

PCM_OP_AR_POL_REVERSE_WRITEOFF supplies a list of write-off items that require
reversal if that list is not provided by any other means. The
PCM_OP_AR_POL_REVERSE_WRITEOFF input flist includes any flags passed by the
standard opcode. PCM_OP_AR_POL_REVERSE_WRITEOFF retrieves the write-off reversal
items from the /profile/writeoff object.

Note:

If any open unallocated items are in the account or bill unit at the time of the reversal,
the second write-off on the account does not occur. You can either allocate and close
the open items before performing the reversal, or customize this opcode to perform
the task.

About Automatic Write-Off Reversals during Payment Collection
You can configure BRM to reverse a write-off on an account or bill unit automatically when a
payment is received for a written-off account or bill unit. BRM verifies that the write-off flag and
write-off item are set in the account's /profile/writeoff object. If so, the following occurs:

1. The write-off flag in the account's /profile/writeoff object is set to 2, which is the reversed
state.

2. All written-off bills and bill items are opened so the funds can be allocated.

3. The /event/billing/writeoff/billinfo balance amount is transferred to the original bill or bill
item and then set to 0.

4. The paid bills and items are closed.

5. The write-off flag in the account's /profile/writeoff object is reset to 1, which is the written-
off state.

Note:

To ensure that you can reverse a write-off on an account, the account status
must be inactive before you write off the account.

For information about using the PCM_OP_AR_POL_REVERSE_WRITEOFF policy opcode to
customize write-off reversal rules, see BRM Opcode Guide.

Customizing Reversal of Payments Allocated to Written-Off Accounts
When a payment that was applied to a written-off account or bill unit is reversed, the previously
paid balance is returned to the account balance and then written off again. This enables the
original written-off amount to be reestablished as unrecoverable debt.

Table 4-5 shows an example where multiple payments are received for an account with a $100
write-off amount.

Payment 1 is $40 (underpayment), so the $100 write-off amount is reversed and $60 is written
off.

Payment 2 is $100 (overpayment); therefore, the $60 write-off amount is reversed, and $40
excess (credit) amount is left unallocated in the account.

Chapter 4
Writing Off Debts and Reversing Write-Offs

4-54

Table 4-5 Reversing Payment Applied to a Written-Off Account

Transaction Due Amount Unrecovered Debt Recovered
Debt

Bank Deposit

Account balance 100 NA NA NA

Initial write-off -100 100 NA NA

Write-off reversal 100 NA -100 NA

Payment -40 NA NA 40

Re–write-off -60 NA 60 NA

Write-off reversal 60 NA -60 NA

Payment Reversal 40 NA NA -40

Re–write-off -100 NA 100 NA

Net Result 0 100 0 0

Note:

If a subsequent payment is received during this operation, or if an A/R action is
performed, the account may not be restored to its previous state. This occurs if any
open unallocated items are in the account at the time of the reversal.

If Payment 1 is reversed, the write-off is not reversed because there is no longer a written-off
amount on the account; instead, a credit in the account balance remains. To avoid this
scenario, customize the PCM_OP_BILL_POL_REVERSE_PAYMENT policy opcode to handle
the allocation and write-off. Or allocate the credit balance to any open bills or bill items, and
then manually write off the account.

PCM_OP_BILL_POL_REVERSE_PAYMENT performs optional processing on payments that
were applied to written-off accounts, and that must be reversed. For example,
PCM_OP_BILL_POL_REVERSE_PAYMENT allocates balances on open bills and bill items
before performing write-off reversals.

If any open unallocated items are in the account at the time of the reversal, the re-writeoff on
the account does not occur. You can either allocate and close the open items before
performing the reversal, or customize PCM_OP_BILL_POL_REVERSE_PAYMENT to perform
the task.

PCM_OP_BILL_POL_REVERSE_PAYMENT is called by
PCM_OP_BILL_REVERSE_PAYMENT.

You can implement special processing for reversing payments that were applied to written-off
accounts. To implement this processing, you customize
PCM_OP_BILL_POL_REVERSE_PAYMENT to perform the following functions:

• Assign custom reason codes.

• Generate a tax event based on custom business policies.

• Not reverse write-offs when a payment is applied.

• Allocate any open items in the account before performing the reversal, before the reversal
can occur. This is required if multiple payments are received, and a subsequent payment
results in an overpayment.

Chapter 4
Writing Off Debts and Reversing Write-Offs

4-55

For example, if a $100 write-off amount is present for an account and a $40 payment is
received, followed by a $90 payment, a $30 credit is left unallocated on the account.

Because write-offs are valid only for debit items, if you reverse the $40 payment, BRM
creates a $40 debit open item and a $30 credit open item, and the result would be a $10
unallocated balance. This is not possible; therefore, the unallocated credit of $30 must be
allocated before the re–write-off can be performed.

To enable automatic allocation, customize PCM_OP_BILL_POL_REVERSE_PAYMENTto
call PCM_OP_BILL_ITEM_TRANSFER, and allocate the open credit amount to the
available debit items before performing the re–write-off.

Retrieving A/R Information
You can retrieve various kinds of balance information, such as the following:

• Current balances for items and bills

• A list of open and pending bill items

• A list of bills

• A list of adjusted items

To retrieve balance information, use the following opcodes.

• PCM_OP_AR_GET_ACCT* opcodes: These opcodes retrieve the current balance for
open and pending bill items associated with all the bill units (/billinfo objects) in the
account or for a specified bill unit. In the latter case, you specify the bill unit in the input
flist.

• PCM_OP_AR_GET* opcodes: These opcodes retrieve the current balance for open and
pending bill items associated with the specified bill unit. Specify the bill unit in the input flist.

Note:

To retrieve information for all of an account's bill units by using
PCM_OP_AR_GET*, implement custom code that recursively calls
PCM_OP_AR_GET* for each bill unit. This technique produces results similar to
using PCM_OP_AR_GET_ACCT*, but it involves the overhead of creating a
customization.

Finding a Bill
To find a bill, BRM uses PCM_OP_BILL_FIND. You can use this opcode to search for all /bill
objects instead of using PCM_OP_SEARCH and PCM_OP_STEP_SEARCH.

Note:

PCM_OP_BILL_FIND does not perform authentication.

• If you specify an array of bill numbers, PCM_OP_BILL_FIND returns the POID of the /bill
object.

• If you specify the results array, the fields in the results array are returned.

Chapter 4
Retrieving A/R Information

4-56

• If you do not specify the results array, PCM_OP_BILL_FIND returns the entire contents of
the object.

Finding a Bill Unit
To find the bill units for an account, BRM uses PCM_OP_BAL_GET_ACCT_BILLINFO. This
opcode returns the main contact information for an account and a list of the account's bill units
with the default bill unit marked.

The output flist contains:

• Contact information from the /account object, including the account's contact name,
address, and phone number.

• The POIDs, names, and payment methods of all the bill units associated with that account.
If more than one bill unit is returned, the default bill unit array contains a PIN_FLD_FLAGS
entry of 1. The PIN_FLD_FLAGS entry for each of the other bill unit arrays is 0.

Finding a Balance Group and Its Balances
To retrieve a /balance_group POID and, optionally, the balances it contains, BRM uses
PCM_OP_BAL_GET_BALANCES. This opcode returns the /balance_group and /billinfo
POIDs for an account or service. Using the PIN_FLD_BALANCES array, you can also direct
this opcode to return any or all of the balances contained in the /balance_group object.

PCM_OP_BAL_GET_BALANCES finds the /balance_group POID by using the event end
time and the /service object's PIN_FLD_TRANSFER_LIST array. For more information, see
"Transferring Services between Balance Groups".

You can specify the validity period for which to retrieve sub-balances for the given balance
group by setting the PIN_FLD_FLAGS field to one of the following values:

• PIN_BAL_GET_BARE_RESULTS (0x1): This flag returns all sub-balances for the current
cycle that are currently valid.

• PIN_BAL_GET_ALL_BARE_RESULTS (0x4): This flag returns the sub-balances that are
valid currently and in the future. To return future sub-balances, there must be at least one
valid sub-balance for the current period.

• PIN_BAL_GET_BASED_ON_PERIOD (0x10): This flag returns all sub-balances whose
validity period falls within or overlaps a given period, specified by the PIN_FLD_START_T
and PIN_FLD_END_T fields.

For example, if the period is June 1 through June 30, the opcode retrieves all sub-balance
that were valid for any time between June 1 and June 30, whether their validity period
begins before June 1 or ends after June 30.

• PIN_BAL_GET_WITHIN_PERIOD (0x16): This value returns only the sub-balances whose
start and end times fall entirely within the given time period specified by the
PIN_FLD_START_T and PIN_FLD_END_T fields.

For example, if the period is June 1 through June 30, the opcode retrieves only sub-
balances that start on or after June 1 and end on or before June 30.

If no balance is available for the specified period, PCM_OP_BAL_GET_BALANCES returns 0.

To return the balances that were granted by a specific charge offer or discount offer, specify the
POID of the granting charge offer or discount offer in the PIN_FLD_GRANTOR_OBJ field.

PCM_OP_BAL_GET_BALANCES returns balances that are configured to start when first
impacted (on first usage) if their validity periods have not yet been set. When a balance's

Chapter 4
Retrieving A/R Information

4-57

validity period has not been set, the PIN_FLD_VALID_FROM_DETAILS and
PIN_FLD_VALID_TO_DETAILS fields are returned for that balance. These fields store three
values in separate bits: the mode of the validity start and end times (such as first usage or
relative), the relative offset unit, and the number of offset units in the relative period.

Note:

• A read/write transaction must be open before calling
PCM_OP_BAL_GET_BALANCES. Otherwise, the object is locked, and the read
operation returns an error.

• You can call PCM_OP_BAL_GET_BALANCES in a read-only operation, but the
PIN_FLD_READ_BALGRP_MODE field in the input flist must be set to
PIN_BAL_READ_BALGRP_CALC_ONLY.

Finding a Balance Group and Service for Bill Units
To retrieve a balance group and service for all the bill units in an account or for a single bill unit,
BRM uses PCM_OP_BAL_GET_ACCT_BAL_GRP_AND_SVC.

To retrieve the balance group and service for a single bill unit, use
PCM_OP_BAL_GET_BAL_GRP_AND_SVC.

These opcodes return the /balance_group and /service object POIDs based on the /account
POID, /billinfo POID, and event end time (PIN_FLD_END_T) passed in the input flist. The
balance groups for a specified bill unit do not have to be associated with a service yet to be
returned.

If the CALC_ONLY flag is set, PCM_OP_BAL_GET_BAL_GRP_AND_SVC reads the balance
groups and services from the cache instead of from the database.

The PIN_FLD_FLAGS field in the input flist controls the type of information returned in the
output flist. The settings for this flag are:

• PIN_BAL_GET_SERVICE_DEFAULT (0): do not return login name and balance group
name (default).

• PIN_BAL_GET_SERVICE_LOGIN (1): Return the login name and balance group name.

• PIN_BAL_GET_SERVICE_ALIAS_LIST (2): Return the alias list for the service.

• PIN_BAL_GET_DEFAULT_BAL_GRP (3): Return the default balance group of the bill
unit.

• PIN_BAL_GET_DEFAULT_GRP_AND_SVC (4): Return the default balance group of the
bill unit and the default service of the default balance group.

• PIN_ BAL_GET_ALL_BAL_GRP_AND_SVC (5): Return all balance groups, including
balance groups not associated with a service, balance groups associated with a service,
and the account default balance group.

Note:

You can also pass in flags to get the balance group name and service login
aliases.

Chapter 4
Retrieving A/R Information

4-58

Balance groups not yet associated with a service are returned when the PIN_FLD_FLAGS
value is not set or is set to 0, 1, or 2. If the balance group returned is the account default
balance group, the service object field in the output flist is NULL. If the balance group returned
is not the account default balance group, there is no service object field in the output flist.

If you are developing the interface between BRM and a third-party client application, you
should typically favor PCM_OP_BAL_GET_ACCT_BAL_GRP_AND_SVC over
PCM_OP_BAL_GET_BAL_GRP_AND_SVC because it gives you the additional flexibility of
retrieving balance groups and services for either multiple or single bill units.

Getting a List of Bills
PCM_OP_AR_GET_ACCT_BILLS retrieves the list of bills for all bill units in an account or for a
single bill unit. The input flist determines the filter conditions to use for retrieving the data from
the database.

You can restrict the search by various means, for example, date, status, and number of bills to
be retrieved. You can also choose to find bills for the bill units, or for the bill units and their
nonpaying child bill units.

PCM_OP_AR_GET_ACCT_BILLS returns the last bill. It uses the value in PIN_FLD_FLAGS to
return the following:

• The latest bill (regular or corrective) when PIN_FLD_FLAGS is set to PIN_AR_LAST_BILL

• The previous (regular or corrective) bill only when PIN_FLD_FLAGS contains PIN_AR_
ORIG_BILL

• All bills (the regular bill and all its corrective bills) when PIN_FLD_FLAGS contains
PIN_AR_ALL_BILLS

The pin_ar.h file defines these constants as follows:

#define PIN_AR_LAST_BILL 0x01
#define PIN_AR_ORIG_BILL 0x02
#define PIN_AR_ALL_BILLS 0x04

PCM_OP_AR_GET_ACCT_BILL calls PCM_OP_AR_GET_BILLS to perform the search. For
corrective bills, it provides the PIN_FLD_FLAGS as an input to PCM_OP_AR_GET_BILLS.

For corrective billing, PCM_OP_AR_GET_ACCT_BILLS optionally returns the following items
in the PIN_FLD_RESULTS array:

• PIN_FLD_ORIG_NUM. The bill number from the previous bill

• PIN_FLD_NAME. The name for the bill object. The pin_bill.h file contains the following
definitions for corrective bills:

#define PIN_OBJ_NAME_CORRECTIVE_BILL "PIN Corrective Bill"
#define PIN_OBJ_NAME_CORRECTIVE_BILL_NOW "PIN Corrective Bill Now"
#define PIN_OBJ_NAME_CORRECTIVE_BILL_ON_DEMAND "PIN Corrective Bill On Demand"

• PIN_FLD_AMOUNT_ORIG. The PIN_FLD_DUE field for the previous bill

• PIN_FLD_CREATED_T. The date that the bill was generated. It is taken from the
corresponding field from the /event/billing/corrective_bill object.

• PIN_FLD_REASON_DOMAIN_ID. The reason domain code for the corrective bill taken
from the corresponding /event/billing/corrective_bill object.

• PIN_FLD_REASON_ID. The reason ID for the corrective bill taken from the
corresponding /event/billing/corrective_bill object.

• PIN_FLD_INV_TYPE. The invoice type for the bill.

Chapter 4
Retrieving A/R Information

4-59

Getting Bill Items
If general ledger (G/L) collection is enabled, PCM_OP_AR_GET_BILL_ITEMS retrieves the
data from G/L /journal objects. Otherwise, this opcode retrieves the data from the events for
each bill item. Using /journal objects improves performance.

The pin_flds.h file contains two decimal fields PIN_FLD_BILLED_AMOUNT and
PIN_FLD_UNBILLED_AMOUNT used to store billed and unbilled amounts respectively.

For corrective bills, PCM_OP_AR_GET_BILL_ITEMS uses the input PIN_FLD_FLAGS value
to select items that have unbilled and/or billed amounts allocated to them (where the allocated
amount is greater than zero):

• When PIN_FLD_FLAGS is set to PIN_AR_BILLED_ITEM,
PCM_OP_AR_GET_BILL_ITEMS retrieves the items with billed amounts that are allocated
to the specified bill. The PIN_FLD_BILLED_AMOUNT elements in PIN_FLD_RESULTS
output array returned by this code contain the billed amounts for the allocated items where
the allocated amount is greater than zero. In addition, this opcode calculates the sum of
the billed amounts that it placed in the PIN_FLD_RESULTS output array and returns that
amount in a separate field called PIN_FLD_BILLED_AMOUNT.

• When PIN_FLD_FLAGS is set to PIN_AR_UNBILLED_ITEM,
PCM_OP_AR_GET_BILL_ITEMS retrieves the items with unbilled amounts that are
allocated to the specified bill. The PIN_FLD_UNBILLED_AMOUNT element in
PIN_FLD_RESULTS output array returned by this code contain the unbilled amounts for
the allocated items where the allocated amount is greater than zero. In addition, this
opcode calculates the sum of the unbilled amounts that it placed in the
PIN_FLD_RESULTS output array and returns that amount in a separate field called
PIN_FLD_UNBILLED_AMOUNT.

• If PIN_FLD_FLAGS is not present or is present but does not have either value,
PCM_OP_AR_GET_BILL_ITEMS retrieves all items allocated to the specified bill. The
PIN_FLD_RESULTS output array returned by this code contains all the items allocated to
the bill. However, this opcode does not return the summation of the billed or unbilled
amounts.

Getting Bills
To get data for corrective bills, PCM_OP_AR_GET_BILLS uses the value in the
PIN_FLD_FLAGS input field:

• It returns the latest bill (regular or corrective) when PIN_FLD_FLAGS contains
PIN_AR_LAST_BILL. This is the default behavior.

• It returns the previous (regular or corrective) bill only when PIN_FLD_FLAGS contains
PIN_AR_ ORIG_BILL.

• It returns all bills (the regular bill and all its corrective bills) when PIN_FLD_FLAGS
contains PIN_AR_ALL_BILLS. The bills are returned in PIN_FLD_RESULTS sorted by the
time when they were created.

• PCM_OP_AR_GET_BILLS optionally returns the following items in the
PIN_FLD_RESULTS array:

– PIN_FLD_ORIG_NUM. The bill number from the previous bill

– PIN_FLD_NAME. The name for the bill object. The pin_bill.h file contains the
following definitions for corrective bills:

Chapter 4
Retrieving A/R Information

4-60

#define PIN_OBJ_NAME_CORRECTIVE_BILL "PIN Corrective Bill"
#define PIN_OBJ_NAME_CORRECTIVE_BILL_NOW "PIN Corrective Bill Now"
#define PIN_OBJ_NAME_CORRECTIVE_BILL_ON_DEMAND "PIN Corrective Bill On Demand"

– PIN_FLD_AMOUNT_ORIG. The PIN_FLD_DUE field for the previous bill

– PIN_FLD_CREATED_T. The date that the bill was generated. It is taken from the
corresponding field from the /event/billing/corrective_bill object.

– PIN_FLD_REASON_DOMAIN_ID. The reason domain code for the corrective bill
taken from the corresponding /event/billing/corrective_bill object.

– PIN_FLD_REASON_ID. The reason id for the corrective bill taken from the
corresponding /event/billing/corrective_bill object.

– PIN_FLD_INV_TYPE. The invoice type for the bill.

Finding Items
To find items, BRM uses PCM_OP_PYMT_ITEM_SEARCH. This opcode searches for /item
objects with a variable number of input parameters. It is called by other opcodes for handling
adjustments and disputes.

• PCM_OP_PYMT_ITEM_SEARCH takes a variable number of arguments to restrict the
scope of the search.

• The PIN_FLD_POID field is mandatory and is a dummy POID used for getting the
database ID for the search.

• The bill unit field is optional. This field specifies the bill unit that owns the items. You can
use either the /billinfo POID or the /billinfo ID. If a bill unit is not specified, the bill unit
associated with the account's default balance group is selected.

• You can specify either PIN_FLD_ACCOUNT_OBJ or PIN_FLD_ACCOUNT_NO to narrow
the search to a particular account.

• For collective bills, if they are not located in the bill table,
PCM_OP_PYMT_ITEM_SEARCH checks the RejectPaymentForPreviousBill business
parameter.

– If RejectPaymentForPreviousBill is enabled to prevent BRM from accepting the
payment, the opcode sends the payment to the suspense payment account.

– If the RejectPaymentForPreviousBill is disabled to prevent BRM from accepting the
payments, the opcode will search for the bill in the history_bills objects. If the bill is
located in the history_bills objects, the payment is accepted for the bill with the same
POID as the bill being processed. If such a bill is not located in history_bills objects,
the payment is sent to a suspense payment account.

• If PIN_FLD_STATUS, PIN_FLD_BILL_OBJ, or both are specified, the search matches the
items equal to these values.

• PIN_FLD_START_T and PIN_FLD_END_T specify the time range for the search. These
arguments narrow the search to items whose PIN_FLD_CREATED_T value falls between
the start and end times.

• The PIN_FLD_POID field in the PIN_FLD_ARGS array narrows the search to specific /
item object types. This is a TYPE_ONLY POID. Different items have different POID object
types.

For example, to return only the cycle forward and usage items, create the POID for the
PIN_FLD_POID field as follows:

Chapter 4
Retrieving A/R Information

4-61

PIN_POID_CREATE(database,
 " '/item/cycle_forward', '/item/usage' " -1, ebufp);

Finding Discounts in Bill Items
BRM uses PCM_OP_BILL_GET_ITEM_EVENT_CHARGE_DISCOUNT to retrieve the
discount for events of a given bill item.

For each event it retrieves, this opcode calculates the total amount of each balance and the
total discount amount of each balance.

If a bill has been corrected and the database contains a corrective bill for the bill unit, BRM
retrieves the events associated with the corrective bill only. It does not retrieve the events for
the prior bill.

Retrieving a Balance Summary
To retrieve the balance summary from an account, BRM uses
PCM_OP_AR_GET_ACCT_BAL_SUMMARY. This opcode retrieves the unapplied, open bill
due, pending bill due, and total dispute balances for all the bill units in a specified account or
for a particular bill unit.

You can use PCM_OP_AR_GET_BAL_SUMMARY to get this information for a single bill unit.

For both opcodes, you can specify whether BRM returns the balance for:

• The specified bill units (for PCM_OP_AR_GET_BAL_SUMMARY, this is a single bill unit).

• The specified bill units and their nonpaying child bill units (for
PCM_OP_AR_GET_BAL_SUMMARY, this is a single bill unit).

If you are developing the interface between BRM and a third-party client application, you
should typically favor PCM_OP_AR_GET_ACCT_BAL_SUMMARY over
PCM_OP_AR_GET_BAL_SUMMARY because it gives you the additional flexibility of retrieving
balance summaries for either multiple or single bill units.

PCM_OP_AR_GET_ACCT_BAL_SUMMARY retrieves the following data for the specified bill
unit:

Note:

The data includes the amounts of the bill unit's nonpaying child bill units if you set the
appropriate flag.

• Unapplied amount.

• Amount due for the open bill.

• Amount due for the pending bill.

• Total disputed amount.

• For PCM_OP_AR_GET_BAL_SUMMARY, the Bill in Progress information when there are
pending items and the balance is greater than or equal to 0 because of open disputes
against the items.

You can use the following PCM_OP_AR_GET_BAL_SUMMARY input criteria for retrieving the
balance:

Chapter 4
Retrieving A/R Information

4-62

• The POID of the A/R bill unit object or paying bill unit object.

• The POID of the bill unit for which to retrieve the balance summary.

• A flag indicating whether to retrieve the balances for only the given bill unit or for the given
bill unit and its nonpaying child bill units:

– To return bills for the specified bill unit, set the PIN_FLD_INCLUDE_CHILDREN flag to
0.

– To return bills for the specified bill unit and nonpaying child bill units, set the
PIN_FLD_INCLUDE_CHILDREN flag to 1.

• For PCM_OP_AR_GET_BAL_SUMMARY, whether to retrieve Bill in Progress information
if there are any pending items but the balance is zero.

To do so, PCM_OP_AR_GET_BAL_SUMMARY uses the
PIN_FLD_ITEM_PENDING_FLAGS flag. If this flag is set to 1 in the output flist, the
opcode provides access to Bill in Progress information on the balance summary. If is flag is
set to 0, the opcode does not provide access to Bill in Progress information.

Retrieving a List of Bills for a Bill Unit
BRM uses PCM_OP_AR_GET_ACCT_BILLS to get a list of bills for all the bill units in a
specified account or for a particular bill unit. The input flist determines the filter conditions to
use for retrieving the data from the database.

You can restrict the search by various means, for example, date, status, and number of bills to
be retrieved. You can also choose to find bills for the bill units, or for the bill units and their
nonpaying child bill units.

You can use PCM_OP_AR_GET_BILLS to get this information for a single bill unit. You can
restrict the search by various means, for example, date, status, and number of bills to be
retrieved. You can also choose to find bills for the specific bill unit, or for it and its nonpaying
child bill units.

If you are developing the interface between BRM and a third-party client application, you
should typically favor PCM_OP_AR_GET_ACCT_BILLS over PCM_OP_AR_GET_BILLS
because it gives you the additional flexibility of retrieving the bill list for either multiple or single
bill units.

About the Bill Data Retrieved
PCM_OP_AR_GET_ACCT_BILLS and PCM_OP_AR_GET_BILLS retrieve a list of bills for the
account's bill units or it retrieves the bill units and their nonpaying child bill units.
PCM_OP_AR_GET_BILLS retrieves only the bill unit you specify in the input flist. For each bill,
the output includes the following data:

• Current and previous total

• Total for nonpaying child bill units, provided you set the appropriate flag

• Amounts for adjustments, disputes, transfers, write-offs, and so on

• The bill's state

Specifying the Search Criteria for Retrieving Bills
When you use PCM_OP_AR_GET_ACCT_BILLS and PCM_OP_AR_GET_BILLS, you can
use the following input criteria for retrieving the list of bills:

Chapter 4
Retrieving A/R Information

4-63

• The POID of the account, bill unit, or bill object.

These opcodes list a specific bill if the bill object POID is passed in the input flist. If you
specify an account POID for PCM_OP_AR_GET_ACCT_BILLS, the opcode retrieves the
bills for all the bill units in the account.

• The POID of the A/R bill unit.

Note:

– For PCM_OP_AR_GET_ACCT_BILLS, this field is mandatory if the input flist
specifies the bill unit or bill POID instead of the account POID.

– For PCM_OP_AR_GET_BILLS, this field is mandatory unless you include
the POID of the A/R account.

• The POID of the A/R account. This returns the default bill unit for the A/R account.

Note:

This field is not available for PCM_OP_AR_GET_ACCT_BILLS.

• A flag indicating whether to retrieve the balances for only the given bill unit or for the given
bill unit and its nonpaying child bill units:

– To return balances for the specified bill unit, set the PIN_FLD_INCLUDE_CHILDREN
field to 0.

– To return balances for the specified bill unit and nonpaying child bill units, set the
PIN_FLD_INCLUDE_CHILDREN field to 1.

• The status of the bills to retrieve. If the PIN_FLD_STATUS flag is set to:

– 2: The opcode retrieves open bills.

– 4: The opcode retrieves closed bills.

– 6: The opcode retrieves all bills.

• The number of bills to retrieve. If you use PCM_OP_AR_GET_ACCT_BILLS to retrieve
bills from all the bill units in an account, this is the number of bills the opcode retrieves from
each bill unit. It is not the total number of bills to retrieve from the account unless the
account has only one bill unit.

• The start and end times for the bills to retrieve.

• The sort order, ascending or descending. If you use PCM_OP_AR_GET_ACCT_BILLS to
retrieve bills from all the bill units in an account, this is the sort order the opcode applies to
the bills in each bill unit, not across all the bill units.

Retrieving A/R Items That Apply to a Bill Unit
BRM uses PCM_OP_AR_GET_ACCT_ACTION_ITEMS to get a list of A/R items for all the bill
units in a specified account or for a particular bill unit.

You can restrict the search by various means, such as date, status, and bill unit POID.

You can find items for the specific bill unit or for it and its nonpaying child bill units.

Chapter 4
Retrieving A/R Information

4-64

The A/R item types returned can be:

• /item/adjustment

• /item/dispute

• /item/payment

• /item/refund

• /item/writeoff

Items associated with the A/R items, such as, /item/payment/reversal, /item/
adjustment_reversal, and /item/settlement, are returned in the
PIN_FLD_RELATED_ACTION_ITEM_OBJ field.

You can use PCM_OP_AR_GET_ACTION_ITEMS to get this information for a single bill unit.

If you are developing the interface between BRM and a third-party client application, you
should typically favor PCM_OP_AR_GET_ACCT_ACTION_ITEMS over
PCM_OP_AR_GET_ACTION_ITEMS because it gives you the additional flexibility of retrieving
the A/R items for either multiple or single bill units.

About the Item Data Retrieved
PCM_OP_AR_GET_ACCT_ACTION_ITEMS and PCM_OP_AR_GET_ACTION_ITEMS return
the following data:

Note:

PCM_OP_AR_GET_ACCT_ACTION_ITEMS returns an array. If the PIN_FLD_POID
field is the account POID in the input flist, each element in the array is one of the
listed fields for a bill unit in the account. Otherwise, the returned fields are for the
requested single bill unit.

• The /billinfo and A/R bill unit object (PIN_FLD_BILLINFO_OBJ and
PIN_FLD_AR_BILLINFO_OBJ) that the item belongs to.

• The account's primary contact information (PIN_FLD_NAMEINFO array), such as
company, first name, last name, middle name, and salutation.

• The number of A/R items that were found (PIN_FLD_THRESHOLD) only if this count
exceeds the threshold specified in the input. If the specified threshold is not exceeded, all
the A/R items found are returned.

• Either the A/R items for only the given bill unit or the A/R items for the given bill unit and its
nonpaying child bill units, depending on the flag setting in the input flist.

• For payments and reversals (that apply):

– The POID of the reversal item (PIN_FLD_RELATED_ACTION_ITEM_OBJ).

– The revision time when the payment was reversed; that is, when the reversal was
posted (PIN_FLD_POSTED_T).

• For disputes and settlements (that apply):

– The POID of the settlement item (PIN_FLD_RELATED_ACTION_ITEM_OBJ).

– The revision time when the dispute was settled; that is, when the settlement was
posted (PIN_FLD_POSTED_T).

Chapter 4
Retrieving A/R Information

4-65

– The bill item to which the dispute or settlement is made
(PIN_FLD_RELATED_BILL_ITEM_OBJ).

• For PCM_OP_AR_GET_ACTION_ITEMS only:

– For event adjustments, disputes, and settlements,
PCM_OP_AR_GET_ACTION_ITEMS returns a PIN_FLD_AGGREGATE_AMOUNTS
array for each balance affected by the adjustment, dispute, or settlement item. This
array contains the aggregated amount of adjustments, disputes, and settlements for
each balance.

– For adjustments, disputes, and settlements, PCM_OP_AR_GET_ACTION_ITEMS
indicates whether the adjustment, dispute, or settlement was created for an event or
for an item. PCM_OP_AR_GET_ACTION_ITEMS also indicates whether the
adjustment, dispute, or settlement affects single or multiple balances.

– For adjustments, PCM_OP_AR_GET_ACTION_ITEMS reads both /item/adjustment
and /item/adjustment_reversal for a bill unit. It filters out /item/adjustment_reversal
from the output and adds the POID of /item/adjustment_reversal as
PIN_FLD_RELATED_ACTION_ITEM_OBJ and then adds PIN_FLD_REVERSED in
the output.

For possible return values of each A/R action retrieved, refer to the fields contained in the
PIN_FLDS_RESULTS array in the output flist specification.

Specifying Search Criteria for Retrieving Items
PCM_OP_AR_GET_ACCT_ACTION_ITEMS and PCM_OP_AR_GET_ACTION_ITEMS take
as input:

• The POID of the A/R bill unit (PIN_FLD_AR_BILLINFO_OBJ).

• The POID of the bill unit related to the A/R items.

When retrieving A/R items for nonpaying child bill units, the bill unit object is that of the
paying bill unit. Otherwise, it is the bill unit object of the specified bill.

• The POID of the bill unit for which to retrieve A/R items (PIN_FLD_AR_BILLINFO_OBJ).
This field is required only when retrieving A/R items for a specific, nonpaying child bill unit.

• A flag indicating whether to retrieve the A/R items for only the given bill unit or for the given
bill unit and its nonpaying child bill units:

– To return A/R items for the specified bill unit, set the PIN_FLD_INCLUDE_CHILDREN
field to 0.

– To return A/R items for the specified bill unit and nonpaying child bill units, set the
PIN_FLD_INCLUDE_CHILDREN field to 1.

• The maximum number, or threshold, of A/R items to retrieve.

Note:

– The threshold field is valid only for an A/R bill unit (that is, the paying bill unit
of a parent account).

– If you use PCM_OP_AR_GET_ACCT_ACTION_ITEMS to retrieve A/R items
from all the bill units in an account, this is the maximum number of A/R items
the opcode retrieves from each bill unit. It is not the total number of A/R items
retrieved from the account unless the account has only one bill unit.

Chapter 4
Retrieving A/R Information

4-66

• The action-item type to retrieve (for example, /item/adjustment) specified as a comma-
delimited string.

Note:

When retrieving only payments, both payments and reversals are specified.
When retrieving only disputes, both disputes and settlements are specified.

• The time range for which to retrieve A/R items. The start date is inclusive and the end date
is exclusive.

• The amount range. The from and to amounts are inclusive.

• The amount indicator for whether to retrieve credits or debits for the given range.

• The item status. You can query based on a status of open, closed, or reversed (valid for
payments only).

Note:

There is no pending status for A/R items.

Retrieving a List of Bill Items for a Bill Unit
To retrieve a list of bill items for a bill unit, BRM uses PCM_OP_AR_GET_BILL_ITEMS.

You can restrict the search by various means (for example, date, status, and bill unit POID).
You can also choose to find items for the specific bill unit or for it and its nonpaying child bill
units.

Depending on the value of the following CM pin.conf entry, the charge and discount for the
items is populated in the PCM_OP_AR_GET_BILL_ITEMS output flist. The value for this entry
can be either 0 or 1. The default is 0.

- fm_ar skip_displaying_charge_and_discount_for_item 1

If the value specified is 1, the charge and discount for the items is not populated in the
PCM_OP_AR_GET_BILL_ITEMS output flist.

Note:

PCM_OP_AR_GET_BILL_ITEMS is used by Billing Care and Customer Center to
display the item details. Setting this flag to 1 skips the query to get the charge and
discount from the events belonging to the item, thereby improving performance.

About the Bill Item Data Retrieved
PCM_OP_AR_GET_BILL_ITEMS returns the following:

• The bill items for only the specified bill unit if PIN_FLD_INCLUDE_CHILDREN is set to 0.

Chapter 4
Retrieving A/R Information

4-67

• The bill items for the specified bill unit and its nonpaying child bill units if
PIN_FLD_INCLUDE_CHILDREN is set to 1.

• The bill items for the nonpaying child bill units if PIN_FLD_INCLUDE_CHILDREN is set to
2.

• The number of bill items that were found (PIN_FLD_THRESHOLD) only if this count
exceeds the threshold specified in the input. If the specified threshold is not exceeded, all
the bill items found are returned.

For each bill item retrieved, the fields in the PIN_FLDS_RESULTS array are returned.

If general ledger (G/L) collection is enabled, PCM_OP_AR_GET_BILL_ITEMS retrieves the
data from G/L /journal objects. Otherwise, the opcode retrieves the data from the events for
each bill item. Using /journal objects improves performance.

Customizing the Number of Items to Retrieve in a Search
PCM_OP_AR_GET_BILL_ITEMS uses step-search. The step size (the number of items it tries
to retrieve simultaneously) is determined by the following CM pin.conf entry:

- fm_bill item_search_batch 10000

Specifying Search Criteria for Bill Items
PCM_OP_AR_GET_BILL_ITEMS takes as input:

• The POID of the A/R bill unit or paying bill unit object (PIN_FLD_AR_BILLINFO_OBJ).

• The POID of the bill object related to the bill items.

When PCM_OP_AR_GET_BILL_ITEMS retrieves bill items for nonpaying child bill units,
the bill object is that of the paying bill unit object. Otherwise, it is the bill object of the
specified bill unit.

• The POID of the bill unit object (PIN_FLD_BILLINFO_OBJ) for which to retrieve bill items.
This field is required only when retrieving bill items for a specific, nonpaying child bill unit.

• A flag indicating whether to retrieve the bill items for only the specified bill unit or for the
specified bill unit and its nonpaying child bill units:

– To return bill items for the specified bill unit, set the PIN_FLD_INCLUDE_CHILDREN
field to 0.

– To return bill items for the specified bill unit and nonpaying child bill units, set the
PIN_FLD_INCLUDE_CHILDREN field to 1.

– To return bill items for the nonpaying child bill units, set the
PIN_FLD_INCLUDE_CHILDREN field to 2.

• The service device ID or phone number or login name to retrieve the SERVICE_OBJ for
the services with matching ALIAS or LOGIN_NAME. SERVICE_OBJ is used to retrieve the
associated bill items.

• The maximum number, or threshold, of bill items to retrieve.

• The time range in which to retrieve bill items. The start date is inclusive and the end date is
exclusive.

• The amount range. The from and to amounts are inclusive.

• The amount indicator for whether to retrieve credits or debits for the given range.

• The item status. You can query based on a status of open, closed, or pending.

Chapter 4
Retrieving A/R Information

4-68

Retrieving Details about a Specific A/R Item or Bill Item
You can retrieve details for an A/R item or bill item in a bill unit using either of two opcodes:

• PCM_OP_AR_GET_ITEMS: Use this opcode to retrieve the details of an A/R item or bill
item for a bill unit. For adjustments, disputes, and settlements, this opcode retrieves the
aggregated impact amount for each balance or the events associated with the item (/item/
dispute, /item/adjustment, /item/adjustment_reversal, and so on).
PCM_OP_AR_GET_ITEMS provides details for both currency and noncurrency balances.

• PCM_OP_AR_GET_ITEM_DETAIL: Use this opcode to retrieve the details of an A/R item
or bill item for a bill unit. This opcode retrieves detailed information about a specific write-
off or usage item. For reversed adjustments, it sends the POID of /item/
adjustment_reversal as PIN_FLD_RELATED_ACTION_ITEM_OBJ and returns the
reversed amount in the PIN_FLD_REVERSED field. It does not return the aggregated
dispute amount for each balance for disputed events. More importantly, it does not return
details about noncurrency balances for adjustments, disputes, or settlements unless the
item has both a currency and noncurrency component.

You should base your choice of opcode on how much information you want to retrieve for the
A/R items and bill items.

About the Item Data Retrieved
PCM_OP_AR_GET_ITEMS calls PCM_OP_AR_GET_ITEM_DETAIL to get the details of the
A/R item or bill item. When returning details for adjustments, disputes, or settlements, it
collects details for:

• Item adjustments, disputes, and settlements (/event/billing/dispute/item, /event/billing/
adjustment/item, and so on).

• Event adjustments, disputes, and settlements (/event/billing/dispute/event, /event/
billing/adjustment/event, and so on).

Depending on the contents of the input flist, PCM_OP_AR_GET_ITEMS takes one of the
following actions:

• If the input flist contains the POID of a transfer event, PCM_OP_AR_GET_ITEMS calls
PCM_OP_AR_GET_ITEM_DETAIL to get the details of the transfer and performs no
further action. For information on what this opcode returns for transfer events, see "About
the Item Detail Data Retrieved".

• If the input flist contains the POID of a bill item or an A/R action such as an adjustment,
dispute, or settlement, PCM_OP_AR_GET_ITEMS calls
PCM_OP_AR_GET_ITEM_DETAIL to get the details of the A/R action or bill item. It also
calls PCM_OP_AR_RESOURCE_AGGREGATION to calculate and return the aggregated
amount of any event adjustments, disputes, and settlements for each balance.

For A/R actions, it determines whether the action was initiated at the item level or event
level. If the action was initiated at the event level, it retrieves both currency and
noncurrency balances for the event.

For information on PCM_OP_AR_RESOURCE_AGGREGATION, see "Retrieving Details
on Available Balances ".

PCM_OP_AR_GET_ITEMS returns an array of details for the A/R action or bill item. The
transfers_into array provides the details of all items that have a currency or noncurrency
impact for the A/R item or bill item specified in the input flist. These details include the

Chapter 4
Retrieving A/R Information

4-69

aggregated balance impacts for each event. The AGGREGATE_AMOUNTS array returns the
PIN_FLD_REVERSED field if the corresponding adjustment is reversed.

For adjustments, disputes, and settlements, the details for each A/R action include a flag in the
transfer array that indicates whether the action was initiated at the event level or item level:

• PIN_FLD_ADJUSTMENT_TYPE: Set to 0 for item adjustments or 1 for event adjustments.

• PIN_FLD_DISPUTE_TYPE: Set to 0 for item disputes or 1 for event disputes.

• PIN_FLD_SETTLEMENT_TYPE: Set to 0 for item settlements or 1 for event settlements.

The details also include a PIN_FLD_RESOURCE_IMPACTED flag in the transfer array for any
adjustments, disputes, or settlements. If this flag is set to 0, the action affected one balance
only. If the flag is set to 1, the action affected several different balances (for example, multiple
currencies or both a currency and a noncurrency balance, such as minutes).

About the Item Detail Data Retrieved
PCM_OP_AR_GET_ITEM_DETAIL retrieves details of activities that had a currency impact for
the specified A/R item or bill item. If the input flist contains the POID for the transfer event, that
POID is used to retrieve the item details from the transfer event binary large object (BLOB) file.
PCM_OP_AR_GET_ITEM_DETAIL returns an array of the bill items the transfer event affected
and the input POID.

• The transfers_into array returns the details of all the items that received some currency
amount from the item specified in the input flist. For example, when a customer service
representative (CSR) opens a dispute for a subscription fee, money is transferred into the
dispute item from the subscription bill item (the cycle forward item). When the cycle
forward item is passed in the input flist, the details of all the disputes that received money
from this bill item are returned in the transfers_into array.

• The transfers_out array returns the details of all those items that transferred some
currency amount to the item specified in the input flist. For example, when a customer pays
for service usage, money is transferred from the payment item to the bill item (usage item).
When the usage item is passed in the input flist, the details of all the payments that
transferred money to this bill item are returned in the transfers_out array.

For adjustments, disputes, and settlements, the details for the A/R action include a flag in the
transfer array that indicates whether the action was initiated at the event level or item level:

• PIN_FLD_ADJUSTMENT_TYPE: Set to 0 for item adjustments or 1 for event adjustments.

• PIN_FLD_DISPUTE_TYPE: Set to 0 for item disputes or 1 for event disputes.

• PIN_FLD_SETTLEMENT_TYPE: Set to 0 for item settlements or 1 for event settlements.

PCM_OP_AR_GET_ITEM_DETAIL determines how to set this flag by checking to see whether
the event is stored in an /event/billing/AR_action_type/item object or an /event/billing/
action_type/event object. The opcode returns the following information:

• Item adjustments, disputes and settlements: Returns a transfer array that includes
details of the adjustment, dispute, or settlement item in the PIN_FLD_EVENT_OBJ field. In
this case, the only event PCM_OP_AR_GET_ITEM_DETAIL looks at is the single event
associated with the /item object. For example, it looks at the single /event/billing/dispute/
item event associated with the /item/dispute object.

• Event adjustments, disputes and settlements: Returns a transfer array that includes a
PIN_FLD_EVENTS array with the details of all the events that make up the adjustment,
dispute, or settlement. In this case, PCM_OP_AR_GET_ITEM_DETAIL looks at all the
events identified in the /item object.

Chapter 4
Retrieving A/R Information

4-70

The details for each A/R action also include a PIN_FLD_RESOURCE_IMPACTED flag in the
transfer array for any adjustments, disputes, or settlements. If this flag is set to 0, the action
affected one balance only. If the flag is set to 1, the action affected several different balances
(for example, multiple currencies or both a currency and a noncurrency balance, such as
minutes).

In addition to retrieving the other details of the adjustment, dispute, or settlement,
PCM_OP_AR_GET_ITEM_DETAIL determines whether there is a tax reversal already
calculated for the event. If so, it adds this information to the PIN_FLD_TAX field in the output
flist.

Note:

Tax reversals are calculated at adjustment, dispute, or settlement event creation time
only if you have set up tax now as the tax method for adjustments, disputes, and
settlements in the CM pin.conf file.

The details for each A/R action also include a PIN_FLD_RESOURCE_IMPACTED flag to
indicate whether the action affects a single balance (0) or multiple balances (1).

Specifying Search Criteria for Retrieving Items
PCM_OP_AR_GET_ITEMS and PCM_OP_AR_GET_ITEM_DETAIL take as input:

• The POID of the item object or the POID of the transfer event. If the POID is for a transfer
event, all other values are ignored.

• The POID of the disputed item (PIN_FLD_RELATED_BILL_ITEM_OBJ) if the bill item is
disputed. This field is mandatory if the item object is a dispute, but you can also include
this field for other types of item objects.

• The POID of the settlement item or the reversal item
(PIN_FLD_RELATED_ACTION_ITEM_OBJ) if the item is for a dispute or payment and a
dispute settlement or payment reversal exists.

Retrieving Dispute Details for a Bill Unit
You can retrieve dispute details for a bill unit by using either of the following opcodes:

• To return a complete set of dispute details, use PCM_OP_AR_GET_DISPUTE_DETAILS.
This opcode retrieves the details of all event and item disputes for a bill unit and the
aggregated disputed amount for the events associated with a dispute item (/item/dispute
object).

See "Retrieving a Full Set of Dispute Data".

• To return a limited set of dispute details, use PCM_OP_AR_GET_DISPUTES. This opcode
retrieves details of event and item disputes for a bill unit. This opcode does not return as
much information as PCM_OP_AR_GET_DISPUTE_DETAILS. For example, it does not
return the aggregated disputed amount for each balance.

See "Returning a Limited Set of Dispute Data".

You should base your choice of opcode on how much information you want to retrieve for the
disputes.

Chapter 4
Retrieving A/R Information

4-71

Retrieving a Full Set of Dispute Data
PCM_OP_AR_GET_DISPUTE_DETAILS calls PCM_OP_AR_GET_DISPUTES to get the
details of each dispute. It collects details for both item disputes (/event/billing/dispute/item)
and event disputes (/event/billing/dispute/event).

When it has the details for each dispute, PCM_OP_AR_GET_DISPUTE_DETAILS creates an
input flist that contains the A/R event POID of each dispute and passes it to
PCM_OP_AR_RESOURCE_AGGREGATION. PCM_OP_AR_RESOURCE_AGGREGATION
calculates and returns the aggregated disputed amount for each balance. Balances can be
currency or noncurrency. For information on PCM_OP_AR_RESOURCE_AGGREGATION,
see "Retrieving Details on Available Balances ".

Data Retrieved by PCM_OP_AR_GET_DISPUTES
PCM_OP_AR_GET_DISPUTES returns an array of disputes. This array includes transfer
arrays identifying the /item/dispute object for each event and item dispute. In addition, the
arrays for the event disputes include an aggregated balance subarray.

Each dispute includes a PIN_FLD_DISPUTE_TYPE flag in the transfer array to indicate
whether it was filed as an event dispute or an item dispute:

• If this flag is set to 0, the dispute is an item dispute.

• If this flag is set to 1, the dispute is an event dispute.

The details also include a PIN_FLD_RESOURCE_IMPACTED flag in the transfer array for the
disputes. If this flag is set to 0, the action affected one balance only. If the flag is set to 1, the
action affected several different balances (for example, multiple currencies or both a currency
and a noncurrency balance, such as minutes).

Specifying Search Criteria for PCM_OP_AR_GET_DISPUTE_DETAILS
PCM_OP_AR_GET_DISPUTES takes as input:

• The POID of the bill unit that has a dispute. If the account object is specified, the default
account bill unit is selected.

• The POID of the A/R bill unit or paying bill unit object (PIN_FLD_AR_BILLINFO_OBJ).

• A flag indicating whether to retrieve the dispute details for only the given bill unit or for the
given bill unit and its nonpaying child bill units:

– To return dispute details for the specified bill unit, set the
PIN_FLD_INCLUDE_CHILDREN field to 0.

– To return dispute details for the specified bill unit and nonpaying child bill units, set the
PIN_FLD_INCLUDE_CHILDREN field to 1.

• A status flag indicating whether to retrieve open disputes, closed (settled) disputes, or
both. If the PIN_FLD_STATUS flag is set to:

– 2: The opcode retrieves open disputes.

– 4: The opcode retrieves settled disputes.

– 6: The opcode retrieves all disputes, open or settled.

Chapter 4
Retrieving A/R Information

4-72

Returning a Limited Set of Dispute Data
PCM_OP_AR_GET_DISPUTES calls PCM_OP_AR_GET_ACTION_ITEMS to get a list of
disputes for the bill unit and passes each disputed item to PCM_OP_AR_GET_ITEM_DETAIL.
PCM_OP_AR_GET_ITEM_DETAIL gathers the details on the disputed items.
PCM_OP_AR_GET_DISPUTES then creates an output flist that provides the information
transferred by PCM_OP_AR_GET_ITEM_DETAIL, including flags to indicate whether the
dispute is an event dispute or an item dispute.

You can restrict the search by various means, for example, date, status, and bill unit POID. You
can choose to find items for the specific bill unit, or for it and its nonpaying child bill units.

For open disputes, PCM_OP_AR_GET_DISPUTES retrieves unsettled disputes; for resolved
disputes, it retrieves settled disputes.

Data Retrieved by PCM_OP_AR_GET_DISPUTES
PCM_OP_AR_GET_DISPUTES returns an array of disputes. Each dispute includes a
PIN_FLD_DISPUTE_TYPE flag in the transfer array to indicate whether it was filed as an
event dispute or an item dispute:

• If this flag is set to 0, the dispute is an item dispute.

• If this flag is set to 1, the dispute is an event dispute.

The details also include a PIN_FLD_RESOURCE_IMPACTED flag in the transfer array for the
disputes. If this flag is set to 0, the action affected one balance only. If the flag is set to 1, the
action affected several different balances (for example, multiple currencies or both a currency
and a noncurrency balance, such as minutes).

Specifying Search Criteria for PCM_OP_AR_GET_DISPUTES
PCM_OP_AR_GET_DISPUTES takes as input:

• The POID of the bill unit that has a dispute. If the account object is specified, the default
account bill unit is selected.

• The POID of the A/R bill unit or paying bill unit object (PIN_FLD_AR_BILLINFO_OBJ).

• A flag indicating whether to retrieve the dispute details for only the given bill unit or for the
given bill unit and its nonpaying child bill units.

– To return dispute details for the specified bill unit, set the
PIN_FLD_INCLUDE_CHILDREN field to 0.

– To return dispute details for the specified bill unit and nonpaying child bill units, set the
PIN_FLD_INCLUDE_CHILDREN field to 1.

• A status flag indicating whether to retrieve open disputes, closed (settled) disputes, or
both. If the PIN_FLD_STATUS flag is set to:

– 2: The opcode retrieves open disputes.

– 4: The opcode retrieves settled disputes.

– 6: The opcode retrieves all disputes, open or settled.

Chapter 4
Retrieving A/R Information

4-73

Retrieving Details on Available Balances
BRM uses PCM_OP_AR_RESOURCE_AGGREGATION to retrieve the available balances for
the events associated with a bill item. This opcode aggregates (combines) the balance impacts
of all the events by balance, such as US dollars or included minutes.

If an adjustment, dispute, or settlement is associated with an event, this opcode also includes
the dispute, adjustment, reversed adjustment, or settlement amount in the aggregated impacts
for each balance. The balance types can include currency, noncurrency, or both. The output
flist PIN_FLD_RESULTS array contains the remaining available amount for opening new
adjustments, disputes, or settlements for each balance in the PIN_FLD_ALLOCATED field.

You can write a custom application to use the aggregated amounts to find the balance impact
of an event and help determine how much of each balance for an event is available for A/R
activities like adjustments. This opcode is also called by
PCM_OP_AR_GET_DISPUTE_DETAILS and PCM_OP_AR_GET_ITEMS.

PCM_OP_AR_RESOURCE_AGGREGATION returns an array that lists the following
information for each balance impacted by the events specified in the input flist:

Note:

If PCM_OP_AR_RESOURCE_AGGREGATION is returning adjustment, dispute, or
settlement events, it includes a balance array for all the balances impacted by the
event, whether or not a particular balance is impacted by the adjustment, dispute, or
settlement. For example, given a currency adjustment of an event that impacts US
dollars and minute balances, the opcode returns arrays for both balances, even
though the adjustment did not affect minutes.

• Balance element ID.

• Aggregated event charges.

• If the balance was discounted, the discount amount.

• If the balance was adjusted, the adjustment amount.

• If an adjustment was reversed, the reversed amount and the amount of the original
adjustment.

• If the balance was disputed, the dispute amount and the amount of the original dispute.

• If a settlement occurred, the settlement amount.

• The total balance currently available (PIN_FLD_ALLOCATED field). This is the amount in
the PIN_FLD_AMOUNT field minus any discounts, adjustments, disputes (the dispute
amount in PIN_FLD_DISPUTED only, not the original dispute amount), and settlements.

Finding Events Associated with an Account
To find all events associated with an account, BRM uses
PCM_OP_BILL_POL_EVENT_SEARCH. This opcode is not called by any opcode.

For filtered searches, PCM_OP_BILL_POL_EVENT_SEARCH supports searching on the
following criteria:

• POID of the bill unit

Chapter 4
Retrieving A/R Information

4-74

• POID of the bill

• POID of the item

• Date ranges

• Amount ranges

• Event type

• Service type

• Balance element ID

To specify the number of events to return, use a value for the threshold. If the threshold value
is greater than or equal to the number of events, all events are returned. If the threshold value
is less than the number of events, the number of events is returned.

By default, PCM_OP_BILL_POL_EVENT_SEARCH returns all the events for the account but
discards dispute, adjustment, and settlement events. This opcode can be customized to
retrieve all the events for the account and keep the dispute, adjustment, and settlement events.

Finding Events Associated with Bill Items
To find events associated with a bill item, BRM uses PCM_OP_BILL_ITEM_EVENT_SEARCH.

This opcode searches the /event object for details related to a specific item. This opcode
retrieves a list of events for a given item POID and flag.

The PIN_FLD_SEARCH_TYPE field in the PCM_OP_BILL_ITEM_EVENT_SEARCH input flist
can be set to one or all of the following fields:

• PIN_ITEM_EVENT_OWNED: Events owned by an item. If PIN_ITEM_EVENT_OWNED is
selected, PCM_OP_BILL_ITEM_EVENT_SEARCH returns a list of events whose item
POID matches the item POID passed in the input flist.

• PIN_ITEM_EVENT_SPONSORED: Events sponsored by the item. If the
PIN_ITEM_EVENT_SPONSORED flag is selected,
PCM_OP_BILL_ITEM_EVENT_SEARCH returns a list of events whose item POID in the
event subtotal array matches the item POID passed in the input flist.

• PIN_ITEM_EVENT_TRANSFERRED: A/R events that affect the item's total. If the
PIN_ITEM_EVENT_TRANSFERRED flag is selected,
PCM_OP_BILL_ITEM_EVENT_SEARCH returns a list of events whose item POID
matches POIDs stored in PIN_OBJ_TYPE_EVENT_ITEM_TRANSFER. Lists are returned
in separate arrays so that a list can be returned for each selected flag.

In addition to the above criteria, the event search can be narrowed to reflect the type of event
and when the event was created.

Performing Rollover Transfers
BRM performs rollover transfers by using
PCM_OP_SUBSCRIPTION_TRANSFER_ROLLOVER for each account or service that has a
rollover-transfer profile associated with it.

PCM_OP_SUBSCRIPTION_TRANSFER_ROLLOVER checks the rollover-transfer profile
object, /profile/rollover_transfer, to make sure it is configured and valid for the balance and
receiver and then transfers the entire rollover amount to the receiver.

BRM performs a rollover transfer as follows:

Chapter 4
Performing Rollover Transfers

4-75

1. The BRM event notification system listens for the following events to occur:

• /event/billing/cycle/rollover/monthly

• /event/billing/cycle/rollover_correction

2. When one of the events occurs, the event notification system calls
PCM_OP_SUBSCRIPTION_TRANSFER_ROLLOVER.

3. PCM_OP_SUBSCRIPTION_TRANSFER_ROLLOVER checks the rollover-transfer profile
object (/profile/rollover_transfer) to make sure it is configured and valid for the balance
and the receiver.

4. PCM_OP_SUBSCRIPTION_TRANSFER_ROLLOVER transfers the rollover amount to the
receivers' accounts.

5. PCM_OP_SUBSCRIPTION_TRANSFER_ROLLOVER removes the rolled-over amount
from the sender's sub-balance and creates new sub-balances for the receivers with the
transferred amount.

The validity of the new sub-balance is based on the accounting cycle of the receiver and is
valid for the remainder of the current accounting cycle and the next accounting cycle. The
receiver's new sub-balance is not subject to future rollovers and its valid-from date is the
end date of the sub-balance that was rolled over.

6. PCM_OP_SUBSCRIPTION_TRANSFER_ROLLOVER generates the /event/billing/cycle/
rollover_transfer event, which has the same GLIDs as the balance impacts of the original
rollover event.

7. If delayed billing is configured and rolled-over balances were consumed by the sender by
delayed events, PCM_OP_SUBSCRIPTION_TRANSFER_ROLLOVER receives the
rollover correction event and adjusts the rollover transfer amount of the receiver
accordingly.

Note:

You must perform rerating for the receiver if events rated before the rollover
correction were consumed from the rollover transfer amount.

Chapter 4
Performing Rollover Transfers

4-76

5
Activity Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) activity
opcode workflows.

For information about the activity opcodes, see "Activity FM Policy Opcodes" and "Activity FM
Standard Opcodes" .

Topics in this document:

• Opcodes Described in This Chapter

• Managing Sessions

• Customizing News Feed Values and Events

• Managing Operation Failure Records

Opcodes Described in This Chapter
Table 5-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 5-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_END_SESSION Recording Session Events

Recording the End of a Session

PCM_OP_ACT_FIND_VERIFY Starting Sessions

PCM_OP_ACT_LOAD_SESSION Loading Sessions

PCM_OP_ACT_LOGIN Starting Sessions

PCM_OP_ACT_LOGOUT Recording the End of a Session

PCM_OP_ACT_POL_PROCESS_EVENTS Customizing News Feed Values and Events

PCM_OP_ACT_POL_REQUEST_CREATE Recording Failed Operations

PCM_OP_ACT_REQUEST_CREATE Recording Failed Operations

PCM_OP_ACT_REQUEST_RETRIEVE Retrieving Operation Failure Records

PCM_OP_ACT_START_SESSION Recording the Start of a Session

Starting Sessions

Updating a Session Event

5-1

Table 5-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_UPDATE_SESSION Updating a Session Event

PCM_ACT_USAGE Managing Sessions

PCM_OP_PROCESS_EVENTS Customizing News Feed Values and Events

Managing Sessions
BRM uses PCM_OP_ACT_USAGE to manage session events. For example, this opcode is
called for a user login session.

Note:

This opcode is called by the other session opcodes. Do not call
PCM_OP_ACT_USAGE directly.

PCM_OP_ACT_USAGE takes as input an /account object POID and a type-only POID that
specifies the type of event being recorded.

BRM stores information about sessions in /event/session objects in the BRM database.

Starting Sessions
Use PCM_OP_ACT_LOGIN to start a session.

PCM_OP_ACT_LOGIN performs these operations:

1. Calls PCM_OP_ACT_FIND_VERIFY to verify the identity of the account.

PCM_OP_ACT_FIND_VERIFY also checks whether the account specified during login is
locked and whether the password entered is valid. If the password entered is not valid, it
does the following:

• Increments PIN_FLD_LOGIN_ATTEMPTS.

• Locks the account if PIN_FLD_LOGIN_ATTEMPTS equals the value specified in the
MaxLoginAttempts entry in the bus_params_act.xml file.

These checks are applicable only to /service/pcm_client and /service/admin_client.

2. Calls PCM_OP_ACT_START_SESSION to start a login session.

3. Returns the user's /account POID.

PCM_OP_ACT_LOGIN is usually called by PCM_CONNECT, but it is also called directly. If
called by PCM_CONNECT, this opcode ignores the database number in the application's
pin.conf file and searches all schemas for the account.

PCM_OP_ACT_LOGIN also stores the PIN_FLD_NAP_IP_ADDRESS in the /event/session
object on successful login. This information is used for logging CSR activities.

Chapter 5
Managing Sessions

5-2

Recording the Start of a Session
Use PCM_OP_ACT_START_SESSION to record the start of a session event. This opcode
records any type of session event object including details specific to the event type.

Sessions can be started for either /account or /service objects. The /account object must be
specified for both cases.

• When the /account object is used alone, PCM_OP_ACT_START_SESSION starts a
session for the /account object.

• When both /account and /service object POIDs are specified,
PCM_OP_ACT_START_SESSION starts a session for the /service object.

• When a NULL /service object is specified, PCM_OP_ACT_START_SESSION starts a
session for the /account object.

Session details are recorded in the base /event/session object. You can create an inherited
class from the /event/session object and add fields to describe a specific type of session in
more detail.

When a session of the specified type occurs, the input flist to
PCM_OP_ACT_START_SESSION can specify the type of event object to create with the
PIN_OBJ_TYPE field and include the detailed information fields in the
PIN_FLD_INHERITED_INFO substructure. This enables any amount of detail to be recorded
for any number of session types.

In the PIN_FLD_INHERITED_INFO array, the program supplies a new storable class definition.
You determine the fields necessary in the new inherited storable class type and define them by
using PIN_MAKE_FLD. This procedure is explained in the pcm.h file.
PCM_OP_ACT_START_SESSION then automatically creates storable class definitions and
supplies updated release files containing the new storable class definitions.

BRM controls how PCM_OP_ACT_START_SESSION records the start of a session event by
using these flags:

• PCM_OPFLG_READ_RESULT

When this flag is set, PCM_OP_ACT_START_SESSION returns all fields in the event
object in addition to the /account POID.

• PCM_OPFLG_CALC_ONLY

– When this flag is set, PCM_OP_ACT_START_SESSION returns the fields that would
have been used to create the event object. No fields in the database are changed, and
the event object is not actually created.

– When the flag is not set, PCM_OP_ACT_START_SESSION creates an /event/
session object to record the details of the session event.

Updating a Session Event
Use PCM_OP_ACT_UPDATE_SESSION to update information in a session event.

Chapter 5
Managing Sessions

5-3

Note:

The session event object must already have been created by a call to
PCM_OP_ACT_START_SESSION or by an opcode that calls that opcode.

PCM_OP_ACT_UPDATE_SESSION updates the PIN_FLD_DESCR field and any inherited
data fields in the session object. Only the fields specified in the opcode's input flist are
updated; all other fields in the /event/session object are left unchanged. This opcode uses the
generalized PIN_FLD_INHERITED_INFO substruct so it can update /event/session objects of
any type.

At the end of sessions, PCM_OP_ACT_UPDATE_SESSION records the session end time.

Recording the End of a Session
Use PCM_OP_ACT_LOGOUT to record the end of a login session. It calls
PCM_OP_ACT_END_SESSION to end the session and assess any changes.

Recording Session Events
Use PCM_OP_ACT_END_SESSION to record the end of a session event.
PCM_OP_ACT_END_SESSION performs these operations:

1. Records the session's ending timestamp.

2. Updates the PIN_FLD_DESCR field and any inherited data fields in the /event/session
object.

3. Returns the following, depending on the flags passed in:

• When the PCM_OPFLG_READ_RESULT flag is set, this opcode returns all fields in
the event object, in addition to the POID.

• When the PCM_OPFLG_CALC_ONLY flag is set, this opcode returns the fields that
would have been used to create the event object. No fields in the database are
changed, and the event object is not actually created.

• When no flags are set, this opcode returns the POID of the event object.

Loading Sessions
Use PCM_OP_ACT_LOAD_SESSION to create and record a session event as a single
operation. This opcode is valuable as a tool to load sessions in real time.

Customizing News Feed Values and Events
Use the PCM_OP_ACT_POL_PROCESS_EVENTS to process events and update the
database with news feed entries. The PCM_OP_ACT_POL_PROCESS_EVENTS policy
opcode is called by the PCM_OP_PROCESS_EVENTS standard opcode.

Use the PCM_OP_ACT_POL_PROCESS_EVENTS policy opcode to customize values in the
news feed and to add new events for the news feed.

As input, this opcode takes the following information:

• PIN_FLD_EVENT: Specifies the events.

Chapter 5
Customizing News Feed Values and Events

5-4

• PIN_FLD_TYPE: Specifies the type of news feed, which differentiates the news feed
category from other news feeds.

• PIN_FLD_REASON_ID: Specifies the reason code for news feed, which links to the
localized name of the news feed category.

• PIN_FLD_MESSAGE: Specifies the summary information for the news feed. The message
has the following format:

numeric_ID1;;numeric_ID2|~|placeholder_value1|~| placeholder_value2

where:

– numeric_IDN is an unique identifier that maps to the reason code in the localization
message. You can add multiple numeric IDs separated by ;;.

– placeholder_valueN is the value that replaces the placeholder character in the
localization message for the corresponding numeric ID. The placeholder values are
separated by |~|.

For example:

132;;133|~|P1-1|~|10003

which displays the following message:

Payment reversed
P1-1 original payment, 10003

• PIN_FLD_FLAGS: Specifies whether to create the /newsfeed object or not.

– If it is set to 1, this opcode creates a new /newsfeed object.

– If it is set to 0, this opcode does not create a new /newsfeed object.

Managing Operation Failure Records
Use the following opcodes to manage operation failure records, which are stored in /request/
failed, /request/failed/opcode, and /request/failed/rest objects:

• To create an operation failure record, use PCM_OP_ACT_REQUEST_CREATE. See
"Recording Failed Operations".

• To customize an operation failure record before it is saved in the database, use
PCM_OP_ACT_POL_REQUEST_CREATE. See "Recording Failed Operations".

• To retrieve one or more operation failure records, use
PCM_OP_ACT_REQUEST_RETRIEVE. See "Retrieving Operation Failure Records".

• To delete an account and all operation failure records associated with it, use
PCM_OP_CUST_DELETE_ACCT. See "Deleting Accounts".

To view the input and output flist specifications for these opcodes, see BRM Opcode Flist
Reference.

Chapter 5
Managing Operation Failure Records

5-5

Recording Failed Operations
Use the PCM_OP_ACT_REQUEST_CREATE opcode to record failed operations in a /
request/failed, /request/failed/opcode, or /request/failed/rest object. For more information
about these objects, see Storable Class Reference.

To record details about a failed operation, customize your client application to replace sensitive
information, such as passwords, in the request payload with dummy data. Then, your client
application must call the PCM_OP_ACT_REQUEST_CREATE opcode and pass the following
information in the opcode's input flist:

• PIN_FLD_PARTIAL set to the status of the payload: complete (0) or incomplete (1).
Incomplete indicates that sensitive information was dropped from the payload and will
need to be added before the operation is reprocessed.

• PIN_FLD_STATUS set to the status of the operation: successful (0), failed (1), or written off
(2). Written off indicates that the failed operation does not need to be reprocessed and can
be deleted.

• PIN_FLD_TYPE_STR set to the MIME type of the payload, such as text/pin_flist for
opcode flists or application/json for REST APIs.

• PIN_FLD_PAYLOAD_STR contains the payload data from the request in string format.

• Details about the error or failure.

PCM_OP_ACT_REQUEST_CREATE does the following:

1. Converts the payload into a buffer field.

2. Converts any error or failure details into a buffer field.

3. Calls the PCM_OP_ACT_POL_REQUEST_CREATE policy opcode to customize details
about the failed operation. By default, the opcode does nothing.

4. Creates a /request/failed, /request/failed/opcode, or /request/failed/rest object. In
multischema systems, the object is created in the same schema in which the operation
failed.

5. Creates an /event/notification/request/create notification event.

Retrieving Operation Failure Records
Use the PCM_OP_ACT_REQUEST_RETRIEVE opcode to retrieve one or more /request/
failed, /request/failed/opcode, or /request/failed/rest objects.

To retrieve a specific /request object, pass the POID of the /request object in the opcode's
input flist.

To retrieve all /request objects based on specific criteria, pass the type-only POID for the /
request object as well as the following optional input:

• To retrieve records for a specific account, pass PIN_FLD_ACCOUNT_OBJ set to the /
account object POID.

• To retrieve records with a specific status, pass PIN_FLD_STATUS set to 0 (Successful), 1
(Failed), or 2 (Written Off).

• To retrieve records created by a specific client application, pass PIN_FLD_PROGRAM set
to the name of the calling program.

Chapter 5
Managing Operation Failure Records

5-6

6
Billing Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) billing
opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Creating Bills

• Customizing Billing

• Managing Bill Units

• Suppressing Bills

• Making Trial Bills

• Corrective Billing

• Using Revenue Assurance Manager

Opcodes Described in This Chapter
Table 6-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 6-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_POL_CONFIG_BILLING_CYCLE Customizing How to Bill Events That Occur between Billing
Cycles

PCM_OP_ACT_USAGE Customizing How to Bill Events That Occur between Billing
Cycles

PCM_OP_BILL_CONVERT_AMOUNTS About Currency Conversion

PCM_OP_BILL_CREATE_SPONSORED_ITEMS Creating /item/sponsor Objects

Running Bill Now

Running Bill Now for a Service

PCM_OP_BILL_CURRENCY_CONVERT_AMOUNTS About Currency Conversion

PCM_OP_BILL_CURRENCY_QUERY_CONVERSION_RAT
ES

About Currency Conversion

6-1

Table 6-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_BILL_CYCLE_TAX Running Bill Now

PCM_OP_BILL_MAKE_BILL Creating Bills

Modifying a Bill Object

Calculating When a Bill is Due

Customizing Accounting Cycles

Suspending and Resuming Billing of Closed Accounts

Determining Whether Bills Should Be Suppressed

Manually Suppressing Bills

Making Trial Bills

PCM_OP_BILL_MAKE_BILL_NOW Modifying a Bill Object

Calculating When a Bill is Due

Running Bill Now

Running Bill Now for a Service

Applying Discounts and Folds with Bill Now

Creating /item/sponsor Objects

Using Revenue Assurance Manager

PCM_OP_BILL_MAKE_BILL_ON_DEMAND Using Revenue Assurance Manager

PCM_OP_BILL_MAKE_CORRECTIVE_BILL Calculating When a Bill is Due

Customizing Bill Due Date Calculations for Payment Terms

Making a Corrective Bill

Validating Bills for the Corrective Billing Process

PCM_OP_BILL_MAKE_TRIAL_BILL Making Trial Bills

Creating Bills

Collecting Split Revenue Assurance Data

PCM_OP_BILL_POL_BILL_PRE_COMMIT Modifying a Bill Object

PCM_OP_BILL_POL_CALC_PYMT_DUE_T Creating Bills

Calculating When a Bill is Due

Customizing Bill Due Date Calculations for Payment Terms

Changing the Bill Now Due Date

Payment Due Dates for Corrective Bills

PCM_OP_BILL_POL_CHECK_SUPPRESSION Determining Whether Bills Should Be Suppressed

Adding Bill Suppression Exceptions

Deleting Bill Suppression Exceptions

Creating Bills

PCM_OP_BILL_POL_GET_PENDING_ITEMS Creating /item/sponsor Objects

Customizing Bill Now

Running Bill Now for a Service

PCM_OP_BILL_POL_POST_BILLING Suspending and Resuming Billing of Closed Accounts

PCM_OP_BILL_POL_SPEC_BILLNO Customizing the Format of Bill and Invoice Numbers

PCM_OP_BILL_POL_SPEC_FUTURE_CYCLE Customizing Accounting Cycles

PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL Validating Bills for the Corrective Billing Process

PCM_OP_BILL_REMOVE_ACCOUNT_SUPPRESSION Ending Manual Account Suppression

Chapter 6
Opcodes Described in This Chapter

6-2

Table 6-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_BILL_SET_ACCOUNT_SUPPRESSION Suppressing Accounts

PCM_OP_BILL_SET_BILL_SUPPRESSION Manually Suppressing Bills

PCM_OP_BILL_SET_LIMIT_AND_CR Customizing Credit Limit and Consumption Rules

Customizing Client Applications to Modify Fixed Thresholds

PCM_OP_CUST_CREATE_BILLINFO Creating Bill Units

Updating Bill Units

PCM_OP_CUST_DELETE_BILLINFO Deleting Bill Units

PCM_OP_CUST_POL_PREP_BILLINFO Preparing Bill Unit Data

Setting the Billing DOM According to the Payment Method

Updating Bill Units

Validating Bill Unit Data

PCM_OP_CUST_POL_VALID_BILLINFO Validating Bill Unit Data

Updating Bill Units

Preparing Bill Unit Data

PCM_OP_CUST_SET_BILLINFO Customizing Accounting Cycles

Updating Bill Units

Preparing Bill Unit Data

Setting Up Hierarchical and Sharing Relationships among
Bill Units

Changing Hierarchical and Sharing Relationships among Bill
Units

PCM_OP_CUST_SET_STATUS Resuming Billing When Closed Accounts Are Reactivated

PCM_OP_DELIVERY_MAIL_SENDMSGS Customizing Alert Behavior

PCM_OP_MAKE_BILL_ON_DEMAND Modifying a Bill Object

On-Purchase Billing

PCM_OP_PROCESS_AUDIT_CREATE Using Revenue Assurance Manager

PCM_OP_PROCESS_AUDIT_CREATE_WRITEOFF_SUM
MARY

Customizing the Revenue Assurance Written-Off Event
Record Summaries

Using Revenue Assurance Manager

PCM_OP_PROCESS_AUDIT_POL_ALERT Customizing Alert Behavior

PCM_OP_PROCESS_AUDIT_POL_CREATE Customizing Audit Object Validation

Using Revenue Assurance Manager

PCM_OP_PROCESS_AUDIT_SEARCH Using Revenue Assurance Manager

PCM_OP_PYMT_COLLECT Customizing the Minimum Amount to Charge

PCM_OP_PYMT_GRANT_INCENTIVE Creating Bills

PCM_OP_PYMT_POL_PRE_COLLECT Customizing the Minimum Amount to Charge

PCM_OP_SUBSCRIPTION_APPLY_RATE Customizing Accounting Cycles

PCM_OP_SUBSCRIPTION_CYCLE_ARREARS Running Bill Now

Customizing Accounting Cycles

PCM_OP_SUBSCRIPTION_CYCLE_FOLD Running Bill Now

Chapter 6
Opcodes Described in This Chapter

6-3

Table 6-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_SUBSCRIPTION_CYCLE_FORWARD Running Bill Now

Customizing Accounting Cycles

PCM_OP_SUBSCRIPTION_POL_SPEC_CYCLE_FEE_INT
ERVAL

Customizing Accounting Cycles

PCM_OP_SUBSCRIPTION_PURCHASE_FEES Running Bill Now

PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT Preparing Bill Unit Data

Creating Bills
PCM_OP_BILL_MAKE_BILL creates a /bill object. PCM_OP_BILL_MAKE_BILL does the
following:

• Applies cycle fees.

• Totals pending items in the /bill current total field.

• Totals open items in the /bill previous total field.

• If rollover correction is enabled, PCM_OP_BILL_MAKE_BILL can trigger the creation of
rerating requests at the end of the delayed period if call detail records (CDRs) from the
previous cycle borrow rollover from the current cycle.

To trigger the creation of rerating requests, PCM_OP_BILL_MAKE_BILL creates a
notification event of type /event/notification/rollover_correction/rerate for the account
being billed and possibly other accounts from which a bill unit was transferred into the
account.

• If rollover correction is enabled, PCM_OP_BILL_MAKE_BILL triggers rollover correction if
CDRs borrow from the previous cycle borrow rollover from the current cycle.

• If payment incentives are enabled, PCM_OP_BILL_MAKE_BILL calls
PCM_OP_PYMT_GRANT_INCENTIVE which determines whether to grant the payment
incentive and also calculates the incentive. PCM_OP_BILL_MAKE_BILL then retrieves the
payment incentives and recalculates the affected bill, changing the balance impacts
accordingly.

• To determine the payment due date of a bill, PCM_OP_BILL_MAKE_BILL calls
PCM_OP_BILL_POL_CALC_PYMT_DUE_T.

• At the end of the last accounting cycle in a bill unit's billing cycle,
PCM_OP_BILL_MAKE_BILL calls PCM_OP_BILL_POL_CHECK_SUPPRESSION to find
out whether a bill should be suppressed.

If the PCM_OP_BILL_POL_CHECK_SUPPRESSION output flist indicates that the bill
should be suppressed, PCM_OP_BILL_MAKE_BILL performs these tasks:

– Generates an /event/billing/suppression event.

– Extends the bill for another billing cycle instead of finalizing it.

If the PCM_OP_BILL_POL_CHECK_SUPPRESSION output flist indicates that the bill
should not be suppressed, performs these tasks:

– If the output flist includes an exception to bill suppression, generates an /event/billing/
suppression/exception object and then finalizes the bill.)

Chapter 6
Creating Bills

6-4

– If the result does not include an exception, finalizes the bill.

Whether or not the output flist indicates that the bill should be suppressed,
PCM_OP_BILL_MAKE_BILL always subtracts 1 from the /billinfo counter that tracks the
remaining cycles for which a bill has been manually suppressed
(PIN_FLD_SUPPRESSION_CYCLES_LEFT) if the value in the counter is greater than 0.

• When you use delayed billing, PCM_OP_BILL_MAKE_BILL performs some functions on
the billing DOM and performs the rest of the functions at the end of the delay interval.

If the /billinfo object being billed is a parent, PCM_OP_BILL_MAKE_BILL creates a single /bill
object for that parent, which includes all pending and open items from its nonpaying /billinfo
objects.

When called by PCM_OP_BILL_MAKE_TRIAL_BILL during trial invoicing,
PCM_OP_BILL_MAKE_BILL checks the value of the PIN_FLD_FLAGS field. If the value is
PIN_INV_TYPE_PARENT, PCM_OP_BILL_MAKE_BILL calculates the adjusted, disputed,
due, received, and writeoff values from each nonpaying child bill unit's /invoice/trial objects.
The resulting billing totals are passed to the parent of the nonpaying child bill units.

Modifying a Bill Object
Use PCM_OP_BILL_POL_BILL_PRE_COMMIT to modify a bill object before committing it to
the database. PCM_OP_BILL_POL_BILL_PRE_COMMIT is called by
PCM_OP_BILL_MAKE_BILL, PCM_OP_BILL_MAKE_BILL_NOW, and
PCM_OP_MAKE_BILL_ON_DEMAND.

Calculating When a Bill is Due
PCM_OP_BILL_POL_CALC_PYMT_DUE_T calculates the due date and the payment
collection date of a bill (/bill object).

PCM_OP_BILL_POL_CALC_PYMT_DUE_T is called by PCM_OP_BILL_MAKE_BILL,
PCM_OP_BILL_MAKE_CORRECTIVE_BILL, and PCM_OP_BILL_MAKE_BILL_NOW.

Note:

By default, the due date calculation is based on the time that billing is actually run,
not on the time that a bill unit is ready to be billed.

Although configurable payment collection dates are used only for BRM-initiated
payment, such as payments made by credit card and direct debit, they are calculated
and stored for bills associated with all payment methods.

When called by PCM_OP_BILL_MAKE_BILL or PCM_OP_BILL_MAKE_CORRECTIVE_BILL,
PCM_OP_BILL_POL_CALC_PYMT_DUE_T checks the PIN_FLD_PAYMENT_TERM value in
the /payinfo object associated with the bill's /billinfo object and then performs the following
operations:

• If the field has no payment term ID or if the ID is 0,
PCM_OP_BILL_POL_CALC_PYMT_DUE_T uses the default process of calculating the
due date rather than using the bill run management process. The default process involves
the fm_bill_pol_default_calc_due_t function and either the PIN_FLD_DUE_DOM value
or the PIN_FLD_RELATIVE_DUE_T value in the /payinfo object.

Chapter 6
Creating Bills

6-5

• If the payment term ID is greater than 0, PCM_OP_BILL_POL_CALC_PYMT_DUE_T uses
one of the following bill run management functions to calculate the payment due date:

– fm_utils_add_n_days

– fm_bill_pol_add_n_bus_days

– fm_bill_pol_get_nthweekdayofmonth

For more information, see "Customizing Bill Due Date Calculations for Payment Terms".

After calculating the due date, PCM_OP_BILL_POL_CALC_PYMT_DUE_T checks the due
date adjustment value in the PIN_FLD_DUE_DATE_ADJUSTMENT field of its input flist. If the
value is greater than 0, it adds the value to the due date.

PCM_OP_BILL_POL_CALC_PYMT_DUE_T then returns the payment due date to
PCM_OP_BILL_MAKE_BILL, which puts it in the PIN_FLD_DUE_T field of the /bill object.

PCM_OP_BILL_POL_CALC_PAYMT_DUE_T does not return any values. Its output flist,
however, contains the PIN_FLD_DUE_T value, which PCM_OP_BILL_MAKE_BILL and
PCM_OP_BILL_MAKE_CORRECTIVE_BILL use as the due date of the bill. By default,
PCM_OP_BILL_POL_CALC_PAYMT_DUE_T uses this PIN_FLD_NAME input to calculate the
due date based on the current time.

Customizing Bill Due Date Calculations for Payment Terms
You use payment terms to set due dates a specified number of days after the billing cycle end
date or on a specified day of the month. You can customize how
PCM_OP_BILL_POL_CALC_PAYMT_DUE_T calculates due dates for regular bills as well as
for corrective bills.

When PCM_OP_BILL_MAKE_CORRECTIVE_BILL calls
PCM_OP_BILL_POL_CALC_PAYMT_DUE_T to calculate the due date for a corrective bill, it
identifies the bill from the PIN_FLD_NAME parameter. The possible values in PIN_FLD_NAME
are PIN_OBJ_NAME_CORRECTIVE_BILL, PIN_OBJ_NAME_CORRECTIVE_BILL_NOW,
PIN_OBJ_NAME_CORRECTIVE_BILL_ON_DEMAND.

The value in PIN_FLD_NAME can be used to validate that
PCM_OP_BILL_POL_CALC_PAYMT_DUE_T is calculating the due date for a corrective bill
and, if necessary, provide custom logic to calculate due dates for the corrective bill.

For each payment term in your system, you must customize
PCM_OP_BILL_POL_CALC_PYMT_DUE_T to specify which function and parameters to use
to calculate the due dates of the bills associated with the payment term. To customize the
function:

1. In the function's switch statement, add a case for each payment term defined in your /
config/payment_term object.

The ID (constant expression) of each case should correspond to the ID of a payment term
element in the PIN_FLD_PAYMENT_TERMS array of /config/payment_term. For
example, if the array contains payment term element 1001, add case 1001 to the
statement.

Note:

Case numbers 1 through 1000 are for BRM use only.

2. In each case, call the appropriate function with the appropriate parameters.

Chapter 6
Creating Bills

6-6

To calculate payment due dates for bills associated with a payment term, call one of these
functions in the corresponding case in PCM_OP_BILL_POL_CALC_PYMT_DUE_T:

• For payment terms that add any type of day (business, weekend, holiday, and so on) to the
billing cycle end date, use this function:

fm_utils_add_n_days(n, &due_t)

– n specifies the number of days to add to the billing cycle end date. The value can be
any positive integer.

– &due_t is a pointer to the end date of the current billing cycle
(PIN_FLD_ACTG_LAST_T in the /billinfo object). n is added to this date.

For an example, see case TERM1 in the PCM_OP_BILL_POL_CALC_PYMT_DUE_T
code sample.

• For payment terms that add only business days to the billing cycle end date, use this
function:

fm_bill_pol_add_n_bus_days(ctxp, n, "default", &due_t, ebufp)

For an example, see case TERM2 in the PCM_OP_BILL_POL_CALC_PYMT_DUE_T
code sample.

– ctxp points to a communication channel between the client application and the
database.

– n specifies the number of business days to add to the billing cycle end date. The value
can be any positive integer.

– default is the case-sensitive name of the default billing calendar.

To use a different calendar, replace default with the value in the PIN_FLD_NAME field
of the /config/calendar object that you want to use.

Note:

* This function automatically skips weekends, so you do not need to
include Sundays and Saturdays in billing calendars used only by this
function.

* If the CM cache does not contain the specified /config/calendar object,
the function uses the default process of calculating the payment due date
rather than the bill run management process.

– &due_t is a pointer to the end date of the current billing cycle
(PIN_FLD_ACTG_LAST_T in the /billinfo object). n is added to this date.

– ebufp is a pointer to the error buffer that contains any errors that occur when the
function tries to retrieve the specified calendar from the database.

For an example, see case TERM1 in the PCM_OP_BILL_POL_CALC_PYMT_DUE_T
code sample.

• For payment terms that specify a particular day of month, use this function:

fm_bill_pol_get_nthweekdayofmonth(d, n, &due_t)

– d is a day of the week. The value can be 0 (Sunday), 1 (Monday), 2 (Tuesday),
3 (Wednesday), 4 (Thursday), 5 (Friday), or 6 (Saturday).

Chapter 6
Creating Bills

6-7

– n is the ordinal rank of d in a month. The value can be 1 (first d of the month),
2 (second d of the month), 3 (third d of the month), or 4 (fourth d of the month).

– &due_t is a pointer to the end date of the current billing cycle
(PIN_FLD_ACTG_LAST_T in the /billinfo object).

Note:

If &due_t is after d n of the month, d n of the next month is used.

For example, if d = 2, n = 3, and &due_t = April 19, 2004, the payment due
date is April 20, 2004 (third Tuesday of April).

But, if d = 2, n = 3, and &due_t = April 21, 2004, the payment due date is
May 18, 2004 (third Tuesday of the next month).

For an example, see case TERM3 in the PCM_OP_BILL_POL_CALC_PYMT_DUE_T
code sample.

• You can also create custom functions to calculate payment due dates:

custom_function(custom_parameter, &due_t, ebufp)

– &due_t is a pointer to the end date of the current billing cycle
(PIN_FLD_ACTG_LAST_T in the /billinfo object). The function must take due_t as a
parameter.

– ebufp is a pointer to the error buffer that contains any errors that occur when the
function tries to retrieve an object from the database. If the function uses BRM objects,
this parameter is required.

The following sample is the default implementation of the fm_bill_pol_calc_pymt_due_t
function in the fm_bill_pol_calc_pymt_due_t.c file:

switch (ptt)
 {
 case TERM1: /* Add 17 days to the billing cycle end date */
 fm_utils_add_n_days(17, &due_t);
 break;

 case TERM2: /* Add 14 business days to the billing cycle end date */
 fm_bill_pol_add_n_bus_days(ctxp, 14, "default", &due_t, ebufp);
 if (PIN_ERR_IS_ERR(ebufp))
 {
 PIN_ERR_LOG_EBUF(PIN_ERR_LEVEL_ERROR,
 "fm_bill_pol_calc_pymt_due_t: Error while using Payment Term 2", ebufp);
 goto cleanup;
 }
 /***
 * If due_t is not changed, it means that there
 * are no /config/calendar objects available in the CM cache.
 * In this case, use the default TERM0 implementation.
 ***/
 if (due_t == *eff_tp)
 {
 PIN_ERR_LOG_MSG(PIN_ERR_LEVEL_WARNING, "Switching to default
calculation");
 fm_bill_pol_default_calc_due_t(&due_t, eff_tp, r_due_t, due_dom, ebufp);
 }

 break;

Chapter 6
Creating Bills

6-8

 case TERM3: /* Make the due date the 3rd Tuesday of the month */
 fm_bill_pol_get_nthweekdayofmonth(2, 3, &due_t);
 break;

 /* Add implementation for handling more payment terms here */

 default: /* TERM0 for backward compatibility */
 fm_bill_pol_default_calc_due_t(&due_t, eff_tp, r_due_t, due_dom, ebufp);
 }

Customizing the Format of Bill and Invoice Numbers
By default, bill numbers for regular bills are B1-1, B1-2, B1-3, and so on. For corrective bills,
the default numbering is CB1-1, CB1-2, CB1-3, and so on.

The default numbering takes the format PrefixDB_num-Seq_Number, where:

• Prefix represents the prefix to be used for the bill.

For regular bills, BRM assigns BDB_num as the default prefix. DB_num indicates the
number of the database in which the original bill is stored. For example, when DB_num is
1, 3, or 7, the prefixes for regular bills are B1, B3, or B7.

For corrective bills, BRM assigns CBDB_num as the default prefix. For example, when
DB_num is 1, 3, or 7, the prefixes for corrective bills are CB1, CB3, or CB7.

• Seq_Number is the unique sequence number from the appropriate /data/sequence object.
BRM supports two types of /data/sequence objects, (PIN_SEQUENCE_TYPE_BILL_NO
and PIN_SEQUENCE_TYPE_CORR_BILL_NO).

Note:

Of these two /data/sequence objects,
PIN_SEQUENCE_TYPE_CORR_BILL_NO is used exclusively for corrective
bills.

For regular bills, BRM uses the unique sequence number from the
PIN_SEQUENCE_TYPE_BILL_NO /data/sequence object.

For corrective bills, you can select to use the unique sequence number from either of the
two /data/sequence objects, (PIN_SEQUENCE_TYPE_BILL_NO and
PIN_SEQUENCE_TYPE_CORR_BILL_NO).

A regular bill and all its corrective bills have the same POID (the bill object identifier in the BRM
database). As a result, you can use the bill POID to retrieve the complete set of bills, that is,
the corrected bill and its prior bills.

You can customize the prefix and the numbering sequence for bills. Use
PCM_OP_BILL_POL_SPEC_BILLNO to customize bill numbers. By default, if the bill number
is in the input flist, the opcode returns it. Otherwise, the opcode generates a bill number based
on the bill POID.

To use a different bill number format, use PCM_OP_WRITE_FLDS to modify the
PIN_FLD_HEADER_STR field in the /data/sequence object. For example, to use a bill
number format with numbers only and no letters, such as 100, 101, 102, and so on, set
PIN_FLD_HEADER_STR to two colons (::).

Chapter 6
Creating Bills

6-9

PCM_OP_BILL_POL_SPEC_BILLNO assigns a default number to the /account object in the
database. This opcode is called by the pin_fld_billno utility and uses the default
implementation information to create a unique billing number. The billing number is then
returned to the object in the database.

PCM_OP_BILL_POL_SPEC_BILLNO is called by PCM_OP_BILL_MAKE_BILL,
PCM_OP_BILL_MAKE_BILL_NOW, and PCM_OP_MAKE_BILL_ON_DEMAND

Running Bill Now
Bill now runs PCM_OP_BILL_MAKE_BILL_NOW on a specified bill unit (/billinfo object)
immediately. If a bill unit is not specified, this opcode creates one /bill for each /billinfo for the
given account.

The PIN_FLD_NAME field in the /bill object contains the type of billing the /bill object is for:

• Regular billing

• Billing on purchase

• Bill now

• Bill now for the current cycle

• Bill now on the next cycle

The last two options enable the creation of two bills during the delayed period if your customer
management system (CMS) supports that functionality. One bill is generated for the current
cycle charges; the other is generated for the next cycle charges.

PCM_OP_BILL_MAKE_BILL_NOW performs the following tasks:

• Applies cycle fees, including deferred fees and folds, by calling the following opcodes:

– PCM_OP_SUBSCRIPTION_PURCHASE_FEES

– PCM_OP_SUBSCRIPTION_CYCLE_ARREARS

– PCM_OP_SUBSCRIPTION_CYCLE_FOLD

– PCM_OP_SUBSCRIPTION_CYCLE_FORWARD

• If called for a service of a sponsored account, PCM_OP_BILL_MAKE_BILL_NOW calls
PCM_OP_BILL_CREATE_SPONSORED_ITEMS The bill produced is for the pending
items for the specified service of the sponsored account.

• If called on a nonpaying bill unit, creates one bill for the parent bill unit that includes only
the items from the nonpaying bill unit. In such cases, the PIN_FLD_GROUP_OBJ field in
the /event/billing/cycle/tax object contains the POID of the nonpaying /billinfo object. If
called on a parent bill unit, creates one bill that contains a total of the items from both the
parent and any nonpaying bill units. This includes any nonpaying bill unit cycle taxes. In
such cases, the PIN_FLD_GROUP_OBJ field contains the POID of the parent /billinfo
object.

• Finalizes the bill.

• If configured, calls PCM_OP_BILL_CYCLE_TAX to calculate taxes.

Chapter 6
Creating Bills

6-10

Note:

Bill Now ignores the cycle_tax_interval value in the CM's configuration file
(pin.conf) and always rolls activities for each nonpaying bill unit into the parent
bill unit and calculates taxes for the parent only.

• If configured, prorates cycle arrears and cycle forward arrears fees.

Bill Now does not generate invoices. You must separately run the pin_inv_accts utility or the
pin_bill_day script.

Customizing Bill Now
By default, Bill Now generates a bill that includes all pending items. You can customize Bill
Now to include only specified pending items. To change the default behavior, edit the search
criteria in PCM_OP_BILL_POL_GET_PENDING_ITEMS

If the bill is produced for the parent bill unit, this bill, by default, includes pending items from the
parent and all nonpaying child bill units. To include items for just one of the nonpaying bill units,
add functionally to PCM_OP_BILL_POL_GET_PENDING_ITEMS to filter out the rest of the
items for the bill units associated with the parent bill unit.

Running Bill Now for a Service
You can extend your customer management application to generate a Bill Now type of bill for a
specific service. When the selected service belongs to a member account in a charge or
discount sharing group, a bill can be generated for the owner account of the sharing group.

Use the following opcodes:

• PCM_OP_BILL_MAKE_BILL_NOW

• PCM_OP_BILL_CREATE_SPONSORED_ITEMS

• PCM_OP_BILL_POL_GET_PENDING_ITEMS

Applying Discounts and Folds with Bill Now
To apply discounts or folds, your customer management application needs one of the values
listed in Table 6-2 in the PIN_FLD_FLAGS field in the PCM_OP_BILL_MAKE_BILL_NOW
input flist:

Table 6-2 Values to Apply Folds, Discounts, or Both

To Include: Set the Value To:

Folds 16

Discounts 32

Folds and discounts 48 (Add the values to get both actions.)

Chapter 6
Creating Bills

6-11

Note:

• A billing-time discount is not allowed when Bill Now includes only selected items
or a specific service.

• When the billing-time discount flag is specified, you must ensure that a fold
charge is configured for the specific balance used by the billing-time discount. In
addition to the billing-time discount flag, you must also specify the fold flag to fold
the balance used by the discount. If a fold charge is not configured for the
balance used by the discount or if the fold flag is not specified, the billing-time
discount is applied again during regular billing.

• When the fold flag is specified, all balances are folded, even those not used by
the billing-time discount. For example, when closing an account, you can specify
the fold flag to fold all the balances. In other cases, you might not want to fold all
the balances. In such cases, do not specify the billing-time discount or fold flag if
there are other balances that are not used by the billing-time discount.

Changing the Bill Now Due Date
The default due date for a bill created with Bill Now is calculated as the billing cycle length
minus one day after Bill Now is run:

date_of_bill + billing_cycle_length - one_day

For example, if you run Bill Now on June 2, and the billing cycle is one month, the bill is due
July 1.

To change the Bill Now due date to, for example, date_of_bill + billing_cycle_length - 7 days,
you customize the PCM_OP_BILL_POL_CALC_PYMT_DUE_T policy opcode. See BRM
Opcode Guide.

On-Purchase Billing
PCM_OP_BILL_MAKE_BILL_ON_DEMAND creates a /bill object immediately when a bundle
or package that is flagged for on-purchase billing is purchased.

To create a bill on purchase for a bundle or package, the PCM_FLD_ON_DEMAND_INFO field
must be set in the /deal or /plan objects.

Use PDC to set this field by selecting Bill on Purchase in the General Information section of
the bundle or package. Use Pricing Center to set this field by selecting Bill on Demand on the
plan or deal Attributes tab.

Creating /item/sponsor Objects
Use PCM_OP_BILL_CREATE_SPONSORED_ITEMS to create /item/sponsor objects for
sponsoring accounts. These item objects include charges from the sponsored accounts.
PCM_OP_BILL_CREATE_SPONSORED_ITEMS sends that information to
PCM_OP_BILL_POL_GET_PENDING_ITEMS

PCM_OP_BILL_CREATE_SPONSORED_ITEMS is called by
PCM_OP_BILL_MAKE_BILL_NOW when it creates a bill for a sponsoring account.
PCM_OP_BILL_CREATE_SPONSORED_ITEMS can also be run separately. In this case, the

Chapter 6
Creating Bills

6-12

returned list of items can be passed to PCM_OP_BILL_MAKE_BILL_NOW to produce a bill for
each sponsor account.

If PCM_OP_BILL_CREATE_SPONSORED_ITEMS is called, billing time discounts and folds
are not applied.

Customizing Billing
See the following topics:

• Customizing the Minimum Amount to Charge

• Customizing Accounting Cycles

• Customizing How to Bill Events That Occur between Billing Cycles

• Customizing Credit Limit and Consumption Rules

• About Currency Conversion

Customizing the Minimum Amount to Charge
You set the default minimum amount to charge a customer in the CM pin.conf file minimum
entry. To check a batch of charges and refunds for any amounts below the minimum before
charging and refunding customers, use PCM_OP_PYMT_POL_PRE_COLLECT. The
PIN_FLD_SESSION_OBJ field in the input flist references the type of session in which the
event occurred: either /event/billing/batch/refund or /event/billing/batch/payment,
depending on the batch type.

Note:

Ensure that the minimum credit card charge does not conflict with the minimum
amount to collect.

You can change the minimum credit card charge amount by modifying the default minimum
payment amount in PCM_OP_PYMT_POL_PRE_COLLECT

Before performing the charges and refunds, PCM_OP_PYMT_COLLECT allocates the
PIN_FLD_CHARGE array elements to open items and then calls
PCM_OP_PYMT_POL_PRE_COLLECT.

PCM_OP_PYMT_POL_PRE_COLLECT then checks each element of the input
PIN_FLD_CHARGES array to ensure:

• The result of selecting open items for allocating charges is set to
PIN_SELECT_RESULT_PASS.

• The amount charged is greater than or equal to the minimum payment amount.

• The amount refunded is greater than or equal to the minimum and the account has a
negative balance.

• The value of the input PIN_FLD_COMMAND field is valid.

By default, the results can be the following:

Chapter 6
Customizing Billing

6-13

• If the amount charged is less than the minimum amount,
PCM_OP_PYMT_POL_PRE_COLLECT sets the PIN_FLD_DESCR field to “Below
minimum" and the result to PIN_CHARGE_RES_FAIL_NO_MIN.

• If the amount refunded is less than the minimum amount,
PCM_OP_PYMT_POL_PRE_COLLECT sets the PIN_FLD_DESCR field to “Below
minimum" and the result to PIN_CHARGE_RES_FAIL_NO_MIN.

• If PIN_FLD_COMMAND is set to PIN_CHARGE_CMD_REFUND and the account balance
is zero or higher, PCM_OP_PYMT_POL_PRE_COLLECT sets the PIN_FLD_DESCR field
to “No credit available" and the result to PIN_CHARGE_RES_NO_CREDIT_BALANCE.

You can change the minimum credit card charge amount by modifying the default minimum
payment amount in PCM_OP_PYMT_POL_PRE_COLLECT.

You can also customize PCM_OP_PYMT_POL_PRE_COLLECT to retrieve soft descriptor
information that enables you to display the name under which you do business (your DBA
name), charge offer name, and customer service number on your customer's checking account
or credit card statement. See "Adding Soft Descriptors to Invoices".

Customizing Accounting Cycles
To customize accounting cycles, use PCM_OP_BILL_POL_SPEC_FUTURE_CYCLE. This
opcode can be modified to calculate the next and future accounting cycles appropriate for your
business policy.

PCM_OP_BILL_POL_SPEC_FUTURE_CYCLE is called from PCM_OP_BILL_MAKE_BILL or
PCM_OP_CUST_SET_BILLINFO whenever BRM calculates PIN_FLD_ACTG_NEXT_T and
PIN_FLD_ACTG_FUTURE_T.

By default, PIN_FLD_ACTG_NEXT_T is calculated if you do not specify it in the input flist, but
PIN_FLD_ACTG_FUTURE_T will always be calculated based on PIN_FLD_ACTG_NEXT_T.

PCM_OP_BILL_POL_SPEC_FUTURE_CYCLE can be modified to calculate the next and
future accounting cycles appropriate for your business policy.

To customize the time interval for applying cycle forward and cycle arrears fees for a specified
charge offer, use PCM_OP_SUBSCRIPTION_POL_SPEC_CYCLE_FEE_INTERVAL.

PCM_OP_SUBSCRIPTION_POL_SPEC_CYCLE_FEE_INTERVAL is called by
PCM_OP_SUBSCRIPTION_APPLY_RATE, PCM_OP_SUBSCRIPTION_CYCLE_FORWARD,
and PCM_OP_SUBSCRIPTION_CYCLE_ARREARS.

PCM_OP_SUBSCRIPTION_POL_SPEC_CYCLE_FEE_INTERVAL is an empty hook. If you
customize this policy opcode to pass a PIN_FLD_FLAGS output flist field set to 1, the charge
offer will be forced into a long cycle. This adds any extra days to the next accounting cycle.

Customizing How to Bill Events That Occur between Billing Cycles
Use the PCM_OP_ACT_POL_CONFIG_BILLING_CYCLE policy to specify in which billing
cycle to apply an event when an event occurs between the end of a billing cycle and when
billing applications are run.

By default, this opcode selects the current month's bill, but you can customize this opcode to
select the previous month's bill.

You specify how long after the billing cycle ends that new events are included in the previous
month's bill by using the ConfigBillingCycle business parameter in the billing instance of
the /config/business_params object. See "Billing Cycle Override for Delayed Billing" in BRM
Configuring and Running Billing.

Chapter 6
Customizing Billing

6-14

PCM_OP_ACT_POL_CONFIG_BILLING_CYCLE is called by PCM_OP_ACT_USAGE when
both of the following are true:

• The value of the ConfigBillingCycle business parameter is greater than 0.

• The value of ConfigBillingCycle is less than or equal to the value of the
ConfigBillingDelay business parameter.

If ConfigBillingCycle is greater than ConfigBillingDelay, the CM returns an error.

You can customize PCM_OP_ACT_POL_CONFIG_BILLING_CYCLE to point qualifying events
to either the previous month's bill or the current month's bill.

Customizing Credit Limit and Consumption Rules
PCM_OP_BILL_SET_LIMIT_AND_CR sets the credit limit and consumption rules for both
currency and noncurrency sub-balances.

By default, PCM_OP_BILL_SET_LIMIT_AND_CR sets or changes the credit limit and
consumption rules in the account's default /balance_group object. To set credit limit and
consumption rules for any of the other billing entities associated with the object, specify them
with the optional PIN_FLD_BAL_GRP_OBJ field passed in the input flist.

PCM_OP_BILL_SET_LIMIT_AND_CR includes the following flags:

• If the PCM_OPFLG_READ_RESULT flag is set, all fields in the event object are returned
in addition to the POID.

• If the PCM_OPFLG_CALC_ONLY flag is set, no fields in the database are changed and
the event object is not actually created. The fields that would have been used to create the
event object are returned to the caller.

• If the PCM_OPFLG_CALC_ONLY flag is not set, the /event/billing/limit object is created
to record the details of the operation.

Customizing Client Applications to Modify Fixed Thresholds
To modify any fixed threshold values in a customer's credit limit data, you must customize your
client application to call the PCM_OP_BILL_SET_LIMIT_AND_CR opcode.

You pass the fixed threshold values in the input flist's PIN_FLD_THRESHOLDS array. Each
fixed value has a separate PIN_FLD_THRESHOLD flist entry in the array.

When the opcode receives fixed threshold values in its input flist,
PCM_OP_BILL_SET_LIMIT_AND_CR updates the amount, refreshes the cache of credit limit
data, and generates a ModifyBalanceGroup business event for ECE.

About Currency Conversion
Currency conversion is performed by the following opcodes:

• PCM_OP_BILL_CURRENCY_CONVERT_AMOUNTS converts the currency according to
the conversion rate defined in the /config/currency/conversionrates object. You can set
multiple time periods for conversion rates.

For example, this opcode is used to convert currencies when an account using EMU
currency is set up with a primary currency and a secondary currency.

BRM supports conversion only between the euro and EMU currencies. Conversion
between two EMU currencies or between any other currencies is not supported.

Chapter 6
Customizing Billing

6-15

PCM_OP_BILL_CURRENCY_CONVERT_AMOUNTS fails if the specified time is not in
the time range or if the source or destination currency is invalid. The
ERROR_NOT_FOUND error code is returned.

• PCM_OP_BILL_CURRENCY_QUERY_CONVERSION_RATES retrieves the conversion
rates from the /config/currency/conversionrates object. This opcode is called by
PCM_OP_BILL_CONVERT_AMOUNTS.

It returns the conversion rate, start and end time of the time range for this rate and
currency operator information.

PCM_OP_BILL_CURRENCY_QUERY_CONVERSION_RATES fails if no conversion rate
is specified between the source and destination currency types. The
ERROR_NOT_FOUND error code is returned.

Managing Bill Units
See the following topics:

• Creating Bill Units

• Updating Bill Units

• Preparing Bill Unit Data

• Validating Bill Unit Data

• Suspending and Resuming Billing of Closed Accounts

• Deleting Bill Units

• Setting Up Sharing Relationships among Bill Units

• Billing Delays for Moved Bill Units

Creating Bill Units
Use PCM_OP_CUST_CREATE_BILLINFO to create bill units.

You can set each bill unit's billing cycle fields, such as the accounting type, the billing
frequency, and the billing day of month (DOM), by passing information in the opcode's input
flist fields.

If the object is successfully created, the PCM_OP_CUST_CREATE_BILLINFO output flist
contains:

• The POID of the /account object to which the bill unit belongs.

• PIN_FLD_BILLINFO array that specifies the billing information that is created.

For information about setting up relationships among bill units participating in hierarchies and
charge and discount sharing groups, see "Setting Up Hierarchical and Sharing Relationships
among Bill Units" .

After creating a bill unit, you must associate it with the account balances for which the bill is
created. To do this, the account must have multiple balance groups so that different balances
can be linked to different bills. You create multiple balance groups when you create packages
in PDC or plans in Pricing Center.

Chapter 6
Managing Bill Units

6-16

Setting the Billing Day of Month
A bill unit's billing day of month (DOM) is the day on which its accounting cycle and billing cycle
begin.

Note:

The billing DOM and the accounting DOM are the same day, which is specified in the
PIN_FLD_ACTG_CYCLE_DOM field of the /billinfo object.

To set a bill unit's billing DOM, BRM uses the following values in this order of priority:

1. The DOM assigned to the billing segment. BRM assigns the DOM set for the billing
segment in the /config/billing_segment object. For more information, see the chapter
about billing in BRM Opcode Guide.

Note:

To customize how BRM assigns the DOM according to the billing segment, see
the chapter about billing in BRM Opcode Guide.

2. The DOM used by the first bill unit in the account. If a DOM is not assigned to the
billing segment, BRM uses the DOM of the first bill unit in the account.

3. Default setting in the CM pin.conf file. If a DOM is not assigned to the billing segment
and is not available from another bill unit, the DOM is set to the value assigned in the
actg_dom entry in the CM configuration file (BRM_home/sys/cm/pin.conf, where
BRM_home is the directory in which the BRM server software is installed).

4. The current date. If a DOM is not available from the billing segment, other bill units, or the
CM pin.conf file, BRM sets the DOM to the current date.

For example, if an account was created with two bill units, BU1 that has an assigned DOM and
BU2 that does not have a DOM assigned, BRM assigns a DOM to BU2 as follows:

• If BU2 is the second bill unit in the account, BRM uses the DOM of BU1.

• If BU2 is the first bill unit in the account, BRM uses the DOM specified in the CM pin.conf
file. If a value is not set in the CM pin.conf file, the DOM is set to the current date.

Updating Bill Units
Use PCM_OP_CUST_SET_BILLINFO to update billing information in existing bill units. This
opcode calls policy opcodes to permit customization and perform validations. Set the value of
the PIN_FLD_POID field in the PIN_FLD_BILLIFO array to -1, which causes
PCM_OP_CUST_SET_BILLINFO to call PCM_OP_CUST_CREATE_BILLINFO before calling
the policy opcodes.

PCM_OP_CUST_SET_BILLINFO updates an existing PIN_FLD_BILLINFO array associated
with a specified account by setting new values for the array fields as specified in the input flist.
Any PIN_FLD_BILLINFO array fields not included in the input flist are left unchanged.

Chapter 6
Managing Bill Units

6-17

PCM_OP_CUST_SET_BILLINFO calls PCM_OP_CUST_POL_PREP_BILLINFO to prepare
the updated billing information for validation and then calls
PCM_OP_CUST_POL_VALID_BILLINFO to validate the information.

Use the following opcodes to customize PCM_OP_CUST_SET_BILLINFO functionality:

• Use PCM_OP_CUST_POL_PREP_BILLINFO to prepare bill unit data. See "Preparing Bill
Unit Data".

• Use PCM_OP_CUST_POL_VALID_BILLINFO to validate bill unit data. See "Validating Bill
Unit Data".

Both of these opcodes are called by PCM_OP_CUST_SET_BILLINFO.

You can set each bill unit's billing cycle fields, such as the accounting type, the billing
frequency, and the billing DOM, by passing information in the opcode's input flist fields.

For information about setting up relationships among bill units participating in hierarchies and
charge and discount sharing groups, see "Setting Up Hierarchical and Sharing Relationships
among Bill Units".

Preparing Bill Unit Data
PCM_OP_CUST_POL_PREP_BILLINFO processes the account billing fields in the /billinfo
object during customer account creation or while updating billing information to prepare for
validation. For information about the PREP opcodes, see in BRM Developer's Guide.

This opcode is called by PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT and
PCM_OP_CUST_SET_BILLINFO.

The opcode's main responsibility includes:

• Assigning default values for the billing cycle length, primary currency, and accounting type,
if they are not passed in the input flist. See "Assigning Default Billing Information".

• Determining and assigning the billing DOM. See "Assigning Billing DOMs to Bill Units".

PCM_OP_CUST_POL_PREP_BILLINFO prepares the following billing information:

• Account POID

• Event ending timestamp

• Bill unit POID

• Payment method

• Bill unit name

• New or changed billing DOM

• Old billing DOM

• Accounting type: open item accounting or balance forward accounting

• Next billing date

• Billing frequency (based on the number of accounting cycles)

• Parent bill unit

• Currency used

• Secondary currency used

• Billing segment ID

Chapter 6
Managing Bill Units

6-18

PCM_OP_CUST_POL_PREP_BILLINFO provides a mechanism for taking the information
passed to PCM_OP_CUST_SET_BILLINFO and processing the fields before their validation
by PCM_OP_CUST_POL_VALID_BILLINFO. See "Validating Bill Unit Data".

Processing includes adding any missing fields whose values are derived or generated by
PCM_OP_CUST_POL_PREP_BILLINFO, and forcing fields to predefined values independent
of what you specified. You specify fields on the input flist, and this opcode returns the
processed version of the data on the output flist. Validity of the field values is checked by
PCM_OP_CUST_POL_VALID_BILLINFO.

If PCM_OP_CUST_POL_PREP_BILLINFO cannot derive all of the necessary fields because
the values you specified are incorrect, no error is returned. Instead, the derived fields are
returned on the output flist with a default value, and PCM_OP_CUST_POL_VALID_BILLINFO
is called to detect the incorrect customer data and return the validation error to the calling
application. This enables the calling application to get the details of the validation error instead
of receiving an incorrect ebuf error. If PCM_OP_CUST_POL_PREP_BILLINFO cannot
generate a necessary field or encounters other internal problems, it returns an ebuf error.

How BRM Calculates Long Billing Cycles
BRM uses the following formula to calculate long billing cycles:

Use a short cycle unless one of the following is true:

• Future billing day of month > current billing day of month

AND

(Future billing day of month - current billing day of month) < 15

• Future billing day of month < current billing day of month

AND

(Current billing day of month - future billing day of month) > 15

Examples:

• The following example is shown in Figure 6-1. If the current billing DOM is 1 and the future
billing DOM is 10:

10 > 1

10 - 1 = 9

Use a long cycle.

Figure 6-1 Long Cycle Example 1

• The following example is shown in Figure 6-2. If the current billing DOM is 1 and the future
billing DOM is 20:

Chapter 6
Managing Bill Units

6-19

20 > 1

20 - 1 = 19

Use a short cycle.

Figure 6-2 Short Cycle Example 1

• The following example is shown in Figure 6-3. If the current billing DOM is 10 and the
future billing DOM is 1:

1 < 10

10 - 1 = 9

Use a short cycle.

Figure 6-3 Short Cycle Example 2

• The following example is shown in Figure 6-4. If the current billing DOM is 20 and the
future billing DOM is 1:

1 < 20

20 - 1 = 19

Use a long cycle.

Figure 6-4 Long Cycle Example 2

Chapter 6
Managing Bill Units

6-20

Setting the Billing DOM According to the Payment Method
You can set the billing DOM for new customers according to the payment method. For
example, you can set up all accounts that pay for bills using the invoice payment method to be
billed for those bills on the same day. To do this, customize the
PCM_OP_CUST_POL_PREP_BILLINFO policy opcode. Also, use event notification to
implement your customization when existing customers change payment methods.

Assigning Default Billing Information
PCM_OP_CUST_POL_PREP_BILLINFO prepares the billing information for online account
creation by implementing the following default values:

• If not already specified in the input flist, the PIN_FLD_BILL_WHEN field is set to the value
specified in the Connection Manager (CM) pin.conf file's bill_when entry. If no value is
found in the pin.conf file, it is defaulted to 1.

• If not already specified in the input flist, the PIN_FLD_CURRENCY field is set to the value
specified in the CM pin.conf file's currency entry. If no value is specified, the field is set to
the currency associated with the system account.

• If not already specified in the input flist, the PIN_FLD_ACTG_TYPE field is set to the value
specified in the CM pin.conf file's actg_type entry. If no value is found in the pin.conf file,
the field is set to 2 (balance-forward accounting).

• If the primary currency is EURO, the PIN_FLD_CURRENCY_SECONDARY field is set to
the default secondary currency.

Determining the Accounting Type
BRM determines a bill unit's accounting type by reading and using the following accounting
type settings in this order:

1. Client application or opcode flist setting. You can specify a bill unit's accounting type
when you create or modify an account in Billing Care or Customer Center.

If you use a custom client application, you can specify a bill unit's accounting type by
passing it in the PIN_FLD_ACTG_TYPE input flist field of the following opcodes:

• PCM_OP_CUST_COMMIT_CUSTOMER

• PCM_OP_CUST_MODIFY_CUSTOMER

• PCM_OP_CUST_UPDATE_CUSTOMER

2. Default setting in the Connection Manager (CM) configuration file. You can specify a
default accounting type by using the actg_type entry in the CM's configuration file
(BRM_home/sys/cm/pin.conf). BRM uses the default setting during account creation only
if an accounting type is not passed in the input flist.

3. System-wide accounting type. If an accounting type is not passed in the input flist nor
set in the CM pin.conf file, BRM automatically sets the bill unit's accounting type to
balance forward accounting.

Assigning Billing DOMs to Bill Units
PCM_OP_CUST_POL_PREP_BILLINFO assigns a billing DOM to a bill unit based on the
following order of priority:

Chapter 6
Managing Bill Units

6-21

1. The DOM assigned to the billing segment. The opcode assigns the DOM set for the
billing segment in the /config/billing_segment object. For more information, see
"Assigning Billing DOMs Based on the Billing Segment".

Note:

To customize how the opcode assigns the DOM according to the billing segment,
see "Customizing the DOM Assignment Process".

2. The DOM used by the other bill units in the account. If a DOM is not assigned to the
billing segment, the opcode assigns the DOM used by the other bill units in the account.

3. Default setting in the Connection Manager pin.conf file. If a DOM is neither assigned to
the billing segment nor available from another bill unit, the DOM is set to the value
assigned in the actg_dom entry in the CM configuration file (BRM_home/sys/cm/
pin.conf, where BRM_home is the directory in which the BRM server software is installed).

4. The current date. If a DOM is not available from the billing segment, other bill units, or the
CM pin.conf file, the opcode assigns the DOM to the current date passed in the input
flist's PIN_FLD_END_T field.

For example, if an account was created with two bill units, BU1 that has an assigned DOM and
BU2 that does not have an assigned DOM, the opcode assigns a DOM to BU2 as follows:

• If BU2 is the second /billinfo object associated with the /account object, the opcode
assigns the DOM used by BU1.

• If BU2 is the first /billinfo object associated the /account object, the opcode assigns the
DOM set in the CM pin.conf file. If a value is not set in the CM pin.conf file, the DOM is
set to the current date passed in the input flist's PIN_FLD_END_T field.

Assigning Billing DOMs Based on the Billing Segment
When a /config/billing_segment object exists in the CM cache and contains an array of billing
segments, PCM_OP_CUST_POL_PREP_BILLINFO performs the following tasks:

• If the input PIN_FLD_BILLING_SEGMENT field does not contain a value or contains 0,
PCM_OP_CUST_POL_PREP_BILLINFO sets the output PIN_FLD_BILLING_SEGMENT
field to 0. This triggers BRM to use the default process rather than the bill cycle
management process of assigning a billing DOM to the bill unit.

• If the input PIN_FLD_BILLING_SEGMENT field does contain a value other than 0 but the
input PIN_FLD_ACTG_FUTURE_DOM field does not contain a value,
PCM_OP_CUST_POL_PREP_BILLINFO uses the bill cycle management process of
assigning a billing DOM to the bill unit:

– By default, the opcode assigns the first open DOM in the specified billing segment,
starting with the current DOM.

– Alternatively, the opcode can use a weighted average calculation to select a billing
DOM. See "Customizing the DOM Assignment Process".

Chapter 6
Managing Bill Units

6-22

Note:

If the input PIN_FLD_ACTG_FUTURE_DOM field does contain a value, that
value becomes the billing DOM unless it is closed. If it is closed,
PCM_OP_CUST_POL_VALID_BILLINFO returns a validation error.

The default DOM assignment process rather than the bill cycle management process is also
used in these situations:

• The /config/billing_segment object is not in the CM cache.

• In the cached /config/billing_segment object, no DOMs are associated with the billing
segment ID specified in the input PIN_FLD_BILLING_SEGMENT field.

Customizing the DOM Assignment Process
To increase the probability that the assigned billing DOM has the lightest billing load of all the
open days in a billing segment, PCM_OP_CUST_POL_PREP_BILLINFO can optionally use a
weighted average calculation to select a DOM. The calculation should factor in the total billing-
run processing time of each open DOM. This information is stored in the /config/
billing_segment object.

A sample weighted average calculation is included in the opcode file
(fm_cust_pol_prep_billinfo.c).

To use the calculation, PCM_OP_CUST_POL_PREP_BILLINFO must call the
fm_cust_pol_prep_billinfo_get_dom_from_process_t_from_cache function to assign a
DOM to a bill unit. (By default, the opcode calls
fm_cust_pol_prep_billinfo_get_next_dom_from_cache.)

The sample calculation works as follows:

Billing segment X, to which bill unit Y belongs, has the following open DOMs and associated
billing-run processing times as shown in Table 6-3:

Table 6-3 Sample Billing DOMs

DOM/Process Value Value Value Value Value

Open Billing DOMs 5 11 16 20 75

PIN_FLD_TOTAL_PROCESS_T
(in seconds)

20000 30000 15000 45000 25000

Using the total number of seconds in two DOMs (172,800) as a constant,
PCM_OP_CUST_POL_PREP_BILLINFO divides the constant by each DOM's total billing-run
processing time as shown in Table 6-4:

Table 6-4 Sample Bill-Run Processing Times

DOM/Process Value Value Value Value Value

Open Billing DOMs 5 11 16 20 27

PIN_FLD_TOTAL_PROCESS_T
(in seconds)

20000 30000 15000 45000 25000

Chapter 6
Managing Bill Units

6-23

Table 6-4 (Cont.) Sample Bill-Run Processing Times

DOM/Process Value Value Value Value Value

172,800/
PIN_FLD_TOTAL_PROCESS_T
(results are rounded down to nearest
whole number)

8 5 11 3 6

PCM_OP_CUST_POL_PREP_BILLINFO then adds the results and uses their sum as a seed
value to generate a random number. In this case, the sum is 33. Assume the random number
is 21.

PCM_OP_CUST_POL_PREP_BILLINFO subtracts the random number from the result in the
first column of the table. If the remainder is less than 0, the opcode assigns the column's DOM
to the bill unit. If the remainder is greater than 0, the opcode subtracts the remainder from the
result in the next column. It continues this process until it gets a remainder that is less than 0
as shown in Table 6-5:

Table 6-5 Sample Values for Billing DOMs

DOM/Process Value Value Value Value Value

Open Billing DOMs 5 11 16 20 27

PIN_FLD_TOTAL_PROCESS_T
(in seconds)

20000 30000 15000 45000 25000

172,800/
PIN_FLD_TOTAL_PROCESS_T
(results are rounded down to nearest
whole number)

8 5 11 3 6

First Quotient - Random Number 21 - 8 = 13 NA NA NA NA

Is result less than 0? No 13 > 0 13 - 5 = 8 NA NA NA

Is result less than 0? No NA 8 > 0 8 - 11 = -3 NA NA

Is result less than 0? Yes NA NA -3 < 0 NA NA

Based on the final result of this example calculation, PCM_OP_CUST_POL_PREP_BILLINFO
sets the PIN_FLD_ACTG_FUTURE_DOM in the output flist for bill unit Y to 16.

Validating Bill Unit Data
PCM_OP_CUST_POL_VALID_BILLINFO validates an account's billing information in the /
billinfo object passed to it by PCM_OP_CUST_POL_PREP_BILLINFO during customer
account creation or administrative update.

The billing information can include the following:

• Payment method

• Parent /billinfo object

• Next bill time

• Currency used

• Billing frequency

Chapter 6
Managing Bill Units

6-24

• Accounting cycle duration

• Accounting type

• Billing segment ID

By default, PCM_OP_CUST_POL_VALID_BILLINFO validates the PIN_FLD_ACTG_TYPE,
PIN_FLD_ACCOUNT_NO, and PIN_FLD_PAY_TYPE fields according to the criteria contained
in the /config/fld_validate object. Invalid pay types result in an error.

Valid payment methods are listed in the BRM_home/include/pin_cust.h file as BILL_TYPE.
Include the pin_cust.h file in the applications that call
PCM_OP_CUST_POL_VALID_BILLINFO.

Validating Billing Segment Information
If the PIN_FLD_BILLING_SEGMENT field in the PCM_OP_CUST_POL_VALID_BILLINFO
input flist contains a value other than 0, PCM_OP_CUST_POL_VALID_BILLINFO performs the
following tasks:

• It verifies that the billing segment identified in the PIN_FLD_BILLING_SEGMENT field is in
the /config/billing_segment object.

• If the billing segment is in the /config/billing_segment object,
PCM_OP_CUST_POL_VALID_BILLINFO checks the status of the billing DOM in the input
flist PIN_FLD_ACTG_FUTURE_DOM field for the specified billing segment.

PCM_OP_CUST_POL_VALID_BILLINFO logs a validation error and returns a message to the
user interface in these situations:

• The specified billing segment is not in the /config/billing_segment object.

• The status of the specified billing DOM is closed.

Suspending and Resuming Billing of Closed Accounts
To suspend and resume billing of a bill unit in a closed account, see the following:

• Suspending Billing of Closed Accounts

• Resuming Billing When Closed Accounts Are Reactivated

Suspending Billing of Closed Accounts
To suspend billing of a closed account, use PCM_OP_BILL_POL_POST_BILLING.

This opcode is called by PCM_OP_BILL_MAKE_BILL. It enables you to perform custom
processing on a bill unit at the time of billing.

By default, PCM_OP_BILL_POL_POST_BILLING suspends billing of a specified bill unit in a
closed account that has the following characteristics:

• Zero balance due for all bill units (total balance due of all open and pending items).

• For account hierarchies, the balance due amount includes the open and pending item
totals of every nonpaying child bill unit.

• No billable activity since the previous bill was generated.

If the bill unit has nonpaying child bill units, they are suspended, too.

For accounts with a multimonth billing cycle, the default implementation of this opcode
suspends billing at the end of the last accounting cycle.

Chapter 6
Managing Bill Units

6-25

If delayed billing is enabled, PCM_OP_BILL_POL_POST_BILLING suspends billing at the end
of the billing delay interval.

To indicate billing is suspended, this opcode sets the PIN_FLD_BILLING_STATUS field in the /
billinfo object to inactive.

PCM_OP_BILL_POL_POST_BILLING returns the POID of the /billinfo object.

Resuming Billing When Closed Accounts Are Reactivated
When an account's status is changed from closed to active, PCM_OP_CUST_SET_STATUS
calls an internal opcode to resume suspended billing.

The opcode sets the PIN_FLD_BILLING_STATUS field in the account's bill units to active and
resets the billing information. For example, it resets the last billing date
(PIN_FLD_LAST_BILL_T), next billing date (PIN_FLD_NEXT_BILL_T), last accounting cycle
(PIN_FLD_ACTG_LAST_T), and next accounting cycle (PIN_FLD_ACTG_NEXT_T).

Note:

The account status is not the same as the account's billing status. For example, an
account's status can be active while its billing status is inactive.

BRM does the following:

• Resets the account bill unit billing status to active (PIN_BILL_ACTIVE).

Note:

A bill unit with suspended billing has the billing status set to inactive
(PIN_BILL_INACTIVE).

• Resets the account bill unit's next billing date (PIN_FLD_NEXT_BILL_T) based on the
account's billing day of month before billing was suspended. For example, if the billing day
of month was the first of every month before billing was suspended, the billing day of
month is set to the first of every month when billing is resumed.

• Resets the billing start date (PIN_FLD_START_T) in the /bill object to the current time
(when billing is resumed).

Note:

BRM does not automatically resume suspended billing for nonpaying bill units. To do
that, you must reactivate the accounts that contain those bill units.

When you resume billing, billing is run on the next scheduled billing date. This is true even if
billing would have been run when billing was suspended. That is, billing is not run immediately
to accommodate billing that was missed during suspension.

Chapter 6
Managing Bill Units

6-26

Deleting Bill Units
To delete bill units, write custom code that calls PCM_OP_CUST_DELETE_BILLINFO.

If the specified bill unit is a paying parent, this opcode automatically deletes any nonpaying
child bill units associated with it.

Note:

You cannot delete a bill unit that has pending payments.

If successful, the PCM_OP_CUST_DELETE_BILLINFO output flist contains:

• PIN_FLD_POID field set to the account POID of the /account object that is deleted.

• PIN_FLD_BILLINFO array that specifies the billing information that is deleted.

Setting Up Hierarchical and Sharing Relationships among Bill Units
To set up hierarchical and sharing relationships among bill units, see the following sections:

• Setting Up Hierarchical Relationships among Bill Units

• Setting Up Sharing Relationships among Bill Units

Setting Up Hierarchical Relationships among Bill Units
In account hierarchies, the bill units are the paying or nonpaying entities. To configure accounts
in a hierarchy to pay their own charges or to roll their charges up to other accounts in the
hierarchy, you must configure their bill units to be paying or nonpaying parents or children of
one another.

Note:

Bill unit hierarchies can, but do not have to, match account hierarchies. Bill units in
accounts that belong to different account hierarchies can form a bill unit hierarchy.
For example, a bill unit belonging to an account in group A can be the nonpaying
child of a paying bill unit belonging to an account in group B. See "About Bill Unit
Hierarchies" in BRM Managing Customers.

To set up hierarchical bill unit relationships in or across accounts, write custom code that calls
PCM_OP_CUST_SET_BILLINFO for each participating bill unit. Set the following fields in the
input flist:

• For nonpaying bill units in an account hierarchy:

– Set the PIN_FLD_PARENT_BILLINFO_OBJ field to specify the current bill unit's
immediate parent bill unit, which can be paying or nonpaying.

– Set the PIN_FLD_AR_BILLINFO_OBJ field to specify the paying bill unit.

Chapter 6
Managing Bill Units

6-27

Note:

If the paying bill unit is also the immediate parent bill unit, the parent and
paying bill unit fields specify the same bill unit.

– Set the value of the PIN_FLD_PAY_TYPE field to nonpaying
(PIN_PAY_TYPE_SUBORD).

• For paying bill units in an account hierarchy, set the PIN_FLD_PARENT_FLAGS field.

Setting Up Sharing Relationships among Bill Units
In charge and discount sharing groups, the bill units are the paying or nonpaying entities.

To set up sharing relationships among bill units, write custom code that calls
PCM_OP_CUST_SET_BILLINFO for each participating bill unit. Set the following fields in the
input flist:

• For sponsored bill units in a charge or discount sharing group, set the
PIN_FLD_SPONSOREE_FLAG field.

• For sponsoring bill units in a charge or discount sharing group, set the
PIN_FLD_SPONSOR_FLAG field.

Changing Hierarchical and Sharing Relationships among Bill Units
When you change an account hierarchy or a charge or discount sharing group, you might also
need to update the relationships among the bill units participating in the original and modified
groups. To do so, write custom code that calls PCM_OP_CUST_SET_BILLINFO, and pass the
new paying/nonpaying parent/child or owner/member field settings in the input flist.

Billing Delays for Moved Bill Units
When you move a bill unit from one parent to another, the future billing date (stored in the
PIN_FLD_ACTG_FUTURE_T field of the /billinfo object) is synchronized with the parent bill
unit. However, the date that the current monthly cycle ends (stored in the
PIN_FLD_ACTG_NEXT_T field) for the child bill unit is not changed to match the parent bill
unit. Therefore, the first billing run following the move might be different for the parent and child
bill units.

For example, a child bill unit with a billing date of the 15th is moved to a new parent bill unit
that has a billing date of the 30th. If the child is moved on the 20th, it is not billed on the
following 30th when the parent is billed. Instead, it is billed on the 15th of the following month.
Thereafter, all billing dates are synchronized.

Suppressing Bills
The following opcodes are used to suppress bills and accounts:

• PCM_OP_BILL_POL_CHECK_SUPPRESSION. See "Determining Whether Bills Should
Be Suppressed".

• PCM_OP_BILL_SET_BILL_SUPPRESSION. See "Manually Suppressing Bills".

• PCM_OP_BILL_SET_ACCOUNT_SUPPRESSION. See "Suppressing Accounts".

Chapter 6
Suppressing Bills

6-28

• PCM_OP_BILL_REMOVE_ACCOUNT_SUPPRESSION. See "Ending Manual Account
Suppression".

• PCM_OP_BILL_SET_BILL_SUPPRESSION. See "Manually Suppressing Bills".

• PCM_OP_BILL_SET_ACCOUNT_SUPPRESSION. See "Suppressing Accounts".

Determining Whether Bills Should Be Suppressed
After performing the accounting activities at the end of a bill unit's billing cycle,
PCM_OP_BILL_MAKE_BILL calls PCM_OP_BILL_POL_CHECK_SUPPRESSION to find out
whether the bill should be finalized or suppressed.
PCM_OP_BILL_POL_CHECK_SUPPRESSION performs these tasks:

1. Checks the PIN_FLD_PAY_TYPE field in the input flist to determine whether the bill unit is
nonpaying. If it is, the opcode determines that it should not be suppressed.

2. From the cached /config/suppression object,
PCM_OP_BILL_POL_CHECK_SUPPRESSION gets the following information for the
customer segment or segments specified in the PIN_FLD_CUSTOMER_SEGMENT_LIST
field of the opcode's input flist:

• The minimum balance required for the bill to be generated.

• The maximum number of consecutive billing cycles for which the bill can be
suppressed.

Note:

– If the account belongs to multiple customer segments,
PCM_OP_BILL_POL_CHECK_SUPPRESSION gets the lowest
minimum balance and the lowest maximum cycle settings associated
with the segments. The lowest settings do not have to be associated with
the same customer segment.

– If the input PIN_FLD_CUSTOMER_SEGMENT_LIST field contains a
customer segment ID that is not associated with suppression
information, PCM_OP_BILL_POL_CHECK_SUPPRESSION uses bill
suppression information associated with the default customer segment
(ID 0).

– If the input PIN_FLD_CUSTOMER_SEGMENT_LIST field is empty,
PCM_OP_BILL_POL_CHECK_SUPPRESSION uses bill suppression
information associated with the default customer segment (ID 0).

– If either of the two preceding items is true and the cached configuration
object has no default customer segment or if the object is not in the
cache, the bill does not qualify for automatic bill suppression.

3. PCM_OP_BILL_POL_CHECK_SUPPRESSION checks whether any of the following is
true:

• The amount due (PIN_FLD_TOTAL_DUE) on the bill is less than the minimum balance
specified in the customer segment.

Chapter 6
Suppressing Bills

6-29

Note:

This check is not done on bills that do not qualify for automatic bill
suppression. See step 2.

• The account is suppressed.

When an account is manually suppressed, the PIN_FLD_ACCT_SUPPRESSED field in
each /billinfo object associated with the account is set to 1. This value is put in the
PIN_FLD_ACCT_SUPPRESSED field of the opcode's input flist.

4. The number of remaining manually suppressed billing cycles is greater than 0.

This value comes from the PIN_FLD_SUPPRESSION_CYCLES_LEFT field of the /billinfo
object.

5. PCM_OP_BILL_POL_CHECK_SUPPRESSION makes one of the following
determinations:

• If none of the preceding conditions is true, the bill should not be suppressed.

• If at least one is true, the bill should be suppressed.

6. If the bill should be suppressed, PCM_OP_BILL_POL_CHECK_SUPPRESSION checks
for any exceptions to that suppression.

To check for exceptions, PCM_OP_BILL_POL_CHECK_SUPPRESSION gets and uses
the following information:

• Adjustment events associated with the bill's account. If an adjustment occurred after
the last bill was generated, the bill must be finalized.

Note:

In addition to adjustment events, if the payment received exception is in
effect, PCM_OP_BILL_POL_CHECK_SUPPRESSION gets payment events
associated with the account. In such cases, if a payment was received after
the last bill was generated, the bill must be finalized. By default, this
exception is commented out of the opcode. To uncomment it, see "Adding
Bill Suppression Exceptions".

• The value in the input flist PIN_FLD_NUM_SUPPRESSED_CYCLES field, which
indicates for how many consecutive billing cycles, the bill has been suppressed. If the
value is equal to the maximum number specified in the customer segment, the bill
must be finalized.

Note:

If the maximum number of consecutive billing cycles for which the bill can be
suppressed is 0 or missing (see step 2), this exception does not apply, and
the bill can be suppressed for an unlimited number of consecutive billing
cycles.

• The value in the input flist PIN_FLD_LAST_BILL_OBJ field. If NULL, it means that this
is the bill unit's first bill and it must be finalized.

Chapter 6
Suppressing Bills

6-30

• The value in the PIN_FLD_STATUS field in its input flist. If the value indicates that the
status of the bill's account is closed, this is the bill unit's last bill and it must be
finalized.

7. PCM_OP_BILL_POL_CHECK_SUPPRESSION then makes one of the following
determinations:

• If an exception exists, the bill cannot be suppressed.

• If no exception exists, the bill can be suppressed.

The PCM_OP_BILL_POL_CHECK_SUPPRESSION output flist contains the values listed in
Table 6-6. PCM_OP_BILL_MAKE_BILL uses these values to determine whether the bill should
be suppressed or finalized:

Table 6-6 Output Flist for PCM_OP_BILL_POL_CHECK_SUPPRESSION

Output Flist Field Value Meaning

PIN_FLD_RESULT 0 Bill should not be suppressed.

PIN_FLD_RESULT 1 Bill's balance is below the minimum required to
finalize it, so bill should be automatically suppressed.

PIN_FLD_RESULT 2 Bill is manually suppressed.

PIN_FLD_RESULT 3 Account is manually suppressed.

PIN_FLD_EXCEPTION 0 No exception.

PIN_FLD_EXCEPTION 1 Payment, adjustment, or credit exception.

PIN_FLD_EXCEPTION 2 First bill exception.

PIN_FLD_EXCEPTION 3 Closed account exception.

PIN_FLD_EXCEPTION 4 Maximum cycle exception.

All types of bill suppression can be overridden by exceptions.

Manually Suppressing Bills
To suppress and unsuppress bills manually, use PCM_OP_BILL_SET_BILL_SUPPRESSION.
This opcode performs the following tasks:

• Suppresses a bill for a specified number of billing cycles.

If the opcode's input flist PIN_FLD_SUPPRESSION_CYCLES_LEFT field contains a value
greater than 0, the opcode sets the PIN_FLD_SUPPRESSIOIN_CYCLES_LEFT field in a
specified /billinfo object with that value.

This value represents the number of consecutive billing cycles for which the bill is to be
suppressed. At the end of each billing cycle, PCM_OP_BILL_MAKE_BILL subtracts 1 from
this value in the /billinfo object. When the value reaches 0, bill suppression ends.

• Unsuppresses a manually suppressed bill.

If the PIN_FLD_SUPPRESSIOIN_CYCLES_LEFT field in a /billinfo object contains a
value greater than 0, the bill is manually suppressed for the specified number of billing
cycles. To end the suppression early, call PCM_OP_BILL_SET_BILL_SUPPRESSION,
specify the appropriate /billinfo object in the input PIN_FLD_POID field, and set the input
PIN_FLD_SUPPRESSION_CYCLES_LEFT field to 0.

• Generates an /event/audit/suppression/bill object each time it suppresses or
unsuppresses a bill.

Chapter 6
Suppressing Bills

6-31

If you use customer segments to set the maximum number of consecutive billing cycles that
bills can be suppressed, be careful not to suppress bills manually for more than the specified
maximum number of cycles. When a suppressed bill exceeds the maximum consecutive cycle
number, a suppression exception triggers BRM to generate the bill. This might confuse
customers who requested that their bills be manually suppressed for a longer period of time.

To determine the maximum number of consecutive cycles for which a bill can be suppressed:

1. Find out which customer segments the bill's account belongs to by checking the
PIN_FLD_CUSTOMER_SEGMENT_LIST field in the /account object.

2. Check the PIN_FLD_MAX_SUPPRESSED_BILL_CYCLES field of the appropriate
customer segment in the /config/suppression object.

Note:

• If an account belongs to more than one customer segment, the lowest
PIN_FLD_MAX_SUPPRESSED_BILL_CYCLES value associated with the
segments applies.

• If an account belongs to no customer segments, the
PIN_FLD_MAX_SUPPRESSED_BILL_CYCLES value of the default
customer segment (ID 0) applies.

• If an account belongs to no customer segments and your system has no
default customer segment, the bill can be suppressed for an unlimited
number of consecutive cycles.

To determine the current number of consecutive billing cycles for which a bill has been
suppressed, check the PIN_FLD_NUM_SUPPRESSED_CYCLES field of the /billinfo object.

Suppressing Accounts
Use PCM_OP_BILL_SET_ACCOUNT_SUPPRESSION to suppress accounts. Manual account
suppression enables you to accomplish the following tasks:

• Suppress an account immediately or on a specified future date.

– PCM_OP_BILL_SET_ACCOUNT_SUPPRESSION can purchase one account bundle
for the account to handle any purchase and cycle fees you want to associate with
account suppression. The /deal object POID must be passed to the
PIN_FLD_DEAL_OBJ field of the opcode's input flist.

– If you use customer segments to set the maximum number of consecutive billing
cycles that bills can be suppressed, be careful not to suppress accounts manually for
more than the specified maximum number of cycles . When a suppressed bill exceeds
the maximum consecutive cycle number, a suppression exception triggers BRM to
generate the bill. This might confuse customers who requested that their bills be
manually suppressed for a longer period of time.

To determine the maximum number of consecutive cycles for which a bill can be
suppressed:

Find out which customer segments the bill's account belongs to by checking the
PIN_FLD_CUSTOMER_SEGMENT_LIST field in the /account object.

Check the PIN_FLD_MAX_SUPPRESSED_BILL_CYCLES field of the appropriate
customer segment in the /config/suppression object.

Chapter 6
Suppressing Bills

6-32

Note:

* If an account belongs to more than one customer segment, the lowest
PIN_FLD_MAX_SUPPRESSED_BILL_CYCLES value associated with
the segments applies.

* If an account belongs to no customer segments, the
PIN_FLD_MAX_SUPPRESSED_BILL_CYCLES value of the default
customer segment (ID 0) applies.

* If an account belongs to no customer segments and your system has no
default customer segment, the bill can be suppressed for an unlimited
number of consecutive cycles.

To determine the current number of consecutive billing cycles for which a bill has been
suppressed, check the PIN_FLD_NUM_SUPPRESSED_CYCLES field of the /billinfo
object.

• Unsuppress an account immediately or on a specified future date.

Note:

If a suppression bundle was purchased when the account was manually
suppressed, the bundle's POID must be passed to the FLD_DEAL_OBJ field of
the opcode's input flist to cancel the bundle.

PCM_OP_BILL_SET_ACCOUNT_SUPPRESSION performs the following tasks:

• Inactivates all services and charge offers associated with the account specified in the
PIN_FLD_POID field of its input flist.

• Optionally purchases an account bundle for the account.

The /deal object POID must be specified in the PIN_FLD_DEAL_OBJ field of the opcode's
input flist. It is the only active bundle that can be associated with a suppressed account.
You can use it to handle any purchase and cycle fees that you want to charge for
suppressing the account.

• In each /billinfo object associated with the account, sets the
PIN_FLD_ACCT_SUPPRESSED field to 1.

• Generates an /event/audit/suppression/account/on object.

To suppress the account on a future date, set the PIN_FLD_END_T field in the
PCM_OP_BILL_SET_ACCOUNT_SUPPRESSION input flist to the appropriate date. When a
date is specified in this field, the opcode schedules a call to itself on that date.

PCM_OP_BILL_SET_ACCOUNT_SUPPRESSION does not initiate any required provisioning
of deactivated services.

Ending Manual Account Suppression
PCM_OP_BILL_REMOVE_ACCOUNT_SUPPRESSION ends manual account suppression
immediately or on a specified future date. This opcode does not initiate any required
provisioning of reactivated services.

Chapter 6
Suppressing Bills

6-33

PCM_OP_BILL_REMOVE_ACCOUNT_SUPPRESSION performs the following tasks:

• Removes any suppression bundle associated with the account.

• Reactivates all services and charge offers associated with the account specified in the
PIN_FLD_POID field of its input flist.

• In each /billinfo object associated with the account, sets the
PIN_FLD_ACCT_SUPPRESSED field to 0.

• Generates an /event/audit/suppression/account/off object.

To end account suppression on a future date, set the PIN_FLD_END_T field in the
PCM_OP_BILL_REMOVE_ACCOUNT_SUPPRESSION input flist to the appropriate date.
When a date is specified in this field, the opcode schedules a call to itself on that date.

Adding Bill Suppression Exceptions
To add a bill suppression exception to your system:

1. In the PCM_OP_BILL_POL_CHECK_SUPPRESSION source code, make the appropriate
modifications to these functions:

• fm_bill_pol_get_suppression_reason

This function checks both for reasons to suppress a bill and for exceptions that
override reasons to suppress.

• fm_bill_pol_get_payment_adjustment_event

If the new exception is based on an event, add the appropriate /event storable class to
the eventsBuf array in this function:

char eventsBuf[2000] = "'/event/billing/adjustment/account',\
 '/event/billing/refund/cash','/event/billing/refund/cc',\
 '/event/billing/refund/check','/event/billing/refund/dd',\
 '/event/billing/refund/payorder','/event/billing/refund/
postalorder',\
 '/event/billing/refund/wtransfer','/event/billing/reversal/
cc',\
 '/event/billing/reversal/check','/event/billing/reversal/
dd',\
 '/event/billing/reversal/payorder',\
 '/event/billing/reversal/postalorder',\
 '/event/billing/reversal/wtransfer'";

 /***
 * Payment exceptions are being commented/taken out of the
 * eventBuf buffer. If required these event ids can be
 * included into the buffer to consider the payment
 * exceptions.
 ***/
 /*'/event/billing/payment/cash',\
 '/event/billing/payment/cc','/event/billing/payment/check',\
 '/event/billing/payment/dd','/event/billing/payment/
payorder',\
 '/event/billing/payment/postalorder',
 '/event/billing/payment/wtransfer'*/

Chapter 6
Suppressing Bills

6-34

Note:

By default, the payment-received suppression exception is commented out of
the preceding code and is thus disabled. To enable it, remove the comment
symbols (/* and */) enclosing the payment events.

2. In the BRM_home/include/pin_bill.h file, add the appropriate enumerated name and
value to the bill_suppression_exceptions variable:

typedef enum bill_suppression_exceptions {
 PIN_NO_EXCEPTION = 0,
 PIN_DUE_TO_PAYMENT_ADJUSTMENT_MADE = 1,
 PIN_DUE_TO_FIRST_BILL = 2,
 PIN_DUE_TO_ACCOUNT_CLOSED = 3,
 PIN_DUE_TO_MAX_ALLOWED_SUPPRESSION_COUNT_REACHED = 4
} bill_suppression_exceptions_t;

Do not duplicate a value, and do not delimit the last name-value pair with a comma. If you add
a name-value pair to the end of the existing list, add a comma to the end of the preceding
name-value pair.

The values are used to populate the PIN_FLD_EXCEPTION field of the
PCM_OP_BILL_POL_CHECK_SUPPRESSION output flist.

Deleting Bill Suppression Exceptions
To delete a bill suppression exception from your system:

1. In the PCM_OP_BILL_POL_CHECK_SUPPRESSION source code, delete or comment out
the appropriate code in these functions:

• fm_bill_pol_get_suppression_reason

This function checks both for reasons to suppress a bill and for exceptions that
override reasons to suppress.

Note:

Do not remove logic used by processes that check for other exceptions.

• fm_bill_pol_get_payment_adjustment_event

If the deleted exception is based on an event, remove the appropriate /event storable
class from the eventsBuf array in this function:

char eventsBuf[2000] = "'/event/billing/adjustment/account',\
 '/event/billing/refund/cash','/event/billing/refund/cc',\
 '/event/billing/refund/check','/event/billing/refund/dd',\
 '/event/billing/refund/payorder','/event/billing/refund/
postalorder',\
 '/event/billing/refund/wtransfer','/event/billing/reversal/
cc',\
 '/event/billing/reversal/check','/event/billing/reversal/
dd',\
 '/event/billing/reversal/payorder',\
 '/event/billing/reversal/postalorder',\
 '/event/billing/reversal/wtransfer'";

Chapter 6
Suppressing Bills

6-35

 /***
 * Payment exceptions are being commented/taken out of the
 * eventBuf buffer. If required these event ids can be
 * included into the buffer to consider the payment
 * exceptions.
 ***/
 /*'/event/billing/payment/cash',\
 '/event/billing/payment/cc','/event/billing/payment/check',\
 '/event/billing/payment/dd','/event/billing/payment/
payorder',\
 '/event/billing/payment/postalorder',
 '/event/billing/payment/wtransfer'*/

2. In the BRM_home/include/pin_bill.h file, delete or comment out the appropriate
enumerated name and value from the bill_suppression_exceptions variable:

typedef enum bill_suppression_exceptions {
 PIN_NO_EXCEPTION = 0,
 PIN_DUE_TO_PAYMENT_ADJUSTMENT_MADE = 1,
 PIN_DUE_TO_FIRST_BILL = 2,
 PIN_DUE_TO_ACCOUNT_CLOSED = 3,
 PIN_DUE_TO_MAX_ALLOWED_SUPPRESSION_COUNT_REACHED = 4
} bill_suppression_exceptions_t;

If you remove the last name-value pair, also remove the comma at the end of the preceding
name-value pair.

The values are used to populate the PIN_FLD_EXCEPTION field of the
PCM_OP_BILL_POL_CHECK_SUPPRESSION output flist.

Making Trial Bills
When you run the pin_trial_bill_accts utility to perform trial billing,
PCM_OP_BILL_MAKE_TRIAL_BILL is called to create trial invoices and collect revenue
assurance data for the trial billing run.

Note:

To collect revenue assurance data for trial billing, you must enable the trial billing
utility to generate revenue assurance data. See "Enabling Billing Utilities to Generate
Revenue Assurance Data" in BRM Collecting Revenue Assurance Data.

If you enable trial billing to collect revenue assurance data,
PCM_OP_BILL_MAKE_TRIAL_BILL returns the summarized data in the
PIN_FLD_REVENUES_ARRAY field.

The fields on the PCM_OP_BILL_MAKE_TRIAL_BILL input flist specify if this opcode creates
invoices and collects split revenue assurance data for the account specified in the input flist. If
invoices are created, this opcode returns an array of trial invoice POIDs for the invoices that
were created. If split revenue assurance data is collected, this opcode returns an array of
revenue amounts for each item type and associated service type. The opcode opens a
separate transaction to create the trial invoices.

The PIN_FLD_PROGRAM_NAME field in the input flist should always contain
pin_trial_bill_accts even if you call the opcode from another application.

Chapter 6
Making Trial Bills

6-36

Note:

If a start date is not provided, PCM_OP_BILL_MAKE_TRIAL_BILL creates trial
invoices for all billing cycles that are completed before the end date and that have not
been billed. For accounts with skipped billing cycles, more than one trial invoice
might be created.

PCM_OP_BILL_MAKE_TRIAL_BILL calls PCM_OP_BILL_MAKE_BILL to compute the
balance impacts and the balance due for the accounts specified in the input flist. The input flist
includes the following fields:

• The POID of the /account object for trial billing.

• The name of the program that called PCM_OP_BILL_MAKE_TRIAL_BILL.

• The start and end dates that specify the billing cycles for trial billing.

• LAST_BILL_STATE_TO_PROCESS with the value 2 to indicate that the bill unit state is
final.

• Two optional flag fields:

– PIN_FLD_PREINVOICE_MODE specifies whether to generate trial invoices for the
trial billing run.

– PIN_FLD_CHECK_SPLIT_FLAGS specifies whether to split the revenue assurance
data collected for trial billing into detailed categories. See "Collecting Split Revenue
Assurance Data".

Note:

Trial billing stops and reports a warning message when it encounters an
account or bill unit with inactive status.

Collecting Split Revenue Assurance Data
If the PIN_FLD_CHECK_SPLIT_FLAGS field is in the PCM_OP_BILL_MAKE_TRIAL_BILL
input flist and has a value of 1, PCM_OP_BILL_MAKE_TRIAL_BILL passes the flag to
PCM_OP_BILL_MAKE_BILL, which returns amounts associated with each item type and
service type combination so that revenue assurance data collected for trial billing can be split
into detailed categories. The item and service type details plus the total number of subscription
services associated with the account are returned in the PIN_FLD_REVENUES array in the
output flist. If any bills were suppressed, the amount suppressed and the suppression reason
are also returned.

If PIN_FLD_CHECK_SPLIT_FLAGS has a value of 0 or is not in the input flist,
PCM_OP_BILL_MAKE_TRIAL_BILL does not return item type and service type details.

Split revenue assurance data can be viewed by generating a Revenue Assurance Billing Detail
report.

Corrective Billing
See the following topics:

Chapter 6
Corrective Billing

6-37

• Making a Corrective Bill

• Validating Bills for the Corrective Billing Process

• Payment Due Dates for Corrective Bills

Making a Corrective Bill
PCM_OP_BILL_MAKE_CORRECTIVE_BILL creates a corrective bill for a /bill object at the
time of billing. It is called by the pin_make_corrective_bill utility.

If PCM_OP_BILL_MAKE_CORRECTIVE_BILL is called with the -validate_only parameter,
the opcode does not generate a corrective bill for the selected bill, but merely validates
whether a corrective bill can be generated for that bill.

The value in the PIN_FLD_FLAGS input field of the opcode determines whether the opcode
merely validates the bill or actually creates the corrective bill object. The pin_bill.h file contains
the following predefined values for these constants:

#define PIN_BILL_VALIDATION_ONLY 0x004
#define PIN_BILL_VALIDATION_NO_CHARGES 0x008

PCM_OP_BILL_MAKE_CORRECTIVE_BILL returns a value in the PIN_FLD_RESULT output
field to indicate whether the bill passed or failed the validation. The pin_bill.h file contains the
following predefined values for these constants:

#define PIN_BILL_VALIDATION_PASSED 0x001
#define PIN_BILL_VALIDATION_FAILED 0x002

PCM_OP_BILL_MAKE_CORRECTIVE_BILL does the following:

1. Locks the bill's /billinfo object. After BRM locks a /billinfo object, it does not accept any
corrections until the /billinfo object is unlocked.

Caution:

If User A and User B both access a bill and User A submits the bill for corrective
billing, BRM locks the /billinfo object. BRM applies any adjustments made by
User B to the corrected bill object only after BRM unlocks the /billinfo object.

Also, if User B had applied the adjustment before User A submitted the bill for
correction, the corrected bill will contain both adjustments.

2. Verifies that a corrective bill can be generated for the corrections by completing the
following:

• Standard validations for the request. See "Standard Bill Validations".

• Policy validations. See "Policy Bill Validations". The opcode also performs any custom
validations that you have added and that are necessary.

If the opcode validates that a corrective bill can be generated and such a bill is to be
generated, the opcode continues its process. It creates the /history_bills object for the /
billinfo object.

3. Checks to see whether the pin_make_corrective_bills utility called it with the -
validate_only parameter. If so, PCM_OP_BILL_MAKE_CORRECTIVE_BILL reports
whether BRM can generate a corrective bill for the selected bill and does not proceed
further.

Chapter 6
Corrective Billing

6-38

4. Assigns a new bill number for the corrective bill.

5. Sets the due date for the corrective bill.

6. Creates the /event/billing/corrective_bill object for the prior bill in the following way:

• The opcode includes all the A/R actions applied or allocated to the prior bill. These
actions impact the totals or balances for the respective bill items and the bill. For the
bill items that do not have any A/R action, BRM stores the value from the original bill in
the current bill.

The following entries for the PIN_FLD_FLAGS field in a bill object indicate that there
was an allocation of settlement or refund for the bill. The BRM_home/include/
pin_flds.h file contains the values that BRM uses in the PIN_FLD_FLAGS field for a
corrective bill.

#define PIN_BILL_FLG_SETTLEMENT_ALLOC 0x200
#define PIN_BILL_FLG_REFUND_ALLOC 0x400

• The opcode stores a correction reason you provide.

• The opcode stores the name for the corrective bill. The BRM_home/include/pin_bill.h
file contains the values that BRM uses in the PIN_FLD_NAME field for a corrective bill:

#define PIN_OBJ_NAME_CORRECTIVE_BILL "PIN Corrective Bill"
#define PIN_OBJ_NAME_CORRECTIVE_BILL_NOW "PIN Corrective Bill Now"
#define PIN_OBJ_NAME_CORRECTIVE_BILL_ON_DEMAND "PIN Corrective Bill On Demand"

If PCM_OP_BILL_MAKE_CORRECTIVE_BILL encounters an error in generating the
corrective bill, it logs an error against the prior bill in the default.pinlog utility log file and does
not generate the corrective bill.

Validating Bills for the Corrective Billing Process
The corrective billing process uses PCM_OP_BILL_MAKE_CORRECTIVE_BILL to provide
standard validations. This opcode calls PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL to
complete the policy validations on a selected bill unit.
PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL performs default policy validations and/or
any custom validations that you provide. PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL
validates a bill object to determine whether BRM can generate a corrective bill for it.

PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL requires values for the account POID in
PIN_FLD_POID, the bill POID in PIN_FLD_BILL_OBJ, and PIN_FLD_INV_TYPE.

The PIN_FLD_FLAGS input field is optional. If present, this field indicates that there are
charges in the bill to be validated by PCM_OP_BILL_MAKE_CORRECTIVE_BILL or requires
the opcode to validate the A/R charges in the input bill.

PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL returns the success or failure of the
validation in PIN_FLD_RESULT and the reason for the failure to validate the bill in
PIN_FLD_ERROR_DESCR.

The BRM_home/include/pin_bill.h file contains the following values that
PCM_OP_BILL_MAKE_CORRECTIVE_BILL opcode uses when it validates bills for corrective
billing:

Example 6-1 Constants Associated with Validation in pin_bill.h File

#define PIN_BILL_VALIDATION_PASSED 0x001
#define PIN_BILL_VALIDATION_FAILED 0x002
#define PIN_BILL_VALIDATION_ONLY 0x004
#define PIN_BILL_VALIDATION_NO_CHARGES 0x008

Chapter 6
Corrective Billing

6-39

#define PIN_BILL_VALIDATION_AR_CHARGES_EXIST 0x010
#define PIN_BILL_VALIDATION_FOR_AR_CHARGES_NEEDED 0x020

See the following discussions in BRM Configuring and Running Billing:

• Validating bills for the corrective billing process (includes the standard and policy
validations BRM performs)

• pin_make_corrective_bill utility

Standard Bill Validations
PCM_OP_BILL_MAKE_CORRECTIVE_BILL checks to see whether you enabled corrective
billing and whether the corrective bill is for a finalized bill. If the bill is part of a bill unit hierarchy,
it checks whether you are requesting a corrective bill for the parent bill. The opcode returns an
error if you attempt to generate a corrective bill for a nonpaying child bill in a hierarchy.

Policy Bill Validations
By default, PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL checks the bill and returns its
findings to PCM_OP_BILL_MAKE_CORRECTIVE_BILL. Then,
PCM_OP_BILL_MAKE_CORRECTIVE_BILL continues or terminates its process based on the
output from PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL.

The checks performed by PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL are as follows:

• PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL verifies that an invoice exists for the
(original or corrective) bill for which you are attempting to generate a corrective bill. If there
is no invoice associated with that bill, the opcode does not permit the generation of a
corrective bill. It enters an error message in the PIN_FLD_ERROR_DESCR field and stops
any further validation on the bill.

• If there are no A/R charges for the prior bill,
PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL verifies that it is creating only a
replacement invoice for that bill. If a replacement invoice is not being generated for the
corrective bill, the opcode enters an error message in the PIN_FLD_ERROR_DESCR field
and stops any further validation on the bill.

• When balance forward accounting is associated with a bill,
PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL verifies that the corrective bill is being
generated for the last bill in the billing cycle. If this validation fails, the opcode enters a
PIN_BILL_VALIDATION_BILL_NOT_LAST flag in the PIN_FLD_FLAGS field. (For open
item accounting, BRM permits the generation of corrective bills for any previous cycle.)

• PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL verifies whether you enabled a
corrective bill to be generated when there is a payment to be processed against that bill. If
this validation fails, the opcode enters a PIN_BILL_VALIDATION_NOT_PAID flag in the
PIN_FLD_FLAGS field.

• The sum of the corrections must equal or exceed the specified amount threshold
necessary to create the corrective bill. If this validation fails,
PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL enters a
PIN_BILL_VALIDATION_AR_TOO_LOW flag in the PIN_FLD_FLAGS field.

Payment Due Dates for Corrective Bills
BRM determines due dates for regular and corrective bills by using
PCM_OP_BILL_POL_CALC_PYMT_DUE_T.

Chapter 6
Corrective Billing

6-40

By default, PCM_OP_BILL_POL_CALC_PYMT_DUE_T recalculates the due dates for
corrective bills starting with the current time when the opcode generates the corrective bill and
taking into account the payment terms. For example, if the payment terms set the due date for
a bill to be 30 days from the billing date, and the corrective bill was generated on April 12, the
due date for the corrective bill would be May 12.

Using Revenue Assurance Manager
Revenue Assurance Manager uses the following Process Audit FM standard opcodes:

• PCM_OP_PROCESS_AUDIT_CREATE

This opcode creates audit objects for revenue assurance. It is called by
PCM_OP_BILL_MAKE_BILL_NOW and PCM_OP_BILL_MAKE_BILL_ON_DEMAND.

This opcode performs the following actions:

– Reads the primary database ID for storing /process_audit objects.

– Calls PCM_OP_PROCESS_AUDIT_POL_CREATE to validate audit data and check
for duplicate audit objects.

– Calls PCM_OP_CREATE_OBJ to create audit objects.

• PCM_OP_PROCESS_AUDIT_CREATE_WRITEOFF_SUMMARY

This opcode creates a summary of a write-off operation. It is triggered by a notification
event generated by Suspense Manager when a suspended event record is written off. This
opcode gets information about the written-off event records from the notification event,
including the record's suspended batch ID and its original batch ID.

• PCM_OP_PROCESS_AUDIT_SEARCH

This opcode searches for and returns revenue assurance data from groups of /
process_audit/batchstat objects.

You pass in the following information:

– A /process_audit/batchstat storable subclass type.

– A control point name.

– The detailed grouping or summary data you want.

– The type of search to perform.

The opcode returns the relevant statistics.

Customizing Revenue Assurance Manager
You can use the following opcodes to customize Revenue Assurance Manager:

• PCM_OP_PROCESS_AUDIT_POL_CREATE.

See "Customizing Audit Object Validation".

• PCM_OP_PROCESS_AUDIT_POL_ALERT.

See "Customizing Alert Behavior".

• PCM_OP_PROCESS_AUDIT_POL_CREATE_WRITEOFF_SUMMARY.

See "Customizing the Revenue Assurance Written-Off Event Record Summaries".

Chapter 6
Using Revenue Assurance Manager

6-41

Customizing Audit Object Validation
PCM_OP_PROCESS_AUDIT_POL_CREATE performs the following actions:

• Checks for duplicate audit objects and validates audit data.

• Performs validation only if no duplicate audit objects exist.

The opcode returns any validated data and duplicate records.

It is called by PCM_OP_PROCESS_AUDIT_CREATE

You can customize PCM_OP_PROCESS_AUDIT_POL_CREATE by modifying its flist fields,
modifying duplicate checks, and adding validation checks.

Customizing Alert Behavior
Revenue Assurance Manager uses PCM_OP_PROCESS_AUDIT_POL_ALERT to send email
alerts when threshold values are crossed.

PCM_OP_PROCESS_AUDIT_POL_ALERT reads the details of the alert from the notification
event and sends an alert email message using the details in the /config/ra_alerts object.
These details include the recipient email addresses, the locale to be used for the subject, and
the message body text.

PCM_OP_PROCESS_AUDIT_POL_ALERT calls PCM_OP_DELIVERY_MAIL_SENDMSGS
to send email messages using dm_email.

You can customize this opcode to notify an external system or to change the message body or
subject of the email. For example, you might want to send alerts via text messages or collect
alert information in error logs in addition to sending email messages.

Customizing the Revenue Assurance Written-Off Event Record Summaries
After Suspense Manager writes off an event record, Revenue Assurance Manager creates a
summary of the event record by calling
PCM_OP_PROCESS_AUDIT_POL_CREATE_WRITEOFF_SUMMARY. You can change this
process by adding custom code to the opcode.

By default, PCM_OP_PROCESS_AUDIT_POL_CREATE_WRITEOFF_SUMMARY reads
fields from /suspended_usage/telco objects and maps them to fields in the /process_audit/
batchstat/status objects. Table 6-7 shows the mapping; grouped by batch ID and original
batch ID:

Table 6-7 RA Manager Field Mapping

Maps these fields in /suspended_usage/telco To these fields in /process_audit/batchstat/
status

PIN_FLD_BYTES_IN PIN_FLD_VOLUME_RECEIVED

PIN_FLD_BYTES_OUT PIN_FLD_BYTES_VOLUME_SEND

PIN_FLD_BYTES_CALL_DURATION PIN_FLD_BYTES_EVENT_DURATION

PIN_FLD_BYTES_EDR_COUNT PIN_FLD_BYTES_EDR_COUNT

PCM_OP_PROCESS_AUDIT_POL_CREATE_WRITEOFF_SUMMARY sets and returns
errors if there are any objects other than /suspended_usage/telco objects in the input flist.

Chapter 6
Using Revenue Assurance Manager

6-42

You can change the behavior of
PCM_OP_PROCESS_AUDIT_POL_CREATE_WRITEOFF_SUMMARY to read and aggregate
any fields of the /suspended_usage storable class and its subclasses. The opcode can then
map this data to corresponding fields in the /process_audit/batchstat/status storable class.

Chapter 6
Using Revenue Assurance Manager

6-43

7
Charging Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) charging
opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Subscription Rating Opcodes

• Implementing Custom Rating

• Getting ERAs for an Event

• Modifying Rated Events

• Modifying ERAs

• Managing Credit Limits and Sub-Balance Consumption Rules

• Maintaining Subscriber's Charging Preferences Data

• Modifying Events before Sending Them to ECE

• Rerating Opcodes

• Suspense Management

• Provisioning Process Opcode Flow

• GPRS Opcodes

Opcodes Described in This Chapter
Table 7-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 7-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_POL_SPEC_RATES Implementing Custom Rating

PCM_OP_ACT_USAGE Resubmitting Suspended Batches

Editing Suspended Records in Bulk

Writing Off Suspended Records in Bulk

Deleting Suspended Records in Bulk

7-1

Table 7-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_BATCH_SUSPENSE_DELETE_BATCHES Deleting Records for Suspended Batches

PCM_OP_BATCH_SUSPENSE_RESUBMIT_BATCHES Resubmitting Suspended Batches

PCM_OP_BATCH_SUSPENSE_WRITE_OFF_BATCHES Writing Off Suspended Batches

PCM_OP_BILL_GET_LIMIT Retrieving Credit Limits

PCM_OP_BILL_POL_POST_SET_LIMIT_AND_CR Managing Credit Limits and Sub-Balance Consumption
Rules

PCM_OP_BILL_POL_PRE_SET_LIMIT_AND_CR Managing Credit Limits and Sub-Balance Consumption
Rules

PCM_OP_BILL_SET_LIMIT_AND_CR How BRM Handles Consumption Rules and Credit Limits

PCM_OP_CUST_GET_SUBSCRIBER_PREFERENCES Maintaining Subscriber's Charging Preferences Data

PCM_OP_CUST_MODIFY_PROFILE About Creating Service Orders for Profile Changes

PCM_OP_CUST_SET_PASSWD Implementing Custom Rating

PCM_OP_CUST_SET_SUBSCRIBER_PREFERENCES Maintaining Subscriber's Charging Preferences Data

PCM_OP_GPRS_APPLY_PARAMETER About Associating APNs and QoS with GPRS Services

Mapping Service Types to Service-Specific Opcodes

Associating APN and QoS Pairs with GPRS Services

Updating Custom GPRS Service Fields

PCM_OP_GPRS_POL_APPLY_PARAMETER About Associating APNs and QoS with GPRS Services

Associating APN and QoS Pairs with GPRS Services

Updating Custom GPRS Service Fields

PCM_OP_GSM_APPLY_PARAMETER Updating Custom GSM Service Fields

PCM_OP_GSM_POL_APPLY_PARAMETER Updating Custom GSM Service Fields

PCM_OP_IFW_SYNC_POL_PUBLISH_EVENT Modifying Events before Sending Them to ECE

Modifying BRM Events That Make Up Account
Synchronization Business Events

PCM_OP_IFW_SYNC_PUBLISH_EVENT Processing BRM Events That Make Up Account
Synchronization Business Events

PCM_OP_PROV_PUBLISH_SVC_ORDER Provisioning Process Opcode Flow

PCM_OP_PROV_UPDATE_SVC_ORDER Provisioning Process Opcode Flow

PCM_OP_RATE_AND_DISCOUNT_EVENT Modifying Rated Events

PCM_OP_RATE_GET_ERAS Getting ERAs for an Event

Modifying ERAs

PCM_OP_RATE_POL_POST_RATING Modifying Rated Events

PCM_OP_RATE_POL_PRE_RATING Modifying Rated Events

Modifying ERAs

PCM_OP_RATE_POL_PROCESS_ERAS Getting ERAs for an Event

Modifying ERAs

PCM_OP_RERATE_CREATE_JOB How BRM Creates Rerate Jobs

How BRM Handles Duplicate Rerate Jobs

Chapter 7
Opcodes Described in This Chapter

7-2

Table 7-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_RERATE_INSERT_RERATE_REQUEST How BRM Creates Rerate Jobs

How BRM Handles Duplicate Rerate Jobs

Customizing Automatic Creation of Rerate Jobs

Specifying a Rerate Reason Code

Specifying Selection Criteria

Specifying Price Overrides

Configuring Event Notification for Override Pricing

PCM_OP_SUBCRIPTION_RERATE_REBILL Customizing Event Searches for Rerating

Specifying Price Overrides

PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_R
EQUEST

How BRM Creates Rerate Jobs

Specifying a Rerate Reason Code

Customizing Automatic Creation of Rerate Jobs

Configuring Event Notification for Override Pricing

PCM_OP_SUBSCRIPTION_POL_SPEC_RERATE Customizing Event Searches for Rerating

PCM_OP_SUBSCRIPTION_PREP_RATE_CHANGE Rerating Cycle Forward and Cycle Forward Arrears Events

PCM_OP_SUBSCRIPTION_RATE_CHANGE Rerating Cycle Forward and Cycle Forward Arrears Events

PCM_OP_SUSPENSE_DEFERRED_DELETE Deleting Suspended Records in Bulk

PCM_OP_SUSPENSE_DELETE_USAGE Deleting Suspended Records

PCM_OP_SUSPENSE_EDIT_USAGE Changing the Contents of Fields in Suspended Event
Records

Deleting Call Records with a Specific Recycle Key and a
Status of Succeeded or Written-Off

Deleting Records in a CDR File

PCM_OP_SUSPENSE_RECYCLE_USAGE Initiating Suspense Recycling

PCM_OP_SUSPENSE_SEARCH_DELETE Deleting Call Records with a Specific Recycle Key and a
Status of Succeeded or Written-Off

Deleting Records in a CDR File

Deleting Suspended Records in Bulk

PCM_OP_SUSPENSE_SEARCH_EDIT Editing Suspended Records in Bulk

PCM_OP_SUSPENSE_SEARCH_RECYCLE Recycling Suspended Records

PCM_OP_SUSPENSE_SEARCH_WRITE_OFF Writing Off Suspended Records in Bulk

PCM_OP_SUSPENSE_UNDO_EDIT_USAGE Undoing Edits to Suspended Event Records

PCM_OP_SUSPENSE_WRITTEN_OFF_USAGE Writing Off Suspended Records

PCM_OP_TCF_APPLY_PARAMETER About Associating APNs and QoS with GPRS Services

Mapping Service Types to Service-Specific Opcodes

PCM_OP_TCF_CREATE_SVC_ORDER About Creating Service Orders for Profile Changes

PCM_OP_TCF_POL_APPLY_PARAMETER About Associating APNs and QoS with GPRS Services

Mapping Service Types to Service-Specific Opcodes

Associating APN and QoS Pairs with GPRS Services

PCM_OP_TCF_PROV_CREATE_SVC_ORDER Provisioning Process Opcode Flow

PCM_OP_TCF_PROV_HANDLE_SVC_ORDER Provisioning Process Opcode Flow

Chapter 7
Opcodes Described in This Chapter

7-3

Table 7-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_TCF_PROV_SERVICE_ORDER_NOTIFY Provisioning Process Opcode Flow

PCM_OP_TCF_PROV_SERVICE_ORDER_SET_ATTR Provisioning Process Opcode Flow

PCM_OP_TCF_PROV_SERVICE_ORDER_SET_STATE Provisioning Process Opcode Flow

PCM_OP_TCF_PROV_SIMULATE_AGENT Provisioning Process Opcode Flow

PCM_OP_TCF_PROV_UPDATE_PROV_OBJECT Provisioning Process Opcode Flow

PCM_OP_TCF_SVC_LISTENER About Associating APNs and QoS with GPRS Services

Subscription Rating Opcodes
The following opcodes are used for subscription rating:

• PCM_OP_RATE_EVENT. This opcode applies pricing and taxes to a subscription event
(for example, a recurring charge or a purchase charge).

When the optional timestamp field PIN_FLD_WHEN_T is present in the input flist, the
opcode searches for the charge offer that is valid at the time specified in the field. It uses
the charge offer to rate the event.

PCM_OP_RATE_EVENT also locates any rollover objects for events, and returns details
of the rollover object to the calling opcode.

Uses the index value in the /product object's PIN_FLD_TAX_SUPPLIER field to locate the
correct tax supplier in the cache.

• PCM_OP_RATE_GET_ERAS. This opcode retrieves the extended rating attribute (ERAs)
for an event.

See "Getting ERAs for an Event" .

• PCM_OP_RATE_GET_PRODLIST. This opcode retrieves the list of charge offers owned
by an account and filters them with input criteria.

• PCM_OP_RATE_TAX_CALC. This opcode calculates taxes due at the time of purchase or
billing.

See "How PCM_OP_RATE_TAX_CALC Calculates Taxes".

• PCM_OP_RATE_TAX_EVENT. This opcode directs the calculation of taxes for
subscription events.

Implementing Custom Rating
You can use the PCM_OP_ACT_POL_SPEC_RATES policy opcode to create a custom rating
application. For example, you can rate administrative events or configure rating based on
nonevent attributes such as an account attribute or a profile attribute.

You can configure the PCM_OP_ACT_POL_SPEC_RATES policy opcode to be called by
another opcode. The opcode that calls the PCM_OP_ACT_POL_SPEC_RATES policy opcode
passes in the inherited information for an event. For example, to rate a password change, the
PCM_OP_CUST_SET_PASSWD opcode specifies the inherited password information.

To charge for custom events and attributes:

Chapter 7
Subscription Rating Opcodes

7-4

1. Modify the PCM_OP_ACT_POL_SPEC_RATES policy opcode or write a custom policy
opcode to analyze the event data and assign the charge and impact category.

See the policy source file of the PCM_OP_ACT_POL_SPEC_RATES policy opcode for a
sample implementation.

2. Edit the pin_spec_rates file in BRM_home/sys/data/config to associate the opcode to
the event type that it rates.

The pin_spec_rates file includes examples and instructions.

Note:

When you run the load_pin_spec_rates utility, it overwrites the existing setup for
administrative events charges. If you are updating a set of administrative events
charges, you cannot load new charges only. You load complete sets of charges
each time you run load_pin_spec_rates.

3. Create a configuration file for the load_pin_spec_rates utility.

4. Run the load_pin_spec_rates utility to load the contents of the pin_spec_rates file into
the database.

load_pin_spec_rates pin_spec_rates_file
5. Define impact categories for the event in PDC or Pricing Center.

6. In PDC or Pricing Center, create the charge offers that can be used to rate an event that is
rated by your customized opcode.

Getting ERAs for an Event
PCM_OP_RATE_GET_ERAS retrieves the extended rating attribute (ERAs) for an event. This
opcode does the following:

• Reads the /profile/serv_extrating and /profile/acct_extrating objects associated with the
service and account in the event.

• Reads /group/sharing/profile objects to identify profile sharing groups associated with the
services or subscription services in the event. If a profile sharing group is found and is
active at the time of the event, the opcode reads the /profile/serv_extrating or /profile/
acct_extrating object associated with the group.

• Checks whether each ERA was valid at the time of the event.

• Returns the name of each valid ERA and the names of ERA labels belonging to each valid
ERA to the calling policy opcode, PCM_OP_RATE_POL_PROCESS_ERAS.

Modifying Rated Events
Use PCM_OP_RATE_POL_PRE_RATING to modify subscription events before rating.
PCM_OP_RATE_POL_PRE_RATING is called by
PCM_OP_RATE_AND_DISCOUNT_EVENT.

Use PCM_OP_RATE_POL_POST_RATING to modify rated /event objects (for example,
change the G/L ID of an event).

The input flist matches the /event object that you are modifying. The output flist contains the
event field to be changed in the rated object.

Chapter 7
Getting ERAs for an Event

7-5

This example shows how to change the G/L ID of an event:

STORABLE CLASS /event {
 DESCR = "Objects of the event class are created to record the various "
 "system-initated and user-initiated events. The events are "
 "either related to a specific service or to an account. The "
 "event includes generic information such as start and end "
 "times as well the various charges that are incurred by the "
 "account due to this event.";
 SEQ_START = "1";
 INT32 PIN_FLD_GL_ID {
 DESCR = "GLID associated with this balance impact. "
 "Don't care if 0.";
 ORDER = 0;
 CREATE = Optional;
 MODIFY = Writable;
 }
}

Modifying ERAs
Use PCM_OP_RATE_POL_PROCESS_ERAS to modify ERAs. This opcode calls
PCM_OP_RATE_GET_ERAS to find the valid service and account ERAs for an event. This
opcode then populates the PIN_FLD_USAGE_TYPE field with the names of valid ERAs and
populates the PIN_FLD_PROFILE_LABEL_LIST field with ERA label names.

PCM_OP_RATE_POL_PROCESS_ERAS is called by PCM_OP_RATE_POL_PRE_RATING.

PCM_OP_RATE_POL_PROCESS_ERAS returns the output to
PCM_OP_RATE_POL_PRE_RATING.

Managing Credit Limits and Sub-Balance Consumption Rules
Sub-balance consumption rules specify the order in which sub-balances are consumed. For
example, when a customer is granted minutes with different validity periods, you can specify
which minutes to use first based on the validity start time and end time.

Permanent credit limits specify the maximum amount of a balance element, such as US
Dollars, that can accumulate in a balance group. When a credit limit is reached, businesses
typically deny customers access to the services associated with the balance group. For
example, you might set a customer's credit limit to $100 and then deny service after the
customer reaches that limit.

Temporary credit limits specify the maximum amount of a balance element that can
accumulate in a balance group during a specified validity period. For example, you might set
customer B's credit limit to $200 for December 1, 2031 through January 31, 2032. If the
customer also has a permanent credit limit for the same balance element, the temporary credit
limit amount is appended to the permanent credit limit amount. For example, if customer B has
a permanent credit limit of $100, the customer's credit limit would be $300 for December 1,
2031 through January 31, 2032.

You use the following opcodes to manage credit limits and consumption rules in an account:

• To set sub-balance consumption rules, permanent credit limits, temporary credit limits, or
automatic top-up thresholds, use PCM_OP_BILL_SET_LIMIT_AND_CR. See "How BRM
Handles Consumption Rules and Credit Limits".

• To retrieve the permanent and temporary credit limits for an account, use
PCM_OP_BILL_GET_LIMIT. See "Retrieving Credit Limits".

Chapter 7
Modifying ERAs

7-6

• To modify the validity dates for an account's temporary credit limit, use
PCM_OP_BILL_POL_PRE_SET_LIMIT_AND_CR. By default, this policy opcode does
nothing.

• To customize the notification sent after a temporary credit limit is created or expires, use
PCM_OP_BILL_POL_POST_SET_LIMIT_AND_CR.

• To customize a customer's permanent credit limit, use
PCM_OP_CUST_POL_PREP_LIMIT and PCM_OP_CUST_POL_VALID_LIMIT.

PCM_OP_CUST_POL_PREP_LIMIT is called by PCM_OP_BILL_SET_LIMIT_AND_CR.
PCM_OP_CUST_POL_PREP_LIMIT is an empty hook. See "About the PREP and VALID
Opcodes" in BRM Developer's Guide.

How BRM Handles Consumption Rules and Credit Limits
Use PCM_OP_BILL_SET_LIMIT_AND_CR to set one or more of the following for an account:
a temporary credit limit, a permanent credit limit, a sub-balance consumption rule, or an
automatic top-up threshold.

The opcode sets the consumption rule and credit limits in a balance group for both currency
and noncurrency balances. This opcode must be called separately for each balance to set.
PCM_OP_BILL_SET_LIMIT_AND_CR creates a new /event/billing/limit event each time a
credit limit is changed and a new /event/billing/consumption_rule event each time a
consumption rule is changed.

By default, PCM_OP_BILL_SET_LIMIT_AND_CR sets or changes the credit limit,
consumption rule, and thresholds in an account's default /balance_group object. To set a
consumption rule, credit limit, credit floor, or threshold for any of the other billing entities
associated with the object, specify them with the optional PIN_FLD_BAL_GRP_OBJ input flist
field.

• A consumption rule is passed in the PIN_FLD_RULES array of the
PCM_OP_BILL_SET_LIMIT_AND_CR input flist, which contains the balance element ID of
the balance to change or create. The consumption rule is set in the
PIN_FLD_CONSUMPTION_RULE field of the /balance_group object of the various billing
entities.

• A permanent credit limit is passed in the PIN_FLD_LIMIT array of the opcode's input flist,
which contains the balance element ID of the balance to change or create. The credit limit
is set in the PIN_FLD_BALANCES array of the /balance_group object of the various
billing entities. The POID of this object is passed in the PIN_FLD_BAL_GRP_OBJ field of
the input flist.

If the opcode's PIN_FLD_OVERRIDE_CREDIT_LIMIT input flist field is set to 0, the
account's credit limit is enforced. If the flist field is set to 1, the account's credit limit is
ignored and the account's balance can exceed the limit.

• A temporary credit limit is passed in the PIN_FLD_TEMP_LIMIT array of the opcode's
input flist, which contains the resource ID and validity dates of the balance to change or
create. If validity dates are not passed in, they are set from the current date to never
expires.

The opcode sets the temporary credit limit in the PIN_FLD_SUB_BAL_IMPACTS array of
the /balance_group object of the various billing entities. If the /balance_group object
contains another temporary credit limit with matching validity dates, they are merged into
one sub-balance.

When processing temporary credit limits, PCM_OP_BILL_SET_LIMIT_AND_CR calls the
following policy opcodes:

Chapter 7
Managing Credit Limits and Sub-Balance Consumption Rules

7-7

– PCM_OP_BILL_POL_PRE_SET_LIMIT_AND_CR: Allows you to modify the validity
dates for a temporary credit limit.

– PCM_OP_BILL_POL_POST_SET_LIMIT_AND_CR: Generates an /event/
notification/billing/temp_limit notification event when a temporary credit limit is
added, and generates an /event/notification/billing/temp_limit/expiry notification
event when a temporary credit limit has expired. You can use this policy opcode to
customize the /event/notification/billing/temp_limit and /event/notification/billing/
temp_limit/expiry notification events.

• A credit floor value is passed in the PIN_FLD_CREDIT_FLOOR field in the
PIN_FLD_LIMIT array in the opcode's input flist. Alternatively, you can use the
PIN_FLD_DYNAMIC_CREDIT_FLOOR field to determine the credit floor using the granted
amounts from the sub-balances that are valid for the current cycle for the resource (for
example, minutes). If PIN_FLD_DYNAMIC_CREDIT_FLOOR is set to 1,
PIN_FLD_CREDIT_FLOOR is set to NULL, regardless of any value for that parameter that
is passed.

• An automatic top-up threshold is passed in the PIN_FLD_RESRC_FIXED_THRESHOLD
or PIN_FLD_RESRC_PERC_THRESHOLD field of the PIN_FLD_LIMIT array of the
opcode's input flist. The thresholds are stored in the /config/credit_profile object tied to
the balance group.

For nonpaying child accounts belonging to a PR_RTCE balance monitoring group: If
PIN_FLD_ROLL_UP_CREDIT_LIMIT is set to 1, the opcode rolls up the account's credit limit
to the owner of the PR_RTCE balance monitoring group.

A noncurrency balance without an explicitly set credit limit has a default credit limit of zero. If
PCM_OP_BILL_SET_LIMIT_AND_CR is called for a nonexistent balance, the balance is
created, the credit limit is set, and the current balance is set to zero.

PCM_OP_BILL_SET_LIMIT_AND_CR does not affect the current balances of the account.

To return all fields in the event object, set the PCM_OPFLG_READ_RESULT flag. If this flag is
not set, PCM_OP_BILL_SET_LIMIT_AND_CR returns only the POID.

To run PCM_OP_BILL_SET_LIMIT_AND_CR without changing data in the database, use the
PCM_OPFLG_CALC_ONLY flag.

• If the flag is set, no fields in the database are changed and the event object is not created.
The fields that would have been used to create the event object are returned to the caller.

• If the flag is not set, either the /event/billing/limit object or the /event/billing/
consumption_rule object is created to record details of the operation.

Retrieving Credit Limits
Use PCM_OP_BILL_GET_LIMIT to retrieve the permanent and temporary credit limits for an
account. To do so, pass in the account POID.

To retrieve credit limits based on specific criteria, also include the following optional input:

• A resource ID, such as 840 for US Dollars, to retrieve credit limits for a specific resource
type.

• A balance group POID to retrieve credit limits for a specific balance group.

• A timestamp, such as 1956556800 for Jan 1 00:00:00 2032, where the timestamp falls
between a credit limit's validity start date and validity end date (that is, validityStartDate <
timestamp < validityEndDate). For example, if the timestamp is 1956556800, the opcode

Chapter 7
Managing Credit Limits and Sub-Balance Consumption Rules

7-8

could return a credit limit with validity dates from December 15, 2031 through January 15,
2032, or with validity dates from December 29, 2031 through January 29, 2032.

The opcode returns details about the account's permanent credit limits in the PIN_FLD_LIMIT
output flist array, and temporary credit limits in the PIN_FLD_TEMP_LIMIT output flist array.

Maintaining Subscriber's Charging Preferences Data
You can customize your external application to manage subscriber charging preferences
during the account creation process by using the following opcodes:

• PCM_OP_CUST_SET_SUBSCRIBER_PREFERENCES

This opcode creates, modifies, and deletes the /profile/subscriber_preferences object,
which contains a subscriber's preference data. You can modify a specific preference or all
of the subscriber's preferences.

If a name for the profile object is not provided for PIN_FLD_NAME in the input flist, this
opcode creates a profile with the default name PIN_Profile_Object.

If the PIN_FLD_POID field in the input flist contains the complete POID of the /profile/
subscriber_preferences object, this opcode modifies the data in the /profile/
subscriber_preferences object.

If the PIN_FLD_DELETED_FLAG field in the input flist is set to 1,
PCM_OP_CUST_SET_SUBSCRIBER_PREFERENCES deletes the /profile/
subscriber_preferences object.

• PCM_OP_CUST_GET_SUBSCRIBER_PREFERENCES

This opcode retrieves the subscriber's preferences from the /profile/
subscriber_preferences object.

If the PIN_FLD_SUBSCRIBER_PREFERENCE_ID field is populated in the input flist, this
opcode returns the data from the /profile/subscriber_preferences object for that
preference only. Otherwise, this opcode returns all the preferences for the account.

Modifying Events before Sending Them to ECE
You can modify the BRM events that make up a business event before the business event is
sent to Oracle DM for publishing to ECE. You do this by customizing the account
synchronization policy opcode, PCM_OP_IFW_SYNC_POL_PUBLISH_EVENT.

PCM_OP_IFW_SYNC_POL_PUBLISH_EVENT modifies specified triggering events before
they are included in a business event. This opcode can also be used to filter out certain events
not included in account synchronization (for example, an event that has balance impacts only
for currency balances), thereby reducing the traffic in the queue.

If you pass an event that does not need modification,
PCM_OP_IFW_SYNC_POL_PUBLISH_EVENT passes it directly to the Payload Generator
External Module (EM) without modification.

You might want to modify an event to filter out unneeded data, which can improve performance
if you publish large quantities of events. You can also use a flag to specify how adjustments
should be applied to the account balance (for example, to permit the account to have a
negative balance).

To modify a business event before sending it to ECE:

Chapter 7
Maintaining Subscriber's Charging Preferences Data

7-9

1. Ensure that all the BRM events that make up the business event are associated with
opcode number 3626 (PCM_OP_IFW_SYNC_PUBLISH_EVENT) in your system's event
notification list.

2. Use PCM_OP_IFW_SYNC_PUBLISH_EVENT to process the BRM events that make up
the business event.

See "Processing BRM Events That Make Up Account Synchronization Business Events".

3. Use PCM_OP_IFW_SYNC_POL_PUBLISH_EVENT to customize the BRM events that
make up the business event.

See "Processing BRM Events That Make Up Account Synchronization Business Events".

Processing BRM Events That Make Up Account Synchronization Business
Events

PCM_OP_IFW_SYNC_PUBLISH_EVENT passes BRM events that make up account
synchronization business events to PCM_OP_IFW_SYNC_POL_PUBLISH_EVENT for
modification.

PCM_OP_IFW_SYNC_PUBLISH_EVENT is called by the event notification feature when an
event associated with this opcode in your system's event notification list occurs.

By default, PCM_OP_IFW_SYNC_PUBLISH_EVENT does not modify events; it only passes
them to the policy opcode.

If the BRM event is published in the business event, PCM_OP_IFW_SYNC_PUBLISH_EVENT
returns one of the following POIDs:

• If the object passed in was an /event type object, the event POID is returned.

• If the object passed in was not an /event type object, a POID of type /publish is returned.

If the BRM event is not published (for example, if you filter out the event based on your
business logic), the input flist is returned.

Modifying BRM Events That Make Up Account Synchronization Business
Events

You can customize PCM_OP_IFW_SYNC_POL_PUBLISH_EVENT to remove or enhance
BRM events and event fields before they are assembled into business events and sent to ECE.
For example, you can customize this opcode to do the following:

• Filter out BRM events that you do not want to include in published business events for
various business or performance reasons.

Note:

– Do not filter out balance impact fields based on the balance element ID. If
you do, you might remove fields needed by ECE.

– Do not modify the code that prepares the login fields (the
fm_ifw_sync_pol_prep_logins function). This code is required when a login
is changed.

Chapter 7
Modifying Events before Sending Them to ECE

7-10

• Modify the value of the PIN_FLD_FLAGS field that is added to PIN_FLD_BAL_IMPACT
arrays. This field specifies how to apply adjustments. For example, you can permit a
negative balance by specifying a value of 4. If you permit a negative balance, the negative
amount is deducted from the account balance with the next billing cycle.

For example, you might use this method when a customer purchases a service that
includes 60 minutes per month and cancels the service before the end of the month. If the
customer used all 60 minutes but you prorate the minutes, the amount of usage for the
canceled period can be deducted with the next billing cycle (provided the customer has a
positive balance at that time).

If the BRM event is published in the business event,
PCM_OP_IFW_SYNC_POL_PUBLISH_EVENT returns one of the following POIDs:

• If the object passed in was an /event type, the event POID is returned.

• If the object passed in was not an /event type object, a POID of type /publish is returned.

If the BRM event is not published (for example, if you filter out the event based on your
business logic), the input flist is returned.

Rerating Opcodes
See the following topics:

• How BRM Tracks Rerated Events

• How BRM Creates Rerate Jobs

• How BRM Handles Duplicate Rerate Jobs

• Rerating Cycle Forward and Cycle Forward Arrears Events

• Customizing Event Searches for Rerating

• Customizing Automatic Creation of Rerate Jobs

How BRM Tracks Rerated Events
To back out and rerate events, BRM generates adjustment events (/event/billing/adjustment/
event). These events contain all of the balance impacts in the original events to fully negate
the events. When an event is rerated, the PIN_FLD_RERATE_OBJ field in the original rated
event references this backout adjustment event.

When usage events are rerated, the new balance impacts of rerating are included in the same
adjustment event that backs out the original balance impacts. This means the original event
references the new event that contains the rerated balance impacts.

When cycle fee, cycle discount, fold, and rollover events are rerated, new cycle events are
created to apply the balance impacts of rerating. In this case, there is no relationship between
the original events and the new (cycle) events that contains the rerated balance impacts.

Because you can use flexible cycles and multiple discounts, there might be more than one
rollover, fold, and discount event to rerate for a given billing cycle:

• A fold event is generated per balance for each balance that has a fold.

• A rollover event is generated per balance group for each charge offer that has a rollover.

• A discount event is generated for each cycle discount.

Chapter 7
Rerating Opcodes

7-11

How BRM Creates Rerate Jobs
A rerate job is a pair of /job_batch/rerate and /job/rerate objects in the BRM database. There
is a one-to-one relationship between /job/rerate objects and /job_batch/rerate objects, and
both are created in the same transaction when one or more accounts are selected for rerating.

BRM uses the PCM_OP_RERATE_INSERT_RERATE_REQUEST opcode to create rerate
jobs. This opcode is called by the following:

• The pin_rerate utility, which can be used to manually create rerate jobs

• BRM's automatic rerate job creation mechanism

• Your custom rerating configuration

PCM_OP_RERATE_INSERT_RERATE_REQUEST receives the following information in the
input flist:

• The /account POIDs to rerate (required).

• The time from which events must be rerated for the accounts (required).

• Accounts related to the accounts to be rerated (for example, an account that used the
account's service before a line transfer) along with the start time for each account.

Note:

If more than one account is included in the rerate job, the same rerate start time,
selection criteria, and price overrides apply to all accounts.

• Your rerate reason (the default rerate reason passed in for BRM automatic rerating
scenarios is 0).

• Your selection criteria to identify the events to rerate.

• A list of charge offers, discount offers, or bundles to override the subscriber's existing
pricing components during rerating.

To create rerate jobs, PCM_OP_RERATE_INSERT_RERATE_REQUEST does the following:

1. Determines whether to check for duplicate rerate job requests by using the
PIN_RERATE_FLG_MULTI_ACCT flag:

• If the flag is set, the opcode skips the duplicate check.

• If the flag is not set, the opcode performs the duplicate check. See "How BRM Handles
Duplicate Rerate Jobs".

Note:

The PIN_RERATE_FLG_MULTI_ACCT flag is set when you run the
pin_rerate utility with the -G groupOwnerPoid parameter. See "pin_rerate" in
BRM Rerating Events.

2. Creates the /job/rerate and /job_batch/rerate objects.

BRM creates rerate jobs as follows:

Chapter 7
Rerating Opcodes

7-12

1. An event occurs that requires accounts to be rerated.

2. The opcode that triggers rerate job creation when that particular event occurs creates a
notification event.

3. The event notification mechanism calls
PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST.

4. PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST takes as input the
event type and the rerate reason code associated with the event and analyzes the event to
determine if rerating is required.

Note:

BRM reserves the range of 100 to 120 for automatic rerating reason codes.

5. If rerating is required,
PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST calls
PCM_OP_RERATE_INSERT_RERATE_REQUEST along with the appropriate rerating
criteria to create a rerate job.

PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST takes as input the
event type and the rerate reason code associated with the event. It analyzes the event to
determine if rerating is required. If rerating is required, it sets the rerate reason code to 0
and calls PCM_OP_RERATE_INSERT_RERATE_REQUEST with the appropriate rerating
criteria to create a rerate job.

PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST calls
PCM_OP_SUBSCRIPTION_INSERT_RERATE_REQUEST only when the reason code
passed in is one of those reserved for automatic rerating (reason codes between 100 and
120). By default, if a different reason code is passed in, the opcode does nothing. To
create rerate jobs for reason codes other than those reserved for automatic rerating, you
must customize PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST.

By default, PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST passes a
reason code of 0 (no rerate reason) to
PCM_OP_SUBSCRIPTION_INSERT_RERATE_REQUEST. To rerate accounts separately
based on a rerate reason code, customize
PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST to pass the rerate
reason code it receives (or a different rerate reason code). The rerate reason code is
stored in the rerate job object, and you can select rerate jobs based on the specific rerate
reason code when you run pin_rerate to process rerate jobs.

PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST only handles
rerating events for BRM's default automatic rerating scenarios. If you do not want to rerate
events for those scenarios or only want to rerate events for a few of them, you can
customize this opcode to achieve those results.

You can also customize
PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST in other ways. For
example, you can change whether rerate jobs are created for specific events: such as
when you want to rerate events for only a few (rather than all) automatic rerating
scenarios.

PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST is not called by any
opcode.

Chapter 7
Rerating Opcodes

7-13

How BRM Handles Duplicate Rerate Jobs
PCM_OP_RERATE_INSERT_RERATE_REQUEST checks for existing jobs when a new rerate
request is made. This opcode compares the data for each top-level account in the rerate
request to the data in the existing jobs. To avoid duplicate rerate jobs, accounts are either
eliminated from or updated in the rerate request or the existing jobs.

After the duplicate detection process is complete for each top-level account in the rerate
request, PCM_OP_RERATE_INSERT_RERATE_REQUEST creates a rerate job with the
resulting contents of the rerate request. It then performs checks on the sub-accounts in the
rerate request to check for duplicate jobs for line transfers before creating the rerate job.

When the rerate reason code and rerate selection criteria for a rerate request match those of
one or more rerate jobs, the request is considered a possible duplicate. When the rerate
reason code and rerate selection criteria do not match, the rerate request is not a duplicate,
and a new rerate job is created.

To avoid duplicate rerate jobs for an account,
PCM_OP_RERATE_INSERT_RERATE_REQUEST compares the following values for
duplicate rerate job requests:

• The rerate start times. BRM always uses the earlier start time to ensure that all events are
rated.

• The price overrides (if any). BRM uses the latest price overrides for an account because it
is assumed to be the most updated.

When the price overrides match, PCM_OP_RERATE_INSERT_RERATE_REQUEST does the
following for each top-level account:

• If the rerate start time of the rerate request is later than or equal to the start time of the
existing job:

– If there is only this account in the rerate request, deletes the request. No rerate job is
needed.

– If there are many accounts in the new request, removes only that account from the
new request.

• If the rerate start time of the rerate request is earlier than the start time of the existing job:

– If the existing job contains only this account, updates the existing job to use the earlier
start time and removes the account from the rerate request.

– If the existing job contains other accounts, removes the account from the existing job,
keeping the account in the rerate request.

When the price overrides do not match, PCM_OP_RERATE_INSERT_RERATE_REQUEST
does the following for each top-level account:

• If the rerate start time of the rerate request is the same or earlier than the start time of the
existing job:

– If there is only one account in the existing job, deletes the job.

– If there are many accounts in the existing job, keeps the account in the rerate request
so the new rerate job start time and price overrides are used. Removes the account
from the existing job.

• If the rerate start time of the rerate request is later than the start time of the existing job:

– If there is only one account in the existing job, deletes the job.

Chapter 7
Rerating Opcodes

7-14

– If there are many accounts in the existing job, keeps the account in the rerate request
so the new price overrides are used. Updates the rerate request start time to use the
existing job's start time. Removes the account from the existing job.

Table 7-2 summarizes how PCM_OP_RERATE_INSERT_RERATE_REQUEST handles
duplicate rerate job requests:

Table 7-2 Request Handling by PCM_OP_RERATE_INSERT_RERATE_REQUEST

If the Start Time of the
New Request Is:

And the Price
Overrides:

Perform This Action:

Equal to or later than that
of the existing job

Match If there is only this account in the rerate request, delete
the request. No rerate job is needed.

If there are many accounts in the rerate request, remove
only that account from the rerate request.

Earlier than that of the
existing job

Match If there is only one account in the existing job:

• Update the existing job to use the earlier start time.
• Remove the account from the rerate request.
If there are many accounts in the existing job:

• Keep the account in the rerate request.
• Remove the account from the existing job.

Later than that of the
existing job

Do not match If there is only one account in the existing job, delete the
job.

If there are many accounts in the existing job:

• Keep the account in the rerate request so the new
price overrides are used.

• Update the rerate request job start time to use the
existing job's start time.

• Remove the account from the existing job.

Equal to or earlier than
that of the existing job

Do not match If there is only one account in the existing job, delete the
existing job.

If there are many accounts in the existing job:

• Keep the account in the rerate request so the rerate
request start time and price overrides are used.

• Remove the account from the existing job.

Rerating Cycle Forward and Cycle Forward Arrears Events
To rerate cycle forward and cycle forward arrears events, BRM uses
PCM_OP_SUBSCRIPTION_RATE_CHANGE. This opcode uses the event notification
mechanism to trigger the creation of rerating requests when there is a cycle-forward or cycle-
forward-arrears event pricing change in the middle of the current cycle.

When you change a cycle fee by adding a new price tier in PDC or Pricing Center, the event
notification feature triggers this opcode. This opcode reads the charge offers associated with
the event and creates a /rate_change object, which is used by the pin_rate_change utility to
create rerating requests. Rerating requests are used to create rerate jobs that are processed
when you run the pin_rerate utility.

When you run the pin_rate_change utility after a pricing change, the utility calls
PCM_OP_SUBSCRIPTION_RATE_CHANGE and provides details about the accounts and
charge offers affected by the pricing change.

PCM_OP_SUBSCRIPTION_RATE_CHANGE returns a notification event of type /event/
notification/rate_change for each account picked up by the pin_rate_change utility.

Chapter 7
Rerating Opcodes

7-15

Depending on how automatic rerating is configured, the notification event triggers the creation
of rerating requests.

When you rerate cycle forward and cycle forward arrears events, you must track pricing
changes. To do so, BRM uses PCM_OP_SUBSCRIPTION_PREP_RATE_CHANGE.

This opcode creates the /rate_change object, which stores details about the charge offers
affected by a pricing change.

When you change a cycle fee by adding a new price tier, BRM event notification triggers this
opcode. This opcode reads the charge offers associated with the event and creates a /
rate_change object, which is used by the pin_rate_change utility to create rerating requests.

Customizing Event Searches for Rerating
You can further refine the event selection criteria used for rerating by customizing
PCM_OP_SUBSCRIPTION_POL_SPEC_RERATE. This opcode is called when the pin_rerate
utility is run with -r parameter to indicate selective rerating.

Note:

An alternative to customizing this opcode to filter the events selected for rerating is to
create custom pin_rerate parameters instead.

This opcode is called by PCM_OP_SUBCRIPTION_RERATE_REBILL.

PCM_OP_SUBSCRIPTION_POL_SPEC_RERATE receives an event search template that is
based on the account and event selection criteria specified in the pin_rerate command line: for
example, to select events related to services specified by the -s parameter.

By default, PCM_OP_SUBSCRIPTION_POL_SPEC_RERATE does not change the search
template and returns a copy of the input flist in the output flist.

You can customize the search template in the input flist to rerate specific types of events. Most
customizations include changes only to the fields listed in Table 7-3:

Table 7-3 Fields to Customize

Field Description

PIN_FLD_TEMPLATE The modified search template.

PIN_FLD_ARGS The list of search arguments.

Note:
• This list must match the list of arguments in

PIN_FLD_TEMPLATE.
• It is preferable to have arguments of one type only. For

example, an event search based on charge offer objects.

PCM_OP_SUBSCRIPTION_POL_SPEC_RERATE receives the following fields in the
RESULTS array from PCM_OP_SUBSCRIPTION_RERATE_REBILL:

• PIN_FLD_POID

• PIN_FLD_CREATED_T

• PIN_FLD_EFFECTIVE_T

Chapter 7
Rerating Opcodes

7-16

• PIN_FLD_END_T

• PIN_FLD_SERVICE_OBJ

• PIN_FLD_ACCOUNT_OBJ

• PIN_FLD_UNRATED_QUANTITY

• PIN_FLD_RERATE_OBJ

• PIN_FLD_BAL_IMPACTS [*]

• PIN_FLD_SUB_BAL_IMPACTS [*]

Note:

– To assure that the existing mandatory fields in the array are passed back,
avoid customizing the RESULTS array. Extra fields added to the array are
retrieved but ignored by the standard opcode.

– Test your customized template to ensure that it works properly before using it
with a working database. Use the -e and -c parameters with the pin_rerate
utility to test your modifications.

PCM_OP_SUBSCRIPTION_POL_SPEC_RERATE returns the search template that
PCM_OP_SUBSCRIPTION_RERATE_REBILL uses to find events in selected accounts that
need rerating.

PCM_OP_SUBSCRIPTION_RERATE_REBILL rerates the events for accounts identified by
the pin_rerate utility, rerating one account at a time. The rerating start time is specified on the
input flist. This opcode calls other opcodes to perform rerating functions.

Customizing Automatic Creation of Rerate Jobs
You can customize automatic creation of rerate jobs. For example, if you rerate usage following
a charge offer cancellation, you can set up a charge offer cancellation event to automatically
create a rerate job.

To customize automatic creation of rerate jobs, you set up event notification to call a custom
opcode that analyzes events to determine if rerating is required. For example, the criteria for
rerating might be:

• If the event is a cancel event.

• If the cancel event for a charge offer requires proration on cancellation.

• If rerating needs to occur to calculate proration for this charge offer.

To customize automatic creation of rerate jobs, you must write custom code to specify when to
create rerate jobs automatically when certain events occur. You can do one of the following:

• Create one or more custom opcodes. You can create multiple custom opcodes to handle
rerating events for different scenarios or create one opcode to handle all scenarios.

• Modify PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST.

Customized automatic rerating works as follows:

1. An event that you have configured in event notification occurs to call the custom opcode.
All the fields in the event are passed as input to the custom opcode.

Chapter 7
Rerating Opcodes

7-17

2. The custom opcode analyzes the event using your custom selection criteria to determine if
it should trigger rerating.

3. If the event creates a rerate job because it matches your selection criteria, the custom
opcode assigns an optional rerate reason code for rerating those events, and specifies any
price overrides.

4. PCM_OP_RERATE_INSERT_RERATE_REQUEST creates a rerate job that includes:

• The account that needs to be rerated.

• The events that must be rerated for that account.

• The start time from which to rate the events.

• The rerate reason.

• Price overrides, if any.

Note:

If more than one account is included in the rerate job, the same selection
criteria, price overrides, and start time apply to all the accounts.

5. You run the pin_rerate utility to run the rerate job and rerate the events.

Figure 7-1 shows the rerating process when a purchase event occurs:

Figure 7-1 Customized Automatic Rerating Process

Creating a Custom Opcode for Rerating
Your custom code is required to pass the following to
PCM_OP_RERATE_INSERT_RERATE_REQUEST:

Chapter 7
Rerating Opcodes

7-18

• The POIDs of the accounts to be rerated.

You can also pass in an optional array of additional accounts that are related to these
accounts (for example, an account that used the account's service before a line transfer)
and the start time for each account.

Note:

If an array of accounts is passed in, the same selection criteria and price
overrides apply to all the accounts.

• The time from which events must be rerated for the accounts.

Your custom code can optionally pass in the following to
PCM_OP_RERATE_INSERT_RERATE_REQUEST:

• A rerate reason code to take advantage of rerating according to type of rerate job. See
"Specifying a Rerate Reason Code".

• Selection criteria so that only those events that are required for rerating are identified for
an account. See "Specifying Selection Criteria".

• Price overrides to substitute an account's subscribed pricing for alternate pricing during
rerating. See "Specifying Price Overrides".

When an event triggers your custom opcode, your opcode may need to obtain data from other
events in the database to obtain all of the information required for rerating.

Specifying a Rerate Reason Code
PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST or your custom opcode
can pass an optional rerate reason code to
PCM_OP_RERATE_INSERT_RERATE_REQUEST. The rerate reason code is stored in the
rerate job and can be used to select jobs from the rerate queue for rerating using pin_rerate.

Your rerate reason codes can be any integer, except 1 (1 is reserved for internal use).

Note:

Because you can use multiple rerate reason codes to group rerate jobs for different
rerating scenarios, ensure that your rerate reason codes are unique.

The default reason code is 0.

Specifying Selection Criteria
When an account needs to be rerated, not every event for that account may need to be
rerated. Your custom opcode can optionally send selection criteria to
PCM_OP_RERATE_INSERT_RERATE_REQUEST to select only the subset of events that
needs to be rerated.

For example, you may need to rerate events only when they are generated by a specific
service or only when they are rated by a specific charge offer or discount offer. You can specify
selection criteria to rerate all accounts' events that have an event type of /event/delayed/

Chapter 7
Rerating Opcodes

7-19

session/telco/gsm/telephony but only when they are for the service type /service/telco/gsm/
telephony and only when they are rated by the charge offer GSM Voice Telephony.

Your selection criteria can be any of the following:

• Event types (array PIN_FLD_EVENTS)

• Service types (array PIN_FLD_SERVICES)

• /product object POIDs (array PIN_FLD_PRODUCTS)

• /discount object POIDs (array PIN_FLD_DISCOUNTS)

• /deal object POIDs (array PIN_FLD_DEALS)

Note:

Charge offers and discount offers are mutually exclusive with bundles. Bundles
include charge offers and discount offers, so you can pass in a bundle array
instead of the charge offer array and discount offer array.

Specifying Price Overrides
You can specify charge offers, discount offers, or bundles to use for a specific rerate job to
override an account's subscribed charge offers, discount offers, or bundles during rerating. The
price override applies only to that rerate job; subsequent rerate jobs use the subscribed pricing
or their own override pricing.

Your custom opcode can send the following price override data to
PCM_OP_RERATE_INSERT_RERATE_REQUEST to set a price override for a rerate job:

• An optional array of override charge offer POIDs along with the charge offer it is overriding
(PIN_FLD_OVERRIDE_PRODUCTS).

• An optional array of override discount offer POIDs along with the discount offer it is
overriding (PIN_FLD_OVERRIDE_DISCOUNTS).

• An optional array of override /deal object POIDs along with the bundle it is overriding
(PIN_FLD_OVERRIDE_DEALS).

Note:

Charge offers and discount offers are mutually exclusive with bundles because
bundles include charge offers and discount offers. The bundle is translated to a
list of charge offers and discount offers when it is passed to the rerating opcodes.

The override charge offers and discount offers or bundles must already be defined in your
BRM database. They must also be functionally equivalent to the subscribed charge offers and
discount offers or bundles; for example, the priority or service-event map would be the same.
In addition, override charge offers and discount offers cannot be configured as first usage
charge offers.

Chapter 7
Rerating Opcodes

7-20

Note:

You must rerate accounts when an override pricing charge offer is canceled in a
given billing cycle so that refunds can be applied correctly.

BRM creates a record when rerating is run with price overrides by using the /rerate_session/
override_info object. When override pricing is passed to
PCM_OP_SUBSCRIPTION_RERATE_REBILL, this opcodes creates a /rerate_session/
override_info object to capture the override pricing information used during rerating.

Configuring Event Notification for Customized Automatic Rerating
When you configure event notification for rerating, you specify the following in the pin_notify
file in BRM_home/sys/data/config (or your own merged event notification configuration file):

• The events that trigger rerating.

• The custom opcodes you want BRM to use to analyze the events, to identify whether
rerating is required.

To configure event notification for rerating, do the following:

1. If your system has multiple configuration files for event notification, merge them.

2. Ensure that the merged file includes the events you want to trigger rerating and the opcode
number of the custom opcode you want to analyze those events.

For example, these entries call the custom opcode with opcode number 10000:

Event notification for rerating
10000 0 /event/customer/status
10000 0 /event/billing/product/action/purchase

3. (Optional) Add, modify, or delete entries in your final event notification list.

4. (Optional) Create custom code for event notification to trigger.

5. Load your final event notification list into the BRM database.

For more information, see "Using Event Notification" in BRM Developer's Guide.

Configuring Event Notification for Override Pricing
If you use override pricing, you must customize automatic rerating to rerate accounts for cases
where a refund could not be applied because an override pricing charge offer was canceled in
a given billing cycle.

For a given billing cycle, if you rerate an account with an override charge offer and the charge
offer is canceled, BRM cannot calculate a refund for that account because the charge offer is
not available to apply the necessary cycle fees. When the refund cannot be applied, BRM
creates the notification event /event/notification/product/cancel/no_refund.

To calculate the correct refund amount, you must customize rerating as follows:

1. Write custom code to specify:

• The account to rerate from the /event/notification/product/cancel/no_refund event.

• The charge offer to use to apply the cycle fees for the refund to use the override
charge offer that was canceled.

Chapter 7
Rerating Opcodes

7-21

BRM uses the base charge offer associated with the account if you do not specify the
override charge offer that was canceled. To specify the override charge offer that was
canceled, obtain its information from the latest /rerate_session/override_info object
created for the given account.

2. Include your code in a custom opcode or in
PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST that handles
automatic rerating (opcode number 3787).

If you create a custom opcode, it must call
PCM_OP_RERATE_INSERT_RERATE_REQUEST to create the rerate job.

3. Set up event notification for the event /event/notification/product/cancel/no_refund to
call your custom opcode or the policy opcode. For example, to call
PCM_OP_SUBSCRIPTION_POL_GENERATE_RERATE_REQUEST, you would enter:

Event notification for automatic rerating
3787 0 /event/notification/product/cancel/no_refund

Suspense Management
See the following topics:

• Recycling Suspended Records

• Initiating Suspense Recycling

• Changing the Contents of Fields in Suspended Event Records

• Undoing Edits to Suspended Event Records

• Deleting Suspended Records

• Writing Off Suspended Records

• Processing Suspended Records in Bulk

• Suspended Call Record States

Suspended Call Record States
As suspended records are processed by Suspense Manager, they are assigned one of the
following states:

• Suspended. The record could not be processed by Offline Mediation Controller.

• Recycling. The record is being sent through Offline Mediation Controller again to be rated.

• Succeeded. The record has been successfully recycled and rated.

• Written off. The record will not be recycled, but is being stored for further use.

Table 7-4 lists the details about the states:

Table 7-4 Suspended Call Record States

State PIN_FLD_STATUS
value in /
suspended_usage

Can be
edited

Can be
recycled

Can be
written off

Can be
deleted

Can be
archived
and deleted

Suspended 0 Yes Yes Yes No No

Recycling 1 No No No No No

Chapter 7
Suspense Management

7-22

Table 7-4 (Cont.) Suspended Call Record States

State PIN_FLD_STATUS
value in /
suspended_usage

Can be
edited

Can be
recycled

Can be
written off

Can be
deleted

Can be
archived
and deleted

Succeeded (Successfully
processed)

2 No No No Yes Yes

Written off 3 No No No Yes Yes

Recycling Suspended Records
PCM_OP_SUSPENSE_SEARCH_RECYCLE searches for and queues suspended call
records for recycling. There are many search criteria that you may use to search the records,
such as by CDR file or by recycle key.

You can specify the following criteria:

• A recycle key

• A CDR file

• A search template

PCM_OP_SUSPENSE_SEARCH_RECYCLE is usually called by the pin_recycle utility, which
searches for and deletes call records with a specific recycle key and a status of Succeeded (or
Written-off).

Searching for Records in a CDR File
The BRM standard recycling feature collects and manipulates all calls contained in a CDR file
at the same time. PCM_OP_SUSPENSE_SEARCH_RECYCLE searches for a specified CDR
file and queues its suspended event records for recycling. If successful, the event records are
assigned a status of Succeeded.

Searching for Records with a Recycle Key
PCM_OP_SUSPENSE_SEARCH_RECYCLE is used by features that must temporarily delay
rating of event records. This opcode searches for all Suspended call records containing the
recycle key passed in on the input flist. It then queues those call records to be rated at the next
opportunity. If successful, the event records are assigned a status of Succeeded.

Initiating Suspense Recycling
PCM_OP_SUSPENSE_RECYCLE_USAGE initiates event record recycling. The Suspense
Management Center calls this opcode when the user chooses to recycle suspended event
records.

PCM_OP_SUSPENSE_RECYCLE_USAGE can operate in test mode. In test mode, the event
record is processed normally. The results, however, are not output if the event record is
processed successfully.

PCM_OP_SUSPENSE_RECYCLE_USAGE takes as input an array of /suspended_usage
object POIDs, a list of suspense override reasons, and a value that indicates whether the event
records should be recycled in test mode. This opcode then creates an /admin_action/
suspended_usage/recycle object with that information.

Chapter 7
Suspense Management

7-23

For each /suspended_usage object specified in the input flist,
PCM_OP_SUSPENSE_RECYCLE_USAGE performs these operations:

• Confirms that the suspended event record has a status of Suspended. The
PIN_FLD_STATUS value in the object must be 0.

• Changes the event record status to Recycling. The value of the PIN_FLD_STATUS field in
the /suspended_usage object is set to 1.

• Creates an /admin_action/suspended_usage/recycle object containing the recycle
mode and override reasons (passed in the input flist).

• Adds the POID of the newly created /admin_action/suspended_usage/recycle object to
the actions array of each /suspended_usage object.

• Sets the PIN_FLD_RECYCLE_OBJ field of each /suspended_usage object to the /
admin_action/suspended_usage/recycle object POID.

After event records are recycled, their /suspended_usage objects are updated by using the
Suspended Event (SE) Loader:

• If an event record is successfully recycled, the status is changed to Succeeded, and the
PIN_FLD_STATUS value is changed to 2.

• If an event record is not successfully recycled, the status is changed back to Suspended,
and the PIN_FLD_STATUS value is changed to 0. In addition, the following fields are
updated because their original values could have changed:

– The suspense reason code, PIN_FLD_SUSPENSE_REASON.

– The suspense subreason code, PIN_FLD_SUSPENSE_SUBREASON.

• If PCM_OP_SUSPENSE_RECYCLE_USAGE was run in test mode, the status is changed
back to Suspended, and the PIN_FLD_STATUS value is changed to 0. The corresponding
test values (PIN_FLD_TEST_SUSPENSE_REASON,
PIN_FLD_TEST_SUSPENSE_SUBREASON, and
PIN_FLD_TEST_SUSPENSE_ERROR_CODE) are updated to include information about
the results of the test recycling.

• The number of times the record has been recycled (in PIN_FLD_NUM_RECYCLES) is
increased by 1.

PCM_OP_SUSPENSE_RECYCLE_USAGE returns the routing POID specified in the input
flist.

Resubmitting Suspended Batches
PCM_OP_BATCH_SUSPENSE_RESUBMIT_BATCHES resubmits suspended CDR file.
Suspense Management Center calls this opcode when the user chooses to resubmit
suspended batches.

PCM_OP_BATCH_SUSPENSE_RESUBMIT_BATCHES takes an array of /suspended_batch
object POIDs and a list of suspense override reasons as input. This opcode then creates an /
admin_action/suspended_batch/resubmit object with that information.

For the whole set of /suspended_batch objects specified in the input flist,
PCM_OP_BATCH_SUSPENSE_RESUBMIT_BATCHES performs these operations:

• Creates a transaction if it is not already opened.

• Creates an ADMIN_ACTION object, /admin_action/suspended_batch/resubmit, with the
override reason, for each /suspended_batch object.

Chapter 7
Suspense Management

7-24

• Validates the status of each /suspended_batch object (Batch Suspense Record) and
updates the status with the result of the resubmission.

• Creates an event Flist (with /event/notification/suspense/batch_resubmit) and calls
PCM_OP_ACT_USAGE in CALC_ONLY mode.

• Closes the transaction

After CDR file are resubmitted, their /suspended_batch objects (Batch Suspense Records)
are updated by using the SE Loader:

• The PIN_FLD_NUM_RESUBMISSIONS field in each /suspended_batch object is
incriminated.

• If a batch is successfully resubmitted, the status is changed to Succeeded, and the
PIN_FLD_STATUS value is changed to 2.

• If a batch is not recycled successfully, the status is changed back to Suspended, and the
PIN_FLD_STATUS value is changed to 0. This will cause all the batches in the
resubmission task to be rolled back as well. In addition, these fields are updated because
their original values could have changed:

– The suspense reason code, PIN_FLD_BATCH_SUSPENSE_REASON.

– The suspense sub-reason code, PIN_FLD_BATCH_SUSPENSE_SUBREASON.

PCM_OP_BATCH_SUSPENSE_RESUBMIT_BATCHES returns the routing POID specified in
the input flist.

Changing the Contents of Fields in Suspended Event Records
Use PCM_OP_SUSPENSE_EDIT_USAGE to change the contents of fields in suspended
event records. Suspense Management Center calls this opcode to edit a suspended call
record.

Note:

You cannot edit the CDR or event record fields of records in a CDR file that has been
suspended by batch suspense and has a Batch Suspense Record.

PCM_OP_SUSPENSE_EDIT_USAGE performs these operations:

• Takes as input an array of /suspended_usage object POIDs and an array of the event
record fields to be edited, including the old and new values.

• For each event record field to be edited, this opcode:

– Creates an /admin_action/suspended_usage/edit object, which includes both the old
and new values.

– Adds the /admin_action/suspended_usage/edit object POID to the top of the /
suspended_usage_edits object stack. If the stack is full, it removes the oldest POID.

• For each /suspended_usage object, this opcode:

– Confirms that the suspended event record has a status of Suspended. The
PIN_FLD_STATUS value in the object must be 0.

– Adds the /admin_action/suspended_usage/edit object POID and the old value to
each /suspended_usage object's action array.

Chapter 7
Suspense Management

7-25

– Updates the modified flag (PIN_FLD_EDITED), which indicates that the field has been
edited.

PCM_OP_SUSPENSE_EDIT_USAGE returns an array of the POID of the /admin_action/
suspended_usage/edit objects it creates.

Undoing Edits to Suspended Event Records
Use PCM_OP_SUSPENSE_UNDO_EDIT_USAGE to undo edits to suspended event records.

This opcode is called by Suspense Management Center to the undo edits. It replaces the value
of a field in a suspended call record with the value in that field before the last edit was made.

PCM_OP_SUSPENSE_UNDO_EDIT_USAGE performs these operations:

• Searches for the /suspended_usage_edits object If a /suspended_usage_edits object
exists, this opcode reads and locks it.

• Confirms that the POID of the /admin_action/suspended_usage/edit object on the input
flist matches that of the top POID of the /suspended_usage_edits object stack. If the two
don't match, returns failure status (PIN_FLD_RESULT is set to 1) and returns the POID at
the top of the /suspended_usage_edits object stack.

• Confirms that each suspended call record affected by the edit has a status of Suspended.

• Undoes the edit by replacing the existing field values with the values before the last edit
was saved (the values referenced by the POID at the top of the /suspended_usage_edits
object stack).

• Adds the session, service, and date and time details of the undo edit operation in the
PIN_FLD_UNDO_DATA array of the /admin_action/suspended_usage/edit object.

• Removes the POID of the /admin_action/suspended_usage/edit object from the top of
the /suspended_usage_edits object stack.

PCM_OP_SUSPENSE_UNDO_EDIT_USAGE returns a PIN_FLD_RESULT value of:

• 0 if the undo edit was successful. Also:

– The PIN_FLD_POID field contains the POID of the /admin_action/
suspended_usage/edit object.

– The PIN_FLD_COUNT field contains the number of records that were processed.

• 1 if the /admin_action/suspended_usage/edit POID in the input flist does not match the
POID at the top of the /suspended_usage_edits object stack.

Deleting Suspended Records
Use PCM_OP_SUSPENSE_DELETE_USAGE to delete suspended event records.

The Suspense Management Center calls this opcode to delete event records. Event records
can be deleted only if their status is Written-off or Succeeded.

PCM_OP_SUSPENSE_DELETE_USAGE takes as input an array of /suspended_usage
object POIDs to be deleted.

For each /suspended_usage object specified in the input flist,
PCM_OP_SUSPENSE_DELETE_USAGE performs these operations:

• Confirms that the suspended event record has a status of Succeeded or Written off. The
value of the PIN_FLD_STATUS field in the /suspended_usage object must be 2 or 3.

Chapter 7
Suspense Management

7-26

• Deletes the /suspended_usage object.

• Generates a /event/notification/suspense/delete object that records the deletion.

PCM_OP_SUSPENSE_DELETE_USAGE returns the routing POID specified in the input flist.

Deleting Records for Suspended Batches
Use PCM_OP_BATCH_SUSPENSE_DELETE_BATCHES to delete /suspended_batch
objects (Batch Suspense Records).

Note:

This opcode deletes records, not the files associated with them.

Suspense Management Center calls this opcode to delete Batch Suspense Records (/
suspended_batch objects). Batch Suspense Records can be deleted only if their status is
Written-off or Succeeded.

PCM_OP_BATCH_SUSPENSE_DELETE_BATCHES takes as input an array of /
suspended_batch object POIDs to be deleted.

For each /suspended_batch object specified in the input flist,
PCM_OP_BATCH_SUSPENSE_DELETE_BATCHES performs these operations:

• Creates a transaction if it is not already opened.

• Confirms that the suspended batch file has a status of Succeeded or Written-off. The
value of the PIN_FLD_STATUS field in the /suspended_batch object must be 2 or 3.
Otherwise, an error code is generated and the transaction ends.

• Deletes the /suspended_batch object.

• Generates an /event/notification/suspense/batch_delete event.

• Closes the transaction.

PCM_OP_BATCH_SUSPENSE_DELETE_BATCHES returns the routing POID specified in the
input flist.

Deleting Call Records with a Specific Recycle Key and a Status of
Succeeded or Written-Off

Use PCM_OP_SUSPENSE_SEARCH_DELETE to delete call records with a specific recycle
key and a status of Succeeded or Written-off.

You can specify the following criteria:

• A recycle key

• A CDR file

• A search template

This opcode can also delete a suspended call record if PIN_FLD_MODE is set correctly.

To search for and recycle suspended call records containing a specific recycle key, use
PCM_OP_SUSPENSE_EDIT_USAGE.

Chapter 7
Suspense Management

7-27

Set the PIN_FLD_FLAGS field to either of these values:

• 0: Directs PCM_OP_SUSPENSE_EDIT_USAGE to delete event records with a status of:

– Succeeded (successfully processed)

– Written-off

• 1: Directs PCM_OP_SUSPENSE_EDIT_USAGE to delete event records with a status of:

– Succeeded (successfully processed)

– Written-off

– Suspended. PCM_OP_SUSPENSE_EDIT_USAGE first writes off, then deletes, these
event records

Deleting Records in a CDR File
PCM_OP_SUSPENSE_SEARCH_DELETE is used with the BRM standard recycling feature,
which acts on all the calls contained in a single CDR file simultaneously. Using pin_recycle
with the -d parameter deletes all calls in a CDR file that have a status of Succeeded. Using
pin_recycle with the -D parameter deletes all calls in a CDR file with a status of Succeeded or
Written off.

PCM_OP_SUSPENSE_SEARCH_DELETE is also used by features that must temporarily
delay rating of event records. The error prevents event records from being rated by assigning
them a status of Suspended. Those features then use PCM_OP_SUSPENSE_EDIT_USAGE
to find and recycle the call records. If successful, the event records are assigned a status of
Succeeded. PCM_OP_SUSPENSE_SEARCH_DELETE then deletes those successfully
recycled call records.

Writing Off Suspended Records
Use PCM_OP_SUSPENSE_WRITTEN_OFF_USAGE to write off suspended event records.

When a suspended event record is written off, it can no longer be edited or recycled.

PCM_OP_SUSPENSE_WRITTEN_OFF_USAGE takes as input an array of /
suspended_usage object POIDs.

• PCM_OP_SUSPENSE_WRITTEN_OFF_USAGE creates an /admin_action/
suspended_usage/writeoff object that records the write-off.

For each /suspended_usage object specified in the input flist,
PCM_OP_SUSPENSE_WRITTEN_OFF_USAGE performs these operations:

• Confirms that the suspended event record has a status of Suspended; the
PIN_FLD_STATUS value must be 0.

• Adds the POID of the newly created /admin_action/suspended_usage/writeoff object to
the array of actions in the /suspended_usage object.

• Changes the status to Written-off. The value of the PIN_FLD_STATUS field in the /
suspended_usage object is changed to 3.

• Generates an /event/notification/suspense/batch_writeoff event.

PCM_OP_SUSPENSE_WRITTEN_OFF_USAGE returns the POID of the /admin_action/
suspended_usage/writeoff object created.

Chapter 7
Suspense Management

7-28

Writing Off Suspended Batches
Use PCM_OP_BATCH_SUSPENSE_WRITE_OFF_BATCHES to write off suspended CDR
files.

When you write off a suspended CDR file, you can no longer resubmit it, but you can delete it.

The opcode creates an /admin_action/suspended_batch/writeoff object that records the
write-off and sets the status of the Batch Suspense Record (/suspended_batch) to Written-
off.

PCM_OP_BATCH_SUSPENSE_WRITE_OFF_BATCHES performs these operations:

• Create a transaction if it is not already opened.

• Confirms that the suspended event record has a status of Suspended; the
PIN_FLD_STATUS value must be 0.

• PCM_OP_BATCH_SUSPENSE_WRITE_OFF_BATCHES takes as input an array of /
suspended_batch object POIDs.

• Adds the POID of the newly created /admin_action/suspended_batch/writeoff object to
the array of actions in the /suspended_batch object.

• Changes the status of the Batch Suspense Record (/suspended_batch) to Written off;
The value of the PIN_FLD_STATUS field in /suspended_batch is changed to 3.

• Generates an /event/notification/suspense/batch_writeoff event.

• Closes the transaction.

PCM_OP_BATCH_SUSPENSE_WRITE_OFF_BATCHES returns the POID of the /
admin_action/suspended_batch/writeoff object created.

Processing Suspended Records in Bulk
You can use the Suspense Manager opcodes to edit, delete, recycle, and write off a large
number of suspended records. For more information, see the following topics:

• Processing Suspended Records in Multiple Steps

• Editing Suspended Records in Bulk

• Writing Off Suspended Batches

• Deleting Suspended Records in Bulk

Processing Suspended Records in Multiple Steps
You can process suspended records in multiple steps by calling the opcodes multiple times to
avoid a large database transaction:

1. Specify the number of records to process in each opcode call in a configuration file, and
load the file into the /config/pin_suspense_system_params storable class.

2. Call the opcode in calc-only mode to retrieve the count and POID range of the records that
match your search criteria.

3. Use a simple logic to determine the number of times to call the opcodes depending on the
number of records you want each opcode call to process.

4. Call the opcode several times with a set of records each time and consolidate the results
returned by each opcode call.

Chapter 7
Suspense Management

7-29

Note:

For each opcode call, you must provide the POID range and the corresponding
arguments in the input flist.

Because each operation is performed in multiple steps, if the operation is successful in any of
the steps, you get the number of records processed. You also get an error message for the
unsuccessful records, which you can display to the user. If any one of the steps fails, the entire
step and the following steps are canceled and an error message is returned.

Note:

Suspense Management Center and the pin_recycle utility perform suspense
management operations in multiple steps by calling the opcodes multiple times.

Editing Suspended Records in Bulk
Use PCM_OP_SUSPENSE_SEARCH_EDIT to perform the same set of edits on a large
number of suspended records that meet the criteria you specify.

This opcode makes changes to the records in one database operation instead of accessing the
database for each record. It calls the following opcodes:

• PCM_OP_BULK_WRITE_FLDS, to update the objects in the database.

The opcode finds the accounts that meet the criteria specified in PIN_FLD_ARGS and
updates them with the information in PIN_FLD_VALUES.

Specify the fields and values to set, along with the POID type of the object, in the input flist.
You must update at least one field.

Use the PCM_OPFLG_ADD_ENTRY flag to create array elements. If the specified array
element already exists, this flag is ignored. PCM_OPFLG_ADD_ENTRY cannot be used to
create ordinary fields.

The opcode returns the POID type and count of the object whose fields were updated.

• PCM_OP_ACT_USAGE, to generate the edit event notification.

Note:

You cannot undo edits performed on a large number of records or any edits
made before the bulk edit operation.

PCM_OP_SUSPENSE_SEARCH_EDIT follows these steps to edit suspended records:

1. Takes as input the following information:

• The POID type of the suspended usage class.

• The search criteria template.

• The fields and values that must be edited in the object.

• An array of the event record fields to be edited, including the old and new values.

Chapter 7
Suspense Management

7-30

2. Does one of the following:

a. If the PCM_OPFLG_CALC_ONLY flag is set, returns the count and the POID range of
records that meet the search criteria.

b. If the PCM_OPFLG_CALC_ONLY flag is not set, searches for the /
suspended_usage_edits objects.

3. Does one of the following:

a. If it finds /suspended_usage_edits objects, clears all the POIDs of the edit actions
stored in the objects.

Note:

After the objects are changed, the current changes or previous changes
cannot be undone.

b. If it does not find a /suspended_usage_edits object, creates a new /
suspended_usage_edits object.

4. For each event record field to be edited, creates an /admin_action/suspended_usage/
edit object, which includes both the old and new values.

5. For each /suspended_usage object, performs the following operations:

• Verifies that the suspended event record has a status of Suspended. The
PIN_FLD_STATUS value in the object must be 0.

• Adds the /admin_action/suspended_usage/edit object POID and the old value to
each /suspended_usage object's action array.

• Updates the PIN_FLD_EDITED field to indicate that the field has been edited.

If successful, PCM_OP_SUSPENSE_SEARCH_EDIT generates an edit notification event that
includes the administrative action POID of the edit action and returns success along with the
count of the objects edited. If the operation fails in any record, it cancels the entire operation
and returns failure with the appropriate error code, leaving the state of the record as it was
before the operation.

Writing Off Suspended Records in Bulk
Use PCM_OP_SUSPENSE_SEARCH_WRITE_OFF to write off all suspended records that
meet the criteria you define.

Note:

You cannot edit or recycle suspended records that are written off.

This opcode writes off a large set of suspended records in one database operation instead of
accessing the database for each record. It calls the following opcodes:

• PCM_OP_BULK_WRITE_FLDS to mark a large number of objects in the database as
written off.

• PCM_OP_ACT_USAGE to generate the write-off event notification.

Chapter 7
Suspense Management

7-31

PCM_OP_SUSPENSE_SEARCH_WRITE_OFF follows these steps to write off suspended
records:

1. Takes as input the POID type of the suspended usage class and the search criteria
template for the objects to be written off.

2. If the PCM_OPFLG_CALC_ONLY opcode flag is set, returns the count of records that
match the search criteria and the POID range of the records that satisfy the criteria.

3. If the PCM_OPFLG_CALC_ONLY flag is not set, creates the /event/notification/
suspense/batch_writeoff object that records the write off and returns that object with the
count of records written off.

4. For each /suspended_usage object that meets the criteria specified in the template,
performs these operations:

• Verifies that the suspended event record has a status of Suspended. The
PIN_FLD_STATUS value in the object must be 0.

• Adds the POID of the newly created /admin_action/suspended_usage/writeoff
object to the array of actions in the /suspended_usage object.

• Changes the status to Written-off. The value of the PIN_FLD_STATUS field in the /
suspended_usage object is changed to 3.

If successful, PCM_OP_SUSPENSE_SEARCH_WRITE_OFF generates a write-off notification
event that includes the administrative action POID of the write-off action and returns success
along with the number of records written off. If the operation fails in any record, it cancels the
entire operation and returns failure with the appropriate error code, leaving the state of the
record as it was before the operation.

Deleting Suspended Records in Bulk
Use PCM_OP_SUSPENSE_SEARCH_DELETE to delete all suspended records that meet the
criteria you define. This opcode is scheduled to run at a later time to ensure revenue
assurance.

Note:

You can only delete records that are succeeded or written off.

PCM_OP_SUSPENSE_SEARCH_DELETE deletes a large set of suspended records in one
database operation instead of accessing the database for each record. It calls
PCM_OP_ACT_USAGE to generate the delete event notification.

PCM_OP_SUSPENSE_SEARCH_DELETE follows these steps to delete suspended records:

1. Takes as input the POID type of the suspended usage class and the search criteria
template for the objects to be deleted.

2. If the PCM_OPFLG_CALC_ONLY opcode flag is set, returns the count of records that
match the search criteria and the POID range of the records that satisfy the criteria.

If the PCM_OPFLG_CALC_ONLY flag is not set, creates the /event/notification/
suspense/batch_delete object that records the deletion.

3. For each /suspended_usage object that meets the criteria specified in the template,
performs these operations:

Chapter 7
Suspense Management

7-32

• Verifies that the suspended event record has a status of Succeeded or Written off.
The PIN_FLD_STATUS value in the object must be 2 or 3.

• Event records with a status of Succeeded and those with a status of Written off that
do not have a deferred duration are deleted immediately.

• If the status of the suspended record is Written off, the opcode checks if there is a
deferred duration and if the deferred duration is greater than 0. The deferred duration
is a parameter defined in the /config/suspense_params object.

Note:

The load utility is provided to load the deferred duration parameter.

If there is a deferred duration, then PCM_OP_SUSPENSE_SEARCH_DELETE will not
remove the suspended record from the database but rather change the status of the
suspended records from written off to delete pending.
PCM_OP_SUSPENSE_SEARCH_DELETE will create a schedule object to run
PCM_OP_SUSPENSE_DEFERRED_DELETE.

• The schedule object will call PCM_OP_SUSPENSE_DEFERRED_DELETE to be run
at the deferred duration time.

• PCM_OP_SUSPENSE_SEARCH_DELETE or
PCM_OP_SUSPENSE_DEFERRED_DELETE deletes the object from the suspense
db.

4. Generates a /event/notification/suspense/delete object that records the deletion for each
suspended record that was deleted.

If successful, PCM_OP_SUSPENSE_SEARCH_DELETE generates a delete notification event
that includes the administrative action POID of the delete action and returns success along
with the number of records deleted. If the operation fails in any record, it cancels the entire
operation and returns failure with the appropriate error code, leaving the state of the record as
it was before the operation.

Provisioning Process Opcode Flow
Services Framework provisioning generates service orders as follows:

1. A customer account creates or modifies a service, device, or profile. This generates a
notification event.

2. The event notification system calls the opcode specified in the /config/notify object. By
default, PCM_OP_TCF_PROV_CREATE_SVC_ORDER is called.

3. PCM_OP_TCF_PROV_CREATE_SVC_ORDER performs the following:

a. Determines whether the service type passed in the input flist is supported by Services
Framework. All telco service types and all service types listed in the /config/
service_framework/permitted_service_types object are supported.

b. Determines the provisioning configuration object to use.

c. Determines the service order configuration object to use.

d. Generates the service order business event (/event/provisioning/service_order/
telco/*).

Chapter 7
Provisioning Process Opcode Flow

7-33

Note:

The service order business event contains “telco" in its name for both telco
and nontelco service types, because the common substruct for holding the
service order data is at the /event/provisioning/service_order/telco level.

4. The event notification system calls the opcode specified in the /config/notify object. By
default, PCM_OP_TCF_PROV_HANDLE_SVC_ORDER is called.

5. PCM_OP_TCF_PROV_HANDLE_SVC_ORDER performs the following:

a. Determines whether the service order status is NEW. If it is, the opcode calls
PCM_OP_TCF_PROV_SERVICE_ORDER_SET_STATE to update the service order
status to READY.

PCM_OP_TCF_PROV_SERVICE_ORDER_NOTIFY performs service order state
changes. PCM_OP_TCF_PROV_SERVICE_ORDER_SET_ATTR ppdates a service
order object.

b. Determines whether to call the Network Simulator by reading the simulate_agent
entry in the CM pin.conf file. If simulate_agent is set to 1, the opcode calls
PCM_OP_TCF_PROV_SIMULATE_AGENT to simulate the provisioning flow with the
CM.

c. Determines the provisioning mode for the service type by reading the /config/
service_framework/permitted_service_types object. The default is Queued.

d. Calls PCM_OP_TCF_POL_PROV_HANDLE_SVC_ORDER with the service order
event details and provisioning mode.

6. PCM_OP_TCF_POL_PROV_HANDLE_SVC_ORDER performs any custom actions before
it is passed to dm_prov_telco, and then returns to the calling opcode. This opcode dis an
empty hook, but you can customize it to override the provisioning mode and modify service
order event details.

7. PCM_OP_TCF_PROV_HANDLE_SVC_ORDER calls
PCM_OP_PROV_PUBLISH_SVC_ORDER to publish the service order.

8. PCM_OP_PROV_PUBLISH_SVC_ORDER publishes the service order to dm_prov_telco.

9. dm_prov_telco determines the provisioning mode by reading the PIN_FLD_MODE flist
entry. dm_prov_telco operates in Queued mode when the entry is 0 and Confirmed mode
when the entry is 1.

• In Queued mode, dm_prov_telco queues the request in-memory and calls
PCM_OP_TCF_PROV_SERVICE_ORDER_SET_STATE to update the service order
status to PROVISIONING.

• In Confirmed mode, dm_prov_telco sends the service order to the network
provisioning agent through a TCP/IP connection and waits for a response.

After the network provisioning agent returns a response in flist format, Services Framework
provisioning performs the following:

1. dm_prov_telco sends the response to PCM_OP_PROV_PUBLISH_SVC_ORDER.

2. PCM_OP_PROV_PUBLISH_SVC_ORDER passes the response to
PCM_OP_TCF_PROV_HANDLE_SVC_ORDER.

3. PCM_OP_TCF_PROV_HANDLE_SVC_ORDER calls
PCM_OP_PROV_UPDATE_SVC_ORDER to update the service order status.

Chapter 7
Provisioning Process Opcode Flow

7-34

4. PCM_OP_PROV_UPDATE_SVC_ORDER changes the service order status to Processed
and generates the /event/provisioning/service_order/telco/* business event.

5. PCM_OP_TCF_PROV_UPDATE_SVC_ORDER updates the /event/provisioning/
service_order/telco object with the provisioning response specified in the opcode input
flist.

6. The event notification system calls the opcode specified in the /config/notify object. By
default, PCM_OP_TCF_PROV_UPDATE_PROV_OBJECT is called.

7. PCM_OP_TCF_PROV_UPDATE_PROV_OBJECT updates the service's status and
supplementary features.

About Creating Service Orders for Profile Changes
Profiles are added and removed from BRM service objects through the purchase and
cancellation of charge offers and bundles. Services Framework provisioning includes profiles in
service orders as directed by the provisioning configuration object /config/provisioning/telco.
PCM_OP_TCF_CREATE_SVC_ORDER determines whether to create a service order based
on data that has been added, changed, or removed from this object.

This opcode subscribes to the /event/notification/profile/pre-modify and /event/notification/
profile/modify events generated by PCM_OP_CUST_MODIFY_PROFILE to create service
orders for profile changes. Based on the value in the status field of the profile object, a service
order is created and stored in the /event/provisioning/service_order/telco/service_name
event by capturing changes made to the profile object.

GPRS Opcodes
Use GPRS opcodes to configure and provisiong GPRS services.

About Associating APNs and QoS with GPRS Services
In BRM, an APN is stored as a device (/device/apn). Because the APN is a network device
and because a single APN can be used by multiple customers, you cannot map APN devices
to GPRS services. Instead, the GPRS service references an APN and its appropriate quality of
service (QoS) value based on the charge offer purchased by the customer.

BRM associates APN and QoS pairs with a GPRS service as follows:

1. A customer purchases, cancels, or modifies a bundle or charge offer that includes a GPRS
service and provisioning tag.

2. The BRM system generates one of the following business events:

• /event/billing/deal/purchase

• /event/billing/production/action/modify

• /event/billing/deal/cancel

• /event/billing/product/action/cancel

• /event/billing/product/action/purchase

3. The BRM event notification system detects the event and calls the opcode specified in
the /config/notify object. The default configuration specifies to call
PCM_OP_TCF_SVC_LISTENER.

4. PCM_OP_TCF_SVC_LISTENER checks the event's start and end date to determine
whether the action is deferred for a future date.

Chapter 7
GPRS Opcodes

7-35

• If the event is not deferred, the opcode calls PCM_OP_TCF_APPLY_PARAMETER to
update the GPRS service and ERA objects impacted by the charge offer provisioning
update.

• If the event is deferred, the opcode creates a /schedule object for executing
PCM_OP_TCF_APPLY_PARAMETER at the scheduled time.

5. PCM_OP_TCF_APPLY_PARAMETER retrieves the service extension and service ERA
information from the /config/telco/gprs object and passes the information to
PCM_OP_TCF_POL_APPLY_PARAMETER.

6. When the service type is /service/telco/gprs, PCM_OP_TCF_POL_APPLY_PARAMETER
calls PCM_OP_GPRS_APPLY_PARAMETER.

7. PCM_OP_GPRS_APPLY_PARAMETER writes the APN and QoS pairs to the flist's
PIN_FLD_APN_ARRAY array.

8. PCM_OP_GPRS_APPLY_PARAMETER calls
PCM_OP_GPRS_POL_APPLY_PARAMETER to update information about any custom /
service/telco/gprs fields.

9. PCM_OP_TCF_APPLY_PARAMETER updates the service extensions and ERAs in the /
service/telco/gprs object.

To customize how BRM associates APNs and QoS values with GPRS services, see
"Associating APNs and QoS with GPRS Services".

Associating APNs and QoS with GPRS Services
See the following topics:

• Mapping Service Types to Service-Specific Opcodes

• Associating APN and QoS Pairs with GPRS Services

• Updating Custom GPRS Service Fields

Mapping Service Types to Service-Specific Opcodes
Use PCM_OP_TCF_POL_APPLY_PARAMETER to update information in the flist's
PIN_FLD_SERVICES and PIN_FLD_PRODUCTS array and then pass the information to the
appropriate service-specific opcode.

PCM_OP_TCF_POL_APPLY_PARAMETER takes as input the configuration object flist, the
service flist, and the inherited information flist and then updates the service flist.

PCM_OP_TCF_POL_APPLY_PARAMETER is called by
PCM_OP_TCF_APPLY_PARAMETER.

By default, PCM_OP_TCF_POL_APPLY_PARAMETER returns an empty inherited info flist.

If you added a substruct to a customized service, you can use
PCM_OP_TCF_POL_APPLY_PARAMETER to fill in the substruct fields. These fields are
updated in the database.

For example, a GSM service (/service/telco/gsm) could include a field for the bearer in the
configuration object (/config/telco) in the service extensions array
PIN_FLD_SERVICE_EXTENSIONS. You could use
PCM_OP_TCF_POL_APPLY_PARAMETER to add the bearer information through the service
extension to update the service flist.

Table 7-5 shows the opcode called for each supported service type:

Chapter 7
GPRS Opcodes

7-36

Table 7-5 Supported Service Type Opcodes

Service Type Opcode Called

/service/telco/gprs PCM_OP_GPRS_APPLY_PARAMETER

/service/telco/gsm PCM_OP_GSM_APPLY_PARAMETER

Associating APN and QoS Pairs with GPRS Services
Use PCM_OP_GPRS_APPLY_PARAMETER to associate APN and QoS pairs with a /service/
telco/gprs service. This opcode is called by PCM_OP_TCF_POL_APPLY_PARAMETER
when processing /service/telco/gprs services.

PCM_OP_GPRS_APPLY_PARAMETER reads the bearer service, APN name, and QoS
information from the input flist's PIN_FLD_SERVICE_EXTENSIONS array and performs the
following:

• If the Bearer service is passed in the input flist, the opcode adds the value to the output
flist's PIN_FLD_BEARER_SERVICE field of the PIN_FLD_GPRS_INFO substruct.

• If the APN name and QoS are passed in the input flist, the opcode adds the values to the
output flist's PIN_FLD_APN array in the PIN_FLD_INHERITED_INFO substruct.

The opcode then calls PCM_OP_GPRS_POL_APPLY_PARAMETER to perform any
customizations. See "Updating Custom GPRS Service Fields".

Updating Custom GPRS Service Fields
Use PCM_OP_GPRS_POL_APPLY_PARAMETER to update custom fields in the /service/
telco/gprs object. This opcode takes as input the configuration object flist, the service flist, and
the inherited information flist from the calling PCM_OP_GPRS_APPLY_PARAMETER.

By default, PCM_OP_GPRS_POL_APPLY_PARAMETER returns the information passed in
the input flist. This opcode can be customized to update the service flist by adding values to
customized fields.

PCM_OP_GPRS_POL_APPLY_PARAMETER is called by
PCM_OP_GPRS_APPLY_PARAMETER.

Updating Custom GSM Service Fields
Use PCM_OP_GSM_POL_APPLY_PARAMETER to update custom fields in the /service/
telco/gsm object. PCM_OP_GSM_POL_APPLY_PARAMETER updates the service flist by
adding values to customized fields for a service. This opcode takes as input the configuration
object flist, the service flist, and the inherited information flist from the calling
PCM_OP_GSM_APPLY_PARAMETER.

By default, PCM_OP_GSM_POL_APPLY_PARAMETER returns an empty inherited info flist.

If you added a substruct to a customized service, you can use
PCM_OP_GSM_POL_APPLY_PARAMETER to fill in the substruct fields. These fields are
updated in the database.

For example, a GSM service (/service/telco/gsm) could include a field for the bearer in the
configuration object (/config/telco) in the service extensions array
PIN_FLD_SERVICE_EXTENSIONS. You could use

Chapter 7
GPRS Opcodes

7-37

PCM_OP_GSM_POL_APPLY_PARAMETER to add the bearer information through the service
extension to update the service flist.

PCM_OP_GSM_POL_APPLY_PARAMETER is called by
PCM_OP_GSM_APPLY_PARAMETER. PCM_OP_GSM_APPLY_PARAMETER reads the
service extensions from the input flist and adds corresponding GSM service values. The
opcode reads the bearer service, APN name, and QoS information from the input flist's
PIN_FLD_SERVICE_EXTENSIONS array and performs the following:

• If the Bearer service is passed in the input flist, the opcode adds the value to the output
flist's PIN_FLD_BEARER_SERVICE field of the PIN_FLD_GSM_INFO substruct.

• If the APN name and QoS are passed in the input flist, the opcode adds the values to the
output flist's PIN_FLD_APN array in the PIN_FLD_INHERITED_INFO substruct.

Chapter 7
GPRS Opcodes

7-38

8
Collections Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) collections
opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Customizing Collections Manager

• Managing Overdue Balance Collection

• Managing Promise-to-Pay Agreements

• Managing Collections Groups

• Performing Manual Collections Actions

• Performing System Collections Actions

• Retrieving Collections Information

For more information about collections, see "Understanding Collections Manager" in BRM
Collections Manager.

Opcodes Described in This Chapter
Table 8-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 8-1 Collections Opcodes Described in This Chapter

Opcode Topic

PCM_OP_COLLECTIONS_ADD_ACTION Adding Actions to a Collections Scenario

PCM_OP_COLLECTIONS_ASSIGN_AGENT Assigning Bill Units to a Collections Agent

PCM_OP_COLLECTIONS_CALC_AGING_BUCKETS Retrieving Aging Buckets Information

PCM_OP_COLLECTIONS_CONFIG_DELETE_ACTION Deleting an Existing Collections Action

PCM_OP_COLLECTIONS_CONFIG_DELETE_PROFILE Deleting an Existing Collections Profile

PCM_OP_COLLECTIONS_CONFIG_DELETE_SCENARIO Deleting an Existing Collections Scenario

PCM_OP_COLLECTIONS_CONFIG_GET_ACTIONS Getting All Currently Defined Collections Actions

PCM_OP_COLLECTIONS_CONFIG_GET_PROFILES Getting All Currently Defined Collections Profiles

8-1

Table 8-1 (Cont.) Collections Opcodes Described in This Chapter

Opcode Topic

PCM_OP_COLLECTIONS_CONFIG_GET_SCENARIO_DE
TAIL

Getting Details of a Collections Scenario

PCM_OP_COLLECTIONS_CONFIG_GET_SCENARIOS Getting All Currently Defined Collections Scenarios

PCM_OP_COLLECTIONS_CONFIG_GET_TEMPLATES Getting a List of Message Templates

PCM_OP_COLLECTIONS_CONFIG_SET_ACTION Creating or Updating Collections Actions

Applying Late Fees

PCM_OP_COLLECTIONS_CONFIG_SET_PROFILE Creating or Updating Collections Profiles

PCM_OP_COLLECTIONS_EXEMPT_BILLINFO Exempting Bill Units from Collections

PCM_OP_COLLECTIONS_GET_ACTION_HISTORY Retrieving Collections Action History Information

PCM_OP_COLLECTIONS_GET_AGENTS_ACTIONS Retrieving a List of Collections Actions

PCM_OP_COLLECTIONS_GET_BILLINFOS Retrieving a List of Bill Units in Collections

PCM_OP_COLLECTIONS_GET_DUNNING_LETTER Retrieving Dunning Letters

PCM_OP_COLLECTIONS_GET_SCENARIO_DETAIL Retrieving Scenario Information

PCM_OP_COLLECTIONS_GET_VALID_SCENARIOS Getting All Valid Collections Scenarios

Replacing a Collections Scenario

PCM_OP_COLLECTIONS_GROUP_ADD_MEMBER Adding Members to a Collections Group

Creating a Collections Group

PCM_OP_COLLECTIONS_GROUP_CREATE Creating a Collections Group

PCM_OP_COLLECTIONS_GROUP_DELETE Deleting a Collections Group

PCM_OP_COLLECTIONS_GROUP_DELETE_MEMBER Removing a Member from a Collections Group

PCM_OP_COLLECTIONS_GROUP_GET_BILLINFO Retrieving a Collections Group

PCM_OP_COLLECTIONS_GROUP_MODIFY Modifying a Collections Group

PCM_OP_COLLECTIONS_GROUP_SET_PARENT Changing the Parent of a Collections Group

PCM_OP_COLLECTIONS_INVOKE_PROMISE_TO_PAY Creating a System-Configured Promise-to-Pay Agreement

Creating a Manually Configured Promise-to-Pay Agreement

PCM_OP_COLLECTIONS_POL_APPLY_FINANCE_CHAR
GES

Applying Finance Charges

PCM_OP_COLLECTIONS_POL_APPLY_LATE_FEES Applying Late Fees

PCM_OP_COLLECTIONS_POL_ASSIGN_AGENT Assigning Bill Units Automatically

Executing Automatic Collections Actions

PCM_OP_COLLECTIONS_POL_ASSIGN_DCA Assigning Bill Units to a Debt Collections Agency

PCM_OP_COLLECTIONS_POL_CALC_DUE_DATE Customizing Due Dates

PCM_OP_COLLECTIONS_POL_EXEC_POLICY_ACTION Executing Pending Actions for a Bill Unit

Performing Custom Collections Actions

PCM_OP_COLLECTIONS_POL_EXIT_SCENARIO Performing Custom Actions when a Bill Unit Leaves
Collections

Executing Automatic Collections Actions

Exempting Bill Units from Collections

PCM_OP_COLLECTIONS_POL_GET_GROUP_TARGET_A
CTIONS

Customizing How to Apply Collections Actions to Collections
Group Members

Chapter 8
Opcodes Described in This Chapter

8-2

Table 8-1 (Cont.) Collections Opcodes Described in This Chapter

Opcode Topic

PCM_OP_COLLECTIONS_POL_GET_VALID_SCENARIOS Getting All Valid Collections Scenarios

PCM_OP_COLLECTIONS_POL_HANDLE_BREACH_PRO
MISE_TO_PAY

Breaking a Promise-to-Pay Agreement

PCM_OP_COLLECTIONS_POL_INITIATE_PAYMENT Executing Pending Actions for a Bill Unit

PCM_OP_COLLECTIONS_POL_INVOKE_PROMISE_TO_P
AY

Creating a System-Configured Promise-to-Pay Agreement

PCM_OP_COLLECTIONS_POL_PREP_DUNNING_DATA Customizing Dunning Letters

Gathering and Storing Data for Dunning Letters

PCM_OP_COLLECTIONS_POL_PROCESS_BILLINFO Executing Automatic Collections Actions

PCM_OP_COLLECTIONS_POL_SELECT_PROFILE Configuring the Currency Used in Collections

Mapping Bill Units to Collections Profiles

Executing Automatic Collections Actions

PCM_OP_COLLECTIONS_PROCESS_BILLINFO Assigning Bill Units Automatically

Mapping Bill Units to Collections Profiles

Performing Custom Actions when a Bill Unit Leaves
Collections

Executing Automatic Collections Actions

Preparing Invoice Reminders

Gathering and Storing Data for Dunning Letters

Executing Pending Actions for a Bill Unit

PCM_OP_COLLECTIONS_REPLACE_SCENARIO Replacing a Collections Scenario

PCM_OP_COLLECTIONS_RESCHEDULE_ACTION Rescheduling an Action Scheduled for a Bill Unit

Rescheduling a Promise-to-Pay Action

PCM_OP_COLLECTIONS_REVOKE_PROMISE_TO_PAY Breaking a Promise-to-Pay Agreement

Canceling a Promise-to-Pay Agreement

PCM_OP_COLLECTIONS_SET_ACTION_STATUS Changing the Status of a Collections Action

Changing the Status of a Promise-to-Pay Action

PCM_OP_COLLECTIONS_SET_DUNNING_LETTER Customizing Dunning Letters

Gathering and Storing Data for Dunning Letters

PCM_OP_COLLECTIONS_SET_INVOICE_REMINDER Preparing Invoice Reminders

PCM_OP_COLLECTIONS_TAKE_ACTION Applying Finance Charges

Applying Late Fees

Customizing How to Apply Collections Actions to Collections
Group Members

Performing Custom Collections Actions

Executing Automatic Collections Actions

Gathering and Storing Data for Dunning Letters

Executing Pending Actions for a Bill Unit

PCM_OP_COLLECTIONS_UPDATE_ACTION_PAYMENT_
DETAILS

Updating Amount and Payment Details

PCM_OP_GROUP_ADD_MEMBER Adding Members to a Collections Group

Creating a Collections Group

Chapter 8
Opcodes Described in This Chapter

8-3

Table 8-1 (Cont.) Collections Opcodes Described in This Chapter

Opcode Topic

PCM_OP_GROUP_CREATE_GROUP Creating a Collections Group

PCM_OP_GROUP_DELETE_GROUP Deleting a Collections Group

PCM_OP_GROUP_SET_PARENT Changing the Parent of a Collections Group

PCM_OP_INV_FORMAT_INVOICE Retrieving Dunning Letters

PCM_OP_PYMT_POL_EXEC_COLLECTIONS_ACTION Completing Promise-to-Pay Installments during Payment
Processing

PCM_OP_UMS_SET_MESSAGE Preparing Invoice Reminders

Customizing Collections Manager
See the following topics:

• Customizing Due Dates

• Customizing Dunning Letters

• Applying Finance Charges

• Applying Late Fees

• Assigning Bill Units Automatically

• Assigning Bill Units to a Debt Collections Agency

• Customizing How to Apply Collections Actions to Collections Group Members

• Performing Custom Collections Actions

• Performing Custom Actions when a Bill Unit Leaves Collections

Configuring the Currency Used in Collections
The default profile uses US dollars for the currency. To use a different currency for collections,
edit the PCM_OP_COLLECTIONS_POL_SELECT_PROFILE policy opcode.

If a scenario is configured in any other currency, you must customize the
PCM_OP_COLLECTIONS_POL_SELECT_PROFILE policy opcode to consider this scenario
for collections.

Customizing Due Dates
Use PCM_OP_COLLECTIONS_POL_CALC_DUE_DATE to customize how collections actions
due dates are determined. For example, for collections actions that fall on a holiday, you can
customize this opcode to set the action due date to the following day.

By default, if any collections action falls on a Saturday or Sunday, this opcode sets the action
due date to the following Monday.

Customizing Dunning Letters
PCM_OP_COLLECTIONS_POL_PREP_DUNNING_DATA enables customization of dunning
letter data before it is stored in the database. You can modify the type of data gathered by

Chapter 8
Customizing Collections Manager

8-4

customizing the opcode. For example, you can enrich the standard data with additional
information, such as the date on which the account is inactivated.

By default, PCM_OP_COLLECTIONS_POL_PREP_DUNNING_DATA gathers the following
data for your dunning letters:

• Current overdue amount

• Currency type

• Current bill unit overdue date

• Account POID

Note:

By default, PCM_OP_COLLECTIONS_POL_PREP_DUNNING_DATA gathers the
data required for typical dunning letter templates, such as for the samples in
BRM_home/sys/data/config/stylesheets. If you use custom templates with
placeholders for nondefault data, you must customize this opcode.

PCM_OP_COLLECTIONS_POL_PREP_DUNNING_DATA is called by
PCM_OP_COLLECTIONS_SET_DUNNING_LETTER.

Applying Finance Charges
Use PCM_OP_COLLECTIONS_POL_APPLY_FINANCE_CHARGES to apply finance charges
to overdue amounts.

This opcode is called by PCM_OP_COLLECTIONS_TAKE_ACTION to calculate the finance
charge when the scenario associated with the bill unit calls for finance charges.

By default, its calculation is based on the finance charge action definition entered in Collections
Configuration. The finance charge percentage from Collections Configuration is stored in the /
collections_action/finance_charge object, which is created when the account bill unit enters
a scenario that includes a finance charge action.

Required inputs include the POID of the /collections_action/finance_charge object for this
finance charge, POID of the bill unit, POID of the account with which this bill unit is associated,
overdue amount, and overdue date.

You can customize PCM_OP_COLLECTIONS_POL_APPLY_FINANCE_CHARGES to change
the way a finance charge is calculated or to add functionality. For example, you can customize
this opcode to calculate the finance charge from the customer's average daily balance rather
than the current balance.

You can also customize PCM_OP_COLLECTIONS_POL_APPLY_FINANCE_CHARGES to
find a specific balance group where finance charges apply. By default, BRM applies finance
charges to the bill unit's default balance group.

By default, errors in the syntax of the input flist cause
PCM_OP_COLLECTIONS_POL_APPLY_FINANCE_CHARGES to fail. Customizing this
opcode may introduce additional error conditions.

By default, PCM_OP_COLLECTIONS_POL_APPLY_FINANCE_CHARGES returns the POID
of the /collections_action/finance_charge object, the POID of the bill unit, the action status,

Chapter 8
Customizing Collections Manager

8-5

and the PIN_FLD_EVENT substruct. After customization, the return value depends on the
features implemented.

If PCM_OP_COLLECTIONS_POL_APPLY_FINANCE_CHARGES fails, it returns an error in
the error buffer. The transaction is rolled back.

Applying Late Fees
Use PCM_OP_COLLECTIONS_POL_APPLY_LATE_FEES to apply a late fee to overdue
charges.

This opcode is called by PCM_OP_COLLECTIONS_CONFIG_SET_ACTION and
PCM_OP_COLLECTIONS_TAKE_ACTION when the scenario associated with a bill unit calls
for late fees. By default, it uses the late fee action definition entered in Collections
Configuration. The late fee amount or percentage is stored in the /collections_action/late_fee
object, which is created when the account bill unit enters a scenario that includes a late fee
action.

Required inputs include the POID of the /collections_action/late_fee object for this late fee,
the POID of the bill unit or the POID of the account to which the bill unit belongs, the overdue
amount, and the overdue date.

PCM_OP_COLLECTIONS_POL_APPLY_LATE_FEES performs the following tasks by default:

• Gathers the late fee definition information and, if it is based on a percentage, calculates the
amount.

• Converts currency, if necessary.

You can customize this opcode to change how the late fee is calculated or to add functionality.
For example, you can customize this opcode to calculate a percentage-based late fee from the
customer's average daily balance rather than from the current balance.

You can also customize PCM_OP_COLLECTIONS_POL_APPLY_LATE_FEES to find specific
balance groups where late fees apply. By default, BRM applies late fees to the default balance
group of the bill unit.

By default, errors in the input flist cause this opcode to fail. Customizing this opcode may
introduce additional error conditions.

By default, this opcode returns the POID of the /collections_action/late_fee object and the
status of the action. After customization, the return value depends on the features
implemented.

If PCM_OP_COLLECTIONS_POL_APPLY_LATE_FEES fails, it returns an error in the error
buffer. The transaction is rolled back.

Assigning Bill Units Automatically
Use PCM_OP_COLLECTIONS_POL_ASSIGN_AGENT to automatically assign bill units to
collections agents. This opcode is an empty hook.

This opcode can be modified to customize how account bill units are assigned to collections
agents.

This opcode is called by PCM_OP_COLLECTIONS_PROCESS_BILLINFO.

Chapter 8
Customizing Collections Manager

8-6

Assigning Bill Units to a Debt Collections Agency
Use PCM_OP_COLLECTIONS_POL_ASSIGN_DCA to automate the logic of selecting a debt
collections agent (DCA) when multiple DCAs are configured. This opcode is an empty hook.

This opcode is called when a system collections action of type Refer to outside agency is
run.

Customizing How to Apply Collections Actions to Collections Group
Members

Use PCM_OP_COLLECTIONS_POL_GET_GROUP_TARGET_ACTIONS to override the
action target setting in the /config/collections_actions object. This opcode is an empty hook.

You can customize PCM_OP_COLLECTIONS_POL_GET_GROUP_TARGET_ACTIONS to
use additional attributes for deciding which bill units to apply a collections action to:

• The individual bill unit only

• The parent and all child bill units in the collections group

• All child bill units in the collections group

PCM_OP_COLLECTIONS_POL_GET_GROUP_TARGET_ACTIONS is called by
PCM_OP_COLLECTIONS_TAKE_ACTION.

You can customize this opcode to use additional attributes for deciding to which bill units to
apply the collections action.

PCM_OP_COLLECTIONS_POL_GET_GROUP_TARGET_ACTIONS must return in the output
flist the /account POID and one of the following:

• The PIN_FLD_BILLINFO array with a list of /billinfo objects to which to apply the
collections action.

• The PIN_FLD_TARGET field set to one of the following:

– 0 to apply the collections action to the bill unit passed in the input flist.

– 1 to apply the collections action to the parent and all child bill units in the collections
group.

– 2 to apply the collections action to all child bil units in the collections group.

Mapping Bill Units to Collections Profiles
Use PCM_OP_COLLECTIONS_POL_SELECT_PROFILE to map a bill unit to a collections
profile. By default, this opcode maps all bill units to the default collections profile, but you can
customize it to map bill units to custom profiles based on specific criteria.

For example, you can assign bill units to profiles based on credit score. You can map bill units
with low credit scores to profiles with more aggressive collections scenarios and bill units with
high credit scores to profiles with more lenient collections scenarios.

The default profile uses US Dollars for the currency. To use a different currency for collections,
you must edit this opcode.

Chapter 8
Customizing Collections Manager

8-7

Your custom code must return the POID of the /config/collections/profile object or the
collections profile to which the bill units map. BRM creates profile objects when you define one
in Collections Configuration.

PCM_OP_COLLECTIONS_POL_SELECT_PROFILE is called by
PCM_OP_COLLECTIONS_PROCESS_BILLINFO.

Performing Custom Collections Actions
Use PCM_OP_COLLECTIONS_POL_EXEC_POLICY_ACTION to perform custom collections
actions, such as sending SMS text messages to a customer's wireless phone. By default, this
opcode sets the collections action status to Pending and then returns to the calling opcode.

This opcode is called by PCM_OP_COLLECTIONS_TAKE_ACTION.

The names and descriptions of custom actions are created in Collections Configuration and
are stored in /collections_action objects. This information is then passed in an input flist to
PCM_OP_COLLECTIONS_POL_EXEC_POLICY_ACTION. When you customize this opcode,
you use this bill unit information to find any other information required for a particular custom
action.

Performing Custom Actions when a Bill Unit Leaves Collections
Use PCM_OP_COLLECTIONS_POL_EXIT_SCENARIO to perform custom tasks, such as
cleaning up files or modifying a customer's credit score, when a bill unit exits collections. This
opcode is an empty hook.

This opcode is called by PCM_OP_COLLECTIONS_PROCESS_BILLINFO.

Managing Overdue Balance Collection
See the following topics:

• Creating or Updating Collections Actions

• Creating or Updating Collections Profiles

• Getting All Currently Defined Collections Actions.

• Getting All Currently Defined Collections Profiles

• Getting All Currently Defined Collections Scenarios

• Getting Details of a Collections Scenario

• Getting a List of Message Templates

• Deleting an Existing Collections Action

• Deleting an Existing Collections Profile

• Deleting an Existing Collections Scenario

Creating or Updating Collections Actions
Use PCM_OP_COLLECTIONS_CONFIG_SET_ACTION to create or update a collections
action.

Collections Configuration calls this opcode when a user creates a new action or modifies an
existing action.

Chapter 8
Managing Overdue Balance Collection

8-8

As input, PCM_OP_COLLECTIONS_CONFIG_SET_ACTION takes the POID of the /config/
collections/action object to create or update and it takes the action's name and type. This
opcode uses the POID ID to determine whether to create a new action object or update an
existing action object:

• If the PIN_FLD_POID field is set to -1, this opcode creates a new /config/collections/
action object.

• If the PIN_FLD_POID field is set to the POID of an existing action object, this opcode
updates the object.

PCM_OP_COLLECTIONS_CONFIG_SET_ACTION stops processing if the POID of the /
config/collections/action object in the input flist is missing or invalid.

If successful, PCM_OP_COLLECTIONS_CONFIG_SET_ACTION returns the POID of the /
config/collections/action object that was created or updated.

Creating or Updating Collections Profiles
Use PCM_OP_COLLECTIONS_CONFIG_SET_PROFILE to create or update a collections
profile.

Collections Configuration calls this opcode when a user creates or modifies a profile.

As input, PCM_OP_COLLECTIONS_CONFIG_SET_PROFILE takes the POID of the /config/
collections/profile object to create or update and it takes the profile's name, description, and
the currency used for the profile. This opcode uses the POID ID to determine whether to create
a new profile object or update an existing profile object:

• If the PIN_FLD_POID field is set to -1, this opcode creates a new /config/collections/
profile object.

• If the PIN_FLD_POID field is set to the POID of an existing profile object, this opcode
updates the object.

PCM_OP_COLLECTIONS_CONFIG_SET_PROFILE stops processing if the POID of the /
config/collections/profile object in the input flist is missing or invalid.

If PCM_OP_COLLECTIONS_CONFIG_SET_PROFILE fails, it returns an error in the error
buffer.

If successful, PCM_OP_COLLECTIONS_CONFIG_SET_PROFILE returns the POID of the /
config/collections/profile object that was created or updated.

Getting All Currently Defined Collections Actions
Use PCM_OP_COLLECTIONS_CONFIG_GET_ACTIONS to get a list of all currently defined
collections actions.

Collections Configuration calls this opcode to retrieve a list of actions and their definitions.

As input, this opcode takes a dummy POID used to get the database ID. This opcode then
searches the database for the /config/collections/action object that contains definitions of
collections actions. The object is created when new actions are defined in Collections
Configuration.

If PCM_OP_COLLECTIONS_CONFIG_GET_ACTIONS fails, it returns an error in the error
buffer.

If successful, this opcode returns a results array that contains the POID, name, description,
and type of the actions returned. It also returns the PIN_FLD_OPCODE field, which shows the

Chapter 8
Managing Overdue Balance Collection

8-9

opcode to use to run the actions. If any action involves sending a dunning letter, the output flist
returns the POID of the template used by this action.

Getting All Currently Defined Collections Profiles
Use PCM_OP_COLLECTIONS_CONFIG_GET_PROFILES to retrieve a list of currently
defined collections profiles.

Collections Configuration calls this opcode to display all currently defined profiles.

As input, this opcode takes a dummy POID used to get the database ID. This opcode then
searches the database for the /config/collections/profile object. This object is created when
a new collections profile is defined in Collections Configuration.

If this opcode fails, it returns an error in the error buffer.

If successful, this opcode returns a results array that contains the POID, name, description,
and the currency used for each profile found.

Getting All Currently Defined Collections Scenarios
Use PCM_OP_COLLECTIONS_CONFIG_GET_SCENARIOS to get a list of all collections
scenarios and associated profiles.

Collections Configuration calls this opcode to list all currently defined scenarios and profiles.

As input, this opcode takes a dummy POID used to get the database ID. This opcode then
searches the database for the /config/collections/scenario object. This object is created
when a new collections scenario is defined in Collections Configuration.

This opcode also retrieves the /config/collections/profile object, which contains definitions of
profiles that are associated with scenarios.

If this opcode fails, it returns an error in the error buffer.

If successful, this opcode returns a results array that contains the POID and name of each
scenario. It also returns the POID and name of the profile associated with each scenario.

Getting Details of a Collections Scenario
Use PCM_OP_COLLECTIONS_CONFIG_GET_SCENARIO_DETAIL to get details of a
particular collections scenario.

Collections Configuration calls this opcode to display details of the selected scenario.

As input, this opcode takes the POID of the /config/collections/scenario object.

This opcode stops processing if the POID of the /config/collections/scenario object in the
input flist is missing or invalid.

If this opcode is not successful, it logs an error in the CM pinlog file, indicating the reason for
the failure.

If successful, PCM_OP_COLLECTIONS_CONFIG_GET_SCENARIO_DETAIL returns a
results array that contains the POID of the /config/collections/scenario object, the name of
the scenario, and the POID of the profile associated with the scenario.

It also returns an array that contains details for the action associated with the scenario,
including the action object POID, name, description, type, and the PIN_FLD_OPCODE field,

Chapter 8
Managing Overdue Balance Collection

8-10

which shows the opcode to use to run the action. If the action involves sending a dunning
letter, the output flist returns the POID of the template used by this action.

Getting a List of Message Templates
Use PCM_OP_COLLECTIONS_CONFIG_GET_TEMPLATES to get a list of templates.

When a user creates or updates an action that requires a template, Collections Configuration
calls this opcode to display a list of available templates.

As input, PCM_OP_COLLECTIONS_CONFIG_GET_TEMPLATES takes the action type, the
template's location, and a dummy POID used to get the database ID.

The opcode performs the following:

• Reads the action type from the input flist. The PIN_FLD_ACTION_TYPE field specifies
DUNNING_LETTER.

• Reads the /config/invoice_templates/dunning objects to retrieve dunning letter
templates. BRM creates these objects and automatically creates subclasses of /config/
invoice_templates when loading the dunning letter templates.

If this opcode fails, it returns an error in the error buffer.

If successful, this opcode returns an array containing the POID and name of each template
that matches the locale and action type specified in the input flist.

Deleting an Existing Collections Action
Use PCM_OP_COLLECTIONS_CONFIG_DELETE_ACTION to delete an existing collections
action.

Collections Configuration calls this opcode when a user deletes a collections action.

This opcode takes the POID of the /config/collections/action object to delete, verifies that the
object is not used by any scenario, and deletes the object.

PCM_OP_COLLECTIONS_CONFIG_DELETE_ACTION stops processing if:

• The POID of the /config/collections/action object in the input flist is missing or invalid.

• The action object is used by a scenario.

If this opcode is not successful, it sets the PIN_FLD_RESULT field to Fail in the output flist. If
the scenario is in use, an appropriate message is displayed in Collections Configuration.

If successful, this opcode returns the POID of the /config/collections/action object and the
PIN_FLD_RESULT field, which shows the results of the deletion.

Deleting an Existing Collections Profile
Use PCM_OP_COLLECTIONS_CONFIG_DELETE_PROFILE to delete an existing collections
profile.

Note:

Users cannot delete a default profile created during the installation of Collections
Configuration.

Chapter 8
Managing Overdue Balance Collection

8-11

Collections Configuration calls this opcode when a user deletes a collections profile.

This opcode takes the POID of the /config/collections/profile object to delete, verifies that
the object is not used by any scenario, and deletes the object.

PCM_OP_COLLECTIONS_CONFIG_DELETE_PROFILE stops processing if:

• The POID of the /config/collections/profile object in the input flist is missing or invalid.

• The object is used by a scenario.

If this opcode is not successful, it logs an error in the CM pinlog file, indicating the reason for
the failure.

If successful, this opcode returns the POID of the /config/collections/profile object and the
PIN_FLD_RESULT field, which shows the results of the deletion.

Deleting an Existing Collections Scenario
Use PCM_OP_COLLECTIONS_CONFIG_DELETE_SCENARIO to delete an existing
collections scenario.

Collections Configuration calls this opcode when a user deletes a scenario.

This opcode takes the POID of the /config/collections/scenario object to delete, verifies that
the object is not used by any bill units that are currently in collections and was not used by any
bill units that were previously in collections, and deletes the object.

PCM_OP_COLLECTIONS_CONFIG_DELETE_SCENARIO stops processing if:

• The POID of the /config/collections/scenario object in the input flist is missing or invalid.

• The object is currently used by one or more bill units in collections.

• The object was previously used by one or more bill units that entered into collections. The
collections scenario cannot be deleted even after a bill unit has exited from collections
because the association between the collections scenario and the collections objects still
remains.

If this opcode is not successful, it logs an error in the CM pinlog file, indicating the reason for
the failure.

If successful, this opcode returns the POID of the /config/collections/scenario object and the
PIN_FLD_RESULT field, which shows the results of the deletion.

Managing Promise-to-Pay Agreements
To manage your customer's promise-to-pay agreements, see the following:

• Creating a System-Configured Promise-to-Pay Agreement

• Creating a Manually Configured Promise-to-Pay Agreement

• Updating Amount and Payment Details

• Canceling a Promise-to-Pay Agreement

• Breaking a Promise-to-Pay Agreement

• Rescheduling a Promise-to-Pay Action

• Changing the Status of a Promise-to-Pay Action

• Completing Promise-to-Pay Installments during Payment Processing

Chapter 8
Managing Promise-to-Pay Agreements

8-12

The promise-to-pay opcodes are called by Billing Care and Collections Center. You can
customize your client application to call these opcodes for managing promise-to-pay
agreements.

For more information about promise-to-pay agreements, see "Managing Promise-to-Pay
Agreements" in BRM Collections Manager.

Creating a System-Configured Promise-to-Pay Agreement
Use PCM_OP_COLLECTIONS_INVOKE_PROMISE_TO_PAY to create a promise-to-pay
agreement with system-configured details. With system-configured agreements, Collections
Manager calculates the installment schedule and installment amount for you. For example,
a $500 promise-to-pay agreement could be created with five installments of $100 each that is
due every 30 days.

To create a promise-to-pay agreement with system-configured details, pass in the following
information in the opcode's input flist:

• The account and bill unit in collections (PIN_FLD_POID and PIN_FLD_BILLINFO_OBJ)

• The collections scenario (PIN_FLD_SCENARIO_OBJ)

• The total amount that the customer promises to pay (PIN_FLD_AMOUNT under the
PIN_FLD_PROMISE_TO_PAY_INFO substruct)

• The due date for the first promise-to-pay installment (PIN_FLD_INVOKE_T under the
PIN_FLD_PROMISE_TO_PAY_INFO substruct)

• The installment schedule and amount. Include the following fields under the
PIN_FLD_PROMISE_TO_PAY_INFO substruct:

– Either PIN_FLD_AMOUNT set to the amount owed for each installment, or
PIN_FLD_NUM_MILESTONES set to the number of installment payments.

If the installment amount is provided, Collections Manager calculates the number of
installments as the total promise-to-pay amount divided by the installment amount. If
the number of installments is provided, Collections Manager calculates the installment
amount as the total promise-to-pay amount divided by the number of installments.

– Either PIN_FLD_MILESTONE_INTERVAL set to the number of days between each
installment payment, or PIN_FLD_DAYS set to the total number of days in which the
full outstanding amount is paid off.

If the interval is provided, Collections Manager calculates the agreement's total
number of days by multiplying the interval by the number of installments. If the
agreement's total number of days is provided, Collections Manager calculates the
interval as the total number of days divided by the number of installments.

PCM_OP_COLLECTIONS_INVOKE_PROMISE_TO_PAY performs the following actions:

1. Calls the PCM_OP_COLLECTIONS_POL_INVOKE_PROMISE_TO_PAY policy opcode to
perform additional validation, such as preventing promise-to-pay agreements that go
beyond 30 days. By default, this opcode is an empty hook.

2. Calculates the installment schedule and installment amount.

3. Creates a /collections_action/promise_to_pay object for each promise-to-pay
installment.

4. Creates an /event/activity/collections/promise_to_pay object to record the details about
the promise-to-pay agreement.

Chapter 8
Managing Promise-to-Pay Agreements

8-13

5. Reschedules all outstanding collections actions in the bill unit to continue, starting one day
after the last promise-to-pay installment due date.

6. Generates an /event/audit/collections/actions audit event to record the changes to the
collections actions.

Creating a Manually Configured Promise-to-Pay Agreement
Use PCM_OP_COLLECTIONS_INVOKE_PROMISE_TO_PAY to create a promise-to-pay
agreement with manually configured details. Manually configured agreements allow you to
create installments with varying amounts owed and varying intervals between installments. For
example, you could create a $500 promise-to-pay agreement with the installments shown in
Table 8-2.

Table 8-2 Sample Manually Configured Promise-to-Pay Installments

Installment
Number

Interval Between Installments Amount Owed

1 0 $250

2 30 Days $100

3 15 Days $100

4 20 Days $50

To create a promise-to-pay agreement with manually configured details, pass in the following
information in the opcode's input flist:

• The account and bill unit in collections (PIN_FLD_POID and PIN_FLD_BILLINFO_OBJ)

• The collections scenario to apply (PIN_FLD_SCENARIO_OBJ)

• The promise-to-pay specification to apply (PIN_FLD_SPEC_NAME)

• The total amount that the customer promises to pay (PIN_FLD_AMOUNT under the
PIN_FLD_PROMISE_TO_PAY_INFO substruct)

• The due date for the first promise-to-pay installment (PIN_FLD_INVOKE_T under the
PIN_FLD_PROMISE_TO_PAY_INFO substruct)

• For each installment, its due date and the amount owed. The sum of all installments must
equal 100% of the promise-to-pay agreement amount.

For each installment, add a PIN_FLD_MILESTONES array with the following fields:

– PIN_FLD_MILESTONE_INTERVAL set to the number of days between the previous
installment and this installment.

Set the interval for the first installment to 0, because the due date of the first
installment has already been set.

– Either PIN_FLD_MILESTONE_AMOUNT set to the amount owed for this installment,
or PIN_FLD_MILESTONE_PERCENTAGE set to the percentage of the total promise-
to-pay amount that will be paid off in this installment.

When the promise-to-pay details are configured manually,
PCM_OP_COLLECTIONS_INVOKE_PROMISE_TO_PAY performs the following actions:

1. Validates that the promise-to-pay agreement's details adhere to the limits in the promise-
to-pay specification (/config/collections/promise_to_pay_spec object).

Chapter 8
Managing Promise-to-Pay Agreements

8-14

2. Calls the PCM_OP_COLLECTIONS_POL_INVOKE_PROMISE_TO_PAY policy opcode to
perform additional validation, such as preventing promise-to-pay agreements that go
beyond 30 days. By default, this opcode is an empty hook.

3. Determines whether to automatically increase the customer's credit limit during the
promise-to-pay period by reading the value of the PIN_FLD_CREDIT_LIMIT_FLAG field in
the /config/collections/promise_to_pay_spec object:

• If the field is set to 0, the credit limit is not adjusted.

• If the field is set to 1, it calls the PCM_OP_BILL_SET_LIMIT_AND_CR opcode to
temporarily increase the bill unit's credit limit, if needed. See "Managing Credit Limits
and Sub-Balance Consumption Rules" for more information.

4. Creates a /collections_action/promise_to_pay object for each promise-to-pay
installment.

5. Creates an /event/activity/collections/promise_to_pay object to record details about the
promise-to-pay agreement.

6. Reschedules all outstanding collections actions in the bill unit to continue, beginning one
day after the last promise-to-pay installment due date.

7. Generates an /event/audit/collections/actions audit event to record the changes to the
collections actions.

Updating Amount and Payment Details
Use PCM_OP_COLLECTIONS_UPDATE_ACTION_PAYMENT_DETAILS to update the
amount and payment details for a collections action.

Billing Care and Collections Center call this opcode to update the amount and payment details
for the Promise to Pay and Collect Payment actions.

If the input action type is Promise to Pay and the amount details are updated, the opcode
updates the total outstanding amount in the /collections_scenario object with the difference
amount.

If the input action type is Promise to Pay and the payment details are updated, depending on
the option whether the updated details is applicable only to the current installment or includes
the next installments, the opcode updates the details.

When calling this opcode, send only the data that needs to be updated. For example, in a
scenario where only the amount details should be updated, if the payment details are also sent
in the input flist with NULL values, the opcode updates the payment details of the current
action with the NULL values.

Canceling a Promise-to-Pay Agreement
Use PCM_OP_COLLECTIONS_REVOKE_PROMISE_TO_PAY to cancel a promise-to-pay
agreement.

This opcode takes as input the POID of the /event/activity/collections/promise_to_pay
object, the POID of the /account object, the POID of the /collections_scenario object, and
the POID of the /billinfo object. Then, the opcode does the following:

1. Cancels all outstanding promise-to-pay installments and deletes all corresponding /
schedule objects.

2. Sets the status of the overall promise-to-pay agreement to one of the following:

Chapter 8
Managing Promise-to-Pay Agreements

8-15

• Broken: Set to broken only if this opcode is called by the
PCM_OP_COLLECTIONS_POL_HANDLE_BREACH_PROMISE_TO_PAY policy
opcode.

• Canceled: Set to canceled if this opcode is called by an application.

3. Reads the value of the PIN_FLD_CREDIT_LIMIT_FLAG field in the /config/collections/
promise_to_pay_spec object:

• If the value is 1, calls PCM_OP_BILL_SET_LIMIT_AND_CR to decrease the bill unit's
temporary credit limit. See "Managing Credit Limits and Sub-Balance Consumption
Rules for more information".

• If the value is 0, the credit limit is not adjusted.

4. Reschedules all outstanding collections actions to start from the next day and updates the
corresponding /schedule objects.

5. Removes the reference of the /event/activity/collections/promise_to_pay object from
the /collections_scenario object.

Breaking a Promise-to-Pay Agreement
Use the PCM_OP_COLLECTIONS_POL_HANDLE_BREACH_PROMISE_TO_PAY policy
opcode to break a promise-to-pay agreement after a customer misses a promise-to-pay
installment. This opcode is called by PCM_OP_COLLECTIONS_PYMT_COLLECT.

By default, this opcode does the following, but you can customize it to meet your business
needs.

1. Sets the status of the current promise-to-pay installment to Broken.

2. Calls the PCM_OP_COLLECTIONS_REVOKE_PROMISE_TO_PAY opcode to cancel all
outstanding installments, set the status of the overall promise-to-pay agreement to
Broken, and reschedule all collections actions to start from the following day. See
"Canceling a Promise-to-Pay Agreement" for more information.

Rescheduling a Promise-to-Pay Action
Use PCM_OP_COLLECTIONS_RESCHEDULE_ACTION to reschedule a Promise to Pay
action that was scheduled by a bill unit's collections scenario. See "Rescheduling an Action
Scheduled for a Bill Unit".

Changing the Status of a Promise-to-Pay Action
Use PCM_OP_COLLECTIONS_SET_ACTION_STATUS to change the status of a Promise to
Pay action. See "Changing the Status of a Collections Action" .

Completing Promise-to-Pay Installments during Payment Processing
Use the PCM_OP_PYMT_POL_EXEC_COLLECTIONS_ACTION policy opcode to
automatically complete a promise-to-pay installment as part of the payment process. This
opcode is called by PCM_OP_PYMT_COLLECT.

This policy opcode determines whether a payment is for a promise-to-pay installment and then
returns the PIN_FLD_RESULTS[0].PIN_FLD_RESULT output flist field set to one of the
following:

Chapter 8
Managing Promise-to-Pay Agreements

8-16

• PIN_PYMT_RES_NO_EXEC_COLLECTIONS_ACTION (1): The payment is not for a
promise-to-pay installment. This is the default.

• PIN_PYMT_RES_EXEC_COLLECTIONS_ACTION (0): The payment is for a promise-to-
pay installment.

When PIN_PYMT_RES_EXEC_COLLECTIONS_ACTION (0) is returned,
PCM_OP_PYMT_COLLECT changes the promise-to-pay installment's status to Completed.

By default, the PCM_OP_PYMT_POL_EXEC_COLLECTIONS_ACTION policy opcode returns
PIN_PYMT_RES_EXEC_COLLECTIONS_ACTION (0) when the following is true, but you can
customize the policy opcode to meet your business needs.

• The bill unit is in collections.

• In the PIN_FLD_PAYMENT_REASONS input flist array, the PIN_FLD_REASON_ID is set
to 15 and the PIN_FLD_REASON_DOMAIN_ID field is set to 5.

For information about the reason ID values, see the BRM_home/sys/msgs/reasoncodes/
reasons.en_US file.

Managing Collections Groups
See the following topics:

• Creating a Collections Group

• Adding Members to a Collections Group

• Removing a Member from a Collections Group

• Deleting a Collections Group

• Retrieving a Collections Group

• Modifying a Collections Group

• Changing the Parent of a Collections Group

Creating a Collections Group
Use PCM_OP_COLLECTIONS_GROUP_CREATE to group bill units into a collections group.

This opcode takes as input the /account POID and the /billinfo POID of the group owner, the /
billinfo POIDs of the members of the group, and the name of the collections group.

If you pass a member's details in the input flist, the opcode calls
PCM_OP_COLLECTIONS_GROUP_ADD_MEMBER opcode to add the member to the
collections group.

PCM_OP_COLLECTIONS_GROUP_CREATE performs the following actions:

• Validates that the parent bill unit is not already a parent or member of another collections
group.

• Calls PCM_OP_GROUP_CREATE_GROUP to create the /group/collections_targets
object. When a group is created, events are created.

The /event/group/collections_targets event contains details of a parent and members in
the PIN_FLD_MEMBERS array.

The /event/group/parent event contains details of a parent.

Chapter 8
Managing Collections Groups

8-17

• Calls PCM_OP_GROUP_ADD_MEMBER to add members to the /group/
collections_targets object.

If the opcode fails, it returns an error in the error buffer. The transaction is rolled back.

If successful, PCM_OP_COLLECTIONS_GROUP_CREATE returns the POID of the /group/
collections_targets object.

Adding Members to a Collections Group
Use PCM_OP_COLLECTIONS_GROUP_ADD_MEMBER to add a child member to an
existing collections group. This opcode checks whether the prospective member is an account
that has a nonpaying bill unit. Such accounts cannot be added as members of a collections
group. If the account is already in the collections group, it is ignored.

This opcode takes as input the POID of the /group/collections_targets object, the /billinfo
POID of the new member, and the name of the collections group.

PCM_OP_COLLECTIONS_GROUP_ADD_MEMBER performs the following actions:

• Validates that the new child member is not a parent or member of the existing collections
group.

• Calls PCM_OP_GROUP_ADD_MEMBER to add the bill unit to the /group/
collections_targets object.

If the opcode fails, it returns an error in the error buffer. The transaction is rolled back.

If successful, PCM_OP_COLLECTIONS_GROUP_ADD_MEMBER returns the POID of the /
group/collections_targets object.

Removing a Member from a Collections Group
Use PCM_OP_COLLECTIONS_GROUP_DELETE_MEMBER to remove a member from an
existing collections group.

This opcode takes as input the POID of the /group/collections_targets object and the POID
of the /billinfo object to remove the member and returns the POID of the /group/
collections_targets object.

Deleting a Collections Group
Use PCM_OP_COLLECTIONS_GROUP_DELETE to delete an existing collections group.

This opcode takes as input the POID of the /group/collections_targets object to delete, calls
PCM_OP_GROUP_DELETE_GROUP opcode to delete the specified object, and returns the
POID of the /group/collections_targets object.

If the collections group is already in collections, the opcode throws an error.

Retrieving a Collections Group
Use PCM_OP_COLLECTIONS_GROUP_GET_BILLINFO to retrieve:

• Whether the specified bill unit is a member of a collections group.

• The pending receivables for each bill unit. If a bill unit is a parent of a collections group, it
also provides the name of the collections group and its child member bill units.

This opcode is called directly by Collections Center.

Chapter 8
Managing Collections Groups

8-18

PCM_OP_COLLECTIONS_GROUP_GET_BILLINFO takes as input the /account or /billinfo
POID and performs the following actions:

• If the /billinfo POID is not passed in, retrieves all /billinfo objects associated with the /
account object.

• For each /billinfo object, reads the associated /group/collections_targets object to
determine whether the bill unit belongs to a collections group and, if it does, whether it is a
parent bill unit or a child bill unit.

– If it is not a member of a collections group, returns the /group/collections_targets
POID and the PIN_FLD_BOOLEAN field set to 0.

– If it is a child in a collections group, returns the /group/collections_targets POID and
the PIN_FLD_BOOLEAN field set to 1.

– If it is a parent in a collections group, returns the /group/collections_targets POID,
the PIN_FLD_BOOLEAN field set to 1, and the pending receivables of all group
members.

Modifying a Collections Group
Use PCM_OP_COLLECTIONS_GROUP_MODIFY to modify an existing collections group,
such as renaming the collections group, changing the parent member, and replacing all of the
existing child members.

This opcode takes as input the POID of the /group/collections_targets object and the
information to change, modifies the collections group, and returns the POID of the /group/
collections_targets object.

Changing the Parent of a Collections Group
Use PCM_OP_COLLECTIONS_GROUP_SET_PARENT to change a collections group's
existing parent bill unit.

This opcode takes as input the POID of the /group/collections_targets object, the name of
the calling program, and the POID of the new parent bill unit.

PCM_OP_COLLECTIONS_GROUP_SET_PARENT performs the following actions:

• Validates that the new parent bill unit is not a child of the existing collections group.

• Validates that the new parent bill unit is not already a parent of another collections group.

• Calls PCM_OP_GROUP_SET_PARENT to assign the new parent bill unit to the /group/
collections_targets object.

If the opcode fails, it returns an error in the error buffer. The transaction is rolled back.

If successful, PCM_OP_COLLECTIONS_GROUP_SET_PARENT returns the POID of the /
group/collections_targets object.

Performing Manual Collections Actions
To enable your custom client application to update Collections Manager after manual actions
occur, customize it to accept the information required by the target opcode's input flist and pass
the information to the target opcode.

• Assigning Bill Units to a Collections Agent

• Adding Actions to a Collections Scenario

Chapter 8
Performing Manual Collections Actions

8-19

• Exempting Bill Units from Collections

• Rescheduling an Action Scheduled for a Bill Unit

• Changing the Status of a Collections Action

• Replacing a Collections Scenario

Assigning Bill Units to a Collections Agent
Use PCM_OP_COLLECTIONS_ASSIGN_AGENT to assign bill units to a collections agent.

Collections Center calls this opcode when a collections manager assigns a bill unit to a
particular agent.

This opcode takes as input the POID of the agent's account and the PIN_FLD_BILLINFO
array, which specifies the bill units to assign to the agent.

This opcode performs the following actions:

• Assigns each bill unit in the PIN_FLD_BILLINFO array to the agent.

• Updates bill unit scenarios with the agent's account POID.

• Returns the account POID of the agent responsible for the bill units and an array of the bill
units assigned to the specified agent.

This opcode stops processing if the bill unit information in the input flist is missing or invalid.

If this opcode stops processing, it logs an error in the CM pinlog file, indicating the reason for
the failure. The transaction is rolled back.

If successful, this opcode returns the account POID of the agent responsible for the bill units
and an array of the bill units assigned to the agent.

Adding Actions to a Collections Scenario
Use PCM_OP_COLLECTIONS_ADD_ACTION to add collections actions to a bill unit's
collections scenario.

Collections Center calls this opcode when CSRs add actions to a collections scenario.

This opcode takes as input a dummy POID, the /collections_scenario POID, the CSR's login
account POID, the new action object's POID, and the action's due date.

This opcode performs the following actions:

• Checks the CSR account POID to make sure the user is authorized to add actions.

• Adds a new action to a scenario and updates the output flist with the new action POID.

• Sets the new action's status. If collections action dependencies are enabled, checks
whether the subsequent action's status is set to Pending. If so, sets the new action's
status to Pending and updates the subsequent action's status to Waiting For
Dependents. If not, sets the new action's status to Waiting For Dependents.

Note:

Actions cannot be inserted before, between, or on the same day as any canceled
or completed actions.

Chapter 8
Performing Manual Collections Actions

8-20

• Checks to see if the PIN_FLD_DAYS field is present in the input flist. If so,
PCM_OP_COLLECTIONS_ADD_ACTION checks the contents of the field to determine
whether the actions that follow must be rescheduled.

– If PIN_FLD_DAYS is equal to 0, the actions are not rescheduled.

– If PIN_FLD_DAYS is less than 0, the actions are canceled.

– If PIN_FLD_DAYS is greater than 0, the value specified indicates the number of days
the actions is delayed.

• Checks to see if the type of collections action is Collect Payment and the Credit Card or
Debit Card credentials are specified and does the following:

– Creates a /payinfo object with the credentials in the input flist.

– Creates the /collections_action/collect_payment action to hold the amount to be
paid and a link to /payinfo object.

• Checks to see if the type of collections action is Promise to Pay and does the following:

– Validates if the promise-to-pay agreement is already called for the bill unit and the due
date is not before INVOKE_T of the active promise.

– Updates the outstanding amount under the /collections_scenario object with the
amount for the new payment milestone.

• Updates the output flist with the new data for each rescheduled action.

PCM_OP_COLLECTIONS_ADD_ACTION stops processing if:

• The CSR account POID does not match the POID of a user who has permission to add
actions.

• The action information in the input flist is missing or invalid.

If this opcode stops processing, it logs an error in the CM pinlog file, indicating the reason for
the failure. The transaction is rolled back.

If successful, this opcode returns PIN_FLD_POID set to the POID of the new action added and
updates the output flist with the new data for each rescheduled action.

Exempting Bill Units from Collections
Use PCM_OP_COLLECTIONS_EXEMPT_BILLINFO to exempt bill units from collections.

Collections Center calls this opcode when a CSR exempts a bill unit from collections.

This opcode takes as input the POID of the bill unit to exempt from collections and the POID of
the account that owns the bill unit.

If the bill unit is already in collections, this opcode performs the following actions:

• Calls PCM_OP_COLLECTIONS_POL_EXIT_SCENARIO to remove the bill unit from the
scenario.

• Cancels all pending and error actions scheduled for this bill unit.

• Sets the bill unit's PIN_FLD_SCENARIO_OBJ field to NULL to indicate that this bill unit is
not in collections.

• Sets the exemption flag so that the bill unit never enters collections, even if it has an
overdue balance.

If the bill unit is not in collections, PCM_OP_COLLECTIONS_EXEMPT_BILLINFO sets the
exemption flag so that the bill unit never enters collections, even if it has an overdue balance.

Chapter 8
Performing Manual Collections Actions

8-21

This opcode stops processing if the input flist does not include a valid bill unit POID.

If this opcode stops processing, it logs an error in the CM pinlog file, indicating the reason for
the failure.

If successful, this opcode returns the POID of the exempted bill unit and the POID of the
account to which the bill unit belongs.

Rescheduling an Action Scheduled for a Bill Unit
Use PCM_OP_COLLECTIONS_RESCHEDULE_ACTION to reschedule an action that was
scheduled by a bill unit's collections scenario.

Collections Center calls this opcode when a CSR reschedules a particular action to be
performed on a bill unit. For example, if a customer promises payment by a certain day, the
CSR can reschedule the inactivation of the bill unit.

This opcode takes as input the POID of the action to be rescheduled, the account POID of the
CSR that is rescheduling the action, and the new due date for the action.

PCM_OP_COLLECTIONS_RESCHEDULE_ACTION performs the following actions:

• Checks the account POID to verify that the CSR is authorized to reschedule the action. If
the account POID matches the account of the agent who originally scheduled the action or
if it is the account of a manager, the opcode allows rescheduling.

• Reads the PIN_FLD_DUE_T input field to obtain a new due date for the action.

• Checks to see if the PIN_FLD_DAYS field is present in the input flist. If so, this field
determines whether the actions that follow are postponed.

– If PIN_FLD_DAYS is equal to 0, the actions are not postponed.

– If PIN_FLD_DAYS is less than 0, the actions are canceled.

– If PIN_FLD_DAYS is greater than 0, the value indicates the number of days to
postpone the actions.

• Updates the output flist with the new data for each action.

PCM_OP_COLLECTIONS_RESCHEDULE_ACTION stops processing if:

• The CSR's account POID does not match the POID of an authorized user.

• The action information in the input flist is missing or invalid.

If this opcode stops processing, it logs an error in the CM pinlog file, indicating the reason for
the failure. The transaction is rolled back.

If successful, this opcode returns the POID of the rescheduled action and updates the output
flist with the new data for each action affected by the rescheduling.

Changing the Status of a Collections Action
Use PCM_OP_COLLECTIONS_SET_ACTION_STATUS to change the status of a manual
collections action.

Collections Center calls this opcode when a CSR updates the status of a manual action. For
example, after finishing a phone call, an agent must update the action's status to Completed.

This opcode takes as input the POID of the action object and the new status for the action.

Chapter 8
Performing Manual Collections Actions

8-22

If collections action dependencies are enabled,
PCM_OP_COLLECTIONS_SET_ACTION_STATUS performs the following actions:

• Checks whether the action's current status is set to Pending. If so, it changes the current
action's status and then updates the subsequent action's status from Waiting For
Dependents to Pending. If not, it generates an error.

• If the action's status is changed to Cancelled, checks the value of the PIN_FLD_FLAGS
flist field and the /collections_action object's PIN_FLD_ACTION_MODE field:

– If PIN_FLD_ACTION_MODE is set to 0, the action is mandatory. The action cannot be
canceled and system actions cannot be completed from Collections Center. The
opcode generates an error.

– If PIN_FLD_ACTION_MODE is set to 1 and PIN_FLD_FLAGS is set to 0, the opcode
changes the action's status to Cancelled.

– If PIN_FLD_ACTION_MODE is set to 1 and PIN_FLD_FLAGS is set to 1, the opcode
changes the action's status to Cancelled and the status of all actions that follow to
Cancelled.

• If the action's status is changed to Completed, checks the status of the PIN_FLD_FLAGS
flist field:

– If it is set to 0, the opcode changes the action's status to Completed and reschedules
the due dates of all outstanding actions in the scenario.

– If it is set to 2, the opcode changes the action's status to Completed and leaves the
due dates of all outstanding actions unchanged.

If collections action dependences are disabled:

• Changes the current action's status.

• If the action status is changed to Cancelled, checks the value of the PIN_FLD_FLAGS flist
field:

– If it is set to 0, the opcode changes the action's status to Cancelled.

– If it is set to 1, the opcode changes the action's status to Cancelled and the status of
all actions that follow to Cancelled.

PCM_OP_COLLECTIONS_SET_ACTION_STATUS stops processing if the POID of an action
is missing or invalid.

If this opcode stops processing, it logs an error in the CM pinlog file, indicating the reason for
the failure. The transaction is rolled back.

If successful, this opcode returns the POID of the action whose status was changed.

Replacing a Collections Scenario
Use PCM_OP_COLLECTIONS_REPLACE_SCENARIO to replace the existing collections
scenario for a bill unit with a new collections scenario. You can replace the scenario of a bill
unit that is already in collections.

Collections Configuration calls this opcode to replace the scenario of a bill unit that is already
in collections.

As input, this opcode takes the POID of the bill unit already in collections.

This opcode creates the /event/activity/collections/replace_scenario activity event object to
store the bill unit details such as the bill unit POID, the current collections scenario POID, and
the new collections scenario POID. If the new collections scenario object is not specified, this

Chapter 8
Performing Manual Collections Actions

8-23

opcode calls PCM_OP_COLLECTIONS_GET_VALID_SCENARIOS to get a list of all the valid
collections scenarios applicable for the bill unit.

After the new scenario is identified, PCM_OP_COLLECTIONS_REPLACE_SCENARIO exits
out of the existing collections scenario, cancels all the pending actions, deletes the scheduled
objects for the pending actions, and updates the bill unit with the POID of the new collections
scenario.

Performing System Collections Actions
Collections Manager performs a variety of actions on bill units with overdue balances. Some
actions happen automatically, and others require manual intervention.

Automatic actions are performed by the system. They include calculating overdue balances,
applying late fees, and updating bill unit balances.

Collections Manager uses the following opcodes to perform system actions on the bill units in
collections:

• Executing Automatic Collections Actions

• Preparing Invoice Reminders

• Gathering and Storing Data for Dunning Letters

• Retrieving Dunning Letters

• Executing Pending Actions for a Bill Unit

Executing Automatic Collections Actions
Use PCM_OP_COLLECTIONS_PROCESS_BILLINFO to do the following:

• Determine whether an account's bill unit should enter or exit the collections process.

• Perform collections actions, such as sending notices to customers or applying late
charges.

The pin_collections_process utility calls this opcode for each bill unit with an overdue
balance that meets a minimum amount. This opcode then processes each bill unit to evaluate
its collections status and perform any necessary collections actions.

PCM_OP_COLLECTIONS_PROCESS_BILLINFO calls
PCM_OP_COLLECTIONS_POL_PROCESS_BILLINFO. You can use
PCM_OP_COLLECTIONS_POL_PROCESS_BILLINFO to include additional criteria to
determine whether bill units should enter and exit collections. Based on the status flag in the
input flist, this opcode identifies if it is being called during entry or exit.
PCM_OP_COLLECTIONS_POL_PROCESS_BILLINFO is an empty hook.

Tip:

The source code for PCM_OP_COLLECTIONS_POL_PROCESS_BILLINFOis not
shipped with BRM.

When PCM_OP_COLLECTIONS_PROCESS_BILLINFO receives a bill unit, it performs the
following actions:

• Calculates the exact overdue balance and days late for the bill unit.

Chapter 8
Performing System Collections Actions

8-24

• Checks the bill unit's current collections status.

If the bill unit is not in collections, PCM_OP_COLLECTIONS_PROCESS_BILLINFO:

– Calls PCM_OP_COLLECTIONS_POL_SELECT_PROFILE to assign the bill unit to a
collections profile. See "Mapping Bill Units to Collections Profiles".

– Maps the collections profile to a collections scenario.

– Creates a /collections_scenario object and a /collections_action object for each
collections activity that needs to be performed.

– Sets the status of all actions in the collections scenario. If collections action
dependencies are enabled, sets the first action's status to Pending and all subsequent
actions' status to Waiting For Dependents. If multiple actions are scheduled for the
first due date, sets the status of those actions to Pending and sets the status of
actions scheduled for later due dates to Waiting For Dependents.

If collections action dependencies are disabled, sets the status of all actions to
Pending.

– Generates the /event/audit/collections/action notification event.

– Calls PCM_OP_COLLECTIONS_POL_ASSIGN_AGENT to assign a collections agent
to the bill unit. See "Assigning Bill Units Automatically".

If the bill unit is already in collections, PCM_OP_COLLECTIONS_PROCESS_BILLINFO
sets the bill unit's action status to REMAIN_IN and updates the bill unit's overdue balance
and days late.

• Determines whether the bill unit meets the exit criteria:

If it meets the exit criteria, PCM_OP_COLLECTIONS_PROCESS_BILLINFO changes the
bill unit's action status to Completed, generates the /event/audit/collections/action
notification event, and calls PCM_OP_COLLECTIONS_POL_EXIT_SCENARIO to perform
any custom actions that you specify. (See "Performing Custom Actions when a Bill Unit
Leaves Collections".) Processing is complete.

If it does not meet the exit criteria, PCM_OP_COLLECTIONS_PROCESS_BILLINFO:

– Finds all of the bill unit's actions that are set to Pending.

– If a manual action is required, generates the /event/audit/collections/action
notification event. Processing is complete.

– If a system or custom action is required, calls
PCM_OP_COLLECTIONS_TAKE_ACTION to run the action. See "Executing Pending
Actions for a Bill Unit".

• Evaluates the bill unit to determine if it now meets the exit criteria for the scenario:

If the bill unit does not meet the exit criteria, processing ends for this bill unit.

If the bill unit does meet the exit criteria,
PCM_OP_COLLECTIONS_PROCESS_BILLINFO:

– Changes the bill unit's action status to Completed.

– Calls PCM_OP_COLLECTIONS_POL_EXIT_SCENARIO to perform any custom exit
actions that you specify. See "Performing Custom Actions when a Bill Unit Leaves
Collections".

– Generates the /event/audit/collections/action notification event.

Chapter 8
Performing System Collections Actions

8-25

Preparing Invoice Reminders
Use PCM_OP_COLLECTIONS_SET_INVOICE_REMINDER to prepare a reminder message
for customers with overdue payments. This message is later added to your invoices or custom
documents via the Universal Message Store (UMS) framework. See "Using BRM Messaging
Services" in BRM Developer's Guide.

This opcode is called by PCM_OP_COLLECTIONS_PROCESS_BILLINFO when a collections
scenario calls for an invoice reminder.

This opcode performs the following actions:

• Calls PCM_OP_UMS_SET_MESSAGE to create a /message object.

• Returns the POID of the /collections_action/invoice_reminder object and the status to
PCM_OP_COLLECTIONS_PROCESS_BILLINFO.

Gathering and Storing Data for Dunning Letters
Use PCM_OP_COLLECTIONS_SET_DUNNING_LETTER to gather and store data for
dunning letters.

This opcode is called by PCM_OP_COLLECTIONS_TAKE_ACTION when a collections
scenario requires a dunning letter.

This opcode performs the following actions:

• Calls PCM_OP_COLLECTIONS_POL_PREP_DUNNING_DATA to retrieve data for the
dunning letter and to perform any customizations that you implement. See "Customizing
Dunning Letters".

• Converts the data into XML format and saves it as a buffer field in the /collections_action/
dunning_letter object for this letter.

• Returns the POID of the /collections_action/dunning_letter object and the status to
PCM_OP_COLLECTIONS_PROCESS_BILLINFO.

Retrieving Dunning Letters
Use PCM_OP_COLLECTIONS_GET_DUNNING_LETTER to retrieve dunning letters from the
BRM database.

This opcode is called directly by the pin_collections_send_dunning utility.

This opcode performs the following actions:

• Retrieves the /collections_action/dunning_letter object from the BRM database. This
object contains the XML data to be included in the letter.

• Retrieves the /config/invoice_templates/dunning object from the BRM database. This
object contains the XSLT style sheet used to format the dunning letter.

Chapter 8
Performing System Collections Actions

8-26

Note:

Dunning letter templates are stored as /config/invoice_templates/dunning
objects. The /config/invoice_templates storable class is automatically
subclassed when you load a dunning letter template.

• Calls PCM_OP_INV_FORMAT_INVOICE to create the final dunning letter.

Executing Pending Actions for a Bill Unit
Use PCM_OP_COLLECTIONS_TAKE_ACTION to run pending actions for a bill unit.

This opcode is called by either PCM_OP_COLLECTIONS_PROCESS_BILLINFO or the
pin_deferred_act utility to run actions.

As input, this opcode takes the POID of the action to run, the POID of the bill unit to process,
and the POID of the account that owns the bill unit. This opcode then determines the type of
action that needs to be run:

• If it requires a manual action, this opcode stops processing.

• If it requires a system action, this opcode calls other opcodes to run the desired action:

– Prepare a dunning letter. See "Gathering and Storing Data for Dunning Letters".

– Apply finance charges. See "Applying Finance Charges".

– Apply late fees. See "Applying Late Fees".

• If it requires a custom action, this opcode calls
PCM_OP_COLLECTIONS_POL_EXEC_POLICY_ACTION to perform any custom actions
that you specify. See "Performing Custom Collections Actions".

PCM_OP_COLLECTIONS_TAKE_ACTION calls
PCM_OP_COLLECTIONS_POL_INITIATE_PAYMENT to performs auto-collect of the due
amount for promise_to_pay and collect_payment actions, if the customer has opted to pay
off the due amount through credit card or direct debit.

Then, this opcode sets the action's status to Completed and updates the bill unit's overdue
date and overdue amount. This opcode generates an /event/audit/collections/action
notification event.

If collections action dependencies are enabled, PCM_OP_COLLECTIONS_TAKE_ACTION
also changes the subsequent action's status from Waiting For Dependents to Pending and
reschedules the due dates of any outstanding collections actions in the scenario.

Note:

If multiple actions are scheduled for the same day and are all set to Pending, this
opcode waits until all of those actions are completed or canceled before changing the
subsequent action's status from Waiting For Dependents to Pending.

If PCM_OP_COLLECTIONS_TAKE_ACTION is not successful, it logs an error in the CM
pinlog file, indicating the reason for the failure.

Chapter 8
Performing System Collections Actions

8-27

If successful, this opcode returns the POID of the /collections_action object for this action
and the status of action.

Retrieving Collections Information
See the following topics:

• Retrieving a List of Bill Units in Collections

• Retrieving Aging Buckets Information

• Retrieving Scenario Information

• Getting All Valid Collections Scenarios

• Retrieving a List of Collections Actions

• Retrieving Collections Action History Information

Retrieving a List of Bill Units in Collections
Use PCM_OP_COLLECTIONS_GET_BILLINFOS to get a list of bill units that are in
collections.

Collections Center calls this opcode to display the bill units in collections that meet the criteria
defined by a CSR. The search criteria passed in by Collections Center are included in the
optional fields that determine the scope of the search.

The input flist must contain a dummy POID, which is used to get the database ID for the
search. To retrieve bill units based on specific criteria, you can use the following optional input:

• The ID of the bill unit

• The status of the bill unit

• The payment type of the bill unit

• A date range; this retrieves bill units whose bills were generated between the specified
dates

• The status of the account

• The account number (PIN_FLD_ACCOUNT_NO); this narrows the search to a particular
account whose bill units are in collections

• The name of the company to which an account belongs

• The name of the customer on the account

• The account POID of the agent assigned to the bill units

• The name of the collections scenario assigned to the bill units

• The name of the collections profile associated with the bill units

• The overdue amount range

• The overdue days range; this narrows the search to bill units that are overdue for the
specified number of days

• A flag indicating whether to get assigned bill units or unassigned bill units

If the opcode fails, a NULL flist is returned.

If successful, PCM_OP_COLLECTIONS_GET_BILLINFOS returns a list of bill units that meet
the search criteria and details for the fields specified on the input flist.

Chapter 8
Retrieving Collections Information

8-28

Note:

This opcode uses step search when searching for bill units.

Retrieving Aging Buckets Information
Use PCM_OP_COLLECTIONS_CALC_AGING_BUCKETS to retrieve a bill unit's aging
buckets details.

Collections Center calls this opcode when displaying the distribution of a bill unit's overdue
balance over a number of aging buckets.

This opcode takes the POID of the bill unit and performs the following actions:

• Retrieves aging bucket information, which includes the total number of buckets and the
number of overdue days per bucket from the /config/collections/aging_buckets object.

• Determines the exact number of overdue days per each aging bucket for the specified bill
unit.

• Calculates the amount due in each bucket.

PCM_OP_COLLECTIONS_CALC_AGING_BUCKETS stops processing if the bill unit
information in the input flist is missing or invalid.

If this opcode is not successful, it logs an error in the CM pinlog file, indicating the reason for
the failure.

If successful, this opcode returns the POID of the bill unit, an array of the aging buckets, the
number of overdue days for each bucket, and the amount due in each bucket.

Retrieving Scenario Information
Use PCM_OP_COLLECTIONS_GET_SCENARIO_DETAIL to retrieve details about a bill unit's
collections scenario.

Collections Center calls this opcode to display the collections activity details that CSRs use to
work with the collections actions that are scheduled for a bill unit.

This opcode takes the POID of the /collections_scenario object and performs the following
actions:

• Reads the /collections_scenario object information.

• Retrieves a list of actions for the specified scenario.

• Retrieves history information for each action.

PCM_OP_COLLECTIONS_GET_SCENARIO_DETAIL stops processing if the input flist does
not include a valid POID for a /collections_scenario object.

If this opcode stops processing, it logs an error in the CM pinlog file, indicating the reason for
the failure.

If successful, this opcode returns the output flist that contains the POID of the bill unit, the
POID of the scenario assigned to the bill unit, scenario details, and an array listing the POID
and status of each scheduled action.

Chapter 8
Retrieving Collections Information

8-29

Getting All Valid Collections Scenarios
Use PCM_OP_COLLECTIONS_GET_VALID_SCENARIOS to evaluate all the collections
scenarios for the bill unit using the default entry criteria (entry_amount and entry_days), the
severity attribute, and additional configurable parameters and list the valid scenarios for the bill
unit.

Collections Center calls this opcode to display the list of valid scenarios during scenario
assignment or replacement.

This opcode takes the entry criteria (entry_amount and entry_days), the severity attribute,
and additional configurable parameters and performs the following actions:

• Searches for collections scenarios matching the criteria.

• For each collections scenario, calls
PCM_OP_COLLECTIONS_POL_GET_VALID_SCENARIOS to determine if a scenario is
valid or not for the current bill unit.
PCM_OP_COLLECTIONS_POL_GET_VALID_SCENARIOS takes the scenario as input,
reads the /config/collections/scenario_params object for the additional parameters, and
validates whether the scenario is valid for the bill unit in collections. The valid collections
scenario is added to the list of valid collections scenarios. If the collections scenario is not
valid, the opcode evaluates the next collections scenario.

• Returns a list of all the valid scenarios. The results are ordered by the entry amount in the
descending order and severity in the ascending order.

Retrieving a List of Collections Actions
Use PCM_OP_COLLECTIONS_GET_AGENTS_ACTIONS to retrieve a list of collections
actions assigned to collections agents.

Collections Center calls this opcode when collections managers request an overview of the
workload for the collections agents they supervise.

The input flist contains the following:

• The agent's account POID. This returns a list of actions that are currently assigned to the
specified agent. If you specify the account POID as type-only, this opcode retrieves the
actions for all collections agents.

• PIN_FLD_START_T and PIN_FLD_END_T are optional. You specify one of these fields to
limit the actions returned to those that are due either after the start time or before the end
time.

• The PIN_FLD_THRESHOLD field specifies the number of actions to retrieve. The default
is all actions.

PCM_OP_COLLECTIONS_GET_AGENTS_ACTIONS returns an array of details for the
collections action. The return data includes the agent's name and account POID, the POID of
the action object, the action's name and due date, and the opcode to run for the action.

Note:

This opcode uses step search when searching for bill units.

Chapter 8
Retrieving Collections Information

8-30

Retrieving Collections Action History Information
Use PCM_OP_COLLECTIONS_GET_ACTION_HISTORY to find past information about a
particular collections action.

Collections Center calls this opcode to display details about when an action was assigned to a
collections agent, reassigned, rescheduled, and so on.

As input, this opcode takes the POID of the /collections_action object for which to retrieve
historic data.

This opcode stops processing when the input flist does not include a valid POID for a /
collections_action object.

If this opcode stops processing, it logs an error in the CM pinlog file, indicating the reason for
the failure.

If successful, PCM_OP_COLLECTIONS_GET_ACTION_HISTORY returns the POID of the /
collections_action object and a results array with history details for the collections action. The
array includes the action's status and due date, the assigned agent's name and account POID,
the date when the last change occurred, and the description of the change.

Chapter 8
Retrieving Collections Information

8-31

9
Customer Management Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) customer
management opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• About Account Locking

• Transaction Handling During Account Creation

• Creating Accounts

• Managing Name and Address Information

• Authenticating and Authorizing Customers

• Managing and Customizing Profiles

• Modifying an Account

• Creating Services

• Modifying Services

• Finding Accounts

• Deleting Accounts

• Customizing Customer Payment Information

• Setting Account, Service, and Bill Unit Status

• Getting Life Cycle States

• Amending Creditor Information

• Amending a Mandate

• Canceling a Mandate

• Managing Deferred Actions

• Managing Service Groups

• Managing Profile Sharing Groups

• Using Access Control Lists

• Customizing the Account Dump Utility (ADU)

• Business Profile Opcode Workflows

• Creating and Managing Account Hierachies

Opcodes Described in This Chapter
Table 9-1 lists the opcodes described in this chapter.

9-1

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 9-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_FIND Finding a Customer's Account Information

Authenticating User Actions

PCM_OP_ACT_FIND_VERIFY Authenticating User Actions

Customizing Authentication Checks

PCM_OP_ACT_LOGIN Customizing Authentication Checks

PCM_OP_ACT_POL_EVENT_LIMIT Inactivating Accounts that Exceed a Specified Limit

PCM_OP_ACT_POL_EVENT_NOTIFY Inactivating Accounts that Exceed a Specified Limit

Scheduling Deferred Actions

PCM_OP_ACT_POL_SPEC_VERIFY Authenticating User Actions

Customizing Authentication Checks

Enabling Duplicate Session Checking

PCM_OP_ACT_POL_VALIDATE_SCHEDULE Performing Policy Checks before Scheduling Deferred
Actions

PCM_OP_ACT_SCHEDULE_CREATE Scheduling Deferred Actions

PCM_OP_ACT_SCHEDULE_DELETE Deleting Deferred Actions

PCM_OP_ACT_SCHEDULE_EXECUTE Executing Deferred Actions

Scheduling Deferred Actions

About Deferred Actions When Using
PCM_OP_CUST_SET_STATUS

PCM_OP_ACT_SCHEDULE_MODIFY Modifying Deferred Actions

PCM_OP_ACT_VERIFY Implementing Password Encryption

PCM_OP_ADU_POL_DUMP Customizing the Account Dump Utility (ADU)

PCM_OP_ADU_POL_VALIDATE Customizing the Account Dump Utility (ADU)

PCM_OP_ADU_VALIDATE Customizing the Account Dump Utility (ADU)

PCM_OP_BAL_POL_CHECK_LIFECYCLE_STATE Getting Life Cycle States

PCM_OP_BILL_GROUP_ADD_MEMBER Adding Accounts to Account Hierarchies

Moving Accounts from One Account Hierarchy to Another

PCM_OP_BILL_GROUP_CREATE Creating Account Hierarchies

PCM_OP_BILL_GROUP_DELETE Deleting Account Hierarchies

PCM_OP_BILL_GROUP_DELETE_MEMBER Deleting Accounts from Account Hierarchies

PCM_OP_BILL_GROUP_GET_CHILDREN Getting a List of Child Accounts in an Account Hierarchy

PCM_OP_BILL_GROUP_GET_PARENT Finding the Parent of an Account Hierarchy

PCM_OP_BILL_GROUP_MOVE_MEMBER Scheduling Deferred Actions

Chapter 9
Opcodes Described in This Chapter

9-2

Table 9-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_BILL_MAKE_BILL_NOW Canceling a Service Group

PCM_OP_CUST_ACCTINFO Customizing Automatic Account Creation (AAC) Information

PCM_OP_CUST_AMEND_CREDITOR_INFO Amending Creditor Information

Updating a Mandate

PCM_OP_CUST_AMEND_MANDATE Amending a Mandate

Updating a Mandate

PCM_OP_CUST_CANCEL_MANDATE Canceling a Mandate

Canceling a Mandate

PCM_OP_CUST_CHANGE_BUSINESS_PROFILE Changing a Bill Unit's Business Profile

PCM_OP_CUST_COMMIT_CUSTOMER Creating Accounts

Adding Custom Account Creation Steps Before the Account
Is Committed

Adding Custom Account Creation Steps After the Account Is
Committed

Sending Account Information to Your Application when an
Account is Created

Selecting a Database Schema

Customizing Login Names

Creating Accounts with Backdated Services or Balances

Creating Customer's Collections Profiles at the Time of
Customer Account Creation

Creating a Service Group

Configuring Extended Rating Attributes for a Service Group

Associating a Device with a Service Group

Assigning Bill Units to Business Profiles

Transaction Handling During Account Creation

PCM_OP_CUST_CREATE_ASSOCIATED_BUS_PROFILE Creating Business Profiles

PCM_OP_CUST_CREATE_BAL_GRP Creating Accounts

PCM_OP_CUST_CREATE_BILLINFO Creating Accounts

Creating Business Profiles

PCM_OP_CUST_CREATE_CUSTOMER Creating Accounts

Creating a Service Group

PCM_OP_CUST_CREATE_PAYINFO Customizing Customer Payment Information

Creating Accounts

CVV2/CID Fraud Prevention Functionality

Registering a Mandate

PCM_OP_CUST_CREATE_PROFILE Creating Accounts

Managing and Customizing Profiles

PCM_OP_CUST_CREATE_SERVICE Creating Services

Creating Accounts

PCM_OP_CUST_DELETE_ACCT Deleting Accounts

Chapter 9
Opcodes Described in This Chapter

9-3

Table 9-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_CUST_DELETE_PAYINFO Customizing Customer Payment Information

Canceling a Mandate

Canceling a Mandate

PCM_OP_CUST_DELETE_PROFILE Managing and Customizing Profiles

PCM_OP_CUST_FIND Finding Accounts

PCM_OP_CUST_FIND_PROFILE Retrieving Account Profile Information

PCM_OP_CUST_GET_BUSINESS_PROFILE_INFO Getting Information about a Business Profile

PCM_OP_CUST_GET_LIFECYCLE_STATES Getting Life Cycle States

PCM_OP_CUST_INIT_SERVICE Creating Services

Customizing Automatic Account Creation (AAC) Information

PCM_OP_CUST_MODIFY_CUSTOMER Modifying an Account

Sending Account Information to Your Application when an
Account is Modified

Creating a Service Group

Configuring Extended Rating Attributes for a Service Group

Associating a Device with a Service Group

Transferring Service Groups between Accounts in Different
Schemas

PCM_OP_CUST_MODIFY_PAYINFO Customizing Customer Payment Information

CVV2/CID Fraud Prevention Functionality

PCM_OP_CUST_MODIFY_PROFILE Managing and Customizing Profiles

PCM_OP_CUST_MODIFY_SERVICE Modifying Services

Changing a Bill Unit's Business Profile

PCM_OP_CUST_POL_COMPARE_PASSWD Implementing Password Encryption

PCM_OP_CUST_POL_DECRYPT_PASSWD Implementing Password Encryption

PCM_OP_CUST_POL_ENCRYPT_PASSWD Implementing Password Encryption

Creating Passwords

PCM_OP_CUST_POL_EXPIRATION_PASSWD Customizing Password Expiration

PCM_OP_CUST_POL_GET_CONFIG Sending Account Information to Your Application when an
Account is Created

PCM_OP_CUST_POL_GET_DB_LIST Getting a List of Database Schemas

Selecting a Database Schema

PCM_OP_CUST_POL_GET_DB_NO Getting a List of Database Schemas

Selecting a Database Schema

PCM_OP_CUST_POL_GET_INTRO_MSG Customizing the Introductory Message

PCM_OP_CUST_POL_GET_POPLIST Returning a Point-of-Presence (POP) List

PCM_OP_CUST_POL_POST_COMMIT Adding Custom Account Creation Steps After the Account Is
Committed

Creating Accounts

Customizing the Introductory Message

Sending the Introductory Message

Chapter 9
Opcodes Described in This Chapter

9-4

Table 9-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_CUST_POL_POST_MODIFY_CUSTOMER Modifying an Account

Sending Account Information to Your Application when an
Account is Modified

PCM_OP_CUST_POL_PRE_COMMIT Adding Custom Account Creation Steps Before the Account
Is Committed

Creating Accounts

PCM_OP_CUST_POL_PRE_DELETE_PAYINFO Customizing Customer Payment Information

PCM_OP_CUST_POL_PREP_AACINFO Customizing Automatic Account Creation (AAC) Information

PCM_OP_CUST_POL_PREP_ACCTINFO Customizing Account Numbers

PCM_OP_CUST_POL_PREP_INHERITED Creating Services

PCM_OP_CUST_POL_PREP_LOCALE Customizing Locale Information

PCM_OP_CUST_POL_PREP_LOGIN Customizing Login Names

Requiring Login Names for Email and Broadband Services

Creating Logins for Prepaid Services

Creating Logins for Email Services

PCM_OP_CUST_POL_PREP_NAMEINFO Customizing Name and Address Information

PCM_OP_CUST_POL_PREP_PASSWD Creating Passwords

PCM_OP_CUST_POL_PREP_PAYINFO Customizing Payment Method Data Preparation

Specifying the Payment Processor Vendor

PCM_OP_CUST_POL_PREP_PROFILE Managing and Customizing Profiles

PCM_OP_CUST_POL_PREP_STATUS Customizing Status Changes

PCM_OP_CUST_POL_VALID_AACINFO Customizing Automatic Account Creation (AAC) Information

PCM_OP_CUST_POL_VALID_ACCTINFO Customizing Account Numbers

PCM_OP_CUST_POL_VALID_LOCALE Customizing Locale Information

PCM_OP_CUST_POL_VALID_LOGIN Customizing Login Names

Requiring Login Names for Email and Broadband Services

Creating Logins for Prepaid Services

PCM_OP_CUST_POL_VALID_NAMEINFO Customizing Name and Address Information

Creating Custom Country Aliases

PCM_OP_CUST_POL_VALID_PASSWD Creating Passwords

PCM_OP_CUST_POL_VALID_PAYINFO Customizing Payment Method Validation

Verifying the Maximum Number of CVV2 Digits

Registering a Mandate

PCM_OP_CUST_POL_VALID_PROFILE Managing and Customizing Profiles

Configuring Extended Rating Attributes for a Service Group

PCM_OP_CUST_POL_VALID_STATUS Customizing Status Changes

PCM_OP_CUST_PREP_CUSTOMER Creating Accounts

PCM_OP_CUST_SET_ACCTINFO Customizing Account Numbers

PCM_OP_CUST_SET_ASSOCIATED_BUS_PROFILE Assigning Bill Units to Business Profiles

PCM_OP_CUST_SET_BAL_GRP Assigning Bill Units to Business Profiles

Chapter 9
Opcodes Described in This Chapter

9-5

Table 9-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_CUST_SET_BILLINFO Transferring Service Groups between Accounts in the Same
Schema

Assigning Bill Units to Business Profiles

PCM_OP_CUST_SET_DISCOUNT_STATUS Backdating Status Changes

PCM_OP_CUST_SET_LOCALE Customizing Locale Information

PCM_OP_CUST_SET_LOGIN Customizing Login Names

Modifying Services

PCM_OP_CUST_SET_NAMEINFO Managing Name and Address Information

Creating Accounts

PCM_OP_CUST_SET_PASSWD Creating Passwords

Modifying Services

PCM_OP_CUST_SET_PAYINFO Customizing Customer Payment Information

Registering a Mandate

Transferring Service Groups between Accounts in the Same
Schema

PCM_OP_CUST_SET_PRODUCT_STATUS Backdating Status Changes

PCM_OP_CUST_SET_STATUS Changing the Status of an Account, Bill Unit, or Service

Customizing Status Changes

Inactivating Accounts that Exceed a Specified Limit

Backdating Status Changes

Creating Accounts

Modifying Services

Getting Life Cycle States

PCM_OP_CUST_SETUP_TOPUP Creating Accounts

PCM_OP_CUST_UPDATE_CUSTOMER Modifying an Account

Changing a Bill's Payment Method

Customizing Customer Payment Information

PCM_OP_CUST_UPDATE_SERVICES Modifying Services

Changing the Status of an Account, Bill Unit, or Service

Backdating Status Changes

Getting Life Cycle States

Associating a Device with a Service Group

Canceling a Service Group

Transferring Service Groups between Accounts in Different
Schemas

PCM_OP_CUST_VALIDATE_CUSTOMER Customizing Login Names

Customizing Passwords

Managing and Customizing Profiles

Customizing Payment Method Data Preparation

Customizing Payment Method Validation

PCM_OP_DELIVERY_MAIL_SENDMSGS Sending the Introductory Message

Chapter 9
Opcodes Described in This Chapter

9-6

Table 9-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_DEVICE_ASSOCIATE Associating a Device with a Service Group

Creating Services

Modifying Services

PCM_OP_GROUP_ADD_MEMBER Managing ACL Groups

PCM_OP_MAIL_DELIV_VERIFY Customizing Authentication Checks

PCM_OP_MAIL_LOGIN_VERIFY Customizing Authentication Checks

PCM_OP_PERM_ACL_GROUP_ADD_MEMBER Managing ACL Groups

PCM_OP_PERM_ACL_GROUP_CREATE Managing ACL Groups

PCM_OP_PERM_ACL_GROUP_DELETE Managing ACL Groups

PCM_OP_PERM_ACL_GROUP_DELETE_MEMBER Managing ACL Groups

PCM_OP_PERM_ACL_GROUP_MODIFY Managing ACL Groups

PCM_OP_PERM_FIND Finding CSR Membership

PCM_OP_PUBLISH_GEN_PAYLOAD Adding Members to a Profile Sharing Group

PCM_OP_PYMT_CHARGE CVV2/CID Fraud Prevention Functionality

PCM_OP_PYMT_COLLECT Creating Accounts

PCM_OP_PYMT_GET_ACH_INFO Customizing Account Creation Charges

PCM_OP_PYMT_POL_SPEC_COLLECT Customizing Account Creation Charges

PCM_OP_PYMT_POL_SPEC_VALIDATE Creating Accounts

Customizing the Account Used for Credit Card Validation

PCM_OP_PYMT_VALIDATE Creating Accounts

PCM_OP_SUBSCRIPTION_CANCEL_SUBSCRIPTION Canceling a Service Group

PCM_OP_SUBSCRIPTION_CYCLE_ARREARS Creating Accounts with Backdated Services or Balances

PCM_OP_SUBSCRIPTION_CYCLE_FORWARD Creating Accounts with Backdated Services or Balances

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP Deleting Members and Profiles from a Profile Sharing Group

Deleting a Profile Sharing Group

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_M
ODIFY

Adding Members to a Profile Sharing Group

PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_ME
MBERS

Adding Members to a Profile Sharing Group

PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_SER
VICE

Adding Members to a Profile Sharing Group

PCM_OP_SUBSCRIPTION_POL_POST_TRANSFER_SUB
SCRIPTION

Transferring Service Groups between Accounts in the Same
Schema

Transferring Service Groups between Accounts in Different
Schemas

PCM_OP_SUBSCRIPTION_POL_PREP_MEMBERS Creating a Profile Sharing Group

Validating Profile Sharing Group Members

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL Creating Accounts

PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFE
R

Transferring Service Groups between Accounts in Different
Schemas

Chapter 9
Opcodes Described in This Chapter

9-7

Table 9-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO Transferring Service Groups between Accounts in the Same
Schema

Transferring Service Groups between Accounts in Different
Schemas

PCM_OP_SUBSCRIPTION_SET_PRODINFO Transferring Service Groups between Accounts in the Same
Schema

Transferring Service Groups between Accounts in Different
Schemas

PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE Creating a Profile Sharing Group

Validating Profile Sharing Group Members

PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE Deleting Members and Profiles from a Profile Sharing Group

Deleting a Profile Sharing Group

Transferring Service Groups between Accounts in Different
Schemas

PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY Modifying a Profile Sharing Group

Validating Profile Sharing Group Members

Adding Profiles to a Profile Sharing Group

Deleting Members and Profiles from a Profile Sharing Group

PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PAR
ENT

Changing the Owner of a Profile Sharing Group

PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION Transferring Service Groups between Accounts in the Same
Schema

Transferring Service Groups between Accounts in Different
Schemas

PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDEN
CY

Creating Accounts

PCM_OP_TCF_PROV_CREATE_SVC_ORDER Adding Members to a Profile Sharing Group

About Account Locking
Some transactional process require that an account is locked to maintain data integrity. For
these operations, the account is locked and unlocked automatically. When an account is
locked, no other opcode can perform operations on the account.

Transaction Handling During Account Creation
When you use PCM_OP_CUST_COMMIT_CUSTOMER, the value of its
PIN_FLD_TXN_FLAGS input flist field determines how it handles transactions:

• When set to 1, PCM_OP_CUST_COMMIT_CUSTOMER opens its own transaction
because it authorizes credit cards. Operations related to credit card authorization require
that the operation never be rolled back. As soon as the credit card authorization occurs,
the transaction is committed before the opcode finishes its operation, making the
transaction independent of the operations after the commit.

This is the default when JCA Resource Adapter is not in XA Transaction mode or when
PCM_OP_CUST_COMMIT_CUSTOMER is not called by JCA Resource Adapter.

Chapter 9
About Account Locking

9-8

Note:

After credit card authorization, if errors occur in the account creation processes,
an account might be partially created.

• When set to 2, PCM_OP_CUST_COMMIT_CUSTOMER does not open its own
transaction. Instead, it supports global transactions opened by a global transaction
manager.

When JCA Resource Adapter is in XA Transaction mode and receives a request to call
PCM_OP_CUST_COMMIT_CUSTOMER, one of the following occurs:

– If the input flist contains the PIN_FLD_TXN_FLAGS field set to 2, the adapter calls the
opcode in the usual manner.

– If the PIN_FLD_TXN_FLAGS field is missing, the adapter adds the field to the flist and
sets it to 2 before calling the opcode.

– If the PIN_FLD_TXN_FLAGS field is set to any value other than 2, the adapter rejects
the opcode with the PIN_ERR_BAD_VALUE error for the PIN_FLD_TXN_FLAGS field.

Note:

To enable PCM_OP_CUST_COMMIT_CUSTOMER to support transactions
opened by a global transaction manager, the PIN_FLD_TXN_FLAGS field must
be set to 2.

PCM_OP_CUST_COMMIT_CUSTOMER returns an error in the following situations:

• A transaction is already open when PCM_OP_CUST_COMMIT_CUSTOMER tries to open
a transaction.

• The input flist PIN_FLD_TXN_FLAGS field is set to any value other than 2 when JCA
Resource Adapter receives a request to call PCM_OP_CUST_COMMIT_CUSTOMER in
XA Transaction mode. For information about the adapter's transaction modes, see BRM
JCA Resource Adapter guide.

Creating Accounts
The recommended opcode for creating accounts is PCM_OP_CUST_COMMIT_CUSTOMER.
This is a wrapper opcode that performs all the tasks necessary to create an account.

For backward compatibility, use the PIN_FLD_VERSION input field to support an older version
of BRM. See the discussion about supporting an older version of BRM in BRM Developer's
Guide.

When you use PCM_OP_CUST_COMMIT_CUSTOMER, the account creation occurs in a
transaction. This ensures that the account is created before sending the customer a welcome
email. Using PCM_OP_CUST_COMMIT_CUSTOMER also creates a notification event that
alerts ECE to a new account.

Chapter 9
Creating Accounts

9-9

Note:

When PCM_OP_CUST_COMMIT_CUSTOMER is called by JCA Resource Adapter
in XA Transaction mode, account creation occurs in a transaction started by a global
transaction manager.

The account creation process is:

1. PCM_OP_CUST_COMMIT_CUSTOMER calls PCM_OP_CUST_CREATE_CUSTOMER.

No validation is performed by PCM_OP_CUST_CREATE_CUSTOMER prior to attempting
the actual creations, so invalid or missing data results in an ebuf error to be returned along
with an output flist describing the validation problem, if one exists. In general, the
PCM_OP_CUST_CREATE_CUSTOMER input flist should be taken from the output of a
call to PCM_OP_CUST_PREP_CUSTOMER to ensure the fields have been properly
validated.

If you use rerating, use PCM_OP_CUST_COMMIT_CUSTOMER to create accounts. Do
not call PCM_OP_CUST_CREATE_CUSTOMER directly.
PCM_OP_CUST_COMMIT_CUSTOMER calls PCM_OP_CUST_POL_PRE_COMMIT,
and based on that, the /profile/event_ordering object is created, which is used for
rerating. If you use PCM_OP_CUST_CREATE_CUSTOMER directly to create accounts,
the /profile/event_ordering object is not created.

2. PCM_OP_CUST_CREATE_CUSTOMER calls PCM_OP_CUST_PREP_CUSTOMER to
validate the account creation information.

3. PCM_OP_CUST_PREP_CUSTOMER follows all the steps for creating an account object
but does not commit the object to the database:

• Opens a transaction.

• Creates an /account object.

• Sets account credit limits.

• Purchases a bundle.

• Creates a /service object.

If the bundle purchased for the account is a required bundle, the /service object's
PIN_FLD_TYPE value is set to PIN_BILL_SERVICE_REQUIRED. This establishes the
service as a required service in the account.

If PCM_OP_CUST_PREP_CUSTOMER is unsuccessful in any of these operations, it exits
and calls a base opcode to cancel the transaction. This ensures that no changes are made
to the database.

If PCM_OP_CUST_PREP_CUSTOMER successfully validates the account creation data,
it calls a base opcode to cancel the transaction, ensuring that the customer objects are not
created, and then returns the validated account creation information in the output flist to
PCM_OP_CUST_CREATE_CUSTOMER.

If PCM_OP_CUST_PREP_CUSTOMER cannot open a local transaction, or a transaction
is already open, the transaction is stopped and PCM_OP_CUST_PREP_CUSTOMER
exits without validating the account creation information.

In addition, PCM_OP_CUST_PREP_CUSTOMER calls
PCM_OP_PYMT_POL_SPEC_VALIDATE to determine whether a customer's payment
information needs to be validated during account creation. If validation is required,
PCM_OP_CUST_PREP_CUSTOMER calls PCM_OP_PYMT_VALIDATE to perform the

Chapter 9
Creating Accounts

9-10

operation. If validation fails, the results are transformed to be consistent with the results
used to describe account creation failure results and are then returned on the output flist.
See "Processing Paymentech Address Validation Return Codes".

4. If the data is valid, PCM_OP_CUST_CREATE_CUSTOMER calls an internal opcode to
create the /account object.

The internal opcode creates a generic /account object. The account is constructed in the
following actions, all of which are performed inside the transaction started by
PCM_OP_CUST_COMMIT_CUSTOMER or the global transaction manager. To create the
account, PCM_OP_CUST_COMMIT_CUSTOMER does the following:

• Calls PCM_OP_CUST_CREATE_BILLINFO to create one or more bill units (/billinfo
objects) and propagates the bill unit with billing information.

• Calls PCM_OP_CUST_CREATE_BAL_GRP to create one or more /balance_group
objects and link the balance groups to the account and the appropriate bill unit.

• Calls PCM_OP_CUST_CREATE_PAYINFO to create a /payinfo object and link the
payment information to the appropriate bill unit.

• Calls PCM_OP_CUST_CREATE_PROFILE to create a /profile object if the input flist
contains profile information.

• Calls PCM_OP_CUST_SET_NAMEINFO to set the contact information.

• Calls PCM_OP_CUST_SETUP_TOPUP to set up top-up information, if any, for the
account.

• Calls PCM_OP_CUST_SET_STATUS to set the account status to active.

5. PCM_OP_CUST_CREATE_CUSTOMER calls
PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY to validate that the
bundles passed from the input flist do not violate any bundle dependencies.

6. PCM_OP_CUST_CREATE_CUSTOMER calls PCM_OP_CUST_CREATE_SERVICE to
create /service objects.

7. PCM_OP_CUST_CREATE_CUSTOMER calls
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL to purchase bundles.

When calling PCM_OP_SUBSCRIPTION_PURCHASE_DEAL,
PCM_OP_CUST_CREATE_CUSTOMER populates the PIN_FLD_DEAL_INFO field in the
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL input flist only when the following is true
for the input flist of PCM_OP_CUST_CREATE_CUSTOMER:

• At the PIN_FLD_ACCTINFO level:

– PIN_FLD_DEAL_OBJ is not populated.

– PIN_FLD_DEAL_INFO is populated, including the PIN_FLD_PRODUCTS array
and its PIN_FLD_STATUS field.

• At the PIN_FLD_SERVICES level:

– PIN_FLD_DEAL_OBJ is not populated.

– PIN_FLD_DEAL_INFO field is populated, including the PIN_FLD_PRODUCTS
array and its PIN_FLD_STATUS field.

• At the PIN_FLD_SERVICES > PIN_FLD_DEALS level:

– PIN_FLD_DEAL_OBJ is not populated.

– PIN_FLD_DEAL_INFO field is populated, including the PIN_FLD_PRODUCTS
array and its PIN_FLD_STATUS field.

Chapter 9
Creating Accounts

9-11

8. PCM_OP_CUST_COMMIT_CUSTOMER creates the customer's collections profile at the
time of customer account creation.

9. Before committing the transaction, PCM_OP_CUST_COMMIT_CUSTOMER calls
PCM_OP_CUST_POL_PRE_COMMIT.

10. After committing the transaction, PCM_OP_CUST_COMMIT_CUSTOMER calls
PCM_OP_CUST_POL_POST_COMMIT. See "Adding Custom Account Creation Steps
After the Account Is Committed".

11. PCM_OP_CUST_COMMIT_CUSTOMER:

• Passes credit card in "Adding Custom Account Creation Steps Before the Account Is
Committed" formation to PCM_OP_PYMT_VALIDATE and
PCM_OP_PYMT_COLLECT, which collect any credit card payments charged at
account creation and validate the credit card information returned by the payment
processor.

• If you use multiple schemas, creates the /uniqueness object.

• Calls PCM_OP_CUST_POL_GET_CONFIG to get information used by client
applications. See "Sending Account Information to Your Application when an Account
is Created".

• Calls PCM_OP_CUST_SET_BAL_GRP to create balance groups, set credit limits, and
set sub-balance consumption rules. See "How BRM Handles Consumption Rules and
Credit Limits".

Note:

By default, BRM does not log events that do not have a balance impact. You
can specify to log all account-creation events. See "Logging Noncurrency
Events" in BRM System Administrator's Guide.

Customizing Account Numbers
Use PCM_OP_CUST_POL_PREP_ACCTINFO and
PCM_OP_CUST_POL_VALID_ACCTINFO to customize the account number format.

PCM_OP_CUST_POL_VALID_ACCTINFO validates the fields that are required to create or
modify an account based on the input from the calling opcode. This opcode is called by
PCM_OP_CUST_POL_PREP_ACCTINFO when an account is being created or modified. If
the mandatory fields are not passed in, PCM_OP_CUST_POL_VALID_ACCTINFO reports an
error.

PCM_OP_CUST_POL_VALID_ACCTINFO is an empty hook.You must modify this opcode
only for special situations.

To run these opcodes, PCM_OP_CUST_SET_ACCTINFO initializes an /account object with
generic fields passed in on the input flist. PCM_OP_CUST_SET_ACCTINFO calls
PCM_OP_CUST_POL_PREP_ACCTINFO and PCM_OP_CUST_POL_VALID_ACCTINFO to
prepare and validate account information, and returns the account number based on the
customizations made in the opcodes.

Customizing the Introductory Message
You can customize how to choose an introductory message and how to send it:

Chapter 9
Creating Accounts

9-12

• To choose the message, use PCM_OP_CUST_POL_GET_INTRO_MSG. The type of
account and package selected are passed to the operation on the input flist. This enables
different introductory messages to be returned based on the values of these fields. The
introductory message is returned on the output flist as an uninterpreted buffer of data. This
enables the introductory message to include HTML, graphics, and other complex
information.

PCM_OP_CUST_POL_GET_INTRO_MSG is not called by any opcode.

• To send the message, use PCM_OP_CUST_POL_POST_COMMIT.

PCM_OP_CUST_POL_GET_INTRO_MSG reads the message from the file specified in the
CM pin.conf file intro_dir entry.

PCM_OP_CUST_POL_GET_INTRO_MSG returns the introductory message as an
uninterpreted buffer of data. This allows the introductory message to include HTML, graphics,
and other complex information.

The subject line for the welcome email message is by default “Welcome to the Internet." To
change this, edit the PCM_OP_CUST_POL_POST_COMMIT policy opcode.

In each introductory message, a parameter substitution system enables the message to
contain values that are specific to this customer, such as the name of the package they chose
to purchase. For example, the following enables you to substitute a package name and a
promotional code:

You are requesting to purchase the ${price_plan} package via the ${promo_code} promo
code.

The package name and promotional code substitution is handled by the following code in
PCM_OP_CUST_POL_GET_INTRO_MSG:

/***
 * Package Name
 ***/

if (strcasecmp(macro, "price_plan")==0) {
valp = NULL;
valp = (char *)PIN_FLIST_FLD_GET(in_flistp,
PIN_FLD_AAC_PACKAGE, 0, ebufp);
if(valp) fm_cust_pol_buf_cat(bufp, valp, ebufp);
}

/***
 * Promo Code
 ***/

else if (strcasecmp(macro, "promo_code")==0) {
valp = NULL;
valp = (char *)PIN_FLIST_FLD_GET(in_flistp,
PIN_FLD_AAC_PROMO_CODE, 0, ebufp);
if(valp) fm_cust_pol_buf_cat(bufp, valp, ebufp);
}

Sending the Introductory Message
PCM_OP_CUST_POL_POST_COMMIT uses the Email DM
PCM_OP_DELIVERY_MAIL_SENDMSGS opcode to send a welcoming message.
PCM_OP_DELIVERY_MAIL_SENDMSGS in turn calls the Email DM
PCM_OP_CREATE_OBJ.

Chapter 9
Creating Accounts

9-13

Customizing Account Creation Charges
By default, BRM collects cycle forward and purchase fees on account creation for credit card
customers. Use PCM_OP_PYMT_POL_SPEC_COLLECT to customize whether to charge the
customer immediately for all or part of the current account balances during account creation or
to defer the charges to a later date. You can also specify whether to validate the charges.

The only type of action that can trigger this opcode is create customer. If this is not passed in,
PIN_ERR_BAD_VALUE is returned.

PCM_OP_PYMT_POL_SPEC_COLLECT checks all the account balance groups and specifies
the amount for each bill unit (/billinfo object).

• The PIN_FLD_BILLINFO_OBJ field in the input flist specifies the bill unit associated with
the payment.

• The PIN_FLD_ITEMS array in the output flist specifies a list of open items to be paid.

• If the pay type is _dd, then it determines from the pin.conf file whether to validate, and
then validates the account with Paymentech.

PCM_OP_PYMT_POL_SPEC_COLLECT then calls PCM_OP_PYMT_GET_ACH_INFO to
retrieve the Automated Clearing House (ACH) information.

Note:

PCM_OP_PYMT_GET_ACH_INFO retrieves ACH information from the /config/ach
object. It uses the ACH vendor name or element ID in the input flist to determine
which element in the ACH_INFO array should be used.

BRM supports direct debit transactions from checking accounts only.

You can disable the default logic for PCM_OP_PYMT_POL_SPEC_COLLECT by changing the
value of the cc_collect or dd_collect entry in the CM pin.conf configuration file. Change the
value from 1 (enabled) to 0 (disabled).

Creating Multiple Accounts in One Transaction
You can create multiple BRM accounts in one transaction with JCA Resource Adapter. This is
useful, for example, when a single order in Oracle Communications Order and Service
Management (OSM) produces multiple new customers. It enables Oracle Application
Integration Architecture (Oracle AIA) to maintain the cross-references between the OSM order
and its associated BRM accounts.

Creating Accounts with Backdated Services or Balances
By default, BRM does not allow accounts to be created with the services or balances creation
dates backdated beyond the account or service creation date.

When you backdate the account creation, the account becomes effective as of the new
backdated date. BRM does the following:

• Sets the PIN_FLD_EFFECTIVE_T field in the /account object to the backdated date.

Chapter 9
Creating Accounts

9-14

• Sets the purchase, usage, or cycle start date to the backdated date unless these dates are
explicitly set to a different date.

• Sets the billing day of month (DOM) to the backdated date unless the actg_dom entry in
the Connection Manager (CM) configuration file (pin.conf) is used.

BRM does not allow backdating the account creation to a date prior to the general ledger (G/L)
posting date.

To backdate an account's creation time, pass the backdate time in the PIN_FLD_END_T field
of PCM_OP_CUST_COMMIT_CUSTOMER. The value of PIN_FLD_END_T is copied to the
PIN_FLD_EFFECTIVE_T field internally and is then passed to the appropriate opcodes to
complete the account creation process.

When you backdate account creation, you also backdate the charge offer purchase. If the
charge offer includes cycle fees, BRM uses PCM_OP_SUBSCRIPTION_CYCLE_FORWARD
and PCM_OP_ SUBSCRIPTION_CYCLE_ARREARS to calculate cycle forward and cycle
arrears fees for the subscription operations.

When you backdate the creation of an account that has cycle forward events, the cycle forward
fee is applied for the first cycle just as it would be if the account were to be created on the
backdated date. The remaining cycles, until the current cycle, are charged only during the next
bill run.

You can create accounts with the services or balances creation date backdated beyond the
account or service creation date by running the pin_bus_params utility to change the
SubsDis74BackDateValidations business parameter. For information about this utility, see
BRM Developer's Guide.

To create accounts with backdated services or balances:

1. Go to BRM_home/sys/data/config.

2. Create an XML file from the /config/business_params object:

pin_bus_params -r BusParamsSubscription bus_params_subscription.xml
3. In the file, change disabled to enabled:

<SubsDis74BackDateValidations>enabled</SubsDis74BackDateValidations>
4. Save the file as bus_params_subscription.xml.

5. Load the XML file into the BRM database:

pin_bus_params bus_params_subscription.xml
6. Stop and restart the CM.

7. (Multischema systems only) Run the pin_multidb script with the -R CONFIG parameter.
For more information, see BRM System Administrator's Guide.

Creating Customer's Collections Profiles at the Time of Customer Account
Creation

BRM uses PCM_OP_CUST_COMMIT_CUSTOMER to create a customer's collections profile
at the time of customer account creation.

As input, this opcode takes /profile/collections_params as the Portal object ID (POID) type in
the PIN_FLD_PROFILE_OBJ field and the collections parameter details in the
PIN_FLD_COLLECTIONS_PARAMS array to create the collections profile. This opcode uses
the PIN_FLD_BILLINFO_ID field to identify the bill unit in case of multiple bill units.

Chapter 9
Creating Accounts

9-15

Customizing Automatic Account Creation (AAC) Information
To validate automatic account creation data, BRM uses
PCM_OP_CUST_POL_PREP_AACINFO and PCM_OP_CUST_POL_VALID_AACINFO.

For example, when registering customers, you can offer different packages to different
customers by having customers enter account creation numbers. You can also assign account
creation numbers to customers to track marketing information. To specify how to validate
account creation numbers, edit the PCM_OP_CUST_POL_VALID_AACINFO policy opcode.

PCM_OP_CUST_POL_PREP_AACINFO prepares automatic account creation (AAC) data for
validation. This opcode takes the AAC fields for an /account and /service object during
customer account creation and processes them as necessary to prepare for validation. This
opcode can be used to prepare ACC info for online account creation.This opcode is an empty
hook.

This opcode is called by PCM_OP_CUST_INIT_SERVICE and PCM_OP_CUST_ACCTINFO.

See BRM Developer's Reference guide.

Adding Custom Account Creation Steps Before the Account Is Committed
To run additional steps before an account is committed, use
PCM_OP_CUST_POL_PRE_COMMIT.

PCM_OP_CUST_POL_PRE_COMMIT is called by PCM_OP_CUST_COMMIT_CUSTOMER
just after the /account and /service objects have been created and initialized but before the
transaction containing those operations has been committed. Therefore,
PCM_OP_CUST_POL_PRE_COMMIT cannot alter the /account and /service objects, but it
can cancel the account creation process by returning an ebuf error. Therefore, you can include
tests that the customer must pass before proceeding.

The entire account creation flist is passed in the input flist so any information about the
customer can be used in interacting with the external or legacy system.

No information is returned as output parameters. Unless an error is returned, account creation
continues as expected.

PCM_OP_CUST_POL_PRE_COMMIT is an empty hook.

Adding Custom Account Creation Steps After the Account Is Committed
To run additional steps after the account is committed, use
PCM_OP_CUST_POL_POST_COMMIT.

PCM_OP_CUST_POL_POST_COMMIT is called by PCM_OP_CUST_CREATE_CUSTOMER
just after the transaction containing the creation and initialization of the /account and /service
objects has been committed.

PCM_OP_CUST_POL_POST_COMMIT takes the entire account creation flist as its input flist
so any information about the customer can be used to interact with an external or legacy
system. This opcode cannot alter the account creation data used to create the customer.
Because the transaction creating the customer objects has already been committed, this
operation cannot prevent or alter the account creation process in any way. If an ebuf error is
returned by PCM_OP_CUST_POL_POST_COMMIT, it is ignored by
PCM_OP_CUST_CREATE_CUSTOMER.

Chapter 9
Creating Accounts

9-16

No information is returned as output parameters.

Integrating BRM With an External Account Creation Application
See the following topics:

• Sending Account Information to Your Application when an Account is Created

• Sending Account Information to Your Application when an Account is Modified

Sending Account Information to Your Application when an Account is Created
To send account information to your application after the account is created, use
PCM_OP_CUST_POL_GET_CONFIG. This opcode is called by
PCM_OP_CUST_COMMIT_CUSTOMER after customer account creation has been
successfully performed to specify the configuration data that should be returned to the client
software.

PCM_OP_CUST_POL_GET_CONFIG allows configuration information, such as news server
address or mail server address, to be determined dynamically.

Input parameters include the POID of the account object that was created by the account
creation. Output parameters include all configuration fields and values that should be returned
to the client software.

The default implementation supports different sets of configuration information based on the
value of the aac_source field from the customer account creation data. The list of
configuration fields is stored in a text file in a configurable directory.

Sending Account Information to Your Application when an Account is Modified
To send account information to your application after a service is purchased, use
PCM_OP_CUST_POL_POST_MODIFY_CUSTOMER. This opcode is called by
PCM_OP_CUST_MODIFY_CUSTOMER.

PCM_OP_CUST_POL_POST_MODIFY_CUSTOMER provides a mechanism to export
customer data to an external or legacy system for processing when new services have been
added to existing customers.

PCM_OP_CUST_MODIFY_CUSTOMER calls
PCM_OP_CUST_POL_POST_MODIFY_CUSTOMER just after the transaction containing the
creation and initialization of the new /service object associated with the add-on package has
been committed. The input flist contains all of the same information as the
PCM_OP_CUST_MODIFY_CUSTOMER input flist, thereby allowing any information about the
customer to be used by the external or legacy system. Because the transaction creating the
customer /service object has already been committed,
PCM_OP_CUST_POL_POST_MODIFY_CUSTOMER cannot alter the customer data or
prevent or alter the customer modification process in any way. If an error is returned by
PCM_OP_CUST_POL_POST_MODIFY_CUSTOMER, it is ignored by
PCM_OP_CUST_MODIFY_CUSTOMER.

Returning a Point-of-Presence (POP) List
To get an account creation point-of-presence (POP) list, use
PCM_OP_CUST_POL_GET_POPLIST.

This opcode retrieves either the best POP for a registering customer to call or the entire list of
POPs so the customer can choose one. Both approaches are supported because some

Chapter 9
Creating Accounts

9-17

account creation models do not supply the customer phone number when retrieving the POP
list, so no automatic matching can be done. If no phone number is supplied, the entire POP list
is returned.

If the application requires the entire POP list, then all that is required on the input flist is the
PIN_FLD_POID.

If the application is looking for the nearest POP based on location, the input flist requires the
area code and prefix (or the ANI) in the PIN_FLD_ANI field and the PIN_FLD_POID field
containing the database number where the POP tables reside.

The fields returned to the caller when a specific POP is needed are:

• PIN_FLD_PHONE

• PIN_FLD_CITY

• PIN_FLD_STATE

• PIN_FLD_ZIP

• PIN_FLD_FLAGS

The PIN_FLD_FLAGS field contains two flags:

• The POP_TOLL_FREE flag, if set, indicates whether the POP is a toll free call for the
caller.

• The POP_DIAL_ONE flag, if set, indicates that the caller needs to dial 1 first when placing
the call to the pop.

These flags are bit flags. To check if POP_DIAL_ONE is set, for example, the code would be:

if (flags & POP_DIAL_ONE) {
/*
** Action code.
*/
}

The fields returned to the caller when a list of POPs is requested is an array of POPs
(PIN_FLD_POP) where each element contains fields:

• PIN_FLD_PHONE

• PIN_FLD_CITY

• PIN_FLD_STATE

• PIN_FLD_ZIP

The default implementation uses /pop objects in the database to determine the POP
information to return. Applications are provided with BRM to load POP objects into the
database for each POP in the network and to compute the best POP for each exchange in the
U.S. based on phone call rating tables from a third party.

PCM_OP_CUST_POL_GET_POPLIST is not called by any opcode.

Creating Accounts in a Multischema System
In multischema systems, you can configure BRM to balance account loads among database
schemas. You can use policy opcodes to customize how to select schemas during account
creation. See the following topics:

• Getting a List of Database Schemas

Chapter 9
Creating Accounts

9-18

• Selecting a Database Schema

Getting a List of Database Schemas
To get a list of database schemas defined in a multischema environment, use
PCM_OP_CUST_POL_GET_DB_LIST. If you have schemas that you do not want included in
the list of available schemas, you can customize this opcode to prevent them from being listed.

The default implementation returns the cached list of schema distributions created by
PCM_OP_CUST_POL_GET_DB_NO during BRM initialization.

When BRM is set up as a multischema environment, the output flist contains a POID and the
schema distributions array. In a single-schema environment, the output flist contains only the
POID.

PCM_OP_CUST_POL_GET_DB_LIST is not called by any opcode.

Selecting a Database Schema
In a multischema system, the criteria for selecting a schema is set in the BRM_home/apps/
multi_db/config_dist.conf file. See "Setting Database Schema Priorities" in BRM System
Administrator's Guide. During account creation, PCM_OP_CUST_COMMIT_CUSTOMER calls
PCM_OP_CUST_POL_GET_DB_LIST to select a schema for the new account.

You can customize the selection process by customizing
PCM_OP_CUST_POL_GET_DB_NO.

Managing Name and Address Information
To add name and address information to a specific account object, use
PCM_OP_CUST_SET_NAMEINFO. This opcode sets the fields of the PIN_FLD_NAMEINFO
array of a specified /account object to the values specified in the input flist
PIN_FLD_NAMEINFO array.

PCM_OP_CUST_SET_NAMEINFO does the following:

• Sets the billing address in the account's PIN_FLD_NAMEINFO array by using the
PIN_NAMEINFO_BILLING element (element_id = PIN_NAMEINFO_BILLING = 1).

• Sets the mailing address (if needed) using the PIN_NAMEINFO_MAILING element
(element_id = PIN_NAMEINFO_MAILING = 2).

Note:

Element IDs through 100 are reserved for BRM use.

BRM calls PCM_OP_CUST_SET_NAMEINFO as part of the process of creating an /account
object.

If the PCM_OPFLG_CALC_ONLY flag is not set, PCM_OP_CUST_SET_NAMEINFO creates
an /event/customer/nameinfo object to record the details of the operation.

If the operation is successful, BRM returns the POID of the /event/customer/nameinfo object
in the PIN_FLD_RESULTS array. If the operation fails, BRM returns a PIN_FLD_FIELDS array
that specifies the failing field.

Chapter 9
Managing Name and Address Information

9-19

Customizing Name and Address Information
Use the following opcodes to customize name and address information:

• PCM_OP_CUST_POL_PREP_NAMEINFO

• PCM_OP_CUST_POL_VALID_NAMEINFO

See BRM Developer's Guide.

PCM_OP_CUST_SET_NAMEINFO calls PCM_OP_CUST_POL_PREP_NAMEINFO to
prepare the customer information for validation and to determine whether the account being
created is the BRM payment suspense account. If the country is not provided, it is assumed to
be “USA" and “USA" is added as the country value. You can change the country parameter in
the pin.conf file to insert any country when none is provided.

PCM_OP_CUST_POL_PREP_NAMEINFO checks the relevant /config/business_params
object to determine whether payment suspense management is enabled. If so, it checks if the
first name is “payment" and the last name is “suspense," which identifies it as a payment
suspense account. If it exists, PCM_OP_CUST_POL_PREP_NAMEINFO retrieves the POID
of the /config/psm object and passes it to PCM_OP_CUST_SET_NAMEINFO.

If it is the payment suspense account, PCM_OP_CUST_SET_NAMEINFO performs the
following tasks:

• If the opcode provides a /config/psm object, PCM_OP_CUST_SET_NAMEINFO updates
the PIN_FLD_ACCOUNTS array with the account POID for the payment suspense
account being created.

• If the opcode provides a dummy POID, PCM_OP_CUST_SET_NAMEINFO creates the /
config/psm object. It includes the account POID of the payment suspense account in the
PIN_FLD_ACCOUNTS_ARRAY.

PCM_OP_CUST_SET_NAMEINFO then calls PCM_OP_CUST_POL_VALID_NAMEINFO to
validate the information.

Customizing Locale Information
Use PCM_OP_CUST_SET_LOCALE to set the locale in an account. This opcode creates an /
event/customer/locale object (or one inherited from it) to record the details of the operation.

You can use the PCM_OPFLG_CALC_ONLY flag to run the operation without creating the
event object.

To customize how locales are set, use the following opcodes:

• To customize the creation of the locale, use PCM_OP_CUST_POL_PREP_LOCALE. This
opcode is called by PCM_OP_CUST_SET_LOCALE. This opcode is an empty hook. See
BRM Developer's Guide.

• To customize how to validate the locale, use PCM_OP_CUST_POL_VALID_LOCALE. See
BRM Developer's Guide. PCM_OP_CUST_POL_VALID_LOCALE does the following:

– Validates limit information for a service.

– Confirms that the value of PIN_FLD_LOCALE in the input flist is one of the valid BRM
locales.

Chapter 9
Managing Name and Address Information

9-20

Creating Custom Country Aliases
You can define custom values to represent countries by adding them to the country:alias list in
the source code of PCM_OP_CUST_POL_VALID_NAMEINFO. This example shows three
valid values for Angola: AO, Angola, and Ang.

"AO:AO",
"AO:Angola",
"AO:Ang"

After you edit this list, recompile the code to make your changes take effect.

Authenticating and Authorizing Customers
See the following topics:

• Customizing Login Names

• Requiring Login Names for Email and Broadband Services

• Creating Logins for Prepaid Services

• Creating Logins for Email Services

• Creating Passwords

• Authenticating Customers

Customizing Login Names
To set the login for an account, use PCM_OP_CUST_SET_LOGIN. This opcode sets the login
field for a /service object to the value specified in the PIN_FLD_LOGINS array of the input flist.

If the PCM_OPFLG_READ_RESULT flag is set and the operation is successful,
PCM_OP_CUST_SET_LOGIN returns all fields of the /event/customer/login object in the
PIN_FLD_RESULTS array. Otherwise, only the POID of the event object is returned. If the
operation is not successful, PCM_OP_CUST_SET_LOGIN returns the PIN_FLD_FIELDS
array which specifies the failing field.

If the PCM_OPFLG_CALC_ONLY flag is not set, PCM_OP_CUST_SET_LOGIN creates an /
event/customer/login object to record the details of the operation.

Use the following opcodes to customize how login names are created. These opcodes are
called by PCM_OP_CUST_SET_LOGIN.

• To prepare login names for validation, use PCM_OP_CUST_POL_PREP_LOGIN. This
opcode takes the login field for a service object during customer account creation and
processes it as necessary to prepare for validation. For example, you can add characters
or change the case to all lowercase. This opcode is called by
PCM_OP_CUST_COMMIT_CUSTOMER and PCM_OP_CUST_SET_LOGIN. See BRM
Developer's Guide.

• To validate login names, use PCM_OP_CUST_POL_VALID_LOGIN (for example, to
ensure that they have the required number of characters). This opcode takes the login field
for a /service object during customer account creation or administrative update and
validates it. This opcode is called by PCM_OP_CUST_SET_LOGIN,
PCM_OP_CUST_COMMIT_CUSTOMER, and PCM_OP_CUST_VALIDATE_CUSTOMER.
See BRM Developer's Guide.

Chapter 9
Authenticating and Authorizing Customers

9-21

Caution:

BRM requires unique login names for service types. BRM will not function
properly if PCM_OP_CUST_POL_VALID_LOGIN is customized to allow
nonunique login names.

Note:

BRM requires logins for services (they cannot be NULL). BRM requires that login
names be unique. BRM will not function properly if
PCM_OP_CUST_POL_VALID_LOGIN is customized to allow nonunique login
names.

Requiring Login Names for Email and Broadband Services
By default, BRM requires all accounts that purchase email or broadband services to create a
login name and password before they can proceed with the account creation or modification
process. BRM enforces the login name requirement by using the following two opcodes:

• PCM_OP_CUST_POL_PREP_LOGIN converts all NULL login names to an empty string.
For example, if the service type is /service/email and the opcode's PIN_FLD_LOGIN input
flist field is set to NULL, the opcode changes the PIN_FLD_LOGIN flist field to "".

• PCM_OP_CUST_POL_VALID_LOGIN rejects all login names that are set to an empty
string, because the validation process requires that all login names are at least one
character in length.

To override this behavior and allow accounts to purchase email and broadband services
without supplying a login name, customize PCM_OP_CUST_POL_PREP_LOGIN to skip the
conversion of NULL login names to an empty string.

Creating Logins for Prepaid Services
For prepaid services, the login is generated automatically. The default login generated by
PCM_OP_CUST_POL_PREP_LOGIN is a unique string composed of the database number,
service name, and POID.

In cases where a prepaid service login is needed, such as Self-Care Manager, the customer's
Mobile Station Integrated Services Digital Network (MSISDN) number is stored in the service
object PIN_FLD_ALIAS_LIST array.

PCM_OP_CUST_POL_VALID_LOGIN enforces that a password for a service cannot be
changed when the account is created or when a service is added. The password can be
changed later.

Creating Logins for Email Services
For email services, PCM_OP_CUST_POL_PREP_LOGIN appends the domain entry in the
CM configuration file (pin.conf) to the login. Passing in a domain name results in an error.

Chapter 9
Authenticating and Authorizing Customers

9-22

Creating Passwords
To add or change passwords, use PCM_OP_CUST_SET_PASSWD.

This opcode sets the PIN_FLD_PASSWD field for a specified /service object to the value
specified in the PIN_FLD_PASSWORDS array of the input flist.

If the PCM_OPFLG_CALC_ONLY flag is not set, PCM_OP_CUST_SET_PASSWD creates
an /event/customer/password object to record the details of the operation.

Before setting the new password value, PCM_OP_CUST_SET_PASSWD calls the following
opcodes to perform these operations:

• PCM_OP_CUST_POL_PREP_PASSWD, to process and prepare the new password for
validation.

• PCM_OP_CUST_POL_VALID_PASSWD, to validate the password.

• PCM_OP_CUST_POL_ENCRYPT_PASSWD, to encrypt the password.

If the PCM_OPFLG_CALC_ONLY flag is not set, PCM_OP_CUST_SET_PASSWD creates
an /event/customer/password object to record the details of the operation.

If the password is successfully updated, the POID of the /event/customer/password object is
returned in the PIN_FLD_RESULTS array. Otherwise, PCM_OP_CUST_SET_PASSWD
returns the PIN_FLD_FIELDS array that specifies the failing fields.

Customizing Passwords
Use the following opcodes to customize passwords:

• To prepare account or service passwords for validation, use
PCM_OP_CUST_POL_PREP_PASSWD. This opcode is called by
PCM_OP_CUST_SET_PASSWD. PCM_OP_CUST_POL_PREP_PASSWD takes the
password field for an /account or /service object during customer account creation and
prepares it for validation.

If a service password is passed in, the operation does nothing. If there is no password for a
service, it generates one. A password is considered to be passed in if the
PIN_FLD_PASSWD_CLEAR field is in the input flist, even if it is NULL.

• To validate account or service passwords, use PCM_OP_CUST_POL_VALID_PASSWD.
This opcode is called by PCM_OP_CUST_SET_PASSWD and
PCM_OP_CUST_VALIDATE_CUSTOMER. PCM_OP_CUST_POL_VALID_PASSWD
takes the password field for an /account or /service object during customer account
creation or administrative update and validates it. The default check is to make sure the
password is not NULL and is less than 255 characters.

Implementing Password Encryption
Use the following opcodes to implement password encryption:

PCM_OP_CUST_POL_ENCRYPT_PASSWD encrypts a cleartext password based on the type
of the account or service POID given and/or the requested encryption algorithm. The binary
result is stored as an ASCII-like string to facilitate storage. All encryption requests from IP
accounts get clear text encryption (to support Challenge Handshake Authentication Protocol,
or CHAP). Advanced Encryption Standard (AES) or OZT encryption is used for all others. See
"About Encrypting Passwords". This opcode is called by PCM_OP_CUST_SET_PASSWD and
PCM_OP_CUST_POL_COMPARE_PASSWD.

Chapter 9
Authenticating and Authorizing Customers

9-23

PCM_OP_CUST_POL_COMPARE_PASSWD takes a cleartext password and an encrypted
password from PCM_OP_CUST_POL_ENCRYPT_PASSWD and performs a comparison to
check if the cleartext password was the source value of the encrypted password. The type of
the /account or /service object whose password is being compared is included in the input
flist, so the encryption mechanism can be varied for different object types.
PCM_OP_CUST_POL_COMPARE_PASSWD returns true (match) or false (no match).
PCM_OP_CUST_POL_COMPARE_PASSWD is used by BRM whenever a client application
supplies a password to be authenticated against an /account or /service object.
PCM_OP_CUST_POL_COMPARE_PASSWD is called by PCM_OP_ACT_VERIFY.

PCM_OP_CUST_POL_DECRYPT_PASSWD decrypts a cleartext password.

Creating Passwords for Prepaid Services
For prepaid services, the password is generated automatically. By default,
PCM_OP_CUST_POL_PREP_PASSWD generates a random eight-character password, but
you can customize the password algorithm.

Customizing Password Expiration
To customize password expiration, use PCM_OP_CUST_POL_EXPIRATION_PASSWD.

This opcode is called by PCM_OP_CUST_SET_PASSWD.

PCM_OP_CUST_POL_EXPIRATION_PASSWD calculates and sets the expiration date for the
password. This opcode is called when the password status of a CSR account is set as
Expires.

By default, PCM_OP_CUST_POL_EXPIRATION_PASSWD sets the password expiration date
to 90 days.

To change the default password expiry duration, edit the passwd_age entry in the CM
pin.conf file. For example, instead of 90 days you can set the expiration duration to 150 days.

If successful, PCM_OP_CUST_POL_EXPIRATION_PASSWD returns:

• PIN_FLD_POID: The POID of the /account object passed in.

• PIN_FLD_PASSWORD_EXPIRATION_T: The expiration date and time when the password
expires.

Authenticating Customers
When customers log in, BRM first verifies the customer's login name and password and then
performs a variety of checks (for example, when customers attempt to access a service or
content offered by your company or a third-party provider).

• PCM_OP_ACT_FIND_VERIFY is the recommended opcode for authenticating customers.
See "Authenticating User Actions".

• PCM_OP_ACT_FIND. See "Finding a Customer's Account Information".

• PCM_OP_ACT_POL_SPEC_VERIFY. See "Customizing Authentication Checks".

Authenticating User Actions
Use PCM_OP_ACT_FIND_VERIFY to verify a customer's identity and to perform
authentication checks, such as verifying that the customer has good credit and an active
account status.

Chapter 9
Authenticating and Authorizing Customers

9-24

PCM_OP_ACT_FIND_VERIFY takes as input a type-only POID, the action to verify, and the
user's login and password. PCM_OP_ACT_FIND_VERIFY then:

1. Calls PCM_OP_ACT_FIND to retrieve the user's /account and /service objects. See
"Finding a Customer's Account Information".

2. Calls PCM_OP_ACT_POL_SPEC_VERIFY to retrieve the list of authentication checks for
the specified action. See "Customizing Authentication Checks".

3. Performs all authentication checks specified by the opcode.

4. Returns the following, depending on the success of the transaction:

• If authentication succeeds, PCM_OP_ACT_FIND_VERIFY returns the POID of the
service object and the PIN_FLD_RESULT field set to one of the following:

– 0 to indicate a valid login and password.

– 4 to indicate that the customer used a temporary password.

• If authentication fails, PCM_OP_ACT_FIND_VERIFY returns PIN_FLD_RESULT set to
one of the following:

– 2 to indicate an incorrect password.

– 5 to indicate that the customer used an expired password.

– 6 to indicate that the password is no longer valid.

Customizing Authentication Checks
Use PCM_OP_ACT_POL_SPEC_VERIFY to specify the list of authentication checks to
perform for each user action.

This opcode is called by PCM_OP_ACT_FIND_VERIFY to specify a list of checks used to
authenticate user actions.The specified checks are then performed by standard opcodes.

Table 9-2 lists the available authentication checks:

Table 9-2 Default Authentication Checks

Authentication check Enum
value

Description

PIN_ACT_CHECK_UNDEFINED 0 None

PIN_ACT_CHECK_ACCT_TYPE 1 Check type of /account object.

PIN_ACT_CHECK_SRVC_TYPE 4 Check type of /service object.

PIN_ACT_CHECK_SRVC_STATUS 5 Check the service status. Can be active,
inactive, or closed.

PIN_ACT_CHECK_SRVC_PASSWD 6 Confirm that the password is correct.

PIN_ACT_CHECK_CREDIT_AVAIL 7 Check the available credit.

PIN_ACT_CHECK_DUPE_SESSION 8 Check the open session count for the service.
See "Enabling Duplicate Session Checking".

You can control the list of checks that each action requires and, to some extent, the behavior of
the checks. Few authentication checks lend themselves to these behavior changes. Those that
do can define a PIN_FLD_CHOICES array for the options.

The other fields present in an element of the checks array depend on which of the checks is
specified by that element.

Chapter 9
Authenticating and Authorizing Customers

9-25

Table 9-3 shows the authentication checks that PCM_OP_ACT_POL_SPEC_VERIFY returns
and their behavior:

Table 9-3 Authentications Checks Returned by PCM_OP_ACT_POL_SPEC_VERIFY

Action Default authentication checks

PCM_OP_MAIL_DELIV_VERIFY PIN_ACT_CHECK_SRVC_STATUS = active

PCM_OP_ACT_LOGIN PIN_ACT_CHECK_SRVC_STATUS = active

PIN_ACT_CHECK_SRVC_PASSWD

PIN_ACT_CHECK_CREDIT_AVAIL = >=0

PCM_OP_MAIL_LOGIN_VERIFY PIN_ACT_CHECK_SRVC_STATUS = active

PIN_ACT_CHECK_SRVC_PASSWD

PIN_ACT_CHECK_CREDIT_AVAIL = >=0

DEFAULT (for everything else) PIN_ACT_CHECK_SRVC_STATUS = active

PIN_ACT_CHECK_SRVC_PASSWD

You can customize PCM_OP_ACT_POL_SPEC_VERIFY to:

• Choose a different combination of authentication checks to use on an action.

• Change the behavior of the authentication checks.

• Decide not to use any checks to authenticate an action.

• Authorize a custom action using the list of authentication checks.

PCM_OP_ACT_POL_SPEC_VERIFY uses the DEFAULT set of authentication checks on any
action it does not recognize.

To specify a different set of authentication checks for a new action:

1. Edit the BRM_home/source/sys/fm_policy/fm_act_pol/fm_act_pol_spec_vrfy.c source
file.

2. Create a new Activity Policy Facilities Module (FM).

Each authentication check must have a type (the enum value from the table of
authentication checks above), and choice options to control the behavior of the check. See
the PCM_OP_MAIL_DELIV_VERIFY action definition in the fm_act_pol_spec_vrfy.c file
for an example of a PIN_FLD_CHOICES array.

For example, suppose you defined a noncurrency balance. To enforce a credit limit on that
balance, you must modify the fm_act_pol_spec_vrfy.c file to include a new action that checks
the noncurrency balance. (By default, checks are performed only on the currency balance.)

Reducing the number of authentication checks does not have a significant effect on
performance, with the exception of duplicate session checking.

Enabling Duplicate Session Checking
You can customize PCM_OP_ACT_POL_SPEC_VERIFY to check for duplicate login attempts
(PIN_ACT_CHECK_DUPE_SESSION) by performing the following tasks:

1. Modify your BRM_home/source/sys/fm_act/pol/fm_act_pol_spec_vrfy.c file to add
duplicate session checking to the input flist for the desired actions. This is just the
term_ip_dialup related action. Assuming the default version of fm_act_pol_spec_vrfy.c
is used as a base, add the following code fragment at line 339:

Chapter 9
Authenticating and Authorizing Customers

9-26

type = PIN_ACT_CHECK_DUPE_SESSION;
 c_flistp = PIN_FLIST_ELEM_ADD(a_flistp, PIN_FLD_CHECKS, 4, ebufp);
 PIN_FLIST_FLD_SET(c_flistp, PIN_FLD_TYPE, (void *)&type, ebufp);
 action = "/dialup";
 PIN_FLIST_FLD_SET(c_flistp, PIN_FLD_OBJ_TYPE, (void *)action, ebufp);

2. Add the same code fragment at line 390.

3. Recompile the file and use it as a new Activity Policy FM.

Managing and Customizing Profiles
To manage and customize profiles:

• To add a /profile object to an account, use PCM_OP_CUST_CREATE_PROFILE.

This opcode calls other opcodes that prepare and validate the account data. After the
account data is validated, PCM_OP_CUST_CREATE_PROFILE calls base opcodes to
create a /profile object that contains extra information that you want to store about an
account and associates it with the account object POID.

Only one element can be passed in the PIN_FLD_PROFILES array. Otherwise, the
opcode ignores the array.

When automatic rerating is enabled, PCM_OP_CUST_CREATE_PROFILE triggers
automatic rerating of backdated extended rating attribute (ERA) modifications when certain
conditions are met.

• To modify a profile object, use PCM_OP_CUST_MODIFY_PROFILE. When automatic
rerating is enabled, this opcode triggers automatic rerating of backdated ERA modifications
when certain conditions are met.

Given the POID of an existing /profile object, PCM_OP_CUST_MODIFY_PROFILE
modifies the object with the specified changes.

If the input flist for the inherited fields for the profile object contains a null array or substruct
value, the array or substruct table entry is deleted in the database.

Only one element can be passed in the PIN_FLD_PROFILES array. Otherwise, the
opcode ignores the array.

• To delete profiles, use PCM_OP_CUST_DELETE_PROFILE.

If the profile object specified in the input flist is a part of a profile sharing group (/group/
sharing/profile object), PCM_OP_CUST_DELETE_PROFILE does not delete the profile
and returns an error. If the specified profile object is not part of a profile sharing group, this
opcode deletes the profile.

To customize profiles, use the following opcodes:

• Use PCM_OP_CUST_POL_PREP_PROFILE to add custom data to the /profile object.
This opcode is an empty hook. This opcode is called by
PCM_OP_CUST_CREATE_PROFILE and PCM_OP_CUST_MODIFY_PROFILE, and
returns the flist that comes in.

• Use PCM_OP_CUST_POL_VALID_PROFILE to validate the data in the /profile object.
This opcode is an empty hook. This opcode is called by
PCM_OP_CUST_CREATE_PROFILE, PCM_OP_CUST_VALIDATE_CUSTOMER, and
PCM_OP_CUST_MODIFY_PROFILE, and returns the flist that comes in. If the data is not
valid, a list of possible problems is returned.

Chapter 9
Managing and Customizing Profiles

9-27

Retrieving Account Profile Information
To find the /profile objects that belong to an account, use PCM_OP_CUST_FIND_PROFILE.

This opcode uses the input PIN_FLD_POID database field of the input flist to determine which
database to search for the profile list. The opcode calls a bas opcode to search for the profile.

If the PCM_OPFLG_READ_RESULT flag is set, PCM_OP_CUST_FIND_PROFILE returns the
entire /profile object. Otherwise, it returns the fields specified in the PIN_FLD_RESULTS array.
If no fields are specified, only the profile POID is returned. Other fields are returned with the
profile POID only if they are specified in the PIN_FLD_PARAMETERS field of the input flist.

To limit the returned profile list, include a profile type string in the input flist by using
PIN_FLD_TYPE_STR. A type string contains an object name or a wildcard value using the
percent sign (%) that is compared to the profile object name. For example, /profile/foo returns
all object subtypes “foo," and /profile/f% returns all profile subtypes starting with “f." If the
profile string is not included in the input flist, all matching profiles for the account are returned.

Note:

The percent sign is the only wildcard you can use with this field.

Modifying an Account
To modify an account, use PCM_OP_CUST_UPDATE_CUSTOMER and
PCM_OP_CUST_MODIFY_CUSTOMER opcodes.

PCM_OP_CUST_UPDATE_CUSTOMER calls other opcodes to add, modify, or delete the
following data:

• Contact information

• Payment information: see "Changing a Bill's Payment Method" for more information.

• Bill units

• Top-up information

• Balance groups

• Profiles

• Locale

PCM_OP_CUST_MODIFY_CUSTOMER adds a service by adding a bundle to the account.
PCM_OP_CUST_MODIFY_CUSTOMER adds a bundle by calling other opcodes to perform
these operations:

• If the validate_deal_dependencies entry is enabled in the CM pin.conf file,
PCM_OP_CUST_MODIFY_CUSTOMER verifies that any set bundle dependencies are
valid. If not, the operation is disallowed.

• Purchase the bundle associated with the package.

• Set the account credit limit for each balance of the added package.

• Create service objects associated with the package.

Chapter 9
Modifying an Account

9-28

– If a service with an add-on package is added, and the ValidateDiscountDependency
flag is enabled in the /config/business_params object,
PCM_OP_CUST_MODIFY_CUSTOMER checks for any mutually exclusive
relationships between discounts associated with the add-on package and any
discounts already owned by the account. If any such relationship is found, the service
addition is not continued.

Note:

Discount-to-discount exclusion rules are not validated.
PCM_OP_CUST_MODIFY_CUSTOMER validates only package-to-discount
exclusion rules at purchase time.

– If the PIN_FLD_STATUS_FLAGS field is set to
PIN_STATUS_FLAG_DUE_TO_SUBSCRIPTION_SERVICE,
PCM_OP_CUST_MODIFY_CUSTOMER verifies that the service group relationships
are valid and associates member services with the appropriate balance group.

– If a subscription service is being added, PCM_OP_CUST_MODIFY_CUSTOMER
verifies that it is not a member of another service group.

– If the account status is inactive and the provisioning flag is not set, an error value is
returned and PCM_OP_CUST_MODIFY_CUSTOMER exits without modifying the
account.

– If a subscription member service is being created,
PCM_OP_CUST_MODIFY_CUSTOMER verifies that the subscription service is not
inactive or closed. If the member service requires its own balance group,
PCM_OP_CUST_MODIFY_CUSTOMER creates the balance group. Otherwise, it
associates the member service with the subscription service's balance group.

• Optionally associate /device objects with the services.

• Create notification events to mark the beginning and end of its execution.

You can use other opcodes to modify accounts, such as PCM_OP_CUST_MODIFY_PAYINFO
and PCM_OP_CUST_MODIFY_PROFILE.

PCM_OP_CUST_MODIFY_CUSTOMER is an empty hook to
PCM_OP_CUST_POL_POST_MODIFY_CUSTOMER, which you can use to export customer
data to an external or legacy system for processing.

Table 9-4 lists the opcodes to which PCM_OP_CUST_MODIFY_CUSTOMER passes
information from arrays in its input flist. The opcodes, in turn, use the information to create or
modify objects:

Table 9-4 Opcodes and Information Received to Create or Modify Objects

This Opcode Uses Information from This Array To Create or Modify
This Object

PCM_OP_CUST_SET_NAMEINFO PIN_FLD_NAMEINFO

 PIN_FLD_PHONES (subarray)

/account

PCM_OP_CUST_SET_BAL_GRP PIN_FLD_ACCTINFO

 PIN_FLD_BAL_INFO (subarray)

/balance_group

PCM_OP_CUST_SET_BILLINFO PIN_FLD_BILLINFO /billinfo

Chapter 9
Modifying an Account

9-29

Table 9-4 (Cont.) Opcodes and Information Received to Create or Modify Objects

This Opcode Uses Information from This Array To Create or Modify
This Object

PCM_OP_CUST_SET_PAYINFO PIN_FLD_PAYINFO

 PIN_FLD_CC_INFO (subarray)

 PIN_FLD_DD_INFO (subarray)

 PIN_FLD_INV_INFO (subarray)

/payinfo/cc
/payinfo/dd
/payinfo/invoice

PCM_OP_SUBSCRIPTION_SERVICE_BAL
GRP_TRANSFER

PIN_FLD_ACCTINFO

 PIN_FLD_BAL_INFO (subarray)

PIN_FLD_BILLINFO

/balance_group
/billinfo

PCM_OP_CUST_SET_LOCALE PIN_FLD_LOCALE /account

PCM_OP_CUST_CREATE_PROFILE

PCM_OP_CUST_MODIFY_PROFILE

PIN_FLD_PROFILES /profile

PCM_OP_CUST_SET_TOPUP PIN_FLD_TOPUP_INFO

 PIN_FLD_GROUP_TOPUP_INFO

 (subarray)

 PIN_FLD_GROUP_TOPUP_LIMITS

 (subarray)

 PIN_FLD_GROUP_TOPUP_MEMBERS

 (subarray)

/topup
/group/topup

If the information is successfully updated, the opcode returns the POID of the /event objects
created in the PIN_FLD_RESULTS array of the output flist. Otherwise, it returns the
PIN_FLD_FIELDS array specifying the failing field.

If the input flist array value for PIN_FLD_NAMEINFO is set to NULL, the corresponding
element ID is deleted from the NAMEINFO table in the /account object.

Changing a Bill's Payment Method
Use PCM_OP_CUST_UPDATE_CUSTOMER to change the payment method for an account's
bill unit in the following ways:

• To change an existing payment method for a bill unit, pass the POID of the /payinfo object
in the PIN_FLD_ PAYINFO_OBJ field in the PIN_FLD_BILLINFO array.

For example:

0 PIN_FLD_POID POID [0] 0.0.0.1 /account 23304551863 227
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 23304551863 227
0 PIN_FLD_PROGRAM_NAME STR [0] "program_name"
0 PIN_FLD_BILLINFO ARRAY [0] allocated 20, used 3
1 PIN_FLD_BILLINFO_ID STR [0] "Account Bill"
1 PIN_FLD_PAY_TYPE ENUM [0] 10005
1 PIN_FLD_BILLING_SEGMENT ENUM [0] 0
1 PIN_FLD_PAYINFO_OBJ POID [0] 0.0.0.1 /payinfo/cc 4780 0
...

• To add a new payment method for an existing bill unit, you can create the /payinfo object
and associate it with the bill unit in the same call by doing the following:

– Include a PIN_FLD_PAYINFO_ARRAY field (outside of the PIN_FLD_ BILLINFO array)
and add an array element for the new /payinfo object.

Chapter 9
Modifying an Account

9-30

– In the PIN_FLD_BILLINFO array, include the PIN_FLD_PAY_TYPE field with the new
payment method. Specify a NULL value for the PIN_FLD_PAYINFO array and make
sure the array element ID matches the element ID of the new /payinfo object in the
PIN_FLD_PAYINFO array that is outside the PIN_FLD_BILLINFO array.

For example:

0 PIN_FLD_POID POID [0] 0.0.0.1 /account 23304551863 227
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 23304551863 227
0 PIN_FLD_PROGRAM_NAME STR [0] "program_name"
0 PIN_FLD_BILLINFO ARRAY [0] allocated 20, used 3
1 PIN_FLD_BILLINFO_ID STR [0] "Account Bill"
1 PIN_FLD_PAY_TYPE ENUM [0] 10005
1 PIN_FLD_BILLING_SEGMENT ENUM [0] 0
1 PIN_FLD_PAYINFO ARRAY [1] NULL
0 PIN_FLD_PAYINFO ARRAY [1] allocated 20, used 20
1 PIN_FLD_POID POID [0] 0.0.0.1 /payinfo/cc -1 0
...

In the preceding example, the new /payinfo object is created and associated with the bill
unit specified in the input flist.

Note:

You must specify either the PIN_FLD_PAYINFO array or the PIN_FLD_
PAYINFO_OBJ field in the PIN_FLD_BILLINFO array. However, because these
fields are mutually exclusive and you cannot specify both, they are classified as
optional.

Creating Services
To create a service object BRM uses PCM_OP_CUST_CREATE_SERVICE.

If the PIN_FLD_SUBSCRIPTION_OBJ field in the input flist specifies the POID of a
subscription's service object, the service being added to the customer's account is a member
of the subscription service's group.

PCM_OP_CUST_CREATE_SERVICE creates the service by doing the following inside a
transaction:

• Calls PCM_OP_CUST_INIT_SERVICE to create and initialize the /service object.

PCM_OP_CUST_INIT_SERVICE initializes a service in a defunct state with generic fields
provided by the input flist. Returns a short flist with the new POID and unencrypted
password. This operation is carried out inside a transaction.

PCM_OP_CUST_INIT_SERVICE calls PCM_OP_CUST_POL_PREP_INHERITED to
prepare inherited information to be ready for online account creation. This opcode creates
a place holder for a substruct in a /service string when a /account and /service object is
created. For GSM services, the default BEARER_SERVICE value is an empty string and
the default PRIMARY_MSISDN value is set to 0.

• Calls PCM_OP_CUST_SET_PASSWD to encrypt and set a password (if one is supplied)
in the /service object. If a password is not provided, one is generated. See "Customizing
Passwords" for more information.

• Stores any client-supplied inherited information in the /service object.

Chapter 9
Creating Services

9-31

• Calls PCM_OP_CUST_SET_STATUS to set the service status. See "Setting Account,
Service, and Bill Unit Status" for more information.

• Calls PCM_OP_DEVICE_ASSOCIATE to associate /device objects with the service.

Modifying Services
To modify a service BRM uses PCM_OP_CUST_UPDATE_SERVICES. For most services, this
wrapper opcode calls PCM_OP_CUST_MODIFY_SERVICE to set, change, or delete extended
service information.

PCM_OP_CUST_UPDATE_SERVICES takes as input the POID of the /account object, the
name of the calling program, and an array containing a list of services to be updated.
Additional inputs depend on the type of services being updated. Services are processed in the
order dictated by the element value passed in the PIN_FLD_SERVICES array.

PCM_OP_CUST_UPDATE_SERVICES performs these operations:

1. Creates an /event/notification/service/pre_change event.

2. If login or alias list information is specified, calls PCM_OP_CUST_SET_LOGIN to update
the service login or alias list with the value specified.

3. If password information is specified, calls PCM_OP_CUST_SET_PASSWD to update the
service password with the value specified.

4. If service status information is specified, calls PCM_OP_CUST_SET_STATUS to update
the status of the service with the value specified.

5. If inherited fields are specified, calls PCM_OP_CUST_MODIFY_SERVICE for most
services to update the values for the inherited fields.

6. If one or more PIN_FLD_DEVICES arrays are specified, calls
PCM_OP_DEVICE_ASSOCIATE to disassociate or associate the device. Disassociations
are processed before associations.

7. Creates an /event/notification/service/post_change event.

If successful, the PCM_OP_CUST_UPDATE_SERVICES output flist contains the following:

• The POID of the /account object passed in.

• A services array containing the following:

– The POIDs of the /service objects modified.

– A results array containing the POID of the /event objects created to record the
changes. The index values returned in the PIN_FLD_RESULTS array correspond to
the input flist values as shown in Table 9-5:

Table 9-5 Indexes and Input Flist Values in PIN_FLD_RESULTS

Index Value Input Flist Value

0 Login

1 Password

2 Status

3 Inherited information

If an error is encountered in the service data, PCM_OP_CUST_UPDATE_SERVICES:

• Continues to process all of the data, so that all erroneous data is uncovered.

Chapter 9
Modifying Services

9-32

• Rolls back the transaction. Any updates already made to the information are undone.

• Returns an error in the error buffer.

After the object is modified, BRM creates the /event/notification/service event to notify
listeners about the change to the /service object. The output flist contains the POID of the
modified /service object. In case of an error, the error buffer is populated and the output flist
can be ignored.

The PCM_OP_CUST_MODIFY_SERVICE input flist contains the POID of the /service object
to be modified and a substruct of the inherited information to be stored. If the input flist for an
inherited field of the /service object contains a null entry, the array table entry is deleted from
the object in the database.

Finding Accounts
In addition to using the base search opcodes to find accounts, you can use
PCM_OP_CUST_FIND.This opcode replaces PCM_OP_SEARCH and
PCM_OP_STEP_SEARCH. Given an account number, PCM_OP_CUST_FIND finds the /
account object in question and returns the POID of the object and any other information that
you request. If no results array is specified, the entire contents of the object are returned.

You can specify an array of account numbers in an input flist and have an array of results
returned.

Finding a Customer's Account Information
Use PCM_OP_ACT_FIND to locate a customer's account information by using the login name.

PCM_OP_ACT_FIND searches for information on a specific account. In addition, the opcode
performs the following operations:

• If you use a multischema BRM system, it searches all database schemas to find the /
account object.

In multischema environments, the calling opcode must not open a transaction before
calling PCM_OP_ACT_FIND. Instead, the calling opcode must first call
PCM_OP_ACT_FIND to find the schema in which the account resides and then open a
transaction on the correct schema.

• If there is an open context (CM connection) to a schema when it is called and it finds the
account in a different schema, it switches the context to the correct schema.

• If there is no open context when it is called, it searches all schemas.

Note:

PCM_OP_ACT_FIND does not perform authentication.

PCM_OP_ACT_FIND searches for the /account and /service object. If PCM_OP_ACT_FIND
is called with the PCM_OPFLG_READ_RESULT flag, it returns all fields of the /service object,
not just the POID.

Chapter 9
Finding Accounts

9-33

Deleting Accounts

Note:

You can delete accounts in a production system, but ensure that you use this opcode
with care.

To delete accounts, use PCM_OP_CUST_DELETE_ACCT. This opcode deletes the specified /
account object and all related objects (such as events, bill items, bill history, balances, and
notes) and disassociates devices that are assigned to the services. It also ensures that all the
BRM objects and audit entries containing the subscriber's personal data are purged.

The POID of the object is checked to ensure that the object can be deleted and that the user
has permission to delete the object.

This opcode does not delete any audit table entries associated with the /account object.

To allow ECE to delete accounts that still have active open session, set the PIN_FLD_FLAG
input field to 1.

You cannot delete the /account object if the account was previously associated with a
subscription service transfer or if the bill unit it owns is a paying bill unit of a nonpaying bill unit
in another account.

Note:

The PCM_OP_CUST_DELETE_ACCT opcode does not delete all custom objects.
You can write custom logic to clean up the custom objects in BRM when the /event/
notification/account/pre_delete and /event/notification/account/delete events are
generated by the PCM_OP_CUST_DELETE_ACCT opcode.

Customizing Customer Payment Information
To customize how /payinfo objects are created, see the following topics:

• Customizing Payment Method Data Preparation

• Customizing Payment Method Validation

• Finding Payment Info

• Customizing the Account Used for Credit Card Validation

Customer payment information is stored in /payinfo objects. Use
PCM_OP_CUST_SET_PAYINFO to create or modify a /payinfo object. This opcode also
updates the PIN_FLD_PAYINFO_OBJ field in the /billinfo object.

During account modification, PCM_OP_CUST_SET_PAYINFO modifies the payment
information for the bill unit if necessary.

PCM_OP_CUST_SET_PAYINFO creates an /event/audit/customer/payinfo object.

Chapter 9
Deleting Accounts

9-34

For credit card payment methods, PCM_OP_CUST_SET_PAYINFO omits the
PIN_FLD_SECURITY_ID field from the PCM_OP_CREATE_OBJ input flist when the /
payinfo/cc object is created. The result is that the CVV2/CID information is stored in the
database with a NULL value.

PCM_OP_CUST_CREATE_PAYINFO is called by PCM_OP_CUST_UPDATE_CUSTOMER
when a customer's payment information is modified.

PCM_OP_CUST_SET_PAYINFO is a wrapper opcode that calls the following opcodes:

• PCM_OP_CUST_CREATE_PAYINFO, which creates the account /payinfo object.

• PCM_OP_CUST_MODIFY_PAYINFO, which modifies a /payinfo object.

When calling PCM_OP_CUST_MODIFY_PAYINFO, PCM_OP_CUST_SET_PAYINFO
calls PCM_OP_WRITE_FLDS. One or more fields must be selected or an error is returned.
The /payinfo object is modified only if the data in the input flist is different from the /
payinfo object data in the database.

PCM_OP_CUST_MODIFY_PAYINFO omits the PIN_FLD_SECURITY_ID field from the
PCM_OP_WRITE_FLDS input flist when the /payinfo/cc object is updated. The result is
that the CVV2/CID information is stored in the database with a NULL value.

To delete a /payinfo object, use PCM_OP_CUST_DELETE_PAYINFO. This opcode is given
the POID of the object to delete.

PCM_OP_CUST_DELETE_PAYINFO is given the /payinfo object POID of the object to delete.
You cannot delete a /payinfo object that is currently associated with a /billinfo object; you
must first delete the /billinfo object.

Before PCM_OP_CUST_DELETE_PAYINFO deletes the /payinfo object, it calls
PCM_OP_CUST_POL_PRE_DELETE_PAYINFO to perform any custom actions provided by
you (for example, appropriate precautionary actions on a /payinfo object marked for deletion if
that /payinfo object has been customized).

Use PCM_OP_CUST_POL_PRE_DELETE_PAYINFO to perform any actions that may be
necessary before a /payinfo object is deleted by PCM_OP_CUST_DELETE_PAYINFO. For
example, you can provide the code necessary to check if the /payinfo object selected for
deletion has been customized. And if so, take appropriate precautionary actions before
returning that object to the calling PCM_OP_CUST_DELETE_PAYINFO.

PCM_OP_CUST_POL_PRE_DELETE_PAYINFO is called by
PCM_OP_CUST_DELETE_PAYINFO before the latter opcode deletes the /payinfo object.

PCM_OP_CUST_POL_PRE_DELETE_PAYINFO requires the POID of the /payinfo object in
the PIN_FLD_POID field of its input flist. It returns the POID of the /payinfo object in the
PIN_FLD_POID field to the calling PCM_OP_CUST_DELETE_PAYINFO.

Customizing Payment Method Data Preparation
PCM_OP_CUST_POL_PREP_PAYINFO processes inherited fields and prepares a /payinfo
object. This opcode checks the payment method and creates the correct object based on that
information.

• If the payment method is invoice, the /payinfo/invoice object is created.

• If the payment method is cc (credit card), the /payinfo/cc object is created and the
information is prepared for online account creation.

You can specify the valid date format for credit card and debit card expiration.

Chapter 9
Customizing Customer Payment Information

9-35

• If the payment method is dd (US and Canadian direct debit), the /payinfo/dd object is
created and the information is prepared for online account creation.

• If the payment method is SEPA, the /payinfo/sepa object is created and the information is
prepared for SEPA payments.

If the payment method is cc or dd, PCM_OP_CUST_POL_PREP_PAYINFO checks the /
config/ach object to find the payment processor vendor to associate with the payment
method. To use a vendor other than the default, you must customize this opcode.

PCM_OP_CUST_POL_PREP_PAYINFO is called by
PCM_OP_CUST_VALIDATE_CUSTOMER.

Specifying the Payment Processor Vendor
PCM_OP_CUST_POL_PREP_PAYINFO selects the first payment processor vendor listed in
the /config/ach object to process the BRM-initiated payment. If you configured multiple
payment processor vendors, you can specify the vendor to use by passing the vendor's ID in
the PIN_FLD_ACH field in the opcode input flist. The vendor's ID corresponds to the ID of the
PIN_FLD_ACH_INFO array, in the /config/ach object, that contains the information for that
vendor.

Customizing Payment Method Validation
PCM_OP_CUST_POL_VALID_PAYINFO validates inherited fields for a /payinfo object, which
may include a /payinfo/cc object for credit cards or a /payinfo/dd object for direct debit, or a /
payinfo/sepa object for SEPA Direct Debit or SEPA Credit Transfer transactions.

For credit cards, this opcode checks the credit card type, number, expiration date, and CVV2
or CID number during account creation.

For SEPA Direct Debit and Credit Transfer, PCM_OP_CUST_POL_VALID_PAYINFO checks
that the International Bank Account Number (IBAN) and the Business Identifier Code (BIC)
formats comply with the standards in the SEPA Rulebook and also validates that the primary
currency of the account is euro.

Note:

Visa and American Express require a CVV2 or CID number for credit card fraud
prevention. For security reasons, these numbers are not stored in the BRM database.
For more information on how BRM handles these numbers, see "CVV2/CID Fraud
Prevention Functionality".

If the information is valid, the standard checksum operation is performed.

PCM_OP_CUST_POL_VALID_PAYINFO is called by
PCM_OP_CUST_VALIDATE_CUSTOMER.

Default /payinfo Validation
PCM_OP_CUST_POL_VALID_PAYINFO validates inherited fields for a /payinfo object
according to the criteria contained in the /config/fld_validate object.

Mandatory fields for validation:

Chapter 9
Customizing Customer Payment Information

9-36

• PIN_FLD_CITY

• PIN_FLD_STATE

• PIN_FLD_ZIP

• PIN_FLD_COUNTRY

• PIN_FLD_CARD_TYPE

Checks performed for credit card-specific billing information:

• Is the debit number acceptable? (checksum)

• Is the debit number an acceptable type?

• Has the expiration date passed?

Checks performed for Paymentech direct debit transactions:

• Is the bank number acceptable? (9 digits)

• Is the debit number acceptable? (11 digits)

• What is the account type? (checking, corporate checking, savings)

CVV2/CID Fraud Prevention Functionality
As a fraud prevention feature, Visa and American Express use additional three- and four-digit
security codes attached to standard credit card numbers.

• Visa uses a three-digit CVV2 number in the signature section on the back of the card.

• American Express uses a four-digit CID number.

For security reasons, PCM_OP_CUST_CREATE_PAYINFO and
PCM_OP_CUST_MODIFY_PAYINFO opcodes omit the PIN_FLD_SECURITY_ID field from
the PCM_OP_CREATE_OBJ input flist when the /payinfo object is created or changed. The
result is that the CVV2/CID information is stored in the database with a NULL value. Likewise,
PCM_OP_PYMT_CHARGE omits this value when a credit card is charged or validated;
therefore, the /event/billing/charge/cc and /event/billing/validate/cc objects also store a
NULL value for the PIN_FLD_SECURITY_ID value.

If the CM pin.conf file's cvv2_required flag is set to 1 (required), these opcodes send the
PIN_FLD_SECURITY_ID value directly to the credit card processor when customers add or
change credit cards in their accounts. If the CVV2 information is not provided in the input flist,
the PIN_FLD_RESULT value is set to PIN_ERR_MISSING_ARG, with the description “Missing
argument".

Verifying the Maximum Number of CVV2 Digits
By default, PCM_OP_CUST_POL_VALID_PAYINFO verifies that a credit card's CVV2 passed
in the PIN_FLD_SECURITY_ID input flist field does not exceed three digits. You can modify
the maximum allowed number of CVV2 digits by customizing the opcode to:

• Validate that the number of digits passed in the PIN_FLD_SECURITY_ID input flist field of
the PIN_FLD_CC_INFO array does not exceed a specified value.

• If the validation succeeds, pass the PIN_FLD_SECURITY_ID field to the calling opcode.

• If the validation fails, return the appropriate error in the PIN_FLD_RESULT output flist field.

Chapter 9
Customizing Customer Payment Information

9-37

Disabling the Credit Card Checksum
To disable the credit card checksum:

1. Open the CM configuration file (BRM_home/sys/cm/pin.conf).

2. Change the flag in the cc_checksum entry from 1 (enable) to 0 (disable):

- fm_cust_pol cc_checksum 0
3. Save and close the file.

The new value becomes effective immediately and applies to the next account created. The
CM does not need to be restarted.

Customizing the Banking Information for US and Canadian Direct Debit
The bank number (/bank_no) and debit number (/debit_num) fields can be customized to
allow for bank and debit numbers that do not meet the US standard (5 digits).

Customizing the Account Used for Credit Card Validation
When validating a credit card at account creation, BRM needs an account to validate the card
with. By default, this is the root account. You cannot store this information with each account
because the credit card validation is done before the account is created.

Use PCM_OP_PYMT_POL_SPEC_VALIDATE to change the account used for credit card
validation.

The default account is:

0.0.0.1 /account 1

You can change the 1 to some other account number as long as it has a bill type that is not
affected by billing operations or events.

PCM_OP_PYMT_POL_SPEC_VALIDATE reads the following CM pin.conf file entries:

• The cc_validate entry, which specifies whether to validate credit cards.

• The cc_revalidate entry, which specifies the amount of time before revalidation is
required.

In addition, PCM_OP_PYMT_POL_SPEC_VALIDATE reads the /config/ach object to find the
merchant value.

The only types of action supported are prep customer and commit customer. If one of these
is not passed in, PIN_ERR_BAD_VALUE is returned. If the action passed in is NULL, a blank
flist is returned. If an error occurs, a null flist is returned.

If the PIN_FLD_PAY_TYPE value is NULL, only the POID from the pin.conf file is returned. If
the PIN_FLD_PAY_TYPE value is not PIN_PAY_TYPE_CC or PIN_PAY_TYPE_DD, the result
is set to PIN_BOOLEAN_FALSE because there is nothing to validate. If the value is
PIN_PAY_TYPE_CC or PIN_PAY_TYPE_DD, the result is set to PIN_BOOLEAN_TRUE.

Managing Mandate Information
The following sections describe how BRM manages mandate information when you use SEPA
processing.

Chapter 9
Customizing Customer Payment Information

9-38

Registering a Mandate
To register the mandate information provided during customer account creation, BRM uses
PCM_OP_CUST_SET_PAYINFO.

PCM_OP_CUST_SET_PAYINFO takes as input the mandate information such as the
customer's IBAN and BIC and the creditor identification code.

This opcode adds the mandate by:

1. Creating a unique mandate reference number (UMR) for the mandate, if it is not provided
in the input flist

2. Setting the status of the mandate to active

3. Creating the /payinfo/sepa object with the mandate information

PCM_OP_CUST_SET_PAYINFO calls PCM_OP_CUST_CREATE_PAYINFO, which calls
PCM_OP_CUST_POL_VALID_PAYINFO, which validates that the format of the IBAN and BIC
comply with the formats described in the SEPA rulebooks. Additional custom validations can be
performed on the mandate information, such as country-specific validations.

Updating a Mandate
To update the mandate information, BRM uses the following opcodes:

• PCM_OP_CUST_AMEND_MANDATE, to update the customer information

• PCM_OP_CUST_AMEND_CREDITOR_INFO, to update the creditor information

PCM_OP_CUST_AMEND_MANDATE takes as input a reference to the /payinfo/sepa object
and the mandate information to update.

This opcode updates the mandate by:

1. Updating the /payinfo/sepa object with the new mandate information

2. Updating the PIN_FLD_MANDATE_AMENDED field in the /payinfo/sepa object by using
flags to indicate the fields that are amended

3. Generating the /event/activity/sepa/mandate_amendment event to record the mandate
update

PCM_OP_CUST_AMEND_CREDITOR_INFO takes as input the creditor ID to be updated and
the new creditor ID and creditor name.

This opcode updates the creditor information by:

1. Updating the /config/creditor object with the new creditor information

2. Determining if any /payinfo/sepa object exists that is associated with the original creditor
ID and updating the /payinfo/sepa object with the new creditor information

3. In each /payinfo/sepa object that is updated, updating the
PIN_FLD_MANDATE_AMENDED field by using flags to indicate the fields that are
amended

4. Generating the /event/activity/sepa/mandate_amendment event to record the update

Canceling a Mandate
To cancel a mandate, BRM uses PCM_OP_CUST_CANCEL_MANDATE.

Chapter 9
Customizing Customer Payment Information

9-39

PCM_OP_CUST_CANCEL_MANDATE takes as input the reference to the /payinfo/sepa
object that contains the mandate to cancel.

This opcode cancels the mandate by:

1. Setting the PIN_FLD_MANDATE_STATUS field in the /payinfo/sepa object to
PIN_MANDATE_STATUS_CANCELED

2. Setting the PIN_FLD_MANDATE_END_T field to the current time to record the time of
cancellation

3. Calling PCM_OP_CUST_DELETE_PAYINFO to delete the /payinfo/sepa object. The
opcode does not cancel the /payinfo/sepa object if it determines that it is associated with
a bill unit or if a SEPA payment request is pending

Setting Account, Service, and Bill Unit Status
See the following topics:

• Changing the Status of an Account, Bill Unit, or Service

• Customizing Status Changes

• Inactivating Accounts that Exceed a Specified Limit

Changing the Status of an Account, Bill Unit, or Service
PCM_OP_CUST_SET_STATUS changes and checks the status of an account, bill unit, or
service. You can call the opcode directly for accounts and bill units. For service status
changes, use PCM_OP_CUST_UPDATE_SERVICES, which in turn calls
PCM_OP_CUST_SET_STATUS.

Note:

Do not callPCM_OP_CUST_SET_STATUS directly for service status changes. Use
PCM_OP_CUST_UPDATE_SERVICES instead.

In addition to changing status, PCM_OP_CUST_SET_STATUS does the following:

• Triggers auto-billing if bills are still pending.

• Calls opcodes to prorate cycle fees.

To return all the fields in the event object, set the PCM_OPFLG_READ_RESULT flag. If this
flag is not set, PCM_OP_CUST_SET_STATUS returns only the POID.

If PCM_OP_CUST_SET_STATUS is called at the account level, more than one result can be
returned:

• One for each service owned by this account.

• One for each bill unit owned by this account.

• One or more for each child account and nonpaying bill unit.

• One for each deferred action.

To run PCM_OP_CUST_SET_STATUS without changing data in the database, use the
PCM_OPFLG_CALC_ONLY flag.

Chapter 9
Setting Account, Service, and Bill Unit Status

9-40

• If the flag is set, no fields in the database are changed and the event object is not created.
The fields used to create the event object and adjustment item are returned to the caller.

• If the flag is not set, the /event/customer/status object is created to record details of the
operation.

PIN_FLD_STATUS Field Values for PCM_OP_CUST_SET_STATUS
When you use PCM_OP_CUST_SET_STATUS, set the account or bill unit status entry to one
of the following field values listed in Table 9-6.

Table 9-6 PIN_FLD_STATUS Values

PIN_FLD_STATUS field Description Value

PIN_STATUS_ACTIVE Account or bill unit fully functional; login is subject to credit
limit check.

10100

PIN_STATUS_INACTIVE Inactive account or bill unit; no logins permitted and no fees
are charged.

10102

PIN_STATUS_CLOSED Closes the account or bill unit, which can be reopened later.
This does not activate the corresponding charge offers.

10103

PIN_STATUS_DEFUNCT Reserved for BRM.

PIN_ERR_BAD_ARG is returned if you try to set a status to
this value.

0

PIN_FLD_STATUS_FLAG Field Values for PCM_OP_CUST_SET_STATUS
The values used to further define the status for the account, bill unit, or service are listed in
Table 9-7:

Table 9-7 PIN_FLD_STATUS_FLAG Values

PIN_FLD_STATUS_FLAG field Description Value

PIN_STATUS_FLAG_ACTIVATE Sets the future activation date (accounts and bill
units only).

0x01

PIN_STATUS_FLAG_DEBT Displays the outstanding debt (accounts and bill
units only).

0x02

PIN_STATUS_FLAG_MANUAL Displays manual operations performed by the
administrative operator.

0x04

PIN_STATUS_FLAG_DUE_TO_ACCO
UNT

Closes all related services for the account or bill
unit (accounts and bill units only).

0x08

PIN_STATUS_FLAG_DUE_TO_PAREN
T

Closes all child accounts if the parent account is
closed (only for accounts in groups set up for
billing purposes).

Closes all child bill units if the parent bill unit is
closed.

0x10

PIN_STATUS_FLAG_DUE_TO_SUBS
CRIPTION_SERVICE

Changes all member services when the
subscription's service status is changed.

0x20000

PIN_STATUS_FLAG_PO_EXHAUSTE
D

Obsolete. 0x20

PIN_STATUS_FLAG_PROVISIONING Identifies tasks that use the provisioning system. 0x40

Chapter 9
Setting Account, Service, and Bill Unit Status

9-41

The field values in the object are set as follows:

• If the input status is PIN_STATUS_ACTIVE:

– Flags = (Old flag AND NOT (New flag))

– If the result flag is 0, new status is input status, else old status.

• If the input status is PIN_STATUS_INACTIVE:

– The status field is set to inactive.

– The flags field is set to the OR of the old flags in the database and the new flags on
the input flist.

• If the input status is PIN_STATUS_CLOSED:

– The status field is set to closed.

– The flags field is set to the OR of the old flags and new flags.

If the status change is caused by a change to the parent account or bill unit,
PIN_FLD_STATUS_FLAG_DUE_TO_PARENT is set in the new flags.

If the status change is caused by a change to an accounts receivable (AR) account or AR bill
unit, PIN_FLD_STATUS_FLAG_DUE_TO_ACCOUNT is set in the new flags.

Accounts, bill units, or services marked as closed (terminated) are actually closed when the
pin_deferred_act billing application is run.

About Deferred Actions When Using PCM_OP_CUST_SET_STATUS
For deferred actions, the PIN_FLD_WHEN_T field is passed to indicate the date on which the
status change is made. It also creates a /schedule object to store the input flist to call
PCM_OP_CUST_SET_STATUS on the specified date.

You can create, delete, run, and modify /schedule objects by calling the opcodes in Table 9-8:

Table 9-8 Opcodes used to Modify /schedule Objects

Opcode Function

PCM_OP_ACT_SCHEDULE_CREATE Creates a schedule object.

PCM_OP_ACT_SCHEDULE_DELETE Deletes a schedule object.

PCM_OP_ACT_SCHEDULE_MODIFY Modifies a schedule object.

PCM_OP_ACT_SCHEDULE_EXECUTE Runs a schedule object.

This opcode is called directly by the
pin_deferred_act billing utility.

By default, the pin_deferred_act utility, which is part of the pin_bill_day billing script, finds
expired schedule objects and calls PCM_OP_ACT_SCHEDULE_EXECUTE, which in turn calls
PCM_OP_CUST_SET_STATUS.

If the deferred status change is for closing an account, bill unit, or service,
PCM_OP_CUST_SET_STATUS sets the PIN_FLD_CLOSE_WHEN_T field in the account, bill
unit, or service to midnight on the specified date.

Chapter 9
Setting Account, Service, and Bill Unit Status

9-42

Setting, Resetting, or Unsetting a Deferred CLOSE
When setting or resetting a deferred CLOSE, PCM_OP_CUST_SET_STATUS calls a standard
opcode to set the PIN_FLD_PURCHASE_END_T, PIN_FLD_CYCLE_END_T, and
PIN_FLD_USAGE_END_T fields for each corresponding charge offer and discount offer to the
deferred CLOSE date if the old values for these fields are later than the deferred CLOSE date
or if these fields are set to NEVER (“0").

If a deferred CLOSE is canceled (the schedule object is deleted),
PCM_OP_CUST_SET_STATUS calls a standard opcode to set the values of the
PIN_FLD_PURCHASE_END_T, PIN_FLD_CYCLE_END_T, and PIN_FLD_USAGE_END_T
fields for all corresponding charge offers and discount offers to the old values from the
previous /event/billing/product/action/modify event.

Customizing Status Changes
You can customize status changes by using the following opcodes:

• To customize the way status is changed for an account or service, use
PCM_OP_CUST_POL_PREP_STATUS. This call is used to modify status information
before changing the account. For example, you can use this opcode to customize how
customer service representatives (CSR) can set permissions on specific service types.
This opcode is called by PCM_OP_CUST_SET_STATUS. This opcode is an empty hook.

• To validate status changes for an account or service, use
PCM_OP_CUST_POL_VALID_STATUS. This opcode is called by
PCM_OP_CUST_SET_STATUS. The default is to do no additional checking and to return
the verified information.

See BRM Developer's Guide.

Inactivating Accounts that Exceed a Specified Limit
Use PCM_OP_ACT_POL_EVENT_LIMIT to inactivate any account or account hierarchy that
exceeds a specified limit.

PCM_OP_ACT_POL_EVENT_LIMIT performs the following tasks:

1. Calls PCM_OP_CUST_SET_STATUS to inactivate an account or account hierarchy based
on the status set in the PIN_FLD_STATUS field.

2. Calls PCM_OP_ACT_POL_EVENT_NOTIFY to notify any custom applications that a limit
was reached and that an action took place.

PCM_OP_ACT_POL_EVENT_LIMIT is not called by any opcode.

Backdating Status Changes
To backdate a status change, enter the date to which you want to backdate the account,
service, charge offer, or discount offer status change in the PIN_FLD_END_T field of the
applicable opcodes. For example, enter the backdated date in the PIN_FLD_ END_T field of
the following opcodes:

• PCM_OP_CUST_SET_STATUS: for backdating the account status change.

• PCM_OP_CUST_UPDATE_SERVICES: for backdating the service status change.

Chapter 9
Setting Account, Service, and Bill Unit Status

9-43

• PCM_OP_CUST_SET_PRODUCT_STATUS: for backdating the charge offer status
change.

• PCM_OP_CUST_SET_DISCOUNT_STATUS: for backdating the discount status change.

Getting Life Cycle States
PCM_OP_CUST_GET_LIFECYCLE_STATES gets one of the following, depending on what
information is passed to it:

• If only the account and service POIDs are passed, gets the life cycle states configuration
object (/config/lifecycle_states) associated with a specified service type

• If the account and service POIDs and the state ID are passed, gets the PIN_FLD_STATES
array for that state from a life cycle states configuration object

• If the account, service, and bill unit (/billinfo object) POIDs are passed, gets the
PIN_FLD_STATES array for the initial state (PIN_FLD_INITIAL_STATE = 1) of the life
cycle

PCM_OP_CUST_GET_LIFECYCLE_STATES is called by the following components:

• pin_state_change calls this opcode to get state transition information from a life cycle
states configuration object.

• PCM_OP_BAL_POL_CHECK_LIFECYCLE_STATE calls this opcode to get the state
expiration time. After a balance is adjusted for a service that uses a custom life cycle,
PCM_OP_BAL_POL_CHECK_LIFECYCLE_STATE triggers any required service state
change and updates the state expiration date in the /service object.

• PCM_OP_CUST_SET_STATUS calls this opcode to get the service's initial state.

• PCM_OP_CUST_SET_STATUS and PCM_OP_CUST_UPDATE_SERVICES opcodes call
this opcode during validation.

PCM_OP_CUST_GET_LIFECYCLE_STATES is used only if the SubscriberLifeCycle
business parameter is associated with the specified service's bill unit and is enabled.

Amending Creditor Information
To amend creditor information, use PCM_OP_CUST_AMEND_CREDITOR_INFO.

PCM_OP_CUST_AMEND_CREDITOR_INFO takes as input the creditor ID to be updated and
the new creditor ID and creditor name.

PCM_OP_CUST_AMEND_CREDITOR_INFO does the following:

1. Updates the /config/creditor object with the new creditor information.

2. Determines if any /payinfo/sepa object exists that is associated with the original creditor
ID and updating the /payinfo/sepa object with the new creditor information.

3. In each /payinfo/sepa object that is updated, updates the
PIN_FLD_MANDATE_AMENDED field by using flags to indicate the fields that are
amended.

4. Generates the /event/activity/sepa/mandate_amendment event to record the update.

Amending a Mandate
To amend a mandate, BRM calls PCM_OP_CUST_AMEND_MANDATE.

Chapter 9
Getting Life Cycle States

9-44

PCM_OP_CUST_AMEND_MANDATE takes as input a reference to the /payinfo/sepa object
and the mandate information to update.

PCM_OP_CUST_AMEND_MANDATE does the following:

1. Updates the /payinfo/sepa object with the new mandate information.

2. Updates the PIN_FLD_MANDATE_AMENDED field in the /payinfo/sepa object by using
flags to indicate the fields that are amended.

3. Generates the /event/activity/sepa/mandate_amendment event to record the mandate
update.

Canceling a Mandate
To cancel a mandate, use PCM_OP_CUST_CANCEL_MANDATE.

PCM_OP_CUST_CANCEL_MANDATE takes as input the reference to the /payinfo/sepa
object that contains the mandate to cancel.

PCM_OP_CUST_CANCEL_MANDATE does the following:

1. Sets the PIN_FLD_MANDATE_STATUS field in the /payinfo/sepa object to
PIN_MANDATE_STATUS_CANCELED.

2. Sets the PIN_FLD_MANDATE_END_T field to the current time to record the time of
cancellation.

3. Calls PCM_OP_CUST_DELETE_PAYINFO to delete the /payinfo/sepa object. The
opcode does not cancel the /payinfo/sepa object if it determines that it is associated with
a bill unit or if a SEPA payment request is pending.

Managing Deferred Actions
See the following topics:

• Scheduling Deferred Actions

• Modifying Deferred Actions

• Deleting Deferred Actions

• Executing Deferred Actions

• Performing Policy Checks before Scheduling Deferred Actions

Scheduling Deferred Actions
PCM_OP_ACT_SCHEDULE_CREATE creates /schedule objects, which schedule a single
action for a predetermined date and time.

BRM supports the following deferred actions:

• Account activation, deactivation, and closure.

• Account parent change.

• Service activation and closure.

Two optional fields, PIN_FLD_WHEN_T and PIN_FLD_DESCR, enable deferred actions in
BRM. These fields are set by the input flists of PCM_OP_ACT_POL_EVENT_NOTIFY or
PCM_OP_BILL_GROUP_MOVE_MEMBER.

Chapter 9
Canceling a Mandate

9-45

• PIN_FLD_DESCR describes the deferred action.

• PIN_FLD_WHEN_T specifies when the deferred action occurs.

If the PIN_FLD_WHEN_T field is populated in the input flist of the calling opcode, that opcode
can call PCM_OP_ACT_SCHEDULE_CREATE to create a /schedule object to hold the input
flist information. The /schedule object remains active until the PIN_FLD_WHEN_T time
expires and PCM_OP_ACT_SCHEDULE_EXECUTE runs the action stored in the /schedule
object.

Note:

Deferred actions are always rounded off to midnight. For example, if you use
PCM_OP_ACT_SCHEDULE_CREATE to schedule a deferred action on January 15
at 8:00 a.m., the schedule object is created with a scheduled time of January 15 at
00:00.

Modifying Deferred Actions
PCM_OP_ACT_SCHEDULE_MODIFY modifies an existing /schedule object.

This opcode modifies the text description in PIN_FLD_DESCR field and the scheduled date in
PIN_FLD_WHEN_T field.

Deleting Deferred Actions
PCM_OP_ACT_SCHEDULE_DELETE deletes existing /schedule objects.

Executing Deferred Actions
PCM_OP_ACT_SCHEDULE_EXECUTE runs any deferred actions defined in a /schedule
object. This opcode is called directly by the pin_deferred_act billing utility.

When you run the pin_deferred_act utility, it searches for any /schedule object with both an
expired PIN_FLD_WHEN_T field and a PIN_FLD_STATUS field marked Pending. When it
finds one, it calls PCM_OP_ACT_SCHEDULE_EXECUTE to:

1. Run the action defined in the /schedule object.

2. Update PIN_FLD_STATUS to either Done or Error, depending on its success.

Performing Policy Checks before Scheduling Deferred Actions
Use PCM_OP_ACT_POL_VALIDATE_SCHEDULE to perform custom policy checks before
creating a /schedule object. For example, you can customize this opcode to verify that an
account balance is zero before scheduling it for closure.

This opcode is an empty hook.

This opcode is called by PCM_OP_ACT_SCHEDULE_CREATE.

Managing Service Groups
See the following topics:

Chapter 9
Managing Service Groups

9-46

• Creating a Service Group

• Configuring Extended Rating Attributes for a Service Group

• Associating a Device with a Service Group

• Adding a Service to an Existing Service Group

• Canceling a Service Group

• Transferring Service Groups between Accounts in the Same Schema

• Transferring Service Groups between Accounts in Different Schemas

Creating a Service Group
A service group is composed of a subscription service and any number of member services.
The /service objects for subscription services are created when packages are purchased. This
can occur at the following times:

• When registering customers, use PCM_OP_CUST_COMMIT_CUSTOMER.

• When customers purchase a package for an existing account, use
PCM_OP_CUST_MODIFY_CUSTOMER.

These opcodes call other opcodes to set up a customer's services and create the service
objects.

These opcodes set the service group relationship fields in the service objects that they
create. Services are created in the following order: account services, the subscription service,
and member services in the service group.

To create a service group, set the following fields in the
PCM_OP_CUST_CREATE_CUSTOMER and PCM_OP_CUST_MODIFY_CUSTOMER input
flists:

• Add a PIN_FLD_SERVICES array for each service in the service group.

Note:

The service arrays must start with array element 1.

• In each service array, set the PIN_FLD_SUBSCRIPTION_OBJ field to specify the POID of
the subscription service. If the service being created is the subscription service, this field
and the PIN_FLD_POID field specify the same value.

• Add a PIN_FLD_BAL_INFO array to create a balance group for the subscription service.
Optionally, specify a credit limit or threshold.

• Add an additional PIN_FLD_BAL_INFO array for each member service that should have its
own balance group, and optionally set the credit limit and threshold. A member service that
does not have a balance group uses the subscription service's balance group.

• In each PIN_FLD_SERVICES array, set the PIN_FLD_BAL_INFO_INDEX field to specify
the index of the array that contains the balance group for that service.

Chapter 9
Managing Service Groups

9-47

Configuring Extended Rating Attributes for a Service Group
After setting up systemwide extended rating attribute (ERAs), you assign an ERA to a
customer's service and specify customer-specific information (for example, the customer's
birthday for a birthday discount ERA).

Service ERAs are stored in /profile/serv_extrating objects. These objects are typically
associated with customer accounts at two times:

• When registering customers, use PCM_OP_CUST_COMMIT_CUSTOMER.

• When customers purchase a package for an existing account, use
PCM_OP_CUST_MODIFY_CUSTOMER.

These opcodes call other opcodes to create or modify the /profile objects.

To configure a service group ERA for a customer, add a PIN_FLD_PROFILES array to the
subscription service's PIN_FLD_SERVICES array on the input flist of the *_CUSTOMER
opcodes. In the profiles array, set the POID of the /profile/serv_extrating object owned by the
service.

To configure the ERA with customer-specific data, write custom code that sets the customer's
information in the PIN_FLD_DATA array of the /profile/serv_extrating object.

To validate the customer's profile information, you must modify
PCM_OP_CUST_POL_VALID_PROFILE.

You can also use the customer profile opcodes to create and modify /profile objects directly.

Associating a Device with a Service Group
Customers use devices, such as a wireless handset, to access the services in their service
groups. The device information, such as device ID, manufacturer, and associated account and
service, are stored in a /device object. You associate /device objects with subscription /
service objects when you register customers or add packages to customer accounts:

• When registering customers, use PCM_OP_CUST_COMMIT_CUSTOMER.

• When customers purchase a package for an existing account, use
PCM_OP_CUST_MODIFY_CUSTOMER.

These opcodes call other opcodes to create or modify the /device objects.

To create a /device object and associate it with a service group, set the following fields in the
subscription service's PIN_FLD_SERVICES array on the input flist of the customer opcodes:

• In the PIN_FLD_DEVICE_OBJ field of the PIN_FLD_DEVICES array, specify the POID of
the /device object.

• In the PIN_FLD_ALIAS_LIST array, specify the number associated with the device (such
as the IMSI or MSISDN).

You can also use PCM_OP_CUST_UPDATE_SERVICES to modify /device objects. This
opcode calls PCM_OP_DEVICE_ASSOCIATE to associate or disassociate a device with a
service.

To create or modify device objects directly, use the PCM_OP_DEVICE* opcodes.

Chapter 9
Managing Service Groups

9-48

Adding a Service to an Existing Service Group
You add a service to a service group in the same way that you create a service in a service
group. Use PCM_OP_CUST_MODIFY_CUSTOMER and set the service information in the
input flist. See "Creating a Service Group".

Canceling a Service Group
Use PCM_OP_SUBSCRIPTION_CANCEL_SUBSCRIPTION to cancel the services in a
service group. This opcode cancels the group's subscription service and all its member
services.

Specify the following information in PCM_OP_SUBSCRIPTION_CANCEL_SUBSCRIPTION
input flist:

• Set PIN_FLD_POID to the POID of the account object that owns the service group.

• Set PIN_FLD_SUBSCRIPTION_OBJ to the POID of the subscription service to be
canceled.

• Set the input flag PIN_FLD_FLAGS to PIN_BILL_FLG_BILL_NOW, to bill the account
immediately upon service cancellation.

Note:

If the input flag is not set, the account is billed for the service on the regularly
scheduled billing date.

PCM_OP_SUBSCRIPTION_CANCEL_SUBSCRIPTION performs the following tasks:

1. If the PIN_BILL_FLG_BILL_NOW flag is passed in the input flist, calls
PCM_OP_BILL_MAKE_BILL_NOW for each bill unit associated with the service group.

Note:

Typically, all member services are associated with the subscription service's bill
unit. However, it is possible for member services to be associated with different
bill units.

2. Calls PCM_OP_CUST_UPDATE_SERVICES to update the status of the subscription
service and member services. PCM_OP_CUST_UPDATE_SERVICES does the following:

a. Changes the status of the subscription service and all its member services to closed.

b. Changes the status of all associated with the subscription service and member
services to canceled.

c. Deletes any charge or discount sharing groups owned by the subscription service and
the member services, and updates the ordered balance group (/ordered_balgrp
object) of those services.

d. Removes the subscription service and member services from any charge or discount
sharing group of which they are members.

Chapter 9
Managing Service Groups

9-49

3. Generates the /event/audit/subscription/cancel audit event to record the service
cancellation.

If the PIN_BILL_FLG_BILL_NOW flag is specified in the input flist, the service is billed upon
cancellation. Otherwise, the service is billed during the regularly scheduled billing time.

If successful, PCM_OP_SUBSCRIPTION_CANCEL_SUBSCRIPTION returns the following:

• The POID of the subscription service that was canceled.

• The POID of the /event/audit/subscription/cancel audit event created to record the
cancellation.

Transferring Service Groups between Accounts in the Same Schema
To transfer a service group to another account in the same schema, use
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION.

Specify the following information in the
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION input flist:

• The POID of the source account.

• The POID of the target account.

• The POID of the subscription service to transfer.

• The POID of a bill unit (/billinfo object) and of a pay info object (/payinfo):

– If the subscription service is to be associated with an existing bill unit in the target
account, specify the POIDs of that bill unit and pay info object.

– If the subscription service is to be associated with a new bill unit created for the service
only, specify the POIDs of the new bill unit and pay info object.

• The POID of an existing pay info object for the target account or the POID of a new pay
info object created for the service only.

To transfer the service group's member services,
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION does the following for each
member service:

1. Sets the account POID to the target account's POID.

2. Creates a transfer list array element, and adds it to the service objects.

3. Creates an /event/audit/subscription/transfer audit event to record the service transfer.

To transfer the service group's devices,
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION does the following for each
member service:

1. Finds all the devices owned by the service, and sets each device's account POID to the
target account POID.

2. Creates an /event/audit/subscription/transfer audit event to record the device transfer.

To transfer the service group's charge and discount offers,
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION cancels the service group offers
owned by the source account and creates copies for the target account. To do this, the opcode
does the following for each member service:

1. Finds all charge and discount offers associated with the service in the source account.

2. For each charge offer instance:

Chapter 9
Managing Service Groups

9-50

a. Calls PCM_OP_SUBSCRIPTION_SET_PRODINFO to set the purchase, cycle, and
usage end dates to the transfer date in the source account and to apply cycle forward
fees.

b. Creates another instance of the charge offer and assigns it to the target account with
purchase, cycle, and usage start dates set to the transfer date.

c. Creates an /event/billing/product/action/purchase event to record the transfer of the
charge offer instance.

3. For each discount offer instance:

a. Calls PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO to set the purchase, cycle,
and usage end dates to the transfer date in the source account and to apply cycle
forward fees.

b. Creates another instance of the discount offer and assigns it to the target account with
purchase, cycle, and usage start dates set to the transfer date.

c. Creates an /event/billing/discount/action/purchase event to record the transfer of
the discount offer instance.

To transfer the service group's billing information,
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION associates each service balance
group with an existing bill unit in the target account or with a new bill unit created for the
service group. To do this, the opcode does the following:

1. If a /billinfo object is specified in the input flist, the opcode sets the
PIN_FLD_BILLINFO_OBJ field in the service /balance_group object to reference that /
billinfo object.

2. If a /payinfo object is specified in the input flist, the opcode sets the
PIN_FLD_PAYINFO_OBJ field in the service /balance_group object to reference that /
payinfo object.

3. If a /billinfo object is not specified, the opcode calls PCM_OP_CUST_SET_BILLINFO to
create a /billinfo object and sets the PIN_FLD_BILLINFO_OBJ field in the service /
balance_group object to the new /billinfo object.

4. If a /payinfo object is not specified, the opcode calls PCM_OP_CUST_SET_PAYINFO to
create a /payinfo object and sets the PIN_FLD_PAYINFO_OBJ field in the service /
balance_group object to the new /payinfo object.

To transfer the service group's sub-balances,
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION does the following:

1. Modifies each service /balance_group object to reference the /billinfo object in the
account.

2. Sets the sub-balance validity based on the sub_bal_validity parameter in /config/
business_params.

3. Creates an /event/audit/subscription/transfer audit event to record the balance group
transfer.

To transfer pending scheduled actions for a service in a service group when transferring the
group to another account, PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION calls
PCM_OP_SUBSCRIPTION_POL_POST_TRANSFER_SUBSCRIPTION.

The TransferScheduledActions business parameter must be enabled for
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION to call
PCM_OP_SUBSCRIPTION_POL_POST_TRANSFER_SUBSCRIPTION. See "Enabling
Transfer of Pending Scheduled Actions during Service Group Transfers".

Chapter 9
Managing Service Groups

9-51

When a service group is transferred to another account, its subscription service and member
services are deleted from any sharing group of which they are a member.
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION does the following for each
member service:

1. Finds the charge or discount sharing groups that the service is a member of and deletes
the service from the sharing group.

2. Deletes any ordered balance group associated with the service.

When a subscription service is transferred to another account,
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION finds and deletes any charge or
discount sharing group that it owns.

Enabling Transfer of Pending Scheduled Actions during Service Group Transfers
To enable the transfer of pending scheduled actions during service group transfers:

1. Go to BRM_home/sys/data/config.

2. Create an XML file from the /config/business_params object:

pin_bus_params -r BusParamsSubscription bus_params_subscription.xm
3. In the file, change disabled to enabled:

<TransferScheduledActions>enabled</TransferScheduledActions>
4. Save the file as bus_params_subscription.xml.

5. Load the XML file into the BRM database:

pin_bus_params bus_params_subscription.xml
6. Stop and restart the CM.

7. (Multischema systems only) Run the pin_multidb script with the -R CONFIG parameter.
For more information, see BRM System Administrator's Guide.

Transferring Service Groups between Accounts in Different Schemas
To transfer a service group between accounts stored in multiple schemas, you enable the
RecreateDuringSubscriptionTransfer business parameter.

Note:

When RecreateDuringSubscriptionTransfer is enabled,
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION re-creates all the objects
in the schema to which the service groups are transferred.

Enabling Transfer of Service Groups between Accounts in Multiple Schemas
To enable the transfer of service groups to an account in a different schema:

1. Go to BRM_home/sys/data/config.

2. Create an XML file from the /config/business_params object:

pin_bus_params -r BusParamsSubscription bus_params_subscription.xml

Chapter 9
Managing Service Groups

9-52

3. In the file, change disabled to enabled:

<RecreateDuringSubscriptionTransfer>disabled</RecreateDuringSubscriptionTransfer>
4. Save the file as bus_params_billing.xml.

5. Load the XML file into the BRM database:

pin_bus_params bus_params_subscription.xml
6. Stop and restart the CM.

7. (Multischema systems only) Run the pin_multidb script with the -R CONFIG parameter.
For more information, see BRM System Administrator's Guide.

Transferring Service Groups across Schemas
To transfer a service group, PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION does
the following:

1. Finds all the related services. If the service to be transferred is a subscription service, this
opcode finds all the member services and groups.

2. Changes the status of the services to CANCELLED and recalculates charges for all
service-level that use PCM_OP_SUBSCRIPTION_SET_PRODINFO or
PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO.

3. Creates an flist of all the services to be transferred, and saves login information, profiles,
and devices.

4. Adds login information to the source services by prepending the login details with the
service POID, and generates an /event/customer/login event.

5. Calls PCM_OP_CUST_MODIFY_CUSTOMER to create new service instances for the
account in the target schema.

6. Creates /billinfo, /payinfo, and /balance_group objects if the source objects do not
already have them.

Note:

The /billinfo object passed in the input flist must belong to the account in the
target schema.

7. Fetches the encrypted password from the service in the source schema, sets it in the
service in the target schema, and generates an /event/customer/status and an /event/
customer/login event.

8. If called from PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER, saves the /
service, /balance_group, and /billinfo objects in the NAMED_TRANS_FLIST array.

9. Updates the SUBSCRIPTION_OBJ field of the new instance of each member service in
the target schema with the POID of the subscription service created in the target schema.

10. Updates /device object with the service and the account in the target schema.

Chapter 9
Managing Service Groups

9-53

Note:

Devices associated with the services to be transferred must not be associated
with any services that are not transferred.

11. Re-creates the /profile objects in the target schema using PCM_OP_CREATE_OBJ that
has effective_t set to the transfer time.

Note:

To cancel the source service instances, the opcode deletes the /ordered_balgrp
and /group/sharing/* relationships and saves the audit copies on the source
service instances for processing late CDRs. Sharing group relationships are
terminated on the transfer date, and the new service instances do not participate
in any sharing relationships.

12. Calls PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE to delete all sharing
groups in which service is an owner or a member.

13. Creates the /purchased_discount and /purchased_product objects and cycle forward
events. For cycle arrears events, calls PRO_FORCED in CYCLE_FEE_FLAGS.

14. Regenerates a package ID for the offerings created in the target schema.

15. Calls PCM_OP_CUST_UPDATE_SERVICES to close the service on the source schema.

16. Sets the status flag of the source subscription service to
PIN_STATUS_FLAG_DUE_TO_SERVICE_TRANSFER, and sets the status to Closed.

17. Sets the status flag of the source member services to
PIN_STATUS_FLAG_DUE_TO_SUBSCRIPTION_SERVICE, and sets the status to
Closed.

18. Generates an /event/customer/status event.

19. Creates an /event/audit/subscription/transfer audit event to record the service transfer.
The /event/audit/subscription/transfer event contains PIN_FLD_TO_SERVICE_OBJ,
PIN_FLD_TO_BAL_GRP_OBJ, and PIN_FLD_TO_PROFILE_OBJ.

20. Calls PCM_OP_SUBSCRIPTION_POL_POST_TRANSFER_SUBSCRIPTION if the
TransferScheduledActions business parameter is enabled.

If the source and target balance groups of the transferred services are in different schemas,
PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER does the following:

1. Calls PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION, which finds all the
services and their new service references and uses the references to purchase bundles on
the services in PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER.

Chapter 9
Managing Service Groups

9-54

Note:

For PCM_OP_SUBSCRIPTION_SERVICE_BALGRP_TRANSFER to call
PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION:

• Either PIN_FLD_FROM_BAL_GRP_OBJ or the /service object must be
present in the input flist.

• Either the /billinfo object or the /billinfo array must be present in the input
flist.

2. Creates an /event/audit/service_balgrp_transfer audit event to record the balance group
transfer. The /event/audit/service_balgrp_transfer audit event contains the
PIN_FLD_TO_SERVICE_OBJ field.

Managing Profile Sharing Groups
See the following topics:

• Creating a Profile Sharing Group

• Validating Profile Sharing Group Members

• Modifying a Profile Sharing Group

• Deleting Members and Profiles from a Profile Sharing Group

• Changing the Owner of a Profile Sharing Group

• Deleting a Profile Sharing Group

Creating a Profile Sharing Group
To customize a third-party application to create a profile sharing group, use
PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE.

The profile sharing group has either a service or an account as the owner and a list of member
services or accounts. It also contains one or more /profile objects owned by the group owner
that is shared with group members.

PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE creates the group object and then
adds the members and profiles:

1. Creates a /group/sharing/profiles object and assigns the group owner.

2. Adds the /account and /service objects in the PIN_FLD_MEMBERS array to the
MEMBERS array of the /group/sharing/profiles object. Each PIN_FLD_MEMBERS array
element specifies an /account object and a /service object. If the /service object is NULL,
the /account object is the member.

If the PIN_FLD_SERVICE_OBJ field for a member specifies a type-only service, such as
GSM, instead of a specific service instance, all instances of that service type become
members of the profile sharing group. However, subclass instances of the service type do
not become members.

If you specify a service type as a member, the member account does not need to own the
service when the /group/sharing/profiles object is created. The member account can join
the group and purchase the service later.

Chapter 9
Managing Profile Sharing Groups

9-55

3. Validates that the group owner does not belong to a profile sharing group owned by one of
the members.

4. Calls PCM_OP_SUBSCRIPTION_POL_PREP_MEMBERS to validate the members. By
default, this opcode has no validation rules for profile sharing group members, but you can
customize it to validate members. See "Validating Profile Sharing Group Members ".

Note:

PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE does not validate that
the primary currency of members matches the parent.

5. Adds the /profile objects in the PIN_FLD_PROFILES array to the PROFILES array of the /
group/sharing/profiles object.

The profiles must be owned by the profile sharing group owner and must have a current
validity period.

If the PIN_FLD_PROFILES array is empty, the profiles list is empty. Duplicate entries are
ignored.

If successful, PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE returns the POID of
the profile sharing group object created and the POID of the event generated to record the
creation.

When the profile sharing group is created, the group is automatically added to each member's
ordered balance group.

PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE fails if the owner is a member of a
sharing group owned by one of the members.

Validating Profile Sharing Group Members
To validate the members of a profile sharing group, use
PCM_OP_SUBSCRIPTION_POL_PREP_MEMBERS. By default, this opcode does nothing.

You can customize this opcode to implement your validation rules. For example, the opcode
can make sure that a member's service type is the same as the owner's service type.

This opcode takes as input the list of potential members and returns only those members that
pass validation.

This opcode is called by PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE and
PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY.

If customized for profile sharing groups, PCM_OP_SUBSCRIPTION_POL_PREP_MEMBERS
validates members before they are added or modified and returns a list of valid members to the
calling opcode.

Modifying a Profile Sharing Group
To modify a profile sharing group, use
PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY. This opcode performs one of the
following modifications, depending on the input POID:

• Adds member accounts or services to an existing group.

• Adds profiles to an existing group.

Chapter 9
Managing Profile Sharing Groups

9-56

If successful, PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY returns the POID of
the group that was modified and the POIDs of the events that were generated to record the
group modification.

PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY fails in the following cases:

• If the owner is a member of its own group or a group owned by a group member.

• If a profile object in the input flist is not valid.

For more information, see:

• Adding Members to a Profile Sharing Group

• Adding Profiles to a Profile Sharing Group

Adding Members to a Profile Sharing Group
To add members to a profile sharing group, use
PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY.

Note:

The element ID for each member in the input flist must be unique within the
membership. If an element ID is already being used by an existing member in the
group object you are modifying, the opcode overwrites the existing member.

To make sure that you do not assign a new member to an existing member's ID,
include all the existing members in the input flist. In this case, the opcode will make
sure that all new members are added, even if a new member's element ID is the
same as an existing member's ID.

This opcode handles duplicate members, so including existing members in the input
flist does not cause problems.

PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY does the following:

1. Adds the /account and /service objects in the PIN_FLD_MEMBERS array to the
MEMBERS array of the /group/sharing/profiles object.

Each PIN_FLD_MEMBERS array element specifies an /account object and a /service
object. If the /service object is NULL, the /account object is the member.

Note:

• The guidelines for creating a profile sharing group also apply to adding
members to an existing group.

• If you specify a service type as a member, the member account does not
need to own the service when the /group/sharing/profiles object is
modified. The member account can join the group and purchase the service
later.

2. Validates that the group owner does not belong to a profile sharing group owned by one of
the members.

Chapter 9
Managing Profile Sharing Groups

9-57

3. Calls PCM_OP_SUBSCRIPTION_POL_PREP_MEMBERS to validate the members. By
default, this opcode has no validation rules for profile sharing group members, but you can
customize it to validate members. See "Validating Profile Sharing Group Members ".

4. Creates an flist that includes the list of members to be added to the sharing group.

5. Generates an /event/group/sharing/profiles/modify event to record the changes.

Adding a member to a profile sharing group triggers
PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_MEMBERS, which adds the profile
sharing group to the ordered balance group for each member.

PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_MEMBERS creates or modifies
ordered balance groups for profile sharing group members (accounts or services) when the
profile sharing group is created or modified.

PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_MEMBERS is triggered when a profile
sharing group is created or modified. This opcode calls
PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_MODIFY to create or modify
ordered balance groups.

You can customize PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_MEMBERS to use
it with other types of sharing groups or to use it with only certain profile sharing groups.

This opcode is listed in the pin_notify file for these events:

• /event/group/sharing/profiles/create

• /event/group/sharing/profiles/modify

When merging event notification files, list
PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_MEMBERS after the Enterprise
Application Integration (EAI) framework publishing opcode,
PCM_OP_PUBLISH_GEN_PAYLOAD. See the discussion on merging event notification lists in
BRM Developer's Guide.

Use PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_SERVICE to create an ordered
balance group for a new service purchased by an existing account, if that service automatically
belongs to a sharing group. By default, this opcode creates an ordered balance group for a
service that is a member of a profile sharing group.

A newly purchased service belongs to a profile sharing group if its service type already belongs
to a profile sharing group and the group is defined to include services added in the future.

PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_SERVICE is triggered when a new
service is added to an existing account.

You can customize this opcode to use it with other types of sharing groups or to use it with only
certain profile sharing groups.

PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_SERVICE is listed in the pin_notify
file for /event/notification/service/create. When merging event notification files, this opcode
should be listed after PCM_OP_TCF_PROV_CREATE_SVC_ORDER. See the discussion on
merging event notification lists in BRM Developer's Guide

PCM_OP_SUBSCRIPTION_POL_AUTO_SUBSCRIBE_SERVICE is not called by any opcode.

Adding Profiles to a Profile Sharing Group
When adding profiles to a profile sharing group,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY does the following:

Chapter 9
Managing Profile Sharing Groups

9-58

1. Adds the /profile objects in the PIN_FLD_PROFILES array to the PROFILES array of the /
group/sharing/profiles object.

2. Validates that the new group name is not a duplicate of an existing group name.

3. Creates an flist that includes the list of profiles to be added to the sharing group.

4. Generates an /event/group/sharing/profiles/modify event to record the changes.

Deleting Members and Profiles from a Profile Sharing Group

Note:

The element ID for each member in the /group/sharing/profiles object is unique. If
you use an incorrect element ID for the member you want to delete, the opcode
deletes the wrong member.

To delete a member or profile from a profile sharing group, your application calls
PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY to list the members or profiles to be
deleted. This opcode passes an empty array with an element ID for each listed object to be
deleted.

Note:

If the array passed by the opcode is not empty, you are either adding or modifying the
member or profile.

PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY then calls
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE.

To delete a profile sharing group member,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE does the following:

1. Calls PCM_OP_SUBSCRIPTION_ORDERED_BALGRP to delete the group/sharing/
profiles object from the member's /ordered_balgrp object.

2. Deletes the member from the /group/sharing/profiles members array.

3. Generates an /event/group/sharing/profiles/delete event.

To delete a shared profile from the profile sharing group,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE does the following:

1. Deletes the /profile objects specified in the PIN_FLD_PROFILES array from the
PROFILES array of the /group/sharing/profiles object.

2. Generates an /event/group/sharing/profiles/delete event to record the deletion.

If successful, PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE returns the POID of
the profile sharing group object that was modified and the POID of the event that was
generated.

Chapter 9
Managing Profile Sharing Groups

9-59

Changing the Owner of a Profile Sharing Group
To change the owner of an existing profile sharing group, use
PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT.

This opcode takes the following fields as input:

• PIN_FLD_GROUP_OBJ: The profile sharing group (/group/sharing/profiles) whose
owner is being changed.

• PIN_FLD_POID: The /account object of the current owner.

• PIN_FLD_PARENT: The new owner. This field identifies the /service object designated as
the new owner of the profile sharing group. The /service object can be in the account that
currently owns the profile sharing group or it can be in a different account.

• PIN_FLD_ACCOUNT_OBJ: The /account object of the new owner.

Note:

If you are changing the ownership of the profile sharing group from one service to
another in the same account, the object passed in this field matches the one in
the PIN_FLD_POID field.

• PIN_FLD_BAL_GRP_OBJ: The balance group used to track sharing activities for the new
owner.

• PIN_FLD_PROFILES: An array of profiles that the new owner will share with the group
members. This field is optional but should be included if the shared profiles for the new
owning service are different than those for the current owning service.

PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT does the following:

1. Verifies that:

• The input flist contains the /balance_group object and /account object for the new
profile sharing group owner.

• The /balance_group object belongs to the new owning account or service.

• There are no cyclical relationships. For example, the owner cannot be a member of its
own group. Also, if a member of the group owns a profile sharing group, the owner
cannot be a member of that group.

2. Deletes the current owner's profiles from the /group/sharing/profiles object.

3. Adds the list of profile instances of the new parent passed in the input flist to the group
object.

4. Sets the /group/sharing/profile object's owner to the new owner specified in the
PIN_FLD_PARENT input field.

5. Adds the new owner's shared profiles to the /group/sharing/profiles object.

6. Generates an /event/group/sharing/profiles/modify event to record the owner change.

If successful, PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT returns the
POID of the profile sharing group that was modified and the event that was generated to record
the owner change.

Chapter 9
Managing Profile Sharing Groups

9-60

PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT fails if the new owner that is
passed is already a member of the profile sharing group.

Deleting a Profile Sharing Group
To delete a profile sharing group, use
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE.

If the member and profiles arrays are empty in the input flist, the opcode assumes you are
deleting the group.

PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE does the following:

1. Calls PCM_OP_SUBSCRIPTION_ORDERED_BALGRP to delete the group/sharing/
profiles object from each member's /ordered_balgrp object.

2. Deletes the group/sharing/profiles object.

3. Generates an /event/group/sharing/profiles/delete event to record the deletion.

Using Access Control Lists
See the following topics:

• Managing ACL Groups

• Accessing /group/acl Data

Managing ACL Groups
BRM stores information about each ACL in /group/acl objects in the BRM database. You
manage or access data in /group/acl objects by using the Permissioning facilities module (FM)
standard opcodes.

You create, modify, and delete /group/acl objects by using PCM_OP_PERM_ACL* opcodes.
These opcodes validate data in the input flist and then call Group FM standard opcodes to
create, add, modify, or delete data in a /group/acl object. For example,
PCM_OP_PERM_ACL_GROUP_ADD_MEMBER adds members to a /group/acl object by
calling PCM_OP_GROUP_ADD_MEMBER.

To manage /group/acl objects, you use the following Permissioning FM standard opcodes:

• To create a /group/acl object, use PCM_OP_PERM_ACL_GROUP_CREATE.

• To add a member to a /group/acl object, use
PCM_OP_PERM_ACL_GROUP_ADD_MEMBER.

• To delete a member from a /group/acl object, use
PCM_OP_PERM_ACL_GROUP_DELETE_MEMBER.

• To modify the attributes in a /group/acl object, such as the ACL name, group account, or
list of authorized service types, use PCM_OP_PERM_ACL_GROUP_MODIFY.

Chapter 9
Using Access Control Lists

9-61

Note:

PCM_OP_PERM_ACL_GROUP_MODIFY overwrites the list of authorized
services in the /group/acl object. When the PIN_FLD_PERMITTEDS array is
included in the input flist, PCM_OP_PERM_ACL_GROUP_MODIFY deletes all
services from the /group/acl object and adds the services from the input flist.

• To delete an entire /group/acl object, use PCM_OP_PERM_ACL_GROUP_DELETE.

Note:

Deleting an ACL does not affect services. It only removes the ACL.

Accessing /group/acl Data
Use the following opcodes to access data in /group/acl opcodes. Client applications typically
use these opcodes to find all ACLs that a CSR belongs to or to determine which account group
to display.

• To find all ACLs to which a CSR or member belongs, use PCM_OP_PERM_FIND. See
"Finding CSR Membership".

• To determine which account group to display in a client application, use
PCM_OP_PERM_GET_CREDENTIALS and PCM_OP_PERM_SET_CREDENTIALS.

Finding CSR Membership
Use PCM_OP_PERM_FIND to find all ACLs to which a CSR belongs. This opcode returns a
list of all groups that a CSR is authorized to access, along with specific information about each
ACL.

Customizing the Account Dump Utility (ADU)
Use the account dump policy opcodes to customize Account Dump Utility (ADU) validation and
output file format. The Account Dump utility (ADU) is a diagnostics tool that enables you to
validate account information before or after certain business processes (for example, after
completion of a migration or upgrade or before billing or payment allocation).

Use PCM_OP_ADU_POL_DUMP to convert the ADU output format to a format other than
XML. By default, PCM_OP_ADU_VALIDATE dumps account information in XML format.
PCM_OP_ADU_POL_DUMP allows you to convert the account information in the input flist
into a format other than XML (for example, CSV).

Use PCM_OP_ADU_POL_VALIDATE to define custom validations for validating account data.
By default, PCM_OP_ADU_VALIDATE performs the predefined validations enabled in the ADU
pin.conf file. PCM_OP_ADU_POL_VALIDATE allows you to define custom validations for
validating the account information provided in the input flist.

Any custom validation you define must be associated with a validation code. For
PCM_OP_ADU_VALIDATE to perform the custom validations, they must be configured and
enabled in the ADU pin.conf.

Chapter 9
Customizing the Account Dump Utility (ADU)

9-62

Business Profile Opcode Workflows
See the following topics:

• Creating Business Profiles

• Assigning Bill Units to Business Profiles

• Getting Information about a Business Profile

Creating Business Profiles
Use PCM_OP_CUST_CREATE_ASSOCIATED_BUS_PROFILE to create business profiles.

PCM_OP_CUST_CREATE_ASSOCIATED_BUS_PROFILE creates one /
associated_bus_profile object for each bill unit in an account.

If the BRM-BI Publisher invoice integration is enabled, during customer account creation,
PCM_OP_CUST_CREATE_BILLINFO calls
PCM_OP_CUST_CREATE_ASSOCIATED_BUS_PROFILE to create one /
associated_bus_profile object for each bill unit in the account.

Assigning Bill Units to Business Profiles
You can assign a bill unit to a business profile (/config/business_profile object) during or after
account creation.

To assign a bill unit to a business profile during account creation:

1. Call PCM_OP_CUST_COMMIT_CUSTOMER.

In the opcode's input flist, specify the /config/business_profile object's POID in the
PIN_FLD_BUSINESS_PROFILE_OBJ field of the appropriate BILLINFO array element.

2. PCM_OP_CUST_COMMIT_CUSTOMER passes the business profile information to an
internal opcode.

3. BRM calls the following opcodes to validate the bill unit and its balance groups and
services against the rules in the validation templates associated with the business profile:

• PCM_OP_CUST_SET_BILLINFO, which validates the /billinfo object against the bill
unit validation template (/config/template/billinfo object) and sets the /billinfo
object's PIN_FLD_OBJECT_CACHE_TYPE value.

• PCM_OP_CUST_SET_BAL_GRP, which validates the balance group objects against
the balance group validation template (/config/template/balance_group object) and
sets the /balance_group object's PIN_FLD_OBJECT_CACHE_TYPE value. When a
service is associated with a balance group, this opcode also validates the service
object against the service validation template that corresponds to the service object
type (/config/template/service or /config/template/service/*) and sets the /service
object's PIN_FLD_OBJECT_CACHE_TYPE value.

Chapter 9
Business Profile Opcode Workflows

9-63

Note:

If the business profile is not associated with a validation template that
matches a particular object type, validation is not performed on the
corresponding object type. Skipping validation for this reason is not
equivalent to validation failure and does not prevent the bill unit from being
assigned to the business profile.

4. One of the following results occurs:

• If no validation errors occur, BRM calls PCM_OP_CUST_SET_BILLINFO to put the
business profile POID in the PIN_FLD_BUSINESS_PROFILE_OBJ field of the new /
billinfo object.

• If validation errors occur, account and bill unit creation fail.

Whenever invoice business profiles are modified in the /config/business_profile object, use
PCM_OP_CUST_SET_ASSOCIATED_BUS_PROFILE to update all related /
associated_bus_profile objects.

To assign a bill unit to a business profile after account creation, see "Changing a Bill Unit's
Business Profile".

Changing a Bill Unit's Business Profile
Use PCM_OP_CUST_CHANGE_BUSINESS_PROFILE to perform these operations:

• Assign a bill unit to a business profile after an account has been created.

• Change the business profile of a bill unit that currently belongs to a different business
profile.

Include the following information in PCM_OP_CUST_CHANGE_BUSINESS_PROFILE input
flist:

• The POID of the /billinfo object whose business profile you want to change.

• The POID of the new /config/business_profile object to assign the /billinfo object to.

• The POID of any associated /balance_group objects that must be modified for the new
business profile and the required modifications.

• The POID of any associated /service/* objects that must be modified for the new business
profile and the required modifications.

PCM_OP_CUST_CHANGE_BUSINESS_PROFILE performs these operations:

1. Validates the /billinfo object against the bill unit validation template (/config/template/
billinfo object) associated with the new business profile and then does one of the
following:

If validation succeeds:

a. Calls PCM_OP_CUST_SET_BILLINFO to change the /config/business_profile POID
in the PIN_FLD_BUSINESS_PROFILE_OBJ field of the /billinfo object.

b. If cache residency distinction is enabled, changes the /account object's
PIN_FLD_OBJECT_CACHE_TYPE value if required, then validates all cache
residency objects that are related to the account and are in the account context (for
example, /profile/acct_extrating objects and account /purchased_product objects).

If validation fails, returns an error.

Chapter 9
Business Profile Opcode Workflows

9-64

2. Creates a list of all the objects associated with the bill unit.

3. For each balance group in the list, checks whether the input flist contains a requested
modification.

If a modification is requested, calls PCM_OP_CUST_SET_BAL_GRP to make the
modifications and to validate the modified balance group object against the balance group
validation template (/config/template/balance_group object) associated with the new
business profile.

If a modification is not requested, validates the balance group itself.

4. After validating a balance group, creates a list of all the services associated with the
balance group.

5. If cache residency distinction is enabled, searches for objects related to each service in the
list and validates them (for example, /purchased_discount and /profile/serv_extrating
objects that belong to the account).

6. For each service in the list, checks whether the input flist contains a requested
modification.

If a modification is requested, calls PCM_OP_CUST_MODIFY_SERVICE to make the
modifications and to validate the modified service object against the service validation
template that most closely corresponds to the service object type (/config/template/
service or /config/template/service/* object) associated with the new business profile.

If a modification is not requested, validates the service itself.

7. Repeats steps 3 through 6 until all balance groups and services associated with the bill
unit are validated.

If any of the balance group or service validations fail, returns an error. If an error is
returned, the business profile change initiated in step 1 does not take effect.

Note:

If the business profile is not associated with a validation template that matches a
particular object type, validation is not performed on the corresponding object
type. Skipping validation for this reason is not equivalent to validation failure and
does not prevent the bill unit from being assigned to the business profile.

Getting Information about a Business Profile
A business profile (/config/business_profile object) and the validation templates (/config/
template subclass objects) linked to it include key-value pairs in their PIN_FLD_PAIR arrays.
To get information about the objects belonging to a business profile, you can retrieve the
values of the keys in the business profile and its associated validation templates. For example,
if a bill unit belongs to a business profile that has a PIN_FLD_PAIR_KEY field set to
IsPrepaidGold and a corresponding PIN_FLD_PAIR_VALUE field set to Yes, you know that
the charges associated with the bill unit are prepaid with a gold credit card.

To get the value of a key in the business profile and validation templates associated with an
object, call PCM_OP_CUST_GET_BUSINESS_PROFILE_INFO. Include the following
information in the opcode's input flist:

• The POID of the /config/business_profile object to which the related object belongs.
These are the possible related objects:

Chapter 9
Business Profile Opcode Workflows

9-65

– /balance_group

– /billinfo

– /group/sharing/charges

– /group/sharing/discounts

– /group/sharing/profiles

– /ordered_balgrp

– /profile/acct_extrating

– /profile/serv_extrating

– /purchased_discount

– /purchased_product

– /service/*

• The key whose value you want the opcode to get.

• The type of object from which the key's value should be obtained. These are the possible
object types:

– /config/business_profile

– /config/template/balance_group

– /config/template/billinfo

– /config/template/group

– /config/template/sharing

– /config/template/ordered_balgrp

– /config/template/profile/*

– /config/template/purchased_discount

– /config/template/purchased_product

– /config/template/service/*

Creating and Managing Account Hierachies
To create and manage account hierarchies, BRM uses the following
PCM_OP_BILL_GROUP_* opcodes:

Note:

These opcodes call other PCM_OP_GROUP_* opcodes to perform functionality. Your
custom client application should not call the PCM_OP_GROUP_* opcodes.

• PCM_OP_BILL_GROUP_CREATE

See "Creating Account Hierarchies".

• PCM_OP_BILL_GROUP_ADD_MEMBER

See "Adding Accounts to Account Hierarchies".

• PCM_OP_BILL_GROUP_MOVE_MEMBER

Chapter 9
Creating and Managing Account Hierachies

9-66

See "Moving Accounts from One Account Hierarchy to Another".

• PCM_OP_BILL_GROUP_DELETE_MEMBER

See "Deleting Accounts from Account Hierarchies".

• PCM_OP_BILL_GROUP_DELETE

See "Deleting Account Hierarchies".

• PCM_OP_BILL_GROUP_GET_PARENT

See "Finding the Parent of an Account Hierarchy".

• PCM_OP_BILL_GROUP_GET_CHILDREN

See "Getting a List of Child Accounts in an Account Hierarchy".

Creating Account Hierarchies
To create an account hierarchy, BRM uses PCM_OP_BILL_GROUP_CREATE.

This opcode creates a /group object for the account hierarchy.

The input to PCM_OP_BILL_GROUP_CREATE is the following:

• The name of the /group object

• The parent /account object to own the group

PCM_OP_BILL_GROUP_CREATE calls PCM_OP_GROUP_CREATE_GROUP to create the
group. The new group's POID is written to the PIN_FLD_GROUP_OBJ field in the specified /
account object. The output of PCM_OP_GROUP_CREATE_GROUP is returned as the output
of this call.

This operation is performed inside a transaction.

The PCM_OP_BILL_GROUP_CREATE output flist includes the following:

• The POID of the group that was created

• A PIN_FLD_RESULTS array with a single event element

The results array returns the POID of an /event object that holds the old and new value of the
parent object. Because an object was created and an old value did not exist, the old value is
returned as NULL. The old and new parent values are kept in the
EVENT_GROUP_PARENTS_T table, which is linked to the EVENT_T table.

If an error occurs, a NULL flist is returned.

Adding Accounts to Account Hierarchies
To add an account to an account hierarchy, BRM uses
PCM_OP_BILL_GROUP_ADD_MEMBER.

The input to PCM_OP_BILL_GROUP_ADD_MEMBER includes the following:

• The /group object to add accounts to

• A set of POIDs of the accounts to add

Any account can be added to an account hierarchy, including the parent account of another
account hierarchy.

Chapter 9
Creating and Managing Account Hierachies

9-67

Note:

Each child account can belong to only one parent account.

PCM_OP_BILL_GROUP_ADD_MEMBER calls PCM_OP_GROUP_ADD_MEMBER to add the
accounts. After the accounts are successfully added, an /event object is created that contains
a list of the added accounts. The POID of the new /event object is returned.

Only accounts not already in the group are added. If the list of accounts to add contains
accounts already in the account group, they are ignored.

To be added to the group, an account's bill units must have the same bill time information
(NEXT_BILL_T field in the /billinfo object) as the parent /billinfo object in the group's parent
account.

PCM_OP_BILL_GROUP_ADD_MEMBER is performed inside a transaction.

The PCM_OP_BILL_GROUP_ADD_MEMBER output flist includes the following:

• The POID of the modified group

• A PIN_FLD_RESULTS array with a single event element

The results array returns the POID of an /event object that holds the list of accounts added to
the group. The list of added accounts is kept in the EVENT_GROUP_MEMBERS_T table,
which is linked to the EVENT_T table.

Moving Accounts from One Account Hierarchy to Another
To move an account from one account hierarchy to another, BRM uses
PCM_OP_BILL_GROUP_MOVE_MEMBER.

This opcode is the recommended way to perform this action. It is a wrapper for the other
PCM_OP_BILL_GROUP opcodes.

When an account is moved, PCM_OP_BILL_GROUP_MOVE_MEMBER calls
PCM_OP_BILL_GROUP_DELETE. If the account being moved is the last account in a group,
PCM_OP_BILL_GROUP_MOVE_MEMBER also calls PCM_OP_BILL_GROUP_DELETE to
remove the group.

The PIN_FLD_FLAGS field in PCM_OP_BILL_GROUP_MOVE_MEMBER input flist controls
the type of information returned in the output flist. This field can have the following values:

• 1: If a bill unit of the account to be moved is a member of a collections sharing group, the
opcode returns the details of the collections sharing group. When the flag is set to this
value, the account is not moved.

• 2: If a bill unit of the account to be moved is a member of a collections sharing group, the
opcode calls PCM_OP_COLLECTIONS_DELETE_GROUP_MEMBER to delete the bill
unit from the collections sharing group and then continues moving the account to another
account hierarchy.

If the account is moving into an existing account hierarchy,
PCM_OP_BILL_GROUP_MOVE_MEMBER also calls
PCM_OP_BILL_GROUP_ADD_MEMBER to add the account to the target group.

Chapter 9
Creating and Managing Account Hierachies

9-68

If the account is moving into a group that does not exist,
PCM_OP_BILL_GROUP_MOVE_MEMBER calls PCM_OP_BILL_GROUP_CREATE to create
the group.

If the target account (the top-level parent account of the nonexistent target group) also does
not exist, PCM_OP_BILL_GROUP_MOVE_MEMBER attempts to remove the moving account
from its group and leave it as a standalone account. If the moving account has a nonpaying bill
unit, nothing is done, and an error is returned.

Deleting Accounts from Account Hierarchies
To delete an account from an account hierarchy, BRM uses
PCM_OP_BILL_GROUP_DELETE_MEMBER.

PCM_OP_BILL_GROUP_DELETE_MEMBER calls PCM_OP_GROUP_DELETE_MEMBER to
perform the deletion. After the accounts are successfully deleted from the group, an /event
object is created that contains a list of the deleted accounts. The POID of the /event object is
returned.

The list of accounts to delete can contain POIDs of accounts that are not in the account group;
those accounts are ignored. Only accounts in the group are deleted from the account group.

You cannot delete an account if the bill unit it owns is a paying bill unit of a nonpaying bill unit
in another account.

Deleting Account Hierarchies
To delete an account hierarchy, BRM uses PCM_OP_BILL_GROUP_DELETE.

This opcode performs the following actions:

• Deletes the specified /group object

• Deletes the accounts list for that account group

• Clears the PIN_FLD_GROUP_OBJ field in the group parent's /account object

PCM_OP_BILL_GROUP_DELETE calls PCM_OP_GROUP_DELETE_GROUP. The input to
PCM_OP_BILL_GROUP_DELETE is the POID of the group to delete. After successfully
deleting the group, the opcode returns the deleted group's POID.

Finding the Parent of an Account Hierarchy
To find the parent of an account hierarchy, use PCM_OP_BILL_GROUP_GET_PARENT.

PCM_OP_BILL_GROUP_GET_PARENT retrieves the parent account of a specified /group
object. The input to PCM_OP_BILL_GROUP_GET_PARENT is an account hierarchy POID.
The account POID identifying the group's parent account is returned.

Getting a List of Child Accounts in an Account Hierarchy
To get a list of child accounts in an account hierarchy, use
PCM_OP_BILL_GROUP_GET_CHILDREN.

To read only specified /account fields for each account (for example, account name), pass the
specified fields in the input flist along with the POID of the /group object. If the input flist
contains only the /group object POID, all the fields in the ACCOUNT table for each child are
returned.

Chapter 9
Creating and Managing Account Hierachies

9-69

About the PCM_OP_GROUP Opcodes
The Group FM includes the following opcodes. These opcodes are called by other opcodes
(for example, the wrapper opcode PCM_OP_BILL_GROUP_CREATE calls
PCM_OP_GROUP_CREATE_GROUP to create a group). Always use the wrapper opcodes,
such as the PCM_OP_BILL wrapper opcodes, not the PCM_OP_GROUP opcodes.

• PCM_OP_GROUP_CREATE_GROUP

See "Creating Groups".

• PCM_OP_GROUP_ADD_MEMBER

See "Adding Members to Groups".

• PCM_OP_GROUP_DELETE_MEMBER

See "Deleting Members from Groups".

• PCM_OP_GROUP_SET_PARENT

See "Setting a Group Parent".

• PCM_OP_GROUP_DELETE_GROUP

See "Deleting Groups".

• PCM_OP_GROUP_UPDATE_INHERITED

See "Updating Inheritance Fields in Groups".

Creating Groups
To create a /group object, BRM uses PCM_OP_GROUP_CREATE_GROUP.

PCM_OP_GROUP_CREATE_GROUP first initializes the new group. Then this opcode uses
PCM_OP_GROUP_SET_PARENT to set any parent information specified on input. If a
members list is passed in, PCM_OP_GROUP_ADD_MEMBER is called to add those
members.

PCM_OP_GROUP_CREATE_GROUP does not generate an /event object. However, if new
members are specified and added to the group, that operation generates an /event object. The
output of PCM_OP_GROUP_SET_PARENT and PCM_OP_GROUP_ADD_MEMBER are
attached to the return flist.

Adding Members to Groups
To add members to a group, BRM uses PCM_OP_GROUP_ADD_MEMBER.

The input to this opcode is a set of POIDs of the members to add. After the members are
successfully added, an /event object is created containing a list of the added members. The
POID of the /event object is returned.

The add members list might contain POIDs of members already in the group. Those members
are ignored; only new members are added to the group.

Deleting Members from Groups
To delete members from a group, BRM uses PCM_OP_GROUP_DELETE_MEMBER.

Chapter 9
Creating and Managing Account Hierachies

9-70

After the members are deleted, an /event object is created containing a list of the deleted
members. The POID of the /event object is returned.

The delete members list might contain POIDs of members not in the group. Those elements
are ignored; only existing members are deleted from the group.

Setting a Group Parent
To set the parent object of a group, BRM uses PCM_OP_GROUP_SET_PARENT.

The parent field is specified using a POID ID, which is similar to a member element of a group.
However, a parent is considered the object that owns the group. If the group represents
accounts, the members elements refer to accounts that belong to the group.

The results array returns the POID of an /event object that holds the old and new value of the
parent object.

Deleting Groups
To delete a /group object, BRM uses PCM_OP_GROUP_DELETE_GROUP.

PCM_OP_GROUP_DELETE_GROUP removes a specified /group object and all members
linked to it.

Updating Inheritance Fields in Groups
To update the inheritance fields of a group, BRM uses
PCM_OP_GROUP_UPDATE_INHERITED.

The input to PCM_OP_GROUP_UPDATE_INHERITED is the POID of the group to update
followed by the inheritance information. The inheritance information is passed as a
substructure and must have space allocated for it as a separate object, independent of the /
group object.

Chapter 9
Creating and Managing Account Hierachies

9-71

10
Deposit Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) deposit
opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Creating Deposit Specification Profiles

• Validating Deposit Specification Profiles

• Getting Deposit Specification Profiles

• Modifying Deposit Specification Profiles

• Creating Deposit Specifications

• Validating Deposit Specifications

• Getting Deposit Specifications

• Modifying Deposit Specifications

• Deleting Draft Deposit Specifications

• Purchasing Deposits

• Validating a Deposit Purchase

• Getting Deposits

• Updating Deposits

• Validating Deposit Updates

• Collecting Deposit Payments

• Validating Deposit Payment Collections

• Reversing Deposits

• Validating a Deposit Reversal

• Releasing Deposits

• Validating a Deposit Release

• Transferring Deposits

• Validating a Deposit Transfer

• Adding Interest to a Deposit

• Customizing the Interest Calculation

• Requesting Deposit Refunds

• Validating a Deposit Refund Request

• Getting Refund Requests

• Updating Refund Requests

• Updating Received Deposits

10-1

• Triggering Deposits

• Retrieving Transaction Details of a Deposit

Opcodes Described in This Chapter
Table 10-1 lists the deposit management opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 10-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_DEPOSIT_CREATE_SPECIFICATION_PR
OFILE

Creating Deposit Specification Profiles

Modifying Deposit Specification Profiles
Validating Deposit Specification Profiles

PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION_
PROFILE

Validating Deposit Specification Profiles

PCM_OP_DEPOSIT_GET_SPECIFICATION_PROFI
LE

Getting Deposit Specification Profiles

PCM_OP_DEPOSIT_MODIFY_SPECIFICATION_PR
OFILE

Modifying Deposit Specification Profiles

Validating Deposit Specification Profiles

Creating Deposit Specification Profiles

PCM_OP_DEPOSIT_CREATE_SPECIFICATION Creating Deposit Specifications

Validating Deposit Specifications

PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION Validating Deposit Specifications

PCM_OP_DEPOSIT_GET_SPECIFICATION Getting Deposit Specifications

PCM_OP_DEPOSIT_MODIFY_SPECIFICATION Modifying Deposit Specifications

Validating Deposit Specifications

PCM_OP_DEPOSIT_PURCHASE_DEPOSIT Purchasing Deposits

Validating a Deposit Purchase

PCM_OP_DEPOSIT_POL_VALID_PURCHASE_DEP
OSIT

Validating a Deposit Purchase

PCM_OP_DEPOSIT_GET_DEPOSITS Getting Deposits

PCM_OP_DEPOSIT_UPDATE_DEPOSIT Updating Deposits

PCM_OP_DEPOSIT_POL_VALID_UPDATE_DEPOS
IT

Validating Deposit Updates

PCM_OP_DEPOSIT_COLLECT_PAYMENT Collecting Deposit Payments

PCM_OP_DEPOSIT_POL_VALID_COLLECT_PAYM
ENT

Validating Deposit Payment Collections

PCM_OP_DEPOSIT_REVERSE_DEPOSIT Reversing Deposits

Validating a Deposit Reversal

Chapter 10
Opcodes Described in This Chapter

10-2

Table 10-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_DEPOSIT_POL_VALID_REVERSE_DEPO
SIT

Validating a Deposit Reversal

PCM_OP_DEPOSIT_RELEASE_DEPOSIT Releasing Deposits

Validating a Deposit Release

PCM_OP_DEPOSIT_POL_VALID_RELEASE_DEPO
SIT

Validating a Deposit Release

PCM_OP_DEPOSIT_TRANSFER_DEPOSIT Transferring Deposits

Validating a Deposit Transfer

PCM_OP_DEPOSIT_POL_VALID_TRANSFER_DEP
OSIT

Validating a Deposit Transfer

PCM_OP_DEPOSIT_ADD_INTEREST Adding Interest to a Deposit

PCM_OP_DEPOSIT_POL_PRE_ ADD_INTEREST

PCM_OP_DEPOSIT_POL_POST_ADD_INTEREST

Customizing the Interest Calculation

PCM_OP_DEPOSIT_REFUND_REQUEST Requesting Deposit Refunds

PCM_OP_DEPOSIT_POL_VALID_REFUND_REQU
EST

Validating a Deposit Refund Request

PCM_OP_DEPOSIT_GET_REFUND_REQUEST Getting Refund Requests

PCM_OP_DEPOSIT_UPDATE_REFUND_REQUEST Updating Refund Requests

PCM_OP_DEPOSIT_UPDATE_DEPOSIT_RECEIVE
D

Updating Received Deposits

PCM_OP_DEPOSIT_TRIGGER_DEPOSIT Triggering Deposits

Creating Deposit Specification Profiles
Use the PCM_OP_DEPOSIT_CREATE_SPECIFICATION_PROFILE opcode to create a
deposit specification profile. Profiles define common business rules for deposits and are used
to create deposit specifications.

In the input flist, you can set the profile name, description, start date, end date, interest
calculation flags, transferable flags, interest type, interest rate, interest offset details, and
details about handling refund fees.

This opcode creates a /config/deposit_spec_profile object. This opcode is called by Billing
Care.

The PCM_OP_DEPOST_CREATE_SPECIFICATION_PROFILE opcode does the following:

• Validates the mandatory parameters in the input flist.

• Calls the PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION_PROFILE opcode to
validate the input parameters.

• Checks the results of PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION_PROFILE and
sends appropriate error messages.

• Searches the database for the /config/deposit_spec_profile with the name. If it already
exists, sends an error.

• Calls the PCM_OP_CREATE_OBJ opcode to create the /config/deposit_spec_profile
object.

Chapter 10
Creating Deposit Specification Profiles

10-3

Validating Deposit Specification Profiles
Use the PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION_PROFILE policy opcode to
validate and implement any customizations while creating deposit specification profile
information. It validates if the deposit specification profile name is provided. This policy opcode
is called by the PCM_OP_DEPOSIT_CREATE_SPECIFICATION_PROFILE opcode.

PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION_PROFILE validates the deposit
specification profile information in the /config/deposit_spec_profile object.
PCM_OP_DEPOSIT_CREATE_SPECIFICATION_PROFILE does the following before calling
PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION_PROFILE:

• Validates that the deposit specification profile mandatory parameters are in the input.

• Calls the PCM_OP_SEARCH opcode with the provided deposit specification profile name.
If the profile exists, it returns an error.

• Validates that the details of PIN_FLD_DEPOSIT_PROFILE_SPEC in the input flist use the
required format.

• Validates if the PIN_FLD_INTEREST_TYPE is provided. There are three interest types:
simple, compound, and absolute. If the type is not present, sends an error.

• If any BRM-related error occurs, sets the PIN_FLD_RESULT field to FAIL, shares a
designated error message to the output flist, and clears the error buffer. If there are no
errors, reviews all related areas. If there are no failures, sets the PIN_FLD_RESULT field
to PASS.

Getting Deposit Specification Profiles
Use the PCM_OP_DEPOSIT_GET_SPECIFICATION_PROFILE opcode to get any existing
deposit specification profiles available in the BRM database using its name or POID. This
opcode is called by Billing Care.

PCM_OP_DEPOSIT_GET_SPECIFICATION_PROFILE does the following:

• Validates the mandatory parameters in the input flist.

• Prepares the search template to search the /config/deposit_spec_profile object.

• Calls the PCM_OP_SEARCH opcode to find the /config/deposit_spec_profile object and
prepares the output flist.

Modifying Deposit Specification Profiles
Use the PCM_OP_DEPOSIT_MODIFY_SPECIFICATION_PROFILE opcode to update, edit, or
modify an existing deposit specification profile attributes in the /config/deposit_spec_profile
object. This opcode is called by Billing Care.

PCM_OP_DEPOSIT_MODIFY_SPECIFICATION_PROFILE does the following:

• Validates the mandatory parameters in the input flist.

• Searches for the given /config/deposit_spec_profile object.

• Calls the PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION_PROFILE opcode to
validate the input parameters.

Chapter 10
Validating Deposit Specification Profiles

10-4

• Calls the PCM_OP_WRITE_FLDS opcode to update the /config/deposit_spec_profile
object with the fields provided in the input flist.

Creating Deposit Specifications
Use the PCM_OP_DEPOSIT_CREATE_SPECIFICATION opcode to create deposit
specification details. This opcode creates the /deposit_specification object.

In the input flist fields, you can set the deposit specification name and select the deposit
specification profile, start date, end date, deposit specification code, credit limit flags, draft flag,
permitted type and category, and product or plan object.

PCM_OP_DEPOSIT_CREATE_SPECIFICATION does the following:

• Validates the mandatory parameters in the input flist.

• Calls the PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION opcode to validate if the
deposit event or appropriate charge offer is available. If not available, sends an error.

• Searches the database for an existing /deposit_specification object with the provided
name. If it already exists, sends an error.

• Calls the PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION_PROFILE opcode to
validate the input parameters.

• Calls the PCM_OP_CREATE_OBJ opcode to create the object.

Validating Deposit Specifications
Use the PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION opcode to validate and
implement any customizations while creating the deposit specifications. This policy opcode is
called by the PCM_OP_DEPOSIT_CREATE_SPECIFICATION opcode.

The PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION policy opcode validates the deposit
specification information in the /deposit_specification object. Before calling this opcode,
PCM_OP_DEPOSIT_CREATE_SPECIFICATION makes the following initial validation checks:

• Validates the deposit specification's mandatory parameters in the input flist.

• Calls the PCM_OP_SEARCH opcode with the provided deposit specification name. If the
specification exists, it returns an error.

• Validates that the details of the input flist are in the required format.

• If any BRM-related error occurs, sets the PIN_FLD_RESULT field to FAIL, shares a
designated error message to the output flist, and clears the error buffer. If there are no
errors, reviews all related areas. If there are no failures, sets the PIN_FLD_RESULT field
to PASS.

Getting Deposit Specifications
Use the PCM_OP_DEPOSIT_GET_SPECIFICATION opcode to get existing deposit
specification objects. If the name is specified in the input flist, it returns only the particular /
deposit_specification object, otherwise it returns all objects in the BRM database. This
opcode is called by Billing Care.

Chapter 10
Creating Deposit Specifications

10-5

Note:

By default, the search limit for the opcode is set to 500 and only lists the most recent
records. You can customize the search limit according to the requirement.

PCM_OP_DEPOSIT_GET_SPECIFICATION does the following:

• Validates the mandatory parameters in the input flist.

• Calls the PCM_OP_SEARCH opcode to find the specified /deposit_specification object
and prepares the output flist.

Modifying Deposit Specifications
Use the PCM_OP_DEPOSIT_MODIFY_SPECIFICATION opcode to modify the /
deposit_specification object attributes. This opcode is called by Billing Care.

PCM_OP_DEPOSIT_MODIFY_SPECIFICATION does the following:

• Validates the mandatory parameters in the input flist.

• Searches for the given /deposit_specification with the POID.

• If the specification exists, calls the PCM_OP_DEPOSIT_POL_VALID_SPECIFICATION
opcode to validate the input parameters.

• Calls the PCM_OP_WRITE_FLDS opcode to update the /deposit_specification object
with the fields provided in the input flist.

Deleting Draft Deposit Specifications
Use the PCM_OP_DEPOSIT_DELETE_DRAFT opcode to delete draft deposit specifications.
The opcode internally validates the status. If the specification is in draft status, the opcode
deletes the provided /deposit_specification object. Otherwise, the opcode returns an error.
This opcode is called by Billing Care.

Purchasing Deposits
Use the PCM_OP_DEPOSIT_PURCHASE_DEPOSIT opcode to create a customer deposit.

Using this opcode, you can select any existing specification from the BRM database and
associate it with the customer. The specification must include a deposit charge.

As part of this opcode, a purchase deposit entity is created in the BRM database, the
associated charge offer from the deposit specification is purchased by the customer, and the
charge is applied. The opcode creates a deposit object that includes all the information about
the deposit purchased.

PCM_OP_DEPOSIT_PURCHASE_DEPOSIT triggers the /deposit_charge event and the /
item/deposit_charge item. It creates the /purchased_deposit object and makes the payment
for the deposit.

Chapter 10
Modifying Deposit Specifications

10-6

Note:

Interest calculation happens only when the payments are received for the account. If
the purchased deposit does not collect any payment, the last_interest_calc_t field
stays empty and is updated in the PCM_OP_DEPOSIT_COLLECT_PAYMENT
opcode.

The PCM_OP_DEPOSIT_PURCHASE_DEPOSIT opcode does the following:

• Validates the mandatory parameters in the input flist.

• Calls the PCM_OP_DEPOSIT_POL_VALID_PURCHASE_DEPOSIT opcode to validate
the input parameters.

• Calls the PCM_OP_READ_OBJ opcode to get the product details that are configured in
the deposit specification.

• Prepares the input flist for the PCM_OP_BILL_MAKE_BILL_NOW opcode to include the /
item/deposit_charge item.

• Calls the PCM_OP_BAL_GET_BALANCES opcode to get the credit limit.

• Calls the PCM_OP_BILL_SET_LIMIT_AND_CR opcode to increase the credit limit by the
deposit amount.

• Gets the /event/billing/item/transfer event from the output flist.

• For a payment, including a pre-defined payment, calls the PCM_OP_PYMT_COLLECT
opcode to collect the deposit amount.

• Prepares the input flist for the PCM_OP_BILL_ITEM_TRANSFER opcode to allocate the
collected or pending payments to the deposit amount.

• Calls the PCM_OP_ACT_USAGE opcode to trigger the /event/deposit/create notification
event that can be sent to the customer.

Validating a Deposit Purchase
Use the PCM_OP_DEPOSIT_POL_VALID_PURCHASE_DEPOSIT policy opcode to validate
and implement any customizations while purchasing a deposit. This policy opcode is called by
the PCM_OP_DEPOSIT_PURCHASE_DEPOSIT opcode.

Getting Deposits
Use the PCM_OP_DEPOSIT_GET_DEPOSITS opcode to get the purchased deposits for an
account, service, or bill unit from the /purchased_deposit object. This opcode is called by
Billing Care.

Note:

By default, the search limit for the opcode is set to 500 and only lists the most recent
records. You can customize the search limit.

The opcode gets the available deposits associated with a given account or service.

PCM_OP_DEPOSIT_GET_DEPOSITS does the following:

Chapter 10
Validating a Deposit Purchase

10-7

• Validates the mandatory parameters in the input flist.

• Calls the PCM_OP_READ_OBJ opcode if the /purchased_deposit object is provided.

• Prepares the search template to search the /purchased_deposit object.

• Calls the PCM_OP_SEARCH opcode and prepares the output flist.

Updating Deposits
Use the PCM_OP_DEPOSIT_UPDATE_DEPOSIT opcode to increase or decrease the deposit
amount. The opcode reverses the existing deposit_charge item and creates a new
deposit_charge for the given deposit amount and updates the purchased deposit object.

Note:

Requesting an update for a transferred deposit is not valid.

PCM_OP_DEPOSIT_UPDATE_DEPOSIT does the following:

• Validates the mandatory parameters in the input flist.

• Calls the PCM_OP_DEPOSIT_POL_VALID_UPDATE_DEPOSIT opcode to validate the
input parameters.

• Calls the PCM_OP_DEPOSIT_REVERSE_DEPOSIT opcode to reverse a deposit.

• Calls the PCM_OP_DEPOSIT_PURCHASE_DEPOSIT opcode to purchase a deposit.

• Creates a custom event to update the deposit and include it in the events array of the /
purchased_deposit object.

Validating Deposit Updates
Use the PCM_OP_DEPOSIT_POL_VALID_UPDATE_DEPOSIT opcode to validate and
implement any customizations while updating the deposit. This policy opcode is called by the
PCM_OP_DEPOSIT_UPDATE_DEPOSIT opcode.

Collecting Deposit Payments
Use the PCM_OP_DEPOSIT_COLLECT_PAYMENT opcode to collect pending payments for
deposits purchased by customers.

The PCM_OP_DEPOSIT_COLLECT_PAYMENT opcode does the following:

• Validates the mandatory parameters in the input flist.

• Calls the PCM_OP_DEPOSIT_POL_VALID_COLLECT_PAYMENT opcode to validate the
input parameters.

• Calls the PCM_OP_READ_OBJ opcode to get the deposit details provided in the input.

• Calls the PCM_OP_PYMT_COLLECT opcode to collect the deposit amount.

• Gets the /event/billing/item/transfer event from the output flist.

• Prepares the input flist for the PCM_OP_BILL_ITEM_TRANSFER opcode to transfer the
deposit amount.

Chapter 10
Updating Deposits

10-8

• Calls the PCM_OP_WRITE_FLDS opcode to update the received deposit amount and the
balance amount.

• If the payment received is the first payment, and the calculate interest flag is set, interest
calculation starts from the date of this payment.

Validating Deposit Payment Collections
Use the PCM_OP_DEPOSIT_POL_VALID_COLLECT_PAYMENT opcode to validate and
implement any customizations while collecting the deposit payments. This policy opcode is
called by the PCM_OP_DEPOSIT_COLLECT_PAYMENT opcode.

Reversing Deposits
Use the PCM_OP_DEPOSIT_REVERSE_DEPOSIT opcode to reverse any unintentional or
wrongly made deposits. The opcode opens the /item/payment object associated with the /
item/deposit_charge object and creates /item/deposit/reversal with the same deposit charge
amount.

PCM_OP_DEPOSIT_REVERSE_DEPOSIT does the following:

• Validates the input flist.

• Calls the PCM_OP_DEPOSIT_POL_VALID_REVERSE_DEPOSIT opcode with the input
flist.

• Gets the PIN_FLD_RESULT from the
PCM_OP_DEPOSIT_POL_VALID_REVERSE_DEPOSIT output flist.

• Searches for /item/deposit_charge item for the given /purchased_deposit.

• Gets the status and the item total from the /item/deposit_charge item.

• If the calculate interest flag is set:

– Prepares the input flist and calls the PCM_OP_DEPOSIT_ADD_INTEREST opcode to
calculate and add the interest.

– Gets the interest amount from the PIN_FLD_DEPOSIT_INTEREST_AMOUNT from /
purchased_deposit.

– Prepares the input flist for the PCM_OP_PYMT_COLLECT opcode, to provide the
interest accumulated as an /item/payment object with the G/L ID.

• Calls the PCM_OP_PYMT_COLLECT opcode to create the /item/payment object for the
interest amount.

• Prepares the input flist for PCM_OP_ACT_USAGE.

• Calls the PCM_OP_BILL_ITEM_TRANSFER to transfer /item/deposit/reversal to /item/
deposit_charge.

• Calls the PCM_OP_BILL_SET_LIMIT_AND_CR opcode to adjust the credit limit amount.

• Calls the PCM_OP_WRITE_FLDS opcode to update the /purchased_deposit object.

• Calls the PCM_OP_ACT_USAGE opcode to trigger the /event/deposit/reversal
notification event that can be sent to the customer.

Chapter 10
Validating Deposit Payment Collections

10-9

Validating a Deposit Reversal
Use the PCM_OP_DEPOSIT_POL_VALID_REVERSE_DEPOSIT opcode to validate and
implement any customizations while reversing the deposit. This policy opcode is called by the
PCM_OP_DEPOSIT_REVERSE_DEPOSIT opcode.

Releasing Deposits
Use the PCM_OP_DEPOSIT_RELEASE_DEPOSIT opcode to release an existing deposit
amount.

You can release the deposit amount as a refund, as a prepayment for due bills or future bills, or
to settle the customer’s account balance, an option called zeroize.

You can select one of the following modes to release the deposit:

• Prepayment: The /item/payment object is created immediately.

• Refund: The /deposit_refund_request object is created and can be approved by the
approver. After it is approved, the /item/payment and /item/refund objects are created
and refunded.

• Zeroize: The /item/payment object is created immediately, the pending items are billed, /
item/payment is allocated to the bill items, and the remaining balance is refunded to the
customer.

PCM_OP_DEPOSIT_RELEASE_DEPOSIT does the following:

• Validates the input flist.

• Calls the PCM_OP_DEPOSIT_POL_VALID_RELEASE_DEPOSIT opcode to validate the
input parameters.

• Calls the PCM_OP_WRITE_FLDS opcode to update the /purchased_deposit object for
the balance amount and amount released.

• Calls the PCM_OP_BILL_MAKE_BILL_NOW opcode to bill the pending items for a specific
service or bill unit from the /purchased_deposit object.

• If the calculate interest flag is set:

– Prepares the input flist and calls the PCM_OP_DEPOSIT_ADD_INTEREST opcode to
calculate and add the interest.

Note:

Interest is released only when the complete balance amount is refunded or
released. Otherwise, interest is calculated but not released.

– Gets the interest amount from the PIN_FLD_DEPOSIT_INTEREST_AMOUNT field in
the /purchased_deposit object.

– Prepares the input flist for the PCM_OP_PYMT_COLLECT opcode to provide the
accumulated interest as /item/payment, with the G/L ID.

• Prepares the input flist to call the PCM_OP_BILL_ITEM_TRANSFER opcode, to transfer
the deposit amount to a bill.

Chapter 10
Validating a Deposit Reversal

10-10

• Calls the PCM_OP_WRITE_FLDS opcode to update the /purchased_deposit object for
the balance amount and released amount.

• Calls the PCM_OP_DEPOSIT_REFUND_REQUEST opcode to create the /
deposit_refund_request object for the deposit amount.

• Calls the PCM_OP_DEPOSIT_UPDATE_REFUND opcode to create the /item/refund
object.

• Calls the PCM_OP_CUST_SET_NOTE opcode to create the /note object.

• Calls the PCM_OP_ACT_USAGE opcode to trigger the /event/deposit/release notification
event that can be sent to the customer.

• Calls the PCM_OP_WRITE_FLDS opcode to add the /event/deposit/release event details
to the /purchased_deposit object.

Validating a Deposit Release
Use the PCM_OP_DEPOSIT_POL_VALID_RELEASE_DEPOSIT opcode to validate and
implement any customizations while releasing the deposit. This policy opcode is called by the
PCM_OP_DEPOSIT_RELEASE_DEPOSIT opcode.

Transferring Deposits
Use the PCM_OP_DEPOSIT_TRANSFER_DEPOSIT opcode to transfer deposits from one
account to another. The interest is calculated and updated before transferring and is also
transferred to the target account.

The PCM_OP_DEPOSIT_TRANSFER_DEPOSIT opcode does the following:

• Validates the input flist.

• Calls the PCM_OP_DEPOSIT_POL_VALID_TRANSFER_DEPOSIT opcode to validate the
input parameters.

• Reads the /purchased_deposit object using the PCM_OP_READ_OBJ opcode.

• Prepares and calls the PCM_OP_DEPOSIT_ADD_INTEREST opcode to calculate the
interest on the source account.

• Prepares the input flist to create the /purchased_deposit object on the target account or
service by copying the relevant fields from the /purchase_deposit object.

• Calls the PCM_OP_CREATE_OBJ opcode to create the /purchased_deposit object on
the target account.

• Calls the PCM_OP_ACT_USAGE opcode to create the /event/deposit/transfer event on
the source account.

• Calls the PCM_OP_ACT_USAGE opcode to create the /event/deposit/receive event on
the target account.

Validating a Deposit Transfer
Use the PCM_OP_DEPOSIT_POL_VALID_TRANSFER_DEPOSIT opcode to validate and
implement any customizations while transferring the deposit. This policy opcode is called by
the PCM_OP_DEPOSIT_TRANSFER_DEPOSIT opcode.

Chapter 10
Validating a Deposit Release

10-11

Adding Interest to a Deposit
Use the PCM_OP_DEPOSIT_ADD_INTEREST opcode to calculate the interest amount for the
purchased_deposit, for a specific duration.

The PCM_OP_DEPOSIT_ADD_INTEREST opcode does the following:

• Validates the input.

• Calls the PCM_OP_DEPOSIT_POL_PRE_ADD_INTEREST opcode to modify the effective
date of the interest calculation.

• Calculates the interest based on the effective date or the interest calculation offset unit.
The offset unit can be daily, weekly, monthly, or yearly.

Note:

If the effective date is passed, the interest is calculated from the last interest
calculation date until the effective date for the applicable days. Otherwise, the
interest is calculated based on the interest offset unit and the offset value.

• Calls the PCM_OP_DEPOSIT_POL_POST_ADD_INTEREST opcode to modify the
calculated interest amount.

• Calls the PCM_OP_ACT_USAGE opcode to create the /event/billing/deposit/interest/
credit event and associate it with the /item/deposit/interest/credit item. Sets
PIN_FLD_START_T and PIN_FLD_END_T as interest calculation start and end dates from
the PIN_FLD_INTEREST_INFO array.

• Calls the PCM_OP_ACT_USAGE opcode to create the /event/billing/deposit/interest/
debit event and the /item/deposit/interest/debit item to negate the credited interest
amount.

• Calls the PCM_OP_WRITE_FLDS opcode to add the /event/billing/deposit/interest/
debit event details to the PIN_FLD_EVENTS array.

• Calls the PCM_OP_BILL_ITEM_TRANSFER opcode to transfer the amount from the /
item/deposit/interest/credit object to the /item/deposit/interest/debit object.

Customizing the Interest Calculation
You can customize the interest calculation using these policy opcodes:

• PCM_OP_DEPOSIT_POL_PRE_ADD_INTEREST: Use to modify the effective date of the
interest calculation.

• PCM_OP_DEPOSIT_POL_POST_ADD_INTEREST: Use to modify the calculated interest
amount.

Requesting Deposit Refunds
Use the PCM_OP_DEPOSIT_REFUND_REQUEST opcode to create a deposit refund
request.

The PCM_OP_DEPOSIT_REFUND_REQUEST opcode does the following:

• Validates the input.

Chapter 10
Adding Interest to a Deposit

10-12

• Calls the PCM_OP_DEPOSIT_POL_VALID_REFUND_REQUEST opcode to validate the
input parameters.

• Calls the PCM_OP_CREATE_OBJ opcode to create the /deposit_refund_request
request.

• Calls the PCM_OP_CUST_SET_NOTE opcode to create /note object. Creates the /event/
customer/note/create event in the output flist.

• Calls the PCM_OP_ACT_USAGE opcode and creates the /event/deposit/refund/request
event.

Validating a Deposit Refund Request
Use the PCM_OP_DEPOSIT_POL_VALID_REFUND_REQUEST opcode to validate and
implement any customizations while requesting a deposit refund. This policy opcode is called
by the PCM_OP_DEPOSIT_REFUND_REQUEST opcode.

Getting Refund Requests
Use the PCM_OP_DEPOSIT_GET_REFUND_REQUEST opcode to get all the deposit refund
requests. This opcode is called by Billing Care.

The PCM_OP_DEPOSIT_GET_REFUND_REQUEST opcode does the following:

• Validates the input.

• Gets the user ID and adds it to the search template if the account or service POID or
status exists.

• Calls the PCM_OP_SEARCH opcode to get, prepare, and return the /
deposit_refund_request.

Updating Refund Requests
Use the PCM_OP_DEPOSIT_UPDATE_REFUND_REQUEST opcode to update the deposit
refund review request. CSRs review the /deposit_refund_request object and select either
APPROVE_FULL, APPROVE_PARTIAL, or REJECT.

The PCM_OP_DEPOSIT_UPDATE_REFUND_REQUEST opcode does the following:

• Validates the input.

• Gets the /deposit_specification object using the /purchased_deposit object.

• Gets the /deposit_spec_profile object using the /deposit_specification object.

• If the complete balance is released or refunded, calls the
PCM_OP_DEPOSIT_ADD_INTEREST opcode to calculate and add the interest amount.

• Calls the PCM_OP_ACT_USAGE opcode to charge the /event/billing/product/fee/
purchase/deposit/refund event and associate it with the /item/deposit/refund/fee item.

• Calls the PCM_OP_BILL_ITEM_TRANSER opcode to transfer the /item/deposit/
refund/fee item to the /item/payment item.

• Calls the PCM_OP_CUST_SET_NOTE opcode to create the /note object.

• Calls the PCM_OP_ACT_USAGE opcode to create an /event/deposit/refund/approved
event.

Chapter 10
Validating a Deposit Refund Request

10-13

• Calls the PCM_OP_ACT_USAGE opcode to charge the /event/billing/product/fee/
purchase/deposit/refund event and associate it with the /item/deposit/refund/fee item.

• Calls the PCM_OP_BILL_ITEM_TRANSER opcode to transfer the /item/deposit/
refund/fee item to the /item/payment item and transfer the approved_amount from the /
item/payment item to the /item/refund item.

Updating Received Deposits
The PCM_OP_DEPOSIT_UPDATE_DEPOSIT_RECEIVED opcode is called through the
notification of the /event/billing/item/transfer event to update the received amount, balance
amount, and map the /event/billing/item/transfer event.

The PCM_OP_DEPOSIT_UPDATE_DEPOSIT_RECEIVED opcode does the following:

• Validates the mandatory parameters in the input flist.

• Calls the PCM_OP_WRITE_FLDS opcode to update the /purchased_deposit object with
the input flist.

• Prepares the input flist for the PCM_OP_ACT_USAGE opcode to trigger the notification
event, /event/deposit/collected.

• Calls the PCM_OP_ACT_USAGE opcode to update the deposit amount received.

• Calls the PCM_OP_BILL_SET_LIMIT_AND_CR opcode to decrease the credit limit by the
deposit amount.

Triggering Deposits
The PCM_OP_DEPOSIT_TRIGGER_DEPOSIT opcode is called to create the /
purchased_deposit object. This is called when any charge offer with the /event/billing/
product/fee/purchase/deposit event type is created as part of purchasing a deal.

The PCM_OP_DEPOSIT_TRIGGER_DEPOSIT opcode does the following:

• Prepares the input flist.

• Searches for the deposit specification that is configured with the purchased product.

• Calls the PCM_OP_PURCHASE_DEPOSIT opcode to purchase the product that is
associated with the deposit specification.

Retrieving Transaction Details of a Deposit
Use the PCM_OP_DEPOSIT_GET_TRANSACTIONS opcode to get the transaction details of
a purchased deposit. It returns the complete details of the events. If this opcode is called for
purchased deposit which is having a different parent, it fetches the event details of the
purchased deposit in the hierarchy.

The PCM_OP_DEPOSIT_GET_TRANSACTIONS opcode does the following:

• Validates the mandatory parameters in the input flist.

• Gets the event details and corresponding notes for a given purchase deposit. If the input
POID of purchase deposit is not same as the POID of parent or purchased_deposit, then it
fetches the event and corresponding notes of the purchased deposit in the hierarchy.

• Calls the PCM_OP_SEARCH opcode for /event and corresponding notes object and
prepares the output flist.

Chapter 10
Updating Received Deposits

10-14

11
Device Management Opcodes

Learn about the tasks you can perform using the Oracle Communications Billing and Revenue
Management (BRM) Device Manager APIs.

For more information, see "Managing Devices with BRM" in BRM Developer's Guide.

Topics in this document:

• Opcodes Described in This Chapter

• About the Device Management Opcodes

• Creating /device Objects

• Changing Device Attributes and States

• Associating /service and /device Objects

• Deleting /device Objects

Opcodes Described in This Chapter
Table 11-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 11-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_APN_POL_DEVICE_SET_STATE Changing the State of a /device Object

PCM_OP_DEVICE_ASSOCIATE Associating /service and /device Objects

Changing the State of a /device Object

Deleting /device Objects

PCM_OP_DEVICE_CREATE Creating /device Objects

PCM_OP_DEVICE_DELETE Deleting /device Objects

PCM_OP_DEVICE_POL_ASSOCIATE Associating /service and /device Objects

PCM_OP_DEVICE_POL_CREATE Creating /device Objects

PCM_OP_DEVICE_POL_DELETE Deleting /device Objects

PCM_OP_DEVICE_POL_SET_ATTR Changing the Attributes of /device Objects

PCM_OP_DEVICE_POL_SET_STATE Changing the State of a /device Object

11-1

Table 11-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_DEVICE_SET_ATTR Changing the Attributes of /device Objects

PCM_OP_DEVICE_SET_STATE Changing the State of a /device Object

Creating /device Objects

PCM_OP_DEVICE_UPDATE Changing Device Attributes and States

PCM_OP_IP_POL_DEVICE_ASSOCIATE Associating /service and /device Objects

PCM_OP_IP_POL_DEVICE_CREATE Creating /device Objects

PCM_OP_IP_POL_DEVICE_DELETE Deleting /device Objects

PCM_OP_IP_POL_DEVICE_SET_ATTR Changing the Attributes of /device Objects

PCM_OP_NUM_POL_DEVICE_DELETE Deleting /device Objects

About the Device Management Opcodes
You use the following opcodes to manage devices in BRM:

• To create devices, use PCM_OP_DEVICE_CREATE and
PCM_OP_DEVICE_POL_CREATE. See "Creating /device Objects".

• To change any combination of device attributes and states, use
PCM_OP_DEVICE_UPDATE. This wrapper opcode calls these opcodes to make the
separate changes in a single transaction:

– PCM_OP_DEVICE_SET_ATTR and PCM_OP_DEVICE_POL_SET_ATTR change
existing device attribute values. See "Changing the Attributes of /device Objects".

– PCM_OP_DEVICE_SET_STATE and PCM_OP_DEVICE_POL_SET_STATE change
device states.

You can also call these opcodes individually.

• To associate or disassociate services with devices, use PCM_OP_DEVICE_ASSOCIATE
and PCM_OP_DEVICE_POL_ASSOCIATE. See "Associating /service and /device
Objects".

• To delete devices, use PCM_OP_DEVICE_DELETE and
PCM_OP_DEVICE_POL_DELETE. See "Deleting /device Objects".

Creating /device Objects
Use PCM_OP_DEVICE_CREATE to create /device objects in the BRM database.

PCM_OP_DEVICE_CREATE checks the device type on the input flist (PIN_FLD_OBJ_TYPE)
to determine whether to call further device FM opcodes. For example, if the device type is /
device/ip, this opcode calls PCM_OP_DEVICE_POL_CREATE, which in turn calls
PCM_OP_IP_POL_DEVICE_CREATE.

PCM_OP_DEVICE_CREATE calls PCM_OP_DEVICE_POL_CREATE before it creates any /
device objects. This opcode is an empty hook, but you can customize it to validate IDs, check
that all mandatory attributes are specified, or perform other custom tasks.

Chapter 11
About the Device Management Opcodes

11-2

For example, if devices of a particular type require a device ID with certain characteristics, you
can validate the ID supplied by the input flist. Similarly, you can use the opcode to ensure that
all mandatory attributes of a particular device type are included in the new object.

PCM_OP_DEVICE_POL_CREATE probes the device type (PIN_FLD_OBJ_TYPE field) and
may call other device FM opcodes. For example, if the device type is /device/ip, this opcode
calls PCM_OP_IP_POL_DEVICE_CREATE to perform the validation checks it contains.

To create devices, your custom device-creation application must call
PCM_OP_DEVICE_CREATE directly and pass in the following data:

• A type-only POID that specifies the device type

• The target database schema

• The name of the program calling the opcode

• The physical ID of the device

• The initial state to which the device should be set

Note:

Depending on the device type, additional inputs may be required for other device
attributes.

PCM_OP_DEVICE_CREATE performs these tasks:

1. Calls PCM_OP_DEVICE_POL_CREATE to perform any custom validation.

2. Checks /config/device_permit_map to validate any device-to-service associations.

3. Creates a /device object of the type specified in the input flist. This object includes all
mandatory attributes for the device type.

4. Calls PCM_OP_DEVICE_SET_STATE to set the initial device state.

5. If events are being recorded, generates an /event/device/create object.

PCM_OP_DEVICE_CREATE stops processing under these circumstances:

• When the validation of the device-to-service association fails.

• When PCM_OP_DEVICE_POL_CREATE fails during the validation process.

• When PCM_OP_DEVICE_SET_STATE fails while setting the object's initial device state.

If PCM_OP_DEVICE_CREATE is not successful, it logs an error in the CM pinlog file,
indicating the reason for the failure. The transaction is rolled back and no /device object is
created.

Changing Device Attributes and States
Use PCM_OP_DEVICE_UPDATE to change any combination of device attribute values and
states with a single transaction.

This opcode is called by BRM GUI applications and BRM FMs that modify device
characteristics.

PCM_OP_DEVICE_UPDATE calls the following opcodes to perform validation checks before
committing any changes:

Chapter 11
Changing Device Attributes and States

11-3

• PCM_OP_DEVICE_POL_SET_ATTR

• PCM_OP_DEVICE_POL_SET_STATE

These individual opcodes in turn, call their respective policy opcodes to perform any validation
checks that you have added as explained in the following sections.

Changing the Attributes of /device Objects
Use PCM_OP_DEVICE_SET_ATTR to change device attribute values, such as the device
manufacturer and model number.

Each type of device can have different attributes. For example, a /device/sim object has
different attributes than a /device/num object. Attributes common to all devices, such as the
text description stored in the PIN_FLD_DESCR field, are contained in the base /device object.
Attributes specific to a particular type of device are stored in the /device subclass.

PCM_OP_DEVICE_SET_ATTR calls PCM_OP_DEVICE_POL_SET_ATTR before it sets
attributes. For example, you can write code to validate that the device ID in the input flist
conforms to the pattern for a particular device type. PCM_OP_DEVICE_POL_SET_ATTR is an
empty hook, but you can customize it to validate device IDs or perform other validation tasks.

PCM_OP_DEVICE_POL_SET_ATTR probes the device type (PIN_FLD_OBJ_TYPE field) and
may call other device FM opcodes. For example, if the device type is /device/ip, this opcode
calls PCM_OP_IP_POL_DEVICE_SET_ATTR to perform the validation checks it contains.

To change device attributes, your custom device-creation application must call
PCM_OP_DEVICE_SET_ATTR directly and pass in the following data:

• The POID of the /device object.

• The name of the program calling the opcode.

• The fields to change, along with their new values. If the opcode is changing the attributes
of a /device subclass, it can include fields introduced in the subclass.

You cannot use PCM_OP_DEVICE_SET_ATTR alone to change the device state or
service association. If the input flist includes these fields, they are ignored.

PCM_OP_DEVICE_SET_ATTR performs these operations:

1. Calls PCM_OP_DEVICE_POL_SET_ATTR to perform any custom validation.

2. Updates the /device object to include the new attribute values.

3. If events are being recorded, generates an /event/device/attribute object.

PCM_OP_DEVICE_SET_ATTR stops processing under these circumstances:

• When PCM_OP_DEVICE_POL_SET_ATTR fails.

• When an attribute to be changed doesn't exist in the /device object.

PCM_OP_DEVICE_SET_ATTR checks the device type on the input flist
(PIN_FLD_OBJ_TYPE) to determine whether to call further device FM opcodes. For example,
if the device type is /device/ip, this opcode calls PCM_OP_DEVICE_POL_SET_ATTR, which
in turn calls PCM_OP_IP_POL_DEVICE_SET_ATTR.

Changing the State of a /device Object
Use PCM_OP_DEVICE_SET_STATE to change the state of a /device object.

Chapter 11
Changing Device Attributes and States

11-4

This opcode checks the validity of each state change by using the /config/device_state object
for this device type. The /config/device_state object includes an array that lists valid
transitions from each device state. You create these rules in a configuration file and load them
into /config/device_state objects by running the load_pin_device_state utility.

PCM_OP_DEVICE_SET_STATE checks the device type on the input flist
(PIN_FLD_OBJ_TYPE) to determine whether to call further device FM opcodes. For example,
if the device type is /device/apn, this opcode calls PCM_OP_DEVICE_POL_SET_STATE,
which in turn calls PCM_OP_APN_POL_DEVICE_SET_STATE.

PCM_OP_DEVICE_SET_STATE calls policy opcodes at two points. The first takes place
during the state change itself and the other just after it. You specify which policy opcodes to
call by using the pin_device_state file. By default, it calls
PCM_OP_DEVICE_POL_SET_STATE.

Note:

PCM_OP_DEVICE_SET_STATE uses the event notification feature. Before using
this opcode, you must configure event notification for device management.

To set device states, your custom device-creation application must call
PCM_OP_DEVICE_SET_STATE directly and pass in the following data:

• The POID of the /device object.

• The name of the program calling the opcode.

• The old state ID.

• The new state ID.

PCM_OP_DEVICE_SET_STATE performs these operations:

1. Determines whether the state change is valid by checking the config/device_state object
for this device type.

2. Calls the opcode specified in /config/device_state for the in-transition event.

3. Changes the /device object's PIN_FLD_DEV_STATE_ID field to the new state.

4. If events are being recorded, generates an /event/device/state object.

5. Calls the opcode specified in /config/device_state for the post-transition event.

PCM_OP_DEVICE_SET_STATE stops processing under these circumstances:

• When the device state change is invalid based on the /config/device_state object for this
device type.

• When a /config/device_state object cannot be found for this device type.

• When the input flist attempts to change the device state from RAW to any type other than
INIT, or attempts to change the device state from END to any other state.

• When an error occurs during the event notification process or when a policy opcode is
called.

Chapter 11
Changing Device Attributes and States

11-5

Note:

The second policy call occurs after the state change has been recorded. If this
policy fails, the state change is not rolled back.

PCM_OP_DEVICE_POL_SET_STATE allows customization during device state changes. For
example, you might want to customize the process for assigning a SIM card to a customer.
During this process, the state is changed from Inventory to Assigned. During the first policy call
by PCM_OP_DEVICE_SET_STATE, the policy opcode could check the customer's handset to
ensure compatibility with the SIM card. If the two devices are compatible, the state change
takes place. In the second policy call, after the state change transaction is complete, the policy
opcode could provision the SIM card by calling PCM_OP_DEVICE_ASSOCIATE.

PCM_OP_DEVICE_POL_SET_STATE probes the device type (PIN_FLD_OBJ_TYPE field)
and may call other device FM opcodes. For example, if the device type is /device/apn, this
opcode calls PCM_OP_APN_POL_DEVICE_SET_STATE to perform the validation checks it
contains.

PCM_OP_DEVICE_POL_SET_STATE is an empty hook.

Associating /service and /device Objects
Use PCM_OP_DEVICE_ASSOCIATE to associate or disassociate services with devices.

When an account is provisioned with a device, this opcode associates the /device object with
one or more /service objects. (One device can support multiple services. Conversely, one
service may require multiple devices.) To facilitate searching, the account associated with the
services is also associated with the device.

Note:

The services that can be associated with a particular device type are determined by
the /config/device_permit_map object. You enter the device-to-service mapping
information in a device-specific configuration file and load it into the database by
running the load_pin_device_permit_map utility.

PCM_OP_DEVICE_ASSOCIATE calls PCM_OP_DEVICE_POL_ASSOCIATE before it
associates any objects.

PCM_OP_DEVICE_POL_ASSOCIATE enables customized validation during device-to-service
association and disassociation. For example, you could limit the number of associations for
particular device types or trigger a state change after certain associations or disassociations.

PCM_OP_DEVICE_POL_ASSOCIATE probes the device type (PIN_FLD_OBJ_TYPE field)
and may call other device FM opcodes. For example, if the device type is /device/ip, this
opcode calls PCM_OP_IP_POL_DEVICE_ASSOCIATE to perform the validation checks it
contains.

PCM_OP_DEVICE_POL_ASSOCIATE is an empty hook.

To associate services with devices, your custom device-creation application must call
PCM_OP_DEVICE_ASSOCIATE directly and pass in the following data:

• The POID of the /device object.

Chapter 11
Associating /service and /device Objects

11-6

• The name of the program calling the opcode.

• A flag to indicate association or disassociation.

• An array that includes the POIDs of the services and the account to be associated or
disassociated.

PCM_OP_DEVICE_ASSOCIATE performs these operations:

1. Determines whether to associate or disassociate the objects by checking the
PIN_FLD_FLAGS field.

• When the last bit is 1, the opcode associates.

• When the last bit is 0, the opcode disassociates.

2. Determines whether the device is already associated with the specified service by
checking the /device object.

3. When associating objects, validates the device-to-service association by checking the /
config/device_permit_map object.

4. Calls PCM_OP_DEVICE_POL_ASSOCIATE to perform any custom validation.

5. When associating objects, writes new fields for the services and account into the /device
object's PIN_FLD_SERVICES array.

6. When disassociating objects, deletes the appropriate service and account fields from the /
device object.

7. If events are being recorded, generates an /event/device/associate object.

PCM_OP_DEVICE_ASSOCIATE stops processing under these circumstances:

• For associations, when a service listed in the input flist already exists in the /device object.

• When the validation of the device-to-service association fails.

If the opcode stops processing, it logs an error in the CM pinlog file, indicating the reason for
the failure. The transaction is rolled back and no association or disassociation takes place.

Deleting /device Objects
Use PCM_OP_DEVICE_DELETE to delete /device objects.

PCM_OP_DEVICE_DELETE checks the device type on the input flist (PIN_FLD_OBJ_TYPE)
to determine whether to call further device FM opcodes. For example, if the device type is /
device/ip, this opcode calls PCM_OP_DEVICE_POL_DELETE, which in turn calls
PCM_OP_IP_POL_DEVICE_DELETE.

PCM_OP_DEVICE_DELETE calls PCM_OP_DEVICE_POL_DELETE before it deletes any
device objects. By default, this opcode checks whether the device is associated with any
services, and if it is, stops the transaction. You can customize this opcode to bypass this check
or to perform other validation steps. For example, you can disable the service association
check that is performed by default. You can also include a call to
PCM_OP_DEVICE_ASSOCIATE to automatically disassociate services before device deletion.

PCM_OP_DEVICE_POL_DELETE checks whether a device is associated with any services,
and if it is, stops the transaction. By default, PCM_OP_DEVICE_POL_DELETE stops
processing under these circumstances:

• When the device is still associated with a service.

• When there is an error in the syntax of the input flist.

Chapter 11
Deleting /device Objects

11-7

PCM_OP_DEVICE_POL_DELETE probes the device type (PIN_FLD_OBJ_TYPE field) and
may call other device FM opcodes. For example, if the device type is /device/ip, this opcode
calls PCM_OP_IP_POL_DEVICE_DELETE to perform the validation checks it contains.

PCM_OP_DEVICE_POL_DELETE calls a different opcode to customize device deletion. For
example, if PIN_FLD_OBJ_TYPE is /device/num, this opcode calls
PCM_OP_NUM_POL_DEVICE_DELETE to perform the validation checks it contains.

To delete devices, your custom device-creation application must call
PCM_OP_DEVICE_DELETE directly and pass in the following data:

• The POID of the /device object.

• The name of the program calling the opcode.

PCM_OP_DEVICE_DELETE performs these operations:

1. Calls PCM_OP_DEVICE_POL_DELETE for validation.

2. Deletes the object.

3. If events are being recorded, generates an /event/device/delete object.

The opcode stops processing if PCM_OP_DEVICE_POL_DELETE fails.

Chapter 11
Deleting /device Objects

11-8

12
General Ledger Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) general
ledger opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• How G/L IDs Affect Storage and Reporting of G/L Data

• How BRM Records the Difference between Rounded and Unrounded Items

• Customizing G/L Data Stored in /journal Objects

• Customizing G/L Reports for Export

• Assigning G/L IDs to Prerated Events

• How BRM Exports G/L Reports

• How BRM Stores General Ledger Reports

Opcodes Described in This Chapter
Table 12-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 12-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_POL_SPEC_GLID Assigning G/L IDs to Prerated Events

PCM_OP_GL_LEDGER_REPORT How BRM Exports G/L Reports

How BRM Stores General Ledger Reports

PCM_OP_GL_POL_EXPORT_GL Customizing G/L Reports for Export

Customizing G/L Export Report Contents

How BRM Exports G/L Reports

PCM_OP_GL_POL_PRE_UPDATE_JOURNAL Customizing G/L Data Stored in /journal Objects

12-1

How G/L IDs Affect Storage and Reporting of G/L Data
The G/L ID assigned to a balance impact determines whether the balance impact is stored in
a /journal object and whether it is included in a G/L report as shown in Table 12-2:

Table 12-2 G/L IDs

G/L ID Description Stored in Journal
Object?

Included in G/L
Report?

0 Default G/L ID.

If you forget to assign a G/L ID to a balance
impact type, BRM automatically assigns G/L
ID 0 to it. You should reassign such balance
impact types to an appropriate G/L ID.

Yes No

1 through 99 Assigned to balance impact types that are
not included in G/L reports.

No No

100 and above Assigned to balance impact types that are
included in G/L reports.

Yes Yes

How BRM Records the Difference between Rounded and
Unrounded Items

The difference between rounded and unrounded item totals is typically a very small amount
referred to as the delta. This delta is recorded and included in G/L reports so that they can be
accurately reconciled. The delta rounding difference is recorded in the following ways:

• When billing is run and pending items are rounded, the delta rounding difference is
recorded in the /item object.

• A corresponding /journal entry object is created for each pending item. The delta rounding
difference is stored as a credit or debit in the /journal object to balance the G/L:

– If the rounding difference is negative, the balance needs to be credited, so the amount
is stored in the PIN_FLD_CR_AR_NET_AMT field.

– If the rounding difference is positive, the balance needs to be debited, so the amount is
stored in the PIN_FLD_DB_AR_NET_AMT field.

• When a G/L report is generated, the journal entry containing the delta rounding difference
is included in the report.

The delta rounding difference is calculated as the difference between a rounded pending item
total and the sum of the rounded journal entries associated with the pending item:

 round(unrounded pending items)
 - sum(round(journal entries)

 = rounding difference

For example, if a rounded pending item total is 11.72 and the sum of rounded journal entries is
11.73, the delta rounding difference is 11.72 - 11.73, or -.01.

Chapter 12
How G/L IDs Affect Storage and Reporting of G/L Data

12-2

Customizing G/L Data Stored in /journal Objects
During event processing, BRM retrieves balance impacts from each event and adds it to the
revenue summary in the appropriate /journal object.

You can customize the data before it is written into /journal objects by using
PCM_OP_GL_POL_PRE_UPDATE_JOURNAL.

PCM_OP_GL_POL_PRE_UPDATE_JOURNAL receives in the input flist the entries that are
recorded in the /journal object. By default, the opcode does not perform any processing and
returns only the entries passed in the input flist.

You can customize the opcode to add, modify, or remove one or more of the entries that will be
recorded in the /journal object.

The opcode returns the following in the output flist:

• PIN_FLD_POID field set to the /event object POID.

• (Optional) PIN_FLD_JOURNAL_INFO array containing the entries that are recorded in
the /journal object.

Note:

If the PIN_FLD_JOURNAL_INFO array is passed in the output flist, its
PIN_FLD_POID field must be set either to -1 (when creating a new /journal object)
or to a valid /journal POID (when updating an existing /journal object).

By default, BRM does not call PCM_OP_GL_POL_PRE_UPDATE_JOURNAL before writing
data into /journal objects. You configure BRM to call the opcode by modifying the billing
instance of the /config/business_params object with the pin_bus_params utility.

To enable this feature, run the pin_bus_params utility to change the CustomJournalUpdate
business parameter. For information about this utility, see BRM Developer's Guide.

To enable custom updates to G/L data:

1. Go to BRM_home/sys/data/config.

2. Create an XML file from the /config/business_params object:

pin_bus_params -r BusParamsBilling bus_params_billing.xml
3. In the file, change disabled to enabled:

<CustomJournalUpdate>enabled</CustomJournalUpdate>

4. Save the file as bus_params_billing.xml.

5. Load the XML file into the BRM database:

pin_bus_params bus_params_billing.xml
6. Stop and restart the CM.

7. (Multischema systems only) Run the pin_multidb script with the -R CONFIG parameter.
For more information, see BRM System Administrator's Guide.

Chapter 12
Customizing G/L Data Stored in /journal Objects

12-3

Customizing G/L Reports for Export
You can customize the data in your exported G/L reports by configuring
PCM_OP_GL_POL_EXPORT_GL. The pin_ledger_report utility calls this opcode in -export
mode after it generates a G/L report but before it exports the G/L report data to an XML file.

For example, you can map the G/L revenue account name in the BRM system to a different
account name based on your company's criteria. To do this, you customize
PCM_OP_GL_POL_EXPORT_GL to do the mapping and return the modified
PIN_FLD_GL_ACCTS array from the input flist.

When the pin_ledger_report utility runs in -export mode, it creates a new ledger report object
with the custom data in the PIN_FLD_GL_ACCTS array. This customized G/L report is used for
further processing and is exported to the G/L report XML files.

The PIN_FLD_RESULT value in the output flist determines whether to create a customized
report from the original report used for export:

• 0: Use the original G/L data to generate the export report. This is the default.

• 1: Use the G/L data in the output flist to generate a custom export report.

Note:

The values returned by PCM_OP_GL_POL_EXPORT_GL must be in summary
format even when the input flist data is in detailed format.

Customizing G/L Export Report Contents
Use PCM_OP_GL_POL_EXPORT_GL to customize the contents of your exported G/L reports.
For example, the BRM G/L account names could be mapped to the third-party account names
or the BRM balance element IDs could be mapped to the third-party balance element IDs.

Mapping BRM G/L Account Names to Third-Party Account Names
Use PCM_OP_GL_POL_EXPORT_GL to convert BRM G/L account names to the G/L account
names in your external G/L system before XML reports are exported. This makes importing
them into the external system easier. The following is an example of the code used to map
BRM G/L account names to the third-party account names after
PCM_OP_GL_POL_EXPORT_GL has been called.

#***
#Section to customize report
#***
PCM_OP(ctxp, PCM_OP_READ_OBJ, 0, in_flistp, &r_flistp, ebufp);
PIN_ERR_LOG_FLIST(PIN_ERR_LEVEL_DEBUG,"Flistp after read obj in Custom report",
r_flistp);
while ((tmp_flistp = PIN_FLIST_ELEM_TAKE_NEXT(r_flistp, PIN_FLD_GL_ACCTS,&rec_id, 1,
&cookie, ebufp)) != (pin_flist_t *)NULL)
{
 char *segment = NULL;
 PIN_ERR_LOG_FLIST(PIN_ERR_LEVEL_DEBUG, "GL accts from input flist", tmp_flistp);
 tmp1_flistp = PIN_FLIST_ELEM_ADD(out_flistp, PIN_FLD_GL_ACCTS, ctr, ebufp);
 PIN_FLIST_CONCAT(tmp1_flistp, tmp_flistp, ebufp);
 ctr++;

Chapter 12
Customizing G/L Reports for Export

12-4

 vp = PIN_FLIST_FLD_GET(r_flistp, PIN_FLD_GL_SEGMENT, 0, ebufp);
 if (vp)
 {
 segment = (char *)vp;
 }
 modify_acct_name(tmp1_flistp, PIN_FLD_AR_GROSS_GL_ACCT, segment, ebufp);
 modify_acct_name(tmp1_flistp, PIN_FLD_OFF_GROSS_GL_ACCT, segment, ebufp);
 modify_acct_name(tmp1_flistp, PIN_FLD_AR_NET_GL_ACCT, segment, ebufp);
 modify_acct_name(tmp1_flistp, PIN_FLD_OFF_NET_GL_ACCT, segment, ebufp);
 modify_acct_name(tmp1_flistp, PIN_FLD_AR_DISC_GL_ACCT, segment, ebufp);
 modify_acct_name(tmp1_flistp, PIN_FLD_OFF_DISC_GL_ACCT, segment, ebufp);
 modify_acct_name(tmp1_flistp, PIN_FLD_AR_TAX_GL_ACCT, segment, ebufp);
 modify_acct_name(tmp1_flistp, PIN_FLD_OFF_TAX_GL_ACCT, segment, ebufp);
 PIN_ERR_LOG_FLIST(PIN_ERR_LEVEL_DEBUG, "GL accts from output flist ",
tmp1_flistp);
 PIN_ERR_LOG_FLIST(PIN_ERR_LEVEL_DEBUG, "Intermediate output flist ",
out_flistp);
}
#**
#Set PIN_FLD_RESULT to indicate customization
#***/
result = 1;
PIN_FLIST_FLD_SET(out_flistp, PIN_FLD_RESULT, (void *)&result, ebufp);

Mapping BRM Balance Element IDs to Third-Party Balance Element IDs
If the mapping capabilities provided with the BRM pin_glid mapping file are not sufficient, you
can use PCM_OP_GL_POL_EXPORT_GL to convert BRM balance element IDs to the
balance element IDs in your external G/L system before XML reports are exported. This makes
importing them into the external system easier. The following is an example of the code used
to map BRM balance element IDs to the third-party balance element IDs after
PCM_OP_GL_POL_EXPORT_GL has been called.

#**
#Section to customize report
#**
PCM_OP(ctxp, PCM_OP_READ_OBJ, 0, in_flistp, &r_flistp, ebufp);
PIN_ERR_LOG_FLIST(PIN_ERR_LEVEL_DEBUG, "Flistp after read obj in Custom report",
r_flistp);
while ((tmp_flistp =PIN_FLIST_ELEM_TAKE_NEXT(r_flistp, PIN_FLD_GL_ACCTS,&rec_id, 1,
&cookie, ebufp)) != (pin_flist_t *)NULL)
{
 PIN_ERR_LOG_FLIST(PIN_ERR_LEVEL_DEBUG, "GL accts from input flist ", tmp_flistp);
 tmp1_flistp = PIN_FLIST_ELEM_ADD(out_flistp, PIN_FLD_GL_ACCTS, ctr, ebufp);
 PIN_FLIST_CONCAT(tmp1_flistp, tmp_flistp, ebufp);
 ctr++;
 vp = PIN_FLIST_FLD_GET(r_flistp, PIN_FLD_RESOURCE_ID, 0, ebufp);
 if (vp)
 {
 resource_id = (int32 *)vp;
 if (resource_id == 840)
 {
 new_resource_id = 1840;
 }
 }
PIN_FLIST_FLD_SET(out_flistp, PIN_FLD_RESOURCE_ID, (void *)&new_resource_id, ebufp);
PIN_ERR_LOG_FLIST(PIN_ERR_LEVEL_DEBUG, "GL accts from output flist ", tmp1_flistp);
PIN_ERR_LOG_FLIST(PIN_ERR_LEVEL_DEBUG, "Intermediate output flist ", out_flistp);
}
#***
#Set PIN_FLD_RESULT to indicate customization

Chapter 12
Customizing G/L Reports for Export

12-5

#***
result = 1;
PIN_FLIST_FLD_SET(out_flistp, PIN_FLD_RESULT, (void *)&result, ebufp);

Customizing the G/L Report XML File Names
To customize the XML file names for your G/L reports, use the FileNamePrefix tag in the
pin_config_export_gl.xml configuration file. For example, if your company tracks G/L data
separately for multiple divisions of the same company, you can prefix the G/L data for each
division with a unique identifier.

Assigning G/L IDs to Prerated Events
Use PCM_OP_ACT_POL_SPEC_GLID to assign G/L IDs to prerated events or partially rated
events. By default, this opcode retrieves an event's G/L ID from the /config/map_glid object.
You can customize it to perform searches on other objects and look at other fields.

For example, you can categorize adjustments by customizing the opcode to assign G/L IDs
based on the adjustment type.

All customization is done using pin_glid and COA files.

How BRM Exports G/L Reports
The pin_ledger_report utility performs the following tasks when it runs:

1. Retrieves G/L report configuration information from the /config/export_gl object to
determine which reports to generate and which G/L segments to report.

2. Creates a new /process_audit/export_gl object for this run and sets the status of the /
process_audit/export_gl object to IN_PROGRESS.

3. Reads the previous /process_audit/export_gl object and the ReportInitialStartDate
value in the /config/export_gl object to determine if any G/L reports for previous periods
have not been created. If so, creates them.

4. Calls PCM_OP_GL_LEDGER_REPORT to create the /ledger_report object for the
current period.

5. Using the POID of the generated /ledger_report object, calls
PCM_OP_GL_POL_EXPORT_GL and then does one of the following, based on the
PIN_FLD_RESULT value:

• 0: No customization; generates and exports the original report.

• 1: Customization. If the G/L data was updated, creates a new /ledger_report object in
database and exports the new report.

Note:

If the report contains cumulative revenue, generates an incremental report by
using the G/L report for the previous period, if one exists, and updates the /
ledger_report object.

6. If specified in the export configuration file, filters noncurrency balance elements from the
generated /ledger_report object to be included in or excluded from the XML output file.

Chapter 12
Assigning G/L IDs to Prerated Events

12-6

7. Generates the XML output file.

8. Updates the /process_audit/export_gl object with information about this run.

9. Posts reports in the database.

10. Sets the status of the /process_audit/export_gl object to RUN_COMPLETED.

Note:

If the pin_ledger_report utility encounters errors during processing, it exits
without completing the report processing. (One or more prior reports and one or
more G/L export reports may have been successfully generated.)

How BRM Stores General Ledger Reports
The pin_ledger_report utility uses PCM_OP_GL_LEDGER_REPORT to store general ledger
reports in the BRM database. This opcode calls PCM_OP_CREATE_OBJ to create a /
ledger_report object.

When the PCM_OPFLG_READ_RESULT flag is set, the opcode returns the entire contents of
the /ledger_report object.

Chapter 12
How BRM Stores General Ledger Reports

12-7

13
Group Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) group
opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Managing Sharing Groups

• Managing Ordered Balance Groups

• Adding and Removing Members Automatically to Sharing Groups

• Displaying Balance Monitor Information in Client Applications

• Updating Monitor Balances and Sending Credit Limit/Threshold Breach Notifications

• Managing Balance Monitors

• Managing Balance Groups

• Converting an Account Hierarchy to Wholesale Billing

Opcodes Described in This Chapter
Table 18-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 13-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_BAL_APPLY_MONITOR_IMPACTS Updating Monitor Balances and Sending Credit Limit/
Threshold Breach Notifications

PCM_OP_BAL_CHANGE_VALIDITY Modifying the Sub-balance Validity Period

PCM_OP_BAL_GET_ACCT_MONITORS Retrieving the Balance Monitors Owned by an Account or
Service

PCM_OP_BAL_GET_MONITOR_BAL Retrieving the Balances for a Monitor Group

PCM_OP_BAL_POL_GET_BAL_GRP_AND_SVC Customizing the Default Balance Group of a Bill Unit

PCM_OP_BILL_GROUP_REMOVE_PAYING_MEMBERS Removing Members from Sharing Groups

PCM_OP_BILL_SET_LIMIT_AND_CR Creating Balance Groups

Modifying Sub-balances

13-1

Table 13-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_CUST_COMMIT_CUSTOMER Creating Balance Groups

PCM_OP_CUST_CONVERT_WHOLESALE_HIERARCHY Converting an Account Hierarchy to Wholesale Billing

PCM_OP_CUST_CREATE_BAL_GRP Creating Balance Groups

PCM_OP_CUST_DELETE_BAL_GRP Deleting a Balance Group

Deactivating Balance Monitors

PCM_OP_CUST_MODIFY_BAL_GRP Creating Balance Groups

PCM_OP_CUST_MODIFY_CUSTOMER Creating Balance Groups

Moving a Balance Group from One Bill Unit to Another

PCM_OP_CUST_SET_BAL_GRP Creating Balance Groups

Creating and Updating Balance Monitors

PCM_OP_MONITOR_ACCOUNT_HIERARCHY Adding and Removing Members Automatically to Sharing
Groups

Adding Members to Hierarchy-Type Sharing Groups
Automatically

PCM_OP_MONITOR_BILLING_HIERARCHY Adding and Removing Members Automatically to Sharing
Groups

Adding Members to Paying Responsibility-Type Sharing
Groups Automatically

PCM_OP_MONITOR_HIERARCHY_CLEANUP Adding and Removing Members Automatically to Sharing
Groups

Removing Members from Balance Monitor Groups

PCM_OP_MONITOR_PROCESS_BILLING_MONITORS Adding Members to Payment Responsibility-Type Balance
Monitors

PCM_OP_MONITOR_PROCESS_HIERARCHY_MONITOR
S

Adding Members to Hierarchy-Type Balance Monitors

PCM_OP_MONITOR_SERVICE_HIERARCHY Adding and Removing Members Automatically to Sharing
Groups

Updating Subscription-Type Monitors Automatically

PCM_OP_MONITOR_SETUP_MEMBERS Adding and Removing Members Automatically to Sharing
Groups

Adding Members to Newly Created Sharing Groups
Automatically

PCM_OP_MONITOR_UPDATE_MONITORS Adding a Monitor Group to a Member's /ordered_balgrp
Object

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP Managing Ordered Balance Groups

Deleting a Sharing Group

Creating an Ordered Balance Group

Adding a Sharing Group to an Ordered Balance Group

Adding a Monitor Group to a Member's /ordered_balgrp
Object

Deleting a Sharing Group from an Ordered Balance Group

Customizing the Order in Which to Apply Sharing Groups

Deleting an Ordered Balance Group

Chapter 13
Opcodes Described in This Chapter

13-2

Table 13-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_M
ODIFY

Managing Ordered Balance Groups

Creating and Modifying Multiple Ordered Balance Groups
Simultaneously

PCM_OP_SUBSCRIPTION_POL_GET_SPONSORS Getting a List of Charges Available for Charge Sharing

PCM_OP_SUBSCRIPTION_POL_ORDERED_BALGRP_PR
IORITY

Creating an Ordered Balance Group

Adding a Sharing Group to an Ordered Balance Group

Customizing the Order in Which to Apply Sharing Groups

PCM_OP_SUBSCRIPTION_POL_PREP_MEMBERS Validating the Members of a Balance Monitor Group

PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING Creating a Charge Sharing Group

Adding Sponsored Charges to a Charge Sharing Group

PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE Creating a Sharing Group

PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE Deleting a Sharing Group

PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY Modifying a Sharing Group

PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PAR
ENT

Changing the Owner of a Sharing Group

Changing the Owner of a Balance Monitor

Managing Sharing Groups
To manage balance monitoring groups, charge sharing groups, discount sharing groups, profile
sharing groups, and product sharing groups, use the following opcodes:

• PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE

See "Creating a Sharing Group".

• PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY

See "Modifying a Sharing Group".

• PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE

See "Deleting a Sharing Group".

• PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT

See "Changing the Owner of a Sharing Group".

• (Charge Sharing Groups Only) PCM_OP_SUBSCRIPTION_POL_GET_SPONSORS

See "Getting a List of Charges Available for Charge Sharing".

Creating a Sharing Group
Use PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE to create a sharing group,
including balance monitoring groups, charge sharing groups, discount sharing groups, profile
sharing groups, or product sharing groups. The members of a sharing group can include
individual services, all services of a specific type, or a group of accounts.

Observe the following guidelines when creating sharing groups:

• Products, discounts, and charges shared by the group owner must be valid, meaning that it
has an active or inactive status and has not expired.

Chapter 13
Managing Sharing Groups

13-3

• If a member owns another sharing group, the owner of the sharing group you create
cannot belong to the member's group.

• The name of a sharing group must be unique and cannot be used for another sharing
group owned by the group owner.

• If the member is a service, the service can be either a service type or a specific service
instance. When adding a type-only service, all instances of that service type become
members. However, the subtypes of the service type do not become members.

• By default, the parent account and all group members must reside in the same database
schema. To enable sharing groups to include members from other database schemas,
enable the CrossSchemaSharingGroup business parameter. See "Enabling Group
Members to Reside in Multiple Schemas" in BRM Managing Customers.

If successful, PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE returns the following:

• The POID of the sharing object that was created: /group/sharing/products, /group/
sharing/discounts, /group/sharing/charges, /group/sharing/monitor, or /group/
sharing/profiles.

• The POID of the event generated to record the creation: /event/group/sharing/products/
create, /event/group/sharing/discounts/create, /event/group/sharing/profiles/create, /
event/group/sharing/monitor/create, or /event/group/sharing/charges/create.

PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE fails in the following cases:

• The owner is also a member of a sharing group owed by one of the members.

• A product, charge, or discount in the input flist is not valid.

• The primary currency for any of the members is different from the owner's primary
currency.

Creating a sharing group is the first step toward activating sharing. To apply shared discounts,
charges, profiles, and products for the group's members, you must also create ordered balance
groups for the members. See "Creating an Ordered Balance Group".

Note:

When creating a global charge sharing group, do not create or modify each
member's ordered balance group.

Creating a Discount Sharing Group
To create a discount sharing group, PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE
does the following:

1. Creates a /group/sharing/discounts object and assigns the group owner.

Note:

• The owner cannot be a member of its own group.

• If a member of the group owns a discount or charge sharing group, the
owner cannot be a member of that group.

Chapter 13
Managing Sharing Groups

13-4

2. Adds the /account and /service objects in the PIN_FLD_MEMBERS array to the
MEMBERS array of the /group/sharing/discounts object.

Each PIN_FLD_MEMBERS array element specifies an /account and a /service object. If
the /service object is NULL, the /account object is the member.

If the PIN_FLD_SERVICE_OBJ field for a member specifies a type-only service, such as
GSM, instead of a specific service instance, all instances of that service type become
members of the discount sharing group. However, subclass instances of the service type
do not become members.

For example, if the input flist specifies the GSM service type, the opcode adds all /service/
telco/gsm instances as members. But, it does not add the /service/telco/gsm/data
instances, /service/telco/gsm/sms instances, and so on.

If you specify a service type as a member, the member account does not need to own the
service when the /group/sharing/discounts object is created. The member account can
join the group and purchase the service later. BRM begins discount sharing for the service
as soon as the member buys the service and joins the discount sharing group.

3. Adds the /discount objects in the PIN_FLD_DISCOUNTS array to the DISCOUNTS array
of the /group/sharing/discounts object.

The discounts must be owned by the discount sharing group owner. They must also have
validity dates and a valid status (active or inactive). If the PIN_FLD_DISCOUNTS array is
empty, all of the owner's discounts are shared. In this case, the PIN_FLD_DISCOUNTS
array in the /group/sharing/discounts object contains NULL in the
PIN_FLD_DISCOUNT_OBJ and PIN_FLD_OFFERING_OBJ fields.

4. Generates an /event/group/sharing/discounts/create event to record the creation of the
discount sharing group.

Creating a Charge Sharing Group
To create a charge sharing group, PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE
does the following:

1. Creates a /group/sharing/charges object, and assigns the owner to the group.

Note:

The owner cannot be a member of its own group.

2. Adds the /account and /service objects in the PIN_FLD_MEMBERS array to the
MEMBERS array of the /group/sharing/charges object.

Each PIN_FLD_MEMBERS array element specifies an /account and a /service object. If
the /service object is NULL, the /account is the member.

If the PIN_FLD_SERVICE_OBJ field for a member specifies a type-only service, such as
GSM, instead of a specific service instance, all instances of that service type become
members of the charge sharing group. However, subclass instances of the service type do
not become members.

For example, if the input flist specifies the GSM service type, the opcode adds all /service/
telco/gsm instances as members. But, it does not add the /service/telco/gsm/data
instances, /service/telco/gsm/sms instances, and so on.

If you specify a service type as a member, the member account does not need to own the
service when the /group/sharing/charges object is created. The member account can join

Chapter 13
Managing Sharing Groups

13-5

the group and purchase the service later. BRM begins charge sharing for the service as
soon as the member buys the service and joins the charge sharing group. BRM handles
future services for charge sharing in the same way that it does for discount sharing.

3. Validates any product specification attributes on the /sponsorship objects by calling the
PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING policy opcode. By default, this
policy opcode is an empty hook, but you can customize it to validate product specification
attributes. See "Configuring Product Specification Attributes for Pricing Components" in
PDC Creating Product Offerings or "Defining Product Specification Attributes for Pricing
Components" in Configuring Pipeline Rating and Discounting.

4. Adds /sponsor objects in the PIN_FLD_SPONSORS array to the SPONSORS array of
the /group/sharing/charges object.

5. Generates an /event/group/sharing/charges/create event to record the creation of the
charge sharing group.

Creating a Product Sharing Group
To create a product sharing group, PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE
does the following:

1. Creates a /group/sharing/products object and assigns the owner to the group.

Note:

The owner cannot be a member of its own group. Also, an account can be the
owner of only one product sharing group at a time.

2. Adds the /account and /service objects in the PIN_FLD_MEMBERS array to the
MEMBERS array of the /group/sharing/products object.

Each PIN_FLD_MEMBERS array element specifies an /account and a /service object. If
the /service object is NULL, the /account is the member.

If the PIN_FLD_SERVICE_OBJ field for a member specifies a type-only service, such as
GSM, instead of a specific service instance, all instances of that service type become
members of the product sharing group. However, subclass instances of the service type do
not become members. For example, if the input flist specifies the GSM service type, the
opcode adds all /service/telco/gsm instances as members but it does not add the /
service/telco/gsm/data instances, /service/telco/gsm/sms instances, and so on.

If you specify a service type as a member, the member account does not need to own the
service when the /group/sharing/products object is created. The member account can
join the group and purchase the service later. BRM begins sharing the product as soon as
the member buys the service and joins the product sharing group. BRM handles future
services for product sharing in the same way that it does for discount sharing.

3. Validates any product specification attributes on the /sponsorship objects by calling the
PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING policy opcode. By default, this
policy opcode is an empty hook, but you can customize it to validate product specification
attributes. See "Configuring Product Specification Attributes for Pricing Components" in
PDC Creating Product Offerings or "Defining Product Specification Attributes for Pricing
Components" in Configuring Pipeline Rating and Discounting.

4. Adds /sponsor objects in the PIN_FLD_SPONSORS array to the SPONSORS array of
the /group/sharing/products object.

5. Generates an /event/group/sharing/products/create event.

Chapter 13
Managing Sharing Groups

13-6

Creating a Balance Monitor Group
To create a balance monitor group (/group/sharing/monitor object), call the
PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE opcode and pass the following
information in the opcode's input flist:

• Owner of the balance monitor:

– When the owner is an account, the POID of the /account object

– When the owner is a service, the POIDs of the /account and /service objects

• Sharing group type set to the type-only POID for /group/sharing/monitor

• Balance monitor (/balance_group/monitor object) to associate with the monitoring group

• List of members you want to add or delete

PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE does the following:

1. Verifies that balance monitoring is enabled.

2. Calls the PCM_OP_SUBSCRIPTION_POL_PREP_MEMBERS policy opcode to validate
the members.

See "Validating the Members of a Balance Monitor Group" for more information.

3. Creates a /group/sharing/monitor object and assigns the owner to the group.

Note:

The owner cannot be a member of its own group. Also, an account can be the
owner of only one balance monitor group at a time.

4. If the PIN_FLD_TYPE_STR input flist field is set to PR_RTCE and the
PIN_FLD_ROLL_UP_CREDIT_LIMIT input flist field is set to 1, does the following:

a. Rolls up each member's credit limit to the owner's billing account.

b. If the ResetMemberCreditLimit business parameter is enabled, sets each member's
credit limit to NULL. See "Nullifying Credit Limits for PR_RTCE Child Members" in
BRM Managing Customers.

5. Adds the /account and /service objects in the PIN_FLD_MEMBERS array to the
MEMBERS array of the /group/sharing/products object.

Each PIN_FLD_MEMBERS array element specifies an /account and a /service object. If
the /service object is NULL, the /account is the member.

If the PIN_FLD_SERVICE_OBJ field for a member specifies a type-only service, such as
GSM, instead of a specific service instance, all instances of that service type become
members of the balance monitor group. However, subclass instances of the service type
do not become members. For example, if the input flist specifies the GSM service type, the
opcode adds all /service/telco/gsm instances as members but it does not add the /
service/telco/gsm/data instances, /service/telco/gsm/sms instances, and so on.

If you specify a service type as a member, the member account does not need to own the
service when the /group/sharing/products object is created. The member account can
join the group and purchase the service later. BRM begins sharing the product as soon as
the member buys the service and joins the balance monitor group. BRM handles future
services for balance monitoring in the same way that it does for discount sharing.

Chapter 13
Managing Sharing Groups

13-7

6. Validates any product specification attributes on the /sponsorship objects by calling the
PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING policy opcode. By default, this
policy opcode is an empty hook, but you can customize it to validate product specification
attributes. See "Configuring Product Specification Attributes for Pricing Components" in
PDC Creating Product Offerings or "Defining Product Specification Attributes for Pricing
Components" in Configuring Pipeline Rating and Discounting.

7. Adds /sponsor objects in the PIN_FLD_SPONSORS array to the SPONSORS array of
the /group/sharing/monitor object.

8. Generates an /event/group/sharing/monitor/create event.

Validating the Members of a Balance Monitor Group
To validate the members of a balance monitor, call the
PCM_OP_SUBSCRIPTION_POL_PREP_MEMBERS policy opcode. This opcode validates
members before they are added or modified based on the monitor type, and returns a list of
valid members to the calling opcode.

By default, this opcode validates the hierarchy, paying responsibility, and service level monitor
types. You can create any type of monitor and validate it by implementing validation rules in
this opcode.

The default implementation of the PCM_OP_SUBSCRIPTION_POL_PREP_MEMBERS
opcode performs the following tasks:

1. Retrieves the monitor type.

2. For each member in the input flist, retrieves the account object.

3. Applies validation rules for the monitor type and returns a list of valid members for the
group.

Modifying a Sharing Group
Use PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY to modify a product sharing
group, discount sharing group, profile sharing group, or charge sharing group. You can modify
sharing groups by:

• Adding members to an existing group.

• Adding discounts or charges to an existing group.

If successful, it returns the POID of the group that was modified and the POIDs of the events
generated by PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY to record the group
modification.

PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY fails in the following cases:

• If the owner is a member of its own group or a group owned by a group member.

• If a discount offer in the input flist is not valid.

Adding a member to a sharing group is the first step toward activating sharing. For the new
member to benefit from shared products, profiles, discounts, and charges, you must also
create an ordered balance group for the member. See "Creating an Ordered Balance Group".

Chapter 13
Managing Sharing Groups

13-8

Note:

You do not need to create ordered balance groups for members of global charge
sharing groups.

Adding Members to a Discount or Charge Sharing Group
To add members to a discount or charge sharing group,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY does the following:

Caution:

The element ID for each member in the input flist must be unique within the
membership. If an element ID is already being used by an existing member in the
group object you are modifying, the opcode overwrites the existing member. If you do
not know the element IDs of each member in the object, you can prevent member
loss by making sure the flist includes both existing and new members.

1. Adds the /account and /service objects in the PIN_FLD_MEMBERS array to the
MEMBERS array of the group object:

• The /group/sharing/charges object for a charge sharing group.

• The /group/sharing/discounts object for a discount sharing group.

Each PIN_FLD_MEMBERS array element specifies an /account and a /service object. If
the /service object is NULL, the /account is the member.

Note:

• The owner cannot be a member of its own group.

• If a member of the group owns a discount or charge sharing group, the
owner cannot be a member of that group.

• If the PIN_FLD_MEMBERS array is empty, this opcode calls
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE to delete all
members from the group.

If the PIN_FLD_SERVICE_OBJ field for a member specifies a type-only service, such as
GSM, instead of a specific service instance, all instances of that service type become
members of the discount sharing group. However, subclass instances of the service type
do not become members.

For example, if the input flist specifies the GSM service type, this opcode adds all /service/
telco/gsm instances as members. But, it does not add the /service/telco/gsm/data
instances, /service/telco/gsm/sms instances, and so on.

If you specify a service type as a member, the member account does not need to own the
service when the group object is modified. The member account can join the group and

Chapter 13
Managing Sharing Groups

13-9

purchase the service later. BRM begins discount or charge sharing for the service as soon
as the member buys the service and joins the discount or charge sharing group.

2. Generates an event to record member changes:

• An /event/group/sharing/discounts/modify event for a discount sharing group.

• An /event/group/sharing/charges/modify event for a charge sharing group.

Adding Discounts to a Discount Sharing Group
To add discounts for a discount sharing group,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY does the following:

1. Adds the /discount objects in the PIN_FLD_DISCOUNTS array to the /group/sharing/
discounts object's discounts array.

• The discount instance must be owned by the group owner. They must also have
validity dates and a valid status (active or inactive).

• If the PIN_FLD_DISCOUNTS array is empty,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE is called to delete all /
discount objects from the /group/sharing/discounts object's discounts array.

2. Generates an /event/group/sharing/discounts/modify event to record the event.

Adding Sponsored Charges to a Charge Sharing Group
To add sponsored charges to a charge sharing group,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY does the following:

1. Validates any product specification attributes on the /sponsorship object by calling the
PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING policy opcode. By default, this
policy opcode is an empty hook, but you can customize it to validate product specification
attributes. See "Configuring Product Specification Attributes for Pricing Components" in
PDC Creating Product Offerings or "Defining Product Specification Attributes for Pricing
Components" in Configuring Pipeline Rating and Discounting.

2. Adds the /sponsorship objects in the PIN_FLD_SPONSORS array to the /group/sharing/
charges object's SPONSORS array.

Note:

If the PIN_FLD_SPONSORS array is empty,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE is called to delete all /
sponsor objects from the /group/sharing/charges object's SPONSORS array.

3. Generates an /event/group/sharing/charges/modify event to record the event.

Deleting a Sharing Group
Use PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE to delete a discount sharing
group, charge sharing group, profile sharing group, or product sharing group. You can also use
this opcode to delete shared discounts, sponsored charges, shared profiles, shared products,
and group members.

• For a discount sharing group, this opcode deletes shared discounts, group members, or
the sharing group itself.

Chapter 13
Managing Sharing Groups

13-10

• For a charge sharing group, this opcode deletes sponsored charges, group members, or
the sharing group itself.

• For a profile sharing group, this opcode deletes shared profiles, group members, or the
sharing group itself.

• For a product sharing group, this opcode deletes shared products, group members, or the
sharing group itself.

Deleting a Discount Sharing Group
To delete a discount sharing group, PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE
does the following:

1. For each member in the group, it calls PCM_OP_SUBSCRIPTION_ORDERED_BALGRP
to delete the /group/sharing/discounts object from the member's /ordered_balgrp
object.

2. Deletes the /group/sharing/discounts object.

3. Generates an /event/group/sharing/discounts/delete event to record the deletion.

Deleting a Charge Sharing Group
To delete a charge sharing group, PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE
does the following:

1. For each member in the group, it calls PCM_OP_SUBSCRIPTION_ORDERED_BALGRP
to delete the /group/sharing/charges object from the member's /ordered_balgrp object.

2. Deletes the /group/sharing/charges object.

3. Generates an /event/group/sharing/charges/delete event.

Deleting a Member from a Discount Sharing Group
To delete a member from a discount sharing group,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE does the following:

Caution:

The element ID for each member in the /group/sharing/discounts object is unique.
If you use an incorrect element ID for the member you want to delete, this opcode
deletes the wrong member.

1. Calls PCM_OP_SUBSCRIPTION_ORDERED_BALGRP to delete the /group/sharing/
discounts object from the member's /ordered_balgrp object.

2. Deletes the member from the /group/sharing/discounts members array.

3. Generates an /event/group/sharing/discounts/delete event.

Deleting a Member from a Charge Sharing Group
To delete a member from a charge sharing group,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE does the following:

Chapter 13
Managing Sharing Groups

13-11

Caution:

The element ID for each member in the /group/sharing/charges object is unique. If
you use an incorrect element ID for the member you want to delete, this opcode
deletes the wrong member.

1. Calls PCM_OP_SUBSCRIPTION_ORDERED_BALGRP to delete the /group/sharing/
charges object from the member's /ordered_balgrp object.

2. Deletes the member from the /group/sharing/charges members array.

3. Generates an /event/group/sharing/charges/delete event.

Deleting a Shared Discount from a Discount Sharing Group
To delete a shared discount from a discount sharing group,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE does the following:

Caution:

The OFFERING_OBJ uniquely identifies each shared discount in the /group/
sharing/discounts object. If you use an incorrect OFFERING_OBJ for the discount
you want to delete, this opcode deletes the wrong discount.

1. Deletes the /discount objects specified in the PIN_FLD_DISCOUNTS array from the
DISCOUNTS array of the /group/sharing/discounts object.

2. Generates an /event/group/sharing/discounts/delete event to record the deletion.

Deleting a Sponsored Charge from a Charge Sharing Group
To delete a sponsored charge from a charge sharing group,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE does the following:

Caution:

The element ID for each shared charge in the /group/sharing/charges object is
unique. If you use an incorrect element ID for the charge you want to delete, this
opcode deletes the wrong charge.

1. Deletes the /sponsor objects specified in the PIN_FLD_SPONSORS array from the
SPONSORS array of the /group/sharing/charges object.

2. Generates an /event/group/sharing/charges/delete event to record the deletion.

If successful, PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE returns the POID of
the sharing group object that was modified and the POID of the event that was generated.

Chapter 13
Managing Sharing Groups

13-12

Changing the Owner of a Sharing Group
Use PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT to change the owner of a
discount sharing group, charge sharing group, profile sharing group, or product sharing group.

PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT takes the following input:

• PIN_FLD_POID: The /account object of the current owner.

• PIN_FLD_GROUP_OBJ: The sharing group object that is being changed: /group/sharing/
discounts, /group/sharing/charges, /group/sharing/profiles, or /group/sharing/
products.

• PIN_FLD_ACCOUNT_OBJ: The /account object of the new owner.

Note:

If you are changing the ownership of a discount or charge sharing group from
one service to another in the same account, the object passed in this field
matches the one in the PIN_FLD_POID field.

• PIN_FLD_PARENT: The new owner, which is either an /account object or a /service
object.

• PIN_FLD_BAL_GRP_OBJ: The /balance_group object used to track sharing activities for
the new owner.

• The list of discounts, profiles, or products associated with the new owner.

If successful, PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT returns the
POID of the sharing group that was modified and the event that was generated to record the
owner change.

This opcode fails if the new owner is a member of the sharing group.

Changing the Owner of a Discount Sharing Group
To change the owner of a discount sharing group,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT does the following:

1. Verifies the following:

• The input flist contains the /balance_group object and /account object for the new
discount sharing group owner.

• The /balance_group object belongs to the new owning account or service.

• The currency of the new owner is the same as the currency of the old owner.

• There are no circular relationships. For example, the owner cannot be a member of its
own group. Also, if a member of the group owns a sharing group, the owner cannot be
a member of that group.

2. Deletes the current owner's discounts from the /group/sharing/discounts object.

3. Sets the /group/sharing/discounts object's owner to the new owner specified in the
PIN_FLD_PARENT input field.

4. Adds the new owner's shared discounts to the /group/sharing/discounts object.

Chapter 13
Managing Sharing Groups

13-13

5. Generates an /event/group/sharing/discounts/modify event to record the owner change.

Changing the Owner of a Charge Sharing Group
To change the owner of a charge sharing group,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT does the following:

1. Verifies the following:

• The input flist contains the /balance_group object and /account object for the new
charge sharing group owner.

• The /balance_group object belongs to the new owning account or service.

• The currency of the new owner is the same as the currency of the old owner.

• There are no circular relationships. For example, the owner cannot be a member of its
own group.

2. Sets the /group/sharing/charges object's owner to the new owner specified in the
PIN_FLD_PARENT input field.

3. Updates the sponsor flags in the old owner's and new owner's bill units (/billinfo objects).

4. Generates an /event/group/sharing/charges/modify event to record the owner change.

Changing the Owner of a Balance Monitor
To change the owner of a balance monitor (/group/sharing/monitor object), call the
PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT opcode.

Note:

This opcode can be used to change the owner of a balance monitor only if you are
performing the change manually. Automated Monitor Setup (AMS) does not support
changing owners.

If successful, this opcode returns the POID of the balance monitor that was modified and the
event that was generated to record the owner change.

This opcode fails if the new owner that is passed is already a member of the resource sharing
group.

To change the owner of a balance monitor,
PCM_OP_SUBSCRIPTION_SHARING_GROUP_SET_PARENT does the following:

1. Verifies that:

• AMS is not enabled. See "Enabling AMS in BRM" in BRM Managing Customers.

• The input flist contains the /balance_group object and /account object for the new
balance monitor owner.

• The /balance_group object belongs to the new owning account or service.

2. Sets the /group/sharing/monitor object's owner to the new owner specified in the
PIN_FLD_PARENT input field.

3. Creates an /event/group/sharing/monitor/modify event to record the owner change.

Chapter 13
Managing Sharing Groups

13-14

Adding a Monitor Group to a Member's /ordered_balgrp Object
The /ordered_balgrp object stores the list of sharing groups to which an account or service
belongs. This object controls the order in which credits and discounts are applied and tracks
the balance impacts for the balance groups.

Monitor groups are added to the PIN_FLD_ORDERED_BALGROUPS array of the /
ordered_balgrp object. Unlike the charge sharing and discount sharing groups, the order of
the monitor groups does not affect the balances. Therefore, the monitor groups are added to
the end of the list.

To add a monitor group to the /ordered_balgrp object of an account or service, call the
PCM_OP_SUBSCRIPTION_ORDERED_BALGRP opcode. This opcode performs the
following tasks, depending on the value passed in the PIN_FLD_ACTION field in the input flist:

• Creates or deletes an /ordered_balgrp object.

• Modifies an /ordered_balgrp object by adding or deleting groups.

• Lists all sharing groups to which the account or service belongs.

This opcode performs the following tasks:

1. Verifies that the input flist has a /group/sharing/monitor object in the
PIN_FLD_ORDERED_BALGROUPS array and that balance monitoring is enabled.

Note:

• When the input flist does not contain a /group/sharing/monitor object, the
opcode continues with the tasks for processing the /group/sharing/charges
and /group/sharing/discounts objects

• When balance monitoring is not enabled, the opcode returns an error.

2. Rearranges the PIN_FLD_ORDERED_BALGROUPS array to place the monitor groups at
the end of the sequence.

3. Does one of the following tasks:

• When the opcode is called to create the object, creates the /ordered_balgrp object for
the specified account or service.

• When the opcode is called to modify the object, modifies the /ordered_balgrp object
by adding or deleting monitor group objects.

• When the opcode is called to delete the object, deletes the /ordered_balgrp object.

4. Retrieves the current balance for the account or service /balance_group.

5. Calls PCM_OP_MONITOR_UPDATE_MONITORS to generate an /event/billing/monitor/
update event (when an /ordered_balgrp object is created or modified) or an /event/
billing/monitor/delete event (when an /ordered_balgrp object is deleted).

6. Updates the balance of all associated /balance_group/monitor objects.

Getting a List of Charges Available for Charge Sharing
To get a list of all charges available for charge sharing, use
PCM_OP_SUBSCRIPTION_POL_GET_SPONSORS.

Chapter 13
Managing Sharing Groups

13-15

When you create a charge sharing group, you select the charges, or chargeshares, that you
want the owner to assume for the members. Chargeshares are stored in /sponsorship objects
in the BRM database. By default, this opcode retrieves all the /sponsorship objects.

You can customize PCM_OP_SUBSCRIPTION_POL_GET_SPONSORS to filter or return a
subset of /sponsorship objects from the list of all available /sponsorship objects. For
example, you can customize this opcode to get a list of the chargeshares that include a
particular set of events.

PCM_OP_SUBSCRIPTION_POL_GET_SPONSORS is not called by any opcode.

Managing Ordered Balance Groups
Use PCM_OP_SUBSCRIPTION_ORDERED_BALGRP to create, modify, or delete an ordered
balance group (/ordered_balgrp object) for an account or service that is a member of a
sharing group.

The ordered balance group contains links to the sharing groups that the member has joined,
listed in order by rank. For discount sharing groups, charge sharing groups, and product
sharing groups, the rank controls the order in which the group's balances are impacted by
events. For profile sharing groups, the rank is not significant.

Note:

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP creates or modifies one ordered
balance group at a time. To create or modify more than one ordered balance group at
time, use PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_MODIFY. See
"Creating and Modifying Multiple Ordered Balance Groups Simultaneously".

An ordered balance group object is created when an account or service joins a sharing group.
You can modify an ordered balance group as follows:

• Add a sharing group

• Delete a sharing group

The /ordered_balgrp object stores the sharing groups that the member has joined in its
PIN_FLD_ORDERED_BALGRPS array so that balance impacts are applied to the owning
balance group for each sharing group. If the array contains no sharing groups, all balance
impacts are applied to the member's balance group.

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP uses the element IDs in the
PIN_FLD_ORDERED_BALGRPS array to determine the order in which to apply the shared
discounts, charges, and products. The array has separate segments for discount sharing
groups, charge sharing groups, and product sharing groups. The segment for each one is
independent of the segment for the others; BRM does not intermingle the groups. In the array,
product sharing groups are always first, followed by discount sharing groups, and then charge
sharing groups.

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP takes as input an /ordered_balgrp object
and a string that specifies whether to create, modify, delete, or list the ordered balance group
object.

Chapter 13
Managing Ordered Balance Groups

13-16

Note:

The /ordered_balgrp object must be specified if the action is to modify or delete the
object.

If successful, PCM_OP_SUBSCRIPTION_ORDERED_BALGRP returns the POID of the /
ordered_balgrp object and the POID of the event generated as a result of the creation,
modification, or deletion.

If the action is List, PCM_OP_SUBSCRIPTION_ORDERED_BALGRP returns all sharing
group objects and their ranks in the /ordered_balgrp object.

After you create an /ordered_balgrp object, you can modify the sequence of the groups in the
ordered balance group list. See "Customizing the Order in Which to Apply Sharing Groups".

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP fails in the following cases:

• When the PIN_FLD_ORDERED_BALGROUPS array contains more than one instance of a
sharing group.

• When the PIN_FLD_ACTION is Create, but an /ordered_balgrp object for the account or
service already exists.

Creating an Ordered Balance Group
To create an ordered balance group, PCM_OP_SUBSCRIPTION_ORDERED_BALGRP does
the following:

1. Creates an /ordered_balgrp object for the /account or /service object specified in the
input flist.

2. Adds the sharing group objects specified in the input flist to the /ordered_balgrp object.

This opcode arranges the sharing groups in the order defined by the element IDs in the
input flist. The default order is:

a. Automated product sharing groups

b. Automated discount offer sharing groups

c. Discount sharing groups

d. Charge sharing groups

3. Calls the PCM_OP_SUBSCRIPTION_POL_ORDERED_BALGRP_PRIORITY policy
opcode to customize the order. By default, this policy opcode does nothing.

4. Generates an /event/billing/ordered_balgrp/create event to record the object creation.

Alternatively, you can use PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_MODIFY
to create one or more ordered balance groups. See "Creating and Modifying Multiple Ordered
Balance Groups Simultaneously".

Adding a Sharing Group to an Ordered Balance Group
To add a sharing group, PCM_OP_SUBSCRIPTION_ORDERED_BALGRP does the following:

1. Adds the sharing group objects specified in the input flist to the /ordered_balgrp object.

Chapter 13
Managing Ordered Balance Groups

13-17

This opcode arranges the sharing groups in the order defined by the element IDs in the
input flist. The default order is:

a. Automated product sharing groups

b. Automated discount offer sharing groups

c. Discount sharing groups

d. Charge sharing groups

2. Calls the PCM_OP_SUBSCRIPTION_POL_ORDERED_BALGRP_PRIORITY policy
opcode to customize the order. By default, this policy opcode does nothing.

3. Generates an /event/billing/ordered_balgrp/modify event to record the object
modification.

Alternatively, you can use PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_MODIFY
to add a sharing group to one or more ordered balance groups. See "Creating and Modifying
Multiple Ordered Balance Groups Simultaneously".

Deleting a Sharing Group from an Ordered Balance Group
To delete a sharing group, PCM_OP_SUBSCRIPTION_ORDERED_BALGRP does the
following:

Caution:

The element ID for each sharing group in the /ordered_balgrp object is unique. If
you use an incorrect element ID for the sharing group you want to delete, this opcode
deletes the wrong sharing group.

1. Deletes the sharing group objects specified in PIN_FLD_ORDERED_BALGROUPS array
from the /ordered_balgrp object.

Note:

If the action is Delete but the input flist does not contain a
PIN_FLD_ORDERED_BALGROUPS array, the /ordered_balgrp object is
deleted. See "Deleting an Ordered Balance Group".

2. Generates an /event/billing/ordered_balgrp/modify event to record the object
modification.

Customizing the Order in Which to Apply Sharing Groups
Use the PCM_OP_SUBSCRIPTION_POL_ORDERED_BALGRP_PRIORITY policy opcode to
customize the order in which BRM applies a member's sharing groups. By default, the policy
opcode does nothing and returns the same output as input.

This policy opcode is called by PCM_OP_SUBSCRIPTION_ORDERED_BALGRP.

Chapter 13
Managing Ordered Balance Groups

13-18

Deleting an Ordered Balance Group
To delete an ordered balance group, PCM_OP_SUBSCRIPTION_ORDERED_BALGRP does
the following:

1. Deletes the /ordered_balgrp object specified in the input flist.

2. Generates an /event/billing/ordered_balgrp/delete event to record the object deletion.

Creating and Modifying Multiple Ordered Balance Groups Simultaneously
You can add a sharing group to multiple ordered balance groups simultaneously. To do so, use
PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_MODIFY.

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_MODIFY creates one or more
ordered balance groups (/ordered_balgrp objects) for an account or service.

You can also use this opcode to modify the priority of the sharing groups included in one or
more existing ordered balance groups. For discount sharing groups, charge sharing groups,
and product sharing groups, the rank controls the order in which the group's balances are
impacted by events. For profile sharing groups, the rank is not significant.

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_MODIFY takes as input the POID of
the sharing group, an array of one or more members, and a field indicating whether to add the
sharing group to the beginning or end of the appropriate segment in the ordered balance group
list.

If a service identified in the PIN_FLD_MEMBERS array specifies a type-only service, such as
GSM, PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_MODIFY creates or
modifies /ordered_balgrp objects for all instances for that service type. However, it does not
create or modify /ordered_balgrp objects for any of the subclass instances. For example, if
the input flist specifies the GSM service type, the opcode creates or modifies /ordered_balgrp
objects for all /service/telco/gsm instances. However, it does not create or modify /
ordered_balgrp objects for any of the /service/telco/gsm/data instances, /service/
telco/gsm/sms instances, and so on.

If successful, PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_MODIFY returns the
POID of the sharing group and an array of the events that record the action taken for each
ordered balance group in the input flist.

PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_MODIFY fails in the following
cases:

• When the PIN_FLD_MEMBERS array contains more than one instance of an ordered
balance group.

• When the sharing group (PIN_FLD_POID) is already included in some existing /
ordered_balgrp objects in the PIN_FLD_MEMBERS array.

To create or modify ordered balance groups,
PCM_OP_SUBSCRIPTION_ORDERED_BALGRP_BULK_MODIFY does the following:

1. Verifies that the input flist contains a PIN_FLD_ORDERED_BALGROUPS array with at
least one member.

2. Selects a member in the PIN_FLD_MEMBERS array and determines whether the
database already contains an /ordered_balgrp object for that member.

If not, it calls PCM_OP_SUBSCRIPTION_ORDERED_BALGRP to create the object. See
"Creating an Ordered Balance Group".

Chapter 13
Managing Ordered Balance Groups

13-19

3. Calls PCM_OP_SUBSCRIPTION_ORDERED_BALGRP to modify the /ordered_balgrp
object so that it includes the new sharing group.

See "Adding a Sharing Group to an Ordered Balance Group".

4. Repeats steps 2 through 3 for each remaining /ordered_balgrp in the
PIN_FLD_MEMBERS array.

Adding and Removing Members Automatically to Sharing Groups

Caution:

Do not call these opcodes directly. Call these opcodes only through the BRM event
notification feature. See the following:

• "Configuring Event Notification for Balance Monitoring" in BRM Managing
Customers.

• "Configuring Event Notification for Product Sharing Groups" in BRM Managing
Customers.

BRM uses the following AMS opcodes to manage automated sharing groups:

• PCM_OP_MONITOR_SETUP_MEMBERS to automatically add members to a sharing
group when it is first created.

See "Adding Members to Newly Created Sharing Groups Automatically".

• The following opcodes are used to automatically add or remove members from sharing
groups when an account hierarchy or subscription group changes:

– PCM_OP_MONITOR_PROCESS_HIERARCHY_MONITORS. See "Adding Members
to Hierarchy-Type Balance Monitors".

– PCM_OP_MONITOR_PROCESS_BILLING_MONITORS. See "Adding Members to
Payment Responsibility-Type Balance Monitors".

– PCM_OP_MONITOR_ACCOUNT_HIERARCHY. See "Adding Members to Hierarchy-
Type Sharing Groups Automatically".

– PCM_OP_MONITOR_BILLING_HIERARCHY. See "Adding Members to Paying
Responsibility-Type Sharing Groups Automatically".

– PCM_OP_MONITOR_SERVICE_HIERARCHY. See "Updating Subscription-Type
Monitors Automatically".

– PCM_OP_MONITOR_HIERARCHY_CLEANUP. See "Removing Members from
Balance Monitor Groups".

• PCM_OP_BILL_GROUP_REMOVE_PAYING_MEMBERS to remove all members from an
account hierarchy when its parent account is removed. See "Removing Members from
Sharing Groups".

Chapter 13
Adding and Removing Members Automatically to Sharing Groups

13-20

Adding Members to Newly Created Sharing Groups Automatically

Caution:

Do not call this opcode directly. This opcode should be called through the event
notification feature only.

The PCM_OP_MONITOR_SETUP_MEMBERS opcode automatically adds members to a
balance monitor group, product sharing group, or discount sharing group when it is first
created. This opcode is triggered by the following events:

• /event/group/sharing/monitor/create

• /event/group/sharing/products/create

• /event/group/sharing/discounts/create

PCM_OP_MONITOR_SETUP_MEMBERS is a wrapper opcode that, according to the group
type, calls other standard PCM_OP_MONITOR_* opcodes to:

• Find and add members to the appropriate sharing group (/group/sharing/monitor, /
group/sharing/products, or /group/sharing/discounts object).

• Update each member's ordered balance group list (/ordered_balgrp object).

• (Balance monitors groups only) Add each member's current balance to the group balance
(/balance_group/monitor object).

This opcode retrieves the group type and owner, and then calls one of these opcodes:

• For hierarchy discount sharing group or product sharing group types (H_DSG or
H_PSG): Calls PCM_OP_MONITOR_ACCOUNT_HIERARCHY. See "Adding Members to
Hierarchy-Type Sharing Groups Automatically".

• For hierarchy credit exposure group types (H_CE): Calls
PCM_OP_MONITOR_PROCESS_HIERARCHY_MONITORS. See "Adding Members to
Hierarchy-Type Balance Monitors".

• For payment responsibility discount sharing group or product sharing group types
(PR_DSG or PR_PSG): Calls PCM_OP_MONITOR_BILLING_HIERARCHY. See "Adding
Members to Paying Responsibility-Type Sharing Groups Automatically".

• For payment responsibility credit exposure group types (PR_CE): Calls
PCM_OP_MONITOR_PROCESS_BILLING_MONITORS. See "Adding Members to
Payment Responsibility-Type Balance Monitors".

• For subscription credit exposure group types (SUB_CE): Calls
PCM_OP_MONITOR_PROCESS_SERVICE_MONITORS.

Adding Members to Hierarchy-Type Balance Monitors
Use the PCM_OP_MONITOR_PROCESS_HIERARCHY_MONITORS opcode to add
members to hierarchy-type balance monitors. This opcode finds and adds the following
members to the balance monitor:

• The parent account and its subscriptions

• All paying child accounts and their subscriptions

Chapter 13
Adding and Removing Members Automatically to Sharing Groups

13-21

• All nonpaying child accounts and their subscriptions

This opcode is called directly by the PCM_OP_MONITOR_SETUP_MEMBERS wrapper
opcode.

PCM_OP_MONITOR_PROCESS_HIERARCHY_MONITORS performs the following tasks:

1. Finds all services that are associated with the parent account.

2. Finds in the hierarchy all paying and nonpaying child accounts that belong to the parent
account.

3. Finds all services that are associated with each child account.

4. Adds the following members to the balance monitor:

• The parent account and its services.

• All child accounts and their services.

5. Updates each account's and service's /ordered_balgrp object.

Adding Members to Payment Responsibility-Type Balance Monitors
Use the PCM_OP_MONITOR_PROCESS_BILLING_MONITORS opcode to add members to
payment responsibility-type balance monitors. This opcode finds and adds the following
members to the balance monitor:

• The parent account and its subscriptions

• All nonpaying child accounts and their subscriptions

This opcode is called directly by the PCM_OP_MONITOR_SETUP_MEMBERS wrapper
opcode.

PCM_OP_MONITOR_PROCESS_BILLING_MONITORS performs the following tasks:

1. Retrieves the parent's bill unit (/billinfo).

2. Searches for all /billinfo objects that have PIN_FLD_PARENT_BILLINFO_OBJ as the
current bill unit.

3. Searches for the owning account and all services for each bill unit found.

4. Adds the following members to the balance monitor:

• The parent account and its services

• All nonpaying child accounts and their services.

See "Adding Members to Hierarchy-Type Sharing Groups Automatically".

5. Updates each account's and service's /ordered_balgrp object.

See "Adding a Sharing Group to an Ordered Balance Group".

Adding Members to Hierarchy-Type Sharing Groups Automatically

Caution:

Do not call this opcode directly. This opcode should be called through the event
notification feature only.

Chapter 13
Adding and Removing Members Automatically to Sharing Groups

13-22

The PCM_OP_MONITOR_ACCOUNT_HIERARCHY opcode finds and adds the following
members to hierarchy-type product sharing groups and discount sharing groups:

• The parent account and its subscriptions

• All paying child accounts and their subscriptions

• All nonpaying child accounts and their subscriptions

PCM_OP_MONITOR_ACCOUNT_HIERARCHY also adds members to hierarchy-type balance
monitors when an account hierarchy changes, such as when:

• An account is added to the account hierarchy

• A child account adds a service

• The association between a balance group and a bill unit changes

• A line is transferred to an account member

This opcode is triggered by the following events:

• /event/group/member

• /event/notification/service/pre_purchase

• /event/audit/subscription/transfer

PCM_OP_MONITOR_ACCOUNT_HIERARCHY finds all parent accounts at a higher level in
the hierarchy than the specified account or service. For each parent account, the opcode
performs the following tasks:

1. Finds all sharing groups associated with the parent account.

2. Adds the account or service to the sharing group (/group/sharing/monitor, /group/
sharing/products, or /group/sharing/discounts objects).

3. Adds the sharing group to the account's or service's ordered balance group list (/
ordered_balgrp object).

4. (For Balance Monitor Groups Only) Adds the account or service balance to the monitored
balance (/balance_group/monitor objects).

Adding Members to Paying Responsibility-Type Sharing Groups
Automatically

Caution:

Do not call this opcode directly. This opcode should be called through the event
notification feature only.

The PCM_OP_MONITOR_BILLING_HIERARCHY opcode adds members to payment
responsibility-type sharing groups, including payment responsible product sharing groups
(PR_PSG), payment responsible discount sharing groups (PR_DSG), and payment
responsible real-time credit enforcement groups (PR_RTCE).

The opcode adds members to sharing groups when changes occur in an account hierarchy,
such as when:

• A nonpaying child account is added to an account hierarchy

Chapter 13
Adding and Removing Members Automatically to Sharing Groups

13-23

• A nonpaying child account adds a service

• A child account changes from a paying to a nonpaying payment type

• The association between a balance group and a bill unit changes

• A line is transferred to a nonpaying child account

• The credit enforcement changes

This opcode is triggered by the following events:

• /event/notification/service/pre_purchase

• /event/customer/billinfo/modify

• /event/notification/bal_grp/modify

PCM_OP_MONITOR_BILLING_HIERARCHY finds all parent accounts at a higher level in the
hierarchy than the specified account or service. For each parent account, the opcode performs
the following tasks:

1. Finds all payment responsibility-type sharing groups associated with the parent account.

2. Adds the account or service to the group (/group/sharing/products, /group/sharing/
monitor, or /group/sharing/discounts object).

3. Adds the sharing group to the account's or service's ordered balance group list (/
ordered_balgrp object).

4. (Balance Monitor Groups Only) Adds the account or service balance to the balance
monitor (/balance_group/monitor object).

Updating Subscription-Type Monitors Automatically

Note:

Do not call this opcode directly. This opcode should be called through the event
notification feature only.

Use the PCM_OP_MONITOR_SERVICE_HIERARCHY opcode to add members to
subscription-type monitors when a subscription group changes. For example, when you add a
member service to a subscription, this opcode adds the service to any associated balance
monitors.

This opcode is triggered by the /event/notification/service/pre_purchase notification event.

PCM_OP_MONITOR_SERVICE_HIERARCHY finds all parent subscription services at a
higher level in the group than the specified service. For each parent subscription service, the
opcode performs the following tasks:

1. Finds all subscription-type monitors associated with the parent subscription service.

2. Adds the service to the subscription-type monitor groups (/group/sharing/monitor
objects).

3. Determines whether the added service is a subscription service:

• If it is, proceeds to the next step.

• If it is not, adds the monitor groups to the service's /ordered_balgrp object.

Chapter 13
Adding and Removing Members Automatically to Sharing Groups

13-24

4. Adds the service balance to the balance monitors (/balance_group/monitor objects).

Removing Members from Balance Monitor Groups

Note:

Do not call this opcode directly. This opcode should be called through the event
notification feature only.

Use the PCM_OP_MONITOR_HIERARCHY_CLEANUP opcode to remove members from
balance monitor groups when an account hierarchy changes. For example, this opcode is
called when any of the following actions affect an account hierarchy:

• An account is removed from the hierarchy

• A child account changes from a nonpaying to a paying payment type

• The association between a balance group and a bill unit changes

• A line is removed from a child account

• The credit enforcement changes

This opcode supports hierarchy credit exposure monitor groups (H_CE), payment responsible
real-time credit enforcement monitor groups (PR_RTCE), subscription credit exposure monitor
groups (SUB_CE), and payment responsibility credit exposure monitor groups (PR_CE).

This opcode is triggered by the following events:

• /event/customer/billinfo/modify

• /event/group/member

• /event/notification/bal_grp/modify

Removing Members from Sharing Groups
Use the PCM_OP_BILL_GROUP_REMOVE_PAYING_MEMBERS opcode to remove all
members from a sharing group when its owner is removed.

This opcode supports only hierarchy product sharing groups (H_PSG) and hierarchy discount
sharing groups (H_DSG).

PCM_OP_BILL_GROUP_REMOVE_PAYING_MEMBERS takes as input the /account POID
of the group's owner and then does the following:

1. Reads the /group/sharing/products or /group/sharing/discounts object to verify that its
PIN_FLD_TYPE_STR field is set to H_PSG or H_DSG. If the field has another value or is
missing, the opcode exits.

2. For each member in the group, calls PCM_OP_SUBSCRIPTION_ORDERED_BALGRP to
delete the sharing group(/group/sharing/products or /group/sharing/discounts object)
from the member's ordered balance group list (/ordered_balgrp object).

3. Deletes the sharing group (/group/sharing/products or /group/sharing/discounts
object).

4. Generates an /event/group/sharing/products/delete or /event/group/sharing/
discounts/delete event to record the deletion.

Chapter 13
Adding and Removing Members Automatically to Sharing Groups

13-25

Displaying Balance Monitor Information in Client Applications
You can retrieve and display the following information in your client application:

• The balances for a monitor group

• A list of monitor groups owned by an account or service

Retrieving the Balances for a Monitor Group
To retrieve the total rolled-up balance for a monitor group, call the
PCM_OP_BAL_GET_MONITOR_BAL opcode. The opcode retrieves either the balance
monitor's current balance or the balance total for a specified time period.

The opcode returns one of the following, depending on whether you pass the
PIN_FLD_DATE_BALANCES array in the input flist:

• If you pass the array with a start and end date, the opcode returns the total amount
generated by members between those days.

Note:

The end date is exclusive. For example, if you enter January 1 as the start date
and January 5 as the end date, the opcode sums all balance impacts generated
on January 1, 2, 3, and 4.

• If you do not pass the array, the opcode returns the balance monitor's current rolled-up
balance.

This opcode performs the following tasks to retrieve the balances:

1. Retrieves the POID of the /balance_group/monitor object and, optionally, the dates for
which the balances are requested.

2. Reads the /balance_group/monitor object and retrieves the balance information.

3. When the input flist contains dates, retrieves the correct bucket for the specified dates from
the sub-balances.

4. Returns the balance for the specified monitor group.

Retrieving the Balance Monitors Owned by an Account or Service
To retrieve a list of balance monitors owned by an account or service, call the
PCM_OP_BAL_GET_ACCT_MONITORS opcode.

This opcode takes as input the POID of the /account or /service object and performs the
following tasks:

1. Searches for all the /group/sharing/monitor objects associated with the account or
service specified in the input flist.

2. For each /group/sharing/monitor object associated with the account or service, retrieves
the /balance_group/monitor objects.

3. Returns a list of monitor groups owned by the specified account or service.

Chapter 13
Displaying Balance Monitor Information in Client Applications

13-26

Updating Monitor Balances and Sending Credit Limit/Threshold
Breach Notifications

When you run the pin_monitor_balance utility to update monitored balances with the current
monitor impacts, it calls the PCM_OP_BAL_APPLY_MONITOR_IMPACTS opcode.

PCM_OP_BAL_APPLY_MONITOR_IMPACTS performs the following actions:

1. Updates the specified /balance_group/monitor object.

2. Compares the monitored balance in /balance_group/monitor with the credit limit and
threshold values stored in the /config/credit_profile object.

3. If a credit limit or threshold has been breached, generates one of these notification events:

• /event/notification/threshold when the balance crosses above the credit threshold

• /event/notification/threshold_below when the balance falls below the credit
threshold

Note:

The opcode generates only one event if multiple thresholds are crossed.
However, if multiple monitors cross the thresholds because of a single balance
impact, the utility generates an event for each monitor.

Table 13-2 lists the fields in the notification events.

Table 13-2 Notification Event Fields for Monitoring

Field Name Description

PIN_FLD_RESOURCE_ID The resource ID.

PIN_FLD_AMOUNT The balance impact for this event.

PIN_FLD_BAL_GRP_OBJ The POID of the /balance_group/monitor object.

PIN_FLD_PERCENT The percentage amount crossed.

PIN_FLD_SOURCE_OBJ Source of the breach, for example, the POID of the event that caused the
breach.

PIN_FLD_ALERT_TYPE The alert type: credit limit or threshold percentage.

PIN_FLD_MONITOR_TYPE Type of monitor:

• Paying responsibility credit exposure
• Hierarchy credit exposure
• Service level
• A type that you have defined.

PIN_FLD_REASON The reason for the breach:

• Upward breach
• Downward breach
• Upward reset
• Downward reset
• Unknown reason

Chapter 13
Updating Monitor Balances and Sending Credit Limit/Threshold Breach Notifications

13-27

Table 13-2 (Cont.) Notification Event Fields for Monitoring

Field Name Description

PIN_FLD_THRESHOLD Tracks when the balance of a monitor group crosses a 5% boundary. For
example, it tracks whether the current balance is 5%, 10%, or 15% of the
credit limit.

PIN_FLD_CREDIT_THRESHOLDS An array of credit thresholds and limits breached by this event.

Example of Credit Threshold Notification Event Generation
Consider a balance monitor for an account or service with:

• A credit floor of $0

• A credit limit of $100

• Thresholds set at 25%, 75%, and 90%

• A current balance of $50

When a new event comes in with a balance of $26, the new balance is set to $76, and a
notification event with the following information is generated:

PIN_FLD_ALERT_TYPE Threshold
PIN_FLD_REASON Upward breach
PIN_FLD_CREDIT_THRESHOLDS 75%

Managing Balance Monitors
To manage balance monitors (/balance_group/monitor objects), BRM uses the following
opcodes:

• PCM_OP_CUST_SET_BAL_GRP

See "Creating and Updating Balance Monitors".

• PCM_OP_CUST_DELETE_BAL_GRP

See "Deactivating Balance Monitors".

Creating and Updating Balance Monitors
Use PCM_OP_CUST_SET_BAL_GRP to create or update a balance monitor (/
balance_group/monitor object). PCM_OP_CUST_SET_BAL_GRP is a wrapper opcode that
performs all necessary tasks to set up the balance monitor and create a link to the customer
account.

PCM_OP_CUST_SET_BAL_GRP is called by the PCM_OP_CUST_COMMIT_CUSTOMER
opcode during the account creation process, and by the
PCM_OP_CUST_MODIFY_CUSTOMER opcode during the account modification process.

To create a /balance_group/monitor object, call the PCM_OP_CUST_SET_BAL_GRP
opcode with the following information in the input flist:

• The owner of the balance monitor:

– When the owner is an account, the POID of the /account object

– When the owner is a service, the POIDs of the /account and /service objects

Chapter 13
Managing Balance Monitors

13-28

• Monitor name

• Credit limit

• Credit floor

• Credit thresholds

• Whether to ignore the account's credit limit

Note:

You can also pass this information in the PIN_FLD_ACCTINFO array of the input
flist to PCM_OP_CUST_COMMIT_CUSTOMER when creating an account. This
opcode automatically calls PCM_OP_CUST_SET_BAL_GRP to create a /
balance_group/monitor object when the relevant information is in the input flist
and balance monitoring is enabled.

PCM_OP_CUST_SET_BAL_GRP does the following:

1. Verifies that balance monitoring is enabled and that, in the PIN_FLD_BAL_INFO input flist
array, PIN_FLD_POID is set to a type-only POID for /balance_group/monitor.

2. Checks the value of the PIN_FLD_TYPE_STR input flist field in the PIN_FLD_BAL_INFO
array:

• If set to PR_RTCE, the opcode creates or updates the balance monitor group (/group/
sharing/monitor object).

• If set to PR_CE or H_CE, the opcode publishes the balance monitor impacts to the
monitor queue (/monitor_queue object).

Deactivating Balance Monitors
You cannot delete /balance_group/monitor objects. You can, however, deactivate the monitor
group by deleting its associated /group/sharing/monitor object. To do so:

1. Run the pin_monitor_balance utility to update balances.

2. Delete the associated /group/sharing/monitor object by calling the
PCM_OP_SUBSCRIPTION_SHARING_GROUP_DELETE opcode.

This opcode removes the reference to the /group/sharing/monitor object from
corresponding /ordered_balgrp object.

Managing Balance Groups
To manage balance groups, BRM uses the following opcodes:

• PCM_OP_CUST_SET_BAL_GRP

See "Creating Balance Groups ".

• PCM_OP_CUST_MODIFY_CUSTOMER

See "Moving a Balance Group from One Bill Unit to Another".

• PCM_OP_CUST_DELETE_BAL_GRP

See "Deleting a Balance Group".

Chapter 13
Managing Balance Groups

13-29

Creating Balance Groups
You create balance groups when you create product offerings in PDC or Pricing Center. To
create a balance group, BRM uses PCM_OP_CUST_SET_BAL_GRP. This is a wrapper
opcode that performs all necessary tasks to set up the /balance_group object and create a
link to the customer account.

PCM_OP_CUST_COMMIT_CUSTOMER calls PCM_OP_CUST_SET_BAL_GRP when
creating a customer account.

PCM_OP_CUST_MODIFY_CUSTOMER calls PCM_OP_CUST_SET_BAL_GRP when
modifying customer account information.

If the PIN_FLD_SERVICE_OBJ field in the input flist has a NULL value,
PCM_OP_CUST_SET_BAL_GRP creates a balance group associated with the account. If the
PIN_FLD_SERVICE_OBJ field specifies a service object POID, a balance group is created and
associated with the service.

PCM_OP_CUST_SET_BAL_GRP calls the following opcodes:

• PCM_OP_BILL_SET_LIMIT_AND_CR to set the credit limit in the balance group.

• PCM_OP_CUST_CREATE_BAL_GRP to create the /balance_group object.

• PCM_OP_CUST_MODIFY_BAL_GRP to modify an existing /balance_group object.

Based on which field PCM_OP_CUST_MODIFY_BAL_GRP is modifying, the following
fields are either mandatory or optional:

– PIN_FLD_NAME

– PIN_FLD_BILLINFO_OBJ

While modifying the balance group, PCM_OP_CUST_SET_BAL_GRP checks if there are
any pending bill items. If there are pending bill items and if the billing information has
changed, PCM_OP_CUST_SET_BAL_GRP changes the billing information with the new
billing information.

Customizing the Default Balance Group of a Bill Unit
In general, BRM applies balance impacts of events to the balance group of the service for
which the event was generated. However, some events are not generated for any service. For
example, bill adjustment and dispute, payment, payment incentive, and payment fee events
are generated for a specific bill unit. In such instances, BRM applies the balance impact of the
event to the default balance group of the bill unit and assigns the event to an item belonging to
the default service of the default balance group.

BRM chooses a random balance group to be the default for new bill units during account
creation and account maintenance.

To create a custom algorithm to select the default balance group of a bill unit, use
PCM_OP_BAL_POL_GET_BAL_GRP_AND_SVC. You can also use this opcode to select the
default service for the default balance group.

This opcode is not called by any opcode. This opcode is an empty hook.

BRM selects a default service using the same algorithm for selecting the default balance
group. It selects the service object in the default balance group with the earliest create time
(PIN_FLD_CREATED_T). If more than one service object is selected, the service object with

Chapter 13
Managing Balance Groups

13-30

the smallest Portal Object ID (POID) is selected as the default service of the default balance
group.

Note:

By overriding the BRM algorithm, you change the system behavior that could impact
other functionality. For example, if you choose to use only the object creation time or
the object POID as the selection criterion, multiple balance group objects might
qualify. You should have a good understanding of the default implementation before
you customize this opcode.

Moving a Balance Group from One Bill Unit to Another
To move a balance group from one bill unit to another in the same account, BRM uses
PCM_OP_CUST_MODIFY_CUSTOMER.

Important:

• You cannot move an account default balance group to a different bill unit.

• You should never move a balance group to a bill unit in a different account. To have a
different account be responsible for the charges in a balance group, you must create a bill
unit hierarchy that includes the appropriate bill units from both accounts. See "Setting Up
Sharing Relationships among Bill Units".

You cannot move a balance group to another bill unit if the balance group's bill unit has
unallocated payments or adjustments, open refunds, or unresolved disputes. All disputes must
be settled, refunds paid, and payments and adjustments allocated before the balance group
can be moved.

A bill unit must have at least one balance group. When a bill unit has only one balance group
and that balance group is moved to another bill unit, PCM_OP_CUST_MODIFY_CUSTOMER
automatically creates a new balance group not associated with any service for the bill unit from
which the balance group was moved.

Deleting a Balance Group
To delete a balance group, use PCM_OP_CUST_DELETE_BAL_GRP.

The POID of the object is checked to ensure that the object can be deleted and that the user
has permission to delete the object.

Modifying Sub-balances
Sub-balances are modified when balances are granted or consumed. BRM uses the following
opcodes to modify sub-balances. Specify the /balance_group object that contains the sub-
balance to modify on the input flist:

• PCM_OP_BAL_CHANGE_VALIDITY changes a sub-balance validity period.

For more information, see "Modifying the Sub-balance Validity Period".

• PCM_OP_BILL_DEBIT debits or credits a noncurrency sub-balance.

• PCM_OP_AR_ACCOUNT_ADJUSTMENT debits or credits a currency sub-balance.

Chapter 13
Managing Balance Groups

13-31

• PCM_OP_BILL_TRANSFER_BALANCE transfers a positive balance from one /
balance_group. The source and destination balance groups can be in different accounts.

• PCM_OP_BILL_SET_LIMIT_AND_CR sets the credit limit for currency and noncurrency
sub-balances.

Modifying the Sub-balance Validity Period
Sub-balance validity periods define when a granted balance is available for consumption.
PCM_OP_BAL_CHANGE_VALIDITY updates the valid dates for sub-balances in /
balance_group objects.

To change the validity period of balances, specify the following fields in the
PIN_FLD_SUB_BALANCES array on the input flist:

• If you are changing the validity period of more than one sub-balance:

– Specify the balance element ID in PIN_FLD_RESOURCE_ID.

– Specify the sub-balance array index in PIN_FLD_ELEMENT_ID.

• If you are setting fixed dates:

– Specify the new start time in PIN_FLD_VALID_FROM.

– Specify the new end time in PIN_FLD_VALID_TO.

Converting an Account Hierarchy to Wholesale Billing
Use the PCM_OP_CUST_CONVERT_WHOLESALE_HIERARCHY opcode to convert existing
individual account hierarchies to use wholesale billing. See "Converting Existing Bill Unit
Hierarchies to Wholesale Billing" for more information about the conversion.

You set the paying parent bill unit by providing the information in the input flist.

The PCM_OP_CUST_CONVERT_WHOLESALE_HIERARCHY opcode does the following:

1. Validates the mandatory parameters in the input flist.

2. Checks for the wholesale configuration, either system-wide or through the business profile
configuration.

3. Checks the PARENT_FLAG for the flag indicating wholesale conversion.

4. Checks to ensure that the parent account does not have multiple parent bill units.

5. Calls a stored procedure that does the following:

a. Finds all the billable item types for the subordinate accounts and creates a
corresponding item at the parent level if necessary.

b. For each item type, gets the POID of the parent-level item and update that value in the
PIN_FLD_AR_ITEM_OBJ of the subordinate accounts.

6. Calls the opcode PCM_OP_BILL_UPDATE_JOURNAL with a new flag value
PIN_BILL_PROCESS_ONLY_CHILD_JOURNALS. This finds the journals for the
subordinate accounts for the current bill cycle, rolls them up into the parent account, and
deletes the journals from the subordinate accounts.

Chapter 13
Converting an Account Hierarchy to Wholesale Billing

13-32

Note:

The conversion steps will only consider the current cycle. This feature is not
supported for items that have already been billed or AR actions that have already
been taken.

When an event-level dispute is completed before the conversion to wholesale billing,
and settlement is completed after the conversion to wholesale billing, then the /
tmp_ar_item_to_roll_up item will not be generated for the settlement. Instead, an
item transfer will be done to transfer the settlement amount to the corresponding
billable item.

Chapter 13
Converting an Account Hierarchy to Wholesale Billing

13-33

14
Installment Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) installment
opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Creating Installment Schedule Specifications

• Validating Installment Schedule Specifications

• Preparing Installment Schedule Specifications

• Modifying Installment Schedule Specifications

• Retrieving Installment Schedule Specifications

• Getting Installment Schedule Specifications

• Creating Installments

• Validating Installments

• Preparing Installments

• Applying Installment Charge

• Updating Installment Status

• Retrieving Installments

• Updating Installments

• Canceling Installments

• Installment Proposal

Opcodes Described in This Chapter
Table 14-1 describes the installment management opcodes.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 14-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_INSTALLMENT_APPLY_CHARGE Applying Installment Charge

14-1

Table 14-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_INSTALLMENT_CANCEL_INSTALLME
NT

Canceling Installments

Validating Installments

Customizing How to Bill Events That Occur
between Billing Cycles

Customizing Credit Limit and Consumption Rules

PCM_OP_INSTALLMENT_CREATE_INSTALLME
NT

Creating Installments

Validating Installments

Installment Proposal

Creating Installment Schedule Specifications

Validating Installment Schedule Specifications

Customizing How to Bill Events That Occur
between Billing Cycles

Running Bill Now

Transferring Balances between Items

PCM_OP_INSTALLMENT_CREATE_SCHEDULE_
SPEC

Creating Installment Schedule Specifications

Validating Installment Schedule Specifications

Preparing Installment Schedule Specifications

PCM_OP_INSTALLMENT_GET_INSTALLMENTS Retrieving Installments

Finding a Bill

PCM_OP_INSTALLMENT_GET_SCHEDULE_SP
EC

Retrieving Installment Schedule Specifications

Getting Installment Schedule Specifications

Validating Installment Schedule Specifications

Preparing Installment Schedule Specifications

PCM_OP_INSTALLMENT_MODIFY_SCHEDULE_
SPEC

Modifying Installment Schedule Specifications

Validating Installment Schedule Specifications

Preparing Installment Schedule Specifications

Creating Installment Schedule Specifications

PCM_OP_INSTALLMENT_POL_GET_SCHEDUL
E_SPEC

Getting Installment Schedule Specifications

Retrieving Installment Schedule Specifications

Creating Installment Schedule Specifications

PCM_OP_INSTALLMENT_POL_PREP_INSTALL
MENT

Preparing Installments

PCM_OP_INSTALLMENT_POL_PREP_SCHEDU
LE_SPEC

Preparing Installment Schedule Specifications

Validating Installment Schedule Specifications

PCM_OP_INSTALLMENT_POL_PROPOSAL Installment Proposal

PCM_OP_INSTALLMENT_POL_VALID_INSTALL
MENT

Validating Installments

Creating Installments

Validating Installment Schedule Specifications

PCM_OP_INSTALLMENT_POL_VALID_SCHEDU
LE_SPEC

Validating Installment Schedule Specifications

Preparing Installment Schedule Specifications

PCM_OP_INSTALLMENT_PROPOSAL Installment Proposal

Chapter 14
Opcodes Described in This Chapter

14-2

Table 14-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_INSTALLMENT_UPDATE_INSTALLME
NT_STATUS

Updating Installment Status

Customizing How to Bill Events That Occur
between Billing Cycles

Customizing Credit Limit and Consumption Rules

PCM_OP_INSTALLMENT_UPDATE_INSTALLME
NT

Updating Installment Status

Validating Installments

Preparing Installment Schedule Specifications

Creating Installment Schedule Specifications
Use PCM_OP_INSTALLMENT_CREATE_SCHEDULE_SPEC to create an installment
schedule specification, which defines the terms for an installment plan your company offers
your customers.

You set the installment schedule specification name, start date, end date, minimum installment
amount, the maximum number of unequal installments, unequal installment frequency,
installment type, and eligibility criteria by passing the information in the input flist.

You specify the eligibility criteria by including the following in the PIN_FLD_CRITERIA input flist
array:

• PIN_FLD_CLASS_NAME: The class name, such as /account or /service

• PIN_FLD_FIELD_NAME: The field's name, such as PIN_FLD_POID or PIN_FLD_FLAGS

• PIN_FLD_OPERATOR: The operator type: equal to (0), less than (1), greater than (2), less
than or equal to (3), greater than or equal to (4), not equal to (5), in (6), like (7), null (8), or
not null (9).

• PIN_FLD_TYPE: The field's data type: integer (1), enum (3), string (5), POID (7),
timestamp (8), or decimal (14)

• PIN_FLD_VALUE: The field's value, such as PIN_FLDT_POID or 2

For example, to set the eligibility criteria to accounts that own services like /service/telco/gsm/
telephony and /service/telco/gsm/sms, you would use the following:

0 PIN_FLD_CRITERIA ARRAY [0]
1 PIN_FLD_CLASS_NAME STR [0] "/service"
1 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_POID"
1 PIN_FLD_OPERATOR ENUM [0] 7 # "PIN_INSTL_OPERATOR_LIKE"
1 PIN_FLD_TYPE ENUM [0] 7 # PIN_FLDT_POID
1 PIN_FLD_VALUE STR [0] "/service/telco/gsm"

PCM_OP_INSTALLMENT_CREATE_SCHEDULE_SPEC does the following:

• Validates the mandatory parameters in the input.

• Calls PCM_OP_INSTALLMENT_POL_VALID_SCHEDULE_SPEC to validate the input
parameters. See "Validating Installment Schedule Specifications".

• Checks the results of PCM_OP_INSTALLMENT_POL_VALID_SCHEDULE_SPEC and
sends appropriate error messages.

Chapter 14
Creating Installment Schedule Specifications

14-3

• Calls and gets the output flist from
PCM_OP_INSTALLMENT_POL_PREP_SCHEDULE_SPEC, which it passes as the input
flist for any additional functions. See "Preparing Installment Schedule Specifications".

If the object is successfully created, the
PCM_OP_INSTALLMENT_CREATE_SCHEDULE_SPEC output flist contains the POID of the /
config/installment/schedule_spec object.

Validating Installment Schedule Specifications
PCM_OP_INSTALLMENT_POL_VALID_SCHEDULE_SPEC validates the information in the
installment schedule specification (/config/installment/schedule_spec object).

PCM_OP_INSTALLMENT_POL_VALID_SCHEDULE_SPEC performs these validation checks:

• Validates that the installment schedule specification contains the mandatory input
parameters.

• If PIN_FLD_TYPE is percentage (2), checks that PIN_FLD_MINIMUM is between 0 and
100.

• If PIN_FLD_TYPE is absolute (1), checks that PIN_FLD_MINIMUM is 0 or greater.

• Checks that the PIN_FLD_MAX_UNEQUAL_INTERVALS and
PIN_FLD_MAX_UNEQUAL_INSTALLMENTS fields are 0 or greater.

• Checks that all elements in the PIN_FLD_CRITERIA array are in the required format.

• Checks that the PIN_FLD_CLASS_NAME field is /account, /service, or /profile.

• If the error buffer is set, clears the error and sets the PIN_FLD_RESULT field to FAIL. If
the buffer is not set, sets the PIN_FLD_RESULT field to PASS.

Preparing Installment Schedule Specifications
Use PCM_OP_INSTALLMENT_POL_PREP_SCHEDULE_SPEC to prepare installment
schedule specification creation fields.

For more information about PREP opcodes, see "About the PREP and VALID Opcodes" in
BRM Developer’s Guide.

Modifying Installment Schedule Specifications
Use PCM_OP_INSTALLMENT_MODIFY_SCHEDULE_SPEC to modify an existing installment
schedule specification (/config/installment/schedule_spec object).

You can modify the installment schedule specification name, start date, end date, minimum
installment amount, the maximum number of unequal installments, unequal installment
frequency, installment type, and the eligibility criteria.

PCM_OP_INSTALLMENT_MODIFY_SCHEDULE_SPEC does the following:

• Validates the mandatory input parameters using
PCM_OP_INSTALLMENT_POL_VALID_SCHEDULE_SPEC. See "Validating Installment
Schedule Specifications".

• Calls PCM_OP_INSTALLMENT_POL_PREP_SCHEDULE_SPEC to prepare the input flist
and include any customizations. See "Preparing Installment Schedule Specifications".

• Updates the values in the /config/installment/schedule_spec object.

Chapter 14
Validating Installment Schedule Specifications

14-4

Retrieving Installment Schedule Specifications
PCM_OP_INSTALLMENT_GET_SCHEDULE_SPEC retrieves information about the
installment schedule specification.

PCM_OP_INSTALLMENT_GET_SCHEDULE_SPEC does the following:

• Validates the mandatory input parameters.

• Gets the /config/installment/schedule_spec object from the database.

• Gets the information while creating the installment schedule specifications and the
installments.

• During the installment schedule specification creation, gets the status of the installment
schedule such as active, inactive, or draft.

• During installment creation, gets only the specifications that match the criteria for the
specified account POID.

Getting Installment Schedule Specifications
PCM_OP_INSTALLMENT_POL_GET_SCHEDULE_SPEC is a policy opcode to allow
customizations for getting the installment schedule specifications.

Creating Installments
Use PCM_OP_INSTALLMENT_CREATE_INSTALLMENT to create installments for a specific
customer.

This opcode retrieves the charge object for the customer and divides the total due amount into
the specified number of installments.

Validating Installments
Use PCM_OP_INSTALLMENT_POL_VALID_INSTALLMENT to validate the input.

PCM_OP_INSTALLMENT_POL_VALID_INSTALLMENT does the following:

• Validates the installment amount. If the amount or percentage is greater than the minimum
installment amount or percentage that is defined in the /config/installment/
schedule_spec object, sends an error.

• Checks for unequal installments in the input PIN_FLD_INSTALLMENTS array and
validates them with the value in the INSTALLMENT_SPEC object.

• Validates the sum of all the installments amount with the total installment amount and if not
equal, sends an error.

• Checks if the Flags indicate 0 (for the regular bill) or 1 (for the bill now).

• While creating the installments, it checks if the PIN_FLD_STATUS is in the open state for
the overall installments and individual installments.

• Ensures that the installments are created only for bills or items.

• Validates if the PIN_FLD_START_T is less than PIN_FLD_END_T. If it is, sets the
PIN_FLD_RESULT as Pass in the output flist. If not, sets the PIN_FLD_RESULT as Fail in
the output flist.

Chapter 14
Retrieving Installment Schedule Specifications

14-5

• Validates if the PIN_FLD_START_T is not less than PIN_VIRTUAL_TIME. If it is not, sets
the PIN_FLD_RESULT as Pass in the output flist. If it is, sets the PIN_FLD_RESULT as
Fail in the output flist.

Preparing Installments
Use PCM_OP_INSTALLMENT_POL_PREP_INSTALLMENT to prepare installment fields.

For more information about PREP opcodes, see "About the PREP and VALID Opcodes" in
BRM Developer’s Guide.

Applying Installment Charge
PCM_OP_INSTALLMENT_APPLY_CHARGE applies the installment charge or amount for the
customer on the effective date.

The charge impact of individual installments gets applied to the customer using the
Multithreaded Application (MTA) named pin_installments after the charge is converted into
installments. This MTA gets the installments that must be charged and are due.

PCM_OP_INSTALLMENT_APPLY_CHARGE creates /event/billing/installment/debit event
and /item/installment/debit object, for the installment amount charge applied.

Updating Installment Status
Once an installment is paid, the payment gets allocated, the /item/installment/debit object
and the /event/billing/item/transfer are updated, and
PCM_OP_INSTALLMENT_UPDATE_INSTALLMENT_STATUS is called.

PCM_OP_INSTALLMENT_UPDATE_INSTALLMENT_STATUS changes the installment status
from Charged to Paid. Once the installment status is changed to Paid, the status of the
installment arrangement will be changed to Finished.

PCM_OP_INSTALLMENT_UPDATE_INSTALLMENT_STATUS is also called by the
PIN_INSTALLMENT_STATUS_CHANGE MTA to change the installment status to Broken if the
installment is not paid on the due date.

Retrieving Installments
PCM_OP_INSTALLMENT_GET_INSTALLMENTS retrieves information about all the
installments associated with an account and service. If service is not mentioned, retrieves all
the installments associated with the account.

PCM_OP_INSTALLMENT_GET_INSTALLMENTS does the following:

• Validates the mandatory parameters in the input flist.

• Gets the /installment objects for the account POID.

• Includes PIN_FLD_BILLINFO_OBJ as search criteria, in the search template, if
PIN_FLD_BILLINFO_OBJ is present in the input flist.

• Searches for installments in the database based on the input parameters and returns all
the installments details.

Chapter 14
Preparing Installments

14-6

Updating Installments
PCM_OP_INSTALLMENT_UPDATE_INSTALLMENT updates OPEN installments.

Note: Only open installments can be updated.

If the amount in the installments array is not the same as the sum of the remaining open
amount, the opcode returns an error message.

For example, an account has a $300 X 6 months installments hence $1800 amount must be
paid. The installment has been paid for two months that is $600 is paid and the remaining
amount to be paid is $1200.

The update installment request must not have a different amount in the installments array and
the remaining open amount. Both the amount, as in this example, must be $1200. If the
amount is different, it sends an error.

PCM_OP_INSTALLMENT_UPDATE_INSTALLMENT does the following:

• Validates the mandatory input parameters in the input flist.

• Validates if the due amount meets the minimum installment due amount as per the
installment schedule specification.

• Gets the installment total amount due, adds up the remaining installments, and validates
them to ensure the total due amount is equal to the sum of the installment amount.

• Validates the number of remaining installments, the term, and installment elements.

• Calls and gets results from PCM_OP_INSTALLMENT_POL_VALID_INSTALLMENT.
Sends error message in case of any error.

• Reads the /installment object using PCM_OP_READ_OBJ opcode.

• Calls PCM_OP_INSTALLMENT_POL_PREP_SCHEDULE_SPEC.

• Updates the /installment object with the input parameter values.

Canceling Installments
Use PCM_OP_INSTALLMENT_CANCEL_INSTALLMENT to sum any remaining amounts,
charge the customer, and cancel the remaining installments.

PCM_OP_INSTALLMENT_CANCEL_INSTALLMENT does the following:

• Validates the mandatory input parameters in the input flist.

• Calls PCM_OP_BILL_SET_LIMIT_AND_CR to update the credit limit to increase the open
installments amount and the same will be reverted after creating a one-off charge.

• Gets the balance group for the given installment POID from the /installment object.

• Calls PCM_OP_ACT_USAGE to create a one-off charge with the total installment due, for
the installment charge with the /event/billing/installment/debit event and associates it
with the installment charge item.

• Calls PCM_OP_ACT_USAGE to create notification event for the canceled installment, with
the /event/installment/cancel event.

• Updates the /installment object with the input parameter values. Updates the status in
the /installment object and the status in the installments_details array to canceled.

Chapter 14
Updating Installments

14-7

Installment Proposal
PCM_OP_INSTALLMENT_PROPOSAL is called by the API layer to prepare the installment
proposal.

The opcode refers to the input parameters such as installment amount, installment term (the
number of months), and start date and divides the installment amount into equal installments. If
the installment amount cannot be divided into equal installments, the opcode rounds it off to
the nearest amount and adjusts any remaining amount to the last installment.

PCM_OP_INSTALLMENT_PROPOSAL returns the proposed installment calculated details
along with the installment amount and effective dates.

Use the PCM_OP_INSTALLMENT_POL_PROPOSAL policy opcode to modify and customize
the return flist of PCM_OP_INSTALLMENT_PROPOSAL.

Chapter 14
Installment Proposal

14-8

15
Invoice Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) invoice
opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Setting the Default Payment Due Date

• Making Invoices

• Displaying Invoices

• Defining the Invoice Type

• How Invoices Are Formatted

• Including Custom Data in Invoices

• Including the Time Zone in Invoices

• Adding Soft Descriptors to Invoices

• Specifying Event Fields to Cache for Invoicing

• Decoding Cached Event Data for Invoicing

• How Invoices Are Generated

• Customizing Invoice Search Operations

• Generating Trial Invoices

Opcodes Described in This Chapter
Table 15-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 15-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_POL_SPEC_EVENT_CACHE Including Custom Data in Invoices

Specifying Event Fields to Cache for Invoicing

PCM_OP_AR_GET_ALLOCATED_AR_ITEMS How Invoices Are Generated

15-1

Table 15-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_BILL_MAKE_BILL How Trial Invoicing Works for Hierarchical Bill Units in BI
Publisher 11g

PCM_OP_BILL_MAKE_TRIAL_BILL Generating Trial Invoices

PCM_OP_CUST_COMMIT_CUSTOMER Defining the Invoice Type

PCM_OP_CUST_CREATE_ASSOCIATED_BUS_PROFILE About Associating Bill Units with a BI Publisher Invoice and
Report

About the /associated_bus_profile Object

PCM_OP_CUST_CREATE_BILLINFO About Associating Bill Units with a BI Publisher Invoice and
Report

About the /associated_bus_profile Object

PCM_OP_CUST_POL_PREP_PAYINFO Setting the Default Payment Due Date

PCM_OP_CUST_SET_ASSOCIATED_BUS_PROFILE About Associating Bill Units with a BI Publisher Invoice and
Report

PCM_OP_CUST_SET_PAYINFO Defining the Invoice Type

PCM_OP_INV_DECODE_INVOICE_DATA Decoding Cached Event Data for Invoicing

Creating Custom Search Templates

PCM_OP_INV_FORMAT_INVOICE How Invoices Are Formatted

Customizing the Invoice Format by Using an XSL Style
Sheet

PCM_OP_INV_MAKE_INVOICE Making Invoices

Defining the Invoice Type

How Invoices Are Formatted

PCM_OP_INV_MAKE_INVOICE How Invoices Are Generated

Customizing Invoice Search Operations

Creating Custom Search Templates

Configuring Error Checking for Customized Invoicing

Generating Trial Invoices

PCM_OP_INV_POL_FORMAT_INVOICE Customizing the Format for Printed Invoices

PCM_OP_INV_POL_FORMAT_INVOICE Including Custom Data in Invoices

PCM_OP_INV_POL_FORMAT_INVOICE_DOC1 Customizing the Format for DOC1 Invoices

PCM_OP_INV_POL_FORMAT_INVOICE_HTML Customizing the Format for HTML Invoices

Customizing the Layout of Bill Items in Invoices

Customizing the Format for Printed Invoices

Including the Time Zone in Invoices

PCM_OP_INV_POL_FORMAT_INVOICE_XML Customizing the Format for XML Invoices

PCM_OP_INV_POL_FORMAT_INVOICE_XSLT Customizing the Invoice Format by Using an XSL Style
Sheet

How Invoices Are Formatted

Displaying an Invoice On Demand

Chapter 15
Opcodes Described in This Chapter

15-2

Table 15-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_INV_POL_FORMAT_VIEW_INVOICE Displaying Invoices

How Invoices Are Formatted

Customizing the Format for HTML Invoices

Customizing the Format for XML Invoices

Displaying an Invoice On Demand

PCM_OP_INV_POL_POST_MAKE_INVOICE How Invoices Are Generated

Customizing Invoice Search Operations

Example: Generating Invoices Based on Event Types

Configuring Error Checking for Customized Invoicing

PCM_OP_INV_POL_PREP_INVOICE How Invoices Are Formatted

Customizing the Layout of Bill Items in Invoices

Customizing the Format for Printed Invoices

PCM_OP_INV_POL_PREP_INVOICE Including Custom Data in Invoices

PCM_OP_INV_POL_PREP_INVOICE Changing the Trial Billing Watermark

PCM_OP_INV_POL_PREP_INVOICE How Trial Invoicing Works for Hierarchical Bill Units in BI
Publisher 11g

PCM_OP_INV_POL_SELECT Decoding Cached Event Data for Invoicing

How Invoices Are Generated

Customizing Invoice Search Operations

Creating Custom Search Templates

Example: Generating Invoices Based on Event Types

PCM_OP_INV_VIEW_INVOICE Displaying Invoices

Displaying an Invoice On Demand

PCM_OP_PYMT_POL_PRE_COLLECT Adding Soft Descriptors to Invoices

Setting the Default Payment Due Date
The default payment due date for invoice payments is 30 days from the billing date. To change
the number of days, customize the PCM_OP_CUST_POL_PREP_PAYINFO policy opcode.

Making Invoices
PCM_OP_INV_MAKE_INVOICE creates an invoice for a specified (regular or corrective) bill
object.

For regular invoices, PCM_OP_INV_MAKE_INVOICE does the following:

• Uses the PIN_FLD_INV_DETAIL_FLAG value in the /payinfo object to determine whether
to generate a detailed invoice or a summary invoice

• Uses the invoicing threshold parameters in the /config/business_params object to
determine whether the invoices of nonpaying bills in a bill unit (/billinfo object) hierarchy
should be generated separately or consolidated into the invoice of the paying parent bill

PCM_OP_INV_MAKE_INVOICE is the initial opcode that gets called to create an invoice for a
designated bill object.

Chapter 15
Setting the Default Payment Due Date

15-3

PCM_OP_INV_MAKE_INVOICE identifies corrective bills by the entries
PIN_OBJ_NAME_CORRECTIVE_BILL, PIN_OBJ_NAME_CORRECTIVE_BILL_NOW, and
PIN_OBJ_NAME_CORRECTIVE_BILL_ON_DEMAND in the PIN_FLD_NAME field in the bill
object.

For corrective invoices, the default value for the type of corrective invoice (whether it is a
Replacement Invoice or an Invoice Correction Letter and whether that document is a
summary or in detail) is obtained from the PIN_FLD_INV_TYPE field from the /event/billing/
corrective_bill object. For invoices in a bill unit hierarchy, the default setting is determined by
the corresponding value in the /event/billing/corrective_bill object in the parent invoice.

If PIN_FLD_INV_FLAGS is present in the input flist when PCM_OP_INV_MAKE_INVOICE is
called, the opcode discards the default value and uses the PIN_FLD_INV_FLAGS value from
the input flist with the entries in the pin_inv.h file to arrive at the required type of corrective
invoice.

The opcode retrieves the correction reason and previous bill number from the /event/billing/
corrective_bill object and inserts them in the corrective invoice. It calls the
fm_inv_get_previous_bill to retrieve the contents of the latest history_bills object.

Typically, you generate invoices automatically as part of running the pin_bill_day billing script.
This script runs several utilities, including pin_inv_accts, the invoicing utility.

pin_inv_accts runs twice. In the first run, it performs the following tasks to handle bill unit
hierarchies:

1. Searches for all bills that have reached the end of their billing cycle and for which invoices
have not yet been generated.

2. Checks the nonpaying threshold values in the /config/business_params object to
determine the maximum number of nonpaying child bill units that are allowed in the bill unit
hierarchy.

3. For each /bill object retrieved, checks the PIN_FLD_AR_HIERARCHY_SIZE value to
determine if it exceeds the threshold value.

4. If the threshold is exceeded, uses multiple threads to retrieve the nonpaying bill units and
to generate an invoice for each one.

Note:

If bill suppression is enabled on an account with a paying parent bill unit and the
nonpaying child bill unit threshold is exceeded, invoicing fails. This occurs
because nonpaying bill units, which use the bill number of their paying parent bill
unit's parent account, are generated even when billing for the parent account is
suppressed. In such cases, they do not contain bill numbers, which invoices
require. To exclude invoicing for these bills, run pin_inv_accts with the -
skip_blank_billnos parameter. (Nonpaying bill units contain bill numbers only
when their paying parent bill unit's parent accounts are billed.)

If no errors occur, pin_inv_accts runs a second time to generate invoices for parent
accounts in hierarchies and for nonhierarchical accounts:

5. Searches for all bills that have reached the end of their billing cycle and for which invoices
have not yet been generated.

6. For each /bill object retrieved, generates an invoice.

Chapter 15
Making Invoices

15-4

Displaying Invoices
To display invoices, use PCM_OP_INV_VIEW_INVOICE.

This opcode uses the POID of the /bill object or /invoice object to locate and retrieve a
specific invoice. Specify the output format of the invoice as a mime type in the
PIN_FLD_TYPE_STR field in the input flist.If you provide the bill number in
PIN_FLD_BILL_NO, the opcode searches the bill database and, if necessary, the history_bills
objects.

The PIN_FLD_FLAGS value in the output flist determines the type of invoice to view, for
example, a summary or detailed invoice for a nonhierarchical bill unit, and the
PIN_FLD_INV_SIZE value in the output flist specifies the size of the invoice returned.

Specify the output format of the invoice as a mime type in the PIN_FLD_TYPE_STR field on
the input flist.

PCM_OP_INV_VIEW_INVOICE performs the following tasks:

• Uses the PIN_FLD_THRESHOLD_UPPER value in the input flist to determine the
maximum size (KB) of the invoice to be viewed. If the invoice is larger than the size
specified, an error message and the invoice size, rather than the invoice itself, is displayed.

• Checks the following fields in the /invoice object:

– PIN_FLD_INV_SIZE to determine the size of the invoice.

If the invoice size is greater than the invoicing threshold value,
PCM_OP_INV_VIEW_INVOICE does not try to format the invoice.

If the invoice size is less than the invoicing threshold, PCM_OP_INV_VIEW_INVOICE
continues processing.

To set the maximum size in kilobytes of invoices that can be sent by email, use the
inv_send_size parameter in the pin_inv_send utility. This entry is used by
PCM_OP_INV_VIEW_INVOICE to restrict sending large invoices to the Email Data
Manager (dm_email).

– PIN_FLD_INV_FLAGS to determine the type of invoice to view.

– PIN_FLD_TYPE_STR to determine whether the format specified is stored in the
object. Invoices can be stored in the database in pin_flist, XML, HTML, or DOC1
format.

If the specified format is stored, the invoice is retrieved and returned in the format
specified. If the specified format is not stored,
PCM_OP_INV_POL_FORMAT_VIEW_INVOICE is called to attempt to format the
invoice. Invoices can use HTML, XML, or DOC1 format. To apply an XSL style sheet to
the invoice, specify the XSL mime type in the PIN_FLD_TYPE_STR field.

If successful, PCM_OP_INV_VIEW_INVOICE returns a buffer containing the formatted invoice.
The PIN_FLD_RESULT value in the output flist is 1.

If not successful due to system errors, no invoice is returned. The PIN_FLD_RESULT value is
0.

If not successful because the invoice exceeded the threshold size, the PIN_FLD_RESULT
value is 2.

Chapter 15
Displaying Invoices

15-5

Defining the Invoice Type
The PIN_FLD_INV_TYPE field in the /payinfo object defines which type of invoice to generate
for a given bill unit. Table 15-2 lists the possible values for PIN_FLD_INV_TYPE and the
corresponding type of invoice that BRM generates.

Table 15-2 PIN_FLD_INV_TYPE Values and Invoice Generated by BRM

Value Binary
Notation

Regular Invoice (if)
Generated

Corrective Invoice (if) Generated

0 0000 0000 Detail Detail Replacement Invoice

1 0000 0001 Summary Detail Replacement Invoice

2 0000 0010 Detail Summary Replacement Invoice

3 0000 0011 Summary Summary Replacement Invoice

4 0000 0100 Detail Detail Invoice Correction Letter

5 0000 0101 Summary Detail Invoice Correction Letter

6 0000 0110 Detail Summary Invoice Correction Letter

7 0000 0111 Summary Summary Invoice Correction Letter

Note:

For regular invoices, the -detail and -summary parameters of the pin_inv_accts
utility override the PIN_FLD_INV_TYPE field values in the /payinfo object.

For corrective invoices, the -corr_type, -detail, and -summary of the pin_inv_accts
utility override the PIN_FLD_INV_TYPE field values in the /payinfo object.

To generate summary invoices, change the value of the PIN_FLD_INV_TYPE field in the /
payinfo object to the required value listed in Table 15-2.

• To set this value when creating a customer account, pass it in the input flist of the
PCM_OP_CUST_COMMIT_CUSTOMER opcode.

• To set this value when adding or changing a payment method, pass it in the input flist of
the PCM_OP_CUST_SET_PAYINFO opcode.

When this value is set, the PCM_OP_INV_MAKE_INVOICE opcode uses it in conjunction with
the position of the bill, in relation to other bills, to set the PIN_FLD_INV_FLAGS value in the /
invoice object. Possible values are listed in Table 15-3:

Table 15-3 PIN_FLD_INV_FLAGS Values

Type of invoice PIN_FLD_INV_FLAGS
Hex value

Summary invoice for a nonhierarchical account. 0x0006

Detailed invoice for a nonhierarchical account. 0x0005

Summary invoice for a nonpaying bill unit. 0x000A

Chapter 15
Defining the Invoice Type

15-6

Table 15-3 (Cont.) PIN_FLD_INV_FLAGS Values

Type of invoice PIN_FLD_INV_FLAGS
Hex value

Detailed invoice for a nonpaying bill unit. 0x0009

Summary invoice for a parent A/R account.

(Nonconsolidated: does not include nonpaying bill unit data).

0x0012

Detailed invoice for a parent A/R account.

(Nonconsolidated: does not include nonpaying bill unit data).

0x0011

Summary invoice for a parent A/R account.

(Consolidated: includes nonpaying bill unit data).

0x0001A

Detailed invoice for a parent A/R account.

(Consolidated: includes nonpaying bill unit data).

0x00019

For information on generating invoices, see "Making Invoices".

How Invoices Are Formatted
To format invoices, use PCM_OP_INV_FORMAT_INVOICE. This opcode performs XSL
transformation on an invoice.

PCM_OP_INV_FORMAT_INVOICE is called by
PCM_OP_INV_POL_FORMAT_INVOICE_XSLT to apply an XSL style sheet to an invoice. It
receives as input an XML formatted invoice and an XSL style sheet. It applies the style sheet
to the invoice and returns the formatted invoice.

Note:

The XSL transformation is done in the Java Server with the help of XSLT software.

PCM_OP_INV_FORMAT_INVOICE uses the POID of the /bill object or /invoice object to
locate and retrieve a specific invoice. Specify the output format of the invoice as a mime type in
the PIN_FLD_TYPE_STR field in the input flist.

PCM_OP_INV_FORMAT_INVOICE performs the following tasks:

• Checks the /invoice object to see whether the format specified in the
PIN_FLD_TYPE_STR field is stored in the object. Invoices can be stored in the database
as pin_flist, XML, HTML, or DOC1 format.

• If the specified format is stored, the invoice is retrieved and returned in the format
specified.

• If the specified format is not stored, PCM_OP_INV_POL_FORMAT_VIEW_INVOICE is
called to attempt to format the invoice. Invoices can use HTML, XML, or DOC1 format. To
apply an XSL style sheet to the invoice, specify the XSL mime type in the
PIN_FLD_TYPE_STR field.

If successful, PCM_OP_INV_FORMAT_INVOICE returns a buffer containing the formatted
invoice. The PIN_FLD_RESULT field in the output flist is set to 1.

Chapter 15
How Invoices Are Formatted

15-7

If unsuccessful, no invoice is returned. The PIN_FLD_RESULT field is set to 0.

Use PCM_OP_INV_POL_PREP_INVOICE to customize invoice formatting. This opcode is
called by PCM_OP_INV_MAKE_INVOICE.

For corrective invoicing, PIN_FLD_PREV_BILLINFO field contains the details of previous bills.
Additionally, the PIN_FLD_CORRECTION_INFO array under PIN_FLD_OTHER_ITEMS
contains all the special items that correspond to the corrective bill and its associated events.

The contents of value in the PIN_FLD_INV_TYPE field determines the contents of the invoice.
For example, the invoice for a Detail Replacement shows all the items and events while a
Detail Correction letter displays only the special items and its associated. However, both
Replacement and Correction Letter invoices show the previous amount, adjusted amount and
new amounts for events and items.

Customizing the Layout of Bill Items in Invoices
You can customize the layout of bill items on an invoice.

To list bill items in a different order, use the PCM_OP_INV_POL_PREP_INVOICE policy
opcode.

When corrective invoicing is enabled, PIN_FLD_PREV_BILLINFO contains the details of the
previous bill (if any). Additionally, the PIN_FLD_CORRECTION_INFO array under
PIN_FLD_OTHER_ITEMS contains all the items specific to the corrective bill and its
corresponding events.

To make other changes to the layout:

• If you are using an HTML invoice template, use the
PCM_OP_INV_POL_FORMAT_INVOICE_HTML policy opcode.

• If you are using an XSLT style sheet for the invoice template, you can perform this level of
customization in the style sheet.

Customizing the Format for Printed Invoices
To format invoices for printing, use PCM_OP_INV_POL_FORMAT_INVOICE.

This opcode is called when invoices are generated to specify if the invoices are to be stored in
XML or pin_flist format in the /invoice object. The default is XML.

• If the storage format is specified as XML or pin_flist, the return flist contains only the
specified format type.

• If you customize PCM_OP_INV_POL_FORMAT_INVOICE to generate other formats, the
return flist contains the format type along with a buffer containing the formatted invoices.

Any customization of invoice content done by PCM_OP_INV_POL_PREP_INVOICE is passed
to PCM_OP_INV_POL_FORMAT_INVOICE prior to storage.

You can customize PCM_OP_INV_POL_FORMAT_INVOICE to generate other storage
formats. For example, to store invoices in HTML format, you can add code to call
PCM_OP_INV_POL_FORMAT_INVOICE_HTML and then add the formatted invoice to the
buffer in the output flist.

Customizing the Format for HTML Invoices
To format invoices in HTML, use PCM_OP_INV_POL_FORMAT_INVOICE_HTML.

Chapter 15
How Invoices Are Formatted

15-8

This opcode is called by PCM_OP_INV_POL_FORMAT_INVOICE when the invoice format
requested is HTML.

If your system has the invoicing-by-service feature enabled,
PCM_OP_INV_POL_FORMAT_INVOICE_HTML will display the invoice items by service
instance. The /config/invoice_events object belonging to the root account is cached.

Customizing the Format for XML Invoices
To format invoices in XML, use PCM_OP_INV_POL_FORMAT_INVOICE_XML.

This opcode is called by PCM_OP_INV_POL_FORMAT_VIEW_INVOICE when the invoice
format requested is XML.

Customizing the Invoice Format by Using an XSL Style Sheet
To format invoices using an XSL style sheet, use
PCM_OP_INV_POL_FORMAT_INVOICE_XSLT.

To specify the use of XSL style sheets, set the PIN_FLD_FLAGS field in the /config/
invoice_templates object to 1.

This opcode is called by PCM_OP_INV_POL_FORMAT_INVOICE when the /config/
invoice_templates object specifies an XSL style sheet.

Customizing the Format for DOC1 Invoices
To format invoices for DOC1, use PCM_OP_INV_POL_FORMAT_INVOICE_DOC1.

Note:

For DOC1 format, you must have the DOC1 software.

This opcode also checks the pin.conf file to see whether your system has service-centric
invoicing turned on. If invoicing by service is enabled, this opcode reorganizes the flist so that it
displays the invoice items by service instance.

If your system has the invoicing-by-service feature enabled,
PCM_OP_INV_POL_FORMAT_INVOICE_DOC1 displays the invoice items by service
instance.

Displaying an Invoice On Demand
To display an invoice on demand, use PCM_OP_INV_POL_FORMAT_VIEW_INVOICE. This
opcode generates an invoice in the specified format.

BRM can store the invoice in the database in either pin_flist or XML format. The default is
pin_flist. The storage format is specified by PCM_OP_INV_FORMAT_VIEW_INVOICE.

PCM_OP_INV_POL_FORMAT_VIEW_INVOICE is called when
PCM_OP_INV_VIEW_INVOICE requests an invoice in a format that is not stored on the /
invoice object. PCM_OP_INV_POL_FORMAT_VIEW_INVOICE attempts to generate the
invoice in the requested format. Invoices may be formatted as HTML or DOC1. An XML format
is also available, but it displays as HTML format.

Chapter 15
How Invoices Are Formatted

15-9

PCM_OP_INV_POL_FORMAT_VIEW_INVOICE calls one of the following policy opcodes,
depending on the requested format:

• PCM_OP_INV_POL_FORMAT_INVOICE_HTML

• PCM_OP_INV_POL_FORMAT_INVOICE_DOC1

• PCM_OP_INV_POL_FORMAT_INVOICE_XML

• PCM_OP_INV_POL_FORMAT_INVOICE_XSLT

PCM_OP_INV_POL_FORMAT_VIEW_INVOICE checks the PIN_FLD_FLAG field in the /
config/invoice_templates object to see whether an XSL style sheet should be applied to the
invoice. If the flag is set, PCM_OP_INV_POL_FORMAT_INVOICE_XSLT is called to format
the invoice.

PCM_OP_INV_POL_FORMAT_VIEW_INVOICE also checks the pin.conf file to see whether
your system has service-centric invoicing turned on. If invoicing by service is enabled,
PCM_OP_INV_POL_FORMAT_VIEW_INVOICE reorganizes the flist so that it displays the
invoice items by service instance.

Note:

Because the flist is reorganized, if you apply an XSL style sheet to the invoice, you
may need to change the style sheet to reflect the change in output created by the
service instance organization.

Including Custom Data in Invoices
To customize the data displayed in invoices, use the PCM_OP_INV_POL_PREP_INVOICE
policy opcode.

This policy opcode searches the database for information about the account and creates an
flist of relevant fields to include at invoicing time.

You can customize invoice information by performing additional data searches, or modifying
large invoice flists. Customization done by the PCM_OP_INV_POL_PREP_INVOICE policy
opcode is passed to the PCM_OP_INV_POL_FORMAT_INVOICE policy opcode, where the
storage format is specified.

You can customize the events listed on an invoice as follows:

• Include noncurrency events. By default, BRM invoices list all events with a currency
balance impact greater than zero. Use the PCM_OP_INV_POL_PREP_INVOICE policy
opcode to include noncurrency events. For example, you can list hours of usage if you
track hours as part of a promotion.

• List fewer or more events. Use the PCM_OP_INV_POL_PREP_INVOICE policy opcode.

Chapter 15
Including Custom Data in Invoices

15-10

Note:

Using the PCM_OP_INV_POL_PREP_INVOICE policy opcode to control which
event information is displayed on invoices at invoicing time can affect
performance if you access information normally not stored in the
PIN_FLD_INVOICE_DATA field of the event. You will get better performance if
you define the event information to be stored for invoicing when the event is
created by using the PCM_OP_ACT_POL_SPEC_EVENT_CACHE policy
opcode.

You must modify this policy opcode to enable messaging through the Universal Messaging
Service (UMS).

Changing the Trial Billing Watermark
To distinguish the trial invoice from the regular invoice, a Trial Invoice watermark is added to
all the pages after the first page. You can change the watermark text by editing the
PIN_FLD_MESSAGE field's value in the PCM_OP_INV_POL_PREP_INVOICE flist.

Including the Time Zone in Invoices
By default, invoices do not show the customer's time zone. To show the time zone on an
invoice, do one of the following:

• If you are using an HTML invoice template, use the
PCM_OP_INV_POL_FORMAT_INVOICE_HTML policy opcode.

• If you are using an XSLT invoice template, edit the style sheet to use the
PIN_FLD_TIMEZONE_ADJ_END_T and PIN_FLD_RATED_TIMEZONE_ID fields instead
of the PIN_FLD_END_T field for the events.

Adding Soft Descriptors to Invoices
Customize PCM_OP_PYMT_POL_PRE_COLLECT to add soft descriptor information to an
invoice.

Note:

You can also customize PCM_OP_PYMT_POL_PRE_COLLECT to set a minimum
amount to charge.

This example shows how to retrieve the merchant name and a package descriptor. The
maximum entry is 22 characters including spaces. If the information is longer than 22
characters, it is truncated on the statement.

pin_flist_t*sub_flistp = NULL;
void*vp = NULL;

/*
 * For each element in the PIN_FLD_CHARGES array add the soft
 * descriptors.
 */

Chapter 15
Including the Time Zone in Invoices

15-11

/*
 * Add the merchant info substruct for the soft descriptors.
 */

sub_flistp = PIN_FLIST_SUBSTR_ADD(flistp, PIN_FLD_MERCHANT_INFO, ebufp);

/*
 * Add the merchant "doing business as" to the soft descriptors.
 */

vp = (void *) "Broadband Service";
PIN_FLIST_FLD_SET(sub_flistp, PIN_FLD_MERCHANT, vp, ebufp);

/*
 * Read the charge offer information from the account product array to
 * pick up the /plan object.
 * (Exercise left to reader.)
 */

/*
 * Read package description from the /plan object
 */
vp = (void *) NULL;
s_flistp = PIN_FLIST_CREATE(&ebuf);
vp = PIN_FLIST_FLD_GET(prod_flistp, PIN_FLD_PLAN_OBJ, 0, ebufp);
PIN_FLIST_FLD_SET(s_flistp, PIN_FLD_POID, vp, ebufp);
PIN_FLIST_FLD_SET(s_flistp, PIN_FLD_DESCR, NULL, ebufp);

/*
 * Read plan info.
 */
PCM_OP(ctxp, PCM_OP_READ_FLDS, 0, s_flistp, &r_flistp, ebufp);
vp = PIN_FLIST_FLD_GET(r_flistp, PIN_FLD_DESCR, 0, ebufp);

/*
 * Add the product name to the soft descriptors.
 */

PIN_FLIST_FLD_SET(sub_flistp, PIN_FLD_PROD_NAME, vp, ebufp);

/*
 * Add the merchant customer service phone number to the soft
 * descriptors.
 */

vp = (void *) "800-PORTAL1"
PIN_FLIST_FLD_SET(sub_flistp, PIN_FLD_PHONE, vp, ebufp);

Specifying Event Fields to Cache for Invoicing
You can improve performance by limiting the amount of information cached. However, when
retrieving information, it is quicker to read from a cached field than from the event table.

The PIN_FLD_INVOICE_DATA field in the /event object contains a cache of all fields that need
to be handled in invoicing. Use PCM_OP_ACT_POL_SPEC_EVENT_CACHE to define which
balance impact fields to cache for invoicing.

By default, the opcode caches the following PIN_FLD_BAL_IMPACTS array fields shown in
Table 15-4 in the base table field PIN_FLD_INVOICE_DATA.

Chapter 15
Specifying Event Fields to Cache for Invoicing

15-12

Note:

The PIN_FLD_INVOICE_DATA field is limited to 4000 bytes. If the event cache size
of the PIN_FLD_INVOICE_DATA field is greater than 4000 bytes, it is ignored, and
the invoice displays a 0 amount. For Oracle databases, you can increase the size of
the invoice_data column to work around this limitation.

Table 15-4 Cached PIN_FLD_BAL_IMPACTS Fields

Opcode Description

PIN_FLD_AMOUNT The account balance impact. The value can be positive or negative.

PIN_FLD_DISCOUNT The discount applied to the balance impact.

PIN_FLD_IMPACT_TYPE Balance impact type - rated by BRM rated-engine (0x1), pre-rated
(0x2), taxed (0x4), purchase order (0x8), re-rated(0x20), and
reverse_rated(0x40).

PIN_FLD_ITEM_OBJ Link to the item object affected by this event. Applies only to the
balance array element that impacts currency balances. (This may be
different from the PIN_FLD_ITEM_OBJ field in the base /event
object.)

PIN_FLD_QUANTITY The quantity applied. The number of units actually applied using this
pricing.

PIN_FLD_RATE_TAG Description of the charge pricing used. Same as PIN_FLD_DESCR in
the /rate object.

PIN_FLD_RESOURCE_ID Numeric value of the balance element that is impacted.

PIN_FLD_TAX_CODE Tax code for the rate used. When taxes do not apply, this field is set to
0.

If you remove these fields from PCM_OP_ACT_POL_SPEC_EVENT_CACHE and leave the
event cache turned on, there are no event details in the invoices.

Note:

If you do not use event caching, return a NULL pointer to the caller of
PCM_OP_ACT_POL_SPEC_EVENT_CACHE.

You can customize PCM_OP_ACT_POL_SPEC_EVENT_CACHE to cache additional balance
impact array fields.

If you turn off caching in the CM configuration file, these fields are read directly from the event
table, which slows performance.

Chapter 15
Specifying Event Fields to Cache for Invoicing

15-13

Note:

• If you remove the default fields of the PIN_FLD_BAL_IMPACTS array from
PCM_OP_ACT_POL_SPEC_EVENT_CACHE and leave the event cache turned
on, there are no event details in the invoices.

• The event cache must not exceed 4000 bytes. If you have a large number of
elements in the PIN_FLD_BAL_IMPACTS array, you must disable the
event_cache flag in the CM configuration file.

To enable or disable caching of the PIN_FLD_BAL_IMPACTS array, edit the CM configuration
file (BRM_home/sys/cm/pin.conf). The default is caching on. Any number except zero
enables caching.

- fm_inv event_cache 1

Decoding Cached Event Data for Invoicing
PCM_OP_INV_DECODE_INVOICE_DATA parses the event data being retrieved for an
invoice. This opcode retrieves the contents of the PIN_FLD_INVOICE_DATA field, parses the
data, and returns the decoded data in the output flist.

If you customized PCM_OP_INV_POL_SELECT to search for custom event data, you must
call PCM_OP_INV_DECODE_INVOICE_DATA.

The input flist contains the PIN_FLD_INVOICE_DATA field, which is a cached string that needs
to be decoded. It is limited to 4000 bytes. If the cache size is greater than 4000 bytes, it is
ignored.

The output flist contains the PIN_FLD_EXTENDED_INFO substruct, which contains the fields
decoded from the PIN_FLD_INVOICE_DATA field.

How Invoices Are Generated
The pin_inv_accts utility runs as part of your daily billing to create a regular invoice for each
account that is billed on that day. Additionally, you run pin_inv_accts to generate corrective
invoices for any corrective bills generated that day.

The pin_inv_accts utility runs twice to create these invoices: in the first run, invoices are
generated for nonpaying bill units in a hierarchy; in the second run, invoices are generated for
paying parent bill units and all nonhierarchical bill units. In both runs, this utility calls
PCM_OP_INV_MAKE_INVOICE to create an invoice. This is the first opcode that gets called
to create an invoice for a designated /bill object.

PCM_OP_INV_MAKE_INVOICE takes the POID of the bill object and calls
PCM_OP_INV_POL_SELECT to determine whether custom processing or default processing
is used to retrieve the events and items for billing. If custom processing is used, control is
handed to PCM_OP_INV_POL_SELECT, which returns the results after the search operations
are complete.

If default processing is used, PCM_OP_INV_MAKE_INVOICE performs the following steps:

• Retrieves the invoicing threshold value in the /config/business_params object to
determine whether invoices for nonpaying bill units should be generated or consolidated

Chapter 15
Decoding Cached Event Data for Invoicing

15-14

into the parent account invoice. If generated, the parent account's invoice will not contain
the nonpaying bill unit's invoice data.

• Retrieves all required information from the /bill, /account, /billinfo, and /payinfo objects.

– For regular invoices, it uses the PIN_FLD_INV_TYPE field value from the /payinfo
object to determine whether to generate a detailed invoice or a summary invoice. If the
value is 1, a summary invoice is created. If the value is 0 or NULL, a detailed invoice is
created.

– For corrective invoices, the opcode uses the information in the /payinfo object, the
PIN_INV_TYPE_OF_CORRECTIVE_INVOICE and
PIN_INV_CORRECTIVE__TYPE_TO_USE constants to determine whether it must
generate a summary or detailed version of Replacement Invoice or Invoice
Correction Letter.

– For each billable item in an invoice correction letter, PCM_OP_INV_MAKE_INVOICE
calls PCM_OP_AR_GET_ALLOCATED_AR_ITEMS which retrieves the allocated
special items and additional information to filter out billable items.

– It uses the PIN_FLD_AR_HIERARCHY_SIZE value to determine if multithreaded
processing should be used. This value defines the number of nonpaying child bill units
allowed for paying parent bill units. If the PIN_FLD_AR_HIERARCHY_SIZE value for a
bill exceeds the invoicing threshold, and the bill is for a paying parent bill unit,
PCM_OP_INV_MAKE_INVOICE retrieves the nonpaying bill units in that hierarchy by
using multiple threads and processes them first.

Note:

The -detail and -summary parameters of pin_inv_accts override the
PIN_FLD_INV_TYPE field value in the /payinfo object.

• Retrieves details about promotions purchased by the account, depending on the value of
the /config/business_params object's PromotionDetailDisplay entry.

• Recalculates the event's total amounts (PIN_FLD_TOTAL) including any sponsored
charges.

• Retrieves the currency information.

• If the invoice data comes from a custom application, reads the /config/invoice_data_map
object to determine how to parse the invoice data into an flist.

• Updates the PIN_FLD_INV_FLAGS value in the /invoice object, which determines the
type of invoice to generate.

• Creates the formatted invoice and stores it in the database.

• Calls PCM_OP_INV_POL_POST_MAKE_INVOICE to handle errors that occurred in
custom operations performed by PCM_OP_INV_POL_SELECT.

When the PCM_OPFLG_CALC_ONLY flag is set, PCM_OP_INV_MAKE_INVOICE returns the
invoice object but does not create the invoice object in the database. When the flag is not set,
it returns the POID of the invoice object in the database.

Chapter 15
How Invoices Are Generated

15-15

Note:

Bill Now and on-purchase billing do not generate invoices for nonpaying bill units
even when the threshold value is exceeded. The consolidated invoice for the parent
(paying) bill unit is always generated.

Customizing Invoice Search Operations
You can customize the search templates during the invoicing operation so not all search
operations are performed. To omit any of the search operations, or to modify the search for
specific events and items, you use PCM_OP_INV_POL_SELECT, which is called by
PCM_OP_INV_MAKE_INVOICE when generating invoices.

PCM_OP_INV_POL_SELECT enables you to create custom search templates to select which
bill items and events are retrieved for invoices. This improves performance during invoicing
because BRM performs only selective searches and does not have to process all accounts and
events in the defined invoicing period.

BRM uses the PIN_FLD_BOOLEAN field in the output flist of PCM_OP_INV_MAKE_INVOICE
to determine whether the invoices should be generated using the default item and event
processing in PCM_OP_INV_MAKE_INVOICE or the custom item and event processing
defined in PCM_OP_INV_POL_SELECT.

• PIN_BOOLEAN_FALSE indicates PCM_OP_INV_POL_SELECT is ignored and the output
flist to PCM_OP_INV_MAKE_INVOICE is the same as the flist
PCM_OP_INV_POL_SELECT received as input. This is the default.

• PIN_BOOLEAN_TRUE indicates PCM_OP_INV_POL_SELECT performs the processing.
The output flist to PCM_OP_INV_MAKE_INVOICE contains the input flist and the results
arrays generated by the custom processing. The output flist generally contains an array of
items specified for the invoice, an array of events pertaining to each item returned, and an
array of information retrieved from the event's invoice data cache.

PCM_OP_INV_MAKE_INVOICE uses the return flist from PCM_OP_INV_POL_SELECT to
format the invoice and store it in the database. If PCM_OP_INV_POL_SELECT was not used
for processing, it returns the input flist without changes.

If errors occur during the invoicing operations, use
PCM_OP_INV_POL_POST_MAKE_INVOICE to handle them. For example, you can
customize this opcode to return the event that caused the invoice failure. When
PCM_OP_INV_MAKE_INVOICE encounters errors returned by PCM_OP_INV_POL_SELECT,
it sends the error buffer as a string to PCM_OP_INV_POL_POST_MAKE_INVOICE.

Creating Custom Search Templates
To create a custom search template for invoicing, use PCM_OP_INV_POL_SELECT. BRM
uses the PIN_FLD_BOOLEAN value in the PCM_OP_INV_POL_SELECT output flist to
determine whether to use the default search functionality in PCM_OP_INV_MAKE_INVOICE
or the customized search functionality in this opcode.

If you customize PCM_OP_INV_POL_SELECT to search for custom event data, you must call
PCM_OP_INV_DECODE_INVOICE_DATA. See "Decoding Cached Event Data for Invoicing".

To customize the invoicing search operations, set up your opcode with the following
information:

Chapter 15
Customizing Invoice Search Operations

15-16

1. Specify the invoice template to use.

Note:

The invoice templates and style sheets that define the appearance of invoices
are defined in the /config/invoice_templates object. You can define a different
appearance for invoices. To load custom style sheets, run the
pin_load_invoice_template utility.

2. Copy the input flist to the output flist.

3. Define the search criteria for the search template. For example, create the conditions
under which A/R items and events are retrieved.

4. Search for the items defined in the search template.

5. Compile the results flist.

6. Append the retrieved items to the output flist.

7. Search for events corresponding to the retrieved items.

8. Append the retrieved events to the output flist.

9. Call PCM_OP_INV_DECODE_INVOICE_DATA to decode the PIN_FLD_ INVOICE_DATA
value of the /event object.

10. Send the result back to PCM_OP_INV_MAKE_INVOICE.

Note:

The events that are recorded on an invoice are defined in the /config/
invoice_events object. By default, this object includes A/R events, such as
payments and refunds, as well as cycle and usage events. You can create a /
config/invoice_events object for custom events so that the search operation
retrieves them and the specified attributes get displayed on the invoice. To
specify the events recorded on an invoice, run the pin_load_invoice_events
utility.

Example: Generating Invoices Based on Event Types
You can customize your database so that invoices contain a specific set of data based only on
events you want. For example, you can generate invoices for your system that contain only
adjustment and dispute information.

To do this:

1. In PCM_OP_INV_POL_SELECT, create the following search templates. In each template,
customize the opcode to retrieve the items and events listed.

Template 1

• /item/adjustment

• /event/billing/adjustment/event

• /event/billing/adjustment/item

• /event/billing/adjustment/tax_event

Chapter 15
Customizing Invoice Search Operations

15-17

Template 2

• /item/dispute

• /event/billing/dispute/event

• /event/billing/dispute/item

• /event/billing/dispute/tax_event

2. Append the search results from Template 1 and Template 2 to the output flist.

3. Customize the invoicing policy opcodes to display and print the A/R information retrieved
by the search templates.

Note:

To generate invoices on a per-bill-unit basis, rather than a system-wide basis,
you must extend the /payinfo storable class to define the account-specific
attributes. Then customize PCM_OP_INV_POL_SELECT to perform the
searches based on the flag values.

Configuring Error Checking for Customized Invoicing
To perform error checking for customized invoicing, use
PCM_OP_INV_POL_POST_MAKE_INVOICE. This opcode is called after the invoice commit
transaction to troubleshoot the errors detected by PCM_OP_INV_MAKE_INVOICE. If the /
invoice object POID value in the PCM_OP_INV_POL_POST_MAKE_INVOICE input flist is
type only, the invoice object was not created because errors occurred.

The PIN_FLD_ERROR_INFO array in the input and output flists contain information about the
error.

You can configure PCM_OP_INV_POL_POST_MAKE_INVOICE to capture the event that
caused the error and return it in the output flist.

Generating Trial Invoices
PCM_OP_BILL_MAKE_TRIAL_BILL calls PCM_OP_INV_MAKE_INVOICE to create the trial
invoice. This opcode stores the trial invoice in the primary database schema as an /invoice
object (POID type /invoice/trial) and returns an array of trial invoice POIDs for the invoices
that were created for the account specified in the input flist.
PCM_OP_BILL_MAKE_TRIAL_BILL opens a separate transaction to create the /invoice/trial
objects.

If the PIN_FLD_PREINVOICE_MODE field is present in the input flist and has a value of 1,
PCM_OP_BILL_MAKE_TRIAL_BILL does not call the invoicing opcode to create trial invoices
and only revenue assurance data is generated for the account. If the
PIN_FLD_PREINVOICE_MODE field is not present in the input flist or has a value of 0, trial
billing creates trial invoices.

Chapter 15
Generating Trial Invoices

15-18

Note:

If a start date is not provided in the input flist, PCM_OP_BILL_MAKE_TRIAL_BILL
performs trial billing for all billing cycles completed before the end date. For accounts
with skipped billing cycles, more than one trial invoice might be created.

How Trial Invoicing Works for Hierarchical Bill Units in BI Publisher 11g
You generate a trial invoice to validate billing charges and check for inaccuracies before
creating the final bill.

When you run the pin_trial_bill_accts utility to perform trial billing with BI Publisher,
PCM_OP_BILL_MAKE_TRIAL_BILL is called to create the trial invoices and collect revenue
assurance data for the trial billing run.

During trial invoicing for hierarchical bill units, PCM_OP_ BILL_MAKE_TRIAL_BILL passes the
PIN_FLD_INV_FLAGS field's value to this opcode. This opcode decides from the value
whether to create a nonpaying child or parent trial invoice:

• If the value is PIN_INV_TYPE_SUBORDINATE, a nonpaying child invoice is created.

• If the value is PIN_INV_TYPE_PARENT, a parent invoice is created.

In hierarchical bill unit billing, charges for the nonpaying child bill units are calculated first and
then rolled up to the parent bill unit as follows:

1. When the pin_trial_bill_accts utility is run with the -pay_type parameter and the payment
method subordinate ID 10007, PCM_OP_BILL_MAKE_TRIAL_BILL creates a /invoice/
trial object for each nonpaying child bill unit.

2. When the pin_trial_bill_accts utility is run with the -pay_type parameter and the specified
payment method parent ID, PCM_OP_BILL_MAKE_TRIAL_BILL is called to trial bill each
bill unit. PCM_OP_BILL_MAKE_TRIAL_BILL calculates the parent bill unit bill totals using
the nonpaying child totals from PCM_OP_BILL_MAKE_BILL and generates parent
invoices.

3. PCM_OP_BILL_MAKE_TRIAL_BILL passes the PIN_FLD_INV_FLAGS field's value to
PCM_OP_INV_MAKE_INVOICE. PCM_OP_INV_MAKE_INVOICE decides from the value
whether to create a nonpaying child or paying parent trial invoice:

• If the value is PIN_INV_TYPE_SUBORDINATE, a nonpaying child invoice is created.

• If the value is PIN_INV_TYPE_PARENT, a paying parent invoice is created.

4. PCM_OP_INV_MAKE_INVOICE calls PCM_OP_INV_POL_PREP_INVOICE, which
prepares invoice information prior to formatting and storing.

PCM_OP_INV_POL_PREP_INVOICE checks the value of the PIN_FLD_FLAGS field. If
the value is PIN_INV_TYPE_TRIAL_INVOICE plus PIN_INV_TYPE_SUBORDINATE,
PCM_OP_INV_POL_PREP_INVOICE adds the PIN_FLD_BILLS array and the
PIN_FLD_CHECK_SPLIT_FLAGS field, which are required to generate the trial invoices
for the nonpaying child's parent.

The PIN_FLD_BILLS array contains the following fields:

• PIN_FLD_START_T

• PIN_FLD_END_T

• PIN_FLD_AR_BILLINFO_OBJ

Chapter 15
Generating Trial Invoices

15-19

• PIN_FLD_DUE

• PIN_FLD_ADJUSTED

• PIN_FLD_WRITEOFF

• PIN_FLD_DISPUTED

• PIN_FLD_RECVD

The PIN_FLD_CHECK_SPLIT_FLAGS is used internally by Oracle Business Intelligence (BI)
Publisher to collate nonpaying child invoices into the final invoice.

About Associating Bill Units with a BI Publisher Invoice and Report
When the BRM-BI Publisher integration is enabled, BRM automatically associates bill units
with a BI Publisher report name and invoice template name during the account creation
process. When an account is created, BRM performs the following for each bill unit in the
account:

• Determines the BI Publisher invoice report and template that the bill unit qualifies for by
reading the /config/business_profile object. This object defines your invoice types, the
criteria a bill unit must meet for the invoice type, and the BI Publisher invoice report and
template names associated with the invoice type. For example, a /config/
business_profile might define the following in Table 15-5 for a regular bill:

Table 15-5 Business Profile Example

Invoice Type Criteria BI Publisher invoice Report and
Template Names

Monthly billing The /billinfo object's
PIN_FLD_WHEN field is set to
1.

monthly_invoice_report and
monthly_invoice

Quarterly billing The /billinfo object's
PIN_FLD_WHEN field is set to
3.

quarter_invoice_report and
quarter_invoice

• Creates an /associated_bus_profile object for the bill unit. This object stores the template
and report names, and type of invoice associated with invoicing for the bill unit, as an
element in a template array called PIN_FLD_TEMPLATE_ARRAY.

– PIN_FLD_TEMPLATE_NAME. The Template name configured in the pair key
Template_Name of the corresponding invoicing /config/business_profile object.

– PIN_FLD_REPORT_NAME. The Report name configured in the pair key
Report_Name of the corresponding invoicing /config/business_profile object.

– PIN_INV_TYPE. The type of invoice stored as PIN_INV_TYPE_REGULAR or
PIN_INV_TYPE_CORRECTIVE.

• Associates the bill unit with its /associated_bus_profile object by populating the /billinfo
object's PIN_FLD_ASSOC_BUS_PROFILE_OBJ_LIST field.

BRM creates an /associated_bus_profile object for each bill unit in an account by calling the
PCM_OP_CUST_CREATE_ASSOCIATED_BUS_PROFILE opcode. This opcode is called
internally by the PCM_OP_CUST_CREATE_BILLINFO opcode during the account creation
process.

Whenever invoice business profiles are modified in the /config/business_profile object, use
the PCM_OP_CUST_SET_ASSOCIATED_BUS_PROFILE opcode to update all related /
associated_bus_profile objects.

Chapter 15
Generating Trial Invoices

15-20

About the /associated_bus_profile Object
If you are using BRM-BI Publisher integration framework to generate invoice documents, at the
time of customer account creation, the /associated_bus_profile object is created. The /
associated_bus_profile object stores the invoicing business profile information for a /billinfo
object. The /associated_bus_profile object contains the layout template name in the
PIN_FLD_TEMPLATE _NAME field and the report name in the PIN_FLD_REPORT_NAME
field.

Creating /associated_bus_profile Objects
If the BRM-BI Publisher invoicing integration is enabled, during customer account creation,
internally the PCM_OP_CUST_CREATE_BILLINFO opcode calls the
PCM_OP_CUST_CREATE_ASSOCIATED_BUS_PROFILE opcode to create one /
associated_bus_profile object for each bill unit in the account.

Chapter 15
Generating Trial Invoices

15-21

16
Job Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) job opcode
workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Running BRM Applications

• Running Business Operation Jobs

• Managing Business Operations Job Templates

Opcodes Described in This Chapter
Table 16-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 16-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_JOB_EXECUTE

Note: The PCM_OP_JOB_EXECUTE opcode is supported
only by BRM 12.0.0.3.0 with Interim Patch 31426340 and
later releases, and PDC 12.0.0.3.0 with Interim Patch
31426374 and later releases.

Running Business Operation Jobs

Running BRM Applications

PCM_OP_JOB_PROCESS_TEMPLATE Managing Business Operations Job Templates

16-1

Running BRM Applications

Note:

Before calling this opcode, ensure that:

• The pin_job_executor process is listening for calls from
PCM_OP_JOB_EXECUTE. See "Configuring pin_job_executor to Listen for
Opcode Calls" in BRM System Administrator's Guide.

• The opcode is configured to run BRM applications. See "Configuring
PCM_OP_JOB_EXECUTE to Run BRM Applications" in BRM System
Administrator's Guide.

• The pin_job_executor process is running in the background. To start the
process, run this command from the $PIN_HOME/bin directory:

./start_pje

To run pin_virtual_time or another BRM utility, use the PCM_OP_JOB_EXECUTE opcode
and pass in the following data:

• The POID of the account calling the opcode.

• PIN_FLD_FLAG set to 0, which indicates to run the application in a non-job context.

• The utility command to run, such as my_custom_utility -f filename -v.

• The working directory, relative to $PIN_HOME, in which to run the utility command. For
example, for a working directory of $PIN_HOME/sys/cm, you would enter sys/cm.

Note:

Enter an absolute path to the working directory. Do not include /../ or ./ in the
path.

PCM_OP_JOB_EXECUTE then performs these operations:

1. Opens a non-job context.

2. Creates an /event/activity/job_request object for auditing purposes.

3. Validates that the specified utility is located under the $PIN_HOME directory.

4. Validates that the specified path to the working directory is an absolute path.

5. Validates that the working directory specified in the PIN_FLD_DIRECTORY input flist field
matches one of the allowed directories in the pin_job_executor utility's
Infranet.properties file.

6. Runs the utility commands passed in the opcode's input flist.

7. Returns the result of the utility's execution in the opcode's output flist.

Chapter 16
Running BRM Applications

16-2

The following shows a sample PCM_OP_JOB_EXECUTE input flist for running a BRM
application in a non-job context:

0 PIN_FLD_POID POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_FLAGS INT [0] 0
0 PIN_FLD_INSTRUCTION STR [0] "pin_virtual_time -m 2 01010000"
0 PIN_FLD_DIRECTORY STR [0] "apps/pin_billd"

In this example, PCM_OP_JOB_EXECUTE would run the following command from
the $PIN_HOME/apps/pin_billd directory:

pin_virtual_time -m 2 01010000

Running Business Operation Jobs

Note:

Before calling this opcode, ensure that:

• The pin_job_executor process is listening for calls from
PCM_OP_JOB_EXECUTE. See "Configuring pin_job_executor to Listen for
Opcode Calls" in BRM System Administrator's Guide.

• The pin_job_executor process is running in the background. To start the
process, run this command from the BRM_home/bin directory:

./start_pje

To run business operations jobs, such as billing, invoicing, and payment collections, use the
PCM_OP_JOB_EXECUTE opcode and pass in the following data:

• The POID of the account calling the opcode.

• PIN_FLD_FLAG set to 1, which indicates to run applications within a job context.

• The parameters and values to run, provided as a set of key-value pairs in the
PIN_FLD_ARGS array. Table 16-2 lists the supported parameters.

Table 16-2 PCM_OP_JOB_EXECUTE Parameters for Business Operations Jobs

Parameter Description Mandatory

job_template Specifies the ID of the job template to run.

The job template contains information about the utility that
is run as well as the database schema numbers.

Yes

request_id Specifies the job request ID to use. Yes

start Specifies the start time of the job.

The default is immediately.

No

end Specifies the end time of the job. Yes

job_id Re-runs the job with the specified job ID. No

This opcode is called by Business Operations Center.

PCM_OP_JOB_EXECUTE then performs these operations:

Chapter 16
Running Business Operation Jobs

16-3

1. Opens a job context.

2. Calls the pin_job_executor utility with the parameters passed in the PIN_FLD_ARGS
array.

3. The pin_job_executor utility does the following:

a. Extracts the database schema numbers from the specified /job_template object.

b. Creates a /job/boc object for each database schema.

c. For each /job/boc object, a separate thread runs the business operations utility
specified in the /job_template object:

• For billing jobs, it runs the pin_bill_accts utility.

• For payment collections jobs, it runs the pin_collect utility.

• For invoicing jobs, it runs the pin_inv_accts utility.

• For general ledger report jobs, it runs the pin_ledger_report utility.

• For synchronizing pricing data, it runs the pin_export_price utility.

• For refund jobs, it runs the pin_refund utility.

• For custom jobs, it runs the utility that you configure.

d. For each /job/boc object, generates an /event/notification/job_complete event.

4. Returns the result of the job and the POID of the /job/boc object in the opcode's output
flist.

The following shows a sample PCM_OP_JOB_EXECUTE input flist:

0 PIN_FLD_POID POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_FLAGS INT [0] 1
0 PIN_FLD_ARGS ARRAY [0] allocated 2, used 2
1 PIN_FLD_NAME STR [0] "job_template"
1 PIN_FLD_VALUE STR [0] "119188"
0 PIN_FLD_ARGS ARRAY [1] allocated 2, used 2
1 PIN_FLD_NAME STR [0] "request_id"
1 PIN_FLD_VALUE STR [0] "pje_js_1"
0 PIN_FLD_ARGS ARRAY [2] allocated 2, used 2
1 PIN_FLD_NAME STR [0] "end"
1 PIN_FLD_VALUE STR [0] "10/08/2021"

Managing Business Operations Job Templates
To create, modify, or delete a business operations job template, use the
PCM_OP_JOB_PROCESS_TEMPLATE opcode and pass in the following data:

• The POID of the /job_template object.

• The POID of the /account object that is calling the opcode.

• The database schema on which to run the business operations job: 0 specifies all
schemas, 1 specifies the primary schema, 2 specifies the second schema, and so on.

• The name of the program that is calling the opcode.

• The type of business operations job to run such as billing, collections, or invoicing.

• The action to perform on the job template: create, modify, or delete.

Chapter 16
Managing Business Operations Job Templates

16-4

• The name of the Business Operations Center user.

• Other optional configuration information.

When called, PCM_OP_JOB_PROCESS_TEMPLATE validates the database schema number
passed in the input flist and then creates, modifies, or deletes the specified /job_template
object. By default, this opcode is called by Business Operations Center.

Chapter 16
Managing Business Operations Job Templates

16-5

17
Loan Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) loan
opcode workflows.

For information about the loan opcodes, see "Loan FM Standard Opcodes" and "Loan FM
Policy Opcodes".

Topics in this document:

• Opcodes Described in This Chapter

• Granting a Loan

• Granting a Channel Loan

• Resetting a Loan Cycle and Other Loan Profile Fields

• Checking a Customer's Eligibility for a Loan

• Retrieving Loan Information

• Creating and Modifying a Customer's Loan Profile

• Customizing Loan Recovery

Opcodes Described in This Chapter
Table 17-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 17-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_CUST_CREATE_PROFILE Creating and Modifying a Customer's Loan Profile

PCM_OP_CUST_MODIFY_PROFILE Creating and Modifying a Customer's Loan Profile

PCM_OP_LOAN_APPLY_LOAN Granting a Loan

PCM_OP_LOAN_ELIGIBILITY Checking a Customer's Eligibility for a Loan

PCM_OP_LOAN_GET_LOAN Retrieving Loan Information

PCM_OP_LOAN_POL_ELIGIBILITY Customizing Loan Eligibility Checks

PCM_OP_LOAN_POL_PRE_APPLY_LOAN Customizing Loan Grants

PCM_OP_LOAN_POL_PRE_RECOVER_LOAN Customizing Loan Recovery

PCM_OP_LOAN_POL_RESET_CYCLE Resetting a Loan Cycle and Other Loan Profile Fields

17-1

Table 17-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_RATE_POL_POST_RATING Granting a Channel Loan

Granting a Loan
To grant a loan to a customer, use PCM_OP_LOAN_APPLY_LOAN. This opcode is not called
internally by BRM, you must configure API calls from external systems to call this opcode.

This opcode does the following:

1. Takes at minimum an account POID as input. You can optionally provide locale, amount,
and service parameters. If the account POID alone is provided, rather than the full account
object, the account object is retrieved using the service object or service type and
MSISDN.

2. Calls the PCM_OP_CUST_FIND_PROFILE opcode to retrieve the customer's loan profile.

3. If PIN_FLD_UNIT and PIN_FLD_FREQUENCY are specified in the /profile/loan object
and the current date is later than the timestamp in PIN_FLD_CYCLE_T, calls the
PCM_OP_LOAN_POL_RESET_CYCLE opcode to reset the loan cycle.

4. Calls the PCM_OP_LOAN_ELIGIBILITY opcode to check if the customer is eligible for the
requested loan.
If the customer is ineligible, the loan is rejected and a response containing the rejection
reason is returned to the calling service.

If the customer is eligible, the workflow continues.

5. If there is a fee configured in the /config/loan object specified in the /profile/loan, calls
PCM_OP_ACT_USAGE to create the /event/billing/loan_fee event and /item/loan_fee
as a non-billable open item.

6. Calls PCM_OP_ACT_USAGE to create /event/billing/loan_credit and /event/billing/
loan_debit events and /item/loan_credit and /item/loan_debit items.
The credit represents the cash granted and the debit represents the loan asset in a form of
double-entry bookkeeping. This allows the customer's account balance to remain at 0
while their credit limit is temporarily increased by the loan amount.

The gl_id and gl_accts fields are updated in the reasons.en_US and pin_glid files for the
events.

7. If the input flist contains a noncurrency resource specified in the
PIN_FLD_RESOURCE_ID field, creates an /event/billing/loan_grant event to grant the
noncurrency resource configured for the event in PDC or Pricing Center.

8. Calls the PCM_OP_BILL_SET_LIMIT_AND_CR opcode to set the amount owed for the
loan in the balance group in the PIN_FLD_OUSTANDING_AMOUNT field to the sum of:

• The loan amount

• The loan service fee

• The tax on the loan service fee

• The tax on the loan amount

9. Calls PCM_OP_CUST_MODIFY_PROFILE to update the loan profile to reflect the total
loan amount and the number of loans granted.

Chapter 17
Granting a Loan

17-2

10. The output flist containing information about the loan granted, including amount, resource
ID, and events, is returned to the calling service.

Customizing Loan Grants
To customize loan grants, use the PCM_OP_LOAN_POL_PRE_APPLY_LOAN policy opcode.
By default, this policy opcode does nothing.

This policy opcode is called by PCM_OP_LOAN_APPLY_LOAN.

Granting a Channel Loan
To grant a channel loan for a package without considering or consuming a customer's available
balance, customize the PCM_OP_RATE_POL_POST_RATING policy opcode to call
PCM_OP_LOAN_APPLY_LOAN and grant a loan for the price of the package purchased by
subscription request from your channel.

For example, you can indicate that the package should be purchased using a loan with the
PIN_FLD_FLAGS field in the input flist for PCM_OP_RATE_POL_POST_RATING, then use
PCM_OP_RATE_POL_POST_RATING to get the package's rated impact for the loan amount.

Resetting a Loan Cycle and Other Loan Profile Fields
You use loan cycles when limiting how many times a loan can be granted and total amounts
that can be granted.

To reset a loan cycle, use PCM_OP_LOAN_POL_RESET_CYCLE. This opcode is called by
the PCM_OP_LOAN_APPLY_LOAN opcode.

This opcode does the following:

1. Takes at minimum an account POID as input. You can optionally provide a service object
as well.

2. Calls the PCM_OP_CUST_FIND_PROFILE opcode to retrieve the customer's loan profile.

3. Uses the offset and unit from the PCM_OP_CUST_FIND_PROFILE output flist to calculate
the next loan cycle date.

4. Validates that the current date is later than the timestamp in PIN_FLD_CYCLE_T in the /
profile/loan object retrieved.

5. Calls the PCM_OP_CUST_MODIFY_PROFILE opcode to set the following fields in the /
profile/loan object:

• PIN_FLD_CREDIT_AMOUNT: Resets to 0

• PIN_FLD_NUMBER_OF_LOANS: Resets to 0

• PIN_FLD_CYCLE_T: Sets to newly calculated date

You can also customize this policy opcode to reset other fields in the /profile/loan object.

Checking a Customer's Eligibility for a Loan
To check whether a customer is eligible for a loan, use PCM_OP_LOAN_ELIGIBILITY. This
opcode is called by PCM_OP_LOAN_APPLY_LOAN.

This opcode does the following:

Chapter 17
Granting a Channel Loan

17-3

1. Takes at minimum an account POID as input. You can optionally provide locale, amount,
and service parameters.

2. Determines the account's location in one of the following ways:

• Using the value provided in the LOCALE field

• Looking the location up using the ZONEMAP_TARGET and ZONEMAP_NAME fields.
If ZONEMAP_NAME isn't also specified, the name is taken from the
DefaultZoneMapName Subscription business parameter.

• If neither locale nor zonemap details are included in the input flist, the city, state, and
zipcode specified in the customer's PIN_FLD_NAMEINFO array are used.

3. Determines if the account is eligible by confirming that all of the following are true:

• The sum of PIN_FLD_CREDIT_AMOUNT in /profile/loan and the loan amount
requested doesn't exceed the fixed or scaled maximum configured in /config/loan

• The number in PIN_FLD_NUMBER_OF_LOANS in /profile/loan isn't already equal to
PIN_FLD_QUANTITY in /config/loan.

• The account's location is eligible, depending on the configuration in
PIN_FLD_LOCATION_MODE and the LOCATIONS array in /config/loan.

• The amount requested is greater than PIN_FLD_LOAN_MINIMUM in /config/loan.

• The account's age is greater than the amount specified in PIN_FLD_AGE and
PIN_FLD_UNIT in /config/loan.

• The account's status is active.

4. Calls the PCM_OP_LOAN_POL_ELIGIBILITY policy opcode.

5. Returns a response that includes one of the reason codes in Table 17-2.

Table 17-2 Reason Codes

Code Desription

0 Success. The account is eligible for the loan.

1 Failure. The maximum loan amount has been exceeded.

2 Failure. A loan has already been granted the maximum number of
times.

3 Failure. The account's location is not eligible for the loan.

4 Failure. An external entity (called by the policy opcode) rejected the
loan request.

5 Failure. The loan amount is less than the configured minimum.

6 Failure. The account has not been active long enough.

7 Failure. The account's status is inactive.

8 Failure. Another error occurred, such as missing or invalid
information.

9 Failure. The customer has opted out of loans.

10 Failure. The customer has met or exceeded the maximum number of
active loans.

6. Generates one of the following events:

• /event/notification/loan_reject

• /event/notification/loan_success

Chapter 17
Checking a Customer's Eligibility for a Loan

17-4

Customizing Loan Eligibility Checks
To customize loan eligibility checks before they are finalized, use the
PCM_OP_LOAN_POL_ELIGIBILITY policy opcode. By default, this policy opcode does
nothing.

This policy opcode is called by PCM_OP_LOAN_ELIGIBILITY.

Retrieving Loan Information
To retrieve loan information, use PCM_OP_LOAN_GET_LOAN. This opcode is not called
internally by BRM, you must configure API calls from external systems to call this opcode.

This opcode takes an account POID as input. You can optionally set the value of
PIN_FLD_FLAGS to 0 to return only active loans or 1 to return all loans, active and past.

The output flist contains

• Event arrays for each loan that list:

– The POIDs of the /event/billing/loan_debit event, /event/billing/loan/fee event, and
associated service

– The total outstanding amount that has yet to be paid for that loan

– The amount originally loaned

– The loan fee

– The loan tax

– The loan type

– The loan channel

• The maximum loan amount configured in the /profile/loan object

• The amount available to be loaned, calculated based on the maximum configured in the /
profile/loan object or the /config/loan object and the current total outstanding amount for
all active loans. If the outstanding amount is greater than the maximum, the amount
available is set to 0.

Creating and Modifying a Customer's Loan Profile
You create a loan profile for customers to connect the account or service to a loan
configuration. When the customer is granted a loan, the information for that cycle, such as
amount loaned and number of loans, is stored in the loan profile.

To create a loan profile, use PCM_OP_CUST_CREATE_PROFILE. This opcode is called by
PCM_OP_CUST_COMMIT_CUSTOMER. To modify the fields in a loan profile, use
PCM_OP_CUST_MODIFY_PROFILE. See "Managing and Customizing Profiles" and
"Creating Accounts" for more information about using these opcodes generally.

The input flist for creating a loan profile requires, at minimum, an account object, profile name
(which corresponds to the name of the /config/loan object you are connecting the profile to),
the maximum number of active loans, eligibility, and loan cycle frequency. You can optionally
specify:

• Service details

Chapter 17
Retrieving Loan Information

17-5

• Thresholds for offering loans (these are stored in the credit profile of the associated
balance group)

• Loan repayment details

• Maximum loan amounts (which overrides the fixed or scaled maximum amount specified in
the /config/loan object)

For example, to create a profile:

0 PIN_FLD_POID POID [0] 0.0.0.1 /profile/loan -1 0
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.0 /account -1
0
0 PIN_FLD_SERVICE_OBJ POID [0] 0.0.0.0 /service/
telco/gsm -1 0
0 PIN_FLD_SERVICE_ID STR [0] "0049100098"
0 PIN_FLD_PROFILES ARRAY [0] allocated 20, used 7
1 PIN_FLD_PROFILE_OBJ POID [0] 0.0.0.1 /profile/
loan -1 0
1 PIN_FLD_INHERITED_INFO SUBSTRUCT [0] allocated 20, used 5
2 PIN_FLD_LOAN_INFO SUBSTRUCT [0] allocated 20,used 4
3 PIN_FLD_EXTERNAL_ELIGIBILITY INT [0] 1
3 PIN_FLD_PROFILE_NAME STR [0] "Loan Configuration
1"
3 PIN_FLD_FREQUENCY INT [0] 30
3 PIN_FLD_UNIT ENUM [0] 4
3 PIN_FLD_OPT_LOAN INT [0] 1
3 PIN_FLD_MAX_ACTIVE_LOANS INT [0] 3
3 PIN_FLD_REPAYMENT_DAYS INT [0] 14
3 PIN_FLD_PULLBACK INT [0] 1
3 PIN_FLD_LOAN_THRESHOLDS_FIXED STR [0] "|15|20"
2 PIN_FLD_LIMIT ARRAY [0] allocated 20,used 4
3 PIN_FLD_VALID_FROM TSTAMP [0] (1659423601) Tue
Aug 2 00:00:01 2022
3 PIN_FLD_CREDIT_LIMIT DECIMAL [0] 100

This example specifies the following details:

• Loan cycle details: PIN_FLD_FREQUENCY and PIN_FLD_UNIT specify that the loan
cycle resets every 30 days.

• Threshold details: PIN_FLD_LOAN_THRESHOLDS_FIXED field specifies to offer a loan
when the customer's balance reaches 20, then 15. These fields can be set for packages at
design time and updated for individual customers in their loan profiles.

• Repayment details:

– PIN_FLD_REPAYMENT_DAYS specifies that the customer must pay the loan back in
14 days.

– PIN_FLD_PULLBACK specifies that any outstanding balance that remains after 14
days will be pulled from the customer's available balance.

• Maximum loan details:

– PIN_FLD_MAX_ACTIVE_LOANS specifies that the customer can have a maximum of
3 active loans at a time.

– The PIN_FLD_LIMIT array specifies a maximum loan amount of 100, starting on
August 2, 2022. This overrides any maximums specified in the /config/loan object for
the associated loan.

Chapter 17
Creating and Modifying a Customer's Loan Profile

17-6

To modify the same profile:

0 PIN_FLD_POID POID [0] 0.0.0.1 /profile/loan 239534 0
0 PIN_FLD_PROFILES ARRAY [0] allocated 20, used 7
1 PIN_FLD_PROFILE_OBJ POID [0] 0.0.0.1 /profile/loan 239534 0
1 PIN_FLD_INHERITED_INFO SUBSTRUCT [0] allocated 20, used 5
2 PIN_FLD_LOAN_INFO SUBSTRUCT [0] allocated 10, used 4
3 PIN_FLD_LOAN_THRESHOLDS INT [0] 80
2 PIN_FLD_LIMIT ARRAY [0] allocated 20,used 4
3 PIN_FLD_VALID_FROM TSTAMP [0] (1675324802) Thu Feb 2 00:00:02
2023
3 PIN_FLD_CREDIT_LIMIT DECIMAL [0] 200

In this example:

• PIN_FLD_LOAN_THRESHOLDS specifies to offer a loan when 80% of the customer's
balance is consumed.

• The PIN_FLD_LIMIT array adds a new maximum loan amount of 200, starting February 2,
2023.

Customizing Loan Recovery
To customize the loan recovery process, use the
PCM_OP_LOAN_POL_PRE_RECOVER_LOAN policy opcode. By default, this policy opcode
does nothing.

This policy opcode is called by internal loan recovery opcodes, before transferring balances
from payment or balance transfer events to loan items.

Chapter 17
Customizing Loan Recovery

17-7

18
Notification Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) notification
opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Creating Notification Specifications

• Modifying Notification Specifications

• Retrieving Notification Specifications

• Managing In-Advance and Post-Expiration Notifications

• Calculating the Notification Delivery Time

• Verifying Customer Opt-In Preferences

• Retrieving Last Notification Time and Offset

• Customizing Notifications

For more information about notification specifications, see "Sending Messages to Customers
through External Notification Applications" in BRM Managing Customers.

Opcodes Described in This Chapter
Table 18-1 describes the notification management opcodes.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 18-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_NOTIFICATION_CALC_DELIVERY_TIME Calculating the Notification Delivery Time

PCM_OP_NOTIFICATION_CREATE_SPECIFICATION Creating Notification Specifications

PCM_OP_NOTIFICATION_GET_LASTNOTIFY_TSTAMP Retrieving Last Notification Time and Offset

PCM_OP_NOTIFICATION_GET_SPECIFICATION Retrieving Notification Specifications

PCM_OP_NOTIFICATION_MODIFY_SPECIFICATION Modifying Notification Specifications

PCM_OP_NOTIFICATION_POL_GET_SPECIFICATION Customizing Notification Retrieval

PCM_OP_NOTIFICATION_POL_PREP_SPECIFICATION Preparing Notification Specifications

18-1

Table 18-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_NOTIFICATION_POL_VALID_SPECIFICATION Validating Notification Specifications

PCM_OP_NOTIFICATION_PROCESS_NOTIFICATION Managing In-Advance and Post-Expiration Notifications

PCM_OP_NOTIFICATION_VERIFY_PUBLISH_REQUIRED Verifying Customer Opt-In Preferences

Creating Notification Specifications
Use the PCM_OP_NOTIFICATION_CREATE_SPECIFICATION opcode to create notification
specifications, defining the customers who can receive messages through an external
notification application and how and when to deliver the messages. This opcode creates a /
config/notification_spec object.

You set the notification specification name, associated business event, validity dates, silent
period mode, notification type, aggregation mode, opt-in type, and offset value by providing the
information in the input flist.

You specify to send notifications in advance or after an event occurs by including the following
in the input flist:

• PIN_FLD_NOTIFICATION_SPEC.PIN_FLD_NOTIFICATION_TYPE: The type of
notification set to in advance (1) or after an event occurs (5).

• PIN_FLD_ADVANCE_NOTIFICATIONS.PIN_FLD_OFFSET_VALUE: The amount of time
before or after an event to send a notification, such as 5 or 10.

• PIN_FLD_ADVANCE_NOTIFICATIONS.PIN_FLD_OFFSET_UNIT: The unit for the offset
value, which can be minutes (2), hours (3), days (4), months (5), years (6), or weeks (10).

Set the input flist spec under the
PIN_FLD_NOTIFICATION_SPEC.PIN_FLD_AGGREGATE_MODE: Whether to send individual
notifications for each triggering event (0) or aggregate all expiring candidates' details at
respective search level

The PCM_OP_NOTIFICATION_CREATE_SPECIFICATION opcode does the following:

1. Validates the mandatory parameters in the input flist.

2. Retrieves the optional fields from the database and sets them in the input flist.

3. Calls the PCM_OP_NOTIFICATION_POL_VALID_SPECIFICATION policy opcode to
validate the input parameters. See "Validating Notification Specifications".

4. Searches the database for an existing /config/notification_spec object with the same
notification specification name. If one already exists, the opcode sends an error.

5. Calls the PCM_OP_NOTIFICATION_POL_PREP_SPECIFICATION policy opcode to
prepare the input parameters. See "Preparing Notification Specifications".

6. Calls the PCM_OP_CREATE_OBJ opcode to create the /config/notification_spec object.

Modifying Notification Specifications
Use the PCM_OP_NOTIFICATION_MODIFY_SPECIFICATION opcode to modify attributes in
a specified notification specification (/config/notification_spec object).

Chapter 18
Creating Notification Specifications

18-2

Note:

You can modify any field in the /config/notification_spec object except
PIN_FLD_NAME and PIN_FLD_EVENT_NAME.

The PCM_OP_NOTIFICATION_MODIFY_SPECIFICATION opcode does the following:

• Validates the mandatory parameters in the input flist.

• Calls the PCM_OP_NOTIFICATION_POL_VALID_SPECIFICATION policy opcode to
perform validations. See "Validating Notification Specifications".

• Searches for the /config/notification_spec object that matches the specified POID.

• Calls the PCM_OP_WRITE_FLDS opcode to update the /config/notification_spec object
with the fields provided in the input flist.

Retrieving Notification Specifications
Use the PCM_OP_NOTIFICATION_GET_SPECIFICATION opcode to retrieve an existing
notification specification (/config/notification_spec object).

If you pass in an object POID, notification specification name, status, event name, or delivery
description in the input flist, the opcode returns the appropriate /config/notification_spec.
Otherwise, the opcode returns all /config/notification_spec objects in the BRM database.

The PCM_OP_NOTIFICATION_GET_SPECIFICATION opcode does the following:

• Validates the mandatory parameters in the input flist.

• Calls the PCM_OP_NOTIFICATION_POL_GET_SPECIFICATION policy opcode to
perform any customizations before retrieving the notification specification. See
"Customizing Notification Retrieval".

• Calls the PCM_OP_SEARCH opcode to find the /config/notification_spec objects and
prepares the output flist.

• Returns the POID of one or more /config/notification_spec objects in the
PIN_FLD_RESULTS output flist array.

Managing In-Advance and Post-Expiration Notifications
Use the PCM_OP_NOTIFICATION_PROCESS_NOTIFICATION opcode to manage in-
advance and post-expiration notifications. This opcode is called by the pin_gen_notifications
utility.

PCM_OP_NOTIFICATION_PROCESS_NOTIFICATION is a wrapper opcode that calls other
opcodes to create in-advance and post-expiration notifications. It does the following:

• Calls the PCM_OP_NOTIFICATION_VERIFY_PUBLISH_REQUIRED opcode to verify that
the business event should be published. See "Verifying Customer Opt-In Preferences".

• Determines whether to send the notification now or schedule it for later. If the notification is
scheduled for later, it creates a /schedule/notification object.

• Calls the opcode specified in the PIN_FLD_OPCODE input flist field, which generates the
notification event.

Chapter 18
Retrieving Notification Specifications

18-3

Note:

The field passes in the opcode number. To find an opcode's number, see the
opcode header files in BRM_home/include/ops.

Calculating the Notification Delivery Time
Use the PCM_OP_NOTIFICATION_CALC_DELIVERY_TIME opcode to calculate the
customer's message delivery time. This opcode is called by the pin_gen_notifications utility.

The PCM_OP_NOTIFICATION_CALC_DELIVERY_TIME opcode calculates the delivery time
based on the preferred time, scheduled time, silent period, and silent day settings. See "About
Message Delivery Times" in BRM Managing Customers for more information about these
settings. If the delivery time is scheduled for the future, the opcode returns the
PIN_FLD_WHEN_T output flist field set to the delivery timestamp.

Verifying Customer Opt-In Preferences
Use the PCM_OP_NOTIFICATION_VERIFY_PUBLISH_REQUIRED opcode to verify a
customer's opt-in or opt-out preferences for receiving notification messages.

The PCM_OP_NOTIFICATION_VERIFY_PUBLISH_REQUIRED opcode does the following:

• Checks the customer's opt-in and opt-out preferences by reading the PIN_FLD_NAME
field set to the following in the customer's /profile/subscriber_preferences object:
NotifyOptInList and NotifyOptOutList.

If the /profile/subscriber_preferences object does not include the fields, it checks the
value of the PIN_FLD_NOTIFY_OPT_TYPE field in the /config/notification_spec object.

• Returns the PIN_FLD_DELIVERY_STATUS output flist field set to one of the following:

– 1: Specifies to publish the business event to the Kafka server

– 0: Specifies not to publish the business event

Retrieving Last Notification Time and Offset
Use the PCM_OP_NOTIFICATION_GET_LASTNOTIFY_TSTAMP opcode to determine if an
event's due date and time occur during the customer's message delivery window. This is a
helper opcode that is called by internal opcodes before they create the actual notification
event.

The PCM_OP_NOTIFICATION_GET_LASTNOTIFY_TSTAMP opcode returns the following
fields in the PIN_FLD_DATES output flist array:

• PIN_FLD_DUE_T set to the event's due date and time

• PIN_FLD_STATUS set to one of the following:

– 0: Specifies that the due date timestamp does not occur during the delivery window

– 1: Specifies that the due date timestamp does occur during the delivery window

Chapter 18
Calculating the Notification Delivery Time

18-4

Customizing Notifications
You can customize notifications before they are sent to external applications by using the
following opcodes:

• PCM_OP_NOTIFICATION_POL_GET_SPECIFICATION. See "Customizing Notification
Retrieval"

• PCM_OP_NOTIFICATION_POL_PREP_SPECIFICATION. See "Preparing Notification
Specifications".

• PCM_OP_NOTIFICATION_POL_VALID_SPECIFICATION. See "Validating Notification
Specifications".

Customizing Notification Retrieval
Use the PCM_OP_NOTIFICATION_POL_GET_SPECIFICATION policy opcode to validate and
implement any customizations while retrieving notification specifications. This policy opcode is
called by the PCM_OP_NOTIFICATION_GET_SPECIFICATION opcode.

By default, the PCM_OP_NOTIFICATION_POL_GET_SPECIFICATION opcode does the
following, but you can customize it to do more:

• Validates the mandatory parameters passed in the input flist.

• Returns errors if any parameters are invalid.

Preparing Notification Specifications
Use the PCM_OP_NOTIFICATION_POL_PREP_SPECIFICATION policy opcode to prepare
the fields for the notification specification and implement any customizations while creating the
notification specifications. This opcode is called by the
PCM_OP_NOTIFICATION_CREATE_SPECIFICATION opcode.

For more information about the PREP and VALID opcodes, see "About the PREP and VALID
Opcodes" in BRM Developer’s Guide.

Validating Notification Specifications
Use the PCM_OP_NOTIFICATION_POL_VALID_SPECIFICATION policy opcode to validate
and implement any customizations while creating notification specifications. This policy opcode
is called by the PCM_OP_NOTIFICATION_CREATE_SPECIFICATION opcode.

The PCM_OP_NOTIFICATION_POL_VALID_SPECIFICATION policy opcode does the
following:

• Validates the mandatory parameters in the input flist.

• Calls the PCM_OP_SEARCH opcode to search for duplicate notification specification
names.

• Validates that all fields are in the required format.

• Does one of the following:

– If it encounters BRM system-related errors, sets the PIN_FLD_RESULT output flist
field to FAIL, shares the designated error message, and clears the Error Buf to avoid
any break in the flow.

Chapter 18
Customizing Notifications

18-5

– If it does not encounter errors, reviews other logical areas for failures and sets the
PIN_FLD_RESULT output flist field to PASS.

Chapter 18
Customizing Notifications

18-6

19
Number Manager and SIM Card Manager
Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) Number
Manager and SIM Card Manager opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Number Manager Opcodes

• SIM Card Manager Opcodes

Opcodes Described in This Chapter
Table 19-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 19-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_SCHEDULE_CREATE Managing Number Quarantine

PCM_OP_ACT_SCHEDULE_DELETE Managing Number Quarantine

PCM_OP_CUST_POL_CANONICALIZE Creating Blocks of Numbers

PCM_OP_DEVICE_ASSOCIATE Customizing How Numbers Are Associated with Services

PCM_OP_DEVICE_CREATE Creating Blocks of Numbers

Customizing Telephone Number Attributes

Creating SIM Cards

Customizing SIM Card Validation

PCM_OP_DEVICE_POL_ASSOCIATE Customizing SIM Card Service Association

PCM_OP_DEVICE_POL_DELETE Deleting a Number

PCM_OP_DEVICE_SET_ATTR Modifying Blocks of Numbers

Managing Number Quarantine

Customizing How a Number Can Be Changed

19-1

Table 19-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_DEVICE_SET_STATE Managing Number Quarantine

Customizing How Numbers Are Associated with Services

Provisioning SIM Cards

Customizing SIM Card Service Association

PCM_OP_NUM_CREATE_BLOCK Creating Blocks of Numbers

Customizing Number Normalization

PCM_OP_NUM_MODIFY_BLOCK Creating Blocks of Numbers

Modifying Blocks of Numbers

PCM_OP_NUM_POL_CANONICALIZE Creating Blocks of Numbers

Modifying Blocks of Numbers

Customizing Number Normalization

Customizing How a Number Can Be Changed

PCM_OP_NUM_POL_DEVICE_ASSOCIATE Customizing How Numbers Are Associated with Services

PCM_OP_NUM_POL_DEVICE_CREATE Customizing Telephone Number Attributes

PCM_OP_NUM_POL_DEVICE_DELETE Deleting a Number

PCM_OP_NUM_POL_DEVICE_SET_ATTR Customizing How a Number Can Be Changed

PCM_OP_NUM_PORT_IN Managing Number Portability

PCM_OP_NUM_PORT_OUT Managing Number Portability

PCM_OP_NUM_QUARANTINE Managing Number Quarantine

PCM_OP_NUM_SPLIT_BLOCK Splitting Blocks of Numbers

PCM_OP_SIM_CREATE_ORDER Creating and Updating SIM Card Orders

PCM_OP_SIM_DEVICE_PROVISION Provisioning SIM Cards

PCM_OP_SIM_POL_DEVICE_ASSOCIATE Customizing SIM Card Service Association

PCM_OP_SIM_POL_DEVICE_CREATE Customizing SIM Card Validation

PCM_OP_SIM_POL_DEVICE_SET_ATTR Customizing SIM Card Validation

Customizing SIM Card Number Changes

PCM_OP_SIM_POL_ORDER_CREATE Creating SIM Cards

PCM_OP_SIM_PROCESS_ORDER_RESPONSE Creating SIM Cards

PCM_OP_SIM_UPDATE_ORDER Creating and Updating SIM Card Orders

Creating SIM Cards

Number Manager Opcodes
See the following topics:

• Creating Blocks of Numbers

• Modifying Blocks of Numbers

• Splitting Blocks of Numbers

• Managing Number Quarantine

• Managing Number Portability

Chapter 19
Number Manager Opcodes

19-2

• Customizing Number Manager

Creating Blocks of Numbers
To create a block of numbers, use PCM_OP_NUM_CREATE_BLOCK. This opcode creates a /
block object and the specified number of telephone numbers, created as /device/num objects.

The opcode identifies whether you want to modify the block or extend/shrink the block. If the
value of the PIN_FLD_REQ_MODE flag is True, PCM_OP_NUM_MODIFY_BLOCK extends
or shrinks the number block. If the value of the flag is False,
PCM_OP_NUM_MODIFY_BLOCK modifies the number block.

PCM_OP_NUM_CREATE_BLOCK calls PCM_OP_CUST_POL_CANONICALIZE and
PCM_OP_NUM_POL_CANONICALIZE to format the block name and telephone numbers. It
calls PCM_OP_DEVICE_CREATE to create numbers and PCM_OP_CREATE_OBJ to create
the block.

This opcode returns an error if the block name already exists or if any of the telephone
numbers already exists.

Modifying Blocks of Numbers
To modify a block of numbers, use PCM_OP_NUM_MODIFY_BLOCK.

If numbers are changed, this opcode calls PCM_OP_NUM_POL_CANONICALIZE to
normalize the number and PCM_OP_DEVICE_SET_ATTR to change attributes such as the
manufacturer, model number, and description.

This opcode returns an error if the new block name already exists or if the range of numbers
specified is not valid.

If this opcode runs successfully, it returns the POID of the modified block and an array of
POIDs for new blocks.

Splitting Blocks of Numbers
To split a block of numbers, use PCM_OP_NUM_SPLIT_BLOCK.

The input includes the POID and name of the existing block and the start and end numbers for
each block.

If this opcode runs successfully, it returns the POIDs of the original block and the new blocks.

If an invalid block or number attribute is found, this opcode returns an error to the error buffer.

Managing Number Quarantine
To quarantine numbers, use PCM_OP_NUM_QUARANTINE.

This opcode creates or deletes a /schedule/device object to manage the telephone number
quarantine. PCM_OP_NUM_QUARANTINE is called by PCM_OP_DEVICE_SET_STATE
when the number device state changes in and out of the Quarantined state. This is the default
behavior as specified in the number device state configuration.

• If the state transition is to Quarantined, this opcode calls
PCM_OP_ACT_SCHEDULE_CREATE to create a /schedule/device object that, at the
end of the quarantine period, is used to change the state to Unassigned.

Chapter 19
Number Manager Opcodes

19-3

• There are two possible exit transitions from the Quarantined state:

– If the state transition is from Quarantined to Assigned, PCM_OP_NUM_QUARANTINE
calls PCM_OP_SEARCH to find the /schedule/device object associated with the
number and calls PCM_OP_ACT_SCHEDULE_DELETE to delete the /schedule/
device object.

– If the state transition is from Quarantined to Unassigned,
PCM_OP_NUM_QUARANTINE calls PCM_OP_DEVICE_SET_ATTR to delete the
text in the device description field.

To customize how number quarantine works, you can edit and load the pin_device_state file
to call a custom opcode instead of calling PCM_OP_NUM_QUARANTINE. See "Defining the
Device Life Cycle" in BRM Developer's Guide.

Managing Number Portability
To manage number portability, use PCM_OP_NUM_PORT_IN and
PCM_OP_NUM_PORT_OUT.

PCM_OP_NUM_PORT_IN creates a number device using the provided number. This opcode
is used when porting the number from another service provider into the existing network.

PCM_OP_NUM_PORT_IN calls opcodes to do the following:

• Create the number and the /device/num object.

• Set the status of the /device/num object.

• Reformats the number provided in the input flist to your required format.

• Validate the required information in the input flist.

• Search for the provided number in the database and, if found, return an error.

• If not found, create the number in the number device and update the status of the number
device and commit the number to associate the device with the account.

PCM_OP_NUM_PORT_OUT sets the status of the specified telephone number as
quarantine_port_out in the /device/num object. PCM_OP_NUM_PORT_OUT is used when
porting the number from your network to another service provider.

Note:

The present state of the device must be assigned and the new state must be set to
quarantine_port_out. If these are not the states, PCM_OP_NUM_PORT_IN returns
an error.

PCM_OP_NUM_PORT_OUT calls opcodes to perform the necessary validations and set the
status of the number device. This opcode:

• Validates the number to be ported out.

• Validates the current status of the number device.

• Updates the status of the number device.

Chapter 19
Number Manager Opcodes

19-4

Customizing Number Manager
See the following topics:

• Customizing Number Normalization

• Customizing How Numbers Are Associated with Services

• Customizing Telephone Number Attributes

• Customizing How a Number Can Be Changed

Customizing Number Normalization
To customize number normalization, use PCM_OP_NUM_POL_CANONICALIZE. This opcode
handles number normalization when receiving numbers from applications and outputting
numbers to other opcodes or applications.

This opcode is called by:

• PCM_OP_NUM_CREATE_BLOCK

• PCM_OP_NUM_MODIFY_BLOCK

• PCM_OP_NUM_PORT_IN

PCM_OP_NUM_POL_CANONICALIZE is called by PCM_OP_NUM_CREATE_BLOCK when
a block of numbers is created.

You can customize this opcode to change normalization rules for handling numbers.

By default, this opcode performs the following translations:

• Adds two leading zero characters (00) if they are missing from the input.

• Removes all characters except digits.

PCM_OP_NUM_POL_CANONICALIZE returns an error when the minimum or maximum
length is not valid. These values are defined in the PIN_NUM_CANON_MIN_LENGTH and
PIN_NUM_CANON_MAX_LENGTH entries in the pin_num.h file in BRM_home/include.

If successful, this opcode returns the normalized string.

Customizing How Numbers Are Associated with Services
To customize how numbers are associated with services, use
PCM_OP_NUM_POL_DEVICE_ASSOCIATE. This opcode specifies the rules for associating
or disassociate a number and a service. This opcode is called by
PCM_OP_DEVICE_ASSOCIATE when a number is associated or disassociated with a service.

• If the number is being associated and there is no service currently associated with the
number, this opcode calls PCM_OP_DEVICE_SET_STATE to change the state to
Assigned. This is the default behavior as specified in the number device state
configuration.

• If the number is being disassociated, and there is only one service associated with the
number, this opcode calls PCM_OP_DEVICE_SET_STATE to change the state to
Quarantined. This is the default behavior as specified in the number device state
configuration.

When associating a number that is already associated with a service, the following rules are
applied:

Chapter 19
Number Manager Opcodes

19-5

• A number can be associated with multiple services, but each service must be of a different
type. For example, you cannot associate one number with two SMS services. To do so,
you must customize PCM_OP_NUM_POL_DEVICE_ASSOCIATE.

• A number can be associated with multiple services, but all services must belong to the
same account.

• If an associated service has a SIM card device associated with it, the number and the SIM
card must have the same network element.

To find an account based on the IMSI or MSISDN in the CDR,
PCM_OP_NUM_POL_DEVICE_ASSOCIATE copies the IMSI and MSISDN to the alias list
array in the associated service object. The element ID is significant:

• The IMSI is copied to ALIAS_LIST[0]

• The MSISDN is copied to ALIAS_LIST[1]

PCM_OP_NUM_POL_DEVICE_ASSOCIATE returns an error in the following cases:

• The number is already associated with the same type of service. For example, if the
number is already associated with a fax service, an error is returned if you try to associate
the number with another fax service.

• The service that is being associated does not belong to the same account as an existing
associated service.

• The number network element is not the same as the network element of a SIM card that is
already associated with the service.

Customizing Telephone Number Attributes
To customize telephone number attributes when a number is created, use
PCM_OP_NUM_POL_DEVICE_CREATE. This opcode validates a new number to make sure
it is unique in the database.

This opcode is called by PCM_OP_DEVICE_CREATE and calls
PCM_OP_NUM_POL_CANONICALIZE.

You can customize this opcode if you extend the number device attributes and require
additional validation or if you want to change existing validations.

PCM_OP_NUM_POL_DEVICE_CREATE returns an error if a new number is not unique in the
database.

Customizing How a Number Can Be Changed
To customize how a number can be changed, for example, which digits can be changed, use
PCM_OP_NUM_POL_DEVICE_SET_ATTR.

By default, PCM_OP_NUM_POL_DEVICE_SET_ATTR supports changing US area codes by
using the following logic: If the number starts with 001 and is 13 digits long, allow changing
digits 4 through 6.

This opcode is called by PCM_OP_DEVICE_SET_ATTR and calls
PCM_OP_NUM_POL_CANONICALIZE.

You can customize PCM_OP_NUM_POL_DEVICE_SET_ATTR to allow customized
modifications on numbers. For example, you can customize this opcode to allow changing
digits 5 through 7 of a number if the number starts with 44.

Chapter 19
Number Manager Opcodes

19-6

Deleting a Number
To delete a number, use PCM_OP_NUM_POL_DEVICE_DELETE. This opcode checks the
state of the device. If the device state is PIN_NUM_STATE_NEW or
PIN_NUM_STATE_UNASSIGNED, allows you to delete the device; otherwise, it generates an
error and does not allow you to delete the device. This opcode is called by
PCM_OP_DEVICE_POL_DELETE.

SIM Card Manager Opcodes
See the following topics:

• Creating and Updating SIM Card Orders

• Creating SIM Cards

• Provisioning SIM Cards

• Customizing SIM Card Manager

Creating and Updating SIM Card Orders
When you use SIM Card Administrator to create an order, PCM_OP_SIM_CREATE_ORDER
creates an order object (/order/sim) in the database. It returns an error if it finds a duplicate
SIM card number or IMSI. The order status is set to New.

When you update an order, PCM_OP_SIM_UPDATE_ORDER updates the order object in the
database. It returns an error if it finds a duplicate SIM card number or IMSI.

PCM_OP_SIM_UPDATE_ORDER also changes the order status, for example, when you
process a response file, or cancel an order.

PCM_OP_SIM_UPDATE_ORDER is called when a customer updates the order, or when the
order status needs to be changed, for example, after processing a vendor response file. This
opcode is also called when an order is canceled.

PCM_OP_SIM_UPDATE_ORDER checks for duplicate SIM card and IMSI numbers. If no error
is found, this opcode updates a SIM card order object. If the order is being canceled, this
opcode changes the status to Canceled. This opcode will not function if the order is not in the
New status.

Creating SIM Cards
SIM Card Manager uses PCM_OP_SIM_PROCESS_ORDER_RESPONSE to process the
order response file and create SIM card device objects (/device/sim objects) in the database.

PCM_OP_SIM_PROCESS_ORDER_RESPONSE does the following:

1. Reads the status of the order from the order object. If an order has been canceled, or there
is no matching order for the response file, this opcode terminates and reports an error.

2. Finds the initial state of the device as defined in the /config/device_state/sim object. If the
state is New, the SIM card is pre-provisioned. To disable pre-provisioning, or customize
how SIM cards are provisioned, change the initial state from New to a customized state.

3. Finds the network element associated with the order.

4. Calls PCM_OP_DEVICE_CREATE to create the SIM card devices (/device/sim) in the
BRM database.

Chapter 19
SIM Card Manager Opcodes

19-7

5. Calls PCM_OP_SIM_UPDATE_ORDER to change the status of the order to either Partially
Received or Received.

The vendor response file includes a list of SIM cards that you load into the BRM database by
using SIM Administration Center.

To customize how SIM cards are validated during creation, use
PCM_OP_SIM_POL_ORDER_CREATE.

Provisioning SIM Cards
SIM Card Manager uses PCM_OP_SIM_DEVICE_PROVISION to associate a SIM card with a
service, and to disassociate the pre-provisioning service.

This opcode is called by PCM_OP_DEVICE_SET_STATE during the state transition from initial
to new and from provisioning to release.

PCM_OP_SIM_DEVICE_PROVISION is used as the validation opcode for changing the
device state from New to Provisioning and from Provisioning to Released or Failed
Provisioning.

To customize pre-provisioning, you can write your own opcode and use your custom opcode as
the validation opcode.

Customizing SIM Card Manager
See the following topics:

• Customizing SIM Card Service Association

• Customizing SIM Card Number Changes

• Customizing SIM Card Validation

Customizing SIM Card Service Association
Use PCM_OP_SIM_POL_DEVICE_ASSOCIATE to change how SIM cards and services are
associated.

This opcode is called by PCM_OP_DEVICE_POL_ASSOCIATE.

• If the service is being associated, PCM_OP_SIM_POL_DEVICE_ASSOCIATE validates
that the network element is the same as the network element for the number associated
with the same service. This opcode then calls PCM_OP_DEVICE_SET_STATE to change
the status from Released to Assigned.

• If the service is being unassociated, PCM_OP_SIM_POL_DEVICE_ASSOCIATE
disassociates the service and calls PCM_OP_DEVICE_SET_STATE to change the status
from Assigned to Unassigned.

To find an account based on the IMSI or MSISDN in the CDR,
PCM_OP_SIM_POL_DEVICE_ASSOCIATE copies the IMSI and MSISDN to the alias list array
in the associated service object. The element ID is significant:

• The IMSI is copied to ALIAS_LIST[0]

• The MSISDN is copied to ALIAS_LIST[1]

PCM_OP_SIM_POL_DEVICE_ASSOCIATE returns an error in the following cases:

Chapter 19
SIM Card Manager Opcodes

19-8

• It returns an error if the network element of the SIM card and telephone number are not the
same.

• It returns an error if the service type is already associated with the SIM card. The only
exception is when two /service/telco/gsm/telephony services are associated with the
same SIM card.

• It returns an error when the device and the service to be associated with it are not owned
by the same account.

Customizing SIM Card Validation
Use PCM_OP_SIM_POL_DEVICE_CREATE to change validation rules for creating SIM card
devices.

This opcode validates a device by validating the SIM card number, IMSI, KI, and network
element values. For example, it makes sure that the numbers have the correct number of digits
and are in the proper syntax. It also verifies that the SIM card does not already exist in the
database.

This opcode is called by PCM_OP_DEVICE_CREATE when creating a SIM card device.

Note:

For information about validating the network element when updating a device, see
PCM_OP_SIM_POL_DEVICE_SET_ATTR.

Customizing SIM Card Number Changes
Use PCM_OP_SIM_POL_DEVICE_SET_ATTR to change how SIM cards and services are
associated.

This opcode ensures that the SIM card number (PIN_FLD_DEVICE_ID) cannot be changed.

This opcode is called by PCM_OP_DEVICE_POL_SET_ATTR when updating a SIM card
device.

This opcode returns an error if an attempt is made to change SIM card number
(PIN_FLD_DEVICE_ID).

Chapter 19
SIM Card Manager Opcodes

19-9

20
Payment Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) payment
opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Collecting Payments

• BRM-Initiated Payment Processing

• Externally Initiated Payment Processing

• Receiving Payments

• Validating Payments

• Configuring Unconfirmed Payment Processing

• Handling Overpayments and Underpayments

• Calculating Payment Collection Dates

• How BRM Selects the Items to Which Payments Are Applied

• Allocating Account Payments to Multiple Bill Units

• Reversing Payments

• Refunding Payments

• Writing Off Payments

• Finding Payment Info

• Adding a Custom Payment Method

• How Opcodes Read the Payment Method

• Processing Payment Fees

• Processing Payment Incentives

• Managing Top-Ups

• Suspending and Recycling Payments

• How BRM Handles Mandate Information for SEPA Processing

Opcodes Described in This Chapter
Table 20-1 lists the opcodes described in this chapter.

20-1

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 20-1 Payment Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_POL_EVENT_NOTIFY Triggering Top-ups

PCM_OP_ACT_USAGE BRM-Initiated Payment Processing

Receiving Payments

PCM_OP_AR_ACCOUNT_ADJUSTMENT How BRM Handles Manual Standard Top-Ups

How BRM Handles Automatic Standard Top-Ups

PCM_OP_AR_ACCOUNT_WRITEOFF Writing Off Payments

PCM_OP_AR_BILL_WRITEOFF Writing Off Payments

PCM_OP_AR_ITEM_WRITEOFF Writing Off Payments

PCM_OP_AR_REVERSE_WRITEOFF Applying Payment Fees

PCM_OP_BILL_ITEM_REFUND Refunding Payments

PCM_OP_BILL_ITEM_TRANSFER BRM-Initiated Payment Processing

Triggering Payment Incentives

PCM_OP_BILL_MAKE_BILL Granting Payment Incentives

PCM_OP_BILL_POL_CALC_PYMT_DUE_T Calculating Payment Collection Dates

PCM_OP_BILL_RCV_PAYMENT BRM-Initiated Payment Processing

Externally Initiated Payment Processing

Receiving Payments

Allocating Account Payments to Multiple Bill Units

How BRM Handles Manual Standard Top-Ups

PCM_OP_BILL_REVERSE Reversing Payments

How Payments Are Recycled to and from Suspense

Retrieving Recycled Payments

How Suspended Payments Are Reversed

How Payments Are Reversed During Recycling

How Payments Are Removed As Unallocatable

PCM_OP_BILL_REVERSE_PAYMENT BRM-Initiated Payment Processing

Reversing Payments

Reversing Payment Incentives

How Suspended Payments Are Reversed

How Payments Are Reversed During Recycling

How Payments Are Removed As Unallocatable

PCM_OP_BILL_SET_LIMIT_AND_CR Setting a Customer's Automatic Top-Up Threshold

Chapter 20
Opcodes Described in This Chapter

20-2

Table 20-1 (Cont.) Payment Opcodes Described in This Chapter

Opcode Topic

PCM_OP_BILL_TRANSFER_BALANCE How BRM Handles Manual Sponsored Top-Ups

How BRM Handles Automatic Sponsored Top-Ups

About Transferring Sponsored Top-Ups from Debit Balances

PCM_OP_CUST_AMEND_CREDITOR_INFO How BRM Handles Mandate Information for SEPA
Processing

Updating Creditor Information

PCM_OP_CUST_AMEND_MANDATE How BRM Handles Mandate Information for SEPA
Processing

PCM_OP_CUST_CANCEL_MANDATE How BRM Handles Mandate Information for SEPA
Processing

PCM_OP_CUST_COMMIT_CUSTOMER Processing Credit Card Information during Account Creation

Implementing Automatic Standard Top-Ups

Implementing Manual Sponsored Top-Ups

Implementing Automatic Sponsored Top-Ups

PCM_OP_CUST_CREATE_PAYINFO How BRM Handles Mandate Information for SEPA
Processing

PCM_OP_CUST_CREATE_TOPUP Setting Up Top-Up Information in an Account

Preparing an Account's Top-Up Information

Validating an Account's Top-Up Information

Modifying an Account's Top-Up Information

PCM_OP_CUST_UPDATE_CUSTOMER Implementing Automatic Standard Top-Ups

Implementing Manual Sponsored Top-Ups

Implementing Automatic Sponsored Top-Ups

PCM_OP_CUST_DELETE_PAYINFO How BRM Handles Mandate Information for SEPA
Processing

PCM_OP_CUST_DELETE_TOPUP Deleting Top-Ups

PCM_OP_CUST_FIND_PAYINFO Finding Payment Info

PCM_OP_CUST_MODIFY_TOPUP Setting Up Top-Up Information in an Account

Preparing an Account's Top-Up Information

Validating an Account's Top-Up Information

Modifying an Account's Top-Up Information

PCM_OP_PYMT_POL_OVER_PAYMENT Handling Overpayments and Underpayments

PCM_OP_CUST_POL_PREP_NAMEINFO About the Suspense Account

PCM_OP_CUST_POL_PREP_PAYINFO Adding a Custom Payment Method

PCM_OP_CUST_POL_PREP_TOPUP Preparing an Account's Top-Up Information

Validating an Account's Top-Up Information

Finding Sponsored Top-Up Groups

PCM_OP_PYMT_POL_UNDER_PAYMENT Handling Overpayments and Underpayments

PCM_OP_CUST_POL_VALID_PAYINFO Validating Credit Card and Direct Debit Transactions

Validating an Account's Top-Up Information

How BRM Handles Mandate Information for SEPA
Processing

PCM_OP_CUST_PREP_CUSTOMER Validating Credit Card and Direct Debit Transactions

Chapter 20
Opcodes Described in This Chapter

20-3

Table 20-1 (Cont.) Payment Opcodes Described in This Chapter

Opcode Topic

PCM_OP_CUST_SET_NAMEINFO About the Suspense Account

PCM_OP_CUST_SET_PAYINFO How BRM Handles Mandate Information for SEPA
Processing

PCM_OP_CUST_SET_STATUS BRM-Initiated Payment Processing

PCM_OP_CUST_SET_TOPUP Setting Up Top-Up Information in an Account

Finding Sponsored Top-Up Groups

Implementing Automatic Standard Top-Ups

Implementing Manual Sponsored Top-Ups

Implementing Automatic Sponsored Top-Ups

Setting an Account's Sponsored Top-Up Member Status and
PIN

PCM_OP_PYMT_APPLY_FEE BRM-Initiated Payment Processing

Externally Initiated Payment Processing

Applying Payment Fees

PCM_OP_PYMT_CHARGE BRM-Initiated Payment Processing

Processing Credit Card Charges

Processing Direct Debit Charges

Checking the Results of BRM-Initiated Batch Payment
Operations

PCM_OP_PYMT_CHARGE_CC BRM-Initiated Payment Processing

Processing Credit Card Charges

Processing a Batch of Direct Debit Charges

PCM_OP_PYMT_CHARGE_DD BRM-Initiated Payment Processing

Processing Direct Debit Charges

About Paymentech Direct Debit Implementation

Creating a Custom Direct Debit Implementation

Processing a Batch of Direct Debit Charges

PCM_OP_PYMT_CHARGE_DDEBIT About Paymentech Direct Debit Implementation

Chapter 20
Opcodes Described in This Chapter

20-4

Table 20-1 (Cont.) Payment Opcodes Described in This Chapter

Opcode Topic

PCM_OP_PYMT_COLLECT Collecting Payments

BRM-Initiated Payment Processing

Externally Initiated Payment Processing

Receiving Payments

Validating Payments

About the Default Payment Validation Process

About Payment Validation Flags

How BRM Selects the Items to Which Payments Are Applied

Configuring Unconfirmed Payment Processing

Allocating Account Payments to Multiple Bill Units

Allocating Externally Initiated Payments by Due Amount

Refunding Payments

Checking the Results of BRM-Initiated Batch Payment
Operations

Applying Payment Fees

Suspending Payments during Payment Processing

How Payments Are Recycled to and from Suspense

PCM_OP_PYMT_FIND_TOPUP_EVENTS Finding Top-Up Events

Viewing Sponsored Top-Up History

PCM_OP_PYMT_GET_ACH_INFO Processing Credit Card Information during Account Creation

PCM_OP_PYMT_GRANT_INCENTIVE Processing Payment Incentives

Triggering Payment Incentives

Granting Payment Incentives

PCM_OP_PYMT_ITEM_TRANSFER Externally Initiated Payment Processing

Receiving Payments

PCM_OP_PYMT_MBI_DISTRIBUTE Allocating Account Payments to Multiple Bill Units

PCM_OP_PYMT_MBI_ITEM_SEARCH Allocating Account Payments to Multiple Bill Units

PCM_OP_PYMT_POL_APPLY_FEE Applying Payment Fees

Customizing Payment Fees

PCM_OP_PYMT_POL_CHARGE BRM-Initiated Payment Processing

Customizing Payment Failure Reason Codes

PCM_OP_PYMT_POL_COLLECT BRM-Initiated Payment Processing

Externally Initiated Payment Processing

Processing the Results of Credit Card Transactions

PCM_OP_PYMT_POL_GRANT_INCENTIVE Granting Payment Incentives

PCM_OP_PYMT_POL_MBI_DISTRIBUTE Allocating Account Payments to Multiple Bill Units

PCM_OP_PYMT_POL_OVER_PAYMENT Externally Initiated Payment Processing

How BRM Selects the Items to Which Payments Are Applied

PCM_OP_PYMT_POL_PRE_COLLECT BRM-Initiated Payment Processing

Externally Initiated Payment Processing

Allocating Account Payments to Multiple Bill Units

PCM_OP_PYMT_POL_PROVISION_INCENTIVE Triggering Payment Incentives

Chapter 20
Opcodes Described in This Chapter

20-5

Table 20-1 (Cont.) Payment Opcodes Described in This Chapter

Opcode Topic

PCM_OP_PYMT_POL_PURCHASE_DEAL How BRM Handles Manual Standard Top-Ups

How BRM Handles Automatic Standard Top-Ups

Offering Discount Incentives with Top-Ups

PCM_OP_PYMT_POL_SPEC_COLLECT Processing Credit Card Information during Account Creation

PCM_OP_PYMT_POL_SPEC_VALIDATE Validating Credit Card and Direct Debit Transactions

PCM_OP_PYMT_POL_SUSPEND_PAYMENT Validating Payments

Allocating Account Payments to Multiple Bill Units

Customizing Suspended Payment Distribution

PCM_OP_PYMT_POL_UNDER_PAYMENT Externally Initiated Payment Processing

How BRM Selects the Items to Which Payments Are Applied

PCM_OP_PYMT_POL_VALIDATE Validating Credit Card and Direct Debit Transactions

PCM_OP_PYMT_POL_VALIDATE_PAYMENT Validating Payments

About the Default Payment Validation Process

About Payment Validation Flags

Allocating Account Payments to Multiple Bill Units

Allocating Externally Initiated Payments by Due Amount

Configuring Unconfirmed Payment Processing

Processing Paymentech Address Validation Return Codes

Suspending Payments during Payment Processing

Customizing Payment Suspense Validation

PCM_OP_PYMT_POL_VALID_VOUCHER How BRM Handles Manual Standard Top-Ups

PCM_OP_PYMT_PROVISION_INCENTIVE Processing Payment Incentives

PCM_OP_PYMT_RECOVER Checking the Results of BRM-Initiated Batch Payment
Operations

PCM_OP_PYMT_RECOVER_CC Checking the Results of BRM-Initiated Batch Payment
Operations

PCM_OP_PYMT_RECOVER_DD Checking the Results of BRM-Initiated Batch Payment
Operations

PCM_OP_PYMT_RECYCLE_PAYMENT Allocating Account Payments to Multiple Bill Units

How Payments Are Recycled to and from Suspense

Retrieving Recycled Payments

How Payments Are Reversed During Recycling

PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH Reversing Payments

How Payments Are Recycled to and from Suspense

Retrieving Recycled Payments

PCM_OP_PYMT_REVERSE_INCENTIVE Reversing Payments

Reversing Payment Incentives

Chapter 20
Opcodes Described in This Chapter

20-6

Table 20-1 (Cont.) Payment Opcodes Described in This Chapter

Opcode Topic

PCM_OP_PYMT_SELECT_ITEMS BRM-Initiated Payment Processing

Externally Initiated Payment Processing

About Payment Validation Flags

How BRM Selects the Items to Which Payments Are Applied

Handling Overpayments and Underpayments

Allocating Account Payments to Multiple Bill Units

Allocating Externally Initiated Payments by Due Amount

Applying Payment Fees

PCM_OP_PYMT_TOPUP Triggering Top-ups

How BRM Handles Manual Standard Top-Ups

How BRM Handles Automatic Standard Top-Ups

How BRM Handles Manual Sponsored Top-Ups

How BRM Handles Automatic Sponsored Top-Ups

Implementing Manual Standard Top-Ups

Offering Discount Incentives with Top-Ups

About Transferring Sponsored Top-Ups from Debit Balances

PCM_OP_PYMT_VALIDATE Validating Credit Card and Direct Debit Transactions

Processing Credit Card Information during Account Creation

PCM_OP_PYMT_VALIDATE_CC Validating Credit Card and Direct Debit Transactions

PCM_OP_PYMT_VALIDATE_DD Validating Credit Card and Direct Debit Transactions

PCM_OP_PYMT_VALIDATE_PAYMENT Externally Initiated Payment Processing

Validating Payments

About the Default Payment Validation Process

Allocating Account Payments to Multiple Bill Units

Configuring Unconfirmed Payment Processing

Suspending Payments during Payment Processing

How Payments Are Recycled to and from Suspense

Collecting Payments
The main payment collection opcode is PCM_OP_PYMT_COLLECT. This opcode
communicates with Payment Tool or a payment processor to perform payment collections,
refunds, and reversals. It processes payments according to the payment processing type:
BRM-initiated, or externally initiated.

PCM_OP_PYMT_COLLECT allocates the payment to open items for each bill unit specified for
the account. This opcode calls other opcodes to validate payments and calls various policy
opcodes that allow you to customize payment collection.

By default, BRM allocates payments automatically. You can prevent allocation by using the
PIN_BILLFLG_DEFER_ALLOCATION flag (0x1000000) in the PCM_OP_PYMT_COLLECT
input flist PIN_FLD_CHARGES array.

Chapter 20
Collecting Payments

20-7

Finding Payments
PCM_OP_PYMT_ITEM_SEARCH searches for /item objects with a variable number of input
parameters. This opcode calls PCM_OP_SEARCH based on the input argument fields.

For collective bills, PCM_OP_PYMT_ITEM_SEARCH checks the
RejectPaymentsForPreviousBill business parameter.

If RejectPaymentsForPreviousBill is enabled, the opcode does not accept the payment.
BRM sends such a payment to the suspense payment account.

If the RejectPaymentsForPreviousBill is disabled, the opcode can accept the payment. In
such a case, the opcode searches for the bill in the history_bills objects. If the bill is located in
the history_bills objects, the payment is accepted for the bill with the same POID as the bill
being processed. If such a bill is not located in history_bills objects, the payment is sent to a
suspense payment account.

BRM-Initiated Payment Processing
For BRM-initiated payment processing, the normal flow of PCM_OP_PYMT_COLLECT is as
follows:

1. Creates a batch checkpoint.

2. Calls PCM_OP_PYMT_SELECT_ITEMS to identify the items to which the payments are
applied. See "How BRM Selects the Items to Which Payments Are Applied".

3. Calls PCM_OP_PYMT_POL_PRE_COLLECT, to perform policy checks before the charge,
payment, or refund occurs after allocating the PIN_FLD_CHARGE array elements to open
items.

You can change the minimum credit card charge amount by modifying the default minimum
payment amount in PCM_OP_PYMT_POL_PRE_COLLECT.

You can also customize PCM_OP_PYMT_POL_PRE_COLLECT to retrieve soft descriptor
information that enables you to display the name under which you do business (your DBA
name), charge offer name, and customer service number on your customer's checking
account or credit card statement.

4. Calls PCM_OP_PYMT_CHARGE to perform a BRM-initiated payment transaction.

PCM_OP_PYMT_COLLECT checks the /config/payment object to determine which
opcode to call to retrieve the payment information from the Payment DM and to create the
charge: PCM_OP_PYMT_CHARGE_CC or PCM_OP_PYMT_CHARGE_DD.

5. For SEPA payments, creates the SEPA Direct Debit payment request (/sepa/dd).

6. Calls PCM_OP_BLL_RCV_PAYMENT. PCM_OP_BLL_RCV_PAYMENT:

a. Calls PCM_OP_ACT_USAGE to update the /event/billing/payment/ object.

b. Calls PCM_OP_BILL_ITEM_TRANSFER to allocate each payment to open items for
each bill unit (/billinfo object) specified for the account.

7. Calls PCM_OP_PYMT_APPLY_FEE to apply payment fees. If a payment fee is applied,
the POID of the payment fee event is added to the PCM_OP_PYMT_APPLY_FEE output
flist.

8. Calls PCM_OP_PYMT_POL_COLLECT, to process the result of a credit card transaction
for a specified account bill unit. PCM_OP_PYMT_POL_COLLECT sends the charge result

Chapter 20
BRM-Initiated Payment Processing

20-8

to the policy opcode which specifies both the result to be returned to the caller and the
actions to be performed on the account's bill unit.

For BRM-initiated payments, PCM_OP_PYMT_POL_COLLECT calls
PCM_OP_CUST_SET_STATUS if the operation requires a status change.

9. By using checkpoints, finalizes the batch.

Note:

The BRM-initiated payment collection utilities (pin_collect and pin_deposit) process
payments for multiple bills associated with multiple bill units. To process externally
initiated payments, such as checks and cash payments, for multiple bill units, write
custom code that records the deposits you have received and calls
PCM_OP_PYMT_COLLECT.

When PCM_OP_PYMT_COLLECT calls PCM_OP_PYMT_CHARGE, the input flist contains a
PIN_FLD_SESSION_OBJ field, which defines the session in which the event occurred: either a
payment batch event or a refund batch event.

The input flist also contains an array of specific operations to perform, so any number of
operations can be batched together into a single call. The command is specified in each
operation, so a single batch can contain a mixture of different commands.

The billing information for each operation, such as credit card number and expiration date, can
be specified as options on the input flist. If it isn't specified, PCM_OP_PYMT_CHARGE
retrieves the necessary information from the account objects specified in the operations. After
it has all the data, the operations are forwarded to the opcode responsible for processing that
payment method (for example, PCM_OP_PYMT_CHARGE_CC and
PCM_OP_PYMT_CHARGE_DD for credit card charges and direct debit charges, respectively).

Note:

• For security reasons, the credit card CVV2 and CID numbers are not stored in
BRM. If the cc_collect entry is enabled, PCM_OP_PYMT_CHARGE passes the
security information to the payment processor for authorization and collection
only at time of account creation. When collecting payments,
PCM_OP_PYMT_CHARGE does not pass the information. In addition, it omits
the PIN_FLD_SECURITY_ID field from the PCM_OP_ACT_USAGE input flist so
it is not written to the /event/billing/charge/cc object. The result is that the
CVV2/CID information is stored in the database with a NULL value.

• BRM supports direct debit transactions from checking accounts only.

Each of the commands listed below in Table 20-2 can be run as an operation.

Table 20-2 Commands to Perform Transactions

Command Description

PIN_CHARGE_CMD_VERIFY Verify the address information.

Chapter 20
BRM-Initiated Payment Processing

20-9

Table 20-2 (Cont.) Commands to Perform Transactions

Command Description

PIN_CHARGE_CMD_AUTH_ONLY Authorize a charge. The credit limit is decreased
on the credit card, but no charge is posted.

PIN_CHARGE_CMD_CONDITION Authorize and deposit a charge.

PIN_CHARGE_CMD_DEPOSIT Deposit a previously authorized charge.

PIN_CHARGE_CMD_RECOVER_PAYMENT Recovers payments by using outstanding
checkpoints.

PIN_CHARGE_CMD_REFUND Refund a charge.

PIN_CHARGE_CMD_RESUBMIT Resubmit the batch of charges.

PIN_CHARGE_CMD_RFR For transactional payments, requests the RFR
file to retrieve payments.

For nontransactional payments, reads the RFR
file to retrieve payments.

For each operation specified, the result of the operation is stored in the corresponding /event/
billing/charge object.

The result is stored both as a numeric value returned by the payment processor, and as an
enumerated result. The enumerated result should generally be used by applications to
determine what happened because its values are independent of which settlement house was
used.

Possible result values for an operation are shown in Table 20-3:

Table 20-3 Result Values for Operation

Input
PIN_FLD_RESULT

Output
PIN_FLD_RESULT

Output
PIN_FLD_DESCR

PIN_CHARGE_RES_PASS PIN_RESULT_PASS Validation successful

PIN_CHARGE_RES_SRVC_UNAVAIL PIN_RESULT_PASS Validation successful

PIN_CHARGE_RES_FAIL_ADDR_AVS PIN_RESULT_FAIL Unable to verify address

PIN_CHARGE_RES_FAIL_ADDR_LOC PIN_RESULT_PASS Street address mismatch

PIN_CHARGE_RES_FAIL_ADDR_ZIP PIN_RESULT_FAIL ZIP code mismatch

PIN_CHARGE_RES_FAIL_CARD_BAD PIN_RESULT_FAIL Credit card number not valid

PIN_CHARGE_RES_FAIL_DECL_SOFT PIN_RESULT_FAIL General soft decline

Card failed credit check

PIN_CHARGE_RES_FAIL_DECL_HARD PIN_RESULT_FAIL General hard decline

Card failed credit check

PIN_CHARGE_RES_FAIL_NO_ANS PIN_RESULT_FAIL No answer from settlement
house

Unable to validate now

PIN_CHARGE_RES_CHECKPOINT PIN_RESULT_FAIL Unable to validate now

PIN_CHARGE_RES_CVV_BAD PIN_RESULT_FAIL Security ID check failed

General soft declines are failures that can be retried later with possible success. This includes
reasons like insufficient credit limit and other transitory causes. General hard declines are

Chapter 20
BRM-Initiated Payment Processing

20-10

failures that are unlikely to succeed if retried. These include reasons like lost and stolen credit
card and chronic payment failures.

Note:

By default, account balances are not updated if there is a decline. To update account
balances when a decline occurs, you must customize
PCM_OP_PYMT_POL_CHARGE.

You can send multiple charges in one call by using the PIN_FLD_CHARGES array on the input
flist. This array is designed for batch processing; you just make one call to
PCM_OP_PYMT_CHARGE for a whole list of charges (or accounts to charge). The following
entries on the PCM_OP_PYMT_CHARGE input flist are of special interest:

• The PIN_FLD_POID entry at the top of the input flist is only used for routing; it only
requires a correct (user) database number.

• The PIN_FLD_ACCOUNT_OBJ entry is the POID of the account actually being charged
(verified) by this element of the PIN_FLD_CHARGES array. In a batch, this POID is
presumably different for every element.

If the PCM_OPFLG_CALC_ONLY flag is set, the opcode does not change any fields in the
database and does not create an /event/billing/charge object. However, it does provide a
charge calculation to the caller by returning the fields that would have been used to create the
event object and the charge item.

Note:

Do not set the PCM_OPFLG_CALC_ONLY flag if you are connected to a payment
processor, for example Paymentech. This may cause the charge to be sent to the
credit card company, even though the charge is not created in BRM. This may result
in a double charge on the account.

Initiating a Charge
PCM_OP_PYMT_CHARGE performs a BRM-initiated payment transaction.

PCM_OP_PYMT_CHARGE is called by PCM_OP_PYMT_COLLECT, and is the main entry
point opcode for all BRM-initiated payment activities.

The input flist contains an array of specific operations to perform, so any number of operations
can be batched together into a single call. The command is specified in each operation, so a
single batch can contain a mixture of different commands.

PCM_OP_PYMT_CHARGE calls the opcode responsible for processing the relevant payment
method (for example, PCM_OP_PYMT_CHARGE_CC and PCM_OP_PYMT_CHARGE_DD
for credit card charges and direct debit charges, respectively).

PCM_OP_PYMT_CHARGE works as follows:

1. Opens a transaction.

2. Using checkpoints, creates the /event/billing/charge event for each payment.

Chapter 20
BRM-Initiated Payment Processing

20-11

3. Calls PCM_OP_PYMT_CHARGE_CC or PCM_OP_PYMT_CHARGE_DD, depending on
the payment method, to process the charges from the payment DM.

4. Updates the checkpoint in the charge event for each transaction received from the
payment DM.

5. For each PIN_FLD_CHARGES in the input flist:

a. Closes billing for the account.

b. Creates a payment item and records the account number, bill number, and transaction
ID from the input flist, and the fact that the money has been received.

Important:

The maximum length of a payment transaction ID is 16 characters for BRM-
initiated payments and 30 characters for externally initiated payments. If your
company generates transaction IDs by appending characters to the payment
batch IDs, ensure that the batch IDs are short enough to be within the limit
after the additional characters are appended. If the payment transaction ID
does not comply with the length restrictions, BRM does not generate an ID
for the payment. (BRM-initiated payment transaction IDs are restricted by
Paymentech processing requirements.)

c. Adds the PIN_FLD_STATUS value in the output flist.

For failed payments, sets the PIN_FLD_STATUS value to PIN_PYMT_FAILED. For
successful payments, sets the PIN_FLD_STATUS value to PIN_PYMT_SUCCESS.

d. Calls PCM_OP_PYMT_POL_CHARGE to update the reasons array.
PCM_OP_PYMT_POL_CHARGE provides the ability to map the online and offline
payment result to the payment status and the reason IDs defined in the /strings
object. In the output flist PIN_FLD_REASONS array, the array of
PIN_FLD_REASON_ID fields contains the failure reasons sent by the payment
processor. You can configure PCM_OP_PYMT_POL_CHARGE to apply fees for failed
credit card and direct debit transactions based on the reason for failure.

e. Sends the payment status and the reasons array (PIN_FLD_REASON_ID and
PIN_FLD_REASON_DOMAIN_ID) to PCM_OP_PYMT_COLLECT.

f. For payments with a successful status, applies the charge to the customer's account.
For payments with a failed status, sends the PIN_FLD_STATUS value to
PCM_OP_PYMT_APPLY_FEE to create the payment fees.

6. Closes the transaction.

Processing Credit Card Charges
To perform a credit card charge, PCM_OP_PYMT_CHARGE calls
PCM_OP_PYMT_CHARGE_CC.

This opcode supports all commands handled by PCM_OP_PYMT_CHARGE.

The PCM_OP_PYMT_CHARGE_CC input flist contains the PIN_FLD_SESSION_OBJ field,
which references either the /event/billing/batch/payment or /event/billing/batch/refund
object. This determines the batch type being submitted (payment or refund).

The PCM_OP_PYMT_CHARGE_CC input flist contains an array of specific operations to
perform, so any number of operations can be batched together into a single call. The

Chapter 20
BRM-Initiated Payment Processing

20-12

command is specified in each operation, so a single batch can contain a mixture of different
commands. This opcode supports all commands handled by PCM_OP_PYMT_CHARGE.

The operations are forwarded to the credit card processing Data Manager (for example, the
Paymentech DM) for processing.

With most credit card payment services, performing an authorization is much faster than a
conditional deposit (authorization plus deposit). Thus, for applications where latency is
important, it may be desirable to perform just the authorization step in real-time. BRM daily
billing performs the necessary deposits for all outstanding authorizations from the previous day.
This removes a significant amount of latency from the real-time process, but still authorizes the
charge so it is guaranteed to deposit successfully.

The set of Paymentech return codes handled by BRM is listed in the BRM_home/sys/
dm_fusa/fusa_codes file.

Unless the PCM_OPFLG_CALC_ONLY flag is specified, PCM_OP_PYMT_CHARGE_CC
creates an /event/billing/charge/cc object for each operation. If an array of operations was
specified, then more than one event object is created. The event objects are created even if
the credit card operations cannot be performed.

Note:

Do not set the PCM_OPFLG_CALC_ONLY flag if you are connected to a payment
processor, for example, Paymentech. This may cause the charge to be sent to the
credit card company, even though the charge is not created in BRM. This may result
in a double charge on the account.

Processing the Results of Credit Card Transactions
To process the result of a credit card transaction for a specified account, use
PCM_OP_PYMT_POL_COLLECT.

This opcode does the following:

• Sets the PIN_FLD_RESULT and PIN_FLD_DESCR values returned in the output flist.

• Specifies the payment events (for example, payment fees, payment reversals, and write-off
reversals) to be performed on the account in the PIN_FLD_EVENTS array.

• Based on the results of the credit card transaction, specifies the actions to be performed
on the account by returning a PIN_FLD_ACTIVITIES array.

PCM_OP_PYMT_POL_COLLECT is called by PCM_OP_PYMT_COLLECT after the credit
card has been charged.

PCM_OP_PYMT_POL_COLLECT sets the PIN_FLD_RESULT and PIN_FLD_DESCR values
returned in the output flist. It also specifies the actions to be performed on the account based
on the results of the credit card transaction by returning a PIN_FLD_ACTIVITIES array.

The default behavior of PCM_OP_PYMT_POL_COLLECT is determined by the
PIN_FLD_RESULT field passed in on the input flist.

• If the result is successful, PIN_CHARGE_RES_PASS is passed in. Depending on the
PIN_FLD_COMMAND passed in on the flist, PCM_OP_PYMT_POL_COLLECT sets the
PIN_FLD_DESCR value as shown in Table 20-4:

Chapter 20
BRM-Initiated Payment Processing

20-13

Table 20-4 Input and Output Values

Input PIN_FLD_RESULT Input PIN_FLD_COMMAND Output
PIN_FLD_RESULT

Output
PIN_FLD_DESCR

PIN_CHARGE_RES_PASS PIN_CHARGE_CMD_AUTH_ONLY PIN_RESULT_PASS Authorization
successful

PIN_CHARGE_RES_PASS PIN_CHARGE_CMD_CONDITION PIN_RESULT_PASS Authorization &
deposit successful

PIN_CHARGE_RES_PASS PIN_CHARGE_CMD_DEPOSIT PIN_RESULT_PASS Deposit successful

PIN_CHARGE_RES_PASS PIN_CHARGE_CMD_REFUND PIN_RESULT_PASS Refund successful

PCM_OP_PYMT_POL_COLLECT then specifies actions to be performed on the account
based on the PIN_FLD_COMMAND, the payment amount, and the pending receivable
amount as shown in Table 20-5:

Table 20-5 PCM_OP_PYMT_POL_COLLECT Actions

Input PIN_FLD_COMMAND Actions When Payment >= Pending
Receivable

Action When Payment < Pending
Receivable

PIN_CHARGE_CMD_AUTH_ONLY

PIN_CHARGE_CMD_CONDITION

PIN_CHARGE_CMD_REFUNDS

– Clear the pending receivable
amount.

– If the account status is currently set
to inactive, change it to active.

– Set the status flag value to
PIN_STATUS_FLAG_DEBT.

Credit toward outstanding bill.

PIN_CHARGE_CMD_DEPOSIT No action specified No action specified

• If the result is unsuccessful, and PIN_CHARGE_RES_FAIL_CARD_BAD or
PIN_CHARGE_RES_FAIL_DECL_HARD are passed in,
PCM_OP_PYMT_POL_COLLECT sets the PIN_FLD_RESULT value and the
PIN_FLD_DESCR description, and then specifies these actions as shown in Table 20-6:

Table 20-6 Input and Output Values

Input PIN_FLD_RESULT Output
PIN_FLD_RESULT

Output
PIN_FLD_DESCR

Action

PIN_CHARGE_RES_FAIL_CARD_BAD

PIN_CHARGE_RES_FAIL_DECL_HARD

PIN_RESULT_FAIL Credit card
operation declined

Set account status to
inactive.

Set status flag value to
PIN_STATUS_FLAG_DEBT.

The PIN_FLD_PAYMENT_REASONS array in the input flist contains a
PIN_FLD_PAYMENT_REASONS array, which contains information related to failed payments.
These values are recorded in the FAILED_ACCOUNTS array of the /process_audit/billing
object.

Note:

If a single payment is submitted for multiple bills, and fails, it is stored as multiple
FAILED_ACCOUNTS arrays.

Chapter 20
BRM-Initiated Payment Processing

20-14

The remaining input PIN_FLD_RESULT values are implemented in the same way.
PCM_OP_PYMT_POL_COLLECT sets the output PIN_FLD_RESULT value and the
PIN_FLD_DESCR description, and then reads the item for the account to determine if there is
an amount that is 30 days past due. If so, it specifies the following actions shown in Table 20-7:

Table 20-7 Input and Output Values

Input PIN_FLD_RESULT Output
PIN_FLD_RESULT

Output
PIN_FLD_DESCR

Action

PIN_CHARGE_RES_FAIL_DE
CL_SOFT

PIN_CHARGE_RES_FAIL_AD
DR_AVS

PIN_CHARGE_RES_FAIL_AD
DR_LOC

PIN_CHARGE_RES_FAIL_AD
DR_ZIP

PIN_CHARGE_RES_FAIL_NO
_ANS

PIN_CHARGE_RES_SRVC_U
NAVAIL

PIN_RESULT_FAIL Credit card operation
declined

Set account status to
inactive.

Set status flag value
to
PIN_STATUS_FLAG_
DEBT.

You can customize PCM_OP_PYMT_POL_COLLECT to specify any of these actions:

• clear_pending

• set_status

• cease_billing

For example, to discontinue billing an account after a determined period of inactivity, specify
the cease_billing action. The default implementation does not specify the cease_billing
action for any input PIN_FLD_RESULT values.

Processing Paymentech Address Validation Return Codes
Paymentech provides return codes when verifying customer addresses. To change how BRM
responds to validation return codes, edit PCM_OP_PYMT_POL_VALIDATE source.

For example, by default a invalid address does not cause a validation failure. You can change
the policy to fail validation if the customer's street address is wrong. For example, change the
following code:

case PIN_CHARGE_RES_FAIL_ADDR_LOC:
 /* street address failure is acceptable */
 result = PIN_RESULT_PASS;
 descr = "street address not correct";
 break;

To this:

case PIN_CHARGE_RES_FAIL_ADDR_LOC:
 /* street address failure is acceptable */
 result = PIN_RESULT_FAIL;
 descr = "street address not correct";
 break;

Chapter 20
BRM-Initiated Payment Processing

20-15

PCM_OP_PYMT_POL_VALIDATE returns the result of validating a credit card transaction in
the PIN_FLD_VENDOR_RESULTS field, including a description of that result. You can
customize credit card validations based on the response from ACH by passing a PIN_FLD_
VENDOR_RESULTS value in the input flist. For example, you can set the validation to pass or
fail, or turn on logging based on the results from the ACH.

PCM_OP_PYMT_VALIDATE calls PCM_OP_PYMT_POL_VALIDATE during customer account
creation to determine the success or failure of credit card validation.

You can change both the PIN_FLD_RESULT and PIN_FLD_DESCR values to modify BRM
responses to validation results returned in PIN_FLD_VENDOR_RESULTS. For example, if
your company does not want to proceed with a transaction when the result is
PIN_CHARGE_RES_SRV_UNAVAIL, change the PIN_FLD_RESULT_PASS value to
PIN_FLD_RESULT_FAIL and change the PIN_FLD_DESCR value to “Service unavailable".

If the PIN_FLD_RESULT value passed in on the input flist is NULL,
PCM_OP_PYMT_POL_VALIDATE does nothing. Otherwise, the default validation result
depends on the PIN_FLD_RESULT value. See Table 20-3.

Note:

If you add custom result values to your system, do not assign them the following
result codes, which are reserved by BRM: 0 - 17, 777, 888, 999, 1000 - 1017, 1777,
and 1999.

You can turn off credit card validation. If the credit card payment service is not available and
you still want to register customers, you must isolate those accounts for later credit card
authorization. Modify the PCM_OP_PYMT_POL_VALIDATE policy opcode file either to save a
list of permissive account creations or to send email to the system administrator. Alternatively,
you can write a simple application to periodically check accounts and flag the ones that have
been registered without verification.

Processing AVS Validations for International Credit Cards
By default, BRM sends a customer's name, address, and ZIP code for validation when
processing credit card charges. If you use the Address Verification System (AVS) to validate
addresses, only credit cards with addresses in the United States and Canada pass validation.

To change how BRM handles credit card address verifications, do one of the following:

• Set the cc_validate flag in the CM's pin.conf file to 0. This disables the address validation
process by Paymentech for all credit cards, including United States and Canada credit
cards.

• Set the cc_validate flag in the CM's pin.conf file to 1 and modify
PCM_OP_PYMT_POL_VALIDATE to ignore all AVS failure response codes for other
countries. This changes how BRM responds to Paymentech's validation return codes for
countries other than the United States and Canada.

Processing Direct Debit Charges
BRM supports direct debit transactions from customer checking accounts only. To perform a
batch of Paymentech direct debit transactions, PCM_OP_PYMT_CHARGE calls
PCM_OP_PYMT_CHARGE_DD.

Chapter 20
BRM-Initiated Payment Processing

20-16

PCM_OP_PYMT_CHARGE_DD supports all commands handled by
PCM_OP_PYMT_CHARGE, except that it does not create a payment structure and handles
transaction charges of $1 only.

PCM_OP_PYMT_CHARGE_DD is used for the Paymentech direct debit implementation
shipped with BRM, and is available for you to use in creating a custom direct debit
implementation for the bank or payment clearing house you choose.

Note:

Debit cards that require a personal identification number (PIN) are not supported.

About Paymentech Direct Debit Implementation
PCM_OP_PYMT_CHARGE_DDEBIT performs a debit card transaction. This opcode is used
for the Paymentech direct debit implementation, and is available for creating a custom direct
debit implementation for the bank or payment clearing house you choose. Unless the
PCM_OPFLG_CALC_ONLY flag is specified, PCM_OP_PYMT_CHARGE_DDEBIT creates
an /event/billing/charge/ddebit object for each operation. If an array of operations is
specified, then more than one event object is created.

PCM_OP_PYMT_CHARGE_DDEBIT supports all commands handled by
PCM_OP_PYMT_CHARGE.

Important:

Debit cards that require a personal identification number (PIN) are not supported.

Note:

Do not set the PCM_OPFLG_CALC_ONLY flag if you are connected to a payment
processor, for example, Paymentech. This may cause the charge to be sent to the
credit card company, even though the charge is not created in BRM. This may result
in a double charge on the account.

Creating a Custom Direct Debit Implementation
By default, PCM_OP_PYMT_CHARGE_DD returns direct debit payment information, a charge
status, and a payment status to the calling opcode for updating respective events. Effectively
this opcode performs a loopback operation that you must change before you can implement
direct debit charging. It does not output transaction data for a direct debit clearinghouse. BRM
users must create an application to extract the information from the database for a specific
direct debit clearinghouse.

Chapter 20
BRM-Initiated Payment Processing

20-17

Processing a Batch of Direct Debit Charges
To perform a batch of Paymentech direct debit transactions, PCM_OP_PYMT_CHARGE calls
PCM_OP_PYMT_CHARGE_DD. The processing is performed on a per-batch basis; only one
command and one payment method can exist in the same batch.

PCM_OP_PYMT_CHARGE_DD supports all commands handled by
PCM_OP_PYMT_CHARGE, except that it does not create a payment structure and handles
transaction charges of $1 only.

The input flist contains a PIN_FLD_SESSION_OBJ field, which defines the session in which
the event occurred: either a payment batch event or a refund batch event (/event/billing/
batch/payment or /event/billing/batch/refund).

Unless the PCM_OPFLG_CALC_ONLY flag is specified, PCM_OP_PYMT_CHARGE_DD
creates an /event/billing/charge/dd object for each operation. If an array of operations was
specified, then more than one event object is created. The event objects are created even if
the direct debit operations cannot be performed.

Note:

Do not set the PCM_OPFLG_CALC_ONLY flag if you are connected to a payment
processor, for example, Paymentech. This may cause the charge to be sent to the
credit card company, even though the charge is not created in BRM. This may result
in a double charge on the account.

The set of Paymentech return codes handled by BRM is listed in the BRM_home/sys/
dm_fusa/fusa_codes file. These codes can be modified.

Checking the Results of BRM-Initiated Batch Payment Operations
To check the results of batch payment operations, set the PIN_FLD_COMMAND value in the
PCM_OP_PYMT_COLLECT input flist to PIN_CHARGE_CMD_RECOVER_PAYMENT. This
causes PCM_OP_PYMT_CHARGE to call PCM_OP_PYMT_RECOVER.

PCM_OP_PYMT_RECOVER posts the results of charges for which no information was
returned.

PCM_OP_PYMT_RECOVER calls the following opcodes:

• To check the results of a batch of credit card charges, PCM_OP_PYMT_RECOVER_CC
calls PCM_OP_PYMT_RECOVER_CC. This opcode posts results of credit card charges
for which no information was returned.

PCM_OP_PYMT_RECOVER_CC is specific to the Paymentech DM.

• To check the results of a batch of direct debit charges, PCM_OP_PYMT_RECOVER_CC
calls PCM_OP_PYMT_RECOVER_DD. This opcode posts results of direct debit charges
for which no information was returned. The results are passed back and used for
transaction reconciliation.

PCM_OP_PYMT_RECOVER_DD is specific to the Paymentech DM.

Chapter 20
BRM-Initiated Payment Processing

20-18

Validating Credit Card and Direct Debit Transactions
To validate credit card and direct debit transactions, use PCM_OP_PYMT_VALIDATE. This
opcode is called by PCM_OP_CUST_PREP_CUSTOMER and
PCM_OP_CUST_POL_VALID_PAYINFO during account creation.

PCM_OP_PYMT_VALIDATE calls PCM_OP_PYMT_POL_VALIDATE to determine the
success or failure of a BRM-initiated transaction validation.

PCM_OP_PYMT_VALIDATE reads the /config/payment storable class to determine the
transaction type and the opcode to call, and then calls the appropriate opcode to validate the
transaction.

• Credit card transactions: PCM_OP_PYMT_VALIDATE_CC.

PCM_OP_PYMT_VALIDATE_CC performs a batch of online credit card validations and
applies the validation policy to the results.

• Direct debit transactions: PCM_OP_PYMT_VALIDATE_DD.

PCM_OP_PYMT_VALIDATE_DD performs a batch of online direct debit validations and
applies the validation policy to the results. PCM_OP_PYMT_VALIDATE_DD calls the
appropriate DM to process validations, then returns the results to the Internet.

Note:

BRM supports direct debit transactions from checking accounts only.

For both opcodes, the input flist contains an array of specific operations to perform, so any
number of operations can be batched together into a single call. The command is specified in
each operation, so a single batch can contain different commands. The
PIN_FLD_SESSION_OBJ in the input flist is either /event/billing/batch/refund or /event/
billing/batch/payment, depending on the batch type: payment or refund.

In addition, PCM_OP_CUST_PREP_CUSTOMER calls
PCM_OP_PYMT_POL_SPEC_VALIDATE to determine whether a customer's payment
information needs to be validated during account creation. If validation is required,
PCM_OP_CUST_PREP_CUSTOMER calls PCM_OP_PYMT_VALIDATE to perform the
operation. If validation fails, the results are transformed to be consistent with the results used
to describe account creation failure results and are then returned on the output flist.

When validating a credit card at account creation, BRM needs an account to validate the card
with. By default, this is the root account. You cannot store this information with each account
because the credit card validation is done before the account is created.

Processing Credit Card Information during Account Creation
During the account creation process, PCM_OP_CUST_COMMIT_CUSTOMER passes credit
card information to PCM_OP_PYMT_VALIDATE and PCM_OP_PYMT_COLLECT, which
collect any credit card payments charged at account creation and validate the credit card
information returned by the payment processor.

• PCM_OP_PYMT_COLLECT calls PCM_OP_PYMT_POL_SPEC_COLLECT, which
passes the bill unit associated with the payment and returns a list of open items to be paid
in the PIN_FLD_ITEMS array.

Chapter 20
BRM-Initiated Payment Processing

20-19

• calls PCM_OP_PYMT_GET_ACH_INFO to retrieve the Automated Clearing House (ACH)
information. PCM_OP_PYMT_POL_SPEC_COLLECT allows you to determine whether to
charge the customer immediately for all or part of the current account balances during
account creation.

• PCM_OP_PYMT_GET_ACH_INFO retrieves ACH information from the /config/ach object.
It uses the ACH vendor name or element ID in the input flist to determine which element in
the ACH_INFO array should be used.

If the cc_collect value in the CM pin.conf file is set to 1, during account creation for credit
card accounts, the total due amount for the account is charged immediately and the payment is
allocated immediately to all open bill items. Therefore, after the account is created, it will have
no pending amount due and no unapplied payments.

Storing Card Credentials for Future Transactions
To store a customer's credit card credentials for future transactions, use
PCM_OP_PYMT_COLLECT.

This opcode does the following:

1. Receives the PIN_FLD_TRANSACTIONS array from the following opcodes when a VISA,
MasterCard, Diners, Discover, JCB, or American Express card is registered for payment:

• PCM_OP_CUST_COMMIT_CUSTOMER: This opcode passes the
PIN_FLD_TRANSACTIONS array as input when you register a new customer with
Credit Card as the default payment method and either credit card tokenization is
enabled or the cc_validate or cc_collect flag is enabled in the CM pin.conf file.

• PCM_OP_CUST_SET_PAYINFO: This opcode passes the
PIN_FLD_TRANSACTIONS array as input when you set Credit Card as the default
payment method for an account.

• PCM_OP_CUST_CREATE_PAYINFO: This opcode passes the
PIN_FLD_TRANSACTIONS array as input when you add a new credit card and set
that as the default payment method for the account.

2. Accepts the card information in the PIN_FLD_TRANSACTIONS array, adds missing
information as required, and then passes the information as input to the
PCM_OP_PYMT_POL_PRE_COLLECT policy opcode.

Note:

You can add, update, or remove the card information in the
PIN_FLD_TRANSACTIONS array by customizing the
PCM_OP_PYMT_POL_PRE_COLLECT policy opcode.

3. Receives the updated card information and the PIN_FLD_CHARGES array from the
PCM_OP_PYMT_POL_PRE_COLLECT policy opcode.

4. Sends the card information in the PIN_FLD_TRANSACTIONS array to the Paymentech
DM by calling the PCM_OP_PYMT_CHARGE or PCM_OP_PYMT_CHARGE_CC opcode.

The Paymentech DM appends the required records based on the information received and
sends the transactions to Paymentech. If the transaction is successful, the Paymentech
DM retrieves the TXID from the Paymentech response and passes it to the
PCM_OP_PYMT_COLLECT opcode.

Chapter 20
BRM-Initiated Payment Processing

20-20

5. Accepts the TXID received from the Paymentech DM and stores it in the
PIN_FLD_TRANSACTIONS array in the /payinfo/cc object for future transactions.

Purging Card Credentials
When an account's default payment method is Credit Card, PCM_OP_PYMT_COLLECT
stores the card credentials for each bill unit in the PIN_FLD_TRANSACTIONS array of the /
payinfo/cc object.

If the default payment method is changed to any other method or card, the
PIN_FLD_TRANSACTIONS array in the /payinfo/cc object is automatically purged from the
database if the account payments are not in cardholder-initiated installments. If the payments
are in cardholder-initiated installments, you must delete the /payinfo/cc object's
PIN_FLD_TRANSACTIONS array manually after the payment is made for the last installment.

About Credit Card Payment Confirmation Numbers
When a credit card payment completes successfully, BRM returns a confirmation number that
the customer can use later to identify the payment. BRM uses the payment item number as the
confirmation number.

PCM_OP_PYMT_COLLECT returns the confirmation number in the PIN_FLD_ITEM_NO
output flist field of the PIN_FLD_RESULTS array.

Externally Initiated Payment Processing
For externally initiated payment processing, the normal flow of PCM_OP_PYMT_COLLECT is
as follows:

1. Calls PCM_OP_PYMT_VALIDATE_PAYMENT to determine the status of the payment
records. See "Validating Payments" for more information.

2. Calls PCM_OP_PYMT_POL_PRE_COLLECT, to perform policy checks before the charge,
payment, or refund occurs after allocating the PIN_FLD_CHARGE array elements to open
items.

3. Calls PCM_OP_PYMT_SELECT_ITEMS to identify the items to which the payments in the
batch are applied. See "How BRM Selects the Items to Which Payments Are Applied".

If necessary, PCM_OP_PYMT_COLLECT then calls
PCM_OP_PYMT_POL_OVER_PAYMENT and
PCM_OP_PYMT_POL_UNDER_PAYMENT, to allocate overpayment and underpayment of
funds, respectively.

4. Calls the following opcodes:

• Calls PCM_OP_BLL_RCV_PAYMENT to create the /event/billing/payment/pay_type
object.

If the payment status is marked as a failed unconfirmed payment,
PCM_OP_BILL_REVERSE_PAYMENT reverses the unconfirmed successful
payments that have a value of PIN_PYMT_FAILED in the PIN_FLD_STATUS field.
The PIN_FLD_AMOUNT value in the input flist CHARGES array is set to the value of
PIN_FLD_AMOUNT_ORIGINAL_PAYMENT, and the value of PIN_FLD_AMOUNT is
set to 0.

• Calls PCM_OP_PYMT_ITEM_TRANSFER to allocate the payment to open items.

Chapter 20
Externally Initiated Payment Processing

20-21

• Calls PCM_OP_PYMT_APPLY_FEE to record failed payments and apply payment
fees. If a payment fee is applied, the POID of the payment fee event is added to the
PCM_OP_PYMT_APPLY_FEE output flist.

• If the cease_billing action was received, calls PCM_OP_CUST_SET_BILLINFO to
change the status of the bill unit.

5. If mandated by the policy FM, calls PCM_OP_PYMT_POL_COLLECT to perform the
following actions listed in Table 20-8, which are based on the payment result:

Table 20-8 PCM_OP_PYMT_POL_COLLECT Policy Opcode Actions

Action Description

clear_pending Apply the payment to reduce the pending receivable of the bill unit by
the amount specified.

set_status Change the bill unit's status to that given, using the reasons indicated
by the flags.

issue_refund Apply a refund by crediting the bill unit with the refund amount
specified.

cease_billing Discontinue billing an account after a determined period of inactivity by
marking the given bill unit as no longer billed.

6. Creates the final batch.

Receiving Payments
When payments are received in BRM, they are processed by PCM_OP_PYMT_COLLECT. To
record the payments, PCM_OP_PYMT_COLLECT calls PCM_OP_BILL_RCV_PAYMENT.
PCM_OP_BILL_RCV_PAYMENT records the payment items and events and updates account
balances by calling PCM_OP_BILL_ITEM_TRANSFER. If there is excess money after paying
the item list off, PCM_OP_BILL_RCV_PAYMENT adds that amount to the sub-balance as a
credit. If there is no sub-balance, one is created.

• When posting a suspended payment, PCM_OP_BILL_RCV_PAYMENT stores the reason
code, action owner code, and original reason code for the payment in the payment event's
PIN_FLD_EVENT_MISC_DETAILS array. The reason codes are passed in from the
PCM_OP_PYMT_COLLECT input flist's PYMT_REASONS array.

The PIN_FLD_EVENT_MISC_DETAILS array uses specific element IDs as follows:

– Array Element 0: Stores the reason code used to determine the G/L ID of the
payment being moved to the payment suspense account.

– Array Element 1: Stores the action owner code for suspended or failed payments.

– Array Element 2: Stores the original reason code for failed payments that BRM
suspended. This ensures that the reason initially associated with the financial failure is
not lost if BRM places the payment in suspense. Element 2 is used only for Payment
Suspense Manager; if payment suspense is not enabled, only element 0 is present.

When the failed payment leaves suspense and PCM_OP_BILL_RCV_PAYMENT creates
new payment objects to record the corrected payment, Elements 0 and 1 are no longer
needed. The object does not contain the elements 0 and 1 recorded for suspense, and
Element 2 becomes the new Element 0.

• When processing multiple voucher top-ups that include noncurrency balances,
PCM_OP_BILL_RCV_PAYMENT retrieves the noncurrency balance impacts from the
PIN_FLD_TOPUP_RESOURCE_INFO substruct in the PCM_OP_PYMT_COLLECT input

Chapter 20
Receiving Payments

20-22

flist and passes them to PCM_OP_ACT_USAGE so that they are recorded in the
corresponding /event/billing/payment/voucher object. See "Processing Top-Ups" for
more information.

• When PCM_OP_BILL_RCV_PAYMENT is called by Payment Tool, Payment Tool first calls
PCM_OP_PYMT_SELECT_ITEMS to identify the list of items to apply this payment to.

PCM_OP_BILL_RCV_PAYMENT uses the PIN_FLD_SESSION_OBJ field in the input flist to
reference the type of session in which the event occurred: either /event/billing/batch/refund
or /event/billing/batch/payment, depending on the batch.

Validating Payments
Before payments can be processed and posted by BRM, they must pass validation. Payment
validation is initiated automatically, through the payment gateway, or manually, by a payment
clerk. When a payment arrives in BRM, PCM_OP_PYMT_COLLECT calls
PCM_OP_PYMT_VALIDATE_PAYMENT to perform the validation. BRM validates the payment
information in the input flist and, in the output flist, indicates whether the opcode successfully
performed the validation.

The PIN_FLD_STATUS value returned by PCM_OP_PYMT_VALIDATE_PAYMENT indicates
whether the payment arrived in BRM as successful or failed for financial reasons. If you have
the Payment Suspense Manager functionality installed, payments can also arrive as
suspended.

• If the payment is successful and passes the validation process, the PIN_FLD_STATUS
value is PIN_PYMT_SUCCESS, and BRM posts the payment to the account.

• If the payment meets the validation criteria, but fails for financial reasons, the
PIN_FLD_STATUS value is PIN_PYMT_FAILED, and BRM posts the payment to the
account as a failed payment.

• If the payment status is marked for suspense, the PIN_FLD_STATUS value is
PIN_PYMT_SUSPENSE, and PCM_OP_PYMT_COLLECT calls
PCM_OP_PYMT_POL_SUSPEND_PAYMENT to process the payment.
PCM_OP_PYMT_POL_SUSPEND_PAYMENT places a payment in suspense by enriching
the flist so that the payment can be directed to the payment suspense account. It then calls
the opcodes that post the payment to this account and create objects to record the
suspended payment. The event object contains all information about the payment and its
suspense, including the account number, bill number, transaction ID, and any associated
reason codes or action owner codes. This information can be used to investigate why the
payment failed the validation process and who is responsible for resolving the problem.

If an account payment is made to an account with multiple bill units,
PCM_OP_PYMT_POL_VALIDATE_PAYMENT validates that the payment is an account
payment and the account has multiple bill units. If the payment is successful and passes the
validation process, it adds the reason ID, PIN_REASON_ID_MBI_DISTRIBUTION_REQD to
the PIN_FLD_PAYMENT_REASONS array in the output flist. This reason ID helps in later
payment processing by distinguishing a normal payment from an account payment made to an
account with multiple bill units.

If the payment fails the validation, BRM informs you that the payment cannot be posted. For
example, if a payment specifies no account number and no bill number, BRM cannot post the
payment. You must create an exception batch to handle payments that fall into this category.

Chapter 20
Validating Payments

20-23

About the Default Payment Validation Process
PCM_OP_PYMT_POL_VALIDATE_PAYMENT enables you to customize how to validate
payments to determine whether they can be successfully posted or whether a failed,
unconfirmed payment needs reversal.

This opcode also identifies if the account payment is made to accounts with multiple bill units.
During validation, this opcode tries to find any missing data needed to process payments. If
automatic write-off reversals are enabled, this opcode also determines whether BRM should
perform a write-off reversal.

PCM_OP_PYMT_POL_VALIDATE_PAYMENT opcode processes payments in three phases:

1. Payment suspense phase: Receives a list of payments from
PCM_OP_PYMT_VALIDATE_PAYMENT and checks the /config/business_params
object to determine whether Payment Suspense Manager is enabled. If so, it checks the
payments to determine whether any payments must be suspended and updates the
PIN_FLD_STATUS field accordingly.

2. Failed unconfirmed payment phase: For all payments with a PIN_FLD_STATUS in the
failed range, uses the payment method value to determine whether a failed payment has
an associated unconfirmed successful payment or if it is a failed confirmed payment.

The input flist contains the POID of the original payment item, the transaction ID, and the
amount of the original payment to properly handle unconfirmed failed payments.

3. Write-off reversal phase: Checks the /config/business_params object to determine
whether automatic write-off reversals are enabled. If so, it determines whether the payment
is for an account, bill, or bill item that has been written off. If so, it sets PIN_FLD_STATUS
accordingly.

Payment Suspense Phase

In this phase, PCM_OP_PYMT_POL_VALIDATE_PAYMENT first checks the
PIN_FLD_STATUS field to determine whether the payment has a status in the suspense
range, indicating that the payment has already been marked for suspense. In this case, the
opcode passes the output flist and associated status back to
PCM_OP_PYMT_VALIDATE_PAYMENT. BRM will then use PCM_OP_PYMT_COLLECT to
direct the payment to the payment suspense account.

If the payment is not already marked for suspense,
PCM_OP_PYMT_POL_VALIDATE_PAYMENT does the following:

1. Validates the account number specified by the PIN_FLD_ACCOUNT_NO or
PIN_FLD_ACCOUNT_OBJ field in the input flist or searches for the corresponding account
POID.

2. Validates the bill number specified by the PIN_FLD_BILL_NO field in the input flist and
searches for the corresponding bill POID, bill unit POID, and account POID.

3. If neither a bill POID nor a bill number was submitted with the payment, BRM uses the bill
amount to find the bill.

If the account and bill numbers supplied in the input flist are both invalid or
PCM_OP_PYMT_POL_VALIDATE_PAYMENT cannot find the account or bill POIDs (or bill
amount), it marks the payment for suspense. It also compares the account POID from the /
bill object with the account POID found in step 1. If they do not match, the opcode marks
the payment for suspense.

Chapter 20
Validating Payments

20-24

4. Checks the PIN_FLD_STATUS field in the /account object to determine whether the
account is closed. If the account is closed, PCM_OP_PYMT_POL_VALIDATE_PAYMENT
marks the payment for suspense.

5. Checks any custom validation criteria and marks the payment for suspense if appropriate.

6. Writes the status of the payment in the PIN_FLD_STATUS field, and includes this field in
the output flist. If the payment must be suspended, it sets this field to one of the values in
the suspense range, as appropriate.

Note:

• When an /event/billing object is created for a suspended payment, it stores
the original reason code associated with a failed payment that has been
flagged for suspense. This ensures that the reason initially associated with
the failed payment is not lost if BRM places the payment in suspense.

• When the /event/billing/payment object is created, it stores the original
account number provided for the payment being suspended, the original bill
number, and the original transaction ID.

Failed Unconfirmed Payments Phase

In this phase, the opcode considers only payments whose status is marked as failed: those
whose PIN_FLD_STATUS value is in the financially failed range. These payments are ones
that the opcode was able to validate, but were marked by the payment processor as failing for
financial reasons. In default implementations, the opcode requires the transaction ID and result
of each payment to prepare the failed unconfirmed payments for reversal.

If the failed payment is an unconfirmed payment, PCM_OP_PYMT_VALIDATE_PAYMENT:

1. Searches the /event/billing/payment object for an unconfirmed payment with the
transaction ID passed in with the failed payment.

2. Does one of the following:

• If an unconfirmed payment is found, sets PIN_FLD_RESULT to
PIN_PAY_TYPE_SUCCESS.

• If the transaction ID of the unconfirmed payment is not found, it checks the /config/
business_params object to determine whether Payment Suspense Manager is
enabled.

If so, it sets PIN_FLD_STATUS to PIN_FLD_FAILED_SUSPENSE and BRM posts the
payment to the payment suspense account.

If not, it sets PIN_FLD_RESULT to PIN_FLD_PAYMENT_RESULT_FAIL, and a
reversal does not occur. The subsequent steps do not occur and manual allocation is
required.

3. Loads the following unconfirmed payment information from the /event/billing/payment
storable class into the PIN_FLD_FAILED_PAYMENT_FEE substruct in the
PIN_FLD_EXTENDED_INFO substruct of the output flist:

• Payment channel ID

• Payment method

• Transaction ID

• Original payment amount

Chapter 20
Validating Payments

20-25

• Customer segment

Note:

For unconfirmed payments, the customer segment value is also retrieved
from PIN_FLIST_CUSTOMER_SEGMENT_LIST in the input flist of this
policy.

4. Passes the POID of the successful unconfirmed payment in the output flist to
PCM_OP_BILL_REVERSE_PAYMENT so it can be reversed.

The output flist sends the array of reversal events and tax events (if created) that were passed
in by PCM_OP_AR_WRITEOFF_REVERSAL.

Write-off Reversal Phase

In this phase, PCM_OP_PYMT_VALIDATE_PAYMENT considers only payments whose status
is marked as successful: those whose PIN_FLD_STATUS value is in the successful range. The
opcode determines which of these payments is for an account, bill, or bill item that has been
written off. It performs the following operations:

• Checks the /config/business_params object to determine if automatic write-off reversal
functionality for payment processing is enabled.

• If this is enabled, checks the /profile/writeoff object to verify that the write-off flag is set for
the account.

• If both checks are successful, sets the PIN_FLD_STATUS field in the output flist to
PIN_PYMT_WRITEOFF_SUCCESS.

About Payment Validation Flags
Flags are not used directly by PCM_OP_PYMT_POL_VALIDATE_PAYMENT. They are passed
in from PCM_OP_PYMT_COLLECT for PCM_OP_PYMT_SELECT_ITEMS. For example,
Payment Tool can set the PCM_BILLFLG_DEFER_ALLOCATION flag to indicate which
payments should be left unallocated.

Configuring Unconfirmed Payment Processing
BRM requires acknowledgment from a bank or payment processor before posting BRM-
initiated payments. In some cases, the response from the bank or payment processor does not
occur immediately with the request for funds. In that case, you can allow BRM to post
unconfirmed payments.

To avoid the possible delay in posting payments, you can configure a new payment Data
Manager (DM) to post payments immediately, before the funds are confirmed by the bank or
payment processor. The DM requires an input flist of payments from BRM and must return the
results to BRM in the output flist.

If the payment processor later sends a failure notification (for example, due to insufficient funds
or an expired credit card), BRM reverses the initially successful payments and posts the failed
payments.

Chapter 20
Configuring Unconfirmed Payment Processing

20-26

Note:

Only credit card and debit card payment methods can be posted before they are
confirmed.

If the bank or payment processor later sends a failure notification for a BRM-initiated payment
(for example, due to insufficient funds or an expired credit card), BRM reverses the initially-
successful payments and posts the failed payments.

Failed unconfirmed payments can be submitted to BRM by using a payment gateway, or by
using Payment Tool or another third-party payment application.

Failed unconfirmed payments are recorded as /event/billing/payment/failed events, and the
reversals of the initially-successful payments are recorded as /event/billing/reverse/pay_type
events.

When a unconfirmed payment fails, the failed payment is recorded in BRM with a balance
impact of 0, and the successful payment amount is re-applied to the account balance.

Failed unconfirmed payments are processed by the PCM_OP_PYMT_COLLECT opcode. The
interface you use to load failed payments into the BRM database must be configured to send
the following information with each failed payment to be validated in BRM:

• Transaction ID

• Failed payment status

• Failure reason ID

The transaction ID of the failed payment is compared against the transaction ID in the /event/
billing/payment/pay_type object of the initial unconfirmed payment that was posted
successfully in BRM.

If the transaction IDs are the same, the original payment is reversed and the failed payment is
recorded. If the transaction ID is missing or incorrect, or the successful payment cannot be
located in the database, the PCM_OP_PYMT_VALIDATE_PAYMENT opcode returns a value
of PIN_PYMT_FAILED in the PIN_FLD_RESULT field, and an error is displayed. The payment
is not reversed and the failed payment is not allocated. You must manually fix the transaction
ID to resubmit the payment. Or, you can configure BRM to identify the original payment by
using other payment attributes. See BRM Opcode Guide.

When a failed unconfirmed payment is received, the original successful payment is identified
by using its transaction ID.

The PIN_FLD_PAYMENT_TRANS_ID field in the /event/billing/payment/failed event must be
equal to the PIN_FLD_TRANS_ID of the successful unconfirmed payment item. If so, the
unconfirmed payment is reversed and the failed payment posted to the proper account.

If the payment processor is not able to send a transaction ID with each payment, or if the
transaction ID is not a reliable means of identifying a payment, you can configure
PCM_OP_PYMT_POL_VALIDATE_PAYMENT to find the original unconfirmed payment by
using other payment properties. For example, you can use a combination of the payment
amount, account number, and invoice number.

When the payment is received, BRM compares these values in the failed payment with those
of the original unconfirmed payment, and if the values match, it will reverse the unconfirmed
payment and post the failed payment.

Chapter 20
Configuring Unconfirmed Payment Processing

20-27

Note:

The result of the validation is the POID of the unconfirmed successful payment item
that was recorded in BRM. If the item is not available, the reversal cannot occur. By
default, this policy opcode retrieves the item by finding the payment event with
corresponding transaction ID.

Handling Overpayments and Underpayments
If a customer pays too much or too little, your Oracle Communications Billing and Revenue
Management (BRM) business policies may require payment allocation.

• For underpayments, choose which bills or items to allocate the payment to.

• For overpayments, pay all items and generate a credit balance.

By default, BRM requires overpayments to be allocated.

To change the default BRM behavior for overpayments and underpayments, customize the
PCM_OP_PYMT_POL_UNDER_PAYMENT or PCM_OP_PYMT_POL_OVER_PAYMENT
policy opcodes.

If the money received is more or less than the sum of the total due of all the open items
selected by PCM_OP_PYMT_SELECT_ITEMS, PCM_OP_PYMT_SELECT_ITEMS calls
PCM_OP_PYMT_POL_OVER_PAYMENT or PCM_OP_PYMT_POL_UNDER_PAYMENT,
respectively. PCM_OP_PYMT_SELECT_ITEMS does not call these policy opcodes if:

• The amount is equal to the sum of the total due.

• The flag PIN_BILLFLG_SELECT_FINAL is passed in.

• The flag PIN_BILLFLG_DEFER_ALLOCATION is passed in.

By default, PCM_OP_PYMT_POL_OVER_PAYMENT returns the amount overpaid on the
output flist. The excess amount remains in the bill unit (/billinfo object) specified on the input
flist (or the default bill unit if none was specified) until they are manually redistributed by using
Billing Care or Customer Center. You can customize PCM_OP_PYMT_POL_OVER_PAYMENT
to perform as a hook for an application that would search for and settle all overpaid payment
items.

By default, PCM_OP_PYMT_POL_UNDER_PAYMENT pays the billed items in the order they
are listed on the input flist (item[0] first, then item[1], item [2], and so on). It then returns the
items paid on the output flist. Items that are partially paid are returned with a new amount due.
Items not paid are not returned.

Calculating Payment Collection Dates
By default, BRM-initiated payments, such as payments made by credit card or direct debit, are
collected on the date that bills are finalized. Alternatively, you can configure BRM to collect a
BRM-initiated payment on the date a bill is due or on a specified number of days before the bill
is due.

To support configurable payment collection dates, PCM_OP_BILL_POL_CALC_PYMT_DUE_T
calculates a bill's payment collection date after calculating its due date.

Chapter 20
Handling Overpayments and Underpayments

20-28

Note:

Although configurable payment collection dates are used only for BRM-initiated
payments, they are calculated and stored for bills associated with all payment
methods.

To calculate payment collection dates, PCM_OP_BILL_POL_CALC_PYMT_DUE_T performs
these tasks:

1. Finds the /payinfo object that is linked to the bill unit with which the bill is associated.

2. Reads the value of the PIN_FLD_PAYMENT_OFFSET field in the /payinfo object.

3. Does one of the following:

• If the value is -1, sets the payment collection date to the date the bill is finalized.

• If the value is 0, sets the payment collection date to the date the bill is due.

• If the value is any positive integer (x), sets the payment collection date to x days
before the bill is due.

Note:

If x makes the payment collection date earlier than the date the bill is
finalized, PCM_OP_BILL_POL_CALC_PYMT_DUE_T uses the finalization
date instead.

4. Stores the payment collection date in the PIN_FLD_COLLECTION_DATE field of the /
billinfo object.

Note:

By default, the pin_collect utility collects BRM-initiated payments for all bills
associated with /billinfo objects whose PIN_FLD_COLLECTION_DATE is the
day the utility is run or the day before the utility is run.

How BRM Selects the Items to Which Payments Are Applied
PCM_OP_PYMT_COLLECT calls PCM_OP_PYMT_SELECT_ITEMS to identify the items to
which the payment is applied. PCM_OP_PYMT_SELECT_ITEMS is also called by Payment
Tool.

When an account payment is made to an account having multiple bill units, this opcode
processes more than one bill unit to get the item distribution corresponding to each bill unit.

In case of overpayment to an account, PCM_OP_PYMT_SELECT_ITEMS contains more than
two PIN_FLD_BILLINFO arrays for the default bill unit. PCM_OP_PYMT_SELECT_ITEMS
does not perform an item distribution for the second PIN_FLD_BILLINFO array for the default
bill unit and sets the select status as PIN_SELECT_STATUS_OVER_PAYMENT. This
restriction prevents the opcode from doing item distribution twice in two different
PIN_FLD_BILLINFO arrays.

Chapter 20
How BRM Selects the Items to Which Payments Are Applied

20-29

PCM_OP_PYMT_SELECT_ITEMS does the following:

1. Selects open items based on the input fields and the accounting type of the account..

2. If the amount passed in on the input flist is not in the primary account currency,
PCM_OP_PYMT_SELECT_ITEMS attempts to convert it to the primary account currency.

3. One of the following actions is taken:

• If called by PCM_OP_PYMT_COLLECT, PCM_OP_PYMT_SELECT_ITEMS returns
the PIN_FLD_AMOUNT and the list of selected items.

• If called by Payment Tool, PCM_OP_PYMT_SELECT_ITEMS compares the sum of
the amount due from all the selected items to the PIN_FLD_AMOUNT value to see if
the payment is an exact payment, an overpayment, or an underpayment.

If it is an overpayment, it calls PCM_OP_PYMT_POL_OVER_PAYMENT. By default,
PCM_OP_PYMT_POL_OVER_PAYMENT returns the amount overpaid on the output
flist. Excess monies remains in the payment item until they are manually redistributed
with Payment Tool.

If it is an underpayment, it calls PCM_OP_PYMT_POL_UNDER_PAYMENT.

By default, PCM_OP_PYMT_POL_UNDER_PAYMENT pays the billed items in the
order they are listed on the input flist (item[0] first, then item[1], item [2], etc.). It then
returns the items paid on the output flist. Items that are partially paid are returned with
a new amount due. Items not paid are not returned.

4. Returns the list of selected items.

Items are selected by PCM_OP_PYMT_SELECT_ITEMS based on the fields in the input flist.

• The contents of the PIN_FLD_BILLS array is examined. For BRM-initiated payments, the
contents of the PIN_FLD_BILLINFO array is also examined.

– The PIN_FLD_BILLS array indicates which /bill object
PCM_OP_PYMT_SELECT_ITEMS is collecting or paying off. If one or more bills are
included, all items belonging to those bills are selected. If none is specified, the default
bill unit is used to apply the payment.

– The PIN_FLD_BILLINFO array specifies the bill unit to select items for. If none is
specified, the items are retrieved based on the bills in the PIN_FLD_BILLS array. If
neither a bill unit POID nor a bill is included, the items are selected from the account's
default bill unit. This is the bill unit that contains the default balance group for the
account.

Note:

For account payments to accounts with multiple bill units, there are multiple
PIN_FLD_BILLINFO arrays corresponding to each bill unit that contains the
bill unit–level distribution.

• If the accounting type is PIN_ACTG_TYPE_OPEN_ITEMS or if the accounting type is
PIN_FLD_ACTG_TYPE_BALANCE_FORWARD and the PIN_FLD_BILLS array is passed
in, there are two options for items to be eligible for the selection criteria:

– If the PIN_FLD_INCLUDE_CHILDREN field is not specified or is specified and set to 1,
items that belong to the A/R bill unit (including nonpaying child bill items) are selected.

– If the PIN_FLD_INCLUDE_CHILDREN field is specified and set to 0, items that belong
only to the specified bill are selected.

Chapter 20
How BRM Selects the Items to Which Payments Are Applied

20-30

Note:

PIN_FLD_INCLUDE_CHILDREN applies only when the PIN_FLD_BILLS
array is specified.

• If PIN_FLD_ACTG_TYPE is PIN_FLD_ACTG_TYPE_BALANCE_FORWARD and
PIN_FLD_BILLS is not specified, PCM_OP_PYMT_SELECT_ITEMS selects all the open
items for this bill unit and sums up the amount due from all the open items selected.

• The PIN_FLD_AMOUNT field determines whether the overpayment or underpayment
policy opcodes are called. If PIN_FLD_AMOUNT is not specified, the payment amount is
based on the charges of the bill unit's open items.

If the PIN_FLD_AMOUNT field is passed:

– The payment is not allocated to other open items and the deferred allocation flag is
set.

– The payment must be allocated manually.

• If the PIN_FLD_BILLINFO array contains bill unit level payment distribution,
PCM_OP_PYMT_SELECT_ITEMS finds out the item distribution for the selected bill units.

Allocating Account Payments to Multiple Bill Units
If an account payment is made to an account having multiple bill units, you can allocate the
payment to multiple bill units of the account.

Note:

The Payment Suspense Management feature must be enabled in your BRM system
for you to allocate account payments to multiple bill units.

To allocate an account payment to multiple bill units of an account, BRM calls
PCM_OP_PYMT_COLLECT. PCM_OP_PYMT_COLLECT performs the following operations:

1. Opens a transaction.

2. Calls PCM_OP_PYMT_VALIDATE_PAYMENT to validate the payment.

PCM_OP_PYMT_VALIDATE_PAYMENT invokes
PCM_OP_PYMT_POL_VALIDATE_PAYMENT to validate the payment. This opcode:

a. Checks the appropriate /config/business_params objects to find out if Payment
Suspense Manager is enabled.

b. Checks that the payment is an account payment and that the account has multiple bill
units.

c. If the payment is successful and passes the validation process, adds the reason ID,
PIN_REASON_ID_MBI_DISTRIBUTION_REQD to the
PIN_FLD_PAYMENT_REASONS array in the output flist.

Chapter 20
Allocating Account Payments to Multiple Bill Units

20-31

Note:

For failed or suspended payments,
PCM_OP_PYMT_POL_VALIDATE_PAYMENT does not add the
PIN_REASON_ID_MBI_DISTRIBUTION_REQD reason ID.

3. Calls PCM_OP_PYMT_MBI_DISTRIBUTE to distribute the payment to multiple bill units.
PCM_OP_PYMT_MBI_DISTRIBUTE invokes PCM_OP_PYMT_POL_MBI_DISTRIBUTE if
the following conditions are true:

• PCM_OP_PYMT_POL_VALIDATE_PAYMENT returns the
PIN_REASON_ID_MBI_DISTRIBUTION_REQD reason ID.

• The PIN_FLD_SELECT_STATUS field in the PCM_OP_PYMT_COLLECT input flist is
not PIN_SELECT_STATUS_MBI_DISTRUBUTED.

Payment Tool calls PCM_OP_PYMT_MBI_ITEM_SEARCH to retrieve the bills/item across
multiple bill units of the account. You can override the default distribution by manually
allocating the payment. After manual allocation of payment, revalidate the payment.

PCM_OP_PYMT_MBI_ITEM_SEARCH gets all the items of the bill units in a tree view.
The bills are displayed under their corresponding bill units, and the items for a bill are
displayed under their corresponding bill.This opcode is called by Payment Tool only while
manually allocating the payment.This opcode calls PCM_OP_PYMT_ITEM_SEARCH.

PCM_OP_PYMT_POL_MBI_DISTRIBUTE distributes the payment according to the default
distribution logic. You can customize how payments are distributed by using
PCM_OP_PYMT_POL_MBI_DISTRIBUTE. This opcode searches for all the open /bill
objects of all the /billinfo objects of the specified /account object, sorted by the bill due
date.

PCM_OP_PYMT_POL_MBI_DISTRIBUTE returns the PIN_FLD_BILLINFO array that
contains an array of PIN_FLD_BILLS having the distributed payment amount for each bill.
The PIN_FLD_BILLINFO array is added to the PCM_OP_PYMT_MBI_DISTRIBUTE output
flist, which is passed to PCM_OP_PYMT_SELECT_ITEMS to get item distribution.

4. Calls PCM_OP_PYMT_SELECT_ITEMS for item payment distribution for each bill unit.

5. If the reason ID in the PCM_OP_PYMT_SELECT_ITEMS output flist is
PIN_REASON_ID_MBI_DISTRIBUTION_REQD, PCM_OP_PYMT_COLLECT detaches
the distribution part from the output flist to use later while recycling payment.

6. If the reason ID in the PCM_OP_PYMT_SELECT_ITEMS output flist is
PIN_REASON_ID_MBI_DISTRIBUTION_REQD and the PIN_FLD_STATUS value is
successful (value in the range of 0 to 14), PCM_OP_PYMT_COLLECT changes the status
to PIN_PYMT_SUSPENSE to suspend the payment before calling
PCM_OP_PYMT_POL_PRE_COLLECT.

7. Calls PCM_OP_PYMT_POL_PRE_COLLECT to perform policy checks before the
payment occurs.

8. Calls PCM_OP_PYMT_POL_SUSPEND_PAYMENT to get the suspense account.

9. Calls PCM_OP_BILL_RCV_PAYMENT to record the payment and create the payment
item.

10. Prepares the PCM_OP_PYMT_RECYCLE_PAYMENT input flist by using the distribution
detached from PCM_OP_PYMT_SELECT_ITEMS.

11. Calls PCM_OP_PYMT_RECYCLE_PAYMENT to distribute the suspended payment to
multiple bill units.

Chapter 20
Allocating Account Payments to Multiple Bill Units

20-32

12. Prepares the PCM_OP_PYMT_COLLECT output flist such that the output flist contains all
the payment events created as a result of the recycle payment.

Default payment distribution follows these rules:

• Bills having older due dates receive the payment amount first.

• If all bills have the same due date, the bills with the higher due amounts are considered
first for payment distribution.

• In case of overpayment, the excess payment amount remains unallocated to the default bill
unit of the account.

• In case of underpayment, bills with later due dates or low due amounts do not get any
payment amount.

• For hierarchical accounts, the bills for the parent are considered first.

Note:

By default, PCM_OP_PYMT_POL_MBI_DISTRIBUTE provides bill distribution.
So, BRM considers only the open bill items for payment distribution. However,
you can update this opcode to return bill-unit payment distribution. If bill-unit
distribution is passed to PCM_OP_PYMT_SELECT_ITEMS, payment considers
all the open items, even if an open item is a bill item or an A/R item.

Allocating Externally Initiated Payments by Due Amount
When allocating an externally initiated payment, such as a payment made by check or cash,
that is associated with a valid account number but not a valid bill POID, BRM uses
PCM_OP_PYMT_POL_VALIDATE_PAYMENT to find the appropriate bill as follows:

1. If the element associated with the payment in the PIN_FLD_CHARGES array of
PCM_OP_PYMT_POL_VALIDATE_PAYMENT input flist has a bills array
(PIN_FLD_BILLS) and the array contains a bill number (PIN_FLD_BILL_NO), the opcode
searches for the bill POID associated with the bill number.

2. If PCM_OP_PYMT_POL_VALIDATE_PAYMENT finds the POID, it adds it to the bills array
in its output flist. The information in the output flist is passed to
PCM_OP_PYMT_SELECT_ITEMS by Payment Tool or by PCM_OP_PYMT_COLLECT.

3. If the payment is not associated with a valid bill number, the opcode searches for a bill
whose total due amount matches the payment amount. The search is restricted to bills
linked to the account with which the payment is associated.

Note:

By default, this search is disabled.

Reversing Payments
Payments are directly reversed from BRM by using Payment Tool.

Chapter 20
Reversing Payments

20-33

Note:

To reverse payments, PCM_OP_BILL_REVERSE calls
PCM_OP_BILL_REVERSE_PAYMENT. PCM_OP_BILL_REVERSE is the
recommended opcode to use. It is a wrapper for
PCM_OP_BILL_REVERSE_PAYMENT. Custom client applications should not
directly call PCM_OP_BILL_REVERSE_PAYMENT.

To process a payment reversal batch, PCM_OP_BILL_REVERSE performs the following
operations:

1. Opens a transaction and checks the appropriate /config/business_params objects to find
out if Payment Suspense Manager is enabled.

2. Validates that the PIN_FLD_FLAGS field is not present in the input flist or, if the flag is
present, that it is not set to PIN_REVERSE_FLAG_REVERSE_AS_UNALLOCATED (1). If
the flag is set, the operation fails because payments that were removed already from BRM
as unallocatable cannot also be reversed.

3. Checks the PIN_FLD_STATUS field of each reversal associated with the payment being
reversed.

4. Calls PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH, which performs the following
operations:

• Validates that the payment does not have a SUB_TRANS_ID value, and is therefore
the original payment. If the payment has a SUB_TRANS_ID value, the operation will
fail.

• Finds all distributed payment events that have the same SUB_TRANS_ID value as this
payment's TRANS_ID value, and have not been reversed already due to the recycling
process.

• Assigns a reversal TRANS_ID value to each payment returned by the search and
populates the reversal flist with each TRANS_ID value.

5. Checks the PIN_FLD_STATUS field of each /event/billing/reversal object associated with
the payment being reversed to ensure that no part of the payment has been removed from
suspense as unallocatable.

6. Calls PCM_OP_BILL_REVERSE_PAYMENT to reverse the list of payments.

• If the payment was originally made to a customer account, the list includes any
recycled payment generated if the payment was moved into the suspense account
after it posted to the customer account.

• If the payment was originally made to the suspense account, the list contains all
payments generated from the original payment, including distributed payments and
any payment remaining in the suspense account.

When performing reversals during payment suspense recycling,
PCM_OP_BILL_REVERSE_PAYMENT must be called by
PCM_OP_PYMT_RECYCLE_PAYMENT to ensure that only payments with a
SUB_TRANS_ID value of NULL can be reversed directly. The reversal of recycled
payments is disallowed if the reversal is not called by
PCM_OP_PYMT_RECYCLE_PAYMENT. Only suspended payments and payments in
customer accounts which have not been recycled can be reversed directly by
PCM_OP_BILL_REVERSE_PAYMENT.

Chapter 20
Reversing Payments

20-34

• If the reversal is called for a SEPA payment transaction, the opcode creates the /
sepa/dd/reversal object only if the original payment request is in the REQUESTED
status. If the charge event, /event/billing/charge/sepa, does not exist, it records the
reversal only (the /sepa/dd/reversal object is not created assuming that the payment
request has not been sent to the bank).

The sum of all the payments reversed in this operation should equal the amount of the
original payment.

PCM_OP_BILL_REVERSE_PAYMENT verifies that the reversal operation was successful
for all of the payments. It uses the PIN_FLD_SESSION_OBJ field in the input flist to
reference the reversal batch event.

It also checks the /config/business_params object to determine whether payment
incentives are enabled. If so, PCM_OP_BILL_REVERSE_PAYMENT calls
PCM_OP_PYMT_REVERSE_INCENTIVE, which removes the payment incentive trigger in
the bill unit, thus eliminating the payment incentive.

7. Populates the payment batch with the sum of the reversal flist.

8. Returns the reversal information for all the payments in the PIN_FLD_MULTI_RESULTS
array.

The PIN_FLD_RESULTS field of the output flist indicates whether the reversal was successful.
Direct reversal is not allowed if either of the following conditions is true:

• The payment has a SUB_TRANS_ID value and, therefore, is not an original payment.

• PCM_OP_BILL_REVERSE is called from PCM_OP_PYMT_RECYCLE_PAYMENT. In this
case, a reversal takes place, but it is not a direct reversal. See "How Suspended Payments
Are Reversed".

To reverse account-level payment made to an account having multiple bill units, you pass the
original payment's transaction ID to Payment Tool. When you submit a reversal batch, the
reversal batch reverses all the sub-payments created during the account-level payment
allocation to multiple bill units.

To customize how written off payments are reversed, use
PCM_OP_BILL_POL_REVERSE_PAYMENT.

If you have Payment Suspense Manager enabled, you can reverse only original payments. For
information on payment reversals that occur during payment suspense processing, see "How
Suspended Payments Are Reversed".

Refunding Payments
PCM_OP_BILL_ITEM_REFUND is used to create a refund item for a bill or bill unit. POIDs
passed in to either the PIN_FLD_BILL_OBJ field or the PIN_FLD_BILLINFO_OBJ field specify
the billing entity to receive the refund.

After the refund items are created, BRM uses PCM_OP_PYMT_COLLECT to refund the
payment amount to the account. For BRM-initiated payments, use the pin_collect utility to
refund payments based on the payment method. For externally initiated payments, use Billing
Care or Customer Center to perform the refund operation.

Before it refunds a payment, BRM determines whether Payment Suspense Manager is
enabled. If so, it checks the account POID in the input flist against the account POID in the /
config/psm object to see whether the account is the suspense account. If the two POIDs
match, the opcode generates an error.

Chapter 20
Refunding Payments

20-35

There are two ways to run PCM_OP_BILL_ITEM_REFUND: calculate-only mode or regular
mode.

In calculate-only mode, PCM_OP_BILL_ITEM_REFUND:

• Computes the total refund amount without actually creating the refund item or committing
any changes to the database.

• It shows the amount that a CSR can refund, based on both credit and debit items.

In the regular mode, PCM_OP_BILL_ITEM_REFUND does the following:

• Creates a refund item for the account if it has an open credit. Otherwise the refund fails
and an error message is returned.

• Transfers amounts from any open credit items to the new refund item, and closes the credit
items.

Note:

For any transfers, PCM_OP_BILL_ITEM_REFUND calls
PCM_OP_BILL_ITEM_TRANSFER.

• Transfers amounts from the bill unit or bill to any open debit items.

Each transfer from the new refund item to debit items decreases the value of the new
refund item.

• Creates the /item/refund object, which contains the total credit amount.

• Closes these credit and debit items.

• Returns the refundable amount in the /item/refund object.

If you use a custom program to perform refunds, you can put the program name in the input
flist optional field PIN_FLD_PROGRAM_NAME. If this field is used to contain the name of the
program refunding a customer's account, the program name is recorded in the events
associated with an item refund. If the program name is not specified, the default value, Refund
Opcode, is used.

Note:

• You cannot refund suspended payments.

• You cannot reverse a refund. If you refund a customer's account by mistake,
adjust the account for the refunded amount.

Writing Off Payments
See the following topics:

• About Initiating Write-Offs

• About Account Write-Offs

• About Bill Unit Write-Offs

• Performing Write Offs

Chapter 20
Writing Off Payments

20-36

Finding Payment Info
To find /payinfo objects that belong to an account, use PCM_OP_CUST_FIND_PAYINFO.

This opcode is given the account POID and returns the information from the storable /payinfo
object.

Adding a Custom Payment Method
To add a payment method:

• Update the /config/payment object.

• Modify the PCM_OP_CUST_POL_PREP_PAYINFO policy opcode to validate the custom
payment method. For example, add code for your custom payment method everywhere the
opcode checks the various payment methods.

To add a custom payment method:

1. Using a text editor, edit the PCM_OP_CUST_POL_PREP_PAYINFO policy opcode source
code to add an element to the PIN_FLD_PAY_TYPES array for each new payment
method.

• For a predefined payment method, use the appropriate value as the index for that
element of the PIN_FLD_PAY_TYPES array.

• For a custom payment method, define a payment method in a header file and use that
value as the index of the new element in the PIN_FLD_PAY_TYPES array.

Note:

To avoid conflicts with payment IDs used by BRM, define custom payment
methods with an element ID of 10100 or higher.

2. Save and close the file.

3. Use the testnap utility to load the /config/payment object into the database. See "Testing
Your Applications and Custom Modules" in BRM Developer's Guide.

Creating a /config/payment Object
Instead of changing the default /config/payment object, you can configure your own /config/
payment object and load it into the database using the testnap utility. See BRM Developer's
Guide.

After you create the /config/payment object, update the config_payment entry in the CM
pin.conf file with the POID of the new object:

1. Open the CM configuration file (BRM_home/sys/cm/pin.conf).

2. Edit the following entry:

- fm_pymt config_payment database_number /config/payment 200

where database_number is the database number of the BRM database. By default, this
number is 0.0.0.1. Replace 200, the default POID of the /config/payment object, with the
POID of the new object.

Chapter 20
Finding Payment Info

20-37

3. Save and close the file.

4. Stop and restart the CM.

Viewing Payment Information for a Custom Payment Method
To view payment information for custom payment methods, run the pin_collect utility for that
payment method. The pin_bill_day utility calls pin_collect for credit card payment methods
and pin_inv_accts for invoice payment methods. You can make a call to pin_collect in
pin_bill_day for each new custom payment method.

For more information, see BRM Configuring and Running Billing guide and BRM Configuring
and Collecting Payments guide.

Configuring Payment Center for Custom Payment Methods
If you create custom payment methods for your BRM system, you must customize Payment
Center to handle them. This overview procedure describes how to create custom storable
classes and fields and enable Payment Center to handle them.

Note:

Before customizing your payment functionality, you should be familiar with the Java
PCM and the BRM Storable Class Editor, which you use to create custom storable
classes and fields. For background information on creating custom storable classes
and fields, see "Creating Client Applications by Using Java PCM" and "Creating
Custom Fields and Storable Classes" in BRM Developer's Guide.

1. Complete the following tasks by using Storable Class Editor:

a. Create your storable classes and fields in the Java PCM package.

b. Create source files for your custom fields.

Note:

Storable Class Editor creates a C header file called cust_flds.h, a Java
properties file called InfranetPropertiesAdditions.properties, and a Java
source file for each custom field.

2. In the directory in which Storable Class Editor created the Java source files, compile the
source files:

javac -d . *.java
3. Package the new storable class files into a JAR file. For example:

jar cvf customfields.jar *.class
4. Copy the contents of the InfranetPropertiesAdditions.properties file and paste it into the

Payment Center Infranet.properties file. By default, this file is located in the C:\Program
Files\Portal Software\PaymentCtr\PaymentCenter directory.

5. Append the location of the JAR file to the PAYCTRCP environment variable path. For
example:

Chapter 20
Adding a Custom Payment Method

20-38

;.;C:\Program Files\Portal Software\PaymentCtr\customfields.jar;

How Opcodes Read the Payment Method
Payment methods are used in the following objects:

• The PIN_FLD_PAY_TYPE field in the /billinfo object defines the payment method for an
account's bill. All defined payment methods are stored in the /config/payment object.

• When you add a new payment method to your BRM system, you must update the
PIN_FLD_PAY_TYPES array in the /config/payment object. The PIN_FLD_PAY_TYPES
array index corresponds to an entry in the pin_pymt.h file, where payment methods are
defined.

When you create a payment method, you must consider the opcodes that might use that
payment method. For example, if you change a customer's payment method to a custom
payment type, you must add the new payment method, when first used, to the input flist of the
opcodes that use the PIN_FLD_PAY_TYPE field. This is required if an invoice customer makes
a one-time payment by using a new credit card. If the new payment method is SEPA, you must
add the payment method to the account before it can be used. This is not required if the
payment method was defined when the account was created.

The following lists the opcodes that use the PIN_FLD_PAY_TYPE field:

• PCM_OP_PYMT_CHARGE

• PCM_OP_PYMT_CHARGE_CC

• PCM_OP_PYMT_COLLECT

• PCM_OP_BILL_GROUP_DELETE_MEMBER

• PCM_OP_BILL_MAKE_BILL

• PCM_OP_BILL_MAKE_BILL_NEW

• PCM_OP_BILL_MAKE_BILL_ON_DEMAND

• PCM_OP_BILL_MAKE_BILL_RCV_PAYMENT

• PCM_OP_PYMT_RECOVER

• PCM_OP_BILL_REVERSE

• PCM_OP_BILL_REVERSE_PAYMENT

• PCM_OP_PYMT_VALIDATE

When you define a custom payment method, you must provide information about the payment
method. Table 20-9 lists the fields in PIN_FLD_PAY_TYPES array.

Table 20-9 Fields in PIN_FLD_PAY_TYPE

Field name Description

PIN_FLD_PAYINFO_TYPE A string that indicates the type of /payinfo object to
create.

PIN_FLD_PAYMENT_EVENT_TYPE A string that indicates the type of /event object to
create when payment is received.

PIN_FLD_REFUND_EVENT_TYPE A string that indicates the type of /event object to
create when a refund is paid.

Chapter 20
How Opcodes Read the Payment Method

20-39

Table 20-9 (Cont.) Fields in PIN_FLD_PAY_TYPE

Field name Description

PIN_FLD_OPCODES An array that contains the following information
about an opcode to be associated with this pay type:

• PIN_FLD_NAME

The name of the opcode to be associated with
this pay type.

• PIN_FLD_OPCODE

The number of the opcode to be associated
with this pay type.

• PIN_FLD_EVENT_TYPE

A string that indicates the type of /event object
to create.

• PIN_FLD_FLAGS

Flags passed to opcodes when run.

Table 20-10 lists the PIN_FLD_OPCODES array indexes-to-opcode mapping.

Table 20-10 Index to Code Mapping for PIN_FLD_OPCODES

Value/Element ID Opcode type

0 PIN_PAY_VALIDATE

1 PIN_PAY_CHARGE

2 PIN_PAY_RECOVER

3 PIN_BILL_REVERSAL

Processing Payment Fees
When processing payment fees:

• Payment fees are applied by PCM_OP_PYMT_APPLY_FEE. See "Applying Payment Fees
".

• To customize payment fees, use PCM_OP_PYMT_POL_APPLY_FEE. See "Customizing
Payment Fees".

• To store additional information for payment fees, see "Storing Additional Information with
Payment Fees" for information.

Applying Payment Fees
Payment fees are applied by PCM_OP_PYMT_APPLY_FEE. This opcode creates payment
fees for payments that fail, for example, due to insufficient account funds or an expired credit
card. It calls PCM_OP_ACT_USAGE to create the payment fee event to be rated.

When a failed payment is posted in BRM, it is recorded in BRM with a balance impact of 0, and
is identified by a transaction ID, a failure status, and a reason ID for the failure. BRM uses the
failure status and reason ID to determine whether to apply payment fees when the payment is
posted. Payment fees can be applied only to payments that have a PIN_FLD_STATUS value of
PIN_PYMT_FAILED in the /event/billing/payment/failed object.

Chapter 20
Processing Payment Fees

20-40

PCM_OP_PYMT_APPLY_FEE is called by PCM_OP_PYMT_COLLECT.

The behavior of PCM_OP_PYMT_APPLY_FEE is determined by the PIN_FLD_STATUS field
passed in on the input flist. Payments are eligible to receive payment fees if they have a
PIN_FLD_STATUS value >= PIN_PYMT_FAILED and < PIN_PYMT_STATUS_MAX. The
numeric range for financially failed payments is 30-44.

The normal flow of PCM_OP_PYMT_APPLY_FEE is as follows:

1. Checks the input flist for the status of the payment and the reason ID that describes why
the payment failed.

2. Calls PCM_OP_PYMT_POL_APPLY_FEE to perform custom checks before the failed
payment fee is applied. See "Customizing Payment Fees".

When it returns the output flist, PCM_OP_PYMT_APPLY_FEE validates the information,
and creates the failed payment fee events for all failed payments based on the information.
The default value in the PIN_FLD_BOOLEAN field on the output flist is 0, which specifies
that the fee is created.

3. If a payment fails, records the /event/billing/payment/payment_type event.

Note:

If the payment is an unconfirmed payment, records the /event/billing/payment/
failed event.

4. Creates the /event/billing/fee/failed_payment event.

PCM_OP_PYMT_APPLY_FEE provides feedback on its success or failure through the
PIN_FLD_RESULTS array in the output flist. The value in the PIN_FLD_RESULTS field
specifies whether the payment fee event was created. A value of 0 signifies that the payment
fee event was created and the payment fee applied. A nonzero value signifies that the
payment fee event was not created.

In the case of a write-off reversal, the output flist sends a results array of reversal events and
tax events (if created) that were passed in by PCM_OP_AR_REVERSE_WRITEOFF.

Note:

Failed payments can only be applied to account numbers that already exist in the
BRM database.

The PIN_FLD_EVENTS array of the output flist stores the POID of the failed payment fee
event or write off event, if one is created. The PIN_FLD_EVENTS array is contained in the
PIN_FLD_RESULTS array.

Flags are not used directly by PCM_OP_PYMT_APPLY_FEE. They are passed in from
PCM_OP_PYMT_COLLECT for PCM_OP_PYMT_SELECT_ITEMS. For example, Payment
Tool can set the PCM_BILLFLG_DEFER_ALLOCATION flag to indicate which payments
should be left unallocated.

Chapter 20
Processing Payment Fees

20-41

Customizing Payment Fees
You can define additional rules for payment fee processing by configuring
PCM_OP_PYMT_POL_APPLY_FEE. This opcode is called by PCM_OP_PYMT_APPLY_FEE.

This opcode also enhances the /event/billing/fee/failed_payment object by providing
additional fields that are recorded in the object.

PCM_OP_PYMT_POL_APPLY_FEE enables you to customize payment fees by
preprocessing, filtering, and extending the information available in failed payment fee events.
For example:

• You can charge different fee amounts based on thresholds, or on the reason ID associated
with a failed payment.

• You can use payment attributes such as the customer segment, payment method,
payment channel, or a combination of these attributes to charge payment fees. You create
the filters by passing the values in the PIN_FLD_EXTENDED_INFO substruct or the
PIN_FLD_CHARGES array.

The default behavior of PCM_OP_PYMT_POL_APPLY_FEE is determined by the
PIN_FLD_STATUS and PIN_FLD_REASON_ID fields passed in on the input flist. It enhances
the input flist by adding fields to filter and extend the information available in the payment fee
events.

Note:

If the transaction ID, status or reason ID is missing from the actual payment, it can be
retrieved from the payment batch header.

Using Custom Reason Codes to Customize Payment Fees
You can use custom reason codes to apply reasons to payment failures, and then customize
payment fees based on those reasons.

To use custom reason codes, you mus customize the payment gateway to and your third-party
payment application to identify failed payments and send reason codes with the payment
information. When a failed payment is received, the reason code is mapped to the reason code
ID defined in the BRM database.

You define reason codes in the reasons.locale file and load them into the BRM database as a /
strings object. The file contains instructions on how to add the new domain Reason Codes -
Payment Failure Reasons. For example:

DOMAIN = "Reason codes-Payment Failure Reasons";
STR
 ID = 1001 ;
 VERSION = 13 ;
 STRING = "Invalid Credit Card";
END

Chapter 20
Processing Payment Fees

20-42

Note:

If you add your own reason codes to the reasons.locale file, you should use IDs
above 100,000.

To define reason codes for failed payments, you edit the reasons.en_US sample file in the
BRM_home/sys/msgs/reasoncodes directory. You then use the load_localized_strings
utility to load the contents of the file into the /strings objects.

When you run the load_localized_strings utility, use this command:

load_localized_strings reasons.locale

Note:

• If you are loading a localized version of this file, use the correct file extension for
your locale. For a list of file extensions, see Locale names.

• If a failed payment is loaded into BRM with an invalid reason code, payment fees
are not applied.

For information on loading the reasons.locale file, see BRM Developer's Guide. For
information on creating new strings for this file, see BRM Developer's Guide.

Customization example: Charging a fee based on the customer segment
The following opcode customization is used to control which failed payment fee is assigned to
an account based on the account's customer segment:

If (customer_segment = “early bill payer")
Then set PIN_FLD_BOOLEAN to False
END

The PIN_FLD_BOOLEAN value of False specifies that the fee event is not created. When
payments are posted, BRM uses the customer segment ID to determine if a payment fee is
charged.

You can also use the PIN_RESULT_PASS and PIN_RESULT_FAIL return values in
PCM_OP_PYMT_POL_APPLY_FEE to configure whether payment fees are applied.

Storing Additional Information with Payment Fees
You can store additional information for payment fees by extending the /event/billing/fee/
failed_payment storable class. Use the PIN_FLD_FAILED_PAYMENT_FEE field inside the
PIN_FLD_EXTENDED_INFO substruct. This enables you to record additional criteria you
defined to create the payment fee.

You can then use the PIN_FLD_REASON_ID field in the input flist to configure fees based on
this value of the PIN_FLD_FAILED_PAYMENT_FEE field. It contains the reason for failure that
was sent by the payment processor for failed credit card and direct debit transactions.

You can then charge payment fees based on custom payment attributes such as currency
type:

Chapter 20
Processing Payment Fees

20-43

1. Extend the /event/billing/fee/failed_payment storable class with the new attributes by
using Developer Center.

2. Customize PCM_OP_PYMT_POL_APPLY_FEES to pass the value in the
PIN_FLD_CHARGES array or the PIN_FLD_FAILED_PAYMENT_FEE field in the
PIN_FLD_EXTENDED_INFO substruct.

3. Use PDC or Pricing Center to create the charges for the new attribute values.

Processing Payment Incentives
Payment incentives are implemented by calling PCM_OP_PYMT_PROVISION_INCENTIVE
and PCM_OP_PYMT_GRANT_INCENTIVE.

PCM_OP_PYMT_PROVISION_INCENTIVE evaluates a payment to determine whether a
payment incentive should be provisioned and, if so, sets the payment incentive trigger. If a
payment incentive is triggered, PCM_OP_PYMT_GRANT_INCENTIVE performs the incentive.

PCM_OP_PYMT_PROVISION_INCENTIVE is called by PCM_OP_BILL_ITEM_TRANSFER
immediately after payment allocation, provided BRM is configured for payment incentives.
PCM_OP_PYMT_PROVISION_INCENTIVE determines whether the payment resulted in an
early, in-full settlement of the last bill. If so, the current bill may be eligible for a payment
incentive. This opcode creates a trigger for payment incentive processing to apply an incentive.

For more information, see "Triggering Payment Incentives" and "Granting Payment Incentives".

Triggering Payment Incentives
PCM_OP_PYMT_POL_PROVISION_INCENTIVE is called by
PCM_OP_BILL_ITEM_TRANSFER immediately after payment allocation, provided BRM is
configured for payment incentives.

You can customize PCM_OP_PYMT_POL_PROVISION_INCENTIVE to provide the timestamp
from a field other than PIN_FLD_END_T (for example, PIN_FLD_EFFECTIVE_T) or to apply
business logic that determines the payment date. For example, you can customize
PCM_OP_PYMT_POL_PROVISION_INCENTIVE to use the payment receipt date as the
payment timestamp for all credit card payments and three days after the payment receipt date
for all check payments.

PCM_OP_PYMT_PROVISION_INCENTIVE determines whether the payment resulted in an
early, in-full settlement of the last bill. If so, the current bill may be eligible for a payment
incentive and PCM_OP_PYMT_POL_PROVISION_INCENTIVE creates a trigger for payment
incentive processing to apply an incentive.

PCM_OP_PYMT_POL_PROVISION_INCENTIVE is called by
PCM_OP_PYMT_PROVISION_INCENTIVE to provide the payment date that is used when
determining whether the bill was paid on time. It receives the POID of the /event/billing/
payment object in the input flist and reads this object to determine the payment date. By
default, PCM_OP_PYMT_POL_PROVISION_INCENTIVE reads the PIN_FLD_END_T field to
obtain the timestamp. If it finds a payment date it's configured to provide, it returns the date to
PCM_OP_PYMT_PROVISION_INCENTIVE, which performs the following tasks:

• Retrieves the bill for which the payment allocation was made.

• Determines if the bill was the last bill.

• Compares the timestamp provided by the opcode to the due date for the payment.

PCM_OP_PYMT_PROVISION_INCENTIVE performs the following functions:

Chapter 20
Processing Payment Incentives

20-44

1. It calls PCM_OP_PYMT_POL_PROVISION_INCENTIVE to determine if the
PIN_EFFECTIVE_T field or any other customizable field contains a payment timestamp.
See "Triggering Payment Incentives".

2. It retrieves all of the bills and determines whether each of the bills is from the last billing
cycle or a prior cycle. PCM_OP_PYMT_PROVISION_INCENTIVE is only concerned with
the bills from the last billing cycles; none of the other bills qualify for early incentives.

3. It reads the Due and Due Time in each /bill object.
PCM_OP_PYMT_PROVISION_INCENTIVE uses this information along with the
timestamp in the PIN_FLD_END_T field from the /event/billing/payment object or a
timestamp from the policy opcode to determine whether the payment for a given bill was
allocated in full and early. PCM_OP_PYMT_PROVISION_INCENTIVE must find the
following conditions:

• PIN_FLD_DUE must be 0, indicating that there are no more payments due for the bill,
and it was paid in full.

• The timestamp in PIN_FLD_END_T or the timestamp provided by the policy opcode
must be earlier than or the same as the one in PIN_FLD_DUE_T, indicating that the
payment was allocated before or at the same time as the due time. BRM considers
both of these conditions to be indications of an early payment.

BRM always attempts to use whatever timestamp the policy opcode provides.
PCM_OP_PYMT_PROVISION_INCENTIVE only uses PIN_FLD_END_T if the policy
opcode does not return a timestamp or returns PIN_FLD_END_T instead of some other
timestamp.

4. If the payment meets these conditions, PCM_OP_PYMT_PROVISION_INCENTIVE
modifies the /billinfo object by setting its PIN_FLD_PAYMENT_EVENT_OBJ field to the
POID of the payment event that resulted in early, in-full payment. This acts as a trigger for
granting the payment incentive during the billing run.

5. It returns a list of bill units to which it added the payment incentive.

Granting Payment Incentives
PCM_OP_PYMT_GRANT_INCENTIVE is called by PCM_OP_BILL_MAKE_BILL as part of the
billing run. PCM_OP_PYMT_GRANT_INCENTIVE grants payment incentives based on:

• Whether the account has purchased a payment incentive subscription charge offer or the
account is eligible for a system charge offer that includes a payment incentive.

• Whether the payment incentive trigger is set in the bill unit.

• Conditions specified in the charge.

• Any additional conditions specified in PCM_OP_PYMT_POL_GRANT_INCENTIVE.

PCM_OP_PYMT_GRANT_INCENTIVE performs the following functions:

1. If the bill qualifies for a payment incentive, the opcode uses information from the /account
and /event/billing/payment objects to enrich the input flist with the payment method,
payment channel, and customer segment list. It also includes:

• The total for the current bill calculated during the current billing run.

• The total for the last bill, as determined from the /bill object for that bill.

By default, both these totals are after-tax amounts.

2. It calls PCM_OP_PYMT_POL_GRANT_INCENTIVE to determine whether it must enrich
the input flist with any extra fields, and validates the fields returned by the policy opcode.

Chapter 20
Processing Payment Incentives

20-45

3. It creates an /item/incentive object and an /event/billing/incentive object for the bill. In
addition to the payment method, payment channel, and so on, the /event/billing/incentive
object contains any fields specified in PCM_OP_PYMT_POL_GRANT_INCENTIVE,
provided the object has been suitably extended.

4. It sends the event to the rating opcodes to calculate the payment incentive for each bill.
BRM applies the balance impact of the payment incentive event to the default balance
group of the bill unit.

5. It clears the payment incentive trigger in the PIN_FLD_PAYMENT_EVENT_OBJ field of
the /billinfo objects of each affected bill, returning this field to a null value.

Two other opcodes are used for payment incentives:

• PCM_OP_PYMT_PROVISION_INCENTIVE triggers payment incentives. See "Triggering
Payment Incentives".

• PCM_OP_PYMT_REVERSE_INCENTIVE reverses payment incentives. See "Reversing
Payment Incentives".

Reversing Payment Incentives
PCM_OP_PYMT_REVERSE_INCENTIVE reverses a payment incentive if it has not yet been
granted.

PCM_OP_PYMT_REVERSE_INCENTIVE is called by PCM_OP_BILL_REVERSE_PAYMENT
as part of payment reversal, provided BRM is configured for payment incentives. It determines
whether payment is being reversed for a bill that had a payment incentive either provisioned or
granted. If so, it either deactivates the payment incentive trigger or, for payment incentives that
have already been granted, issues warnings and flags the reversal event so that you can
initiate manual processing.

PCM_OP_PYMT_REVERSE_INCENTIVE performs the following functions:

1. It retrieves all bills affected by the reversal and searches for the associated /billinfo
objects.

2. For each /billinfo object, it checks the PIN_FLD_PAYMENT_EVENT_OBJ field to
determine whether a payment incentive has been provisioned but not yet granted. If so, it
resets this field, removing the POID of the payment event, which automatically reverses
the payment incentive.

3. If the PIN_FLD_PAYMENT_EVENT_OBJ field does not indicate that a payment incentive
has been provisioned, the opcode searches all /event/billing/incentive objects for the
account to determine whether any of them are associated with the bill for which payment is
being reversed.

The existence of this object for a given bill means that BRM already granted a payment
incentive for the bill. In this case, the opcode generates a warning in the cm.pinlog file to
indicate that manual adjustment is required.

Customizing Payment Incentives
You can configure BRM to grant payment incentives. See BRM Configuring and Collecting
Payments.

To customize payment incentives, read the following:

• To customize how payment incentives are triggered (for example, by date), use the
PCM_OP_PYMT_POL_PROVISION_INCENTIVE policy opcode. See "Customizing How
to Trigger Payment Incentives".

Chapter 20
Processing Payment Incentives

20-46

• To customize how to grant payment incentives, use the
PCM_OP_PYMT_POL_GRANT_INCENTIVE policy opcode. See "Customizing How to
Grant Payment Incentives".

• To manually reverse payment incentives, see "Manually Reversing a Payment Incentive".

Customizing How to Trigger Payment Incentives
You can configure the PCM_OP_PYMT_POL_PROVISION_INCENTIVE policy opcode to
determine the payment date that should be considered when provisioning incentives.

For example, you can customize this opcode to use the payment receipt date as the payment
timestamp for all credit card payments, and 3 days after the payment receipt date for all check
payments.

You can also create custom payment objects that use fields other than a payment due date. In
this case, you would customize this policy opcode to read these fields and provide them as
output for PCM_OP_PYMT_PROVISION_INCENTIVE.

See the chapter about payments in BRM Opcode Guide for more information.

Customizing How to Grant Payment Incentives
By default, you can set up a charge so that BRM considers three attributes when determining
whether to apply a payment incentive:

• Customer segment

• Payment channel

• Payment method

You can broaden this scope by customizing the PCM_OP_PYMT_POL_GRANT_INCENTIVE
policy opcode. When you customize this opcode, you must also extend the /event/billing/
incentive storable class so that the object records all the criteria considered for the payment
incentive. The additional fields are then included in the choices you can make when creating
charge selectors in PDC or Pricing Center. Therefore, you can use these additional fields as
criteria when defining attribute combinations that result in payment incentives.

The contents of the /event/billing/incentive object determine:

• The list of attributes that can be considered when setting up a charge. The pricing expert
associates combinations of these attributes with specific charges when creating the
payment incentive charge offer.

• The information BRM compares with the attribute combinations defined for the payment
incentive charge offer. If BRM finds a match, it rates the payment incentive event according
to the charge for the matching combination.

For example, to award a payment incentive to premium customers who pay in a certain
currency, you perform two tasks:

• Customize PCM_OP_PYMT_POL_GRANT_INCENTIVE by adding the
PIN_FLD_SERVICE_OBJ and PIN_FLD_CURRENCY fields to the input flist. The opcode
then includes the service type for the account and the currency type in the output flist. As a
result, BRM is able to consider the service type and currency along with the usual criteria
when determining whether to apply the incentive and when calculating the payment
incentive.

• Extend the /event/billing/incentive storable class by adding the
PIN_FLD_SERVICE_OBJ and PIN_FLD_CURRENCY fields. BRM then includes the

Chapter 20
Processing Payment Incentives

20-47

service type and currency in the event object each time it's created. When you create
columns in the charge selector, you can select these two fields along with the default fields.

In addition to performing this type of customization, you can also customize the
PCM_OP_PYMT_POL_GRANT_INCENTIVE policy opcode to do the following:

• Provide special types of incentives such as free gifts. In this case, you modify the opcode
so that it calls the opcodes that process and control charge offer purchases, for example,
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL. Then, you create a bundle that includes
an item charge offer that awards the free gift.

• Develop an application to count the number of subscription services for an account and
customize PCM_OP_PYMT_POL_GRANT_INCENTIVE to include this information in the
enriched flist.

• Customize which customer segment to use. You can also customize this opcode to select
a different customer segment from PIN_FLD_CUSTOMER_SEGMENT_LIST. By default,
PCM_OP_PYMT_POL_GRANT_INCENTIVE selects the first customer segment from the
PIN_FLD_CUSTOMER_SEGMENT_LIST it gets from
PCM_OP_PYMT_GRANT_INCENTIVE. The customer segment returned by
PCM_OP_PYMT_POL_GRANT_INCENTIVE is the one that BRM uses as a filtering
attribute during payment incentive calculation.

See the chapter about payments in BRM Opcode Guide for more information

Manually Reversing a Payment Incentive
When a payment is reversed, BRM reverses any payment incentive provisioning triggers
created at payment time, provided the payment was for the last bill. If payment was reversed
for an earlier bill, BRM has already applied the incentive and does not reverse it. In this case,
you must perform a manual account adjustment through your CRM client application. This type
of adjustment debits account balances rather than crediting them.

BRM identifies payment incentives that need manual reversal in the cm.pinlog file, which lists
any cases where a payment incentive reversal failed. Searching the cm.pinlog for this
information can be time consuming. Therefore, you should consider customizing this process
in one of the following ways:

• Write your own reporting application that creates a list of all bills that meet the following
two conditions:

– The bill had a payment incentive that was not only provisioned, but also granted.

– The payment reversal was for the bill before the one that had the payment incentive
granted.

Operations personnel can use this report to identify the adjustments they must perform.

• Create your own custom opcode or customize the PCM_OP_ACT_POL_EVENT_NOTIFY
policy opcode so that it checks the reporting conditions discussed above and alerts the
CRM client application whenever both conditions are true. Then, enable event notification
and add the following information to your system's event notification list so that BRM calls
PCM_OP_ACT_POL_EVENT_NOTIFY (opcode number 301) each time an /event/billing/
reversal/* event is generated during payment reversal:

comment, if any
301 0 /event/billing/reversal/cc
301 0 /event/billing/reversal/check
301 0 /event/billing/reversal/dd
301 0 /event/billing/reversal/payorder
301 0 /event/billing/reversal/postalorder
301 0 /event/billing/reversal/transfer

Chapter 20
Processing Payment Incentives

20-48

For more information, see "Using Event Notification" in BRM Developer's Guide.

In addition, you must customize your middleware and CRM applications to process the
notification correctly and issue appropriate messages to operations personnel.

Managing Top-Ups
See the following for information about managing top-ups in your client applications:

• Setting Up Top-Up Information in an Account

• Processing Top-Ups

• Implementing Top-Ups in Custom Client Applications

• Setting an Account's Sponsored Top-Up Member Status and PIN

• Offering Discount Incentives with Top-Ups

Setting Up Top-Up Information in an Account
To create or modify an account's top-up information, PCM_OP_CUST_SET_TOPUP calls one
of the following opcodes:

• PCM_OP_CUST_CREATE_TOPUP

• PCM_OP_CUST_MODIFY_TOPUP

If successful, the PCM_OP_CUST_SET_TOPUP output flist contains the PIN_FLD_POID set
to the POID of the created or modified /topup object.

If unsuccessful, the PCM_OP_CUST_SET_TOPUP output flist contains the following:

• PIN_FLD_FIELD_NUM set to the field that failed.

• PIN_FLD_TYPE set to the type of field that failed.

• PIN_FLD_RESULT set to the validation error code.

For standard top-ups, an account's top-up information is stored in one object (/topup), but for
sponsored top-ups, an account's top-up information is stored in two objects (/topup and /
group/topup). Sometimes, one of the objects must be created and the other modified. For
example, to add a member account to a sponsored top-up group, BRM might need to create
a /topup object for the member and associate it with an existing /group/topup object. To
determine which opcode to call in such cases, PCM_OP_CUST_SET_TOPUP uses these
rules:

• If at least one of the objects is being created, PCM_OP_CUST_SET_TOPUP calls
PCM_OP_CUST_CREATE_TOPUP. This is true even if the other object is being modified.

• If neither object is being created, PCM_OP_CUST_SET_TOPUP calls
PCM_OP_CUST_MODIFY_TOPUP.

Preparing an Account's Top-Up Information
To prepare top-up information for an account, PCM_OP_CUST_CREATE_TOPUP and
PCM_OP_CUST_MODIFY_TOPUP call PCM_OP_CUST_POL_PREP_TOPUP. For example,
you can customize PCM_OP_CUST_POL_PREP_TOPUP to enable member accounts to
change their top-up PINs and membership status. The policy opcode prepares information
required to perform one of these tasks:

Chapter 20
Managing Top-Ups

20-49

• Create a standalone /topup object for standard top-ups. This occurs when the
following information is not passed to PCM_OP_CUST_POL_PREP_TOPUP:

– A /topup object POID

– A sponsored top-up group owner account POID

• Modify a standalone /topup object for standard top-ups. This occurs when the
following information is passed to PCM_OP_CUST_POL_PREP_TOPUP:

– A /topup object POID

But this information is not passed to it:

– A sponsored top-up group owner account POID

– A /group/topup POID

• Create one or both objects (/topup and /group/topup) for sponsored top-ups. This
occurs when the following information is passed to PCM_OP_CUST_POL_PREP_TOPUP:

– A sponsored top-up group owner account POID

But this information is not passed to it:

– A /topup object POID

– A /group/topup POID

Note:

Before creating a /group/topup object, the opcode checks for an existing /
group/topup object that matches the criteria in its input flist. For more
information, see "Finding Sponsored Top-Up Groups".

• Modify both objects (/topup and /group/topup) for sponsored top-ups. This occurs
when the following information is passed to PCM_OP_CUST_POL_PREP_TOPUP:

– A /topup object POID

– A /group/topup POID

Additional Preparation for Sponsored Top-Ups

For sponsored top-ups, PCM_OP_CUST_POL_PREP_TOPUP also prepares this information:

• If the group owner account did not initiate the object creation or modification, the
policy opcode sets the following values in its output flist:

– PIN_FLD_STATUS (member account's group membership status) = the value
associated with the PIN_STATUS_INACTIVE status in the BRM_home/include/ops/
pcm.h header file

– PIN_FLD_PIN (member account's top-up PIN) = NULL

• If the group owner account did initiate the object creation or modification, the policy
opcode does the following:

– If the status of the member account's group membership is not specified in the input
flist, sets it to the value associated with the PIN_STATUS_ACTIVE in the BRM_home/
include/ops/pcm.h header file

– (Creation only) If the group name is not specified in the input flist, sets the name to
default

Chapter 20
Managing Top-Ups

20-50

Additional Preparation for Recurring Top-Ups

For recurring top-ups, PCM_OP_CUST_POL_PREP_TOPUP also prepares this information:

Validating an Account's Top-Up Information
To validate the top-up information prepared for an account (see "Preparing an Account's Top-
Up Information"), PCM_OP_CUST_CREATE_TOPUP and PCM_OP_CUST_MODIFY_TOPUP
call PCM_OP_CUST_POL_VALID_TOPUP. The policy opcode performs these tasks:

• Verifies that the status of the account to be debited for each top-up (the paying account) is
active.

• Verifies that the standard or sponsored top-up amount is less than or equal to the
corresponding top-up cap.

• (Sponsored top-ups only) Verifies that the member is not trying to join a group that it
owns.

• (Sponsored top-ups only) Verifies that the prospective member's account is not closed.

• (Sponsored top-ups only) Verifies that the prospective member is not a member of any
other sponsored top-up group.

You can customize PCM_OP_CUST_POL_VALID_TOPUP to change the way it validates the
PCM_OP_CUST_POL_PREP_TOPUP output flist.

In its own output flist, PCM_OP_CUST_POL_VALID_TOPUP returns a PIN_FLD_RESULT
value that is associated with one of the following values:

• PIN_RESULT_PASS (validation succeeded)

• PIN_RESULT_FAIL (validation failed)

PCM_OP_CUST_POL_VALID_TOPUPis not called by any opcode.

Finding Top-Up Events
PCM_OP_PYMT_FIND_TOPUP_EVENTS finds the /event/billing/adjustment/account event
associated with sponsored top-ups.

By default, this opcode returns data from all the fields in an event. To return data from only
particular event fields, specify the fields in the PIN_FLD_RESULTS array in this opcode's input
flist.

Creating an Account's Top-Up Information
If validation succeeds (see "Validating an Account's Top-Up Information"), the validated
information is used to create top-up information.

PCM_OP_CUST_CREATE_TOPUP uses the validated information to perform one of these
operations:

• If the information does not include the POID of a sponsored top-up group owner account,
the opcode:

– Creates a standalone /topup object that contains information about the type of top-up
to perform.

– For recurring top-ups, calls PCM_OP_PYMT_TOPUP to perform the first top-up. See
"How BRM Handles Recurring Standard Top-Ups".

Chapter 20
Managing Top-Ups

20-51

– Generates an /event/notification/topup/create event.

• If the information includes the POID of a sponsored top-up group owner account and /
group/topup and /topup POID types, the opcode creates a sponsored top-up relationship
as follows:

1. Creates a /group/topup object for the owner account

2. Creates a /topup object for the member account

3. Associates the new /topup object with the new /group/topup object

• If the information includes the POID of a sponsored top-up group owner account, the POID
of an existing /group/topup object, and a /topup POID type,
PCM_OP_CUST_CREATE_TOPUP creates a sponsored top-up relationship as follows:

1. Creates a /topup object for the member account

2. Associates the new /topup object with the existing /group/topup object

• If the information includes the POID of a sponsored top-up group owner account, a /group/
topup POID type, and an existing /topup object, PCM_OP_CUST_CREATE_TOPUP
creates a sponsored top-up as follows:

1. Creates a /group/topup object for the owner account

2. Associates the existing /topup object with the new /group/topup object

If successful, the PCM_OP_CUST_CREATE_TOPUP output flist contains the following:

• PIN_FLD_POID set to the POID of the /topup object created

If unsuccessful, the output flist contains the following:

• PIN_FLD_FIELD_NUM set to the field that failed

• PIN_FLD_TYPE set to the type of field that failed

• PIN_FLD_RESULT set to the validation error code

Modifying an Account's Top-Up Information
If validation succeeds (see "Validating an Account's Top-Up Information"), the validated
information is used to modify top-up information.

PCM_OP_CUST_MODIFY_TOPUP uses the validated information to perform one of these
operations:

• If the information does not include the POID of an existing /group/topup object, the
opcode:

– Modifies the standalone /topup object.

– For recurring top-ups, calls PCM_OP_PYMT_TOPUP to perform the first top-up. See
"How BRM Handles Recurring Standard Top-Ups".

– Generates an /event/notification/topup/modify event.

• If the information includes the POID of an existing /group/topup object, the opcode
modifies the sponsored top-up information in the /group/topup and /topup objects.

If successful, the PCM_OP_CUST_MODIFY_TOPUP output flist contains the following:

• PIN_FLD_POID set to the POID of the /topup object modified

If unsuccessful, the PCM_OP_CUST_MODIFY_TOPUP output flist contains the following:

• PIN_FLD_FIELD_NUM set to the field that failed

Chapter 20
Managing Top-Ups

20-52

• PIN_FLD_TYPE set to the type of field that failed

• PIN_FLD_RESULT set to the validation error code

Deleting Top-Ups
Use PCM_OP_CUST_DELETE_TOPUP to delete /topup objects.

PCM_OP_CUST_DELETE_TOPUP is called by PCM_OP_CUST_DELETE_ACCT.

This opcode should not be used to cancel an account's membership in a sponsored top-up
group.

Finding Sponsored Top-Up Groups
When setting up sponsored top-ups, PCM_OP_CUST_POL_PREP_TOPUP uses the following
information from the PCM_OP_CUST_SET_TOPUP input flist to determine whether the
prospective member account can be added to an existing group:

• The group owner account POID (PIN_FLD_PARENT)

• The name of the group (PIN_FLD_NAME)

Note:

Each group owned by the same account must have a unique name. Groups
owned by different accounts can have the same name.

If a group name is not provided, the policy opcode searches for a group by owner account
POID and the ID of the balance or balances that you want to top-up in the member account
(PIN_FLD_RESOURCE_ID in the LIMITS array). The search has the following results:

• If the policy opcode finds the group by name but a balance is specified in the input flist that
the group does not support, the following occurs:

– If the group owner account initiated the transaction, the balance is added to the group.

– If the member account initiated the transaction, an error is returned.

• If the policy opcode finds the group by balance and the search returns multiple groups, the
groups are listed alphabetically by PIN_FLD_NAME value and the member is added to the
group at the top of the list.

• If the policy opcode fails to find a group by name or by balance, the following occurs:

– If the group owner account has a group named default, the member is added to that
group.

– If the group owner account does not have a group named default, such a group is
created based on the information in the input flist. (Each group owner can have only
one sponsored top-up group named default.)

Note:

To change the way the search is performed, customize
PCM_OP_CUST_POL_PREP_TOPUP.

Chapter 20
Managing Top-Ups

20-53

Setting a Customer's Automatic Top-Up Threshold
You can set a fixed or percentage-based threshold below which an automatic top-up will be
triggered for a customer. The thresholds are stored in /config/credit_profile objects, which are
tied to a customer's balance group.

To set an automatic top-up threshold, use PCM_OP_BILL_SET_LIMIT_AND_CR. Specify the
PIN_FLD_RESRC_FIXED_THRESHOLD or PIN_FLD_RESRC_PERC_THRESHOLD fields in
the PIN_FLD_LIMIT array of the input flist, using the appropriate resource ID for the limit array.

For example, to set a threshold of $5 in USD (resource ID 840):

0 PIN_FLD_PROGRAM_NAME STR [0] "calling_program"
0 PIN_FLD_POID POID [0] 0.0.0.1 /account 371077 10
0 PIN_FLD_LIMIT ARRAY [840] allocated 1, used 1
1 PIN_FLD_RESRC_FIXED_THRESHOLD DECIMAL [0] 5.0

Processing Top-Ups
BRM uses the PCM_OP_PYMT_TOPUP opcode to process all top-up payments. See the
following topics:

• Triggering Top-ups

• How BRM Handles Manual Standard Top-Ups

• How BRM Handles Automatic Standard Top-Ups

• How BRM Handles Recurring Standard Top-Ups

• How BRM Handles Manual Sponsored Top-Ups

• How BRM Handles Automatic Sponsored Top-Ups

Triggering Top-ups
PCM_OP_PYMT_TOPUP is triggered as follows:

• Manual top-ups: When a customer or CSR uses a client application to top up a balance in
an account (a manual top-up), the opcode is called by the client application.

• Automatic standard top-ups: When a balance in an account configured for automatic
standard top-ups falls below a specified threshold, ECE calls PCM_OP_PYMT_TOPUP.

• Recurring standard top-ups: When you run the pin_balance_transfer utility with the -
standard parameter. The utility calls the opcode to top up all accounts with a recurring top-
up and a top-up due date of today.

• Automatic sponsored top-ups: When you run the pin_balance_transfer utility with the -
start mm/dd/yy and -end mm/dd/yy parameters. The utility calls the opcode to top up all
accounts configured for automatic sponsored top-ups and a next automatic top-up date in
the time range specified in the pin_balance_transfer utility's command-line parameters.

How BRM Handles Manual Standard Top-Ups
For manual standard top-ups, PCM_OP_PYMT_TOPUP does the following:

1. Depending on the payment method, does one of the following:

Chapter 20
Managing Top-Ups

20-54

• For voucher payment methods, calls PCM_OP_PYMT_POL_VALID_VOUCHER to
perform these operations:

– Call your voucher management system to validate the voucher and retrieve the
balance impacts of the voucher's balances.

– Determine whether the voucher has a currency balance, a noncurrency balance,
or both.

– Use the balance with the earliest validity start date and the balance with the latest
validity end date to determine the validity period of the voucher.

– Call PCM_OP_VOUCHER_ASSOCIATE_VOUCHER to associate the voucher
with the account.

– Return the preceding information and the voucher's balance impacts to
PCM_OP_PYMT_TOPUP.

• For credit card and direct debit payment methods, collects payment from the credit
card agency or direct debit company, and then updates the specified balance.

• For cash and check payment methods, receives the payment amount from the client
application.

2. Calls PCM_OP_ACT_USAGE to generate an /event/billing/topup event.

3. If there are any /item/loan_fee and /item/loan_debit items for the account:

a. Transfers the corresponding amount from the top-up to pay off the loan. If the amount
in the top-up is less than the amount due for the loan, one of the following happens:

• The percent configured in the loan_repayment_percent business parameter is
transferred and any remaining percent is credited to the main account balance.

• If the PCM_OP_LOAN_POL_PRE_RECOVER_LOAN has been customized for
this scenario, the top-up is rejected and the customer is notified.

b. Calls PCM_OP_BILL_SET_LIMIT_AND_CR to subtract the amount from the balance
group's PIN_FLD_OUTSTANDING_AMOUNT field.

c. Calls PCM_OP_CUST_MODIFY_PROFILE to subtract the amount from the loan
profile's PIN_FLD_OUTSTANDING_AMOUNT field.

4. If topping up a noncurrency balance, does the following:

• Calls PCM_OP_PYMT_POL_TOPUP_SET_VALIDITY to perform any customization
on the validity dates for the noncurrency balance. By default, it does nothing.

• Calls PCM_OP_BILL_DEBIT to apply a credit to the account's noncurrency sub-
balance.

Note:

The cash and check payment methods do not support noncurrency balance top-
ups.

5. If topping up a currency balance, calls PCM_OP_PYMT_COLLECT to apply a credit to the
account's currency sub-balance.

6. Applies any top-up discount incentives to the account by calling
PCM_OP_PYMT_POL_PURCHASE_DEAL.

Chapter 20
Managing Top-Ups

20-55

How BRM Handles Automatic Standard Top-Ups
PCM_OP_PYMT_TOPUP performs automatic standard top-ups as follows:

1. Collects payment from the credit card agency or direct debit company, and then updates
the specified balance.

Note:

Automatic standard top-ups support only the credit card and debit card payment
methods.

2. Calls PCM_OP_ACT_USAGE to generate an /event/billing/topup event.

3. Retrieves the top-up amount from the specified /topup object.

4. Verifies that the top-up amount will not cause the sum of all automatic standard top-ups
received during the current accounting cycle to exceed the account's automatic standard
top-up cap.

5. If there are any /item/loan_fee and /item/loan_debit items for the account:

a. Transfers the corresponding amount from the top-up to pay off the loan. If the amount
in the top-up is less than the amount due for the loan, one of the following happens:

• The percent configured in the loan_repayment_percent business parameter is
transferred and any remaining percent is credited to the main account balance.

• If the PCM_OP_LOAN_POL_PRE_RECOVER_LOAN has been customized for
this scenario, the top-up is rejected and the customer is notified.

b. Calls PCM_OP_BILL_SET_LIMIT_AND_CR to subtract the amount from the balance
group's PIN_FLD_OUTSTANDING_AMOUNT field.

c. Calls PCM_OP_CUST_MODIFY_PROFILE to subtract the amount from the loan
profile's PIN_FLD_OUTSTANDING_AMOUNT field.

6. If topping up a noncurrency balance, does the following:

• Calls PCM_OP_PYMT_POL_TOPUP_SET_VALIDITY to perform any customization
on the validity dates for the noncurrency balance. By default, it does nothing.

• Calls PCM_OP_BILL_DEBIT to apply a credit to the account's noncurrency sub-
balance.

7. If topping up a currency balance, calls PCM_OP_PYMT_COLLECT to apply a credit to the
account's currency sub-balance.

8. Applies any top-up discount incentives to the account by calling
PCM_OP_PYMT_POL_PURCHASE_DEAL.

How BRM Handles Recurring Standard Top-Ups
PCM_OP_PYMT_TOPUP performs recurring standard top-ups as follows:

1. Depending on the payment method, does one of the following:

• For voucher payment methods, calls PCM_OP_PYMT_POL_VALID_VOUCHER to
perform these operations:

Chapter 20
Managing Top-Ups

20-56

– Call your voucher management system to validate the voucher and retrieve the
balance impacts of the voucher's balances.

– Determine whether the voucher has a currency balance, a noncurrency balance,
or both.

– Use the balance with the earliest validity start date and the balance with the latest
validity end date to determine the validity period of the voucher.

– Call PCM_OP_VOUCHER_ASSOCIATE_VOUCHER to associate the voucher
with the account.

– Return the preceding information and the voucher's balance impacts to
PCM_OP_PYMT_TOPUP.

• For credit card and direct debit payment methods, collects payment from the credit
card agency or direct debit company, and then updates the specified balance.

2. Calls PCM_OP_ACT_USAGE to generate an /event/billing/topup event.

3. Retrieves the top-up amount and resource ID from the specified /topup object.

4. Verifies that the number of recurring top-ups performed (in the /topup object's
PIN_FLD_NUM_TOPUPS_DONE field) is less than the maximum number of recurring top-
ups allowed (in the /topup object's PIN_FLD_NUM_TOPUPS field).
After PIN_FLD_NUM_TOPUPS_DONE equals the value set in PIN_FLD_NUM_TOPUPS,
no further recurring top-ups are performed.

5. If there are any /item/loan_fee and /item/loan_debit items for the account:

a. Transfers the corresponding amount from the top-up to pay off the loan. If the amount
in the top-up is less than the amount due for the loan, one of the following happens:

• The percent configured in the loan_repayment_percent business parameter is
transferred and any remaining percent is credited to the main account balance.

• If the PCM_OP_LOAN_POL_PRE_RECOVER_LOAN has been customized for
this scenario, the top-up is rejected and the customer is notified.

b. Calls PCM_OP_BILL_SET_LIMIT_AND_CR to subtract the amount from the balance
group's PIN_FLD_OUTSTANDING_AMOUNT field.

c. Calls PCM_OP_CUST_MODIFY_PROFILE to subtract the amount from the loan
profile's PIN_FLD_OUTSTANDING_AMOUNT field.

6. If topping up a noncurrency balance, does the following:

• Calls PCM_OP_PYMT_POL_TOPUP_SET_VALIDITY to perform any customization
on the validity dates for the noncurrency balance. By default, it does nothing.

• Calls PCM_OP_BILL_DEBIT to apply a credit to the account's noncurrency sub-
balance.

7. If topping up a currency balance, calls PCM_OP_PYMT_COLLECT to apply a credit to the
account's currency sub-balance.

8. Applies any top-up discount incentives to the account by calling
PCM_OP_PYMT_POL_PURCHASE_DEAL.

9. Calls PCM_OP_SUBSCRIPTION_CALCULATE_VALIDITY to calculate the due date for
the next recurring top-up, which is set in the /topup object's PIN_FLD_NEXT_TOPUP_T
field. It also increments the number of recurring top-ups completed by one in the /topup
object's PIN_FLD_NUM_TOPUPS_DONE field.

10. Calls PCM_OP_PYMT_POL_POST_TOPUP to perform any customizations to the due
date for the next recurring top-up. By default, this policy opcode does nothing.

Chapter 20
Managing Top-Ups

20-57

How BRM Handles Manual Sponsored Top-Ups
PCM_OP_PYMT_TOPUP performs manual sponsored top-ups as follows:

1. Receives the top-up amount from a client application.

2. Verifies the following:

• The status of the member is active.

• (Member-initiated top-ups only) The top-up PIN is valid.

• The top-up amount will not cause the total amount of credit charged to the owner
account's balance group to exceed the credit limit of the associated balance in that
balance group.

• The top-up amount will not cause the sum of all top-ups received during the current
accounting cycle of the owner account to exceed the group's top-up cap.

3. Performs these operations:

• Calls PCM_OP_BILL_TRANSFER_BALANCE to transfer the top-up balances from the
paying balance group to the receiving balance group.

• Passes the reason ID and the reason domain ID used to differentiate sponsored top-up
adjustments from other types of adjustments to
PCM_OP_BILL_TRANSFER_BALANCE, which passes them to
PCM_OP_AR_ACCOUNT_ADJUSTMENT.

• Updates the sum of all sponsored top-ups credited to members of the group during the
group owner account's current accounting cycle. This value is stored in the
PIN_FLD_CYCLE_TOPPED_AMT field of the LIMITS array in the /group/topup
object.
If the last sponsored top-up occurred in the owner account's current accounting cycle,
PCM_OP_PYMT_TOPUP adds the amount of the current top-up to the value already
in this field.

If the last sponsored top-up occurred in the owner account's previous accounting
cycle, the opcode sets this field to the amount of the current top-up.

4. If there are any /item/loan_fee and /item/loan_debit items for the account:

a. Transfers the corresponding amount from the top-up to pay off the loan. If the amount
in the top-up is less than the amount due for the loan, one of the following happens:

• The percent configured in the loan_repayment_percent business parameter is
transferred and any remaining percent is credited to the main account balance.

• If the PCM_OP_LOAN_POL_PRE_RECOVER_LOAN has been customized for
this scenario, the top-up is rejected and the customer is notified.

b. Calls PCM_OP_BILL_SET_LIMIT_AND_CR to subtract the amount from the balance
group's PIN_FLD_OUTSTANDING_AMOUNT field.

c. Calls PCM_OP_CUST_MODIFY_PROFILE to subtract the amount from the loan
profile's PIN_FLD_OUTSTANDING_AMOUNT field.

5. Applies any top-up discount incentives to the account by calling
PCM_OP_PYMT_POL_PURCHASE_DEAL.

How BRM Handles Automatic Sponsored Top-Ups
PCM_OP_PYMT_TOPUP performs automatic sponsored top-ups as follows:

Chapter 20
Managing Top-Ups

20-58

1. Retrieves the top-up amount from the specified /group/topup object.

2. Verifies the following:

• The status of the member is active.

• The top-up amount will not cause the total amount of credit charged to the owner
account's balance group to exceed the credit limit of the associated balance in that
balance group.

• The top-up amount will not cause the sum of all top-ups received during the current
accounting cycle of the owner account to exceed the group's top-up cap.

3. Performs these operations:

• Calls PCM_OP_BILL_TRANSFER_BALANCE to transfer the top-up balances from the
paying balance group to the receiving balance group.

• Passes the reason ID and the reason domain ID used to differentiate sponsored top-up
adjustments from other types of adjustments to
PCM_OP_BILL_TRANSFER_BALANCE, which passes them to
PCM_OP_AR_ACCOUNT_ADJUSTMENT.

• Updates the time that the member's last automatic sponsored top-up occurred to the
current time.
This value is stored in the PIN_FLD_LAST_TOPUP_T field of the LIMITS array in the /
group/topup object. PCM_OP_PYMT_TOPUP uses this value to determine when to
run the member's next automatic sponsored top-up.

• Calculates the time that the member's next automatic sponsored top-up will occur. This
value is stored in the PIN_FLD_NEXT_TOPUP_T field of the LIMITS array in the /
group/topup object.

• Updates the sum of all sponsored top-ups credited to members of the group during the
group owner account's current accounting cycle. This value is stored in the
PIN_FLD_CYCLE_TOPPED_AMT field of the LIMITS array in the /group/topup
object.
If the last sponsored top-up occurred in the owner account's current accounting cycle,
PCM_OP_PYMT_TOPUP adds the amount of the current top-up to the value already
in this field.

If the last sponsored top-up occurred in the owner account's previous accounting
cycle, the opcode sets this field to the amount of the current top-up.

4. If there are any /item/loan_fee and /item/loan_debit items for the account:

a. Transfers the corresponding amount from the top-up to pay off the loan. If the amount
in the top-up is less than the amount due for the loan, one of the following happens:

• The percent configured in the loan_repayment_percent business parameter is
transferred and any remaining percent is credited to the main account balance.

• If the PCM_OP_LOAN_POL_PRE_RECOVER_LOAN has been customized for
this scenario, the top-up is rejected and the customer is notified.

b. Calls PCM_OP_BILL_SET_LIMIT_AND_CR to subtract the amount from the balance
group's PIN_FLD_OUTSTANDING_AMOUNT field.

c. Calls PCM_OP_CUST_MODIFY_PROFILE to subtract the amount from the loan
profile's PIN_FLD_OUTSTANDING_AMOUNT field.

5. Applies any top-up discount incentives to the account by calling
PCM_OP_PYMT_POL_PURCHASE_DEAL.

Chapter 20
Managing Top-Ups

20-59

Implementing Top-Ups in Custom Client Applications
All top-ups are performed by PCM_OP_PYMT_TOPUP. See the following topics:

• Implementing Manual Standard Top-Ups

• Implementing Automatic Standard Top-Ups

• Implementing Recurring Standard Top-Ups

• Implementing Manual Sponsored Top-Ups

• Implementing Automatic Sponsored Top-Ups

• Viewing Sponsored Top-Up History

• About Transferring Sponsored Top-Ups from Debit Balances

Implementing Manual Standard Top-Ups
To implement the manual standard top-up feature, configure your custom client application to
accept the following top-up information and pass it in the input flist to the
PCM_OP_PYMT_TOPUP opcode:

• For voucher top-ups, pass the following information in the PIN_FLD_VOUCHERS_INFO
array:

– Voucher serial number

– Voucher PIN number

– Bill unit (/billinfo object) to top up

– Balance group to top up (optional)

– Amount to top up (also include the resource ID for noncurrency resources)

– Service to top up

Note:

To apply the voucher top up to a service-level balance group, you must pass
the /service object POID in the PIN_FLD_SERVICE_OBJ field of the
PIN_FLD_VOUCHERS_INFO array.

• For credit card top ups, pass the following information in the PIN_FLD_TOPUP_INFO
array:

– Bill unit to top up

– Balance group to top up (optional)

– Amount to top up (also include the resource ID for noncurrency resources)

– Credit card number

– Credit card expiration date

– Credit card owner's name and address information

• For direct debit top ups, pass the following information in the PIN_FLD_TOPUP_INFO
array:

Chapter 20
Managing Top-Ups

20-60

– Bill unit to top up

– Balance group to top up (optional)

– Amount to top up (also include the resource ID for noncurrency resources)

– Bank routing number

– Bank account number

– Direct debit owner's name and address information

Implementing Automatic Standard Top-Ups
To implement the automatic standard top-up feature:

1. In PDC or Pricing Center, set a credit floor and credit threshold for any package that
contains bundles whose service balances you want your customers to top up. For
example, to trigger an automatic standard top-up when an account balance falls
below $30, set the credit floor to -100 and the threshold to 70%.

2. Configure your custom client application to accept the following top-up information:

• Payment method

To specify the payment method for automatic standard top-ups, set the appropriate
value in the PIN_FLD_PAYINFO field in the PIN_FLD_TOPUP_INFO array of the
called opcode's input flist (see step 3 for opcode names).

• Automatic top-up amount

To specify the payment amount of each automatic standard top-up, set the appropriate
value in the PIN_FLD_TOPUP_AMT field in the PIN_FLD_TOPUP_INFO array of the
called opcode's input flist.

• Automatic top-up cap

To specify the aggregate amount of automatic standard top-ups that the account can
receive during an accounting cycle, set the appropriate value in the
PIN_FLD_TOPUP_CAP field in the PIN_FLD_TOPUP_INFO array of the called
opcode's input flist.

• Bill unit to top up

To specify the bill unit that contains the balance to top up, set the appropriate value in
the PIN_FLD_BILLINFO field in the PIN_FLD_TOPUP_INFO array of the called
opcode's input flist.

3. Pass the information to one of these opcodes:

• PCM_OP_CUST_COMMIT_CUSTOMER when creating accounts

• PCM_OP_CUST_UPDATE_CUSTOMER when modifying accounts

Note:

Both of these opcodes call PCM_OP_CUST_SET_TOPUP, which is a
wrapper opcode that calls other standard opcodes to set up or modify top-up
information.

For more information, see "Setting Up Top-Up Information in an Account".

Chapter 20
Managing Top-Ups

20-61

Implementing Recurring Standard Top-Ups
To implement the recurring standard top-up feature:

1. Configure your custom client application to accept the following top-up information:

• Type of top-up

Set the type of top-up in the PIN_FLD_TYPE field under the PIN_FLD_TOPUP_INFO
array to automatic (0), one-time (1), or recurring (2) of the called opcode's input flist.

• Top-up amount

Set the amount to top-up in the PIN_FLD_TOPUP_AMT field under the
PIN_FLD_TOPUP_INFO array of the called opcode's input flist.

• Maximum number of recurring top-ups

Set the maximum number of recurring top-ups that can be made in the
PIN_FLD_NUM_TOPUPS field under the PIN_FLD_TOPUP_INFO array of the called
opcode's input flist.

• Interval between recurring top-ups

Set the interval between each recurring top-up in the following fields under the
PIN_FLD_TOPUP_INFO array of the called opcode's input flist:

– PIN_FLD_OFFSET_UNIT specifies the interval's unit: weeks (3), days (4), or
month (5).

– PIN_FLD_NUM_UNITS specifies the interval's value.

• Currency or noncurrency resource to top-up

Set the currency or noncurrency resource to top-up in the PIN_FLD_RESOURCE_ID
field under the PIN_FLD_TOPUP_INFO array of the called opcode's input flist.

• Payment method

Set the payment method for recurring standard top-ups in the
PIN_FLD_PAYINFO_OBJ field under the PIN_FLD_TOPUP_INFO array of the called
opcode's input flist.

• Balance group to top-up

Set the balance group to top-up in the PIN_FLD_BAL_GRP_OBJ field under the
PIN_FLD_TOPUP_INFO array of the called opcode's input flist.

2. Pass the information to one of these opcodes:

• PCM_OP_CUST_COMMIT_CUSTOMER when creating accounts

• PCM_OP_CUST_UPDATE_CUSTOMER when modifying accounts

Note:

Both of these opcodes call PCM_OP_CUST_SET_TOPUP, which is a
wrapper opcode that calls other standard opcodes to set up or modify top-up
information.

Chapter 20
Managing Top-Ups

20-62

3. Run the pin_balance_transfer utility on a regular basis:

pin_balance_transfer -standard

For more information, see "Setting Up Top-Up Information in an Account".

Implementing Manual Sponsored Top-Ups
To implement the manual sponsored top-up feature:

1. Configure your custom client application to accept the following top-up information:

• The POID of the account that initiates the creation or modification of the top-up
configuration. Set this value in the level-one PIN_FLD_POID field of the called
opcode's input flist (see step 2 for opcode names).

• The POID of the account that will receive the top-ups (the member account). Set this
value in the PIN_FLD_ACCOUNT_OBJ field in the PIN_FLD_TOPUP_INFO array of
the called opcode's input flist.

• The POID of the /topup object associated with the account that will receive the top-
ups. If the account does not have a /topup object, specify the POID type. Set this
value in the PIN_FLD_POID field in the PIN_FLD_TOPUP_INFO array of the called
opcode's input flist.

• Group to add member to

To specify the sponsored top-up group to add the member account to, set the POID of
the appropriate /group/topup object in the PIN_FLD_POID field in the
PIN_FLD_GROUP_TOPUP_INFO array of the called opcode's input flist.

If the object does not exist, pass the POID type.

• Group name

To specify the name of the sponsored top-up group, set the appropriate value in the
PIN_FLD_NAME field in the PIN_FLD_GROUP_TOPUP_INFO array of the called
opcode's input flist.

If you do not specify a group name, the group will be named default.

• Group owner

To specify the sponsored top-up group owner account, set the POID of the owner
account in the PIN_FLD_PARENT field in the PIN_FLD_GROUP_TOPUP_INFO array
of the called opcode's input flist.

• Paying balance group

To specify the owner account's balance group to transfer top-up assets from, set the
POID of the balance group in the PIN_FLD_BAL_GRP_OBJ field in the
PIN_FLD_GROUP_TOPUP_INFO array of the called opcode's input flist.

• Balances to top up

To specify the balances to be topped up in the member account, set the IDs of the
appropriate currency and noncurrency balance elements in the
PIN_FLD_RESOURCE_ID fields in the PIN_FLD_GROUP_TOPUP_LIMITS array of
the called opcode's input flist.

• Balance top-up cap

To specify the maximum amount of a balance that the owner can transfer to its
members during the owner's accounting cycle, set the appropriate value in the

Chapter 20
Managing Top-Ups

20-63

balance's PIN_FLD_TOPUP_CAP field in the PIN_FLD_GROUP_TOPUP_LIMITS
array.

Note:

This cap applies to the sum of all top-ups in the group, not to an individual
member's top-ups. The cap should not exceed the credit limit of the paying
balance group.

• Receiving balance group

To specify the member account's balance group to transfer sponsored top-ups to, set
the POID of the balance group in the member's PIN_FLD_BAL_GRP_OBJ field in the
PIN_FLD_GROUP_TOPUP_MEMBERS array of the called opcode's input flist.

• Top-up PIN

To specify the member's sponsored top-up PIN, set the appropriate value in the
PIN_FLD_PIN field in the PIN_FLD_GROUP_TOPUP_MEMBERS array of the called
opcode's input flist.

• Top-up status

To specify the member's sponsored top-up status, set the appropriate value in the
PIN_FLD_STATUS field in the PIN_FLD_GROUP_TOPUP_MEMBERS array of the
called opcode's input flist.

2. Pass the information to one of these opcodes:

• PCM_OP_CUST_COMMIT_CUSTOMER when creating accounts

• PCM_OP_CUST_UPDATE_CUSTOMER when modifying accounts

Note:

Both of these opcodes call PCM_OP_CUST_SET_TOPUP, which is a
wrapper opcode that calls other standard opcodes to set up or modify top-up
information.

Implementing Automatic Sponsored Top-Ups
To implement the automatic sponsored top-up feature:

1. Configure your custom client application to accept the following top-up information:

• All top-up information listed in "Implementing Manual Sponsored Top-Ups".

• Automatic top-up amount

To specify the amount of a balance to transfer from the owner to the member during
each automatic sponsored top-up, set the appropriate value in the balance's
PIN_FLD_TOPUP_AMT field in the PIN_FLD_GROUP_TOPUP_LIMITS array.

This amount applies to every member in the group.

• Automatic top-up frequency

To specify the number of days in the member's automatic sponsored top-up cycle, set
the appropriate value in the member's PIN_FLD_TOPUP_INTERVAL field in the

Chapter 20
Managing Top-Ups

20-64

PIN_FLD_GROUP_TOPUP_MEMBERS array of the called opcode's input flist (see
step 2 for opcode names).

This interval applies only to the member account.

2. Pass the information to one of these opcodes:

• PCM_OP_CUST_COMMIT_CUSTOMER when creating accounts

• PCM_OP_CUST_UPDATE_CUSTOMER when modifying accounts

Note:

Both of these opcodes call PCM_OP_CUST_SET_TOPUP, which is a
wrapper opcode that calls other standard opcodes to set up or modify top-up
information.

3. Run the pin_balance_transfer utility on a regular basis:

pin_balance_transfer [-start mm/dd/yy] [-end mm/dd/yy]

Viewing Sponsored Top-Up History
To display information about sponsored top-up transactions, configure your custom client
application to call PCM_OP_PYMT_FIND_TOPUP_EVENTS to retrieve balance transfer
events (/event/billing/adjustment/account objects) in which top-up transactions are
recorded.

Historic sponsored top-up information can be displayed for both sponsored top-up owner
accounts and member accounts:

• Member accounts can view only the sponsored top-ups that they received.

• Owner accounts can view all sponsored top-ups associated with their sponsored top-up
groups.

To retrieve all sponsored top-up events associated with a group owner account or a member
account, include the following values in the PCM_OP_PYMT_FIND_TOPUP_EVENTS input
flist:

• Account's POID in the PIN_FLD_POID field

Note:

This field stores the POID of the account that initiates the search. If a POID type
rather than an actual POID is provided, an actual balance group POID must be
set in the flist's PIN_FLD_BAL_GRP_OBJ field.

• No value in these fields:

– PIN_FLD_BAL_GRP_OBJ

Chapter 20
Managing Top-Ups

20-65

Note:

If no account POID is provided, a balance group POID must be provided. In
such cases, the opcode retrieves top-up events associated only with the
specified balance group.

– PIN_FLD_REASON_ID

– PIN_FLD_REASON_DOMAIN_ID

If an owner account has multiple sponsored top-up groups, retrieve sponsored top-up events
related only to one group by including the following values in the
PCM_OP_PYMT_FIND_TOPUP_EVENTS input flist:

• Group owner account's POID in the PIN_FLD_POID field

• Paying balance group's POID in the PIN_FLD_BAL_GRP_OBJ field

• No value in these fields:

– PIN_FLD_REASON_ID

– PIN_FLD_REASON_DOMAIN_ID

By default, PCM_OP_PYMT_FIND_TOPUP_EVENTS retrieves all sponsored top-up debit and
credit adjustment events associated with the initiating account. Thus, if a sponsored top-up
group owner account initiates the search, the opcode retrieves two events for each top-up:

• An event for debiting the top-up amount from the owner's paying balance group

• An event for crediting the top-up amount to a member's receiving balance group

To limit the search to debit or credit adjustment events, include the appropriate reason ID and
reason domain ID in the PIN_FLD_REASON_ID and PIN_FLD_REASON_DOMAIN_ID fields
of the opcode's input flist.

Note:

If you create custom reason and reason domain IDs for sponsored top-up events,
PCM_OP_PYMT_FIND_TOPUP_EVENTS returns events associated with all the IDs
unless you limit the search to specified IDs.

About Transferring Sponsored Top-Ups from Debit Balances
To perform a sponsored top-up, PCM_OP_BILL_TRANSFER_BALANCE must transfer assets
from a debit balance in a group owner account to a debit or credit balance in a member
account. By default, however, this opcode transfers assets only from credit balances. To
enable the opcode to transfer assets from a debit balance, the PIN_FLD_VERIFY_BALANCE
field in its input flist is set to PIN_BOOLEAN_FALSE by PCM_OP_PYMT_TOPUP.

Note:

If this field is not set (default) or is set to PIN_BOOLEAN_TRUE, the opcode cannot
transfer assets from debit balances.

Chapter 20
Managing Top-Ups

20-66

Setting an Account's Sponsored Top-Up Member Status and PIN
If an account is a member of a sponsored top-up group, its group status and top-up PIN are set
as follows:

• When an owner account initiates adding a member to the group, the member's group
status and PIN are set according to the information in the PCM_OP_CUST_SET_TOPUP
input flist. If member status is not specified in the flist, it is set to active.

• When a member account initiates adding itself to a group, the member's group status is set
to inactive and the PIN is set to NULL no matter what values are provided for those items
in the input flist. After the member is added to the group, the group owner must activate the
member's member and sets its top-up PIN.

• When a member account initiates a modification of its sponsored top-up settings after
being added to a group, its group status is reset to inactive. This occurs even if the
modification is not related to member status. The group owner must then reactivate the
member.

Activating Sponsored Top-Up Group Members
To receive sponsored top-ups, a member's group status must be active. By default, only
groups owners can activate a member. To enable members to activate themselves, customize
the PCM_OP_CUST_POL_PREP_TOPUP policy opcode.

To activate members whose group status is inactive or closed:

1. Use your custom client application to call PCM_OP_CUST_SET_TOPUP.

2. Set the member's PIN_FLD_STATUS field in the MEMBERS array of the opcode's input
flist to the value associated with the PIN_STATUS_ACTIVE status in the BRM_home/
include/ops/pcm.h header file.

Inactivating Sponsored Top-Up Group Members
A member whose group status is inactive can use any outstanding topped-up credit in its
topped-up balance group, but it cannot receive any more top-ups from the group until its
member status is reactivated. In addition, it cannot join another sponsored top-up group.

To inactivate a member's group status:

1. Use your custom client application to call PCM_OP_CUST_SET_TOPUP.

2. Set the member's PIN_FLD_STATUS field in the MEMBERS array of the opcode's input
flist to the value associated with the PIN_STATUS_INACTIVE status in the BRM_home/
include/ops/pcm.h header file.

Note:

You can also inactivate sponsored top-ups by changing the status of the member
account to inactive. To change the status of an account, see "Changing Account
and Service Status" in BRM Managing Customers.

To inactivate the group status of every member in a group, change the status of the sponsored
top-up group owner account to inactive.

Chapter 20
Managing Top-Ups

20-67

When a group owner account is inactive, the members of its sponsored top-up groups can use
any outstanding topped-up credit in their topped-up balance groups, but they cannot receive
any more top-ups from the group until the owner account is reactivated, and they cannot join
another sponsored top-up group.

Setting Sponsored Top-Up Member PINs
By default, only groups owners can set a member's PIN.

To assign a top-up PIN to a member:

1. Use your custom client application to call PCM_OP_CUST_SET_TOPUP.

2. Set the member's PIN_FLD_PIN field in the MEMBERS array of the opcode's input flist to
the appropriate string value.

Note:

• By default, top-up PINs do not have to be unique. Members in the same
group and in different groups can have the same top-up PIN.

• To enable members to set their own PINs, customize the
PCM_OP_CUST_POL_PREP_TOPUP policy opcode.

Offering Discount Incentives with Top-Ups
You can offer customers discount incentives whenever they top up an account balance by a
specified amount. For example, you can offer 20 free peak minutes whenever a customer
makes a $50 top-up.

To offer top-up discount incentives:

1. Set up the discount in PDC or Pricing Center.

2. Configure the PCM_OP_PYMT_POL_PURCHASE_DEAL policy opcode to validate the
discount.

By default, this policy opcode is an empty hook provided to facilitate customization. You
can customize it to apply discounts to account balances when they are topped up. For
example, this policy opcode might grant 60 minutes of usage for every $50 top-up.

PCM_OP_PYMT_POL_PURCHASE_DEAL is called by PCM_OP_PYMT_TOPUP.

Suspending and Recycling Payments
This section describes the opcodes used for payment suspense management.

How BRM Tracks Suspended Payments
All payments and payment reversals contain a transaction ID (TRANS_ID field), which is a
unique identifier that enables you to track each payment and reversal in BRM:

• For payments, the transaction ID identifies the payment transaction from the third-party
payment processor. If a payment is submitted to BRM without a transaction ID, one is
assigned to it.

Chapter 20
Suspending and Recycling Payments

20-68

• For reversals, the transaction ID is generated by BRM.

In addition to having a transaction ID, payments and reversals have another ID that is used to
track all actions performed on a specific payment: a subtransaction ID (SUB_TRANS_ID field)
for payments, and a paytransaction ID (PAYMENT_TRANS_ID field) for reversals. These ID
values are used to find all payments and reversals that occur due to the recycling of an original
payment.

• The SUB_TRANS_ID value of an original (never-recycled) payment is NULL.

• The SUB_TRANS_ID value of a recycled payment is equal to the transaction ID of its
original payment.

• The PAYMENT_TRANS_ID value of a payment reversal is equal to the transaction ID of
the payment it reversed.

In the example shown in Figure 20-1, a $3000 payment is suspended when it first arrives in
BRM so that it can be posted to individual accounts within the corporation. The original
payment is represented in white.

The payment analyst first partially distributes the original suspended payment to two accounts.
The first distributed payment is for $1000 to Account A and the second is for $700 to Account
B. The remaining $1300 is resuspended. The results of this operation are represented in
Phase 1.

Later, the payment analyst realizes that the distributed payment made to Account B was
erroneous and puts the $700 payment back into suspense, leaving $1000 in Account A
and $2000 in the suspense account. The results of this operation are represented in Phase 2.

Chapter 20
Suspending and Recycling Payments

20-69

Figure 20-1 Suspended Payment Distribution Example

In this figure, all payments except the original payment are recycled payments. Notice that:

• Both distributed payments have the same subtransaction IDs (s1). The SUB_TRANS_ID
value is the same as the TRANS_ID value of the original payment.

• All of the recycled payments have SUB_TRANS_ID values that match the original
payment's TRANS_ID values.

• Each reversal has a PAYMENT_TRANS_ID value that is equal to the TRANS_ID value of
the payment it reversed.

When an original suspended payment is applied to a customer account, the following
operations occur:

1. The suspended payment is reversed, and an /event/billing/reversal object is created. The
reversal object's PAYMENT_TRANS_ID value is equal to the TRANS_ID value of the
suspended payment.

2. A new payment (event/billing/payment/pay_type object) is applied to the customer
account and contains the following information:

• The original suspended payment's details, including a value for any amount remaining
in suspense.

• A SUB_TRANS_ID value that is equal to the suspended payment's TRANS_ID value.

Chapter 20
Suspending and Recycling Payments

20-70

3. If an amount remains in suspense, a new suspended payment is created for that amount;
the original payment is not adjusted with a new amount. Instead, the new suspended
payment receives a SUB_TRANS_ID value that is equal to the original payment's
TRANS_ID value.

Likewise, when a suspended payment is partially allocated to one or more accounts, and
then an allocated payment is resuspended, the current suspended payment that was
partially allocated is reversed and a new suspended payment containing the new amount
is created.

Note:

An original payment does not have to be a suspended payment. For example, if
a payment was posted successfully to a customer account when it was received
by BRM, it is an original payment. If it is later suspended and then reposted to
customer accounts, both the suspended payment and the posted payment will
have SUB_TRANS_ID values that match the TRANS_ID value of the original
successful payment as shown in Figure 20-2.

Figure 20-2 SUB_TRANS_ID of a Suspended Payment

Customizing Payment Suspense
You can customize payment suspense in several ways. See the following topics:

• Customizing Payment Suspense Validation

• Customizing Suspended Payment Distribution

Chapter 20
Suspending and Recycling Payments

20-71

• Customizing Payment Failure Reason Codes

• Customizing Payment Tool

• Handling Custom Payment Methods

See the chapter about payments in BRM Opcode Guide for more information.

Customizing Payment Suspense Validation
The PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode validates payments to
determine whether they can be successfully posted or whether a failed, unconfirmed payment
needs reversal. If automatic write-off reversals are enabled, it also determines whether BRM
should perform a write-off reversal.

In default implementations, BRM considers two questions when determining whether a
payment should be suspended:

• Is the account number present and valid?

• Is the account closed?

By default, the bill number is not initially used to suspend payments. It is used only when the
account number is missing.

A payment is suspended in the following situations:

• The account is closed.

• The account number is missing and the bill number is missing.

• The account number and the bill number are invalid.

• The account number does not match the account number from the bill.

A payment is posted if the account is not closed and the following is true:

• The account number is present and valid. If the bill number is missing, the payment is
posted at the account level.

• The account number is missing but the bill number is present and valid. Such payments
are posted at the bill level.

To have Payment Tool mark these payments as suspended, see "Customizing Suspense
Criteria for Payment Tool".

You can broaden this scope by customizing the PCM_OP_PYMT_POL_VALIDATE_PAYMENT
policy opcode to perform validation using additional criteria (for example, customer segment,
payment amount, and so on). BRM uses these criteria to determine whether the payment
validation logic should mark a payment for suspense.

Note:

If you include additional criteria in the PCM_OP_PYMT_POL_VALIDATE_PAYMENT
policy opcode that is not already part of the objects created by payment processing,
you must also extend these objects by adding these fields so that the object records
all the criteria considered by payment validation.

If neither the bill number nor bill POID was submitted with the payment, you can configure
BRM to find the bill based on the due amount.

Chapter 20
Suspending and Recycling Payments

20-72

See the chapter about payments in BRM Opcode Guide for more information.

Customization Example: Suspending Large Payments
As an example, if you want a payment analyst to always examine suspiciously large cash
payments or cash payments that appear to arrive from the Internet, you can customize BRM to
suspend any payments that meet these conditions. If a cash payment is suspiciously large,
there may be a customer error or recording error that must be investigated. Because the
Internet is not a likely source of cash payments, you may want to obtain extra confirmation on
how this payment was made.

This type of customization includes the following tasks:

• Modify the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode to include logic
that checks the PIN_FLD_PAYMENT_TYPE field to determine if this is a cash payment
and also checks PIN_FLD_CHANNEL_ID to see whether the payment was made over the
Internet. If both conditions are met, have the opcode set PIN_FLD_STATUS to
PIN_PYMT_SUSPENSE.

• Also modify the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode to include
logic that checks the PIN_FLD_AMOUNT field to see whether the payment amount is
greater than the amount you establish as the threshold for suspiciously large payments (for
example, $10,000). If this is a cash payment and the payment amount exceeds the
threshold, have the opcode set PIN_FLD_STATUS to PIN_PYMT_SUSPENSE.

Customization Example: Threshold for Suspending Payments
You can customize the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode to enforce
business practices related to suspense. For example, if you find that having payment analysts
review suspended payments for very small amounts costs you more than the payments are
worth, you can customize BRM so that it does not move any payment of less than a certain
amount into the payment suspense account.

To create a suspense threshold, you customize the opcode to check the PIN_FLD_AMOUNT
field to see whether the payment amount is less than the threshold amount (for example, $1).
You check this condition for any payment whose status is set to PIN_PYMT_SUSPENSE. For
each payment that meets these conditions, you set the account POID to a special account you
set up for this type of unallocatable payment. You also set PIN_FLD_STATUS to
PIN_PYMT_SUCCESSFUL so that PCM_OP_PYMT_COLLECT can post the payment.

Note:

When you implement any of the customizations just discussed, you modify the
PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode. This opcode validates
only externally initiated payments; it does not validate BRM-initiated payments.
Therefore, none of the customizations you implement through this opcode affect
BRM-initiated payments.

Customization Example: Finding Unconfirmed Payments
In the case of failed unconfirmed payment, if the payment processor is not able to send a
transaction ID with each payment, you can modify the
PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode to find the original unconfirmed
payment by using other payment properties that are sent from the payment gateway, such as
the original unconfirmed payment amount. When the original unconfirmed payment is found,

Chapter 20
Suspending and Recycling Payments

20-73

the item object to which the payment was applied can be loaded into the input flist for the
PCM_OP_PYMT_APPLY_FEES opcode.

Note:

If you used failed payment properties to locate the payment, you must also update
the /event/billing/payment/failed object to contain the same properties that you are
using to locate the original unconfirmed payment.

Customization Example: Error Handling
You can modify the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode to handle
errors that occur because the original unconfirmed payment cannot be found or the transaction
IDs do not match.

Customizing Suspended Payment Distribution
The PCM_OP_PYMT_POL_SUSPEND_PAYMENT policy opcode enables you to define
custom rules for handling payments that are being guided into suspense. For example, you
can modify this policy opcode to track the number of times the same payment is guided back to
suspense after being applied to the wrong customer account.

In addition, if your company processes distributed payments, you can implement rules to
distribute a payment directly to the proper accounts, without first saving the payment to the
suspense account. For example, by using the account number associated with the original
payment, the original payment amount, and the account number associated with each
subpayment amount, you can automatically divide the payment into distributed payments and
allocate them to the designated accounts.

For multiple suspense accounts, the PCM_OP_PYMNT_POL_SUSPEND_PAYMENT policy
opcode must be modified to select a payment suspense account that matches the criteria
specified while creating the account. Otherwise, the policy opcode selects a payment
suspense account that matches the login schema.

Customizing Payment Failure Reason Codes
To customize payment failure reason codes, use the PCM_OP_PYMT_POL_CHARGE policy
opcode. This policy opcode provides the ability to map the online and offline payment result to
the payment status and the reason IDs defined in the /strings object.

In the output flist PIN_FLD_PAYMENT_REASONS array, the array of PIN_FLD_REASON_ID
fields contains the failure reasons sent by the payment processor. You can configure this policy
opcode to apply fees for failed credit card and direct debit transactions based on the reason for
failure.

The input flist contains a results array for a payment batch, including reasons for payment
failures.

The output flist contains the payment method, transaction ID, and an array of reason IDs for
failed payments.

Chapter 20
Suspending and Recycling Payments

20-74

Customizing Payment Tool
The procedures in this section describe how to add a cash reversal batch to Payment Tool and
how to extend Payment Tool to automatically suspend payments that have a missing bill
number.

Adding a Cash Reversal Batch
You can add a cash reversal batch to Payment Tool to handle any cash payments that were
posted incorrectly and must be reversed from your BRM system. For example, if the currency a
customer used to make a payment was later found to be counterfeit, you can remove the
payment. This restores the customer's previous account balance and removes the payment
from your company's G/L system.

The /event/billing/reversal/cash storable class exists in the BRM database; therefore, there is
no need to create one. You only need to add the cash reversal entry to the /config/
paymenttool object.

Note:

When you install BRM, a default /config/paymenttool object is created from data in
the init_objects.source file.

1. Use the PCM_OP_WRITE_FLDS opcode to add the cash reversal entry to the /config/
paymenttool storable class. Call the opcode using flag 32. For example:

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/paymenttool 13748 0
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_DESCR STR [0] "US_EN paymentTool pymnt type configuration locale"
0 PIN_FLD_HOSTNAME STR [0] "-"
0 PIN_FLD_NAME STR [0] "PaymentTool payment Types: Default"
0 PIN_FLD_PROGRAM_NAME STR [0] "-"
0 PIN_FLD_VALUE STR [0] ""
0 PIN_FLD_VERSION STR [0] ""
0 PIN_FLD_PAY_TYPE ARRAY [10011] allocated 2, used 2
1 PIN_FLD_NAME STR [0] "Cash"
1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [0] allocated 4, used 4
2 PIN_FLD_BATCH_TYPE INT [0] 1
2 PIN_FLD_COLUMN_NAME STR [0] "Receipt Date"
2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_EFFECTIVE_T"
2 PIN_FLD_PURPOSE INT [0] 0
1 PIN_FLD_PAYMENTTOOL_FIELDS ARRAY [1] allocated 4, used 4
2 PIN_FLD_BATCH_TYPE INT [0] 1
2 PIN_FLD_COLUMN_NAME STR [0] "Receipt No."
2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_REASON_CODE"
2 PIN_FLD_PURPOSE INT [0] 0

Chapter 20
Suspending and Recycling Payments

20-75

Note:

• The PIN_FLD_BATCH_TYPE value determines the batch type: 0 indicates a
payment batch and 1 indicates a reversal batch. In this example,
PIN_FLD_BATCH_TYPE is set to 1 for reversal.

• The PIN_FLD_PURPOSE value determines the field type: 0 indicates the
field is read-only and 1 indicates that data can be entered into the field. In
this example, the Receipt Date and Reason Code columns in the reversal
batch are read-only.

2. Stop and restart the CM.

All changes you make in /config/paymenttool are reflected in the Payment Tool UI when
you restart BRM.

Customizing Suspense Criteria for Payment Tool
When you submit payments by using Payment Tool, payments that have a valid account
number and a missing bill number are not marked for suspense by default.

To enable Payment Tool to return such payments as suspended, customize the
fm_pymt_pol_validate_payment_bill function in the PCM_OP_PYMT_VALIDATE_PAYMENT
opcode. Use the &validation_result value to set the PIN_FLD_STATUS value.

Handling Custom Payment Methods
If you create custom payment methods for your BRM system, you must customize Payment
Suspense Center to handle them. This overview procedure describes how to create custom
storable classes and fields and enable Payment Center to handle them.

For detailed information on creating custom storable classes and fields, see "Creating Client
Applications by Using Java PCM" and "Creating Custom Fields and Storable Classes" in BRM
Developer's Guide.

1. Complete the following tasks by using Storable Class Editor:

a. Create your storable classes and fields in the Java PCM package.

b. Create source files for your custom fields.

Note:

Storable Class Editor creates a C header file called cust_flds.h, a Java
properties file called InfranetPropertiesAdditions.properties, and a Java
source file for each custom field.

2. In the directory where Storable Class Editor created the Java source files, compile the
source files:

javac -d . *.java
3. Package the new storable class files into a JAR file. For example:

jar cvf customfields.jar *.class

Chapter 20
Suspending and Recycling Payments

20-76

4. Copy the contents of the InfranetPropertiesAdditions.properties file and paste it into the
Payment Suspense Center Infranet.properties file. By default, this file is located in:

C:\Program Files\Portal Software\PymtSuspCenter\PaymentCenter
5. Append the location of the JAR file to the PAYCTRCP environment variable path. For

example:

;.;C:\Program Files\Portal Software\PymtSuspCenter\customfields.jar;

About the Suspense Account
When BRM creates the payment suspense account,
PCM_OP_CUST_POL_PREP_NAMEINFO first prepares the contact information for validation
and then determines whether Payment Suspense Manager is enabled. If it is enabled and the
account being checked is the payment suspense account, this opcode retrieves the POID of
the /config/psm object if that object exists. BRM references the /config/psm object to locate
the payment suspense account whenever it suspends a payment or you correct a payment.

The payment suspense account POID is then passed to PCM_OP_CUST_SET_NAMEINFO.
This opcode stores the account POID in the /config/psm object.

Suspending Payments during Payment Processing
During payment processing, PCM_OP_PYMT_COLLECT calls
PCM_OP_PYMT_VALIDATE_PAYMENT, to determine the status of the payment records. (For
information about PCM_OP_PYMT_COLLECT, see "Collecting Payments".)

When PCM_OP_PYMT_VALIDATE_PAYMENT receives a payment to validate, it determines
whether the payment should be suspended and prepares it for posting by enriching the flist
with any missing information.

It begins by evaluating the input flist to determine whether it contains the channel ID for the
payment. If not, it gets the channel ID from the /config/ach object and adds it to the flist.

Then, PCM_OP_PYMT_VALIDATE_PAYMENT calls
PCM_OP_PYMT_POL_VALIDATE_PAYMENT to validate the payment and further enrich the
flist with any missing payment information.

After PCM_OP_PYMT_VALIDATE_PAYMENT receives the results from
PCM_OP_PYMT_POL_VALIDATE_PAYMENT, it returns the flist to
PCM_OP_PYMT_COLLECT for use when the payment is posted.

Flags are not used directly by PCM_OP_PYMT_VALIDATE_PAYMENT. They are passed in
from PCM_OP_PYMT_COLLECT for PCM_OP_PYMT_SELECT_ITEMS. For example,
Payment Tool can set the PCM_BILLFLG_DEFER_ALLOCATION flag to indicate which
payments should be left unallocated.

Note:

When you submit payments by using Payment Tool, payments that have a valid
account number but a missing bill number are not marked for suspense by default.

Chapter 20
Suspending and Recycling Payments

20-77

How Payments Are Recycled to and from Suspense
PCM_OP_PYMT_RECYCLE_PAYMENT removes a payment from a source account and posts
it to a target account. It is called when one or more payments in Payment Center are submitted
to the BRM database. This opcode is called when a single payment or a list of distributed
payments is transferred between the payment suspense account and one or more customer
accounts.

Note:

It is not recommended to have more than one payment suspense account in the /
config/psm object.

For account payment to multiple bill units, there can be more than one event generated for an
individual payment. Therefore, the output flist of PCM_OP_PYMT_RECYCLE_PAYMENT
shows all the payment events.

When a payment is recycled from suspense to a customer account, the input flist generated for
the submission includes the corrected account number, corrected bill number, and the
transaction ID of the original payment. It can also contain other corrected information if you
customized BRM to include additional validation criteria.

When a transaction is opened, PCM_OP_PYMT_RECYCLE_PAYMENT handles all of the
activities required to move each payment in the CHARGES array from the source account to
the target account. The transaction ID is recorded in all the event objects created when this
opcode processes a payment.

PCM_OP_PYMT_RECYCLE_PAYMENT validates that the source account is the account to
which the payment was posted and that the destination account is the payment suspense
account. If both requirements are true, the payment is recycled to suspense.

The CHARGES array contains two fields that determine the direction of the transfer:

• PIN_FLD_EVENT_OBJ: This field identifies the payment event. The event, in turn,
identifies the source account, the account that owns the payment. This is the account from
which the opcode transfers payments.

• PIN_FLD_ACCOUNT_OBJ: This field identifies the target account, the account to which
the opcode transfers payments.

For example, if the account referenced in PIN_FLD_EVENT_OBJ is the suspense account and
the account referenced in PIN_FLD_ACCOUNT_OBJ is a customer account, the opcode
distributes all or part of the suspended payment to the customer account.

If a payment is being moved from suspense, the PIN_FLD_EVENT_OBJ field establishes the
payment suspense account as the source account, and the PIN_FLD_ACCOUNT_OBJ field
contains one or more POIDs of valid customer accounts. If a payment is being moved to
suspense, the PIN_FLD_EVENT_OBJ field establishes a valid customer account as the source
account, and the PIN_FLD_ACCOUNT_OBJ field contains the POID of the payment suspense
account.

The source and target accounts, combined with the number of payments in the CHARGES
array, determine the operation that PCM_OP_PYMT_RECYCLE_PAYMENT performs.

PCM_OP_PYMT_RECYCLE_PAYMENT performs the following operations when recycling
payments:

Chapter 20
Suspending and Recycling Payments

20-78

1. Opens a transaction.

2. Determines the direction of the payment recycling: to or from the payment suspense
account. The transfer direction is determined by the active payment's account POID and
the target account POID.

• Determines if multiple distributed payments are being handled.

• Checks that the currency is the same for every charges element.

• If it is returning an entire distribution to suspense, calls
PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH to retrieve the active
suspended payment information, including the amount remaining in the suspended
payment after recycling, and adds it to the CHARGES array.

3. Chooses a course of action based on the source account/target account combination plus
the information in the CHARGES array.

4. Calls PCM_OP_PYMT_COLLECT to apply the payments to the target accounts, prepares
the payment batch, and enriches the PCM_OP_PYMT_COLLECT input flist with the
following information:

• The total charge amount.

• Total reversal amount, for posted payments that are being suspended.

• Total original payment amount, for payments that are being posted from the payment
suspense account to a customer account.

PCM_OP_PYMT_COLLECT, in turn, calls PCM_OP_PYMT_VALIDATE_PAYMENT to
validate the information in the CHARGES array. If an invalid scenario exists, the payment
is guided to suspense.

Note:

For payments guided to suspense due to validation failures,
PCM_OP_PYMT_RECYCLE_PAYMENT rolls back the entire transaction after
PCM_OP_PYMT_COLLECT completes.

5. Prepares the reversal batch, creating new elements and setting a new reason code.

If PCM_OP_PYMT_RECYCLE_PAYMENT is being called for a distribution and the total of
the charges in the input flist does not equal the amount to be distributed, the opcode
determines whether the input flist specifies an amount to be placed in suspense.

• If the input flist does not specify an amount to be placed in suspense, the opcode
posts the remaining amount to the suspense account.

• If the input flist specifies an amount to be placed in suspense, the opcode generates
an error.

6. Calls PCM_OP_PYMT_COLLECT to perform these tasks:

• Create the payment batch.

• Create a suspended payment if an amount remained in the suspended payment after it
was applied to one or more accounts.

• Update the /event/billing/payment/pay_type object with the SUB_TRANS_ID value
specified in the PIN_FLD_CHARGES array of the flist.

7. If the payment batch was successful, updates the PCM_OP_BILL_REVERSE input flist
with the following information:

Chapter 20
Suspending and Recycling Payments

20-79

• The reason code for the reversal

• The PAYMENT_TRANS_ID value

8. Calls PCM_OP_BILL_REVERSE to create the reversal batch.

PCM_OP_BILL_REVERSE updates the /event/billing/reversal/pay_type object with the
PAY_TRANS_ID, the POID of the payment suspense account, and the reversal total.

If PCM_OP_PYMT_COLLECT fails or if any information is invalid,
PCM_OP_PYMT_RECYCLE_PAYMENT rolls back the entire transaction, leaving the
suspended payment in its original state.

9. Records the success or failure of the entire operation in the PIN_FLD_RESULTS field of
the output flist.

Understanding Payment Recycling
Payment recycling is a transactional process consisting of two sequential operations:

1. Reversing a payment from a source account.

2. Applying a payment to a target account.

Payment recycling occurs each time you move a payment from a customer account to the
payment suspense account or from the payment suspense account to a customer account.
When a payment is recycled, the current payment is reversed, and all of the payment
information, except for the original payment date, is transferred to the new recycled payment.

BRM uses the PIN_FLD_STATUS field of a payment to validate payments before they are
recycled and submitted to an account. The status code is returned by Payment Center and can
be configured.

Payments can be recycled any number of times; however, each recycled payment can be
traced back to only one original payment. BRM uses the payment's transaction ID and
subtransaction ID to track their origin and descendants.

About Original Payments
An original payment is the first instance of a payment that is saved to BRM, either through
Payment Tool or a payment processor. Original payments can be saved initially to the
suspense account or to a customer account. The distinguishing characteristic of an original
payment is that it has never been recycled.

Because an original payment is the first instance of a payment, it does not have a
subtransaction ID, which is an ID used to trace a recycled payment back to its original
payment.

An original payment can be the ancestor of one or more recycled payments, but a recycled
payment can be traced back to only one original payment. Both suspended payments and
those posted in customer accounts can be original payments.

About Payment Transfer Direction and Verification
When BRM receives a distribution list from Payment Center, it determines the direction of the
payment transfer: from the payment suspense account to a customer account, or to the
payment suspense account from a customer account.

If a payment is being moved from suspense, BRM establishes the payment suspense account
as the source account, and one or more customer accounts as the destination. If a payment is

Chapter 20
Suspending and Recycling Payments

20-80

being moved to suspense, BRM establishes a valid customer account as the source account,
and the payment suspense account as the destination.

Before recycling a payment, BRM verifies that there are no conditions present that prevent the
transfer. These conditions include:

• The currency for the source account and all target accounts is different.

• The source and target accounts are both customer accounts.

• Multiple suspended payments are recycled in the same operation.

• You attempt to partially suspend a payment originally posted to a customer account. You
can only perform this action if you suspend the entire payment.

• You attempt to distribute a failed payment from the suspense account into a customer
account.

• You attempt to return a distributed payment from a customer account to the suspense
account, but the suspended payment is also a failed payment. This can happen when you
distribute a suspended payment to customer accounts and, afterward, the payment fails for
financial reasons (for example, the bank will not honor the check). In this case, you cannot
return the distributed payment to suspense.

About Recycling Payments from Suspense
When you post a suspended payment to a customer account, the following operations occur if
validation and transfer verification are successful:

1. The suspended payment is reversed (an /event/billing/reversal object is created).

2. The payment item for the suspended payment is closed.

3. A recycled payment is posted in the customer account. The payment status reflects that
the payment was successfully recycled.

4. Bills, bill items, or both in the account might be closed, depending on the payment
allocation level.

5. A new suspended payment is created for any unallocated amount (partially allocated
payments).

You do not have to fully allocate a suspended payment. If you partially allocate a suspended
payment and an amount remains in suspense, you can apply the remaining amount to any
account at any time.

About Recycling Payments to Suspense
When you suspend a payment that has been posted in a customer account, the following
operations occur if validation is successful:

1. The posted payment is reversed (an /event/billing/reversal object is created).

2. Any accounts receivable items (/item/payment) that were previously closed by the
payment are reopened.

3. A recycled payment is created in the payment suspense account. The payment status
reflects that the payment was successfully recycled.

4. A new billable item for the recycled suspended payment is created.

Chapter 20
Suspending and Recycling Payments

20-81

How Payment Reversals Work with Suspense and Recycling
Payments are reversed in BRM for a variety of reasons, the most common of which is that the
funds for a payment are never actually deposited (for example, when a check does not clear).
Payments also can be reversed as part of the suspense process.

When a payment is reversed, two things happen:

• Any bills or items previously closed by the payment are reopened.

• The payment is deactivated in the BRM system.

There are three types of reversals in BRM. The first two, indirect reversal and reversal to
remove an unallocatable suspended payment, are related to the suspense process. The third,
direct reversal, is not.

• Reversals that occur indirectly during the recycling process

Indirect reversals occur when you transfer a suspended payment to a customer account or
from a customer account to suspense. With an indirect reversal, the payment is removed
from the source account and moved to the target account, resulting in a complete reversal
of the payment in the source account so that the payment information can be transferred to
the destination account as a recycled payment. If the payment being recycled had been
posted in a customer account, any bills and items that were closed due to the payment are
reopened.

Indirect reversals are assigned a G/L ID of 113, placing the payment amount in a special
G/L bucket so that you can keep a separate record of these reversals.

• Reversals that occur when you remove a payment as unallocatable

If a suspended payment cannot be fixed but you want to track revenue for these payments
and get reports on how much unallocatable revenue you have, you can remove them from
suspense as unallocatable. When you do this, BRM reverses the payment in the payment
suspense account and assigns it to a special G/L ID bucket. These reversals are rare in
BRM. Even though they are part of suspense, they occur outside of the recycling process.

• Reversals that you perform directly by using Payment Tool or a third-party
application

Direct reversals occur when you use Payment Tool or a third-party application to reverse a
payment that was recorded in the BRM database but never actually deposited. Direct
reversals are the most frequent type of reversal in BRM, and they occur outside of the
suspense and recycling processes.

Direct reversals reverse an active payment completely and reopen any bills and items so
the payment can be made again. Unlike reversals that occur during recycling, direct
reversals are not initiated by the creation of a new recycled payment.

About Directly Reversing Payments from BRM
Payment reversals are necessary when a payment is recorded in the BRM database but the
payment is not deposited. You create payment reversal batches by using Payment Tool.

When you have Payment Suspense Manager enabled, payments may be reversed due to
payment recycling, which is different from directly reversing the payment from the BRM
database. Reversals that occur due to recycling happen automatically, and the funds are
transferred from a source account to a target account: they are not removed completely from
BRM.

Chapter 20
Suspending and Recycling Payments

20-82

The type of payment reversal discussed here is different from recycled payment reversals.
Here, you manually reverse a payment to remove it from the system. A recycled payment
reversal is a consequence of transferring a payment to a target account.

The following restrictions apply when reversing payments from BRM:

• You cannot directly reverse recycled payments: you can reverse only original (nonrecycled)
payments with a SUB_TRANS_ID value of NULL. Therefore, when creating the payment
reversal batch for a payment that entered the database as suspended, you must identify
the original suspended payment rather than the active recycled payment. When the
reversal batch is submitted to BRM, all active recycled payments that are descended from
the original payment will be internally reversed.

• When directly reversing a payment, you can reverse only original payments. If you reverse
an original suspended payment, BRM reverses all of the active recycled payments that
were distributed to customer accounts from that payment.

Retrieving Recycled Payments
PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH retrieves payment information such as
the payment amount, transaction ID, subtransaction ID, account and bill number, payment
types, and payment status. If you specify that more information be returned, this opcode can
return additional payment information such as the action owner and the date suspended.

PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH is called by:

• Payment Center to provide additional information on the payments returned by a search
(for example, allocated amount and unallocated amount).

• PCM_OP_BILL_REVERSE when it reverses a payment that was posted to the suspense
account when it entered the BRM database. This opcode uses
PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH to find all active payments
associated with the original suspended payment so that those payments also can be
reversed. For more information, see "How Suspended Payments Are Reversed".

• PCM_OP_PYMT_RECYCLE_PAYMENT when it returns an entire set of distributed
payments to the suspense account.

As input, PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH receives the transaction ID of
the payment it is to search for. It also receives an optional PIN_FLD_RESULTS array, which,
with the PCM_OP_FLAG_READ_RESULT flag, determines the type of information returned by
the opcode.

PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH performs the following operations when
searching for payments:

1. Verifies that the transaction ID in the PIN_FLD_TRANS_ID field is for an original
suspended payment. To do this, the opcode checks the PIN_FLD_SUB_TRANS_ID field. If
this field is not NULL, the payment is not an original payment, and the opcode returns an
error.

2. Searches for all payments whose subtransaction ID matches the PIN_FLD_TRANS_ID
field of the payment in the input flist.

3. Checks to see whether the PIN_FLD_RESULTS array in the input flist and the
PCM_OP_FLAG_READ_RESULT flag are present. The opcode returns payment
information based on these presence of the flag and array, as follows:

• If neither the flag nor the array is present, the opcode returns only the fields in the
output flist.

Chapter 20
Suspending and Recycling Payments

20-83

• If the flag is present, the opcode returns all the fields in the /event/billing/payment
object.

• If the flag is not present but the array is, the opcode returns the fields in specified in
the PIN_FLD_RESULTS array plus the payment information fields normally included in
the output flist.

• If the both the flag and array are present, the opcode ignores the array and returns all
the fields in the /event/billing/payment object.

PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH does not retrieve payment states for
payments that have been reversed and are no longer active. If the search results are NULL,
PCM_OP_PYMT_RECYCLED_PAYMENTS_SEARCH searches for reversal events related to
a suspended payment. If a reversal event is found, the suspended record is filtered and not
returned.

How Suspended Payments Are Reversed
PCM_OP_BILL_REVERSE prepares information for PCM_OP_BILL_REVERSE_PAYMENT to
perform reversals. PCM_OP_BILL_REVERSE reverses payments during the following
payment suspense operations:

• A payment is recycled to or from suspense.

• A suspended payment is removed from BRM as unallocatable.

Payments can also be reversed directly from BRM by submitting a payment reversal batch
from Payment Tool. For information on how direct reversals are performed, see "Reversing
Payments".

How Payments Are Reversed During Recycling
If PCM_OP_BILL_REVERSE is called from PCM_OP_PYMT_RECYCLE_PAYMENT, the
reversal is due to recycling, and PCM_OP_BILL_REVERSE performs the following operations:

1. Assigns the reversal TRANS_ID value for each recycled payment.

2. Opens a transaction and checks the appropriate /config/business_params object to
verify that Payment Suspense Manager is enabled.

3. Calls PCM_OP_BILL_REVERSE_PAYMENT to perform the reversal and create the
associated objects in the database. For each /event/billing/reversal object created,
PIN_FLD_PAYMENT_TRANS_ID is set to the transaction ID of the recycled payment. This
opcode populates the reversal flist with each recycled payment's TRANS_ID value.

4. Populates the payment batch with the sum of the reversal flist.

5. If the reversal was performed as part of recycling multiple distributed payments back into
suspense, returns the recycled payments' reversal information in the
PIN_FLD_MULTI_RESULTS array.

How Payments Are Removed As Unallocatable
PCM_OP_BILL_REVERSE performs the following operations to remove payments from BRM
as unallocatable:

1. Assigns the reversal event a TRANS_ID value.

2. Opens a transaction and checks the appropriate /config/business_params object to
verify that Payment Suspense Manager is enabled.

3. Checks to see whether the following criteria are met:

Chapter 20
Suspending and Recycling Payments

20-84

• The payment is a suspended payment. To do so, it compares the account POID in the
flist with the account POID of the payment suspense account in the /config/psm
object.

• The payment is active.

• The value of the PIN_FLD_FLAGS field is set to
PIN_REVERSE_FLAG_REVERSE_AS_UNALLOCATED (1).

4. Calls PCM_OP_BILL_REVERSE_PAYMENT to reverse the payment in the payment
suspense account and create the associated objects in the database. For the /event/
billing/reversal object, PIN_FLD_PAYMENT_TRANS_ID is set to the transaction ID of the
suspended payment. This opcode populates the reversal flist with the payment's
TRANS_ID value.

5. Populates the payment batch with the sum of the reversal flist.

6. Validates the reverse payment operation and creates the reversal batch event in the
database.

The result of the reversal is returned in the PIN_FLD_RESULTS field of
PCM_OP_BILL_REVERSE. The reversal will not be allowed if either of the following conditions
is true:

• The payment is not a suspended payment.

• The payment is not an active payment.

How BRM Handles Mandate Information for SEPA Processing
The following sections describe how BRM handles mandate information.

How BRM Registers a Mandate
To register the mandate information provided during customer account creation, BRM uses
PCM_OP_CUST_SET_PAYINFO.

PCM_OP_CUST_SET_PAYINFO takes as input the mandate information such as the
customer's IBAN and BIC and the creditor identification code.

This opcode adds the mandate by:

1. Creating a unique mandate reference number (UMR) for the mandate, if it is not provided
in the input flist

2. Setting the status of the mandate to active

3. Creating the /payinfo/sepa object with the mandate information

PCM_OP_CUST_SET_PAYINFO calls PCM_OP_CUST_CREATE_PAYINFO, which calls
PCM_OP_CUST_POL_VALID_PAYINFO, which validates that the format of the IBAN and BIC
comply with the formats described in the SEPA rulebooks. Additional custom validations can be
performed on the mandate information, such as country-specific validations.

How BRM Updates a Mandate
To update the mandate information, BRM uses the following opcodes:

• PCM_OP_CUST_AMEND_MANDATE, to update the customer information

• PCM_OP_CUST_AMEND_CREDITOR_INFO, to update the creditor information

Chapter 20
How BRM Handles Mandate Information for SEPA Processing

20-85

PCM_OP_CUST_AMEND_MANDATE takes as input a reference to the /payinfo/sepa object
and the mandate information to update.

This opcode updates the mandate by:

1. Updating the /payinfo/sepa object with the new mandate information

2. Updating the PIN_FLD_MANDATE_AMENDED field in the /payinfo/sepa object by using
flags to indicate the fields that are amended

3. Generating the /event/activity/sepa/mandate_amendment event to record the mandate
update

PCM_OP_CUST_AMEND_CREDITOR_INFO takes as input the creditor ID to be updated and
the new creditor ID and creditor name.

This opcode updates the creditor information by:

1. Updating the /config/creditor object with the new creditor information

2. Determining if any /payinfo/sepa object exists that is associated with the original creditor
ID and updating the /payinfo/sepa object with the new creditor information

3. In each /payinfo/sepa object that is updated, updating the
PIN_FLD_MANDATE_AMENDED field by using flags to indicate the fields that are
amended

4. Generating the /event/activity/sepa/mandate_amendment event to record the update

Updating Creditor Information
To update the creditor information, use the PCM_OP_CUST_AMEND_CREDITOR_INFO
opcode. This opcode updates the creditor name and the creditor ID only.

PCM_OP_CUST_AMEND_CREDITOR_INFO uses the creditor ID to update the /config/
creditor object with the new creditor information.

Any update to a creditor configuration triggers automatic updates to all the mandates with this
creditor ID in the BRM database. For example, if you have multiple customers that have
mandates with the same creditor ID, BRM automatically locates the customers' payment
information and updates their mandates with the new creditor information.

How BRM Cancels a Mandate
To cancel a mandate, BRM uses PCM_OP_CUST_CANCEL_MANDATE.

PCM_OP_CUST_CANCEL_MANDATE takes as input the reference to the /payinfo/sepa
object that contains the mandate to cancel.

This opcode cancels the mandate by:

1. Setting the PIN_FLD_MANDATE_STATUS field in the /payinfo/sepa object to
PIN_MANDATE_STATUS_CANCELED

2. Setting the PIN_FLD_MANDATE_END_T field to the current time to record the time of
cancellation

3. Calling PCM_OP_CUST_DELETE_PAYINFO to delete the /payinfo/sepa object. The
opcode does not cancel the /payinfo/sepa object if it determines that it is associated with
a bill unit or if a SEPA payment request is pending

Chapter 20
How BRM Handles Mandate Information for SEPA Processing

20-86

21
Subscription Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) subscription
opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Pricing Component Object Names

• Managing Charge Offers

• Managing Discount Offers

• Managing Bundles

• Managing Packages

• Managing Contracts

• Managing Purchase, Cycle, and Usage Charges in Purchased Offers

• Applying Recurring Charges

• Applying Folds

• Getting Data about Bundles, Charge Offers, Discount Offers, and Services

• Applying Promotions for Special Dates, Events, or Actions

• Managing Promotions with Siebel CRM

• Managing Provisioning

• Validating Product Specification Attributes for Pricing Components

Opcodes Described in This Chapter
Table 21-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 21-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_SCHEDULE_CREATE How BRM Transitions Accounts from Source Packages to
Target Packages

21-1

Table 21-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_ACT_USAGE Applying Cycle Forward Fees

Applying Cycle Arrears Fees

PCM_OP_BAL_APPLY_MULTI_BAL_IMPACTS Getting a Life-Cycle State

PCM_OP_BAL_GET_BALANCES Getting a Life-Cycle State

PCM_OP_BAL_POL_CHECK_LIFECYCLE_STATE Getting a Life-Cycle State

PCM_OP_BILL_CYCLE_ARREARS How Bundles Are Transitioned

PCM_OP_BILL_CYCLE_FORWARD How Bundles Are Transitioned

PCM_OP_BILL_MAKE_BILL Customizing How Folds Are Applied

PCM_OP_CONTRACT_CANCEL_CONTRACT Canceling Contracts

PCM_OP_CONTRACT_CREATE_CONTRACT Creating Contracts

PCM_OP_CONTRACT_MODIFY_CONTRACT Modifying Contracts

PCM_OP_CONTRACT_RENEW_CONTRACT Renewing Contracts

PCM_OP_CUST_COMMIT_CUSTOMER How Bundles Are Purchased

Overriding Bundle Proration Settings at Customer Level

Overriding Add-On Product Validity Dates in a Deal

PCM_OP_CUST_CREATE_CUSTOMER About Optional and Required Service Types

PCM_OP_CUST_CREATE_PROFILE Managing Provisioning

PCM_OP_CUST_DELETE_PROFILE Managing Provisioning

PCM_OP_CUST_MODIFY_CUSTOMER How Bundles Are Purchased

Validating Changes to Bundles

How BRM Transitions Accounts from Source Packages to
Target Packages

Overriding Add-On Product Validity Dates in a Deal

PCM_OP_CUST_MODIFY_PROFILE Managing Provisioning

PCM_OP_CUST_POL_GET_DEALS Getting Packages, Bundles, and Charge Offers for Purchase

PCM_OP_CUST_POL_GET_PLANS Getting Packages, Bundles, and Charge Offers for Purchase

PCM_OP_CUST_POL_GET_PRODUCTS Getting Packages, Bundles, and Charge Offers for Purchase

PCM_OP_CUST_POL_GET_SUBSCRIBED_PLANS Getting a List of Packages and Bundles That an Account
Owns

PCM_OP_CUST_POL_READ_PLAN Getting Packages, Bundles, and Charge Offers for Purchase

PCM_OP_CUST_POL_TRANSITION_DEALS Customizing Bundle Transitions

Customizing Package Transitions without Configuring /
transition Objects

PCM_OP_CUST_SET_STATUS About Closing a Required Service

How Bundle Dependencies Are Validated

Validating Bundle Transitions

PCM_OP_CUST_UPDATE_SERVICES About Closing a Required Service

How BRM Transitions Accounts from Source Packages to
Target Packages

Getting a Life-Cycle State

PCM_OP_PROV_POL_UPDATE_SVC_ORDER Managing GSM Service Provisioning

Chapter 21
Opcodes Described in This Chapter

21-2

Table 21-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_PROV_PUBLISH_SVC_ORDER Managing GSM Service Provisioning

PCM_OP_PROV_UPDATE_SVC_ORDER Managing GSM Service Provisioning

PCM_OP_SUBSCRIPTION_CANCEL_DEAL How Charge Offers Are Canceled

How Bundles Are Purchased

Validating Changes to Bundles

How Bundles Are Modified

How Bundles Are Canceled

PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT How Discount Offers Are Canceled

How Bundles Are Canceled

PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT How Charge Offers Are Canceled

Customizing Charge Offer Cancellation

How Bundles Are Canceled

Customizing How Folds Are Applied

Getting a List of Provisioning Tags

Customizing Provisioning When Canceling a Charge Offer

PCM_OP_SUBSCRIPTION_CHANGE_DEAL How Bundles Are Modified

PCM_OP_SUBSCRIPTION_CHANGE_OPTIONS Validating Changes to Bundles

PCM_OP_SUBSCRIPTION_CRUD_OFFER_OVERRIDE Overriding Charges and Discounts for a Period of Time

PCM_OP_SUBSCRIPTION_CYCLE_ARREARS Applying Cycle Arrears Fees

Calculating the Cycle Arrears Fee

Customizing Which Balances to Fold When Charge Offers
Are Canceled

PCM_OP_SUBSCRIPTION_CYCLE_FOLD Applying Folds

Customizing the Order to Apply Folds

Customizing Which Balances to Fold When Charge Offers
Are Canceled

PCM_OP_SUBSCRIPTION_CYCLE_FORWARD Applying Cycle Forward Fees

Calculating the Cycle Forward Fee

How Cycle Fees Are Calculated for Backdated Cancellation
or Inactivation

Customizing Which Balances to Fold When Charge Offers
Are Canceled

PCM_OP_SUBSCRIPTION_GET_HISTORY Finding Events Associated with Bundles, Charge Offers,
Discount Offers, and Services

PCM_OP_SUBSCRIPTION_GET_PURCHASED_OFFERIN
GS

Getting Purchased Offers

Reading Data for All Valid Purchased Charge Offers and
Discount Offers

PCM_OP_SUBSCRIPTION_HANDLE_PROMO_EVENT Applying Promotions for Special Dates, Events, or Actions

PCM_OP_SUBSCRIPTION_POL_CANCEL_PROD_PROVI
SIONING

How Charge Offers Are Canceled

Customizing Provisioning When Canceling a Charge Offer

PCM_OP_SUBSCRIPTION_POL_GET_PROD_PROVISION
ING_TAGS

Getting a List of Provisioning Tags

Chapter 21
Opcodes Described in This Chapter

21-3

Table 21-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_SUBSCRIPTION_POL_PRE_FOLD Customizing How to Apply Folds

Customizing How Folds Are Applied

PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_DEA
L

How Bundles Are Transitioned

PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLA
N

Customizing Bundle Transitions

How BRM Transitions Accounts from Source Packages to
Target Packages

Customizing Package Transitions without Configuring /
transition Objects

About Providing Transition Rules Using Policy Opcodes

PCM_OP_SUBSCRIPTION_POL_PREP_FOLD Customizing How to Apply Folds

Customizing Which Balances to Fold When Charge Offers
Are Canceled

PCM_OP_SUBSCRIPTION_POL_PURCHASE_PROD_PR
OVISIONING

Purchasing Charge Offers

PCM_OP_SUBSCRIPTION_POL_PURCHASE_PROD_PR
OVISIONING

Customizing Provisioning When a Charge Offer Is
Purchased

PCM_OP_SUBSCRIPTION_POL_SNOWBALL_DISCOUNT Customizing Snowball Discounts

PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL Customizing Charge Offer Cancellation

How Charge Offers Are Canceled

PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL_DISCO
UNT

Customizing Discount Offer Cancellation

PCM_OP_SUBSCRIPTION_POL_SPEC_FOLD Customizing How to Apply Folds

Applying Folds

Customizing the Order to Apply Folds

PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING Purchasing Charge Offers

How Discount Offers Are Purchased

How Bundles Are Purchased

Validating Product Specification Attributes for Pricing
Components

PCM_OP_SUBSCRIPTION_PROVISION_ERA Managing Provisioning

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL Purchasing Charge Offers

How Discount Offers Are Purchased

How Bundles Are Purchased

Validating Changes to Bundles

How Bundles Are Modified

Managing Purchase, Cycle, and Usage Charges in
Purchased Offers

Overriding Bundle Proration Settings at Customer Level

Overriding Add-On Product Validity Dates in a Deal

PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT How Discount Offers Are Purchased

Managing Purchase, Cycle, and Usage Charges in
Purchased Offers

PCM_OP_SUBSCRIPTION_PURCHASE_FEES Applying Deferred Charge Offer Purchase Fees

Chapter 21
Opcodes Described in This Chapter

21-4

Table 21-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT Purchasing Charge Offers

Backdating Charge Offer, Discount Offer, Bundle, or
Package Purchases

About Delayed Cycle Start and End Times

Applying Purchase and Cycle Fees to the Balance

How Bundles Are Purchased

Managing Purchase, Cycle, and Usage Charges in
Purchased Offers

Customizing Provisioning When a Charge Offer Is
Purchased

PCM_OP_SUBSCRIPTION_READ_ACCT_PRODUCTS Getting a List of Bundles, Charge Offers, Discount Offers,
and Services

PCM_OP_SUBSCRIPTION_SET_BUNDLE Managing Promotions with Siebel CRM

PCM_OP_SUBSCRIPTION_SET_DISCOUNT_STATUS How BRM Changes Discount Offer Status

How Discount Offer Purchase, Cycle, and Usage Validity Is
Modified

PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO How Discount Offer Purchase, Cycle, and Usage Validity Is
Modified

How BRM Changes Discount Offer Status

About Backdated Purchase, Usage, or Cycle End Dates

PCM_OP_SUBSCRIPTION_SET_PRODINFO How Charge Offers Are Modified

How BRM Changes Charge Offer Status

Changing the Purchase, Usage, and Cycle Start and End
Times

Calculating the Cycle Forward Fee

Calculating the Cycle Arrears Fee

About Backdated Purchase, Usage, or Cycle End Dates

PCM_OP_SUBSCRIPTION_SET_PRODUCT_STATUS How BRM Changes Charge Offer Status

Changing the Purchase, Usage, and Cycle Start and End
Times

PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION How Bundles Are Transitioned

PCM_OP_SUBSCRIPTION_TRANSITION_DEAL Purchasing Charge Offers

Applying Purchase and Cycle Fees to the Balance

How Charge Offers Are Canceled

How Bundles Are Transitioned

Customizing Bundle Transitions

PCM_OP_SUBSCRIPTION_TRANSITION_PLAN How BRM Transitions Accounts from Source Packages to
Target Packages

About Providing Transition Rules Using Policy Opcodes

Customizing Account Bundles during Package Transitions

PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDEN
CY

How Bundles Are Purchased

Validating Changes to Bundles

How Bundle Dependencies Are Validated

Validating Bundle Transitions

Chapter 21
Opcodes Described in This Chapter

21-5

Table 21-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_SUBSCRIPTION_VALIDATE_DISCOUNT_DEPE
NDENCY

Validating Discount Offer Dependencies

Pricing Component Object Names
When you publish pricing components to the BRM database, the pricing components are
stored as objects in the BRM database. Table 21-2 shows the pricing component object
names. Developers and database managers must know these object names.

Table 21-2 Pricing Component Object Names

Pricing Component Object

bundle /deal
Bundles owned by a customer are stored as /purchased_deal objects.

charge /rate_plan

charge pricing /rate

charge offer /product
Charge offers owned by a customer are stored as /purchased_product objects.

charge selector /rate_plan_selector

discount offer /discount
Discount offers owned by a customer are stored as /purchased_discount objects.

product specification attribute /offer_attribute_group
Attribute names and values are stored as /offer_attribute_group arrays. Pricing
components contain a PIN_FLD_ATTRIBUTE_OBJ field to point to these arrays.

package /plan

package list /group/plan_list

Managing Charge Offers
See the following topics:

• Purchasing Charge Offers

• Backdating Charge Offer, Discount Offer, Bundle, or Package Purchases

• Applying Purchase and Cycle Fees to the Balance

• How Charge Offers Are Modified

• How BRM Changes Charge Offer Status

• How Charge Offers Are Canceled

• Customizing Charge Offer Cancellation

• Customizing How to Apply Folds

Chapter 21
Pricing Component Object Names

21-6

Purchasing Charge Offers
To purchase a charge offer, use PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT.

Note:

Do not call PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT directly. This
opcode is always called by PCM_OP_SUBSCRIPTION_PURCHASE_DEAL.

PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT is called to purchase charge offers for
the account or service object specified in the input flist.

Note:

• If a /service object is specified, the charge offer is purchased for that service and
is a service charge offer. The /service object must belong to the account.

• If the /service object is NULL, the charge offer is purchased for the /account
object and is an account bundle.

PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT performs these operations:

1. If billing is due, triggers billing.

2. Opens a transaction.

3. Checks the value of the PIN_FLD_MODE field.

• If the value is 0, continues with the purchase.

• If the value is 1, 2, or 3, processes the purchase as described in "Purchasing the
Same Charge Offer Multiple Times".

4. Validates any product specification attributes on the charge offer by calling the
PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING policy opcode. By default, this
policy opcode is an empty hook, but you can customize it to validate product specification
attributes. See "Configuring Product Specification Attributes for Pricing Components" in
PDC Creating Product Offerings or "Defining Product Specification Attributes for Pricing
Components" in Configuring Pipeline Rating and Discounting.

5. Retrieves the charge offer's package ID, name, and type, which are passed in the input
flist, and opens a bundle instance. For information about how a bundle is generated, see
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL.

6. Validates that the charge offer is available for purchase. A charge offer is not available for
purchase when any of the following apply:

• The charge offer's validity period has not yet started (the PURCHASE_START_T value
is greater than the current time).

• The charge offer's validity period has already ended (the PURCHASE_END_T value is
less than or equal to the current time).

• The cycle or usage start time is less than the purchase start time.

Chapter 21
Managing Charge Offers

21-7

• The cycle or usage end time is greater than the purchase end time.

• There is a PIN_FLD_PERMITTED field for the charge offer but the POID type is not
explicitly permitted.

• The purchase quantity is 0 or is not passed.

• The purchase quantity is less than the minimum purchase quantity set in your product
offerings.

• The purchase quantity is greater than the maximum purchase quantity set in your
product offerings.

• An attempt is made to purchase a partial quantity.

• The total quantity purchased for this charge offer exceeds the maximum ownership
quantity in your product offerings for this account or service. This applies only to
subscription charge offers that have a maximum ownership quantity specified.

• The total quantity purchased for this charge offer is less than the minimum ownership
quantity in your product offerings for this account or service. This applies only to
subscription charge offers that have a minimum ownership quantity specified.

7. If the charge offer purchase is backdated, validates that:

• The date to which the charge offer purchase is backdated is not prior to the G/L
posting date.

• The date to which the charge offer purchase is backdated is not prior to the effective
date of the account or service.

• The date to which the charge offer purchase is backdated is not prior to the date of the
last status change of the account or service.

8. If the purchase product provisioning tag is set for the charge offer, calls
PCM_OP_SUBSCRIPTION_POL_PURCHASE_PROD_PROVISIONING. See
"Customizing Provisioning When a Charge Offer Is Purchased".
If a /config/provisioning_tag object is associated with the charge offer,
PCM_OP_SUBSCRIPTION_POL_PURCHASE_PROD_PROVISIONING runs the opcodes
specified in that object to run at charge offer purchase time. The opcode always runs the
opcodes specified by the __DEFAULT__ provisioning tag.

9. Determines the various start and end dates for the charge offer. See "Handling Purchase,
Cycle, and Usage Start and End Times".

10. Verifies the charge offer purchase with the specified account.

11. Applies the charge offer to the account:

• If it is a subscription charge offer, generates a /purchased_product object with a
pointer to the /account object.

• If it is an item charge offer, creates an audit record for the /au_purchased_product
object.

Note:

Item charge offers cannot be deferred. The audit object is used for rerating
events.

12. Sets the purchase, cycle, and usage discounts, if applicable.

13. Sets the charge offer status in /purchased_product.

Chapter 21
Managing Charge Offers

21-8

14. Checks the PIN_FLD_FLAGS value set by
PCM_OP_SUBSCRIPTION_TRANSITION_DEAL to determine whether the charge offer
purchase is due to a bundle or package transition. If so, sets the value to
PIN_TRANS_WAIVE_PURCHASE_FEES.

15. Applies the appropriate purchase and cycle fees to the balance.

16. Updates the charge offer flags for applying purchase and cycle fees.

17. Creates the audit log event object (/event/billing/product/action/purchase) after the
charge offer is added to the account and all applicable fees are applied.

18. Closes the transaction.

If the charge offer purchase is successful,
PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT returns a confirmation message.

During a bundle or package transition, additional validations are performed that may prevent a
successful purchase:

• If the service contains at least one required bundle, the service flag is set to Required. If
all bundles for the service are optional, the service flag is set to Optional. A required
service cannot be canceled; therefore, the purchase portion of the transition does not
occur.

• If the system flag validate_deal_dependencies is 1, BRM checks to see whether
prerequisites exist or whether the bundles are mutually exclusive before
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL is called.

• If the permitted field in the package is service_type, the flag is set to PBS.

Applying Deferred Charge Offer Purchase Fees
To apply deferred purchase fees, use PCM_OP_SUBSCRIPTION_PURCHASE_FEES.

By default, purchase fees are applied at the time of charge offer purchase. However, you can
defer the purchase fees to a later date. For example, a customer can sign up for a charge offer
that is not available until a later date. The charge offer's purchase fees are deferred and
applied when the charge offer becomes available.

PCM_OP_SUBSCRIPTION_PURCHASE_FEES is called by the pin_cycle_fees utility to
apply deferred purchase fees. When pin_cycle_fees is run with the -purchase parameter, it
searches for /account objects with an expired PURCHASE_START_TIME value. For each
account that it finds, it calls PCM_OP_SUBSCRIPTION_PURCHASE_FEES to apply the
purchase fees.

PCM_OP_SUBSCRIPTION_PURCHASE_FEES applies deferred purchase fees only for
charge offers with an expired purchase start time.

Note:

For item charge offers, the /purchased_product object is removed after the deferred
fees are applied.

After the purchase fees are applied to the account, an /event/billing/purchase_fee object is
created for auditing purposes.

If the purchase fee is applied successfully, PCM_OP_SUBSCRIPTION_PURCHASE_FEES
returns the POIDs of the /account object and the /event/billing/purchase_fee object.

Chapter 21
Managing Charge Offers

21-9

About Delayed Cycle Start and End Times
If you configure delayed purchase, cycle, or usage start and end times when you set up your
price list, PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT sets the delayed start and end
times in the /purchased_product object when the charge offer is purchased.

The day of month to which the start date is set depends on whether you configure to align the
start and end dates with the accounting cycle by setting the fm_bill cycle_delay_align entry
to 1 in the CM pin.conf file.

For example, you configure a charge offer to start relative to the purchase date, and you set
the relative period in the pricing package to one accounting cycle. If the account creation day is
January 5, the billing day of month is 5, and the bundle is purchased on January 20, then the
start date is set as follows:

• If start and end dates are not aligned with the accounting cycle, the start date is set to
February 20.

• If start and end dates are aligned with the accounting cycle, the start date is set to
February 5 if the accounting cycle is short or March 5 if the accounting cycle is long.

Handling Purchase, Cycle, and Usage Start and End Times
When using PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT, you pass the purchase,
cycle, and usage start and end times. You can specify fixed dates, start on first usage and end
relative to the start date, or start relative to the purchase date and end relative to the start date.

The start and end times are passed in by PCM_OP_SUBSCRIPTION_PURCHASE_DEAL.
The start and end times are specified in the same way for
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL and
PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT.

For information on setting purchase, cycle, and usage start and end times, see "Managing
Purchase, Cycle, and Usage Charges in Purchased Offers".

If the system is configured for time-stamp rounding,
PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT rounds the start and end times to
00:00:00 hours.

However, when a charge offer's purchase, cycle, and usage start and end units are set to 1
(seconds), 2 (minutes), or 3 (hours), and the validity period is less than 24 hours, time stamps
are not rounded, regardless of your system configuration. If the validity is greater than 24
hours, or crosses the threshold of a calendar day, the purchase, cycle, and usage end time
stamps are rounded when calculating the scale to determine the cycle fee amount to charge.
For example, at 23:00:00 on June 10, a customer purchases a charge offer that is valid for
three hours. Because the validity crosses into the next day, the timestamps for the scale
calculation are rounded to 00:00:00 on June 11 rather than 02:00:00.

Purchasing the Same Charge Offer Multiple Times
Customers can purchase the same charge offer multiple times using
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL, which accepts PIN_FLD_MODE as part of
the input flist and passes it to PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT.

PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT checks the value of PIN_FLD_MODE to
determine how to process the purchase.

Chapter 21
Managing Charge Offers

21-10

If the value is 0, the normal product purchase flow proceeds, purchasing the charge offer as a
new, unrelated purchased product. This is the default option.

If the value is 1, 2, or 3, PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT uses the
account, service, and bundle in the input flist to search for an existing purchased product. If no
matching product is found, the product is treated as a new subscription, and the purchase flow
continues as normal.

If there is a matching product and the value of PIN_FLD_MODE is 1 or 2:

Note:

This is applicable only to one-time offers and not recurring offers.

1. PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT determines whether the additional
charge offer has been purchased within the grace period and then does one of the
following:

• If the repurchase occurs within the defined grace period, the existing charge offer is
extended and the opcode proceeds to the next step.

• If the repurchase occurs after the defined grace period, the additional charge offer is
treated as a new, unrelated purchased product.

2. PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT calculates the new balance validity
and purchase, usage, and cycle end dates as follows:

• If PIN_FLD_MODE is set to 1, PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT
compares the existing validity period to the new one, and chooses the later of the two.

For example, an existing balance is valid until June 7th. The new charge offer is
purchased on June 3rd, and is valid for 7 days. The end of the new validity period is
later than the existing one, so the new end date of June 10th will be used.

• If PIN_FLD_MODE set to 2, PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT
adds the new validity period to the existing one.

For example, an existing balance is valid until June 7th. The new charge offer is
purchased on June 3rd, and is valid for 7 days. The 7 days are added to the end of the
existing validity period, so the new end date of June 14th will be used.

3. PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT calls PCM_OP_RATE_EVENT to
add the balance impacts from the new charge offer as sub-balances of the existing
balance, and sets the validity of the total balance calculated according to the different
PIN_FLD_MODE values.

4. PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT then calls
PCM_OP_SUBSCRIPTION_SET_PRODINFO to update the purchase, usage, and cycle
end dates of the product to the new end dates calculated according to the different
PIN_FLD_MODE values.

If there is a matching product and the value of PIN_FLD_MODE is 3:

1. PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT calls
PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT to cancel the existing product and
prorate any remaining balances.

2. The normal product purchase flow continues, purchasing the charge offer as a new,
unrelated purchased product.

Chapter 21
Managing Charge Offers

21-11

Backdating Charge Offer, Discount Offer, Bundle, or Package Purchases
To backdate a charge offer, discount offer, bundle, or package purchase, enter the backdated
time in the PIN_FLD_ END_T field of the corresponding opcode. For example, to backdate a
charge offer purchase, enter the date to which you want to backdate the purchase in the
PIN_FLD_ END_T field of the PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT opcode.

When you backdate a charge offer, discount offer, bundle, or package purchase, BRM does the
following:

• Sets the purchase, usage, and cycle start dates to the backdated date unless they are
explicitly set to a different date.

• Prorates the cycle fee based on the proration settings.

• Applies the purchase fee on the backdate date.

BRM does not allow you to backdate the charge offer, discount offer, bundle, or package
purchase if:

• The backdated purchase date is prior to the G/L posting date.

• The backdated purchase date is prior to the account or service's effective date.

• The backdated purchase date is prior to the date of the last status change of the account
or service.

For example, consider that you create an account on December 1. On December 10, you
change the status of the account to Inactive. On December 15, you change the status of
the account back to Active. You cannot backdate a charge offer purchase prior to
December 15, which is the date of the last status change.

Note:

– BRM does not apply a fold, rollover charge offer, or billing time discount for
the past accounting cycles when you backdate the purchase of the fold,
rollover charge offer, or billing time discount.

– Backdating discount offers with discount offer proration options is supported
only for discount offers that are prorated.

How Sub-balance Buckets Are Created for Backdated Charge Offer Purchases
When a backdated charge offer purchase spans beyond the current accounting cycle, multiple
cycle events and sub-balance buckets are created. That is, if a backdated purchase of a
charge offer spans multiple cycles, one cycle event is created for each cycle and the free sub-
balance buckets are split into multiple cycles.

For example, consider that you create an account on January 1. On April 1, you backdate the
purchase of a charge offer to January 15. The charge offer grants 3600 Anytime Minutes
monthly. BRM creates the following three sub-balances for the three cycles:

• 1800 Anytime Minutes for January 15 to February 1.

• 3600 Anytime Minutes for February 1 to March 1.

• 3600 Anytime Minutes for March 1 to April 1.

Chapter 21
Managing Charge Offers

21-12

Note:

If you backdate the purchase of a discount offer on a cycle forward or cycle
arrears event to a previous accounting cycle, the discount will be applied only
from the current accounting cycle.

How Cycle Fees Are Calculated for Backdated Purchase or Activation
BRM uses the PCM_OP_SUBSCRIPTION_CYCLE_FORWARD and PCM_OP_
SUBSCRIPTION_CYCLE_ARREARS opcodes to calculate cycle forward and cycle arrears
fees for the subscription operations.

When you backdate a purchase or activation, the opcodes determine the scale values that are
used for prorating the amount to be charged. The charges for the events that occurred during
the backdated period are prorated and applied accordingly. These charges for the backdated
period appear as normal recurring fees in the bill of the current cycle.

When you backdate the purchase of a charge offer that includes cycle forward events, cycle
forward fees are prorated and applied from the backdated purchase date through the current
date.

Applying Purchase and Cycle Fees to the Balance
PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT handles the purchase and cycle fees for
the charge offer as follows:

• PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT does not apply either deferred
purchase or cycle forward fees. These fees are applied when the pin_cycle_fees utility is
run as part of the pin_bill_day billing script. See "Applying Deferred Charge Offer
Purchase Fees".

• If the charge offer has a purchase fee and if the purchase start time is not deferred,
PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT applies the purchase fee and
creates the associated /event/billing/product/fee/purchase object.

Note:

Unlike flexible cycle forward events, BRM does not support custom events for
purchase fee events. Purchase fees associated with a charge offer are stored in /
event/billing/product/fee/purchase object.

• If the charge offer has a cycle forward fee and if the cycle start time is not deferred,
PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT applies the cycle forward fee by
calling the necessary opcodes. This creates the /event/billing/product/fee/cycle/
cycle_forward_feetype object, where feetype is the type of cycle forward fee.

• If the charge offer is purchased as part of a bundle transition,
PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT can waive the purchase fees based
on the PIN_FLD_FLAGS value passed in by
PCM_OP_SUBSCRIPTION_TRANSITION_DEAL. For more information, see "How
Bundles Are Transitioned".

Chapter 21
Managing Charge Offers

21-13

How Charge Offers Are Modified
To modify a charge offer owned by a customer, use
PCM_OP_SUBSCRIPTION_SET_PRODINFO.

PCM_OP_SUBSCRIPTION_SET_PRODINFO performs these operations:

1. If billing is due, triggers billing.

2. Opens a transaction.

3. For backdating operations, validates and sets the charge offer's purchase, cycle, or usage
start and end dates to a backdated date. See "About Backdated Purchase, Usage, or
Cycle End Dates".

4. Modifies the charge offer information as specified. For information on how
PCM_OP_SUBSCRIPTION_SET_PRODINFO handles start and end dates, see
"Changing the Purchase, Usage, and Cycle Start and End Times".

5. Creates an audit record object (/au_purchased_product) used for rerating events.

6. Applies the charge offer changes to the charge offer object (/purchased_product) owned
by the account.

7. Calculates and applies appropriate cycle fees for the event to the balance and, if
necessary, calls other opcodes to record the cycle events. See "Calculating the Cycle
Forward Fee".

8. Creates the /event/billing/product/action/modify event objects.

9. Closes the transaction.

If the PCM_OPFLG_CALC_ONLY flag is set, PCM_OP_SUBSCRIPTION_SET_PRODINFO
returns the entire event flist for the events created as a result of the modification. Otherwise, it
returns the event POID of all event objects created as a result of the modification.

An error occurs in the following cases:

• If an attempt is made to change the cycle start date to a date earlier than any period for
which cycle forward or arrears fees have already been applied.

• If an attempt is made to change the cycle end date to a date before the current time but
after the end of any period for which cycle forward or cycle arrears fees have already been
applied.

How BRM Changes Charge Offer Status
To set the status of a /purchased_product object owned by an account, use
PCM_OP_SUBSCRIPTION_SET_PRODUCT_STATUS.

PCM_OP_SUBSCRIPTION_SET_PRODUCT_STATUS is called in the following cases:

• When the status of an account or service is changed.

• When a charge offer status is changed. You might need to change only the charge offer
status itself if, for example, the charge offer was purchased as inactive because of future
provisioning and you activate it later, or if a customer's subscription was suspended, and is
now being reactivated.

PCM_OP_SUBSCRIPTION_SET_PRODUCT_STATUS performs the following tasks:

1. Opens a transaction.

Chapter 21
Managing Charge Offers

21-14

2. Retrieves the new status from the PIN_FLD_STATUSES array in the input flist. If the
charge offer status change is due to an account or service status change,
PIN_STATUS_FLAG_DUE_TO_ACCOUNT is passed in the PIN_FLD_STATUS_FLAGS
field of the array.

3. Reads the old status of the charge offer from the database.

4. If PCM_OP_SUBSCRIPTION_SET_PRODUCT_STATUS is not called in CALC_ONLY
mode, applies the new status to the charge offer.

5. If the charge offer is inactive due to future provisioning and is now being activated, then
PCM_OP_SUBSCRIPTION_SET_PRODINFO is called to modify the purchase start date
and time to the date and time of reactivation. If the original cycle and usage start date is
earlier than the new purchase start date, PCM_OP_SUBSCRIPTION_SET_PRODINFO
also resets the cycle and usage start date and time to the new purchase start date.
If PCM_OP_SUBSCRIPTION_SET_PRODINFO is not called, an /
au_purchased_products audit object is generated, which is used for rerating events.

6. If the charge offer is inactive due to a suspended subscription that is now being reactivated
and PIN_FLD_RENEWAL_MODE and PIN_FLD_CYCLE_FEE_FLAGS are both set to 1,
then PCM_OP_SUBSCRIPTION_SET_PRODINFO is called to modify the cycle end date
and time to align with the date and time of the reactivation.
If the PIN_FLD_CALENDAR_DOM field is also set, the end date and time will be
whichever is later, the value of PIN_FLD_CALENDAR_DOM or the reactivation date.

7. If PCM_OP_SUBSCRIPTION_SET_PRODUCT_STATUS is called while activating an
account, sets the purchase time to NOW and sets the usage and cycle fees by calling
PCM_OP_SUBSCRIPTION_SET_PRODINFO.

8. If the charge offer status change is backdated, validates that:

• The date to which the charge offer status change is backdated is not prior to the G/L
posting date.

• The date to which the charge offer status change is backdated is not prior to the
account or service's effective date.

• The date to which the charge offer status is backdated is not prior to the last status
change of the account or service.

9. Creates an audit log event object (/event/billing/product/action/modify/status).

10. Closes the transaction.

If the PCM_OP_CALC_ONLY flag is set when calling
PCM_OP_SUBSCRIPTION_SET_PRODUCT_STATUS, it returns the entire event flist for the
events created as a result of the modification. Otherwise, it returns the event POIDs of all
event objects created as a result of the modification.

How Charge Offers Are Canceled
To cancel a charge offer, use PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT. This opcode
cancels the charge offers associated with the /account object specified in the input flist.

PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT is called by:

• PCM_OP_SUBSCRIPTION_CANCEL_DEAL to cancel each charge offer associated with
a specific bundle. Depending on how many charge offers are included in the bundle,
PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT may be called more than once.

• PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT to cancel an existing charge offer
when the same one is purchased multiple times and the charge offer's PIN_FLD_MODE
field is set to 3.

Chapter 21
Managing Charge Offers

21-15

The input flist identifies the charge offers to cancel in the PIN_FLD_OFFERING_OBJ (/
purchased_product POID) field.

PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT performs the following tasks:

1. Closes billing if the account balance is affected.

2. Opens a transaction.

3. Verifies that the charge offer is valid for cancellation.

4. Checks if the corresponding bundle is a required bundle. If so, does not perform the
cancellation.

5. Calls PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL to determine whether to cancel
and delete the charge offer, to cancel without deleting the charge offer, or to not allow the
cancellation. If the corresponding bundle has any dependencies, the charge offer cannot
be deleted.

Note:

By default, BRM retains canceled charge offers. You can change this behavior by
customizing PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL. See
"Customizing Charge Offer Cancellation".

6. If the cancel product provisioning tag is set for the charge offer,
PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT calls
PCM_OP_SUBSCRIPTION_POL_CANCEL_PROD_PROVISIONING to clear fields in the
service object. See "Customizing Provisioning When Canceling a Charge Offer".
If a /config/provisioning_tag object is associated with the charge offer,
PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT runs the opcodes specified in that
object to run at charge offer cancellation time. The opcode always runs the opcodes
specified by the __DEFAULT__ provisioning tag.

7. Validates the charge offer quantity requested for cancellation. The quantity must be less
than or equal to the quantity owned by the account.

Note:

When the quantity to cancel is less than the quantity owned, the charge offer
quantity is modified; the charge offer is not canceled.

8. If the charge offer cancellation is backdated, validates that:·

• The date to which the charge offer cancellation is backdated is not prior to the G/L
posting date.

• The date to which the charge offer cancellation is backdated is not prior to the effective
date of the account or service.

• The date to which the charge offer cancellation is backdated is not prior to the last
status change date of the account or service.

9. Sets the charge offer's purchase, usage, and cycle end dates to the cancellation date.

10. Reads the PIN_FLD_FLAGS value passed in from
PCM_OP_SUBSCRIPTION_TRANSITION_DEAL to determine if cancellation fees should
be waived.

Chapter 21
Managing Charge Offers

21-16

11. Applies the following fees, if applicable:

• If the charge offer is active and has any cycle forward fee associated with it, and if the
charge offer is canceled in the middle of the cycle, the cycle forward fee is refunded for
the unused portion of the cycle and an appropriate cycle forward event is generated.

• If the charge offer is active and has a cycle arrears fee associated with it, and if the
charge offer is canceled in the middle of the cycle, the cycle arrears fee is charged for
the used portion of the cycle and an /event/billing/product/fee/cycle/cycle_arrears
event object is generated.

• If the charge offer has a cancellation fee, the cancellation fee is applied and an /event/
billing/product/fee/cancel event object is generated.

Note:

If the charge offer's validity period is configured to start on first usage and
has not yet been set, the charge offer has not been activated. In this case,
cycle fees are not charged.

12. Refunds the charge offer's cycle fees, and then reapplies them based on the new validity.

13. Creates the audit log /event/billing/product/action/cancel object to record the
cancellation of the charge offer.

14. Returns the POIDs of all event objects created as a result of the modification.

PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT fails in the following cases:

• If the specified charge offer in the input flist does not exactly match the /
purchased_product object.

• If the cancellation quantity is not passed in the input flist or is passed as 0.

• If the charge offer pricing quantity is less than the cancellation quantity specified in the
input flist.

Customizing Charge Offer Cancellation
To customize charge offer cancellation, use
PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL.

This opcode is called by PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT.

By default, when a charge offer is canceled, the /purchased_product object is not deleted,
but its status is set to Canceled. In addition, the end date is set to the charge offer cancellation
date. PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL allows you to specify whether the /
purchased_product object is deleted or remains with a status of Canceled.

Note:

BRM requires information stored in the /purchased_product object to rate events
when you use delayed billing and when events are rerated. In these cases, /
purchased_product objects should not be deleted.

Chapter 21
Managing Charge Offers

21-17

You can customize the behavior of PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL by
setting the PIN_FLD_ACTION field to one of these values:

• PIN_BILL_CANCEL_PRODUCT_ACTION_CANCEL_ONLY, which sets the status of the /
purchased_product object to Canceled and does not delete the /purchased_product
object when canceled.

• PIN_BILL_CANCEL_PRODUCT_ACTION_CANCEL_DELETE, which deletes the /
purchased_product object when it is canceled.

• PIN_BILL_CANCEL_PRODUCT_ACTION_DONOT_CANCEL, which stops the charge
offer cancellation.

Note:

The pin_bill.h header file defines all action strings.

By default, PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL reads the provisioning tag of
the /purchased_product object. If a provisioning tag is configured for the charge offer, the
action is set to PIN_BILL_CANCEL_PRODUCT_ACTION_CANCEL_ONLY. If there is no
provisioning tag, the action is set to
PIN_BILL_CANCEL_PRODUCT_ACTION_CANCEL_DELETE.

Customizing How to Apply Folds
You can customize how folds are applied:

• Use PCM_OP_SUBSCRIPTION_POL_PRE_FOLD to apply custom logic to how folds are
applied.

• Use PCM_OP_SUBSCRIPTION_POL_PREP_FOLD to customize the list of balance
impacts that must be folded when a charge offer is canceled.

• Use PCM_OP_SUBSCRIPTION_POL_SPEC_FOLD to customize the order in which folds
are applied. By default, an account's balances are folded in ascending order based on the
balance element ID.

Managing Discount Offers
See the following topics:

• How Discount Offers Are Purchased

• How Discount Offer Purchase, Cycle, and Usage Validity Is Modified

• How BRM Changes Discount Offer Status

• How Discount Offers Are Canceled

• Validating Discount Offer Dependencies

• Customizing Discount Offer Cancellation

How Discount Offers Are Purchased
To purchase a discount offer, use PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT.

Chapter 21
Managing Discount Offers

21-18

Note:

Do not call PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT directly. This
opcode is always called by PCM_OP_SUBSCRIPTION_PURCHASE_DEAL.

PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT performs these operations:

1. Closes the bill.

2. If billing is due, triggers billing.

3. Opens a transaction.

4. Reads the discount offer information.

5. Checks the value of the PIN_FLD_MODE field:

• If the value is 0, the purchase continues as normal.

• If the value is 1, 2, or 3, PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT uses
the account, service, and bundle in the input flist to search for an existing purchased
discount.
If no matching discount is found, the discount is treated as new, and the purchase
continues as normal.

If a matching discount is found and the the value of PIN_FLD_MODE is 1 or 2,
PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT determines whether the
additional discount offer has been purchased within the grace period. If the repurchase
occurs within the defined grace period, the existing discount offer is extended and the
opcode proceeds to the next step. If the repurchase occurs after the defined grace
period, the additional discount offer is treated as new, and the purchase continues as
normal.

Note:

This is applicable only to one-time offers and not reccuring offers.

– If PIN_FLD_MODE is set to 1,
PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT compares the existing
validity period to the new one, and chooses the later of the two.

For example, an existing balance is valid until June 7th. The new discount offer is
purchased on June 3rd, and is valid for 7 days. The end of the new validity period
is later than the existing one, so the new end date of June 10th will be used.

– If PIN_FLD_MODE is set to 2,
PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT adds the new validity
period to the existing one.

For example, an existing balance is valid until June 7th. The new discount offer is
purchased on June 3rd, and is valid for 7 days. The 7 days are added to the end of
the existing validity period, so the new end date of June 14th will be used.

– If PIN_FLD_MODE is set to 3,
PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT calls
PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT to cancel the existing discount,
then continues with the purchase as normal.

6. Performs the following validations:

Chapter 21
Managing Discount Offers

21-19

• Date validation, to make sure that the charge offer is available for purchase.

• Status validation, to check whether the discount offer is active or inactive.

• Ownership quantity validation, to make sure that the discount offer instance purchase
quantity is within minimum and maximum limits for ownership.

• Purchase quantity validations, to make sure that a partial quantity purchase is not
made and to check that the purchased quantity is within the minimum and maximum
limits for purchase.

• product specification attribute validation, by calling the
PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING policy opcode. By default,
this policy opcode is an empty hook, but you can customize it to validate product
specification attributes. See "Configuring Product Specification Attributes for Pricing
Components"in PDC Creating Product Offerings or "Defining Product Specification
Attributes for Pricing Components" in Configuring Pipeline Rating and Discounting.

7. Calculates the start and end dates of the purchase/cycle/usage events based on either
CSR customization or pricing component details. If passed relative dates, calculates fixed
dates. If BRM is configured for time stamp rounding, all start and end dates round to
00:00:00 hours. For more information, see "Managing Purchase, Cycle, and Usage
Charges in Purchased Offers".

8. If the discount offer purchase is backdated, validates that:

• The date to which the discount offer purchase is backdated is not prior to the G/L
posting date.

• The date to which the discount offer purchase is backdated is not prior to the effective
date of the account or service.

• The date to which the discount offer purchase is backdated is not prior to the date of
the last status change of the account or service.

Note:

If you backdate the purchase of a discount offer on a cycle forward or cycle
arrears event to a previous accounting cycle, the discount is applied only
from the current accounting cycle.

9. If a /config/provisioning_tag object is associated with the discount offer,
PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT runs the opcodes specified in that
object to run at discount offer purchase time.

10. If applying discount offer validity rules, sets the cycle and usage start and end dates to one
of the following:

• The first day of the next accounting cycle (no discount, valid from the middle of the
cycle).

• The discount offer purchase date (prorated discount, valid from the middle of the
cycle).

• The first day of the current accounting cycle (full discount, valid from the middle of
the cycle).

• The purchase date of the discount offer (Prorated discount, valid only part of the
cycle).

11. Determines whether the discount offer instance is to be created. If the opcode is not
deferring item discounts or if the opcode has no associated purchase fee, creates a /

Chapter 21
Managing Discount Offers

21-20

purchased_discount object with a pointer to the /account object. For some item
discounts, an instance is created, but it is removed after the deferred date when the
purchase fee is applied.

12. If purchasing a discount offer in the middle of a cycle and the discount offer contains
discounts for any cycle forward event types, refunds the discounted portion of the cycle
forward fee as follows:

a. Checks all the discounts to see whether they support any cycle forward monthly event
types.

b. For each cycle forward event type supported by a discount, checks the charges arrays
of all /purchased_product objects for an array element of the cycle forward event
type.

c. Calculates the scale value for the portion of the cycle for which the discount is valid.

d. Sends a request to rate normal prorated events, and calculates the resulting prorated
balance impact.

e. Sends the event with an inverted flag set for recording.

13. Generates an audit log for the discount offer purchase to record an /event/billing/
discount/action/purchase event.

14. Prepares the return flist.

15. Closes the transaction.

If the discount offer purchase is successful,
PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT returns a message confirming the
success.

How Discount Offer Purchase, Cycle, and Usage Validity Is Modified
PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO is called to change the start or end time of
an account's discount offer purchase, cycle, or usage period. This opcode is called by
PCM_OP_SUBSCRIPTION_SET_DISCOUNT_STATUS when the status of an account's
discount offer is changed: for example, when you set a discount offer's status to Inactive when
you purchase it and activate it at a later time.

After a discount offer is purchased and the start and end times are set, you can change the
start and end times to specify only other fixed dates.

To change the discount offer's purchase, cycle, or usage validity period, specify the new start
and end dates in purchase, cycle, and usage START_T and END_T fields in the
PIN_FLD_DISCOUNTS array in the input flist. The cycle and usage start times must be on or
later than the purchase start time, and the cycle and usage end times must be on or earlier
than the purchase end time.

Note:

Do not change a discount offer's purchase, cycle, or usage start time after the
discount offer has been applied to the account; otherwise, the discount is applied
incorrectly.

If you change the purchase, cycle, or usage start time from first usage to a fixed date, the
opcode generates an event that causes ECE to update the validity period.

Chapter 21
Managing Discount Offers

21-21

The start and end times are stored in the account's /purchased_discount object.

PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO performs the following tasks:

1. Resets the /purchased_discount object's purchase, cycle, and usage start and end times
to the times specified in the input flist.

If discount offer validity rules are set, PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO
sets the start and end times accordingly.

2. For backdating operations, validates and sets the discount offer's purchase, cycle, and
usage end dates to a backdated date.

3. Applies cycle fees or refunds discounted cycle fee amounts.

Note:

When only the purchase period is changed and the cycle period starts on first
usage, if the validity of the cycle period has not been initialized by a first-usage
event, PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO does not apply cycle
fees or refund discounted cycle fee amounts.

4. Generates an /event/billing/discount/action/modify event to record the modification.

PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO returns the POID of the /event/billing/
discount/action/modify event.

How BRM Changes Discount Offer Status
To set the status of a /purchased_discount object owned by an account, use
PCM_OP_SUBSCRIPTION_SET_DISCOUNT_STATUS.

This opcode is called when the status of a discount offer is changed. This can occur in the
following cases:

• When the status of the account or service that owns the discount offer is changed. In this
case, the discount offer's status is changed to the status of the account or service.

• When the status of a discount offer is changed to inactive to active.

PCM_OP_SUBSCRIPTION_SET_DISCOUNT_STATUS performs the following tasks:

1. Validates and sets the new status. The new status cannot be the same as the old status.

2. Calls PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO to reset the /discount object's
purchase, cycle, and usage start and end dates.

Note:

If the discount offer purchase, cycle, and usage start or end dates are already set
to a later date, or the CM is configured to not reset dates, the dates are not reset.

3. If the status change of the discount offer is backdated,
PCM_OP_SUBSCRIPTION_SET_DISCOUNT_STATUS validates that:

• The date to which the discount offer status change is backdated is not prior to the
general ledger (G/L) posting date.

Chapter 21
Managing Discount Offers

21-22

• The date to which the discount offer status change is backdated is not prior to the
account or service effective date.

• The date to which the discount offer status is backdated is not prior to the last status
change of the account or service.

4. Generates an /event/billing/discount/action/modify/status event to record the status
change.

If successful, PCM_OP_SUBSCRIPTION_SET_DISCOUNT_STATUS returns the POID of
the /event/billing/discount/action/modify/status event.

How Discount Offers Are Canceled
To cancel a discount offer instance, use PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT.

PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT is called by:

• PCM_OP_SUBSCRIPTION_CANCEL_DEAL to cancel each discount offer associated with
a specific bundle. Depending on how many discount offers are included in the bundle,
PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT may be called more than once.

• PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT to cancel discount offers when they
are purchased subsequent times as replacements. This happens when the
PIN_FLD_MODE field for the discount offer is set to 3.

This opcode cancels the discount offers for the /account object or /service object specified in
the input flist.

Note:

If you specify a NULL /service object, you cancel discount offers associated with
the /account object. Otherwise, you cancel discount offers associated with the /
service object.

You identify discount offers to cancel in the PIN_FLD_OFFERING_OBJ (/
purchased_discount POID) field in the input flist.

To cancel a discount offer instance, PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT
performs the following tasks:

1. Validates the discount offer quantity requested for cancellation. The quantity must be less
than or equal to the quantity owned by the account or service.

Note:

When the quantity to cancel is less than the quantity owned, the discount offer
quantity in the instance is decreased; the discount offer is not canceled.

2. If the discount offer cancellation is backdated, validates that:

• The date to which the discount offer cancellation is backdated is not prior to the G/L
posting date.

• The date to which the discount offer cancellation is backdated is not prior to the
account or service's effective date.

Chapter 21
Managing Discount Offers

21-23

• The date to which the discount offer cancellation is backdated is not prior to the date of
the last status change of the account or service.

Note:

If you backdate the purchase of a discount offer on a cycle forward or cycle
arrears event to a previous accounting cycle, the discount is applied only
from the current accounting cycle.

3. If a /config/provisioning_tag object is associated with the discount offer,
PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT runs the opcodes specified in that
object to run at discount offer cancellation time.

4. Sets the purchase, cycle, and usage end dates for the /purchased_discount object to the
cancellation date.

5. If you set a discount offer validity rule, it sets the PIN_FLD_USAGE_END_T and
PIN_FLD_CYCLE_END_T fields to one of the following:

• The first day of the next accounting cycle.

• The discount offer cancellation date.

6. Calls PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL_DISCOUNT and does one of the
following:

• Deletes the /purchased_discount object associated with the service or account.

• Sets the status of the /purchased_discount instance to Canceled without deleting it.

See "Customizing Discount Offer Cancellation".

Note:

If the account is the parent of a discount sharing group, it also deletes, or cancels
without deleting, the /purchased_discount object from the list of discounts
shared by the account.

7. Applies cycle fees or refunds discounted cycle fee amounts.

Note:

If the discount offer's validity period is configured to start on first usage and has
not yet been set, the discount offer has not been activated. In this case, cycle
fees and refunds on discounted cycle fees are not applied.

8. Generates an /event/billing/discount/action/cancel event to record the cancellation.

PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT returns the POID of the /event/billing/
discount/action/cancel event.

Validating Discount Offer Dependencies
To validate discount offer dependencies, use
PCM_OP_SUBSCRIPTION_VALIDATE_DISCOUNT_DEPENDENCY.

Configure mutually exclusive dependencies in the /dependency storable class.

Chapter 21
Managing Discount Offers

21-24

PCM_OP_SUBSCRIPTION_VALIDATE_DISCOUNT_DEPENDENCY calls other opcodes to
perform these operations:

• Validate the purchase time or the billing time if specified by a flag in the input. If the opcode
validates the purchase time, any purchase time discount offers are selected and validated
against the /dependency object. If the opcode validates the billing time, any subscription,
system, and shared discounts are selected and validated against the /dependency object.

• Validate discount-to-discount exclusion rules.

• Validate discount-to-package exclusion rules, if appropriate.

If one of the operations fails, that operation, and only that operation, cancels.
PCM_OP_SUBSCRIPTION_VALIDATE_DISCOUNT_DEPENDENCY returns a validation error
and partially creates an account.

PCM_OP_SUBSCRIPTION_VALIDATE_DISCOUNT_DEPENDENCY validates all the discount
rules and returns the resulting discount values in the return flist if PIN_FLD_FLAGS does not
get set to PIN_SUBS_FLG_RETURN_ON_FIRST_ERR in the
PCM_OP_SUBSCRIPTION_VALIDATE_DISCOUNT_DEPENDENCY input flist.

PCM_OP_SUBSCRIPTION_VALIDATE_DISCOUNT_DEPENDENCY returns an error
message when the first error occurs if PIN_FLD_FLAGS is set to
PIN_SUBS_FLG_RETURN_ON_FIRST_ERR in the
PCM_OP_SUBSCRIPTION_VALIDATE_DISCOUNT_DEPENDENCY input flist. If the
validation fails, PCM_OP_SUBSCRIPTION_VALIDATE_DISCOUNT_DEPENDENCY returns a
zero result, along with the POIDs of the discount offers or package and discount offer,
whichever operation occurs first.

About Optional and Required Service Types
The PIN_FLD_TYPE value of a service determines whether the service is required or optional
in an account. This value is dependent on the validate_deal_dependencies entry in
BRM_home/sys/cm/pin.conf, the Connection Manager (CM) configuration file. (BRM_home is
the directory in which the BRM server software is installed.) This entry determines whether the
bundle associated with a service is required or optional.

• If the bundle is required, PIN_FLD_TYPE is set to PIN_BILL_SERVICE_REQUIRED.

• If the bundle is optional, PIN_FLD_TYPE is set to PIN_BILL_SERVICE_OPTIONAL.

When PCM_OP_CUST_CREATE_CUSTOMER creates the services in an account, it first
validates whether the bundle dependency functionality is enabled in the CM pin.conf file. If so,
it sets the service's PIN_FLD_TYPE value accordingly.

About Closing a Required Service
To set the status of a required service to Closed , use the
PCM_OP_CUST_UPDATE_SERVICES opcode, which in turn calls
PCM_OP_CUST_SET_STATUS. Set the PIN_FLD_STATUS_FLAGS value in the input flist to
PIN_STATUS_FLAG_DUE_TO_REQ_SRVC. This closes all services in the package.

Chapter 21
Managing Discount Offers

21-25

Note:

• You cannot activate an optional service that has been closed if the required
service is closed.

• When you transition a bundle or package, the service associated with the old
bundle is closed, and its status flag value is set to
PIN_STATUS_FLAG_DUE_TO_TRANSITION. You cannot change the status of
a service with this status flag value.

Customizing Snowball Discounts
Use PCM_OP_SUBSCRIPTION_POL_SNOWBALL_DISCOUNT to specify the distribution of
group discounts to group members. You can modify this opcode code to specify an algorithm
for distributing the total group discount grant to the individual group members. For example,
you can specify distribution of the group discount based on group member contribution.

PCM_OP_SUBSCRIPTION_POL_SNOWBALL_DISCOUNT is not called by any opcode.

Customizing Discount Offer Cancellation
To customize how discount offers are canceled, use
PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL_DISCOUNT.

By default, when you cancel a /purchased_discount object, you set its status to Canceled. In
addition, you set the end date to the discount offer cancellation date.
PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL_DISCOUNT allows you to specify whether
to delete the /purchased_discount object or retain it with a status of Canceled.

Note:

When delayed usage events are expected to be loaded into BRM, BRM requires
information stored in the /purchased_discount object to rate the delayed events. In
this case, the /purchased_discount object should always be retained with a status
of Canceled and should not be deleted.

You can customize the behavior of
PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL_DISCOUNT by setting the
PIN_FLD_ACTION field to one of these values:

• PIN_BILL_CANCEL_PRODUCT_ACTION_CANCEL_ONLY, which sets the status of the /
purchased_discount object to Canceled and does not delete it.

• PIN_BILL_CANCEL_PRODUCT_ACTION_CANCEL_DELETE, which deletes the /
purchased_discount object.

• PIN_BILL_CANCEL_PRODUCT_ACTION_DONOT_CANCEL, which stops the
cancellation of the discount offer.

Chapter 21
Managing Discount Offers

21-26

Note:

All these strings are defined in the pin_bill.h include file.

Managing Bundles
To manage the bundles that you offer to customers, see the following:

• How Bundles Are Purchased

• Validating Changes to Bundles

• How Bundles Are Modified

• How Bundles Are Transitioned

• Customizing Bundle Transitions

• How Bundle Dependencies Are Validated

• Validating Bundle Transitions

• How Bundles Are Canceled

• Overriding Deal Settings at Customer Level

How Bundles Are Purchased
To purchase a bundle, use PCM_OP_SUBSCRIPTION_PURCHASE_DEAL. The charge offers
and discount offers in the bundle are purchased for the account or service object specified in
the input flist.

If the purchase originates in an external customer relationship management (CRM) application,
the input flist contains a type-only bundle POID because no actual BRM bundle exists.

If the bundle was created in BRM, PCM_OP_SUBSCRIPTION_PURCHASE_DEAL calls
PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY to validate bundle-to-bundle
dependency rules. If charge offers and discount offers are created in an external CRM, this
validation does not occur.

Note:

• If you specify a /service object, you purchase the bundle for that service as a
service bundle. The /service object must belong to the account.

• If you specify a NULL /service object, you purchase the bundle for the /account
object as an account bundle.

• If multiple bundles are purchased for the same service type, the value of the /
service object's PIN_FLD_SERVICE_ID field identifies the service instance for
the bundle.

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL calls the
PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING policy opcode to validates any
product specification attributes on the bundle. By default, this policy opcode is an empty hook,
but you can customize it to validate product specification attributes. See "Configuring Product

Chapter 21
Managing Bundles

21-27

Specification Attributes for Pricing Components" in PDC Creating Product Offerings or
"Defining Product Specification Attributes for Pricing Components" in Configuring Pipeline
Rating and Discounting.

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL creates an identifier for each bundle
purchase. This identifier is stored in the PIN_FLD_PACKAGE_ID field in the /
purchased_product and /purchased_discount objects. The identifier distinguishes charge
offers and discount offers bundled as part of a bundle or a package purchase.

Note:

PIN_FLD_PACKAGE_ID is unique for every bundle, except when bundles are
purchased in the same package. In this case, all the offerings in the bundles in the
package have the same PACKAGE_ID. To uniquely identify such a bundle (to cancel
it, for example), you must provide the /service object along with the PACKAGE_ID. If
the bundles share the same service, you must also provide the /deal object.

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL sets the purchase, cycle, and usage validity
periods of the charge offers and discount offers in a bundle. For more information, see
"Managing Purchase, Cycle, and Usage Charges in Purchased Offers".

If the bundle's charge offers or discount offers grant balances that start on first usage (when
the subscriber impacts the balance for the first time), you can specify that the validity period of
all balances in the bundle that start on first usage are set when one of those balances is
impacted for the first time. To do this, set the PIN_FLD_GRANT_RESOURCES_AS_GROUP
flag value in the PIN_FLD_FLAGS field.

If you set the bundle for on-purchase billing, PCM_OP_SUBSCRIPTION_PURCHASE_DEAL
helps to create the on-purchase bill for purchase fees for charge offers associated with the
bundle.

Before you purchase a bundle, PCM_OP_SUBSCRIPTION_PURCHASE_DEAL calls
PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY to validate bundle
dependencies. If dependencies exist, the bundle purchase cancels.

In addition, if you set a validate_discount_dependency entry in the /config/
business_params object, PCM_OP_SUBSCRIPTION_PURCHASE_DEAL checks for a
mutually exclusive relationship between any discount offers packaged in the bundle and any
package the account already owns. The opcode retrieves the list of subscribed discount offers
and price packages and it calls
PCM_OP_SUBSCRIPTION_VALIDATE_DISCOUNT_DEPENDENCY to validate any mutual
dependencies. If the opcode detects such a relationship, the bundle purchase cancels. If no
mutually exclusive relationship exists, the bundle purchase continues.

Chapter 21
Managing Bundles

21-28

Note:

• Dependencies are not checked if the bundle originated in an external customer
relationship management (CRM) application. In that case, the input flist contains
a type-only /deal object POID because no actual BRM bundle exists.

• The opcode requires no validation if
PCM_OP_SUBSCRIPTION_CANCEL_DEAL was called from
PCM_OP_CUST_COMMIT_CUSTOMER or
PCM_OP_CUST_MODIFY_CUSTOMER.

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL checks for the PIN_FLD_MODE field under
the PIN_FLD_PRODUCTS array in the input flist. If the field does not exist, the opcode queries
the database for the field and adds it to the flist. The PIN_FLD_MODE field determines what
happens when a customer purchases the same charge offer more than once.

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL calls
PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT to create /purchased_product objects
for each charge offer in the bundle.

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL uses the PIN_FLD_FEE_FLAG field to
control whether PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT applies fees.

When the bundle and all charge offers and discount offers for the bundle have been
purchased, the opcode records an /event/billing/deal/purchase event in the database for
auditing purposes.

If you successfully purchase the bundle, PCM_OP_SUBSCRIPTION_PURCHASE_DEAL
returns the /account POID and the POID of the /event/billing/deal/purchase event.

You do not purchase the bundle in the following cases:

• If the /service object does not belong to the /account object.

• If the /account object or /service object is not valid.

• If status flags are not set for provisioning.

Note:

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL updates the account's and each of
the associated service's PIN_FLD_EFFECTIVE_T to the purchase date.

A closed account may purchase a bundle if the CM configuration file has this entry set to 1:

- cm deal_purchase_for_closed_account 1

Validating Changes to Bundles
To validate changes to bundles, use PCM_OP_SUBSCRIPTION_CHANGE_OPTIONS. This
opcode first attempts to add a service to an account. If successful, it then adds or removes
bundles as needed.

Chapter 21
Managing Bundles

21-29

Note:

To validate bundle-to-bundle transitions, use
PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY. See "Validating
Bundle Transitions".

PCM_OP_SUBSCRIPTION_CHANGE_OPTIONS performs these operations:

1. Performs validation checks on all of the bundles.

2. Calls PCM_OP_SUBSCRIPTION_CANCEL_DEAL to remove any canceled bundles.

3. Removes the bundles to be canceled from an account's list of bundles.

4. Calls PCM_OP_SUBSCRIPTION_PURCHASE_DEAL to add the new bundles to the
account's list of bundles.

5. Applies proration rules to the charge offers. If any cancellation or purchasing fees are
defined, they are charged.

6. If a bundle created by PCM_OP_SUBSCRIPTION_CHANGE_OPTIONS requires a new
service, calls PCM_OP_CUST_MODIFY_CUSTOMER to create that service.

7. Creates an /event/billing/product/action/cancel object for the canceled bundles.

How Bundles Are Modified
To modify a bundle owned by a customer, use PCM_OP_SUBSCRIPTION_CHANGE_DEAL.
This opcode changes the subscription charge offers associated with a bundle for an account.

PCM_OP_SUBSCRIPTION_CHANGE_DEAL calls
PCM_OP_SUBSCRIPTION_CANCEL_DEAL to cancel the subscription charge offers
associated with a bundle and then calls PCM_OP_SUBSCRIPTION_PURCHASE_DEAL to
purchase new subscription charge offers and associates them with the bundle.

PCM_OP_SUBSCRIPTION_CHANGE_DEAL generates two notification event objects:

• The /event/notification/deal/change object signifies change progress. The information in
the object indicates the canceled bundle.

• The /event/notification/deal/change_complete object signifies change completion. The
information in the object indicates the new purchased bundle.

PCM_OP_SUBSCRIPTION_CHANGE_DEAL returns the POIDs of the event objects created
by PCM_OP_SUBSCRIPTION_DEAL and PCM_OP_SUBSCRIPTION_PURCHASE_DEAL.

If cancellation or purchase transactions fail, PCM_OP_SUBSCRIPTION_CHANGE_DEAL rolls
back any changes made. If any part of the transaction fails, the charge offers associated with
the account are not changed.

How Bundles Are Transitioned
To transition a bundle from one account to another, use
PCM_OP_SUBSCRIPTION_TRANSITION_DEAL.

PCM_OP_SUBSCRIPTION_TRANSITION_DEAL performs the following steps:

1. Calls PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_DEAL to perform any custom
validation that you may have added. See "Customizing Bundle Transitions".

Chapter 21
Managing Bundles

21-30

2. Checks the /dependency and /transition objects to make sure that the bundle transition
does not violate any transition rules.

3. Checks the /deal object to make sure that the bundle being transitioned is not a required
bundle in the associated package. If it is required, the transition is not performed.

4. Performs the transition.

5. Charges cancellation fees for the old bundle and purchase fees for the new bundle based
on these flags in the /transition object:

• 0 charges fees.

• 1 waives purchase fees.

• 2 waives cancellation fees.

• 3 waives purchase and cancellation fees.

Note:

All cycle fees and noncurrency balances are always prorated regardless of
the charge offer's cancellation proration setting.

Note:

PCM_OP_SUBSCRIPTION_TRANSFER_SUBSCRIPTION transitions valid
services with a status of Inactive, but those services remain permanently
inactive after the transition.

6. During the transition, calls PCM_OP_BILL_CYCLE_FORWARD and
PCM_OP_BILL_CYCLE_ARREARS to prorate the cycle fees, if necessary. If the
PIN_TRANS_PRO_NORMAL_ON_TRANSITION flag is set, any new charge offers prorate
the last cycle fee and the first cycle fee. This flag overrides the user proration settings for
charge offer purchases and cancellations.

Customizing Bundle Transitions
You can customize how to transition a bundle from one account to another:

• To get a list of bundles and charge offers available for transition, use
PCM_OP_CUST_POL_TRANSITION_DEALS. Use this opcode to perform any additional
filtering of bundles before they are returned as available for transition. For example, use
this opcode to limit certain bundles to customers in a specific city.

PCM_OP_CUST_POL_TRANSITION_DEALS to returns the list of bundles available for an
account to transition to and the charge offers the bundles contain. This opcode takes a /
deal object POID and transition type (usually upgrade or downgrade) as input, reads the /
transition object, and returns the list of bundles available for transition, including their
charge offer names and descriptions.

Use PCM_OP_CUST_POL_TRANSITION_DEALS to perform any additional filtering of
bundles before they are returned as available for transition. For example, use this opcode
to limit certain bundles to customers in a specific city.

PCM_OP_CUST_POL_TRANSITION_DEALS is not called by any opcode.

Chapter 21
Managing Bundles

21-31

• To validate how bundles are transitioned, use
PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN. This opcode enables
customized validation based on account data during bundle-to-bundle transitions.

Use PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN to perform any
additional filtering of packages before they are returned as available for transition. For
example, you can use this opcode to limit certain packages to customers in a specific city.

For example, you may restrict a bundle transition to customers from a particular location or
require that customers own the first bundle for a specific period of time before allowing the
transition to a different bundle.

PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_DEAL is called by
PCM_OP_SUBSCRIPTION_TRANSITION_DEAL before it performs any validation checks.
PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_DEAL is an empty hook. Usually,
customization consists of transition rules based on account data.

Note:

To customize how to transition a package from one account to another, use
PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN. See "Customizing
Package Transitions without Configuring /transition Objects".

How Bundle Dependencies Are Validated
You use PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY to validate bundle
dependencies.

This opcode is called by PCM_OP_CUST_SET_STATUS.

There are two ways to run PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY:

• Pass in an account and a list of bundles.

PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY checks whether owning
the bundles in the account and the bundles you send would violate any dependency rules.
You can also send in an account and a package, and this opcode performs the validation
checks for the bundles in the account and the bundles in the package.

• Pass in a list of bundles to validate against another list of bundles.

PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY validates that owning both
sets of bundles would not violate any dependency rules.

In the first case, PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY accepts the
POID for an account and validates that the bundles in that account do not violate any bundle
dependency rules set in the /dependency object. You can also send in a /plan object, and
PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY runs the validation checks
between the bundles in the /account and the bundles in the package.

If any bundle violates a dependency relationship, the operation fails.

To validate two sets of bundles, send in /account -1 (without a POID);
PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY validates the bundles. If any of
the bundles violates a dependency relationship, the operation fails.

Chapter 21
Managing Bundles

21-32

Validating Bundle Transitions
To validate bundle-to-bundle dependency rules, use
PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY. This opcode is called by
PCM_OP_CUST_SET_STATUS.

PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY performs the following steps:

1. Confirms that the validate_deal_dependencies entry in the CM pin.conf file exists and, if
so, performs validations; if not, it does nothing.

2. Checks for a PIN_TRANS_NAME_DEAL_VALIDATION entry in the input flist. If this entry
exists, the validation checks have already been performed in the current transaction.

3. Verifies that the input is a list of bundles. If PIN_FLD_DELETED_FLAG is set to 1,
PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY performs the validations
required if those bundles were already deleted.

If the bundles pass all validation checks,
PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY returns a PIN_FLD_RESULT
value of True. If any bundle violates any of the validation checks, this opcode fails and returns
a PIN_FLD_RESULT value of False.

If the validation fails because the two bundles are mutually exclusive,
PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY returns the POIDs of the two
bundles and a message indicating that the two bundles are mutually exclusive.

If the validation fails because a prerequisite bundle is missing,
PCM_OP_SUBSCRIPTION_VALIDATE_DEAL_DEPENDENCY returns the POID of the bundle
missing a prerequisite.

How Bundles Are Canceled
To cancel a bundle, use PCM_OP_SUBSCRIPTION_CANCEL_DEAL. This opcode cancels all
charge offers and discount offers associated with the specific bundle and then cancels the
bundle itself. If more than one instance of a bundle has been purchased for the account or
service, each bundle instance must be canceled individually.

PCM_OP_SUBSCRIPTION_CANCEL_DEAL is called when a bundle is canceled. This opcode
cancels all charge offers and discount offers associated with the specific bundle and then
cancels the bundle itself.

To cancel a bundle, PCM_OP_SUBSCRIPTION_CANCEL_DEAL does the following:

1. Opens a transaction.

2. Checks if the bundle is required in the corresponding package. If so, the cancellation is not
permitted.

3. From the input flist, retrieves the PIN_FLD_PACKAGE_ID, PIN_FLD_SERVICE_OBJ,
name, and type of the charge offers and discount offers associated with the bundle.

If the bundle being canceled has the same PIN_FLD_PACKAGE_ID and
PIN_FLD_SERVICE_OBJ as another bundle, then PIN_FLD_DEAL_OBJ is also required
to uniquely identify the bundle.

4. Validates that the bundle is available for cancellation.

5. For each charge offer, PCM_OP_SUBSCRIPTION_CANCEL_DEAL calls
PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT to cancel the charge offer.

Chapter 21
Managing Bundles

21-33

6. For each discount offer, PCM_OP_SUBSCRIPTION_CANCEL_DEAL calls
PCM_OP_SUBSCRIPTION_CANCEL_DISCOUNT to cancel the discount offer.

7. PCM_OP_SUBSCRIPTION_PURCHASE_DEAL updates the account's and each of the
associated service's PIN_FLD_EFFECTIVE_T to the cancellation date.

8. Creates an /event/billing/deal/cancel object for auditing purposes.

9. If the bundle cancel is successful, returns the /account POID and the POID of the /event/
billing/deal/cancel event.

Overriding Deal Settings at Customer Level
When a customer purchases a deal, you can optionally customize one or more products in the
deal. To customize a product in a deal, see the following:

• Overriding Add-On Product Validity Dates in a Deal

• Overriding Bundle Proration Settings at Customer Level

Overriding Add-On Product Validity Dates in a Deal
By default, the validity dates for any add-on product in a deal are set during design time using
loadpricelist, ImportExportPricing, PCM_OP_PRICE_SET_PRICE_LIST, or PDC. However,
you can override this setting for a specific customer when they purchase a deal by using the
following opcodes:

• PCM_OP_SUBSCRIPTION_PURCHASE_DEAL

• PCM_OP_CUST_COMMIT_CUSTOMER

• PCM_OP_CUST_MODIFY_CUSTOMER

To override an add-on product's validity dates, set the opcode's
PIN_FLD_VALIDITY_ALIGN_MODE input flist field (under
PIN_FLD_DEAL_INFO.PIN_FLD_PRODUCTS) to one of the following:

• 7: Aligns the validity dates with the specified base product. If set to 7, you must also set the
PIN_FLD_BASE_PRODUCT_OBJ input flist field to the POID of the base product on which
to align validity dates.

• 8: Aligns the validity dates with the active base charge offer that expires first.

• 9: Aligns the validity dates with the active base charge offer that expires last.

• 10: Aligns the validity dates with the active charge offer that expires first.

• 11: Aligns the validity dates with the active charge offer that expires last.

This shows a sample PCM_OP_SUBSCRIPTION_PURCHASE_DEAL input flist for aligning
the validity date with a specified base product:

0 PIN_FLD_POID POID [0] 0.0.0.1 /account 113516 0
0 PIN_FLD_SERVICE_OBJ POID [0] 0.0.0.1 /service/ip 192312 8
0 PIN_FLD_PROGRAM_NAME STR [0] "Customer Center"
0 PIN_FLD_DEAL_INFO SUBSTRUCT [0] allocated 20, used 7
1 PIN_FLD_PRODUCTS ARRAY [0] allocated 26, used 26
2 PIN_FLD_CYCLE_START_T TSTAMP [0] (0) <null>
 ...
2 PIN_VALIDITY_ALIGN_MODE INT [0] 7
2 PIN_FLD_BASE_PRODUCT_OBJ POID [0] 0.0.0.1 /purchased_product 542334

Chapter 21
Managing Bundles

21-34

Overriding Bundle Proration Settings at Customer Level
By default, the proration setting for each product in a deal is set during the design time using
loadpricelist, ImportExportPricing, PCM_OP_PRICE_SET_PRICE_LIST, or PDC. However,
you can override this setting for a specific customer when they purchase a deal by using the
PCM_OP_SUBSCRIPTION_PURCHASE_DEAL or PCM_OP_CUST_COMMIT_CUSTOMER
opcode.

To do so, set the opcode's PIN_FLD_FLAGS input flist field (under
PIN_FLD_DEAL_INFO.PIN_FLD_PRODUCTS) to one of the following:

• 0: Prorated cycle fees are calculated according to the system-wide setting in your CM
pin.conf file. See "Enabling 30-Day-Based Proration" in BRM Configuring and Running
Billing.

• 1: Prorated cycle fees are calculated based on a 30-day month, regardless of the number
of days in the billing cycle. For example, if a deal was owned for 6 days in a cycle, the
prorated fee would be the cycle fee multiplied by 0.20 (6 ÷ 30).

• 2: Prorated cycle fees are calculated based on the actual number of days in a particular
month, such as 28 days in February, 31 days in March, and 30 days in April. For example,
if a deal was owned for 6 days in March, the prorated fee would be the cycle fee multiplied
by 0.19 (6 ÷ 31).

This shows a sample PCM_OP_SUBSCRIPTION_PURCHASE_DEAL input flist for prorating a
customer's product using a 30-day month:

0 PIN_FLD_POID POID [0] 0.0.0.1 /account 101267 7
0 PIN_FLD_SERVICE_OBJ POID [0] 0.0.0.1 /service/ip 98643 6
0 PIN_FLD_PROGRAM_NAME STR [0] "Customer Center"
0 PIN_FLD_DEAL_INFO SUBSTRUCT [0] allocated 20, used 7
1 PIN_FLD_PRODUCTS ARRAY [0] allocated 35, used 35
2 PIN_FLD_FLAGS INT [0] 1

Managing Packages
See the following topics:

• How BRM Transitions Accounts from Source Packages to Target Packages

• Customizing Package Transitions without Configuring /transition Objects

• About Providing Transition Rules Using Policy Opcodes

• Customizing Account Bundles during Package Transitions

How BRM Transitions Accounts from Source Packages to Target Packages
BRM uses PCM_OP_SUBSCRIPTION_TRANSITION_PLAN to transition accounts from the
current (source) package to a specified (target) package.

This opcode takes as input a source package that specifies the package currently owned by
the account and a target package that specifies the package to transition to.

You provide the required transition type as the value of PIN_FLD_TRANSITION_TYPE in the
PCM_OP_SUBSCRIPTION_TRANSITION_PLAN input flist. The transition type can be defined
as one of the following:

Chapter 21
Managing Packages

21-35

• (0): Undefined

• (1): Upgrade

• (2): Downgrade

• (3): Generation change

• Custom transition type

PCM_OP_SUBSCRIPTION_TRANSITION_PLAN transitions accounts from source packages
to target packages in the following way:

1. Calls PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN to perform any custom
validations.

When PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN completes its actions,
it passes the values provided by you to PCM_OP_SUBSCRIPTION_TRANSITION_PLAN.

2. For package transitions where there is a /transition object for the transition rule,
PCM_OP_SUBSCRIPTION_TRANSITION_PLAN checks the /dependency and /
transition objects to make sure that the transition does not violate any transition rules.

For package transitions where there is no /transition object for the transition rule,
PCM_OP_SUBSCRIPTION_TRANSITION_PLAN uses the value supplied by you in the
output flist from PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN.

3. Validates the Primary Basic Service (PBS) that must be applied on the package transition.
For package transitions that have no /transition object for the transition rule,
PCM_OP_SUBSCRIPTION_TRANSITION_PLAN uses the value you specify in the
PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN output flist.

• For a regular transition, the two transition packages share a primary service. If not, the
transaction fails.

• For a package transition that involves a generation change,
PCM_OP_SUBSCRIPTION_TRANSITION_PLAN skips this step because the two
packages do not have to share the same primary service.

4. Handles the noncurrency grants in the source package based on the value of
PIN_FLD_FLAGS input field. If the value of FLD_FLAGS is
PIN_SUBS_TRANSITION_CONTROL_ROLLOVER, the opcode calls a rollover function to
ensure, if necessary, that the source package retains noncurrency grants and they are
valid to the end of the cycle.

To do so, the rollover function checks the package list for the source and target packages
and takes the following action:

• If the packages are in the same package list, the rollover function searches for all the
sub-balances that are truncated because of the transition and extends the sub-
balances to the original date before the truncation.

• If the packages are not in the same package list, this function searches for all the sub-
balance buckets that are impacted by the transition and truncates the bucket to the
current time.

5. Acts on the services in the package-to-package transition. If any services in the packages
are listed as inactive, the transition is canceled.

• If PIN_FLD_FROM_SERVICE is NULL or not specified in the flist, the new service in
PIN_FLD_TO_SERVICE is added to the account.

• If PIN_FLD_TO_SERVICE is NULL or not specified, the service specified in
PIN_FLD_FROM_SERVICE is closed.

Chapter 21
Managing Packages

21-36

• If PIN_FLD_FROM_SERVICE and PIN_FLD_TO_SERVICE have non-null values, only
the bundles are canceled and the bundles from PIN_FLD_TO_SERVICE are
purchased. Any account bundles in FROM_PLAN are canceled. Any account bundles
in TO_PLAN are purchased.

6. For the package being phased out due to a generation change in the transition,
PCM_OP_SUBSCRIPTION_TRANSITION_PLAN creates a /schedule object that closes
the services associated with the package at 00:00:00 hours at the end of the day of
transition.

Additionally, PCM_OP_SUBSCRIPTION_TRANSITION_PLAN performs these steps:

• Prepares the PCM_OP_CUST_UPDATE_SERVICES input flist by specifying the value
of END_T as 00:00:00 hours on the following day. For example, if the transition is
issued on January 15, 2004, at 12:30:00, the package being phased out ends at
January 16, 2004, at 00:00:00 hours.

• Calls PCM_OP_ACT_SCHEDULE_CREATE with the preceding input flist and the
PCM_OP_CUST_MODIFY_CUSTOMER opcode number.

• On the server side, PCM_OP_SUBSCRIPTION_TRANSITION_PLAN

– Provides an option that customizes the end dates, enabling the end date to occur
one day later.

– Enables a Product-End-Delay-for-Package-Transition delay configuration, which is
used if the end dates are not passed. This delay configuration is then applied to the
date and time of transition as an offset value.

Note:

ERA data is not transferred.

7. Charges any cancellation fees for the old bundle and purchase fees for the new bundle
based on the PIN_FLD_FEE flag (in the /transition object or the custom value provided by
you in the output flist from PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN).

Note:

All cycle fees and noncurrency balances are always prorated regardless of the
charge offer's cancellation proration setting.

8. Creates /event/notification/plan/transition and event/notification/plan/
transition_complete notification events. These events are not persistent.

BRM returns the following messages based on the success of failure of the transition:

• If the transition is successful, PCM_OP_SUBSCRIPTION_TRANSITION_PLAN returns a
message confirming the success.

• If the transition type is not a generation change and involves two packages that do not
share a primary basic service, PCM_OP_SUBSCRIPTION_TRANSITION_PLAN returns
the message The PBS does not match from-plan and to-plan.

• If the transition violates any transition rules,
PCM_OP_SUBSCRIPTION_TRANSITION_PLAN returns the message Plan is not
transitionable.

Chapter 21
Managing Packages

21-37

Transition Type API Considerations
The default transition types and your custom transition types are stored in the /config/
transition_type object in the PIN_FLD_TRANSITIONS array. For example:

0 PIN_FLD_TRANSITIONS ARRAY [1]
1 PIN_FLD_TYPE ENUM [0] 1
1 PIN_FLD_TYPE_STR STR [0] "Upgrade"
0 PIN_FLD_TRANSITIONS ARRAY [2]
1 PIN_FLD_TYPE ENUM [0] 2
1 PIN_FLD_TYPE_STR STR [0] "Downgrade"
0 PIN_FLD_TRANSITIONS ARRAY [3]
1 PIN_FLD_TYPE ENUM [0] 3
1 PIN_FLD_TYPE_STR STR [0] "Generation Change"
0 PIN_FLD_TRANSITIONS ARRAY [101]
1 PIN_FLD_TYPE ENUM [0] 101
1 PIN_FLD_TYPE_STR STR [0] "RED"

The example shows these transition types:

• Upgrade - number 1

• Downgrade - number 2

• Generation Change - number 3

• RED - number 101

Note:

The element ID of the array is the same as its PIN_FLD_TYPE.

You could customize a policy opcode to read this object for validation checks.

Customizing Package Transitions without Configuring /transition Objects
You can customize package transitions without configuring the /transition object by doing the
following:

• Obtain a list of packages available for transition: Use
PCM_OP_CUST_POL_TRANSITION_PLANS.

This opcode takes a package POID and transition type (usually upgrade or downgrade) as
input, reads the /transition object, and returns the list of packages available for transition
as output.

• Customize the validation as necessary: This is optional. Use
PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN to perform any additional
validation checks or filters for transitioning packages.

For example, you can restrict a package transition to customers from a particular location
or require that customers own the first package for a specific period of time before allowing
the transition to a different package.

• Provide custom values for service and fees: This action is required if you package to
customize package transitions without configuring the /transition object.

Chapter 21
Managing Packages

21-38

Modify the PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN output flist to
specify the service that must be associated with the packages and whether to waive
purchase and cancellation fees associated with the packages. To do so:

1. Add the PIN_FLD_RESULTS array to the
PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN output flist:

0 array RESULTS
1 int FEE_FLAG
1 str PERMITTED

2. Set the PIN_FLD_FEE_FLAG field in PIN_FLD_RESULTS to one of the values in
Table 21-3:

Table 21-3 PIN_FLD_FEE_FLAG Values

Value Description

0 Charge cancellation fees for the old charge offer and purchase fees for the new
charge offer.

1 Waive purchase fees.

2 Waive cancellation fees.

3 Waive purchase fees and cancellation fees.

3. Set the PIN_FLD_PERMITTED field of this array to the Primary Basic Service (PBS)
that must apply to the package transition.

For example,

0 PIN_FLD_RESULTS ARRAY [0] allocated 20, used 3
1 PIN_FLD_FEE_FLAG INT [0] 3
1 PIN_FLD_PERMITTED STR [0] "/service/telco/gsm/telephony"

PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN is called by
PCM_OP_SUBSCRIPTION_TRANSITION_PLAN.

About Providing Transition Rules Using Policy Opcodes
You use PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN to automatically enable
package transitions to any package without /transition objects.

Note:

Customize PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN for the
package transitions for which a /transition object is not defined in PDC or Pricing
Center.

When BRM attempts to transition an account and the package transition rule does not have a /
transition object, PCM_OP_SUBSCRIPTION_TRANSITION_PLAN uses the following
information you provide in the PCM_OP_SUBSCRIPTION_POL_PRE_TRANSITION_PLAN
output flist:

• Your specification on whether to charge any cancellation fees associated with the source
package for the account and purchase fees for the new charge offer for this transition.

• The Primary Basic Service (PBS) that must apply to the package transition.

Chapter 21
Managing Packages

21-39

Note:

If you do not provide these values, the opcode searches for a /transition object. If
no /transition object exists for the transition rule, the transition fails.

You can provide these values to handle some package transitions and configure package
transition rules in PDC or Pricing Center for others.

Note:

• You can customize package transitions in this way if the transition does not
involve a generation change.

• You cannot customize bundle transitions in this manner. PDC or Pricing Center
must be used to set up transition rules to transition bundles.

• You cannot transition packages under certain conditions. For example, you
cannot transition a package when add-on bundles that are not part of the original
package are active and owned by the account.

Customizing Account Bundles during Package Transitions
You can customize account bundles during package transitions. To do so, provide the
associated charge offer information in the PIN_FLD_PRODUCTS input field for
PCM_OP_SUBSCRIPTION_TRANSITION_PLAN. PIN_FLD_PRODUCTS is located in the
PIN_FLD_DEAL_INFO substructure of the PCM_OP_SUBSCRIPTION_TRANSITION_PLAN
input flist.

Managing Contracts
See the following topics:

• Creating Contracts

• Modifying Contracts

• Canceling Contracts

• Renewing Contracts

Creating Contracts
To create a contract for a customer, use the PCM_OP_CONTRACT_CREATE_CONTRACT
opcode. This opcode creates a /subscriber_contract object and generates a contract creation
event. This opcode is called by Billing Care.

You can customize how contracts are created by using these Contract FM policy opcodes:

• PCM_OP_CONTRACT_POL_POST_CREATE_CONTRACT. By default, this opcode does
nothing.

• PCM_OP_CONTRACT_POL_PREP_CONTRACT. By default, this opcode does nothing.

Chapter 21
Managing Contracts

21-40

• PCM_OP_CONTRACT_POL_VALID_CONTRACT. By default, this policy opcode validates
a customer's contract for valid start and end dates, pricing objects, account objects, and
contract objects (during modification).

Modifying Contracts
To modify a contract owned by a customer, use
PCM_OP_CONTRACT_MODIFY_CONTRACT. This opcode validates the contract input,
updates the existing contract, and generates a contract modification event. This opcode is
called by Billing Care.

Note:

You cannot modify future-dated and backdated contracts.

You can customize how contracts are modified by using the
PCM_OP_CONTRACT_POL_VALID_CONTRACT policy opcode.

Canceling Contracts
To cancel a customer's contract, use PCM_OP_CONTRACT_CANCEL_CONTRACT. This
opcode cancels an existing contract, cancels all pricing objects associated objects, generates
a contract cancellation event, and applies an early termination fee, if required by the terms.

This opcode is called by the pin_contracts utility. See "pin_contracts" in BRM Managing
Customers.

Renewing Contracts
To renew a customer's contract, use PCM_OP_CONTRACT_RENEW_CONTRACT. This
opcode renews customer contracts that expire today.

This opcode is called by the pin_contracts utility.

PCM_OP_CONTRACT_RENEW_CONTRACT does the following:

1. Validates that the contract for the specified account has auto-renewal enabled, expires
tomorrow, and renews the same package to new or different terms. If validation fails,
renewal is not permitted.

2. If purchasing a new package, calls PCM_OP_SUBSCRIPTION_TRANSITION_PLAN to
transition the specified account from the source package to the target package.

3. If purchasing a new bundle, calls PCM_OP_SUBSCRIPTION_TRANSITION_DEAL to
transition the specified account from the source bundle to the target bundle.

4. Calls the general ledger module to calculate the standalone selling price. See "About the
Standalone Selling Price" in BRM Collecting General Ledger Data for more information.

5. Returns the POIDs of the account and new package terms.

You can customize how contracts are renewed by using the
PCM_OP_CONTRACT_POL_VALID_CONTRACT policy opcode.

Chapter 21
Managing Contracts

21-41

Managing Purchase, Cycle, and Usage Charges in Purchased
Offers

Purchase, cycle, and usage validity periods define when charge offers and discount offers are
valid and when charge offer fees are charged and discounted.

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL calls
PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT and
PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT, which set the purchase, cycle, and
usage validity periods of the bundle's charge offers and discount offers, respectively.

If the system is configured for time-stamp rounding,
PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT and
PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT round the start and end times to
00:00:00 hours. However, when a charge offer's purchase, cycle, and usage start and end
units are set to 1 (seconds), 2 (minutes), or 3 (hours), and the validity period is less than 24
hours, time stamps are not rounded, regardless of your system configuration. If the validity
period is greater than 24 hours, the cycle end time stamp is rounded when calculating the
scale to determine the cycle fee amount to charge.

PCM_OP_SUBSCRIPTION_PURCHASE_DEAL uses the purchase, cycle, and usage validity
dates that are specified in the /deal object by default. If you specify alternative validity periods
for charge offers and discount offers, those validity dates permanently override the dates
specified in the /deal object.

To set the purchase, cycle, and usage start and end times, pass the following values in opcode
input flists in the PIN_FLD_PRODUCTS and PIN_FLD_DISCOUNTS arrays. In the following
fields, the asterisk (*) indicates either PURCHASE, CYCLE, or USAGE.

Note:

The cycle and usage validity periods must fall entirely within the purchase validity
period.

• Specify the start time as follows:

– To start immediately (when the charge offer or discount offer is purchased), set the
value of PIN_FLD_*_START_T and PIN_FLD_*_START_UNIT to 0. The opcode sets
the start time to the purchase time.

– To start on first usage (when the subscriber uses the charge offer or discount offer for
the first time) set the PIN_FLD_*_START_UNIT field to -1 and the
PIN_FLD_*_START_OFFSET field to 0.

– To start relative to the purchase time, set the relative unit (for example, days or cycles)
in PIN_FLD_*_START_UNIT and set the number of relative units in
PIN_FLD_*_START_OFFSET. The relative start time is calculated by adding the
relative offset period to the purchase time.

• Specify the end time as follows:

– To never end, set the value of PIN_FLD_*_END_T and PIN_FLD_*_END_UNIT to 0.

– To end relative to the start time, set the relative unit (for example, days or cycles) in
PIN_FLD_*_END_UNIT and set the number of relative units in

Chapter 21
Managing Purchase, Cycle, and Usage Charges in Purchased Offers

21-42

PIN_FLD_*_END_OFFSET. The relative end time is calculated by adding the relative
offset period to the start time.

When the charge offer or discount offer is purchased, the start and end times are calculated
based on the purchase time. The validity period is set in the PIN_FLD_*_START_T and
PIN_FLD_*_END_T fields of the account's /purchased_product and /purchased_discount
objects.

If the validity period has a relative start or end time, the details about the relative offset are
stored in the PIN_FLD_*_START_DETAILS and PIN_FLD_*_END_DETAILS fields of the
purchased charge offer or purchased discount offer. The details fields store three values: the
mode of the validity period, the relative offset unit, and the number of offset units in the relative
period. For more information, see "Storing Relative Start and End Times for an Account's
Charge Offers and Discount Offers".

Changing the Purchase, Usage, and Cycle Start and End Times
PCM_OP_SUBSCRIPTION_SET_PRODINFO is called to change the purchase, cycle, or
usage start and end times of an account's purchased charge offer. This opcode is called by:

• PCM_OP_SUBSCRIPTION_SET_PRODUCT_STATUS when the status of an account's
charge offer is changed.

• PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT when the same charge offer is
purchased multiple times and the charge offer's PIN_FLD_MODE field is set to 1 or 2.

If the PCM_OPFLG_CALC_ONLY flag is set, PCM_OP_SUBSCRIPTION_SET_PRODINFO
returns the entire event flist for the events created as a result of the modification. If the flag is
not set, the opcode returns the event POIDs of all event objects created as a result of the
modification.

After a charge offer is purchased and its start and end dates have been set, you can change
the start time to specify only another fixed date, and you can change the end time to specify
only another fixed date or to end never.

To change the purchase, cycle, or usage validity period, specify the new start and end dates in
their respective START_T and END_T fields in the PIN_FLD_PRODUCTS array in the input
flist.

If you change the purchase, cycle, or usage start time from first usage to a fixed date,
PCM_OP_SUBSCRIPTION_SET_PRODINFO generates an event that causes the validity
period to be updated in ECE.

The start and end dates are stored in the account's /purchased_product object.

If your system is configured to round time stamps, and if you modify the purchase, usage, or
cycle start and end times, PCM_OP_SUBSCRIPTION_SET_PRODINFO rounds the new times
to 00:00:00 hours. However, if the purchase, cycle, and usage start and end units are set to 1
(seconds), 2 (minutes), or 3 (hours), and the validity period is less than 24 hours, time stamps
are not rounded, regardless of your system configuration.

BRM does not allow you to change a charge offer's purchase, usage, and cycle start and end
dates as follows:

• The charge offer purchase start date if the purchase start date has elapsed.
For example, on January 1, a charge offer is purchased with the purchase start date set to
January 15. On January 10, you can backdate the purchase start date to January 5. But,
you cannot backdate the purchase start date on January 16; that is, you cannot backdate
the purchase date when the January 15 date has passed.

• The charge offer cycle start date if the cycle fees have been applied.

Chapter 21
Managing Purchase, Cycle, and Usage Charges in Purchased Offers

21-43

• The charge offer purchase, usage, and cycle end date prior to the respective purchase
start date.

• The charge offer purchase, usage, cycle start or end dates prior to the G/L posting date.

See "About Backdated Purchase, Usage, or Cycle End Dates".

Overriding Charges and Discounts for a Period of Time
Use PCM_OP_SUBSCRIPTION_CRUD_OFFER_OVERRIDE to specify when and how to
override charges and discounts during specified time periods. It creates, reads, updates, or
deletes a specified /offering_override_value object based on the value of an input flag.

For more information, see "Dynamically Changing One-Time and Recurring Fees Based on
Date" in BRM Configuring Pipeline Rating and Discounting.

When calling the opcode, pass in the following input data:

• The POID of the /offering_override_values object.

• The POID of the /purchased_product or /purchased_discount object.

• The operation to perform on the /offering_override_values object.

To specify the operation to perform on the /offering_override_values object, set the
PIN_FLD_FLAG field in the PIN_FLD_OVERRIDE_PRODUCTS or
PIN_FLD_OVERRIDE_DISCOUNTS array to one of the following:

• 1: Adds a date range and pricing tag combination for the specified event type. That is, it
adds a PIN_FLD_OVERRIDE_DATE_RANGE buffer to each matching
PIN_FLD_USAGE_MAP array.

• 2: Adds or updates the pricing tag name, amount, or percentage for the specified date
ranges.

• 3: Deletes the specified /offering_override_values object.

• 4: Deletes all expired date range and pricing tag combinations from the /
offering_override_values object. That is, it deletes from the PIN_FLD_USAGE_MAP
array all PIN_FLD_DATE_RANGES buffers with expired date ranges.

• 5: Deletes the specified pricing tag from the /offering_override_values object's
PIN_FLD_DATE_RANGES buffer.

• 6: Reads the /offering_override_values object.

• 8: Deletes all usage maps for the specified event type. For example, it deletes all
PIN_FLD_USAGE_MAPS arrays associated with the /event/billing/product/fee/cycle/
cycle_forward_monthly event.

PCM_OP_SUBSCRIPTION_CRUD_OFFER_OVERRIDE is called by the following opcodes
when creating products and discounts:

• PCM_OP_SUBSCRIPTION_SET_PRODINFO when the
PIN_FLD_OVERRIDE_PRODUCTS array is passed in the PIN_FLD_PRODUCTS array.

• PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO when the
PIN_FLD_OVERRIDE_DISCOUNTS array is passed in the PIN_FLD_DISCOUNTS array.

Your third-party client applications can also call
PCM_OP_SUBSCRIPTION_CRUD_OFFER_OVERRIDE directly.

Chapter 21
Managing Purchase, Cycle, and Usage Charges in Purchased Offers

21-44

Specifying Purchase, Cycle, and Usage Start and End Times
When the purchase, cycle, or usage period has a fixed start time (starts and ends on a specific
date and time), the start and end times are passed in opcode flists in time stamp fields:

• PIN_FLD_PURCHASE_START_T

• PIN_FLD_PURCHASE_END_T

• PIN_FLD_CYCLE_START_T

• PIN_FLD_CYCLE_END_T

• PIN_FLD_USAGE_START_T

• PIN_FLD_USAGE_END_T

When the purchase, cycle, or usage period has a relative start or end time, the details about
the relative period are passed in opcode flists in unit and offset fields:

• These unit fields specify the type of relative unit:

– PIN_FLD_PURCHASE_START_UNIT

– PIN_FLD_PURCHASE_END_UNIT

– PIN_FLD_CYCLE_START_UNIT

– PIN_FLD_CYCLE_END_UNIT

– PIN_FLD_USAGE_START_UNIT

– PIN_FLD_USAGE_END_UNIT

The unit can be one of these values:

– Seconds = 1

– Minutes = 2

– Hours = 3

– Days = 4

– Accounting cycles = 8

• These offset fields specify the number of units in the relative period:

– PIN_FLD_PURCHASE_START_OFFSET

– PIN_FLD_PURCHASE_END_OFFSET

– PIN_FLD_CYCLE_START_OFFSET

– PIN_FLD_CYCLE_END_OFFSET

– PIN_FLD_USAGE_START_OFFSET

– PIN_FLD_USAGE_END_OFFSET

The unit and offset fields are used in combination to determine the relative offset of the
purchase, cycle, and usage periods. For example:

• If a charge offer's PIN_FLD_CYCLE_START_UNIT has a value of 8 (accounting cycles)
and PIN_FLD_CYCLE_START_OFFSET has a value of 3, the cycle fee starts three
accounting cycles after the charge offer is purchased.

Chapter 21
Managing Purchase, Cycle, and Usage Charges in Purchased Offers

21-45

• If a discount offer's PIN_FLD_PURCHASE_END_UNIT has a value of 8 (accounting
cycles) and PIN_FLD_PURCHASE_END_OFFSET has a value of 3, the discount offer
expires three accounting cycles after it is activated.

You can specify any number of units in the offset fields, up to 1048576. This is equivalent to
approximately 12 days in seconds, 728 days in minutes, and 119 years in hours.

The relative offset information in the unit and offset fields is stored in the BRM database in
details fields. For more information, see "Storing Relative Start and End Times for an Account's
Charge Offers and Discount Offers".

Calculating the Cycle Forward Fee
If you modify the cycle start time or cycle end time for the charge offer in the middle of a cycle,
PCM_OP_SUBSCRIPTION_SET_PRODINFO calculates the cycle forward fee or cycle arrears
fee for the charge offer.

If the charge offer has a cycle forward fee, PCM_OP_SUBSCRIPTION_CYCLE_FORWARD is
called to perform the following actions:

• If you change the cycle start time from a future time to the current time, applies the cycle
forward fee for the current time through the end of the current cycle.

• If you change the cycle end time to an earlier time and the cycle forward fee is already
applied for that cycle, refunds the cycle forward fee for the unused portion of the cycle.

• If you change the cycle end time to a later time and the cycle forward fee is already applied
for that cycle, applies the cycle forward fee for the end of the old cycle end time through
the end of the new cycle.

Calculating the Cycle Arrears Fee
If you modify the cycle start time or cycle end time for the charge offer in the middle of a cycle,
PCM_OP_SUBSCRIPTION_SET_PRODINFO calculates the cycle forward fee or cycle arrears
fee for the charge offer.

Note:

• Refunds for cycle arrears fees are not supported. Use caution when changing
cycle end times.

• Changing the cycle end time for a cycle arrears fee has some limitations. See
"Cycle Arrears Charge Offer Limitations".

If the charge offer has a cycle arrears fee, PCM_OP_SUBSCRIPTION_CYCLE_ARREARS is
called to perform the following actions:

• If you change the cycle end time from a future time to the current time, the cycle arrears
fee is applied for the cycle.

• If you change the cycle end time from a future time to an earlier time, but later than the
current time, the cycle arrears fee is not applied. However, the cycle arrears fee is applied
during the next billing run.

Chapter 21
Managing Purchase, Cycle, and Usage Charges in Purchased Offers

21-46

Cycle Arrears Charge Offer Limitations
If you change the cycle end time only once in a cycle, the cycle fee is applied either the day of
the change or the next billing day, depending on the new cycle end value. If the new
PIN_FLD_CYCLE_END_T value is the same as the event time, the cycle arrears fee is
charged at the same time; otherwise, it is charged at the next billing time.

Note:

If you use time stamp rounding, the cycle end time is compared to the event date.
Otherwise, the cycle end time is compared to the event time (the current time).

If you change the cycle end date more than once in a cycle:

• If the cycle arrears fee from the first change has not yet been applied, it will not apply after
the second change is made.

• If the new cycle end date is changed to 0 (never) or to a date later than the end of the
current accounting cycle, cycle fees apply accordingly, depending on which of the following
cancellation settings you specified when setting up proration for your pricing package:

– Charge full: Applies no cycle fees for the whole cycle.

– Based on usage and is proratable: Applies cycle fees from the new cycle end date to
the end of the cycle.

– No Charge and proratable: Applies cycle fees from the new cycle end date to the end
of the cycle.

– No Charge and is not proratable: Applies full cycle fees.

About Backdated Purchase, Usage, or Cycle End Dates
Setting a charge offer purchase, usage, or cycle start dates to a backdated date is different
from backdating a purchase itself. When the charge offer purchase, usage, or cycle start dates
are set to a backdated date, though the cycle charges are applied from the backdated date, the
change is effective only from the current time.

For example, you purchase a charge offer on February 1, and set the PURCHASE_ START_T,
USAGE_START_T, and CYCLE_START_T fields of the charge offer to a backdated date of
January 15. In this case, the charges are applied from January 15, but the creation time of the
charge offer remains February 1 (current time). Thus, if usage events during the period of
January 15 to February 1 are rerated, they are not rated with this charge offer.

Here, if you enter January 15 as PIN_FLD _END_T in the opcode, the charge offer becomes
effective from January 15 (the creation time of the charge offer is set to January 15), and the
charges are also applied from the backdated date of January 15.

Oracle recommends that you use the latter procedure for backdating a purchase.

Chapter 21
Managing Purchase, Cycle, and Usage Charges in Purchased Offers

21-47

Note:

You cannot set the discount offer PURCHASE_ START_T, USAGE_START_T, and
CYCLE_START_T to a backdated date.

Similarly, backdating a charge offer or discount offer's purchase, usage, or cycle end dates is
different from backdating the cancellation. When the charge offer or discount offer's purchase,
usage, or cycle end dates are set to backdated date, though the cycle charges are refunded
from the backdated date, the change is effective only from the current time.

For example, on February 1, you set the PURCHASE_ END_T, USAGE_END_T, or
CYCLE_END_T fields of a charge offer to the backdated date of January 15. In this case, the
charges are refunded from January 15, but the change in the END_T to January 15 is effective
only from the current time (February 1). Thus, if usage events during the period of January 15
to February 1 are rerated, they are rated with this charge offer.

Here, if you enter January 15 as PIN_FLD _END_T in the opcode, the charge offer is available
for rating from January 15, and the charges are also refunded from the backdated date of
January 15.

BRM does not allow you to backdate the following:

• The charge offer purchase start date if the purchase start date has elapsed.

For example, on January 1, a charge offer is purchased with the purchase start date set to
January 15. On January 10, you can backdate the purchase start date to January 5. But,
you cannot backdate the purchase start date on January 16; that is, you cannot backdate
the purchase date when the January 15 date has passed.

• The charge offer cycle start date if the cycle start date has elapsed.

• The usage and cycle end date of a charge offer prior to its purchase start date.

• The purchase, usage, and cycle end date of a discount offer prior to its purchase start
date.

• The purchase, usage, or cycle start and end dates of a charge offer prior to the G/L posting
date.

• The purchase, usage, and cycle end dates of a discount offer prior to the G/L posting date.

Example of Backdated Purchase, Usage, and Cycle Start and End Dates

On April 1, consider that you create an account that owns a charge offer with $9.95 as a cycle
forward fee, 3600 as Anytime Minutes, and the start date set to June 20. On May 2, you
change the start date to April 16. The charges are as follows:

• $4.98 monthly charges and 1800 Anytime Minutes for the period from April 16 to May 1.

• $9.95 monthly charges and 3600 Anytime Minutes for the period from May 1 to June 1.

Backdating Purchase, Usage, or Cycle Start and End Dates

To backdate the purchase, usage, or cycle start or end dates of a charge offer or purchase,
usage, or cycle end date of a discount offer during purchase, enter the backdated date in the
respective date fields.

After a charge offer is purchased, use PCM_OP_SUBSCRIPTION_SET_PRODINFO to
backdate the purchase, usage, or cycle start and end dates. Similarly, use
PCM_OP_SUBSCRIPTION_SET_DISCOUNTINFO to backdate the purchase, usage, or cycle
end dates of the discount offer.

Chapter 21
Managing Purchase, Cycle, and Usage Charges in Purchased Offers

21-48

Note:

If you set the end date of a discount offer on a cycle forward or cycle arrears event to
a previous accounting cycle, the discount offer is refunded only for the current
accounting cycle.

Storing Relative Start and End Times for an Account's Charge Offers and
Discount Offers

Relative validity information in the PIN_FLD_*_UNIT and PIN_FLD_*_OFFSET fields that are
passed in opcode flists are stored in the database in details fields:

• PIN_FLD_PURCHASE_START_DETAILS

• PIN_FLD_PURCHASE_END_DETAILS

• PIN_FLD_CYCLE_START_DETAILS

• PIN_FLD_CYCLE_END_DETAILS

• PIN_FLD_USAGE_START_DETAILS

• PIN_FLD_USAGE_END_DETAILS

When charge offers and discount offers are purchased, the details fields are stored in /
purchased_product and /purchased_discount objects.

The start-details and end-details fields are 32-bit integer fields that store the mode of the
validity period, the relative offset unit, and the number of offset units in the relative period:

• Mode: The mode specifies generally when the validity period starts or ends. The mode is
stored in the lower 8th bit.

When a charge offer or discount offer is purchased, its start and end dates are set and the
mode value in the start-details field is set to PIN_VALIDITY_ABSOLUTE (a value of 0).

The end-details field can have a value of PIN_VALIDITY_ABSOLUTE if the end date is
specified or a value of PIN_VALIDITY_NEVER (a value of 2) if the validity period never
ends.

Note:

Before the charge offer or discount offer is purchased, the mode in the details
field of the charge offer or discount offer in the /deal object can also specify other
values such as immediate and relative. The mode helps to determine how the
start and end times are set when the charge offer or discount offer is purchased.

• Relative offset unit: This value specifies the type of offset unit and corresponds to the
value of PIN_FLD_*_START_UNIT or PIN_FLD_*_END_UNIT that is passed in opcode
flists. The relative offset unit is stored in the next four bits of the details field and can have
one of these values:

– Seconds = 1

– Minutes = 2

– Hours = 3

Chapter 21
Managing Purchase, Cycle, and Usage Charges in Purchased Offers

21-49

– Days = 4

– Accounting cycles = 8

• Number of offset units: This value specifies how many offset units are in the relative
period and corresponds to the value of PIN_FLD_*_START_OFFSET or
PIN_FLD_*_END_OFFSET that is passed in opcode flists. The number of offset units is
stored in the remaining 20 bits of the details field.

How Cycle Fees Are Calculated for Backdated Cancellation or Inactivation
When you backdate a cancellation or inactivation, the refunds for the events that occurred
during the backdated period are prorated and applied accordingly.

PCM_OP_SUBSCRIPTION_CYCLE_FORWARD determines the scale values that are used by
for prorating the cycle fee amount to be refunded. This opcode prorates and applies the cycle
fee amount to be refunded when a charge offer or discount offer is canceled or inactivated.

When you backdate the cancellation of a charge offer with cycle forward events, cycle forward
fees are prorated and refunded from the backdated cancellation date.

Example of backdated charge offer cancellation

When you backdate the cancellation of a charge offer with cycle forward events, cycle forward
fees are prorated and refunded from the backdated cancellation date.

For example, consider that you create an account on September 1 with the DOM set to 1. On
November 5, you backdate the cancellation of the charge offer with the following details to
September 15:

• Cycle forward fee $3.00.

• Proration set to Charge based on amount used.

The three cycles including the current cycle are refunded as follows:

• $1.50 for the period of September 15 to October 1 (for 15 days).

• $3.00 for the period of October 1 to November 1.

• $3.00 for the period of November 1 to December 1.

These refunds are included in the next bill that gets generated during the bill run on December
1.

Example of backdated discount offer cancellation

On April 1, consider that you create an account that owns a charge offer with $50 as a cycle
forward fee and a discount of 10% on the monthly cycle fees. A cycle fee of $50 and a discount
of $5 is applied for the period of April 1 to May 1, making the balance $45.

On April 28, you cancel the discount offer backdated to April 16. The discount of $2.50 applied
for the period of April 16 to May 1 is refunded, making the balance as $47.50.

How Earned and Unearned Revenue Is Set for Backdated Period
In the case of cycle forward events, the charges for the backdated period have the
EARNED_START_T (billing_cycle_start) and EARNED_END_T (billing_cycle_ end) set to
the backdated period.

For example, on February 15, a charge offer with cycle forward events for an account with the
DOM set to 1 is purchased, backdated to January 15. The EARNED_ START_T and
EARNED_END_T for the backdated period (January 15 through February 1) are January 15

Chapter 21
Managing Purchase, Cycle, and Usage Charges in Purchased Offers

21-50

and February 1 respectively, while the EARNED_START_T and EARNED_END_T for the
current cycle are February 1 and March 1 respectively.

Applying Recurring Charges
The main opcodes used for applying recurring charges are:

• PCM_OP_SUBSCRIPTION_CYCLE_FORWARD. See "Applying Cycle Forward Fees" for
more information.

• PCM_OP_SUBSCRIPTION_CYCLE_ARREARS. See "Applying Cycle Arrears Fees" for
more information.

Applying Cycle Forward Fees
To apply a cycle forward fee to a balance group, use
PCM_OP_SUBSCRIPTION_CYCLE_FORWARD.

This opcode is called to charge or refund cycle forward fees (for example, when a charge offer
or discount offer is purchased, canceled, activated, or inactivated).

PCM_OP_SUBSCRIPTION_CYCLE_FORWARD performs these operations:

1. When a charge offer or discount offer is purchased or activated during the cycle,
determines scale values that are used for prorating the cycle forward fee amount to be
charged.

2. When a charge offer or discount offer is canceled or inactivated during the cycle,
determines scale values that are used for prorating the cycle forward fee amount to be
refunded.

3. Uses customized charge offers when valid to calculate fees or refunds. If a customized
charge offer is valid for only part of a cycle, it contributes toward the total charge or refund
based on the length of its validity.

4. When there is a pricing change scheduled for the next or current cycle,
PCM_OP_SUBSCRIPTION_CYCLE_FORWARD gets a list of prices and the period in
which they are applicable and calculates the correct charges.

5. When the ApplyRolloverBeforeCycleFees business parameter is enabled, calls
PCM_OP_SUBSCRIPTION_CYCLE_ROLLOVER to roll over unused resources from one
cycle to succeeding cycles.

6. Calculates and sets CYCLE_FEE_START_T and CYCLE_FEE_END_T to the next period,
if applicable.

7. After all the charge offers, discount offers, and their cycle forward fees are determined, it
sends the information to PCM_OP_ACT_USAGE to rate and apply the charges.

Note:

If the charge offer or discount offer starts on first usage (when the customer first
uses the charge offer or discount offer) and its validity period has not yet been
set, PCM_OP_SUBSCRIPTION_CYCLE_FORWARD does not call
PCM_OP_ACT_USAGE and cycle fees are not applied.

Chapter 21
Applying Recurring Charges

21-51

8. For auditing purposes, it creates /event/billing/product/fee/cycle/cycle_forward_type
objects, where type is the frequency of the cycle forward charge (for example, daily,
weekly, monthly, bimonthly, quarterly, semiannual, or annual).

9. If successful, it returns the POIDs of the /account object and the /event/billing/
product/fee/cycle/cycle_forward_type event.

Applying Cycle Arrears Fees
To apply a cycle arrears fee, use PCM_OP_SUBSCRIPTION_CYCLE_ARREARS.

Note:

Cycle arrears fees are applied only for a single month.

PCM_OP_SUBSCRIPTION_CYCLE_ARREARS performs these operations:

1. When charge offers or discount offers with cycle fees are canceled or inactivated during a
cycle, calculates the scale to prorate the cycle arrears fee amount to be charged.

2. When there is a pricing change in the previous or next cycle, gets a list of prices and the
period in which they are applicable and calculates the correct charges.

3. Uses customized charge offers when valid to calculate fees or refunds. If a customized
charge offer is valid for only part of a cycle, it contributes a portion of the total charge or
refund based on the length of its validity.

4. After all the cycle arrears fees are determined, sends the information to
PCM_OP_ACT_USAGE to rate and apply the charges.

Note:

If the charge offer or discount offer starts on first usage and its validity period has
not yet been set, PCM_OP_SUBSCRIPTION_CYCLE_ARREARS does not call
PCM_OP_ACT_USAGE and cycle fees are not applied.

5. Creates the /event/billing/product/fee/cycle/cycle_arrears event for auditing purposes.

6. If successful, returns the POIDs of the /account object and the /event/billing/product/fee/
cycle/cycle_arrears event.

Applying Folds
Use PCM_OP_SUBSCRIPTION_CYCLE_FOLD to apply balance impacts for fold events.

PCM_OP_SUBSCRIPTION_CYCLE_FOLD performs these operations:

1. Calls PCM_OP_SUBSCRIPTION_POL_SPEC_FOLD to get the order in which to fold the
account's balances. By default, folds are applied in ascending order of the balance
element IDs.

2. Checks the value of the balance's PIN_FLD_APPLY_MODE field in the /config/beid object
to see whether the balance is specified to be rolled over. For more information, see
"Specifying Which Balances to Fold".

Chapter 21
Applying Folds

21-52

3. Applies folds for all of the account's balance groups and also for each balance in the
balance group that is specified to be rolled over. However, if a balance element ID is
specified in the input flist, only that balance is folded.

4. After applying the balance impacts, creates /event/billing/cycle/fold event for auditing
purposes.

5. If successful, returns the POIDs of the /account object and the /event/billing/product/fee/
cycle/fold event.

Customizing How Folds Are Applied
To customize how folds are applied, use PCM_OP_SUBSCRIPTION_POL_PRE_FOLD.

For example, when billing is run, this opcode is called to verify that the pin_cycle_fees utility
has applied cycle fees to an account.

This opcode is called by PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT and
PCM_OP_BILL_MAKE_BILL.

This opcode is an empty hook.

Customizing the Order to Apply Folds
To customize the order in which folds are applied, use
PCM_OP_SUBSCRIPTION_POL_SPEC_FOLD.

By default, balances are folded in ascending order based on the balance element ID. This
opcode enables you to change the order in which balances are folded.

For example, you can fold balances in descending order of the balance element IDs. To do
this, sort the PIN_FLD_BALANCES array and return the sorted array.

This example shows the PIN_FLIST_SORT statement for sorting the balances array in
descending order:

*out_flistp = PIN_FLIST_COPY(i_flistp, ebufp);
s_flistp = PIN_FLIST_CREATE(ebufp);
PIN_FLIST_ELEM_SET(s_flistp, (void *)NULL, PIN_FLD_BALANCES, PIN_ELEMID_ANY, ebufp);

PIN_FLIST_SORT(*out_flistp, s_flistp, 1, ebufp);

PCM_OP_SUBSCRIPTION_POL_SPEC_FOLD returns the contents of the input flist including
the POID of the /balance_group object and the balance array sorted in ascending order.

PCM_OP_SUBSCRIPTION_POL_SPEC_FOLD is called by
PCM_OP_SUBSCRIPTION_CYCLE_FOLD.

Specifying Which Balances to Fold
You can specify which balances are impacted by fold events. This enables you to exclude
folding balances that do not need to be folded.

To specify the balances to fold, use PDC or Pricing Center.

Customizing Which Balances to Fold When Charge Offers Are Canceled
PCM_OP_SUBSCRIPTION_POL_PREP_FOLD prepares the list of balances that must be
folded when a charge offer is canceled.

Chapter 21
Applying Folds

21-53

This opcode is called when a charge offer is canceled and it performs the following functions:

• Checks the canceled charge offer.

• Creates a list of balances affected by the cancellation that must be folded.

• Calls PCM_OP_SUBSCRIPTION_CYCLE_FOLD and passes the list of balances as the
input.

If you do not want to fold balances after a charge offer is canceled, customize
PCM_OP_SUBSCRIPTION_POL_PREP_FOLD by removing or commenting out the code in
the fm_subscription_pol_prep_fold.c file.

PCM_OP_SUBSCRIPTION_POL_PREP_FOLD is called by
PCM_OP_SUBSCRIPTION_CYCLE_FORWARD and
PCM_OP_SUBSCRIPTION_CYCLE_ARREARS.

Getting Data about Bundles, Charge Offers, Discount Offers, and
Services

See the following topics:

• Getting Purchased Offers

• Getting Packages, Bundles, and Charge Offers for Purchase

• Getting a List of Bundles, Charge Offers, Discount Offers, and Services

• Getting a List of Packages and Bundles That an Account Owns

• Reading Data for All Valid Purchased Charge Offers and Discount Offers

• Finding Events Associated with Bundles, Charge Offers, Discount Offers, and Services

Getting Purchased Offers
PCM_OP_SUBSCRIPTION_GET_PURCHASED_OFFERINGS retrieves the purchased
charge offers and discount offers associated with an account. Because charge offers and
discount offers were part of the account object, reading the account object would fetch all the
purchased charge offers and discount offers.

The opcode requires a scope object in the PIN_FLD_SCOPE_OBJ of the input flist. The scope
object can be an account, bill unit (/billinfo object), or service object. The meanings of passing
these different scope objects are as follows:

• /account object: Fetches all charge offers and discount offers for the account and its
services.

• /billinfo object: Fetches charge offers and discount offers that contribute to the specified
bill unit.

• /service object: Fetches charge offers and discount offers that belong to the specified
service.

The opcode logic performs a main search based on the input flist passed in the input. The
search is repeated if there are more result sets to be fetched. For example, if a service object
is passed as the scope object, the input flist would look like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /account 618010 0
0 PIN_FLD_SCOPE_OBJ POID [0] 0.0.0.1 /service/ip 615706 3
0 PIN_FLD_STATUS_FLAGS INT [0] 3
0 PIN_FLD_VALIDITY_FLAGS INT [0] 3

Chapter 21
Getting Data about Bundles, Charge Offers, Discount Offers, and Services

21-54

0 PIN_FLD_INCLUSION_FLAGSINT [0] 2
0 PIN_FLD_OVERRIDE_FLAGS INT [0] 2
0 PIN_FLD_END_T TSTAMP [0] (1154415600) Tue Aug 1 00:00:00 2006
0 PIN_FLD_DEAL_OBJ POID [0] 0.0.0.1 /deal 615702 3
0 PIN_FLD_OVERRIDDEN_OBJ POID [0] 0.0.0.1 /purchased_product 324706 0
0 PIN_FLD_PACKAGE_ID INT [0] 23
0 PIN_FLD_PRODUCTS ARRAY [*] NULL array ptr
0 PIN_FLD_DISCOUNTS ARRAY [*] NULL array ptr

The input for the opcode also contains qualifiers to fetch the correct set of offerings:

• To specify whether to fetch only charge offers or only discount offers use the
PIN_FLD_PRODUCTS and PIN_FLD_DISCOUNTS arrays.

• To specify only a limited number of fields to fetch, use the fields under the PRODUCTS
and DISCOUNTS arrays.

• To fetch charge offers/discounts valid as of a given time, the PIN_FLD_END_T field can be
passed in the input. Additional qualifiers such as cycle, usage, or purchase can be passed
in as PIN_FLD_VALIDITY_FLAGS.

• PIN_FLD_STATUS_FLAGS:

– PIN_SUBS_FLG_OFFERING_STATUS_ACTIVE: Get only active offerings.

– PIN_SUBS_FLG_OFFERING_STATUS_INACTIVE: Get only inactive offerings.

– PIN_SUBS_FLG_OFFERING_STATUS_CLOSED: Get only closed offerings.

Note:

Use of multiple values implies the target object should satisfy any of the
above.

• PIN_FLD_VALIDITY_FLAGS:

– PIN_SUBS_FLG_OFFERING_VALIDITY_CYCLE: Compare the END_T value with the
CYCLE_END_T value.

– PIN_SUBS_FLG_OFFERING_VALIDITY_PURCHASE: Compare the END_T value
with the PURCHASE_END_T value.

– PIN_SUBS_FLG_OFFERING_VALIDITY_USAGE: Compare the END_T value with the
USAGE_END_T value.

Note:

Use of multiple flags implies the target object must satisfy all of the above.

• PIN_FLD_INCLUSION_FLAGS:

– PIN_SUBS_FLG_OFFERING_INCLUDE_ALL_ELIGIBLE_PRODS: Include all eligible
charge offers, including account and subscription charge offers.

– PIN_SUBS_FLG_OFFERING_INCLUDE_ALL_ELIGIBLE_DISCS: Include all eligible
discount offers, including account and subscription discount offers.

Chapter 21
Getting Data about Bundles, Charge Offers, Discount Offers, and Services

21-55

Note:

When this field is missing, only eligible offerings from a specified scope are
returned.

• PIN_FLD_OVERRIDE_FLAGS:

– PIN_SUBS_FLG_OFFERING_ACCT_LEVEL_ONLY: Filter out only account level
offerings. Valid for /account objects only.

– PIN_SUBS_FLG_OFFERING_OVERRIDE_PRODS_ONLY: Must be used with the
OVERRIDDEN _OBJ field. When a valid offering POID is sent, this flag returns all the
offerings that override the input offering. When a NULL offering POID is sent, only the
base charge offers are returned. Valid for any scope.

Note:

When none of these are present (or this field is missing), all charge offers are
returned.

• PIN_FLD_PACKAGE_ID: Limits a search to the package ID, which translates to a single
package. This can be used with any scope.

• PIN_FLD_DEAL_OBJ: Limits a search to objects that are part of the same bundle by
entering the bundle object POID.

Getting Packages, Bundles, and Charge Offers for Purchase
Use the following opcodes to get packages, bundles, and charge offers for customer purchase:

• To get a list of packages for customer purchase, use PCM_OP_CUST_POL_GET_PLANS.
This opcode chooses the packages to return based on the Automatic Account Creation
(AAC) fields in the input flist, enabling the opcode to qualify different packages depending
on the values of the fields returned by each customer.

You must customize PCM_OP_CUST_POL_GET_PLANS to search for and display the
package list by customer type. By default, if you pass in a type-only POID, the opcode
retrieves new packages; otherwise, it retrieves addon packages.

You can customize PCM_OP_CUST_POL_GET_PLANS to search the /group/plan_list
object by customer type and display the correct package lists based on the customer type.

PCM_OP_CUST_POL_GET_PLANS is not called by any opcode.

• To get a list of bundles for customer purchase, use PCM_OP_CUST_POL_GET_DEALS.
This opcode searches for all /deal objects that are valid (bundle END_T = 0 is valid). Each
bundle in the list is then read and checked to see whether the bundle's permitteds array
allows the object type to purchase it.

PCM_OP_CUST_POL_GET_DEALS is not called by any opcode.

• To get a list of charge offers for customer purchase, use
PCM_OP_CUST_POL_GET_PRODUCTS. The charge offer's PIN_FLD_PERMITTEDS
array is checked for valid object types purchasing the charge offer.

PCM_OP_CUST_POL_GET_PRODUCTS is not called by any opcode.

Chapter 21
Getting Data about Bundles, Charge Offers, Discount Offers, and Services

21-56

• Use PCM_OP_CUST_POL_READ_PLAN to customize bundles during account creation.
For a given package, this opcode constructs a tree of services, bundles, and charge offers
associated with that package. This opcode retrieves account packages in addition to
packages related to services.

PCM_OP_CUST_POL_READ_PLAN is not called by any opcode.

Getting a List of Bundles, Charge Offers, Discount Offers, and Services
To get the hierarchical relationships of bundles, charge offers, discount offers, and services
associated with an account, use PCM_OP_SUBSCRIPTION_READ_ACCT_PRODUCTS.

By default, PCM_OP_SUBSCRIPTION_READ_ACCT_PRODUCTS does not return “item" or
“canceled and deleted" charge offers and discount offers. Set PIN_FLD_FLAGS in the input
flist to get item, canceled, and deleted charge offer and discount offer instances. For these
records, the information about the charge offer and discount offer instances are retrieved from
the /purchased_product and /purchased_discount purchase and cancellation event objects.

Note:

Item, canceled, and deleted charge offer and discount offer instances are not
returned if the charge offer's or discount offer's event objects are not recorded or if
they are purged. For example, if BRM is configured to not record events with no
balance impacts, records for these events are not returned.

PCM_OP_SUBSCRIPTION_READ_ACCT_PRODUCTS gets the purchase, cycle, and usage
validity periods for charge offers and discount offers from the account's /purchased_product
and /purchased_discount objects. It returns this information in the purchase, cycle, and
usage START_T and END_T fields located in the PIN_FLD_PRODUCTS and
PIN_FLD_DISCOUNTS arrays in the output flist. If a charge offer or discount offer is set to
start on first usage and its validity period has not yet been initialized, additional information
about the purchase, cycle, and usage start and end times is returned in START_DETAILS and
END_DETAILS fields.

Getting a List of Packages and Bundles That an Account Owns
To get a list of the packages that an account owns, use
PCM_OP_CUST_POL_GET_SUBSCRIBED_PLANS. This opcode retrieves a list of packages,
bundles, or both that an account owns.

Note:

The opcode returns packages or bundles that an account owns. It does not return a
package if the package has only optional bundles. The package must have at least
one purchased bundle.

PCM_OP_CUST_POL_GET_SUBSCRIBED_PLANS takes an account POID from the input
flist and returns a list of all packages, including balance group information and bundles the
account owns.

Chapter 21
Getting Data about Bundles, Charge Offers, Discount Offers, and Services

21-57

If the account contains optional bundles that it does not own, those bundles are returned with
the list as eligible to purchase (PIN_FLD_BOOLEAN value of 0).

PCM_OP_CUST_POL_GET_SUBSCRIBED_PLANS can perform additional filtering of
packages or bundles before they are returned. For example, add filtering logic to this opcode to
return only inactive optional bundles.

Packages and bundles that were closed during a transition are not added to the output flist.

Note:

An account owning more than one instance of a package is not supported. In this
case, PCM_OP_CUST_POL_GET_SUBSCRIBED_PLANS returns bundles for one
of the packages selected at random.

PCM_OP_CUST_POL_GET_SUBSCRIBED_PLANS returns bundles in a PIN_FLD_DEALS
array, even if it found them listed in the account in the older PIN_FLD_DEAL_OBJ field.

PCM_OP_CUST_POL_GET_SUBSCRIBED_PLANS is not called by any opcode.

Reading Data for All Valid Purchased Charge Offers and Discount Offers
To get the purchased charge offers and discount offers data for accounts and services, use
PCM_OP_SUBSCRIPTION_GET_PURCHASED_OFFERINGS.

The value of the PIN_FLD_SCOPE_OBJ field in the input flist restricts the results to an
account, bill unit (/billinfo object), or service. This field is required and can specify one of these
values:

• An /account object: The opcode gets all the charge offers and discount offers for the
account as well as its services.

• A /billinfo object: The opcode gets the purchased charge offers and discount offers that
contribute to the given bill unit.

• A /service object: The opcode gets the purchased charge offers and discount offers that
belong to the given service.

The opcode logic performs a search based on the scope object passed in the input flist. Most
of the other parameters are filters that work on a particular scope. The input flist would look like
this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /account 618010 0
0 PIN_FLD_SCOPE_OBJ POID [0] 0.0.0.1 /service/ip 615706 3
0 PIN_FLD_STATUS_FLAGS INT [0] 3
0 PIN_FLD_VALIDITY_FLAGS INT [0] 3
0 PIN_FLD_INCLUSION_FLAGSINT [0] 2
0 PIN_FLD_OVERRIDE_FLAGS INT [0] 2
0 PIN_FLD_END_T TSTAMP [0] (1154415600) Tue Aug 1 00:00:00 2006
0 PIN_FLD_DEAL_OBJ POID [0] 0.0.0.1 /deal 615702 3
0 PIN_FLD_OVERRIDDEN_OBJ POID [0] 0.0.0.1 /purchased_product 324706 0
0 PIN_FLD_PACKAGE_ID INT [0] 23
0 PIN_FLD_PRODUCTS ARRAY [*] NULL array ptr
0 PIN_FLD_DISCOUNTS ARRAY [*] NULL array ptr

The opcode can accept filters to limit the search further. The input for the opcode contains
parameters to retrieve the correct set of offerings:

Chapter 21
Getting Data about Bundles, Charge Offers, Discount Offers, and Services

21-58

• To retrieve only charge offers or only discount offers, use the PIN_FLD_PRODUCTS and
PIN_FLD_DISCOUNTS arrays.

• To retrieve only specific fields from the /purchased_product objects, specify the fields in
the PRODUCTS and DISCOUNTS arrays.

• To retrieve charge offers and discount offers with a specific status, pass the
PIN_FLD_STATUS_FLAGS field and specify one of these values:

– PIN_SUBS_FLG_OFFERING_STATUS_ACTIVE: This flag retrieves only active
offerings.

– PIN_SUBS_FLG_OFFERING_STATUS_INACTIVE: This flag retrieves only inactive
offerings.

– PIN_SUBS_FLG_OFFERING_STATUS_CLOSED: This flag retrieves only closed
offerings.

Note:

Use of multiple values implies the target object should satisfy any of the
above.

• To retrieve charge offers or discount offers valid as of a given time, pass the
PIN_FLD_END_T field in the input flist. You can base the end time on only the purchase,
cycle, or usage period by including the PIN_FLD_VALIDITY_FLAGS field in the input flist
with one or more of these values.

– PIN_SUBS_FLG_OFFERING_VALIDITY_CYCLE: This flag tells the opcode to
compare the END_T value passed to the CYCLE_END_T value.

– PIN_SUBS_FLG_OFFERING_VALIDITY_PURCHASE: This flag tells the opcode to
compare the END_T value passed with PURCHASE_END_T.

– PIN_SUBS_FLG_OFFERING_VALIDITY_USAGE: This flag tells the opcode to
compare the END_T value passed with USAGE_END_T.

Note:

Use of multiple flags implies the target object must satisfy all of the above
conditions.

• To retrieve all eligible offerings, which include account and subscription offerings, pass the
PIN_FLD_INCLUSION_FLAGS field on the input flist with one or more of these values:

– PIN_SUBS_FLG_OFFERING_INCLUDE_ALL_ELIGIBLE_PRODS: This flag retrieves
all eligible charge offers.

– PIN_SUBS_FLG_OFFERING_INCLUDE_ALL_ELIGIBLE_DISCS: This flag retrieves
all eligible discount offers.

Note:

When this field is missing, only eligible offerings from a given scope are
returned.

Chapter 21
Getting Data about Bundles, Charge Offers, Discount Offers, and Services

21-59

• To retrieve only account charge offers and discount offers, pass the
PIN_FLD_OVERRIDE_FLAGS field set to
PIN_SUBS_FLG_OFFERING_ACCT_LEVEL_ONLY. This flag is valid for /account objects
only.

• To retrieve charge offers and discount offers for only a single package, pass the
PIN_FLD_PACKAGE_ID field set to the package ID. This field can be used with any
scope.

• To retrieve charge offers and discount offers for a specific bundle, pass the
PIN_FLD_DEAL_OBJ field set to the /deal object's POID.

PCM_OP_SUBSCRIPTION_GET_PURCHASED_OFFERINGS returns all purchased charge
offers and discount offers, including canceled charge offers and discount offers, within the
parameters used.

Finding Events Associated with Bundles, Charge Offers, Discount Offers,
and Services

Use PCM_OP_SUBSCRIPTION_GET_HISTORY to retrieve the event history for a bundle,
charge offer, discount offer, or service instance associated with an account.

This opcode retrieves events for a bundle, charge offer, discount offer, or service instance in a
specified date range. Which events are returned depends on the category specified in the input
flist:

• If a bundle is specified, a history of all events associated with the specific bundle instance
is returned for the account. The bundle is identified by the PIN_FLD_PACKAGE_ID field in
the input flist.

• If a charge offer is specified, a history of all events associated with the specific charge offer
instance is returned for the account. The charge offer instance is identified by the
PIN_FLD_OFFERING_OBJ field in the input flist.

• If a discount offer is specified, a history of all events associated with the specific discount
offer instance is returned for the account. The discount offer instance is identified by the
PIN_FLD_OFFERING_OBJ field in the input flist.

• If a service is specified, all events associated with that service object are returned for the
account.

If you do not specify a date range, PCM_OP_SUBSCRIPTION_GET_HISTORY uses the
account's creation time.

If a RESULTS array is passed in the input flist, PCM_OP_SUBSCRIPTION_GET_HISTORY
returns only fields from the events that are passed in the RESULTS array.

Getting a Life-Cycle State
By default, after a balance is adjusted for a service that uses a custom life cycle,
PCM_OP_BAL_POL_CHECK_LIFECYCLE_STATE triggers service state changes and then
updates state expiration dates as follows:

1. Checks the SubscriberLifeCycle business parameter associated with a service's bill unit
(/billinfo object):

• If the parameter is set to disabled, returns the flow to the calling opcode.

• If the parameter is set to enabled, continues the triggering process.

Chapter 21
Getting Data about Bundles, Charge Offers, Discount Offers, and Services

21-60

2. Gets the current life cycle state of the service from the PIN_FLD_LIFECYCLE_STATE field
in the /service object.

If the service POID is not in the opcode's input flist, calls PCM_OP_SEARCH to find all the
services associated with the balance group and the /account object. If any of the retrieved
services are in the Recharge Only or Credit Expired state, changes their state to Active.

3. Calls PCM_OP_BAL_GET_BALANCES to get the sum of the balances in the service
balance group.

4. Calls PCM_OP_CUST_UPDATE_SERVICES to do the following:

• If the service state is Active and the balance group has reached its credit limit, change
the state to Recharge Only.

• If the service state is Recharge Only and the balance is replenished, change the state
to Active.

• If the service state is Credit Expired and the balance is replenished, change the state
to Active and update the PIN_FLD_SERVICE_STATE_EXPIRATION_T value in the /
service object as follows:

– If a voucher is applied to the balance, compare the voucher's validity period with
the Active state's expiration period (PIN_FLD_SERVICE_STATE_EXPIRATION_T
field in the /config/lifecycle_states object associated with the service), and
update the expiration time based on the greater of the two periods.

– If a voucher is not applied, update the expiration time based on the Active state's
expiration period.

• If the service state is Preactive or Active and a voucher is used to increase the
balance, compare the voucher's validity period with the current state's expiration
period, and update the expiration time based on the greater of the two periods.

Note:

Oracle recommends that top-ups not be performed in the Preactive state.

By default, PCM_OP_BAL_POL_CHECK_LIFECYCLE_STATE supports the sample prepaid
service life cycle. You can customize it to support other custom service life cycles.

PCM_OP_BAL_POL_CHECK_LIFECYCLE_STATE is called by
PCM_OP_BAL_APPLY_MULTI_BAL_IMPACTS.

Applying Promotions for Special Dates, Events, or Actions
Use the PCM_OP_SUBSCRIPTION_HANDLE_PROMO_EVENT opcode to apply promotions
to accounts based on special dates, specific events, or specific actions. For example, you
could grant 100 free minutes to customers on their birthday or every time they successfully top
up their account balance.

This opcode is called by the following:

• The pin_apply_promotion utility to apply promotions to accounts based on special dates.
See "pin_apply_promotion" in BRM Configuring Pipeline Rating and Discounting.

• The event notification system when a triggering event occurs, such as when a customer
purchases a new product. For information about the event notification system, see "Using
Event Notification" in BRM Developer's Guide.

Chapter 21
Applying Promotions for Special Dates, Events, or Actions

21-61

PCM_OP_SUBSCRIPTION_HANDLE_PROMO_EVENT performs these operations:

1. Checks the /config/event_promo_tag_map object to see whether the promotion tag
(PIN_FLD_PROMO_TAG) is mapped to a promotion event
(PIN_FLD_PROMO_EVENT_TYPE).

2. Checks the /config/event_promo_map object to see whether the event type
(PIN_FLD_EVENT_TYPE) is mapped to a promotion event
(PIN_FLD_PROMO_EVENT_TYPE).

3. Adds information about the promotion event to the input flist of the
PCM_OP_ACT_USAGE opcode.

4. Calls the PCM_OP_SUBSCRIPTION_POL_PRE_PROMO_EVENT policy opcode to
customize the input flist for the PCM_OP_ACT_USAGE opcode. By default, the policy
opcode does nothing.

5. Calls the PCM_OP_ACT_USAGE opcode to rate the promotion event. To do so, it calls the
following opcodes:

• PCM_OP_RATE_POL_PRE_RATING. See "Modifying Rated Events".

• PCM_OP_RATE_EVENT. See "Subscription Rating Opcodes".

• PCM_OP_RATE_POL_POST_RATING. See "Modifying Rated Events".

6. Calls the PCM_OP_SUBSCRIPTION_POL_POST_PROMO_EVENT policy opcode to
customize the output flist from the PCM_OP_ACT_USAGE opcode. By default, the policy
opcode does nothing.

Customizing Special Date, Event, or Action Promotions
To customize how promotions are applied, use the following policy opcodes:

• PCM_OP_SUBSCRIPTION_POL_PRE_PROMO_EVENT: Customizes the input flist to
PCM_OP_ACT_USAGE.

By default, this opcode is an empty hook, but you can customize it to add or remove input
flist fields.

• PCM_OP_SUBSCRIPTION_POL_POST_PROMO_EVENT: Customizes the output flist
from PCM_OP_ACT_USAGE.

By default, this opcode is an empty hook, but you can customize it to add or remove output
flist fields.

Managing Promotions with Siebel CRM
To add, modify, inactivate, or cancel promotions, you must customize Siebel CRM to accept the
following information and pass it to PCM_OP_SUBSCRIPTION_SET_BUNDLE:

• Promotion name

• Promotion description

• Charge offers and discount offers bundled with the promotion

• Promotion creation date

• Promotion validity dates

• Promotion status: active, inactive, or canceled

Chapter 21
Managing Promotions with Siebel CRM

21-62

In an AIA system, you pass this information from Siebel CRM to BRM through the J2EE
Connector Architecture (JCA) Resource Adapter, which exposes the BRM API through a JCA
common client interface (CCI) as an Interaction. Data required for sending data to
PCM_OP_SUBSCRIPTION_SET_BUNDLE is detailed in the Subscription Web service.

To implement the ability to display Siebel CRM promotions on invoices, add the following
functionality to Siebel CRM by using PCM_OP_SUBSCRIPTION_SET_BUNDLE:

• Create /purchased_bundle objects. See "Adding a promotion to an account".

• Modify /purchased_bundle objects. See "Modifying an account's promotion".

• Inactivate /purchased_bundle objects. See "Inactivating an account's promotion".

• Cancel /purchased_bundle objects. See "Canceling an account's promotion".

Adding a promotion to an account

To add a promotion to a customer's account, pass in details about the promotion to
PCM_OP_SUBSCRIPTION_SET_BUNDLE. You must also set the following fields in the
opcode's input flist:

• In the PIN_FLD_BUNDLE_INFO array:

– Set the PIN_FLD_POID field to a type-only POID for /purchased_bundle.

– Set the PIN_FLD_STATUS field to 1 to set the promotion's status to Active.

Note:

If PIN_FLD_STATUS is not passed in, the promotion's status is set to active
by default.

• In the PIN_FLD_OFFERINGS array, specify the charge offers and discount offers
associated with the promotion. You must create a separate array for each charge offer and
discount offer in the promotion. In the PIN_FLD_OFFERINGS array:

– Set the PIN_FLD_POID field to the POID of the /purchased_product or /
purchased_discount object.

– Set the PIN_FLD_BUNDLE_OBJ field to NULL.

– Set the PIN_FLD_BUNDLE_INFO array to the rec_id of the PIN_FLD_BUNDLE_INFO
array at the 0th level of the flist. This specifies to associate the newly created /
purchased_bundle object with the specified charge offer or discount offer during
account creation.

Modifying an account's promotion

To modify an account's existing promotion, pass in the promotion details that changed to
PCM_OP_SUBSCRIPTION_SET_BUNDLE:

• To change a promotion's attributes: In the PIN_FLD_BUNDLE_INFO array, set the
PIN_FLD_POID field to the existing /purchased_bundle POID and then pass in only the
fields that have changed.

• To transfer a promotion from one account to another: In the PIN_FLD_BUNDLE_INFO
array, set the PIN_FLD_POID field to the existing /purchased_bundle POID and set the
PIN_FLD_ACCOUNT_OBJ field to the new /account POID.

• To add charge offers and discount offers to a promotion: In the
PIN_FLD_OFFERINGS array, set the PIN_FLD_POID field to the complete POID of the

Chapter 21
Managing Promotions with Siebel CRM

21-63

charge offer or discount offer being added to the promotion, and set the
PIN_FLD_BUNDLE_OBJ field to the complete POID of the /purchased_bundle object.

• To remove an existing charge offer or discount offer from a promotion: In the
PIN_FLD_OFFERINGS array, set the PIN_FLD_POID field to the complete POID of the
charge offer or discount offer being removed from the promotion, and set the
PIN_FLD_BUNDLE_OBJ field to NULL.

When a promotion is modified, the opcode does the following:

• Changes the specified /purchased_bundle object.

• Changes the PIN_FLD_PLAN_OBJ field of the /purchased_product or /
purchased_discount object, if a charge offer or discount offer changed.

• Generates an /event/billing/bundle/modify object for auditing purposes, if a promotion's
attributes changed.

Inactivating an account's promotion

When you inactivate an account's promotion, PCM_OP_SUBSCRIPTION_SET_BUNDLE sets
the promotion's status to Inactive. It does not update the associated charge offer or discount
offer's PIN_FLD_PLAN_OBJ field. Also, unlike the canceled status, a promotion's details can
be modified after it has been inactivated.

To inactivate a promotion, pass in details about the promotion to
PCM_OP_SUBSCRIPTION_SET_BUNDLE and set the PIN_FLD_STATUS field in the
PIN_FLD_BUNDLE_INFO array to 2.

Canceling an account's promotion

You can no longer make changes to an account's promotion after it has been canceled. When
you cancel an account's promotion, PCM_OP_SUBSCRIPTION_SET_BUNDLE:

• Sets the promotion's validity end date to the current date.

• Sets the promotion's status to canceled.

Optionally, the opcode can disassociate the charge offers and discount offers from the
promotion by changing the PIN_FLD_PLAN_OBJ field of the /purchased_product object and
the /purchased_discount object to NULL.

To cancel an account's promotion, call PCM_OP_SUBSCRIPTION_SET_BUNDLE and set the
PIN_FLD_STATUS field in the PIN_FLD_BUNDLE_INFO array to 3.

To configure the opcode to disassociate the charge offers and discount offers from the
promotion, perform one of the following tasks:

• Set the PIN_FLD_FLAGS field to 1. When set, the opcode searches for and disassociates
the account's charge offers and discount offers from the promotion. This option decreases
processing performance.

• In the PIN_FLD_OFFERINGS array, set the PIN_FLD_POID field to the complete POID of
the charge offer or discount offer being canceled, and set the PIN_FLD_BUNDLE_OBJ
field to NULL. When set, the opcode disassociates the specified charge offers and
discount offers from the promotion.

Note:

To improve processing performance, pass in all charge offers and discount offers
associated with the canceled promotion.

Chapter 21
Managing Promotions with Siebel CRM

21-64

Managing Provisioning
See the following topics:

• Customizing Provisioning When a Charge Offer Is Purchased

• Getting a List of Provisioning Tags

• Customizing Provisioning When Canceling a Charge Offer

Note:

The BRM provisioning tag framework is the preferred method of customizing
provisioning when a charge offer is purchased or canceled.

When defining a configuration for the provisioning tag framework, you specify one or more
opcodes to perform an action, such as creating an ERA. You can specify that an opcode run
when a charge offer or discount is purchased, canceled, or both. You can use an existing
opcode or design a custom opcode.

If the provisioning tag is designed to create an ERA, you can specify that
PCM_OP_SUBSCRIPTION_PROVISION_ERA run at both purchase and cancellation time.
This opcode creates, modifies, or deletes a profile (/profile object). ERAs are stored in profiles.

PCM_OP_SUBSCRIPTION_PROVISION_ERA creates, modifies, or deletes /profile objects.
When specified in a /config/provisioning_tag object, this opcode runs when a charge offer or
discount offer containing the provisioning tag is purchased or canceled. Profiles can store
extended rating attributes (ERAs) and other custom attributes.

PCM_OP_SUBSCRIPTION_PROVISION_ERA calls PCM_OP_CUST_CREATE_PROFILE,
PCM_OP_CUST_MODIFY_PROFILE, or PCM_OP_CUST_DELETE_PROFILE, depending on
the action it must take.

When creating a profile, PCM_OP_SUBSCRIPTION_PROVISION_ERA creates a /profile/
acct_extrating object for an account profile and a /profile/serv_extrating object for a service
profile.

Customizing Provisioning When a Charge Offer Is Purchased
To set fields in a /service object at the time of purchase, use
PCM_OP_SUBSCRIPTION_POL_PURCHASE_PROD_PROVISIONING.

This opcode is called by PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT when a charge
offer is purchased.

Note:

Do not call PCM_OP_SUBSCRIPTION_POL_PURCHASE_PROD_PROVISIONING
directly.

• If a /service object is associated with a provisioning tag in the input flist, provisioning is
invoked.

Chapter 21
Managing Provisioning

21-65

• If provisioning is invoked, it checks the tag table for the corresponding provisioning tag and
runs the corresponding function call that modifies the appropriate fields in the /service
object.

You can customize the provisioning functionality as follows:

• Change the services, tags, and functions in the provisioning_tags array.

• Add to or modify the provisioning subfunctions in the
fm_subscription_pol_provisioning.c file.

• Use PDC or Pricing Center to modify charge offers associated with services by including
the applicable provisioning tag.

The BRM provisioning tag framework is the preferred method of customizing provisioning when
a charge offer is purchased.

Getting a List of Provisioning Tags
To customize charge offer provisioning, use
PCM_OP_SUBSCRIPTION_POL_GET_PROD_PROVISIONING_TAGS. This opcode
retrieves data for provisioning from the provisioning_tags array.

This opcode is called by PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT when a charge
offer is canceled.

Note:

Do not call PCM_OP_SUBSCRIPTION_POL_GET_PROD_PROVISIONING_TAGS
directly.

Each service in the provisioning_tags array is associated with a provisioning tag and a
function. The provisioning tag specifies the type of service, and the function determines what is
to be done with that service.

You can customize the provisioning functionality as follows:

• Change the services, tags, and functions in the provisioning_tags array.

• Add to or modify the provisioning subfunctions in the
fm_subscription_pol_provisioning.c file.

• Use PDC or Pricing Center to modify charge offers associated with services by including
the applicable provisioning tag.

Customizing Provisioning When Canceling a Charge Offer
To customize provisioning when canceling a charge offer, use
PCM_OP_SUBSCRIPTION_POL_CANCEL_PROD_PROVISIONING. This opcode clears
fields in a /service object at the time of cancellation.

The BRM provisioning tag framework is the preferred method of customizing provisioning when
a charge offer is canceled.

PCM_OP_SUBSCRIPTION_POL_CANCEL_PROD_PROVISIONING is called by
PCM_OP_SUBSCRIPTION_CANCEL_PRODUCT when a charge offer is canceled.

Chapter 21
Managing Provisioning

21-66

Note:

Do not call PCM_OP_SUBSCRIPTION_POL_CANCEL_PROD_PROVISIONING
directly.

• If a /service object is associated with a provisioning tag in the input flist, provisioning is
invoked.

• If provisioning is invoked, it checks the tag table for the corresponding provisioning tag and
runs the corresponding function call that clears the appropriate fields in the /service object.

Managing GSM Service Provisioning
Use the following opcodes to manage provisioning:

• To publish a service order, use PCM_OP_PROV_PUBLISH_SVC_ORDER. This opcode
sends an /event/provisioning/service_order/eventtype event to the Provisioning Data
Manager (DM), where eventtype is the type of event.

PCM_OP_PROV_PUBLISH_SVC_ORDER takes as input the POID of the service order
event and a substruct containing the service order information that should be sent to the
Provisioning DM.

• To update a service order, use PCM_OP_PROV_UPDATE_SVC_ORDER. This opcode
updates the status of an /event/provisioning/service_order/* event.

The /event/provisioning/service_order/* event stores the service order and information
such as the status, service order type, and actions required.

The PCM_OP_PROV_UPDATE_SVC_ORDER input flist includes the complete response
from the provisioning applications, including the POID of the service order, the service
order status, and other service order information. Based on the type of the service order,
you can modify or validate the response flist.

When a response is received from a provisioning platform,
PCM_OP_PROV_UPDATE_SVC_ORDER uses information in the input flist to update the
status of an /event/provisioning/service_order/* event.

• To validate and modify parameters for updating service orders, use
PCM_OP_PROV_POL_UPDATE_SVC_ORDER.

This opcode is called by PCM_OP_PROV_UPDATE_SVC_ORDER when a response is
received from a provisioning system.

By default, PCM_OP_PROV_POL_UPDATE_SVC_ORDER validates and transforms a
global system for mobile communications (GSM) service order. When a response is
received from a provisioning system, this opcode maps the response parameters to
corresponding fields in the /event/provisioning/service_order/telco/gsm object.

The input flist to PCM_OP_PROV_POL_UPDATE_SVC_ORDER includes the complete
response from the provisioning applications. Based on the type of the service order, you
can modify or validate the response flist.

By default, PCM_OP_PROV_POL_UPDATE_SVC_ORDER returns the input flist without
any change, except in the case of GSM services where the input flist is validated and the
format is modified to map the fields in the event/provisioning/service_order/telco/gsm
object.

Chapter 21
Managing Provisioning

21-67

Validating Product Specification Attributes for Pricing
Components

To validate product specification attributes defined on pricing components, use
PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING.

By default, this policy opcode is an empty hook, but you can customize it to validate product
specification attributes.

PCM_OP_SUBSCRIPTION_POL_VALIDATE_OFFERING is called by the following opcodes:

• PCM_OP_SUBSCRIPTION_PURCHASE_DEAL

• PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT

• PCM_OP_SUBSCRIPTION_PURCHASE_DISCOUNT

• PCM_OP_SUBSCRIPTION_SHARING_GROUP_CREATE

• PCM_OP_SUBSCRIPTION_SHARING_GROUP_MODIFY

See BRM Developer's Guide for information about customizing opcodes.

Chapter 21
Validating Product Specification Attributes for Pricing Components

21-68

22
Tax Calculation Opcode Workflows

Learn about the Oracle Communications Billing and Revenue Management (BRM) tax
calculation opcode workflows.

Topics in this document:

• Opcodes Described in This Chapter

• Calculating Taxes during Billing

• Modifying Tax Data Before Calculating Taxes

• Modifying Tax Data After Calculating Taxes

• Overriding Customer Tax Locale for Purchases

• Using Custom Tax Rates

• Using Geocodes to Calculate Taxes

• Adding Tax Information to Accounts

• Retrieving Tax Calculation Data

• Retrieving Additional Tax Data from Vertex Communications Tax Q Series

Opcodes Described in This Chapter
Table 22-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 22-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_BILL_CYCLE_TAX Calculating Taxes during Billing

PCM_OP_BILL_TAX_EVENT Retrieving Tax Supplier Data

PCM_OP_CUST_POL_TAX_CALC Using Custom Tax Rates

PCM_OP_CUST_POL_TAX_INIT Using Custom Tax Rates

PCM_OP_CUST_POL_VALID_NAMEINFO Using Geocodes to Calculate Taxes

PCM_OP_CUST_POL_VALID_TAXINFO Validating Tax Information

PCM_OP_CUST_SET_TAXINFO Adding Tax Information to Accounts

22-1

Table 22-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_RATE_EVENT Calculating Taxes during Billing

Retrieving Tax Location Data

PCM_OP_RATE_POL_GET_TAX_SUPPLIER Retrieving a List of Tax Suppliers

PCM_OP_RATE_POL_GET_TAXCODE Retrieving a List of Tax Codes

PCM_OP_RATE_POL_MAP_TAX_SUPPLIER Retrieving Tax Supplier Data

PCM_OP_RATE_POL_POST_TAX Modifying Tax Data After Calculating Taxes

Requesting Additional Data from Vertex Communications
Tax Q Series

Retrieving Additional Tax Data

Storing Vertex Tax Data in Your Custom Storable Class

PCM_OP_RATE_POL_PRE_TAX Modifying Tax Data Before Calculating Taxes

Using Geocodes to Calculate Taxes

Requesting Additional Data from Vertex Communications
Tax Q Series

PCM_OP_RATE_POL_TAX_LOC Calculating Taxes during Billing

Retrieving Tax Location Data

PCM_OP_RATE_TAX_CALC How PCM_OP_RATE_TAX_CALC Calculates Taxes

Calculating Taxes during Billing

Modifying Tax Data Before Calculating Taxes

Validating Tax Information

Calculating Taxes during Billing
Taxes are calculated during rating and during billing. During rating, taxes are calculated by
ECE. You can customize tax calculation in rating by using ECE extensions.

To calculate taxes during billing,

1. For each rated event, PCM_OP_RATE_EVENT reads the PIN_FLD_RATES_USED array
in the input flist to determine what pricing to apply. This pricing information determines how
the taxable amount is treated.

2. PCM_OP_RATE_EVENT calls PCM_OP_RATE_POL_TAX_LOC to determine whether
custom processing or default processing is used to determine the tax-related locales.

• If default processing is used, PCM_OP_RATE_EVENT retrieves the locales from the
database.

• If custom processing is used, control is handed to PCM_OP_RATE_POL_TAX_LOC,
which determines which locales to use.

The locales are used during the tax calculation process to determine jurisdiction. BRM
stores up to four tax locales for the current account, session, and event.

See "Retrieving Tax Location Data" for more information on the tax locales and how to
customize their retrieval.

3. PCM_OP_RATE_EVENT also checks the PIN_FLD_EXEMPTIONS array in /account
objects to determine whether all or part of the purchase amount is exempt from taxes.

Chapter 22
Calculating Taxes during Billing

22-2

4. PCM_OP_RATE_EVENT returns a revised set of objects for the event. This can include
PIN_FLD_TAXES and PIN_FLD_EXEMPTIONS arrays to indicate tax amounts that were
calculated immediately by PCM_OP_RATE_TAX_CALC.

5. The event is taxable, PCM_OP_RATE_EVENT calls PCM_OP_BILL_CYCLE_TAX. If the
event is nontaxable, PCM_OP_RATE_EVENT does nothing.

6. If a transaction is not already open, PCM_OP_BILL_CYCLE_TAX opens one.

If PCM_OPFLG_CALC_ONLY is set, the transaction is opened with the flag
PCM_TRANS_OPEN_READONLY.

7. PCM_OP_BILL_CYCLE_TAX calls PCM_OP_RATE_TAX_CALC to perform the actual tax
calculation. See "How PCM_OP_RATE_TAX_CALC Calculates Taxes" for information.

8. PCM_OP_BILL_CYCLE_TAX receives the tax data from PCM_OP_RATE_TAX_CALC in
the PIN_FLD_TAXES array.

9. PCM_OP_BILL_CYCLE_TAX does one of the following:

• Creates an /event/billing/cycle/tax object with the taxable amount if there were any
deferred taxes.

• If PCM_OP_BILL_CYCLE_TAX was called with the PCM_OPFLG_CALC_ONLY flag
set, it still performs the tax calculation but does not create the /event/billing/cycle/tax
object.

Instead, the PCM_OP_BILL_CYCLE_TAX output flist contains the
PIN_FLD_RESULTS array, an flist with the information that would have been used to
create the /event/billing/cycle/tax object.

10. PCM_OP_BILL_CYCLE_TAX sets the /event/billing/cycle/tax object status to inactive.

11. PCM_OP_BILL_CYCLE_TAX commits the transaction if one was opened.

How PCM_OP_RATE_TAX_CALC Calculates Taxes
PCM_OP_RATE_TAX_CALC determines the taxation Data Manager (DM) or custom taxation
method to be used for an event. It sends the input flist to the DM or the custom tax calculation
method for calculation. It receives the information it needs to calculate taxes from the following
input fields:

• The tax code of the BRM charge offer mapped to a charge offer code that is recognized by
the taxation software. The tax code also identifies the taxation DM or the custom tax
calculation method to be used.

• The purchase amount to be taxed from the PIN_FLD_TAXES array. Each element of the
PIN_FLD_TAXES array represents a separate tax calculation method.

Note:

If the tax calculation software or custom policy is not specified in the tax code,
taxes are not calculated.

• The locations that are involved in the transaction to be taxed. This includes ship-from, ship-
to, order origin, and order accept addresses for sales and use taxation.

Chapter 22
Calculating Taxes during Billing

22-3

Note:

For telecommunications taxation, the address fields contain additional
information (NPA-NXX or geocodes) for origin, termination, and charge-to
numbers.

• The date and time of the transaction from the PIN_FLD_START_T and PIN_FLD_END_T
fields. PIN_FLD_START_T is used to compute PIN_FLD_ELAPSED_TIME or duration
(that is, the difference between the end time and start time).

• Tax exemption information, including exemption information based on tax jurisdiction, from
the PIN_FLD_EXEMPTIONS array.

• The tax supplier ID from the PIN_FLD_TAX_SUPPLIER field.

• Other optional values such as the account's bill object in the PIN_FLD_BILL_OBJ field and
telecommunications values such as incorporated, residence, and regulated flags.

PCM_OP_RATE_TAX_CALC checks for the following errors:

• Missing or nonvalid PIN_FLD_TAX_CODE field.

• Nonvalid PIN_FLD_TAXPKG_TYPE field, which is derived from PIN_FLD_TAX_CODE
field and the taxcodes_map file.

• Missing or nonvalid tax database entry.

PCM_OP_RATE_TAX_CALC returns an output flist with a revised PIN_FLD_TAXES array
containing the tax data that the tax calculation software or the custom tax calculation method
returns. The calculated taxes are sorted by jurisdiction.

If the PCM_OPFLG_CALC_ONLY flag is set, PCM_OP_RATE_TAX_CALC performs the tax
calculation and returns the tax rate and amount. The tax data is not written to the database,
however.

How PCM_OP_RATE_TAX_CALC Validates Addresses and VAT Certificates
You can call PCM_OP_RATE_TAX_CALC in jurisdiction-check-only mode during account
creation to perform address or VAT certificate number validation. You specify jurisdiction-
check-only mode by using the PIN_FLD_COMMAND input field. The following modes are
supported:

• If PIN_FLD_COMMAND is set to 1, it sends an address to the taxation DM for verification
and additionally returns the geocode and county information in the PIN_FLD_NAMEINFO
array if the address was successfully validated.

• If PIN_FLD_COMMAND is set to 2, it sends a VAT certificate number to the tax DM for
validation.

Note:

The VAT certificate number validation is supported only for a custom tax
calculation implementation. It is not supported by the default BRM tax calculation
functions.

In jurisdiction-check-only mode, PCM_OP_RATE_TAX_CALC returns 1 if the jurisdiction is
valid and 0 if it is not.

Chapter 22
Calculating Taxes during Billing

22-4

Policy Opcodes Called by PCM_OP_RATE_TAX_CALC
PCM_OP_RATE_TAX_CALC calls the following policy opcodes that you can customize to
modify the tax data or to use custom tax calculation:

• PCM_OP_RATE_POL_PRE_TAX, to modify any tax data in the input flist that is passed to
the taxation DM.

See "Modifying Tax Data Before Calculating Taxes" for more information.

• PCM_OP_RATE_POL_POST_TAX, to modify any tax data in the output flist that is
returned from the taxation DM.

See "Modifying Tax Data After Calculating Taxes" for more information.

• PCM_OP_CUST_POL_TAX_CALC, to use custom tax calculation methods instead of
using an external tax calculation software.

See "Using Custom Tax Rates" for more information.

Modifying Tax Data Before Calculating Taxes
Use PCM_OP_RATE_POL_PRE_TAX to modify data before you send the data to the taxation
DM for calculating taxes.

This opcode is called by PCM_OP_RATE_TAX_CALC before determining the tax package to
use for tax calculation.

By default, PCM_OP_RATE_POL_PRE_TAX returns the input flist as the output flist. You can
customize the opcode to perform these functions:

• Identify the geocode for an address and provide it to the taxation DM.

• Add a tax exemption to the input flist before sending the flist to the taxation DM.

• Change the tax exemption from a percentage to a set amount. For example, deduct x
amount from the taxable amount because the first x amount is exempt from taxes.

In addition, the opcode source file contains commented code for enhancements available to
Vertex Communications Tax Q Series users.

Customizing Vertex Communications Tax Q Series to Override ZIP Codes
For Vertex Communications Tax Q Series, the PCM_OP_RATE_POL_PRE_TAX policy source
file contains commented code to instruct the Vertex Communications Tax Q Series taxation
software to override the ZIP code. This enables the Vertex DM to charge taxes for
nontelephony events by using Vertex Communications Tax Q Series.

To customize Vertex Communications Tax Q Series to override ZIP codes:

1. Open the PCM_OP_RATE_POL_PRE_TAX policy source file with a text editor.

2. Uncomment the code.

3. Define the OVERRIDE_BY_ZIP symbol.

4. Save and close the file.

5. Recompile the opcode.

Chapter 22
Modifying Tax Data Before Calculating Taxes

22-5

Customizing Vertex Communications Tax Q Series to Provide Custom Input
Tax Data

For Communications Tax Q Series, you can modify PCM_OP_RATE_POL_PRE_TAX source
code to use a customized input flist to the taxation DM for tax data. The taxation DM checks
the input flist. If it includes the PIN_FLD_STATUS_FLAGS field with the value 1, the DM sets
all custom fields included in the flist and then calls the tax package to calculate taxes.

Note:

When you create the customized flist, make sure that you express the field values on
the basis of Vertex field data types. Add the correct data type and value for each
Vertex attribute that you want to customize. To see your customized flist, you can use
PIN_ERR_LOG_FLIST in debug mode.

To customize PCM_OP_RATE_POL_PRE_TAX:

1. Open BRM_SDK_home/source/sys/fm_rate_pol/fm_rate_pol_pre_tax.c file.

2. Add the code from "Source Code for Customizing PCM_OP_RATE_POL_PRE_TAX" to the
fm_rate_pol_pre_tax() function after the OVERRIDE_BY_ZIP section.

3. Add optional fields to customize the tax calculation process (the source code includes a
comment about how to add new fields).

4. Define the USE_VERTEX_Q_SERIES symbol.

5. Add stda.h and ctqa.h to the Include section of the file.

6. Set the value of customized_flag to 1, if it is not already set to that value.

7. Save and close the file.

8. Copy the stda.h and ctqa.h files from the Vertex_home/inc directory to the
BRM_SDK_home/source/sys/fm_rate_pol directory.

9. To the Makefile, add CFLAGS += -DPORT_UNIXANSI.

10. Recompile the opcode.

Source Code for Customizing PCM_OP_RATE_POL_PRE_TAX
#ifdef USE_VERTEX_Q_SERIES
/***
 /***
 * FOLLOWING MANDATORY FIELDS SHOULD BE FILLED WITH CORRECT VALUES.
 * YOU CAN CUSTOMIZE THE MANDATORY AND OPTIONAL FIELDS.
 * HERE IS THE LIST OF MAPPING FIELDS.
 * VERTEX DATATYPE => MAPPING FIELD =>PORTAL DATATYPE
 *
 * eCtqString =>PIN_FLD_VERTEX_CTQ_STR =>PIN_FLDT_STR
 * eCtqInt =>PIN_FLD_VERTEX_CTQ_INT =>PIN_FLDT_INT
 * eCtqFloat =>PIN_FLD_VERTEX_CTQ_FLOAT =>PIN_FLDT_DECIMAL
 * eCtqDouble =>PIN_FLD_VERTEX_CTQ_DOUBLE =>PIN_FLDT_DECIMAL
 * eCtqLong =>PIN_FLD_VERTEX_CTQ_LONG =>PIN_FLDT_DECIMAL
 * eCtqDate =>PIN_FLD_VERTEX_CTQ_DATE =>PIN_FLDT_TSTAMP
 * eCtqTime =>PIN_FLD_VERTEX_CTQ_TIME =>PIN_FLDT_TSTAMP

Chapter 22
Modifying Tax Data Before Calculating Taxes

22-6

 * eCtqTimestamp =>PIN_FLD_VERTEX_CTQ_TIMESTAMP =>PIN_FLDT_TSTAMP
 * eCtqBool =>PIN_FLD_VERTEX_CTQ_BOOL =>PIN_FLD_INT
 * eCtqChar =>PIN_FLD_VERTEX_CTQ_CHAR =>PIN_FLDT_STR
 * eCtqEnum =>PIN_FLD_VERTEX_CTQ_ENUM =>PIN_FLDT_ENUM
 *
 * YOU CAN ADD ONE FIELD LIKE THE FOLLOWING FLIST FORMAT.
 0 PIN_FLD_FIELD_NAMES ARRAY[] allocated 20, used 2
 1 PIN_FLD_TYPE ENUM [0]
 1 PIN_FLD_VERTEX_CTQ_STR STR [0]
 * USE PROPER MAPPING FIELD TO SET VALUE OF VERTEX FIELD.
 * IF YOU ADD SOME STRING FIELD(eCtqString),THEN SET VALUE FOR THAT FIELD
 * USING PIN_FLD_VERTEX_CTQ_STR.FOR DETAILS,SEE THE ABOVE TABLES.
 **/
 pin_flist_t *cust_flistp = NULL;
 pin_flist_t *field_name_flistp = NULL;
 tCtqAttribType attribute_type = eCtqHandle ;
 time_t now_t = 0;
 pin_decimal_t *value_decimal = NULL;
 int32 value_int = 0;
 char temp_buf[255] = { '\0' };

 int32 customized_flag = 1;/* SET TO 1 FOR CUSTOMIZATION */

 cust_flistp = PIN_FLIST_CREATE(ebufp);

 /***
 * IMPORTANT:SET customized_flag to 1 IF YOU WANT TO CUSTOMIZE THE
 * VERTEX FIELDS.
 ***/

 PIN_FLIST_FLD_SET(cust_flistp, PIN_FLD_STATUS_FLAGS,
 (void *)&customized_flag, ebufp);

 /* FIELD:eCtqAttribCategoryCode NATURE:Mandatory Field */

 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribCategoryCode, ebufp);
 attribute_type = eCtqString;
 temp_buf[0]='\0';
 strcpy(temp_buf ,"04") ;
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_STR,
 (void *)temp_buf,ebufp);

 /* FIELD:eCtqAttribServiceCode NATURE:Mandatory Field */

 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribServiceCode, ebufp);

 attribute_type = eCtqString;
 temp_buf[0]='\0';
 strcpy(temp_buf,"01");
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_STR,
 (void *)temp_buf,ebufp);

 /* FIELD:eCtqAttribOriginGeoCode NATURE:Mandatory Field */

 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribOriginGeoCode, ebufp);

Chapter 22
Modifying Tax Data Before Calculating Taxes

22-7

 attribute_type = eCtqString;
 temp_buf[0]='\0';
 strcpy(temp_buf ,"390290740");
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_STR,
 (void *)temp_buf,ebufp);

 /* FIELD:eCtqAttribTerminationGeoCode NATURE:Mandatory Field */

 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribTerminationGeoCode, ebufp);

 attribute_type = eCtqString;
 temp_buf[0]='\0';
 strcpy(temp_buf,"390296350") ;
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_STR,(void *)temp_buf,
 ebufp);

 /* FIELD:eCtqAttribInvoiceDate NATURE:Mandatory Field */

 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribInvoiceDate, ebufp);
 attribute_type=eCtqDate;
 now_t = pin_virtual_time((time_t *)NULL);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_DATE,&now_t,
 ebufp);

 /* FIELD:eCtqAttribTaxableAmount NATURE:Mandatory Field */

 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribTaxableAmount, ebufp);
 attribute_type = eCtqDouble;
 value_decimal = pbo_decimal_from_str("100.00",ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_DOUBLE,
 (void *)value_decimal,ebufp);

 /**
 * YOU CAN ADD OPTIONAL FIELDS LIKE BELOW FLIST
 *
 * field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp,
 PIN_FLD_FIELD_NAMES,eCtqAttribBilledLines, ebufp);
 * attribute_type = eCtqInt;
 * PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 * int value_int = 01
 * PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_INT,
 (void *)&value_int,ebufp);
 **/
 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribBilledLines, ebufp);
 attribute_type = eCtqInt;
 value_int = 01;
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);

Chapter 22
Modifying Tax Data Before Calculating Taxes

22-8

 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_INT,
 (void *)&value_int,ebufp);
 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribSaleResaleCode, ebufp);
 attribute_type = eCtqString;
 temp_buf[0]='\0';
 strcpy(temp_buf ,"S");
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_STR,
 temp_buf,ebufp);

 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribChargeToGeoCode, ebufp);
 attribute_type = eCtqString;
 temp_buf[0]='\0';
 strcpy(temp_buf ,"390296350");
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_STR,
 temp_buf,ebufp);

 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribCallMinutes, ebufp);
 attribute_type = eCtqDouble;
 value_decimal = pbo_decimal_from_str("10.0",ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_DOUBLE,
 (void *)value_decimal,ebufp);

 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribUserArea, ebufp);
 attribute_type = eCtqString;
 temp_buf[0]='\0';
 strcpy(temp_buf ,"Interstate/Toll");
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_STR,temp_buf,
 ebufp);

 field_name_flistp = PIN_FLIST_ELEM_ADD(cust_flistp, PIN_FLD_FIELD_NAMES,
 eCtqAttribInvoiceNumber, ebufp);
 attribute_type = eCtqString;
 temp_buf[0]='\0';
 strcpy(temp_buf ,"DEMO-002");
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_TYPE,
 (void *)&attribute_type,ebufp);
 PIN_FLIST_FLD_SET(field_name_flistp,PIN_FLD_VERTEX_CTQ_STR,temp_buf,
 ebufp);

 PIN_ERR_LOG_FLIST(PIN_ERR_LEVEL_DEBUG,
 "op_rate_pol_pre_tax customized flist", cust_flistp);
 PIN_FLIST_CONCAT(ret_flistp,cust_flistp,ebufp);
 if (value_decimal) {
 pbo_decimal_destroy(&value_decimal);
 }

 PIN_FLIST_DESTROY_EX(&cust_flistp,NULL);
***/
#endif

Chapter 22
Modifying Tax Data Before Calculating Taxes

22-9

Modifying Tax Data After Calculating Taxes
You can customize PCM_OP_RATE_POL_POST_TAX to modify any data in the output
returned by the tax calculation software after tax calculation. For example, you can modify the
opcode to perform these functions:

• Change how the CM logs any messages that are returned from the external taxation DMs.

• Add a surcharge to the tax amount in the output flist returned from the taxation DM, as
shown in the following example:

void fm_rate_pol_post_tax(...)
{
/* loop through array of incoming taxes */
 while(t_flistp = PIN_FLIST_ELEM_GET_NEXT(in_flistp, PIN_FLD_TAXES,
 &elemid, 1, &cookie, ebufp)) != (pin_flist_t*)NULL) {
 /* add a surcharge to the SUBTOTAL array */
 cnt = PIN_FLIST_ELEM_COUNT(t_flist, PIN_FLD_SUBTOTAL, ebufp))
 s_flistp = PIN_FLIST_ELEM_ADD(t_flistp, PIN_FLD_SUBTOTAL, cnt++, ebufp);
...
 /* add the entries to the SUBTOTAL array */
 PIN_FLIST_FLD_SET(s_flistp, PIN_FLD_TAX, (void*)&tax, ebufp);
 PIN_FLIST_FLD_SET(s_flistp, PIN_FLD_SUBTYPE, (void*)&taxType, ebufp);
...
 }
}Error Handling

By default, PCM_OP_RATE_POL_POST_TAX returns the input flist as the output flist, without
the PIN_FLD_MESSAGES array. It also logs any messages returned from the taxation DM as
specified in the tax_return_loglevel entry of the CM pin.conf file.

PCM_OP_RATE_POL_POST_TAX default implementation handles errors as follows:

• Logs messages as specified in the tax_return_loglevel entry in the CM pin.conf file. The
default is to log only warnings.

• If an error occurs while reading the tax_return_loglevel entry, sets the error buffer to
INVALID_CONF.

Overriding Customer Tax Locale for Purchases
By default, BRM calculates the taxes your customers owe for purchases using their shipped-to
address (stored in an /account object's PIN_FLD_NAMEINFO array). You can instead
configure BRM to calculate the tax amount using a customer's real-time location when
purchasing a bundle (or deal), buying a charge offer (or product), or topping up a prepaid
account.

To do so, configure your custom client application to call the following opcodes:

• PCM_OP_SUBSCRIPTION_PURCHASE_DEAL

• PCM_OP_SUBSCRIPTION_PURCHASE_PRODUCT

• PCM_OP_PYMT_TOPUP

You pass in the customer's real-time location to the opcode using the PIN_FLD_LOCALE input
flist field or using zone maps.

Chapter 22
Modifying Tax Data After Calculating Taxes

22-10

Real-Time Location Using PIN_FLD_LOCALE

Set the PIN_FLD_LOCALE input flist field to the customer's current location in the following
format:

"City;State;Zipcode;Country"

For example:

"Austin;TX;78741;US"

The following shows a sample PCM_OP_PYMT_TOPUP input flist for setting a customer's
real-time location to Chicago:

0 PIN_FLD_PROGRAM_NAME STR [0] "testnap"
0 PIN_FLD_POID POID [0] 0.0.0.1 /account 91058 8
0 PIN_FLD_LOCALE STR [0] "Chicago;IL;60634;US"
0 PIN_FLD_INHERITED_INFO SUBSTRUCT [0] allocated 1, used 1
1 PIN_FLD_TOPUP_INFO ARRAY [0] allocated 4, used 4
2 PIN_FLD_BILLINFO_OBJ POID [0] 0.0.0.1 /billinfo 94130 0
2 PIN_FLD_BAL_GRP_OBJ POID [0] 0.0.0.1 /balance_group 93298
0
2 PIN_FLD_TOPUP_AMT DECIMAL [0] 19
2 PIN_FLD_PAYINFO ARRAY [0] allocated 4, used 4
3 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 91058 8
3 PIN_FLD_POID POID [0] 0.0.0.1 /payinfo/cc -1 0
3 PIN_FLD_PAY_TYPE ENUM [0] 10003
3 PIN_FLD_CC_INFO ARRAY [0] allocated 9, used 9
4 PIN_FLD_SECURITY_ID STR [0] "ID"
4 PIN_FLD_NAME STR [0] "John Evans"
4 PIN_FLD_DEBIT_EXP STR [0] "Expiration"
4 PIN_FLD_DEBIT_NUM STR [0] "DebitNumber"
4 PIN_FLD_COUNTRY STR [0] "US"
4 PIN_FLD_ZIP STR [0] "94065"
4 PIN_FLD_STATE STR [0] "CA"
4 PIN_FLD_CITY STR [0] "Redwood City"
4 PIN_FLD_ADDRESS STR [0] "100 Oracle Pkwy"

Real-Time Location Using Zone Maps

Set the following opcode input flist fields:

• PIN_FLD_ZONEMAP_NAME: Set this to the name of the zone map to use.

• PIN_FLD_ZONEMAP_TARGET: Set this to the name of the end-leaf node in the zone
map.

The following shows a sample PCM_OP_SUBSCRIPTION_PURCHASE_DEAL input flist for
setting a customer's real-time location using zone maps:

0 PIN_FLD_POID POID [0] 0.0.0.1 /account 101267 7
0 PIN_FLD_SERVICE_OBJ POID [0] 0.0.0.1 /service/ip 98643 6
0 PIN_FLD_PROGRAM_NAME STR [0] "testnap"
0 PIN_FLD_ZONEMAP_TARGET STR [0] "3"
0 PIN_FLD_ZONEMAP_NAME STR [0] "TestZoneMap2"

Chapter 22
Overriding Customer Tax Locale for Purchases

22-11

0 PIN_FLD_DEAL_INFO SUBSTRUCT [0] allocated 20, used 7
1 PIN_FLD_PRODUCTS ARRAY [0] allocated 35, used 35
2 PIN_FLD_FLAGS INT [0] 1

Note:

To use this method, you must have configured a zone map with the specified name
and target.

Using Custom Tax Rates
If your business uses a simple tax calculation method, you may not need to use a tax
calculation software package. You can use custom tax rates instead. In simple cases, you can
implement taxation using built-in features that do not require programming.

If your business requires a more complex tax structure but does not require the full capabilities
of one of the taxation packages, you can implement custom tax rates by modifying the two
taxation policy opcodes:

• PCM_OP_CUST_POL_TAX_INIT: This policy opcode caches tax rate information from
either the taxcodes_map file (Patch Set 4 and earlier releases) or the /config/
taxcodes_map object (Patch Set 5 and later releases). Then, it calls either the
PCM_OP_CUST_POL_TAX_CALC policy opcode (if no tax calculation software is
configured) or the taxation DM (if tax calculation software is configured).
PCM_OP_CUST_POL_TAX_INIT is not called by any other opcode.

• PCM_OP_CUST_POL_TAX_CALC: This policy opcode performs the actual tax calculation
for all tax codes with a package code of U (user-defined). By default,
PCM_OP_CUST_POL_TAX_CALC reads the custom tax rate from cache and uses this
simple calculation method to calculate the taxes:
tax = amount * rate

To use custom tax rates, do the following:

1. Define your tax rates as required for your BRM 12.0 Patch Set release. See "Creating Tax
Codes" in BRM Calculating Taxes.

2. Modify the source file for PCM_OP_CUST_POL_TAX_INIT (BRM_SDK_home/
source/sys/fm_cust_pol/fm_cust_pol_tax_init.c) to implement your customizations.

a. To load tax code data in a different format, define a data structure in
fm_cust_pol_tax_init.c for your custom tax rates.

b. Perform any other customizations required in fm_cust_pol_tax_init.c to implement
your custom tax features.

3. If necessary for your customizations, modify the source file for
PCM_OP_CUST_POL_TAX_CALC (BRM_SDK_home/source/sys/
fm_cust_pol_tax_calc.c).

4. Compile fm_cust_pol_tax_init.c and fm_cust_pol_tax_calc.c by using the makefile in
the BRM_SDK_home/source/sys/fm_cust_pol directory.

5. Copy the compiled shared library files to BRM_home/lib, replacing the existing versions.

6. Open the CM configuration file (pin.conf) and ensure that the following entries in the
fm_module section are enabled (not commented out):

Chapter 22
Using Custom Tax Rates

22-12

- cm fm_module BRM_home/lib/fm_cust.so fm_cust_config - pin
- cm fm_module BRM_home/lib/fm_cust_pol.so fm_cust_pol_config fm_cust_pol_tax_init pin

7. Stop and restart the CM.

Using Geocodes to Calculate Taxes
A geocode is a geographic code that is used to determine a tax jurisdiction. Different tax
calculation software packages use different geocode systems and update them frequently. To
use geocodes to calculate taxes, you must modify PCM_OP_RATE_POL_PRE_TAX to query
the geocoder and obtain the geocode for an account during account creation. The geocoder
maps the address or postal code of the account to a unique geocode.

If a geocode is available during tax calculation, the tax package uses it to calculate the tax. If a
geocode is not available, the tax calculation software chooses the geocode with the highest tax
rate from a list of geocodes it finds for that account address.

Note:

The tax calculation software itself cannot map an address to a unique geocode.

To use geocodes to calculate taxes:

1. Using Storable Class Editor, create a /profile storable class and add the
PIN_FLD_GEOCODE field to it.

If you have configured more than one tax calculation package, create an array that
contains separate PIN_FLD_GEOCODE fields for the tax calculation package. The index
values should represent the tax packages:

• 0 specifies a custom tax package.

• 2 specifies the WorldTax package.

• 3 specifies the Sales Tax Q Series package.

• 4 specifies the Communications Tax Q Series package.

2. Modify PCM_OP_CUST_POL_VALID_NAMEINFO to store the geocode in the new
PIN_FLD_GEOCODE field of the /profile object if the address was validated successfully.

3. Implement PCM_OP_RATE_POL_PRE_TAX to perform the following functions:

• Obtain the geocode from the /profile object.

• Set the geocode in the PIN_FLD_SHIP_TO or PIN_FLD_SHIP_FROM field in the
taxes array in the input flist to the taxation DM.

For example, the opcode should change this field value:

PIN_FLD_SHIP_TO STR [0] "Cupertino; CA; 95012; US; []"

to include the geocode in the square brackets []:

PIN_FLD_SHIP_TO STR [0] "Cupertino; CA; 95012; US; [050850860]"

4. Set the location mode to geocode by supplying 1 as the value for the
PIN_FLD_LOCATION_MODE field in the PIN_FLD_TAXES array of the input flist.

Chapter 22
Using Geocodes to Calculate Taxes

22-13

When you set the location mode to geocode, the taxation DM passes the geocode instead
of the address to the tax calculation module.

For example:

PIN_FLD_LOCATION_MODE ENUM[0] 1

After calculating the taxes, the taxation DM returns the jurisdiction (address and geocode)
where tax rates were applied in the PIN_FLD_TAXES array of the output flist:

PIN_FLD_NAME STR[0] "US: CA: Santa Clara: Cupertino: 95012 : [050850860]"

Adding Tax Information to Accounts
To add tax information to an account, use PCM_OP_CUST_SET_TAXINFO.

This opcode adds the following data:

• VAT certificate

• Tax exemptions

• Tax incorporation

• Tax residence

To do so, PCM_OP_CUST_SET_TAXINFO adds or updates values for the following fields in
the taxinfo array of an /account object:

• PIN_FLD_VAT_CERT

• PIN_FLD_EXEMPTIONS

• PIN_FLD_INCORPORATED_FLAG

• PIN_FLD_RESIDENCE_FLAG

For example, when an account is created and a VAT certificate number or exemption
information is provided, PCM_OP_CUST_SET_TAXINFO is called.
PCM_OP_CUST_SET_TAXINFO performs these functions:

• Modifies existing data or adds information to the PIN_FLD_TAXINFO array of the /account
object by using the field values provided in the input flist.

• If a VAT certificate number is not provided, replaces the value of PIN_FLD_VAT_CERT in
the account object with an empty ("") string.

• If exemption information is not provided, deletes the PIN_FLD_EXEMPTIONS array.

• If the field values provided in the input flist contain the PIN_FLD_INCORPORATED_FLAG
or PIN_FLD_RESIDENCE_FLAG flag, adds or updates these values in the account object.

Validating Tax Information
To customize how tax information is validated, use PCM_OP_CUST_POL_VALID_TAXINFO.
This opcode validates the VAT certificate number to prevent nonvalid numbers, which cause
failures in tax calculations.

By default, PCM_OP_CUST_POL_VALID_TAXINFO checks for the VAT certificate data and
performs these functions:

• If the VAT certificate number provided is a string, zero in length, returns the validation
result PASS.

Chapter 22
Adding Tax Information to Accounts

22-14

• If the following tax_valid entry in the CM pin.conf file is not set or is set to 0, returns the
validation result FAIL.

#Enables or disables validation of the VAT certificate number.
#1 means Enable; 0, which is the default, means Disable.
- fm_cust_pol tax_valid 0

You can customize PCM_OP_CUST_POL_VALID_TAXINFO to use a custom tax calculation
software to validate the VAT certificate number. For example, instead of calling
PCM_OP_RATE_TAX_CALC, you can query your custom VAT validation function by rewriting
the function do_vat_cert_validation in PCM_OP_CUST_POL_VALID_TAXINFO source file.

Retrieving Tax Calculation Data
See the following topics:

• Retrieving a List of Tax Codes

• Retrieving a List of Tax Suppliers

• Retrieving Tax Supplier Data

• Retrieving Tax Location Data

Retrieving a List of Tax Codes
To retrieve a list of tax codes, use PCM_OP_RATE_POL_GET_TAXCODE. This opcode
returns a list of all tax codes that were loaded from the taxcodes.map file and cached by the
CM during initialization. For example, Pricing Center uses this opcode to display a list of
taxcodes used to configure rate plans for taxation. You can customize this opcode to return
additional cached tax code information.

This opcode is not called by any opcode.

PCM_OP_RATE_POL_GET_TAXCODE takes an account POID as input and performs these
functions:

• Obtains the database number from the POID.

• Searches the CMs in-memory cache for tax codes.

• Returns an array of tax code names in the output flist.

PCM_OP_RATE_POL_GET_TAXCODE returns a list of the tax code names cached from the
taxcodes_map file by the CM during initialization.

Retrieving a List of Tax Suppliers
To retrieve a list of tax suppliers, use PCM_OP_RATE_POL_GET_TAX_SUPPLIER. You can
customize this opcode by modifying the fields on the output flist. You can specify which fields
are validated by adding or removing them from the input flist.

PCM_OP_RATE_POL_GET_TAX_SUPPLIER takes an account POID as input and performs
these functions:

• Obtains the database number from the POID.

• Performs a global search for tax suppliers.

• Returns a list of tax suppliers with all the relevant fields in the output flist.

Chapter 22
Retrieving Tax Calculation Data

22-15

This opcode is not called by any opcode.

Retrieving Tax Supplier Data
To retrieve tax supplier data, use PCM_OP_RATE_POL_MAP_TAX_SUPPLIER. You can
customize this opcode to change how a tax supplier is derived for a specific BRM event.

This opcode is called by PCM_OP_BILL_TAX_EVENT.

This opcode can function in either of two ways:

• If a tax_supplier_map file is used with a corresponding entry in the CM pin.conf file, this
opcode searches the tax_supplier_map file by company ID based on the charge offer
name and ship to categories. If a matching entry is found, it returns that entry from the
tax_supplier_map file. If no matching entry exists, the opcode returns NULL as the
address of the flist.

• If the tax_supplier_map file does not exist or the CM pin.conf entry does not specify
using a tax_supplier_map file, this opcode tries to find the tax_supplier object POID in
the PIN_FLD_PRODUCTS array of the account object.

PCM_OP_RATE_POL_MAP_TAX_SUPPLIER also retrieves the utility flag, which is used for
telecommunication (telco) taxation, from the PIN_FLD_REGULATED_FLAG field of the /
profile/tax_supplier object and returns it on the output flist.

Retrieving Tax Location Data
To customize the way PCM_OP_RATE_EVENT obtains the locations for tax jurisdictions, use
PCM_OP_RATE_POL_TAX_LOC. This opcode returns the locations for an event, which are
then used to establish jurisdictions for tax calculation.

Note:

For a telephony event, the locations contain additional information, which is enclosed
in square ([]) brackets.

For example, you can obtain the value for the PIN_FLD_ORDER_ACCEPT field from a
different source. Additionally, you can provide a geocode instead of an NPA/NXX for telephony
events.

PCM_OP_RATE_POL_TAX_LOC takes an account POID as input and returns these fields:

• PIN_FLD_SHIP_TO: The ship-to address; for telephony events, the call termination
number.

• PIN_FLD_SHIP_FROM: The ship-from address; for telephony events, the call origination
number.

• PIN_FLD_ORDER_ACCEPT: The order accept address; for telephony events, the charge-
to number.

• PIN_FLD_ORDER_ORIGIN: The order origin address.

It returns them in four strings with this syntax:

city; state_abbreviation;zipcode; country;[code,location,international_indicator]

where:

Chapter 22
Retrieving Tax Calculation Data

22-16

• code is the geocode or NPA/NXX.

• location specifies the type of code:

– 0: Address

– 1: Geocode

– 2: NPA/NXX

• international_indicator specifies the type of call:

– 1: North America numbering plan

– 2: North America originated, overseas terminated

– 3: North America originated, overseas terminated and billed

– 4: IOC North America originated, overseas terminated

– 5: Overseas originated, North America terminated

– 6: IOC North America originated, overseas terminated and billed

– 7: Overseas originated, overseas terminated

For example:

1 PIN_FLD_SHIP_TO STR [0] "Cupertino; CA; 95014; USA;[408572,2,1]"
1 PIN_FLD_SHIP_FROM STR [0] "Englewood; CO; 80112; USA;[060050006000,1,1]"
1 PIN_FLD_ORDER_ORIGIN STR [0] "Englewood; CO; 80112; USA;[060050006000,1,1]"
1 PIN_FLD_ORDER_ACCEPT STR [0] "Englewood; CO; 80112; USA;[060050006000,1,1]"
1 PIN_FLD_LOCATION_MODE ENUM [0] 1
1 PIN_FLD_INTERNATIONAL_IND INT [0] 1

By default, PCM_OP_RATE_POL_TAX_LOC uses the sources for locations described in
Table 22-2:

Table 22-2 PCM_OP_RATE_POL_TAX_LOC Source Locations

Location Default Source

PIN_FLD_SHIP_TO The account billing address, obtained from the
PIN_FLD_NAMEINFO array of the /account object.

PIN_FLD_SHIP_FROM Same as PIN_FLD_ORDER_ACCEPT

PIN_FLD_ORDER_ACCEPT The value for the fm_rate_pol provider_loc entry in the CM
pin.conf file. For information on the default
PIN_FLD_ORDER_ACCEPT location, see the fm_rate_pol
provider_loc entry in the CM pin.conf file.

PIN_FLD_ORDER_ORIGIN Same as PIN_FLD_ORDER_ACCEPT.

Retrieving Additional Tax Data from Vertex Communications Tax
Q Series

When you perform tax calculation by using Vertex Communications Tax Q Series, it returns tax
data in an input flist to the BRM API. The tax data is then processed and stored in the BRM
database. For a list of data that Vertex Communications Tax Q Series returns to the BRM API
by default, see "Default Tax Data Returned by Vertex Communications Tax Q Series" for more
information.

Chapter 22
Retrieving Additional Tax Data from Vertex Communications Tax Q Series

22-17

You can also customize BRM to request and store additional data from Vertex Communications
Tax Q Series by performing the following:

1. Requesting additional data from Vertex Communications Tax Q Series.

See "Requesting Additional Data from Vertex Communications Tax Q Series" for more
information.

2. Retrieving the additional tax data returned by Vertex Communications Tax Q Series.

See "Requesting Additional Data from Vertex Communications Tax Q Series" for more
information.

3. Storing the additional tax data in the BRM database.

See "Storing the Requested Vertex Tax Data in the BRM Database" for more information.

Default Tax Data Returned by Vertex Communications Tax Q Series
Vertex Communications Tax Q Series makes its attributes available to other applications
through data handles. BRM uses tax data from the following two data handles only:

• The Register Transaction data handle, which defines tax transaction attributes.

• The Register Transaction Tax Detail data handle, which defines tax jurisdiction attributes.

Vertex Communications Tax Q Series sends tax attributes to the BRM API in the following input
flist structures:

• PIN_FLD_TAXES input flist array: Contains the result of a tax calculation at the
transaction level.

• PIN_FLD_TAXES.PIN_FLD_SUBTOTAL input flist array: Contains the result of a tax
calculation at the jurisdiction level, such as at the Federal level or at the State level. In
each jurisdiction, the taxes are broken into subtypes, such as 911 and DEAF.

Table 22-3 shows the tax attributes that are sent to the BRM API by default and the flist
structure in which the attribute is passed:

Chapter 22
Retrieving Additional Tax Data from Vertex Communications Tax Q Series

22-18

Table 22-3 Default BRM Tax Attributes and flist Structure

Vertex Communications
Tax Q Series Data Handle

Vertex Communications Tax Q Series Attributes BRM Input Flist Structure

Register Transaction data
handle

• eCtqAttribChargeToLocationMode
• eCtqAttribChargeToPostalCode
• eCtqAttribTaxedGeoCodeOverrideCode
• eCtqAttribInvoiceDate
• eCtqAttribBilledLines
• eCtqAttribInvoiceNumber
• eCtqAttribServiceCode
• eCtqAttribCategoryCode
• eCtqAttribCreditCode
• eCtqAttribDescriptionFlag
• eCtqAttribTaxedGeoCodeIncorporatedCode
• eCtqAttribFederalExemptFlag
• eCtqAttribStateExemptFlag
• eCtqAttribCountyExemptFlag
• eCtqAttribCityExemptFlag
• eCtqAttribWriteJournal
Note: The eCtqAttribWriteJournal attribute is retrieved
from the Register Subsystem data handle.

PIN_FLD_TAXES array

Register Transaction Tax
Detail data handle

• eCtqAttribTrunksTaxed
• eCtqAttribTaxCode
• eCtqAttribLinkTaxAmount
• eCtqAttribRowCount

PIN_FLD_TAXES.PIN_FLD_SUBT
OTAL array

Requesting Additional Data from Vertex Communications Tax Q Series
You can request additional tax data from Vertex Communications Tax Q Series by customizing
PCM_OP_RATE_POL_PRE_TAX. Vertex Communications Tax Q Series returns the requested
tax data in the input flist to PCM_OP_RATE_POL_POST_TAX.

To request additional tax data:

• Customize PCM_OP_RATE_POL_PRE_TAX to request data from the following two Vertex
data handles: Register Transaction data handle and Register Transaction Tax Detail data
handle.

• Add custom output flist fields to PCM_OP_RATE_POL_PRE_TAX. To request additional
tax data, add the flist fields shown in bold below to the PIN_FLD_RESULTS output flist
array:

0 PIN_FLD_RESULTS ARRAY [0] allocated 20, used 1
1 PIN_FLD_TAXES [0] allocated 20, used 1
2 PIN_FLD_FIELD_NAMES ARRAY [ArrayIndexValue] allocated 20, used 2
3 PIN_FLD_TYPE ENUM [0] VertexDataType
1 PIN_FLD_SUBTOTAL [0] allocated 20, used 1
2 PIN_FLD_FIELD_NAMES ARRAY [ArrayIndexValue] allocated 20, used 2
3 PIN_FLD_TYPE ENUM [0] VertexDataType

where:

– The PIN_FLD_TAXES structure specifies that you are requesting data from the Vertex
Register Transaction data handle. All elements under this array must reference
attributes from the Register Transaction data handle only.

Chapter 22
Retrieving Additional Tax Data from Vertex Communications Tax Q Series

22-19

– The PIN_FLD_SUBTOTAL structure specifies that you are requesting data from the
Vertex Register Transaction Tax Detail data handle. All elements under this array must
reference attributes from the Register Transaction Tax Detail data handle only.

– ArrayIndexValue specifies the Vertex Communications Tax Q Series attribute ID that
you are requesting. For example, set the PIN_FLD_FIELD_NAMES array index to 304
to request the eCtqAttribTrunksTaxed attribute.

– VertexDataType specifies the Vertex data type ID for the Vertex Communications Tax
Q Series attribute you are requesting. Supported Vertex data types include the
following:

* eCtqInt

* eCtqString

* eCtqBool

* eCtqFloat

* eCtqDouble

* eCtqLong

* eCtqDate

For example, the following shows custom output flist fields for requesting additional tax data:

0 PIN_FLD_RESULTS ARRAY [0] allocated 20, used 1
1 PIN_FLD_TAXES [0] allocated 20, used 1
2 PIN_FLD_FIELD_NAMES ARRAY [271] allocated 20, used 2
3 PIN_FLD_TYPE ENUM [0] 3
1 PIN_FLD_SUBTOTAL [0] allocated 20, used 1
2 PIN_FLD_FIELD_NAMES ARRAY [285] allocated 20, used 2
3 PIN_FLD_TYPE ENUM [0] 10

Retrieving Additional Tax Data
The additional data you request from Vertex Communications Tax Q Series is returned in the
PCM_OP_RATE_POL_POST_TAX input flist. You can customize the BRM API to retrieve the
tax data from the input flist fields and process it according to your business needs.

Vertex Communications Tax Q Series returns the additional data in the following
PCM_OP_RATE_POL_POST_TAX input flist structure under the PIN_FLD_TAXES array or
the PIN_FLD_TAXES.PIN_FLD_SUBTOTAL array:

• If passed in the PIN_FLD_TAXES array, the data is for one tax transaction. This
information is from the Register Transaction data handle.

• If passed in the PIN_FLD_TAXES.PIN_FLD_SUBTOTAL array, the tax data is for one
jurisdiction. This information is from the Register Transaction Tax Detail data handle.

1 PIN_FLD_FIELD_NAMES ARRAY [ArrayIndexValue] allocated 20, used 3
2 PIN_FLD_TYPE ENUM [0] VertexDataType
2 PIN_FLD_VERTEX_CTQ_BRMDataType INT [0] BRMTaxData

where:

– ArrayIndexValue specifies the Vertex Communications Tax Q Series attribute ID. For
example, enter 295 to request data from the eCtqAttribTaxedGeoCode attribute.

– VertexDataType specifies the data type ID of the Vertex Communications Tax Q Series
attribute. For example, enter 3 for the eCtqInt data type.

Chapter 22
Retrieving Additional Tax Data from Vertex Communications Tax Q Series

22-20

– BRMTaxData is the tax data from the specified Vertex Communications Tax Q Series
attribute.

– PIN_FLD_VERTEX_CTQ_BRMDataType is the name of the input flist field that
contains the tax data. Table 22-4 specifies the name of the BRM input flist field that
corresponds to each Vertex data type.

Table 22-4 BRM Input flist for Vertex Data Type

BRM Data Type Vertex Data Type

INT eCtqInt

STR eCtqString

BOOL eCtqBool

FLOAT eCtqFloat

DOUBLE eCtqDouble

LONG eCtqLong

STR

Important: This field will contain the date in Vertex
Communications Tax Q Series format (CCYYMMDD). This
is different from the mapping for custom input fields, in
which eCtqDate is mapped to
PIN_FLD_VERTEX_CTQ_TIMESTAMP.

eCtqDate

For example, the following shows a simple PCM_OP_RATE_POL_POST_TAX input flist. The
flist fields for the additional tax data are shown in bold.

number of field entries allocated 20, used 2
0 PIN_FLD_POID POID [0] 0.0.0.1 /account 27225 0
0 PIN_FLD_EVENT_OBJ POID [0] 0.0.0.1 /event/billing/cycle/tax 11111 0
0 PIN_FLD_TAXES ARRAY [0] allocated 20, used 3
1 PIN_FLD_TAXPKG_TYPE ENUM [0] 0
1 PIN_FLD_TAX DECIMAL [0] 0.70
1 PIN_FLD_FIELD_NAMES ARRAY [295] allocated 20, used 3 // Array index =
eCtqAttribTaxedGeoCode
2 PIN_FLD_TYPE ENUM [0] 10
2 PIN_FLD_VERTEX_CTQ_STR STR [0] "123456789"
1 PIN_FLD_SUBTOTAL ARRAY [0] allocated 20, used 10
2 PIN_FLD_TAX DECIMAL [0] 0.70
2 PIN_FLD_TYPE ENUM [0] 0
2 PIN_FLD_NAME STR [0] "US; CA; Sunnyvale; ; 94086"
2 PIN_FLD_AMOUNT_GROSS DECIMAL [0] 19.88
2 PIN_FLD_PERCENT DECIMAL [0] 0.035000
2 PIN_FLD_AMOUNT_TAXED DECIMAL [0] 19.88
2 PIN_FLD_AMOUNT_EXEMPT DECIMAL [0] 0.00
2 PIN_FLD_SUBTYPE ENUM [0] 0
2 PIN_FLD_DESCR STR [0] "Excise"
2 PIN_FLD_LOCATION_MODE ENUM [0] 0
2 PIN_FLD_FIELD_NAMES ARRAY [304] allocated 20, used 3 // Array index =
eCtqAttribTrunksTaxed
3 PIN_FLD_TYPE ENUM [0] 3
3 PIN_FLD_VERTEX_CTQ_INT INT [0] 1

Each PIN_FLD_TAXES array element results in a single balance impact. All tax data from the
PIN_FLD_TAXES array element is stored in the BRM /event object in the
PIN_FLD_BAL_IMPACTS array.

Chapter 22
Retrieving Additional Tax Data from Vertex Communications Tax Q Series

22-21

Each PIN_FLD_TAXES.PIN_FLD_SUBTOTAL array element results in a single balance impact
for a jurisdiction. All tax data for that jurisdiction is stored in the BRM /event object in the
PIN_FLD_TAX_JURISDICTIONS array.

Note:

Sometimes, a Vertex attribute may be missing from the
PCM_OP_RATE_POL_POST_TAX input flist. This could be due to an exception
condition. For example:

• If taxes do not apply because of an undefined service code. In this case, the
PIN_FLD_SUBTOTAL array will have a zero tax amount but none of the
additional output fields.

• If BRM requested a nonapplicable attribute. For example, if BRM requested the
eCtqAttribOriginGeoCode attribute when calculating taxes for a wireless service
based on the PPU location passed in as a ZIP code.

Storing the Requested Vertex Tax Data in the BRM Database
All additional Vertex Communications Tax Q Series data that you request is returned in the
PCM_OP_RATE_POL_POST_TAX input flist. To customize the opcode to store the additional
data in the BRM database:

• Create a custom tax storable class.

See "Creating a Custom Storable Class for Vertex Tax Data" for more information.

• Customize PCM_OP_RATE_POL_POST_TAX to store the additional tax data in your
custom tax storable class.

See "Storing Vertex Tax Data in Your Custom Storable Class" for more information.

• Configure BRM to itemize taxes by jurisdiction.

Creating a Custom Storable Class for Vertex Tax Data
To store the additional data from Vertex Communications Tax Q Series, create a custom tax
storable class, such as /custom/tax/ctq_output. The structure of the custom tax storable
class should be similar to the following flist:

Note:

Make sure you define all fields in the custom tax storable class.

PIN_FLD_POID
PIN_FLD_ACCOUNT_OBJ
PIN_FLD_EVENT_OBJ
 PIN_FLD_CUSTOM_TAX_BAL_IMPACTS ARRAY
 PIN_FLD_CUSTOM_TAX_TAXED_GEO_CODE STR
...
 PIN_FLD_CUSTOM_TAX_TAX_JURISDICTIONS ARRAY
 PIN_FLD_ELEMENT_ID INT
 PIN_FLD_CUSTOM_TAX_TRUNKS_TAXED INT

Chapter 22
Retrieving Additional Tax Data from Vertex Communications Tax Q Series

22-22

Storing Vertex Tax Data in Your Custom Storable Class
To store the additional Vertex Communications Tax Q Series tax data in your custom tax
storable class, customize PCM_OP_RATE_POL_POST_TAX as follows:

1. Add the following compiler directives to include Vertex Communications Tax Q Series
compiler definitions. Copy these files from the Vertex Communications Tax Q Series
installation directory to the directory in which the policy source code resides.

#include "stda.h"
#include "ctqa.h"

2. In the policy source code directory, modify Makefile to add the -DPORT_UNIXANSI
Compiler option.

For example, you can use the CFLAGS variable as follows:

CFLAGS += -DPORT_UNIXANSI
3. Create a new flist instance of your custom tax storable class and set

PIN_FLD_EVENT_OBJ of this instance in the /event object.

4. In your custom tax storable class:

• Add a PIN_FLD_CUSTOM_TAX_BAL_IMPACTS array element for each
PIN_FLD_TAXES element passed in the PCM_OP_RATE_POL_POST_TAX input flist.

• In the PIN_FLD_CUSTOM_TAX_BAL_IMPACTS element, set each custom tax
storable class field to its corresponding value from the PIN_FLD_TAXES input flist
array. For example, set the PIN_FLD_CUSTOM_TAX_TAXED_GEO_CODE storable
class field to the value in the PIN_FLD_VERTEX_CTQ_STR input flist field.

• Add a PIN_FLD_CUSTOM_TAX_TAX_JURISDICTIONS array element for each
PIN_FLD_TAXES.PIN_FLD_SUBTOTAL element passed in the
PCM_OP_RATE_POL_POST_TAX input flist.

• In the PIN_FLD_CUSTOM_TAX_TAX_JURISDICTIONS element, set each custom tax
storable class field to its corresponding value from the PIN_FLD_SUBTOTAL input flist
array. For example, set the PIN_FLD_CUSTOM_TAX_TRUNKS_TAXED storable class
field to the value in the PIN_FLD_VERTEX_CTQ_INT input flist field.

• Link each PIN_FLD_CUSTOM_TAX_TAX_JURISDICTIONS element to its
corresponding parent PIN_FLD_CUSTOM_TAX_BAL_IMPACTS element by using the
PIN_FLD_ELEMENT_ID field.

Note:

BRM uses this same method to link PIN_FLD_TAX_JURISDICTIONS
elements to corresponding parent PIN_FLD_BAL_IMPACTS elements in
the /event object.

5. Create an instance of your custom tax storable class in the BRM database by calling
PCM_OP_CREATE_OBJ.

6. Drop the PIN_FLD_FIELD_NAMES arrays from PCM_OP_RATE_POL_POST_TAX output
flist, because they are no longer needed.

Chapter 22
Retrieving Additional Tax Data from Vertex Communications Tax Q Series

22-23

Note:

• In the rare case that no taxes are computed, the policy input flist will include
a single PIN_FLD_TAXES element set to 0 and no PIN_FLD_SUBTOTAL
elements. Likewise, when a jurisdiction check is performed to validate the
account address, the policy input flist will not include a PIN_FLD_TAXES
element. In both cases, you do not need to create a new instance of your
custom tax storable class.

• For event-time taxation, the PCM_OP_RATE_POL_POST_TAX input flist
does not include the PIN_FLD_EVENT_OBJ field.

• For reporting purposes, you can relate a taxed event's default tax fields with
the additional tax fields by using the /event POID as the join criterion
between the /event object and your custom tax object.

Chapter 22
Retrieving Additional Tax Data from Vertex Communications Tax Q Series

22-24

23
Using the IP Address Manager APIs

Learn about the tasks you can perform using the Oracle Communications Billing and Revenue
Management (BRM) IP Address Manager APIs.

For an overview of IP Address Manager features, see "About IP Address Manager" in BRM
Telco Integration.

Topics in this document:

• Opcodes Described in This Chapter

• Managing Your IP Address Device Life Cycle

• Managing your APN Device Life Cycle

• Extending the IP Address Manager Storable Classes

• Adding Business Logic to the IP Address and APN Policy FMs

Opcodes Described in This Chapter
Table 23-1 lists the opcodes described in this chapter.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Table 23-1 Opcodes Described in This Chapter

Opcode Topic

PCM_OP_APN_POL_DEVICE_ASSOCIATE Associating APN with an Account or Service

PCM_OP_APN_POL_DEVICE_CREATE Creating an APN Device

Changing the APN Device State

PCM_OP_APN_POL_DEVICE_DELETE Deleting an APN Device

PCM_OP_APN_POL_DEVICE_SET_ATTR Modifying an APN Device

PCM_OP_APN_POL_DEVICE_SET_STATE Changing the APN Device State

PCM_OP_DEVICE_ASSOCIATE Associating an IP Address with Accounts or Services

Associating APN with an Account or Service

PCM_OP_DEVICE_CREATE Creating a Single IP Address Device

Creating an APN Device

PCM_OP_DEVICE_DELETE Deleting an IP Address Device

Deleting an APN Device

23-1

Table 23-1 (Cont.) Opcodes Described in This Chapter

Opcode Topic

PCM_OP_DEVICE_POL_ASSOCIATE Disassociating an IP Address Device from Accounts or
Services

Associating APN with an Account or Service

PCM_OP_DEVICE_POL_CREATE Creating a Single IP Address Device

Creating an APN Device

PCM_OP_DEVICE_POL_DELETE Deleting an APN Device

PCM_OP_DEVICE_POL_SET_ATTR Modifying an IP Address Device

Modifying an APN Device

PCM_OP_DEVICE_POL_SET_STATE Changing IP Device States from Unallocated to Returned

Changing the APN Device State

PCM_OP_DEVICE_SET_ATTR Modifying an IP Address Device'

Modifying an APN Device

PCM_OP_DEVICE_SET_STATE Changing IP Device States from Unallocated to Returned

Changing the APN Device State

PCM_OP_IP_DEVICE_CREATE Creating a Single IP Address Device

Creating a Range of IP Address Devices

Creating a Range of IP Addresses with a Subnet Mask

PCM_OP_IP_DEVICE_DELETE Deleting an IP Address Device

PCM_OP_IP_DEVICE_SET_ATTR Modifying an IP Address Device

PCM_OP_IP_DEVICE_SET_STATE Changing IP Device States from Unallocated to Returned

PCM_OP_IP_POL_DEVICE_ASSOCIATE Associating an IP Address with Accounts or Services

PCM_OP_IP_POL_DEVICE_CREATE Creating a Single IP Address Device

Customizing IP Address Creation

Changing the APN Device State

PCM_OP_IP_POL_DEVICE_DELETE Deleting an IP Address Device

PCM_OP_IP_POL_DEVICE_SET_ATTR Modifying an IP Address Device

PCM_OP_IP_POL_DEVICE_SET_STATE Changing IP Device States from Unallocated to Returned

Modifying an IP Address Device

Managing Your IP Address Device Life Cycle
This section explains how to use the IP Facilities Module (FM) and IP Policy FM to manage
your IP address inventory.

Creating a Single IP Address Device
You create a single IP address device by calling PCM_OP_IP_DEVICE_CREATE and passing
it an flist that includes:

• A type-only POID that specifies the device type of /device/ip in the PIN_FLD_POID field

• A valid IP address in the PIN_FLD_START_ADDRESS field

• The database being used

Chapter 23
Managing Your IP Address Device Life Cycle

23-2

You add any validation checks or other business logic related to creating a single IP address
device to PCM_OP_IP_POL_DEVICE_CREATE.

This is the calling sequence:

1. PCM_OP_IP_DEVICE_CREATE performs these tasks:

• Verifies that the device type is /device/ip

• Returns an error if the IP address already exists

• Calls PCM_OP_DEVICE_CREATE

2. PCM_OP_DEVICE_CREATE performs this task:

• Calls PCM_OP_DEVICE_POL_CREATE

3. PCM_OP_DEVICE_POL_CREATE performs this task:

• Passes everything to PCM_OP_IP_POL_DEVICE_CREATE

4. PCM_OP_IP_POL_DEVICE_CREATE performs these tasks:

• Determines the IP address number

• Validates that the new IP/APN device combination is unique in the database

• Runs any other validation checks or business logic that you have added

• Returns an error if the IP device/APN device combination is a duplicate

• Passes this information back to PCM_OP_DEVICE_CREATE

5. PCM_OP_DEVICE_CREATE performs these tasks:

• Creates the object

• Returns an error if the address is invalid

For more information on using PCM_OP_DEVICE_CREATE and
PCM_OP_DEVICE_POL_CREATE, see "Creating /device Objects".

Creating a Range of IP Address Devices
You create a range of IP addresses the same way you create a single IP address, with a single
call to PCM_OP_IP_DEVICE_CREATE. To create a range of addresses you enter valid start
and end IP addresses in the PIN_FLD_START_ADDRESS and PIN_FLD_END_ADDRESS
fields. This opcode creates a contiguous range of /device/ip objects, one for each of the
addresses, including the start and end addresses.

You have the option of using wildcard characters in the last two octets of the
PIN_FLD_START_ADDRESS field. If they are used, PCM_OP_IP_DEVICE_CREATE creates
a range using them.

If wildcard characters are not used, PCM_OP_IP_DEVICE_CREATE performs one of the
following actions:

• Creates a range using the end address

• Creates a range using subnet mask

• Creates a single IP device

PCM_OP_IP_DEVICE_CREATE returns an error if the range is invalid.

Chapter 23
Managing Your IP Address Device Life Cycle

23-3

Creating a Range of IP Addresses with a Subnet Mask
You create a range of all possible IP addresses under a specific subnet mask the same way
you create a single IP address, with a single call to PCM_OP_IP_DEVICE_CREATE. To create
an IP address/subnet mask range, you pass in the following information:

• A valid address in the PIN_FLD_START_ADDRESS field

• A valid subnet mask address in the PIN_FLD_SUBNET_MASK field

PCM_OP_IP_DEVICE_CREATE verifies that the range is valid and then creates all possible IP
addresses in the range including the start and end addresses.

PCM_OP_IP_DEVICE_CREATE returns an error if the range is invalid.

Customizing IP Address Creation
Use PCM_OP_IP_POL_DEVICE_CREATE to customize IP address device creation. By
default this opcode only checks to make sure the IP addresses to be created are not duplicates
of existing IP addresses. This opcode is an empty hook.

Associating an IP Address with Accounts or Services
You associate an IP address with any number of accounts or services by calling
PCM_OP_DEVICE_ASSOCIATE. You also make device state changes to or from the
allocated state with a call to PCM_OP_DEVICE_ASSOCIATE.

PCM_OP_DEVICE_ASSOCIATE requires the this information:

• An array of IP address objects to associate

• A PIN_FLD_SERVICES array containing an /account or /service POIDs in the
PIN_FLD_ACCOUNT_OBJ or PIN_FLD_SERVICE_OBJ field

• The PIN_FLD_FLAGS field set to 0 (indicating an association)

Use PCM_OP_IP_POL_DEVICE_ASSOCIATE to customize how to verfiy changing the state
of an IP address device when services are assigned to, or removed from the device.

Disassociating an IP Address Device from Accounts or Services
The process of disassociating an IP address from accounts or services is much like
associating IP addresses and accounts or services, except that you send in the input flist with
PIN_FLD_FLAGS set to 1. In this case PCM_OP_DEVICE_POL_ASSOCIATE:

• Confirms that none of the IP devices are associated with a service or account

• Changes the states from allocated to unallocated

• Disassociates the accounts or services by removing them from the /device/ip object

Changing IP Device States from Unallocated to Returned
You change IP device states between unallocated to returned using a call to
PCM_OP_IP_DEVICE_SET_STATE. You pass in an array of the IP devices that get the state
change, and the new state.

Chapter 23
Managing Your IP Address Device Life Cycle

23-4

Note:

To make any device state changes to or from the allocated state, see "Associating
an IP Address with Accounts or Services".

PCM_OP_IP_DEVICE_SET_STATE calls PCM_OP_DEVICE_SET_STATE.

When setting states for multiple IP devices, PCM_OP_IP_DEVICE_SET_STATE operates on a
contiguous range of IP addresses devices based on starting and ending IP addresses you
supply. The opcode sets the state for all /device/ip objects in that range.

You add any validation checks or other business logic related to changing the state of all
instances of an IP device to PCM_OP_IP_POL_DEVICE_SET_STATE.

PCM_OP_IP_POL_DEVICE_SET_STATE enables you to customize how to verify that an IP
address device is eligible to accept a device state change.

PCM_OP_IP_POL_DEVICE_SET_STATE changes the state for all instances of an IP device.
This opcode searches for all instances of an IP address in the database and changes their
states. If the IP device is associated with multiple APNs, they are all changed.

PCM_OP_IP_POL_DEVICE_SET_STATE is called by PCM_OP_DEVICE_POL_SET_STATE.

PCM_OP_IP_POL_DEVICE_SET_STATE determines whether the IP state change is from or
to the allocated state.

• If the state change is from or to allocated, it calls
PCM_OP_IP_POL_DEVICE_ASSOCIATE to perform the change.

• For all other state changes, it calls PCM_OP_IP_DEVICE_SET_STATE to make the state
change.

Modifying an IP Address Device
You use PCM_OP_IP_DEVICE_SET_ATTR to change the APN an IP is associated with. You
call this opcode and pass it the POID of the /device/ip object and the change you want to
make.

This opcode calls PCM_OP_DEVICE_SET_ATTR. To set attributes for a range of devices,
send in start and end POIDs and this opcode make changes to all IP devices within that
contiguous range.

You add any validation checks or other business logic related to modifying an IP device to
PCM_OP_IP_POL_DEVICE_SET_ATTR.

PCM_OP_IP_POL_DEVICE_SET_ATTR verifies that an IP address device is not in an
allocated or returned state, and then changes an attribute for the /device/ip object.

PCM_OP_IP_POL_DEVICE_SET_ATTR is an empty hook.

PCM_OP_IP_POL_DEVICE_SET_ATTR is called by PCM_OP_DEVICE_POL_SET_ATTR
and PCM_OP_IP_POL_DEVICE_SET_STATE.

Sorting IP Devices by Using Canonical IP Address
The /device/ip object stores a canonical version of the device IP address that sorts more
logically than a raw IP address. The PIN_FLD_DEVICE_CANONICAL_ID field contains an IP

Chapter 23
Managing Your IP Address Device Life Cycle

23-5

address that has been canonicalized by expanding all four parts to three digits each by using 0
(zero) as a placeholder. For example, the IP address 152.3.44.67 is stored in
PIN_FLD_DEVICE_CANONICAL_ID as 152.003.044.067. Any standard ASCII search will sort
these normalized IP address representations in simple numerical order.

Deleting an IP Address Device
To delete an IP address, call PCM_OP_IP_DEVICE_DELETE with a /device/ip object on the
input flist. Before you delete IP devices, be sure to disassociate them from and accounts,
services, or APNs.

This opcode calls PCM_OP_IP_DEVICE_DELETE. This opcode deletes one IP device at a
time. You must call it once for each device to delete.

You add any validation checks or other business logic related to deleting an IP device to
PCM_OP_IP_POL_DEVICE_DELETE.

PCM_OP_IP_POL_DEVICE_DELETE verifies that an IP address device is not in an allocated
state, and then deletes the /device/ip object.

PCM_OP_IP_POL_DEVICE_DELETE is an empty hook.

You cannot use the IP Address Administrator to delete devices. Using
PCM_OP_DEVICE_DELETE is the only way to do this.

Managing your APN Device Life Cycle
This section explains how to use the APN FM to manage your APN device inventory.

Creating an APN Device
To create an APN device, call PCM_OP_DEVICE_CREATE with a /device/apn object on the
input flist. You add any validation checks or other business logic related to creating an APN
device to PCM_OP_APN_POL_DEVICE_CREATE.

PCM_OP_APN_POL_DEVICE_CREATE is called by PCM_OP_DEVICE_POL_CREATE.

PCM_OP_APN_POL_DEVICE_CREATE verifies that the APN names and IDs being created
are correct and determines whether there are any existing APN devices with duplicate names.

PCM_OP_APN_POL_DEVICE_CREATE is an empty hook.

Associating APN with an Account or Service
You associate an APN with an account or service by calling PCM_OP_DEVICE_ASSOCIATE,
passing it an flist with the following:

• The POID of the /device/apn object in the PIN_FLD_POID field

• An account or service POID in the PIN_FLD_ACCOUNT_OBJ or
PIN_FLD_SERVICE_OBJ field

You add any validation checks or other business logic related to associating an APN with an
account or service PCM_OP_APN_POL_DEVICE_ASSOCIATE.

PCM_OP_APN_POL_DEVICE_ASSOCIATE is called by
PCM_OP_DEVICE_POL_ASSOCIATE.

Chapter 23
Managing your APN Device Life Cycle

23-6

PCM_OP_APN_POL_DEVICE_ASSOCIATE verifies that the APN device is in a new or
usable state.

For more information on associating devices by using PCM_OP_DEVICE_ASSOCIATE and
PCM_OP_DEVICE_POL_ASSOCIATE, see "Device Management Opcodes", "Device FM
Policy Opcodes", and "Device FM Standard Opcodes".

Modifying an APN Device
To modify an APN, call PCM_OP_DEVICE_SET_ATTR, passing it a valid APN ID in the
PIN_FLD_DEVICE_ID field. You add any validation checks or other business logic related to
modifying an APN device to PCM_OP_APN_POL_DEVICE_SET_ATTR.

PCM_OP_APN_POL_DEVICE_SET_ATTR verifies that an APN device is in a state to accept
changes, and then makes the changes.

PCM_OP_APN_POL_DEVICE_SET_ATTR confirms the following:

• The APN device object type is /device/apn.

• None of the IP addresses associated with the APN device are in an allocated state.

PCM_OP_APN_POL_DEVICE_SET_ATTR is called by PCM_OP_DEVICE_POL_SET_ATTR.

For more information on modifying devices using PCM_OP_DEVICE_SET_ATTR and
PCM_OP_DEVICE_POL_SET_ATTR, see "Device Management Opcodes", "Device FM Policy
Opcodes", and "Device FM Standard Opcodes".

Changing the APN Device State
To change the state of an APN device, pass the /device/apn object POID and the new state to
PCM_OP_DEVICE_SET_STATE. Add any validation checks or other business logic related to
changing the state of an APN to PCM_OP_APN_POL_DEVICE_SET_STATE.

PCM_OP_APN_POL_DEVICE_SET_STATE verifies that an APN device is eligible to accept a
device state change, and then makes the changes.

PCM_OP_APN_POL_DEVICE_SET_STATE is called by
PCM_OP_DEVICE_POL_SET_STATE.

By default, PCM_OP_APN_POL_DEVICE_SET_STATE confirms the following:

• If the state change is from usable to unusable, none of its associated IP devices are in an
allocated state. If any are, an error is returned, and the entire transaction is rolled back.

• If the APN device state change is from new to usable,
PCM_OP_IP_POL_DEVICE_CREATE was used to call this opcode.

When changing device states:

• The new device state is set by PCM_OP_APN_POL_DEVICE_CREATE only when an
APN is created.

• Changing the device state from new to usable is allowed only as part of creating an IP
device (which must be associated with an APN. In this case
PCM_OP_APN_POL_DEVICE_SET_STATE confirms that
PCM_OP_IP_POL_DEVICE_CREATE is part of the calling sequence. See "Creating a
Single IP Address Device" and "Creating a Range of IP Address Devices".

Chapter 23
Managing your APN Device Life Cycle

23-7

Deleting an APN Device
You delete an APN device by calling PCM_OP_DEVICE_DELETE with the object type of /
device/apn in the input flist. Before you delete the APN device, be sure to disassociate any IP
devices or services. You add any validation checks or other business logic related to deleting
an APN device to PCM_OP_APN_POL_DEVICE_DELETE.

PCM_OP_APN_POL_DEVICE_DELETE performs validation checks and deletes associated IP
devices during APN device deletion. If any associated IP devices are allocated, this opcode
does not delete it or the APN device.

PCM_OP_APN_POL_DEVICE_DELETE is called by PCM_OP_DEVICE_POL_DELETE.

You cannot use the IP Address Administrator application to delete devices. Using
PCM_OP_DEVICE_DELETE is the only way to do this.

Extending the IP Address Manager Storable Classes
You use the BRM Storable Class Editor to extend the /device/ip storable class to meet your
business needs. For more information, see "Creating Custom Fields and Storable Classes" in
BRM Developer's Guide.

Adding Business Logic to the IP Address and APN Policy FMs
The IP and APN policy Facilities Modules (FMs) are designed for you to add your own
customizations, such as additional validation checks. For information on extending these FMs,
see "Adding and Modifying Policy Facilities Modules" in BRM Developer's Guide.

Chapter 23
Extending the IP Address Manager Storable Classes

23-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	Part I Opcode Reference
	1 Opcode Descriptions
	About Using Opcodes
	About the Opcode Visibility Value
	About the Opcode Transaction Value

	Account Dump FM Policy Opcodes
	Account Dump FM Standard Opcode
	Accounts Receivable FM Policy Opcodes
	Accounts Receivable FM Standard Opcodes
	Account Synchronization FM Opcodes
	Activity FM Policy Opcodes
	Activity FM Standard Opcodes
	Balance FM Policy Opcodes
	Balance FM Standard Opcodes
	Base Opcodes
	Batch Suspense Manager FM Standard Opcodes
	Billing FM Policy Opcodes
	Billing FM Standard Opcodes
	Channel FM Standard Opcodes
	Collections Manager FM Policy Opcodes
	Collections Manager FM Standard Opcodes
	Contract FM Policy Opcodes
	Contract FM Standard Opcodes
	Customer FM Policy Opcodes
	Customer FM Standard Opcodes
	Customer Care FM Standard Opcodes
	Deposit FM Policy Opcodes
	Deposit FM Standard Opcodes
	Device FM Policy Opcodes
	Device FM Standard Opcodes
	Email Data Manager Opcodes
	General Ledger FM Policy Opcodes
	General Ledger FM Standard Opcode
	GPRS Manager 3.0 FM Policy Opcode
	GPRS Manager 3.0 FM Standard Opcode
	Group FM Standard Opcodes
	GSM Manager FM Policy Opcode
	GSM Manager FM Standard Opcode
	Installment FM Policy Opcodes
	Installment FM Standard Opcodes
	Invoicing FM Policy Opcodes
	Invoicing FM Standard Opcodes
	IP Address Manager APN FM Policy Opcodes
	IP Address Manager FM Policy Opcodes
	IP Address Manager FM Standard Opcodes
	Job FM Standard Opcodes
	LDAP Base Opcodes
	Loan FM Policy Opcodes
	Loan FM Standard Opcodes
	Monitor FM Standard Opcodes
	Notification FM Standard Opcodes
	Notification FM Policy Opcodes
	Number Manager FM Policy Opcodes
	Number Manager FM Standard Opcodes
	Offer Profile FM Standard Opcode
	Order FM Policy Opcodes
	Order FM Standard Opcodes
	Payment FM Policy Opcodes
	Payment FM Standard Opcodes
	Permissioning FM Standard Opcodes
	Process Audit FM Policy Opcodes
	Process Audit FM Standard Opcodes
	Provisioning FM Policy Opcode
	Provisioning FM Standard Opcodes
	Publish FM Policy Opcodes
	Rating FM Policy Opcodes
	Rating FM Standard Opcodes
	Remittance FM Policy Opcodes
	Remittance FM Standard Opcodes
	Replication FM Policy Opcode
	Rerating FM Standard Opcode
	SDK FM Standard Opcodes
	Services Framework Manager FM Policy Opcodes
	Services Framework Manager FM Provisioning Opcodes
	SIM Manager FM Policy Opcodes
	SIM Manager FM Standard Opcodes
	Subscription Management FM Policy Opcodes
	Subscription Management FM Standard Opcodes
	Suspense Manager FM Standard Opcodes
	Universal Message Store (UMS) FM Standard Opcodes

	2 Context Management Opcodes
	Context Management Opcodes
	PCM_CONNECT
	PCM_CONTEXT_CLOSE
	PCM_CONTEXT_OPEN
	PCM_OP
	PCM_OPREF

	Part II Opcode Workflows
	3 About Opcode Workflows
	4 Accounts Receivable Opcode Workflows
	Opcodes Described in This Chapter
	Getting a List of A/R Items
	Reversing Refunds
	Transferring Amounts between Items
	Transferring Balances between Items
	Transferring From a Negative to a Positive Balance
	Transferring Balances between Balance Groups
	Customizing Item Transfer Validation

	Managing Currency and Non-Currency Balance Transfers between Accounts or Services
	Transferring Balances between Accounts or Services
	Customizing Balance Transfers

	Transferring Services between Balance Groups
	Performing Adjustments
	Adjusting Accounts, Subscription Services, and Member Services
	Fields You Should Include in the Flist for Account, Subscription Service, and Member Service Adjustments
	Flags for Account, Subscription Service, and Member Service Adjustments

	Adjusting Bills
	Fields You Should Include in the Flist for Bill Adjustments
	Flags for Bill Adjustments

	Adjusting Items
	Fields You Should Include in the Input Flist for Item Adjustments
	Flags for Item Adjustments
	Customizing Item Adjustments

	Adjusting Events
	Fields You Should Include in the Input Flist for Event Adjustments
	Flags for Event Adjustments
	Categorizing Unbilled Event Adjustments in G/L Reports

	Including Taxes in the Adjustment
	Tax Processing for Account Adjustments
	Tax Processing for Bill and Item Level Adjustments
	Tax Processing for Event Adjustments

	Including Reason Codes in the Adjustment
	Assigning G/L IDs for an Adjustment
	Applying Debits and Credits
	Flags for Applying Debits and Credits

	Performing Disputes and Settlements
	Disputing Bills
	Fields You Should Include in the Input Flist for Bill Disputes
	Flags for Bill Disputes

	Settling Disputed Bills
	Fields You Should Include in the Input Flist
	Flags for Bill Settlements

	Disputing Items
	Fields You Should Include in the Input Flist
	Flags for Item Disputes
	Customizing Item Disputes

	Settling Disputed Items
	Fields You Should Include in the Input Flist for Item Settlements
	Flags for Item Settlements
	Customizing Item Settlements

	Disputing Events
	Fields You Should Include in the Input Flist for Event Disputes
	Flags for Event Disputes

	Settling Disputed Events
	Fields You Should Include in the Input Flist for Event Settlements
	Flags for Event Settlements

	Configuring the Tax Treatment for Adjustments, Disputes, and Settlements
	Including Taxes in the Dispute or Settlement
	Tax Processing for Disputes
	Tax Processing for Settlements

	Including Reason Codes in the Dispute or Settlement
	Assigning G/L IDs for a Dispute or Settlement

	Writing Off Debts and Reversing Write-Offs
	About Initiating Write-Offs
	Performing Write Offs
	About Account Write-Offs
	About Bill Unit Write-Offs
	About Bill Write-Offs
	Flags You Should Use for Write-Offs
	About Taxes for Write-Offs

	Customizing Write-Off Validation
	About Initiating Write-Off Reversals
	Reversing Write-Offs
	Reversing a Write-Off Reversal
	Customizing Write-Off Reversals
	Customizing the Rules for Performing Write-Off Reversals
	About Automatic Write-Off Reversals during Payment Collection
	Customizing Reversal of Payments Allocated to Written-Off Accounts

	Retrieving A/R Information
	Finding a Bill
	Finding a Bill Unit
	Finding a Balance Group and Its Balances
	Finding a Balance Group and Service for Bill Units

	Getting a List of Bills
	Getting Bill Items
	Getting Bills
	Finding Items
	Finding Discounts in Bill Items

	Retrieving a Balance Summary
	Retrieving a List of Bills for a Bill Unit
	About the Bill Data Retrieved
	Specifying the Search Criteria for Retrieving Bills

	Retrieving A/R Items That Apply to a Bill Unit
	About the Item Data Retrieved
	Specifying Search Criteria for Retrieving Items

	Retrieving a List of Bill Items for a Bill Unit
	About the Bill Item Data Retrieved
	Customizing the Number of Items to Retrieve in a Search
	Specifying Search Criteria for Bill Items

	Retrieving Details about a Specific A/R Item or Bill Item
	About the Item Data Retrieved
	About the Item Detail Data Retrieved
	Specifying Search Criteria for Retrieving Items

	Retrieving Dispute Details for a Bill Unit
	Retrieving a Full Set of Dispute Data
	Data Retrieved by PCM_OP_AR_GET_DISPUTES
	Specifying Search Criteria for PCM_OP_AR_GET_DISPUTE_DETAILS
	Returning a Limited Set of Dispute Data
	Data Retrieved by PCM_OP_AR_GET_DISPUTES
	Specifying Search Criteria for PCM_OP_AR_GET_DISPUTES

	Retrieving Details on Available Balances
	Finding Events Associated with an Account
	Finding Events Associated with Bill Items

	Performing Rollover Transfers

	5 Activity Opcode Workflows
	Opcodes Described in This Chapter
	Managing Sessions
	Starting Sessions
	Recording the Start of a Session
	Updating a Session Event
	Recording the End of a Session
	Recording Session Events
	Loading Sessions

	Customizing News Feed Values and Events
	Managing Operation Failure Records
	Recording Failed Operations
	Retrieving Operation Failure Records

	6 Billing Opcode Workflows
	Opcodes Described in This Chapter
	Creating Bills
	Modifying a Bill Object
	Calculating When a Bill is Due
	Customizing Bill Due Date Calculations for Payment Terms
	Customizing the Format of Bill and Invoice Numbers
	Running Bill Now
	Customizing Bill Now
	Running Bill Now for a Service
	Applying Discounts and Folds with Bill Now
	Changing the Bill Now Due Date

	On-Purchase Billing
	Creating /item/sponsor Objects

	Customizing Billing
	Customizing the Minimum Amount to Charge
	Customizing Accounting Cycles
	Customizing How to Bill Events That Occur between Billing Cycles
	Customizing Credit Limit and Consumption Rules
	Customizing Client Applications to Modify Fixed Thresholds
	About Currency Conversion

	Managing Bill Units
	Creating Bill Units
	Setting the Billing Day of Month

	Updating Bill Units
	Preparing Bill Unit Data
	How BRM Calculates Long Billing Cycles
	Setting the Billing DOM According to the Payment Method
	Assigning Default Billing Information
	Determining the Accounting Type
	Assigning Billing DOMs to Bill Units
	Assigning Billing DOMs Based on the Billing Segment
	Customizing the DOM Assignment Process

	Validating Bill Unit Data
	Validating Billing Segment Information

	Suspending and Resuming Billing of Closed Accounts
	Suspending Billing of Closed Accounts
	Resuming Billing When Closed Accounts Are Reactivated

	Deleting Bill Units
	Setting Up Hierarchical and Sharing Relationships among Bill Units
	Setting Up Hierarchical Relationships among Bill Units
	Setting Up Sharing Relationships among Bill Units

	Changing Hierarchical and Sharing Relationships among Bill Units
	Billing Delays for Moved Bill Units

	Suppressing Bills
	Determining Whether Bills Should Be Suppressed
	Manually Suppressing Bills
	Suppressing Accounts
	Ending Manual Account Suppression
	Adding Bill Suppression Exceptions
	Deleting Bill Suppression Exceptions

	Making Trial Bills
	Collecting Split Revenue Assurance Data

	Corrective Billing
	Making a Corrective Bill
	Validating Bills for the Corrective Billing Process
	Standard Bill Validations
	Policy Bill Validations

	Payment Due Dates for Corrective Bills

	Using Revenue Assurance Manager
	Customizing Revenue Assurance Manager
	Customizing Audit Object Validation
	Customizing Alert Behavior
	Customizing the Revenue Assurance Written-Off Event Record Summaries

	7 Charging Opcode Workflows
	Opcodes Described in This Chapter
	Subscription Rating Opcodes
	Implementing Custom Rating
	Getting ERAs for an Event
	Modifying Rated Events
	Modifying ERAs
	Managing Credit Limits and Sub-Balance Consumption Rules
	How BRM Handles Consumption Rules and Credit Limits
	Retrieving Credit Limits

	Maintaining Subscriber's Charging Preferences Data
	Modifying Events before Sending Them to ECE
	Processing BRM Events That Make Up Account Synchronization Business Events
	Modifying BRM Events That Make Up Account Synchronization Business Events

	Rerating Opcodes
	How BRM Tracks Rerated Events
	How BRM Creates Rerate Jobs
	How BRM Handles Duplicate Rerate Jobs
	Rerating Cycle Forward and Cycle Forward Arrears Events
	Customizing Event Searches for Rerating
	Customizing Automatic Creation of Rerate Jobs
	Creating a Custom Opcode for Rerating
	Specifying a Rerate Reason Code
	Specifying Selection Criteria
	Specifying Price Overrides
	Configuring Event Notification for Customized Automatic Rerating
	Configuring Event Notification for Override Pricing

	Suspense Management
	Suspended Call Record States
	Recycling Suspended Records
	Searching for Records in a CDR File
	Searching for Records with a Recycle Key

	Initiating Suspense Recycling
	Resubmitting Suspended Batches

	Changing the Contents of Fields in Suspended Event Records
	Undoing Edits to Suspended Event Records
	Deleting Suspended Records
	Deleting Records for Suspended Batches

	Deleting Call Records with a Specific Recycle Key and a Status of Succeeded or Written-Off
	Deleting Records in a CDR File

	Writing Off Suspended Records
	Writing Off Suspended Batches

	Processing Suspended Records in Bulk
	Processing Suspended Records in Multiple Steps
	Editing Suspended Records in Bulk
	Writing Off Suspended Records in Bulk
	Deleting Suspended Records in Bulk

	Provisioning Process Opcode Flow
	About Creating Service Orders for Profile Changes

	GPRS Opcodes
	About Associating APNs and QoS with GPRS Services
	Associating APNs and QoS with GPRS Services
	Mapping Service Types to Service-Specific Opcodes
	Associating APN and QoS Pairs with GPRS Services
	Updating Custom GPRS Service Fields
	Updating Custom GSM Service Fields

	8 Collections Opcode Workflows
	Opcodes Described in This Chapter
	Customizing Collections Manager
	Configuring the Currency Used in Collections
	Customizing Due Dates
	Customizing Dunning Letters
	Applying Finance Charges
	Applying Late Fees
	Assigning Bill Units Automatically
	Assigning Bill Units to a Debt Collections Agency
	Customizing How to Apply Collections Actions to Collections Group Members
	Mapping Bill Units to Collections Profiles
	Performing Custom Collections Actions
	Performing Custom Actions when a Bill Unit Leaves Collections

	Managing Overdue Balance Collection
	Creating or Updating Collections Actions
	Creating or Updating Collections Profiles
	Getting All Currently Defined Collections Actions
	Getting All Currently Defined Collections Profiles
	Getting All Currently Defined Collections Scenarios
	Getting Details of a Collections Scenario
	Getting a List of Message Templates
	Deleting an Existing Collections Action
	Deleting an Existing Collections Profile
	Deleting an Existing Collections Scenario

	Managing Promise-to-Pay Agreements
	Creating a System-Configured Promise-to-Pay Agreement
	Creating a Manually Configured Promise-to-Pay Agreement
	Updating Amount and Payment Details
	Canceling a Promise-to-Pay Agreement
	Breaking a Promise-to-Pay Agreement
	Rescheduling a Promise-to-Pay Action
	Changing the Status of a Promise-to-Pay Action
	Completing Promise-to-Pay Installments during Payment Processing

	Managing Collections Groups
	Creating a Collections Group
	Adding Members to a Collections Group
	Removing a Member from a Collections Group
	Deleting a Collections Group
	Retrieving a Collections Group
	Modifying a Collections Group
	Changing the Parent of a Collections Group

	Performing Manual Collections Actions
	Assigning Bill Units to a Collections Agent
	Adding Actions to a Collections Scenario
	Exempting Bill Units from Collections
	Rescheduling an Action Scheduled for a Bill Unit
	Changing the Status of a Collections Action
	Replacing a Collections Scenario

	Performing System Collections Actions
	Executing Automatic Collections Actions
	Preparing Invoice Reminders
	Gathering and Storing Data for Dunning Letters
	Retrieving Dunning Letters
	Executing Pending Actions for a Bill Unit

	Retrieving Collections Information
	Retrieving a List of Bill Units in Collections
	Retrieving Aging Buckets Information
	Retrieving Scenario Information
	Getting All Valid Collections Scenarios
	Retrieving a List of Collections Actions
	Retrieving Collections Action History Information

	9 Customer Management Opcode Workflows
	Opcodes Described in This Chapter
	About Account Locking
	Transaction Handling During Account Creation
	Creating Accounts
	Customizing Account Numbers
	Customizing the Introductory Message
	Sending the Introductory Message
	Customizing Account Creation Charges
	Creating Multiple Accounts in One Transaction
	Creating Accounts with Backdated Services or Balances
	Creating Customer's Collections Profiles at the Time of Customer Account Creation
	Customizing Automatic Account Creation (AAC) Information
	Adding Custom Account Creation Steps Before the Account Is Committed
	Adding Custom Account Creation Steps After the Account Is Committed
	Integrating BRM With an External Account Creation Application
	Sending Account Information to Your Application when an Account is Created
	Sending Account Information to Your Application when an Account is Modified

	Returning a Point-of-Presence (POP) List
	Creating Accounts in a Multischema System
	Getting a List of Database Schemas
	Selecting a Database Schema

	Managing Name and Address Information
	Customizing Name and Address Information
	Customizing Locale Information
	Creating Custom Country Aliases

	Authenticating and Authorizing Customers
	Customizing Login Names
	Requiring Login Names for Email and Broadband Services
	Creating Logins for Prepaid Services
	Creating Logins for Email Services
	Creating Passwords
	Customizing Passwords
	Implementing Password Encryption
	Creating Passwords for Prepaid Services
	Customizing Password Expiration

	Authenticating Customers
	Authenticating User Actions
	Customizing Authentication Checks
	Enabling Duplicate Session Checking

	Managing and Customizing Profiles
	Retrieving Account Profile Information

	Modifying an Account
	Changing a Bill's Payment Method

	Creating Services
	Modifying Services
	Finding Accounts
	Finding a Customer's Account Information

	Deleting Accounts
	Customizing Customer Payment Information
	Customizing Payment Method Data Preparation
	Specifying the Payment Processor Vendor

	Customizing Payment Method Validation
	Default /payinfo Validation
	CVV2/CID Fraud Prevention Functionality
	Verifying the Maximum Number of CVV2 Digits
	Disabling the Credit Card Checksum
	Customizing the Banking Information for US and Canadian Direct Debit
	Customizing the Account Used for Credit Card Validation

	Managing Mandate Information
	Registering a Mandate
	Updating a Mandate
	Canceling a Mandate

	Setting Account, Service, and Bill Unit Status
	Changing the Status of an Account, Bill Unit, or Service
	PIN_FLD_STATUS Field Values for PCM_OP_CUST_SET_STATUS
	PIN_FLD_STATUS_FLAG Field Values for PCM_OP_CUST_SET_STATUS
	About Deferred Actions When Using PCM_OP_CUST_SET_STATUS
	Setting, Resetting, or Unsetting a Deferred CLOSE

	Customizing Status Changes
	Inactivating Accounts that Exceed a Specified Limit
	Backdating Status Changes

	Getting Life Cycle States
	Amending Creditor Information
	Amending a Mandate
	Canceling a Mandate
	Managing Deferred Actions
	Scheduling Deferred Actions
	Modifying Deferred Actions
	Deleting Deferred Actions
	Executing Deferred Actions
	Performing Policy Checks before Scheduling Deferred Actions

	Managing Service Groups
	Creating a Service Group
	Configuring Extended Rating Attributes for a Service Group
	Associating a Device with a Service Group
	Adding a Service to an Existing Service Group
	Canceling a Service Group
	Transferring Service Groups between Accounts in the Same Schema
	Enabling Transfer of Pending Scheduled Actions during Service Group Transfers

	Transferring Service Groups between Accounts in Different Schemas
	Enabling Transfer of Service Groups between Accounts in Multiple Schemas
	Transferring Service Groups across Schemas

	Managing Profile Sharing Groups
	Creating a Profile Sharing Group
	Validating Profile Sharing Group Members
	Modifying a Profile Sharing Group
	Adding Members to a Profile Sharing Group
	Adding Profiles to a Profile Sharing Group

	Deleting Members and Profiles from a Profile Sharing Group
	Changing the Owner of a Profile Sharing Group
	Deleting a Profile Sharing Group

	Using Access Control Lists
	Managing ACL Groups
	Accessing /group/acl Data
	Finding CSR Membership

	Customizing the Account Dump Utility (ADU)
	Business Profile Opcode Workflows
	Creating Business Profiles
	Assigning Bill Units to Business Profiles
	Changing a Bill Unit's Business Profile

	Getting Information about a Business Profile

	Creating and Managing Account Hierachies
	Creating Account Hierarchies
	Adding Accounts to Account Hierarchies
	Moving Accounts from One Account Hierarchy to Another
	Deleting Accounts from Account Hierarchies
	Deleting Account Hierarchies
	Finding the Parent of an Account Hierarchy
	Getting a List of Child Accounts in an Account Hierarchy
	About the PCM_OP_GROUP Opcodes
	Creating Groups
	Adding Members to Groups
	Deleting Members from Groups
	Setting a Group Parent
	Deleting Groups
	Updating Inheritance Fields in Groups

	10 Deposit Opcode Workflows
	Opcodes Described in This Chapter
	Creating Deposit Specification Profiles
	Validating Deposit Specification Profiles
	Getting Deposit Specification Profiles
	Modifying Deposit Specification Profiles
	Creating Deposit Specifications
	Validating Deposit Specifications
	Getting Deposit Specifications
	Modifying Deposit Specifications
	Deleting Draft Deposit Specifications
	Purchasing Deposits
	Validating a Deposit Purchase
	Getting Deposits
	Updating Deposits
	Validating Deposit Updates
	Collecting Deposit Payments
	Validating Deposit Payment Collections
	Reversing Deposits
	Validating a Deposit Reversal
	Releasing Deposits
	Validating a Deposit Release
	Transferring Deposits
	Validating a Deposit Transfer
	Adding Interest to a Deposit
	Customizing the Interest Calculation
	Requesting Deposit Refunds
	Validating a Deposit Refund Request
	Getting Refund Requests
	Updating Refund Requests
	Updating Received Deposits
	Triggering Deposits
	Retrieving Transaction Details of a Deposit

	11 Device Management Opcodes
	Opcodes Described in This Chapter
	About the Device Management Opcodes
	Creating /device Objects
	Changing Device Attributes and States
	Changing the Attributes of /device Objects
	Changing the State of a /device Object

	Associating /service and /device Objects
	Deleting /device Objects

	12 General Ledger Opcode Workflows
	Opcodes Described in This Chapter
	How G/L IDs Affect Storage and Reporting of G/L Data
	How BRM Records the Difference between Rounded and Unrounded Items
	Customizing G/L Data Stored in /journal Objects
	Customizing G/L Reports for Export
	Customizing G/L Export Report Contents
	Mapping BRM G/L Account Names to Third-Party Account Names
	Mapping BRM Balance Element IDs to Third-Party Balance Element IDs

	Customizing the G/L Report XML File Names

	Assigning G/L IDs to Prerated Events
	How BRM Exports G/L Reports
	How BRM Stores General Ledger Reports

	13 Group Opcode Workflows
	Opcodes Described in This Chapter
	Managing Sharing Groups
	Creating a Sharing Group
	Creating a Discount Sharing Group
	Creating a Charge Sharing Group
	Creating a Product Sharing Group
	Creating a Balance Monitor Group
	Validating the Members of a Balance Monitor Group

	Modifying a Sharing Group
	Adding Members to a Discount or Charge Sharing Group
	Adding Discounts to a Discount Sharing Group
	Adding Sponsored Charges to a Charge Sharing Group

	Deleting a Sharing Group
	Deleting a Discount Sharing Group
	Deleting a Charge Sharing Group
	Deleting a Member from a Discount Sharing Group
	Deleting a Member from a Charge Sharing Group
	Deleting a Shared Discount from a Discount Sharing Group
	Deleting a Sponsored Charge from a Charge Sharing Group

	Changing the Owner of a Sharing Group
	Changing the Owner of a Discount Sharing Group
	Changing the Owner of a Charge Sharing Group
	Changing the Owner of a Balance Monitor

	Adding a Monitor Group to a Member's /ordered_balgrp Object
	Getting a List of Charges Available for Charge Sharing

	Managing Ordered Balance Groups
	Creating an Ordered Balance Group
	Adding a Sharing Group to an Ordered Balance Group
	Deleting a Sharing Group from an Ordered Balance Group
	Customizing the Order in Which to Apply Sharing Groups
	Deleting an Ordered Balance Group
	Creating and Modifying Multiple Ordered Balance Groups Simultaneously

	Adding and Removing Members Automatically to Sharing Groups
	Adding Members to Newly Created Sharing Groups Automatically
	Adding Members to Hierarchy-Type Balance Monitors
	Adding Members to Payment Responsibility-Type Balance Monitors
	Adding Members to Hierarchy-Type Sharing Groups Automatically
	Adding Members to Paying Responsibility-Type Sharing Groups Automatically
	Updating Subscription-Type Monitors Automatically
	Removing Members from Balance Monitor Groups
	Removing Members from Sharing Groups

	Displaying Balance Monitor Information in Client Applications
	Retrieving the Balances for a Monitor Group
	Retrieving the Balance Monitors Owned by an Account or Service

	Updating Monitor Balances and Sending Credit Limit/Threshold Breach Notifications
	Example of Credit Threshold Notification Event Generation

	Managing Balance Monitors
	Creating and Updating Balance Monitors
	Deactivating Balance Monitors

	Managing Balance Groups
	Creating Balance Groups
	Customizing the Default Balance Group of a Bill Unit

	Moving a Balance Group from One Bill Unit to Another
	Deleting a Balance Group
	Modifying Sub-balances
	Modifying the Sub-balance Validity Period

	Converting an Account Hierarchy to Wholesale Billing

	14 Installment Opcode Workflows
	Opcodes Described in This Chapter
	Creating Installment Schedule Specifications
	Validating Installment Schedule Specifications
	Preparing Installment Schedule Specifications
	Modifying Installment Schedule Specifications
	Retrieving Installment Schedule Specifications
	Getting Installment Schedule Specifications
	Creating Installments
	Validating Installments
	Preparing Installments
	Applying Installment Charge
	Updating Installment Status
	Retrieving Installments
	Updating Installments
	Canceling Installments
	Installment Proposal

	15 Invoice Opcode Workflows
	Opcodes Described in This Chapter
	Setting the Default Payment Due Date
	Making Invoices
	Displaying Invoices
	Defining the Invoice Type
	How Invoices Are Formatted
	Customizing the Layout of Bill Items in Invoices
	Customizing the Format for Printed Invoices
	Customizing the Format for HTML Invoices
	Customizing the Format for XML Invoices
	Customizing the Invoice Format by Using an XSL Style Sheet
	Customizing the Format for DOC1 Invoices
	Displaying an Invoice On Demand

	Including Custom Data in Invoices
	Changing the Trial Billing Watermark

	Including the Time Zone in Invoices
	Adding Soft Descriptors to Invoices
	Specifying Event Fields to Cache for Invoicing
	Decoding Cached Event Data for Invoicing
	How Invoices Are Generated
	Customizing Invoice Search Operations
	Creating Custom Search Templates
	Example: Generating Invoices Based on Event Types
	Configuring Error Checking for Customized Invoicing

	Generating Trial Invoices
	How Trial Invoicing Works for Hierarchical Bill Units in BI Publisher 11g
	About Associating Bill Units with a BI Publisher Invoice and Report
	About the /associated_bus_profile Object
	Creating /associated_bus_profile Objects

	16 Job Opcode Workflows
	Opcodes Described in This Chapter
	Running BRM Applications
	Running Business Operation Jobs
	Managing Business Operations Job Templates

	17 Loan Opcode Workflows
	Opcodes Described in This Chapter
	Granting a Loan
	Customizing Loan Grants

	Granting a Channel Loan
	Resetting a Loan Cycle and Other Loan Profile Fields
	Checking a Customer's Eligibility for a Loan
	Customizing Loan Eligibility Checks

	Retrieving Loan Information
	Creating and Modifying a Customer's Loan Profile
	Customizing Loan Recovery

	18 Notification Opcode Workflows
	Opcodes Described in This Chapter
	Creating Notification Specifications
	Modifying Notification Specifications
	Retrieving Notification Specifications
	Managing In-Advance and Post-Expiration Notifications
	Calculating the Notification Delivery Time
	Verifying Customer Opt-In Preferences
	Retrieving Last Notification Time and Offset
	Customizing Notifications
	Customizing Notification Retrieval
	Preparing Notification Specifications
	Validating Notification Specifications

	19 Number Manager and SIM Card Manager Opcode Workflows
	Opcodes Described in This Chapter
	Number Manager Opcodes
	Creating Blocks of Numbers
	Modifying Blocks of Numbers
	Splitting Blocks of Numbers
	Managing Number Quarantine
	Managing Number Portability
	Customizing Number Manager
	Customizing Number Normalization
	Customizing How Numbers Are Associated with Services
	Customizing Telephone Number Attributes
	Customizing How a Number Can Be Changed
	Deleting a Number

	SIM Card Manager Opcodes
	Creating and Updating SIM Card Orders
	Creating SIM Cards
	Provisioning SIM Cards
	Customizing SIM Card Manager
	Customizing SIM Card Service Association
	Customizing SIM Card Validation
	Customizing SIM Card Number Changes

	20 Payment Opcode Workflows
	Opcodes Described in This Chapter
	Collecting Payments
	Finding Payments

	BRM-Initiated Payment Processing
	Initiating a Charge
	Processing Credit Card Charges
	Processing the Results of Credit Card Transactions
	Processing Paymentech Address Validation Return Codes
	Processing AVS Validations for International Credit Cards

	Processing Direct Debit Charges
	About Paymentech Direct Debit Implementation
	Creating a Custom Direct Debit Implementation

	Processing a Batch of Direct Debit Charges
	Checking the Results of BRM-Initiated Batch Payment Operations
	Validating Credit Card and Direct Debit Transactions
	Processing Credit Card Information during Account Creation
	Storing Card Credentials for Future Transactions
	Purging Card Credentials

	About Credit Card Payment Confirmation Numbers

	Externally Initiated Payment Processing
	Receiving Payments
	Validating Payments
	About the Default Payment Validation Process
	About Payment Validation Flags

	Configuring Unconfirmed Payment Processing
	Handling Overpayments and Underpayments
	Calculating Payment Collection Dates
	How BRM Selects the Items to Which Payments Are Applied
	Allocating Account Payments to Multiple Bill Units
	Allocating Externally Initiated Payments by Due Amount

	Reversing Payments
	Refunding Payments
	Writing Off Payments
	Finding Payment Info
	Adding a Custom Payment Method
	Creating a /config/payment Object
	Viewing Payment Information for a Custom Payment Method
	Configuring Payment Center for Custom Payment Methods

	How Opcodes Read the Payment Method
	Processing Payment Fees
	Applying Payment Fees
	Customizing Payment Fees
	Using Custom Reason Codes to Customize Payment Fees
	Customization example: Charging a fee based on the customer segment

	Storing Additional Information with Payment Fees

	Processing Payment Incentives
	Triggering Payment Incentives
	Granting Payment Incentives
	Reversing Payment Incentives
	Customizing Payment Incentives
	Customizing How to Trigger Payment Incentives
	Customizing How to Grant Payment Incentives
	Manually Reversing a Payment Incentive

	Managing Top-Ups
	Setting Up Top-Up Information in an Account
	Preparing an Account's Top-Up Information
	Validating an Account's Top-Up Information
	Finding Top-Up Events
	Creating an Account's Top-Up Information
	Modifying an Account's Top-Up Information
	Deleting Top-Ups
	Finding Sponsored Top-Up Groups
	Setting a Customer's Automatic Top-Up Threshold

	Processing Top-Ups
	Triggering Top-ups
	How BRM Handles Manual Standard Top-Ups
	How BRM Handles Automatic Standard Top-Ups
	How BRM Handles Recurring Standard Top-Ups
	How BRM Handles Manual Sponsored Top-Ups
	How BRM Handles Automatic Sponsored Top-Ups

	Implementing Top-Ups in Custom Client Applications
	Implementing Manual Standard Top-Ups
	Implementing Automatic Standard Top-Ups
	Implementing Recurring Standard Top-Ups
	Implementing Manual Sponsored Top-Ups
	Implementing Automatic Sponsored Top-Ups
	Viewing Sponsored Top-Up History
	About Transferring Sponsored Top-Ups from Debit Balances

	Setting an Account's Sponsored Top-Up Member Status and PIN
	Activating Sponsored Top-Up Group Members
	Inactivating Sponsored Top-Up Group Members
	Setting Sponsored Top-Up Member PINs

	Offering Discount Incentives with Top-Ups

	Suspending and Recycling Payments
	How BRM Tracks Suspended Payments
	Customizing Payment Suspense
	Customizing Payment Suspense Validation
	Customization Example: Suspending Large Payments
	Customization Example: Threshold for Suspending Payments
	Customization Example: Finding Unconfirmed Payments
	Customization Example: Error Handling

	Customizing Suspended Payment Distribution
	Customizing Payment Failure Reason Codes
	Customizing Payment Tool
	Adding a Cash Reversal Batch
	Customizing Suspense Criteria for Payment Tool

	Handling Custom Payment Methods

	About the Suspense Account
	Suspending Payments during Payment Processing
	How Payments Are Recycled to and from Suspense
	Understanding Payment Recycling
	About Original Payments
	About Payment Transfer Direction and Verification
	About Recycling Payments from Suspense
	About Recycling Payments to Suspense
	How Payment Reversals Work with Suspense and Recycling
	About Directly Reversing Payments from BRM

	Retrieving Recycled Payments
	How Suspended Payments Are Reversed
	How Payments Are Reversed During Recycling
	How Payments Are Removed As Unallocatable

	How BRM Handles Mandate Information for SEPA Processing
	How BRM Registers a Mandate
	How BRM Updates a Mandate
	Updating Creditor Information
	How BRM Cancels a Mandate

	21 Subscription Opcode Workflows
	Opcodes Described in This Chapter
	Pricing Component Object Names
	Managing Charge Offers
	Purchasing Charge Offers
	Applying Deferred Charge Offer Purchase Fees
	About Delayed Cycle Start and End Times
	Handling Purchase, Cycle, and Usage Start and End Times
	Purchasing the Same Charge Offer Multiple Times

	Backdating Charge Offer, Discount Offer, Bundle, or Package Purchases
	How Sub-balance Buckets Are Created for Backdated Charge Offer Purchases
	How Cycle Fees Are Calculated for Backdated Purchase or Activation

	Applying Purchase and Cycle Fees to the Balance
	How Charge Offers Are Modified
	How BRM Changes Charge Offer Status
	How Charge Offers Are Canceled
	Customizing Charge Offer Cancellation
	Customizing How to Apply Folds

	Managing Discount Offers
	How Discount Offers Are Purchased
	How Discount Offer Purchase, Cycle, and Usage Validity Is Modified
	How BRM Changes Discount Offer Status
	How Discount Offers Are Canceled
	Validating Discount Offer Dependencies
	About Optional and Required Service Types
	About Closing a Required Service

	Customizing Snowball Discounts
	Customizing Discount Offer Cancellation

	Managing Bundles
	How Bundles Are Purchased
	Validating Changes to Bundles
	How Bundles Are Modified
	How Bundles Are Transitioned
	Customizing Bundle Transitions
	How Bundle Dependencies Are Validated
	Validating Bundle Transitions
	How Bundles Are Canceled
	Overriding Deal Settings at Customer Level
	Overriding Add-On Product Validity Dates in a Deal
	Overriding Bundle Proration Settings at Customer Level

	Managing Packages
	How BRM Transitions Accounts from Source Packages to Target Packages
	Transition Type API Considerations

	Customizing Package Transitions without Configuring /transition Objects
	About Providing Transition Rules Using Policy Opcodes
	Customizing Account Bundles during Package Transitions

	Managing Contracts
	Creating Contracts
	Modifying Contracts
	Canceling Contracts
	Renewing Contracts

	Managing Purchase, Cycle, and Usage Charges in Purchased Offers
	Changing the Purchase, Usage, and Cycle Start and End Times
	Overriding Charges and Discounts for a Period of Time
	Specifying Purchase, Cycle, and Usage Start and End Times
	Calculating the Cycle Forward Fee
	Calculating the Cycle Arrears Fee
	Cycle Arrears Charge Offer Limitations
	About Backdated Purchase, Usage, or Cycle End Dates
	Storing Relative Start and End Times for an Account's Charge Offers and Discount Offers
	How Cycle Fees Are Calculated for Backdated Cancellation or Inactivation
	How Earned and Unearned Revenue Is Set for Backdated Period

	Applying Recurring Charges
	Applying Cycle Forward Fees
	Applying Cycle Arrears Fees

	Applying Folds
	Customizing How Folds Are Applied
	Customizing the Order to Apply Folds
	Specifying Which Balances to Fold
	Customizing Which Balances to Fold When Charge Offers Are Canceled

	Getting Data about Bundles, Charge Offers, Discount Offers, and Services
	Getting Purchased Offers
	Getting Packages, Bundles, and Charge Offers for Purchase
	Getting a List of Bundles, Charge Offers, Discount Offers, and Services
	Getting a List of Packages and Bundles That an Account Owns
	Reading Data for All Valid Purchased Charge Offers and Discount Offers
	Finding Events Associated with Bundles, Charge Offers, Discount Offers, and Services
	Getting a Life-Cycle State

	Applying Promotions for Special Dates, Events, or Actions
	Customizing Special Date, Event, or Action Promotions

	Managing Promotions with Siebel CRM
	Managing Provisioning
	Customizing Provisioning When a Charge Offer Is Purchased
	Getting a List of Provisioning Tags
	Customizing Provisioning When Canceling a Charge Offer
	Managing GSM Service Provisioning

	Validating Product Specification Attributes for Pricing Components

	22 Tax Calculation Opcode Workflows
	Opcodes Described in This Chapter
	Calculating Taxes during Billing
	How PCM_OP_RATE_TAX_CALC Calculates Taxes
	How PCM_OP_RATE_TAX_CALC Validates Addresses and VAT Certificates
	Policy Opcodes Called by PCM_OP_RATE_TAX_CALC

	Modifying Tax Data Before Calculating Taxes
	Customizing Vertex Communications Tax Q Series to Override ZIP Codes
	Customizing Vertex Communications Tax Q Series to Provide Custom Input Tax Data
	Source Code for Customizing PCM_OP_RATE_POL_PRE_TAX

	Modifying Tax Data After Calculating Taxes
	Overriding Customer Tax Locale for Purchases
	Using Custom Tax Rates
	Using Geocodes to Calculate Taxes
	Adding Tax Information to Accounts
	Validating Tax Information

	Retrieving Tax Calculation Data
	Retrieving a List of Tax Codes
	Retrieving a List of Tax Suppliers
	Retrieving Tax Supplier Data
	Retrieving Tax Location Data

	Retrieving Additional Tax Data from Vertex Communications Tax Q Series
	Default Tax Data Returned by Vertex Communications Tax Q Series
	Requesting Additional Data from Vertex Communications Tax Q Series
	Retrieving Additional Tax Data
	Storing the Requested Vertex Tax Data in the BRM Database
	Creating a Custom Storable Class for Vertex Tax Data
	Storing Vertex Tax Data in Your Custom Storable Class

	23 Using the IP Address Manager APIs
	Opcodes Described in This Chapter
	Managing Your IP Address Device Life Cycle
	Creating a Single IP Address Device
	Creating a Range of IP Address Devices
	Creating a Range of IP Addresses with a Subnet Mask
	Customizing IP Address Creation
	Associating an IP Address with Accounts or Services
	Disassociating an IP Address Device from Accounts or Services
	Changing IP Device States from Unallocated to Returned
	Modifying an IP Address Device
	Sorting IP Devices by Using Canonical IP Address
	Deleting an IP Address Device

	Managing your APN Device Life Cycle
	Creating an APN Device
	Associating APN with an Account or Service
	Modifying an APN Device
	Changing the APN Device State
	Deleting an APN Device

	Extending the IP Address Manager Storable Classes
	Adding Business Logic to the IP Address and APN Policy FMs

