
Oracle® Communications Billing and
Revenue Management
ECE Implementing Charging

Release 12.0
E51003-14
February 2025

Oracle Communications Billing and Revenue Management ECE Implementing Charging, Release 12.0

E51003-14

Copyright © 2019, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiii

Documentation Accessibility xiii

Diversity and Inclusion xiii

1 About Configuring Charging in Elastic Charging Controller

About Usage Charging in ECE 1-1

About Configuring Usage Charging in ECE 1-2

About Balance Management in a Prepaid Session 1-3

Part I Using the ECE Java API

2 About the ECE API

About the ECE API 2-1

About the Charging API 2-1

About Charging Operation Types 2-2

About the Authentication API 2-3

About the Custom Plug-in APIs 2-3

3 Configuring Multiple Services Credit Control

About Multiple Services Credit Control 3-1

4 Advice of Charge and Advice of Promotion

About Advice of Charge 4-1

About Advice of Promotion 4-1

5 Configuring Top-Ups

Integrating Top-Up Clients 5-1

iii

Detecting Duplicate Top-Up Requests 5-1

Using the Top-Up API 5-2

6 Configuring Balance Queries

Integrating Balance Query clients 6-1

About Sending Authentication Queries 6-1

About Sending Balance Queries 6-1

Configuring Debit Request History 6-2

About the Balance API 6-2

Part II Working with BRM

7 Synchronizing Data Between ECE and the BRM Database

About Synchronizing Data Between BRM and ECE 7-1

Setting Up Synchronization between BRM and ECE 7-1

Enabling Real-Time Synchronization of BRM and ECE Customer Data Updates 7-2

Configuring the Connection Manager to Get Real-Time Balances for a Service from ECE 7-2

How ECE Gets Historical Data From the BRM Database 7-3

8 Loading ECE Rated Events into BRM

About Sending Rated Events to the BRM Database 8-1

Adding a Rated Event Publisher Instance 8-1

Configuring Rated Event Publisher 8-2

Configuring Item Assignment for Rated Events 8-3

Configuring Life Cycle States in ECE for BRM 8-4

Configuring Lifecycle States At Installation 8-5

Configuring Lifecycle States During Runtime 8-6

Including or Excluding a Customer’s Remaining Balance in Rated Events 8-7

Accessing ECE Configuration MBeans 8-7

9 Generating POIDs for Rated Events

About Generating POIDs in ECE 9-1

Configuring ECE to Generate POIDs for Prepaid Events 9-2

Enabling Prepaid Event Partitions in BRM 9-2

Configuring Cluster ID 9-3

Enabling POID Generation for Prepaid Events in ECE 9-4

iv

Part III Managing ECE Notifications

10

Configuring Notifications in ECE

About ECE Notifications 10-1

Enabling External Notifications in ECE 10-2

Enabling Specific Notification Types 10-2

Enabling In-Session Group Notifications in ECE 10-4

Configuring BRM Gateway to Process ECE Notifications 10-5

Configuring a Single BRM Gateway Instance 10-6

Configuring Multiple BRM Gateway Instances 10-7

Connecting BRM Gateway to Kafka Topics and BRM 10-9

Configuring WebLogic Queues for BRM Gateway 10-10

WebLogic Server Configuration Settings for the connectionFactory 10-11

Considerations for Using a Non-WebLogic Server JMS Provider 10-11

Modifying JMS Credentials for Publishing External Notifications 10-11

11

Configuring Subscriber Preferences

Configuring Subscriber Preferences 11-1

Maintaining Subscriber Preferences with Customer Center 11-1

About Regulating Permissions to Update Subscriber Preferences 11-2

Configuring ECE to Enrich External Notifications with Subscriber Preference Information 11-2

Customizing Subscriber Preferences 11-3

Configuring Group Notifications 11-5

Part IV Managing Charging Sessions

12

Managing Midsession-Rated Events

Configuring ECE to Generate Midsession-Rated Events 12-1

Generating Midsession-Rated Events When USU Block Missing 12-3

Configuring Non-Linear Rating for Tariff Changes 12-3

Enabling Non-Linear Rating for Midsession-Rating Condition Changes 12-4

Configuring ECE to Support Tariff Time Change 12-5

Sample Non-Linear Rating for Tariff Changes 12-5

Viewing Reason for Midsession-Rated Event 12-7

v

13

Managing Online Charging Sessions

Configuring ECE to Support Prepaid Usage Overage 13-1

Managing Dynamic Charging Overrides for Online Sessions 13-2

Processing Granted Allowances Before Applying Usage Charges 13-2

Enabling Server-Initiated Reauthorization Requests 13-2

Configuring ECE to Return Remaining-Balance Information in Usage Responses 13-4

Configuring Taxation in ECE 13-5

Configuring How ECE Manages Active Sessions When Network Elements Fail 13-6

Configuring ECE to Redirect Subscriber Sessions to a Service Portal 13-6

Enabling Match Factor in ECE 13-10

Configuring Diameter Gateway to Bypass Rating During ECE Downtime 13-10

Managing the Persistence of Usage Requests During ECE Downtime 13-11

Replaying Persisted Requests into ECE 13-12

Accessing ECE Configuration MBeans 13-13

Returning FUIs for Discount Sharing Group Owner 13-13

Location-Based Charging 13-13

14

Managing Session Start and End Times

Using Session Connect Time for Charging 14-1

Optimizing Network Signaling 14-1

Configuring ECE to Align Validity Start and End of Conditional Balance Impacts and Charge
Offers 14-2

15

Managing Reservations for Online Sessions

Configuring Reservation Expiration and Validity 15-1

Configuring a Minimum Quantity for Reservation 15-2

Configuring Reservation Quota for Services 15-3

Managing Dynamic Quotas for Online Sessions 15-4

Triggering RAR Notifications for Ongoing Sessions 15-4

16

Managing Rounding and Consumption Rules

Configuring Rounding for a Resource 16-1

Configuring Rounding for Reverse Rating on Multiple RUMs 16-2

Configuring Systemwide Consumption Rules for Balances 16-3

Part V Integrating with External Systems

vi

17

Connecting ECE to a 5G Client

About the HTTP Gateway 17-1

About Determining the Charging Type 17-2

About Sending Notifications to HTTP Gateway 17-2

Integrating HTTP Gateway with 5G Networks 17-2

Configuring Registration Details for the HTTP Gateway Server 17-3

Configuring NF Services 17-7

Configuring HTTP Gateway for Convergent Charging 17-10

Editing the HTTP Gateway Mediation Specification File 17-12

Connecting ECE to Kafka Topics 17-13

Configuring ECE to Send Notifications to HTTP Gateway 17-15

Recording Failed ECE Usage Requests 17-16

Configuring Communication through SCP 17-16

Starting the HTTP Gateway 17-17

Using the ECE REST API 17-17

18

Generating CDRs for External Systems

About Using the HTTP Gateway 18-1

About Generating CDRs 18-1

About Saving CDR Files to Disk 18-3

Setting Up ECE to Generate CDRs 18-3

Accessing ECE Configuration MBeans 18-3

Configuring HTTP Gateway for CDR Generation 18-3

Configuring the CDR Gateway 18-4

Configuring the CDR Formatter 18-5

Configuring the CDR Formatter Plug-in 18-7

About Trigger Types 18-8

Triggers for Convergent Charging Events 18-8

Triggers for Roaming Events 18-9

19

Connecting ECE to a Diameter Client

Overview of Network Integration Using Diameter Gateway 19-1

Network Integration for Sp and Sy Interface (Policy) Requests 19-2

Network Integration for Gy Interface Requests 19-3

How Diameter Gateway Creates Usage Requests 19-5

About Usage Request Fixed Attributes 19-5

Editing the Mediation Specification File 19-6

Network Integration for Gy Balance Query Requests 19-8

Network Integration for Gy Top-Up Requests 19-8

vii

Sending Multiple-Service Credit Control (MSCC) Requests from Diameter Gateway 19-9

Configuring Subscriber ID Lookups 19-9

Adding Custom AVPs for Usage Requests 19-11

Using Incremental or Cumulative Accounting for Usage Requests 19-11

Configuring Accounting Mode for Diameter Gateway 19-12

Configuring WebLogic Queues for Notifications 19-13

Configuring Alternative Diameter Peers for Notifications 19-14

Viewing Active Diameter Peers 19-14

Configuring ECE for Apache Kafka 19-15

Handling Requests When Charging Servers Are Unavailable 19-17

Recording Failed ECE Usage Requests 19-17

20

Connecting ECE to a RADIUS Client

Overview of Authentication and Accounting Using RADIUS Gateway 20-1

About RADIUS Gateway Authentication 20-2

Authenticating Access Requests by Using PAP 20-2

Authenticating Access Requests by Using CHAP 20-3

Authenticating Access Requests by Using EAP 20-5

Loading Data Keys Extracted from BRM into ECE 20-6

Customizing the RADIUS Data Dictionary 20-6

About the RADIUS Data Dictionary 20-6

Creating a Custom Data Dictionary 20-6

Selecting a RADIUS Data Dictionary When Using Different NAS Vendors 20-7

Adding Custom Vendor-Specific Attributes 20-7

Loading the RADIUS Mediation Specification Data 20-8

About Mapping RADIUS Network Attributes to Event Attributes 20-10

Mapping RADIUS Network Attributes to Event Attributes 20-10

About RADIUS Gateway Accounting 20-11

About Accounting-Start and Accounting-Stop Requests 20-12

About Accounting-On and Accounting-Off Requests 20-13

About Accounting-Interim-Update Requests 20-14

21

Configuring Policy-Driven Charging

About Policy-Driven Charging 21-1

About Group-Based Policy-Driven Charging 21-3

Policy-Driven Charging Example 21-3

Configuring Policy-Driven Charging 21-3

About ECE and Policy Clients 21-4

How ECE Processes Policy Requests for Online Network Mediation System 21-4

Configuring Breach Tolerance for Policy-Tier Thresholds 21-6

viii

About Integrating Policy Clients with ECE 21-8

About the ECE Sy and Sp Interface 21-8

About the ECE Sy Interface 21-8

About the ECE Sp Interface 21-9

Querying for Extended Subscriber Preference Information in Sp Query 21-9

About a Combined ECE Sy and Sp Interface 21-10

About Calculating Maximum Authorization for Policy-Driven Charging Sessions 21-10

Configuring ECE to Reject Spending Limit Requests Without Counters 21-11

About the Policy Management API 21-11

Part VI Customizing ECE

22

Customizing Rating

Operational Considerations 22-1

Configuring Extensions 22-1

About Performance with Extensions 22-2

About Logging in Extensions 22-2

About Extension Exceptions 22-2

About Extension Security 22-3

Extension Points 22-3

BRM Gateway Request Processing Extension Points 22-3

Diameter-Request Processing Extension Points 22-4

HTTP Gateway Request Processing Extension Points 22-5

RADIUS-Request Processing Extension Points 22-6

Authentication Extension Points 22-6

Accounting Extension Points 22-8

Update-Request Processing Extension Points 22-9

Usage-Request Processing Extension Points 22-9

Implementing the Extensions Logic 22-11

BRMCustomOpCodeCall Extension 22-19

CustomAuth Extension 22-19

CustomEAPChallenge Extension 22-19

CustomEncode Extension 22-19

OCSBypass Extension 22-20

PreOCS Extension 22-20

PreProcessor Extension 22-20

PostOCS Extension 22-21

PostOCSBalanceQuery Extension 22-21

Pre-Rating Extension 22-21

Post-Rating Extension 22-22

ix

Rating Extension 22-22

RequestReceived Extension 22-23

Post-Charging Extension 22-23

Post-Update Extension 22-24

Extensions Cache 22-24

Extensions Cache API 22-25

Sample Extensions 22-25

How To Use the Sample Extensions 22-26

Validating Sample Extensions 22-28

BRM Gateway Extension - Creating Opcode Flist 22-28

Diameter Gateway Extension - Gy Service 22-28

Diameter Gateway Extension - Sy Service 22-28

HTTP Gateway Extension - Service 22-28

OCSBypass Extension - Bypassing Rating 22-29

Pre-Rating Extension - Dynamic Quota Management 22-29

Dynamic Quota Management - Modifying Quota Based on Network Type 22-29

Dynamic Quota Management - Modifying Requested Quota 22-29

Dynamic Quota Management - Modifying Default Quota Configuration 22-29

Pre-Rating Extension - Retrieving Function Values for Discount Expressions 22-30

Pre-Rating Extension - Generating Midsession-Rated Event 22-30

Pre-Rating Extension - Overriding Price in Product Offerings 22-30

Post-Rating Extension - Complex Taxation 22-30

Post-Rating Extension - Generating Midsession-Rated Events 22-31

Post-Rating Extension - Adding or Deleting Rating Periods 22-31

Post-Charging Extension - Adding Custom Data to Usage Responses and Notifications 22-31

Post-Charging Extension - Overriding Dynamic Quota 22-32

Post-Charging Extension - Adding or Modifying Redirection Rules 22-32

Post-Charging Extension - Creating Custom Notifications for Top Ups 22-32

Post-Update Extension - Enriching External Notifications 22-32

Rating/Charging Extension - Triggering RAR Notifications 22-32

Rating Extension - Custom Item Assignment 22-33

Extensions Data Load Sample 22-33

23

ECE Sample Programs

About the ECE Sample Programs 23-1

Finding the Sample Programs 23-1

Descriptions of the Sample Programs 23-2

Compiling and Running the Sample Programs 23-6

Example of SampleDebitRefundSession 23-7

Compiling and Deploying SampleRatedEventFormatterCustomPlugin 23-8

x

24

Testing ECE

About ECE Testing Utilities 24-1

About Loading Sample Data 24-2

Loading Pricing Data On a Development System 24-2

About Performance MBean 24-3

Changing Time and Date to Test ECE 24-3

Using the query Utility to Test ECE 24-4

Example: Query the Subscriber Base Balance Summary 24-5

Example: Query a Customer Balance 24-6

Verifying that Usage Requests Can Be Processed 24-7

Starting ECE Nodes in the Cluster 24-8

Running the Simulator to Send Usage Requests 24-8

Verifying that Balances Are Impacted in ECE 24-8

Verifying That ECE Notifications Are Published to the JMS Topic 24-9

Disabling the Publishing of ECE Notifications to the JMS Topic 24-9

Verifying that Friends and Family Calls Are Processed 24-9

Verifying That Closed User Group Calls Are Processed 24-11

Verifying That Balance Impacts Are Assigned to Bill Items 24-12

Verifying That Payloads Are Correctly Formed 24-13

Part VII ECE Utilities

25

Charging Utilities

query 25-1

A Sample Notification Payloads

Aggregated Threshold Breach Event (Aggregated Based on Balance Element ID) A-1

Billing Event A-2

Credit Ceiling Breach Event A-2

Credit Floor Breach Event A-2

Custom Notification for BRM Gateway A-3

External Top-up Event A-3

First Usage Validity A-4

Life-Cycle Transition A-4

Replenish POID ID Event A-5

Spending Limit A-5

Subscriber Preference Event A-5

Threshold Breach Event (Breach Direction Down) A-7

Threshold Breach Event (Breach Direction Up) A-7

xi

Top-up Event A-7

B Specifications and Standards Compliance in ECE

About Specifications and Standards Compliance B-1

xii

Preface

This guide describes how to implement charging in Oracle Communications Billing and
Revenue Management Elastic Charging Engine (ECE).

Audience
This guide is intended for application administrators and charging experts who customize and
administer ECE.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
About Configuring Charging in Elastic
Charging Controller

Learn how to implement charging in Oracle Communications Elastic Charging Engine (ECE).

Topics in this document:

• About Usage Charging in ECE

• About Configuring Usage Charging in ECE

• About Balance Management in a Prepaid Session

For an overview of ECE, see "About Billing and Revenue Management" and "ECE System
Architecture" in BRM Concepts.

For information about administering ECE, see "ECE System Administration" in BRM System
Administrator's Guide.

About Usage Charging in ECE
You can use ECE to perform the following types of usage charging:

• Online charging rates events in real-time, such as during a prepaid call.

• Offline charging is used for batch rating of events, typically from post-paid telephone
usage.

For both online charging and offline charging, ECE receives events as usage requests. Usage
requests contain the event data that ECE needs for rating. For example, to rate a phone call,
ECE needs the number that made the call, the start time, and the end time.

When ECE receives a usage request, it uses the data in the usage request, typically the phone
number, to identify the customer, which in turn identifies the charge offer that they own that is
used to rate the event. In addition, the usage request includes the data needed for rating, such
as the start and end times of the event.

Each type of service and event needs to be rated differently. For example, some events are
rated by measuring duration, and some by measuring volume. When you configure events and
services, you create event definitions that specify the data needed for charging the event. The
event definitions are sent to ECE, and are stored in an ECE cache. For each incoming event,
ECE uses the event definition to choose a usage request builder that creates the usage
request.

A default set of event definition data is installed with ECE. If you create custom services and
events, you can enrich event definitions in Pricing Design Center (PDC) and create customized
event definitions.

Usage requests are created when network mediation clients submit data to the ECE Client:

• For online charging, a real-time online event, such as a prepaid call, is routed from the
network to the Diameter Gateway, which uses the ECE Client to create a usage request.
ECE processes the usage request, authorizes the call, and sends a usage response back
to the Diameter Gateway. As the call is in progress, ECE also manages the interaction with

1-1

the network for handling update requests, re-authorizations, and top-ups. After the call has
ended, ECE rates the call.

In addition to prepaid calls, online charging can be used for any service that the subscriber
connects to and uses in real time, such as broadband access, digital content, streaming
radio, and cable television.

• For offline charging, call detail records (CDRs) are processed by Offline Mediation
Controller, which handles mediation tasks and normalization. Offline Mediation Controller
acts as an ECE client application to create a usage request, which ECE uses to rate the
events.

Offline charging is used for batch rating of events, typically from post-paid telephone
usage. Offline Mediation Controller performs mediation and normalization tasks, such as
checking for duplicate calls and assembling calls that arrive in multiple records.

After an event is rated, ECE sends the rated event data to the BRM database, and the
customer's balance is updated in both ECE and in the BRM database. The same process is
used for loading online charging events and offline charging events.

Note:

The complete available balance cannot be consumed to satisfy the beat when there
is a beat set for the charging. There will be a leftover balance which is not granted/
consumed.

About Configuring Usage Charging in ECE
To configure usage charging in BRM, you configure ECE as follows:

• Configure ECE business rules that control aspects such as a default authorization amount,
a default flat tax rate, and so on. To do so, you use a JMX editor such as JConsole to edit
MBeans. See "Managing Online Charging Sessions".

• Configure how each subscriber prefers to receive notifications from the network. See
"Configuring Subscriber Preferences".

• Configure ECE notifications. See "About ECE Notifications".

• Configure how ECE integrates with the BRM server. See "Synchronizing Data Between
ECE and the BRM Database".

• Configure ECE to receive pricing data from PDC. See "Configuring Pricing Updater" in
BRM System Administrator's Guide.

You can customize ECE as follows:

• Use the ECE API to integrate client applications with ECE (for example, implement a top-
up client). For offline charging, ECE is preintegrated with Oracle Communications Offline
Mediation Controller. For online charging, ECE uses Diameter Gateway for network
integration (for creating ECE requests for all supported request types). See "About the
ECE API".

• Use ECE extensions to implement Diameter-request processing extensions or rating
extensions. For example, implement pre-rating and post-rating customizations. See
"Customizing Rating".

Chapter 1
About Configuring Usage Charging in ECE

1-2

About Balance Management in a Prepaid Session
In prepaid sessions, ECE and Diameter Gateway work together with the network system to
manage an event as it occurs. When a subscriber starts a prepaid call, the network collects
information about the customer and sends authentication and authorization requests to ECE.
ECE processes the requests and returns the results immediately so the network can connect
the call. While the session is in progress, ECE tracks the subscriber's balance to ensure that it
is sufficient to pay for the call.

ECE performs the following functions:

1. Authenticates customers by comparing the customer's ID with those stored in ECE.

• For telco services, the ID is typically the MSID.

• For broadband services, the ID is typically a login name and password.

2. Authorizes customers to use the service. ECE can perform these checks:

• Credit limit checking. Determines whether the customer's account balance exceeds
the temporary or permanent credit limit.

• Service status checking. Confirms that the requested service is active in the
customer's account.

• Duplicate session checking. Checks for duplicate sessions.

3. Reserves a balance amount for the session. For example, customers can be authorized to
download 100 bytes of data or to make a 30-minute telephone call.

To reserve an amount, ECE does the following:

• Receives the requested amount from the network and determines whether the user
has a sufficient amount in his balance, based on the charge offers and discount offers
that he owns and any amounts already reserved.

• If the balance amount is insufficient, ECE calculates the maximum authorization based
on the customer's credit limits. The effects of discounts, discount sharing, and charge
sharing are included in the calculation of the maximum amount to authorize.

ECE sends the validity time for the active reservation or reservation validity to the
network mediation client. Reservation validity specifies how long a session can
continue before the client must ask for a reauthorization.

ECE sends a reservation expiration to the network mediation client. Reservation
expiration specifies how long a session can continue before the client must report the
consumed usage to ECE.

When a prepaid session is authorized, BRM reserves a portion of the customer's balance
for the event. This prevents customers from using that balance amount for other services
while the session is in progress.

BRM authorizes a customer to use a service for the following:

• A specified duration or volume.

• (Volume-based authorizations only) A specified validity period.

4. When the session ends, ECE sends information about the rated event to the BRM
database and updates the subscriber's balance in the BRM database. ECE then returns
any unused reserved balance amounts to the customer's balance.

Active session and balance reservations are checked for expiration and are removed if the
object has expired. Usually, only the terminated or canceled charge offer is cleaned up.

Chapter 1
About Balance Management in a Prepaid Session

1-3

However, other charge offers owned by the same customer and that share the balance
object with the original charge offer are also cleaned up.

During a session, ECE does the following:

• Reauthorizes customers for extended usage if necessary. Reauthorization for prepaid
services extends the following:

– Authorized duration or volume

– Validity period

• Alerts the network that a change that might require reauthorization occurs in a customer's
account. For example, the customer is granted a balance amount that might apply to the
current session. This is called server-initiation reauthorization.

• Cancels authorization for failed connections. After a session is authorized, the external
network can sometimes not connect the service. This can occur for the following reasons:

– The call's destination was unavailable.

– The validity period expired before the service was connected.

– The customer terminated the session before the service was connected.

In this situation, ECE can cancel the authorization and return any reserved balances to the
customer's account.

• Updates balances in the customer's account.

• If your system is configured to receive in-session notifications from BRM (that is, when the
piggyback business parameter is enabled), it appends specific in-session notifications to
the responses it provides for authorization and reauthorization requests sent by a
supported network connectivity application. You can configure customer preferences for
sending notifications (for example, by SMS in a specific language). See "Configuring
Subscriber Preferences".

• If the session uses policy-driven charging, it tracks the balance thresholds that trigger
credit-limit notifications to the policy controller. Both in-session and out-of-session
notifications are supported.

Chapter 1
About Balance Management in a Prepaid Session

1-4

Part I
Using the ECE Java API

This part provides information about using the Oracle Communications Elastic Charging
Engine (ECE) Java API. It contains the following chapters:

• About the ECE API

• Configuring Multiple Services Credit Control

• Advice of Charge and Advice of Promotion

• Configuring Top-Ups

• Configuring Balance Queries

2
About the ECE API

Use the Oracle Communications Elastic Charging Engine (ECE) API to integrate ECE with
third-party clients, such as top-up systems.

Topics in this document:

• About the ECE API

• About the Charging API

• About the Authentication API

• About the Custom Plug-in APIs

About the ECE API
ECE is preintegrated with Oracle Communications Offline Mediation Controller. To integrate
other clients, such as top-up systems, you use the ECE SDK and ECE API. See Elastic
Charging Engine Java API Reference for information.

The ECE SDK includes:

• Client libraries that enable your applications to connect to ECE and build usage requests.

• Sample programs that demonstrate how to use the ECE APIs.

ECE SDK includes a set of sample programs. You use these sample programs in the following
ways:

• Use the sample programs as code samples for writing custom applications.

• Run sample programs to send requests to ECE and receive responses.

• Use the sample program scripts as a guide for integration of the ECE client into your build
system (Maven, Ant and so on).

For information about how to use the sample programs, see "ECE Sample Programs ".

The ECE SDK is installed in ECE_home/ocecesdk.

About the Charging API
The ECE charging API supports the following operation types:

• Initiate

• Update

• Terminate

• Cancel

• Debit_Unit

• Debit_Amount

• Refund_Unit

2-1

• Refund_Amount

• PriceEnquiry

• StartAccounting

• UpdateAccounting

• AccountingOn

• AccountingOff

To send usage requests to ECE, client applications can call the ECE charging APIs according
to the usage request builder defined by the ECE event definition.

For details about the charging API, see oracle.communication.brm.charging.brs and
oracle.communication.brm.charging.messages in Elastic Charging Engine Java API
Reference.

About Charging Operation Types
The ECE API is designed to receive usage requests and send usage responses for common
operation types in the charging industry.

ECE usage charging supports the operation types shown in Table 2-1.

Table 2-1 Charging Operation Types Supported by ECE

Operation Type Description

Initiate Commencement of a session-based charging operation.

Update Continuation of a session-based charging operation.

Terminate Conclusion of a single non-session based charging operation.

Cancel Complete cancellation of a session-based charging operation.

Refund_Amount Refund a specific amount to a specific balance resource.

Refund_Unit Refund a calculated amount, based on units consumed, to the
impacted resource(s).

Debit_Amount Debit a specific amount to a specific balance resource.

Debit_Unit Debit a calculated amount, based on Units consumed, to the impacted
resource(s).

Price_Enquiry Generate a price estimation without any balance reservations
occurring. It is used when there isn't a high probability of receiving a
charging request. For example, Price_Enquiry might be called to get
the price of an event charge to display in a content portal.

Start_Accounting Begin tracking usage without incurring balance impacts.

Update_Accounting Continue tracking usage without incurring balance impacts.

Balance_Query Return the user balance.

Accounting_On_Off Clean left open session and reservation for a specific network element.

Each charging operation type requires an input payload that supplies fields which are relevant
to the charging operation.

The BALANCE_QUERY operation type is used for query requests. The query request is built
using the Query Request Builder.

Chapter 2
About the Charging API

2-2

The ACCOUNTING_ON and ACCOUNTING_OFF operation types are used for management
requests. Management requests are built using the Management Request Builder.

For offline charging, requests are typically submitted for a single event that represents the
entire charge (using the Terminate operation type). Session-based operations such as Initiate
and Update are not as common for offline charging; however, these operation types are used
when using a stream protocol like Radius or Rf in which ECE is used to record the
consumption of resources (quantity consumption) as the session continues.

ECE processes charging operations by forwarding usage requests to the applicable
combinations of charge, alteration and distribution rate plans. ECE creates the rate plan
expressions required for usage charging by using fields which are supplied in the request
specification payloads.

The sample request specification files demonstrate the data ECE requires to support the
charging operation types.

About the Authentication API
Use the authentication API to query the login and password of subscribers.

Use the login and password information to do the following:

• Implement authentication methods outside of the ECE charging server

• Enable subscribers to validate their login and password credentials against a charge offer
to which they are subscribed

For details about the authentication API, see
oracle.communication.brm.charging.messages.query in Elastic Charging Engine Java API
Reference.

About the Custom Plug-in APIs
You can use the custom plug-in APIs to:

• Format rated events into the format required by an external system. To do so, use the
SampleRatedEventFormatterCustomPlugin.java sample custom plug-in in the ECE
SDK package.

• Write rated events in JSON format to the Kafka Server. To do so, use the
SampleRatedEventFormatterKafkaCustomPlugin.java sample plug-in in the ECE SDK
package.

For more information, see
oracle.communication.brm.charging.ratedevent.custom.CustomPlugin in Elastic
Charging Engine Java API Reference.

Chapter 2
About the Authentication API

2-3

3
Configuring Multiple Services Credit Control

Learn how to configure Multiple Services Credit Control in Oracle Communications Elastic
Charging Engine (ECE).

Topics in this document:

• About Multiple Services Credit Control

About Multiple Services Credit Control
ECE supports Multiple-Service Credit Control (MSCC) requests in which a Diameter
application performs credit control for multiples services within the same session.

An MSCC request is a list of subrequests targeted to the same customer that share the same
operation type and session ID but that individually apply to different charge offers.

When ECE receives MSCC requests, it assigns a different session ID to each of its
subrequests. Doing this enables ECE to distinguish one subrequest from another when looking
up the active session associated with each subrequest. An MSCC request results in an MSCC
response containing a subresponse for each subrequest. Each subresponse contains a status
indicating whether the subrequest succeeded or failed.

If you configured ECE to save the rated event information for MSCC requests in the Oracle
NoSQL database, note the following:

• Rated event information is saved for each subrequest.

• The NoSQL key for the rated event is based on the session ID that ECE assigned (not on
the original MSCC request session ID).

• The ECE session ID in the Oracle NoSQL database is a composite of the original usage
request's session ID, the service, and the user identity, separated by underscore
characters. For example:

Original MSCC request ID: 1313b2ab-d51e-4545-8bba-25c731daf10b

Usage request's service: VOICE

Usage request's user ID: 650123555

ECE session ID: 1313b2ab-d51e-4545-8bba-25c731daf10b_VOICE_650123555

MSCC support applies to usage requests and query requests.

MSCC support does not include support for credit pools (G-S-U-Pool-Reference AVP where
units of the service are pooled in a credit pool) and credit control (as described in section 5.1.2
of IETF RFC 4006).

MSCC AVPs are part of the CCR, and Diameter Gateway expects each Gy interface request
type to be included in the MSCC group even if the request contains only a single service.
When a CCR is sent without MSCC AVPs, Diameter Gateway validates only the subscriber ID
in the CCR and authenticates the subscriber.

See the SampleMultipleServicesLauncher sample program in the ECE SDK for an example
of how to send MSCC requests to ECE. For more information, see "ECE Sample Programs ".

3-1

4
Advice of Charge and Advice of Promotion

Learn how to configure Advice of Charge (AOC) and Advice of Promotion (AOP) in Oracle
Communications Elastic Charging Engine (ECE).

Topics in this document:

• About Advice of Charge

• About Advice of Promotion

About Advice of Charge
ECE supports the 3GPP Advice of Charge (AoC) supplementary service by which customers
can be informed about the cost for a requested service either in monetary format or
nonmonetary format. AoC may be provided at the beginning of a session, during a session or
at the end of a session.

To support AoC, ECE calculates the cost of using a service and relays that information to the
network mediation software program, which can then pass the message to the customer.

About Advice of Promotion
ECE enables you to provide Advice of Promotion (AoP) information to customers to notify them
that a better price can be obtained for a service they are about to use. For example, a network
operator can send the AoP information in an IVR pre-call announcement for a Voice service.

To support AoP, ECE determines whether better pricing for a service is available near the time
the customer's usage request is received. ECE sends that information to the network mediation
software program, which sends a message to the customer.

ECE implements AoP as follows:

1. A customer makes a request to initiate a session, to debit a specific or calculated amount
of a balance, or to generate a price estimation for using a balance.

2. The ECE charging server calculates the charge for the request.

3. If AoP is enabled, ECE adds a time offset to the start and end time of the request and
recalculates the charge using the offset time period (the new start and end time).

4. If the recalculated charge is less expensive for the customer, ECE sends the information
about potential savings to the network mediation software program in the usage response.

ECE applies AoP when AoP is configured at the ECE system level. Configure AoP at the
system level by using the configuration service.

Note the following details about AoP:

• AoP is not configurable in PDC.

• AoP is a systemwide configuration (it is not configured on a per charge offer basis).

• The ready-to-use configuration of AoP gives advice based on time.

4-1

• When applying AoP, ECE uses the charge offers and discount offers eligible when the
request is received to recompute the charge for the offset time period. If a different charge
offer or a different discount offer applies to the future offset time period, AoP may advise a
promotion when none exists or may not advise a promotion when a promotion is available.

When using AoP, ensure that your charge offers have tiered consumption configured
accurately to prevent a credit breach of noncurrency balances.

To configure Advice of Promotion:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Specify values for the following attributes:

• aopEnabled: Enter true to enable AoP or false to disable AoP.

• aopVariance: Enter an amount of time in the ISO 8601 duration format (for example,
PT10M, which specifies ten minutes).

ECE uses the time you specify to offset the start and end times of the request and
recalculate the charge for the offset period.

For more information about the duration format, see the ISO 8601 documentation.

Chapter 4
About Advice of Promotion

4-2

5
Configuring Top-Ups

Learn how to configure top-ups in Oracle Communications Elastic Charging Engine (ECE).

Topics in this document:

• Integrating Top-Up Clients

• Detecting Duplicate Top-Up Requests

• Using the Top-Up API

Integrating Top-Up Clients
ECE interfaces directly with top-up systems to manage balances. The top-up systems send the
top-up amount to ECE, and then ECE updates the customer balance and sends the update to
the BRM server.

ECE does not manage top-up authentication, authorization, or accounting operations.

For information about running sample programs that demonstrate how to use the ECE top-up
API, see "ECE Sample Programs ".

To configure top-up notifications, see "About ECE Notifications".

Detecting Duplicate Top-Up Requests
Duplicate top-up requests might occur within ECE as a result of node failures (for example, if
an ECE server unexpectedly shuts down, ECE might internally resubmit a top-up request when
restarted). To detect and eliminate these internal duplicate top-up requests, ECE maintains a
top-up history cache.

Note:

Third-party top-up systems, such as voucher management systems, are expected to
eliminate duplicate top-up requests coming from the network.

The ECE top-up history cache maintains a specified number of top-up message IDs for each
customer. If the message ID of an incoming top-up request is already in the history, ECE
considers the request to be a duplicate.

If ECE detects a duplicate top-up request, the following occurs:

• ECE does not apply the top up

• ECE includes the following in the top-up response message:

– The reason code DUPLICATE_REQUEST

– The current customer balance

5-1

If you do not retain a sufficient number of top-up request message IDs in your top-up history
cache, ECE may not detect internal duplicate top-up requests. If ECE cannot detect an internal
duplicate top-up request, the following occurs:

• ECE applies the top-up balance to the customer balance as though it were a new request
and sends the top-up balance to the BRM server.

• The BRM server, which stores all top-up message IDs in the BRM database, detects the
top-up request as a duplicate and does not apply the top up to the customer balance in the
BRM database.

• BRM adds the Error from BRM: ERR_DUPLICATE error to the BRM Gateway log file.

You must manually track such errors in the BRM Gateway log file and correct the customer
balance in ECE because the ECE customer balance is no longer synchronized with the
customer balance in the BRM database.

To configure the number of top-up request message IDs in your top-up history cache:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.externalTopUpConfig.

4. Expand Attributes.

5. Set the topUpHistoryCount attribute to the number of top-up request message IDs to
store for each customer.

The default value is 3.

If you change the value of this attribute (for example, from 10 to 4) and the top-up history
cache already contains 10 message IDs, ECE eliminates the message IDs of the oldest 6
top ups when the next top up arrives so that only the message IDs of the 4 most recent
top-up requests are stored.

Using the Top-Up API
To validate top-up requests, clients call the submitUpdate API with
ExternalTopupUpdateRequest.

Consider the following points for how the ECE top-up API validates top-up requests:

• For a currency balance, validity should not be passed as part of the request; if it is passed,
it fails with an error. The customer's balance is expected to have one valid currency
balance item/bucket with infinite validity. If no balance item/bucket is present, a new one is
created with infinite validity.

• Validity extend (ValidityExtend) is only for noncurrency balances (given that currency
balances do not have a validity).

• Whenever validity must be set for a balance, both validity start and validity end must be
sent as part of the request.

To create bucket with infinite validity, set both validityStart and validityEnd to -1.

• If the request is to extend validity and the customer balance has multiple valid balance
items/buckets, then an error response is sent.

• If the request is to create a firstUsage bucket, then validity start and validity end should not
be set in the request, except for the FirstUsageValidityUnit.ABSOLUTE mode.

• ValidityExtend is not allowed on a first-usage bucket.

Chapter 5
Using the Top-Up API

5-2

• If both the validity and first-usage information (such as offset and unit) are specified as part
of the request, then the top-up request fails with an error.

• Top-ups from Third-party top-up systems are not allowed when ECE is in a short-lived
phase of the rerating process called the CATCH_UP phase.

If top-up requests are sent during the CATCH_UP phase of rerating, ECE sends a
response that includes the reason code for the failure. If that occurs, you can resend the
top-up, and ECE will process it.

• During testing, if a top-up request is sent to ECE with an event time that is earlier than the
account creation time of the account to which the top-up applies, the balance is updated
with the top-up in ECE but the balance is not updated in BRM. When you set event time
stamps during testing, ensure the event time of the top-up request is later than the
applicable account creation time.

For details about the top-up API, see the documentation for
oracle.communication.brm.charging.brs and
oracle.communication.brm.charging.messages.update in Elastic Charging Engine Java
API Reference.

Chapter 5
Using the Top-Up API

5-3

6
Configuring Balance Queries

You can configure third-party clients to query Oracle Communications Elastic Charging Engine
(ECE) for balance information.

Topics in this document:

• Integrating Balance Query clients

• About Sending Authentication Queries

• About Sending Balance Queries

• Configuring Debit Request History

• About the Balance API

Integrating Balance Query clients
You can write client applications to query data in ECE, such as query the login and password
information of a customer, or query the customer's account balance.

ECE returns the balance element ID of each balance in the ECE balance query response. ECE
returns the balance element ID of balances for both SUMMARY and DETAILED balance query
modes. Client applications could use this information, for example, when customer balances
are stored in multiple subscriber profile repositories and it is required to map the balances
between the repositories.

To use the query APIs:

• For the ECE authentication and query API:
oracle.communication.brm.charging.messages.query

• For the ECE PriceEnquiry of the charging API: oracle.communication.brm.charging.brs
and oracle.communication.brm.charging.messages

For information about running sample programs that demonstrate how to use the ECE query
APIs, see "ECE Sample Programs ".

About Sending Authentication Queries
Use the authentication API to query the login and password of subscribers.

Use the login and password information for:

• Implementing authentication methods outside of the ECE charging server

• Enabling subscribers to validate their login and password credentials against a charge
offer to which they are subscribed

About Sending Balance Queries
Use the balance API to query subscriber balances.

6-1

Use the subscriber balance for:

• Making policy decisions

• Sending the balance information to subscribers so they can monitor their network-usage
expenses, validate their credit limit, or monitor their active reservation

ECE returns the balance element numeric ID of each balance in the ECE balance query
response. ECE returns the balance element numeric ID of balances for both SUMMARY and
DETAILED balance query modes. Client applications could use this information, for example,
when customer balances are stored in multiple subscriber profile repositories and it is required
to map the balances between the repositories.

ECE returns grantor information in the ECE balance query response for DETAILED balance
query mode. Grantor information consists of the Grantor ID and the Grantor Type. The different
grantor types include purchased charge offerings, purchased alteration offerings, charge
offerings, and alteration offerings.

Configuring Debit Request History
For a debit request, ECE returns a correlation ID in the usage response and stores the
correlation ID in a debit map for each charge offer. If a refund request is later received for the
debit request, ECE uses the correlation ID to validate the refund request (refund requests are
valid only when they are associated with a debit request correlation ID).

The debit request information in the debit map is transient data and you can configure the
number of debit requests to be retained per charge offer. By default, debit request information
is stored for ten debit request operations (for each charge offer) at any given time. For
example, if the debit map contains ten entries and a new debit request is received, the entry for
the oldest debit request is deleted from the debit map, and an entry for the new debit request is
added.

To configure the debit request history:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the debitRefundSessionEvictionSize attribute to the maximum number of debit
requests to log in the debit map at one time.

This is the number of debit requests to keep in history so that refunds can be made against
them.

About the Balance API
Use the balance API to query subscriber balances.

Use the subscriber balance for:

• Making policy decisions

• Sending the balance information to subscribers so they can monitor their network-usage
expenses, validate their credit limit, or monitor their active reservation

Chapter 6
Configuring Debit Request History

6-2

When building a balance query request, you have the option to use the following balance query
modes to restrict the contents of the balance query response that ECE returns:

• SUMMARY: The balance query response contains only the total balance at the balance
element level.

• DETAILED: The balance query response contains the detailed balance for each of the
balance elements; this includes balance element specification information (such as credit
limits) as well as reservation information (such as the active and consumed reservation).

The balance query response mode you use may impact the overall performance of your
system.

For details about the balance API, see the documentation for
oracle.communication.brm.charging.messages.query in Elastic Charging Engine Java API
Reference.

Chapter 6
About the Balance API

6-3

Part II
Working with BRM

This part provides information about how Oracle Communications Billing and Revenue
Management (BRM) and Oracle Communications Elastic Charging Engine (ECE) work
together. It contains the following chapters:

• Synchronizing Data Between ECE and the BRM Database

• Loading ECE Rated Events into BRM

• Generating POIDs for Rated Events

7
Synchronizing Data Between ECE and the
BRM Database

You synchronize data with the Oracle Communications Billing and Revenue Management
(BRM) database to ensure that Oracle Communications Elastic Charging Engine (ECE) is
rating service usage events with the most current pricing data.

Topics in this document:

• About Synchronizing Data Between BRM and ECE

• Setting Up Synchronization between BRM and ECE

• How ECE Gets Historical Data From the BRM Database

About Synchronizing Data Between BRM and ECE
When customer data is updated in the BRM database, the updates must be applied
synchronously (in real time) to ECE. For example, when a CSR adds, cancels, or modifies an
account or when an adjustment such as a cycle fee is applied to an account balance, that
information must be updated in ECE so that ECE can rate service usage events properly.

To synchronize customer data between BRM and ECE, you use Account Synchronization
Manager. Account Synchronization Manager sends customer data in a business event to a
database queue, where ECE Customer Updater retrieves the business event and updates the
information in ECE cache, allowing ECE to rate events using the latest customer information.
For more information, see "About Account Synchronization" in BRM Installation Guide.

You can view or modify the list of BRM business events that are sent to ECE by using the
ECE_home/brm_config/payloadconfig_ece_sync.xml file.

Setting Up Synchronization between BRM and ECE
To set up your system to synchronize customer data between BRM and ECE:

1. Install and configure Account Synchronization Manager, ensuring that you:

• Copy the ECE_home/brm_config/payloadconfig_ece_sync.xml file to your BRM
environment and then merge it with your payload configuration file.

• Copy the ECE_home/brm_config/pin_notify file to your BRM environment and then
merge it with your event notification file.

See "Installing and Configuring Account Synchronization" in BRM Installation Guide.

2. Configure BRM to send account data updates to ECE in real time. See "Enabling Real-
Time Synchronization of BRM and ECE Customer Data Updates".

3. Configure BRM to retrieve real-time balances for a service from ECE. See "Configuring the
Connection Manager to Get Real-Time Balances for a Service from ECE".

7-1

Enabling Real-Time Synchronization of BRM and ECE Customer Data
Updates

When customer data is updated in the BRM database, the updates must be applied
synchronously (in real time).

To enable real-time synchronization of BRM and ECE customer data updates:

1. Open the BRM_home/sys/cm/pin.conf file in a text editor.

2. Add the following entries to the end of the file:

-cm ece_real_time_sync_db_no 0.0.9.8
-cm em_group ece PCM_OP_ECE_PUBLISH_EVENT
-cm em_pointer ece ip emGateway_host emGateway_port

where:

• emGateway_host is the name or IP address of the server on which External Manager
(EM) Gateway is running.

• emGateway_port is the number of the port through which EM Gateway connects to the
host.

Note:

By default, the publisher database number for EM Gateway is 0.0.9.8.

3. If the publisher database number of EM Gateway in your system is not 0.0.9.8, replace
0.0.9.8 with the correct publisher database number in the following entry:

-cm ece_real_time_sync_db_no 0.0.9.8
4. Save and close the file.

5. If you changed the EM Gateway publisher database number in your CM pin.conf file, do
the following:

a. Open the BRM_home/sys/eai_js/payloadconfig_ifw_sync.xml file in a text editor (or
the merged file if you merged payload configuration files).

b. Locate the PublisherDefs section.

c. In the Publisher DB="DB_number" entry, replace DB_number with the publisher
database number of your EM Gateway.

6. Save and close the file.

7. If you changed the EM Gateway publisher database number, restart the Payload
Generator External Module (also called the Enterprise Application Integration (EAI) Java
Server or eai_js).

8. Restart the CM.

Configuring the Connection Manager to Get Real-Time Balances for a
Service from ECE

The CM connects to ECE through EM Gateway.

Chapter 7
Setting Up Synchronization between BRM and ECE

7-2

To configure the CM to get real-time balances for a service from ECE:

1. Open the BRM_home/sys/cm/pin.conf file in a text editor.

2. Add the following entry:

- cm em_group ece_bal PCM_OP_BAL_GET_ECE_BALANCES
3. Set the following entry to match your environment:

- cm em_pointer ece_bal ip emGateway_host emGateway_port
4. Save and close the file.

5. Stop and restart the CM.

How ECE Gets Historical Data From the BRM Database
Because there is a gap of time between when a call occurs and when it is rated, information
about the customer can change during that time. For example, a customer might change the
phone number before a call is rated. ECE must look up account data based on the old number.

To retrieve historical information, ECE gets data from audited objects. By default, auditing in
BRM is turned off for most objects. After you install the account synchronization components,
you must run the object_auditing.pl script to turn on auditing for the objects and fields that
ECE needs data about. See "object_auditing" in BRM Installation Guide.

Chapter 7
How ECE Gets Historical Data From the BRM Database

7-3

8
Loading ECE Rated Events into BRM

You load rated events from Oracle Communications Elastic Charging Engine (ECE) into the
Oracle Communications Billing and Revenue Management (BRM) database by using Rated
Event Loader.

Topics in this document:

• About Sending Rated Events to the BRM Database

• Adding a Rated Event Publisher Instance

• Configuring Rated Event Publisher

• Configuring Item Assignment for Rated Events

• Configuring Life Cycle States in ECE for BRM

• Including or Excluding a Customer’s Remaining Balance in Rated Events

• Accessing ECE Configuration MBeans

About Sending Rated Events to the BRM Database
After usage events are rated, ECE sends the rated event data to the BRM database by using
Rated Event Loader and updates the customer's balance in both ECE and in the BRM
database. The same process is used for loading online charging events and offline charging
events.

For more information, see "About Loading Rated Events into the BRM Database" in BRM
Loading Rated Events.

Adding a Rated Event Publisher Instance
If you are using Oracle NoSQL Database to store rated events, you must configure Rated
Event Publisher. Rated Event Publisher publishes ECE-generated rated events to the Oracle
NoSQL database data store.

To add a Rated Event Publisher instance:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.ratedEventPublishers.

4. Expand Operations.

5. Select addRatedEventPublisherConfiguration.

6. Enter a value for the instance name parameter.

7. Click addRatedEventPublisherConfiguration.

8. Use Elastic Charging Controller (ECC) to start the RE Publisher instance.

8-1

Configuring Rated Event Publisher
To configure Rated Event Publisher:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.connectionConfiguratons.instance_name.

4. Specify values for the fields in Table 8-1.

Table 8-1 Fields for Configuring Rated Event Publisher Connection

Name Default Description and Guideline

dataStoreConnection localhost:5000 This parameter configures Rated Event
Publisher to connect to the Oracle NoSQL
database; it configures the data store
connection to the Oracle NoSQL database
system.

The Oracle NoSQL database connection
string uses the format hostname:port for
connecting to a preconfigured Oracle NoSQL
database system.

The default is localhost:5000 for connecting
to a standalone Oracle NoSQL database
system (KV-Lite).

dataStoreName kvstore This parameter configures the data store
name to an Oracle NoSQL database system.

The data store name is for using a
preconfigured data store in an Oracle NoSQL
database system.

The default is kvstore for using a standalone
Oracle NoSQL database system (KV-Lite).

name noSQLConnection1 This parameter should match the
noSQLConnectionName parameter in the
charging.ratedEventPublishers.instance_na
me configuration.

5. Expand the charging.ratedEventPublishers.instance_name node.

6. Expand Attributes.

7. Specify values for the fields in Table 8-2.

Table 8-2 Fields for Configuring Rated Event Publisher

Name Default Description and Guideline

noSQLConnectionName noSQLConnection1 This parameter should match the name
parameter in the
charging.ratedEventPublishers.instance_na
me configuration for the correct connection
configuration to the Oracle NoSQL database.

Chapter 8
Configuring Rated Event Publisher

8-2

Table 8-2 (Cont.) Fields for Configuring Rated Event Publisher

Name Default Description and Guideline

threadPoolSize 4 This parameter configures the number of
threads in the thread pool.

Multiple threads can be used in a
RatedEventPublisher module where each
thread can publish rated events to an Oracle
NoSQL database system independently.

The valid number is greater than zero. For best
performance, Oracle recommends that you set
this parameter to the number of Oracle NoSQL
database partitions. Setting the number of
threads higher than the number of partitions
does not increase performance. Threads that
you configure higher than the number of
partitions are not used.

8. Use ECC to stop and restart Rated Event Publisher.

Configuring Item Assignment for Rated Events
You configure item assignments in ECE so that customer balance impacts can be tracked
appropriately. Typically, the default configuration is sufficient. If you have custom item
assignments, you might need to change the configuration for item assignments.

The item-type field maps to BRM items; this mapping is required for loading rated events from
ECE to the BRM database. Each rated event record has an item_type field derived from the
mapping specified in the itemType MBean attribute. The itemType MBean attribute lists the
ECE service/event combinations used in event definitions.

For example, usage events are typically applied to the /item/misc object, also known as the
misc item type. To map voice and data events to the misc item, ECE maps itemType="misc"
to itemTag="VOICE_DATA_misc". The XML file that stores this configuration shows how the
mapping works.

<itemTypeDetail itemType="misc" itemTag="VOICE_DATA_misc">
 <itemTagDetail
 productType="VOICE"
 eventType="USAGE">
 </itemTagDetail>
 <itemTagDetail
 productType="DATA"
 eventType="DATA_USAGE">
 </itemTagDetail>
</itemTypeDetail>

In this example, the VOICE_DATA_misc item tag includes two ECE service/event mappings:
VOICE/USAGE and DATA/DATA_USAGE. When a usage request is created, the item mapping
specifies that the misc item type will be assigned to the events.

If you configured delayed billing in BRM, you must configure item assignment in ECE to
process delayed usage requests in the appropriate accounting cycle.

To configure item assignment for rated events:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

Chapter 8
Configuring Item Assignment for Rated Events

8-3

2. Expand the ECE Configuration node.

3. Expand charging.itemAssignmentConfig.

4. Expand Attributes.

5. Review the following attributes:

• itemAssignmentEnabled: Enter true to turn on item assignment or false to turn it off.

• poidQuantityPerSchema: Double-click the Value field. A list of schemas and the
quantity of POID IDs reserved at ECE startup for each schema appears.

• delayToleranceIntervalInDays: Enter the number of days during which delayed
usage requests are processed for the current accounting cycle. This interval must be
less than the delayed billing interval.

The delayed billing interval is set in the ConfigBillingDelay business parameter. See
"Configuring Delayed Billing" in BRM Configuring and Running Billing.

6. To add a schema to the poidQuantityPerSchema list or to change the quantity of POID
IDs for a schema in the list:

a. Expand Operations.

b. Select setPoidQuantity.

c. Specify values for the following parameters:

• schema: Enter the BRM schema number for which the POID IDs must be
reserved. For example, in a multischema environment, enter 1 for the primary
schema, 2 for the secondary schema, and so on.

• quantity: Enter the number of POID IDs reserved at ECE startup for the specified
schema.

d. Click the setPoidQuantity button.

Configuring Life Cycle States in ECE for BRM
ECE supports the BRM subscriber life cycle state feature. If the subscriber life cycle state
feature is disabled in BRM, ECE supports only the default subscriber life cycle, which has the
following states: Active, Inactive, and Closed. If the subscriber life cycle state feature is
enabled in BRM, ECE supports custom subscriber life cycles, which has the following states:
Preactive, Active, Recharge Only, Credit Expired, Fraud Investigated, Dormant, Suspended,
and Closed. See "Creating Custom Service Life Cycles" in BRM Managing Customers for more
information.

You must configure the life cycle states in ECE, so they stay synchronized with life cycle states
you add in BRM.

Chapter 8
Configuring Life Cycle States in ECE for BRM

8-4

Note:

If your service termination fails after an upgrade to ECE 12.0 Patch Set 8, the EM
Gateway logs show this LIFECYCLE_STATE_UPDATE failure error message:

2024-09-11 16:58:58.328 JST ERROR - - - - Failed Response -
[ResponseLetterImpl{content=UpdateResponseImpl{msgId='2:pjpaw-
brmapp-03:UnknownProgramName:0:inquiryThreads8:14:1726041537:0:root.0.0.0.1:::'
, updateType=LIFECYCLE_STATE_UPDATE, errorMsg=null, status=FAILED,
{reasons=[]}}}{trackingContext=[TrackingContextImpl{chronicler=null}]}]

You can prevent this by configuring the following state values in your charging-
settings.xml file and rechecking the service termination scenario. For example:

 <lifecycleState
 config-
class="oracle.communication.brm.charging.appconfiguration.beans.productstate.Li
fecycleState"
 state="10100" stateName="ACTIVE"/>
 <lifecycleState
 config-
class="oracle.communication.brm.charging.appconfiguration.beans.productstate.Li
fecycleState"
 state="10102" stateName="SUSPENDED"/>
 <lifecycleState
 config-
class="oracle.communication.brm.charging.appconfiguration.beans.productstate.Li
fecycleState"
 state="10103" stateName="CLOSED"/>
--

You can configure the lifecycle state values using a JMX editor (See "Configuring
Lifecycle States During Runtime" for more information) or the charging-settings.xml
file (See "Configuring Lifecycle States At Installation" for more information). However,
you need to perform a rolling upgrade or restart the ECS nodes to initialize these
configuration changes. Validate the cache after the restart to check whether the
correct lifecycle states are loaded. Any state that flows into the payload to ECE
should be available in ECE. If not, an exception is thrown in ECE due to the same.

Configuring Lifecycle States At Installation
You configure the lifecycle state mapping during installation in the charging-settings.xml file.

1. Open your charging-settings.xml file.

2. Define your states in the <lifecycleStateMappingConfiguration> element. For example, this
defines the PREACTIVE lifecycle state:

<lifecycleStateMappingConfiguration

 config-
class="oracle.communication.brm.charging.appconfiguration.beans.productstate.Lifecycl
eStateMapper">
<lifecycleStateMappingGroup config-class="java.util.ArrayList">
<lifecycleState

 config-
class="oracle.communication.brm.charging.appconfiguration.beans.productstate.Lifecycl

Chapter 8
Configuring Life Cycle States in ECE for BRM

8-5

eState"
 state="101" stateName="PREACTIVE"/>
</lifecycleStateMappingGroup>
</lifecycleStateMappingConfiguration>

3. Define the product type to which the rule applies in the <productLifecycleConfiguration>
element. For example, this specifies the VOICE product type:

<productLifecycleConfiguration config-
class="oracle.communication.brm.charging.appconfiguration.beans.lifecycle.ProductLife
cycleConfiguration" productType="VOICE">

4. Define the rules in the <productLifecycleConfiguration> element. You can configure the
rule based on:

• Items within the payload. For example:

getObject("oracle.communication.brm.charging.rating.RatingContext#request/
payload/attribute?USAGE_DIRECTION/toString")

• The default aliases. For example:

DEFAULT_ALIASES.put("@birthday", GET_OBJECT + CTX +
 "#getCustomerBdayMmdd?Birthday\")");

• The business profile of the customer. For example:

(business_profile([name:"PREPAID"])} == "true")
• The request attribute. For example:

getObject("oracle.communication.brm.charging.rating.RatingContext#request/
eventType") == "EventSessionTelcoGsmVoice")

• The attributes from the payload, using getObject/getInteger/getBigDecimal/
getBoolean method calls for relevant attributes.

5. The rules defined can be used to define transitions. For example,

• (business_profile([name:"PREPAID"])} == "true")

The above condition causes the state transition to take place only for the PREPAID
profile and can be used in the transition:

<transitionConfiguration config-
class="oracle.communication.brm.charging.appconfiguration.beans.lifecycle.Transit
ionConfiguration" transition="(((@productState == "PREACTIVE") &&
(@usageDirection == "0")) && ({business_profile([name:"PREPAID"])} == "true"))
=> [state:"ACTIVE",expiration:"2",duration:"days"]"/>

• (business_profile([name:"POSTPAID"])} == "true")

The above condition causes the state transition to take place only for the POSTPAID
profile and can be used in the transition:

<transitionConfiguration config-
class="oracle.communication.brm.charging.appconfiguration.beans.lifecycle.Transit
ionConfiguration" transition="(((@productState == "PREACTIVE") &&
(@usageDirection == "0")) && ({business_profile([name:"POSTPAID"])} == "true"))
=> [state:"ACTIVE",expiration:"2",duration:"days"]"/

Configuring Lifecycle States During Runtime
To configure lifecycle states in ECE for BRM during runtime:

Chapter 8
Configuring Life Cycle States in ECE for BRM

8-6

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.lifecycleConfiguration.

4. Expand Operations.

5. Select addLifecycleDetails.

6. Enter values for these parameters:

• ProductType: (String value) The product type for which you want to configure the rule
and transition, such as VOICE, DATA, or SMS.

• Rule: (String value) The rule for the specified product type to allow or disallow usage.
The characters need to be escaped while provided the same input field.

• Transition: (String value) The state transitions for the specified product type.

• IsUsage: (Boolean value) True specifies that the rule and transition is for USAGE.
False specifies that the rule and transition is for EXTERNAL_TOP_UP.

7. Click the addLifecycleDetails button.

Including or Excluding a Customer’s Remaining Balance in Rated
Events

Starting in Patch Set 7, ECE can send the current balance and loan balance information with
rated events. This allows your custom client application to display balance data with rated
events. These balances can be either currency or non-currency, depending on the type of
resource impacted by the transaction.

By default, this value is set to true, so that the balances are sent with events. You can change
the value to false, if you would like to retain the older event format.

To configure whether ECE sends balance data on rated events:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Set the populateCurrentLoanAmountsOnRef attribute to either true or false as desired.

Accessing ECE Configuration MBeans
For all configurations, start by accessing the ECE configuration MBeans:

1. Log on to the driver machine.

2. Start the ECE charging servers (if they are not started).

3. Connect to the ECE charging server node enabled for JMX management.
This is the charging server node set to start CohMgt = true in the ECE_home/config/
eceTopology.conf file, where ECE_home is the directory in which ECE is installed.

4. Start a JMX editor that enables you to edit MBean attributes, such as JConsole.

5. In the editor's MBean hierarchy, find the ECE configuration MBeans.

Chapter 8
Including or Excluding a Customer’s Remaining Balance in Rated Events

8-7

9
Generating POIDs for Rated Events

You can configure Oracle Communications Elastic Charging Engine (ECE) to generate POIDs
for events that are created in ECE.

Topics in this document:

• About Generating POIDs in ECE

• Configuring ECE to Generate POIDs for Prepaid Events

About Generating POIDs in ECE
You use portal object IDs (POIDs) to track rated events and bill items. For tracking events
created in ECE, POIDs are generated as follows:

• For delayed events, ECE generates the POIDs by default.

• For prepaid events, BRM generates the POIDs and sends them to ECE by default. You
can configure ECE to generate the POIDs. See "Configuring ECE to Generate POIDs for
Prepaid Events".

• For non-usage events, such as subscription events, BRM generates the POIDs and sends
them to ECE.

ECE uses Rated Event Formatter to generate the POIDs and persists the last allocated POID
ID in the database. This ensures that the POIDs are generated without any duplication even if
the ECE system is restarted.

The POID generated in ECE contains the following information:

event_type date cluster_id BRM_schema_id unique_id

See Table 9-1 for the description of each entry in the POID.

Table 9-1 POID Entries in ECE

Entry Description

event_type A unique 4-bit number assigned to each event type.

For example, 0 is assigned to subscription events, 1 is assigned to
postpaid events (USAGE_POSTPAID), and 2 to 7 is assigned to prepaid
events (USAGE_PREPAID) depending on the prepaidParttitionSet
value specified in BRM.

The default value for event_type is 0.

date The 16-bit date on which the POID is generated. The date is determined
based on ECE virtualTime if it is enabled.

For more information on virtualTime, see "Changing Time and Date to
Test ECE".

9-1

Table 9-1 (Cont.) POID Entries in ECE

Entry Description

cluster_id A unique 4-bit number assigned to the Coherence cluster to identify
ECE in the cluster. The cluster_id is limited to 0 to 15 and the maximum
number of ECE clusters allowed in a deployment is 16. The default
value for cluster_id is 0.

If ECE is configured for disaster recovery, you must specify the cluster
ID for each cluster used in the Active-hot standby or Active-cold standby
systems.

BRM_schema_id A unique 6-bit number assigned to the BRM schema. The
BRM_schema_id is limited to 0 to 31.

unique_id A unique 34-bit number assigned to each POID.

You can configure multiple instances of Rated Event Formatter for uninterrupted POID
allocation. If the primary Rated Event Formatter instance fails, the secondary Rated Event
Formatter instance ensures that the POIDs are generated and allocated without any
interruption. In a disaster recovery deployment, if the Rated Event Formatter instance in the
primary site fails, the Rated Event Formatter instance in the backup site continues the POID
allocation for the events.

For tracking the bill items and non-usage events created in ECE, ECE uses the POIDs
received from BRM. ECE persists the POID pool received from BRM in the database. This
ensures that the reserved POID pool is retained in ECE even after the ECE restart. It allows
ECE to continue the POID allocation using the existing POID pool.

Configuring ECE to Generate POIDs for Prepaid Events
To configure ECE to generate POIDs for prepaid events, you must perform the following:

1. Enable prepaid-event partitions in BRM. See "Enabling Prepaid Event Partitions in BRM".

2. Ensure that the cluster ID is configured for ECE clusters. The cluster ID must be specified
if you have ECE configured for disaster recovery. See "Configuring Cluster ID".

3. Ensure that the name of the primary Rated Event Formatter instance is specified in each
Rated Event Formatter instance. See the primaryInstanceName MBean attribute in
"Configuring RE Formatter" in Loading Rated Events.

The primary Rated Event Formatter instance must be specified if you have ECE configured
for disaster recovery.

4. Enable POID generation for prepaid events in ECE. See "Enabling POID Generation for
Prepaid Events in ECE".

Enabling Prepaid Event Partitions in BRM
To enable prepaid-event partitioning in BRM:

Note:

In multischema systems, perform this task first on the primary BRM installation
machine and then on the secondary BRM installation machines.

Chapter 9
Configuring ECE to Generate POIDs for Prepaid Events

9-2

1. Open the BRM_home/sys/dm_oracle/pin.conf file in a text editor.

2. Set the prepaid_partition_set entry to a numerical value only between 2 and 7. For
example:

- dm prepaid_partition_set 2
3. Set the prepaid_partition_transition_mode entry to 1:

Note:

Setting this entry to 1 enables Data Manager to retrieve the partitions for the
existing events. After retrieving all the partitions for the existing events (for
example, after 90 days), set this entry to 0 to disable this mode.

 - dm prepaid_partition_transition_mode 1
4. Save and close the file.

5. Create an editable XML file from the system instance of the /config/business_params
object:

pin_bus_params -r BusParamsSystem bus_params_system.xml
6. Set the prepaidPartitionSet parameter to the value you specified in step 2. For example:

<prepaidPartitionSet>2</prepaidPartitionSet>
7. Save the file as bus_params_system.xml.

8. Load the XML file into the BRM database:

pin_bus_params bus_params_system.xml
9. Stop and restart the CM.

10. (Multischema systems only) Run the pin_multidb script with the -R CONFIG parameter.
For more information, see "pin_multidb" in BRM System Administrator's Guide.

11. Go to the BRM_home/apps/partition_utils directory.

12. Enable prepaid-event partitions by running the following command:

partition_utils -o enable -t prepaid
13. Add prepaid-event partitions by running the following command:

partition_utils -o add -t prepaid -s start_date -u month|week|day -q quantity

where:

• start_date specifies the starting date for the new partitions. The format is MMDDYYYY.

• quantity specifies the number of partitions to add. Enter an integer greater than 0.

For more information on enabling and adding partitions, see "Partitioning and Managing
BRM Database Tables" in BRM System Administrator's Guide.

Configuring Cluster ID
To configure the cluster ID for ECE clusters:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

Chapter 9
Configuring ECE to Generate POIDs for Prepaid Events

9-3

2. Expand the ECE Configuration node.

3. Expand charging.clusters.Cluster_Name, where Cluster_Name is the name of the ECE
cluster that you are configuring.

4. Expand Attributes.

5. Set the id attribute to a unique number that indicates the ID of the cluster in the POID
generated in ECE.

Rated Event Formatter uses the cluster ID in the POID to identify the ECE clusters. The
cluster ID must be unique for each cluster.

Enabling POID Generation for Prepaid Events in ECE
To enable POID generation for prepaid events in ECE:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.brmCdrPlugins.Instance_Name, where Instance_Name is the name of
the BrmCdrPluginDirect Plug-in instance you are configuring.

4. Expand Attributes.

5. Set the prepaidPartitionSet attribute to the value that you specified in the
prepaid_partition_set entry in the BRM_home/sys/dm_oracle/pin.conf file.

Note:

To enable POID generation in ECE, you must set this attribute to a number
between 2 and 7. If this attribute is set to 0, ECE uses the POIDs received from
BRM for tracking events.

Chapter 9
Configuring ECE to Generate POIDs for Prepaid Events

9-4

Part III
Managing ECE Notifications

This part provides information about generating notifications for your customers or external
systems from Oracle Communications Elastic Charging Engine (ECE). It contains the following
chapters:

• Configuring Notifications in ECE

• Configuring Subscriber Preferences

10
Configuring Notifications in ECE

You can configure Oracle Communications Elastic Charging Engine (ECE) to publish in-
session notifications to subscribers and system notifications to external applications.

Topics in this document:

• About ECE Notifications

• Enabling External Notifications in ECE

• Enabling Specific Notification Types

• Enabling In-Session Group Notifications in ECE

• Configuring BRM Gateway to Process ECE Notifications

• Modifying JMS Credentials for Publishing External Notifications

About ECE Notifications
ECE supports these types of notifications:

• In-session notifications for your subscribers: These notifications are sent to customers
during online charging. For example, notifying customers about their reserved balance
amounts.

You can configure in-session notifications for individual subscribers by using subscriber
preferences. See "Configuring Subscriber Preferences".

• Notifications for external applications: These notifications contain information that
external applications need. For example:

– The network mediation system can use data in the external notification in conjunction
with customer policy data for implementing network policy control.

ECE sends notifications for external applications to the ECE Notification queue. You
must configure your external application to retrieve and process notifications from the
ECE Notification queue.

– BRM can use data in the external notification for running billing for a specific customer.

ECE sends notifications for BRM to the ECE Notification queue. You can configure
BRM to retrieve the notification from the queue and send it to the BRM Server for
processing.

All notifications are disabled by default. You can configure ECE to do the following:

• Publish in-session notifications to your subscribers

• Publish notifications to external applications, such as BRM

• Specify the type of notifications that are supported

• Send notifications to everyone in a sharing group when one of its members triggers a
notification

• Configure BRM Gateway to retrieve notifications from the ECE Notification queue

10-1

Enabling External Notifications in ECE
To enable ECE to publish notifications to external applications such as BRM, do the following:

1. Open the ECE_home/config/charging-cache-config.xml file.

2. Under the ServiceContext module, set cache-store to
oracle.communication.brm.charging.notification.internal.coherence.AsynchronousN
otificationPublisher:

<init-param>
 <param-name>cache-store</param-name>
 <param-
value>oracle.communication.brm.charging.notification.internal.coherence.AsynchronousN
otificationPublisher</param-value>

3. Save the file.

Enabling Specific Notification Types
You can enable ECE to generate notifications for specific types of events, such as a credit limit
being exceeded.

You specify whether a specific notification type is enabled and whether it can be sent to an
external application, a subscriber, or both by setting its attribute to one of the values in
Table 10-1.

Table 10-1 Notification Attribute Values

Attribute Value Description

NONE This notification type is disabled.

ASYNCHRONOUS Send asynchronous notifications to external applications.

PIGGYBACK Send in-session notifications to subscribers through the
usage response message.

ASYNC_PIGGYBACK Send both asynchronous notifications to external
applications, and in-session notifications to subscribers
through the usage response message.

To enable ECE to generate specific types of notifications:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.notification.

4. Expand Attributes.

5. Specify which type of notifications can be sent to your customers, external applications, or
both by setting the attributes in Table 10-2 to NONE, ASYNCHRONOUS, PIGGYBACK, or
ASYNC_PIGGYBACK.

Chapter 10
Enabling External Notifications in ECE

10-2

Note:

An asterisk (*) appears next to the default attribute value.

Table 10-2 Notification Types

Attribute Name Description Supported Values

creditCeilingBreachN
otificationMode

Sends notifications when a customer's balance
has breached a credit ceiling.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

creditFloorBreachNot
ificationMode

Sends notifications when a customer's balance
has breached a credit floor.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

thresholdBreachNotifi
cationMode

Sends notifications when a customer's balance
has breached a credit threshold.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

topUpNotificationMod
e

Sends notifications when a customer's balance
is topped up.

NONE*
ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

rarNotificationMode Sends notifications when an ongoing session
requires a reauthorization request.

See "Enabling Server-Initiated Reauthorization
Requests".

NONE*

ASYNCHRONOUS

externalTopUpNotific
ationMode

Sends notifications when a customer's balance
is topped up through an external application.

NONE*

ASYNCHRONOUS

billingNotificationMod
e

Sends notifications when a subscriber starts a
charging session near the time billing is set to
run in BRM. This ensures that billing generates
new recurring grants and charges on time.

NONE*
ASYNCHRONOUS

adviceOfChargeNotifi
cationMode

Sends notifications to support the Advice of
Charge (AoC) supplementary service.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

replenishPoidIdNotifi
cationMode

Sends notifications when ECE needs to obtain
POID IDs from BRM.

NONE
ASYNCHRONOUS*

lifeCycleTransitionNot
ificationMode

Sends notifications when a customer's life-cycle
state has changed.

NONE*
ASYNCHRONOUS

firstUsageValidityInit
NotificationMode

Sends notifications to synchronize validity of first
usage balance elements from ECE to external
applications.

NONE*
ASYNCHRONOUS

offeringUsageValidityI
nitNotificationMode

Sends notifications to synchronize validity of
offer usage balance elements from ECE to
external applications.

NONE
ASYNCHRONOUS*

Chapter 10
Enabling Specific Notification Types

10-3

Table 10-2 (Cont.) Notification Types

Attribute Name Description Supported Values

spendingLimitNotifica
tionMode

Sends notifications when a threshold for a
policy-driven charging rule has been reached.

NONE*
ASYNCHRONOUS

aggregatedSpending
LimitNotificationMode

Sends aggregated notifications when a threshold
for a policy-driven charging rule has been
reached.

NONE*
ASYNCHRONOUS

loanGrantNotification
Mode

Sends notifications when a customer is granted
a loan.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

automaticTopUpTrigg
erNotificationMode

Sends notifications when a customer's balance
requires an automatic top up.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

Enabling In-Session Group Notifications in ECE
You can configure ECE to send notifications to everyone in a sharing group when one of its
members triggers a notification. For example, when a member breaches a credit limit or credit
threshold, a notification is sent to all members in the sharing group.

When group notifications are disabled, ECE sends notifications only to the member that
triggered the notification.

To enable group notifications:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the groupNotificationEnabled attribute to True.

6. (For firstUsageValidityInitNotificationMode notification types only) Set
replicateFirstUsageValidityInitEvent to true.

7. Configure the NotificationEnabledAgreements subscriber preference:

a. Add a string for NotificationEnabledAgreements in the BRM_home/sys/msgs/
active_mediation/active_mediation.en_US file. For example:

STR
 ID = string_id;
 Version = 1;
 STRING = "NotificationEnabledAgreements";
END

where string_id is a unique numerical ID for the string. See "Creating New Strings and
Customizing Existing Strings" in BRM Developer's Guide for information about adding
strings.

b. Add NotificationEnabledAgreements to the BRM_home/sys/data/config/
config_subscriber_preferences_map.xml file. For example:

Chapter 10
Enabling In-Session Group Notifications in ECE

10-4

<SUBSCRIBER_PREFERENCES elem="preference_id">
 <NAME>NotificationEnabledAgreements</NAME>
 <SUBSCRIBER_PREFERENCE_ID>preference_id</SUBSCRIBER_PREFERENCE_ID>
 <STRING_ID>string_id</STRING_ID>
 <STR_VERSION>1</STR_VERSION>
 <DEFAULT></DEFAULT>
 <TYPE>1</TYPE>
 </SUBSCRIBER_PREFERENCES>

where:

• preference_id is a unique numerical ID for the preference.

• string_id is the same value as you used for ID in the active_mediation.en_US file.

Note:

Leave the <DEFAULT> element blank to ensure that only subscribers who
opt in will receive notifications.

When group notifications are enabled, you set subscriber preferences at the profile level to
enable notifications for the individual subscribers that want to receive them. See "Configuring
Group Notifications" for more information.

Configuring BRM Gateway to Process ECE Notifications
ECE publishes notifications intended for external applications to the ECE notification queue. If
the notifications are targeted for BRM, BRM Gateway retrieves the notifications from the queue
and then calls the appropriate BRM opcode.

To configure BRM Gateway to process ECE notifications, you must connect BRM Gateway to
both BRM and the ECE notification queue:

1. When you install ECE, do this:

• Add details for connecting the BRM Gateway to the BRM Connection Manager (CM).

• If you are using Oracle WebLogic for notification handling, specify to create WebLogic
queues and enter the details for your ECE Notification queue and Suspense queue.

• If you are using Apache Kafka for notification handling, specify to create Kafka topics
and enter the details for your ECE Notification topic and Suspense topic.

Note:

Systems that support 5G networks must use Apache Kafka for notification
handling.

For more information, see "Installing an ECE Integrated System" in Elastic Charging
Engine Installation Guide.

2. During the ECE post-installation process, do this:

• If you are using Oracle WebLogic for notification handling, run the post_Install.pl
script to create your ECE Notification queue, Suspense queue, and Acknowledgment
queue. See "Creating WebLogic JMS Queues for BRM" in Elastic Charging Engine
Installation Guide.

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-5

• If you are using Apache Kafka for notification handling, run the kafka_post_install.sh
script to create your ECE Notification topic and Suspense topic. Then, run the
post_Install.pl script and choose to create only the Acknowledgment queue. See
"Creating Kafka Topics for ECE" and "Creating WebLogic JMS Queues for BRM" in
Elastic Charging Engine Installation Guide.

3. Configure your BRM Gateway instances:

• If you want to configure a single BRM Gateway instance, see "Configuring a Single
BRM Gateway Instance".

• If you want to configure multiple BRM Gateway instances, see "Configuring Multiple
BRM Gateway Instances".

Note:

Multiple BRM Gateway instances are supported only in ECE 12.0.0.3.0 with
Interim Patch 32078697 and later.

4. Configure the BRM Gateway queues or topics:

• If you are using WebLogic queues, see "Configuring WebLogic Queues for BRM
Gateway".

• If you are using Kafka topics, see "Connecting BRM Gateway to Kafka Topics and
BRM".

• If you are using queues from an external application, see "Considerations for Using a
Non-WebLogic Server JMS Provider".

Configuring a Single BRM Gateway Instance
To configure a single BRM Gateway instance:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.brmGatewayConfiguration.

4. Expand Attributes.

5. Use the following attributes to configure BRM Gateway:

• emptyQueueThreadSleepInterval

• jmsReceiveSleepInterval

• brmResponseTimeOutInterval

• gatewaySleepInterval

• jmsBatchSize

• jmsReceiveTimeout

• brmWorkerThreads

• brmSchedulerThreadInitialDelay

• brmSchedulerThreadDelayPeriod

• brmSuspenseQueuePeriod

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-6

• connectionRetryCount

• connectionRetryInterval

Configuring Multiple BRM Gateway Instances

Note:

Multiple BRM Gateway instances are supported only by:

• ECE 12.0.0.3.0 with Interim Patch 32078697 and later.

• ECE environments that use a NoSQL database and Kafka topics.

When your system contains multiple BRM Gateway instances, each instance is connected to
one or more schemas in your BRM database. For example, a system with three instances
could have BRM Gateway 1 connected to schema 1, and BRM Gateway 2 and BRM Gateway
3 both connected to schema 2. However, only one BRM Gateway instance is active and
processing ECE notifications at a time. One of the passive instances comes online only if the
active instance goes down.

For example, if BRM Gateway 2 is active, it remains active and processing ECE notifications
until the instance goes down. Then, BRM Gateway 1 or 3 becomes active.

To configure multiple BRM Gateway instances:

1. Open the ECE_home/config/management/charging-settings.xml file.

2. If you are upgrading to ECE 12.0.0.3.0 with Interim Patch 32078697 or later, do this:

a. Delete the existing charging.brmGatewayConfiguration section:

<brmGatewayConfiguration
 config-
class="oracle.communication.brm.charging.appconfiguration.beans.connection.BRMGat
ewayConfiguration"
 name="brmGatewayConfiguration"
 emptyQueueThreadSleepInterval="50"
 jmsReceiveSleepInterval="100"
 brmResponseTimeOutInterval="600000"
 gatewaySleepInterval="2000"
 jmsBatchSize="10"
 jmsReceiveTimeout="2000"
 brmWorkerThreads="10"
 brmSchedulerThreadInitialDelay="10"
 brmSchedulerThreadDelayPeriod="3"
 brmSuspenseQueuePeriod="1800000"
 connectionRetryCount="10"
 connectionRetryInterval="10000">
</brmGatewayConfiguration>

b. Copy the following charging.brmGatewayConfigurations section into the file:

<brmGatewayConfigurations
 config-
class="oracle.communication.brm.charging.appconfiguration.beans.connection.BRMGat
ewayConfigurations">
 <brmGatewayConfigurationList config-class="java.util.ArrayList">
 <brmGatewayConfiguration
 config-

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-7

class="oracle.communication.brm.charging.appconfiguration.beans.connection.BRMGat
ewayConfiguration"
 name="brmGatewayN"
 clusterName="@CLUSTER_NAME@"
 emptyQueueThreadSleepInterval="50"
 jmsReceiveSleepInterval="100"
 brmResponseTimeOutInterval="600000"
 gatewaySleepInterval="2000"
 jmsBatchSize="10"
 jmsReceiveTimeout="2000"
 brmWorkerThreads="10"
 brmSchedulerThreadInitialDelay="10"
 brmSchedulerThreadDelayPeriod="3"
 brmSuspenseQueuePeriod="1800000"
 connectionRetryCount="10"
 connectionRetryInterval="10000"
 schemaNumber="N"/>
</brmGatewayConfigurationList>

c. Under brmGatewayConfigurationList, add this section for each additional BRM
Gateway instance that you want to create:

<brmGatewayConfiguration
 config-
class="oracle.communication.brm.charging.appconfiguration.beans.connection.BRMGat
ewayConfiguration"
 name="brmGateway"
 clusterName="@CLUSTER_NAME@"
 emptyQueueThreadSleepInterval="50"
 jmsReceiveSleepInterval="100"
 brmResponseTimeOutInterval="600000"
 gatewaySleepInterval="2000"
 jmsBatchSize="10"
 jmsReceiveTimeout="2000"
 brmWorkerThreads="10"
 brmSchedulerThreadInitialDelay="10"
 brmSchedulerThreadDelayPeriod="3"
 brmSuspenseQueuePeriod="1800000"
 connectionRetryCount="10"
 connectionRetryInterval="10000"
 schemaNumber="1"/>
</brmGatewayConfigurationList>

3. Edit these properties for each BRM Gateway instance:

• name: Set this to the name of your BRM Gateway instance in this format:
brmGatewayN. For example, name the first instance brmGateway1, the second
instance brmGateway2, and so on.

• schemaNumber: Set this to the schema number that the BRM Gateway instance
connects to in the BRM database. Enter 1 to connect to the first schema, 2 to enter the
second schema, and so on.

4. Save and close the charging-settings.xml file.

5. Stop BRM Gateway:

stop brmGateway
6. Open the ECE_home/config/eceTopology.conf file.

7. Add a row to the file for each BRM Gateway instance.

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-8

For example, to configure three BRM Gateway instances, add three rows in which the
node name value is brmGateway1, brmGateway2, and brmGateway3, and the role value
for all three rows is brmGateway:

#node-name |role |host name (no spaces!) |host ip |JMX port
|start CohMgt |JVM Tuning File
brmGateway1 |brmGateway |localhost | |9994
|false |defaultTuningProfile
brmGateway2 |brmGateway |localhost | |9994
|false |defaultTuningProfile
brmGateway3 |brmGateway |localhost | |9994
|false |defaultTuningProfile

8. Save and close the eceTopology.conf file.

9. From the ECE_home/bin directory, start Elastic Charging Controller (ECC):

./ecc
10. Start all BRM Gateway instances:

start brmGateway

Connecting BRM Gateway to Kafka Topics and BRM
To connect BRM Gateway to the ECE Notification Kafka topic and BRM:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the kafkaEnabledForNotifications property to true.

6. Expand charging.kafkaConfigurations.

7. Expand Attributes.

8. Specify the Kafka configuration values for the attributes in Table 10-3.

Verify that the name, hostname, and topic names that you provide match the settings
entered when installing ECE.

Table 10-3 Settings for Connecting BRM Gateway to Kafka Topics

Property Name Description

name The name of your ECE cluster.

hostname The host name and port number of the machine
in which Apache Kafka is up and running.

If it contains multiple Kafka brokers, create a
comma-separated list.

topicName The name of the Kafka topic in which BRM
Gateway retrieves notifications from ECE.

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-9

Table 10-3 (Cont.) Settings for Connecting BRM Gateway to Kafka Topics

Property Name Description

partitions The total number of Kafka partitions in your
topics.

The recommended number to create is
calculated as follows: [(Max Diameter Gateways
* Max Peers Per Gateway) + (1 for BRM
Gateway) + Internal Notifications]

kafkaBRMReconnectionInterval The amount of time, in milliseconds, BRM
Gateway waits before attempting to reconnect to
the Kafka topic.

kafkaBRMReconnectionMax The maximum amount of time, in milliseconds,
BRM Gateway waits before attempting to
reconnect to a broker that has repeatedly failed
to connect.

The kafkaBRMReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

9. Expand charging.connectionConfigurations.brmConnection.

10. Expand Attributes.

11. Specify the configuration values for connecting BRM Gateway to the BRM Connection
Manager (CM):

• hostName: Enter the host name of the server in which the CM is running. For
example: abc01.example.com.

• loginName: Enter the user name for logging in to BRM. The default is root.0.0.0.1.

• cmPort: Enter the port number for the BRM CM.

About BRM Gateway Error Handling

When BRM Gateway calls an opcode, it checks whether the opcode ran successfully. If it did
not, the exception from the opcode is checked and, if the exception is one of the following, it
retries the opcode call.

• ERR_TIMEOUT

• ERR_DEADLOCK

• ERR_STREAM_EOF

• ERR_IM_CONNECT_FAILED

• ERR_EM_CONNECT_FAILED

• ERR_NAP_CONNECT_FAILED

If the opcode continues to fail after all of the configured retry attempts, the notification is moved
to the Suspense topic.

If the exception is due to a duplicate message (ERR_DUPLICATE), the opcode call is not
retried and the message is not moved to the Suspense topic.

Configuring WebLogic Queues for BRM Gateway
To configure WebLogic queues for BRM Gateway:

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-10

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.connectionConfigurations.brmConnection.

4. Expand Attributes.

5. Use the following attributes to specify connection values to the BRM Connection Manager
(CM):

• loginName: Enter the user name for logging in to BRM. The default is root.0.0.0.1.

• hostName: Enter the IP address or the host name of the computer on which BRM is
configured.

• cmPort: Enter the port number for the BRM CM.

WebLogic Server Configuration Settings for the connectionFactory
For the connectionFactory created within the WebLogic server for creating connections to the
JMS topic, do the following:

1. Log on to the WebLogic Server on which the JMS topic resides.

2. In the WebLogic Server Administration Console, from the JMS modules list, select the
ConnectionFactory that applies to the JMS topic used for ECE notifications.

3. Do the following:

a. In the Client tab, set the Reconnect Policy to All.

b. In the Transactions tab, set the Transaction Timeout to 2147483647.

Refer to the Oracle WebLogic Server documentation for information about setting up a JMS
topic on WebLogic Server.

Considerations for Using a Non-WebLogic Server JMS Provider
If you choose to use a JMS provider other than WebLogic Server for publishing ECE
notification events, you must do the following on the driver machine:

• Copy the other JMS provider's client JARs to the ECE_home/lib directory.

• Rename the other JMS provider JAR file to wlthint3client.jar.

• Update the ECE_home/config/JMSConfiguration.xml file to specify the
InitialContextFactory and protocol information of the other JMS provider.

Modifying JMS Credentials for Publishing External Notifications
When you install ECE, you can specify to publish notifications to a WebLogic JMS queue
(named ECE Notification queue) as well as how to connect to the queue.

If you need to change the connection information after ECE is installed, you can edit the
parameters in the JMSConfiguration.xml file.

To modify the JMS credentials in ECE, do the following:

1. Open the ECE_home/config/JMSConfiguration.xml file.

2. Locate the <MessagesConfigurations> section.

Chapter 10
Modifying JMS Credentials for Publishing External Notifications

10-11

3. Specify the values for the parameters in the NotificationQueue section:

Note:

Do not change the value of the JMSDestination name parameter.

a. For the HostName parameter, specify the host name of the WebLogic server on which
the JMS topic resides.

b. For the Port parameter, specify the port number on which the WebLogic server
resides.

c. For the UserName parameter, specify the user for logging in to the WebLogic server.

This user must have write privileges on the JMS topic created.

d. For the Password parameter, specify the password for logging in to the WebLogic
server.

When you install ECE, the password you enter is encrypted and stored in the
KeyStore. If you change the password, you must first run a utility to encrypt the new
password before entering it here.

e. For the ConnectionFactory parameter, specify the connectionFactory created within
the WebLogic server for creating connections to it.

You must also configure settings in WebLogic server for the connectionFactory. See
"WebLogic Server Configuration Settings for the connectionFactory" for information.

f. For the QueueName parameter, specify the JMS topic.

This is the JMS topic which holds the published external notification messages.

g. For the Protocol parameter, specify the wire protocol used. For WebLogic server, set
this to t3://.

4. Save and close the file.

Chapter 10
Modifying JMS Credentials for Publishing External Notifications

10-12

11
Configuring Subscriber Preferences

In Oracle Communications Elastic Charging Engine (ECE), you can configure subscriber
preferences such as how they want to receive notifications from the network.

Topics in this document:

• Configuring Subscriber Preferences

• Maintaining Subscriber Preferences with Customer Center

• Configuring ECE to Enrich External Notifications with Subscriber Preference Information

• Customizing Subscriber Preferences

• Configuring Group Notifications

Configuring Subscriber Preferences
BRM enables you to manage how each subscriber prefers to receive notifications from the
network. For example, you can specify that a subscriber wants to receive notifications in
French via SMS text messages.

By default, BRM enables you to manage the following subscriber preferences:

• Preferred channel of communication: IVR, SMS, e-mail, and so on

• Preferred language of communication: English, French, and so on

• Number of days prior to which customer wishes to receive the notification

• Interval between two successive notifications

• Timestamp of the last notification sent to the subscriber

BRM stores information about each subscriber's preferences in a subscriber profile repository.
BRM stores the types of preferences that you track and their default values in the /config/
subscriber_preferences object. BRM stores each subscriber's preferences at the account
level and the service level in individual /profile/subscriber_preferences objects.

For more information on the /config/subscriber_preferences and /profile/
subscriber_preferences objects, see BRM Storable Class Reference.

Maintaining Subscriber Preferences with Customer Center
When in-session notifications are enabled, you can configure and maintain subscriber
preferences by using Customer Center. During the account creation and modification process,
you specify the subscriber preferences in the Customer Center Subscriber Preferences page.

Customer Center uses the configurations in the /config/subscriber_preferences_map object
to dynamically list the preferences that a subscriber can configure. You can customize the
information as necessary.

11-1

About Regulating Permissions to Update Subscriber Preferences
By default, all customer service representatives (CSRs) can access and update subscriber
preferences. You can restrict a CSR's permissions to view and update a subscriber's
preferences for services and accounts.

Configuring ECE to Enrich External Notifications with Subscriber
Preference Information

You can configure ECE to enrich external notifications with subscriber preference information.

BRM enables you to manage how each subscriber prefers to receive notifications from the
network. For example, you can specify that a subscriber wants to receive notifications in
French (Language preference) via SMS text messages (Channel preference). All subscriber
preferences set for customers in BRM are also stored in ECE.

You can configure ECE to enrich the following types of ECE external notifications with
subscriber preference information:

• Threshold breach notifications

• Aggregated threshold breach notifications

• Advice of Charge notifications

• Credit limit ceiling breach notifications

• Credit limit floor breach notifications

• Subscriber life cycle state transition notifications

• First usage validity initialization notifications

You can configure ECE to enrich each of the preceding external notifications with all subscriber
preferences or with a subset of subscriber preferences.

If the same subscriber preference is defined as a customer preference and as a service
preference, ECE uses the service preference. If a subscriber preference is not specified for the
service but is specified for the customer, ECE uses the customer subscriber preference.

To configure ECE to enrich external notifications with subscriber preference information:

1. If you do not have it, obtain the list of subscriber preference names you have set in your
BRM system.

When configuring ECE to enrich the external notifications with a subset of subscriber
preferences, you must enter the name of the subscriber preferences as you previously set
it in your BRM system.

2. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

3. Expand the ECE Configuration node.

4. Expand charging.notification.

5. Expand Attributes.

6. Set the subscriberPreferenceUpdateNotificationMode attribute to ASYNCHRONOUS.

7. Select a notification type for which notification messages are to be enriched with
subscriber preference information.

Chapter 11
Configuring ECE to Enrich External Notifications with Subscriber Preference Information

11-2

8. Specify values for the following attributes:

• enrichName: Enter subscriberPreferences.

• enrichValue: Enter one of the following values:

– No value: (Default) External notifications are not enriched with subscriber
preferences.

– Individual subscriber preferences: External notifications are enriched with a
subset of subscriber preferences. Enter the name of each preference, separated
by commas. The names must match the preference names set in your BRM
system.

– ALL: External notifications are enriched with all the customer's subscriber
preferences.

For each notification type enabled to be enriched with subscriber preference information, ECE
publishes subscriber preference information in the SubscriberPreferences block of the
external notification messages.

The following is an example of the SubscriberPreferences block for a threshold breach
notification enriched with the language subscriber preference of the customer.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
<NotificationType>THRESHOLD_BREACH_EVENT</NotificationType>
<PublicUserIdentities>
<PublicUserIdentity>6500000001</PublicUserIdentity>
</PublicUserIdentities>
<BalanceElementId>840</BalanceElementId>
<BalanceElementCode>USD</BalanceElementCode>
<CurrentBalance>-3.00</CurrentBalance>
<ThresholdAmount>-4</ThresholdAmount>
<ThresholdPercent>98.0</ThresholdPercent>
<BreachDirection>THRESHOLD_BREACH_UP</BreachDirection>
<DuplicateEvent>False</DuplicateEvent>
<SubscriberPreferences>
<SubscriberPreference PublicUserIdentity="6500000001:VOICE">
<SubscriberPreferencesInfo>
<PreferenceName>Language</PreferenceName>
<PreferenceValue>French</PreferenceValue>
</SubscriberPreferencesInfo>
</SubscriberPreference>
</SubscriberPreferences>
</Notification>

Customizing Subscriber Preferences
To customize the subscriber profile data configuration by using
config_subscriber_preferences_map.xml file:

1. Open the BRM_home/sys/data/config/config_subscriber_preferences_map.xml file.

2. Edit the file, which includes examples and instructions. Table 11-1 describes the
parameters in the file.

Table 11-1 Elements That Store Subscriber Preferences

Element Description

Name Name of the preference

Chapter 11
Customizing Subscriber Preferences

11-3

Table 11-1 (Cont.) Elements That Store Subscriber Preferences

Element Description

ID The ID associated with the preference

Type The type of value that the preference can be assigned, from one of
the following types:

• 1: STR (alphanumeric)
• 2: INT (integer)
• 3: ENUM (indicating that the preference is one of an ordered list

of possible values. An array of values must be provided for this
selection.) See the Values element in this table.

• 4: DECIMAL
• 5: TSTAMP (timestamp)
For example, to provide a set of possible values, you set Type to 3,
and enter an array of values for this preference in Values.

String ID Used for Localization. The ID in the /string storable class that would
be associated with the localized string associated with the
preference. Customer Center uses this information to display the
preference name in a localized string form.

Default The field containing the default value the preference is to be
assigned.

Values An array list of values that the preference can assume. The Values
array list is present only if the selection for Type is ENUM.

3. For example, the following entry defines a new preference type called Subscription Level
as the tenth preference for subscribers:

<SUBSCRIBER_PREFERENCES elem="10">
 <NAME>Subscription Level</NAME>
 <SUBSCRIBER_PREFERENCE_ID>10</SUBSCRIBER_PREFERENCE_ID>
 <STRING_ID>10</STRING_ID>
 <DEFAULT>Silver</DEFAULT>
 <TYPE>3</TYPE>
 <VALUES elem="0">
 <VALUE>Silver</VALUE>
 </VALUES>
 <VALUES elem="1">
 <VALUE>Gold</VALUE>
 </VALUES>
 <VALUES elem="2">
 <VALUE>Platinum</VALUE>
 </VALUES>
</SUBSCRIBER_PREFERENCES>

In this example:

• The Name of the preference is Subscription Level.

• The subscriber preference ID for the language preference is 10.

• The string ID for the localizing string is 10.

• The default value for the language preference is Silver.

• The type of value is 3 (which is ENUM, and so an array of values follows).

• The Values array lists the 3 possible subscription level selections: Silver, Gold, and
Platinum.

4. Save the config_subscriber_preferences_map.xml file.

Chapter 11
Customizing Subscriber Preferences

11-4

5. Open the BRM_home/apps/load_config/pin.conf file in a text editor.

6. Add the following as the last entry:

- load_config validation_module libLoadValidTCFAAA LoadValidTelcoAAA_init
7. Save the pin.conf file.

8. Load the updated file by running the load_config utility:

load_config config_subscriber_preferences_map.xml

Note:

• The load_config utility requires a configuration (pin.conf) file.

• If you do not run the utility from the directory in which the configuration file is
located, include the complete path to the file. For example:

load_config BRM_home/sys/data/config/
config_subscriber_preferences_map.xml

For more information on the load_config utility, see "load_config" in BRM
Developer's Guide.

9. Stop and restart the Connection Manager (CM).

To verify that the updated preference configurations were loaded, you can display the /
config/subscriber_preferences_map object by using the Object Browser, or use the robj
command with the testnap utility.

For more information on the /config/subscriber_preferences_map object, see BRM
Storable Class Reference.

Configuring Group Notifications
You can configure ECE to send credit limit and threshold breach notifications to multiple
members of a sharing group. By default, only the member who triggered the breach is notified.

To configure group notifications:

1. Confirm that group notifications are enabled as described in "Enabling In-Session Group
Notifications in ECE".

2. For group owners, set the ResourcesForSendingNotification subscriber preference at
the account level to a comma-separated list of resource balance element IDs that the
owner wants to send notifications for.

3. For group members:

a. Set ResourcesForReceivingNotification at the account level to a comma-separated
list of resource balance element IDs that the member wants to receive notifications for.
Values included in this list must also be listed in ResourcesForSendingNotification
for the group owner.

b. Set NotificationEnabledAgreements at the account or service level as a comma-
separated list of sharing group names that the subscriber wants notifications for. For
example:

SharingAgreement12, Charge_Sharing14, DataSharing_143

Chapter 11
Configuring Group Notifications

11-5

These sharing groups must contain the resources specified in
ResourcesForReceivingNotification.

c. Set OfflineNotificationEnabled at the account or service level to true if the group
member wants to receive notifications when they are offline for breaches caused by
other group members. The setting at the service level overrides the setting at the
account level.

Note:

Because group owners can also be group members, an individual subscriber
might have all of these preferences set in their subscriber profile.

You can set the values in Customer Center or by using the
PCM_OP_CUST_SET_SUBSCRIBER_PREFERENCES opcode. See "Maintaining
Subscriber's Charging Preferences Data" in BRM Opcode Guide for more information.

Chapter 11
Configuring Group Notifications

11-6

Part IV
Managing Charging Sessions

This part provides information about managing online and offline charging sessions in Oracle
Communications Elastic Charging Engine (ECE). It contains the following chapters:

• Managing Midsession-Rated Events

• Managing Online Charging Sessions

• Managing Session Start and End Times

• Managing Reservations for Online Sessions

• Managing Rounding and Consumption Rules

12
Managing Midsession-Rated Events

You can configure Oracle Communications Elastic Charging Engine (ECE) to generate a rated
event during the middle of a network session based on trigger criteria that you specify.

Topics in this document:

• Configuring ECE to Generate Midsession-Rated Events

• Generating Midsession-Rated Events When USU Block Missing

• Configuring Non-Linear Rating for Tariff Changes

• Viewing Reason for Midsession-Rated Event

Configuring ECE to Generate Midsession-Rated Events
By default, ECE generates a rated event for a network session when a session ends. You can
configure ECE to also generate rated events when an update operation occurs during the
session. Such events are called midsession-rated events.

To generate midsession-rated events, you enable the feature and then define conditions, called
triggers, that initiate the generation of these events. Triggers are based on one or more of the
following criteria:

• Duration (for example, every 4 hours that a session is active)

• Quantity (for example, whenever downloaded data totals 70 MB or more)

• Time of day (for example, daily at 23:00:00 during the life of the session)

• Custom criteria, such as network condition changes or spans from one offer to another due
to balance exhaustion

Note:

To trigger a midsession-rated event based on custom criteria, you must extend
ECE at the pre-rating or post-rating extension points. See "Pre-Rating Extension
- Generating Midsession-Rated Event" and "Post-Rating Extension - Generating
Midsession-Rated Events" for more information.

Each trigger is associated with a service-event pair. If an ongoing session meets the trigger
conditions when an update operation occurs, a midsession-rated event for the specified
service is generated.

Note:

ECE checks for trigger conditions only during update operations. For example, if a
trigger condition is "every 200 MB" but an update operation does not occur until the
total is 288 MB, the rated event is for 288 MB, not 200 MB.

12-1

To configure ECE to generate midsession-rated events:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.midSessionCdrConfiguration.

4. Expand Attributes.

5. Set the MidSessionCdrEnabled attribute to true.

6. Define trigger conditions for one or more service-event pairs:

a. Expand Operations.

b. Click addOrUpdateMidSessionCdrTriggerDetails.

c. Specify values for the fields listed in Table 12-1.

Table 12-1 Fields for Defining Midsession-Rated Event Triggers

Field Description

productType Name of the service for which you are creating the trigger (for
example, "DATA").

eventType Name of the event for which you are creating the trigger (for
example, "DATA_USAGE").

triggerName Name of the trigger you are defining.

qtyFields Name of one or more event fields to which a quantity condition
applies (for example, "input_volume; output_volume"). Use a
semicolon (;) to separate field names. Values in the fields are
summed.

qtyUnit Unit of measure for conditions based on quantity (for example,
"MEGABYTES").

qtyValue Total quantity of the unit that triggers event generation (for
example, "70").

durationUnit Unit of measure for conditions based on duration (for example,
"HOURS").

durationValue Amount of the unit that triggers event generation (for example,
"70").

timeOfDay A particular time of day in a 24-hour clock at which to generate
the event (for example, "23:00:00", which indicates 11 p.m.). Use
the hh:mm:ss format.

midSessionForNonCount
erGrants

Whether to generate an event based on the consumed unit.

A trigger with one TriggerConfiguration block is created for the specified service-
event pair. All conditions in the block (quantity, duration, time of day) must be met to
generate a midsession-rated event.

d. (Optional) Do one of the following:

• To define another trigger, click the plus sign in the panel's upper right corner, and
repeat step 4 for a different service-event pair.

• To add a TriggerConfiguration block to the current trigger, click the plus sign in
the panel's upper right corner, and repeat step 4 for the same service-event pair.

Chapter 12
Configuring ECE to Generate Midsession-Rated Events

12-2

Note:

• All conditions in a TriggerConfiguration block must be met (criteria are
assumed to be joined by AND).

• If a trigger contains multiple TriggerConfiguration blocks, the conditions in only
one block must be met (blocks are assumed to be joined by OR).

Generating Midsession-Rated Events When USU Block Missing
When the network sends a Final Unit Indicator (FUI) followed by a top up, ECE generates a
reauthorization request (RAR). The network then sends an update request, sometimes not
including the Used Service Units (USU) block for the ongoing session. When this occurs, ECE
generates a midsession-rated event. This ensures that any part of the reservation consumed
by the account is reported, preventing revenue loss.

Configuring Non-Linear Rating for Tariff Changes
By default, ECE performs an incremental rating of an active network session based on the tariff
changes during a session. You can configure ECE to generate a midsession-rated event
whenever a tariff change occurs during a network session. The tariff change can include peak
and off-peak rate changes in offers, availability or expiration of charge offers, alteration offers
(discount offers) or distribution offers (charge sharing offers), and availability or expiration of
customer balances.

Non-linear rating for tariff changes enables ECE to rate long network sessions incrementally
based on the exact data consumed between tariff changes. It also lets operators show
subscribers the running balance based on the data consumption after each tariff change.

When this feature is enabled, ECE determines if there is a tariff change when authorizing and
reserving a balance for a session request from the network. ECE bases the reservation on the
requested service units of the session request and sends the Tariff-Time-Change AVP in the
usage response to the network to record the exact data consumed before and after the tariff
change. ECE also performs reverse rating to calculate the amount of usage the subscriber can
afford and reserves the balance for the requested service units based on the worst-case
charging condition (the maximum charge that can be applied for the requested service units).
This ensures that the overall usage does not exceed the customer's credit limit and that there
is no revenue leakage whether the balance is consumed before or after the tariff change.

For non-linear rating, ECE supports only one tariff change for a session request. If more than
one tariff change is determined during authorization, ECE considers the tariff change that
occurs first for balance reservation and adjusts the validity time to expire at the next tariff
change. This ensures that only one tariff change occurs before the session expires. ECE then
rates the exact balance consumed based on the rating condition changes before and after the
tariff change and generates rated events each time a tariff change occurs in an ongoing
session.

To enable incremental rating for tariff changes:

1. Enabling Non-Linear Rating for Midsession-Rating Condition Changes

2. Configuring ECE to Support Tariff Time Change

Chapter 12
Generating Midsession-Rated Events When USU Block Missing

12-3

Enabling Non-Linear Rating for Midsession-Rating Condition Changes
When changes in charging occur during an ongoing data session, they trigger a reauthorization
request (RAR). For example, when a usage charge transitions from $1 per minute to $1.50 per
minute at 12:00:00, ECE sends an RAR notification to the network.

You can configure ECE to generate a midsession-rated event when these charging changes
are triggered during an ongoing session. That is, ECE creates one rated event for usage prior
to an RAR and another rated event for usage after an RAR.

You can configure ECE to generate rated events for midsession-rating changes based on the
following:

• Product type

• Product type and event combination

Note:

Non-linear rating for midsession-rating condition changes is supported only for those
sessions that generate an RAR.

To configure ECE to use non-linear rating for midsession-rating condition changes:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.reservationConfig.

4. Expand Operations.

5. For each product that supports generating rated events for midsession-rating changes,
select enabledOrDisableNonLinear and then specify values for these parameters:

• productType: Specify the name of the product defined in the ECE request
specification data (for example, DATA).

• enableOrDisable: Set to true to enable non-linear rating.

6. For each product and event combination that supports generating rated events for
midsession-rating changes, select
enabledOrDisableNonLinearBasedOnProductTypeAndEventType and then specify
values for these parameters:

• enableOrDisableNonLinear: Set this to true.

• productType: Enter the name of the product defined in the ECE request specification
data. For example: TelcoGprs.

• eventType: Enter the name of one or more events separated by a comma. For
example: EventDelayedSessionTelcoGsm,EventDelayedSessionTelcoGprs.

Chapter 12
Configuring Non-Linear Rating for Tariff Changes

12-4

Configuring ECE to Support Tariff Time Change

Note:

Configuring ECE to support tariff time change is a systemwide setting, and it is
applied irrespective of the product type. When configured, the tariff time change is
considered for all products for which incremental rating is enabled.

To configure ECE to support tariff time change:

1. Ensure that nonlinear rating is enabled for one or more product types, or product and event
combinations. See "Enabling Non-Linear Rating for Midsession-Rating Condition
Changes".

Caution:

Nonlinear rating must be enabled. The tariff time change functionality is
dependent on nonlinear rating.

2. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

3. Expand the ECE Configuration node.

4. Expand charging.server.

5. Expand Attributes.

6. Select the tariffTimeChangeSupported attribute and set the value to true.

Sample Non-Linear Rating for Tariff Changes
The following section describes a scenario of tariff change during a data session and the
balances and charges applied during and at the end of the session.

Scenario: Offer Becomes Valid and Consumed in a Session

Given a subscriber with:

• A charge offer named CO Data Standard with a Standard Bytes (Chargeable Balance)
followed by Free Use Data (Counter)

• A starting balance of 50 megabyte (MB) Standard Bytes and 0 Bytes Free Use Data

• A discount offer named Data Boost is valid from 1:30 PM the same day (100 MB Standard
Bytes valid from 1:30 PM for 30 minutes from the first use)

The usage charging flow is as follows:

• When the subscriber starts a data session at 1.00 PM

• Consumes 50 MB over 20 minutes at high QoS

• Consumes 2 MB over 10 minutes at low QoS

• The purchased Data Boost discount offer becomes valid at 1:30 PM

Chapter 12
Configuring Non-Linear Rating for Tariff Changes

12-5

• Consumes 100 MB over 20 minutes at high QoS

• Consumes 5 MB over 15 min at low QoS before terminating the session

Table 12-2 shows how subscriber balances and charges are calculated.

Table 12-2 Subscriber Balance and Charge Details

Balance Name Balance Value Units Charged

Data Standard 0 MB 150 MB

Free Use Data 7 MB 7 MB

Scenario: Noncurrency Voucher Top-up During a Session

The following describes a scenario of a non-predictable rating condition change during a data
session and the balances and charges during and at the end of the session.

Given a subscriber with:

• A charge offer named CO Usage Data

• A charge of $1 per 1 megabyte (MB) of usage

• A discount offer that consumes from available free MB

• An initial balance of 0 MB of Free Data and 0 USD

• Non-linear rating enabled for product type TelcoGPRS

• Eligible offers selected based on duration

The usage charging flow is as follows:

1. A subscriber starts a data session at 23:50:00 on April 1 with an INITIATE request for 30
MB.

2. ECE grants the subscriber 40 MB with a validity of 1 hour, and reserves a balance of 30
USD.

3. The subscriber does a noncurrency voucher top-up at 00:00:00, which grants 10 MB of
data with a validity of 5 days.

4. ECE sends an RAR notification.

5. At 00:02:00 on April 2, the network sends an UPDATE request with requested units as 40
MB and used units as 12 MB (10 MB before midnight and 2 MB after midnight).

6. ECE does the following:

• Generates a CDR for 12 MB

• Grants the subscriber 40 MB with a validity of 1 hour

The subscriber's balance is now:

• Current balance: 10 USD (Before midnight, ECE charges for 10 MB @ $1 per MB)

• Free data = 8 MB (After midnight, ECE subtracts the 2 MB of used data from the 10
MB voucher top up)

7. At 01:30:00 on April 2, the network sends a TERMINATE request with used units of 20 MB.

8. ECE generates a CDR for 20 MB.

The subscriber's balance is now:

Chapter 12
Configuring Non-Linear Rating for Tariff Changes

12-6

• Current balance: 22 USD (After subtracting the free data, ECE charges an additional
12 USD for 12 MB @ $1 per MB)

• Free data: 0 (ECE uses the remaining 8 MB of free data)

Viewing Reason for Midsession-Rated Event
ECE automatically adds to the event's contents the reason why a midsession-rated event was
triggered. You can view the reason by checking the value of the event's
midSessionCDRSplitReason field, which can be set one or more of the reason codes in
Table 12-3.

Table 12-3 Reasons for Creating Midsession-Rated Event

Reason Code Description

CONFIGURED_VOLUME_REACHED The event exceeded a configured volume, such as
100 MB.

CONFIGURED_DURATION_REACHED The event exceeded a configured amount of time,
such as 2 hours.

RATING_CONDITION_CHANGE The trigger was caused by a change in tariffs.

CONFIGURED_TIME_OF_THE_DAY_CROSSED The event crossed a configured time of day, such
as midnight.

INTERNAL_TRIGGER The trigger was caused by a context change.

EXTERNAL_TRIGGER The midsession trigger condition was met.

MULTIPLE_USU The event contained multiple Used Service Units
(USUs).

ECE generates a midsession-rated event for each
USU.

MULTIPLE_USU_AND_EXTERNAL_TRIGGER_O
R_INTERNAL_TRIGGER

The event was caused by any of the above
triggers.

PRE_MIDSESSION_CONDITION The event reached a custom trigger at the
prerating extension point.

POST_MIDSESSION_CONDITION The event reached a custom trigger at the post-
rating extension point.

The following shows a sample snippet of a midsession-rated event with the
reasonForMidSessionCDRSplit field set:

balanceOutputMap = {BALANCE=BalanceOutputImpl{ customerId=39384585, balanceId='BALANCE',
status='SUCCESS', firstUsageValidityMap{},
impacts{840=[OutImpactImpl{ balanceItemId=1, impact=UnitValue{quantity=60.00,
unit=Money{curr=USD}}, validityRule=null,
firstUsageCreatedTime=null, type=0}]}, grantValidityMap={840={1=[Pair{first=null},
{second=null}]}}, recurringImpactMap=null,
firstUsageValidityRuleMap={}, firstUsageCreatedTimeMap={},
currentAndLoanAmounts={840=[Pair{first=60.00}, {second=0}]}}}}'}}
{reasonForMidSessionCDRSplit=[CONFIGURED_DURATION_REACHED]}]

Chapter 12
Viewing Reason for Midsession-Rated Event

12-7

13
Managing Online Charging Sessions

Learn how to configure online charging sessions in Oracle Communications Elastic Charging
Engine (ECE).

Topics in this document:

• Configuring ECE to Support Prepaid Usage Overage

• Managing Dynamic Charging Overrides for Online Sessions

• Processing Granted Allowances Before Applying Usage Charges

• Enabling Server-Initiated Reauthorization Requests

• Configuring ECE to Return Remaining-Balance Information in Usage Responses

• Configuring Taxation in ECE

• Configuring How ECE Manages Active Sessions When Network Elements Fail

• Configuring ECE to Redirect Subscriber Sessions to a Service Portal

• Enabling Match Factor in ECE

• Configuring Diameter Gateway to Bypass Rating During ECE Downtime

• Accessing ECE Configuration MBeans

• Returning FUIs for Discount Sharing Group Owner

• Location-Based Charging

Configuring ECE to Support Prepaid Usage Overage
You can configure ECE to capture any overage amounts by prepaid customers during an
active session, which can help you prevent revenue leakage. If the network reports that the
number of used units during a session is greater than a customer's available allowance and
credit limit, ECE charges the customer up to the available allowance. It then creates an
overage record with information about the overage amount and sends it to the ECE Overage
topic. You can create a custom solution for reprocessing the overage amount later on.

Note:

Prepaid usage overage is supported on Kafka Server only. It is not supported on
WebLogic Server.

For example, assume a customer has a prepaid balance of 100 minutes, but uses 130 minutes
during a session. ECE would charge the customer for 100 minutes, create an overage record
for the remaining 30 minutes of usage, and write the overage record to the ECE Overage topic.

To configure ECE to support prepaid usage overage, do the following:

13-1

1. Ensure that you created an ECE Overage topic and connected ECE to your Kafka Server.
See "Connecting ECE to Kafka Topics".

2. Enable ECE to check for and capture any usage overage:

a. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

b. Expand the ECE Configuration node.

c. Expand charging.server.

d. Expand Attributes.

e. Set the checkReservationOverImpact attribute to true. (The default is false.)

Managing Dynamic Charging Overrides for Online Sessions
Dynamic charging allows you to override an offer's default rate on a per customer basis based
on the date. For example, you could create a dynamic override that charges new
customers $0.04 per MB for the first six months, $0.05 per MB for the next four months, and
then the default rate for all subsequent months.

You define dynamic charging overrides by creating a pricing tag and associating it with an
event type, date ranges, and an amount. For example, you could create a pricing tag named
MyPrice associated with a $0.05 per MB charge for /event/session/telco/gsm events from
June through September. You could then add the pricing tag to your offers' balance impacts.

You configure dynamic charging overrides using PDC or the ImportExportPricing utility. See
"Configuring Dynamic Pricing for Usage Events" in PDC Creating Product Offerings.

BRM stores information about dynamic charging overrides in the /offering_override_values
object.

During rating, ECE determines whether a pricing tag in a balance impact matches a pricing tag
and date range combination in the /offering_override_values object. If it finds a match, ECE
charges the amount associated with the pricing tag. If it does not find a match, ECE charges
the default amount.

Processing Granted Allowances Before Applying Usage Charges
ECE processes a customer's granted allowances and usage charges in the order in which they
appear in the product offerings you define in PDC. For example, assume you configure a
product offering in PDC that grants 5 GB of free data per month and then charges $10 per
additional GB of data. If a customer purchases the product offering and uses 8 GB of data in a
month, ECE would first consume the 5 GB of free data and then apply a $30 charge for the
remaining 3 GB of data usage.

To configure charges in PDC to process granted allowances before applying usage charges,
see "Configuring Pricing to Consume Granted Allowances Before Charging" in PDC Creating
Product Offerings.

Enabling Server-Initiated Reauthorization Requests
ECE can perform server-initiated reauthorization requests (RAR) during an ongoing session.
This enables you to update a session in response to changes that occur to a customer's
product offerings or balance (for example, a change to a charge offer or to a Friends and
Family promotion). When ECE notifies the network, the network sends a reauthorization

Chapter 13
Managing Dynamic Charging Overrides for Online Sessions

13-2

request and, if there is a change in the charge, ECE can base the reauthorization on the new
charge.

A server-initiated reauthorization can be triggered from the following conditions:

• Changes to offers, such as the creation, modification, or deletion of a subscriber's charge
offer or alteration offer.

• Changes to balances that affect rating (for example, a balance that expires mid-session, a
balance that becomes available from a top-up, or changes to the customer balance due to
an accounts receivable action).

• Changes to promotions, such as changes to Friends and Family or a Special Day offer.

• Changes to charge sharing or alteration sharing groups. For example, a new member is
added to the group or a member is removed mid-session.

For example:

1. A subscriber is in a call session. The subscriber adds the called number of that session to
a Friends and Family list.

2. Because a Friends and Family discount might change the charge amount, ECE sends a
request to the network.

3. In response, the network sends a reauthorization request.

4. ECE sends a reauthorization, using the Friends and Family charge amount.

Note:

A reauthorization request is not triggered by a top-up or by rerating when balances
are added to a sharing group owner's account.

To enable server-initiated reauthorization requests:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.notification.

4. Expand Attributes.

5. Set the rarNotificationMode attribute to ASYNCHRONOUS.

This enables RAR notifications, which are required for server-initiated reauthorization
requests. ECE generates an external notification and sends it to a notification queue (JMS
topic) when the RAR_NOTIFICATION_EVENT service event is created. When specific
condition changes occur during a session, ECE generates a RAR notification to inform the
network to request a reauthorization.

6. Under the ECE Configuration node, expand charging.server.

7. Expand Attributes.

8. Set the offerEligibilitySelectionMode attribute to PERIOD.

• In PERIOD mode, ECE selects applicable charge offers valid any time between the
start and end time of the session to determine charges for events. You use this mode
when implementing server-initiated reauthorization requests so that ECE can rate

Chapter 13
Enabling Server-Initiated Reauthorization Requests

13-3

based on changes to a customer's subscription, such as the purchase of a promotional
offer, during the session.

• In END_TIME mode, ECE selects charge offers valid at the end time of the session to
determine charges for events. END_TIME mode must be used when using a version of
BRM that does not support PERIOD mode. This is the default.

Note:

Events rated in PERIOD mode might result in a different charge from the charge
calculated when the event is rerated. This happens because the event is rerated
using only the pricing applicable at the event end time.

Configuring ECE to Return Remaining-Balance Information in
Usage Responses

You can configure ECE to return a customer's remaining-balance information in the usage
response (as an in-session notification). For example, you could use the information to send
customers a low-balance notification when they are about to use up all of their available
balance for a service or they reach a balance amount set in your system to trigger such
notifications.

ECE sends remaining-balance information for initiate and update usage requests.

The remaining-balance information that ECE returns pertains to all balances impacted by the
session (that is, the balances to which the session applied balance impacts).

For charge distribution scenarios (charge sharing), ECE returns the remaining-balance
information for the balances impacted by the sharer's usage.

To configure ECE to return remaining-balance information in usage responses:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the remainingBalanceCalcMode attribute to one of the following values:

• NONE: (Default) Sends no remaining-balance information in usage responses.

ECE does not calculate the remaining balance.

• CURRENT_BALANCE: Sends remaining-balance information for the current balance,
excluding the credit limit, in the usage response. Use this option to notify your
customers of their plain vanilla remaining balance.

ECE calculates the remaining balance by adding all sub-balances valid for the session,
including the consumed reserved amount of ongoing sessions. The remaining balance
is calculated as follows:

remaining balance = sum of for valid sub-balances of (current balance + consumed
reserved amount)

Chapter 13
Configuring ECE to Return Remaining-Balance Information in Usage Responses

13-4

• UPTO_CREDIT_LIMIT: Sends remaining-balance information capped at the credit limit
in the usage response. Use this option to notify your customers of the credit limit up to
which you allow them to use the balance.

ECE calculates the remaining balance by adding all sub-balances valid for the session,
including the consumed reserved amount of ongoing sessions (the consumed
reservation of the balances ECE reserved for ongoing sessions) and subtracts that
value from the credit limit.

ECE calculates the remaining balance as follows:

remaining balance = {credit limit - sum of for valid sub-balances of (current
balance + consumed reserved amount)}

Configuring Taxation in ECE
By default, you configure taxation in Pricing Design Center (PDC) and the information is
published to BRM and ECE. ECE then applies taxes during rating using the following:

• Tax codes, which apply simple flat taxes.

• Tax selectors, which apply tax codes based on account, service, event, and profile
attributes.

• Tax exemption selectors, which reduce or eliminate the amount of tax your customers pay
based on account, service, event, and profile attributes.

See "About Calculating Taxes" in BRM Calculating Taxes for more information.

You can also configure simple, fixed-rate tax, such as GST or VAT, for both charges and
alterations (discounts) directly in ECE.

To configure taxation in an ECE runtime environment:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.taxation.

4. Expand Operations.

5. Click addTaxDetails.

6. Specify values for the following parameters:

Note:

These parameters are mandatory. You must set all of them when configuring
taxation.

• taxCode: Enter the tax code used by the charge offer or discount offer to which the tax
applies.

The tax code is used by charge offers and discount offers to point to the tax rate that
must be applied when a usage request is processed for the charge offer or discount
offer.

Enter the same tax code entered in PDC when the taxation section of the charge offer
and discount offer was defined.

Chapter 13
Configuring Taxation in ECE

13-5

• taxRate: Enter the tax rate to apply.

For example, entering 0.20 applies a 20% tax on the total usage impact.

• taxGlId: Enter the General Ledger ID used for the tax impact.

7. Specify an additional taxCode, taxRate, and taxGlId value for each charge offer or
discount offer to which a tax applies.

Configuring How ECE Manages Active Sessions When Network
Elements Fail

When a network element associated with active sessions in ECE fails, ECE receives an
accounting on/off request from the network element. You can configure ECE to cancel or
terminate active sessions when processing accounting on/off requests.

To configure how ECE manages active sessions when network elements fail:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the accountingOnOffMode attribute to one of the following values:

• TERMINATE: Active sessions that have a state of Initiated are terminated when an
accounting on/off request is processed.

• CANCEL: Active sessions in ECE that have a state of Initiated are canceled when an
accounting on/off request is processed.

Configuring ECE to Redirect Subscriber Sessions to a Service
Portal

Service providers can redirect a subscriber session to a service portal, which is a server
outside of the online charging system where specific services can be offered to the subscriber.
During an online charging session, if a subscriber is about to deplete funds for the use of a
service, the subscriber can be redirected to a website to top up the account. You can configure
ECE to send service portal addresses back to credit-control clients. Credit-control clients use
the information for redirecting a subscriber session to the service portal applicable to the
business scenario.

ECE derives the service portal address (to send back to credit-control clients) based on
configurable instructions that you define in redirection rules. Your redirection rules can be
based on any of the following customer conditions (typically based on a combination of them):

• Whether the customer has insufficient funds

• Whether the customer has an inactive account

• Whether the customer is roaming or not roaming

• Whether the customer belongs to a specific customer segment (for example, customer
accounts associated with a BRM business profile for which the payment type is Prepaid or
Postpaid or the subscription type is Voice or Data).

Chapter 13
Configuring How ECE Manages Active Sessions When Network Elements Fail

13-6

Each redirection rule can send the session to a different service portal. For example, you might
configure two redirection rules for the following business scenarios:

• Given a customer with an account using a prepaid payment type who is roaming, redirect
the subscriber to http://myPrePaidRoamingRedirect.com.

• Given a customer with an account using a prepaid payment type who is not roaming,
redirect the subscriber to the http://myPrePaidHomeNetworkRedirect.com URL
address.

After ECE derives the service portal addresses and address types based on your redirection
rules, ECE sends the address back to the credit-control client.

When the credit-control client receives the Final-Unit-Indication in the answer from ECE, the
credit-control client behavior depends on the value, TERMINATE or REDIRECT, indicated in
the Final-Unit-Action AVP. If you do not configure redirection rules, ECE indicates a Final-Unit-
Action of TERMINATE in the usage response.

To configure ECE to redirect subscriber sessions to a service portal:

1. Create your redirection rules in a text editor and save the file.

If you have multiple redirection rules, separate them by semicolons and save them as a
single line. The single-lined redirection configuration should contain all of the redirection
rules for the business scenarios that require redirecting subscriber sessions to applicable
service portals.

See "Creating Redirection Rules".

2. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

3. Expand the ECE Configuration node.

4. Expand charging.redirectionConfiguration.

5. Expand Attributes.

6. Set the redirectionRule attribute to a copy of your redirection-rule configuration.

The default value is an empty string.

If no rule is provided, no redirection is done. ECE terminates the session.

ECE begins using the redirection-rule configuration at runtime.

If your redirection rule uses incorrect syntax, ECE logs the Rule Evaluation Failed error at
runtime in the charging-server node log files (ecs log files) and leaves the redirection rule
field in the usage response empty.

Note:

Modifying a redirection-rule configuration in JConsole may be error prone
because you cannot see the entire rule. Modifying a redirection-rule configuration
in the file where you created it is recommended. Pressing Ctrl + A in the Value
column of the redirectionRule variable selects all contents.

Creating Redirection Rules

A redirection rule contains conditions that must be met for the subscriber session to be
redirected to a service portal.

Chapter 13
Configuring ECE to Redirect Subscriber Sessions to a Service Portal

13-7

Your redirection configuration might contain a Voice redirection rule and a Data redirection rule
for redirecting subscribers to service portals relevant to those services.

You must use allowed redirection-rule conditions.

For example, the following redirection rule specifies that when a customer is roaming, the
redirect address is http://RedirectRoaming.com and the redirect address type is URL:

"((@fui AND @roamingRequest) => [redirect_type:"URL",redirect_address:
"http://RedirectRoaming.com"];

This redirection rule specifies that when a customer is both postpaid and roaming, the redirect
address is http://RedirectRoaming.com, the redirect address type is URL, and the maximum
redirection time is 900 seconds:

"((@fui AND ({business_profile([name:"POSTPAID"])} == "true")) AND
@roamingRequest) => [redirect_type:"URL",redirect_address:
"http://RedirectRoaming.com",redirect_validity:"900"]"

Table 13-1 shows redirection-rule conditions that you can use to create redirection rules.

Table 13-1 ECE Redirection-Rule Conditions

ECE Redirection-Rule Conditions Description

@fui Checks in the charging result if the customer has insufficient funds (finds the Final
Unit Indicator in the service context).

@fui is required.

{business_profile([name:"Business
ProfileName"])} == "true")

Accesses a business profile by looking up a business profile name and comparing its
value to true.

Valid values for BusinessProfileName are names of attributes you defined in the
attribute-value pairs of your BRM business profiles.

For example:

{business_profile([name:"POSTPAID"])} == "true")

@roamingRequest Checks if the request is for a customer who is roaming.

@roamingRequest denotes roaming.

!@roamingRequest denotes not roaming.

The check is done on the value of the following Diameter credit-control-request fields:

• GGSN-MCC-MNC-3GPP
• IMSI-MCC-MNC-3GPP
Note: These fields are not provisioned in ready-to-use event definitions. You must
provision these network fields when you enrich your event definitions in PDC.

{request_attribute([name:"FieldNam
e"])}

Reads a payload field from a usage request.

For example, the following condition reads the simple attribute 3GPP-IMSI-MCC-MNC
from the payload of the usage request:

{request_attribute([name:"3GPP-IMSI-MCC-MNC"])}

Use this construct to use any request attribute field as a condition in your redirection
rule. For example, if you want subscribers to be directed to a different URL if they
have a 1234 cell phone ID, you might use the condition:

{request_attribute([name:"CELL_ID"])} == "1234")

Chapter 13
Configuring ECE to Redirect Subscriber Sessions to a Service Portal

13-8

Table 13-1 (Cont.) ECE Redirection-Rule Conditions

ECE Redirection-Rule Conditions Description

@productType Retrieves the service.

For example, a redirection rule using this condition:

 (
 (@productType == 'DATA')
 AND
 ({request_attribute(name:"GGSN-MCC-MNC-
 3GPP"])} == "1234")
) => [redirect_type:"URL",redirect_address:"myDataTopUpRedirect.com"]

Redirection-Rule-Configuration Syntax

You configure one or multiple redirection rules in a single-lined redirection configuration with
each redirection rule separated by semicolons.

The syntax for a redirection rule is the following:

((redirection_condition AND redirection_condition) AND redirection_condition) =>
[redirect_type:"redirect_type",redirect_address:"redirect_address",redirect_validity:"red
irect_validity"];

where:

• redirection_condition is a condition that must be met for ECE to send the specified redirect
type, redirect address, and redirect validity in the ECE usage response. See Table 13-1 for
accepted redirection-rule conditions.

• redirect_type is the type of the service portal address (for example, URL)

• redirect_address is the service portal address (for example, a website address)

• redirect_validity is the time, in seconds, that the subscriber being redirected has to
complete the task that must be done at the service portal. The value you enter here
overrides the default reservation validity time of ECE. If you do not specify a redirect
validity in your reservation rule, then the default reservation validity time of ECE is sent
back to the credit-control client.

When you design your redirection rules, it can be helpful to create a user scenario for each and
show the translation in a table, as shown in the following examples.

Example Redirection Rules

The following is an example of redirection rules.

Tip:

For visual clarity, this example shows a carriage return after each redirection rule.
Your redirection-rule configuration would be one line comprised of these four
redirection rules separated only by semicolons.

"((@fui AND ({business_profile([name:"POSTPAID"])} == "true")) AND @roamingRequest)
=> [redirect_type:"URL",redirect_address:"http://
myPostPaidRoamingRedirect.com",redirect_validity:"900"];

Chapter 13
Configuring ECE to Redirect Subscriber Sessions to a Service Portal

13-9

((@fui AND ({business_profile([name:"POSTPAID"])} == "true")) AND !@roamingRequest)
=> [redirect_type:"URL",redirect_address:"http://
myPostPaidHomeNetworkRedirect.com",redirect_validity:"900"];

((@fui AND ({business_profile([name:"PREPAID"])} == "true")) AND @roamingRequest) =>
[redirect_type:"URL",redirect_address:"http://myPrePaidRoamingRedirect.com"];

((@fui AND ({business_profile([name:"PREPAID"])} == "true")) AND !@roamingRequest)
=> [redirect_type:"URL",redirect_address:"http://myPrePaidHomeNetworkRedirect.com"]"

The four redirection rules support redirecting subscribers who have depleted funds in their
account to a service portal for these scenarios:

• Given a subscriber with an account using a postpaid payment type who is roaming,
redirect the subscriber to the http://myPostPaidRoamingRedirect.com URL address and
allow the subscriber to use network resources for 900 seconds.

• Given a subscriber with an account using a postpaid payment type who is not roaming,
redirect the subscriber to the http://myPostPaidHomeNetworkRedirect.com URL
address and allow the subscriber to use network resources for 900 seconds.

• Given a subscriber with an account using a prepaid payment type who is roaming, redirect
the subscriber to the http://myPrePaidRoamingRedirect.com URL address.

• Given a subscriber with an account using a prepaid payment type who is not roaming,
redirect the subscriber to the http://myPrePaidHomeNetworkRedirect.com URL
address.

Enabling Match Factor in ECE
ECE supports the match factor in discounting.

To enable the match factor in ECE:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the matchFactorEnabled attribute to true.

Configuring Diameter Gateway to Bypass Rating During ECE
Downtime

During a planned maintenance activity or in an unplanned downtime of an ECE node, you can
configure Diameter Gateway to continue receiving the CCRs and responding to the service
network without rating the CCRs in real-time.

When Diameter Gateway is configured to bypass rating, it persists the Diameter CCRs to the
Oracle NoSQL database. Later, when ECE nodes are restored, you can replay the persisted
CCRs to the ECE charging servers for rating and updating balance impacts. With this
functionality, services can be delivered to your subscribers without any interruption.

To configure Diameter Gateway to bypass rating, perform the following procedures:

Chapter 13
Enabling Match Factor in ECE

13-10

1. Enable the ocsBypassExtension charging extension.

a. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

b. Expand the ECE Configuration node.

c. Expand charging.extensions.

d. Expand Attributes.

e. Specify the fully qualified class name of the extension for the ocsBypassExtension
attribute.

2. Start the persistence of the diameter messages. See "Managing the Persistence of Usage
Requests During ECE Downtime".

3. After the ECE nodes are restored, use Diameter Replayer to replay the CCRs to ECE for
rating and updating balance impacts. See "Replaying Persisted Requests into ECE".

Managing the Persistence of Usage Requests During ECE Downtime
When Diameter Gateway is configured to bypass rating during a planned maintenance activity
or in an unplanned downtime of ECE, Diameter Gateway receives CCRs and persists them to
Oracle NoSQL Database. Later, when the ECE nodes are restarted, you stop the bypass rating
extension and replay the persisted messages to the ECE charging servers for rating and
updating balance impacts.

Managing persistence of diameter requests involves starting and stopping the persistence of
the requests. Before persisting the incoming diameter requests, ensure that the
ocsBypassExtension charging extension is enabled. See "Configuring Diameter Gateway to
Bypass Rating During ECE Downtime" for information on configuring Diameter Gateway to
bypass rating.

For planned maintenance activities, you start the persistence of usage requests before the
ECE nodes become unavailable. During an outage, persistence of diameter requests starts
only if the ocsBypassExtension charging extension is enabled. If only the extension is
enabled and bypass rating is not started, the usage requests do not flow to the ECE Charging
Server nodes. In such a scenario, Diameter Gateway returns Error 5012 for the requests.

Note:

The bypass rating functionality is supported for Gy diameter messages only.

To persist incoming diameter requests:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the DiameterGateway node.

3. Expand BFTTask.

4. Expand Operations.

5. Click startByPass.

The Diameter Gateway starts persisting the incoming requests.

In planned maintenance activities or in unplanned downtime, once the ECE nodes become
available and start running, you must stop the persistence of the requests. Otherwise,

Chapter 13
Configuring Diameter Gateway to Bypass Rating During ECE Downtime

13-11

messages are persisted even after the ECE nodes are up and running, which results in a large
volume of requests that need to be replayed.

To stop persisting the requests, click stopByPass. Before doing this, you can check if
persistence of requests is running by clicking BFTRunning. If bypassing rating is enabled, this
field shows True. Otherwise, it shows False.

Replaying Persisted Requests into ECE
When Diameter Gateway is configured to bypass rating during a planned maintenance or
unplanned downtime of ECE, Diameter Gateway persists the incoming CCRs to the Oracle
NoSQL Database. Later, during a non-peak period, you replay the persisted CCRs to the ECE
charging server when the ECE server is restored and is ready to process real-time requests.
When you replay the persisted CCRs, the requests are passed to the ECE charging server,
which then rates the CCRs and updates the balance impacts. You can plan for when to start
replaying the persisted messages, considering replaying the persisted messages can have
performance impacts while real-time requests are also processed. Before replaying the
persisted requests, ensure that bypass rating extension is disabled and the ECE nodes are up
and running. To check if bypass rating is stopped, click BFTRunning in ECE MBeans.

To replay the persisted requests into ECE:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the DiameterGateway node.

3. Expand BFTTask.

4. Expand Operations.

5. Click persistedMessageCount to view the number of requests that have been persisted
and are ready for replay.

6. Click startBFTReplayer.

The replayer starts replaying the persisted messages to the ECE charging servers. As
messages are replayed to the servers, the number of persistedMessageCount keeps
decreasing until it becomes 0.

The replayedMessageCount field shows the number of requests that are being replayed.
As requests are replayed, the number of replayedMessageCount keeps increasing until it
matches the initial count of persistedMessageCount.

You stop replaying the messages once all the persisted messages are replayed into the ECE
charging servers.

To stop replaying the persisted messages:

1. Check the status of the replayer by clicking BFTReplayerRunning. Ensure that this field
shows Running.

2. Check the status of the replayedMessageCount field. Ensure that this field shows 0,
which indicates that all the persisted messages are replayed into the ECE charging
servers.

• replayedMessageCount shows the number of Diameter messages that are replayed
to the ECE charging server by the current instance of Diameter Replayer.

• persistedMessageCount shows the number of Diameter messages that have been
persisted to Oracle NoSQL database, but are yet to be replayed.

3. Click stopBFTReplayer.

Chapter 13
Configuring Diameter Gateway to Bypass Rating During ECE Downtime

13-12

Replaying of messages is stopped.

Accessing ECE Configuration MBeans
For all configurations, start by accessing the ECE configuration MBeans:

1. Log on to the driver machine.

2. Start the ECE charging servers (if they are not started).

3. Connect to the ECE charging server node enabled for JMX management.
This is the charging server node set to start CohMgt = true in the ECE_home/config/
eceTopology.conf file, where ECE_home is the directory in which ECE is installed.

4. Start a JMX editor that enables you to edit MBean attributes, such as JConsole.

5. In the editor's MBean hierarchy, find the ECE configuration MBeans.

Returning FUIs for Discount Sharing Group Owner
You can configure ECE to return the Final-Unit-Indication (FUI) for member service upon the
sharer service balance breach. This means that the FUI AVP is returned to a discount sharing
group owner when a group member consumes the last unit (quota) of data. To configure ECE
to return FUI AVPs for discount sharing group owners, do the following:

1. Enable ECE to check for and capture any usage overage:

a. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

b. Expand the ECE Configuration node.

c. Expand charging.server.

d. Expand Attributes.

e. Set the enableFuiForMemberUponSharerBalanceBreach attribute to true. (The
default is false.)

Location-Based Charging
Location-based charging allows you to alter the rate based on your customer’s location. For
example, you could charge $5 per GB for customers located in Silicon Valley.

You configure location-based charging in PDC by:

• Creating a value map that associates a value map name with a set of cell IDs. For
example, you could create a value map named Silicon Valley associating with cell IDs
209, 408, 415, 650, and 510.

See "Configuring Value Maps" in PDC Creating Product Offerings for more information.

• Creating a charge selector or discount selector that maps a value map name to a specific
charge or discount.

For example, you could map the London value map to a 5 pound per GB charge and map
the Manchester value map to a 6 pound per GB charge. See “Charge Selectors” in PDC
Online Help.

• Adding the charge selector to a charge offer, or adding the discount selector to a discount
offer.

Chapter 13
Accessing ECE Configuration MBeans

13-13

https://docs.oracle.com/en/industries/communications/billing-revenue/15.0/charging/generating-cdrs-external-systems.html#GUID-D83C505E-DF57-49B1-9272-D9B06D1054F8

When ECE rates an incoming usage request, it determines whether a cell ID in the request is
included in a value map. If it is included, ECE checks whether:

• A charge selector associates the value map name to a charge amount.

• A discount selector associates the value map name to a discount amount.

If ECE finds a match, it applies the charge or discount associated with the value map name.

Chapter 13
Location-Based Charging

13-14

14
Managing Session Start and End Times

You can configure how Oracle Communications Elastic Charging Engine (ECE) sets the start
and stop times for your customers' sessions.

Topics in this document:

• Using Session Connect Time for Charging

• Optimizing Network Signaling

• Configuring ECE to Align Validity Start and End of Conditional Balance Impacts and
Charge Offers

Using Session Connect Time for Charging
ECE uses the session attempt time, which is the time a session is initiated, as the session start
time for calculating usage charges. For example, when a customer initiates a call at 10:00:00
and the call actually gets connected at 10:00:30, 10:00:00 is considered as the call start time.

You can configure ECE to instead use the session connect time, which is the time the session
actually begins, as the session start time for calculating usage charges. You can do this by
setting the connectionTimeEnabled entry in the ECE_home/config/management/charging-
settings.xml file to true.

To use the session connect time for calculating usage charges:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.reservationConfig.

4. Expand Operations.

5. For each product that you offer, do the following:

a. Select enabledOrDisableConnectionTime.

b. Specify values for the following parameters:

• productType: Enter the name of the product defined in the ECE request
specification data (for example, VOICE or SMS).

• enableOrDisable: Enter true to use the session connect time.

c. Click the enabledOrDisableConnectionTime button.

Optimizing Network Signaling
Many times, bundles expire at midnight on a particular day. If your customers are using
bundles at that time, the renewal and request messages that are transmitted at midnight can
cause an undue network load. To prevent this, you can configure ECE to randomize the validity
times for a service so that renewal requests do not occur simultaneously.

14-1

To optimize network signaling by randomizing validity times:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.notification.

4. Expand Attributes.

5. Set subscriptionCycleForwardMode to true.

Configuring ECE to Align Validity Start and End of Conditional
Balance Impacts and Charge Offers

When you design your pricing components in Pricing Design Center, you can create charges
for which conditional balance impacts are configured.

You can configure a runtime option in ECE that aligns the validity start of a conditional balance
impact with the validity start of the associated purchased charge offer and aligns the validity
end of a conditional balance impact with the validity end of the associated purchased charge
offer. For example, if a customer activates a conditional balance impact valid for three days
and the charge offer with which it was purchased is not valid after one day, this configuration
specifies whether the conditional balance impact can still be used after the charge offer validity
has ended. If ECE does not align the validity end of the conditional balance impact with the
validity end of the charge offer the customer purchased, the balance can be used by another
charge offer.

To configure ECE to align validity start and end of conditional balance impacts and charge
offers:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the alignRecurringImpactsToOffer attribute to true.

At run time, if this is set to true and ECE receives a usage request for which a conditional
balance impact applies, ECE compares the validity start and end of the conditional balance
impact with the usage validity start and end of the associated charge offer that the
customer purchased. If the validity start or end of the conditional balance impact breaches
the validity start or end of the associated purchased charge offer, ECE aligns both the
validity start and end of the conditional balance impact with those of the charge offer.

Chapter 14
Configuring ECE to Align Validity Start and End of Conditional Balance Impacts and Charge Offers

14-2

15
Managing Reservations for Online Sessions

You can configure how Oracle Communications Elastic Charging Engine (ECE) reserves your
customers' resources for online sessions.

Topics in this document:

• Configuring Reservation Expiration and Validity

• Configuring a Minimum Quantity for Reservation

• Configuring Reservation Quota for Services

• Managing Dynamic Quotas for Online Sessions

Configuring Reservation Expiration and Validity
In an online session, the network sends the following to ECE:

• Usage updates: Keeps ECE informed about the balance impact of an event. In response,
ECE tells the network if the balance is sufficient to continue the session, or if
reauthorization is needed.

• Reauthorization requests: Requests an extension of the session. In response, ECE
determines whether the customer's balance is sufficient and, if so, reauthorizes the call.

ECE determines how many resources to reserve for a usage session and when the usage
session expires by using the following information passed in the requests:

• Reservation duration: This amount is used to calculate the amount of resources to
reserve for the usage session. For example, if the duration is 20 minutes and the rate is $2
per minute, ECE reserves $40 for the usage session. At the end of the duration, the client
must ask for a reauthorization to extend the usage session.

You do not want the duration to be too low because it takes network activity to report
usage. You also do not want the value to be too high because that increases the risk of
revenue leakage if the customer uses up his balance before the reservation expires.

• Validity time: This specifies how long the reservation is valid. When the validity time ends,
the client must send a usage report to ECE. If the network mediation client does not
communicate the used service units (USU) within the validity time, ECE considers the
reserved balances to be available for subsequent session requests. The available reserved
balances are cleaned up by housekeeping processes when the session terminates.

The validity time is set for each session and is reset whenever an interim request is
received for the session. After the validity time for a session expires, any reserved
balances are released and become available to other active sessions for the same charge
offer.

ECE calculates when the reservation expires by adding together the reservation duration and
validity time. For example, if the usage request specifies a reservation duration of 240 seconds
and a validity time of 600 seconds, the reservation expires in 840 seconds.

When ECE receives a usage request that does not specify a validity time or reservation
duration, ECE uses the default values specified.

15-1

To configure the default values for reservation expiration and validity:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.reservationConfig.

4. Expand Attributes.

5. Specify the defaults for the following attributes:

• validityTime (Long data type): Enter the amount of time, in seconds, that a reservation
remains valid. The default is one hour.

• reservationDuration (Long data type): Enter the amount of time, in seconds, that is
used to calculate the amount of resources to reserve. The default one hour.

For detailed information, see ReservationConfigMBean in the BizParamConfigMBean
package of Elastic Charging Engine Java API Reference.

Configuring a Minimum Quantity for Reservation
You can configure a minimum reservation quantity for charging events. If the customer does
not have enough balance to reserve the minimum quantity of the charging event, ECE tells the
network that there is not enough in the balance to fulfill the request.

Note:

Some charging events cannot be charged in fragments. For example, you cannot
charge for half of an SMS message. In this case, you would set a minimum quantity
reservation of 1 for charging an SMS event.

To configure the minimum quantity for reservation:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.reservationConfig.

4. Expand Operations.

5. Select setMinAuthorizedQuota.

6. Specify values for the following parameters:

• productType: Enter the name of the product for which you are setting a minimum
quantity reservation. Enter the name as it is defined in the ECE request specification
data (for example, VOICE or SMS).

• rum: Enter the name of the attribute defined in the ECE request specification data.

Chapter 15
Configuring a Minimum Quantity for Reservation

15-2

Note:

Though the parameter name is rum, its value must be the attribute name
specified in the REQUESTED_UNITS block of the request specification data,
not the rateable usage metric (RUM) name. For example, if you send
attribute INPUT_VOLUME in the usage request, enter INPUT_VOLUME as
the rum attribute's value.

• minAuthorizeQuota: Enter the minimum amount of the specified unit that can be
reserved for this product-RUM combination.

• unit: Enter the unit of measurement for the quota, such as seconds, minutes, events,
or megabytes.

7. Click the setMinAuthorizedQuota button.

Configuring Reservation Quota for Services
When ECE receives a usage request that does not specify a requested amount, ECE uses a
default usage amount. You configure a systemwide initial quota and a systemwide incremental
quota for each combination of service and RUM. When initiating a call, ECE applies the initial
quota for the reservation. For update requests, ECE applies the incremental quota for the
reservation.

To configure the reservation quota for services:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.reservationConfig.

4. Expand Operations.

5. For each service that you offer, do the following:

a. Select setDefaultReservationQuota.

b. Specify values for the following parameters:

productType: Enter the name of the product defined in the ECE request specification
data (for example, VOICE or SMS).

rum: Enter the name of the attribute defined in the ECE request specification data.

Note:

Though the parameter name is rum, its value must be the attribute name
specified in the REQUESTED_UNITS block of the request specification data,
not the RUM name. For example, if you send attribute INPUT_VOLUME in
the usage request, enter INPUT_VOLUME as the rum attribute's value.

initialQuota: Enter the initial quota for this service-RUM combination. The value must
be decimal-compliant (Java BigDecimal). ECE uses this value to populate the
REQUESTED_UNITS blocks of all Initiate-type usage requests whose Requested-
Service-Units AVP value is missing.

Chapter 15
Configuring Reservation Quota for Services

15-3

incrementalQuota: Enter the incremental quota for this service-RUM combination.
The value must be decimal-compliant (Java BigDecimal). ECE uses this value to
populate the REQUESTED_UNITS blocks of all Update-type usage requests whose
Requested-Service-Units AVP value is missing.

unit: Enter the unit of measurement for the quota, such as seconds, minutes, events,
or megabytes.

c. Click the setDefaultReservationQuota button.

Managing Dynamic Quotas for Online Sessions
Dynamic quota allows you to allocate the available quota dynamically for each parallel session
of a subscriber based on the rules you configure in Pricing Design Center (PDC). For
configuring dynamic quota selectors, see "Configuring Dynamic Quota" in PDC Creating
Product Offerings.

When ECE receives the usage requests from the network in which the requested service unit
(RSU) is not set, it evaluates and applies the rules from the dynamic quota selectors on the
usage request to derive the quota to be allocated and the quota attributes, such as:

• Quota holding time. Specifies how long a granted quota can be idle before the
reservation is released.

• Volume quota threshold. Specifies how much of the granted quota must be consumed
before a subscriber can request additional quota. This attribute is configured per service,
event, and number of granted units.

• Validity time. Specifies whether validity time can be set to a fixed value per service-event
combination at runtime. This attribute is independent of the number of units in the granted
quota.

If dynamic quota selector rules are not configured for a service-event combination, ECE uses
the default quota configuration for deriving the quota and the quota attributes. ECE returns the
derived quota (as granted service unit (GSU)), quota holding time, and volume quota threshold
values in the usage response to the network.

You can also customize the dynamic quota allocation to suit your business requirements. For
more information, see "Sample Extensions".

Triggering RAR Notifications for Ongoing Sessions
When you use dynamic quotas for long running sessions to reduce network signaling, you can
trigger server-initiated reauthorization requests to get the exact reservation balance before
performing other business operations.

To generate server-initiated reauthorization requests, you must generate RAR notifications. To
generate these notifications, you can implement custom logic by using the following ECE
extensions in the rating/charging flow:

• Pre-rating extension

• Post-rating extension

• Post-charging extension

For more information, see "Rating/Charging Extension - Triggering RAR Notifications".

Chapter 15
Managing Dynamic Quotas for Online Sessions

15-4

16
Managing Rounding and Consumption Rules

You can configure how Oracle Communications Elastic Charging Engine (ECE) rounds
balance impacts and the order in which it consumes sub-balances.

Topics in this document:

• Configuring Rounding for a Resource

• Configuring Rounding for Reverse Rating on Multiple RUMs

• Configuring Systemwide Consumption Rules for Balances

Configuring Rounding for a Resource
By default, ECE uses the rounding rules configured in Pricing Design Center (PDC) for a
currency or noncurrency resource to round the balance impact amount for processing stages
like charging, discounting, and taxation. These rules can be different for each processing
stage. For information on configuring the rounding rules, see "Adding Rounding Rules for
Specific Events" in PDC Online Help.

However, you can configure system-wide rounding in ECE for currency and noncurrency
resources to apply the rule across all processing stages.

Example of Currency Rounding for a Charge

If you allow two digits to the right of the decimal point and you round down towards zero
(DOWN rounding mode), ECE takes a calculated charge of 0.509 USD and rounds it to 0.50
USDs.

Example of Noncurrency Rounding for a Charge

If you allow zero digits to the right of the decimal point and you round towards positive infinity
(UP rounding mode), ECE takes a charge of 0.509 bonus point and rounds the value to 1
bonus point.

Examples of Currency Rounding for Discounts

If you allow zero digits to the right of the decimal point and you round down towards zero
(DOWN rounding mode), ECE takes a discount of -2.5 USD and rounds the value to -2 USD.

If you allow zero digits to the right of the decimal point and you round towards negative infinity
(FLOOR rounding mode), ECE takes a discount of -2.5 USD and rounds the value to -3 USD.

If you allow two digits to the right of the decimal point and you round down towards zero
(DOWN rounding mode), ECE takes a discount of -0.075 USD and rounds the value to -0.07
USD.

To configure rounding for a resource:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

16-1

3. Expand charging.server.

4. Expand Attributes.

5. Specify values for the following currency and noncurrency resource attributes as
appropriate:

• currencyScale or nonCurrencyScale: Enter the number of digits you allow to the
right of the decimal point for a calculated impact amount.

For example, enter 2 if you allow two digits to the right of the decimal point.

The default is 2.

• currencyRoundingMode or nonCurrencyRoundingMode: Enter the rounding mode
that determines the rounding behavior by entering the string representation of the Java
math rounding enum.

For more information, see the Java SE technical documentation website:

https://docs.oracle.com/javase/8/docs/api/java/math/RoundingMode.html
For example, enter UP to round up away from zero or DOWN to round down towards
zero.

The default value is HALF_UP.

Configuring Rounding for Reverse Rating on Multiple RUMs
When ECE performs the reverse rating service in which events are rated by using multiple
RUMs, fractional values may result for the authorized resource. You can configure a
systemwide rounding rule to round up the fractional value of the authorized resource.

Rounding up the authorized resource quantity may result in customers exceeding their credit
limits. Configure this only if your business requires that your customers must be able to use all
of their balances.

To configure whether to round up the fractional value of the authorized resource quantity by
authorizing an additional RUM unit:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the reverseRateUseAllBalances attribute to one of the following values:

• To round up the fractional value of the authorized balance quantity, enter true.

This option allows customers to use all balances even if they might exceed their credit
limits by a small amount.

• To disallow the fractional value of the authorized balance quantity to be rounded up,
enter false.

This option does not allow customers to exceed their credit limits.

The default is false.

Chapter 16
Configuring Rounding for Reverse Rating on Multiple RUMs

16-2

https://docs.oracle.com/javase/8/docs/api/java/math/RoundingMode.html

Configuring Systemwide Consumption Rules for Balances
When more than one validity-based sub-balance is available for a usage request, consumption
rules determine from which balance bucket ECE is to consume first. For example, if a
customer has several groups of free minutes that expire at different times, you use
consumption rules to indicate which minutes to use first, based on the validity period start time
and end time. Consumption rules are typically configured at the balance element level when
you define pricing in the pricing application such as PDC. Consumption rules can also be
configured at the customer balance level by the customer and subscription management
components of the BRM system. For information about:

• Configuring consumption rules in PDC, see "Specifying the Order in Which Sub-Balances
Are Consumed" in PDC Creating Product Offerings.

• Configuring consumption rules in BRM, see "Specifying the Order in Which Resource Sub-
Balances Are Consumed" in BRM Configuring Pipeline Rating and Discounting.

When ECE receives a usage request for which no consumption rules are configured, ECE
applies its own systemwide consumption rules for processing the usage request.

To configure ECE systemwide consumption rules:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the systemConsumptionRule attribute to one of the following systemwide
consumption rules:

• EARLIEST_START

• LATEST_START

• EARLIEST_EXPIRATION

• LATEST_EXPIRATION

• EARLIEST_START_LATEST_EXPIRATION

• EARLIEST_START_EARLIEST_EXPIRATION

• LATEST_START_LATEST_EXPIRATION

• LATEST_START_EARLIEST_EXPIRATION

• EARLIEST_EXPIRATION_EARLIEST_START

• EARLIEST_EXPIRATION_LATEST_START

• LATEST_EXPIRATION_EARLIEST_START

• LATEST_EXPIRATION_LATEST_START

• NONE: When the attribute is set to NONE, the default consumption rule is not
configured, and the order for consuming balances is undefined.

By default, this attribute is set to EARLIEST_START_EARLIEST_EXPIRATION.

Chapter 16
Configuring Systemwide Consumption Rules for Balances

16-3

Part V
Integrating with External Systems

This part provides information about integrating external applications with Oracle
Communications Elastic Charging Engine (ECE). It contains the following chapters:

• Connecting ECE to a 5G Client

• Generating CDRs for External Systems

• Connecting ECE to a Diameter Client

• Connecting ECE to a RADIUS Client

• Configuring Policy-Driven Charging

17
Connecting ECE to a 5G Client

You can set up 5G network integration for online and offline charging by using the Oracle
Communications Elastic Charging Engine (ECE) HTTP Gateway.

Caution:

Deploying charging for 5G with HTTP Gateway (5G CHF) requires a cloud native
deployment of ECE and BRM components. The HTTP Gateway can be used only on
an ECE cloud native system.

Topics in this document:

• About the HTTP Gateway

• Integrating HTTP Gateway with 5G Networks

• Using the ECE REST API

About the HTTP Gateway
You integrate 5G clients with ECE by using the HTTP Gateway. The HTTP Gateway sends
usage requests to ECE for online and offline charging and then sends responses to the 5G
network.

The HTTP Gateway supports the 5G service-based architecture and does the following:

• Receives ECE REST API requests from 5G clients and then translates them into batch
request server (BRS) requests.

• Determines whether a usage request requires online or offline charging. See "About
Determining the Charging Type" for details.

• Submits BRS requests to the ECE server.

• Receives responses from the ECE server and then translates them into REST API
responses.

• Responds to the 5G clients.

• Consumes notifications from the ECE notification topic and then notifies the 5G clients by
making a REST call to the URL stored in the system.

• Publishes details about ECE REST API requests that failed to the ECE failure Kafka topic.

When configured to do so, the HTTP Gateway can also send ECE REST API requests from
5G clients to the CDR Gateway for generating CDRs. For more information, see "Generating
CDRs for External Systems".

17-1

About Determining the Charging Type
HTTP Gateway determines whether a usage request requires online charging or offline
charging as follows:

• For INITIATE requests, based on the multipleUnitUsage block. If the block is present, the
request needs online charging. If the block is missing, the request needs offline charging.

• For UPDATE requests, based on the value of the quotaManagementIndicator field in the
request. If the value is set to ONLINE_CHARGING, the request needs online charging. If
the field is missing or the value is set to OFFLINE_CHARGING, the request needs offline
charging.

• For TERMINATE requests, based on the value of the quotaManagementIndicator field in
the request. If the value is set to ONLINE_CHARGING, the request needs online charging.
If the field is missing or the value is set to OFFLINE_CHARGING, the request needs
offline charging.

For more information about these properties, see the Nchf Converged Charging endpoints and
Nchf Offline-Only Charging endpoints in REST API for Elastic Charging Engine.

About Sending Notifications to HTTP Gateway
You can configure ECE to send the following notifications to the ECE Notification topic, where
they are retrieved by the HTTP Gateway:

• Spending Limit Notification (SNR): Specifies that a subscriber has reached a spending
threshold or limit.

• Reauthorization Request (RAR): Specifies that a reauthorization request is needed.

Configure HTTP Gateway to consume SNR and RAR notifications from the ECE Notification
topic. When configured to do so, HTTP Gateway listens on the ECE Notification topic and
filters notifications based on the notification type in the header. Depending on the notification
type, HTTP Gateway does the following:

• Retrieves SNR notifications from the Kafka topic and makes a REST API call to notifUri to
post the notification.

• Retrieves RAR notifications from the Kafka topic and makes a REST API call to post the
notification to notifUri in the usage request.

Integrating HTTP Gateway with 5G Networks
To integrate HTTP Gateway with your 5G network:

1. When you install ECE, do this:

• Specify to use Apache Kafka topics and enter the details for your ECE notification
topic, Suspense topic, ECE failure topic, and ECE overage topic.

• Enable Network Repository Function (NRF) registration in one of your HTTP Gateway
servers.

• Specify the details for connecting to the BRM Gateway.

For more information, see "Installing Elastic Charging Engine" in ECE Installation Guide.

2. During the ECE post-installation process, do this:

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-2

• Run the kafka_post_install.sh script to create your ECE notification topic, Suspense
topic, ECE failure topic, and ECE overage topic. See "Creating Kafka Topics for ECE"
in ECE Installation Guide.

• Run the post_Install.sh script and choose to create only the Acknowledgment queue.
See "Creating WebLogic JMS Queues for BRM" in ECE Installation Guide.

3. Configure the NRF registration details for each HTTP Gateway server in your system. See
"Configuring Registration Details for the HTTP Gateway Server".

4. Configure one or more NF services. See "Configuring NF Services".

5. Configure the HTTP Gateway to send usage requests to ECE Server for convergent
charging. See "Configuring HTTP Gateway for Convergent Charging".

6. Define any custom service-event mappings in Pricing Design Center. See "Enabling
Charging for Custom Events" in PDC Creating Product Offerings.

7. Edit your mediation specification file and load it into ECE. The mediation specification
enables the HTTP Gateway to associate each HTTP request with its respective usage-
request builder. See "Editing the HTTP Gateway Mediation Specification File".

8. Connect ECE to your Kafka Server topics. See "Connecting ECE to Kafka Topics".

9. Configure ECE to send notifications to HTTP Gateway through the ECE notification topic.
See "Configuring ECE to Send Notifications to HTTP Gateway".

10. (Optional) Configure ECE to send information about failed usage requests to the ECE
failure topic. See "Recording Failed ECE Usage Requests".

11. (Optional) Configure ECE to generate CDRs for any prepaid usage overage and send
them to the ECE overage topic. See "Configuring ECE to Support Prepaid Usage
Overage".

12. (Optional) Configure your charging function (CHF) operations to route communication
through a Services Communication Proxy (SCP). See "Configuring Communication
through SCP".

13. Start your HTTP Gateway. See "Starting the HTTP Gateway".

After the HTTP Gateway is set up, your 5G clients can start:

• Submitting ECE REST API requests to HTTP Gateway for online or offline charging by
ECE. See "Using the ECE REST API".

• Sending unrated 5G usage events to HTTP Gateway so they can be converted into CDRs
and sent to roaming partners, data warehousing system, and legacy billing systems. See
"Generating CDRs for External Systems".

Configuring Registration Details for the HTTP Gateway Server
You register the HTTP Gateway server with an NRF by configuring the registration details in
JConsole and then starting the HTTP Gateway instance. When it is started, HTTP Gateway
automatically sends the registration request to the NRF.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-3

Note:

• In ECE 12.0 Patch Set 5 and earlier, you can register only one HTTP Gateway
server with an NRF. If you try to register multiple servers, HTTP Gateway will
throw an error and not start.

• In ECE 12.0 Patch Set 6 and later, you can register multiple HTTP Gateway
servers with an NRF. An HTTP Gateway server can also be registered with
multiple NRFs.

To build an NRF registration request for your HTTP Gateway server:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.nfProfileConfigurations.

4. Expand Attributes.

5. Specify the registration values for the fields in Table 17-1.

Table 17-1 Fields for Configuring NRF Registration

Attribute Name Mandator
y

Description

name Yes The name of the HTTP Gateway instance.

clusterName Yes The name of the cluster that the HTTP Gateway belongs to.

allowedNfDomains No The network function (NF) domains that are allowed to access the HTTP
Gateway server. Enter a regular expression for the domains according to
the ECMA-262 dialect [8].

If not provided, any NF domain is allowed to access the HTTP Gateway
server.

allowedNfTypes No The type of NFs that are allowed to access the HTTP Gateway server,
such as AMF or SMF.

If not provided, any NF type is allowed to access the HTTP Gateway
server.

allowedNssaisSd No The S-NSSAI Slice Differentiator (SD) ID of the network slices that are
allowed to access the HTTP Gateway server.

If not provided, any slice is allowed to access the HTTP Gateway server.

allowedNssaisSst No The S-NSSAI Slice/Service Type (SST) ID of the network slices that are
allowed to access the HTTP Gateway server.

If not provided, any slice is allowed to access the HTTP Gateway server.

allowedPlmnsMcc No The Mobile Country Code (MCC) of the PLMNs that are allowed to
access the HTTP Gateway server.

If not provided, any PLMN is allowed to access the HTTP Gateway
server.

allowedPlmnsMnc No The Mobile Network Code (MNC) of the PLMNs that are allowed to
access the HTTP Gateway server.

If not provided, any PLMN is allowed to access the HTTP Gateway
server.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-4

Table 17-1 (Cont.) Fields for Configuring NRF Registration

Attribute Name Mandator
y

Description

capacity No The static capacity information in the range of 0-65535, expressed as a
weight relative to other NF instances of the same type. The default is 0.

If the capacity is also present in the nfServiceList parameters, those will
have precedence over this value.

customInfo No The specific data for custom NFs.

defaultNotificationSubscriptions
CallbackUri

No The callback URI for the default notification type.

defaultNotificationSubscriptions
N1MessageClass

No The information element (IE) that is used to identify the class of the N1
message type.

defaultNotificationSubscriptions
N2InformationClass

No The information element (IE) that is used to identify the class of the N2
message type.

defaultNotificationSubscriptions
NotificationType

No The type of notification for the corresponding callback URI.

fqdn Yes The FQDN of the HTTP Gateway server.

For AMF, the FQDN registered with the NRF is the AMF name. For
example: chf-demo.novalocal.

gpsiRangeListEnd No The ending range for the list of GPSIs that can be served by the CHF
instance. The default is 100008.

If not provided, the CHF can serve any GPSI.

gpsiRangeListPattern No The pattern for the list of GPSI ranges that can be served by the CHF
instance. The default is ^extid-.+@oracle1.com$.

If not provided, the CHF can serve any GPSI.

gpsiRangeListStart No The starting range for the list of GPSIs that can be served by the CHF
instance. The default is 10000.

If not provided, the CHF can serve any GPSI.

heartBeatTimer No The time, in seconds, between two consecutive heartbeat messages from
an NF Instance to the NRF.

httpGatewayName Yes The name of the HTTP Gateway that this property configuration belongs
to.

interPlmnFqdn No The FQDN that is used for inter-PLMN routing as specified in 3GPP
23.003 [12]. This is required if the HTTP Gateway needs to be
discoverable by other NFs in a different PLMN.

ipv4Addresses No The IPv4 addresses of the HTTP Gateway.

ipv6Addresses No The IPv6 addresses of the HTTP Gateway.

load No The current load percentage of the HTTP Gateway, ranging from 0 to
100.

locality No Operator-defined information about the location of the HTTP Gateway
instance, such as the geographic location.

nfProfileChangesInd No Whether the IE is absent in the request to the NRF and may be included
by the NRF in the NFRegister or NFUpdate response:

• true: The NF Profile contains changes.
• false: The complete NF Profile. This is the default.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-5

Table 17-1 (Cont.) Fields for Configuring NRF Registration

Attribute Name Mandator
y

Description

nfProfileChangesSupportInd No Whether the IE may be present in the NFRegister or NFUpdate request
and will be absent in the response:

• true: The NF Service Consumer supports receiving NF Profile
Changes in the response.

• false: The NF Service Consumer does not support receiving NF
Profile Changes in the response. This is the default.

nfServicePersistence No If present, and set to true, it indicates that the different instances of an
NF Service in this NF instance, supporting the same API version, can
persist their resource state in shared storage. Thus, these resources are
available after a new NF service instance supporting the same API
version is selected by a NF Service Consumer (see 3GPP 23.527 [27]).

Otherwise, it indicates that the NF Service Instances of a same NF
Service cannot share a resource state inside the NF Instance.

Possible values are true or false.

nfStatus Yes The status of the HTTP Gateway server:

• REGISTERED
• SUSPENDED
• UNDISCOVERABLE
The default is REGISTERED.

nfType Yes The type of NF. Set this to CHF.

Note: ECE supports only CHF.

nrfHttp2Enable No Whether the endpoint URL of the NRF registration server
(nrfRestEndPointUrl) uses the HTTP/2 protocol:

• true: The HTTP/2 protocol is used. This is the default.
• false: The HTTP/1 protocol is used.

nrfRestEndPointUrl Yes The endpoint URL of the NRF registration server. For multiple NRF
registration servers, list the endpoint URLs separated by a comma. For
example: http://localhost:8080,http://localhost:8081.

If not provided, NRF URL registration will not occur.

nsiList No The list of Network Slice Instances (NSIs) of the HTTP Gatewy.

If not provided, the HTTP Gateway can serve any NSI.

perPlmnSnssaiListPlmnIdMcc No The Mobile Country Code (MCC) value for plmnSnssai.

perPlmnSnssaiListPlmnIdMnc No The Mobile Network Code (MNC) value for plmnSnssai.

perPlmnSnssaiListSd No The Slice Differentiator (SD) value for plmnSnssai.

perPlmnSnssaiListSst No The Slice/Service Type (SST) value for plmnSnssai.

plmnListMcc No The MCC value for plmnList.

plmnListMnc No The MNC value for plmnList.

plmnRangeListEnd No The ending range for the list of PLMNs (including the PLMN IDs of the
CHF instance) that can be served by the CHF instance. The default is
333333.

If not provided, the CHF can serve any PLMN.

plmnRangeListPattern No The pattern for the list of PLMNs (including the PLMN IDs of the CHF
instance) that can be served by the CHF instance.

If not provided, the CHF can serve any PLMN.

plmnRangeListStart No The starting range for the list of PLMNs that can be served by the CHF
instance. The default is 100000.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-6

Table 17-1 (Cont.) Fields for Configuring NRF Registration

Attribute Name Mandator
y

Description

priority No The priority of this NF service relative to other services of the same type,
where lower values indicate higher priority. The value must be in the
range of 0-65535. The default is 1.

Note: The NRF may overwrite the received priority value when exposing
an NFProfile.

recoveryTime No The timestamp for when the NF was started or restarted, in DateTime
format.

snssaisSdl No The S-NSSAIs of the NF. When present, this IE represents the list of S-
NSSAIs supported in all the PLMNs listed in the plmnList IE.

If not provided, the NF can serve any S-NSSAI.

snssaisSst No The S-NSSAIs of the NF. When present, this IE represents the list of S-
NSSAIs supported in all the PLMNs listed in the plmnList IE.

If not provided, the CHF can serve any S-NSSAI.

supiRangeListEnd No The end of a list of GPSI ranges that can be served by the CHF instance,
such as 1009. The default is 10008.

If not provided, the CHF can serve any GPSI.

supiRangeListPattern No The pattern for a list of GPSI ranges that can be served by the CHF
instance. The default is ^nai-450081.+@.+org$.

If not provided, the CHF can serve any GPSI.

supiRangeListStart No The start of a list of GPSI ranges that can be served by the CHF
instance. The default is 10000.

If not provided, the CHF can serve any GPSI.

Configuring NF Services
You must configure at least one NF service for HTTP Gateway. By default, HTTP Gateway
includes one, but you can add more.

To add or remove an NF service configuration, do this:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole.

2. Expand the ECE Configuration node.

3. Expand charging.nfServiceConfigurations.

4. Expand Operations.

5. Do one of the following:

• To add an NF service configuration, enter its name and then click
addNfServiceConfiguration.

• To remove an NF service configuration, enter its name and then click
removeNfServiceConfiguration.

To configure an NF service, do this:

1. Access the ECE configuration MBeans.

2. Expand the ECE Configuration node.

3. Expand charging.nfServiceConfigurations.Instance_Name.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-7

4. Expand Attributes.

5. Specify the NF service configuration values for the attributes in Table 17-2.

Table 17-2 NF Service Configuration Attributes

Attribute Name Mandator
y

Description

allowedNfDomains No The network function (NF) domains that are allowed to access the
service instance. Enter a regular expression for the domains according to
the ECMA-262 dialect.

If not provided, any NF domain is allowed to access the service instance.

allowedNfTypes No The type of NFs that are allowed to access the service instance.

If not provided, any NF type can access the service instance.

allowedNssaisSd No The S-NSSAI Slice Differentiator (SD) ID of the network slices that are
allowed to access the service instance.

If not provided, any slice can access the service instance.

allowedNssaisSst No The S-NSSAI Slice/Service Type (SST) ID of the network slices that are
allowed to access the service instance.

If not provided, any slice can access the service instance.

allowedPlmnsMcc No The Mobile Country Code (MCC) of the PLMNs that are allowed to
access the service instance.

If not provided, any PLMN can access the service instance.

When included, the allowedPlmns attribute does not need to include the
PLMN IDs registered in the plmnList attribute of the NF Profile.

allowedPlmnsMnc No The Mobile Network Code (MNC) of the PLMNs that are allowed to
access the service instance.

apiFullVersion Yes The full version number of the API as specified in 3GPP 29.501.

apiPrefix No The optional path segments used to construct the {apiRoot} variable of
the different API URIs.

apiVersionInUri Yes The version of the service instance to be used in the URI for accessing
the API. The default is v1.

capacity No The static capacity information in the range of 0-65535, expressed as a
weight relative to other services of the same type. The default is 50.

The capacity and priority parameters, if present, are used for NF
selection and load balancing.

defaultNotificationSubscriptions
CallbackUri

No The callback URI for the default notification type.

defaultNotificationSubscriptions
N1MessageClass

No The information element (IE) that is used to identify the class of the N1
message type.

defaultNotificationSubscriptions
N2InformationClass

No The information element (IE) that is used to identify the class of the N2
message type.

defaultNotificationSubscriptions
NotificationType

No The type of notification for the corresponding callback URI.

expiry No The expiration date and time of the NF service. The default is
2020-12-01T18:55:08.871Z.

fqdn No The FQDN of the NF service instance.

interPlmnFqdn No The FQDN that is used for inter-PLMN routing as specified in 3GPP
23.003. This is required if the service instance needs to be discoverable
by other NFs in a different PLMN.

ipv4Address No The IPv4 address.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-8

Table 17-2 (Cont.) NF Service Configuration Attributes

Attribute Name Mandator
y

Description

ipv6Address No The IPv6 address.

load No The current load percentage of the NF service, ranging from 1 through
100. The default is 5.

name Yes The name of the NF service.

nfServiceStatus Yes The status of the NF service instance:

• REGISTERED
• SUSPENDED
• UNDISCOVERABLE
The default is REGISTERED.

port No The port number. The default is 0.

primaryChfServiceInstance No The specific data for a CHF service instance.

Include this IE if the CHF service instance serves as a secondary CHF
instance of another primary CHF. When present, set it to the
serviceInstanceId of the primary CHF service instance.

priority No The priority used for service selection (relative to other services of the
same type), ranging from 0 through 65535. Lower values indicate a
higher priority. The default is 1.

The NRF may overwrite the received priority value when exposing an
NFProfile with the Nnrf_NFDiscovery service.

recoveryTime No The timestamp when the NF service was started or restarted. For
example, 2019-08-03T18:55:08.871Z.
The format should be of type DateTime.

scheme Yes The URI scheme, such as http or https. The default is http.

secondaryChfServiceInstance No Include this IE if the CHF service instance serves as a primary CHF
instance of another secondary CHF.

When present, set it to the serviceInstanceId of the secondary CHF
service instance.

Do not set this IE when primaryChfServiceInstance is present.

serviceInstanceId Yes The unique ID of the service instance within a given NF instance. The
default is chf1.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-9

Table 17-2 (Cont.) NF Service Configuration Attributes

Attribute Name Mandator
y

Description

serviceName Yes The name of the service instance:

• nnrf-nfm
• nnrf-disc
• nudm-sdm
• nudm-uecm
• nudm-ueau
• nudm-ee
• nudm-pp
• namf-comm
• namf-evts
• namf-mt
• namf-loc
• nsmf-pdusession
• nsmf-event-exposure
• nausf-auth
• nausf-sorprotection
• nausf-upuprotection
• nnef-pfdmanagement
• npcf-am-policy-control
• npcf-smpolicycontrol
• npcf-policyauthorization
• npcf-bdtpolicycontrol
• npcf-eventexposure
• npcf-ue-policy-control
• nsmsf-sms
• nnssf-nsselection
• nnssf-nssaiavailability
• nudr-dr
• nlmf-loc
• n5g-eir-eic
• nbsf-management
• nchf-spendinglimitcontrol
• nchf-convergedcharging
• nnwdaf-eventssubscription
• nnwdaf-analyticsinfo
The default is nchf-convergedcharging.

supportedFeatures No The supported features of the NF Service instance.

transport No The transport protocol. The default is TCP.

httpGatewayName Yes The name of the HTTP Gateway that this property configuration belongs
to.

clusterName Yes The name of the cluster that the HTTP Gateway belongs to.

Configuring HTTP Gateway for Convergent Charging
Configure the HTTP Gateway to send usage requests to ECE Server for convergent charging,
and to consume SNR and RAR notifications from the ECE notification topic.

To configure the HTTP Gateway for convergent charging:

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-10

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole.

2. Expand the ECE Configuration node.

3. Expand charging.httpGatewayConfigurations.

4. Expand Attributes.

5. Specify values for the fields in Table 17-3.

Table 17-3 Fields for Converged Charging

Name Default Description

serverSslKeyStore "httpGatewayServer.jks
"

The name of the KeyStore file for ECE server.

serverSslKeyStoreType "@ECE_HTTPGATEW
AY_KEYSTORE_TYPE
@"

The SSL KeyStore type for ECE server, such as JKS or pkcs12.

serverSslKeyStoreAlias "@ECE_HTTPGATEW
AY_KEYSTORE_ALIA
S@"

The alias name for the ECE server SSL KeyStore.

walletLocation "@ECE_WALLET_LO
CATION@"

The path to the ECE wallet.

snrHttp2Enable "true" Whether HTTP Gateway uses the HTTP/2 protocol:

• true: The HTTP/2 protocol is used.
• false: The HTTP/1 protocol is used.

retryIntervalInMillis "5000" The amount of time, in milliseconds, between reconnection
attempts to ECE server.

notificationListenerConnec
tionPoolSize

"10" The number of threads used by the HTTP Gateway instance for
retrieving notifications from the ECE Notification topic.

6. Expand charging.HttpGatewayConfigurations.name, where name is the name of the
HTTP Gateway instance.

7. Expand Attributes.

8. Specify values for the fields in Table 17-4.

Table 17-4 Fields for an HTTP Gateway Instance

Name Default Description

name "@HTTPGATEWAY_N
AME@"

The name of the HTTP Gateway instance.

clusterName "@CLUSTER_NAME
@"

The name of the cluster that the HTTP Gateway belongs to.

serverHttp2Enabled "@HTTPGATEWAY_H
TTP2_ENABLED@"

Whether ECE Server uses the HTTP/2 protocol:

• true: The HTTP/2 protocol is used.
• false: The HTTP/1 protocol is used.

serverPort "@HTTPGATEWAY_S
ERVER_PORT@"

The HTTPS port number of the server on which HTTP Gateway
resides.

serverHttpPort "@HTTPGATEWAY_S
ERVER_HTTP_PORT
@"

The HTTP port number of the server on which HTTP Gateway
resides.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-11

Table 17-4 (Cont.) Fields for an HTTP Gateway Instance

Name Default Description

serverSslEnabled "@HTTPGATEWAY_S
ERVER_SSL_ENABLE
D@"

Whether SSL communication is enabled between your HTTP client
and the HTTP Server (true) or not (false).

processingThreadPoolSize "200" The number of threads used by the HTTP Gateway instance to
process a set of incoming usage requests.

processingQueueSize "32768" The number of incoming usage requests that can be processed
simultaneously by the HTTP Gateway.

kafkaBatchSize "10" The size of the Kafka batch.

externalTrafficInfo "" The location of the header URL information.

Editing the HTTP Gateway Mediation Specification File
The mediation specification file enables HTTP Gateway to associate each ECE REST API
request with its respective usage-request builder. HTTP Gateway uses the mediation
specification to determine which service and event combination applies to an incoming ECE
REST API request, enabling it to select the event definition that applies to the event to be
rated.

You configure HTTP Gateway to base its selection of event definitions on any combination of
the following in the request:

• Service-Context-Id

• Service-Identifier

• Rating-Group

• Event-Timestamp

From the preceding values, HTTP Gateway derives the following fields, which uniquely identify
the event definition to use for building the BRS request for ECE:

• ProductType (service)

• EventType

• Version

To edit the mediation specification:

1. Create a mediation specification file or edit an existing one.

A sample mediation specification file is available at ECE_home/sample_data/
config_data/specifications/ece_end2end/http_mediation.spec.

It is recommended to create only one mediation specification file. You can have only one
mediation specification loaded in the ECE cluster and the last one loaded takes
precedence.

2. In the mediation specification file, add a row (in the table) for each event to be rated that
specifies the following information:

• Service-Identifier: The Service-Identifier is a place holder.

• Rating-Group: The Rating-Group value sent in the ECE REST API request.

• ProductType: The service you have defined for the event.

• EventType: The event definition you have defined for the event.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-12

• Version: The version number of the event definition object that you want to apply to
the event.

Define this information for each event definition object defined in the mediation table.

For each received request, HTTP Gateway correlates the Rating-Group, and Event-
Timestamp values (that you defined in the mediation specification) to the usage-request
builder that applies to the event to be rated (for the applicable version, service, and event).

3. (Optional) In the ValidFrom field of the table, set a future date and time when you want
HTTP Gateway to recognize a newly deployed event definition object.

For example, to have requests processed according to a new specification on December
16, 2020, you would enter:

| ValidFrom
 | "2020-12-16T12:01:01"

You can also specify a time zone. For example,

| ValidFrom
 | "2020-12-16T12:01:01 PST"

If a time zone is not sent, the ValidFrom field is set to UTC.

4. Save the http_mediation.spec file in the directory where you save your configuration
data.

5. Verify that the directory specified in the ECE_home/config/management/migration-
configuration.xml file is the directory where you save your configuration data.

6. Run the configLoader utility:

start configLoader

The utility deploys your mediation specification to the ECE cluster. Any earlier mediation
specification that was in the ECE cluster is overwritten.

Any time you deploy a new version of a mediation specification into the repository, HTTP
Gateway re-creates its in-memory usage-request builder map and begins using the
mapping definitions (to send requests that adhere to the specifications) provided that the
validFrom date is reached.

7. Restart the HTTP Gateway.

8. Load the mediation specification file into the ECE server by using the configLoader utility.

Connecting ECE to Kafka Topics
You can connect ECE to the following ECE Kafka topics so that ECE can publish notifications,
failed usage requests, and CDRs with usage overage information to them:

• ECE notification topic: Stores notifications from ECE.

• Suspense topic: Stores failed notifications from ECE.

• ECE failure topic: Stores details about failed ECE usage requests, such as the user ID
and request payload. See "Recording Failed ECE Usage Requests" for more information.

• ECE overage topic: Stores overage records, which contain details about usage overage
amounts for prepaid customers. See "Configuring ECE to Support Prepaid Usage
Overage" for more information.

To connect ECE to your Kafka topics:

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-13

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.kafkaConfigurations.

4. Expand Attributes.

5. Specify the Kafka configuration values for the attributes in Table 17-5.

Table 17-5 kafkaConfiguration Properties

Property Name Description

name The name of your ECE cluster.

hostname The host name and port number of the machine
in which Apache Kafka is installed.

If it contains multiple Kafka brokers, create a
comma-separated list.

topicName The name of the Kafka topic where ECE will
publish notifications.

suspenseTopicName The name of the Kafka topic where failed
notifications are published.

failureTopicName The name of the Kafka topic where ECE will
publish details about failed usage requests.

overageTopicName The name of the Kafka topic where ECE will
publish overage records with information about
your prepaid customer's usage overage during
online sessions.

partitions The number of Kafka partitions in your topics.

The recommended number to create is
calculated as follows:

[(Max HTTP Gateway Nodes) + (Max Diameter
Gateway Nodes * Max Diameter Clients) + (1 for
BRM Gateway) + (1 for Internal Notifications)]

For example, if you have 2 HTTP Gateway
nodes, 4 Diameter Gateway nodes, 10 Diameter
Gateway clients, and a BRM Gateway, you would
need [(2 + (4 * 10) + 1 + 1) = 44 Kafka partitions.

Arbitrarily, you can set this to a maximum value.

failurePartitions The number of Kafka partitions in your ECE
failure topic.

kafkaProducerReconnectionInterval The amount of time, in milliseconds, the
Notification Publisher waits before attempting to
reconnect to the Kafka topic.

kafkaProducerReconnectionMax The maximum amount of time, in milliseconds,
the Notification Publisher waits before attempting
to reconnect to a broker that has repeatedly
failed to connect.

The kafkaProducerReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

kafkaDGWReconnectionInterval The amount of time, in milliseconds, Diameter
Gateway waits before attempting to reconnect to
the Kafka topic.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-14

Table 17-5 (Cont.) kafkaConfiguration Properties

Property Name Description

kafkaDGWReconnectionMax The maximum amount of time, in milliseconds,
Diameter Gateway waits before attempting to
reconnect to a broker that has repeatedly failed
to connect.

The kafkaDGWReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

kafkaBRMReconnectionInterval The amount of time, in milliseconds, BRM
Gateway waits before attempting to reconnect to
the Kafka topic.

kafkaBRMReconnectionMax The maximum amount of time, in milliseconds,
BRM Gateway waits before attempting to
reconnect to a broker that has repeatedly failed
to connect.

The kafkaBRMReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

kafkaHTTPReconnectionInterval The amount of time, in milliseconds, HTTP
Gateway waits before attempting to reconnect to
the Kafka topic.

kafkaHTTPReconnectionMax The maximum amount of time, in milliseconds,
HTTP Gateway waits before attempting to
reconnect to a broker that has repeatedly failed
to connect.

The kafkaHTTPReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

Configuring ECE to Send Notifications to HTTP Gateway
You can enable ECE to send SNR and RAR notifications to the ECE Notification topic, where
they will be retrieved by the HTTP Gateway.

To configure

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the kafkaEnabledForNotifications property to true.

6. Expand charging.notification.

7. Expand Attributes.

8. Set the rarNotificationMode and spendingLimitNotificationMode properties to one of
the following:

• NONE: ECE does not send this notification type.

• ASYNCHRONOUS: ECE sends an asynchronous notification to the ECE Notification
topic.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-15

If configured to do so, the HTTP Gateway will consume the notification from the Kafka
topic and dispatch it through a REST API call.

Recording Failed ECE Usage Requests
ECE may occasionally fail to process usage requests. For example, a data usage request
could fail because a customer has insufficient funds. You can configure ECE to publish details
about failed usage requests, such as the user ID and request payload, to the ECE failure topic
in your Kafka server. Later on, you can reprocess the usage requests or view the failure details
for analysis and reporting.

To enable the recording of failed ECE usage requests:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole.

2. Expand the ECE Configuration node.

3. Expand charging.kafkaConfigurations.

4. Expand Attributes.

5. Set the persistFailedRequestsToKafkaTopic property to true.

Note:

You can also examine the HTTP Gateway log files to determine why a usage request
failed. See "Troubleshooting Failed Usage Requests" in BRM System Administrator's
Guide for more information.

Configuring Communication through SCP
HTTP Gateway supports the communications models shown in Figure 17-1 for the charging
function (CHF) operations.

Figure 17-1 Supported Communication Models for CHF Operations

If your system routes communication between the charging functions (CHF) and other network
functions through an Oracle Services Communications Proxy (SCP), perform these steps:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole.

2. Expand the ECE Configuration node.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-16

3. Expand charging.HttpGatewayConfigurations.

4. Expand Attributes.

5. Select scpAuthorities and enter the URL of the primary and secondary SCP authority,
delimited by commas. For example:
scpAuthorities="scp1.example.com,scp2.example.com".

6. Expand charging.HttpGatewayConfigurations.name, where name is the name of the
HTTP Gateway instance.

7. Expand Attributes.

8. Select nrfHeartBeatRetryCount and enter the number of times the heartbeat retries if it
fails during registration.

Starting the HTTP Gateway
When the HTTP Gateway starts, it automatically joins the Coherence cluster and gains access
to ECE caches and invocation services that it uses to send requests to ECE. At start up, the
HTTP Gateway checks for notifications in the ECE Notification topic.

To start the HTTP Gateway:

1. Ensure that the HTTP Gateway server and other components are started.

2. Start ECC:

./ecc
3. Start the HTTP Gateway:

ecc:000> start httpGateway

Using the ECE REST API
After the HTTP Gateway is set up on your system, your 5G clients can start submitting
requests to the ECE REST API.

The ECE REST API supports the following CHF operation types:

• Creating an initial quota reservation for a converged charging session. For example,
initially reserving 500 MBytes for a data session.

• Updating the quota reservation for a converged charging session. For example, reserving
an additional 100 MBytes for a data session that is in progress.

• Releasing the quota reservation when the converged charging session ends.

• Creating an initial request for an offline-only charging session.

• Updating a request for an offline-only charging session.

• Ending an offline-only charging session.

• Subscribing a customer to spending limit notifications.

• Updating a customer's spending limit subscription.

• Unsubscribing a customer from spending limit notifications.

• Creating a usage consumption resource.

• Deleting a usage consumption resource.

• Retrieving a subscriber's current usage consumption.

Chapter 17
Using the ECE REST API

17-17

• Retrieving the current usage consumption for all subscribers.

For more information about these operation types, see REST API for Elastic Charging Engine.

You make calls to the ECE REST API through Swagger at this URL:

• For ECE 12.0 Patch Set 4 and later releases:

https://hostname:serverhttpsPort/openapi-ui/index.html

• For ECE 12.0 Patch Set 3 and earlier releases:

https://hostname:serverhttpsPort/swagger-ui.html

where hostname is the host name of the machine on which HTTP Gateway is running, and
serverhttpsPort is the port number on the HTTP Gateway server.

Note:

If your system's communication model includes an SCP, include the Authority
header in all HTTP requests to the CHF operations. Set the Authority header to the
host name and port number of the SCP Authority Server. For example:

Authority: example.com:1534

Chapter 17
Using the ECE REST API

17-18

18
Generating CDRs for External Systems

You can configure Oracle Communications Elastic Charging Engine (ECE) to generate call
detail records (CDRs) for unrated 5G usage events. ECE does not use CDRs for convergent
charging, so it does not generate them by default. You might want CDRs for roaming partners,
data warehousing, and legacy billing systems.

Caution:

Generating CDRs for unrated 5G events requires a cloud native deployment of ECE
and BRM components. The HTTP Gateway and CDR Gateway can be used only on
an ECE cloud native system.

Topics in this document:

• About Using the HTTP Gateway

• About Generating CDRs

• About Saving CDR Files to Disk

• Setting Up ECE to Generate CDRs

• About Trigger Types

About Using the HTTP Gateway
By default, HTTP Gateway sends all 5G usage requests to ECE Server for online and offline
charging.

You can configure HTTP Gateway to convert some of the usage requests into CDRs based on
the charging type by enabling CDR generation. You can then send the CDRs to roaming
partners, a data warehousing system, or legacy billing systems for rating.

When CDR generation is enabled, HTTP Gateway routes usage requests to one of the
following, depending on your configurations and the charging type:

• ECE Server for charging. See "Using the ECE REST API".

• The CDR Gateway for generating CDRs. See "About Generating CDRs".

You specify where to route online charging requests and offline charging requests when you
configure the HTTP Gateway. See "Configuring HTTP Gateway for CDR Generation".

About Generating CDRs
You can configure ECE to publish CDRs as files or send them to a Kafka messaging service. In
both cases, the CDRs are in JSON format.

ECE generates CDR files in the Charging Function component (CHF) using this process:

18-1

1. The HTTP Gateway sends a request to the CDR Gateway. The requests can be for online
charging, offline charging, or both.

2. The CDR Gateway does the following:

a. Generates individual CDR records for each request or aggregates multiple requests
into a CDR record according to the trigger criteria you specify.

b. Stores CDR records in the CDR database. You can use either Oracle NoSQL
Database or Oracle Database.

3. The CDR Formatter does the following:

a. Extracts CDR records from the database and passes them to the CDR Formatter plug-
in module for processing. You can use the default plug-in included with ECE or create
a custom plug-in.

b. Purges CDR records from the database after a specified amount of time. You can
purge both processed and incomplete CDR records based on your configuration.

4. The CDR Formatter plug-in module generates CDR files. Depending on your configuration,
it stores them on the disk or sends them to the Kafka messaging service.

Figure 18-1 shows the process flow for generating CDRs.

Figure 18-1 CDR Process Flow

For details about the CDR format, see "CHF-CDR Format" in ECE 5G CHF Protocol
Implementation Conformance Statement.

Chapter 18
About Generating CDRs

18-2

About Saving CDR Files to Disk
If you configure CDR Gateway to save JSON-formatted CDR files to disk, it stores the files to
the directory you specify using the following file naming format:

• For ECE 12.0 Patch Set 7 and later:

ClusterName_StartTimeStamp_EndTimeStamp_SequenceNumber.Extension

For example: BRM_1654514133000_1654514134000_1.out

• For ECE 12.0 Patch Set 6 and earlier:

StartTimeStamp_EndTimeStamp.Extension

For example: 1654514133000_1654514134000.out

You set the filename extension, the maximum number of CDRs that can be written to a CDR
output file, and the directory in which to store CDR files when you configure the CDR Formatter
Plug-In. See "Configuring the CDR Formatter Plug-in".

Setting Up ECE to Generate CDRs
To set up ECE to generate CDRs:

1. Connect your 5G client to HTTP Gateway. See "Connecting ECE to a 5G Client".

2. Configure HTTP Gateway to route usage requests to the CDR Gateway. See "Configuring
HTTP Gateway for CDR Generation".

3. Configure the CDR Gateway to generate CDRs and store them in the database. See
"Configuring the CDR Gateway".

4. Configure the CDR Formatter to extract unrated CDRs from the database. See
"Configuring the CDR Formatter".

5. Specify the plug-in to use for creating JSON formatted CDR files. See "Configuring the
CDR Formatter Plug-in".

Accessing ECE Configuration MBeans
For all configurations, start by accessing the ECE configuration MBeans:

1. Log on to the driver machine.

2. Start the ECE charging servers (if they are not started).

3. Connect to the ECE charging server node enabled for JMX management.
This is the charging server node set to start CohMgt = true in the ECE_home/config/
eceTopology.conf file, where ECE_home is the directory in which ECE is installed.

4. Start a JMX editor that enables you to edit MBean attributes, such as JConsole.

5. In the editor's MBean hierarchy, find the ECE configuration MBeans.

Configuring HTTP Gateway for CDR Generation
You can configure HTTP Gateway to send usage requests to the CDR Gateway by enabling
CDR generation.

Chapter 18
About Saving CDR Files to Disk

18-3

You can also configure HTTP Gateway to route usage requests to ECE Server for rating or the
CDR Gateway based on the type of charging request:

• Offline Charging Requests: To send offline charging requests to ECE Server, set the
rateOfflineCDRinRealtime attribute to true. To send them to the CDR Gateway, set the
attribute to false.

• Online Charging Requests: To send online charging requests to ECE Server, set the
generateCDRsForOnlineRequests attribute to false. To send them to the CDR Gateway,
set the attribute to true.

To configure the HTTP Gateway:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.httpGatewayConfigurations.

4. Expand Attributes.

5. Specify values for the fields in Table 18-1.

Table 18-1 Fields for Configuring CDR Generation

Name Default Description

cdrGenerationEnabled "false" If set to true, ECE generates CDRs according to your
configuration.

If set to false, ECE uses convergent charging for all charging
requests. If set to false, no other settings in this area are relevant.

cdrGenerationStandaloneM
ode

"false" If set to true, HTTP Gateway doesn't send any requests to ECE,
but it still generates CDRs.

cdrGatewayList "localhost:8084" Specifies one or more servers for the CDR Gateway. Use a
comma-separated list for multiple servers.

cdrGatewayRetry "3" The number of attempts for sending requests to CDR Gateway
before giving up.

rateOfflineCDRinRealtime "false" If set to true, HTTP Gateway sends offline charging requests to
ECE for rating.

generateCDRsForOnlineRe
quests

"true" If set to true, HTTP Gateway generates CDRs for all online
charging requests.

Configuring the CDR Gateway
You configure the CDR Gateway to connect to your CDR storage database. You can also
configure the CDR Gateway to generate either individual CDRs or aggregate multiple CDRs
together according to trigger criteria that you specify.

To configure the CDR Gateway:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.cdrGatewayConfigurations.

4. Expand Attributes.

5. Specify values for the fields in Table 18-2.

Chapter 18
Setting Up ECE to Generate CDRs

18-4

Table 18-2 Fields for Configuring CDR Gateway

Name Default Description

name "cdrGateway1" The name of this CDR Gateway instance.

You can specify multiple CDR Gateways when configuring the
HTTP Gateway.

primaryInstanceName "cdrGateway1" The name of the primary CDR Gateway instance.

schemaNumber "1" The number of the database schema used to store CDRs. Different
CDR Gateways can write to different schemas.

isNoSQLConnection "true" The type of database used for storing CDRs:

• true: Oracle NoSQL Database
• false: Oracle Database

noSQLConnectionName "@NO_SQL_CONNEC
TION@"

The connection name for the NoSQL database. This attribute
applies only if you are using Oracle NoSQL Database for storing
CDRs.

connectionName "@ORACLE_PERSIST
ENCE_CONNECTION
_NAME@"

The connection name of the Oracle database.

This attribute applies only if you are using Oracle Database for
storing CDRs.

cdrPort "8084" The port number for the CDR Gateway server.

cdrHost "localhost" The IP address, host name, or fully qualified domain name for the
CDR Gateway server.

cdrHost and cdrPort are also included in the cdrGatewayList
field for the HTTP Gateway.

individualCdr "false" The type of CDR generation:

• true: ECE generates an individual CDR for each event.
• false: ECE aggregates requests until a trigger takes effect to

write out the partial CDR or terminate the request.

For more information, see "About Trigger Types".

cdrServerCorePoolSize "32" The number of threads in the CDR server pool.

cdrServerMaxPoolSize "256" The maximum number of threads allowed in the CDR server pool.

Configuring the CDR Formatter
You can configure the CDR Formatter to do the following:

• Retrieve completed CDRs from the CDR Store and pass them to a specified plug-in
module for processing.

• Purge completed CDRs from the CDR Store that are older than a specified number of days
(configured in retainDuration).

• Purge orphan CDRs from the CDR Store.

Orphan CDRs are incomplete CDRs that are older than a specified number of seconds
(configured in cdrOrphanRecordCleanupAgeInSec). The CDR Gateway can create
orphan CDRs if your ECE system goes down due to maintenance or failure.

To configure the CDR Formatter:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand cdrFormatters.

Chapter 18
Setting Up ECE to Generate CDRs

18-5

4. Expand Attributes.

5. Specify values for the fields in Table 18-3.

Table 18-3 Fields for Configuring the CDR Formatter

Name Default Description

name "cdrFormatter1" The name of a CDR Formatter instance.

You should name CDR Formatter instances consistently and
uniquely (for example, cdrFormatter1, cdrFormatter2, and so on).

primaryInstanceName "cdrFormatter1" The name of the primary CDR Formatter instance.

schemaNumber "1" The number of the database schema for processing CDRs.

isNoSQLConnection "true" The type of database used for storing CDRs:

• true: Oracle NoSQL Database
• false: Oracle Database

noSQLConnectionName "@NO_SQL_CONNEC
TION@"

The connection name for the NoSQL database. This attribute
applies only if you are using Oracle NoSQL Database for storing
CDRs.

This is the same connection you use for CDR Gateway.

connectionName "@ORACLE_PERSIST
ENCE_CONNECTION
_NAME@"

The connection name of the Oracle database. This attribute applies
only if you are using Oracle Database for storing CDRs.

This is the same connection you use for CDR Gateway.

threadPoolSize "6" The number of threads used by the CDR Formatter instance to
process a set of CDRs for each time range defined by
checkPointInterval.

Valid values are greater than zero and up to any number the
system resources allow. Tune this value to the expected workload
in the deployed environment.

retainDuration "0" The duration in seconds that processed CDRs are retained in the
CDR Store before they can be purged.

The default is 0, which means that CDRs are purged immediately
after being processed.

ripeDuration "60" The duration in seconds that CDRs must be stored in the CDR
Store before the CDR Formatter can read them.

Delaying the processing of CDRs up to the ripeDuration time
allows time for resolving any duplicate CDRs that may have been
persisted to the CDR Store.

checkPointInterval "6" The time interval in seconds that the CDR Formatter instance waits
before reading a batch of CDR information.

This value must be:

• Less than or equal to the value of ripeDuration
• Evenly divisible by the number of threads configured for

threadPoolSize
The CDR Formatter doesn't read CDR information when the time
interval is less than the ripeDuration interval.

pluginPath "ece-cdrformatter.jar" The path to the JAR library that contains the reader plug-in
implementation.

A custom plug-in has a modified path to the JAR library.

Chapter 18
Setting Up ECE to Generate CDRs

18-6

Table 18-3 (Cont.) Fields for Configuring the CDR Formatter

Name Default Description

pluginType "oracle.communication.
brm.charging.cdr.forma
tterplugin.internal.Sam
pleCdrFormatterCusto
mPlugin"

The type of plug-in used to format CDRs.

pluginName "cdrFormatterPlugin1" The class name with the package path for the formatter plug-in
object to be called by the CDR formatter.

You can write a custom plug-in and specify it here.

noSQLBatchSize "25" The number of CDR records to be read from the NoSQL Database
in a single read operation.

cdrStoreFetchSize "2500" The number of CDR records to retrieve from the CDR Store and
hold in memory at a time.

cdrOrphanRecordCleanup
AgeInSec

"200" The amount of time, in seconds, at which an incomplete record in
the CDR Store is considered an orphan.

The CDR Formatter purges orphan records from the CDR Store
that are this age or older.

cdrOrphanRecordCleanupS
leepIntervalInSec

"200" The sleep interval, in seconds, between each call to purge orphan
CDRs from the CDR Store.

Configuring the CDR Formatter Plug-in
You can configure the CDR Formatter plug-in to create JSON-formatted CDR files and then
store them in your file system or send them to your Kafka messaging service.

To configure the CDR Formatter plug-in:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand cdrFormatterPlugins.

4. Expand Attributes.

5. Specify values for the fields in Table 18-4.

Table 18-4 Fields for Configuring the CDR Formatter Plug-in

Name Default Description

name "cdrFormatterPlugin1" Name of the formatting plug-in. cdrFormatterPlugin1 is the default
plug-in that comes with ECE, but you can also specify a custom
plug-in.

tempDirectoryPath "/tmp/tmp" Path for CDR files being formatted.

doneDirectoryPath "/tmp/done" Path for formatted CDR files.

doneFileExtension ".out" Extension for CDR files.

enableKafkaIntegration "false" Whether or not to send records to Kafka. Because ECE uses Kafka
for notifications, you set it up during installation and configure the
HTTP Gateway to use it.

See "Creating Kafka Topics for ECE" in ECE Installation Guide and
"Connecting ECE to Kafka Topics".

Chapter 18
Setting Up ECE to Generate CDRs

18-7

Table 18-4 (Cont.) Fields for Configuring the CDR Formatter Plug-in

Name Default Description

enableDiskPersistence "true" Whether or not to save records as JSON files in the path specified
for doneDirectoryPath.

maxCdrCount "20000" The maximum number of CDRs that can be written to a CDR
output file.

About Trigger Types
If you configured ECE to aggregate events in the same CDR, triggers determine when a CDR
remains open and when it closes. See:

• Triggers for Convergent Charging Events

• Triggers for Roaming Events

Triggers for Convergent Charging Events
When an event meets any of the trigger conditions in Table 18-5, the event is added to the
open CDR. The CDR remains open with the same sequence number.

Table 18-5 Triggers for Adding to an Open CDR

Category Trigger

Change of Charging Conditions • QoS change
• User Location change
• Serving Node change
• Change of UE presence in Presence

Reporting Area(s)
• Change of 3GPP PS Data off Status
• Handover cancel
• Handover start

Limit per Rating Group • Expiry of data time limit per RG
• Expiry of data volume limit per RG
• Expiry of data event limit per RG

Quota Management Triggers • Time threshold reached
• Volume threshold reached
• Unit threshold reached
• Time quota exhausted
• Volume quota exhausted
• Unit quota exhausted
• Expiry of quota validity time
• Re-authorization request by CHF

When an event meets any of the trigger conditions in Table 18-6, it is added to the open CDR
and then the CDR is closed.

Chapter 18
About Trigger Types

18-8

Table 18-6 Triggers for Closing a CDR

Category Trigger

Change of Charging Conditions • UE time zone change
• PLMN change
• RAT type change
• DNN-AMBR change
• Removal of UPF
• Management intervention
• Addition of access

Limit per PDU Session • Expiry of data time limit per PDU session
• Expiry of data volume limit per PDU session
• Expiry of data event limit per PDU session
• Expiry of limit of number of charging condition

changes

Note:

If the request type is TERMINATE, the CDR is closed regardless of the trigger type.

Triggers for Roaming Events
When a roaming event meets any of the trigger conditions in Table 18-7, it is added to the open
CDR.

Table 18-7 Triggers for Adding to an Open CDR (Roaming Event)

Category Trigger

Change of Charging conditions • QoS change
• User Location change
• Serving Node change
• Change of UE presence in Presence

Reporting Area(s)
• Change of 3GPP PS Data off Status

Limit per QoS Flow • Expiry of data time limit per QoS Flow
• Expiry of data volume limit per QoS Flow

Others • Expiry of data time limit per QoS Flow
• Expiry of data volume limit per QoS Flow

When a roaming event meets any of the trigger conditions in Table 18-8, it is added to the open
CDR, and the CDR is then closed.

Chapter 18
About Trigger Types

18-9

Table 18-8 Triggers for Closing a CDR (Roaming Event)

Category Trigger

Change of Charging conditions • UE time zone change
• PLMN change
• RAT type change
• DNN-AMBR change
• Removal of UPF
• Management intervention

Limit per PDU session • Expiry of data time limit per PDU session
• Expiry of data volume limit per PDU session
• Expiry of data event limit per PDU session
• Expiry of limit of number of charging condition

changes

Chapter 18
About Trigger Types

18-10

19
Connecting ECE to a Diameter Client

You can set up network integration for online charging by using the Oracle Communications
Elastic Charging Engine (ECE) Diameter Gateway.

Topics in this document:

• Overview of Network Integration Using Diameter Gateway

• Network Integration for Sp and Sy Interface (Policy) Requests

• Network Integration for Gy Interface Requests

• Adding Custom AVPs for Usage Requests

• Using Incremental or Cumulative Accounting for Usage Requests

• Configuring WebLogic Queues for Notifications

• Configuring ECE for Apache Kafka

• Handling Requests When Charging Servers Are Unavailable

• Recording Failed ECE Usage Requests

Overview of Network Integration Using Diameter Gateway
The following steps summarize how to set up network integration for online charging using
Diameter Gateway, which enables Diameter Gateway to do the following:

• Receive Gy, Sp, and Sy Diameter requests from Diameter clients and translate them into
ECE requests.

• Submit ECE requests to ECE charging servers for credit-control processing.

• Receive ECE request responses and translate them into respective Gy, Sp, and Sy
Diameter message responses.

• Send Diameter message responses to Diameter clients.

• Consume notifications from the ECE Notification queue or topic, create Diameter
notification messages from them, and send the notification messages to the appropriate
Diameter clients.

To implement Diameter Gateway:

1. When you install ECE, do this:

• Add Diameter Gateway node instances required for your topology and configure each
instance.

• If you are using Oracle WebLogic for notification handling, specify to create WebLogic
queues and enter the details for your ECE Notification queue and Suspense queue.

• If you are using Apache Kafka for notification handling, specify to create Kafka topics
and enter the details for your ECE Notification topic, Suspense topic, ECE failure topic,
and ECE overage topic.

19-1

Note:

Systems that support 5G networks must use Apache Kafka for notification
handling.

For more information, see "Installing Elastic Charging Engine" in Elastic Charging Engine
Installation Guide.

2. During the ECE post-installation process, do this:

• If you are using Oracle WebLogic for notification handling, run the post_Install.pl
script to create your ECE Notification queue and Suspense queue. See "Creating
WebLogic JMS Queues for BRM" in Elastic Charging Engine Installation Guide.

• If you are using Apache Kafka for notification handling, run the kafka_post_install.sh
script to create your ECE Notification topic and Suspense topic. Then, run the
post_Install.sh script and choose to create only the Acknowledgment queue. See
"Creating Kafka Topics for ECE" and "Creating WebLogic JMS Queues for BRM" in
Elastic Charging Engine Installation Guide.

3. For all of the request types you receive from the network, ensure that your credit-control
request (CCR) message formats adhere to the attribute value pair (AVP) fields that
Diameter Gateway supports and requires.

4. For Gy interface Diameter requests, ensure that you have done the following:

• Defined any custom service/event mappings in PDC.

• Edited your mediation specification file and loaded it into ECE.

The mediation specification enables Diameter Gateway to associate each Gy interface
Diameter request with its respective usage-request builder.

See "Network Integration for Gy Interface Requests".

5. Configure notifications for Diameter Gateway. You can set up Diameter Gateway to
consume notifications from either:

• Oracle WebLogic queues. To use WebLogic queues, see "Configuring WebLogic
Queues for Notifications".

• Apache Kafka topics. To use Kafka topics, see "Configuring ECE for Apache Kafka".

6. (Optional) Configure ECE to send information about failed usage requests to the ECE
failure topic. See "Recording Failed ECE Usage Requests".

7. (Optional) Configure ECE to generate CDRs for any prepaid usage overage and send
them to the ECE overage topic. See "Configuring ECE to Support Prepaid Usage
Overage".

8. Start the Diameter Gateway nodes.

When the Diameter Gateway nodes start, they automatically join the Coherence cluster
gaining access to ECE caches and invocation services that it uses to send requests to
ECE. At start up, the Diameter Gateway instances read from the ECE Notification queue or
topic for notifications.

Network Integration for Sp and Sy Interface (Policy) Requests
This section provides information about network integration for policy requests using Diameter
Gateway.

Chapter 19
Network Integration for Sp and Sy Interface (Policy) Requests

19-2

Given that the technical implementation of Sp has not been defined by the 3GPP standards
body, Diameter Gateway uses the Sh interface as the implementation to request and subscribe
to policy-related information in the ECE server.

Diameter Gateway retrieves Sp and Sy information from ECE charging servers and sends the
information to the Policy and Charging Rule Function (PCRF).

The following Sp (implemented as Sh) and Sy interface policy request types are processed by
Diameter Gateway (using the ECE policy-request builders).

Sy:

• Spending Limit Report Request (SLR/SLA)

• Subscribe Notification Request

Sp/Sh:

• User-Data-Request (UDR)

• Subscribe-Notifications-Request (SNR)

• Push-Notification-Request (PNR)

Diameter Gateway manages notification subscriptions (when the PCRF subscribes and
unsubscribes) for notifications due to Sy and Sp related updates.

Diameter Gateway listens for notifications on the ECE (JSM) notification queue (for push
notifications from the Elastic Charging Server). For policy-driven charging, when changes
occur to policy counters (balances) or to policy-related subscriber preferences associated with
charge offers that have an active policy session, ECE charging servers publish asynchronous
notifications to the JMS notification queue. Diameter Gateway receives the policy notifications
at startup and processes them as follows:

• From spending-limit JMS notifications, Diameter Gateway creates Sy (Spending-Status-
Notification-Request (SNR)) messages for all subscribed sessions and routes them to the
appropriate Diameter clients.

• From subscriber-preferences JMS notifications, Diameter Gateway creates Sp/Sh (Push-
Notification-Request (PNR)) messages for all subscribed sessions and routes them to the
appropriate Diameter clients.

For information about how Diameter Gateway uses the ECE policy management APIs to
retrieve Sy-interface and Sp-interface data from the ECE server, see "Configuring Policy-
Driven Charging".

To enable Diameter Gateway to create ECE requests for policy-driven charging, you must
configure notifications for Diameter Gateway. See "Configuring WebLogic Queues for
Notifications". You can configure alternative Diameter peers for each peer to which a Diameter
Gateway instance connects for routing notifications. See "Configuring Alternative Diameter
Peers for Notifications".

Ensure that your policy CCR message formats adhere to the well-known AVP fields of the
3GPP standard for Sh and Sy policy requests.

Network Integration for Gy Interface Requests
This section provides information about network integration for Gy interface online charging
requests using Diameter Gateway.

The following Gy interface credit-control request types are processed by Diameter Gateway
(using ECE usage-request builders):

Chapter 19
Network Integration for Gy Interface Requests

19-3

• Session-based requests

– Initiate

– Update

– Terminate

– Cancel

• Price enquiry

• Direct debit

• Refund

For Gy interface credit-control requests, you must do the following for Diameter Gateway to
process the requests successfully:

• Present Gy interface request types inside of a Multiple-Service Credit Control (MSCC)
group.

MSCC AVPs are part of the CCR and Diameter Gateway expects each Gy interface
request type to be included in the MSCC group even if the request contains only a single
service. Contain the following Gy interface request types in a MSCC group:

– Initiate

– Update

– Terminate

– Cancel

– Price enquiry

– Direct debit

– Refund

For more information about MSCC requests and ECE, see "Configuring Multiple Services
Credit Control".

• Add network attributes for all event attributes in the event definition that apply to usage-
request charging operations.

Diameter Gateway uses the network specification and corresponding network attributes to
dynamically populate the event attributes of ECE requests with the CCR AVP data of your
incoming Diameter request.

See "How Diameter Gateway Creates Usage Requests".

• Edit your mediation specification file and load your mediation specification into ECE.

The mediation specification enables Diameter Gateway to associate each Gy interface
Diameter request with its respective usage-request builder.

See "Editing the Mediation Specification File".

Diameter Gateway uses incremental based accounting behavior when processing usage
requests.

Diameter Gateway listens for notifications on the ECE (JSM) notification queue (for push
notifications from the Elastic Charging Server). From the ECE reauthorization-request JMS
notifications it receives, Diameter Gateway creates Gy RAR messages and sends them to
Diameter clients running the applicable active Gy sessions.

The Diameter Gateway uses ECE usage-request builders to create request and response
messages for Gy interface request types.

Chapter 19
Network Integration for Gy Interface Requests

19-4

How Diameter Gateway Creates Usage Requests
Diameter Gateway creates usage requests based on the event definitions sent from PDC to
ECE. Diameter Gateway includes a usage-request builder for creating usage requests (as well
as different builders for building other requests ECE supports, such as balance query requests,
and top-up requests, and so on). When you start Diameter Gateway nodes, the usage-request
builder reads the event definition data and sends requests that adhere to the specifications.
See "About Usage Request Fixed Attributes" for more information on the attributes.

When you perform network enrichment of the event definition for your events in PDC, you add
network attributes for all event attributes in the event definition that apply to usage-request
charging operations. Diameter Gateway uses the network specification and corresponding
network attributes to dynamically populate the event attributes of ECE requests with the CCR
AVP data of your incoming Diameter request.

You can have Diameter Gateway dynamically populate some fields using the event-attribute to
network-attribute you map in PDC and you can have Diameter Gateway explicitly populate
other fields using your own custom extension code (for example, when using the Pre-OCS
extension, you can explicitly populate the ECE payload for fields using your Pre-OCS
extension mechanism).

About Usage Request Fixed Attributes
Usage requests contain a set of well known or fixed attributes that must be provided. Fixed
attributes are required fields directly exposed by the UsageRequest interface. Fixed attributes
are applicable for all the events in ECE.

You cannot pass in null for any of the fixed attributes. For non-duration requests, you can pass
the same timestamp for both requestStart and requestEnd.

Fixed attributes within a usage request include the following:

• userIdentity

The userIdentity attribute is the fixed attribute name representing the public user identity of
the person or entity using the product (phone number, email address and so on). It is a
generic way of identifying who is being charged for the usage.

• requestId

The requestId is an identifier that uniquely identifies the usage interaction. If the usage is
session based, the requestId must be the same across different operation types (Initiate,
Update and Terminate). The requestId is used to locate the active session associated with
the charging customer.

• requestStart

The requestStart is the time at which the usage started.

For session-based usage requests, ECE observes the requestStart value for Initiate
operation-type usage requests.

• requestEnd

The requestEnd is the time at which the usage ended.

If the usage interaction has no duration, such as for event-based charging, the
requestStart is equal to the requestEnd.

Chapter 19
Network Integration for Gy Interface Requests

19-5

Note:

If the payload contains a non-null "DURATION" attribute (either as a top-level
attribute or under a Requested Service Units (RSU) and Used Service Units
(USU) block, its value will override the value of the requestEnd attribute.

• requestMode

The requestMode defines the mode of the usage request. Valid values are OFFLINE and
ONLINE. For backward compatibility, the default value is ONLINE.

• sequenceNumber

The sequenceNumber is the sequential session-centric attribute and is a type of subID you
can apply for different types of charging within a session.

You cannot change the name of the fixed attributes.

Usage requests also contain configurable (dynamic) attributes. Configurable attributes are
defined in the payload blocks of the event definition (request specification data defined in
PDC when you enrich event definitions).

Editing the Mediation Specification File
The mediation specification enables Diameter Gateway to associate each Diameter request
with its respective usage-request builder. Diameter Gateway uses the mediation specification
to determine which service and event combination applies to an incoming Diameter request,
enabling it to select the event definition that applies to the event to be rated.

You configure Diameter Gateway to base its selection of event definitions on any combination
of the following AVPs in the request:

• Service-Context-Id

• Service-Identifier

• Rating-Group

• Event-Timestamp

From the preceding AVP values, Diameter Gateway derives the following fields, which uniquely
identify the event definition to use for building the ECE request:

• ProductType (service)

• EventType

• Version

You can configure Diameter Gateway to base its event definition on a custom AVP by using the
Diameter Gateway Request-Received extension. You use that extension to modify one of the
AVP values in the request so that a different Diameter mediation mapping is produced for a
service, event, and version.

To edit the mediation specification:

1. Create a mediation specification file or edit an existing one.

A sample mediation specification file is available at ECE_home/sample_data/
config_data/specifications/ece_end2end/diameter_mediation.spec.

Chapter 19
Network Integration for Gy Interface Requests

19-6

It is recommended to create only one mediation specification file to represent your
mediation specification. You can have only one mediation specification loaded in the ECE
cluster and the last one loaded takes precedence.

2. In the mediation specification file, add a row (in the table) for each event to be rated that
specifies the following information:

• Rating-Group AVP

The Rating-Group AVP value sent in the Diameter message.

Null is an acceptable value if the field is not expected to be present on the CCR.

• Service-Context-Id AVP

The Service-Context-Id AVP value sent in the Diameter message.

Null is an acceptable value if the field is not expected to be present on the CCR.

• Service-Identifier AVP

The Service-Identifier AVP value sent in the Diameter message.

Null is an acceptable value if the field is not expected to be present on the CCR.

• ProductType

The service you have defined for the event.

• EventType

The event definition you have defined for the event.

• Version

The version number of the event definition object that you want to apply to the event.

Define the Service-Identifier, Rating-Group, and Service-Context-Id for each event
definition object defined in the mediation table.

For each received Diameter request, Diameter Gateway correlates the Service-Context-Id,
Service-Identifier, Rating-Group, and Event-Timestamp AVP values (that you defined in the
mediation specification) to the usage-request builder that applies to the event to be rated
(for the applicable version, service, and event).

3. (Optional) In the ValidFrom field of the table, set a future date and time when you want
Diameter Gateway to recognize a newly deployed event definition object.

For example, to have requests processed according to a new specification on April 16,
2015, you would enter:

| ValidFrom
 | "2015-04-16T12:01:01"

You can also specify a time zone. For example,

| ValidFrom
 | "2015-04-16T12:01:01 PST"

If a time zone is not sent, then the ValidFrom field is assumed as UTC.

4. Save the mediation specification file with a .spec suffix (for example,
diameter_mediation.spec) into the directory where you save your configuration data.

5. Verify that the directory specified in the ECE_home/config/management/migration-
configuration.xml file is the directory where you save your configuration data.

6. Run the configLoader utility:

Chapter 19
Network Integration for Gy Interface Requests

19-7

start configLoader

The utility deploys your mediation specification to the ECE cluster. Any earlier mediation
specification that was in the ECE cluster is overwritten.

Any time you deploy a new version of a mediation specification into the repository,
Diameter Gateway recreates its in-memory usage-request builder map and begins using
the mapping definitions (to send requests that adhere to the specifications) provided that
the validFrom date is reached.

7. Perform a rolling restart of Diameter Gateway node instances.

8. Load the mediation specification file into the ECE server by using the configLoader utility.

Network Integration for Gy Balance Query Requests
This section provides information about network integration for balance query requests using
Diameter Gateway.

Diameter Gateway uses custom AVPs for querying for remaining-balance customer data; these
Oracle AVPs have an ORA- prefix.

For a balance query, the CC-Request-Type AVP in the CCR must be set to 4
(EVENT_REQUEST) and the Requested-Action AVP must be set to 5 (which is an undefined
value in the 3GPP standard specification).

For information about the data types for custom balance-query AVP fields, see the ECE_home/
config/diameter/dictionary_main.xml file.

Network Integration for Gy Top-Up Requests
This section provides information about network integration for top-up requests using Diameter
Gateway.

Diameter Gateway exposes a custom event request for top-up operations that does the
following:

• Credits the specified balances, optionally setting valid-from and valid-to dates

• Optionally extends the validity of existing balances credited by the top-up

• Return that the top-up succeeded or failed

• Return updated balance information in the top-up response

Diameter Gateway uses custom AVPs for processing top-up requests; these Oracle AVPs have
an ORA- prefix.

For a top-up, the CC-Request-Type AVP in the CCR must be set to 4 (EVENT_REQUEST) and
the Requested-Action AVP must be set to 4 (which is an undefined value in the 3GPP standard
specification).

Diameter Gateway uses custom AVPs for processing top-up requests; these Oracle AVPs have
an ORA- prefix.

For information about the data types for custom top-up-request AVP fields, see the
ECE_home/config/diameter/dictionary_main.xml file.

Chapter 19
Network Integration for Gy Interface Requests

19-8

Sending Multiple-Service Credit Control (MSCC) Requests from Diameter
Gateway

Diameter Gateway supports MSCC requests in which a Diameter application performs credit
control for multiples services within the same session.

Diameter Gateway only supports Multiple-Service Credit Control (MSCC) requests for usage
request processing (all usage-request charging operations must be contained in an MSCC
group even if the request contains only a single service).

Configuring Subscriber ID Lookups
When multiple subscriber ID types come in on the CCR message, not all subscription
identifiers may be provisioned for your ECE system. For example, you might have separate
online charging systems for handling different subscription services. You can configure
Diameter Gateway to look up customer public user identity information based only on the
subscription identifier types for which you have provisioned your ECE system.

The possible customer subscription IDs that pertain to various customer services are defined
by the Subscription-Id grouped AVP in the CCR message. Multiple subscription identifier types
can be provided in the group's Subscription-Id-Type AVP field. The customer may have all of
the following subscription identifiers for various networks on which the customer uses services:
MSISDN, IMSI, SIP, NAI, PRIVATE.

For Diameter Gateway to look up customer public user identity information based on your
subscription-identifier-type configuration, do the following:

1. Open your mediation specification file, diameter_mediation.spec.

The file is in the directory specified by the configObjectsDataDirectory parameter in the
ECE_home/config/management/migration-configuration.xml file.

2. Where multiple subscription types are expected in the CCR for the event to be rated,
locate the row that specifies the rating group, service identifier, and service context ID for
the event.

Your subscription-identifier-type configuration is relevant for the combination of the given
Service-Context-Id, Service-Identifier, and Rating-Group AVP values specified in the row
for the event to be rated.

3. In the Subscription-Id-Type column for that row, enter the subscription-identifier-type
configuration of your choice.

For each received CCR Diameter message that includes multiple subscriber ID types,
Diameter Gateway uses your subscription-identifier-type configuration for looking up the
public user identity.

The subscription-identifier-type configuration options are as follows:

• For Diameter Gateway to perform a customer lookup by using only one subscription ID
type, enter the full string name of that Subscription-Id-Type.

Enter the name exactly as it is defined in the RFC specification (in capitals) and
enclose it with quotation marks.

The possible values you can enter in the Subscription-Id-Type column for the
Subscription-Id-Type are as follows (values in bold):

– "END_USER_E164"

Chapter 19
Network Integration for Gy Interface Requests

19-9

The identifier is in international E.164 format (for example, MSISDN), according to
the ITU-T E.164 numbering plan defined in [E164] and [CE164].

– "END_USER_IMSI"

The identifier is in international IMSI format, according to the ITU-T E.212
numbering plan as defined in [E212] and [CE212].

– "END_USER_SIP_URI"

The identifier is in the form of a SIP URI, as defined in [SIP].

– "END_USER_NAI"

The identifier is in the form of a Network Access Identifier, as defined in [NAI].

For example, if you enter "END_USER_NAI" in the Subscription-Id-Type column for
that event, Diameter Gateway uses only the subscription identifier type
END_USER_NAI to perform a customer public user identity lookup for those events
and ignores all other subscription identifier types that may be included in the CCR for
those events.

DiameterMediationTable {
 Service-Context-Id | Service-Identifier | Rating-Group | ProductType |
EventType | Version | Subscription-Id-Type | ValidFrom |
 "gy.service@example.com" | "1" | "10" | "VOICE" | "V_USAGE" | 1.0 |
"END_USER_NAI" | "2012-12-31T12:01:01 PST" |
 "gy.service@example.com" | "1" | "11" | "DATA" | "D_USAGE" | 1.0 |
"END_USER_IMSI" | "2012-12-31T12:01:01 PST" |
}

• For Diameter Gateway to perform a customer lookup by using a subscription ID type
determined by the order that you list subscription ID types in the mediation
specification, enter a comma-delimited list in the order that Diameter Gateway is to
resolve the subscription ID type.

The following example shows a comma-delimited list for which Diameter Gateway first
looks up the public user identity of the customer based on the SIP URI subscription
identifier, and secondly based on the IMSI. In this case Diameter Gateway ignores all
other subscription ID types that may be included in the CCR.

DiameterMediationTable {
 Service-Context-Id | Service-Identifier | Rating-Group | ProductType |
EventType | Version | Subscription-Id-Type | ValidFrom |
 "gy.service@example.com" | "1" | "12" | "DATA" | "D_USAGE" | 1.0 |
"END_USER_SIP_URI, END_USER_IMSI" | "2012-12-31T12:01:01 PST" |
}

• For Diameter Gateway to perform a customer lookup by using the first subscription ID
type that is read in the CCR (all other subscription ID types that may be included in the
CCR are ignored), leave the Subscription-Id-Type column blank. This type of
configuration is shown in the fourth row of the sample mediation specification.

DiameterMediationTable {
 Service-Context-Id | Service-Identifier | Rating-Group | ProductType |
EventType | Version | Subscription-Id-Type | ValidFrom |
 "gy.service@example.com" | "1" | "13" | "SMS" | "S_USAGE" | 1.0 | "" |
"2012-12-31T12:01:01 PST" |
}

4. Save the mediation specification file.

5. Run the configLoader utility to load your mediation specification in the ECE cluster:

start configLoader

Chapter 19
Network Integration for Gy Interface Requests

19-10

When your mediation specification is loaded, the earlier version of your mediation
specification (that was in the ECE cluster) is overwritten and Diameter Gateway uses the
configuration of the newly loaded mediation specification.

Your subscription-identifier-type configuration is used by Diameter Gateway for all usage-
charging operation types: Initiate, Update, Terminate, PriceEnquiry, BalanceQuery, TopUp,
Debit, and Refund.

To troubleshoot issues that may occur with your subscription-identifier-type configuration, note
the following points:

• If the subscription IDs cannot be resolved correctly with the values supplied in the
diameter_mediation.spec file, errors are logged in the Diameter Gateway log files.

• In a DEBUGGING environment, you can enable DEBUG messages in the
log4j.properties file as shown here:

log4j.logger.oracle.communication.brm.charging.ecegateway.diameter.framework=DEBUG
log4j.logger.oracle.communication.brm.charging.ecegateway.diameter.gy=DEBUG

• If the subscription IDs cannot be found as configured in the diameter_mediation.spec file,
you can expect an Errant result-code of DIAMETER_MISSING_AVP (5005) or
DIAMETER_INVALID_AVP_VALUE (5004).

Adding Custom AVPs for Usage Requests
If you introduce custom AVPs (to introduce new ways for charging for your services), you
define your custom AVPs in the ECE_home/config/diameter/dictionary_custom.xml file to
define their data types.

After modifying the dictionary_custom.xml file, perform a rolling restart of Diameter Gateway
nodes in your topology.

For AVPs that apply to usage-request processing, you add network attributes for all event
attributes in the event definition so that they can be dynamically mapped to ECE payload fields
by Diameter Gateway. You also put a path to your AVP field to an MSCC group block.

Using Incremental or Cumulative Accounting for Usage Requests
ECE supports incremental and cumulative-based accounting behavior when processing usage
requests.

• Incremental accounting logic is used by the Diameter standard, which supports Requested
Service Units (RSU) and Used Service Units (USU) concepts. Incremental accounting logic
indicates that the creator of the usage request enables the rating engine (ECE) to calculate
the active session duration based on the units used since the previous session update.

• Cumulative accounting logic is used by the Radius standard, which indicates that the
creator of the usage request always supplies the full quantity (for example duration,
volume, meters, miles, and so on) inclusive of all previous session requests.

When creating your usage request builder, specify the accounting behavior using the
UnitReportingMode ECE Java enum. When the usage request builder is instantiated, the
enum indicates to ECE whether to use incremental or cumulative accounting behavior.

Chapter 19
Adding Custom AVPs for Usage Requests

19-11

Note:

When there are multiple RUMs and attributes ROUND_UP and ROUND_DOWN of
quantity in the rate plan, Granted Service Units that are reported on all attributes may
be rounded up or down based on the rate plan configuration.

For both incremental and cumulative accounting, you must set attributes for the
Requested_Units and Used_Units blocks in the payloads of applicable operation types. For
example, the Requested_Units block is defined for the payloads of Initiate and Update
operation types, and the Used_Units block is defined for the payloads of Update, Update
Accounting, and Terminate operation types.

When configuring incremental or cumulative quota for usage requests, the metric name
(RUMs) must be the same as the attribute name. For example, when sending the attribute
INPUT_VOLUME on the usage request, the RUMs must be defined with the same name.

Configuring Accounting Mode for Diameter Gateway
You can configure Diameter Gateway to use both incremental-based and cumulative-based
accounting logic when processing usage requests. You can perform this by specifying the
accounting mode in the mediation specification file. The accounting mode indicates to
Diameter Gateway whether to use incremental-based or cumulative-based accounting logic.

To configure the accounting mode for Diameter Gateway:

1. Open the Diameter mediation specification file, diameter_mediation.spec.

For the location of the diameter_mediation.spec file, see the
configObjectsDataDirectory parameter in the ECE_home/config/management/
migration-configuration.xml file.

2. For each event to be rated (in each row), specify the accounting mode in the
UnitReportingMode column. Valid values are:

• INCREMENTAL

• CUMULATIVE

For example:

Service-Context-Id | Service-Identifier | Rating-Group | ProductType |
EventType | Version | Subscription-Id-Type | ValidFrom |
UnitReportingMode |
"gy.service@example.com" | "1" | "10" | "VOICE" |
"V_USAGE" | 1.0 | "" | "2024-3-31T12:01:01 PST" |
"INCREMENTAL" |
"gy.service@example.com" | "1" | "11" | "DATA" |
"D_USAGE" | 1.0 | "" | "2024-3-31T12:01:01 PST" |
"CUMULATIVE" |

The default accounting mode is Incremental. If you specify null or if you do not specify a
mode in the UnitReportingMode column, Diameter Gateway uses the default accounting
mode when processing usage requests. This supports backward compatibility.

Your accounting mode configuration is applicable for the combination of the given values
specified in the row for the event to be rated. You can also configure different accounting
modes for the same product and event type combination.

3. Save and close the file.

Chapter 19
Using Incremental or Cumulative Accounting for Usage Requests

19-12

4. Run the configLoader utility to load your mediation specification in the ECE cluster:

start configLoader

When the mediation specification is loaded, the earlier version of your mediation
specification (that was in the ECE cluster) is overwritten and Diameter Gateway uses the
configuration of the newly loaded mediation specification.

5. Change directory to the ECE_home/bin directory.

6. Start ECC:

./ecc
7. Do one of the following:

• If the Diameter Gateway instance is not running, start it.

The instance reads its configuration information by name at startup.

• If the Diameter Gateway instance is running, stop and restart it.

For information about stopping and starting Diameter Gateway instances, see "Starting
and Stopping ECE" in BRM System Administrator's Guide.

Configuring WebLogic Queues for Notifications
To configure Diameter Gateway to listen for notifications from ECE, you must specify the types
of notifications that ECE generates.

If a Diameter client fails or becomes unavailable before receiving a notification message from a
Diameter Gateway instance, Diameter Gateway can route the notification message to another
available Diameter peer. For information, see "Configuring Alternative Diameter Peers for
Notifications".

To enable Diameter Gateway to consume notifications from an ECE notification queue set up
in WebLogic:

Note:

The following steps assume that ECE is installed and that required ECE post-
installation tasks are completed.

1. On the Oracle WebLogic server, verify that the ECE notification queue (a JMS topic) was
created.

2. In ECE, verify that JMS credentials were configured correctly so that ECE can publish
notifications to the ECE notification queue.

See "About ECE Notifications" for information.

3. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

4. Expand the ECE Configuration node.

5. Expand charging.notification.

6. Expand Attributes.

Chapter 19
Configuring WebLogic Queues for Notifications

19-13

7. Set the appropriate type of notification (such as top-up or advice of charge) to the
appropriate value. See "About ECE Notifications" for information.

Configuring Alternative Diameter Peers for Notifications
Peer details are configured in Diameter Gateway to filter and route the notifications for the
peers to which Diameter Gateway connects. Each Diameter Gateway instance listens to a
registered peer. The connection is initiated from the peer to send the respective notifications. If
a Diameter Gateway instance sends a notification message to its peer and the peer is
unavailable or the peer fails after receiving the notification message, the Diameter Gateway
instance retains the notification messages and sends them to another available peer based on
your alternative-peer configuration.

To configure alternative Diameter peers for notifications:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.diameterGatewayPeerConfigurations.

4. Expand Attributes.

5. For each peer connected to the Diameter Gateway, configure alternative peers by
specifying values for the following attributes:

• peerName: Enter the name of the Diameter peer.

• alternatePeerName: Enter the name of the alternative peer for the specified Diameter
peer. You can specify two alternative peers for each Diameter peer.

6. Change directory to the ECE_home/bin directory.

7. Start the Elastic Charging Controller:

./ecc
8. Do one of the following:

• If the Diameter Gateway instance is not running, start it.

• If the Diameter Gateway instance is running, stop and restart it.

Viewing Active Diameter Peers
To view all the active diameter peers:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the DiameterGateway node.

3. Expand PeerConnectionsTracker.

4. Expand Attributes.

5. Click the peerConnections value.

The diameter peers that are active (which are currently connected to the specific Diameter
Gateway instance) are displayed.

Chapter 19
Configuring WebLogic Queues for Notifications

19-14

Configuring ECE for Apache Kafka
You can connect ECE to the following ECE Kafka topics so that ECE can publish notifications,
failed usage requests, and CDRs with usage overage information to them:

• ECE notification topic: Stores notifications from ECE.

• Suspense topic: Stores failed notifications from ECE.

• ECE failure topic: Stores details about failed ECE usage requests, such as the user ID
and request payload. See "Recording Failed ECE Usage Requests" for more information.

• ECE overage topic: Stores overage records, which contain details about usage overage
amounts for prepaid customers. See "Configuring ECE to Support Prepaid Usage
Overage" for more information.

To configure ECE to work with Apache Kafka:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Enable ECE to send notifications to Kafka topics:

a. Expand charging.server.

b. Expand Attributes.

c. Set the kafkaEnabledForNotifications property to true.

4. Connect ECE to your Kafka Server and Kafka topics:

a. Expand charging.kafkaConfigurations.

b. Expand Attributes.

c. Specify the Kafka configuration values for the attributes in Table 19-1.

Table 19-1 kafkaConfiguration Properties

Property Name Description

name The name of your ECE cluster.

hostname The host name and port number of the
machine in which Apache Kafka is installed.

If it contains multiple Kafka brokers, create a
comma-separated list.

topicName The name of the Kafka topic where ECE will
publish notifications.

suspenseTopicName The name of the Kafka topic where failed
notifications are published.

failureTopicName The name of the Kafka topic where ECE will
publish details about failed usage requests.
See "Recording Failed ECE Usage Requests".

overageTopicName The name of the Kafka topic where ECE will
publish overage records with information about
your prepaid customer's usage overage during
online sessions. See "Configuring ECE to
Support Prepaid Usage Overage".

Chapter 19
Configuring ECE for Apache Kafka

19-15

https://docs-uat.us.oracle.com/en/industries/communications/billing-revenue/12.0/charging/managing-online-charging-sessions2.html#GUID-9FD42AB4-0775-4669-9454-22B2FE8A51CF
https://docs-uat.us.oracle.com/en/industries/communications/billing-revenue/12.0/charging/managing-online-charging-sessions2.html#GUID-9FD42AB4-0775-4669-9454-22B2FE8A51CF

Table 19-1 (Cont.) kafkaConfiguration Properties

Property Name Description

partitions The number of Kafka partitions in your topics.

The recommended number to create is
calculated as follows:

[(Max HTTP Gateway Nodes) + (Max
Diameter Gateway Nodes * Max Diameter
Clients) + (1 for BRM Gateway) + (1 for
Internal Notifications)]

For example, if you have 2 HTTP Gateway
nodes, 4 Diameter Gateway nodes, 10
Diameter Gateway clients, and a BRM
Gateway, you would need [(2 + (4 * 10) + 1 +
1) = 44 Kafka partitions.

Arbitrarily, you can set this to a maximum
value.

failurePartitions The number of Kafka partitions in your ECE
failure topic.

kafkaProducerReconnectionInterval The amount of time, in milliseconds, the
Notification Publisher waits before attempting
to reconnect to the Kafka topic.

kafkaProducerReconnectionMax The maximum amount of time, in milliseconds,
the Notification Publisher waits before
attempting to reconnect to a broker that has
repeatedly failed to connect.

The kafkaProducerReconnectionInterval
will increase exponentially for each
consecutive connection failure, up to this
maximum.

kafkaDGWReconnectionInterval The amount of time, in milliseconds, Diameter
Gateway waits before attempting to reconnect
to the Kafka topic.

kafkaDGWReconnectionMax The maximum amount of time, in milliseconds,
Diameter Gateway waits before attempting to
reconnect to a broker that has repeatedly
failed to connect.

The kafkaDGWReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

kafkaBRMReconnectionInterval The amount of time, in milliseconds, BRM
Gateway waits before attempting to reconnect
to the Kafka topic.

kafkaBRMReconnectionMax The maximum amount of time, in milliseconds,
BRM Gateway waits before attempting to
reconnect to a broker that has repeatedly
failed to connect.

The kafkaBRMReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

kafkaHTTPReconnectionInterval The amount of time, in milliseconds, HTTP
Gateway waits before attempting to reconnect
to the Kafka topic.

Chapter 19
Configuring ECE for Apache Kafka

19-16

Table 19-1 (Cont.) kafkaConfiguration Properties

Property Name Description

kafkaHTTPReconnectionMax The maximum amount of time, in milliseconds,
HTTP Gateway waits before attempting to
reconnect to a broker that has repeatedly
failed to connect.

The kafkaHTTPReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

5. Configure ECE to generate your desired notification types:

a. Expand charging.notification.

b. Expand Attributes.

c. Specify which type of notifications to send to your ECE Notification topic. For example,
to send asynchronous notifications when an ongoing session requires a
reauthorization request, set rarNotificationMode to ASYNCHRONOUS. See
"Enabling Specific Notification Types".

Handling Requests When Charging Servers Are Unavailable
Diameter Gateway can be configured to use a degraded mode operating mode if the Elastic
Charging Server (charging server nodes) become unavailable.

Diameter Gateway actively monitors the health of the Elastic Charging Server. If the Elastic
Charging Server becomes unavailable (such as going below the charging-server health
threshold), Diameter Gateway sends the DIAMETER_TOO_BUSY result code response to
network requests.

Recording Failed ECE Usage Requests
ECE may occasionally fail to process usage requests. For example, a data usage request
could fail because a customer has insufficient funds. You can configure ECE to publish details
about failed usage requests, such as the user ID and request payload, to the ECE failure topic
in your Kafka server. Later on, you can reprocess the usage requests or view the failure details
for analysis and reporting.

To enable the recording of failed ECE usage requests:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.kafkaConfigurations.

4. Expand Attributes.

5. Set the persistFailedRequestsToKafkaTopic property to true.

Chapter 19
Handling Requests When Charging Servers Are Unavailable

19-17

20
Connecting ECE to a RADIUS Client

You can use Oracle Communications Elastic Charging Engine (ECE) RADIUS Gateway for
authenticating access requests and processing accounting requests from RADIUS clients,
such as terminal servers or network access servers (NAS).

Topics in this document:

• Overview of Authentication and Accounting Using RADIUS Gateway

• About RADIUS Gateway Authentication

• Authenticating Access Requests by Using PAP

• Authenticating Access Requests by Using CHAP

• Authenticating Access Requests by Using EAP

• Loading Data Keys Extracted from BRM into ECE

• Customizing the RADIUS Data Dictionary

• Loading the RADIUS Mediation Specification Data

• About Mapping RADIUS Network Attributes to Event Attributes

• About RADIUS Gateway Accounting

• About Accounting-Start and Accounting-Stop Requests

• About Accounting-On and Accounting-Off Requests

• About Accounting-Interim-Update Requests

Overview of Authentication and Accounting Using RADIUS
Gateway

You use RADIUS Gateway for authenticating access requests and processing accounting
requests for online charging when your customers use your terminal server or NAS to connect
to ECE. RADIUS Gateway does the following when it receives a request from the RADIUS
client:

1. Translates the request into an ECE request.

2. Submits the ECE request to the ECE server.

3. Receives the ECE response from the ECE server and translates it into a RADIUS
message response.

4. Sends the RADIUS message response to the RADIUS client.

The following steps summarize how to set up ECE for authentication and accounting using
RADIUS Gateway:

1. Add additional RADIUS Gateway nodes required for your topology and configure each
instance.

20-1

2. (Optional) Customize the RADIUS data dictionary to include custom vendor-specific
attributes.

3. Load your event definitions from PDC into ECE.

4. Load customer data and data keys from BRM into ECE.

5. Load the RADIUS mediation specification data.

6. Map RADIUS network attributes to event attributes.

7. Start the RADIUS Gateway nodes.

When the RADIUS Gateway nodes start, they automatically join the Coherence cluster
gaining access to ECE caches and invocation services that it uses to send requests to
ECE.

About RADIUS Gateway Authentication
RADIUS Gateway supports the following authentication mechanisms for querying the ECE
server and authenticating access requests:

• Password Authentication Protocol (PAP). An authentication protocol that uses the user
name and password to validate users. See "Authenticating Access Requests by Using
PAP" for more information on how RADIUS Gateway performs the PAP authentication.

• Challenge Handshake Authentication Protocol (CHAP). An authentication protocol that
authenticates a user to a network entity; for example, the Web. This protocol ensures that
the server sends a challenge to the RADIUS client after the RADIUS client establishes a
network connection to access the Web server. See "Authenticating Access Requests by
Using CHAP" for more information on how RADIUS Gateway performs the CHAP
authentication.

• Extensible Authentication Protocol (EAP). An authentication protocol that supports
multiple authentication mechanisms for authenticating network access; for example, EAP-
Message Digest 5 (MD5). See "Authenticating Access Requests by Using EAP" for more
information on how RADIUS Gateway performs the EAP authentication.

Authenticating Access Requests by Using PAP
You use PAP to authenticate access requests based on the clear-text user name and user
password. Only Access-Request requests are considered for PAP authentication: other
messages are ignored. The PAP authentication is performed based on the User-Name and
User-Password AVP values in the Access-Request request.

The PAP authentication process is as follows:

1. RADIUS Gateway receives the Access-Request request from the RADIUS client.

2. RADIUS Gateway authenticates the RADIUS client using the sharedsecret password that
you provided during installation.

Note:

If RADIUS clients are represented by using an IP address range, ensure that all
the RADIUS clients within the IP address range use the same sharedsecret
password.

Chapter 20
About RADIUS Gateway Authentication

20-2

3. RADIUS Gateway translates the Access-Request request into an ECE query.

4. RADIUS Gateway sends the query with the User-Name AVP value to the ECE server to
validate the user name.

5. If the user name is not found in the ECE server, the ECE server returns a failed response.
RADIUS Gateway translates the failed response into the Access-Reject message and
returns it to the RADIUS client.

6. If a match for the user name is found, RADIUS Gateway sends a query with the User-
Password AVP value in the request to the ECE server to validate the user password.

7. The ECE server returns a password. If the password is encrypted, RADIUS Gateway
decrypts the password using a data key loaded from BRM before validating the user
password. The data key to be used is identified using the key ID in the password returned
by the ECE server.

8. If the user password in the ECE server matches the User-Password AVP value in the
query, the ECE server returns a success response. RADIUS Gateway translates the
success response into the Access-Accept message and returns it to the RADIUS client.

9. If the user password does not match, the ECE server returns a failed response. RADIUS
Gateway translates the failed response into the Access-Reject message and returns it to
the RADIUS client.

Sample Access-Request Request for PAP Authentication

 Code: Access-Request(1)
 Identifier: 0
 Length: 120
 Authenticator: 0x7D564C041FD183A4DBA037E03E3244F3
 User-Name: alias#1006
 User-Password: 0x41FD183A4335037E03E3244F3123123
 NAS-IP-Address: 128.1.2.3
 NAS-Port-Type: 1034
 Service-Type: 2

Authenticating Access Requests by Using CHAP
You use CHAP to authenticate access requests by validating the identity of the RADIUS client
using Access-Challenge messages. The CHAP authentication is performed based on the
CHAP-Password and CHAP-Challenge AVP values in the Access-Request request. RADIUS
Gateway uses the State AVP value in the Access-Request request or the noOfChallenges
value that you configured in ECE to carry out the number of Access-Challenge messages for a
given authentication session.

At any time in a given authentication session, RADIUS Gateway can also request the RADIUS
client to send an Access-Challenge message. The CHAP authentication uses encrypted
passwords for authentication and the Access-Challenge message can be requested for
authentication by RADIUS Gateway at any time. Therefore, the CHAP authentication process
is considered more secure than the PAP authentication process.

The CHAP authentication process is as follows:

1. The RADIUS client encrypts a clear-text user password by using the CHAP identifier and
CHAP-Challenge AVP value and sends it in the CHAP-Password AVP in an Access-
Request request.

2. RADIUS Gateway authenticates the RADIUS client using the sharedsecret password that
you provided during installation.

Chapter 20
Authenticating Access Requests by Using CHAP

20-3

Note:

If RADIUS clients are represented by using an IP address range, ensure that all
the RADIUS clients within the IP address range use the same sharedsecret
password.

3. RADIUS Gateway translates the Access-Request request into an ECE query.

4. RADIUS Gateway sends the query with the User-Name AVP value to the ECE server to
validate the user name.

5. If the user name is not found in the ECE server, the ECE server returns a failed response.
RADIUS Gateway translates the failed response into the Access-Reject message and
returns it to the RADIUS client.

6. If a match for the user name is found, the ECE server returns the password associated
with the user name. If the password is encrypted, RADIUS Gateway decrypts the
password into a clear-text password using the data key loaded from BRM before validating
the password. The data key to be used is identified using the key ID in the password
returned by the ECE server.

7. RADIUS Gateway generates an MD5 hash value using the password, CHAP-Challenge
AVP, and CHAP identifier (which is the first byte of the CHAP-Password AVP), and
compares it with the CHAP-Password AVP value in the Access-Request request.

8. If the values do not match, RADIUS Gateway returns a failed response. RADIUS Gateway
returns an Access-Reject message to the RADIUS client.

9. If the MD5 hash value and the CHAP-Password AVP value match, RADIUS Gateway
returns a success response.

10. RADIUS Gateway sends an Access-Challenge message to the RADIUS client.

RADIUS Gateway uses the State AVP value in the Access-Request request to determine
the number of Access-Challenge messages to be sent to the RADIUS client. For example,
if the State AVP value is 0, RADIUS Gateway directly returns the Access-Accept message.
If the State AVP value is 1, RADIUS Gateway sends only one Access-Challenge message
to the RADIUS client.

11. If the State AVP value is null or if the value is not set, RADIUS Gateway calculates a
random number between one and the maximum number of challenges configured in ECE
and sends the Access-Challenge messages to the RADIUS client.

12. The RADIUS client responds with a value calculated through the MD5 hash function.

13. RADIUS Gateway checks the response against its calculation of the expected hash value.

14. If the values match, RADIUS Gateway repeats the Access-Challenge messages based on
the State AVP value or the number calculated by RADIUS Gateway.

15. If the values do not match, RADIUS Gateway returns an Access-Reject message to the
RADIUS client.

Sample Access-Request Request for CHAP Authentication

 Code: Access-Request(1)
 Identifier: 0
 Length: 144
 Authenticator: 0x7D564C041FD183A4DBA037E03E3244F3
 CHAP-Password: 0x423423432412ADA123CC1123124123
 Chap-Challenge="0xFBFCE5676F94433682718EF97F8AB24900"
 NAS-IP-Address: 127.0.0.8

Chapter 20
Authenticating Access Requests by Using CHAP

20-4

 State: 0
 NAS-Port-Type: 1816
 Service-Type: 2

Authenticating Access Requests by Using EAP
You use EAP to authenticate users using different authentication mechanisms. EAP includes
password-based authentication methods and secure certificate-based authentication methods.
The EAP authentication is performed based on the EAP-Message AVP value in the Access-
Request request. RADIUS Gateway supports the following EAP authentication methods:

• EAP-Tunneled Transport Layer Security (TTLS). Authentication between RADIUS
Gateway and the RADIUS client uses a secured connection in two phases. In the first
phase, RADIUS Gateway and the RADIUS client exchange authentication certificates for
establishing the secured connection. In the second phase, RADIUS Gateway authenticates
the RADIUS client by using different authentication mechanisms, such as EAP-PAP, EAP-
CHAP, and EAP-MD5. These authentication mechanisms use the attributes in the Access-
Request request to perform the authentication. You can also configure a custom EAP
authentication mechanism by using the RADIUS Gateway extension points.

• EAP-Non-TTLS. Authentication between RADIUS Gateway and the RADIUS client uses a
configured list of EAP authentication mechanisms. The EAP-Non-TTLS authentication
process is as follows:

1. RADIUS Gateway performs a standard check on the Access-Request request received
from the RADIUS client.

2. RADIUS Gateway sends the EAP-Type AVP in the Access-Challenge message that
contains the value corresponding to the first EAP type configured.

3. If the RADIUS client returns NAK, RADIUS Gateway sends the next EAP type in the
configured list in the Access-Challenge message. RADIUS Gateway continues this
process until the RADIUS client responds with an Access-Accept message or until the
end of the configured list is reached. In that case, RADIUS Gateway sends an Access-
Reject message.

RADIUS Gateway, by default, supports only the EAP-MD5 authentication mechanism in
the EAP-Non-TTLS method. To use a different authentication method, use the CustomAuth
and CustomEAPChallenge extension points. The CustomEAPChallenge extension point
sends the initial EAP challenge to the RADIUS client. The CustomAuth extension point
performs the authentication and returns the authentication result. Based on the result
received, RADIUS Gateway sends the appropriate RADIUS response to the RADIUS
client.

Sample Access-Request Request for EAP-MD5 Authentication

 Code: Access-Request(1)
 Identifier: 0
 Length: 120
 Authenticator: 0x7D564C041FD183A4DBA037E03E3244F3
 User-Name: BOB
 NAS-IP-Address: 127.0.0.1
 Calling-Station-Id: 02-00-00-00-00-01
 Framed-MTU: 1400
 NAS-Port-Type: 19
 Connect-Info: CONNECT 11Mbps 802.11b
 Service-Type: 2
 EAP-Message: 0x0200000801424F42
 Message-Authenticator: 0x4FB1186DDA9643CED0CD13D59ECD9D4E

Chapter 20
Authenticating Access Requests by Using EAP

20-5

Loading Data Keys Extracted from BRM into ECE
As part of the initial load of customer data into ECE, Customer Updater loads data keys into
ECE. When RADIUS Gateway is started, the data keys are decrypted using the BRM root key
in the Oracle wallet file and stored in the memory with a data key ID for each data key. These
data keys are used for decrypting the passwords in authentication responses from ECE.

When you add or modify a data key in BRM, you must load the newly added or modified data
key extracted from BRM into ECE.

To load data keys extracted from BRM into ECE:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the UpdateEventhandler node.

3. Expand Update.

4. Expand Operations.

5. Select updateDataKeys.

6. Click the updateDataKeys button.

The newly added or modified data keys extracted from BRM are loaded into ECE.

Customizing the RADIUS Data Dictionary
This section covers customizing the RADIUS data dictionary.

About the RADIUS Data Dictionary
The data dictionary includes a list of AVPs that are used by RADIUS Gateway to perform
authentication and accounting operations. The RADIUS data dictionary contains the standard
AVPs that are prescribed in RADIUS Request for Comments (RFC) 2865, 2866, and 2869, and
also some sample vendor-specific attributes. You can use the sample vendor-specific attributes
as a template for adding custom vendor-specific attributes. The default location of the RADIUS
data dictionary file is ECE_home/config/radius/radiusDictionary.xml.

Note:

Do not remove, rename, or move the RADIUS data dictionary file to a different
location.

Creating a Custom Data Dictionary
You can create a custom data dictionary file by using the ECE_home/config/radius/
radiusDictionary.xml file as a template. The default location for your custom data dictionary
file is ECE_home/config/radius/custom/dictionary_file, where dictionary_file is the name of
your custom data dictionary file. You can add new vendor-specific attributes to your custom
data dictionary file. See "Adding Custom Vendor-Specific Attributes".

Chapter 20
Loading Data Keys Extracted from BRM into ECE

20-6

Selecting a RADIUS Data Dictionary When Using Different NAS Vendors
If you must use NAS servers from multiple vendors, you have the following options:

• If your NAS is RFC 2865 compliant, you can use the RFC2865 data dictionary. This is the
preferred solution. Update the dictionary file with any vendor-specific attributes associated
with the NAS.

• If your NAS is not RFC 2865 compliant, you can use the RADIUS data dictionary files for
adding vendor-specific attributes. See "Adding Custom Vendor-Specific Attributes" for
more information.

Adding Custom Vendor-Specific Attributes
In special cases, where you are using NAS servers from multiple vendors, you must add the
vendor attribute and code in your custom data dictionary file.

The syntax for adding a vendor-specific attribute is:

<?xml version="1.0" encoding="UTF-8"?>
 <dictionary schemaLocation= "radiusDictionary.xsd"
 <vendor value="vendor_ID"name="vendor_name"/>
 </attribute name="attribute_name" vendor="vendor_name" syntax="data_type"
code="attribute_ID"/>
 /dictionary>

Table 20-1 lists the vendor-specific attribute values and descriptions.

Table 20-1 Vendor-specific Attribute Values

Parameters Description

vendor_ID Number used to identify the NAS or gateway vendor. These numbers are
assigned by the Internet Advisory Board (IAB). See your vendor's
documentation for details.

Some common vendor identification numbers are:

• 9 (Cisco)
• 10415 (3GPP)
• 2636 (Juniper)

vendor_name Name of the vendor.

attribute_name Name of the attribute. This must be unique.

Important: Do not use the same attribute name as used in the default
RADIUS data dictionary file. Using the same attribute name in the custom
data dictionary file overrides the attribute values in the default RADIUS
data dictionary file.

attribute_ID Identification number assigned to the attribute in the dictionary.

Chapter 20
Customizing the RADIUS Data Dictionary

20-7

Table 20-1 (Cont.) Vendor-specific Attribute Values

Parameters Description

data_type Any one of the following data types:

• UnsignedInt
32-bit unsigned value in big endian order (high byte first).

• Integer
32-bit value in big endian order (high octet first).

• String
0-253 octets

• Ipaddr
4 octets in network octet order

• Binary
0-254 octets

• Password
(n * 16) (>= 16) octets. This field is encrypted according to the User-
Password AVP in RFC 2865.

• Short
16-bit value

• Octet
8-bit value

• ifid
IPv6 interface ID

• ipv6addr
IPv6 address

• date
UNIX timestamp in seconds (since January 1, 1970 GMT)

Loading the RADIUS Mediation Specification Data
RADIUS Gateway uses the RADIUS mediation specification data to determine which product
and event type combination and network mapping applies to an incoming request from the
RADIUS client.

To load the RADIUS mediation specification data:

1. Create a mediation specification file or open the sample RADIUS mediation specification
file.

A sample mediation specification file (ECE_home/sample_data/config_data/
specifications/ece_simple) is available.

Note:

Create only one RADIUS mediation specification file to represent the mediation
specification for RADIUS Gateway.

2. Load the pricing data from PDC into ECE.

For every event definition, which contains charging operation types (for example, Initiate)
loaded into ECE from PDC, ECE generates network mapping files.

Chapter 20
Loading the RADIUS Mediation Specification Data

20-8

3. Add a row (in the table) for each new product to be rated that specifies the following
information:

• Service-Identifier AVP

A unique identifier of the service. The Service-Identifier AVP value is sent by the
RADIUS request. “null" is valid if the field is not expected to be present in the request.

• ProductType

The product type that you have defined for the event in its associated request
specification.

• EventType

The event type that you have defined for the event in its associated request
specification.

• Version

The version number of the request specification that you want to apply to the event.

• ValidFrom

A future date and time when you want RADIUS Gateway to recognize a newly
deployed request specification.

To have requests processed according to a new specification, you would enter:

yyyy-mm-ddThh:mm:ss [timezone]

If timezone is not specified, it defaults to UTC.

• Network-Mapping-FileName

The name of the network mapping file generated for the product and event
combination.

4. Open the ECE_home/config/management/migration-configuration.xml file.

5. Search the configObjectsDataDirectory parameter and copy the value. For example:

configObjectsDataDirectory = ECE_home/sample_data/config_data
6. Save the mediation specification file to that same directory.

7. Load the file into the ECE server by running the following command:

start configLoader

The utility loads the RADIUS mediation specification data to the ECE cluster. The
configLoader utility uses the location in the configdata parameter for loading the data. As
mediation specification files have same names, so any existing RADIUS mediation
specification data in the ECE cluster is overwritten.

Example 20-1 Sample RADIUS Mediation Specification Entry

RadiusMediationTable {
Service-Identifier| ProductType | EventType | Version | ValidFrom | Network-Mapping-
FileName|
 "1" | "TelcoGprs" | "EventDelayedSessionTelcoGprs" | 2.0 | "2010-12-31T12:01:01 PST" |
"EventDelayedSessionTelcoGprs_TelcoGprs.xml" |
}

When you load the RADIUS mediation specification data into the ECE cluster, RADIUS
Gateway re-creates its in-memory usage-request builder map and uses the mapping
definitions to send requests to ECE.

Chapter 20
Loading the RADIUS Mediation Specification Data

20-9

About Mapping RADIUS Network Attributes to Event Attributes
To process requests from RADIUS clients, you map network attributes from RADIUS clients to
the corresponding event attributes in ECE. You do this by editing the network mapping file.
When you load the pricing data from PDC into ECE, ECE generates the network mapping file
for each product and event combination. Some default network mappings are already pre-
configured in the files generated by ECE. You can update the default values in these files.

RADIUS Gateway uses this mapping in ECE to process requests by dynamically mapping the
values of the network attributes in the RADIUS request to the corresponding event attributes in
ECE.

Mapping RADIUS Network Attributes to Event Attributes
If you add or remove an event attribute from the event definition in PDC, you have to add or
remove the corresponding network attributes in ECE. You do this by editing the network
mapping file in ECE.

Before you map the attributes, load the RADIUS mediation specification file. See "Loading the
RADIUS Mediation Specification Data" for more information.

To map network attributes to event attributes:

1. Load the pricing data from PDC into ECE.

Mapping files will be automatically generated when the pricing data is published from PDC
to ECE.

For every event definition, which contains charging operation types (for example, Initiate)
loaded into ECE from PDC, ECE generates the network mapping files. The network
mapping files are stored in the directory specified by the configObjectsDataDirectory
parameter in the ECE_home/config/management/migration-configuration.xml file

A sample network mapping file is available in the (ECE_home/sample_data/config_data/
specifications/ece_end2end/network_mapping) directory. You can use this as a
reference for mapping the attributes.

2. Open a network mapping file in a text editor.

3. Ensure that the ORIGIN_NETWORK event attribute is added as a top-level attribute in the
network mapping file.

4. Map the network attributes to the event attributes by doing the following:

a. Search for the event attribute that you want to map to the network attribute.

b. Add the following entry:

<networkField>NetworkAttribute</networkField>

where NetworkAttribute is the attribute of the requests received from RADIUS clients.

For example:

<attributeMapping type="RadiusMediationEntries">
 <attribute>
 <name>TERMINATE_CAUSE</name>
 <networkField>Acct-Terminate-Cause</networkField>
 </attribute>
 </attributeMapping>

5. Save and close the file.

Chapter 20
About Mapping RADIUS Network Attributes to Event Attributes

20-10

Note:

Verify that the name of this network mapping file is specified in the RADIUS
mediation specification file.

6. Load the network mapping data by doing one of the following:

• If RADIUS Gateway is running, run the following command:

start configLoader loadNetworkMapping
• If RADIUS Gateway is not running, run the following commands:

start customerUpdater
start radiusGateway

The network mapping data is loaded into the ECE cluster. Any existing network
mapping data available for the product and event specification in the ECE cluster is
overwritten. ECE is now in a usage-processing state, where it can accept requests
from RADIUS Gateway.

When you load the network mapping into the ECE cluster, RADIUS Gateway re-creates its in-
memory usage-request builder map and begins using the latest mapping definitions to send
requests to ECE.

About RADIUS Gateway Accounting
RADIUS Gateway processes the accounting requests to track information about customer
usage. For example, RADIUS Gateway tracks when customers log in to a network for using
the services and when customers log out of the network. The information tracked by RADIUS
Gateway is used for statistical purposes, network monitoring, and billing the customers based
on the duration of the sessions or the type of services used.

To track customer usage information, RADIUS Gateway uses the network mapping definitions
in ECE and maps the accounting requests received from the RADIUS clients to the usage
requests with the corresponding operation types configured in ECE.

See the following topics for information on the different types of accounting requests received
from the RADIUS clients:

• About Accounting-Start and Accounting-Stop Requests

• About Accounting-On and Accounting-Off Requests

• About Accounting-Interim-Update Requests

The RADIUS Gateway accounting process is as follows:

1. At the start of accounting or the start of a user session, the RADIUS client sends an
accounting request to RADIUS Gateway. The Acct-Status-Type AVP value in the request
indicates the start of accounting or start of a session for the user.

2. RADIUS Gateway processes the request and records the information as either an
accounting-on record or an accounting-start record in ECE, based on the accounting
request received.

3. RADIUS Gateway returns an Accounting-Response message to the RADIUS client to
acknowledge the accounting-start or accounting-on request.

Chapter 20
About RADIUS Gateway Accounting

20-11

4. While the session is active, the RADIUS client sends periodic updates on the data usage
to RADIUS Gateway through accounting requests with the Acct-Status-Type AVP set to
Interim-Update.

5. RADIUS Gateway processes the requests and records the information as accounting-
interim-update records in ECE.

6. RADIUS Gateway returns Accounting-Response messages to the RADIUS client to
acknowledge the interim-update requests.

7. At the end of accounting or the end of the user session, the RADIUS client sends an
accounting request that contains the Acct-Status-Type AVP value indicating the end of
accounting or the end of the user session.

8. RADIUS Gateway processes the request and records the information as either an
accounting-off record or an accounting-stop record in ECE, based on the accounting
request received.

9. RADIUS Gateway returns an Accounting-Response message to the RADIUS client to
acknowledge the accounting-off or accounting-stop request. At any time, if the RADIUS
client does not receive an Accounting-Response message, it continues to send accounting
requests until it receives a response.

About Accounting-Start and Accounting-Stop Requests
When a client is configured to use RADIUS accounting, the RADIUS client sends an
Accounting-Start request, which specifies the start of a session for delivering a service, and an
Accounting-Stop request, which specifies the end of the session that was started for delivering
a service, to RADIUS Gateway. The Accounting-Start request describes the type of service
being delivered and the user who is using that service. The Accounting-Stop request describes
the type of service that was delivered. The Accounting-Stop request might also contain
statistics, such as elapsed time, input and output octets, or input and output messages. The
RADIUS client uses the Acct-Status-Type AVP to specify the start of a session and to specify
the end of a session.

The following AVPs must be present in an Accounting-Start or Accounting-Stop request:

• Acct-Session-Id

Note:

The Accounting-Start and Accounting-Stop requests for a given session must
have the same Acct-Session-Id AVP.

• Acct-Status-Type

• NAS-IP-Address or NAS-Identifier

• User-Name

• The AVP that you configured to derive the service in ECE by using the avpName and
vendorId parameters.

For an Accounting-Start request, the Acct-Status-Type AVP must be set to 1. When a RADIUS
client sends the Accounting-Start request, the RADIUS client indicates that the user service
session has started. When RADIUS Gateway receives the Accounting-Start request, RADIUS
Gateway records the information contained in the request for billing purpose and returns the
Accounting-Response message to the RADIUS client.

Chapter 20
About Accounting-Start and Accounting-Stop Requests

20-12

For an Accounting-Stop request, the Acct-Status-Type AVP must be set to 2. When a RADIUS
client sends the Accounting-Stop request, the RADIUS client indicates that the user service
session has ended. When RADIUS Gateway receives the Accounting-Stop request, RADIUS
Gateway records the information contained in the request for billing purposes and returns the
Accounting-Response message to the RADIUS client.

The RADIUS client continues to send the Accounting-Start or Accounting-Stop requests until it
receives the Accounting-Response message.

Sample Accounting-Start Request for Accounting

[Code: Accounting-Request(4)
 Identifier: 0
 Length: 94
 Authenticator: 0x30303030303030303030303030303030
 Acct-Session-Id: 123456
 Acct-Status-Type: 1
 NAS-Identifier: telco.org
 User-Name: alias#5000
 Service-Type: 1]
Radius Response Packet
[Code: Accounting-Response(5)
 Identifier: 0
 Length: 20
 Authenticator: 0x00000000000000000000000000000000]

Sample Accounting-Stop Request for Accounting

[Code: Accounting-Request(4)
 Identifier: 1
 Length: 87
 Authenticator: 0x30303030303030303030303030303030
 Acct-Session-Id: 123456
 Acct-Status-Type: 2
 Acct-Input-Octets: 10
 Acct-Output-Octets: 18
 Acct-Session-Time: 200
 NAS-Identifier: telco.org
 User-Name: alias#5000
 Service-Type: 1]
Radius Response Packet
[Code: Accounting-Response(5)
 Identifier: 1
 Length: 20
 Authenticator: 0x00000000000000000000000000000000]

About Accounting-On and Accounting-Off Requests
When a client is configured to use RADIUS accounting, the RADIUS client sends an
Accounting-On request, which specifies the start of accounting, and an Accounting-Off request,
which specifies the end of accounting, to RADIUS Gateway. The RADIUS client uses the Acct-
Status-Type AVP to specify the start of accounting and to specify the end of accounting.

The following AVPs must be present in an Accounting-On or Accounting-Off request:

• Acct-Status-Type

• NAS-IP-Address or NAS-Identifier

• The AVP that you configured to derive the service in ECE by using the avpName and
vendorId parameters.

Chapter 20
About Accounting-On and Accounting-Off Requests

20-13

For an Accounting-On request, the Acct-Status-Type AVP must be set to 7. When a RADIUS
client sends the Accounting-On request, the RADIUS client indicates that it is ready for service.
When RADIUS Gateway receives the Accounting-On request, RADIUS Gateway closes or
terminates any open accounting session associated with that RADIUS client before the
RADIUS client indicated it was ready for service.

For an Accounting-Off request, the Acct-Status-Type AVP must be set to 8. When a RADIUS
client sends the Accounting-Off request, the RADIUS client indicates that it is going out of
service. When RADIUS Gateway receives the Accounting-Off request, RADIUS Gateway
closes or terminates all the open accounting sessions associated with that RADIUS client.

Sample Accounting-On Request for Accounting

[Code: Accounting-Request(4)
 Identifier: 4
 Length: 68
 Authenticator: 0x30303030303030303030303030303030
 Acct-Session-Id: 131
 Acct-Status-Type: 7
 NAS-Identifier: telco.org
 User-Name: alias#5000
 Service-Type: 1
[Code: Accounting-Response(5)
 Identifier: 4
 Length: 20
 Authenticator: 0x00000000000000000000000000000000]

Sample Accounting-Off Request for Accounting

[Code: Accounting-Request(4)
 Identifier: 5
 Length: 68
 Authenticator: 0x30303030303030303030303030303030
 Acct-Session-Id: 131
 Acct-Status-Type: 8
 NAS-Identifier: telco.org
 User-Name: alias#5000
 Service-Type: 1
Radius Response Packet
[Code: Accounting-Response(5)
 Identifier: 5
 Length: 20
 Authenticator: 0x00000000000000000000000000000000]

About Accounting-Interim-Update Requests
During a session, the RADIUS client periodically sends Accounting-Interim-Update requests,
which specify the current session duration and current data usage, to RADIUS Gateway. The
RADIUS client uses the Acct-Status-Type AVP to specify the interim update.

The following AVPs must be present in an Accounting-Interim-Update request:

• Acct-Session-Id

Chapter 20
About Accounting-Interim-Update Requests

20-14

Note:

The Accounting-Interim-Update requests for a given session must have the same
Acct-Session-Id AVP.

• Acct-Status-Type

• NAS-IP-Address or NAS-Identifier

• User-Name

• The AVP that you configured to derive the service in ECE by using the avpName and
vendorId parameters.

When periodic Accounting-Interim-Update requests are sent for the same active session, the
identifier in each Accounting-Interim-Update request must be unique. If the identifier is the
same, RADIUS Gateway considers only the first request received with that identifier and
ignores other requests.

For an Accounting-Interim-Update request, the Acct-Status-Type AVP must be set to 3. When
a RADIUS client sends the Accounting-Interim-Update request, the RADIUS client indicates
that the session is active. When RADIUS Gateway receives the Accounting-Interim-Update
request, RADIUS Gateway records the information contained in the request for billing purposes
and returns the Accounting-Response message to the RADIUS client.

The RADIUS client continues to send Accounting-Interim-Update requests until it receives the
Accounting-Response message.

Sample Accounting-Interim-Update Request for Accounting

[Code: Accounting-Request(4)
 Identifier: 0
 Length: 95
 Authenticator: 0x30303030303030303030303030303030
 Acct-Session-Id: 123456
 Acct-Status-Type: 3
 Acct-Input-Octets: 6
 Acct-Output-Octets: 10
 NAS-Identifier: telco.org
 User-Name: alias#5000
 Service-Type: 1]
Radius Response Packet
[Code: Accounting-Response(5)
 Identifier: 0
 Length: 20
 Authenticator:0x00000000000000000000000000000000]

Chapter 20
About Accounting-Interim-Update Requests

20-15

21
Configuring Policy-Driven Charging

You can implement policy-driven charging in Oracle Communications Elastic Charging Engine
(ECE).

Caution:

Deploying policy-driven charging for 5G events requires a cloud native deployment of
ECE and BRM components. 5G PCF can be used only on an ECE cloud native
system.

Topics in this document:

• About Policy-Driven Charging

• Configuring Policy-Driven Charging

• Configuring Breach Tolerance for Policy-Tier Thresholds

• About Integrating Policy Clients with ECE

• About the ECE Sy and Sp Interface

• About Calculating Maximum Authorization for Policy-Driven Charging Sessions

• Configuring ECE to Reject Spending Limit Requests Without Counters

• About the Policy Management API

About Policy-Driven Charging
Policy-driven charging enables you to track a subscriber's service usage and, based on that
usage, change the customer's quality of service (QoS) during online charging.

For example, a subscriber purchases a package for a specific QoS to download video content.
The subscriber chooses from one of many packages that you have configured with gradations
in the QoS based on usage amounts in MBs, such as 100-150, 150-200, and 200-250 MBs.
When the subscriber starts downloading video content from the network, you can track the
number of MBs the subscriber downloads during the session. When the downloaded quantity
crosses the upper threshold set for the selected QoS (for example, 150 MBs), you can use
BRM's policy-driven charging to make a seamless change in the policy set for the subscriber's
(video downloading) session on the network and allow a shift in the QoS from the current to the
next level.

ECE supports policy-driven charging. Policy-driven charging implements network, customer,
and service policies that service providers can use to improve customer experience and
efficiently use network resources. Service providers can use policies for various reasons, such
as controlling data usage, setting QoS, allocating bandwidth to each service, enforcing
parental controls, implementing charging rules, and so on.

When you integrate Policy and Charging Rules Function (PCRF) policy clients with ECE, ECE
acts as the Subscriber Profile Repository (SPR) because it stores the customer profile

21-1

information used by the PCRF. ECE offers a combined Sp and Sy interface, which the PCRF
uses to retrieve customer preferences and policy counter information.

Policies can be service and network aware. You can create network-aware policies for specific
access technologies where the network condition can dynamically alter prices. You can
develop service-aware policies to control how a customer consumes network resources.

ECE exposes the following information in its in-memory data grid to policy clients (such as
Diameter Gateway or your third-party network mediation software for online charging) to
support policy-driven charging. Policy clients use the ECE policy management APIs to retrieve
the information and send it to the PCRF:

• Policy label information

Policy enforcement programs on the PCRF use policy labels such as status labels. For
example, a QoS label might be defined as normal-QoS or low-QoS, as shown below:

<policy_label>
 <label>Basic Subscription</label>
 <resource_code>MBU</resource_name>
 <resource_id>100012</resource_id>
 <unit>megabyte</unit>
 <tiers>
 <tier>
 <range_start>0</range_start>
 <range_end>300</range_end>
 <status_label>normal-QoS</status_label>
 </tier>
 <tier> <range_start>301</range_start>
 <status_label>low-QoS</status_label>
 </tiers>
</policy_label>
</policy_labels>

Policy label information is stored in the policy specification (offer profiles in BRM) in PDC.
ECE loads this information into its data grid when it loads pricing data from PDC.

• Policy counter information

The Sy interface of the ECE Java policy API transfers policy counter information from ECE
to the policy client. It provides policy counter status reporting and policy counter status
change notifications.

Policy counters track a customer's usage of a service. For example, ECE tracks how many
megabytes a subscriber downloads. The policy client retrieves the policy counters from
ECE and sends them to the PCRF for evaluation.

• Subscriber preferences information

ECE stores subscriber preferences associated with how the customer would like to receive
policy notifications. Policy clients can retrieve this data from ECE using the Sp interface of
the ECE Java policy API. For example, they could retrieve:

– A customer's charging-related information (for example, if the customer purchased a
Gold, Platinum, or Bronze package)

– A customer's preferred channel for receiving notifications (for example, email or SMS)

– A customer's language

To support policy-driven charging, ECE publishes policy notifications. Policy specifications can
store threshold definitions for specific balances. ECE can use the threshold definitions to post
notifications when thresholds are breached (SpendingLimit notifications). When a subscriber's
preferences change, ECE publishes notifications with the new or altered preference

Chapter 21
About Policy-Driven Charging

21-2

information (SubscriberPreference notifications). ECE sends notifications to the JMS
notification queue. The policy client listens on the queue and uses the data in the notifications
to send Sy and Sp messages to the PCRF.

ECE publishes policy notifications only for charge offers that have active policy sessions. When
the policy client (such as Diameter Gateway) initiates policy sessions, it subscribes to receive
the policy notifications on behalf of the PCRF.

When a customer purchases a new charge offer, the PCRF re-queries the policy label and
policy counter (Sy data) to subscribe to the additional counters associated with the new charge
offer.

About Group-Based Policy-Driven Charging
ECE supports group-based policy-driven charging where a policy counter is shared by a group
of users, enabling the PCRF to define rules for a group of users.

Group-based policy-driven charging in ECE works as follows:

• The owner of a discount sharing group shares a policy counter.

• A shared discount offer is used to impact the shared policy counter.

• The shared discount is associated with a policy specification that defines policy counter
thresholds.

• When a policy threshold is breached, ECE generates a notification for all users in the
group.

Policy-Driven Charging Example
The following is an example of how ECE supports policy-driven charging:

• A service provider allows a customer to download 300 MBs of data per month at a normal
QoS.

• The customer's counter for data downloaded resets at the beginning of each month.

• The service provider defines policy thresholds in a policy specification in PDC with the
label names normal-QoS and low-QoS. These policy threshold labels are also stored in
ECE.

• The service provider configures the PCRF with a policy rule that defines what action to
take based on the labels defined in the policy specification. The rule determines what
action to take when the customer reaches 300 MBs of data before the end of the month.

• The PCRF rule uses the label names normal-QoS and low-QoS as follows:

If (status_label=normal-QoS) (Bandwidth=10 Mbps)
If (status_label=low-QoS) (Bandwidth=128 kbps)

When the customer reaches the 300 MB data quota, the PCRF makes a policy decision to
configure the Policy and Charging Enforcement Function (PCEF) so that the data transfer
speed is set to 128 kilobits per second, downgraded from 10 megabits per second. The PCEF
enforces this decision by changing the data transfer speed on the network switch.

Configuring Policy-Driven Charging
ECE supports in-session notifications for policy-driven charging by publishing asynchronous
external notifications during a policy session. Policy clients, such as Diameter Gateway or

Chapter 21
Configuring Policy-Driven Charging

21-3

HTTP Gateway, consume the data in these notifications for sending in-session notifications to
the PCRF.

About ECE and Policy Clients
To support policy-driven charging, ECE offers a policy management API. Policy clients can use
the API to retrieve data relevant to policy enforcement from its data grid.

Policy-driven charging in ECE is based on the PCRF, defined in the 3GPP TS 23.203 v9.9.0
specification. The PCRF integrates with ECE through your online network mediation software.

ECE exposes its in-memory cache so that your online network mediation software can retrieve
policy counter information and policy-related subscriber preference information. ECE publishes
notifications containing the policy information, and your online network mediation software
uses the notifications to send the information to the PCRF for evaluation.

Figure 21-1 illustrates how ECE fits into a charging system that implements policy-driven
charging.

Figure 21-1 ECE and Policy Client Integration

How ECE Processes Policy Requests for Online Network Mediation System
The following procedure describes how ECE processes requests for policy-driven charging
from your online network mediation software (or from Diameter Gateway).

Chapter 21
Configuring Policy-Driven Charging

21-4

1. A customer starts to use a service, which initiates a network session.

For example, the customer turns on a mobile phone that connects to a wireless network.

2. At the start of the network session, the PCEF obtains a policy configuration from the PCRF.

The PCEF uses the Gx interface to get the policy configuration for the network session.

3. The PCRF requests policy counters and subscriber preferences from your online network
mediation software (or Diameter Gateway).

The PCRF uses the Diameter Sy/Sp interface.

4. Your online network mediation software (or Diameter Gateway) initiates a policy session
with ECE that does the following:

• Requests policy counter and status label information.

Requests the policy counters for a specific charge offer and subscribes to receive
notifications when the values of the policy counter information change.

• Requests policy-related subscriber preferences by doing one of the following:

– Retrieves the value for a specified set of subscriber preferences and subscribes to
receive notifications when the values of the preferences change during the policy
session.

– Retrieves only the values for a specified set of subscriber preferences and does
not subscribe to receive notifications when the values of the preferences change
during the policy session.

Your online network mediation software (or Diameter Gateway) uses the
PolicySessionRequest ECE Java combined Sy/Sp (implemented as Sh) interface, which
uses the SubscribeNotificationRequest procedure and the UserDataRequest procedure.

5. ECE sends a policy response to your online network mediation software (or to Diameter
Gateway), which does the following:

• Indicates whether the request succeeded or failed and provides a list of reasons
supporting the response.

• Sends the status of the policy counters for the specified service. If the service is not
specified, returns the information for all services:

– Sends the policy specification (offer profile) name configured for the service.

– Sends the status label associated with the policy counter.

– Sends an effective time for the values of the policy counters. After the effective
time expires, the PCRF is expected to send another request for policy counter and
status label information (send another SpendingLimitReportRequest).

– Sends the label name of the next probable status that applies after the effective
time expires. For example, Medium_QoS.

– Sends the delay interval. The PCRF can use the delay interval and the effective
time to determine when to query for the policy counters again.

ECE uses the SpendingLimitReportResponse procedure of the ECE Java Sy interface.

• Sends the subscriber preferences.

ECE uses the SubscribeNotificationResponse procedure of the ECE Java Sp
interface.

6. The PCRF rules engine interprets the information and installs a policy on the PCEF, which
the PCEF enforces.

Chapter 21
Configuring Policy-Driven Charging

21-5

7. A charging session is established, and the PCEF sends a Ro message to your online
network mediation software (or Diameter Gateway).

8. Your online network mediation software (or Diameter Gateway) initiates a charging session
with ECE.

9. ECE publishes policy notifications for the following:

• Changes to the policy counter status for the policy counters the PCRF subscribed for
(Sy data) at the beginning of the policy session.

• Changes to the subscriber preferences the PCRF subscribed for (Sp data), if any, at
the beginning of the policy session.

10. Your online network mediation software (or Diameter Gateway) consumes the policy
notifications and sends the data to the PCRF.

11. As the charging session continues, ECE performs credit control functions: rates events,
authorizes usage events only if adequate balance is available, administers threshold
checks based on the current balance and consumed reservation of the customer balance.

12. When ECE detects a policy threshold breach during the charging session, it publishes a
policy notification to the JMS notification queue containing the policy counter's new status.
Your online network mediation software (or Diameter Gateway) sends the data to the
PCRF.

The customer balance change that causes the policy threshold breach could occur as a
result of any of the following:

• Usage requests coming from the network mediation system

• Update requests coming from BRM (a subscription activity in the customer
management system)

• Top-ups coming from top-up systems

Note:

If ECE detects multiple breaches during a session, it sends notifications
sequentially. That is, it sends a notification for the first breach. Then, ECE waits
for an acknowledgment from PCRF that it has received the notification before
sending the subsequent breach notification.

13. The PCRF evaluates the new policy counter values and the associated policy status labels
and installs a new policy configuration on the PCEF.

The new policy is established dynamically during the charging session.

14. The customer stops using his service, which ends the network session.

15. Your online network mediation software (or Diameter Gateway) terminates the charging
session with ECE.

16. Your online network mediation software (or Diameter Gateway) terminates the policy
session with ECE.

Configuring Breach Tolerance for Policy-Tier Thresholds
In policy-driven charging, policy-tier thresholds must be crossed to trigger the implementation
of business rules, such as reduced QoS for subscribers who download excessive data.

Chapter 21
Configuring Breach Tolerance for Policy-Tier Thresholds

21-6

For policy tier thresholds, BRM cannot authorize an amount above the threshold, even if the
subscriber's credit balances are sufficient to cover the charges. Instead, BRM authorizes the
remaining balance up to the policy threshold but does not send an FUI. Therefore, only about
80 percent of the remaining balance is available. The session ends when the remaining
balance becomes so small that the service can no longer be supported.

To enable subscribers to continue using a service as they near a policy tier threshold, you must
configure a breach tolerance for the threshold. When the threshold is crossed, the service
continues under a new business rule, such as lower QoS for larger download totals.

For example, suppose the network sends a usage request for 200 MB, but adding that to a
subscriber's current 1.9 GB policy counter balance will cause the balance to breach a 2 GB
policy tier threshold. In this case, BRM does one of the following:

• Without Breach Tolerance: If a breach tolerance is not configured, BRM makes only
about 80 MB available to prevent the usage from exceeding the policy tier threshold. The
session ends when usage reduces the 80 MB balance to the point that the remaining
balance cannot support the service.

• With Breach Tolerance: If a breach tolerance of 100 or more MB is configured, BRM
authorizes the entire 200 MB request. This enables the subscriber's usage to cross the
2 GB policy tier threshold by 100 MB. As soon as the policy tier threshold is crossed, a
change in the quality of service is triggered, and the service continues under the new
policy.

You can set a breach tolerance for each balance element used in a policy counter. You decide
what tolerance value is appropriate for your business needs.

To configure a tolerance for policy-tier threshold breaches:

1. Before charging servers are started, open ECE_home/config/management/charging-
settings.xml and uncomment the following lines:

<toleranceConfigMappingGroup config-class="java.util.ArrayList">
 <toleranceConfig
 config-class="oracle.communication.brm.charging.appconfiguration.
 beans.policy.ToleranceConfig"
 balanceElementId="12345" tolerance="1.25"/>

 <toleranceConfig
 config-class="oracle.communication.brm.charging.appconfiguration.
 beans.policy.ToleranceConfig"
 balanceElementId="34567" tolerance="3"/>
 </toleranceConfigMappingGroup>

2. Save the file.

3. On the driver machine, change directory to the ECE_home/bin directory.

4. Start Elastic Charging Controller (ECC):

./ecc
5. Start your charging servers:

start server
6. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing

ECE Configuration MBeans".

7. Expand the ECE Configuration node.

8. Expand charging.policyConfig.

9. Expand Operations.

Chapter 21
Configuring Breach Tolerance for Policy-Tier Thresholds

21-7

10. Select setPolicyTolerance.

11. For each balance element (policy counter) to which policy specifications apply in your
system, do the following:

a. Specify values for the following parameters:

• beid: Enter the balance element ID of the balance element.

• tolerance: Enter the RUM units allowed to exceed the authorized usage quantity
that ECE returns to the network for a specified charging session. The value must
be greater than 0. Base it on your business needs.

Your customers can use all balances and exceed their policy-tier threshold limits
by the specified number of RUM units.

b. Click the setPolicyTolerance button.

About Integrating Policy Clients with ECE
Policy clients such as Diameter Gateway integrate with ECE by using the ECE policy APIs.

The policy client uses the ECE policy Sy interface to retrieve policy counter information from
ECE. The policy client, in turn, sends the policy counter information to the PCRF using its
Diameter Sy interface. As part of initiating a policy Sy session with ECE, the policy client
subscribes for receiving notifications that contain the policy counter information.

The policy client uses the ECE policy Sp interface to retrieve customer preferences information
from ECE. The policy client, in turn, sends the customer preferences information to the PCRF
using its Diameter Sp interface. As part of initiating a policy Sp session with ECE, the policy
client subscribes for receiving notifications that contain the customer preferences information.

About the ECE Sy and Sp Interface
To support policy-driven charging, ECE offers policy management APIs. The ECE Sy interface
enables policy clients to subscribe for and retrieve spending limit information about policy
counters from ECE. The ECE Sp interface enables policy clients to subscribe for and retrieve
customer preference information relevant to policy enforcement from ECE.

The following sections describe each interface:

• About the ECE Sy Interface

• About the ECE Sp Interface

ECE also supports a combined ECE Sy and Sp interface that enables policy clients to retrieve
and subscribe for both types of information in one policy session. A combined ECE Sy and Sp
interface reduces the number of messages between ECE and policy clients. See "About a
Combined ECE Sy and Sp Interface " for information.

About the ECE Sy Interface
ECE supports the Sy interface which is used by the PCRF to retrieve policy counter
information. To support the Sy interface, ECE offers the following ECE Sy procedure and
notification:

• Spending Limit Report Request

Chapter 21
About Integrating Policy Clients with ECE

21-8

Policy clients such as Diameter Gateway use this procedure to request the status of policy
counters available in ECE and to subscribe and unsubscribe (for the PCRF) to updates of
ECE policy counters.

• SpendingLimit Notification

ECE uses this notification to report statuses of requested policy counters for one or more
services and also report the results of request processing.

The policy client transfers the status information to the PCRF.

About the ECE Sp Interface
ECE supports the Sp interface which is used by the PCRF to query customer preferences. To
support the Sp interface, ECE offers the following ECE Sp procedures:

• Subscribe Notification Request

Policy clients such as Diameter Gateway use this procedure to retrieve customer
preferences and to subscribe and unsubscribe (for the PCRF) to updates of customer
preference data changes.

The customer preferences can include the following:

– Customer's allowed services

– Customer's allowed Quality of Service (QoS)

– Customer's preferred channel for receiving notifications (such as receiving an SMS or
email)

– Customer's preferred language

• Subscribe Notification Response

ECE uses this procedure to report customer-preference data updates to the policy client
subscribed for the notification.

• User Data Request

Policy clients use the User Data Request procedure only to retrieve subscriber preferences
without subscribing for receiving notifications when the preferences change.

• User Data Response

ECE uses this procedure to send subscriber-preference data to the policy client.

The policy client transfers customer preference data to the PCRF.

Querying for Extended Subscriber Preference Information in Sp Query
The PCRF can also query extended information about customers and services. The policy
client, such as Diameter Gateway, uses the ECE policy Sp query procedure to retrieve
extended customer and service information.

To retrieve extended information from ECE using the policy Sp query request, you must
configure the extended service and customer information in ECE.

To configure the query for extended service and customer information:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.policyConfig.

Chapter 21
About the ECE Sy and Sp Interface

21-9

4. Expand Operations.

5. Select setDsl.

6. Do the following for each type of service or customer you want the policy client to query:

a. For the alias parameter, replace String with the alias for the extended information to
use in the policy query request.

Configured aliases are included in the policy query request.

b. For the dsl parameter, replace String with the DSL to use to retrieve the information
from ECE in the following format:

gettype([product|customer]/attribute with arguments)

For example:

getObject(product/lifeCycleStateName)

c. Click the setDsl button.

This creates a mapping between the extended information alias with the DSL used to
retrieve the extended information from customers and services.

About a Combined ECE Sy and Sp Interface
ECE supports combining its ECE Sp and Sy interfaces by offering the following procedures:

• Policy Session Request

Policy clients, such as Diameter Gateway, use this procedure for retrieving Sp and Sy
information and subscribing or unsubscribing (for the PCRF) to receiving updates to Sp
and Sy data. This request is a combination of the Spending Limit Report Request and the
Subscribe Notification Request.

• Policy Session Response

ECE uses this procedure to report the information requested by the Policy Session
Request and provide results of request processing.

The policy client transfers the information to the PCRF.

About Calculating Maximum Authorization for Policy-Driven
Charging Sessions

For policy-driven charging sessions, ECE readjusts the requested quota based on the following
data:

• Current balance

• Used reservation across all parallel sessions

• Nearest threshold in the policy specification

For example, consider this situation:

• Current balance: 80 MB

• Used reservation across all parallel sessions (iPhone, video, computer): 35 MB

• Nearest threshold in the policy specification: 140 MB

Under those conditions, if ECE receives an authorization request for an additional 30 MB, that
request exceeds the 140 MB threshold by 5 MB (80 MB + 35 MB + 30 MB = 145 MB).

Chapter 21
About Calculating Maximum Authorization for Policy-Driven Charging Sessions

21-10

Therefore, unless a breach tolerance of 5 MB or more is configured, ECE authorizes only 25
MG.

Configuring ECE to Reject Spending Limit Requests Without
Counters

For Sy subscriptions, you can configure ECE to reject a Spending Limit Request (SLR) if there
are no policy counters available for the subscriber.

To configure ECE to reject SLRs when no policy counters are available:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.policyConfig.

4. Expand Attributes.

5. Set the syRejectNoCounters attribute to true.

About the Policy Management API
To use the policy management API, clients call the submitPolicy API with PolicyRequest.

For details about the policy management API, see the documentation for
oracle.communication.brm.charging.brs,
oracle.communication.brm.charging.messages.policy, and
oracle.communication.brm.charging.messages.query (for user data request/response
information) in Elastic Charging Engine Java API Reference.

Chapter 21
Configuring ECE to Reject Spending Limit Requests Without Counters

21-11

Part VI
Customizing ECE

This part provides information about customizing charging in Oracle Communications Elastic
Charging Engine (ECE). It contains the following chapters:

• Customizing Rating

• ECE Sample Programs

• Testing ECE

22
Customizing Rating

You can use the Oracle Communications Elastic Charging Engine (ECE) extensions to
customize BRM Gateway, Diameter Gateway, HTTP Gateway, RADIUS Gateway, pre-rating,
post-rating, post-charging, and post-update processes. ECE extensions include sample
implementations that guide you in implementing your custom business logic.

Caution:

Deploying charging for 5G with HTTP Gateway (5G CHF) requires a cloud native
deployment of ECE and BRM components. The HTTP Gateway can be used only on
an ECE cloud native system.

Topics in this document:

• Operational Considerations

• Extension Points

• Implementing the Extensions Logic

• Sample Extensions

Operational Considerations
All pre-rating, post-rating, post-charging, and post-update extensions must be implemented in
a single class respectively. This class can delegate to additional implementations if multiple
extensions are being implemented.

Extensions data is loaded into a replicate cache in Coherence and the amount of data loaded
into the cache must be taken into consideration when sizing for Java.

Configuring Extensions
You configure implementation classes for the diameter-request processing, HTTP-request
processing, and usage-request processing extension points through JMX management by
using a JMX editor.

To configure the implementation classes for the diameter-request processing, HTTP-request
processing, and usage-request processing extension points:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.extensions.

4. Expand Attributes.

5. Specify values for the following attributes as needed:

22-1

• brmGwExtension

• diameterGyExtension

• diameterSyExtension

• httpExtension

• ocsBypassExtension

• postChargingExtension

• postRatingExtension

• postRatingMidSessionExtension

• postUpdateExtension

• preRatingExtension

• preRatingMidSessionExtension

• radiusAccountingExtension

• radiusAuthExtension

• ratingExtension

About Performance with Extensions
If extensions are activated, they are called for during every usage request. Always consider
performance for the code you run in the extensions.

The extensions framework provides an extensions cache mechanism that provides the lowest
latency access to the extensions data. It is recommended that you use the extensions cache
mechanism rather than external data sources.

You can use the PerformanceMonitor MBean to monitor CPU usage of server nodes and client
nodes. When building your charging extensions, the methods of the PerformanceMonitor
MBean enable you to monitor the performance impacts of your extensions. For example, you
can run ECE without your extensions and use the methods to see how much CPU time is
used. You can then run ECE with your extensions, and use the methods again to see how
much CPU time is used. By comparing the CPU times, you can derive the additional time spent
by your extension.

About Logging in Extensions
Logging is available in your extensions. You use the Log4j logger to write messages to the
server node log file. For example:

extensionContext.getLogger().debug("Hello World!" + extensionContext);

About Extension Exceptions
If ECE needs to reject a usage request, an ExtensionsException error can be thrown to reject
the usage request and report a "CUSTOM_EXTENSION_ERROR" reason code in the
response.

For details about ExtensionsException, see Elastic Charging Engine Java API Reference.

Chapter 22
Operational Considerations

22-2

About Extension Security
To ensure security for the extension, follow these best practices:

• Enable JMX security

• Enable ECE cluster node security

• Ensure strict governance of OS accounts

• Follow secure Java coding practices

• Implement string code review processes

• Run latency-sensitive performance tests on the extensions hooks

• Use JAR signing

Extension Points
You customize BRM Gateway, Diameter Gateway, HTTP Gateway, RADIUS Gateway, pre-
rating, rating, post-rating, post-charging, and post-update processes with these extension
points:

• BRM Gateway Request Processing Extension Points

• Diameter-Request Processing Extension Points

• HTTP Gateway Request Processing Extension Points

• RADIUS-Request Processing Extension Points

• Update-Request Processing Extension Points

• Usage-Request Processing Extension Points

BRM Gateway Request Processing Extension Points
You use BRM Gateway request processing extension points to update an external notification
that is bound for the BRM Gateway. It adds data for calling a specific BRM opcode. This allows
you to update attributes in the ECE cache through the BRM-ECE synchronization process. See
"About Synchronizing Data Between BRM and ECE".

ECE publishes the external notification to the ECE Notification topic, where it is retrieved by
BRM Gateway. BRM Gateway uses the information in the notification to call the specified
opcode, which in turn updates customer data in the BRM database. BRM then resynchronizes
the customer data with the ECE cache.

BRM Gateway provides these extension points for external notification flows that are targeted
for the BRM Gateway:

• PostCharging extension. The role of the PostCharging extension is to retrieve data for a
specific opcode.

• BRMCustomOpCodeCall extension. The role of the BRMCustomOpCodeCall extension
is to enrich external notifications with an input flist for a specific BRM opcode. This
extension is called before the external notification is published to the ECE Notification
topic.

Chapter 22
Extension Points

22-3

Diameter-Request Processing Extension Points
Diameter Gateway provides extension points for Credit Control Request (CCR) and Credit
Control Answer (CCA) flows:

• RequestReceived extension. The role of the RequestReceived extension is to
manipulate the CCR attribute-value pair (AVP) before the usage request is processed by
Diameter Gateway and to provide an immediate response that bypasses the online
charging system (OCS) completely.

• PreProcessor extension. The role of the PreProcessor extension is to add or remove any
AVP in the custom response before the usage request is processed by Diameter Gateway
and to provide an immediate response that bypasses the OCS completely.

• PreOCS extension. The role of the PreOCS extension is to manipulate the mapped ECE
usage request payload and perform enrichment that is not possible in the
RequestReceived extension.

• PostOCS extension. The role of the PostOCS extension is to manipulate the CCA AVPs
before the diameter response is returned to the diameter client.

• OCSBypass extension. The role of the OCSBypass extension is to bypass the rating of
Diameter CCRs received during a planned maintenance or an unplanned downtime of
ECE and persist them to Oracle NoSQL.

Figure 22-1 shows the diameter-request processing extension points.

Chapter 22
Extension Points

22-4

Figure 22-1 Diameter-Request Processing Extension Points

HTTP Gateway Request Processing Extension Points
HTTP Gateway provides extension points for 5G flows:

• RequestReceived extension. The role of the RequestReceived extension is to
manipulate the charging data before the usage request is processed by HTTP Gateway
and to provide an immediate response that bypasses the online charging system (OCS)
completely.

• PreOCS extension. The role of the PreOCS extension is to manipulate the mapped ECE
usage request payload to perform enrichments that are not possible in the
RequestReceived extension.

• PostOCS extension. The role of the PostOCS extension is to manipulate the ECE usage
request before the HTTP Gateway response is returned to the 5G client.

Chapter 22
Extension Points

22-5

• PostOCSBalanceQuery extension. The role of the PostOCSBalanceQuery extension is to
manipulate the ECE usage response before the HTTP Gateway response is returned to
the 5G client.

Figure 22-2 shows the HTTP Gateway request processing extension points.

Figure 22-2 HTTP Gateway Processing Extension Points

RADIUS-Request Processing Extension Points
RADIUS Gateway provides extension points for authentication and accounting flows.

Authentication Extension Points
RADIUS Gateway provides extension points for the authentication flow:

• RequestReceived extension. The role of the RequestReceived extension is to add or
update a custom AVP before the authentication request is processed by RADIUS Gateway
and to provide an immediate response that bypasses the OCS completely.

Chapter 22
Extension Points

22-6

• CustomEAPChallenge extension. The role of the CustomEAPChallenge extension is to
send custom access-challenge request to the RADIUS client when the Extensible
Authentication Protocol (EAP) is used for authentication.

• PreOCS extension. The role of the PreOCS extension is to perform any actions related to
authentication that are required before the RADIUS request is sent to ECE.

• CustomAuth extension. The role of the CustomAuth extension is to implement the
custom EAP authentication methods.

• CustomEncode extension. The role of the CustomEncode extension is to implement the
custom hashing algorithm that is used on passwords during authentication when the
Password Authentication Protocol (PAP) is used for authentication.

• PostOCS extension. The role of the PostOCS extension is to add or update a custom
AVP before the authentication response is returned to the RADIUS client.

Figure 22-3 shows the RADIUS-request processing extension points for EAP authentication.

Figure 22-3 Extension Points for EAP Authentication

Figure 22-4 shows the RADIUS-request processing extension points for PAP and Challenge-
Handshake Authentication Protocol (CHAP) authentication. The solid line depicts PAP
authentication and the dotted line depicts CHAP authentication in this figure.

Chapter 22
Extension Points

22-7

Figure 22-4 Extension Points for PAP and CHAP Authentication

Accounting Extension Points
RADIUS Gateway provides extension points for accounting flow:

• RequestReceived extension. The role of the RequestReceived extension is to add or
update a custom AVP before the accounting request is processed by RADIUS Gateway
and to provide an immediate response that bypasses the OCS completely.

• PreOCS extension. The role of the PreOCS extension is to enrich the usage request
before the usage request is sent to ECE for accounting purposes.

Chapter 22
Extension Points

22-8

• PostOCS extension. The role of the PostOCS extension is to add or update a custom
AVP before the accounting response is returned to the RADIUS client.

Figure 22-5 shows the RADIUS-request processing extension points for accounting.

Figure 22-5 Extension Points for Accounting

Update-Request Processing Extension Points
ECE provides an extension point for post-update extensions in the updates-processing flow.
The role of the post-update extension is to enrich and filter external notifications. This
extension is called after receiving update requests and before publishing the external
notifications.

Usage-Request Processing Extension Points
ECE provides extension points in the rating flow: before charge calculation, after charge
calculation (prior to making a balance impact), and after charging (after applying a balance
impact).

Table 22-1 describes the role of each extension point in the rating flow.

Table 22-1 Rating Flow Extension Roles

Extension Point Role

Pre-Rating Extension Alter the usage request

Chapter 22
Extension Points

22-9

Table 22-1 (Cont.) Rating Flow Extension Roles

Extension Point Role

Post Rating Extension Alter the rated result

Rating Extension Alter rated results after each of the following processes:
rating, alteration, sharing, and taxation

Post-Charging Extension Enrich the usage response

You cannot customize rating during the rating, alteration, and tax calculation processes, only
before and after. Access is provided to a custom data store that provides low-latency access to
data required for the extensions; for example, customer data and balance data.

Figure 22-6 shows the usage-request processing extension points.

Chapter 22
Extension Points

22-10

Figure 22-6 Usage-Request Processing Extension Points

Implementing the Extensions Logic
The BRMCustomOpCodeCallExtension, DiameterGyExtension, DiameterSyExtension,
HTTPExtension, PreRatingExtension, PostRatingExtension, PostChargingExtension,
RadiusRequest, and RadiusResponse interfaces expose initialize() and shutdown()
methods that are called by the hook framework when the server starts up and when it shuts
down. Use these methods to configure your own internal data structures related to the
extensions business logic.

For diameter-request processing extension points, a different method is called for each
extension point.

• handleRequestReceived(). Called for every CCR that is processed by the charging flow.

Chapter 22
Implementing the Extensions Logic

22-11

• handlePreOCS(). Called for every CCR and usage request that is processed by the
charging flow.

• handlePostOCS(). Called for every CCA and usage response that is processed by the
charging flow.

All methods expose relevant ExtensionContext data for accessing the
ExtensionsDataRepository, AppConfigRepository, and other extensions-related contexts.

Figure 22-7 shows the data used in the diameter-request processing extension points.

Figure 22-7 Data Used in Diameter-Request Processing Extension Points

For HTTP-request processing extension points, a different method is called for each extension
point.

• handleRequestReceived(). Called for every charging data request that is processed by
the charging flow.

• handlePreOCS(). Called for every usage request that is processed by the charging flow.

• handlePostOCS(). Called for every usage response that is processed by the charging
flow.

• handlePostOCSBalanceQuery(). Called for every usage response that is processed by
the charging flow.

All methods expose relevant ExtensionContext data for accessing the
ExtensionsDataRepository, AppConfigRepository, and other extensions-related contexts.

Figure 22-8 shows the data used in the HTTP-request processing extension points.

Chapter 22
Implementing the Extensions Logic

22-12

Figure 22-8 Data Used in HTTP-Request Processing Extension Points

For extension points that process requests from RADIUS clients, the RadiusRequest and
RadiusReply interfaces are exposed to the extension points through the ExtensionContext
methods.

For authentication-related extension points, the following methods are called by the
authentication flow:

• handleRequestReceived(). Called for every authentication request that is processed by
the authentication flow.

• handlePreOCS(). Called to perform any actions related to authentication that are required
in the authentication flow.

• handlePostOCS(). Called for each authentication response that is processed by the
authentication flow.

• handleCustomEAPChallenge(). Called to send custom access-challenge requests to the
RADIUS client in the EAP authentication flow.

Chapter 22
Implementing the Extensions Logic

22-13

• handleCustomAuth(). Called to implement a custom EAP authentication method in the
authentication flow.

• handleCustomEncode(). Called to implement the custom hashing algorithm that is used
on passwords in the PAP authentication flow.

Figure 22-9 shows the data used in the RADIUS-request processing extension points for
authentication.

Figure 22-9 Data Used in RADIUS-Request Processing Extension Points for
Authentication

For accounting-related extension points, the following methods are called by the accounting
flow:

Chapter 22
Implementing the Extensions Logic

22-14

• handleRequestReceived(). Called for every accounting request that is processed by the
accounting flow.

• handlePreOCS(). Called for every accounting request and usage request that is
processed by the accounting flow.

• handlePostOCS(). Called for every accounting response and usage response that is
processed by the accounting flow.

Figure 22-10 shows the data used in the RADIUS-request processing extension points for
accounting.

Figure 22-10 Data Used in RADIUS-Request Processing Extension Points for
Accounting

For usage-request processing extension points, the execute() method is called for every
usage request, rated result, usage response, and notification that is processed by the charging
flow.

For the rating extension point, the following methods are called by the charging flow:

• handlePostApplyCharge(). Called to alter rated results after calculating charges (rating).

• handlePostApplyAlteration(). Called to alter rated results after calculating discounts
(alteration).

• handlePostApplyDistribution(). Called to alter rated results after calculating charge
distribution (sharing).

• handlePostApplyTaxation(). Called to alter rated results after calculating taxes (taxation).

All methods expose relevant ExtensionContext data for accessing the
ExtensionsDataRepository, AppConfigRepository, and other extensions-related contexts.

Figure 22-11 shows the data used in the pre-rating extension point.

Chapter 22
Implementing the Extensions Logic

22-15

Figure 22-11 Data Used in Pre-Rating Extension Point

Figure 22-12 shows the data used in the rating extension point.

Chapter 22
Implementing the Extensions Logic

22-16

Figure 22-12 Data Used in Rating Extension Point

Figure 22-13 shows the data used in the post-rating extension point.

Chapter 22
Implementing the Extensions Logic

22-17

Figure 22-13 Data Used in Post-Rating Extension Point

Figure 22-14 shows the data used in the post-charging extension point.

Figure 22-14 Data Used in Post-Charging Extension Point

ECE provides build and deployment capabilities in the form of shell scripts. If any third-party
libraries need to be used inside the custom extensions logic, copy the third-party JAR files to
the ECE_home/lib directory, where ECE_home is the directory in which ECE is installed. After
the JAR files have been copied, they need to synchronize across to the other servers in the
cluster. Synchronization is done by running the sync command in Elastic Charging Controller
(ECC).

Chapter 22
Implementing the Extensions Logic

22-18

Custom extensions logic implementation classes that implement the GyExtension,
PreRatingExtension, RatingExtension, PostRatingExtension, PostChargingExtension,
RadiusRequest, and RadiusResponse interfaces and their dependencies must be packaged
in JAR format. Ensure the packaged extensions JAR files are available to the ECE runtime
environment in the ECE_home/lib directory.

BRMCustomOpCodeCall Extension
The BRMCustomOpCodeCall extension enriches external notifications with an input flist for a
BRM opcode. The extension is called before publishing the external notification to the ECE
Notification topic, where it will be retrieved by the BRM Gateway.

You can modify the external notifications to include an input flist for a different BRM opcode.

CustomAuth Extension
The CustomAuth extension implements custom EAP authentication methods; for example,
EAP-POTP, EAP-PSK etc.

The extension can access this data:

• EAP-Authentication-Request

• System configuration

You can use a custom EAP authentication method if the RADIUS client does not support EAP-
TTLS or EAP-MD5.

CustomEAPChallenge Extension
The CustomEAPChallenge extension sends a custom access-challenge request to the
RADIUS client when custom EAP authentication mechanisms are used for authentication.

The extension can access this data:

• Access-Challenge-Request

• System configuration

• Extensions data

You can use the extension point to send the custom access-challenge request to the RADIUS
client when EAP is used for authentication.

CustomEncode Extension
The CustomEncode extension implements the custom hashing algorithm that is used on
passwords for authentication.

The extension can access this data:

• Encoded Password

• System configuration

• Extensions data

You can use the custom hashing algorithm on passwords for authentication. For example,
typically the password from the RADIUS client is hashed (stored in the hash format) for PAP
authentication. However, if the password is hashed in any other format, you implement the
CustomEncode extension point to hash the incoming password.

Chapter 22
Implementing the Extensions Logic

22-19

OCSBypass Extension
The OCSBypass extension bypasses rating of CCRs received during ECE downtime or a
planned maintenance activity. The CCRs are persisted to Oracle NoSql. When ECE is
restored, the persisted requests are replayed to the ECE charging server for rating and
updating balance impacts along with the real-time requests. The entire diameter request is
accessible and modifiable and the entire request information is passed to the custom
extension. When rating bypass is enabled and the custom extension is run, Diameter Gateway
returns responses that you configured in the custom extension. If the extension is not enabled
but bypassing of rating is enabled, ECE returns Diameter Result Code 5012 for the described
conditions, which must be handled in your custom extension implementation.

PreOCS Extension
The PreOCS extension manipulates usage request payloads before the usage request is sent
to ECE, so that the request can match the business requirement. In addition, the PreOCS
extension performs any actions related to authentication that are required before the request is
sent to ECE. This extension is called before any rating, discounting, or alteration logic has
been invoked.

The extension can access this data:

• Credit Control Request

• Authentication Request

• Accounting Request

• ECE Usage Request

• System configuration

• Extensions data

You can modify the ECE usage request payload. For example, certain usage request
manipulations can be made only when the ECE usage request payload is accessible. The
usage request manipulations are done in this extension.

PreProcessor Extension
The PreProcessor extension manipulates CCR requests before the usage request is created,
so that the request can match the business requirement. The PreProcessor extension can
bypass charging or mutate the contents of the Sy message. This extension is called before any
rating, discounting, or alteration logic has been invoked.

The extension can access this data:

• Credit Control Request

• Request AVPs

• ECE payload

• System configuration

• Extensions data

Chapter 22
Implementing the Extensions Logic

22-20

PostOCS Extension
The PostOCS extension manipulates CCA, accounting, usage, or authentication responses to
match the business requirement before returning the response to the client. This extension is
called after charging, authentication, and accounting has been completed and recorded.

The extension can access this data:

• Credit Control Request

• Accounting Response

• Authentication Response

• ECE Usage Response

• Diameter Credit Control Answer

• System configuration

• Extensions data

You can modify the CCA, accounting response, and authentication response. For example, you
can manipulate AVPs to adapt to non-standard diameter and RADIUS implementations.

PostOCSBalanceQuery Extension
The PostOCSBalanceQuery extension manipulates ECE usage responses to match the
business requirement before returning the response to the HTTP client. This extension is
called after a balance query has been completed and recorded.

Pre-Rating Extension
The pre-rating extension enhances the usage request based on customer, service, balance,
product, and system data so that the usage request can match the business requirement. This
extension is called before any rating, discounting, or alteration logic has been invoked.

The extension can access this data:

• ECE usage request information

• Customer data (including profile data)

• Service data (including profile data)

• Balance information

• Product information

• System configuration

• Extensions data

You can modify usage requests. For example, you modify usage requests to:

• Alter the requested quota. This is implemented in the sample extensions provided.

• Apply special rates or discounts (such as birthday discounts) for calls based on the
extended rating attributes of both calling customers and called customers.

• Generate a midsession-rated event when an update operation occurs. This is implemented
in the sample extensions provided.

Chapter 22
Implementing the Extensions Logic

22-21

You can also modify the values of the pricing attributes with custom logic. This enables you to
override a product price.

Post-Rating Extension
The post-rating extension modifies the rated event based on customer, service, balance,
product, and system data. This extension is called after any rating, discounting, or alteration
logic has been invoked.

The extension can access this data:

• Balance information

• Customer data (including profile data)

• ECE usage request information

• Product information

• Shared customers (if part of a sharing relationship)

• Service data (including profile data)

• System configuration

• Extensions data

• Rated result

You can modify rated events in the following ways:

• You can modify the balance impact amount, GL code, tax code, balance element or invoice
data for rating impacts generated from ECE.

• Generate a midsession-rated event when an update operation occurs. This is implemented
in the sample extensions provided.

You can also create new tax rating impacts, such as implementing a tax on tax.

Rating Extension
The rating extension modifies the rated results after each of the following processes: rating,
alteration, sharing, and taxation.

The extension can access this data:

• Customer (including profile)

• Shared customer (if part of a sharing relationship)

• Product (including profile)

• Balance information

• System configuration

• Extensions

• Rated result

You can alter rated results to modify charges, discounts, charge sharing, taxes, and item
assignments. For example:

• After rating, you can alter charges based on the zones, such as standard and geographic
zones.

Chapter 22
Implementing the Extensions Logic

22-22

• After taxation, you can alter custom item types for the rating impacts generated from ECE,
such as charge, alteration, and distribution rating impacts.

RequestReceived Extension
The RequestReceived extension manipulates the CCR, charging data request, authentication
request, or accounting request so that the request can match the business requirement and
provides an immediate response that bypasses the OCS completely. This extension is called
before any rating, discounting, or alteration logic has been invoked.

The extension can access this data:

• Credit Control Request

• Authentication Request

• Accounting Request

• System configuration

• Extensions data

You can modify the CCR, authentication, or accounting request. For example, you can
manipulate AVPs to adapt to non-standard diameter implementations. Certain CCR,
authentication, and accounting request types may not be supported by ECE, Diameter
Gateway, or RADIUS Gateway, so a response can be created in this extension and returned
immediately, bypassing the OCS.

Post-Charging Extension
The post-charging extension enriches usage responses and external notifications, excluding
Advice of Charge (AOC) notifications. This extension is called after charging is completed but
before the usage response is generated.

The extension can access this data:

• Customer (including profile data and subscriber preferences)

• Shared customers (if part of a sharing relationship, subscriber preferences)

• Service (including profile data, subscriber preferences, life cycle state)

• Balance information (including current request impacts)

• Business profile

• System configuration

• Extension data

• Rated result

You can modify the usage responses and external notifications. You can use the post-charging
extension point to:

• Enrich usage responses and external notifications. You can add custom data as AVPs to
the response and notification. For example, you can add a custom language preference to
a customer's subscriber preferences. The custom values will be available as diameter
hooks for further propagation.

• Filter out external notifications that you do not want to be published to external systems.

Chapter 22
Implementing the Extensions Logic

22-23

Post-Update Extension
The post-update extension enriches the external notifications; excluding the AoC notifications.
This extension is called after receiving update requests and before publishing the external
notifications.

The extension can access this data:

• Customer (including profile data and subscriber preferences)

• Shared customers (if part of a sharing relationship, subscriber preferences)

• Service (including profile data, subscriber preferences, life cycle state)

• Balance information (including current request impacts)

• Business profile

• System configuration

• Extension data

• Rated result

You can modify the external notifications with custom logic. You can use the post-update
extension to:

• Enrich external notifications. For example, you can add custom data to any external
notification that is generated to provide additional data, such as spending limit notifications.

• Filter out external notifications that you do not want to be published to external systems.
For example, when billing is run, ECE generates subscribe-notification-request (SNR)
notifications for all impacted resources. You can filter out unneeded SNR notifications and
publish only required notifications to external systems.

To use the post-update extension, you must define the post-update extension's fully qualified
class name in the ECE_home/config/management/charging-settings.xml file.

Extensions Cache
The extensions framework provides a generic repository from which data required for the pre-
rating, post-rating, and post-charging extensions can be uploaded and used. The data format
is described in a specifications file that describes the format of the data. The extensions
specification allows a DataLoader to load the data into the ECE extensions cache.
Example 22-1 is an example of a specifications file for the post-rating extension:

Example 22-1 Sample Tax Table

/*
 * Sample tax table
 */
ExtensionDataSpecification
 Info {
 Name "tax_table_0001"
 }
 Payload {
 Block "TAX_ROW" {
 String "TAXCODE"
 String "PKG"
 Decimal "RATE"
 DateTime "START"
 DateTime "END"

Chapter 22
Implementing the Extensions Logic

22-24

 String "LEVEL"
 String "LIST"
 String "DESCRIPTION"
 String "RULE"
 }
 }
}

Example 22-2 shows the associated data to load into the cache using the specification file
above:

Example 22-2 Example Data File

This is a sample csv file containing typical tax configuration data.
#
#TaxCode |Pkg |Rate |Start |End |Level |List |Description |Rule
 usage |U |0.05 |01/01/2013 |12/31/2014 |Fed |US |USF |Std
 usage |U |0.08 |01/01/2013 |12/31/2014 |Sta |CA |USTA |Std
 usage |U |0.06 |01/01/2013 |12/31/2014 |Fed |US |USF |Std
 usage |U |0.085 |01/01/2013 |12/31/2014 |Sta |CA,AZ |USTA |Std
 purchase|V |0.08525 |01/01/2013 |12/31/2014 |Sales |CA |PSLS |Std

Extensions Cache API
The extensions repository provides the following APIs for managing extensions data:

• putExtensionsData(). Takes a single key-value pair of string as a key and value being an
ExtensionsData object.

• putExtensionsDataCollection(). Takes a map of key-value pairs of string keys and value
being ExtensionsData objects.

• findExtensionsData(). Returns an ExtensionsData object for a given key.

• getAllExtensionsData(). Returns a read-only collection of all extensions data from the
repository.

The extension includes these repository constraints:

• You must generate a unique key as a string for one ExtensionsData object (entry in the
extensions cache) at the time of retrieval of the extensions data from the cache.

• Because the extensions data is replicated across the whole cluster, the amount and size of
data is limited to what a given Java heap can manage. You can also adjust the Java heap
size. Refer to the Java provisioning guidelines.

• Changes made to the extensions data after it is loaded are expensive to make due to its
cache topology. Avoid frequent updates to the extensions data, especially in a larger
cluster.

• The framework does not dictate the type of data source that extensions data are loaded
from. The provided SampleExtensionsDataLoader SDK demonstrates loading the data
from a comma-separated-value (CSV) file using extensions domain-specific language
APIs. This sample is a recommended design, but it should not be used as a reference
about how to store data.

Sample Extensions
The BRM SDK includes sample extensions. For information about how to use the samples,
see "How To Use the Sample Extensions" and "Validating Sample Extensions".

For information about each sample extension, see the following:

Chapter 22
Sample Extensions

22-25

• BRM Gateway Extension - Creating Opcode Flist

• Diameter Gateway Extension - Gy Service

• Diameter Gateway Extension - Sy Service

• HTTP Gateway Extension - Service

• OCSBypass Extension - Bypassing Rating

• Pre-Rating Extension - Dynamic Quota Management

• Pre-Rating Extension - Retrieving Function Values for Discount Expressions

• Pre-Rating Extension - Overriding Price in Product Offerings

• Rating Extension - Custom Item Assignment

• Post-Rating Extension - Complex Taxation

• Rating/Charging Extension - Triggering RAR Notifications

• Post-Rating Extension - Adding or Deleting Rating Periods

• Post-Charging Extension - Adding Custom Data to Usage Responses and Notifications

• Post-Charging Extension - Overriding Dynamic Quota

• Post-Charging Extension - Adding or Modifying Redirection Rules

• Post-Update Extension - Enriching External Notifications

• Extensions Data Load Sample

How To Use the Sample Extensions
To use the sample extensions:

1. ECE SDK is installed under $SDK_HOME. The directory listing is shown below:

$ ls -l
total 124
drwxr-xr-x 2 ecsuser ecsuser 4096 Jun 21 10:47 bin
drwxr-xr-x 2 ecsuser ecsuser 4096 Jun 21 10:47 bin
drwxr-xr-x 3 ecsuser ecsuser 4096 Jun 21 10:47 config
-rw-r--r-- 1 ecsuser ecsuser 5 Jun 21 10:47 VERSION

2. Under the source directory, create a pre-extensions or post-extensions Java Class using
the Extensions API and other libraries (samples are provided as a part of the ECE SDK.)

$ cd source
$ cd oracle/communication/brm/charging/sdk/extensions
$ ls -l
total 28
-rw-r--r-- 1 ecsuser ecsuser 6427 Jun 21 10:47 SampleExtensionsDataLoader.java
-rw-r--r-- 1 ecsuser ecsuser XXXXX Jun 21 10:47 SampleOCSByPassExtension.java
-rw-r--r-- 1 ecsuser ecsuser 12194 Jun 21 10:47 SamplePostRatingComplexTaxation
-rw-r--r-- 1 ecsuser ecsuser 6066 Jun 21 10:47 SamplePreRatingExtension.java
-rw-r--r-- 1 ecsuser ecsuser XXXXX Jun 21 10:47 SamplePostChargingExtension.java

3. Write custom logic in Java and copy it under the directory. The Java source is under the
package oracle.communication.brm.charging.sdk.extensions:

$SDK_HOME/source/oracle/communication/brm/charging/sdk/extensions
4. Change ECE_HOME in the script build_deploy_extension.sh file

under $SDK_HOME/bin/extensions:

Chapter 22
Sample Extensions

22-26

configuration begin
ECE_HOME=$ECE_HOME
configuration end

5. Compile the extensions class using the shell script: build_deploy_extension.sh.

a. Each extensions file has to be compiled individually (similar to SDK programs).

b. Any additional ECE or third-party library required for the extensions needs to be added
to the CLASSPATH in the build_deploy_extension.sh. script

$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SampleDiameterGyExtension
$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SamplePostRatingComplexTaxationExtension
$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SamplePreRatingExtension
$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SamplePostChargingExtension
$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SampleOCSByPassExtension

Do the following optional step if external data needs to be loaded. To compile the
sample extensions loader use the sample_extensions_loader.sh shell script:

$sh $SDK_HOME/bin/extensions/sample_extensions_loader.sh build
SampleExtensionsDataLoader
$sh $SDK_HOME/bin/extensions/sample_extensions_loader.sh run

6. Deploy creates a single JAR file (ece.extensions-VERSION-SNAPSHOT.jar) with all the
extensions classes and copies the JAR file under $ECE_HOME/lib. The JAR file is copied
only to the driver node. It has to be propagated to other ECE nodes in the grid manually or
use a rolling upgrade.

$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh deploy
7. Define the fully-qualified class names of the pre-rating, bypass rating, rating, post-rating,

post-charging, and post-update extensions by configuring the charging.extensions
MBean in the ECE Configuration node using a JMX editor. For instructions, see
"Configuring Extensions".

preRatingExtension="oracle.communication.brm.charging.sdk.extensions.
SamplePreRatingExtension"
RatingExtension="oracle.communication.brm.charging.sdk.extensions.
SampleRatingExtension"
postRatingExtension="oracle.communication.brm.charging.sdk.extensions.
SamplePostRatingComplexTaxationExtension"
postChargingExtension="oracle.communication.brm.charging.sdk.extensions.SamplePostCha
rgingExtension"
diameterGyExtension="oracle.communication.brm.charging.sdk.extensions.
SampleDiameterGyExtension"
postUpdateExtension="oracle.communication.brm.charging.sdk.extensions.SamplePostUpdat
eExtension"
ocsBypassExtension="oracle.communication.brm.charging.sdk.extensions.SampleOCSByPassE
xtension"

8. Start or restart the ECE server nodes and enable logging for the extensions by setting
oracle.communication.brm.charging.extensions.client to DEBUG via JMX and verify
that the custom extensions are run as a part of rating logic. You can also turn on debug
logging for the RATING module using the JMX console.

Chapter 22
Sample Extensions

22-27

Validating Sample Extensions
After the server nodes are bought up initially or by using a rolling upgrade, send a sample SDK
usage request. Enable debug for the RATING module and verify the server log contains these
messages:

SamplePreRatingExtension invoked
PostRatingComplexTaxationSampleExtension executed

BRM Gateway Extension - Creating Opcode Flist
The sample program SampleBRMGwCustomOpCodeExtension shows how to use the ECE
Extensions API to enrich an external notification with an input flist for a specified opcode.

The sample program builds an input flist for the PCM_OP_BILL_DEBIT opcode.

Diameter Gateway Extension - Gy Service
The sample program SampleDiameterGyExtension shows how to use the immediate-
response feature based on an incoming AVP value.

The logic: If Service-Context-Id is OFFLINE, respond with Diameter Code
DIAMETER_REDIRECT_INDICATION and set the Redirect-Host AVP value

Diameter Gateway Extension - Sy Service
The sample program SampleDiameterSyExtension shows how to use the ECE extensions
API to suspend the Sy interface when a subscriber is suspended. The sample program does
the following:

• Bypasses rating by calling the setBypassOCS() method and setting the
DiameterResultCode to DIAMETER_REDIRECT_INDICATION.

Note:

To skip the bypass, comment or remove the setBypassOCS() method invocation
under the handleRequestReceived() method.

• Adds or removes AVPs in the Custom Sy Response.

• Modifies the request data time and product type in the policy request.

• Modifies the status and reason codes in the policy response.

HTTP Gateway Extension - Service
The sample program SampleHTTPExtension shows how to use the ECE Extensions API to
override the requested number of units and perform call screening.

• The handleRequestReceived() method overrides the requested units for a call.

• The handlePreOCS() method sets the timestamp of when the call originally occurred.

Chapter 22
Sample Extensions

22-28

• The handlePostOCS() method logs a message when call screening is done and returns a
response to the 5G client.

• The handlePostOCSBalanceQuery() method logs a message when a balance query
occurs and returns a response to the 5G client.

OCSBypass Extension - Bypassing Rating
The sample program SampleOCSByPassExtension shows how to use the ECE extensions
API to bypass rating during ECE downtime. When bypass rating is enabled, the CCRs are
persisted to Oracle NoSql. When ECE is restored, the persisted requests are replayed to the
ECE charging server for rating and updating balance impacts along with the real-time requests.
Using this extension, you can write your own logic for modifying the AVP of incoming diameter
messages and for creating the diameter responses.

Pre-Rating Extension - Dynamic Quota Management
The sample program SamplePreRatingExtension shows pre-rating custom logic. It illustrates
sample logic for the pre-rating scenarios.

Dynamic Quota Management - Modifying Quota Based on Network Type
The SamplePreRatingExtension program shows how to use the ECE extensions API to
modify the input request quantity based on the input network type where the customer balance
is greater than a predefined amount.

Logic:

If ORIGIN_NETWORK network field is:

"3G_UTRAN" and USD balance greater than 50 then set quota to 10 MB

or

"4G_UTRAN" and USD balance greater than 50 then set quota to 100 MB

Dynamic Quota Management - Modifying Requested Quota
The SamplePreRatingExtension program shows how to use the ECE extensions API to
update the input request to modify the requested quota. You can use this sample program to
access the ECE cache to derive at a quota and then update the requested quota in the input
request. ECE then uses the derived quota for allocation.

Dynamic Quota Management - Modifying Default Quota Configuration
The SampleDynamicQuotaExtension program shows how to use the ECE extensions API to
update the following attributes in the input request to modify the quota configuration based on
your requirements:

• Quota holding time. Specifies how long a granted quota can be idle before the
reservation is released.

• Volume quota threshold. Specifies how much of the granted quota must be consumed
before a subscriber can request additional quota. This attribute is configured per service,
event, and number of granted units.

Chapter 22
Sample Extensions

22-29

• Validity time. Specifies whether the validity time can be set to a fixed value per service-
event combination at runtime. This attribute is independent of the number of units in the
granted quota.

Pre-Rating Extension - Retrieving Function Values for Discount Expressions
The SamplePreRatingExtension program shows how to use the ECE extensions API to
retrieve the value referenced by the function in a discount expression. You create a custom
function in ECE that defines an event profile attribute. You can use the
SamplePreRatingExtension program to call the custom function. ECE then adds the defined
event profile attribute and its value to the usage request.

If the PDC pricing specifies a 10% discount for all accounts active less than 12 months, then
the logic is the following:

If customerActiveMonths value is:

• < 12 then apply a discount of 10%

• > 12 then apply a discount of 0%

Pre-Rating Extension - Generating Midsession-Rated Event
The SamplePreRatingMidSessionExtension program shows how to use the ECE extensions
API to generate a midsession-rated event when an update request contains the following:

• A specified balance, such as greater than or equal to $500

• A changed field in a usage request

• A specified account field

• A specified product type, such as TelcoGsmTelephony

Pre-Rating Extension - Overriding Price in Product Offerings
The SamplePreRatingExtension program shows how to use the ECE extensions API to
override the price specified in product offerings. You create a custom function in ECE that
overrides the default value of the pricing attributes in dynamic tags, which are the XML
elements configured in PDC. You can use the SamplePreRatingExtension program to call the
custom function. The overridden values are then populated in the event profile map in the
request specification data. ECE uses the overridden values to determine the price when
processing usage requests.

Post-Rating Extension - Complex Taxation
The sample program SamplePostRatingComplexTaxationExtension shows how to use the
ECE extensions API to override or augment post-rating results using complex taxation as an
example. The program iterates over the tax rating periods and overrides tax impacts by
modifying the rating periods for federal tax and then generates new tax periods for the state
tax.

It applies the tax rate based on the pre-loaded tax configuration data in the extensions cache.
The tax rate is determined based on tax code, tax time, and validity, which are all based on the
request start time. The default configuration for the tax code used in the extension must exist in
the ECE configuration.

The extension uses the following logic:

Chapter 22
Sample Extensions

22-30

1. Determines the federal tax rate from the tax configuration table using the tax code, request
start time.

2. Calculates the federal tax based on this tax rate.

3. Modifies the original impact in the tax rating period based on the taxable impact from the
linked charge, alteration, or distribution rating period.

4. Determines the state tax rate from the tax configuration table using the tax code, request
start time.

5. Calculates state tax based on this tax rate.

6. Creates new tax rating period for the state tax and link it to the original charge/alteration/
distribution rating period.

This program also shows how to use the extensions API to override the invoice data in the
rating result. The overridden value is persisted into the CDR output file.

Post-Rating Extension - Generating Midsession-Rated Events
The SamplePostRatingMidSessionExtension.java sample program shows how to use the
ECE extensions API to generate a midsession-rated event when a rated event contains the
following:

• A balance granted by an offer is exhausted

• A balance bucket is expired

• The charge offer used during rating is different from that of the ongoing session

Post-Rating Extension - Adding or Deleting Rating Periods
The PostRatingConsolidateRatingPeriods sample program shows how to use the ECE
extensions API to:

• Add a single rating period with the consolidated charge for all the rating periods of type
CHARGE.

• Delete all the existing rating periods of type CHARGE.

You can use this sample program to access the ECE cache and override the rating periods in
the final rated results by adding or deleting rating periods.

Post-Charging Extension - Adding Custom Data to Usage Responses and
Notifications

The sample program SamplePostChargingExtension shows how to use the ECE extensions
API to add custom data to the following:

• Usage responses. You add the data as AVPs. For example, you can add a custom
language preference to a customer's subscriber preferences. The custom values are
available as diameter hooks for further propagation.

• External notifications. You add the data as key-value pairs. For example, you can add
information such as calling number, called number, event type, and balance group to these
notifications, such as credit threshold notifications.

Chapter 22
Sample Extensions

22-31

Post-Charging Extension - Overriding Dynamic Quota
The SamplePostChargingExtension program shows how to use the ECE extensions API to
override the quota attributes, such as quota holding time and volume quota threshold, in the
usage response. You provide the data as name-value pairs. ECE then accesses the data and
updates the usage response.

Post-Charging Extension - Adding or Modifying Redirection Rules
The SamplePostChargingExtension program shows how to use the ECE extensions API to
add or modify rules for redirecting a subscriber session to a service portal applicable to the
business scenario. You can add or modify them based on the customer conditions, such as
whether the customer has insufficient funds or whether the customer has an inactive account.

Post-Charging Extension - Creating Custom Notifications for Top Ups
The sample program SamplePostChargingExtension shows how to use the ECE extensions
API to create a custom notification for topping up a customer's balance element through the
BRM PCM_OP_BILL_DEBIT opcode.

The sample program retrieves data and for a specified service type, request type, and balance
element combination. It also specifies the BRM opcode to call. The sample program includes
the following:

• The getUsageRequest() method, which specifies that the logic applies to the INITIATE
request type andEventDelayedSessionTelcoGprs service type.

• The getBalance() method, which specifies that the logic applies to the USD balance
element.

• The customMap() method, which retrieves the following data: customer ID, service ID,
balance ID, product type, and balance element code.

• The addCustomServiceEventWithOpCode() method, which specifies to call the
PCM_OP_BILL_DEBIT opcode.

Post-Update Extension - Enriching External Notifications
The sample program SampleUpdateNotificationExtension shows how to use the ECE
extensions API to add custom data to external notifications that are generated to provide
additional data. You add the data as name-value pairs. ECE then accesses the data and
updates the external notifications.

Rating/Charging Extension - Triggering RAR Notifications
The following sample programs show how to use the ECE extensions API to trigger server-
initiated reauthorization request (RAR) notifications in the rating and charging flow:

• SampleRarPreRatingExtension

• SampleRarPostRatingExtension

• SampleRarPostChargingExtension

These programs access the ECE cache data and trigger RAR notifications to retrieve the exact
reservation balance for performing any business operation.

Chapter 22
Sample Extensions

22-32

In the custom logic, if the SendGenericRARNotification is set to true, ECE generates generic
RAR notifications for all Diameter sessions for the client and the Rating-Group and Service-
Identifier are not set in those notifications. If SendGenericRARNotification is set to false,
ECE generates service-specific RAR notifications with Rating-Group and Service-Identifier set
in the notifications.

Rating Extension - Custom Item Assignment
The sample program SampleRatingExtension shows how to use the ECE extensions API to
alter the custom item type for rating impacts.

It alters custom item types for the rated results based on the data accessible through the rating
extension. The default configuration for the custom item type used in the extension must exist
in the ECE configuration.

The extension uses the following logic:

1. After taxation, determines the custom item type to be used based on the data accessible
through the rating extension.

2. Assigns the rating impacts to the custom bill items based on the new custom item type.

Extensions Data Load Sample
The sample program SampleExtensionsDataLoader demonstrates how the extensions data
repository can be used and how to load data into the repository.

The data loader used for extensions is located at ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/extensions.

The following SDK artifacts are provided:

• tax_configuration.spec

– This is a specification for tax codes. The specification expects a single block with a
cardinality of 1 per ExtensionsData.

– Contains the following attributes:

* Tax code (String)

* Pkg (String)

* Rate (Decimal)

* Start (DateTime)

* End (DateTime)

* Level (String)

* List (String) Description (String)

* Description (String)

* Rule (String)

• tax_configuration_data.csv

– A pipe-delimited CSV file. This file acts as a data source for tax codes.

• SampleExtensionsDataLoader

– A class that reads the CSV file, prepares the payload as per tax specification, and
uses the extensions repository to put a collection of ExtensionsData.

Chapter 22
Sample Extensions

22-33

– Also asserts if the number of ExtensionsData put in the Repository are the same as
the total being read.

Chapter 22
Sample Extensions

22-34

23
ECE Sample Programs

Use the sample programs included in the Oracle Communications Elastic Charging Engine
(ECE) SDK to learn how to call the ECE APIs.

Topics in this document:

• About the ECE Sample Programs

• Finding the Sample Programs

• Descriptions of the Sample Programs

• Compiling and Running the Sample Programs

• Example of SampleDebitRefundSession

• Compiling and Deploying SampleRatedEventFormatterCustomPlugin

About the ECE Sample Programs
The ECE SDK includes sample programs that demonstrate how to use the ECE API for
sending requests to ECE.

You can use these sample programs in the following ways:

• Use the sample programs as code samples for calling the ECE APIs.

• Use the sample programs as code samples for writing custom applications.

• Run sample programs to send requests to ECE and receive responses.

The sample programs print information about the messages exchanged.

• Use the sample program scripts to get an idea of the configuration and dependencies that
are required for integrating the ECE client into your build system (Maven, Ant, and so on).

You can also look at the sample program source code to see how it works. For example, if you
want to write a program that sends a unit-based debit request to ECE, examine
SampleDebitRefund to:

• View the methods to use in your code.

• How to use the libraries and calls.

Finding the Sample Programs
Table 23-1 shows the ECE SDK software directory structure, where ECE_home is the directory
in which the ECE Server software is installed.

Table 23-1 Elastic Charging Engine Sample Program Directories

Directory Description

ECE_home/ocecesdk/bin Directories that contain shell scripts for compiling
and running various types of sample programs.

23-1

Table 23-1 (Cont.) Elastic Charging Engine Sample Program Directories

Directory Description

ECE_home/ocecesdk/bin/extensions Shell scripts for extension-implementation sample
programs.

ECE_home/ocecesdk/bin/notification Shell scripts for notification sample programs.

ECE_home/ocecesdk/bin/plugin Shell scripts for the custom plug-in sample
programs.

ECE_home/ocecesdk/bin/policy Shell scripts for policy sample programs.

ECE_home/ocecesdk/bin/query Shell scripts for query sample programs.

ECE_home/ocecesdk/bin/update Shell scripts for update sample programs.

ECE_home/ocecesdk/bin/usage Shell scripts for usage sample programs.

ECE_home/ocecesdk/config Configuration files common to all sample
programs.

ECE_home/ocecesdk/config/extensions Configuration files for extension-implementation
sample programs.

ECE_home/ocecesdk/source All Java sample programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/extensions

Source files for extension-implementation sample
programs (for pre-request-processing and post-
request-processing).

Includes the data loader used for extensions.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/notification

Source files for notification sample programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/plugin

Source files for custom plug-in sample programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/policy

Source files for policy sample programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/query

Source files for query sample programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/update

Source files for update sample programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/usage

Source files for usage sample programs.

Descriptions of the Sample Programs
All of the sample programs can work with the ready-to-use sample data included with the ECE
Server software installation. The sample programs are supported on the Linux and Oracle
Solaris platforms.

Each sample program includes these supporting files:

• Source files to view or modify for your own applications

• Shell scripts to compile and run the sample programs

The sample programs use the generic .ecc script sdk_production_loader.ecc.

Chapter 23
Descriptions of the Sample Programs

23-2

Note:

The ECE sample programs do not work well with data you load using the simulator
loader utility.

For a list of each sample program, their descriptions, the shell scripts used to compile and run
them, and the applicable .ecc script, see:

• Usage Request Sample Programs

• Update Request Sample Programs

• Policy Request Sample Programs

• Query Request Sample Programs

• Extension Implementation Sample Programs

• Notification Sample Programs

• Custom Plug-In Sample Programs

To determine which parameter values you must use for running a sample program, you can
use the sample script's help option. For descriptions of the methods the sample programs use,
see oracle.communication.brm.charging.sdk in Elastic Charging Engine Java API
Reference.

Usage Request Sample Programs

Table 23-2 lists the usage sample programs, their descriptions, the shell scripts used to
compile and run them, and the applicable .ecc script.

Table 23-2 ECE Sample Programs for Usage Requests

Sample Program ECC Script Shell Script Description

SampleAccountingOnOff sdk_production_loa
der.ecc

sample_accounting_on_off.
sh

Simulates an accounting on/off
request being sent from the
mediation client.

SampleDataSession sdk_production_loa
der.ecc

sample_data_session.sh Simulates a simple data session,
including an INITIATE, an UPDATE
and a TERMINATE request.

SampleDebitRefundSession - sample_debit_refund_sessi
on.sh

Shows how to send debit and
refund requests with multiple
values in unit-based and amount-
based mode.

See "Example of
SampleDebitRefundSession".

SampleGenericSession - sample_generic_session.sh Simulates any kind of voice or data
session.

SampleGprsSession - sample_gprs_session.sh Simulates a GPRS session.

SampleIncrementalUsageReq
uestLauncher

sdk_production_loa
der.ecc

sample_incremental_usage
_request.sh

Simulates a voice session with
incremental mode.

Chapter 23
Descriptions of the Sample Programs

23-3

Table 23-2 (Cont.) ECE Sample Programs for Usage Requests

Sample Program ECC Script Shell Script Description

SampleMultipleServicestLaunc
her

sdk_production_loa
der.ecc

sample_multiple_service.sh Shows how to send usage
requests for the Multiple Services
Credit Control (MSCC) case
(multiple subrequests are sent in a
single usage request).

SamplePriceEnquiry sdk_production_loa
der.ecc

sample_price_enquiry.sh Sends a price enquiry request.

SampleReAuthRequest sdk_production_loa
der.ecc

sample_RAR.sh Sample program that shows the
generation of a reauthorization
request (RAR) message.

Also shows how to consume
notification messages. This portion
of the code is for illustration only
and is disabled.

SampleStartUpdateAccounting
RequestLauncher

- sample_start_update_acco
unting_request.sh

Simulates a sample usage session
including a
START_ACCOUNTING,
UPDATE_ACCOUNTING, and
TERMINATE request. For example,
a usage session for a DSL data
download in a postpaid scenario.

SampleUsageRequestLaunch
er

sdk_production_loa
der.ecc

sample_usage_request.sh Enables you to send custom voice
usage requests.

Customer ID, number of requests
to send, request type (INITITATE/
UPDATE...) and duration must be
given as arguments (e.g.
sample_usage_request.sh run
6500000000 2 TERMINATE 120).

SampleVoiceSession sdk_production_loa
der.ecc

sample_voice_session.sh Simulates a simple voice session,
including an INITIATE, an UPDATE
and a TERMINATE request.

Update Request Sample Programs

Table 23-3 lists the update sample program.

Table 23-3 ECE Sample Programs for Update Requests

Sample Program ECC Script Shell Script Description

SampleExternalTopUpReques
tLauncher

- sample_external_topup_not
ification_request.sh

Shows how third party systems
can perform direct top ups in ECE.

Policy Request Sample Programs

Table 23-4 lists the policy sample programs.

Chapter 23
Descriptions of the Sample Programs

23-4

Table 23-4 ECE Sample Programs for Policy Requests

Sample Program ECC Script Shell Script Description

SamplePolicySessionRequest
Launcher

- sample_policy_session_req
uest.sh

Simulates a policy session.

Shows how to send a policy
request to ECE that requests both
Sp and Sy information.

SampleSpendingLimitReport
RequestLauncher

- sample_spending_limit_rep
ort_request.sh

Simulates a policy Sy query
request.

Shows how to send a request to
retrieve policy counter status
information.

SampleSubscribeNotification
RequestLauncher

- sample_subscribe_notificat
ion_request.sh

Simulates a policy Sp query
request.

Shows how to send a request to
retrieve the value for a specified set
of subscriber preferences and
subscribe for receiving notifications
when the values of the preferences
change. For example, shows how
to retrieve the channel a subscriber
prefers for receiving policy-related
notifications (SMS or email) or the
language in which the subscriber
prefers the notification to be written
(French, English).

SampleSubscriberPreference
UpdateRequestLauncher

- sample_subscriber_prefere
nce_update_request.sh

Simulates a policy-related update
request.

Shows how to update the
subscriber preferences in ECE.

SampleUserDataRequestLau
ncher

- sample_user_data_request.
sh

Simulates a policy Sp query
request without subscription.

Shows how to send a request to
retrieve the values for subscriber
preferences configured for a
customer's service.

Query Request Sample Programs

Table 23-5 lists the query sample programs.

Table 23-5 ECE Sample Programs for Query Requests

Sample Program ECC Script Shell Script Description

SampleAuthenticationQuery sdk_production_load
er.ecc

sample_auth_query_reques
t.sh

Sends an authentication query
request.

SampleBalanceQueryReques
tLauncher

sdk_production_load
er.ecc

sample_balance_query_req
uest.sh

Sends a balance query request.

Extension Implementation Sample Programs

Table 23-6 lists the extension sample programs.

Chapter 23
Descriptions of the Sample Programs

23-5

Table 23-6 ECE Sample Programs for Extension Implementations

Sample Program ECC Script Shell Script Description

- - sample_extensions_loader Data loader for extension
implementations.

- - build_deploy_extension Sample extension implementation.

- - tax_configuration.spec Sample extension implementation.

- - tax_configuration_data.csv Sample extension implementation.

Notification Sample Programs

Table 23-7 lists the notifications sample programs.

Table 23-7 ECE Sample Programs for Notifications

Sample Program ECC Script Shell Script Description

SampleDurableJmsClient - sample_durable_jms_client
.sh

Simulates a durable JMS client.

SampleJmsClient - sample_jms_client.sh Simulates a JMS client.

SampleJmsServer - sample_jms_server.sh Simulates a JMS server.

Custom Plug-In Sample Programs

Table 23-8 lists the custom plug-in sample programs.

Table 23-8 ECE Sample Programs for Custom Plug-In

Sample Program ECC Script Shell Script Description

SampleRatedEventForm
atterCustomPlugin

- build_deploy_plugin.s
h

Writes rated events into
CDR records.

SampleRatedEventForm
atterKafkaCustomPlugin

- build_deploy_plugin.s
h

Writes fully rated events
into a JSON file that is
published to Kafka
topics.

Compiling and Running the Sample Programs
You compile and run a sample program with the shell script provided for that sample program.

To compile and run a sample program:

1. Open the ECE_home/config/eceTopology.conf file.

2. Uncomment the line where the sdkCustomerLoader node is defined.

You are required to uncomment this line to be able to run the SDK sample programs.

Chapter 23
Compiling and Running the Sample Programs

23-6

Caution:

Do not run the customerLoader utility without the -incremental parameter in a
production environment.

3. Go to the ECE server bin directory:

cd ECE_home/bin
4. Load the ECE runtime environment:

./ecc 'load sdk_production_loader.ecc'
5. Go to the ECE SDK bin subdirectory that contains the shell script for compiling and

running the sample program you want to run:

cd ECE_home/ocecesdk/bin/sample_program_directory

where sample_program_directory is extensions, notification, plugin, policy, query,
update, or usage. See Table 23-1 for more information.

For example, to compile and run the sample_voice_session.sh sample program (the
sample program for sending a voice session usage request to ECE), you must be in the
ECE_home/ocecesdk/bin/usage directory.

6. Compile the sample program:

sh ./scriptname.sh build

You must compile the sample program once.

For example, to compile the sample_voice_session.sh sample program, enter:

sh ./sample_voice_session.sh build
7. Run the sample program.

sh. /scriptname.sh run

Some programs require that you enter parameters. The run command output gives you
information about what parameters are required. You can also run the command with no
parameters to use default parameter values from the SDK scripts.

8. When you are done with the sample program, shut down the ECE runtime environment:

ecc stop server

Example of SampleDebitRefundSession
The following shows an example of how to run the SampleDebitRefundSession sample
program.

sample_debit_refund_session.sh build | run | defaultrun userId
requestType correlationId [BALANCE_ELEMENT_ID,AMOUNT
BALANCE_ELEMENT_ID,AMOUNT ...] [TOTAL,IN,OUT TOTAL,IN,OUT ...]

where:

• build compiles the related SDK source files.

Chapter 23
Example of SampleDebitRefundSession

23-7

• run runs the SDK program (debit refund) according to the parameters you provide. You
can supply the parameters in the command line or provide no parameters to run the
program with default parameter values.

• defaultrun builds and runs the SDK program. No parameters are required. The program
uses the default parameter specified inside the shell script.

• The order of parameters are fixed and if one optional parameter is provided then all values
of other optional parameters must be supplied.

• requestType is either DEBIT_AMOUNT, REFUND_AMOUNT, DEBIT_UNIT, or
REFUND_UNIT.

• DEBIT_AMOUNT or REFUND_AMOUNT, BALANCE_ELEMENT_ID is the well-known ISO
code for balance elements, such as 840 for US Dollars or 95 for Included Minutes.

• DEBIT_UNIT or REFUND_UNIT, TOTAL, IN, and OUT must be specified with numbers in
MB (megabytes).

For example, the following command debits 10 USD and 25 Included Minutes:

sample_debit_refund_session.sh run 650999777 DEBIT_AMOUNT CORR_ID 840,10 95,25

This example command refunds 50 USD and 5 Included Minutes:

sample_debit_refund_session.sh run 650999777 REFUND_AMOUNT CORR_ID 840,50 95,5

Compiling and Deploying
SampleRatedEventFormatterCustomPlugin

To compile and deploy the SampleRatedEventFormatterCustomPlugin sample program:

1. Configure Rated Event Formatter by doing the following:

a. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

b. Expand the ECE Configuration node.

c. Expand charging.ratedEventFormatters.Instance_Name, where Instance_Name is
the name of the instance you want to configure such as ratedEventFormatter1.

d. Expand Attributes.

e. Set the pluginType attribute to
oracle.communication.brm.charging.sdk.plugin.SampleRatedEventFormatterKaf
kaCustomPlugin.

2. Go to the ECE_home/ocecesdk/bin/plugin directory and then build the sample program:

sh ./build_deploy_plugin.sh build SampleRatedEventFormatterKafkaCustomPlugin
3. Deploy the sample program:

sh ./build_deploy_plugin.sh deploy SampleRatedEventFormatterKafkaCustomPlugin
4. Ensure that your Kafka Server is up and running.

5. Create a topic in your Kafka Server for the rated events.

For example, this command creates a Kafka topic named RatedEvent:

bin/kafka-topics.sh --create --bootstrap-server kafkaHost:port --replication-factor
1 --partitions 1 --topic RatedEvents

Chapter 23
Compiling and Deploying SampleRatedEventFormatterCustomPlugin

23-8

where kafkaHost and port are the host and port that the Kafka client will connect to in a
bootstrap Kafka cluster the first time it starts.

6. Wait until the entire configuration is ready and all components are up and running.

7. Perform usage, such as initiate, update, or terminate, for one of your customers.

Rated events will be published to the Kafka topic in JSON format. Also, JSON information
will be added to the ratedEventFormatter1.log file under the ECE_home/log directory.

8. Confirm that the event was published to the Kafka topic by running the Kafka console
consumer:

bin/kafka-console-consumer.sh --bootstrap-server kafkaHost:port --topic RatedEvents
9. When you are done with the sample program, shut down the ECE runtime environment:

ecc stop server

Chapter 23
Compiling and Deploying SampleRatedEventFormatterCustomPlugin

23-9

24
Testing ECE

Learn how to test your implementation of Oracle Communications Elastic Charging Engine
(ECE).

Topics in this document:

• About ECE Testing Utilities

• About Loading Sample Data

• About Performance MBean

• Changing Time and Date to Test ECE

• Using the query Utility to Test ECE

• Verifying that Usage Requests Can Be Processed

• Verifying That ECE Notifications Are Published to the JMS Topic

• Verifying that Friends and Family Calls Are Processed

• Verifying That Closed User Group Calls Are Processed

• Verifying That Balance Impacts Are Assigned to Bill Items

• Verifying That Payloads Are Correctly Formed

About ECE Testing Utilities
ECE offers the testing utilities in Table 24-1 that you can use when implementing ECE in a
charging system.

Table 24-1 ECE Testing Utilities

Utility Description

Simulator Emulates the role of a client application sending requests to ECE. The
simulator enables you to send usage requests, query requests, update
requests, or policy requests to ECE for processing. You can run sample
workloads for testing latency and throughput of your system.

See "Running the Simulator to Send Usage Requests".

pricingLoader Loads sample pricing-related configuration data, sample pricing data, and
sample customer data.

See "Loading Pricing Data On a Development System".

query Enables you to run queries on ECE data for development or debugging
purposes.

See "Using the query Utility to Test ECE".

Note: The ECE data model within the Coherence cache is subject to change.
Oracle does not recommend that client applications directly use the
Coherence API or the query utility for accessing ECE cache data. For
querying ECE cache data, write your client applications to use the ECE APIs
such as the balance query and authentication query APIs.

24-1

Table 24-1 (Cont.) ECE Testing Utilities

Utility Description

customerGenerator Creates XML files that represent sample customer data, which can then be
loaded into ECE.

Note: The ECE customer XML data file must conform to the format of the
ECE customer XML schema file (ECE_home/odi_transformation/
ECE_Schema.xsd).

customerLoader Loads customer data from XML files into ECE. In addition to using this utility
in a development system, you can use it in a production system to correct
data migration errors. To do so, run the utility with the -incremental
parameter.

Caution! Do not run the customerLoader utility without the -incremental
parameter in a production environment.

PerformanceMonitor
MBean

Monitors the performance of your ECE deployment during testing. See "About
Performance MBean".

About Loading Sample Data
After installing ECE, you can load sample data. Sample data is in the ECE_home/
sample_data directory which includes:

• Sample data for integrating with BRM

• Sample data for integrating with PDC

• Sample data for integrating with clients that send policy requests (used for policy testing)

Sample data includes sample event definitions, sample configuration data, sample product
offering cross-reference data, and sample customer data. Subsets of sample data geared for
ECE implementations for policy-related charging is also available.

To use sample data, you configure your data-loading utilities to load data from sample data
directories.

Loading Pricing Data On a Development System
When you install ECE, ECE includes no pricing data. You use the pricingLoader utility to load
sample pricing data in an XML file to test charging.

Caution:

Do not use the pricingLoader utility on a production system Use pricingLoader only
on a development system when PDC is not used.

You can use the following as sample data:

• The sample data installed with ECE.

• Data exported from PDC by using the PDC ImportExportPricing utility.

By default, the pricingLoader utility reads data stored in ECE_home/config/management/
sample_data/pricing_data. To change the directory where the sample data is stored:

Chapter 24
About Loading Sample Data

24-2

1. Open the ECE_home/config/management/migration-configuration.xml file.

2. Set the pricingDataDirectory parameter to the path of the directory that contains the ECE
pricing component XML data file.

To load sample pricing data, run the following command:

> start pricingLoader

Note:

ECE must be running when you load pricing data.

About Performance MBean
You can use the PerformanceMonitor MBean to monitor the performance of your ECE
deployment. You can monitor the CPU usage of server nodes and client nodes, such as the
simulator, during your testing.

For example, when building charging extensions, you can run ECE without your extensions
and use the methods to see how much CPU time is used. You can then run ECE with your
extensions, and use the methods again to see how much CPU time is used. By comparing the
CPU times, you can derive the additional time spent by your extension.

The following PerformanceMonitor MBean methods are available:

• startTrackingCPU()

The startTrackingCPU() method starts tracking CPU usage for the running process.

• stopTrackingCPU()

Use the stopTrackingCPU() method to stop tracking CPU usage for the running process.
This method returns CPU utilization between 0 and 1 where 0 means 0% CPU usage and
1 means 100% CPU usage.

• getTrackedCPU()

Use the getTrackedCPU() method to get the last tracked CPU usage between [0, 1] if a
previously tracked CPU usage is available. If a previously tracked CPU usage is not
available, -1 is returned.

The simulator MBean exposes the throughput information through the getLastThroughput()
method. The getLastThroughput() method gets the throughput number from the last
successfully completed simulation run. If completed simulation runs do not exist or if a
simulation run is in-progress, -1 is returned.

Changing Time and Date to Test ECE
You can change ECE's current time and date, without affecting the operating system time and
date, to test time-sensitive functions associated with Rated Event Formatter and Diameter
Gateway in ECE.

Chapter 24
About Performance MBean

24-3

Note:

Changing the time and date introduces the possibility of corrupting data. Do not
change the time and date in a production database.

For example, you can change ECE's current time and date to test the following:

• Whether accounts are billed correctly. If you advance the date in BRM to the next billing
cycle to test if the accounts are billed correctly, you must advance the date in ECE to the
same date as set in BRM. This ensures that the events rated by ECE on that day are sent
to BRM with the same date as set in BRM so that the events can be billed for the next
billing cycle.

• Whether customer's spending limit is reported correctly. If a charge offer includes a
conditional balance impact and the conditional balance impact is valid only for a day, you
can advance the date by a day to ensure that when the Spending-Limit-Report-Request
(SLR/SLA) request is received, the spending limit for the next day is reported.

• Whether events are rerated correctly. You can advance the date in ECE to store rated
events in the Oracle NoSQL database data store with the future date to ensure that they
are rerated when rerating is run in BRM for the future date.

To change the time and date to test ECE:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Specify the values for the following attributes:

• virtualTimeMode. Enter one of the following values:

– 0. Use this to reset the time to ECE's current time. Time is changed to the
operating system time.

– 1. Use this to set the time as a constant time. Time is frozen at the specified time
until this value or the time you set is changed.

– 2. Use this to set the time to change every second. Time is changed to the time
specified, and then advances one second every second.

• virtualTime. Enter the time and date in the following format: YYYY-MM-
DDTHH:mm:ss.SSS. For example, to set the time and date to 11:30:02:600 on
September 03, 2016, enter 2016-09-03T11:30:02.600.

After you change the time and date, perform testing as needed. You can also change the time
and date between testing stages. After completing testing, reset the time to ECE's current time
and perform database cleanup if needed.

Using the query Utility to Test ECE
The query utility provides access to ECE cache content, enabling you to run queries on ECE
Coherence caches. The query utility is meant to be used for debugging purposes only.

Chapter 24
Using the query Utility to Test ECE

24-4

You can use the query utility to write scripts that interact with the ECE domain objects, creating
CohQL queries. The query utility supports all ECE caches and objects.

Note:

Oracle does not recommend that client applications directly use the Coherence API
or the query utility for accessing ECE cache data. For querying ECE cache data,
write your client applications to use the ECE APIs such as the balance query and
authentication query APIs.

The query utility is included with the ECE Server software in ECE_home/bin.

To learn about query utility options, use the help command:

$./query.sh -h

The following shows non-interactive use of the query utility:

$./query.sh -s -c -l "select sum(getAvailableBalance(\'USD\',null).getQuantity()) from
Balance"

The following shows interactive use of the query utility:

$./query.sh
Coherence Command Line Tool
CohQl> select count () from Customer;
Results
1000
CohQL> select key(), value().getCode().toString() from BalanceElement
Rusults
840, "USD"

The query utility log file is ECE_home/logs/query_out.log.

The query statement history is contained in ECE_home/bin/.cohql-history. You can use the
up and down arrows to move through the command history.

Note:

Oracle does not recommend that client applications directly use the Coherence API
or the query utility for accessing ECE cache data. For querying ECE cache data,
write your client applications to use the ECE APIs such as the balance query and
authentication query APIs.

Example: Query the Subscriber Base Balance Summary
Here is an example of how to summarize balance amounts across the entire subscriber base
(total balance) in the grid:

$./query.sh -s -c -l "select sum(getAvailableBalance(\'USD\',null).getQuantity()) from
Balance"

Chapter 24
Using the query Utility to Test ECE

24-5

Example: Query a Customer Balance
Following is an example of how to query a customer's balance. You first query a specific
customer to find the balance ID, and then you query a specific balance to find the balance
element and balance amount.

Tip:

You can use the same model for querying a customer's active session object.

Step 1: Query the customer to find the balance ID

To query the customer and find the balance ID:

$./query.sh
Coherence Command Line Tool
CohQl> select key(), value() from Customer where key() = "Cust#6500000001"
Results
"Cust#6500000001",
 ####################################### Customer Begin
##
CustomerImpl
{ customerId='Cust#6500000001
, inTransaction='null
, defaultBalanceId='Bal#6500000001
, externalReference='1
, version=0
, profiles={Birthday=[RatingProfileValueImpl{name=NUMBER, value=2013-08-21,
 validFrom=1970-01-01T00:00:00.000Z, validTo='292278994-08-17T07:12:55.807Z}]}
, subscriberPreferences={}
, subscribedPreferences=null
, AlterationSharingAgreements ={}
, DistributionSharingAgreements ={}
, productMap={Pro#6500000001=ProductImpl{
...
, balanceId = 'Bal#6500000001'
, profiles = {FriendsAndFamily=[RatingProfileValueImpl{name=NUMBER,
 value=6501234567, validFrom=1970-01-01T00:00:00.000Z,
 validTo='292278994-08-17T07:12:55.807Z}]}
, subscriberPreferences = {}
, subscribedSpendingLimitCounters = {}
, Life cycle state = 102
, Life cycle Expiration time = 0
, activeSessions = {}
, debitRefundSessions = {}
, audited purchased charge offerings = {}
, audited purchased alteration offerings = {}
, audited profiles={}
, audited UsedAlterationSharingAgreements={}
, audited UsedDistributionSharingAgreements={}
 balance=null
}}
, balances={}
,
 billingUnits={BillingUnit#6500000001=[BillingUnitImpl
{billingUnitId=BillingUnit#6500000001},
{accountingCycle=[Triple{first=2013-08-21T11:10:16.224-07:00},

Chapter 24
Using the query Utility to Test ECE

24-6

{second=2013-09-21T11:10:16.224-07:00},{third=2013-10-21T11:10:16.224-07:00},]},
{billingCycle=[Triple{first=2013-08-21T11:10:16.224-07:00},
{second=2013-09-21T11:10:16.224-07:00},{third=2013-10-21T11:10:16.224-07:00},]},
{billingFrequency=1},]}
, auditedProducts={}
, auditedProfiles={}
, audited AlterationSharingAgreements={}
, audited DistributionSharingAgreements={}
, customerRerateProcessingInfo=CustomerRerateProcessingInfoImpl
{ RerateProcessingStatus='NOT_IN_RERATING, ReratingJobId='null}
 #####################Customer End ###

Step 2: Query the balance to find the balance element

To query the balance to find the balance element, you specify two components of the
associated key (composite key) that links the customer to the balance.

$./query.sh
Coherence Command Line Tool
CohQl> select value() from Balance where key().getId() = "Bal#6500000001" and
 key().getAssociatedKey() = "Cust#6500000001"
Results
[BalanceImpl{BalanceId=Bal#6500000001}
{externalRevision=0}{OwnerId=1}
{BillingUnitId=BillingUnit#6500000001}
{BillingUnit=null}ActiveReservationMap{}}
balanceItemSpecs{{USD=BalanceItemSpecImpl{beCode='USD', unit=Money{cur=USD}
, creditProfile=oracle.communication.brm.charging.config.creditprofile.internal.
CreditProfileReference@1dc79d4
, consumptionRule=EARLIEST_START}}}
balanceItems{([BalanceItemImpl{balanceItemId=0}{currentBalance=-10000}
{balanceItemSpec=BalanceItemSpecImpl{beCode='USD', unit=Money{cur=USD}
, creditProfile=oracle.communication.brm.charging.config.creditprofile.internal.
CreditProfileReference@1dc79d4
, consumptionRule=EARLIEST_START}{validity=null}{validityRule=null}]),]

Verifying that Usage Requests Can Be Processed
You use the ECE simulator to send requests to ECE for processing. The simulator emulates
network traffic coming from a network mediation system. You use the ECE query utility to
verify that the usage has impacted the customer balance.

Note:

If you installed online or offline network mediation software, you can use that
software instead of the ECE simulator to send usage requests for online or offline
charging. This section describes how to use the simulator only.

The simulator enables you to control the types of usage requests sent and the number and
type of subscribers sending the usage requests.

To verify that usage requests can be processed, perform the steps described in these sections:

• Starting ECE Nodes in the Cluster

• Running the Simulator to Send Usage Requests

• Verifying that Balances Are Impacted in ECE

Chapter 24
Verifying that Usage Requests Can Be Processed

24-7

Starting ECE Nodes in the Cluster
To start all ECE nodes in the cluster:

1. Log on to the driver machine.

2. Go to the ECE_home/bin directory:

3. Start the Elastic Charging Controller:

./ecc
4. Start the ECE nodes:

start
To verify that the ECE nodes are running:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See "Accessing
ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand ECE State Machine.

4. Expand StateManager.

5. Expand Attributes.

6. Verify that the stateName attribute is set to UsageProcessing.

This means the ECE nodes are running.

Running the Simulator to Send Usage Requests
To run the simulator and send usage requests:

1. Start the ECE simulator:

start simulator
2. Initialize the simulator:

init simulator
3. Run the sample workload:

simulate simulator

The simulator takes a few seconds to finish processing the workload.

4. Open the invocation.log file located in ECE_home/logs. You should see statistics for the
sample workload.

Verifying that Balances Are Impacted in ECE
To verify that the usage requests impacted customer's balances, use the ECE query utility.

Query for customer balances in the Customer cache

Here are two examples of how to query the customer cache to return the customer balances:

$./query.sh
Coherence Command Line Tool
CohQl> "select value() from Balance where ownerId='cccc'"

Chapter 24
Verifying that Usage Requests Can Be Processed

24-8

$./query.sh
Coherence Command Line Tool
CohQl> "select value() from Balance where balanceId='xxxx'"

In the results of the query returned, locate the following string:

{currentBalance=UnitValue{quantity=amount, unit=Money{cur=USD}

where amount is the quantity amount of the balance impact.

Verifying That ECE Notifications Are Published to the JMS Topic
To verify that ECE external asynchronous notifications are being published to the JMS topic,
you can use the following sample SDK notification programs:

• sample_jms_client.sh

• sample_jms_server.sh

Use these sample programs to check the correctness of the JMS topic.

You can also use the sample_jms_client.sh sample program to check the messages
produced from the ECE side to the JMS topic.

Disabling the Publishing of ECE Notifications to the JMS Topic
Some types of testing may not require publishing ECE external notifications to the JMS topic.

To disable external notifications:

1. Open the ECE_home/config/charging-cache-config.xml file.

2. For the ServiceContext module, change the cache-store configuration entry by replacing
the following:

<init-param>
 <param-name>cache-store</param-name>
 <param-
value>oracle.communication.brm.charging.notification.internal.coherence.AsynchronousN
otificationPublisher</param-value>

with this:

<init-param>
 <param-name>cache-store</param-name>
 <param-
value>oracle.communication.brm.charging.util.coherence.internal.NoPersistenceCacheSto
re</param-value>

ECE external notifications are disabled.

3. Save the file.

Verifying that Friends and Family Calls Are Processed
To verify that your ECE deployment is processing friends and family calls, perform prerequisite
tasks in BRM and PDC and then generate usage for the friends and family call for the
customer.

To verify that friends and family calls are processed:

Chapter 24
Verifying That ECE Notifications Are Published to the JMS Topic

24-9

1. Ensure the appropriate provisioning tag is available in BRM as follows:

a. Ensure you define a provisioning tag that includes the Friends&Family extended
rating attribute (ERA).

b. Ensure the provisioning tag in BRM contains the same profile specification labels
provided in PDC.

The profile specification labels that come ready-to-use in the PDC installation are
MYFRIENDS and MYFAMILY. Specify these labels in the provisioning tag when using
the ready-to-use profile specification labels in PDC.

c. (Optional) If you create a new provisioning tag in BRM, rather than using the ready-to-
use sample provisioning tag, run the SyncPDC utility to synchronize the provisioning
tag name to PDC.

2. If not already loaded, load the sample profile attribute specification for friends and family
into PDC.

The sample XML file is available at PDC_home/apps/Samples/Examples/
PDCSampleProfileSpec.xml where PDC_home is the directory in which you installed
PDC.

Use the PDC ImportExportPricing utility to load the XML file into the PDC database.

3. If not already loaded, load the sample custom analyzer rule for friends and family into
PDC.

The sample XML file is available at PDC_home/apps/Samples/Examples/
PDCSampleCAR.xml.

PDCSampleCAR.xml contains two custom rules: Friends&Family and SpecialDay.
These custom rules are designed to be used specifically with generic selectors.

Use the PDC ImportExportPricing utility to load the XML file into the PDC database.

4. In PDC, configure the charge offer for friends and family calls as follows:

a. Create a generic selector with the Friends&Family custom analyzer rule.

b. Create the charge offer for the friends and family calling service.

c. For the charge offer, select the provisioning tag that specifies Friends&Family.

d. Create the charge for the charge offer.

e. For the charge, include the generic selector with the Friends&Family rule.

Tip:

You associate the friends and family rule in the generic selector with a result:
a string value that maps to the rule, such as Friends&Family. At run time,
ECE uses this result in the charge to apply different rates for calls to friends
and family.

5. Verify that the ECE Pricing Updater is started.

6. Publish the PDC pricing data to ECE.

The Pricing Updater synchronizes the pricing data to ECE.

7. Verify that EM Gateway is started.

8. In BRM, create the customer account, purchase the charge offer, and configure the friends
and family phone numbers.

Chapter 24
Verifying that Friends and Family Calls Are Processed

24-10

The BRM customer data updates are incorporated into the ECE cache in real time through
EM Gateway.

9. Generate usage for a friends and family call for the customer.

Use the ECE SDK sample programs to generate usage.

10. Verify that balances are impacted as expected.

After you verify that friends and family calls are processed as expected using the ready-to-use
friends and family sample data in PDC and BRM, create your own friends and family
configurations.

Verifying That Closed User Group Calls Are Processed
To verify that closed user group calls are processed:

1. Ensure the appropriate provisioning tag is available in BRM by doing the following:

a. Ensure you define a provisioning tag that includes the ClosedUserGroup extended
rating attribute (ERA).

b. Ensure the provisioning tag in BRM contains the same profile specification labels that
are provided in PDC.

The profile specification label that comes in the PDC installation is
CLOSEDUSERGROUP. Specify this label in the provisioning tag when using the
profile specification labels in PDC.

c. (Optional) If you create a new provisioning tag in BRM, rather than using the sample
provisioning tag, run the SyncPDC utility to synchronize the provisioning tag name to
PDC.

2. If not already loaded, load the sample profile attribute specification for closed user group
into PDC.

The sample XML file is available at the following:

• For service-based closed user group samples:

PDC_home/apps/Samples/Examples/
Sample_ServiceCUG_ProfileSpecification.xml

• For customer-based closed user groups that work with sample data:

PDC_home/apps/Samples/Examples/OOB_ProfileSpecifications.xml

Use the PDC ImportExportPricing utility to load the XML file into the PDC database.

Tip:

Closed user group profiles are rating profiles (known as extended rating
attributes in BRM) that have a closed-user-group affiliation. The closed-user-
group affiliation is enabled by setting the useDynamicIdentifier field to true in
the PDC profile attribute specification.

3. If not already loaded, load the sample custom analyzer rule for closed user group into
PDC.

The sample XML file is available at the following:

• For service-based closed user group samples:

Chapter 24
Verifying That Closed User Group Calls Are Processed

24-11

PDC_home/apps/Samples/Examples/Sample_ServiceCUG_CR.xml

• For customer-based closed user groups that work with sample data:

PDC_home/apps/Samples/Examples/OOB_CRs.xml

OOB_CRs.xml contains three custom rules: Friends&Family and ClosedUserGroup
and SpecialDay. These custom rules are designed to be used specifically with generic
selectors.

Use the PDC ImportExportPricing utility to load the XML file into the PDC database.

4. In PDC, configure the charge offer for closed user group calls by doing the following:

a. Create a generic selector with the ClosedUserGroup custom analyzer rule.

b. Create the charge offer for the closed user group calling service.

c. For the charge offer, select the provisioning tag that specifies ClosedUserGroup.

d. Create the charge for the charge offer.

e. For the charge, include the generic selector with the ClosedUserGroup rule.

Tip:

You associate the closed user group rule in the generic selector with a result:
a string value that maps to the rule, such as ClosedUserGroup. At runtime,
ECE uses this result in the charge to apply different rates for calls to the
closed user group.

5. Verify that Pricing Updater is started.

6. Publish the PDC pricing data to the ECE rating engine.

Pricing Updater synchronizes the pricing data to ECE.

7. Verify that EM Gateway is started.

8. In BRM, for both the calling customer and the called customer, create the customer
account, purchase the charge offer, and configure the required closed-user-group-profile
information for the customer.

For example, if the closed user group profile is at the customer level, specify the closed
user group phone number. If the closed user group profile is at the service level, specify
the closed user group name.

The BRM customer data updates are incorporated into the ECE cache in real time through
EM Gateway.

9. Generate usage for a closed user group call for the calling customer.

Use the ECE SDK sample programs to generate usage.

10. Verify that balances are impacted as expected.

Once you verify that closed user group calls are processed as expected using the closed user
group sample data in PDC and BRM, create your own closed user group configurations.

Verifying That Balance Impacts Are Assigned to Bill Items
To verify that balance impacts are assigned to bill items according to your business rules:

Chapter 24
Verifying That Balance Impacts Are Assigned to Bill Items

24-12

Note:

Before loading item type selectors into PDC, make a backup copy of the customized
config_item_tags.xml and config_item_types.xml files in BRM.

1. Ensure that a storable class for each bill item type is available in BRM.

If you are verifying that ECE can apply balance impacts to a custom bill item, ensure the
custom storable class is available in BRM. For example, /item/custom.

2. If not already loaded, load the item type selector into PDC.

The item type selector contains item specifications and item type selector rules.

You associate item type selector rules with an item tag: a string value that maps to the item
type. At runtime, ECE evaluates your item-type-selector rule. The result of the rule
evaluation is a unique item type. ECE assigns balance impacts to the bill item associated
to the item type.

Item-type-selector XML files are available at PDC_home/apps/Samples/Examples.

Use the PDC ImportExportPricing utility to load the item-type-selector XML file into the
PDC database.

3. Verify that Pricing Updater is started.

4. Verify that EM Gateway is started.

5. In BRM, create the customer account and purchase the charge offer for the service
associated with the bill items for which you are verifying bill-item assignment.

The BRM customer data updates are incorporated into the ECE cache in real time through
EM Gateway.

6. Generate usage for the customer that impacts the bill items for which you are verifying bill-
item assignment.

Use the ECE SDK sample programs to generate usage.

7. Run billing.

8. Verify that balance impacts are assigned to bill items as expected.

Verifying That Payloads Are Correctly Formed
To debug rating errors, you may need to verify that payloads in usage requests are correctly
formed. You can view payloads in the RequestSpecification cache by using the following
CohQL command and piping the contents to a file:

select toSpecFormat() from RequestSpecification

The RequestSpecification cache contains read-only information.

If you identify an issue with a payload, correct the issue in PDC as follows:

1. Export the event object.

2. Update the XML with the corrections.

3. Re-import the event object.

Chapter 24
Verifying That Payloads Are Correctly Formed

24-13

After the event object is re-imported, PDC re-publishes the event object, and Pricing
Updater updates the event definition in ECE in the RequestSpecification cache
accordingly.

Chapter 24
Verifying That Payloads Are Correctly Formed

24-14

Part VII
ECE Utilities

This part provides information about the utilities provided with Oracle Communications Elastic
Charging Engine (ECE). It contains the following chapters:

• Charging Utilities

25
Charging Utilities

Learn about syntax and parameters used by the Oracle Communications Elastic Charging
Engine (ECE) charging utilities.

Topics in this document:

• query

query
Use the query utility to launch the Oracle Coherence query client and run queries against the
ECE Coherence cache. You can use the utility to write scripts that interact with the ECE
domain objects, creating CohQL queries. The utility supports all ECE caches and objects. For
more information, see "Using the query Utility to Test ECE".

You can run this utility in interactive mode or non-interactive mode.

Location

ECE_home/bin

Syntax: Interactive Mode

./query.sh
Coherence Command Line Tool
CohQl>

Syntax: Non-Interactive Mode

./query.sh [-t] [-c] [-s] [-e] [-l "statement"] [-f filename] [-h]
 [-P "CohQLquery"]

Parameters: Non-Interactive Mode

-t
Enables trace mode for printing debugging information.

-c
Specifies to exit the utility after processing all command-line arguments.

Note:

Do not use this argument when redirecting from standard input, because the utility
exits as soon as the command-line arguments have been processed and the
redirected input will never be read.

-s
Runs the utility in silent mode. This allows the utility to be used in pipes or filters by redirecting
to standard input and standard output.

25-1

-e
Runs the utility in extended language mode. This mode allows object literals in update and
insert commands.

-l "statement"
Runs the specified CohQL statement. Enclose your CohQL statements in single or double
quotes.
For more information about CohQL statements, see "Using Coherence Query Language" in
Oracle Fusion Middleware Developing Applications with Oracle Coherence.

-f filename
Processes the CohQL statements in the specified file. The statements in the file must be
separated by a semicolon (;). The file is an operating system-dependent path and must be
enclosed in single or double quotes.

-P "CohQLquery"
Runs the specified CohQL SELECT query against the database. You can run the select
Count() and select Value() queries. If you include a WHERE clause, it supports the condition
Customer_id = 'value'. For example:

./query.sh -P "select value() from Customer where Customer_id = 'Cust#6500000242'"

For more information about CohQL queries, see "Using Coherence Query Language" in
Oracle Fusion Middleware Developing Applications with Oracle Coherence.

-h
Displays the syntax for this utility.

Results

Look in the ECE_home/logs/query_out.log file for errors.

Chapter 25
query

25-2

A
Sample Notification Payloads

You can use the sample notification payloads to view the format of notifications that Oracle
Communications Elastic Charging Engine (ECE) publishes into the JSM notification queue.

Topics in this document:

• Aggregated Threshold Breach Event (Aggregated Based on Balance Element ID)

• Billing Event

• Credit Ceiling Breach Event

• Credit Floor Breach Event

• Custom Notification for BRM Gateway

• External Top-up Event

• First Usage Validity

• Life-Cycle Transition

• Replenish POID ID Event

• Spending Limit

• Subscriber Preference Event

• Threshold Breach Event (Breach Direction Down)

• Threshold Breach Event (Breach Direction Up)

• Top-up Event

Aggregated Threshold Breach Event (Aggregated Based on
Balance Element ID)

The payload published for an aggregated threshold breach (aggregated based on Balance
Element ID) uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <AggregatedCreditThresholdBreachNotification>
 <NotificationType>AGGREGATED_THRESHOLD_BREACH_EVENT</NotificationType>
 <PublicUserIdentities>
 <PublicUserIdentity>123</PublicUserIdentity>
 </PublicUserIdentities>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>-3.00</CurrentBalance>
 <ThresholdAmount>[-4.5, -3.5]</ThresholdAmount>
 <ThresholdPercent>[55.0, 65.0]</ThresholdPercent>
 <BreachDirection>THRESHOLD_BREACH_UP</BreachDirection>
 <OperationType>USAGE</OperationType>
 <SubOperationType>INITIATE</SubOperationType>
 </AggregatedCreditThresholdBreachNotification>
</Notification>

A-1

Billing Event
The payload published for a billing notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <BillingNotification>
 <NotificationType>BILLING_NOTIFICATION_EVENT</NotificationType>
 <CustomerId>12345</CustomerId>
 <BillingUnitId>2345</BillingUnitId>
 <ExternalReference>1</ExternalReference>
 </BillingNotification>
</Notification>

Credit Ceiling Breach Event
The payload published for a credit limit ceiling breach uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <CreditCeilingBreachNotification>
 <NotificationType>CREDIT_CEILING_BREACH_EVENT</NotificationType>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>1.00</CurrentBalance>
 <CreditCeiling>0</CreditCeiling>
 <AlertType>2</AlertType>
 <Reason>0x01</Reason>
 <OperationType>USAGE</OperationType>
 <SubOperationType>INITIATE</SubOperationType>
 </CreditCeilingBreachNotification>
</Notification>

Credit Floor Breach Event
The payload published for a credit limit floor breach uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <CreditFloorBreachNotification>
 <NotificationType>CREDIT_FLOOR_BREACH_EVENT</NotificationType>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>-1.00</CurrentBalance>
 <CreditFloor>0</CreditFloor>
 <AlertType>2</AlertType>
 <Reason>0x01</Reason>
 <OperationType>USAGE</OperationType>
 <SubOperationType>INITIATE</SubOperationType>
 </CreditFloorBreachNotification>
</Notification>

Appendix A
Billing Event

A-2

Custom Notification for BRM Gateway
The payload published for a custom notification that is targeted for BRM Gateway uses the
following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification version="3.0.0.0.0">
<CustomNotification>
 <NotificationType>CUSTOM_EVENT_NOTIFICATION_EVENT</NotificationType>
 <OpCode>CUST_MODIFY_CUSTOMER<OpCode>
 <CustomDataMap>
 <CustomDataKey>CustomerId</CustomDataKey>
 <CustomDataValue>123</CustomDataValue>
 </CustomDataMap>
 <CustomDataMap>
 <CustomDataKey>BalanceId</CustomDataKey>
 <CustomDataValue>456</CustomDataValue>
 </CustomDataMap>
 <CustomDataMap>
 <CustomDataKey>CustomerId</CustomDataKey>
 <CustomDataValue>123</CustomDataValue>
 </CustomDataMap>
 <CustomDataMap>
 <CustomDataKey>BalanceId</CustomDataKey>
 <CustomDataValue>456</CustomDataValue>
 </CustomDataMap>
</Notification>

External Top-up Event
The payload published for a external top-up notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <ExternalTopUpNotification>
 <NotificationType>EXTERNAL_TOP_UP_NOTIFICATION_EVENT</NotificationType>
 <PublicUserIdentities>
 <PublicUserIdentity>1000000</PublicUserIdentity>
 </PublicUserIdentities>
 <CustomerId>137826171</CustomerId>
 <ExternalReference>1</ExternalReference>
 <RequestTime>1325269800000</RequestTime>
 <Id>RECHARGE_ID1</Id>
 <BalanceImpact>
 <ProductId>137826171</ProductId>
 <ProductType>VOICE</ProductType>
 <BalanceItemImpact>
 <BalanceItemId>1</BalanceItemId>
 <BalanceElementCode>FSEC</BalanceElementCode>
 <Quantity>-10</Quantity>
 <ExtendValidityFlag>false</ExtendValidityFlag>
 <ValidFrom>1325269800000</ValidFrom>
 <ValidTo>1388514600000</ValidTo>
 </BalanceItemImpact
 </BalanceImpact>
 <SubscriberPreferences>

Appendix A
Custom Notification for BRM Gateway

A-3

 <SubscriberPreference PublicUserIdentity="1000001:VOICE, 1000000:VOICE">
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>
 <PreferenceValue>French</PreferenceValue>
 </SubscriberPreferencesInfo>
 </SubscriberPreference>
 </SubscriberPreferences>
 </ExternalTopUpNotification>>
</Notification>

First Usage Validity
The payload published for a first usage validity notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <FirstUsageValidityNotification>
 <NotificationType>FIRST_USAGE_VALIDITY_INIT_NOTIFICATION_EVENT</NotificationType>
 <CustomerId>12345</CustomerId>
 <ExternalReference>1</ExternalReference>
 <BalanceId>12345</BalanceId>
 <validity>
 <BalanceElementId>100025</BalanceElementId>
 <BalanceItemId>1</BalanceItemId>
 <ValidFrom>1325269800000</ValidFrom>
 <ValidTo>1388514600000</ValidTo>
 </validity>
 <SubscriberPreferences>
 <SubscriberPreference PublicUserIdentity="1000001:VOICE, 1000000:VOICE">
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>
 <PreferenceValue>French</PreferenceValue>
 </SubscriberPreferencesInfo>
 </SubscriberPreference>
 </SubscriberPreferences>
 </FirstUsageValidityNotification>
</Notification>

Life-Cycle Transition
The payload published for a life cycle transition notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <LifeCycleTransitionNotification>
 <NotificationType>LIFECYCLE_TRANSITION_NOTIFICATION_EVENT</NotificationType>
 <PublicUserIdentities>
 <PublicUserIdentity>0049100120</PublicUserIdentity>
 </PublicUserIdentities>
 <CustomerId>3135579</CustomerId>
 <ExternalReference>1</ExternalReference>
 <ProductId>3134811</ProductId>
 <ProductType>TelcoGsmTelephony</ProductType>
 <LifecycleState>103</LifecycleState>
 <ExpirationTime>1439653419867</ExpirationTime>
 <SubscriberPreferences>
 <SubscriberPreference PublicUserIdentity="316-20150813-143831-0-21484--153892112-
slc06bui:TelcoGsmTelephony, 0049100120:TelcoGsmTelephony">
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>

Appendix A
First Usage Validity

A-4

 <PreferenceValue>French</PreferenceValue>
 </SubscriberPreferencesInfo>
 </SubscriberPreference>
 </SubscriberPreferences>
 </LifeCycleTransitionNotification>
</Notification>

Replenish POID ID Event
The payload published for a replenish POID ID notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <ReplenishPoidIdNotification>
 <NotificationType>REPLENISH_POID_ID_NOTIFICATION_EVENT</NotificationType>
 <SchemaName>1</SchemaName>
 <Quantity>10000</Quantity>
 </ReplenishPoidIdNotification>
</Notification>

Spending Limit
The payload published for a spending limit notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <SpendingLimitNotification>
 <NotificationType>SPENDING_LIMIT_NOTIFICATION</NotificationType>
 <CustomerId>340876</CustomerId>
 <PublicUserIdentities>
 <PublicUserIdentity>9986068473</PublicUserIdentity>
 <PublicUserIdentity>login123</PublicUserIdentity>
 </PublicUserIdentities>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>2</CurrentBalance>
 <ConsumedReservation>3</ConsumedReservation>
 <Unit>MegaBytes</Unit>
 <Breaches>
 <OfferProfileName>Offer1</OfferProfileName>
 <LabelName>Fair Usage</LabelName>
 <StatusLabel>low qos</StatusLabel>
 <DeltaToNextThreshold>8</DeltaToNextThreshold>
 </Breaches>
 <DuplicateEvent>True</DuplicateEvent>
 </SpendingLimitNotification>
</Notification>

Subscriber Preference Event
The payload published for creating a subscriber preference notification uses the following
format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <CreateSubscriberPreference>
 <NotificationType>SUBSCRIBER_PREFERENCE_NOTIFICATION_EVENT</NotificationType>
 <CustomerId>340876</CustomerId>
 <ProductInfo>

Appendix A
Replenish POID ID Event

A-5

 <ProductId>12345</ProductId>
 <PublicUserIdentities>
 <PublicUserIdentity>9886753556</PublicUserIdentity>
 <PublicUserIdentity>login</PublicUserIdentity>
 </PublicUserIdentities>
 </ProductInfo>
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>
 <PreferenceValue>English</PreferenceValue>
 </SubscriberPreferencesInfo>
 <SubscriberPreferencesInfo>
 <PreferenceName>Channel</PreferenceName>
 <PreferenceValue>Email</PreferenceValue>
 </SubscriberPreferencesInfo>
 </CreateSubscriberPreference>
</Notification>

The payload published for modifying a subscriber preference notification uses the following
format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <ModifySubscriberPreference>
 <NotificationType>SUBSCRIBER_PREFERENCE_NOTIFICATION_EVENT</NotificationType>
 <CustomerId>customer1</CustomerId>
 <ProductInfo>
 <ProductId>12345</ProductId>
 <PublicUserIdentities>
 <PublicUserIdentity>9886753556</PublicUserIdentity>
 <PublicUserIdentity>login</PublicUserIdentity>
 </PublicUserIdentities>
 </ProductInfo>
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>
 <PreferenceValue>English</PreferenceValue>
 </SubscriberPreferencesInfo>
 <SubscriberPreferencesInfo>
 <PreferenceName>Channel</PreferenceName>
 <PreferenceValue>Email</PreferenceValue>
 </SubscriberPreferencesInfo>
 </ModifySubscriberPreference>
</Notification>

The payload published for deleting a subscriber preference notification uses the following
format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <DeleteSubscriberPreference>
 <NotificationType>SUBSCRIBER_PREFERENCE_NOTIFICATION_EVENT</NotificationType>
 <CustomerId>customer1</CustomerId>
 <ProductInfo>
 <ProductId>12345</ProductId>
 <PublicUserIdentities>
 <PublicUserIdentity>9886753556</PublicUserIdentity>
 <PublicUserIdentity>login</PublicUserIdentity>
 </PublicUserIdentities>
 </ProductInfo>
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>
 <PreferenceValue>English</PreferenceValue>
 </SubscriberPreferencesInfo>

Appendix A
Subscriber Preference Event

A-6

 <SubscriberPreferencesInfo>
 <PreferenceName>Channel</PreferenceName>
 <PreferenceValue>Email</PreferenceValue>
 </SubscriberPreferencesInfo>
 </DeleteSubscriberPreference>
</Notification>

Threshold Breach Event (Breach Direction Down)
The payload published for a threshold breach (breach direction up) uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <CreditThresholdBreachNotification>
 <NotificationType>THRESHOLD_BREACH_EVENT</NotificationType>
<PublicUserIdentities>
 <PublicUserIdentity>123</PublicUserIdentity></PublicUserIdentities>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>-4.00</CurrentBalance>
 <ThresholdAmount>-4.5</ThresholdAmount>
 <ThresholdPercent>55.0</ThresholdPercent>
 <BreachDirection>THRESHOLD_BREACH_UP</BreachDirection>
 <AlertType>2</AlertType>
 <Reason>0x01</Reason>
 <OperationType>USAGE</OperationType>
 <SubOperationType>INITIATE</SubOperationType>
 </CreditThresholdBreachNotification>
</Notification>

Threshold Breach Event (Breach Direction Up)
The payload published for a threshold breach (breach direction up) uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <CreditThresholdBreachNotification>
 <NotificationType>THRESHOLD_BREACH_EVENT</NotificationType>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>-4.00</CurrentBalance>
 <ThresholdAmount>-4.5</ThresholdAmount>
 <ThresholdPercent>55.0</ThresholdPercent>
 <BreachDirection>THRESHOLD_BREACH_UP</BreachDirection>
 </CreditThresholdBreachNotification>
</Notification>

Top-up Event
The payload published for a top-up uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <RARNotification>
 <NotificationType>TOP_UP_NOTIFICATION_EVENT</NotificationType>
 <PublicUserIdentities>
 <PublicUserIdentity>123</PublicUserIdentity>
 <PublicUserIdentity>456</PublicUserIdentity>
 </PublicUserIdentities>

Appendix A
Threshold Breach Event (Breach Direction Down)

A-7

 <ActiveSessions>
 <ActiveSessionId>SESSION1</ActiveSessionId>
 <ActiveSessionId>SESSION2</ActiveSessionId>
 </ActiveSessions>
 <ProductType>VOICE</ProductType>
 <ProductId>test</ProductId>
 <CustomerId>12345</CustomerId>
 <DuplicateEvent>True</DuplicateEvent>
 </RARNotification>
</Notification>

Appendix A
Top-up Event

A-8

B
Specifications and Standards Compliance in
ECE

Learn about the specifications and standards used in Oracle Communications Elastic Charging
Engine (ECE).

Topics in this document:

• About Specifications and Standards Compliance

About Specifications and Standards Compliance
The ECE charging API aligns with the Remote Authentication Dial In User Service (RADIUS)
Accounting Request for Comments (RFC) specifications and with the standards described in
the 3rd Generation Partnership Project (3GPP) Technical Specifications (TS). ECE charging
supports any 3GPP sub-domain; some are listed here as examples:

• PS (Packet Switched) connections

• CS (Circuit Switched) connections

• WLAN (Wireless Local Area Network)

• IMS (IP-Multimedia Subsystem)

• PCRF (Policy and Charging Rules Function) and Sy/Sp (Sh) interfaces

The ECE charging API is extensible; it can accommodate proprietary extensions of the
standards.

The ECE Java API aligns with the Diameter Ro, Diameter CCA, Diameter Rf, and RADIUS
message formats. Network mediation software programs (client applications) that support
these protocols can send usage requests to ECE.

The following 3GPP Technical Specifications (TS) relate to ECE charging functionality.

• "3GPP TS 32.240 Telecommunication management; Charging management; Charging
architecture and principles"

For online charging, ECE exposes a Java API based on Diameter Ro, which is extensible
for supporting any extension or variation.

ECE implements the following functionality for online charging:

– Online Charging Function modules:

* Session Based Charging Function (SBCF)

* Event Based Charging Function (EBCF)

– Rating Function (RF)

– Account Balance Management Function (ABMF)

• "3GPP TS 32.260 Telecommunication management; Charging management; IP Multimedia
Subsystem (IMS) charging"

B-1

• "3GPP TS 32.290 Telecommunication management; Charging management; 5G system;
Services, operations and procedures of charging using Service Based Interface (SBI)

• "3GPP TS 32.299 Telecommunication management; Charging management; Diameter
charging applications"

For offline charging, ECE exposes a Java API based on DIAMETER Rf, which can be
called from the offline mediation system. The Java interface has functionality close to that
of the Rf interface described in 3GPP 32.299 and is extensible for supporting any
extension or variation.

Oracle Communications Offline Mediation Controller uses this interface to load CDRs into
ECE for charging.

• GB922 TM Forum Information Framework (SID).

The following RADIUS RFCs relate to ECE charging functionality.

• RFC 2865, "Remote Authentication Dial In User Service (RADIUS)," June 2000, RADIUS.
Updated by: RFC 2868, RFC 3575, RFC 5080.

• RFC 2866, RFC 2867, RFC 2868, RFC 2869, RFC 3579

ECE aligns with the Diameter Credit-Control Application charging functionality described in
Internet Engineering Task Force (IETF) Network Working Group RFC 4006.

The following 3GPP Technical Specifications (TS) relate to the Policy and Charging Rules
Function (PCRF) and ECE:

• "3GPP TS 29.219 Policy and charging control: Spending limit reporting over Sy reference
point"

The Sy interface is located between the PCRF and Online Network Mediation Controller. It
enables the transfer of customer spending information.

• "3GPP TS 29.329 Sh interface based on the Diameter protocol"

The Sp (implemented as Sh) interface is located between the SPR (Subscription Profile
Repository) and PCRF. It enables the retrieval of customer identities and profile
information.

Appendix B
About Specifications and Standards Compliance

B-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 About Configuring Charging in Elastic Charging Controller
	About Usage Charging in ECE
	About Configuring Usage Charging in ECE
	About Balance Management in a Prepaid Session

	Part I Using the ECE Java API
	2 About the ECE API
	About the ECE API
	About the Charging API
	About Charging Operation Types

	About the Authentication API
	About the Custom Plug-in APIs

	3 Configuring Multiple Services Credit Control
	About Multiple Services Credit Control

	4 Advice of Charge and Advice of Promotion
	About Advice of Charge
	About Advice of Promotion

	5 Configuring Top-Ups
	Integrating Top-Up Clients
	Detecting Duplicate Top-Up Requests
	Using the Top-Up API

	6 Configuring Balance Queries
	Integrating Balance Query clients
	About Sending Authentication Queries
	About Sending Balance Queries
	Configuring Debit Request History
	About the Balance API

	Part II Working with BRM
	7 Synchronizing Data Between ECE and the BRM Database
	About Synchronizing Data Between BRM and ECE
	Setting Up Synchronization between BRM and ECE
	Enabling Real-Time Synchronization of BRM and ECE Customer Data Updates
	Configuring the Connection Manager to Get Real-Time Balances for a Service from ECE

	How ECE Gets Historical Data From the BRM Database

	8 Loading ECE Rated Events into BRM
	About Sending Rated Events to the BRM Database
	Adding a Rated Event Publisher Instance
	Configuring Rated Event Publisher
	Configuring Item Assignment for Rated Events
	Configuring Life Cycle States in ECE for BRM
	Configuring Lifecycle States At Installation
	Configuring Lifecycle States During Runtime

	Including or Excluding a Customer’s Remaining Balance in Rated Events
	Accessing ECE Configuration MBeans

	9 Generating POIDs for Rated Events
	About Generating POIDs in ECE
	Configuring ECE to Generate POIDs for Prepaid Events
	Enabling Prepaid Event Partitions in BRM
	Configuring Cluster ID
	Enabling POID Generation for Prepaid Events in ECE

	Part III Managing ECE Notifications
	10 Configuring Notifications in ECE
	About ECE Notifications
	Enabling External Notifications in ECE
	Enabling Specific Notification Types
	Enabling In-Session Group Notifications in ECE
	Configuring BRM Gateway to Process ECE Notifications
	Configuring a Single BRM Gateway Instance
	Configuring Multiple BRM Gateway Instances
	Connecting BRM Gateway to Kafka Topics and BRM
	Configuring WebLogic Queues for BRM Gateway
	WebLogic Server Configuration Settings for the connectionFactory

	Considerations for Using a Non-WebLogic Server JMS Provider

	Modifying JMS Credentials for Publishing External Notifications

	11 Configuring Subscriber Preferences
	Configuring Subscriber Preferences
	Maintaining Subscriber Preferences with Customer Center
	About Regulating Permissions to Update Subscriber Preferences

	Configuring ECE to Enrich External Notifications with Subscriber Preference Information
	Customizing Subscriber Preferences
	Configuring Group Notifications

	Part IV Managing Charging Sessions
	12 Managing Midsession-Rated Events
	Configuring ECE to Generate Midsession-Rated Events
	Generating Midsession-Rated Events When USU Block Missing
	Configuring Non-Linear Rating for Tariff Changes
	Enabling Non-Linear Rating for Midsession-Rating Condition Changes
	Configuring ECE to Support Tariff Time Change
	Sample Non-Linear Rating for Tariff Changes

	Viewing Reason for Midsession-Rated Event

	13 Managing Online Charging Sessions
	Configuring ECE to Support Prepaid Usage Overage
	Managing Dynamic Charging Overrides for Online Sessions
	Processing Granted Allowances Before Applying Usage Charges
	Enabling Server-Initiated Reauthorization Requests
	Configuring ECE to Return Remaining-Balance Information in Usage Responses
	Configuring Taxation in ECE
	Configuring How ECE Manages Active Sessions When Network Elements Fail
	Configuring ECE to Redirect Subscriber Sessions to a Service Portal
	Enabling Match Factor in ECE
	Configuring Diameter Gateway to Bypass Rating During ECE Downtime
	Managing the Persistence of Usage Requests During ECE Downtime
	Replaying Persisted Requests into ECE

	Accessing ECE Configuration MBeans
	Returning FUIs for Discount Sharing Group Owner
	Location-Based Charging

	14 Managing Session Start and End Times
	Using Session Connect Time for Charging
	Optimizing Network Signaling
	Configuring ECE to Align Validity Start and End of Conditional Balance Impacts and Charge Offers

	15 Managing Reservations for Online Sessions
	Configuring Reservation Expiration and Validity
	Configuring a Minimum Quantity for Reservation
	Configuring Reservation Quota for Services
	Managing Dynamic Quotas for Online Sessions
	Triggering RAR Notifications for Ongoing Sessions

	16 Managing Rounding and Consumption Rules
	Configuring Rounding for a Resource
	Configuring Rounding for Reverse Rating on Multiple RUMs
	Configuring Systemwide Consumption Rules for Balances

	Part V Integrating with External Systems
	17 Connecting ECE to a 5G Client
	About the HTTP Gateway
	About Determining the Charging Type
	About Sending Notifications to HTTP Gateway

	Integrating HTTP Gateway with 5G Networks
	Configuring Registration Details for the HTTP Gateway Server
	Configuring NF Services
	Configuring HTTP Gateway for Convergent Charging
	Editing the HTTP Gateway Mediation Specification File
	Connecting ECE to Kafka Topics
	Configuring ECE to Send Notifications to HTTP Gateway
	Recording Failed ECE Usage Requests
	Configuring Communication through SCP
	Starting the HTTP Gateway

	Using the ECE REST API

	18 Generating CDRs for External Systems
	About Using the HTTP Gateway
	About Generating CDRs
	About Saving CDR Files to Disk
	Setting Up ECE to Generate CDRs
	Accessing ECE Configuration MBeans
	Configuring HTTP Gateway for CDR Generation
	Configuring the CDR Gateway
	Configuring the CDR Formatter
	Configuring the CDR Formatter Plug-in

	About Trigger Types
	Triggers for Convergent Charging Events
	Triggers for Roaming Events

	19 Connecting ECE to a Diameter Client
	Overview of Network Integration Using Diameter Gateway
	Network Integration for Sp and Sy Interface (Policy) Requests
	Network Integration for Gy Interface Requests
	How Diameter Gateway Creates Usage Requests
	About Usage Request Fixed Attributes

	Editing the Mediation Specification File
	Network Integration for Gy Balance Query Requests
	Network Integration for Gy Top-Up Requests
	Sending Multiple-Service Credit Control (MSCC) Requests from Diameter Gateway
	Configuring Subscriber ID Lookups

	Adding Custom AVPs for Usage Requests
	Using Incremental or Cumulative Accounting for Usage Requests
	Configuring Accounting Mode for Diameter Gateway

	Configuring WebLogic Queues for Notifications
	Configuring Alternative Diameter Peers for Notifications
	Viewing Active Diameter Peers

	Configuring ECE for Apache Kafka
	Handling Requests When Charging Servers Are Unavailable
	Recording Failed ECE Usage Requests

	20 Connecting ECE to a RADIUS Client
	Overview of Authentication and Accounting Using RADIUS Gateway
	About RADIUS Gateway Authentication
	Authenticating Access Requests by Using PAP
	Authenticating Access Requests by Using CHAP
	Authenticating Access Requests by Using EAP
	Loading Data Keys Extracted from BRM into ECE
	Customizing the RADIUS Data Dictionary
	About the RADIUS Data Dictionary
	Creating a Custom Data Dictionary
	Selecting a RADIUS Data Dictionary When Using Different NAS Vendors
	Adding Custom Vendor-Specific Attributes

	Loading the RADIUS Mediation Specification Data
	About Mapping RADIUS Network Attributes to Event Attributes
	Mapping RADIUS Network Attributes to Event Attributes

	About RADIUS Gateway Accounting
	About Accounting-Start and Accounting-Stop Requests
	About Accounting-On and Accounting-Off Requests
	About Accounting-Interim-Update Requests

	21 Configuring Policy-Driven Charging
	About Policy-Driven Charging
	About Group-Based Policy-Driven Charging
	Policy-Driven Charging Example

	Configuring Policy-Driven Charging
	About ECE and Policy Clients
	How ECE Processes Policy Requests for Online Network Mediation System

	Configuring Breach Tolerance for Policy-Tier Thresholds
	About Integrating Policy Clients with ECE
	About the ECE Sy and Sp Interface
	About the ECE Sy Interface
	About the ECE Sp Interface
	Querying for Extended Subscriber Preference Information in Sp Query

	About a Combined ECE Sy and Sp Interface

	About Calculating Maximum Authorization for Policy-Driven Charging Sessions
	Configuring ECE to Reject Spending Limit Requests Without Counters
	About the Policy Management API

	Part VI Customizing ECE
	22 Customizing Rating
	Operational Considerations
	Configuring Extensions
	About Performance with Extensions
	About Logging in Extensions
	About Extension Exceptions
	About Extension Security

	Extension Points
	BRM Gateway Request Processing Extension Points
	Diameter-Request Processing Extension Points
	HTTP Gateway Request Processing Extension Points
	RADIUS-Request Processing Extension Points
	Authentication Extension Points
	Accounting Extension Points

	Update-Request Processing Extension Points
	Usage-Request Processing Extension Points

	Implementing the Extensions Logic
	BRMCustomOpCodeCall Extension
	CustomAuth Extension
	CustomEAPChallenge Extension
	CustomEncode Extension
	OCSBypass Extension
	PreOCS Extension
	PreProcessor Extension
	PostOCS Extension
	PostOCSBalanceQuery Extension
	Pre-Rating Extension
	Post-Rating Extension
	Rating Extension
	RequestReceived Extension
	Post-Charging Extension
	Post-Update Extension
	Extensions Cache
	Extensions Cache API

	Sample Extensions
	How To Use the Sample Extensions
	Validating Sample Extensions
	BRM Gateway Extension - Creating Opcode Flist
	Diameter Gateway Extension - Gy Service
	Diameter Gateway Extension - Sy Service
	HTTP Gateway Extension - Service
	OCSBypass Extension - Bypassing Rating
	Pre-Rating Extension - Dynamic Quota Management
	Dynamic Quota Management - Modifying Quota Based on Network Type
	Dynamic Quota Management - Modifying Requested Quota
	Dynamic Quota Management - Modifying Default Quota Configuration

	Pre-Rating Extension - Retrieving Function Values for Discount Expressions
	Pre-Rating Extension - Generating Midsession-Rated Event
	Pre-Rating Extension - Overriding Price in Product Offerings
	Post-Rating Extension - Complex Taxation
	Post-Rating Extension - Generating Midsession-Rated Events
	Post-Rating Extension - Adding or Deleting Rating Periods
	Post-Charging Extension - Adding Custom Data to Usage Responses and Notifications
	Post-Charging Extension - Overriding Dynamic Quota
	Post-Charging Extension - Adding or Modifying Redirection Rules
	Post-Charging Extension - Creating Custom Notifications for Top Ups
	Post-Update Extension - Enriching External Notifications
	Rating/Charging Extension - Triggering RAR Notifications
	Rating Extension - Custom Item Assignment
	Extensions Data Load Sample

	23 ECE Sample Programs
	About the ECE Sample Programs
	Finding the Sample Programs
	Descriptions of the Sample Programs
	Compiling and Running the Sample Programs
	Example of SampleDebitRefundSession
	Compiling and Deploying SampleRatedEventFormatterCustomPlugin

	24 Testing ECE
	About ECE Testing Utilities
	About Loading Sample Data
	Loading Pricing Data On a Development System

	About Performance MBean
	Changing Time and Date to Test ECE
	Using the query Utility to Test ECE
	Example: Query the Subscriber Base Balance Summary
	Example: Query a Customer Balance

	Verifying that Usage Requests Can Be Processed
	Starting ECE Nodes in the Cluster
	Running the Simulator to Send Usage Requests
	Verifying that Balances Are Impacted in ECE

	Verifying That ECE Notifications Are Published to the JMS Topic
	Disabling the Publishing of ECE Notifications to the JMS Topic

	Verifying that Friends and Family Calls Are Processed
	Verifying That Closed User Group Calls Are Processed
	Verifying That Balance Impacts Are Assigned to Bill Items
	Verifying That Payloads Are Correctly Formed

	Part VII ECE Utilities
	25 Charging Utilities
	query

	A Sample Notification Payloads
	Aggregated Threshold Breach Event (Aggregated Based on Balance Element ID)
	Billing Event
	Credit Ceiling Breach Event
	Credit Floor Breach Event
	Custom Notification for BRM Gateway
	External Top-up Event
	First Usage Validity
	Life-Cycle Transition
	Replenish POID ID Event
	Spending Limit
	Subscriber Preference Event
	Threshold Breach Event (Breach Direction Down)
	Threshold Breach Event (Breach Direction Up)
	Top-up Event

	B Specifications and Standards Compliance in ECE
	About Specifications and Standards Compliance

