
Oracle® Communications ASAP
Developer's Guide

Release 7.4
F40783-01
April 2022

Oracle Communications ASAP Developer's Guide, Release 7.4

F40783-01

Copyright © 2005, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxxix

Documentation Accessibility xxxix

Diversity and Inclusion xxxix

1 Development Overview

Application architecture 1-1

Client/server architecture 1-3

Multithreaded architecture 1-3

Open Server/Open Client ASAP components 1-4

RDBMS Server 1-4

Open Client 1-5

Open Server 1-5

The Gateway Server application 1-5

Multithreaded environment 1-6

Open Server thread scheduler 1-6

Programming in a multithreaded environment 1-7

Multithreaded procedural server initialization 1-8

Inter-process communication 1-9

RPCs and registered procedures 1-10

Language requests 1-10

Application server driver threads 1-10

Inter-thread communication 1-12

Mutually exclusive semaphores (mutexes) 1-12

Thread message queues 1-12

Sample message queue statistics 1-15

Device-oriented threads and socketpair messaging 1-15

Notes for C++ compilation 1-16

Library architecture 1-16

ASAP API development structure 1-16

API library structures 1-17

Common API library – libasc 1-18

iii

Client application API library – libclient 1-19

Server application API library – libcontrol 1-19

Interpreter API library – libinterpret 1-22

SRP API library – libsrp 1-22

NEP API library – libnep 1-24

Multi-protocol communications API library – libasccomm 1-26

Generic external device driver library – libgedd 1-27

Network element configuration library – libnecfg 1-27

ASAP API application development 1-27

Client application structure 1-27

Server application structure 1-28

SRP server application structure 1-29

Generic NEP application structure 1-29

Multi-protocol NEP structure 1-30

Development of Cartridges supporting Asynchronous NEs 1-31

Asynchronous NE Response Handler 1-32

Response handler manager 1-32

2 ASAP Database Tables

Control database 2-1

User-created database tables 2-1

tbl_alarm_center 2-1

tbl_alarm_log 2-2

tbl_appl_proc 2-3

tbl_classA_secu 2-5

tbl_classB_secu 2-6

tbl_code_list 2-7

tbl_component 2-7

tbl_db_threshold 2-8

tbl_event_log 2-9

tbl_event_type 2-10

tbl_fs_threshold 2-13

tbl_listeners 2-14

tbl_name_value_pair 2-15

tbl_process_info 2-15

tbl_server_info 2-16

tbl_system_alarm 2-16

tbl_unid 2-18

tbl_unload_param 2-18

tbl_unload_sp 2-19

iv

SARM database 2-19

Work order audit information 2-19

Viewing work order audit information 2-20

SARM database tables 2-21

tbl_asap_srp 2-22

tbl_asap_stats 2-24

tbl_asdl_config 2-27

tbl_asdl_log 2-28

tbl_asdl_parm 2-29

tbl_asdl_response 2-32

tbl_aux_wo_prop 2-33

tbl_blackout 2-34

tbl_clli_route 2-35

tbl_comm_param 2-36

tbl_cp_mux 2-37

tbl_csdl_asdl 2-37

tbl_csdl_asdl_eval 2-38

tbl_csdl_config 2-40

tbl_err_threshold 2-41

tbl_event_dataset 2-42

tbl_event_template 2-42

tbl_ext_method_lib 2-43

tbl_host_clli 2-44

tbl_id_routing 2-44

tbl_info_parm 2-45

tbl_label_value 2-46

tbl_large_data 2-47

tbl_msg_convert 2-47

tbl_ne_config 2-49

tbl_ne_event 2-53

tbl_ne_monitor 2-53

tbl_ne_strsub 2-55

tbl_nep 2-56

tbl_nep_asdl_prog 2-57

tbl_nep_mux 2-58

tbl_nep_jprogram 2-58

tbl_nep_program 2-59

tbl_nep_program_source 2-60

tbl_nep_rte_asdl_nxx 2-60

tbl_order_events 2-61

tbl_order_translation 2-62

v

tbl_resource_pool 2-62

tbl_srq 2-64

tbl_srq_asdl_parm 2-66

tbl_srq_csdl 2-67

tbl_srq_log 2-70

tbl_srq_parm 2-71

tbl_srt_bundle 2-72

tbl_srt_bundle_csdl 2-73

tbl_srt_config_reload 2-74

tbl_srt_correlation 2-74

tbl_srt_csdl_parm 2-74

tbl_srt_ctx 2-75

srt_header_mapping 2-75

tbl_srt_lookup 2-76

tbl_srt_lookup_input 2-76

tbl_srt_lookup_output 2-77

tbl_srt_query_spawn 2-77

tbl_stubs 2-77

tbl_test_rpc_parm 2-78

tbl_stat_text 2-78

tbl_unload_sp 2-79

tbl_unload_param 2-79

temp_wrk_ord 2-80

tbl_uid_pwd 2-82

tbl_unid 2-83

tbl_user_err 2-83

tbl_user_err_threshold 2-85

tbl_usr_wo_prop 2-86

tbl_wo_audit 2-87

tbl_wo_event_queue 2-90

tbl_wrk_ord (SARM) 2-92

temp_csdl_estim 2-98

temp_csdl_list 2-99

NEP database 2-99

User-created database tables 2-100

tbl_asdl_lcc 2-100

tbl_clli_len_ltg 2-100

tbl_dms_logins 2-101

tbl_dms_options 2-102

tbl_march_feat 2-102

tbl_march_rpm 2-102

vi

tbl_ne_opt_vlu 2-103

tbl_unid 2-104

tbl_valid_len 2-104

tbl_valid_nxx_line 2-105

Admin database 2-105

User-created database tables 2-105

tbl_asap_sarm 2-105

tbl_oca_svr 2-106

tbl_perf_asdl 2-106

tbl_perf_csdl 2-107

tbl_perf_ne 2-109

tbl_perf_ne_asdl 2-110

tbl_perf_order 2-111

tbl_aims_msg_convert 2-112

tbl_aims_preference 2-113

tbl_aims_map_acl (Not used) 2-113

tbl_aims_audit_log (Not used) 2-113

tbl_aims_component 2-113

tbl_aims_function 2-113

tbl_aims_operation 2-113

tbl_aims_param 2-114

tbl_aims_rpc 2-114

tbl_aims_rpc_defn 2-114

tbl_aims_rpc_dest 2-114

tbl_aims_rpc_dest_defn 2-114

tbl_aims_rpc_param 2-114

tbl_aims_rpc_param_defn 2-114

tbl_aims_rpc_param_type 2-114

tbl_aims_template 2-114

C++ SRP API emulator database 2-114

User-created database tables 2-115

tbl_aux_wo_prop 2-115

tbl_csdl 2-116

tbl_csdl_parm 2-117

tbl_srp_event_status 2-117

tbl_tst_rqst 2-117

tbl_tst_suite 2-118

tbl_unid 2-119

tbl_usr_wo_prop 2-119

tbl_wo_def 2-120

tbl_wo_list 2-123

vii

tbl_wrk_ord (user-created database table) 2-124

tbl_wrk_ord_log 2-125

tbl_wrk_ord_parm 2-126

tbl_wrk_ord_rev 2-126

3 Shared Libraries

Common library interface 3-1

Global variables 3-1

Open client library API functions 3-2

Oracle Functions 3-2

I/O management 3-3

Event notification and diagnostic functions 3-3

Application configuration determination functions 3-3

Memory management functions 3-4

Performance parameter management 3-4

Self-balancing trees 3-4

Date conversion functions 3-5

Miscellaneous functions 3-5

Self-balancing tree examples 3-5

Comparison function 3-5

Delete function 3-6

Action function 3-6

Condition function 3-7

Inline functions 3-7

Common library interface functions 3-8

appl_initialize 3-8

ASC_accept 3-8

ASC_alloc 3-9

ASC_bmove 3-9

ASC_bzero 3-9

ASC_close 3-10

ASC_connect 3-10

ASC_convert_msg 3-10

ASC_convert_msg_user 3-12

ASC_cpalloc 3-12

ASC_cpcheck 3-13

ASC_cpclose 3-13

ASC_cpfree 3-13

ASC_cpopen 3-13

ASC_cprpcexec 3-14

viii

ASC_create_SBT 3-15

ASC_cur_dts 3-15

ASC_cur_tm 3-15

ASC_delete_element_SBT 3-16

ASC_delete_index_SBT() 3-16

ASC_destroy_SBT 3-17

ASC_diag 3-17

ASC_diag_format 3-19

ASC_diag_on 3-19

ASC_disconnect 3-20

ASC_dts_to_str 3-20

ASC_event 3-20

ASC_event_initialize 3-21

ASC_find_first_SBT 3-21

ASC_find_free_SBT 3-21

ASC_find_index_SBT 3-22

ASC_find_init_SBT 3-22

ASC_find_next_SBT 3-23

ASC_free 3-24

ASC_GET_CMD 3-24

ASC_get_config_param 3-24

ASC_GET_CONTEXT 3-25

ASC_GET_SERVER 3-25

ASC_getc 3-25

ASC_gettimeofday 3-26

ASC_hex_dump 3-26

ASC_hex_dump_to_file 3-26

ASC_imsg_types 3-27

ASC_imsg_types_user 3-27

ASC_insert_element_SBT 3-28

ASC_IS_OPEN 3-28

ASC_lda_to_oci8 3-28

ASC_listen 3-29

ASC_load_msg_tbl 3-30

ASC_oci8_to_lda 3-30

ASC_ocican_cursor 3-30

ASC_ociclose 3-31

ASC_ociclose_cursor 3-31

ASC_ocicreate_cmd 3-31

ASC_ocicreate_list 3-32

ASC_ocidestroy_list 3-32

ix

ASC_ocifetch 3-32

ASC_ociopen 3-33

ASC_ociopen_cursor 3-33

ASC_ociparse 3-33

ASC_ocistatus 3-34

ASC_open 3-34

ASC_putc 3-35

ASC_read 3-35

ASC_realloc 3-36

ASC_reset_file_status 3-37

ASC_rstrcmp 3-37

ASC_sec_to_dBdts 3-38

ASC_set_fd_blocking 3-38

ASC_set_fd_nonblocking 3-38

ASC_set_new_handler 3-39

ASC_sleep 3-39

ASC_str_to_dts 3-39

ASC_walk_SBT 3-40

ASC_write 3-40

get_name_value 3-41

MS_DIFF 3-42

TODAY 3-42

Common library interface data types 3-42

CLIENT_HANDLER abstract data type 3-43

CM_RPC abstract data type 3-43

CM_RPC_PARAM abstract data type 3-44

DIAG_LEVEL abstract data type 3-44

Server library interface 3-45

Functions and structures 3-46

Global variables 3-46

Thread management functions 3-46

Memory management functions 3-46

RPCs and registered procedures 3-47

Language requests 3-47

Client process connection pool functions 3-47

Thread I/O functions 3-48

Utility thread functions 3-48

Inline functions 3-48

Server application functions 3-49

add_appl_rpc 3-49

add_lang_handler 3-49

x

add_registered_proc 3-50

add_rpc 3-50

ASC_alarm 3-51

ASC_await_init_completion 3-51

ASC_blk_alloc 3-51

ASC_BLK_ALLOC 3-52

ASC_BLK_FREE 3-52

ASC_blk_realloc 3-53

ASC_BLK_REALLOC 3-53

ASC_cpdbpcreate 3-53

ASC_cpdbpdestroy 3-54

ASC_cppalloc 3-54

ASC_cppfree 3-54

ASC_createmsgq 3-55

ASC_createmutex 3-55

ASC_define_events 3-55

ASC_define_rpc 3-56

ASC_deletemsgq 3-56

ASC_deletemutex 3-57

ASC_get_reg_param 3-57

ASC_getmsgq 3-57

ASC_getpid 3-58

ASC_get_securedata 3-58

ASC_handle_results 3-58

ASC_in_system 3-59

ASC_in_territory 3-59

ASC_lockmutex 3-60

ASC_lock_strtok 3-60

ASC_malarm 3-60

ASC_mem_alloc 3-61

ASC_mem_free 3-61

ASC_msleep 3-62

ASC_poll 3-62

ASC_poll_timer 3-63

ASC_putmsgq 3-64

ASC_reg_init_func 3-64

ASC_send_text 3-65

ASC_sendinfo 3-66

ASC_set_securedata 3-66

ASC_spawn 3-66

ASC_srv_field_bool 3-67

xi

ASC_srv_field_int 3-68

ASC_srv_field_str 3-68

ASC_srv_sleep 3-68

ASC_stack_trace 3-69

ASC_thread_field_bool 3-70

ASC_thread_field_int 3-70

ASC_thread_field_str 3-70

ASC_threadproc 3-71

ASC_unlockmutex 3-71

ASC_unlock_strtok 3-71

background_process_init 3-72

Server application data types 3-72

BACKGROUND_PROCESS abstract data type 3-72

LANG_HANDLER abstract data type 3-73

REG_PROC abstract data type 3-73

RPC abstract data type 3-73

RPC_PARAM abstract data type 3-74

USEREVENT abstract data type 3-75

Client library interface 3-75

Global variable 3-76

Termination-related functions 3-76

Inline function 3-76

Client application library functions 3-76

appl_cleanup 3-76

Interpreter library 3-76

Inline functions 3-77

Interpreter library functions 3-77

ASC_alloc_Interpreter 3-78

ASC_delete_int_var 3-78

ASC_free_Interpreter 3-78

ASC_get_dev_sess_data 3-78

ASC_get_int_appl_data 3-79

ASC_get_int_var 3-79

ASC_init_Interpreter 3-80

ASC_Interpreter 3-80

ASC_set_dev_sess_data 3-80

ASC_set_int_appl_data 3-81

ASC_store_int_var 3-81

CMD_delete_var 3-81

CMD_expand_action_string 3-82

CMD_free_assignment 3-82

xii

CMD_free_bvar_assignment 3-82

CMD_free_dbproc 3-83

CMD_get_assignment 3-83

CMD_get_bvar 3-83

CMD_get_bvar_assignment 3-84

CMD_get_var 3-84

CMD_lock_regexpr 3-85

CMD_parse_assignment 3-85

CMD_store_bvar 3-85

CMD_store_var 3-86

CMD_store_zero_pad_var 3-86

CMD_unlock_regexpr 3-87

CMD_user_actions 3-87

Control configuration interface 3-87

Interface definitions 3-88

CSP_db_admin 3-88

CSP_del_alarm 3-88

CSP_del_appl 3-89

CSP_del_center 3-89

CSP_del_code 3-89

CSP_del_component 3-89

CSP_del_db_thresh 3-90

CSP_del_event 3-90

CSP_del_fs_thresh 3-90

CSP_del_listener 3-91

CSP_del_nvp 3-91

CSP_get_listener 3-91

CSP_list_alarm 3-92

CSP_list_appl 3-93

CSP_list_center 3-94

CSP_list_code 3-94

CSP_list_component 3-95

CSP_list_db_thresh 3-96

CSP_list_event 3-96

CSP_list_fs_thresh 3-97

CSP_list_nvp 3-97

CSP_new_alarm 3-98

CSP_new_appl 3-99

CSP_new_center 3-100

CSP_new_code 3-101

CSP_new_component 3-101

xiii

CSP_new_db_thresh 3-102

CSP_new_event 3-102

CSP_new_fs_thresh 3-103

CSP_new_listener 3-103

CSP_new_nvp 3-104

Object oriented (OO) common library 3-104

ASC_Main class 3-105

Synopsis 3-106

Constructors 3-107

Public methods 3-108

appl_initialize, appl_cleanup 3-108

startup 3-108

threadMain 3-108

config_param_init 3-108

ctlib_init 3-108

process_input 3-108

initialize 3-109

default_signal_handlers 3-109

install_signal_handle 3-109

appl_initialize 3-109

appl_cleanup 3-109

Diagnosis class 3-109

Synopsis 3-110

Constructors 3-111

Public methods 3-112

diag 3-112

initialize 3-112

diag_format 3-112

hex_dump 3-113

rpc_dump 3-113

stack_trace 3-113

service_mgr 3-113

m_diag_queue 3-113

m_diag_mtx_ 3-113

threadMain 3-114

Event class 3-114

Synopsis 3-114

Constructors 3-114

Public methods 3-115

EventAgent class 3-115

Synopsis 3-115

xiv

Constructors 3-116

Public methods 3-116

threadMain 3-116

start_service 3-117

m_should_terminate 3-117

alarm 3-117

m_ea_mtx_ 3-117

ClientProc class 3-117

Synopsis 3-118

Constructors 3-120

Public methods 3-120

cprpcexec 3-120

cpopen 3-121

cpclose 3-121

cpcheck 3-121

IS_OPEN 3-121

get_cp 3-121

is_busy 3-122

get_return_status 3-122

cancelOperation 3-122

get_db_type 3-122

m_alloc_mtx_ 3-122

m_init_mtx_ 3-122

Public methods 3-122

ocicreate_list 3-123

ocidestroy_list 3-123

ocifetch 3-123

ocistatus 3-123

ocican_cursor 3-123

ociopen_cursor 3-123

ociclose_cursor 3-123

ociparse 3-124

ocicreate_cmd 3-124

ocirpcexec 3-124

dts_to_str 3-124

str_to_dts 3-124

MT-Safety in shared mode 3-124

ClntProcMgr class 3-125

Synopsis 3-125

Constructors 3-126

Public Methods 3-126

xv

createObj 3-126

deleteAllObj 3-126

getObj 3-126

returnObj 3-126

replaceBadObj 3-127

checkNumOfFreeObj 3-127

Config class 3-127

Synopsis 3-127

Constructors 3-128

Public methods 3-128

get_config_param 3-128

dump_config_params 3-129

Common class 3-129

Synopsis 3-129

Constructors 3-129

Public Methods 3-129

curDts 3-129

cur_tm 3-129

today 3-130

ASC thread library 3-130

ASC_Thread class 3-130

Synopsis 3-130

Public methods 3-131

ASC_ThreadFactory class 3-131

Synopsis 3-131

Public methods 3-131

ASC_ThreadAppl class 3-132

Synopsis 3-133

Public methods 3-134

attachThread 3-134

terminateThread 3-134

threadMain 3-134

getThreadName, getThreadID 3-135

ASC_ThreadAttr, getThreadAttr 3-135

initAttr, setAttr 3-135

genMsgQueue 3-135

getMsgQueue 3-135

delMsgQueue 3-135

setTheQueue 3-136

getTheQueue 3-136

setTheThread 3-136

xvi

DCE_Thread class 3-136

Synopsis 3-136

Public methods 3-137

spawnThread 3-137

isSupported 3-137

getAttributes 3-137

DCE_ThreadFactory class 3-137

Synopsis 3-137

Public method 3-138

spawnThread 3-138

DCE implementation 3-138

ASC_Mutex class 3-138

Synopsis 3-138

Constructors 3-139

Public methods 3-139

lock, unlock 3-139

trylock 3-139

condWait 3-139

condTimeWait 3-139

condSignal 3-139

condBroadCast 3-140

isSupported 3-140

ASC_Context class 3-140

Synopsis 3-140

Public methods 3-141

threadMain 3-141

Inter-thread messaging system 3-141

Message queue manager class 3-142

Synopsis 3-142

Public methods 3-142

genThreadMsgQueue 3-142

getMsgQueue 3-142

delMsgQueue 3-143

getMsgQueueMgr 3-143

Message queue class 3-143

Synopsis 3-143

Constructors 3-144

Public methods 3-144

addOneUser, removeOneUser, getNumOfUsers 3-144

getQueueSize 3-144

putMsg 3-144

xvii

getMsg 3-145

peepMsg 3-145

commitMsg 3-145

ThreadMsgQueue class 3-145

Synopsis 3-145

Public methods 3-146

getQueueSize 3-146

putMsg 3-146

getMsg 3-146

getMsg 3-146

peepMsg 3-147

commitMsg 3-147

Message class 3-147

Synopsis 3-147

Constructors 3-148

Public methods 3-148

doMsgWait 3-148

commitMsgWait 3-148

initSyn 3-148

XML JMX interface 3-148

ASAP daemon API 3-148

Daemon client APIs 3-150

RemoteFile 3-150

Property checking methods 3-150

get Methods 3-151

put Methods 3-151

RemoteCommand 3-151

action Methods 3-152

4 Provisioning Interfaces

SARM configuration interface 4-1

Static table configuration 4-1

SSP_db_admin 4-1

SSP_gather_asap_stats 4-2

SSP_del_asdl_defn 4-3

SSP_del_asdl_map 4-4

SSP_del_asdl_parm 4-4

SSP_del_clli_map 4-5

SSP_del_comm_param 4-5

SSP_del_csdl_asdl 4-6

xviii

SSP_del_csdl_defn 4-6

SSP_del_dn_map 4-7

SSP_del_id_routing 4-7

SSP_del_intl_msg 4-7

SSP_del_ne_host 4-8

SSP_del_nep 4-8

SSP_del_nep_program 4-8

SSP_del_net_elem 4-9

SSP_del_resource 4-9

SSP_del_srp 4-9

SSP_del_stat_text 4-10

SSP_del_user_err_threshold 4-10

SSP_del_userid 4-10

SSP_get_async_ne 4-10

SSP_get_user_routing 4-11

SSP_list_asdl 4-11

SSP_list_asdl_defn 4-12

SSP_list_asdl_map 4-13

SSP_list_asdl_parm 4-14

SSP_list_clli_map 4-15

SSP_list_comm_param 4-15

SSP_list_csdl 4-16

SSP_list_csdl_asdl 4-17

SSP_list_csdl_defn 4-20

SSP_list_dn_map 4-21

SSP_list_host 4-21

SSP_list_id_routing 4-22

SSP_list_intl_msg 4-22

SSP_list_ne_host 4-23

SSP_list_nep 4-23

SSP_list_nep_program 4-24

SSP_list_net_elem 4-24

SSP_list_resource 4-25

SSP_list_srp 4-26

SSP_list_stat_text 4-27

SSP_list_user_err_threshold 4-27

SSP_list_userid 4-28

SSP_ne_monitor 4-29

SSP_new_asdl_defn 4-29

SSP_new_asdl_map 4-29

SSP_new_asdl_parm 4-30

xix

SSP_new_clli_map 4-32

SSP_new_comm_param 4-32

SSP_new_csdl_asdl 4-33

SSP_new_csdl_asdl_idx 4-36

SSP_new_csdl_defn 4-39

SSP_new_dn_map 4-40

SSP_new_id_routing 4-40

SSP_new_intl_msg 4-41

SSP_new_ne_host 4-41

SSP_new_nep 4-42

SSP_new_nep_program 4-42

SSP_new_net_elem 4-42

SSP_new_resource 4-43

SSP_new_srp 4-43

SSP_new_stat_text 4-44

SSP_new_user_err_threshold 4-45

SSP_new_userid 4-45

SSP_orphan_purge 4-46

Error management 4-46

SSP_del_err_threshold 4-47

SSP_del_err_type 4-47

SSP_err_enable 4-47

SSP_list_err_host 4-48

SSP_list_err_threshold 4-48

SSP_list_err_type 4-49

SSP_new_err_threshold 4-49

SSP_new_err_type 4-50

Switch blackout processing 4-50

SSP_add_blackout 4-51

SSP_check_blackout 4-51

SSP_del_blackout 4-51

SSP_list_blackout 4-52

Switch direct interface (SWD) 4-53

Configuration parameters 4-54

General message format 4-54

SWD Client-to-SARM messages 4-54

SARM-to-SWD client messages 4-54

Stop work order interface 4-56

Localizing International Messages 4-57

SARM provisioning interface 4-59

SARM interface RPCs 4-60

xx

SAS_asdl_counts 4-60

SAS_asdl_list 4-60

SAS_asdl_parms 4-61

SAS_asdl_sw_history 4-62

SAS_csdl_counts 4-62

SAS_csdl_event_history 4-63

SAS_csdl_list 4-63

SAS_csdl_parms 4-64

SAS_csdl_sw_history 4-65

SAS_info_parms 4-65

SAS_map_srq_id 4-66

SAS_map_wo_id 4-66

SAS_wo_detail 4-67

SAS_wo_by_host_clli 4-68

SAS_wo_list 4-68

SAS_wo_parms 4-69

Update RPC interface definitions 4-70

CSDL processing model 4-70

functions 4-73

SAS_abort_csdl 4-73

SAS_abort_wo 4-74

SAS_add_csdl 4-75

SAS_add_csdl_parm 4-75

SAS_add_wo_parm 4-76

SAS_change_due_dt 4-76

SAS_change_priority 4-77

SAS_delete_csdl_parm 4-78

SAS_delete_wo_parm 4-79

SAS_get_csdl_stat 4-79

SAS_get_srq_stat 4-80

SAS_get_wo_stat 4-80

SAS_hold_wo 4-80

SAS_lock_wo 4-81

SAS_move_csdl 4-82

SAS_release_wo 4-82

SAS_renumber_csdl 4-83

SAS_resubmit_wo 4-84

SAS_updt_csdl_parm 4-84

SAS_updt_wo_parm 4-85

Control interface RPCs 4-86

SAS_list_alarm_log 4-86

xxi

SAS_list_appl_proc 4-86

SAS_list_event_log 4-87

SAS_list_proc_info 4-88

Real-time performance data gathering 4-89

ADM_asdl_stats, PSP_asdl_stats 4-90

ADM_csdl_stats, PSP_csdl_stats 4-91

PSP_db_admin 4-92

ADM_ne_asdl_stats, PSP_ne_asdl_stats 4-92

ADM_ne_stats, PSP_ne_stats 4-93

ADM_order_stats, PSP_order_stats 4-94

Switch activation and deactivation 4-96

SSP_ne_control 4-96

C++ SRP API library 4-96

SRP_Context class 4-96

Synopsis 4-96

Public methods 4-97

getInstance 4-97

getInstance 4-97

getWoUtils 4-97

getUnId 4-97

extSysAvailable 4-97

getEventInterfaceFactory 4-98

SRP_Parameter class 4-98

Synopsis 4-98

Constructors 4-98

Public methods 4-99

getParameterLabel 4-99

setParameterLabel 4-99

getParameterValue 4-99

setParameterValue 4-99

operator== 4-99

print 4-100

lock 4-100

unlock 4-100

SRP_CSDL class 4-100

Synopsis 4-100

Constructors 4-101

Public methods 4-101

getCsdlId 4-102

setCsdlId 4-102

getCsdlCmd 4-102

xxii

setCsdlCmd 4-102

getCsdlStatus 4-102

setCsdlStatus 4-102

getCsdlDesc 4-103

setCsdlDesc 4-103

addParameter 4-103

getParameterCount 4-103

print 4-103

deleteAllParameters 4-103

findParameter 4-103

removeParameter 4-104

lock 4-104

find_by_label 4-104

unlock 4-104

getParameters 4-104

SRP_WO class 4-105

Synopsis 4-105

Constructors 4-107

Work order properties 4-108

Public methods 4-109

getWoId 4-109

setWoId 4-109

getDueDate 4-109

setDueDate 4-109

getOperation 4-110

setOperation 4-110

getMisc 4-110

setMisc 4-110

getOrgUnit 4-110

setOrgUnit 4-110

getOrigin 4-110

setOrigin 4-111

getEstimate 4-111

getStatus 4-111

getAsdlTimeout 4-111

setAsdlTimeout 4-111

getUserId 4-111

setUserId 4-111

getPassword 4-112

setPassword 4-112

getPriority 4-112

xxiii

setPriority 4-112

getSrqAction 4-112

setSrqAction 4-112

getParentWo 4-112

setParentWo 4-113

getWoTimeout 4-113

setWoTimeout 4-113

getRetry 4-113

setRetry 4-113

getRetryInt 4-113

setRetryInt 4-113

getRback 4-114

setRback 4-114

getDelayFail 4-114

setDelayFail 4-114

getDelayFailThreshold 4-114

setDelayFailThreshold 4-114

getBatchGroup 4-114

setBatchGroup 4-115

getExtSysId 4-115

setExtSysId 4-115

getUserData 4-115

setUserData 4-115

getApplName 4-115

setApplName 4-115

getProperty 4-116

setProperty 4-116

addCsdl 4-116

addGlobalParameter 4-116

restore 4-117

getGlobalParameterCount 4-117

getCsdlCount 4-117

print 4-117

submit 4-117

deleteInSarm 4-117

changeStatus 4-118

deleteAll 4-118

findGlobalParameter 4-118

removeGlobalParameter 4-118

findCsdl 4-119

findCsdlBySequence 4-119

xxiv

removeCsdl 4-119

lock 4-119

unlock 4-120

SRP_WoUtils class 4-120

Synopsis 4-120

Public methods 4-120

lockWo 4-120

unlockWo 4-120

accessWo 4-120

SRP_EventInterfaceFactory class 4-121

Synopsis 4-121

Constructors 4-121

Public methods 4-121

create 4-121

setCondition 4-122

getCondition 4-122

SRP_EventInterface class 4-122

Synopsis 4-122

Constructor 4-123

Public methods 4-123

woCompleteHandler 4-123

woFailureHandler 4-123

softErrorHandler 4-123

woEstimateHandler 4-123

woStartupHandler 4-123

woRollbackHandler 4-124

neUnknownHandler 4-124

woBlockHandler 4-124

woTimeOutHandler 4-124

neAvailHandler 4-124

neUnavailHandler 4-124

woAcceptHandler 4-124

SRP_Event class 4-125

Synopsis 4-125

Public methods 4-125

getWoId 4-125

getEventUnId 4-125

getExtsysId 4-125

getEventStatus 4-126

setWoId 4-126

setEventUnId 4-126

xxv

setExtsysId 4-126

setEventStatus 4-126

SRP_WoCompleteEvent class 4-126

Synopsis 4-126

Public methods 4-127

getRevFlag 4-127

getExcept 4-127

setRevFlag 4-127

setExcept 4-127

SRP_WoFailureEvent class 4-127

Synopsis 4-127

Public methods 4-128

getCsdlSeqNo 4-128

getCsdlId 4-128

setCsdlSeqNo 4-128

setCsdlId 4-128

SRP_SoftErrorEvent class 4-128

Synopsis 4-128

Public methods 4-129

getCsdlSeqNo 4-129

getCsdlId 4-129

setCsdlSeqNo 4-129

setCsdlId 4-129

SRP_WoEstimateEvent class 4-129

Synopsis 4-129

Public methods 4-130

getEstimate 4-130

getMisc 4-130

setEstimate 4-130

setMisc 4-130

SRP_WoStartupEvent class 4-130

Synopsis 4-130

SRP_WoRollbackEvent class 4-131

Synopsis 4-131

SRP_NEUnknownEvent class 4-131

Synopsis 4-131

Public methods 4-131

getCsdlSeqNo 4-131

getCsdlId 4-132

getMachClli 4-132

SRP_WoBlockEvent class 4-132

xxvi

Synopsis 4-132

Public methods 4-132

getReason 4-132

setReason 4-132

SRP_WoTimeOutEvent class 4-133

Synopsis 4-133

Public methods 4-133

getStatus 4-133

setStatus 4-133

SRP_NEAvailEvent class 4-133

Synopsis 4-133

Public methods 4-134

getHostClli 4-134

setHostClli 4-134

SRP_NEUnAvailEvent class 4-134

Synopsis 4-134

Public methods 4-134

getHostClli 4-134

setHostClli 4-134

SRP_WoAcceptEvent class 4-135

Synopsis 4-135

Public methods 4-135

getNewWoStat 4-135

getOldWoStat 4-135

getStatus 4-135

setNewWoStat 4-135

setOldWoStat 4-136

setStatus 4-136

ASC_RetrieveInfo class 4-136

Synopsis 4-136

Constructor 4-136

Public methods 4-137

getWoId 4-137

setWoId 4-137

getDataPtr 4-137

setDataPtr 4-137

ASC_CsdlListInfo class 4-137

Synopsis 4-137

Constructor 4-138

Public methods 4-138

getCsdlCmd 4-138

xxvii

setCsdlCmd 4-138

getCsdlStat 4-138

setCsdlStat 4-138

getCsdlSeqNo 4-139

setCsdlSeqNo 4-139

getCsdlId 4-139

setCsdlId 4-139

getCsdlEst 4-139

setCsdlEst 4-139

getCsdlDesc 4-139

setCsdlDesc 4-140

ASC_CsdlLogInfo class 4-140

Synopsis 4-140

Public methods 4-140

getDateTm 4-140

setDateTm 4-141

getEventType 4-141

setEventType 4-141

getEventText 4-141

setEventText 4-141

getCsdlCmd 4-141

setCsdlCmd 4-142

getCsdlSeqNo 4-142

setCsdlSeqNo 4-142

getHostClli 4-142

setHostClli 4-142

ASC_WoLogInfo class 4-142

Synopsis 4-142

Public methods 4-143

getDateTm 4-143

setDateTm 4-143

getEventType 4-143

setEventType 4-143

getEventText 4-144

setEventText 4-144

getCsdlSeqNo 4-144

setCsdlSeqNo 4-144

getHostClli 4-144

setHostClli 4-144

ASC_WoParamInfo class 4-144

Synopsis 4-145

xxviii

Public methods 4-145

getParmGrp 4-145

setParmGrp 4-145

getParmLbl 4-145

setparmLbl 4-146

getParmVlu 4-146

setparmVlu 4-146

getCsdlCmd 4-146

setCsdlCmd 4-146

getCsdlSeqNo 4-146

setCsdlSeqNo 4-146

getCsdlId 4-147

setCsdlId 4-147

ASC_WoRevInfo class 4-147

Synopsis 4-147

Public methods 4-147

getRevFlag 4-148

setRevFlag 4-148

getLabel 4-148

setLabel 4-148

getValue 4-148

setValue 4-148

getCsdlCmd 4-149

setCsdlCmd 4-149

getCsdlDesc 4-149

setCsdlDesc 4-149

getCsdlSeqNo 4-149

setCsdlSeqNo 4-149

getParmSeqNo 4-149

setParmSeqNo 4-150

ASC_RetrieveInfoSet class 4-150

Synopsis 4-150

Public methods 4-150

goToHead 4-150

itemCount 4-151

goToNext 4-151

removeNext 4-151

insertItem 4-151

ASC_RetrieveRequest class 4-151

Synopsis 4-151

Public methods 4-152

xxix

getRetrieveType 4-153

getUserData 4-153

getWoId 4-153

getLogType 4-153

getCsdlId 4-153

getNeRespLineByLine 4-153

getSrqEvt 4-154

getLabel 4-154

getGroup 4-154

retrieve 4-154

rebuildWo 4-154

getMyPort 4-154

5 Downstream Interfaces

NEP library 5-1

NEP library functions 5-1

ASC_loadCommParams 5-1

CMD_comm_init 5-2

CMD_connect_port 5-2

CMD_disconnect_port 5-3

NEP configuration 5-3

NEP_add_feat 5-3

NEP_add_parm 5-3

NEP_del_feat 5-4

NEP_del_parm 5-4

NEP_show_feat 5-5

NEP_show_parm 5-6

NEP administration 5-8

RPC screen_dump 5-8

RPC screen_enable 5-8

RPC screen_disable 5-9

RPC line_enable 5-9

RPC line_disable 5-9

RPC edd_diag 5-10

RPC enable 5-10

RPC disable 5-11

Switch configuration library 5-11

ASC_libnecfg_init 5-11

Protocol-specific libraries 5-11

Design assumptions 5-12

xxx

Functional architecture 5-12

Building message block 5-12

Parameter handling 5-12

Submit TL1 input message 5-13

Processing output message 5-13

Technical architecture 5-13

TL1 State Table API 5-13

Input messages 5-14

Block name 5-14

Parameter name 5-15

Output messages 5-15

TL1 State Table action functions 5-17

TL1_BUILD_MSG 5-17

TL1_PROCESS_MSG 5-18

TL1_BUILD_TSN 5-20

External device driver 5-20

External device driver architecture 5-21

Signal approach 5-22

Poll approach 5-22

Application poll approach 5-22

Data architecture 5-22

EDD information abstract data type 5-22

Parameter abstract data type 5-23

Debugging abstract data type 5-24

Generic driver abstract data type 5-24

Transactions 5-25

Data format 5-25

Data type 5-25

Connection process 5-26

Disconnection process 5-27

Forward data from NEP to NE 5-27

Forward data from NE to NEP 5-27

Functions of libgedd 5-27

Signal approach 5-28

Poll approach 5-28

Application poll approach 5-29

Common functions 5-29

Library functions 5-30

gedd_add_fd 5-30

gedd_api_connect_ack 5-30

gedd_api_disconnect_ack 5-31

xxxi

gedd_appl_poll_get_req 5-31

gedd_block_sigio 5-32

gedd_get_appl_data 5-32

gedd_get_conn_param 5-32

gedd_get_fd 5-32

gedd_get_listen_fd 5-33

gedd_poll 5-33

gedd_poll_get_req 5-34

gedd_send_to_nep 5-34

gedd_set_appl_data 5-35

gedd_sigio_occurred 5-35

gedd_sigio_reset 5-35

gedd_signal_get_req 5-35

gedd_unblock_sigio 5-36

Building an EDD application 5-37

Using the poll approach 5-37

Using the application poll approach 5-38

Using the signal poll approach 5-38

Approach examples 5-38

Action functions 5-43

State Table Components 5-43

State Table environment 5-43

ASDL-to-State Table translation 5-44

Automatic State Table variables 5-44

State Table extensibility 5-44

Loopback support 5-45

Lexical Analysis Machine (LAM) 5-47

Database access from within State Tables 5-47

Regular expression support 5-47

Diagnostic and event support 5-47

Customizing action functions 5-48

Writing action functions 5-48

Using API routines 5-48

Retrieve arguments 5-49

Retrieving and storing parameters and variables 5-49

Exit action function 5-50

Action function example 5-50

State Table Interpreter action functions 5-51

General action functions 5-52

– Comment character 5-54

BCONCAT 5-54

xxxii

CALC 5-55

CALL 5-56

CASE 5-56

CHAIN 5-57

CLEAR 5-57

CMD_DUMP 5-58

CMPND_COPY 5-59

COMMENT 5-59

CONCAT 5-59

COPY_TO_ASCII 5-60

DECREMENT 5-61

DEF_REGEXPR 5-61

DEFAULT 5-62

DEL_REGEXPR 5-62

DIAG 5-63

ELSE 5-63

ELSE_IF 5-63

ENDIF 5-64

ENDSWITCH 5-64

ENDWHILE 5-65

ERROR_STATUS 5-65

EVENT 5-65

EXEC 5-66

EXEC_RPC 5-66

EXEC_RPCV 5-68

EXIT 5-70

EXPR_GOSUB 5-70

FUNCTION 5-70

GET_REGEXPR 5-71

GOSUB 5-71

GOTO 5-72

IF 5-72

IF_THEN 5-73

IFDEF 5-74

IFNDEF 5-74

INCREMENT 5-74

IND_SET 5-75

LENGTH 5-75

MAP_GOSUB 5-76

MAP_OPTION 5-76

MASK 5-76

xxxiii

NEW_MAP 5-77

PAD_CHAR 5-78

PAUSE 5-78

RETURN 5-78

SUBSTR 5-79

SWITCH 5-79

TRIM 5-80

WAIT 5-80

WHILE 5-81

ZERO_PAD 5-81

NEP action functions 5-81

ADD_HEADER 5-83

ASC_TO_BIN 5-84

ASDL_EXIT 5-85

BIN_TO_ASC 5-86

CLEAR_VS 5-87

ERROR 5-87

GET 5-87

GET_INCPT 5-89

GET_LTG 5-89

GET_P_PARMS 5-89

GET_SECUREDATA 5-89

GET_SW_FEAT 5-89

LOG 5-89

LOG_STAT 5-90

MSGSEND 5-90

MSGRECV 5-90

NVIS_PARSER 5-91

PARAM_GROUP 5-91

RESPONSELOG 5-92

SCREEN_RESP 5-92

SEND 5-92

SEND_COMPND 5-93

SENDECHO 5-93

SENDKEY 5-93

SETOPTION 5-94

SEND_PARAM 5-96

SEND_RESP 5-97

SET_SECUREDATA 5-97

STATS_ON 5-97

VS_COPY_RESP 5-97

xxxiv

VS_GET_RESP 5-98

VS_SEND_RESP 5-98

VS_STOP_RESP 5-98

LAM action functions 5-99

DEF_COLUMN 5-99

GOTO_MARK 5-100

READ_FIXED 5-100

READ_GROUP 5-101

READ_ITEM 5-101

READ_LAST 5-101

READ_ROW 5-101

READ_STRING 5-102

READ_TO_EOL 5-102

RESET_FILE 5-103

SET_MARK 5-103

SKIP_ITEMS 5-103

SKIP_LINES 5-103

UNDO_READ 5-104

FTP action functions 5-104

FTP_APPE 5-106

FTP_CD 5-107

FTP_CDUP 5-108

FTP_DELE 5-108

FTP_DIR 5-109

FTP_LCD 5-110

FTP_LS 5-110

FTP_MKDIR 5-111

FTP_PWD 5-112

FTP_RECV 5-112

FTP_REN 5-113

FTP_RMDIR 5-114

FTP_RUNIQUE 5-114

FTP_SEND 5-115

FTP_SUNIQUE 5-115

I/O Action Functions 5-116

OPEN_FILE 5-116

READ_FILE 5-117

OPTION 5-118

WRITE_FILE 5-119

WOPTION 5-120

CLOSE_FILE 5-121

xxxv

DEL_FILE 5-121

I/O Action Function Error Messages 5-122

SNMP action functions 5-123

Variables 5-124

Regular expressions 5-125

LAM registers 5-125

SNMP_GET_REQ 5-126

SNMP_GET_NEXT_REQ 5-127

SNMP_GET_BULK_REQ 5-128

SNMP_SET_REQ 5-130

SNMP_INFORM_REQ 5-131

SNMP_TABLE_REQ 5-132

SNMP_RESPONSE 5-133

LDAP action functions 5-134

ldap Directory Entry Structure 5-134

Extended State Table variables 5-135

Communication Parameters 5-136

LDAP_SEARCH 5-137

LDAP_COMPARE 5-140

LDAP_ADD 5-140

LDAP_DELETE 5-141

LDAP_MODIFY 5-141

LDAP_RENAME 5-142

STRTOK 5-143

6 Web Services

Web Services Overview 6-1

Web Services Definition Language (WSDL) 6-1

Architectural Overview of Web Services 6-2

Web Services Interface 6-3

Security 6-3

About Web Service Operations 6-4

A Sample Thread Framework Application

EDD connection listening class A-1

Synopsis A-1

Public methods A-2

Connection handler class A-3

Synopsis A-3

xxxvi

Description A-5

B Oracle Execution Examples

Example 1 B-1

Example 2 B-1

Example 3 B-1

Example 4 B-2

Example 5 B-2

Example 6 B-2

Example 7 B-3

C C++ SRP API Template Design

API library structures C-1

C++ SRP API library C-3

Common object library (liboo_asc) C-4

ASC thread library (libthreadfw) C-4

C++ SRP API components C-4

Work order submission C-4

Event notification C-4

Communication between threads C-4

Multiple instances of threads C-5

Communications with ASAP internal systems C-6

Communication between C++ SRP API and SARM C-7

Communication between C++ SRP API and SRP database C-7

Upstream system interface C-7

Protocol C-7

Communication between C++ SRP API and upstream systems C-8

TCP/IP sockets C-8

Connection verification C-8

Data format C-8

Input message from upstream system C-9

Return message to upstream system C-9

Synchronous processing C-9

Asynchronous processing C-10

Single and multiple connections C-11

API libraries C-12

Main() C-12

SRP_initialize C-12

C++ SRP threads C-13

xxxvii

Receiver C-13

Connecting with the upstream system C-14

Verifying incoming message C-14

Synchronous processing C-14

Asynchronous processing C-14

Thread examples C-15

Single connection, asynchronous processing (work order dependency) C-15

Single connection, synchronous processing (batch submission of work order) C-16

Translator C-17

Event handling C-18

SARM events C-18

Actions performed by event handler C-19

Sender C-19

Sender message C-19

C++ SRP API specification template example C-20

Communication interface C-20

TCP/IP socket interface C-20

Connection handler C-21

Receiver C-21

Translator thread C-21

Translation process C-22

Event handling C-22

Sender thread C-22

Event message handling C-23

Translation message handling C-23

Upstream system C-23

WO submission C-23

Handling WO provision results C-23

Configuration for C++ SRP API C-23

D API and Other Configuration Changes

OSS through Java service activation API D-1

JVT API changes D-1

Java provisioning API changes D-4

xxxviii

Preface

This guide provides an overview of Oracle Communications ASAP (ASAP) application and
library architecture, and describes ASAP database tables, shared libraries, provisioning and
downstream interfaces, and web services.

The content of this manual is restricted to C/C++ reference information. Java-based
information on the Java-enabled NEP, the Java SRP (JSRP), and Java Management
Extensions (JMX) can be found in the ASAP Online Reference.

Audience
This document is intended for developers, system integrators, and other individuals who
implement ASAP.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

xxxix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Development Overview

This chapter consists of the following sections:

• Application architecture

• Library architecture

Application architecture
Figure 1-1 outlines how ASAP components interrelate. This figure displays all ASAP
application processes (for example, SRP and SARM) and their appropriate databases.

ASAP contains several processes and each process has its own database. Because of this
close coupling of a process to its database, ASAP is distributed efficiently in a network
environment.

1-1

Figure 1-1 ASAP Processes and Databases

The database engine:

ASAP uses the SQL Server as the database engine. A single SQL Server can contain
one or more ASAP databases. In a completely distributed environment, each ASAP
database may reside on a separate SQL Server, on a separate machine. This ability to
distribute and scale the ASAP application transparently, is a fundamental feature of
ASAP's design.

Chapter 1
Application architecture

1-2

The ASAP control server:

The ASAP Control server manages ASAP's overall operation. The Control server:

• Starts and stops ASAP applications.

• Distributes ASAP across many machines.

• Maintains process and performance statistics about each application.

• Provides event notification, logging, alarming, and paging facilities that the applications
use.

• Monitors the behavior of application clients and application servers.

• Issues system alarms to the proper alarm centers if an ASAP application terminates
unexpectedly.

Client/server architecture
ASAP consists of a set of multithreaded UNIX Client/Server processes that communicate with
each other and the associated database servers.

The Client/Server architecture has several advantages over traditional program architectures:

• Client/Server applications, such as ASAP, are easily distributed across several, possibly
heterogeneous, platforms. The applications have a scalable architecture which you can
expand upon to meet your future requirements.

• Application size and complexity is reduced significantly because common services are
handled in a single location, by the server. This simplifies client applications, reduces
duplicate code, and makes application maintenance easier.

• Client/Server architecture enables applications to be developed with distinct components.
These components can be changed or replaced without affecting other parts of the
application. Such components may be supplied as part of the base product or developed
by individual customers to suit their own requirements.

• Client/Server architecture facilitates communication between varied applications. Client
applications that use different communication protocols from the server cannot
communicate directly with it; instead they must communicate through a “gateway" server
that understands both protocols.

Multithreaded architecture
ASAP's multithreaded architecture makes more efficient use of the available resources than
single-threaded architecture in the following ways:

You can combine several concurrent tasks into a single server process as threads of
execution within that process. This means that there are fewer operating system processes
running. Because of this, the operating system performs less process context-switching.
Thread context-switching within a process is much more efficient than process context-
switching performed by the operating system.

Since several tasks are running concurrently as threads within the server process, the
threads communicate with one another through internal messages that use conventional
process memory and semaphores as notification mechanisms. This method of
communication is much more efficient than inter-process communication which would be
required if each task was run as its own operating system process.

Chapter 1
Application architecture

1-3

When the operating system allows a process to execute for a period of time on the
CPU, the multithreaded server's internal scheduler schedules the various threads
within the process over the duration of that period. Therefore, whenever a thread
either explicitly yields the processor to another thread, or performs I/O activity (for
example, disk and/or network access), the thread scheduler puts that thread to sleep
and resumes the next thread in order of priority. As soon as the original thread's
results are ready, the thread scheduler resumes that thread.

Due to the improved performance of multithreaded applications, most contemporary
operating systems and database servers employ this architecture.

Open Server/Open Client ASAP components
ASAP is composed of three Client/Server systems: the RDBMS server, the Open
server, and the Open client. Figure 1-2 outlines the Client/Server composition of ASAP
and the methods of communication between components.

Figure 1-2 ASAP Client/Server Composition

RDBMS Server
The RDBMS Server is a stand-alone database engine. You can only add SQL
definitions and data to the RDBMS Server.

Chapter 1
Application architecture

1-4

Open Client
Open Client applications use the Open Client libraries (Client library and Database library) to
communicate with the Open Server and the RDBMS Server. To communicate with these
servers, the Open Client application uses either SQL or RPCs. The previous figure outlines
how the Open Client communicates with the servers. In turn, the Open Server can receive
results, messages, and notifications from the RDBMS Server and Open Client.

Open Server
Open Server applications are built using the Open Server API and Open Client API. They are
multithreaded processes containing both event driven threads (for example, handling a client
connection) and background or service threads that perform non-event related tasks. They
may receive language commands and RPCs from client processes, RPCs from RDBMS
Servers, as well as send RPCs to other Open Servers (SARM to NEP) or RDBMS servers
(access DB).

The Gateway Server application
A Gateway Server application is an application that incorporates both the client and server
functionality. Such an application uses the client component to communicate with other
servers and databases, and uses the server component to receive requests and RPCs from
client processes and databases. ASAP consists of Gateway applications (for example,
SARM, SRP, NEP) together with some client processes and databases. In this manual, every
gateway application is referred to as an ASAP application server. The Client/Server
configuration appears below.

The client API, provided by Sybase, co-exists in a multithreaded application process that is, it
is fully re-entrant and does not invoke any blocking routines. In particular, the client API co-
exists within a server application, resulting in a gateway application that possesses both
client and server characteristics.

Chapter 1
Application architecture

1-5

Figure 1-3 Gateway Server Application

Multithreaded environment
One of the principal issues to consider when using the ASAP API is the multithreaded
environment that runs under UNIX. In UNIX, many processes run concurrently.
Process execution, resource allocation, and CPU usage, for example, are controlled
by the UNIX process scheduler.

A multithreaded application using the Open Server API, is one in which there are many
Open Server execution threads within the UNIX process. All the Open Server threads
share the resources with the host operating system process. The Open Server library
that is linked to each Open Server application provides concurrence by periodically
suspending the running thread and resuming another. This thread-context switch
happens so quickly that the threads appear to run continuously from the point of view
of the client application communicating with the Open Server.

Open Server thread scheduler
The Open Server library provides a specialized thread called the thread scheduler.
The thread scheduler performs context switches between the threads in the server. A
thread has an execution context that includes its stack and register environment. The

Chapter 1
Application architecture

1-6

thread scheduler saves the execution context of the running thread, selects another thread to
resume, restores its context, and runs it.

An Open Server application is a UNIX process whose execution is controlled by the UNIX
process scheduler. The UNIX process scheduler context-switches the UNIX processes.
Within the Open Server process, the thread scheduler context-switches the threads.

With context-switching, CPU resources are used more effectively. Any thread that performs
I/O or other time-consuming operations is suspended and another thread runs while the first
thread awaits the results of its operation.

Overall, the elements of the process now communicate extremely quickly. There is no data
movement at all, only pointers passing within the UNIX process. Because the resources are
managed more effectively, the application itself executes more quickly. Therefore, the
application is a collection of threads within an Open Server, instead of a number of UNIX
processes.

Open Server threads within the process have their own stack and register environments. The
threads do, however, share the resources of the operating system process that is executing
the server. For example, the standard input and standard output is the same for every thread
in the server. If threads regularly write to the standard output, you must be careful not to mix
the output of several threads on the standard output.

Programming in a multithreaded environment
Consider the following when programming in a multithreaded environment.

• Make all code re-entrant – Open Server threads execute the same code image, so the
program must not modify itself. If a thread resumes code that was changed while the
thread was suspended, the results are difficult to predict and likely to be unrecoverable.
In a multithreaded environment, you must take into account the possibility of concurrence
within a single UNIX process and not only between UNIX processes.

For more information about Mutexes, refer to the subsection “Mutually Exclusive
Semaphores (Mutexes)" in the section “Inter-Thread Communication" of this chapter.

• Protect shared resources – Make sure to protect shared resources such as global data,
file descriptors, devices, and so on. While updating a shared global data item, do not call
a routine that could suspend the thread unless you have taken steps to prevent other
threads from accessing the data (such as a mutex). Otherwise, another thread could be
working with inconsistent data. Watch for program logic that assumes it has sole access
to a resource.

• Avoid static variables in routines that could be executed by more than one thread – If a
thread accesses a static variable that might be accessed by other threads, the variable's
value may have been changed since it was last referenced by that thread. It is safer to
use automatic variables because each thread has its own stack. When static variables
must be used, protect access to them by using the technique for protecting variables as
shared resources, outlined in the previous point.

• Be careful with certain UNIX system calls and C library routines – The standard C library
was not written to handle a multithreaded process explicitly. Therefore, certain functions
may maintain a global variable invisible to you in order to save some information internal
to the function. An example is strtok(). After strtok() makes its initial call, it maintains the
pointer to its current position within the string. If two threads are using strtok() at the
same time, it is possible that one of the strtok() calls on one string could return the
address of some part of the other string, or worse, crash the server.

Chapter 1
Application architecture

1-7

• Avoid blocking UNIX system calls – UNIX system calls such as sleep() and read()
can block the entire UNIX process, not just the individual thread. Generally, the
Open Server API and the ASAP API provide non-blocking versions of these
system calls.

• Be aware of linking in third-party libraries – Some third party libraries may include
blocking calls within them that could affect the Open Server operation. Examples
of such libraries include LU6.2 API libraries and X.25 libraries.

• Be aware of the thread stack size – Each thread within an Open Server has its
own stack environment. If a particular thread exceeds its stack size, the server
terminates. Therefore, do not use recursive routines that may result in excessive
stack depth or stack size, such as unbalanced binary trees, large automatic stack
objects, and so on.

Multithreaded procedural server initialization
In the initialization of the ASAP application server, the ASAP API installs a
SRV_START Open Server event handler which is called by the Open Server library to
start the server process. The server process is single-threaded while the SRV_START
handler is executing. The server can spawn service threads, create message queues
and mutexes, among other things, from within this start handler. Such spawned
threads do not begin executing until the handler has finished.

It is not possible to send or receive thread messages, to lock mutexes or to perform
any network input/output operations within this handler.

Chapter 1
Application architecture

1-8

Figure 1-4 Multithreaded Procedural Server Initialization

During this handler execution, the application supplied appl_initialize() API routine is called.
In appl_initialize(), the application registers one or more initialization routines, by means of
the ASC_reg_init_func() routine, to be executed before the application threads start up.
Such routines generally load static data from the database into memory tables, and therefore
cannot be called directly from appl_initialize() since it is part of the SRV_START handler.

In order to control the multithreaded server initialization, the ASAP API initially locks an
initialization mutex and spawns an initialization thread which is allowed to run when the
SRV_START handler finishes. All other application threads (except the Sleep Handler and
Sleep Wakeup) are blocked by waiting on an initialization mutex. This includes all
connections received by this application server.

The initialization thread processes each registered initialization routine in series. Once all
such routines have been completed, the initialization thread unlocks the initialization mutex,
allowing the application threads to begin execution with the assurance that all the necessary
initialization has been performed.

Inter-process communication
The Open Server and Open Client APIs provide inter-process communication facilities that
are used by ASAP applications. The principal inter-process communication facilities provided
by APIs are RPCs, registered procedures, and language requests.

Chapter 1
Application architecture

1-9

To handle communications between servers, you are provided with application server
driver threads.

RPCs and registered procedures
The RPC/Registered Procedure mechanism is the predominant inter-process
communication mechanism used in ASAP.

A Remote Procedure Call (RPC) is a function that is executed in an RDBMS Server or
a “C" function that is executed in an application server by an application client or
server process. To execute the procedure, the sending server or client first establishes
a network connection with the destination server and passes the appropriate
information to the destination server in name-value pair format. The sending server
then executes the procedure or function, waits for data rows, returns status or text
messages to the receiving server, and, finally, ends the execution of the procedure.

Registered procedures provide more efficient processing than RPCs but do not allow
options in the procedure call. Registered procedures do, however, give servers the
ability to notify clients whenever a registered procedure executes.

This method of communication is fast and efficient, especially when a network
connection is already established for the sender to transmit its RPC/Registered
Procedure and receive the associated results.

Executing functions:

The following procedures describes how to execute functions in Oracle.

To execute a function in Oracle:

1. Log in to the database by typing:

sqlplus $<server_user>/$<server_password>

<server_user> – is your user name for logging into the server <server_password>
– is your password

2. Execute the function by typing:

variable retval number;
exec :retval :=<stored_procedure> (<parameter_name(s)>)
;

<stored_procedure> – is the name of the function and <parameter_name(s)> – is
the name of each column identified in the applicable database table

Language requests
To facilitate larger data volume transfers, the sending application client or server
transmits a language request to the receiving server process. For these large data
volumes, language requests are more efficient than RPCs.

Application server driver threads
In most application servers that communicate with other application servers, a special
thread called a driver thread is spawned on the sender side. This driver thread handles
the communication between the servers. Any thread within the server that wishes to
communicate with the other server interfaces with the driver thread and leaves the

Chapter 1
Application architecture

1-10

driver thread to perform the actual RPC/Registered Procedure call. If the call fails, the driver
thread marks the receiving server as down.

Figure 1-5 illustrates that on the receiver side, an RPC/Registered Procedure handler routine
interprets the incoming RPC/Registered Procedure and takes the appropriate action.

Figure 1-5 Application Server Driver Threads

If a driver thread has been idle for a period of time (for example, one minute), it checks the
integrity of the RPC connection just in case the other server process has died. To do so, the
driver executes a “heartbeat" RPC called kick_start.

The heartbeat RPC checks the integrity of the network connection. If the connection is down,
the driver thread closes the network connection. The driver thread's ability to close the
network connection ensures that the application server will start up again. Another detection
technique uses callbacks to trigger, when the connection between applications is broken.

If the driver thread does not close the network connection, the driver thread will not release
its end of the connection and the UNIX kernel will not free up the socket associated with the
network connection. Consequently, when the other server tries to start up and listen on its
master network port, it will be unable to do so because the socket upon which it is supposed
to listen is already in operation (in other words, it has not yet been released). Therefore, the
other application server will not be able to start up.

All driver threads within ASAP employ this mechanism to validate the network connections.
ASAP assumes that the RDBMS Server will not terminate unexpectedly and, therefore, does
not check network connections to the RDBMS Server.

Chapter 1
Application architecture

1-11

Inter-thread communication
Within each multithreaded application server, there might be many threads of
execution and these threads may need to communicate with each other. The APIs
provide a number of tools to allow for this “inter-thread" communication.

Mutually exclusive semaphores (mutexes)
A Mutual Exclusion Semaphore (mutex) is a logical object, much like a semaphore
under UNIX. The Open Server API allows the mutex to lock only one thread.

Threads that share global variables, structures, tables, and so forth, may only access
these resources to read or update if the threads first lock the mutex associated with
them. Once the mutex is locked, only one thread has exclusive access to a resource.
Other threads waiting to access that resource can only do so when the current thread
is finished using it. Once that thread is finished using the resource, it unlocks the
mutex, and grants access to the next thread in line. The new thread must lock the
mutex again before accessing the resource. A thread may block waiting on a mutex.

Mutexes are primarily used to protect resources from multiple concurrent updates by
more than one thread. Therefore, if there is a resource within an application server that
could be updated by more than one thread at a time, you should protect it using a
mutex. Such protection is generally encapsulated in a single function which manages
the mutex updates.

Thread message queues
Message queues let threads communicate with each other and are often used to send
data to other threads within an application server.

The message itself resides in memory shared by the sending and receiving threads.
The thread that puts the message into a queue and the thread that reads it must agree
on the message format. Be careful that the sending thread does not overwrite the
message memory address before the reading thread receives the message.

There are two main types of inter-thread messages employed within ASAP:
asynchronous thread messages and synchronous thread messages. These two types
of messages are explained in the following subsections.

Asynchronous thread messages:

Asynchronous thread messages are the most common types of messages passed
between threads in ASAP. With these messages, the sender allocates memory for the
message structure, fills in the message details, sends the message to the receiver,
and continues normal operation.

The receiver receives the message, takes the appropriate action on its contents, and
then frees the memory area allocated to the message. There is no needed
synchronization between the sending and receiving threads. The only prerequisite for
this type of communication is that the receiver must have a thread message queue.
Figure 1-6 illustrates this process flow.

Chapter 1
Application architecture

1-12

Figure 1-6 Asynchronous Thread Messages

Synchronous thread messages:

In some cases, the sender may need to wait before sending the message. For instance, it
may need to wait on a status field entered in the message by the receiver. When this
happens, the sender must wait until the receiver updates the relevant information in the
message before referencing it. In this case, the sender usually declares the message on its
stack, fills in the message details, and sends the message to the receiver.

Immediately after sending the message to the receiver, the sender thread goes to sleep and
only wakes up when the receiver updates the message and explicitly wakes up the sender.
When the receiver gets the message, it reads it and may update certain fields before waking
up the thread that was sleeping on this message. At this point, both the sender and receiver
continue with normal operations. This process flow appears in the following illustration.

Use the synchronous message method if a message sender requires return parameters or a
message status.

Chapter 1
Application architecture

1-13

Note:

Both the sending and receiving threads must agree on both the message
format and the message type (synchronous or asynchronous). If the sender
sends an asynchronous message and the receiver expects a synchronous
one, then the memory allocated for the message will never be freed.
Conversely, if the sender sends a synchronous message and the receiver
expects an asynchronous one, the sender will stay asleep and the receiver
will try to free the message on the sender's stack. This will lead to
unpredictable results.

Figure 1-7 Synchronous Thread Messages

Functions and configuration variables:

There are four functions that must be used when dealing with thread message queues
within ASAP: ASC_createmsgq, ASC_deletemsgq, ASC_putmsgq, and

Chapter 1
Application architecture

1-14

ASC_getmsgq. The use of these functions must be consistent throughout the application.

Message queue statistics may also be dumped to a file.

System monitoring tool:

The ASAP Utility Script (asap_utils) is a menu that provides access from UNIX to a set of
monitoring utilities for ASAP. You can access sysmon through the Real-time System
Monitoring option (109) of the asap_utils menu. You can also monitor multiple servers at the
same time by selecting the Real-time System Monitoring option (109) again. Once the data
collection time period has passed, sysmon output files will be created in the ASAP systems
diagnostic file directory.

Note:

Option 101, View Server Msg Queue Statistics, available in previous versions of
ASAP, as well as the configuration parameter DIAG_MSGQUEUES and the RPC
diag_msgqueues, have been replaced by the functionality available from option
109, Real-time System Monitoring.

The system monitoring tool is not available to C++ SRPs.

Sample message queue statistics

Tuning - Message Queue

Description Count Total Min Max Average Mean Deviation
------------ ------ ------ ---- ----- ------- ---- ---------
ASDL Provision Queue
message read wait time 1056 5995.5 0.9 62.2 5.7 15.1 10.2
messages sent (count) 1056
queue idle-time (ms) 1056 5971905.0 0.0 114374.2 5655.2 23775.0 19062.4
queue size (count) 1056 0.0 0.0 0.0 0.0 0.0 0.0
...

Group Manager Msg Q
message read wait time 2469 38896.8 2.5 290.5 15.8 61.5 48.0
messages sent (count) 2469
queue idle-time (ms) 2469 18707440.6 0.0 71880.3 7576.9 18294.2 119980.0
queue size (count) 2469 27184.0 0.0 27.1 7.2 1.5 4.5
...

Device-oriented threads and socketpair messaging
Device-oriented threads typically watch for input from one or more devices using the
ASC_poll() API call. Such a thread cannot wait on the internal message queue to receive
inter-thread messages from other threads. This thread will create a socketpair and publish
one end of the socketpair as the socket device to which the other threads can write
messages. The thread adds the other end of the socketpair to the list of devices that are
polled for input. If any thread writes to the write-endpoint of the socketpair, the device will
detect it via ASC_poll() and then read the message using the read-endpoint. Only
asynchronous messages are supported using socketpair messaging.

Both the sending and receiving threads must agree on the format of the message.

Chapter 1
Application architecture

1-15

This messaging technique is used internally in the ASAP core development. There are
no explicit API calls provided as this is an internal feature of the ASAP API. Socketpair
messaging is commonly used in applications interfacing with other external systems.

Notes for C++ compilation
The UNUSED macro:

This macro takes a single argument and is used in function calls where one of the
arguments is unused. It prevents the C++ compiler from complaining about the unused
argument. Refer to the example below.

CS_INT example_func(int arg1, int arg2, int UNUSED(arg3))
{

CS_INT arg4;
.
.
.
arg1 ++;
arg4 = arg2 + arg1;
.
.
.
return arg4;

}

In this example, the C++ compiler will accept the omission of arg3 in example_func.

Library architecture
This chapter outlines ASAP's library architecture. The following sections are included
in this chapter:

• ASAP API Development Structure

• API Library Structures

• ASAP API Application Development

• SRP Server Application Structure

• Generic NEP Application Structure

• Multi-Protocol NEP Structure

ASAP API development structure
The ASAP development API builds upon the Open Client and Open Server libraries.
ASAP client applications use the ASAP Client API which interfaces with the Open
Client. ASAP server applications use the ASAP Server API to communicate with both
the Open Client and Open Server libraries.

Figure 1-8 summarizes the API hierarchy.

Chapter 1
Library architecture

1-16

Figure 1-8 ASAP API Hierarchy

API library structures
A detailed API structure emphasizing the application APIs appears in Figure 1-9. This figure
illustrates the APIs that can be linked to an ASAP application. In general, each application
links to a subset of the outlined libraries. For more information about each of the API libraries,
refer to the subsections that follow.

Chapter 1
Library architecture

1-17

Figure 1-9 API Library Structures

Common API library – libasc
The Common API library, libasc, provides a set of API routines common to both the
client and server application libraries: libclient and libcontrol. This library is linked to
both application clients and servers.

The libasc library provides you with considerable functionality, including:

• Diagnostic routines common to both clients and servers

• System event generation

• Application configuration parameter determination

• Network connection management

• Performance parameter generation

• Registered Procedures API

• Remote Procedure Calls API

Chapter 1
Library architecture

1-18

Client application API library – libclient
The Client Application API library, libclient, has an application client template to which you
can add application-dependent functionality. This library, which is employed by every ASAP
application client, provides routines specific to client applications.

The primary advantage of libclient is that it enables clients to integrate easily into the ASAP
model. This allows the Control Server to start each client in the same manner as it starts
server applications.

To use this library, you must define the following functions:

• appl_initialize() – The application client initialization routine

• appl_cleanup() – The application client termination cleanup routine

Server application API library – libcontrol
The Server Application API library, libcontrol, provides you with routines specific to server
applications. Each ASAP application server links to this library, so it provides a total
environment from where you can develop server applications.

Using this library, the Control Server can start each server application and monitor its
behavior while it is running. It adds considerable functionality to the server application before
any user-specified functionality is added to the server.

This library provides you with considerable functionality including:

• Memory management

• Thread spawning and thread administration

• Performance monitoring and management

• Non-blocking thread versions of UNIX system calls: sleep(), alarm(), read(), write(), poll(),
and so forth

• Control Agent routines controlling the Control database for performance parameter
updates

• Database administration thread

• Pools of SQL server network connections to various databases for application use

• Language requests management

• Client connection and disconnection handlers

• Many administrative and diagnostic RPCs

• Library version registry

To use this library, you must define the following function:

• appl_initialize() – The application server initialization routine which can add RPC/
Registered Procedure/Language Request handlers, spawn application service threads,
and so forth.

This server library also provides considerable functionality to any application server which
links to this library. Figure 1-10 outlines a schematic of a server without any application
functionality.

Chapter 1
Library architecture

1-19

Figure 1-10 Server Schematic

The Server Application API library also contains an application server template to
which you can add application-dependent functionality. This library also spawns a
number of threads to manage some common functions.

The following subsections describe some of these service threads, as well as other
functions that are not managed by service threads.

The server API discussed here is generally excluded from schematic descriptions of
an application server in order to avoid confusion and to emphasize the functionality of
the particular server. The functionality of the API is present in all ASAP application
servers.

Sleep manager and sleep wakeup handler threads:

The Sleep Manager and Sleep Wakeup Handler threads run constantly in each
application server.

The SYBASE Open Server library provides routines that let you put a thread to “sleep"
on a particular object (srv_sleep()) and be “woken up" (srv_wakeup()) by another
thread within the Open Server. Unlike UNIX, there is no function to put a thread to
sleep for a specified time period. Therefore, to put a thread to sleep for a specified
time period, you can use a separate API routine, ASC_sleep().

The UNIX alarm() call is a shared resource. When activated, it issues a signal
interrupt to the UNIX process, affecting all threads in a multithreaded process. In many

Chapter 1
Library architecture

1-20

cases, a particular thread may wish to alarm only itself, and not impact the operation of other
threads in the UNIX process.

For the above cases, the libcontrol library spawns two service threads when the application
starts up (refer to the previous diagram). These threads are:

• sleep manager thread – This thread receives sleep and alarm requests from other
threads within the process.

• sleep wakeup handler thread – This thread handles the UNIX alarm() call and passes
the timeout notification to the sleep manager thread, which then forwards the alarm
notification to the relevant application thread.

Control agent thread:

When the ASAP application server starts up, the Control library spawns the Control Agent
thread, which does the following:

• Runs constantly in each application server.

• Opens a connection to the Control database in the SQL Server. Whenever an application
thread issues a system event or database audit log or error entry, the thread calls a
function in the API which, in turn, interfaces with the Control Agent thread to update the
relevant database tables.

• Installs a UNIX signal handler for the SIGUSR1 signal. When this signal is received by
the application server process in the Control Server, the Control Agent thread invokes
functions in the Control database and updates that server's process and performance
parameter information. The Control Server sends the performance poll signal based on
the performance poll-interval period. The poll interval is configured from the Control
Server.

Server language driver thread:

In some cases, one application server needs to send a large amount of textual information
(NE response files, for example) over the network to another application server, possibly a
remote machine.

To allow an application thread to send a text file or a text buffer as a Open Server language
request to another server, use the API function ASC_send_text(). When this API function is
called to send a text file to a particular application server for the first time, the API spawns a
Server Language Driver thread. This thread continues running from that point onwards.

The Server Language Driver thread manages the network connection to the other application
server and transmits the textual buffer to the destination application server. The destination
application server triggers an Open Server language event.

To properly receive the language buffer, the destination server must have the appropriate
language event handlers installed (using API functions). The server language driver thread
maintains the network connection to that particular application server, so that any subsequent
calls to this function to send textual information to this server are routed to this thread.

If the application calls the API function to send textual information to another application
server, the API spawns a new server language driver to manage the new connection and
data transmission. Therefore, you must set up one thread on the application server for every
connection to a separate application server.

Database administration thread:

The Database Administration thread is a background thread that is present in every
application server. It is spawned when the API server starts up. At a daily time that you

Chapter 1
Library architecture

1-21

configure, this thread establishes a connection to the server's primary database and
does the following:

• Performs database administration tasks (for instance, data archiving, purges, and
reports) in a function and passes the procedure a parameter.

You configure the function and the parameters, and specify the database
administration tasks to perform.

• Updates statistics for all tables within the database to ensure the correct execution
plan is chosen whenever the functions are recompiled.

• Recompiles all functions in the database.

When the above tasks are completed, the thread terminates the connection to the
primary database.

Poller manager thread:

The Poller Manager thread manages API access to the Sybase srv_poll() routine to
provide UNIX-like polling functionality to each application thread. It is invoked by
means of the ASC_poll() API call.

Ping Server Thread:

The Ping Server thread is a constantly executing thread within each application server
which periodically checks that both the application SQL and Control Server are
running. If one or both are not running for any reason, then this thread will terminate
the application server.

Interpreter API library – libinterpret
The Interpreter API library, libinterpret, provides routines for application servers that
need to use State Tables. This library is generally used by SRPs, and NEPs.

Follow these steps to use this library for an application server:

1. Initialize the interpreter using the ASC_init_interpreter() API call.

2. Once initialized, use the ASC_alloc_interpreter() API call to allocate the library.

3. To deploy the library, use the ASC_interpreter() API call.

4. When the previous step is complete, free the library using the
ASC_free_intrepreter() call.

5. If you want to add or overwrite State Table actions with customized action handler
functions, use the CMD_user_actions() API call.

SRP API library – libsrp
The SRP API library, libsrp, shields each SRP from the details of SARM
communication and notification responses. It provides a set of data structures and
routines you can use to develop an SRP. The libsrp library has the following main
components:

• Data structures and routines that describe the ASAP work order that the SRP
translates into.

• Data structures and function pointers that process each notification returned to the
SRP from the SARM.

Chapter 1
Library architecture

1-22

• API routines that retrieve query information related to the processing on a particular
ASAP work order from the SARM.

An SRP application links to the SRP API which contains both the Interpreter API library and
the SRP API library. When the SRP initializes the SRP library using the SRP_initialize() API
call, the API does the following:

• Initializes the Interpreter within the SRP so that the SRP can employ it (provided
libinterpret has been compiled in the SRP application).

• Spawns SARM driver threads to manage the transmission of ASAP Work Orders to the
SARM. The number of driver threads to be sent can be configured.

• Spawns work order manager threads to receive notification events returned from the
SARM and calls user-specified functions to process each notification event it receives.
The number of work order manager threads to be sent can be configured. The API also
adds all registered procedures and RPCs that the SRP receives from the SARM.

Note:

ASAP tuning can increase ASAP performance, especially for work order
management and handler threads.

Figure 1-11 shows a typical example of an SRP and SRP API components.

Chapter 1
Library architecture

1-23

Figure 1-11 SRP and SRP API Components

NEP API library – libnep
The NEP API library, libnep, provides you with the tools to write an NEP. To use this
library and generate a custom NEP server, you must provide the following API
functions to the NEP “core" system:

• ASC_loadCommParams() – Returns the list of communication parameters for the
specified device type, host, and device.

For more information, see "Interpreter library."

Chapter 1
Library architecture

1-24

• CMD_comm_init() – Initializes the communications interface library. When the NEP
requires interface-specific state table actions, use this function to register the actions
using CMD_user_actions (see State Table Interpreter).

• CMD_connect_port() – Opens a connection to the device specified by the port
information structure. This function also registers an association between the command
processor that initiates the connect and the device.

• CMD_disconnect_port() – Closes the connection to the device specified by the port
information structure

Figure 1-12 shows a typical example of an NEP and NEP API components.

Figure 1-12 NEP and NEP API Components

Chapter 1
Library architecture

1-25

Multi-protocol communications API library – libasccomm
The communications library provides the Multi-Protocol Manager (MPM) with access
to the various protocol drivers. Any ASAP Application Server that links in the
interpreter library and the communications library, can communicate with a remote
host using one of the supported device interfaces. Where terminal-based
communication is required, the MPM routines manage the writing to and reading from
the virtual screen.

The communications library allows one instance of an NEP application to
communicate with hosts using multiple device interfaces. One command processor
thread is dedicated to each remote host connection. To communicate with the device
interface, the command processor invokes the MPM that is part of the communications
API. The MPM will determine the appropriate device I/F handler based on the device
interface type specified by the command processor.

For device interfaces that access UNIX devices and support non-blocking I/O, all the
API functions are within the library. Hardwired or dialup (modem) serial interface, TCP
socket, telnet, and SUN X.25 are some device interfaces that fall under this category.
The generic driver will communicate with an external device driver using External
Device Driver Interface API (libgedd) functions.

For device interfaces that need external device drivers due to a non-UNIX device
interface API, or because nonblocking I/O is not possible, the communication library
provides a generic driver to interface with the external device driver. For example,
communicating to the host via the IBM-X25 API needs this approach because the IBM-
X25 API cannot co-exist with the Open Server. The generic driver will communicate
with an external device driver using the External Device Driver Interface API (libgedd)
functions.

Chapter 1
Library architecture

1-26

Figure 1-13 Logical NEP Command Processor Structure

Generic external device driver library – libgedd
The UNIX device API is managed from within the NEP using the Communications API. A
non-UNIX device API requires an external device driver (EDD) to act as a gateway to
transmit data between the NEP and the NE. The Generic External Device Driver API library,
libgedd, handles the communication between the NEP and the EDD.

Network element configuration library – libnecfg
This library, libnecfg, provides commonly-used functionality that is NE-specific, MARCH-
specific and blackout-related.

ASAP API application development
This section details the API structures used in various ASAP applications.

Client application structure
The Client application structure, as in Figure 1-14, is the API structure used within a typical
ASAP client.

Chapter 1
Library architecture

1-27

Figure 1-14 Client Application Structure

Server application structure
The Server application structure, as in Figure 1-15, is the API structure used within a
typical ASAP server.

Figure 1-15 Server Application Structure

Chapter 1
Library architecture

1-28

SRP server application structure
The SRP Server application structure, as in Figure 1-16, is the API structure used within a
typical ASAP SRP server.

The SRP application is a server application, so it links in libcontrol and libasc, as well as
libsrp and libinterpret.

Figure 1-16 SRP Server Application Structure

Generic NEP application structure
The Generic NEP application structure, as in Figure 1-17, is the API structure used within a
typical Generic NEP server.

The NEP application is a server application, so it links in libcontrol and libasc, as well as in
libnep and libinterpret.

Chapter 1
Library architecture

1-29

Figure 1-17 Generic NEP Application Structure

Multi-protocol NEP structure
The Multi-Protocol NEP structure, as in Figure 1-18, is the API structure used within a
typical Multi-Protocol NEP server.

The NEP application is a server application, so it links in libcontrol and libasc, as well
as in libsrp and libinterpret.

The Multi-protocol NEP application will link in libnep and libinterpret as is the case with
the Generic NEP. In addition, it will link in the Communication library (libasccomm)
and the Switch Configuration library (libnecfg).

Chapter 1
Library architecture

1-30

Figure 1-18 Multi-protocol NEP Structure

Development of Cartridges supporting Asynchronous NEs
ASAP executes CSDLs and ASDLs in work orders synchronously. CSDLs and ASDLs are
configured sequentially, and an ASDL must complete before the next ASDL can be started.

Some network elements respond to network actions asynchronously. After a request is sent,
the receipt of the request may be acknowledged immediately but a response indicating
completion of a request may be received from the network element some time later.

An ASDL in which the completion response arrives later is an asynchronous ASDL. A work
order may have a mix of synchronous and asynchronous ASDLs mapped to the CSDLs.

Synchronous ASDLs require any previous ASDLs to be completed, so all asynchronous
ASDLs run before a synchronous ASDL must complete before the synchronous ASDL starts.

Chapter 1
Library architecture

1-31

Note:

Asynchronous Dynamic NEs are not supported.

Asynchronous NE interfaces are supported through Java Enabled NEPs, and
not through state table programming.

Asynchronous NE Response Handler
Instead of ASAP managing the processing of asynchronous ASDLs in the core,
facilities are provided to the cartridge developer to handle them. These facilities
include a response handler to manage asynchronous ASDL responses implemented in
the java classes ResponseHandler and ResponseHandlerManager. Refer to the
ASAP Online Reference for details on these classes.

When configuring asynchronous ASDLs, a 'stop work order' ASDL must follow the
asynchronous ASDL(s) to halt work order processing. The NE response handler
handles asynchronous responses from the NE, and resumes the work order when all
outstanding asynchronous ASDL completion responses have been received.

Asynchronous connections:

Asynchronous NE interfaces have an entry in table tbl_comm_param with a
parameter label ASYNC_CONN and parameter value of either TRUE or FALSE. See
"tbl_comm_param."

When the NEP starts, for NEs that have an entry in table tbl_comm_param with a
parameter label ASYNC_CONN and parameter value of TRUE, a connection is
automatically established. If the parameter value is FALSE, the NE connection is not
automatically established.

Each distinct asynchronous NE connection may have a distinct response handler. In
this case, when an NE connection is released, then the associated response handler
also should be stopped and removed from the system.

If multiple asynchronous NE connections use the same response handler, then the
response handler may be spawned during the first NE connection and either left to
keep running or stopped and removed from the JNEP by the cartridge developer when
conditions as determined by the developer are met.

Response handler manager
Each Java-enabled NEP server (JNEP) uses a single instance of a response handler
manager to manage all asynchronous response handlers within the JNEP. The
response handler manager is accessed through static methods in its class. Typically,
response handler creation is requested within the connect() method of the NE
connection classes.

The response handler manager is implemented in the ResponseHandlerManager
class. For details, refer to the ASAP Online Reference.

A sample implementation is provided with the ASAP product in

$ASAP_BASE/samples/JeNEP/async_ne

Chapter 1
Library architecture

1-32

2
ASAP Database Tables

This chapter contains table information for the following databases:

• Control database

• SARM database

• NEP database

• Admin database

• C++ SRP API emulator database

Control database
This section describes the user-created database tables contained in the Control Database
Data Dictionary.

User-created database tables
Following is the list of user-created database tables.

tbl_alarm_center
This static table defines the alarm centers where system alarm notifications are sent. You are
responsible for maintaining this table. The initial data for this table is provided as part of the
core system.

Table 2-1 tbl_alarm_center

Column_name Type Length Nulls Description

alarm_center varchar2 8 0 The unique code representing the alarm
center.

control_prog varchar2 14 0 The program to be executed to communicate to
the alarm to this alarm center.

For example, this could be a shell script written
to send a message over the network, to a
printer or pager, etc., although any UNIX
executable can be provided.

The alarm program passes alarm data as
command line arguments for interpretation by
the alarm program.

The core system provides a shell script and a
sample C program, control_prog.c, which can
be used as a basis to generate user-created
alarm programs.

description varchar2 80 1 A description of the alarm center.

2-1

Table 2-1 (Cont.) tbl_alarm_center

Column_name Type Length Nulls Description

opt#_type varchar2 2 1 The option name passed to the control
program, where # is a number between 1 and
5.

This is a UNIX executable option to the control
program. Can be null or any single wildcard
character ("-_"), for example, -d -w, etc.

opt#_value varchar2 20 1 The option value that is passed to the control
program corresponding to the previous option
type, where # is a number between 1 and 5.

Table indexes:

alarm_center

The following is an example of alarm centers tbl_alarm_center:

alarm_Center control_prog description opt1_type
 opt1_value opt2_type opt2_value opt3_type
 opt3_value opt4_type opt4_value opt5_type
 opt5_value
 ------------ -------------- -- ---------

 ADMIN admin.sh Administration Alarm NULL
 NULL NULL NULL NULL
 NULL NULL NULL NULL
 NULL
 ADMINPGR adminp.sh Administration Pager NULL
 NULL NULL NULL NULL
 NULL NULL NULL NULL
 NULL

Each alarm center can invoke a program. This program is a UNIX executable or shell
script. If set to NULL, no alarm program is invoked. In this example, two alarm
programs, admin.sh and adminp.sh, are defined.

tbl_alarm_log
This dynamic table contains all of the system generated alarms.

Table 2-2 tbl_alarm_log

Column_name Type Length Nulls Description

event_unid number 38 0 The unique ID of the event generating the
alarm. If an alarm is generated by this event,
an alarm log entry is created in
tbl_alarm_log with this event_unid value.

alarm_code varchar2 8 0 The alarm code of the generated alarm.

alarm_unid number 38 0 The unique ID that identifies the alarm.

start_dts date - 0 The start date and time of the system alarm.

Chapter 2
Control database

2-2

Table 2-2 (Cont.) tbl_alarm_log

Column_name Type Length Nulls Description

escalation_dts date - 1 If set, the date and time of the last alarm
escalation.

clear_dts date - 1 If set, the date and time at which the alarm
was cleared.

ack_user varchar2 30 1 The user ID of the user who acknowledged
the alarm.

Table indexes:

Indexes

alarm_unid
event_unid
alarm_code

tbl_appl_proc
This static table contains ASAP application configuration information. The ASAP startup
procedure uses this table to determine the applications to start, and their start sequence.

You are responsible for maintaining this table. The initial data for this table is provided as part
of the core system.

Table 2-3 tbl_appl_proc

Column_name Type Length Nulls Description

start_seq number 38 0 Controls the sequence in which the applications
are started. For example, certain client
applications may be required to start before
server applications, and other client applications
after the server applications.

appl_type char 1 0 Specifies the ASAP application type.

• S – server
• C – client
• M – master control server
• R – remote control server

appl_cd varchar2 8 0 The logical ASAP application code, for example,
SARM, NEP01, NEP02, etc.

The ASAP configuration file contains entries for
the real name of each application. The real
name appears as a parameter value for the
application's logical name.

Chapter 2
Control database

2-3

Table 2-3 (Cont.) tbl_appl_proc

Column_name Type Length Nulls Description

control_svr varchar2 8 0 The name of the logical ASAP application
Control server that spawns the application and
monitors its behavior.

In a distributed ASAP configuration, there must
be a Control server defined on each machine. In
each ASAP configuration there is only one
master Control server. This server is defined as
having itself as a Control server. Remote
Control servers are defined as having the
master Control server as their Control server.

description varchar2 80 1 A description of the ASAP application.

diag_file varchar2 14 0 The name of the diagnostics log file where
diagnostic messages are written.

This file is created in the $LOGDIR directory
under a dated directory, for example, $LOGDIR/
yymmdd.

auto_start char 1 0 An auto start flag for the application. Values:

• Y – yes
• N – no
When starting ASAP with the command
start_asap_sys, all applications with the
autostart value of Y are started automatically.

To configure the SRP in tbl_appl_proc, you must
set auto_start to ‘N'.

program varchar2 40 0 The name of the UNIX executable to run.

This UNIX program must reside in
the $PROGRAMS directory and must be
executable.

diag_level varchar2 4 0 The diagnostic level of the ASAP application.

The diagnostic level determines whether to log
diagnostic information when the ASC_diag()
API function call is used. Possible values are:

• PROG
• SANE
• LOW
• KERN

isactive char 1 0 Flag denoting whether the ASAP application is
currently active. This stops attempts at starting
more than one instance of the same application.

Set by CSP_start_server/CSP_start_client and
reset by CSP_halt_server/CSP_halt_client
functions.

Possible values are:

• N – ASAP application is not running.
• Y – ASAP application is currently running.

Chapter 2
Control database

2-4

Table 2-3 (Cont.) tbl_appl_proc

Column_name Type Length Nulls Description

last_start date - 1 If set, identifies the last start date and time of
the ASAP application. It is set by the
administrative Control function,
CSP_start_server.

last_halt date - 1 If set, identifies the last halt or termination date
and time of the ASAP application.

It is set by the administrative Control function
CSP_halt_server/CSP_halt_client.

last_abnormal date - 1 If set, identifies the last abnormal termination of
the ASAP application process. This is
determined by the ASAP application Control
server.

svr_type varchar2 8 1 Possible values include:

• ADM – Admin server
• CTRL – Control server
• MASTER – Master Control server (must be

only one/system)
• SARM – SARM server
• SRP – SRP server
• NEP – NEP server

Table indexes:

Indexes

appl_cd
start_seq

tbl_classA_secu
tbl_classA_secu is an internal ASAP table that contains login ID and password information for
each ASAP server.

ASAP class A secure data includes the database login/password for each ASAP server. This
information is initially configured during ASAP installation.

The ASAP security administrator can maintain secure data by using the ASAP security tool.
The ASAP security tool enables users to initialize and maintain security for ASAP Class A
components (each core ASAP server). Refer to the ASAP System Administrator's Guide for
more information.

In addition to the ASAP security administator, the following action functions enable users to
access the secure data: GET_SECUREDATA, SET_SECUREDATA. For more information on
these action functions, see "GET_SECUREDATA" and "SET_SECUREDATA" respectively.

Table 2-4 tbl_classA_secu

Column_name Type Length Nulls Description

name varchar2 80 0 Name of key entry.

Chapter 2
Control database

2-5

Table 2-4 (Cont.) tbl_classA_secu

Column_name Type Length Nulls Description

value varchar2 255 0 Encrypted value.

class integer - 0 Possible values:

• 0 – ASAP class A secure data.

secu_level integer - 0 One of the following:

• 0 – Security feature is disabled. Password
information appears in plain text

• 1 – Security feature is enabled and
passwords are encrypted.

s_cache integer - 0 Reserved for future use.

audit_level integer - Reserved Reserved for future use.

c_date date - 0 Creation date.

alg integer - 0 Type of cypher algorithm, currently supports
only BLOWFISH alg (1).

desc1 varchar2 255 1 Description.

Table indexes:

name, value

tbl_classB_secu
tbl_classB_secu contains user ID, password, and other information used for custom
components, particularly the C SRP API, C++ SRP API, Java-enabled NEP, and NEs.

User-defined secure data can be set up in the following ways: using the ASAP security
administration tool or through APIs or action functions.

To import a large amount user-defined secure data into ASAP secure storage, it is
recommended that the user compose a flat file containing essential secure data
information. The format is "name:value:description" with semicolons used as
delimiters. For example, a data file will reference secure data as follows:

TOR_NE:password1:Class B NE login info
ENG_NE:password2:Class B NE login info

Note:

The ASAP security administration tool encrypts the value field.

Refer to the ASAP System Administrator's Guide for more information.

The user can access the secure ASAP data through security APIs or action functions.

The following security APIs from customized SRP and Java-enabled NEP. These
security APIs include ASC_get_securedata, ASC_set_securedata. For more
information on these APIs, see "ASC_get_securedata" and "ASC_set_securedata"
respectively.

Chapter 2
Control database

2-6

The following action functions enable users to access the secure data from customized or
non-customized NEPs: GET_SECUREDATA, SET_SECUREDATA. For more information on
these action functions,see "GET_SECUREDATA" and "SET_SECUREDATA" respectively.

Table 2-5 tbl_classB_secu

Column_name Type Length Nulls Description

name varchar2 80 0 Name of key entry.

value varchar2 255 0 The encrypted value.

class integer - 0 Reserved for future use.

s_cache integer - 0 Reserved for future use.

c_date date - 0 Creation date.

desc1 varchar2 255 1 Description.

Table indexes:

name, value

tbl_code_list
This static table is maintained within the Control database. It is used to track core and custom
code used in ASAP. For instance, this table can identify code that tracks cartridges deployed
within ASAP.

Table 2-6 tbl_code_list

Column_name Type Length Nulls Description

code_type varchar2 4 0 Type of code.

code varchar2 80 0 The code entry.

value varchar2 4 0 The code value.

code_desc varchar2 25 1 A description of the code.

parm1 varchar2 25 1 General purpose parameter field.

parm2 varchar2 25 1 Same as parm1.

parm3 varchar2 25 1 Same as parm1.

parm4 varchar2 25 1 Same as parm1.

Table indexes:

code_type, code, value

tbl_component
This static table contains a list of ASAP processes for each ASAP territory and system. You
are responsible for populating and maintaining this table.

Chapter 2
Control database

2-7

Table 2-7 tbl_component

Column_name Type Length Nulls Description

territory varchar2 20 0 The name of the ASAP territory. This allows
the components of all ASAP systems in all
territories to be specified and maintained in
a single database.

It is possible to have many territories in an
ASAP implementation. Territories are
generally mutually exclusive since there is
no communication between ASAP systems
in different territories.

system varchar2 20 0 The name of the ASAP system within an
ASAP territory.

component varchar2 40 0 The ASAP application component within
this territory.

This refers to the application components
listed in the appl_cd column in
tbl_appl_proc.

Table indexes:

territory, system, component

tbl_db_threshold
You can configure this static table to enable monitoring of data and transaction log
sizes for a specific database by the ASAP Control server. You can specify the
thresholds and the system events to be generated if such thresholds are exceeded.
The Control server periodically performs this check.

Note:

The interval between checks is configured by the Control server application
configuration variable, DB_MONITOR_TIME.

For information on DB_MONITOR_TIME, refer to the ASAP System Administrator's
Guide.

The following is a an example of a database monitoring configuration.

Table 2-8 Sample database monitoring configuration

asap_sys db_name data threshold (%) data event

PROD POOL_TS 85 MAJOR-EVT

PROD POOL_TS 95 MAJOR-EVT

Chapter 2
Control database

2-8

Note:

For the db_name column, you must use the specific name of the tablespace (not
the database name) where the databases that you want to monitor are located.

In this database configuration example, the MAJOREVT system event is generated on the
production system if the POOL_TS database becomes 85% full. If the transaction log for the
database exceeds 100 MB, the CRIT_EVT is generated by the system.

Table 2-9 tbl_db_threshold

Column_name Type Length Nulls Description

asap_sys varchar2 8 0 The ASAP environment. This should be set
equal to the value of the appropriate
ASAP_SYS environment variable.

The Control server only reads records from this
table with values of asap_sys equal to the
currently defined ASAP_SYS environment
variable.

db_name varchar2 80 0 The name of the database in this asap_sys
environment, for example, SDB_U01_asap.

data_threshold number 38 0 The data threshold above which the system
event data_event is issued (in percentage
0-100).

tran_threshold number 38 1 Obsolete.

data_event varchar2 8 0 The system event to be issued if the
data_threshold is exceeded.

tran_event varchar2 8 1 Obsolete.

Table indexes:

asap_sys, db_name

tbl_event_log
This dynamic table contains a log of all system events generated by ASAP applications.

You can create these entries by using the ASC_event() API function from within the source
code.

Table 2-10 tbl_event_log

Column_name Type Length Nulls Description

appl_cd varchar2 8 0 The logical name of the ASAP application that
generated the system event.

event_type varchar2 8 0 The event type that specifies whether a system
alarm is to be generated by accessing the static
table, tbl_event_type.

Chapter 2
Control database

2-9

Table 2-10 (Cont.) tbl_event_log

Column_name Type Length Nulls Description

event_unid number 38 0 A unique ID of this event.

If an alarm is generated by this event, an alarm
log entry is created in tbl_alarm_log with this
event_unid value.

source_file varchar2 14 0 The source file name where the event was
generated.

source_line number 38 0 The line in the source file where the event was
generated.

reason varchar2 80 0 A description of the system event.

event_dts date - 0 The date and time of the system event.

ack_user varchar2 30 1 ID of the user who acknowledged the event.

Table indexes:

Indexes

event_unid
appl_cd, event_dts

tbl_event_type
This static table defines the system events an ASAP application may generate and if
required, the system alarm code associated with the event. You can generate system
events using customer-specific code. You can configure these system events to
enable or disable system alarms, as required.

System events are logged in the Control database table, tbl_event_log. The ASAP
core system specifies the system events generated by the core system. You are
responsible for updating the existing system events and adding your own specific
events.

This table is referenced by the customEvent element in ServiceModel.xsd. In other
words, The customEvent must reference an event that has been defined in
tbl_event_type in the control database.

Chapter 2
Control database

2-10

Table 2-11 tbl_event_type

Column_name Type Length Nulls Description

event_type varchar2 8 0 The ASAP event type generated by the
application.

Each system event must have a record in this
table. The core API includes the following
system events:

• ABNORMAL – Abnormal Process
Termination - Application Terminated
Unexpectedly.

• SYS_TERM – Application Self Termination
upon Critical Error.

• SYS_ERR – General Application Process
Error.

• SYS_WARN – General Application Process
Warning.

• SYS_INFO – General Application
Information.

• DISK_ERR – Critical Disk / Media Error.
• RPCSPACE – Critical Database Resource

Error.
• RPC_ERR – General Application RPC

Error.
• UNIX_ERR – UNIX System Call Error.
• NETWK_ERR – Application Network

Connection Error.
• SRVOBJER – Application Server Object

Access Error.

The Control server can issue the following
events:

• APP_STRT – ASAP Application Local or
Remote Startup.

• APP_STOP – ASAP Application Local or
Remote Shutdown.

• APP_ERR – ASAP Application Startup
Error.

Chapter 2
Control database

2-11

Table 2-11 (Cont.) tbl_event_type

Column_name Type Length Nulls Description

event_type
(continued)

varchar2 8 0 The SARM can issue the following events:

• WOINPROC – Warning: Work Order(s) in
Progress Longer than Specified Threshold.

• ROUT_ERR – Error: SARM Routing Error -
Unable to Determine Host NE.

The NEP can issue the following events:

• MAINTNCE – Information: Host NE has
gone into Maintenance Mode.

• BIND_ERR – Warning: Unable to Allocate
Device to Connect to NE.

• CONN_ERR – Warning: NE Connection
Attempt Failed.

• DIAL_ERR – Warning: Dial-up Program to
Connect to NE Failed.

• SYS_TUNE – Informational message that
ASAP is auto-tuning its connection pools.

• LOGN_ERR – Warning: Login Program to
Network Element Failed.

• PORT_DIS – Error: Connection to NE
Failed; Port/Device DISABLED.

description varchar2 80 1 A description of the event. If an alarm is
generated by this event, the description is
passed to the alarm program.

alarm_code number 8 1 The alarm code associated with the system
event. If null, a database log entry is created,
but no alarm is generated.

alarm_action varchar2 2 1 The alarm action; specifically, the enabling or
disabling of the associated system alarm. It
allows system events to generate and stop
system alarms. Possible values are:

• E – Enable an alarm.
• D – Disable an alarm.

notify_aims char 0 1 Reserved for future use.

Table indexes:

event_type

The following is an example of the tbl_event_type table:

event_type description alarm_code
alarm_action
 ---------- -- ---------- ------------
ABNORMAL Abnormal Process Termination - Application ABNORMAL E
DB2FULL Database Space is Critical CRIT_NAC E
DISK_ERR Critical Disk / Media Error - See Diagno CRIT_AC E
FS2FULL File System Space is Critical CRIT_NAC E
MAINTNCE Information: Host NE has gone into Maint MIN_AC E
NTWK_ERR Application Network Connection Error - S MIN_AC E
ROUT_ERR Error: SARM Routing Error - Unable to De MIN_AC E
RPCSPACE Critical Database Resource Error - See D CRIT_NAC E
RPC_ERR General Application RPC Error - See Diag MIN_AC E

Chapter 2
Control database

2-12

SRVOBJER Application Server Object Access Error - MIN_AC E
SYS_ERR General Application Process Error MAJ_AC E
SYS_INFO General Application Information
SYS_WARN General Application Process Warning E
TRANFULL Tranlog Space is Critical CRIT_NAC E
UNIX_ERR UNIX System Call Error - See Diagnostics MIN_AC E
WOINPROC Work Order(s) in Progress Longer than Sp MIN_AC E

tbl_fs_threshold
You can configure this static table to enable monitoring of the desired UNIX file system sizes
by the ASAP Control server. If the thresholds are exceeded, you may specify both the
thresholds and the system events to be generated. The Control server periodically performs
this check.

Note:

You can configure the interval between checks by using the Control server
application configuration variable, FS_MONITOR_TIME.

A possible configuration for this table is:

Table 2-12 Sample FS_MONITOR_TIME table

asap_sys file_system full threshold (%) full event

PROD / 80 MAJOREVT

PROD /DATA 85 MAJOREVT

With this threshold configuration, the MAJOREVT system event is generated on the test
system if the “/" file system becomes 80% full. This function is platform-specific and may not
work on all platforms.

The implementation of the file system monitor varies across different platforms. Before
defining the FS threshold, consult your UNIX Administrator for the file system configuration.

ASAP reports less than what the UNIX file system actually uses since ASAP takes into
account the 10% minimum free space requirement when determining the file system space
available. Therefore, you must set the FS threshold lower than the actual threshold level. For
example, if the file system full alarm FS_FULL is to be generated at an 80% level, you should
set the FS threshold at 75%.

Table 2-13 tbl_fs_threshold

Column_name Type Length Nulls Description

asap_sys varchar2 8 0 The ASAP environment.

The Control server only reads records from the
table with values of asap_sys equal to the
currently defined ASAP_SYS environment
variable.

file_system varchar2 80 0 The name of the file system.

Chapter 2
Control database

2-13

Table 2-13 (Cont.) tbl_fs_threshold

Column_name Type Length Nulls Description

full_threshold number 38 0 The threshold above which the system event
full_event is issued (in percentage 0-100).

full_event varchar2 8 0 The system event issued should the
full_threshold be exceeded.

Table indexes:

asap_sys, file_system

tbl_listeners
This table allows any ASAP server to set up socket listeners for receiving RPC
requests. You must configure this table to allow the SARM to start up socket listeners
for incoming SRP requests. As well, every Java-enabled NEP must maintain a
dedicated connection to its JInterpreter.

Table 2-14 tbl_listeners

Column_name Type Length Nulls Description

srv_name varchar2 8 0 Name of the server that starts a socket
listener. The SARM must start a socket
listener to receive incoming Java SRP
requests.

For a Java-enabled NEP, this is the name of
the NEP ($NEP).

For the Java SRP, this column contains the
SARM name.

host_name varchar2 80 0 The host name or the IP address on which
the server application resides.

For the JInterpreter, this value must always
be localhost.

For the Java SRP, the host_name identifies
the location of the SARM.

listener_name varchar2 40 0 The name of the listener thread.

For a Java-enabled NEP, the listener name
describes the listener in the Java process
that accepts interpreter requests from the C
process. This listener name must always
be $NEP_jlistener.

For the Java SRP, observe the naming
convention of “<Java SRP application
name>_jsrplistener". This column is used by
the Java SRP to retrieve the listener
configurations.

port integer 0 A free port on which the server can start the
socket listener.

Table indexes:

Chapter 2
Control database

2-14

srv_name, listener_name

tbl_name_value_pair
This static table provides the facility to maintain miscellaneous name value pair information
related to the Control database. You are responsible for maintaining this table.

Table 2-15 tbl_name_value_pair

Column_name Type Length Nulls Nulls

name varchar2 40 0 The name of the parameter.

value number 38 0 The value of the parameter.

Table indexes:

name

tbl_process_info
This table contains information on process system resource usage. This information is
updated according to the frequency of polling, as specified by the PERF_POLL_PERIOD
configuration variable.

Table 2-16 tbl_process_info

Column_name Type Length Nulls Nulls

appl_cd varchar2 8 0 The name of the ASAP server.

info_dts date - 0 The date and time of the ASAP process
performance polling.

sys_events smallint - 0 The total number of system events generated
by appl_cd since ASAP start up.

user_cpu integer - 0 User CPU time.

system_cpu integer - 0 System CPU time.

proc_identity number 20 0 The ID of the process.

Table indexes:

appl_cd, info_dts

Note:

The user_cpu and system_cpu are gathered by each ASAP server by using the
times() UNIX system call. The times are in units of 1/CLK_TCK seconds.

Chapter 2
Control database

2-15

tbl_server_info
This static table stores OCA SRP server information required for the OCA applet to
connect to different sessions. When the OCA SRP server starts, it sends an HTTP
request to the IORManager servlet, which extracts the following information from the
HTTP request:

• OCA SRP server name

• Name of host where WebLogic Server is deployed

• Port number on which WebLogic Server is listening

The servlet then inserts the server, host name and port number string in the table.

When the OCA applet starts up, it reads the following information from the table.

Table 2-17 tbl_server_info

Column_name Type Length Nulls Description

servername varchar2 8 0 The name of the server.

hostname varchar2 80 0 The host on which the WebLogic server
resides.

info varchar2 512 0 The port number on which WebLogic Server
is listening.

For more information on configuring the OCA, refer to the ASAP Installation Guide.

tbl_system_alarm
This static table describes ASAP system alarms that can be generated by ASAP
system events. You must populate and maintain this table. Some initial data is
provided in the core system.

Table 2-18 tbl_system_alarm

Column_name Type Length Nulls Description

alarm_code varchar2 8 0 The alarm code.

description varchar2 80 0 A description of the system alarm that is
passed to the alarm program.

alarm_level varchar2 8 0 The level of the alarm. Possible values are:

• MINOR – minor alarm.
• MAJOR – major alarm.
• CRITICAL – critical alarm.

escalation_code varchar2 8 0 Reserved for future use.

escalation_time number 38 0 Reserved for future use.

Chapter 2
Control database

2-16

Table 2-18 (Cont.) tbl_system_alarm

Column_name Type Length Nulls Description

auto_clear char 1 If this flag is set to Y, it automatically clears
the alarm after being generated; otherwise,
the alarm continues to go off until it is either
manually turned off or a system event is
triggered to disable it.

For more information, see "tbl_event_type."

You can use a Control Server administrative
RPC, alarm_stop, to turn off a particular
non-auto clearing system alarm.

route#_period number 38 Where # is a number between 1 - 5. The
period in minutes from the alarm to the
alarm center.

route#_start number 38 Where # is a number between 1 - 5. The
daily start time in minutes after midnight for
the alarms to go to the alarm center. A value
between 0 and 1440.

route#_end number 38 Where # is a number between 1 - 5. The
daily end time in minutes after midnight for
the alarms to go to the alarm center. A value
between 0 and 1440.

route#_center varchar2 8 Where # is a number between 1 - 5. The
alarm center to route alarms.

Table indexes:

alarm_code
alarm_code description alarm_level escalation_code

escalation_time auto_clear route1_period route1_start route1_end
route1_Centre route2_period route2_start route2_end route2_Centre

---------- -- ----------- ---------------
ABNORMAL Abnormal Process Termination CRITICAL

 NULL N 5 0 1440
 ADMINPGR NULL NULL NULL

CRIT_NAC Critical ASAP System Alarm CRITICAL

 NULL N 5 0 1440
 ADMINPGR NULL NULL NULL

CRIT_AC Critical ASAP System Alarm CRITICAL

 NULL Y 5 0 1440
 ADMINPGR NULL NULL NULL

MAJ_NAC Major ASAP System Alarm MAJOR

 NULL N 5 0 1440
 ADMIN NULL NULL NULL

MAJ_AC Major ASAP System Alarm MAJOR

Chapter 2
Control database

2-17

 NULL Y 5 0 1440
 ADMIN NULL NULL NULL

MIN_NAC Minor ASAP System Alarm MINOR

 NULL N 5 0 1440
 ADMIN NULL NULL NULL

MIN_AC Minor ASAP System Alarm MINOR

 NULL Y 5 0 1440
 ADMIN NULL NULL NULL

tbl_unid
You can use this dynamic table to manage unique IDs needed by other tables. It is
present in most user databases and provides a method of generating a serial field.

Table 2-19 tbl_unid

Column_name Type Length Nulls Description

unid_type char 32 1 The unique ID type. You can maintain
many different types of unid values with
each generating a serial field by means of
a suitable function.

unid number 38 1 The current unid value for the unid type.

pad# char 255 1 Where # is a number between 1 - 4. Forces
each record to reside on a separate
database page (allowing improved
database concurrency).

Table indexes:

unid_type

tbl_unload_param
This table is used by the utilities. It provides information about the parameters inserted
or deleted by the stored procedures.

Table 2-20 tbl_unload_param

Column_name Type Length Nulls Description

seq_no Number 38 0 Sequence Number of the table

col_no Number 38 0 Column Number of the parameter in the
table

para_name Varchar2 80 0 Name of the Parameter

default_flag Number 38 0 Default flag

sp_type char 3 0 Type of the stored procedure

rows_int Number 38 0 Number of Rows

Table indexes:

Chapter 2
Control database

2-18

seq_no, para_name, sp_type

This table will be available in the Control and SARM databases. It contains data relevant to
the respective database it is in.

tbl_unload_sp
This table provides information about the stored procedures used to insert and delete data
from ASAP tables. This table is used by utilities which modify these ASAP tables.

Table 2-21 tbl_unload_sp

Column_name Type Length Nulls Description

seq_no Number 38 0 Sequence Number of the table

Tbl_name Varchar2 40 0 Name of the ASAP table

New_sp Varchar2 40 0 Stored Procedure used to insert the data into
the table

Del_sp Varchar2 40 0 Stored Procedure used to delete data from the
table

List_sp Varchar2 40 0 Stored Procedure used to list the data in the
table

Table indexes:

seq_no

This table will be available in the Control and SARM databases. It contains data relevant to
the respective database it is in.

SARM database
This section details the SARM database tables.

Work order audit information
This section describes the various methods of extracting work order audit information from
the following tables:

• tbl_wrk_ord – contains the current status of work orders.

• tbl_info_parm – contains information parameters that are returned to the SRP from the
NEP State Tables.

• tbl_srq_log – contains information pertaining to the system's interaction with NEs and
resulting changes to work order status and switch history information of the NE
responses.

• tbl_wo_audit – tracks the work order's status as it is processed. The level of information
captured in tbl_wo_audit is governed by the ASAP configuration variable
WO_AUDIT_LEVEL.

The level of logging for tbl_srq_log and tbl_wo_audit is governed by the ASAP.cfg
configuration parameter WO_AUDIT_LEVEL. The following list explains the available audit
levels:

Chapter 2
SARM database

2-19

• 0 – no auditing occurs. No information is placed in the tbl_wo_audit table.

• 1 – there is one audit entry per work order in the tbl_wo_audit table as it is tracked
through the system.

• 2 – provides all functions of level 1 plus the audit level entries for all error states in
the tbl_wo_audit table.

• 3 – provides all functions of level 2 plus it tracks the provisioning of a work order
through the entire provisioning process in the tbl_wo_audit table. For example,
when the ASDL was started, when it was placed in pending queue, where in the
pending queue it is, when it was sent to the NEP etc.

• 4 – all events are inserted into the tbl_wo_audit table. This level is intended to
debug the work order auditing process.

If the WO_AUDIT_LEVEL configuration parameter is set to 2 or greater,
SRQ_ERROR_EVENTS are written to tbl_srq_log. Whenever it is set less than 2,
WO_AUDIT_LEVEL events are not written into this table.

Events of other types, such as NE_RESP_EVENTs, NE_CMD_EVENTs and
SRQ_INFO_EVENTs, are written into tbl_srq_log even when WO_AUDIT_LEVEL=0.
These events track the information from the NEP's perspective, including:

• response logging (commands sent to and responses received from the NE)

• asdl_exit types and associated error messages

• information such as when a command was sent to the NE.

Viewing work order audit information
The OCA client provides a work order audit function that displays events related to the
processing of work orders contained in tbl_wo_audit. These events include, but are not
limited to, the event text and the data and time of these events.

The asap_utils utility provides additional functions that are particularly related to the
processing of work orders.

• 1. SARM - Service Requests in DB – lists the SRQs currently resident in the
ASAP database. It details the order ID, status, priority, due date, parent order,
batch group

• 2. SARM - In Proc Requests Summary – lists the number of requests currently in
progress in the ASAP database (this is determined to be orders in a Loading or In
Progress state).

• 3. SARM - In Proc Requests Details – lists details of any work orders currently in
progress within the SARM.

• 4. SARM - Work Order Queue Summary – lists the number of orders in each of
the SARM order queues. The queues include:

– Ready Queue – orders currently in progress.

– Rollback Queue – orders currently being rolled back.

– Auto Held Queue – orders that are being held by the SARM and not released
for some reason

• 5. SARM - Work Order Queue Details – provides the order details of each order
in the SARM work order queues. Such queues are global to the SARM.

Chapter 2
SARM database

2-20

• 6. SARM - Work Order Lock States – lists the orders in progress and their respective
lock states. Generally, an in progress order will have a local lock. Only in the high
availability configuration will orders be remotely locked.

• 7. SARM - ASDL/NE Queue Summary – provides summary details about each NE in
the system including:

– the NE, technology and software load

– the NEP managing the NE

– the current state of the NE

– Down, Connecting, Available, Maintenance, Disabled

– the time estimate (sec.) for ASDL processing to that NE

– the number of ASDLs pending to that NE (in a prioritized queue), the number
currently in progress, the number of connections open to that NE, and the number of
ASDLs waiting to be retried to that NE.

• 8. SARM - ASDL/NE Queue Details – provides details about each ASDL in the Pending,
In Progress and Retry ASDL queues to each NE in the system.

A complete description of these and other asap_utils functions is located in the ASAP System
Server Configuration Guide.

The level of logging is governed by the ASAP.cfg configuration parameter
WO_AUDIT_LEVEL. The following list explains the available audit levels:

• 0 – no auditing occurs. No information is placed in the tbl_wo_audit table.

• 1 – there is one audit entry per work order in the tbl_wo_audit table as it is traced through
the system.

• 2 – provides all functions of level 1 plus the audit level entries for all error states in the
tbl_wo_audit table.

• 3 – provides all functions of level 2 plus it tracks the provisioning of a work order through
the entire provisioning process in the tbl_wo_audit table. For example, when the ASDL
was started, when it was placed in pending queue, where in the pending queue it is,
when it was sent to the NEP etc.

• 4 – all events are inserted into the tbl_wo_audit table. This level is intended to debug the
work order auditing process.

If the WO_AUDIT_LEVEL is set to 2 or greater, SRQ_ERROR_EVENTS are written to
tbl_srq_log. Whenever it is set less than 2, WO_AUDIT_LEVEL events are not written into
this table.

Events of other types, such as NE_RESP_EVENTs, NE_CMD_EVENTs and
SRQ_INFO_EVENTs, are written into tbl_srq_log even when WO_AUDIT_LEVEL=0. These
events track the information from the NEP's perspective, including:

• response logging (commands sent to and responses received from the NE)

• asdl_exit types and associated error messages

• information such as when a command was sent to the NE.

SARM database tables
This section details the SARM database tables.

Chapter 2
SARM database

2-21

tbl_asap_srp
This static ASAP database table defines all Service Request Processors (SRPs)
currently configured in the ASAP system. Any ASAP application process that
communicates with the SARM as an SRP using the SRP API must be defined in this
table.

Upon start up, the SARM opens one or more network connections to each SRP
defined in this table. For each SRP, you can configure the SARM to issue an ASAP
system event with each work order notification transmitted back to the SRP. The
following are possible system events:

• NO EVENT – No event is sent to the SRP.

• NULL – The event is sent to the SRP or no system event is generated.

• Others – The event is sent to the SRP or the system event is generated of the type
specified. This allows the SARM to be configured by the SRP and not globally as it
would if this was performed by means of a configuration variable.

For more information on event types, see "tbl_event_type."

The Java SRP must be configured to be a socket type connection.

You are responsible for populating and maintaining this table.

You can maintain this table in the following ways:

• Using the Service Activation Configuration Tool (SACT). Refer to the ASAP Server
Configuration Guide for instructions.

• Using stored procedures, including:

– SSP_new_srp adds new SRP definitions.

– SSP_del_srp deletes SRP definitions from this table.

– SSP_list_srp lists the contents of this table.

Table 2-22 tbl_asap_srp Columns

Column_name Type Length Nulls Description

srp_id varchar2 8 0 The logical SRP server name.

srp_desc varchar2 255 1 A description of the SRP.

srp_conn_type char 1 0 Connection protocol from the SARM to the
SRP. Valid values are:

• O – for Open Client.
• S – for sockets.

srp_host_name varchar2 80 1 Name of the machine that the SRP resides
upon.

srp_host_port varchar2 6 1 The port number that the SRP is waiting
on for socket connections.

Chapter 2
SARM database

2-22

Table 2-22 (Cont.) tbl_asap_srp Columns

Column_name Type Length Nulls Description

wo_estimate_evt varchar2 8 1 Work order estimate event.

If you configure the SARM using the
configuration variable
WO_TIME_ESTIMATE_ON to perform this
work order estimation calculation, the
SARM determines the approximate
number and processing time for ASDLs on
the work order. The SARM then calculates
an approximate time estimate for this work
order.

wo_failure_evt varchar2 8 1 Work order failure event.

wo_complete_evt varchar2 8 1 Work order complete event.

wo_start_evt varchar2 8 1 Work order start event.

wo_soft_err_evt varchar2 8 1 This notification is generated whenever an
ASDL response on the work order is ‘Fail
But Continue'. If the work order fails or
completes, then this notification is followed
by a Failure or Completion notification.

If this event is not required by the SRP, you
must specify
NO_WO_EVENT_NOTIFICATION (NO
EVENT).

wo_blocked_evt varchar2 8 1 Not supported.

wo_rollback_evt varchar2 8 1 Generated when a work order fails and
rollback is configured on one or more
CSDLs on the order. It is also generated
when a completed work order is cancelled
and the SARM rolls back any completed
ASDLs on the work order.

If this event is not required by the SRP,
specify NO_WO_EVENT_NOTIFICATION
(NO EVENT).

wo_timeout_evt varchar2 8 1 Work order timeout event.

ne_unknown_evt varchar2 8 1 If defined, the system event issued by the
SARM when an NE unknown notification is
being transmitted back to the SRP from the
SARM. This notification is transmitted to
the SRP upon a Remote to Host NE, or
DN to Host NE routing error.

ne_avail_evt varchar2 8 1 No longer used.

ne_unavail_evt varchar2 8 1 No longer used.

wo_accept_evt varchar2 8 1 If defined, the system event issued by the
SARM when a work order acceptance
notification is being transmitted back to the
SRP from the SARM.

Chapter 2
SARM database

2-23

Table 2-22 (Cont.) tbl_asap_srp Columns

Column_name Type Length Nulls Description

aux_srp_id varchar2 8 1 Specifies the auxiliary SRP to where the
SARM opens network connections in the
event that the primary SRP is unavailable.
Set this field to NULL.

aux_srp_conn_type char 1 1 Connection protocol for SARM to auxiliary
SRP communications. Valid values are:

• O – for Open Client.
• S – for sockets.

aux_srp_host_name varchar2 80 1 Name of the machine that the auxiliary
SRP resides upon.

aux_srp_host_port varchar2 6 1 The number of the port that the auxiliary
SRP is waiting on for socket connections.

Table indexes:

srp_id

tbl_asap_stats
tbl_asap_stats provides a way of gathering and analyzing statistics related to the
ASAP provisioning process.

If you enable the ASAP statistics gathering by using the NEP configuration variable
ASAP_STATS_ON, the dynamic table will contain a log of all the ASAP statistical
entries. Statistical entries are made by the Interpreter State Table action, LOG_STAT,
and are passed to relevant data fields.

Table 2-23 tbl_asap_stats Columns

Column_name Type Length Nulls Description

stats_unid number 38 0 The unique ID of the statistical entry which
is generated at insert time.

stats_dts date - 0 The date and time that the statistical entry
was logged.

wo_id varchar2 80 0 The work order to which this statistical
entry is related.

This is determined from the work order
table at insert time.

Chapter 2
SARM database

2-24

Table 2-23 (Cont.) tbl_asap_stats Columns

Column_name Type Length Nulls Description

wo_stat number 1 0 The status of the associated work order.

This is determined from the work order
table at insert time. An update trigger
updates the work order status to match that
of the work order.

This means that when a work order is
completed, all statistical entries associated
with that work order is updated to
‘Completed'.

The possible values for this field are the
same as those in wo_stat in the SARM
database table tbl_wrk_ord. See
"tbl_wrk_ord (SARM)."

user_id varchar2 64 0 The user ID associated with this log entry.

The user ID is determined from the
orig_login field in the SARM database table
tbl_wrk_ord at insert time. See "tbl_wrk_ord
(SARM)."

srq_id number 38 0 The service request related to this
statistical entry.

asdl_cmd varchar2 80 0 The ASDL being provisioned when the
statistics log entry was created.

mcli varchar2 80 1 If set, the Remote NE.

hcli varchar2 80 0 The Host NE to which the ASDL currently
being processed is routed.

dn varchar2 24 1 If set, the directory number currently being
provisioned.

len varchar2 16 1 If set, the line equipment number currently
being provisioned.

ne_cmd varchar2 255 1 If set, the NE command string sent to the
NE.

cmd_type varchar2 25 1 If set, the type of NE command string.

The possible values which form the basis
for simple statistical gathering include:

• ADD – service addition.
• REMOVE – service removal.
• CHANGE – service change.
• QUERY – query only, no provisioning

performed.
You can customize this field and also
specify other command types to better suit
your statistical requirements.

Chapter 2
SARM database

2-25

Table 2-23 (Cont.) tbl_asap_stats Columns

Column_name Type Length Nulls Description

cmd_stat varchar2 25 1 If set, identifies the status of the NE
command after transmission to the NE.

The possible values which form the basis
for statistical gathering include:

• SUCCEED – Command completed
successfully.

• FAIL – Command failed.
• RETRY – Command failed but retried.
• MAINTENANCE – Command failed

because the NE is currently
unavailable to receive provisioning
requests.

• SOFT_FAIL – Command failed but
processing continues on other ASDLs.

• DELAYED_FAIL – An ASDL had failed
during provisioning. The SARM skips
any subsequent ASDL in the CSDL,
continues provisioning at the next
CSDL, and then fails the order.

This field is customizable.

You can specify other command states to
better suit your statistical requirements.

Refer to the ASAP Cartridge Development
Guide for more detailed descriptions of
these base_types.

cmd_reason varchar2 255 1 If set, identifies the reason that the NE
command failed. This is the error string
returned from the NE.

You can generate reports to determine the
principal error conditions in the provisioning
process.

parm1 varchar2 25 1 Multi-purpose text field in which customer
specific information is logged.

This field logs additional information in this
table. To allow this in a flexible manner,
these miscellaneous parameter fields have
been provided.

parm2 varchar2 25 1 Same as parm1.

parm3 varchar2 25 1 Same as parm1.

parm4 varchar2 25 1 Same as parm1.

parm5 varchar2 25 1 Same as parm1.

parm6 varchar2 25 1 Same as parm1.

Table indexes:

Indexes

stats_unid
wo_id

Chapter 2
SARM database

2-26

wo_stat, stats_dts
cmd_stat, stats_dts

tbl_asdl_config
This static table defines the ASDL configuration information required to handle routing and
rollback at the ASDL level. It is used by the SARM to determine which NEP to route the
command to, whether rollback is required for this ASDL, and if so, the rollback ASDL to use.
You are responsible for populating and maintaining this table.

• SSP_new_asdl_defn adds new ASDL configuration information to this table.

• SSP_del_asdl_defn deletes ASDL configuration information from this table.

• SSP_list_asdl_defn lists the contents of this table.

Table 2-24 tbl_asdl_config Columns

Column_name Type Length Nulls Description

asdl_cmd varchar2 80 0 The ASDL command.

reverse_asdl varchar2 80 0 Only required if rollback is configured on the
ASDL. If the ASDL requires rollback, the reverse
ASDL command must be invoked.

ignore_rollback char 1 0 Ignore rollback flag.

Possible values are:

• Y – Rollback is ignored for this ASDL.
• N – Rollback is required for this ASDL. In

this case, rollback is only performed if there
is a valid rollback ASDL command defined.

Rollback can be initiated for this ASDL in two
cases.

• The work order fails and rollback is
configured on one or more CSDLs on the
work order. In this case, if configured, this
ASDL is rolled back.

• When a cancellation is received on the work
order. If this ASDL has been completed and
rollback is configured, the SARM initiates
rollback for this ASDL.

route_flag char 1 0 Routing of the ASDL. Possible value is:

• (N) ROUTE_TO_NEP – The ASDL is routed
to the NEP only.

This value is defined in the header file
sarm_defs.h.

Deprecated. Column maintained for backward
compatibility only.

description varchar2 255 1 A description of the ASDL.

asdl_timeout number 8 0 The maximum number of seconds for an ASDL
timeout. If there is no response in the given
timeout value, the ASDL will timeout. For more
information, see the ASAP System
Administrator's Guide.

Chapter 2
SARM database

2-27

Table 2-24 (Cont.) tbl_asdl_config Columns

Column_name Type Length Nulls Description

asdl_retry_number number 8 0 The maximum number of retries if an ASDL
requests timeout. If the number of retries
exceeds asdl_retry_number, the order is failed
and rolled back. For more information, see the
ASAP System Administrator's Guide.

asdl_retry_interval number 8 0 The time period in seconds between ASDL
retries. For more information, see the ASAP
System Administrator's Guide.

Table indexes:

asdl_cmd

tbl_asdl_log
This dynamic table is used by the SARM to log the ASDLs as they are sent to the NEP
to facilitate rollback.

Table 2-25 tbl_asdl_log Columns

Column_name Type Length Nulls Description

srq_id number 38 0 The service request ID uniquely identifying
where the ASDL belongs.

asdl_stat number 1 0 Status of the ASDL.

If defined, this field is updated while
processing the ASDL and its rollback ASDL.

Possible values include:

• ASDL_NEP_COMPLETE 10
• ASDL_NEP_FAIL 11
• ASDL_NEP_RBACK_COMP 12
• ASDL_NEP_RBACK_FAIL 13
• ASDL_INITIAL 14
• ASDL_NEP_FAIL_CONTINUE 17
• ASDL_NEP_FAIL_DELAYED 20
These values are defined in sarm_defs.h.

asdl_unid number 38 0 A unique ID identifying the ASDL log entry.
This is a unique identifier and is assigned
sequentially starting at the value1.

csdl_seq_no number 38 0 The sequence number uniquely identifying
the CSDL on the SRQ that generated this
ASDL.

asdl_option varchar2 255 1 Reserved.

asdl_cmd varchar2 80 0 The ASDL command.

Chapter 2
SARM database

2-28

Table 2-25 (Cont.) tbl_asdl_log Columns

Column_name Type Length Nulls Description

rollback_asdl varchar2 80 1 If rollback is required on this ASDL, use this
command to roll back the original ASDL. It is
set by the SARM once the rollback is
completed as a history record.

This field is NULL unless rollback of this
ASDL is performed.

comp_dts date - 1 The completion date and time of the ASDL
processing.

rollback_dts date - 1 The date and time of the ASDL rollback.

host_clli varchar2 80 0 The Host NE to which the ASDL is routed by
the SARM.

queue_dts date - 1 The date and time when the ASDL was
placed in the SARM provisioning queue.

start_dts date - 1 The date and time when provisioning starts
for this ASDL.

The difference between this value and the
queue_dts represents the time the ASDL
spent in the queue of pending ASDLs before
being transmitted to the NEP for
provisioning.

retry_count number 38 1 A count of the number of times the ASDL
was retried at the NE.

Table indexes:

srq_id, asdl_stat, asdl_unid

tbl_asdl_parm
A static table used by the SARM to define the parameter labels and values associated with a
given ASDL. It also provides the mapping between the CSDL parameter labels received from
the SRP (csdl_lbl) and the ASDL parameter labels (asdl_lbl) transmitted to the NEP for
interpretation by the Interpreter State Tables.

For each CSDL label (csdl_lbl), the SARM checks the current CSDL parameter name value
pairs for a matching label. If no matching label is found, it checks for a label in the work order
global parameter name value pairs. If no matching label is found in either of these parameter
name value pairs and the parameter type (param_typ) which is mandatory, the default value
(default_vlu), is used.

If no default value is set, the SARM registers an ASDL parameter mapping failure. If the
parameter is Indexed, the csdl_lbl must contain a “++" or the SARM will not start. There is
considerable translation mapping logic related to both the tbl_csdl_asdl and this table.

Chapter 2
SARM database

2-29

Note:

By convention, the ++ notation appears at the end of the label within square
brackets. This convention makes it easy to identify the index.

An example of this translation is contained in the ASAP Cartridge Development Guide.
Refer to the section on dynamic routing scenarios.

You are responsible for populating and maintaining this table.

• SSP_new_asdl_parm adds ASDL parameters to tbl_asdl_parm.

• SSP_del_asdl_parm adds ASDL parameters to tbl_asdl_parm.

• SSP_list_asdl_parm lists the contents of this table.

Table 2-26 tbl_asdl_parm Columns

Column_name Type Length Nulls Description

asdl_cmd varchar2 80 0 The ASDL command.

parm_seq_no number 38 0 The sequence number of the ASDL
parameter within the parameter list.

asdl_lbl varchar2 80 0 The ASDL label used in transmitting the
ASDL parameter name value pairs to the
NEP for interpretation by the NE State
Tables or Java methods.

csdl_lbl varchar2 80 0 The CSDL or global work order parameter
label, which is transmitted to the SARM by
the SRP or returned by the NEP State
Tables or Java methods as a return CSDL
global parameter.

For an indexed or compound parameter, the
CSDL command defined in this table is not
exactly the same as the label transmitted by
the SRP. This table stores the CSDL's base
name.

default_vlu varchar2 255 1 In the case when the CSDL parameter is not
passed to the SARM, the SARM substitutes
the default value for the csdl_lbl. This default
parameter value is referenced only for Scalar
parameters.

Chapter 2
SARM database

2-30

Table 2-26 (Cont.) tbl_asdl_parm Columns

Column_name Type Length Nulls Description

param_typ char 1 0 There are three ASDL parameter formats:

• SCALAR – Specifies the parameter
label transmitted on the ASDL
command.

• COMPOUND – Specifies the base
name of the Compound parameter
transmitted on the ASDL command.

• INDEXED – Specifies the base name of
the ASDL command transmitted on the
ASDL command.

ASDL parameters can be either required or
optional. Consequently, the possible
parameter type values include:

• R – required scalar parameter.
• O – optional scalar parameter.
• C – required compound parameter. This

parameter type is also used for
compound indexed parameters. For
more information, see the ASAP
Cartridge Development Guide.

• N – optional compound parameter.
• M – mandatory indexed parameter.
• I – optional indexed parameter.
• X – required XML parameter.
• Y – optional XML parameter.
• P – required XPATH parameter.
• Q – optional XPATH parameter.
• S – Parameter count. This value gives

the State Table or Java method the total
number of parameters associated with
this ASDL command.

• + – Current index value for this ASDL.
Only applicable to indexed ASDLs.

For more information about XML and XPATH
parameters, see ASAP Cartridge
Development Guide.

dep_asdl_lbl varchar2 80 0 An ASDL parameter that identifies the XML
document that the XPATH is evaluated
against. Applies only to parameter types P
and Q.

Table indexes:

asdl_cmd, parm_seq_no

For details and examples of various parameter types, refer to the ASAP Cartridge
Development Guide.

Chapter 2
SARM database

2-31

tbl_asdl_response
In this ASDL Loopback testing table, the Interpreter must be placed in loopback mode
by means of the Interpreter configuration parameter LOOPBACK_ON.

In loopback mode, when an ASDL completes successfully from the State Table, the
Interpreter refers to this table to determine the action to take before completing the
Interpreter ASDL invocation.

This table specifies a time interval to wait, (useful to test time-out conditions), for
various State Table exit states and ASDL states returned by the Interpreter processing.
You only need to perform the test to populate this table when loopback testing is being
performed.

Table 2-27 tbl_asdl_response Columns

Column_name Type Length Nulls Description

asdl varchar2 80 0 The ASDL for which loopback processing is
provided.

parm_option varchar2 80 0 Reserved for future use.

exit_status varchar2 20 0 The exit status returned to the Interpreter
from the simulation. The possible values
include:

• MAINT – Simulates the NE having gone
into Maintenance mode and allows
testing of the conditions.

• FAIL – Simulates a hard error from the
State Table.

• SUCCEED – Default successful State
Table execution.

• STOP – Stops a work order after the
execution of a state table or script is
complete.

Chapter 2
SARM database

2-32

Table 2-27 (Cont.) tbl_asdl_response Columns

Column_name Type Length Nulls Description

asdl_status varchar2 20 1 The ASDL status returned to the SARM.

This column is only used when exit_status is
FAIL. The possible values include:

• RETRY – The ASDL is retried by the
SARM. You can configure both the retry
period and number of retries within the
SARM using the configuration variables
(NUM_TIMES_RETRY and
RETRY_TIME_INTERVAL).

• CONT or SOFT_FAIL – The ASDL fails
but provisioning continues, for example,
attempting to remove a service that is
not present.

• DELAYED_FAIL – The ASDL fails but
provisioning on the rest of the order
continues, at the end of which the order
will fail.

• FAIL – The ASDL fails and all
provisioning on this work order ceases,
for example, an unrecoverable error
occurred.

• STOP – Stops a work order after the
execution of a state table or script is
complete.

Refer to the ASAP Cartridge Development
Guide for more detailed descriptions of
these base_types.

asdl_time number 38 0 The time interval, in seconds, that the
Interpreter waits before returning a
response to the invoking server.

This interval is used to simulate a delay in
the processing of the NE responses to
mimic usual run-time conditions.

error_text varchar2 255 1 An error text description sent back to the
SARM detailing the cause of the error.

Error text can be viewed by the front-end
user interface. If it is not explicitly specified,
generic descriptive text is supplied.

Table indexes:

asdl, asdl_option

tbl_aux_wo_prop
tbl_aux_wo_prop is a class A dynamic table that serves as an extension to tbl_wrk_ord.
tbl_aux_wo_prop was designed to accommodate additional pre-defined work order properties
to supplement the ones contained in tbl_wrk_ord. Currently, the only extended property
supported in tbl_aux_wo_prop is WO_SECURITY_PROP. This property is maintained for
each work order. If WO_SECURITY_PROP = 0, then work order information is eligible to be

Chapter 2
SARM database

2-33

output to diagnostic files. If WO_SECURITY_PROP = 1, then no work order
information is written to diagnostic files.

Refer to the ASAP System Administrator's Guide for more information on secure work
order information.

When the work orders in the tbl_wrk_ord are deleted, the corresponding records in
tbl_aux_wo_prop are deleted. This table can be purged using function
SSP_db_admin. For guidelines and instructions on database purging, refer to the
ASAP System Administrator's Guide.

Table 2-28 tbl_aux_wo_prop Columns

Column Name Type Length Nulls Nulls

wo_id varchar2 80 0 The ID of the work order property.

name varchar2 80 0 The name of the work order property.

value varchar2 255 1 The value given to the work order property.

Table indexes:

Non-unique

wo_id

tbl_blackout
This static table contains date and time periods for which a particular Host NE is
deemed unavailable by the user for ASAP updates.

The NEP State Table reads this table using the current time. If the current time is
within a blackout period, the State Table returns a maintenance mode condition,
therefore, disconnects from the Host NE. This process is continually retried until the
Host NE is no longer blacked out. You can use this table when there are systems
competing for limited ports on the Host NE. You are responsible for populating and
maintaining this table.

Note that if the dayname entry is present, then the configuration is considered to be
Static. The implementation will check for the start time and end time alone, and
assume that both fall on the same day. When configuring a blackout period that spans
from one day to the next (e.g. from 22:00 until 01:00 the next day) you must configure
two separate lines in tbl_blackout: one for 22:00:00 until 00:00:00 and one from
00:00:00 until 01:00:00.

Table 2-29 tbl_blackout Columns

Column_name Type Length Nulls Description

host_clli varchar2 80 0 The Host NE that is blacked out.

Chapter 2
SARM database

2-34

Table 2-29 (Cont.) tbl_blackout Columns

Column_name Type Length Nulls Description

dayname varchar2 10 1 If this field contains the valid name of a day
of the week (for example, Sunday or
Monday) then the date portions of start_tm
and end_tm are ignored. If this field is
empty than both the date and time portions
from start_tm and end_tm will be used. If
this field contains an invalid value, the
blackout will not occur.

start_tm date - 0 The start date and time for the blackout
interval.

end_tm date - 0 The end date and time for the blackout
interval.

description varchar2 255 1 A description of the NE blackout reason.

Table indexes:

host_clli, start_tm, dayname

tbl_clli_route
This static table contains the mapping between a Remote NE and its Host NE. It is used to
determine the Host NE when a Remote NE is provided on the work order. Given the Remote
NE and ASDL, this table provides the Host NE to which this ASDL is routed.

If no Remote NE is present on the work order, the table tbl_nep_rte_asdl_nxx is used to route
the ASDL by DN. This is only performed if the parameter MCLI is present on the ASDL and is
set to the special literal SKIPCLLI. You are responsible for populating and maintaining this
table.

• SSP_new_clli_map adds new CLLI-to-Host CLLI mapping definitions to tbl_clli_route.

• SSP_del_clli_map deletes CLLI-to-Host CLLI mapping definitions in tbl_clli_route.

• SSP_list_clli_map lists the contents of this table.

Table 2-30 tbl_clli_route Columns

Column_name Type Length Nulls Description

mach_clli varchar2 80 0 Remote NE.

host_clli varchar2 80 0 Host NE to which the Remote NE is connected.

asdl_cmd varchar2 80 1 The ASDL command for which this routing
definition is valid. This is useful for services
that require ASDL-dependent routing.

Table indexes:

mach_clli, asdl_cmd

Chapter 2
SARM database

2-35

tbl_comm_param
This static table contains communication parameters required to communicate with
various external systems. It is possible to specify such communication parameters by
device type, for example, serial, TCP/IP Telnet, Generic, etc.

You can also specify communication parameters for:

• Host NEs and all devices.

• Host NEs and a particular device.

• Specific Host NE and all devices.

• Specific Host NE and a specific device.

If an entry exists for the Host NE and device of a particular Command processor in the
NEP, it overrides any of the previous entries. You can also specify parameters in this
table for particular Host NEs and devices or combinations.

Each parameter is made available to the State Table or Java method.
tbl_comm_param specifies various parameters that are specific to the Host NE or
device. It allows State Tables or Java methods to employ processing that is specific to
the Host NE or device, where required. You are responsible for populating and
maintaining this table.

• SSP_new_comm_param adds new communication parameters for a specified
device type, host, and device into tbl_comm_param.

• SSP_del_comm_param deletes parameter information from tbl_comm_param.

• SSP_list_comm_param lists the contents of this table.

• SSP_get_async_ne lists NEs which have an ASYNC_CONN communication
parameter defined with a value of TRUE or FALSE.

Table 2-31 tbl_comm_param Columns

Column_name Type Length Nulls Description

dev_type char 1 0 The device line type. The possible values
include:

• D – Serial Port Dialup
• F – TCP/IP FTP Connection
• G – Generic Terminal Based

Connection
• H – Serial Port Hardwired
• M – Generic Message Based

Connection
• P – SNMP Connection
• S – TCP/IP Socket Connection
• T – TCP/IP Telnet Connection
• W – LDAP Connection

host varchar2 80 0 The Host NE for which this parameter value
applies. If specifying communication
parameters for all Host NEs, set this
parameter to COMMON_HOST
(COMMON_HOST_CFG).

Chapter 2
SARM database

2-36

Table 2-31 (Cont.) tbl_comm_param Columns

Column_name Type Length Nulls Description

device varchar2 40 0 The device for which this parameter value
applies. If specifying communication
parameters for all devices, set this
parameter to COMMON_DEVICE
(COMMON_DEVICE_CFG).

param_label varchar2 80 0 The parameter label. There are many
communication parameters that you must
specify in this table in order for the ASAP
communication library to function correctly.

These communication parameters and their
usage are detailed in the ASAP System
Administrator's Guide.

param_value varchar2 255 0 The parameter value.

param_desc varchar2 255 1 Description of the communication
parameter.

Table indexes:

dev_type, host, device, param_label

tbl_cp_mux
Specifies the mapping between command processor logical devices and NEP multiplexing
devices.

Table 2-32 tbl_cp_mux Columns

Column_name Type Length Nulls Description

cp_device varchar2 40 0 A logical device used in the communications
between a command processor thread and a
multiplexing device. This device must be first
configured in the table tbl_resource_pool.

mux varchar2 40 0 The name of the multiplexing device that the
specified command processor logical device
maps to. The multiplexing device must be first
configured in the table tbl_nep_mux.

Table indexes:

cp_device

tbl_csdl_asdl
This static table used by the SARM to map and sequence CSDL commands to ASDL
commands. For each ASDL associated with a CSDL, SARM checks if the ASDL is valid for
the CSDL. The final determination of whether the ASDL is valid depends on the ASDL
parameter translation process specified by tbl_asdl_parm. To perform this translation, certain
conditions must apply. These conditions are identified in columns cond_flag and eval_exp. An
ASDL is valid only if both conditions are satisfied.

Chapter 2
SARM database

2-37

Examples of various configurations and instructions on configuring CSDL-to-ASDL
translation are described in the ASAP System Administrator's Guide.

You are responsible for populating and maintaining this table using one of the following
mechanisms:

• using XML schemas and deploying these services using the Service Activation
Deployment Tool (SADT). Refer to the ASAP Cartridge Development Guide for
more information.

• using stored procedures

– SSP_new_CSDL_asdl adds a new CSDL-to-ASDL mapping definitions to
tbl_csdl_asdl

– SSP_del_CSDL_asdl deletes CSDL-to-ASDL mapping definitions from
tbl_csdl_asdl

– SSP_list_csdl_asdl lists the contents of this table.

Table 2-33 tbl_csdl_asdl Columns

Column_name Type Length Nulls Description

csdl_cmd varchar2 80 0 CSDL command that translates into one or
more ASDL commands.

asdl_seq_no number 38 0 The sequence number of the ASDL
command associated with the CSDL. This
enables one CSDL to generate more than
one ASDL command.

asdl_cmd varchar2 80 0 ASDL command to which the CSDL
translates.

pnr number 38 1 Values are:

• 0 (default) – This ASDL is not the 'point
of no return' for rollback purposes

• 1 – This ASDL is the 'point of no return'
for partial rollback. If rollback occurs,
and execution has continued beyond
this point, roll back to this ASDL but no
further.

• 2 – 'point of no return' for no rollback.
Once past this ASDL, no rollback can
occur.

Table indexes:

csdl_cmd, asdl_seq_no

tbl_csdl_asdl_eval
This table contains CSDL to ASDL mappings and the multiple condition expressions
defined for the mappings

Chapter 2
SARM database

2-38

Table 2-34 tbl_csdl_asdl_eval Columns

Column_name Type Length Nulls Description

csdl_cmd varchar2 80 0 Foreign key to tbl_csdl_asdl.csdl_cmd.

asdl_seq_no varchar2 80 0 The sequence number of the ASDL command
associated with the CSDL. This enables one
CSDL to generate more than one ASDL
command.

cond_flag char 1 0 The conditions to be met for the ASDL to be
executed for the CSDL. The values for this field
are as follows:

• A – Always execute the ASDL for this
CSDL when the expression is NULL (no
expression), when the expression contains
the string TRUE, or when the expression is
evaluated to be true.

• E – Check for the associated label to be
present for the CSDL parameter label/value
pairs and check that its value is equal to
the label value. Similar to "=" or LIKE in the
algebraic expression.

• D – Check that the label is defined. Similar
to ISDEF operations in the algebraic
expression.

• N – Check that the label is not defined.
Checks that the label is similar to NOTDEF.

The condition is checked for each ASDL
associated with the CSDL. If the condition is
satisfied, the ASDL is added to the list of
ASDLs for the CSDL. If not, the ASDL is not
executed.

Validation is performed in the parameter
validation stage in referencing the table
tbl_asdl_parm.

label varchar2 80 1 The parameter label to test in the condition flag.

value varchar2 255 1 The parameter value associated with the label
which is tested in the condition flag.

eval_exp varchar2 255 1 Contains combination of parameter names,
operators, and values to which the parameters
are compared.

apply_from number 38 1 The first indexed ASDL that this rule should
apply to:

Valid range is from 1 to 9999. Must be less than
or equal to the value specified in column
apply_to.
If is not specified, then this rule will be applied
to any indexed ASDL up to and including the
one specified in column apply_to.

Chapter 2
SARM database

2-39

Table 2-34 (Cont.) tbl_csdl_asdl_eval Columns

Column_name Type Length Nulls Description

apply_to number 38 1 The last indexed ASDL that this rule should
apply to:

Valid range is from 1 to 9999. Must be greater
than or equal to the value specified in column
apply_from.
If is not specified, then this rule will be applied
to any indexed ASDL starting from the one
specified in column apply_from.

tbl_csdl_config
This static table contains the static CSDL configuration information that determines if
the CSDL is configured for rollback, its provisioning sequence, and whether a failure of
the CSDL generates a system event. You are responsible for populating and
maintaining this table.

• SSP_new_csdl_defn adds new CSDL definitions to tbl_csdl_config.

• SSP_del_csdl_defn deletes CSDL definitions from tbl_csdl_config.

• SSP_list_net_elem lists the contents of this table.

Table 2-35 tbl_csdl_config Columns

Column_name Type Length Nulls Description

csdl_cmd varchar2 80 0 The CSDL command.

rollback_req char 1 0 A flag indicating if rollback is required for this
CSDL.

In certain circumstances, it may be
preferable for no rollback to occur.

If any of the CSDLs on a work order require
rollback, the dynamic work order structure in
SARM's memory is flagged and the entire
work order is rolled back if any CSDL fails.
Possible values are:

• Y – Rollback required.
• N – No rollback required.
In the SRP database, wo_rback must be
set to Y or D for the CSDL to rollback.

Chapter 2
SARM database

2-40

Table 2-35 (Cont.) tbl_csdl_config Columns

Column_name Type Length Nulls Description

csdl_level smallint 1 0 The level of the CSDL in the SRQ. An
integer between 0 and 255 that indicates the
sequence level for the CSDL command
within the work order. The SARM uses this
integer to determine the order in which to
provision CSDL commands from an SRP.
The SARM then provisions CSDL
commands that have lower level numbers
first. Sequence levels are only relevant for
inter-dependent CSDL commands

As the SARM receives the CSDLs from the
SRP, it reorders them in a sequence that
corresponds to their respective CSDL levels
to ensure the correct provisioning sequence.
This reordered sequence may not be the
same as the sequence in which the SRP
transmitted the CSDLs to the SARM.

The field csdl_id in the table tbl_srq_csdl
contains the SRP CSDL sequence of the
CSDLs transmitted to the SARM.

fail_event varchar2 8 1 If set, the system event to be triggered upon
CSDL failure.

This event can log or print error messages,
trigger system alarms, etc. Use this column
to immediately notify personnel of CSDL
failure.

complete_event varchar2 8 1 If set, the system event triggered upon
CSDL completion.

option_asdl number 38 0 Reserved for future use.

description varchar2 255 1 Description of the CSDL command. This
description field is displayed in front-end
user interfaces only.

Table indexes:

csdl_cmd

tbl_err_threshold
This static table specifies the threshold for the number of consecutive hard errors for a
particular Host NE and ASDL. If the threshold is exceeded, the SARM requests the NEP to
disable the specified Host NE. Such hard errors can either be generated directly by the State
Tables or from user-defined exit types that map to hard errors. You are responsible for
populating and maintaining this table.

• SSP_new_err_threshold adds a new threshold for a specific NE and ASDL command in
tbl_err_threshold.

• SSP_del_err_threshold deletes a threshold from tbl_err_threshold.

• SSP_list_err_threshold lists the contents of this table.

Chapter 2
SARM database

2-41

Table 2-36 tbl_err_threshold Columns

Column_name Type Length Nulls Description

host_clli varchar2 80 0 The Host NE.

asdl_cmd varchar2 80 0 The ASDL commands to be used to track
consecutive hard errors.

threshold number 38 0 The threshold number of consecutive hard
errors that must occur for the SARM to
disable the specified Host NE.

Table indexes:

host_clli, asdl_cmd

tbl_event_dataset
This table contains sets of parameters to be returned for events. Note that multiple
trigger criteria (stored in "tbl_event_template") can map to a single set of return
parameters. Also, the table can contain multiple rows for given template_name, with
each row defining a particular parameter.

Table 2-37 tbl_event_dataset Columns

Column_name Type Length Nulls Description

template_name varchar2 20 0 The name of the event template dataset.
This is a unique user-defined identifier for a
distinct return parameter dataset.

parameter_type varchar2 20 0 Identifies the type of the parameter to be
added to the event template dataset:

• GLOBAL_PARAMETER
• CSDL_PARAMETER
• INFO_PARAM
• EXTENDED_PROPERTY

csdl varchar2 80 1 The CSDL to apply the event template
dataset to. The csdl parameter is only
required if the parameter_type is
CSDL_PARAMETER or INFO_PARAM:

parameter_name varchar2 20 0 Name of the parameter to be added to the
event template dataset.

Table indexes:

template_name, parameter_type, cscl, parameter_name

tbl_event_template
This table maps event template names to event type / CSDL combinations. The name
field maps to event template entries in tbl_event_dataset which detail extended event
information to be returned in the work order header.

See "tbl_event_dataset" for more information.

Chapter 2
SARM database

2-42

Table 2-38 tbl_event_template Columns

Column_name Type Length Nulls Description

name varchar2 20 0 The name of the event template. Points to a set
of return parameters in tbl_event_dataset thus
allowing for the case where multiple trigger
criteria could map to a single set of return
parameters.

event_type varchar2 20 0 (Mandatory) The event type to apply the event
template name to. Following are the event
types:

• Order Startup event: Returns order
parameters, extended work order property.

• Order Complete event: Returns order
parameters, information parameters,
extended work order parameters, and
service action parameters.

• Order Timeout event: Returns order
parameters, information parameters,
extended work order parameters, and
service action parameters.

• Order Fail event: Returns order parameters,
information parameters, extended work
order parameters, and service action
parameters.

Note: For each service action or just for the
given service action, service action parameters
are returned.

csdl varchar2 80 1 The CSDL to apply the event template to.
Optional.

Note: This field is applicable only when the
event type is set to orderFailEvent.

Table indexes:

event_type, csdl

tbl_ext_method_lib
This table provides the external method library details required by the SRT.

Table 2-39 tbl_ext_method_lib Columns

Column_name Type Length Nulls Description

name varchar2 80 0 Name of the library

type char 1 0 Type of the library

• S - represents Script
• Q - represents SQL
• J - represents Jar

library blob - 1 The binary form of the library.

Chapter 2
SARM database

2-43

tbl_host_clli
This static table contains the Host NE, technology, and software load of each Host NE
in the ASAP system. It also contains records for each Host NE to which the NEPs
interface. You are responsible for populating and maintaining this table

• SSP_new_net_host adds new network element definitions to this table.

• SSP_del_net_host deletes network element definitions from this table.

• SSP_list_net_host lists the contents of this table.

Table 2-40 tbl_host_clli Columns

Column_name Type Length Nulls Description

host_clli varchar2 80 0 The Host NE identifier.

tech_type varchar2 16 0 Technology of the Host NE or SRP.

sftwr_load varchar2 16 0 Software version of the Host NE, for
example, BCS33, PAC4, or the token
software load of the SRP.

The technology and software load must be
consistent with the values given in the table
tbl_nep_asdl_prog in order to ensure that
the State Table Interpreter or JInterpreter
are able to translate an ASDL.

Table indexes:

host_clli

tbl_id_routing
This static table is a routing database table that defines the mapping between an
ASDL and the Host NE when using ID_ROUTING as an ASDL routing scheme.

• SSP_new_id_routing adds a host NE and the ID_ROUTING mapping record to
tbl_id_routing.

• SSP_del_id_routing deletes a host NE and the ID_ROUTING mapping record
from tbl_id_routing.

• SSP_list_id_routing lists the contents of this table.

Table 2-41 tbl_id_routing Columns

Column_name Type Length Nulls Description

host_clli varchar2 80 0 The Host NE which the ASDL command is
routed to.

asdl_cmd varchar2 80 1 The ASDL command that is being routed.

id_routing_from varchar2 255 0 The starting point of a range of
ID_ROUTING.

id_routing_to varchar2 255 0 The end point of a range of ID_ROUTING.

Chapter 2
SARM database

2-44

If a CSDL maps to multiple ASDLs that are routed to different host NEs, you must ensure that
tbl_ne_routing contains an entry for each ASDL. Each entry references a different host NE.
For example:

Table 2-42 ID Routing example

fromRange toRange asdl_cmd host_clli

100 200 A-ADD_POTS_LINE HOUSTON

100 200 A-OPTION_ON DALLAS

The following example shows how ID_ROUTING operates for IP addresses:

Table 2-43 ID Routing example

fromRange toRange asdl_cmd host_clli

10.9.1.0 10.9.10.255 A-ADD_POTS_LINE TORONTO

10.9.11.0 10.9.18.255 A-ADD_POTS_LINE DALLAS

In this case, if the ASDL references an IP address of 10.9.3.25, the ASDL would be routed to
the TORONTO host NE. The IP address 10.9.12.255 would be routed to DALLAS.

Refer to $ASAP_BASE\samples\ASDL_ROUTE for a sample ID routing based on IP
addresses.

Table index:

host_clli

Once the SARM starts, tbl_id_routing is loaded into memory from the SARM database.

For exact matching, the value of id_routing_from, and id_routing_to must be configured
identically.

tbl_info_parm
This dynamic table contains information parameters that are returned to the SRP from the
NEP State Tables. These parameters contain information that is returned to the requesting
external system as Compound parameters. The SRP uses a query API function to retrieve
the Information parameters associated with a particular work order.

Table 2-44 tbl_info_parm Columns

Column_name Type Length Nulls Description

wo_id varchar2 80 0 The work order ID.

parm_lbl varchar2 80 0 The parameter label.

parm_group varchar2 80 1 NE parameter group information returned to the
Host system.

This parameter group is set in the State Tables
before the Information parameters are returned
to the SARM. The SRP API routines specify
parameters belonging to particular parameter
groups in the Information parameter retrieval.

Chapter 2
SARM database

2-45

Table 2-44 (Cont.) tbl_info_parm Columns

Column_name Type Length Nulls Description

parm_vlu varchar2 255 1 The value associated with the parameter label.

All control characters x0 to x1F, except x9, xA,
and xD (tab, cr and nl), are stripped from the
event text after it is retrieved from the database
and before used in the XML document. This
behavior is in compliance with XML 1.0
specification.

csdl_seq_no number 38 0 The CSDL sequence number in the work order
that is being processed when the Information
parameter is generated.

csdl_cmd varchar2 80 0 The CSDL command being processed when the
Information parameter is generated from the
Interpreter State Table.

csdl_id number 38 0 The ID of the CSDL being processed when the
Information parameter is generated.

This CSDL ID is the same as in table
tbl_srq_csdl and enables the SRP to track
which CSDL the information parameter belongs
to.

vlu_hint char 1 0 Indicates whether the parameter value is a real
value or an XML document or XPath
expression. Can be one of the following:

• X - indicates a reference to XML document
• P - indicates a reference to XPath

expression
• T - indicates a reference to large text

(reserved for future use)

Table indexes:

wo_id, parm_lbl, parm_group

tbl_label_value
This dynamic table stores event subscription information from the old CORBA SRP
clients to handle event servers between CORBA SRP client and server. The new OCA
SRP does not use this table.

Table 2-45 tbl_label_value Columns

Column_name Type Length Nulls Description

key_1 varchar2 16 0 Work Order ID.

Chapter 2
SARM database

2-46

Table 2-45 (Cont.) tbl_label_value Columns

Column_name Type Length Nulls Description

key_2 number - 1 Event type. Possible values are defined
oca.idls as follows:

• (1) ASC_WO_COMPLETE_EVT
• (2) ASC_WO_FAILURE_EVT
• (3)

ASC_WO_COMPLETE_FAILURE_EVT
• (4) ASC_WO_OTHER_EVT
• (5) ASC_WO_ALL_EVT
• (6) ASC_WO_SOFT_ERR_EVT
• (8) ASC_WO_TIMEOUT_EVT
• (9) ASC_WO_ROLLBACK_EVT
• (10) ASC_WO_ACCEPT_EVT
• (11) ASC_WO_STARTUP_EVT
• (12) ASC_WO_ESTIMATE_EVT
• (13) ASC_NE_UNKNOWN_EVT

label varchar2 600 0 An external system ID that is passed with
the Work Order. It is not used by the SARM,
but it is used by the SRP for proper routing
to upstream systems.

value varchar2 128 1 A sister external system ID that is passed
with the Work Order. It is not used by the
SARM, but it is used by the SRP for proper
routing to upstream systems.

Table indexes:

key_1, key_2, label

tbl_large_data
This table stores XML data, XPath expressions or other large data for future use by the SRT.

Table 2-46 tbl_large_data Columns

Column_name Type Length Nulls Description

ref_id number 20 0 Reference ID returned by the Database for the
XML Order Data.

data blob - 1 Raw XML Data, XPath Expression or other
large data.

tbl_msg_convert
This static table contains the language and format of events logged by the SARM as it
processes requests. Log messages are sent back to the Host system, and therefore, it is
important they are in the user's native language. This table provides you with a mechanism to
insert your own event text in your own language by populating this table with suitable data.

Chapter 2
SARM database

2-47

The core system provides the base event text in the language USA English. If you
want to use another language, you are responsible for populating this table with the
events in that language.

• SSP_new_intl_msg adds a new international message record to
tbl_msg_convert.

• SSP_del_intl_msg deletes an international message from tbl_msg_convert.

• SSP_list_intl_msg lists the contents of this table.

Table 2-47 tbl_msg_convert Columns

Column_name Type Length Nulls Description

lang_cd varchar2 3 0 The language code.

This code determines the text message and
format the SARM utilizes.

The language code that the SARM uses is
set by the SARM configuration variable
LANGUAGE_OF_MSG. The default is USA.

msg_id number 38 0 Unique message identifier for messages
referenced within the SARM.

msg_type char 1 0 This field specifies the type of message
formatting.

Possible values are:

• (D) Dynamic – The SARM performs
parameter substitution into the
formatted string in the message field
which allows dynamic customizing of
the message text.

• (S) Static – The SARM does not
perform any parameter substitution;
instead it uses the raw message in the
next message field.

message char 255 0 The message text. If the type field is S, this
field resembles a printf() format string. If the
type field is D, no parameter substitution is
performed.

var_description char 40 1 Description of the substitutable fields within
the message.

wo_audit char 1 1 The destination for this log message.
Possible values are:

• ASAP_LOG_SRQ (srq_log)
• ASAP_LOG_WOA (work order audit)
• ASAP_SRQWOA (both)
• ASAP_LOG_NO (none)

Table indexes:

lang_cd, msg_id

Chapter 2
SARM database

2-48

tbl_ne_config
This static table, which is used by the SARM and the NEP, contains configuration information
for each Host NE within ASAP. It also identifies the NEP that manages each Host NE.

This table is read by the SARM to determine the NEs managed by each NEP. This allows the
SARM to route the ASDLs to the appropriate NEP that is managing the Host NE. It defines
attributes that are particular to each Host NE regardless of the number and nature of the
connections to that NE.

This table is read by the NEP to determine the NEs to be managed by that NEP and the
Session Managers to be spawned to control all interaction with the NEs. It also specifies the
primary resource pools of devices used to connect to the NEs.You are responsible for
populating and maintaining this table.

• SSP_new_net_elem() adds new network element definitions to this table.

• SSP_del_net_elem() deletes network element definitions from this table.

• SSP_list_net_elem() lists the contents of this table.

• SSP_set_ne_loopback() updates the table when the loopback state is set to ON, OFF,
or GLOBAL through asap_utils.

• SSP_new_net_element() creates an extra throughput column with the default value of 0.

• SSP_set_ne_throughput() sets the minimum time for a transaction in milliseconds on
the NE.

Table 2-48 tbl_ne_config Columns

Column_name Type Length Nulls Description

host_clli varchar2 80 0 The Host NE. This is the name of the
SessionManager thread within the NEP which
manages all interaction with the Host NE and all
connections to it.

For dynamic routing, this is the name of the
template.

nep_svr_cd varchar2 8 0 The logical name of the NEP server that
connects to the Host NE.

primary_pool varchar2 8 1 The primary resource pool used by the NEP
managing the Host NE. It determines the
primary devices used to connect to the Host
NE. The primary pool is dedicated to a specific
NE.

The Host NE Session Manager within the NEP
uses entries in this primary pool before
attempting to use entries in the NEP's
secondary resource pool to connect to this Host
NE, as defined in tbl_nep.

Chapter 2
SARM database

2-49

Table 2-48 (Cont.) tbl_ne_config Columns

Column_name Type Length Nulls Description

max_connections number 2 0 The maximum number of concurrent
connections allowed to the Host NE. This
includes connections from both primary and
secondary pools.

For multiple dedicated Command Processors to
a Host NE, configure the spawn threshold to 1
and the kill threshold to 0. This ensures that
multiple Command Processors are used.

For dynamic routing, this information can be
provided on each order.

drop_timeout number 2 0 The maximum provisioning activity idle time, in
minutes, that must elapse before the Session
Manager managing the Host NE disconnects
the primary connection to the NE.

Until this threshold is exceeded, the Session
Manager managing the NE maintains a
dedicated Command Processor with a
dedicated connection to the NE when there are
no pending ASDL requests (maximum idle
time).

This time-out interval only applies to the primary
connection to the NE, as all auxiliary
connections have reached their kill_threshold by
this point.

For a busy Host NE, this time interval should be
set high as there is a high probability of an
incoming ASDL for the Host NE in that period.
However, this value should be set low for a less
active Host NE as the resource pool device in
use by the Command Processor may be
required by another Session Manager to
communicate with another Host NE. This is
most likely the case when the device is from the
NEP's resource pool (the secondary pool which
is also accessible to all Session Managers).

For dynamic routing, drop timeout information
can be provided on each order.

throughput smallint 1 0 NE instance throughput control – the minimum
number of milliseconds a transaction takes per
NE instance. The value 0 disables NE instance
thoughput control.

Chapter 2
SARM database

2-50

Table 2-48 (Cont.) tbl_ne_config Columns

Column_name Type Length Nulls Description

spawn_threshold number 2 0 The number of ASDL requests in the SARM's
“ASDL Ready Queue" destined to the NE.
When this number is exceeded, the SARM
requests the NEP Session Manager to open a
new auxiliary connection to the NE.

As the number of ASDLs in the SARM ASDL
Ready Queue continues to exceed this spawn
threshold, the SARM continues to request the
NEP establishment of auxiliary connections to
the NE.

For example, the spawn threshold to a
particular NE is 10. Once the ASDL Ready
Queue size reaches 11, the SARM requests the
NEP to establish an auxiliary connection to the
NE.

If the ASDL Ready Queue size reaches 12, the
SARM requests another auxiliary connection be
established by the NEP, and so on.

This spawn threshold value should always be
above the kill threshold if multiple connections
are required to a particular NE.

For dynamic routing, spawn threshold
information can be provided on each order.

Chapter 2
SARM database

2-51

Table 2-48 (Cont.) tbl_ne_config Columns

Column_name Type Length Nulls Description

kill_threshold number 2 0 Upon receiving an ASDL completion, the SARM
determines whether the current ASDL Ready
queue size is less than the kill threshold. If so, it
checks whether the ASDL was completed by an
auxiliary connection. If so, the SARM transmits
a disconnect request to the NEP Session
Manager which disconnects the auxiliary
connection. If the ASDL completion was
performed on the primary connection, the
SARM will not issue a disconnect request.

For example, if the spawn_threshold is 10 and
the kill threshold is 5, when the SARM receives
an ASDL completion when its ASDL Ready
queue size is 4 or less, it checks whether the
ASDL completion was performed by an auxiliary
connection. If so, it issues a disconnect request
to the NEP Session Manager managing this
NE. If the ASDL completion was not performed
by an auxiliary connection, as would be the
case when the spawn threshold was never
exceeded, the SARM will not issue a disconnect
request.

For multiple dedicated connections, set the
relevant number of connections in
max_connections, the spawn threshold to 1, the
kill threshold to 0, and the appropriate number
of devices in the primary and secondary
resource pools.

For dynamic routing, kill threshold information
can be provided on each order.

template_flag Char
('Y','N')

1 0 Flag to indicate if this network element entry
identifies a static NE (N) or a dynamic network
element template (Y).

The default value is 'N'.

loopback_on Char ('Y',
'N', 'G')

1 0 Y: The NE is in loopback state regardless of the
LOOPBACK_ON ASAP configuration
parameter.

N: The NE is not in loop back state regardless
of the LOOPBACK_ON ASAP configuration
parameter.

G: The NE loop back state is determined by the
LOOPBACK_ON ASAP configuration
parameter.

The default value is 'G'.

request_timeout number 8 0 The maximum number of seconds for an NE
request timeout. If there is no response in the
given timeout value, the associated ASDL will
timeout. For more information, see the ASAP
System Administrator's Guide.

Chapter 2
SARM database

2-52

Table 2-48 (Cont.) tbl_ne_config Columns

Column_name Type Length Nulls Description

request_retry_nu
mber

number 8 0 The maximum number of retries, if the NE
requests timeout. If the number of retries
exceeds request_retry_number, the order is
failed and rolled back. For more information,
see the ASAP System Administrator's Guide.

request_retry_inte
rval

number 8 0 The time period in seconds between NE retries.
For more information, see the ASAP System
Administrator's Guide.

Table indexes:

nep_svr_cd, host_clli

tbl_ne_event
This table contains NE-related log messages.

Table 2-49 tbl_ne_event Columns

Column_name Type Length Nulls Description

event_identity number 20 0 Unique ID of this log message in this table.

host_clli varchar2 80 0 The Host NE identifier if an NE or the SRP
name if an SRP.

event_dts date - 0 The time when the event was generated.

state varchar2 80 0 The current state of the NE. Possible states are:

• Available
• Down
• Connecting
• Maintenance
• Port Failure
• Disabled
• Unknown NE State

evt_text varchar2 255 0 Description of the event.

Table indexes:

Indexes

evt_identity
host_clli, event_dts
event_dts

tbl_ne_monitor
Maintains the status of all NEs.

Chapter 2
SARM database

2-53

Note:

The tbl_ne_monitor table has been deprecated from ASAP 4.6.x onwards
due to impact on the performance and so NE state information is no longer
populated in it by default. However, this functionality can be turned on when
you set the variable WO_TIME_ESTIMATE_ON to 1 in the ASAP.cfg file. On
turning this configuration variable on the SARM database table
tbl_ne_monitor gets populated with the NE state information and a new event
WO_ESTIMATE_EVT is added to the SARM database table
tbl_wo_event_queue. Oracle recommends not to use this feature in
production.

Table 2-50 tbl_ne_monitor Columns

Column_name Type Length Nulls Description

host_clli varchar2 80 0 The Host NE where the ASDL is routed by
the SARM.

Even though one Host NE is specified on
the CSDL, different ASDLs on that CSDL
can be routed to different Host NEs.

nep_svr_cd varchar2 8 0 Name of the NEP server.

state varchar2 80 0 The current state of the NE. Possible states
are:

• Available
• Down
• Connecting
• Maintenance
• Port Failure
• Disabled
• Unknown NE State

asdl_time_est number 38 0 Estimated time to process an ASDL.

pending_count number 38 0 Number of ASDLs pending.

in_progress_cou
nt

number 38 0 Number of ASDLs in progress.

connect_count number 38 0 Number of connections to the NE.

retry_count number 38 0 The number of times the ASDL was retried
at the NE.

held_count number 38 0 Number of ASDLs held.

consec_fail_coun
t

number 38 0 Number of consecutive failures.

connect_dts date - 0 Date/time stamp of the last connection.

disconnect_dts date - 0 Date/time stamp of the last disconnect.

avail_dts date - 0 Date/time stamp of the last time mode
available.

maint_dts date - 0 Date/time stamp of the last time it was put
into maintenance mode.

Chapter 2
SARM database

2-54

Table 2-50 (Cont.) tbl_ne_monitor Columns

Column_name Type Length Nulls Description

err_disable_dts date - 0 Date/time stamp of the last time an error
disabled the NE.

err_enable_dts date - 0 Date/time stamp of the last time the NE was
enabled after an error.

adm_disable_dts date - 0 The last time an administrator disabled the
NE.

adm_enable_dts date - 0 The last time an administrator enabled the
NE.

swd_sessions number 38 1 Number of switch direct sessions.

swd_start_dts date - 1 The last time a session started.

swd_end_dts date - 1 The time when a switch direct session
ended.

swd_user_id varchar2 64 1 Switch direct user.

pad1 char 255 0 Padding to make a table row occupy a page.
This reduces concurrence on the database
data page by different database processes.

pad2 char 255 0 Same as pad1.

pad3 char 255 0 Same as pad1.

pad4 char 255 0 Same as pad1.

Table indexes:

host_clli

tbl_ne_strsub
Enables you to configure substitutions for unknown or unwanted control characters.

Table 2-51 tbl_ne_strsub Columns

Column_name Type Length Nulls Description

strsub_type varchar2 20 0 TBD

description varchar2 255 1 TBD

asdl varchar2 80 1 Name of the ASDL associated with the
character. If no value is provided, the
substitution will be made for all ASDL
commands.

csdl varchar2 80 1 Name of the CSDL associated with the
character. If no value is provided, the
substitution will be made for all CSDL
commands.

ne_vendor varchar2 255 1 Name of the software vendor for the network
element associated with the character. If no
value is provided, the substitution will be made
for all network element vendors.

Chapter 2
SARM database

2-55

Table 2-51 (Cont.) tbl_ne_strsub Columns

Column_name Type Length Nulls Description

tech_type varchar2 255 1 Technology type for the network element
associated with the character. If no value is
provided, the substitution will be made for all
technology types.

sftwr_load varchar2 16 1 Software load for the network element
associated with the character. If no value is
provided, the substitution will be made for all
software loads.

ne_str_pattern varchar2 255 1 TBD

ne_replace_patter
n

varchar2 255 1 TBD

Table indexes:

strsub_type, csdl, asdl, ne_vendor, tech_type, sftwr_load, ne_str_pattern,
ne_replace_pattern

tbl_nep
This static table, referenced by the SARM and NEP, maintains the relationship
between the NEP and the secondary pool of devices which is used by the NEP to
establish auxiliary connections to Host NEs.

The SARM references this table upon start up to determine the NEPs configured
within the system. For each NEP, the SARM opens one or more network connections
to that NEP. You can configure the number of connections.

Each NEP references this table upon start up to determine the secondary pool of
devices available to all Session Managers within that NEP. It spawns a Command
Processor thread for each device in this secondary pool of devices. You are
responsible for populating and maintaining this table.

• SSP_new_nep adds a new pool of devices to this table.

• SSP_del_nep deletes a pool of devices from this table.

• SSP_list_nep lists the contents of this table.

Table 2-52 tbl_nep Columns

Column_name Type Length Nulls Description

nep_svr_cd varchar2 8 0 The logical name of the NEP managing the
secondary pool of devices. It is not the
physical environment specific name listed in
the interfaces file.

dialup_pool varchar2 8 1 Secondary pool of devices available to all
Session Managers within the NEP. If
specified, you must define this resource pool
in tbl_resource_pool. If null, there are no
secondary devices available in the NEP.

Chapter 2
SARM database

2-56

Table indexes:

nep_svr_cd

tbl_nep_asdl_prog
This static table is used by the State Table Interpreter or the JInterpreter within an application
server to determine the State Table program or Java class to invoke for:

• a given technology such as DMS, AXE, S12, etc.

• software load such as BCS33, PAC4, etc.

• ASDL

It is referenced by any process using the Interpreter library. It is also referenced by NEPs,
SRPs, and ISPs within ASAP.

If the Interpreter executes an ASDL's State Table and is not listed in the table, it assumes that
the State Table name is the same as the ASDL name. This is useful when sftwr_load and
tech have no meaning, such as invoking State Tables within an SRP.

Any invocations of the CHAIN or CALL Interpreter actions require that the ASDL being
chained or called has a mapping specified in this table. You are responsible for populating
and maintaining this table.

• SSP_new_asdl_map adds a new ASDL-to-State Table mappings to tbl_nep_asdl_prog.

• SSP_del_asdl_map deletes ASDL-to-State Table mappings from tbl_nep_asdl_prog.

• SSP_list_asdl_map lists the contents of this table.

Table 2-53 tbl_nep_asdl_prog Columns

Column_name Type Length Nulls Description

tech varchar2 16 0 The technology or type of the NE with which the
Interpreter interacts, for example, DMS, S12,
etc.

sftwr_load varchar2 16 0 The Software Load of the software currently
running on the NE.

Since this field is non-null, you must place a
value in the field even if there is no defined
software load for this NE type.

The table tbl_host_clli also adheres to the same
convention for the software load value.

asdl_cmd varchar2 80 0 The ASDL command passed to the Interpreter
that determines the Interpreter State Table
program to be loaded and executed, or passed
to the JInterpreter that determines the Java
program to be executed. ASAP reserves some
special ASDL commands to map special
requirements, such as LOGIN or
CONNECTION_HANDLER, to a program.

Chapter 2
SARM database

2-57

Table 2-53 (Cont.) tbl_nep_asdl_prog Columns

Column_name Type Length Nulls Description

program varchar2 255 0 Name of the Interpreter State Table program in
tbl_nep_program to load and execute, or name
of the Java connection class or Java
provisioning method for JInterpreter to execute.

State Tables within the NEP execute and
receive the MML commands and responses.
The State Tables within the SRP generally
assist with the SRP work order translation
process.

interpreter_type varchar2
['S','J']

1 0 A value of “S" indicates a State Table
interpreter, whereas a value of “J" indicates a
JInterpreter. A null value defaults to “S".

Table indexes:

tech, sftwr_load, asdl_cmd

tbl_nep_mux
Stores the configuration of the NEP multiplexing devices.

Table 2-54 tbl_nep_mux Columns

Column_name Type Length Nulls Description

mux varchar2 40 0 The name of the multiplexing device.
Communication parameters for this device
are specified in tbl_comm_param.

host_clli varchar2 80 0 The NE that the multiplexing device
communicates with. You must first configure
the NE in tbl_ne_config.

mux_dev_type char 1 0 The type of communications protocol or
interface used in the interactions between
the multiplexing device type and the NE.

cp_dev_type char 1 0 The type of communications protocol used
in the interactions between the multiplexing
device type and the command processor
threads.

Table indexes:

mux

tbl_nep_jprogram
This table stores the mapping between a Java class name and its binary
representation which is analogous to a state table name and the state table.

Chapter 2
SARM database

2-58

Table 2-55 tbl_nep_jprogram Columns

Column_name Type Length Nulls Description

program varchar 255 0 Name of the java class in the form
package.class name.

jclass blob The binary form of the java class.

Table indexes:

primary key

program

tbl_nep_program
This static table is used by the Interpreter within an application server and contains the State
Table Program information required to perform specific processing. For example, in the NEP,
interact using MML commands and responses with the appropriate NE.

Records are maintained in NPG flat files for easier editing and then compiled into their
respective table records. These State Tables are called by an Interpreter in any ASAP
application Server, although more frequently in NEPs and SRPs.

You are responsible for populating and maintaining the State Table program NPG files.

• SSP_new_nep_program adds State Table actions based on the specified program
name and/or line number to tbl_nep_program.

• SSP_del_nep_program deletes State Table actions based on the specified program
name and/or line number from tbl_nep_program.

• SSP_list_nep_program lists the contents of this table

Table 2-56 tbl_nep_program Columns

Column_name Type Length Nulls Description

program varchar2 255 0 The name of the State Table Program. With this
program the ASDL, Technology, and Software
load map in the tbl_nep_asdl_prog static
database table.

line_no number 38 0 The line number in the State Table program
which acts as a label for that instruction. The
line number is similar to the ones used in BASIC
programs.

action varchar2 32 0 An action string to identify the particular action
performed by the Interpreter in the Command
Processor.

A number of State Table actions are provided by
various ASAP component libraries, for example,
Interpreter, NEP, SRP, etc. You can add action
functions and overwrite existing action functions
as required.

Chapter 2
SARM database

2-59

Table 2-56 (Cont.) tbl_nep_program Columns

Column_name Type Length Nulls Description

act_string varchar2 255 1 The action string associated with the State Table
action. This field is required depending on the
specified State Table action.

act_int number 38 1 The action integer which, if set, represents the
next line number in the State Table program.
The next line number is where execution of the
State Table should continue or there is a
numeric field specific to the particular action
function. If the action integer points to an invalid
line number or is absent from the State Table
program, the Interpreter registers a run time
error and fails the operation.

This field is required depending on the specified
State Table action.

Table indexes:

program, line_no

tbl_nep_program_source
Stores State Table source code. The compiled version is saved in tbl_nep_program.

Table 2-57 tbl_nep_program_source Columns

Column_name Type Length Nulls Description

program varchar2 255 0 The name of the State Table program. With
this program the ASDL, Technology, and
Software load, map in the tbl_nep_asdl_prog
static database table.

line_no number 38 0 The line number in the State Table program
which acts as a label for that instruction. The
line number is similar to the ones used in
BASIC programs.

seq number 38 0 Order of the source code.

source varchar2 255 1 Line of the State Table source code.

Table indexes:

program, line_no, seq

tbl_nep_rte_asdl_nxx
ASAP can receive work orders with no Remote NE information. This static table was
created to route the ASDLs to the relevant Host NE by means of a DN and ASDL
command. If the Host system is unable to determine the Remote NE, the routing logic
involving this table is employed in the SARM.

This table is not read into the internal memory within the SARM because such routing
is rarely used in comparison to the Remote to Host NE routing mechanism. A

Chapter 2
SARM database

2-60

parameter with label MCLI and value, and SKIPCLLI must be present on the ASDL for this
routing logic to be employed. You are responsible for populating and maintaining this table

SSP_new_dn_map adds new ASDL command routings by directory number to
tbl_nep_rte_asdl_nxx.

SSP_del_dn_map deletes ASDL command routings from tbl_nep_rte_asdl_nxx.

SSP_list_dn_map lists the contents of this table

Table 2-58 tbl_nep_rte_asdl_nxx Columns

Column_name Type Length Nulls Description

asdl_cmd varchar2 80 0 The ASDL command that provides ASDL
specific routing capabilities by telephone
number. This is important for such services as
Voice Mail which is routed to separate NEs
based on the ASDL.

npa varchar2 3 0 The NPA is the first three digits in a telephone
number.

nxx varchar2 3 0 The NXX is the second three digits in a
telephone number.

from_line varchar2 4 0 The starting point of a range of telephone LINE
numbers. It is the remaining four numbers in a
telephone number which provide routing.

to_line varchar2 4 0 The end point of a range of telephone LINE
numbers to provide routing.

cont_typ varchar2 1 0 Reserved for future use.

cont_nm varchar2 8 0 Reserved for future use.

queue_nm varchar2 64 0 The Host NE to which this ASDL is routed. The
SARM determines the NEP managing this Host
NE and routes the ASDL appropriately.

Table indexes:

asdl_cmd, npa, nxx, from_line, to_line, cont_typ

tbl_order_events
This table provides the order translation details for the SRT.

Table 2-59 tbl_order_events Columns

Column_name Type Length Nulls Description

translation_name varchar2 255 0 Name of the Translation Object.

query_type varchar2 80 0 Type of the Query.

type char 1 0 Type of the object.

• J - JMS
• X - XPATH

parm varchar2 255 1 Name of the parameter.

value varchar2 255 1 Value for the parameter.

Chapter 2
SARM database

2-61

tbl_order_translation
This table contains the order translation script details for the SRT.

Table 2-60 tbl_order_translation Columns

Column_name Type Length Nulls Description

name varchar2 255 0 A unique name given to the translation script
as an identifier.

script_name varchar2 255 1 Name of the script file that implements
translation.

translation_type varchar2 255 0 Type of Translation to be executed. Possible
values are XSLT and DO_NOT_FORWARD.

type char 1 0 Type of the translation object

parm varchar2 255 1 Name of the parameter

value varchar2 255 1 Value of the parameter

message_directi
on

varchar2 80 1 Translation Direction which indicates the
whether this translation is for incoming
orders, responses or events. Possible values
are UPSTREAM, EVENT and RESPONSE.

script BLOB - 1 Binary form of the library/script.

tbl_resource_pool
This static table defines collections of devices which may be used by the NEP to
establish connections to NEs. Such groups of devices are called resource pools.

Each NE configuration (tbl_ne_config record) determines a primary resource pool
which defines one or more devices the NEP uses to connect to that NE. Such devices
are not used to connect to other NEs.

Each NEP has a secondary resource pool (defined in tbl_nep) containing devices used
by the NEP to establish connections to any NE managed by that NEP. Such primary
and secondary resource pools are defined in this table. You are responsible for
populating and maintaining this table.

• SSP_new_resource adds new device definitions to this table.

• SSP_del_resource deletes device definitions from this table.

• SSP_list_resource lists the contents of this table

Chapter 2
SARM database

2-62

Table 2-61 tbl_resource_pool Columns

Column_name Type Length Nulls Description

asap_sys varchar2 8 0 This is the environment in which this database
record is to be used. As the ASAP databases
are environment independent, only logical
representations of physical entities exist within
them.

• tbl_resource_pool – The table that contains
specific environment-dependent
information that varies between
environments.

• asap_sys – Distinguishes different
environments. It takes the value of the
environment variable, ASAP_SYS, TEST,
PROD, etc., in the current environment.

At run time, only those records with this field
defined to be the same as the environment
variable asap_sys, are loaded by the NEP.

pool varchar2 8 0 The name of the pool of devices. It is referenced
by:

• tbl_nep – The secondary resource pool of
the entire NEP.

• tbl_ne_config – The primary resource pool
of the NE.

device varchar2 40 0 The device name. This is the name of the
logical device used to establish a connection to
an NE. The device corresponding to this logical
device is specified by means of the
communications parameter table,
tbl_comm_param.

line_type char 1 0 The communication protocol used by this
device. The possible values include:

• C – CORBA
• D – Serial Port Dialup
• F – TCP/IP FTP Connection
• G – Generic Terminal Based Connection
• H – Serial Port Hardwired
• M – Generic Message Based Connection
• P – SNMP Connection
• S – TCP/IP Socket Connection
• T – TCP/IP Telnet Connection
• W – LDAP Connection
This is enforced by the associated data rule on
the datatype.

For the X.25 protocol, you can use both G and
M. For the X.29, you can only use G because
the X.29 does not support message-based type.

Such definitions are defined in the header file
nep_core.h.

vs_key number 38 - Reserved. The shared memory segment
identifier for the Virtual Screen buffer.

Chapter 2
SARM database

2-63

Table indexes:

Indexes

asap_sys, pool
asap_sys, device

tbl_srq
This dynamic table is used by the SARM and contains Service Requests (SRQs)
created by the SARM from details passed by an SRP during work order translation.
There is a one-to-one mapping between work orders and SRQs in the SARM. The
SRQ provides a unique ID that references to the work order within ASAP.

Table 2-62 tbl_srq Columns

Column_name Type Length Nulls Description

srq_id number 38 0 SRQ unique ID.

srq_dd date - 0 Due date and time of this SRQ. This is the
same as the sched_dts in the work order
table.

grp_cd char 1 0 The action of the SRQ. Possible values
include:

• A – ADD: addition of service.
• R – REMOVE: removal of service.
• C – CHANGE: change/update of

existing service.
• Q – QUERY: query existing service.
This action field is important to the order in
which SRQs are processed within the same
work order and between work orders.

These values are defined in asap_core.h.

srq_pri char 1 0 Priority of this SRQ as assigned by the Host
order system.

It is equal to the work order priority. Possible
values include:

• (1) ASAP_SRQ_HIGH_PRIO – High
priority SRQ.

• (5) ASAP_SRQ_NORMAL_PRIO –
Normal priority SRQ.

• (9) ASAP_SRQ_LOW_PRIO – Low
priority SRQ.

These values are defined in asap_core.h.

This priority field is the first field in the
internal composite ASAP SRQ priority within
the ASAP core followed by the SRQ due
date and the SRQ action such as Remove,
Change, or Add.

Chapter 2
SARM database

2-64

Table 2-62 (Cont.) tbl_srq Columns

Column_name Type Length Nulls Description

srq_stat number 38 0 SRQ status that is updated while the SRQ is
being processed by the SARM. Possible
values include:

• (0) HELD – SRQ is held awaiting
manual intervention.

• (1) INITIAL – SRQ is yet to begin
provisioning.

• (2) SRQ_ABORTED – SRQ has been
aborted due to order update or cancel.

• (3) NEP_UNAVAIL – NEP routing for
the SRQ's current ASDL is temporarily
unavailable.

• (7) IN_PROCESSING – SRQ in
process.

• (12) COMPLETED – SRQ successfully
completed. It may have exceptions
and/or revisions.

• (13) FAILED – SRQ failed. See the
SRQ log details to determine the cause
of failure.

• (14) TRANSLATION_ERROR – The
SRP could not translate the SRQ
correctly but transmitted it to the SARM.

• (15) SRQ_ROLLBACK – SRQ has
been rolled back.

• (16) REVIEW – SRQ is in Reviewed
status.

• (60) CMD_RETRY – An ASDL on this
SRQ is currently in the ASDL Retry
queue. The SARM waits for a
configured period or number of retries.

These definitions are defined in
sarm_defs.h.

evt_dt_tm date - 0 Last date and time that this SRQ record was
updated.

wo_id varchar2 80 0 The ID of the work order that this SRQ
belongs to.

srq_chg char 1 1 Indicates whether the SRQ has been altered
since being received by ASAP. Possible
values include:

• N – No revisions on the SRQ.
• Y – Revisions in ASAP not to be

reflected back to the Host System.
• C – Revisions in ASAP to be reflected

back to the Host System.

Chapter 2
SARM database

2-65

Table 2-62 (Cont.) tbl_srq Columns

Column_name Type Length Nulls Description

proc_typ char 1 1 Type of processing required for this SRQ.
Possible values include:

• (I) IMMEDIATE – Immediate requests to
be provisioned as they are received.

• (D) DELAYED – Delayed or batch
requests due in the future.

Batch requests have lower priority than
immediate requests. Values are defined in
sarm_defs.h.

cur_csdl_seq_no number 38 1 The sequence number of the current CSDL
being processed within this SRQ.

This serves as a pointer into the CSDL table
which enables the SARM to determine
which CSDL it had been processing. This is
used by the SARM upon restarting an In
Progress work order.

cur_csdl_st number 38 1 The status of the current CSDL being
processed within this SRQ.

This field and the sequence number are
updated by the SARM as the SRQ is being
processed.

Possible values of this field are detailed in
the csdl_st field of the tbl_srq_csdl table.

host_clli varchar2 80 1 The Host NE associated with the latest
ASDL on the SRQ. This is updated by the
SARM to the value of the current ASDL Host
NE value.

There may be multiple Host NEs associated
with a CSDL since each ASDL may be
routed to a different Host NE.

Table indexes:

Indexes

srq_id
wo_id

tbl_srq_asdl_parm
This dynamic table contains parameter name value pairs associated with a Service
Request (SRQ). It allows the ASDL and rollback parameters to be defined and, where
possible, provides a pointer to their location in other database tables.

Table 2-63 tbl_srq_asdl_parm Columns

Column_name Type Length Nulls Description

srq_id number 38 0 The SRQ ID that the parameter name value
pairs are associated.

Chapter 2
SARM database

2-66

Table 2-63 (Cont.) tbl_srq_asdl_parm Columns

Column_name Type Length Nulls Description

unid number 38 0 If the ASDL type is ROLLBACK_TYPE,
(according to tbl_asdl_log) then this field is
set to the value of the ASDL unique ID
(asdl_unid) in the ASDL log table
(tbl_asdl_log). This allows the ASDL log
table to determine the rollback parameters
associated with a particular ASDL.

These parameter types are defined in the
header file sarm_defs.h.

parm_lbl varchar2 80 0 The parameter label, for example, LEN, or
DN.

parm_vlu varchar2 255 1 The parameter value associated with the
parameter label.

vlu_hint char 1 0 Indicates whether the parameter value is a
real value or an XML document or XPath
expression. Can be one of the following:

• X - indicates a reference to XML
document

• P - indicates a reference to XPath
expression

• T - indicates a reference to large text
(reserved for future use)

Table indexes:

srq_id, unid, parm_lbl

tbl_srq_csdl
This dynamic table contains the CSDLs for each Service Request (SRQ) listed in the SRQ
table. Each SRQ can have multiple CSDLs.

Table 2-64 tbl_srq_csdl Columns

Column_name Type Length Nulls Description

srq_id number 38 0 Unique ID of the SRQ that is associated with the
CSDL.

csdl_seq_no number 38 0 Sequence number that distinguishes CSDLs
within the SRQ.

actn_noun_lbl varchar2 80 0 CSDL command.

Chapter 2
SARM database

2-67

Table 2-64 (Cont.) tbl_srq_csdl Columns

Column_name Type Length Nulls Description

csdl_st number 38 0 Status of the CSDL. Possible values include:

• (100) HELD_STATE – The CSDL is Held
awaiting manual release within ASAP.

• (101) INITIAL_STATE – The CSDL is yet to
begin processing.

• (102) FAILED_CSDL – The CSDL has
failed.

• (103) ABORTED_CSDL – The CSDL has
been aborted (usually by an OCA user).

• (104) COMPLETED_CSDL – The CSDL
has completed successfully.

• (106) ROLLBACK_COMPLETED_CSDL –
The CSDL has been successfully rolled
back.

CSDL status values are defined in sarm_defs.h.

asdl_seq_no number 38 0 The sequence number of the ASDL currently
being processed by the SARM on the CSDL.

It is updated dynamically by the SARM as the
ASDLs are processed. The SARM uses this
field to determine the current ASDL to be
provisioned upon restart.

index_parm_cnt number 38 0 Current index value in Indexed ASDL
parameters.

This field is dynamically updated by the SARM
as it provisions an ASDL with a set of Indexed
parameters.

When the SARM restarts an In Progress order, it
uses the value in this field to determine the
relevant set of Indexed ASDL parameters to
transmit with this ASDL. Use the getParam
method to retrieve the value of the given input
parameter as passed down to the JInterpreter
by the SARM. Use the getIntParam method to
retrieve the value of the given input parameter
as passed down to the JInterpreter by the
SARM and casts this value to an integer.

Refer to the ASAP Online Reference for more
information.

Chapter 2
SARM database

2-68

Table 2-64 (Cont.) tbl_srq_csdl Columns

Column_name Type Length Nulls Description

csdl_id number 38 0 The CSDL ID in the SRP transmitted to the
SARM.

When the SRP transmits a CSDL to the SARM,
it passes this CSDL ID which SARM stores in
the field.

With this, the SARM generates the csdl_seq_no
field value once it receives all CSDLs from the
SRP and orders them according to their
respective levels.

This field is maintained by the SARM so that the
SRP can query the SARM for CSDL specific
information. It is used by the SRP to correlate
the CSDL in the SRP with the CSDL in the
SARM.

asdl_route char 1 0 Specifies the routing of the current ASDL on the
CSDL. The CSDL is mapped to one or more
ASDLs by the table tbl_csdl_asdl.

Once the SARM acknowledges the ASDL, it
looks up the appropriate entry in the
tbl_asdl_config to determine the routing for this
ASDL.

Possible values include:

• (?) TO_BE_DETERMINED – The SARM
has not yet determined the routing of the
first ASDL on this CSDL.

• (N) ROUTE_TO_NEP – ASDL routed to the
NEP.

This value is defined in the header file
sarm_defs.h.

csdl_type char 1 1 The type of CSDL.

orig_seq_no number 38 1 The original sequence number of the CSDL on
the SRQ.

estimate number 38 1 The time estimate to provision the CSDL.

start_dts date - 1 The date and time that the CSDL started
provisioning.

abort_dts date - 1 The date and time that the CSDL was aborted.

failure_dts date - 1 The date and time that the CSDL failed
provisioning.

comp_dts date - 1 The date and time that the CSDL completed
provisioning.

update_dts date - 1 The date and time that the CSDL was last
updated.

update_uid varchar2 64 1 The user who last updated the CSDL.

prov_sequence number 38 1 The provisioning sequence of the CSDL on the
SRQ. You can specify an alternate provisioning
sequence to the one originally received from the
originating system.

Chapter 2
SARM database

2-69

Table indexes:

srq_id, csdl_seq_no

tbl_srq_log
This dynamic table contains information logged for each SRQ. The log is a history of
events that occurred on each SRQ, including Switch History information of the NE
responses. If the Switch History is greater than 195 characters, the entry splits into two
entries.

Through an API, the SARM and NEP write to this database table during the
provisioning process. The SRP queries this table through an API to retrieve selected
records for a particular work order.

You can view audit log information through the OCA Client. For more information, refer
to the ASAP OCA User Guide.

Table 2-65 tbl_srq_log Columns

Column_name Type Length Nulls Description

srq_id number 38 0 ID of the Service Request.

srq_log_identity number 20 0 Unique ID of the log message in this table.
This is an identity field automatically
generated by the RDBMS upon insertion.
This replaces the earlier field for
performance reasons.

evt_dt_tm date - 0 Date and time of the logged event.

csdl_seq_no number 38 0 Sequence number of the CSDL within the
SRQ that the event is associated with.

This is the same as the csdl_seq_no field in
the CSDL table.

srq_stat number 38 0 Status of the SRQ at the time the event
occurred.

For possible values, see srq_stat in tbl_srq,
"tbl_srq."

csdl_st number 38 0 Status of the CSDL when the event
occurred.

For possible values, see csdl_st in
tbl_srq_csdl, "tbl_srq_csdl."

Chapter 2
SARM database

2-70

Table 2-65 (Cont.) tbl_srq_log Columns

Column_name Type Length Nulls Description

srq_evt varchar2 8 0 The SRQ Log Event.

The SRP may inquire for the SRQ log by
specifying particular SRQ events of interest
in the inquiry RPCs. Possible values include:

• SRQ_INFO_EVENT "INFO" –
Information messages.

• SRQ_ERROR_EVENT "ERROR" –
Error messages.

• NE_CMD_EVENT "NE_CMD" –
Command entered to the NE.

• NE_RESP_EVENT "NE_RESP" –
Response from the NE.

These values are defined in the header file
sarm_defs.h.

You must set WO_AUDIT_LEVEL in
ASAP.cfg to 2 to generate
SRQ_ERROR_EVENTS.

evt_text varchar2 255 1 Text description of the event.

For NE responses, it contains 255
characters at a time (including newline
characters) from the NE generated report.
This should be considered when the
information is being displayed by a front-end
user interface.

This allows each log record to contain more
NE response information than if one NE
response record was contained in each
SRQ log record.

If generated by an application, this text
describes the event as displayed to you.

All control characters x0 to x1F, except x9,
xA, and xD (tab, cr and nl), are stripped from
the event text after it is retrieved from the
database and before used in the XML
document. This behavior is in compliance
with XML 1.0 specification.

asdl_unid number 38 1 The ID of the ASDL that generated the log
entry. If there is no current ASDL for the log
entry, set this field to null.

Table indexes:

srq_id, srq_log_identity

tbl_srq_parm
This dynamic table contains global and CSDL name value pairs associated with an SRQ. It
allows different types of parameters to be defined and where possible, provides a pointer to
their location in other database tables. There is an index on this table which allows efficient
query access to the global and CSDL parameters.

Chapter 2
SARM database

2-71

Table 2-66 tbl_srq_parm Columns

Column_name Type Length Nulls Description

srq_id number 38 0 The SRQ ID that is associated with the
parameter name value pairs.

parm_typ char 1 0 The type of SRQ parameter. Possible values
include:

• (P) GLOBAL_TYPE – Parameters are
set by one CSDL in an SRQ and
referenced by others (they are global
within the SRQ).

• (C) CSDL_TYPE – Parameters are
local to the current CSDL being
processed within the SRQ. They are
referenced by other ASDLs within the
same CSDL.

These parameter types are defined in the
header file sarm_defs.h.

unid number 38 0 If the parameter type is CSDL_TYPE, this
field equals the CSDL sequence number
(csdl_seq_no) in the CSDL tbl_srq_csdl.
This field is not used if the parameter type is
GLOBAL_TYPE.

parm_lbl varchar2 80 0 The parameter label, for example, LEN or
DN.

parm_vlu varchar2 255 1 The parameter value associated with the
parameter label.

parm_subvlu varchar2 80 1 Contains the first 32 bytes of the global or
CSDL parameter value.

vlu_hint char 1 0 Indicates whether the parameter value is a
real value or an XML document or XPath
expression. Can be one of the following:

• X - indicates a reference to XML
document

• P - indicates a reference to XPath
expression

• T - indicates a reference to large text
(reserved for future use)

Table indexes:

Indexes

srq_id, parm_typ, unid, parm_lbl
parm_subvlu, parm_lbl

tbl_srt_bundle
This table contains SRT service bundles and/or its spawning details for the SRT.

Chapter 2
SARM database

2-72

Table 2-67 tbl_srt_bundle Columns

Column_name Type Length Nulls Description

service_id varchar2 80 0 Service Identifier.

description varchar2 1024 1 Description of the bundle or service action.

spawn_parm varchar2 255 1 Name of the spawning parameter on the order
that will cause this service bundle or service
action to be added to the order if it has the
correct value

spawn_value varchar2 255 1 Value of the spawning parameter that will cause
the service bundle or service action to be added
to the order.

service_type char 1 0 The service_type field indicates whether the
table entry is a service bundle or a service
action.

• B – Service bundle
• C – Service action

tbl_srt_bundle_csdl
This table contains the service action spawning information for the SRT.

Table 2-68 tbl_srt_bundle_csdl Columns

Column_name Type Length Nulls Description

service_id varchar2 80 0 Service Identifier.

csdl_cmd varchar2 80 0 Name of the CSDL.

csdl_seq_no number 20 0 Sequence number of the CSDL.

cond_flag char 1 0 Conditional flag for the CSDL. Possible values
are:

• A - ALWAYS
• E - EQUALS
• D - DEFINED
• N - NOT_DEFINED

label varchar2 80 1 The parameter label.

value varchar2 255 1 Value of the parameter.

eval_exp varchar2 255 1 Contains combination of parameter names,
operators, and values to which the parameters
are compared.

inc_ord_resp char 1 1 Identifies whether order data need to be
included in the response or not.

• Y – Yes
• N – No

description varchar2 1024 1 Description of the service bundle or service
action.

Chapter 2
SARM database

2-73

tbl_srt_config_reload
This table specifies the SRT configuration reload time.

Table 2-69 tbl_srt_config_reload Columns

Column_name Type Length Nulls Description

load_dts date - 0 Date and time at which the SRT
configuration was reloaded.

tbl_srt_correlation
This table provides the correlation details for the SRT work order.

Table 2-70 tbl_srt_correlation Columns

Column_name Type Length Nulls Description

correlation_id varchar2 80 0 SRT Correlation identifier

asap_id varchar2 80 0 ASAP Work Order identifier

tbl_srt_csdl_parm
This table provides the service action parameter mapping details for the service
bundle.

Table 2-71 tbl_srt_csdl_parm Columns

Column_name Type Length Nulls Description

service_id varchar2 80 0 Service Identifier.

csdl_cmd varchar2 80 0 The CSDL command.

csdl_seq_no number 20 0 Sequence number of the CSDL.

parm_seq_no number 20 0 Sequence number of the parameter.

bundle_label varchar2 80 0 The upstream label used in transmitting the
parameters for provisioning.

csdl_label varchar2 80 0 The CSDL label used in transmitting the
parameters for provisioning.

default value varchar2 255 1 Default Value.

parm_type char 1 0 Type of the parameter. Possible values
include:

• R - Required Scalar
• O - Optional Scalar
• C - Required Compound
• N - Optional Compound
• M - Required Indexed
• I - Optional Indexed

Chapter 2
SARM database

2-74

tbl_srt_ctx
This table provides the correlation details for the SRT work order.

Table 2-72 tbl_srt_ctx Columns

Column_name Type Length Nulls Description

asap_id varchar2 80 0 ASAP identifier.

name varchar2 1024 0 Name of the parameter.

value varchar2 1024 0 Value of the parameter.

type varchar2 1024 0 Type of the parameter.

srt_header_mapping
This table enumerates XPath names and values to allow additional event XML message body
data to be placed in the JMS header properties. This supports the inclusion of extended
event data in JMS headers without additional database queries. If there are no entries in this
table, then the default behavior occurs for JMS header creation. See "tbl_event_dataset" and
"tbl_event_template."

The table contains of XPath names and values. The SRT iterates through the table entries
and runs the configured XPaths. The returned name/value pairs are added to the JMS
header properties.

If the XPath in the configuration name attribute returns multiple results, all returned values
are added to the header. The values of these parameters are the result list of the value
attribute. The name/value pairs are paired in the order they were returned by the XPath
functions.

If the parameter name XPath returns more results than the value XPath the remaining values
will be left blank.

If the parameter name XPath returns fewer results than the value XPath results, extra value
XPath results are ignored.

Note: An XPath within single quotes represents a constant.

Table 2-73 srt_header_mapping Columns

Column_name Type Length Nulls Description

xpath_name varchar2 1024 0 xpath to generate a name.

xpath_value varchar2 1024 0 xpath to generate a value

Examples:

To return a specific information parameter on all event types, create a record with values
similar to the following:

Name – 'IMSI'

Value – /*[name()=mslv-sa:completeEvent]//extendedWoProperties/
extendedWoProperty[name='IMSI']/value

Chapter 2
SARM database

2-75

To return all extendedWoProperties on a completed event, create a record with values
similar to the following:

Name – /*[name()=mslv-sa:completeEvent]//extendedWoProperties//name

Value – /*[name()=mslv-sa:completeEvent]//extendedWoProperties//value

tbl_srt_lookup
This table provides lookup details used by the SRT.

Table 2-74 tbl_srt_lookup Columns

Column_name Type Length Nulls Description

name varchar2 255 0 Name of the lookup.

type varchar2 128 0 Type of the lookup.

cache_scope varchar2 32 1 Scope of the lookup. Scope can be either:
NONE, NODE or SYSTEM.

cache_timeout varchar2 20 1 The amount of time in milliseconds to cache
a value if the scope is SYSTEM.

cache_max_size number 20 1 The maximum number of entries to cache if
the scope is SYSTEM. Once MaxSize is
reached, least recently used values will be
dropped.

tbl_srt_lookup_input
This table provides lookup input details used by the SRT.

Table 2-75 tbl_srt_lookup_input Columns

Column_name Type Length Nulls Description

lookup_name varchar2 255 0 Name of the lookup

parm_name varchar2 255 0 Name of the input parameter

parm_type char 1 0 Type of the parameter. Possible values are:

• V - represents Adapter Properties Value
• L - represents Lookup

parm_value varchar2 255 0 Value of the parameter associated with the
parameter name. If parm_type is L then
parm_value contains an XPath, otherwise
parm_value contains an instance string
value.

parm_source varchar2 255 0 Indicates the source XML document for the
order data. Possible values are:

• if parm_type is L, then parm_source
contains the name of a data provider /
Lookup

• otherwise, if parm_source is
ASAP_SRT_ORDER, this means that
the source XML document contains the
order data

Chapter 2
SARM database

2-76

tbl_srt_lookup_output
This table provides lookup output details used by the SRT.

Table 2-76 tbl_srt_lookup_output Columns

Column_name Type Length Nulls Description

lookup_name varchar2 255 0 Name of the lookup.

parm_name varchar2 255 0 Name of the output parameter.

parm_type char 1 0 Type of the parameter. Possible values is:

• X - represents XPATH

parm_value varchar2 255 0 Value of the parameter.

tbl_srt_query_spawn
This table provides query spawning details for the SRT.

Table 2-77 tbl_srt_query_spawn Columns

Column_name Type Length Nulls Description

parm_name varchar2 255 0 Name of the parameter

req_exp varchar2 1024 0 Regular expression used by the SRT.

eval_cond char 1 0 Evaluation condition

tbl_stubs
This dynamic table is used in the ASAP High Availability configuration to maintain a copy of
the critical data relating to any work order in either ASAP site. As the SARM processes a
work order locally, the other SARM is notified of any critical updates performed on the order
by means of SARM to SARM communication. The other SARM updates its stub table with the
critical update information.

Table 2-78 tbl_stubs Columns

Column_name Type Length Nulls Description

wo_id varchar2 80 0 The Work order ID

wo_stat number 38 0 The status of the work order. Refer wo_stat in
"tbl_wrk_ord (user-created database table)" for
a list of possible status values.

wo_cmd number 38 0 The work order command.

srp_id varchar2 8 0 The SRP from which this work order originated.

sched_dts date - 0 The due date and time of the work order.

crit_seq_no number 38 1 The critical sequence number representing the
current critical update that was last applied to
the work order.

parent_wo varchar2 80 1 The parent work order of this order.

Chapter 2
SARM database

2-77

Table indexes:

Wo_id, parent_wo

tbl_test_rpc_parm
This table provides the details about the RPC parameters used by SRT.

Table 2-79 tbl_test_rpc_parm Columns

Column_name Type Length Nulls Description

rpc varchar2 80 0 The Work order ID

seq_no number 38 0 The status of the work order. Refer wo_stat
in "tbl_wrk_ord (user-created database
table)" for a list of possible status values.

parm_lbl varchar2 80 0 The work order command.

parm_typ char 1 0 The SRP from which this work order
originated

default_vlu varchar2 255 1 The due date and time of the work order

Table indexes:

rpc, seq_no

tbl_stat_text
Stores labels for the OCA client.

• SSP_new_stat_text adds new static text labels to tbl_stat_text.

• SSP_del_stat_text deletes static text labels from tbl_stat_text.

• SSP_list_stat_text lists the contents of this table.

Table 2-80 tbl_stat_text Columns

Column_name Type Length Nulls Description

stat_id varchar2 10 0 ID for a group of labels.

status number 38 1 Integer key field for grouping.

code varchar2 20 1 String key field for grouping.

stat_text varchar2 100 0 Text describing the label.

Table indexes:

Indexes

stat_id, status
stat_id, code

Chapter 2
SARM database

2-78

tbl_unload_sp
This table provides information about the stored procedures used to insert/delete/ data to/
from the ASAP tables. This table will be used by the utilities to load/unload the data in the
ASAP tables.

This table is available in both the Control and SARM databases, containing data appropriate
to the respective database.

Table 2-81 tbl_unload_sp Columns

Column_name Type Length Nulls Description

seq_no number 38 0 Sequence number of the table.

tbl_name varchar2 40 0 Name of the ASAP table.

new_sp varchar2 40 1 Stored procedure used to insert the data into
the table.

del_sp varchar2 40 1 Stored procedure used to delete the data from
the table.

list_sp varchar2 40 1 Stored procedure used to list the data in the
table.

Table indexes:

seq_no

tbl_unload_param
This table is used by utilities. It provides information about the parameters inserted/deleted by
stored procedures.

This table is available in both the Control and SARM databases, containing data appropriate
to the respective database.

Table 2-82 tbl_unload_param Columns

Column_name Type Length Nulls Description

seq_no number 38 0 Sequence number of the table.

col_number number 38 0 Column number of the parameter in the table.

para_name varchar2 80 0 Name of the Parameter.

default_flag number 38 0 Default Flag.

sp_type char 3 0 Type of the stored procedure.

rows_int number 38 0 Number of rows.

Table indexes:

seq_no, para_name, sp_type

Chapter 2
SARM database

2-79

temp_wrk_ord
This dynamic table details the supplemental work order information required by the
ASAP functionality. The columns are similar to tbl_wrk_ord table. For details, refer to
"tbl_wrk_ord (user-created database table)."

Table 2-83 temp_wrk_ord Columns

Column_name Type Length Nulls Description

wo_id varchar2 80 0 The work order ID that uniquely identifies
the work order in the ASAP core.

sched_dts Date - 0 The scheduled date and time for
provisioning to occur on work orders due in
the future.

For immediate work orders, set it to the
current time.

wo_stat number 38 0 The status of the work order. It is updated by
the SARM as the work order is being
processed. For possible values, refer to the
"tbl_wrk_ord (user-created database table)"
table.

comp_dts Date - 1 The completion date of all provisioning
associated with the work order in ASAP.

srp_id varchar2 8 0 The logical name of the front-end SRP that
notifications and results are sent to for a
particular work order.

update_dts Date - 0 The date and time of the last update on the
work order within the ASAP core.

org_unit varchar2 8 0 The Organization Unit of the person or
group to whom notification is sent should
particular events occur on the work order.

orig_login varchar2 64 1 The original login ID of the user who
initiated the work order in the Host order
system. This information is used for display,
notification, and diagnostic purposes.

revs_flag char 1 0 The revisions flag on the work order to
indicate if the work order was revised by the
OCA client.

exceptions char 1 0 Exceptions flag indicating to the SRP if
there are any exceptions in the completion
of the work order. For more details, refer to
the "tbl_wrk_ord (user-created database
table)" table.

pend_cancel char 1 1 This flag indicates whether there is a
pending order cancellation for this work
order.

rollback_stat number 38 0 The rollback status of the work order.

command number 38 0 This field is transmitted by the SRP to the
SARM and informs the SARM processing
command to apply it to the work order.

Chapter 2
SARM database

2-80

Table 2-83 (Cont.) temp_wrk_ord Columns

Column_name Type Length Nulls Description

crit_seq_no number 38 1 The sequence number of the last critical
update performed on this work order. This is
updated each time a critical update to the
work order has been performed.

lock_uid varchar2 64 1 The user who last locked the work order for
updating.

lock_dts Date - 1 The date and time that the work order was
last locked for updating.

start_dts Date - 1 The date and time that the work order
started provisioning.

asdl_timeout number 38 1 If set, the ASDL time-out interval to be used
on the work order instead of the system-
wide SARM default which is specified by the
configuration parameter ASDL_TIMEOUTS.

parent_wo varchar2 80 1 If set, the parent work order on which the
work order is dependent. The parent order
must be completed for the work order to
begin provisioning.

wo_timeout number 38 1 If set, the work order time-out interval to be
used on the work order instead of the
system-wide SARM default which is
specified by the configuration parameter
ORDER_TIMEOUT.

asdl_retry_num number 38 1 If set, the number of ASDL retries to be
used on the work order instead of the
system-wide SARM default which is
specified by the configuration parameter
NUM_TIMES_RETRY.

asdl_retry_int number 38 1 If set, the time period in seconds between
ASDL retries to be used on the work order
instead of the system-wide SARM default.

wo_rback char 1 1 If set to:

• (Y)es – A flag specifies whether to
explicitly roll back the order in the event
of failure.

• (N)o – The order is not rolled back.
• (D)efault – The SARM receives the

setting from the SRP.

stub_update_req char 1 1 Indicates whether Stub update is required or
not.

asdl_delay_fail char 1 1 If set, a flag which specifies whether or not
to treat hard errors encountered on the work
order as delayed failures, therefore allowing
the work order to finish processing before
failing.

Chapter 2
SARM database

2-81

Table 2-83 (Cont.) temp_wrk_ord Columns

Column_name Type Length Nulls Description

max_delay_fail number 38 1 If set, the number of ASDL delayed failures
to allow before failing a batch work order.
This allows the overriding of the system-
wide SARM default which is specified by the
configuration parameter,
BATCH_THRESHOLD.

srq_id number 38 1 The ID of the latest SRQ associated with the
work order. There is a single SRQ related to
a given work order.

is_future_dated char 1 1 If set to:

• Y – It indicates that the work order is
future-dated.

• N – The work order is not future-dated.
This is used by the ADMIN Server.

batch_group varchar2 80 1 The batch group ID of the work order.

extsys_di varchar2 128 1 An external system ID that is passed with
the work order. It is not used by the SARM,
but is used by the SRP for proper routing to
upstream systems.

rollback_exceptio
ns

char 1 0 The rollback exceptions flag returned by the
SARM on the work order rollback
completion notification. Indicates whether
there are exceptions (i.e. ASDL failure)
during rollback of a work order.

point_of_no_retu
rn

number 38 0 Values are:

• -1 – No rollback if work order fails
• 0 – (default). Normal rollback behavior.

No 'point of no return' functionality.
• >0 – ASDL_SEQ_NO. This ASDL is the

'point of no return' for partial rollback. If
rollback occurs, and execution has
continued beyond this point, roll back to
this ASDL but no further.

failure_reason varchar2 255 1 Provides the failure reason for a work order
that fails during provisioning.

Table indexes:

wo_id, srq_id

tbl_uid_pwd
If the SARM configuration variable SECURITY_CHECK is enabled, this static table is
referenced to authorize access to the SARM from the SRP as part of the SRP to
SARM protocol.

For the security check to be validated, the user ID and password on the work order
must be defined in the table with an active status. If a security violation is detected, the
SARM rejects the work order with a security violation,
ASAP_STAT_SECURITY_VIOLATION (103).

Chapter 2
SARM database

2-82

This provides a central security mechanism to ensure that only properly validated work orders
are received by the SARM from all SRPs in the system.

• SSP_new_userid adds a new user account for the SARM to control access from the
SRP in tbl__uid_pwd.

• SSP_del_userid deletes a user account for the SARM to control access from the SRP in
tbl__uid_pwd.

• SSP_list_userid lists the contents of this table.

Table 2-84 tbl_uid_pwd Columns

Column_name Type Length Nulls Description

userid varchar2 64 0 The user ID for the security check.

pwd varchar2 30 0 The associated password.

status varchar2 40 1 Your current status. If set to ACTIVE, then you
can access. If not, access is denied.

Table indexes:

userid

tbl_unid
This dynamic table manages unique IDs required by other tables. It is present in most user-
created databases and provides a method of generating a serial field.

Table 2-85 tbl_unid Columns

Column_name Type Length Nulls Description

unid_type varchar2 8 0 A unique code identifying the UNID type. This
allows there to be many different UNID values
for different types of UNID.

unid number 38 0 The UNID value for a particular type.

pad1 char 255 0 Padding to make a table row occupy a page.
This reduces concurrence on the database data
page by different database processes.

pad2 char 255 0 Same as pad1.

pad3 char 255 0 Same as pad1.

pad4 char 255 0 Same as pad1.

Table indexes:

Unique

unid_type

tbl_user_err
This static table provides a mechanism to define user exit codes and map them to one of the
base ASDL exit types. For more information on user exit types, see the ASAP Cartridge
Development Guide.

Chapter 2
SARM database

2-83

If the State table returns a user-defined exit type, the NEP checks whether there is a
base exit type defined for the specified ASDL and exit type. If so, then the base exit
type is used. If not, the NEP determines whether there is a user-defined error type
associated with the user-defined exit type.

Some initial data is provided as part of the core system. You are responsible for
populating and maintaining this table.

Pattern matching is ordered by length (search_pattern), csdl, asdl, ne_vendor,
sftwr_load and tech_type. Pattern matching starts from the most specific specification
to the least specific. The most specific specification is one that has all columns within
the table filled.

• SSP_new_err_type adds a new mapping of user-defined error types.

• SSP_del_err_type deletes the mapping of user-defined error types.

• SSP_list_err_type list the contents of this table

Table 2-86 tbl_user_err Columns

Column_name Type Length Nulls Description

csdl varchar2 80 1 The CSDL that is executing. Error types can
be defined for user_type and CSDL
combinations.

asdl varchar2 80 1 The ASDL that is executing. Error types can
be defined for user_type and ASDL
combinations.

vendor varchar2 255 1 The vendor of the network element.

tech_type varchar2 255 1 The technology of the network element.

sftwr_load varchar2 16 1 Software version of the host network
element.

search_pattern varchar2 255 1 Regular expression pattern that is used to
match on network element responses.

user_type varchar2 20 0 User-defined ASDL exit type.

Chapter 2
SARM database

2-84

Table 2-86 (Cont.) tbl_user_err Columns

Column_name Type Length Nulls Description

base_type varchar2 20 0 The base ASDL exit type where this user
specified ASDL exit type maps to. The base
types include:

• SUCCEED – ASDL executed
successfully.

• FAIL – ASDL encountered a hard error.
• RETRY – ASDL to be retried in future.
• MAINTENANCE – ASDL failed because

the NE is currently unavailable to
receive provisioning requests.

• SOFT_FAIL – ASDL generates an error
occurs that should not halt the
processing of the order.

• DELAYED_FAIL – ASDL failed during
provisioning. The SARM skips any
subsequent ASDL in the CSDL,
continues provisioning at the next
CSDL, and then fails the order.

• STOP – ASDL is stopped.
Refer to the ASAP Cartridge Development
Guide for more detailed descriptions of
these base_types.

description varchar2 255 1 Description of the user exit type.

Table indexes:

Unique

csdl, asdl, ne_vendor, tech_type, sftwr_load, search_pattern, user_type

tbl_user_err_threshold
With this static table you can specify thresholds for a specific user exit from the Interpreter
State Table by Host NE and ASDL command.

The SARM maintains three counters for each Host NE, ASDL, and user exit type. If a counter
exceeds its user configured threshold, the SARM issues the appropriate event, if defined. In
the Control database you can configure any system events generated from this table to map
to relevant system alarms as required.

• SSP_new_user_err_threshold adds a new user-defined error threshold or set of
thresholds to tbl_user_err_threshold.

• SSP_del_user_err_threshold deletes a user-defined error threshold or set of thresholds
from tbl_user_err_threshold.

• SSP_list_user_err_threshold lists the contents of this table

Chapter 2
SARM database

2-85

Table 2-87 tbl_user_err_threshold Columns

Column_name Type Length Nulls Description

host_clli varchar2 80 0 The Host NE.

asdl_cmd varchar2 80 0 The ASDL command.

user_type varchar2 20 0 The user State Table exit type.

minor_threshold number 4 1 The number of user exits for this Host NE
and ASDL before the minor event is
generated.

minor_event varchar2 8 1 The minor system event to be generated.

major_threshold number 4 1 The number of user exits for this Host NE
and ASDL before the major event is
triggered.

major_event varchar2 8 1 The major system event generated.

critical_threshold number 4 1 The number of user exits for this Host NE
and ASDL before the critical event is
triggered.

critical_event varchar2 8 1 The critical system event generated.

Table indexes:

Unique

host_clli, asdl_cmd, user_type

tbl_usr_wo_prop
This table is used to dynamically configure work order properties. It consists of WO ID
and name/value pair for a user-defined work order properties. This table supports only
string type user-defined work order properties.

Table 2-88 tbl_usr_wo_prop Columns

Column Name Type Length Nulls Description

wo_id varchar2 80 0 The ID of the work order.

name varchar2 80 0 The name of the work order property.

value varchar2 255 1 The value given to the work order property.

value_hint char 1 0 Indicates whether the parameter value is a
real value (XML document) or a reference ID
(XPATH expression). Can be one of the
following:

• X - indicates a reference to XML
document

• P - indicates a reference to XPath
expression

• T - indicates a reference to large text
(reserved for future use)

Table indexes:

Chapter 2
SARM database

2-86

Unique

wo_id, name

tbl_wo_audit
This dynamic table tracks the work order status. It is populated based on the wo_audit
column in "tbl_msg_convert" and the WO_AUDIT_LEVEL parameter in ActivationConfig.xsd
and ASAP.cfg.

You can view audit log information through the OCA Client. For more information, refer to the
ASAP OCA User Guide.

Table 2-89 tbl_wo_audit Columns

Column_name Type Length Nulls Description

wo_id varchar2 80 0 The ID of the work order.

wo_audit_log_iden
tity

number 20 0 Unique ID of the audit message. This is an
identity field automatically generated by the
RDBMS upon insertion.

Chapter 2
SARM database

2-87

Table 2-89 (Cont.) tbl_wo_audit Columns

Column_name Type Length Nulls Description

wo_stat smallint 1 0 The status of the work order internally within
ASAP. It is updated by the SARM as the work
order is being processed.

Possible values for this field include:

• (101) WO_LOADING – The work order is
being loaded into the SARM from the SRP.

• (102) WO_INIT – The work order is in the
Initial state awaiting provisioning.

• (103) WO_IN_PROGRESS – The work
order is currently being provisioned.

• (104) WO_COMPLETE – The work order
has been completed.

• (200) WO_GET_STATUS – Transient state
within the SARM.

• (221) WO_STOP_WAIT – The work order
has been stopped and is being rolled back.

• (222) WO_STOPPED – The work order is
currently stopped.

• (246) WO_REVIEW – The work order is in
a Review state (similar to held).

• (247) WO_CANCEL_WAIT – The work
order has a cancellation request awaiting.

• (249) WO_LOCK – The work order is in a
Locked state.

• (250) WO_ABORT – The work order has
been aborted.

• (251) WO_TIME_OUT – Work order
processing has exceeded the time-out
interval.

• (252) WO_CANCELLED – The work order
has been cancelled, usually from the Host
system.

• (253) WO_FAILED – The work order
provisioning has failed.

• (254) WO_HELD – The work order is
placed in a Held state.

• (255) WO_TRANSLATION_FAIL – The
work order translation failed in the SRP, but
was transmitted to the SARM to facilitate
manual intervention.

These values are defined in the header file
sarm_defs.h

Chapter 2
SARM database

2-88

Table 2-89 (Cont.) tbl_wo_audit Columns

Column_name Type Length Nulls Description

srq_evt varchar2 8 1 The SRQ Log Event.

The SRP may inquire for the SRQ log by
specifying particular SRQ events of interest in
the inquiry RPCs. Possible values include:

• SRQ_INFO_EVENT "INFO" – Information
messages.

• SRQ_ERROR_EVENT "ERROR" – Error
messages.

• NE_CMD_EVENT "NE_CMD" – Command
entered to NE.

• NE_RESP_EVENT "NE_RESP" –
Response from NE.

These values are defined in the header file
sarm_defs.h.

evt_dt_tm date - 1 Last date and time the SRQ record was
updated.

This value is referenced when performing audit
log queries in the OCA client.

evt_text varchar2 255 1 Description of the event.

user_id varchar2 64 1 The user ID.

sched_dts date - 1 The scheduled date and time for provisioning to
occur on this work order. It is used for work
orders that are due in the future.

For immediate work orders, set it to the current
time.

This value is referenced when performing work
order queries in the OCA client.

priority varchar2 21 0 Priority of the SRQ as assigned by the Host
order system.

It is equal to the work order priority. Possible
values include:

• (1) ASAP_SRQ_HIGH_PRIO – High
priority SRQ.

• (5) ASAP_SRQ_NORMAL_PRIO – Normal
priority SRQ.

• (9) ASAP_SRQ_LOW_PRIO – Low priority
SRQ.

These values are defined in asap_core.h.

This priority field is the first field in the internal
composite ASAP SRQ priority within the ASAP
core followed by the SRQ due date and the
SRQ action such as Remove, Change, or Add.

batch_group varchar2 80 1 The batch group ID of the work order.

parent_wo varchar2 80 1 If set, the parent work order on which this order
is dependent. The parent work order must be
completed for provisioning to begin.

Chapter 2
SARM database

2-89

Table 2-89 (Cont.) tbl_wo_audit Columns

Column_name Type Length Nulls Description

org_unit varchar2 8 0 The Organization Unit of the person or group to
whom notification is sent should particular
events occur on the work order.

It is used for notification purposes and user
group determination.

grp_cd char 1 0 The action of the SRQ. Possible values include:

• (A) ADD – Addition of service.
• (R) REMOVE – Removal of service.
• (C) CHANGE – Change/update of existing

service.
• (Q) QUERY – Query existing service.
This field determines the order in which SRQs
are processed within the same work order and
SRQs between work orders.

These values are defined in asap_core.h.

wo_event_time date - 1 The date and time that the work order event
was placed into the audit log.

wo_event_location varchar2 255 1 The location of the work order event. For
example, which pending queue the ASDL was
placed in.

Table indexes:

wo_id, wo_audit_log_identity

tbl_wo_event_queue
This dynamic table stores a back-up copy of all SRP events generated. Completed
events are purged on a periodic basis.

Table 2-90 tbl_wo_event_queue Columns

Column_name Type Length Nulls Description

wo_id varchar2 80 0 The work order ID.

event_unid number 4 0 A unique ID of this event. If an alarm is
generated by this event, an alarm log entry
in tbl_alarm_log is created with this event
unid value.

event_type number 4 0 The event type. It specifies if a system alarm
is generated by accessing the static table,
tbl_event_type.

event_status number 4 0 The current status of the event.

srp_id varchar2 8 0 The logical name of the front end SRP
where notifications and results are sent for
this particular work order, for example,
SRP_EMUL.

event_dts date - 0 The date and time of the system event.

Chapter 2
SARM database

2-90

Table 2-90 (Cont.) tbl_wo_event_queue Columns

Column_name Type Length Nulls Description

start_dts date - 0 The date and time of when provisioning
starts for the ASDL. The difference between
this value and queue_dts represents the
time the ASDL spent in the queue of
pending ASDLs to that Host NE before
being transmitted to the NEP for
provisioning.

complete_dts date - 0 The date and time of when the ASDL
provisioning is completed.

estimate number 4 1 The work order processing estimate
returned to the SRP by the SARM after the
work order was transmitted to the SARM by
the SRP.

misc varchar2 80 1 This field specifies miscellaneous
information received by the SARM through
the asap_wo_begin RPC. It contains
another work order identifier associated with
the primary work order.

rev_flag char 1 1 The revisions flag returned by the SARM on
the work order completion notification.

exceptions char 1 1 The exceptions flag returned by the SARM
on the work order completion notification.

mach_clli varchar2 80 1 Remote NE.

host_clli varchar2 80 1 Host NE to which the Remote NE is
connected.

reason varchar2 80 1 A description of the system event.

csdl_seq_no number 4 1 Sequence number of the CSDL within the
logical work order.

csdl_id number 4 1 The ID of the CSDL being processed when
the Information parameter is generated.
This CSDL ID is the same as the ID in
tbl_srq_csdl. It allows the SRP to track the
CSDL that this information parameter
belongs to.

timeout_status number 4 1 The status of the work order when a timeout
occurs. Possible values include:

• (90) ASAP_TIMEOUT_EXECUTING –
The work order timed out but was still
executing.

• (91) ASAP_TIMEOUT_FAIL – The work
order timed out and failed.

queue_tm float 8 1 Timestamp when the event was generated.

Chapter 2
SARM database

2-91

Table 2-90 (Cont.) tbl_wo_event_queue Columns

Column_name Type Length Nulls Description

xaction_type varchar2 16 1 The type of SRP event to be sent. Possible
values include:

• WO_ACCEPT
• WO_ESTIMATE
• WO_STARTUP
• WO_COMPLETION
• WO_FAILURE
• WO_SOFT_ERROR
• WO_BLOCKED
• WO_ROLLBACK
• WO_TIMEOUT
• NE_UNKNOWN
• NE_UNAVAILABLE
• NE_AVAILABLE

old_wo_stat number 4 1 The previous status of the work order in the
SARM.

new_wo_stat number 4 1 Status of the new work order.

status number 4 1 The current status of the work order in the
SARM.

extsys_id varchar2 128 1 An external system ID passed with the work
order. It is not used by the SARM, but is
used by the SRP for proper routing to
upstream systems.

rollback_exceptio
ns

char 1 1 The rollback exceptions flag returned by the
SARM on the work order rollback
completion notification.

Table indexes:

Indexes

wo_id, event_unid
event_status, srp_id

tbl_wrk_ord (SARM)
This dynamic table details the essential work order information required by the ASAP
core functionality. It contains details required by the provisioning process but does not
contain customer-specific work order details.

Table 2-91 tbl_wrk_ord (SARM) Columns

Column_name Type Length Nulls Description

wo_id varchar2 80 0 The work order ID that uniquely identifies
the work order in the ASAP core. This ID is
the same as the one used in the Host
system and allows easier user reference to
orders in the OCA client.

Chapter 2
SARM database

2-92

Table 2-91 (Cont.) tbl_wrk_ord (SARM) Columns

Column_name Type Length Nulls Description

sched_dts date - 0 The scheduled date and time for
provisioning to occur on work orders due in
the future.

For immediate work orders, set it to the
current time.

wo_stat number 1 0 The status of the work order. It is updated by
the SARM as the work order is being
processed. Possible values include:

• (101) WO_LOADING – The work order
is being loaded into the SARM from the
SRP.

• (102) WO_INIT – The work order is in
the Initial state awaiting provisioning.

• (103) WO_IN_PROGRESS – The work
order is being provisioned.

• (104) WO_COMPLETE – The work
order is completed.

• (200) WO_GET_STATUS – Transient
state within the SARM.

• (221) WO_STOP_WAIT – The work
order has stopped and is being rolled
back.

• (222) WO_STOPPED – The work order
is stopped.

• (246) WO_REVIEW – The work order is
in a Reviewed state, similar to Held.

• (247) WO_CANCEL_WAIT – The work
order has a cancellation request
waiting.

• (249) WO_LOCK – The work order is in
a Locked state.

• (250) WO_ABORT – The work order
has been aborted.

• (251) WO_TIME_OUT – Work order
processing has exceeded the timeout
interval.

• (252) WO_CANCELLED – The work
order has been cancelled, usually from
the Host system.

• (253) WO_FAILED – The work order
provisioning has failed.

• (254) WO_HELD – The work order is
placed in a Held state.

• (255) WO_TRANSLATION_FAIL – The
work order translation failed in the SRP,
but was transmitted to the SARM to
facilitate manual intervention.

These values are defined in the header file
sarm_defs.h.

comp_dts date - 1 The completion date of all provisioning
associated with the work order in ASAP.

Chapter 2
SARM database

2-93

Table 2-91 (Cont.) tbl_wrk_ord (SARM) Columns

Column_name Type Length Nulls Description

srp_id varchar2 8 0 The logical name of the front-end SRP that
notifications and results are sent to for a
particular work order.

update_dts date - 0 The date and time of the last update on the
work order within the ASAP core.

org_unit varchar2 8 0 The Organization Unit of the person or
group to whom notification is sent should
particular events occur on the work order.

orig_login varchar2 64 1 The original login ID of the user who initiated
the work order in the Host order system.
This information is used for display,
notification, and diagnostic purposes.

revs_flag char 1 0 The revisions flag on the work order to
indicate if the work order was revised by the
OCA client. The possible values include:

• (Y) ASAP_WO_REVISIONS – The work
order has associated revisions.

• (N) ASAP_WO_NO_REVISIONS – The
work order has no associated revisions.

This flag is passed back to the SRP by the
SARM in the Work Order Completion Event.

Such values are defined in the header file
asap_core.h.

exceptions char 1 0 Exceptions flag indicating to the SRP if there
are any exceptions in the completion of the
work order. Such exceptions are generally
the result of a “Fail but Continue" status
being returned to the SARM for one of the
ASDLs on the work order.

This field is set by the SARM and
communicated to the relevant SRP, which
then requests the exception details. The
possible values include:

• (Y) ASAP_WO_EXCEPTIONS – The
work order completed with exceptions.

• (N) ASAP_WO_NO_EXCEPTIONS –
The work order completed without any
exceptions.

The flag is passed back to the SRP by the
SARM in the Work Order Completion Event.

The values are defined in the header file
asap_core.h.

Chapter 2
SARM database

2-94

Table 2-91 (Cont.) tbl_wrk_ord (SARM) Columns

Column_name Type Length Nulls Description

pend_cancel char 1 1 This flag indicates if there is a pending order
cancellation for this work order.

Upon completion of the next ASDL on the
order, the SARM checks this flag. If set, the
SARM initiates rollback if configured at the
ASDL level on the work order. The possible
values are:

• Y – Cancellation pending on the work
order.

• N – No cancellation received.

rollback_stat number 1 0 The rollback status of the work order.

If any CSDL on the work order requires
rollback, this field is set to (201)
RBACK_REQUIRED. Otherwise, it is set to
(200) BACK_NOT_REQUIRED and no
rollback takes place if the work order fails.

If rollback is required, it starts on the work
order and the SARM updates this field to
(202) RBACK_IN_PROGRESS.

This is a transient state and at the end of the
rollback (Complete or Failed), the rollback
status reverts back to its original state.

If the rollback procedure fails, the field is
updated to (204) RBACK_FAILED, otherwise
(203) RBACK_COMPLETE to denote
successful rollback.

These values are defined in the header file
sarm_defs.h.

Chapter 2
SARM database

2-95

Table 2-91 (Cont.) tbl_wrk_ord (SARM) Columns

Column_name Type Length Nulls Description

command number 4 0 This field is transmitted by the SRP to the
SARM and informs the SARM processing
command to apply it to the work order.
Possible values are:

• ASAP_CMD_WO_UPDATE – The work
order is either new or an update to an
existing one.

• ASAP_CMD_WO_CANCEL – The work
order is a cancellation request on an
existing order.

• ASAP_CMD_WO_TRAN_ERROR –
Indicates to the SARM that a translation
error occurred on the work order.

• ASAP_CMD_WO_HELD – The work
order is to be held by the SARM until
released by either the originating
system with an update request or
through the user interface.

• ASAP_CMD_WO_REVIEW – The work
order is to be held in a Reviewed state
by the SARM until released by either
the originating system through an
update request or through the user
interface.

• ASAP_CMD_WO_REPLACE –
Rollback an existing work order and
submit with the same wo_id but a
different set of data

These values are defined in the header file
asap_core.h.

crit_seq_no number 4 1 The sequence number of the last critical
update performed on this work order. This is
updated each time a critical update to the
work order has been performed.

lock_uid varchar2 64 1 The user who last locked the work order for
updating.

lock_dts date - 1 The date and time that the work order was
last locked for updating.

start_dts date - 1 The date and time that the work order
started provisioning.

asdl_timeout number 4 1 If set, the ASDL time-out interval to be used
on the work order instead of the system-
wide SARM default which is specified by the
configuration parameter ASDL_TIMEOUTS.

parent_wo varchar2 80 1 If set, the parent work order on which the
work order is dependent. The parent order
must be completed for the work order to
begin provisioning.

Chapter 2
SARM database

2-96

Table 2-91 (Cont.) tbl_wrk_ord (SARM) Columns

Column_name Type Length Nulls Description

wo_timeout number 4 1 If set, the work order time-out interval to be
used on the work order instead of the
system-wide SARM default which is
specified by the configuration parameter
ORDER_TIMEOUT.

The order timeout behavior is governed by
two parameters: the wo_timeout parameter
on the work order and the
ORDER_TIMEOUT configuration parameter
in ASAP.cfg.

If wo_timeout has a value greater than one,
it is used.

If wo_timeout has a value of zero, work
orders do not time out.

If wo_timeout has a value less than zero,
ORDER_TIMEOUT is used.

If wo_timeout has a value less than zero and
ORDER TIMEOUT has a value of zero or
less than zero, work orders do not time out.

The work order/ASDL timer starts after the
work order has been submitted and the first
ASDL starts provisioning. This threshold can
be exceeded if, for example, the connection
to an NE is interrupted after the connection
has been established.

asdl_retry_num number 4 1 If set, the number of ASDL retries to be used
on the work order instead of the system-
wide SARM default which is specified by the
configuration parameter
NUM_TIMES_RETRY.

asdl_retry_int number 4 1 If set, the time period in seconds between
ASDL retries to be used on the work order
instead of the system-wide SARM default.

wo_rback char 1 1 If set to:

• (Y)es – A flag specifies whether to
explicitly roll back the order in the event
of failure.

• (N)o – The order is not rolled back.
• (D)efault – The SARM receives the

setting from the SRP.

stub_update_req - - - -

asdl_delay_fail char 1 1 If set, a flag which specifies whether or not
to treat hard errors encountered on the work
order as delayed failures, therefore allowing
the work order to finish processing before
failing.

This is used to override the behavior of the
NEP State Table.

Chapter 2
SARM database

2-97

Table 2-91 (Cont.) tbl_wrk_ord (SARM) Columns

Column_name Type Length Nulls Description

max_delay_fail number 4 1 If set, the number of ASDL delayed failures
to allow before failing a batch work order.
This allows the overriding of the system-
wide SARM default which is specified by the
configuration parameter,
BATCH_THRESHOLD.

srq_id number 4 1 The ID of the latest SRQ associated with the
work order. There is a single SRQ related to
a given work order.

is_future_dated char 1 1 If set to:

• Y – It indicates that the work order is
future-dated.

• N – The work order is not future-dated.
This is used by the ADMIN Server.

batch_group varchar2 80 1 The batch group ID of the work order.

extsys_id varchar2 128 1 An external system ID that is passed with
the work order. It is not used by the SARM,
but is used by the SRP for proper routing to
upstream systems.

rollback_exceptio
ns

char 1 0 The rollback exceptions flag returned by the
SARM on the work order rollback completion
notification. Indicates whether there are
exceptions (i.e. ASDL failure) during rollback
of a work order.

point_of_no_retu
rn

number 38 0 Values are:

• -1 – No rollback if work order fails
• 0 – (default). Normal rollback behavior.

No 'point of no return' functionality.
• >0 – ASDL_SEQ_NO. This ASDL is the

'point of no return' for partial rollback. If
rollback occurs, and execution has
continued beyond this point, roll back to
this ASDL but no further.

failure_reason varchar2 255 1 Provides the failure reason for a work order
that fails during provisioning.

Table indexes:

Indexes

wo_id
wo_stat, sched_dts, org_unit
parent_wo
batch_group

temp_csdl_estim
A temporary storage table for the Oracle SSP_csdl_list function. Data from this table
is automatically maintained by the function; therefore, you should not manually add or
remove data.

Chapter 2
SARM database

2-98

Table 2-92 temp_csdl_estim Columns

Column_name Type Length Nulls Description

sess_id number 22 1 Oracle session ID of the session executing the
function.

csdl_seq_no number 4 1 CSDL sequence number.

estimate number 4 1 CSDL estimate.

Table indexes:

sess_id

temp_csdl_list
A temporary storage table for the Oracle SSP_csdl_list function. Data from this table is
automatically maintained by the function; therefore, you should not manually add or remove
data.

Table 2-93 temp_csdl_list Columns

Column_name Type Length Nulls Description

sess_id number 22 1 Oracle session ID of the session executing the
function.

csdl_cmd varchar2 80 1 CSDL command.

csdl_st number 1 1 CSDL status.

csdl_seq_no number 4 1 CSDL sequence number.

csdl_id number 4 1 CSDL ID.

description varchar2 255 1 Description of the CSDL.

prov_sequence number 4 1 Provisioning sequence of the CSDL.

asdl_seq_no number 4 1 ASDL sequence number.

Table indexes:

sess_id

NEP database
This section details the NEP Database tables.

Chapter 2
NEP database

2-99

Figure 2-1 NEP database tables

User-created database tables
Following is a list of user-created database tables.

tbl_asdl_lcc
This static table contains the line class codes for certain ASDLs. It is only used by NE
State Table queries.

Table 2-94 tbl_asdl_lcc Columns

Column_name Type Length Nulls Description

asdl char 80 0 The ASDLs that add an access line.

lcc char 5 0 The Line Class Code (LCC) for a specific
ASDL adding an access line.

Table indexes:

asdl

tbl_clli_len_ltg
This static table contains specific line information. For example, site code, line
treatment group, intercept information, etc. This table is referenced by the
GET_INCPT and GET_LTG State Table actions.

Chapter 2
NEP database

2-100

Table 2-95 tbl_clli_len_ltg Columns

Column_name Type Length Nulls Nulls

mach_clli varchar2 128 0 Remote NE.

nxx varchar2 3 0 The NXX or Exchange working from this
Remote NE.

site char 4 1 Site code associated with this Remote NE and
NXX.

ltg number 38 1 Line treatment group for determining if calls are
toll calls.

pub_incpt char 4 1 Indicates if the intercept on the line is for a
directory-published number.

non_pub_incpt char 4 1 Indicates if the intercept on the line is for a non-
published directory number.

clli_desc varchar2 255 1 Description on the Remote NE.

from_len varchar2 7 0 Start of LEN (Line Equipment Number) range.

to_len varchar2 7 0 End of LEN range.

host_clli char 80 0 The Host NE managing the Remote NE.

Table indexes:

Indexes

mach_clli, nxx, from_len
host_clli, site, from_len

tbl_dms_logins
This static table is used by the NEP and contains the login user IDs and passwords for the
connections to the DMS NEs. You are responsible for populating and maintaining this table.

Table 2-96 tbl_dms_logins Columns

Column_name Type Length Nulls Description

host_clli char 80 0 Host NE.

login_id char 30 0 The login user ID that ASAP uses for this Host
NE.

password1 char 30 0 The first NE password in a sequence of two
passwords which are alternated.

password2 char 30 0 The second NE password.

last_changed date - 0 Date and time that the password was last
changed.

Table indexes:

host_clli, login_id

Chapter 2
NEP database

2-101

tbl_dms_options
This static table is used to specify DMS specific options.

Table 2-97 tbl_dms_options Columns

Column_name Type Length Nulls Description

tech char 16 0 The technology of the Host NE.

sftwr_load char 16 0 The software load of the Host NE.

dms_option varchar2 10 0 The DMS option.

Table indexes:

tech, sftwr_load, dms_option

tbl_march_feat
This static table provides the ability to map a generic option to a switch specific option.
It is referenced by the GET_SW_FEAT State Table action.

Table 2-98 tbl_march_feat Columns

Column_name Type Length Nulls Description

generic_feat varchar2 20 0 The generic feature.

tech varchar2 16 0 The technology of the Host NE.

switch_feat varchar2 20 0 The switch specific option.

Table indexes:

generic_feat, tech

tbl_march_rpm
This static table provides the NEP State Tables access to provisioning parameters that
are specific to a particular Host NE. The action, GET_P_PARMS, uses a variety of
action strings that depend on the provisioning parameters being accessed.

Only the values of the parameters (ASDL parameters or State Table program local
variables) are used, therefore the order of the parameters is fixed. The following is the
order of the various parameter types:

• (%TYPE, %MCLI)

• (%TYPE, %MCLI, %NXX)

• (%TYPE, %MCLI, %USOC)

• (%TYPE, %MCLI, %USOC, %NXX)

• (%TYPE, %MCLI, %FEAT)

• (%TYPE, %MCLI, %PIC)

• (%TYPE, %MCLI, %USOC, %LCC)

Chapter 2
NEP database

2-102

• (%TYPE, %MCLI, %USOC, %NXX, %LCC)

Table 2-99 tbl_ne_opt_vlu Columns

Column_name Type Length Nulls Description

host_clli char 80 0 The Host NE.

param_type varchar2 10 0 The type of provisioning parameter. The
following values include:

• H – Host parameters.
• HN – Host/nxx parameters.
• HU – Host/usoc parameters.
• HUN – Host/usoc/nxx parameters.
• HF – Host/feature parameters.
• HP – Host pic conversion.
• HUL – Host/usoc/lcc parameters.
• HUNL – Host/usoc/nxx/lcc parameters.
• RCCF – Remote activation CCF's for a

5ESS host.
• NACT – No activate CCF's for a 5ESS

host.

usoc varchar2 10 1 The recent change Universal Service Order
Code (USOC).

nxx char 3 1 The NXX (Network Number Exchange).

lcc varchar2 10 1 The line class code.

feat varchar2 20 1 Switch feature name.

param_lbl varchar2 80 0 Parameter label.

param_vlu varchar2 30 1 Parameter value.

Table indexes:

host_clli, param_type, usoc, nxx, lcc, feat, param_lbl

tbl_ne_opt_vlu
This static table is used by the State Tables. It contains the option string to be sent to the
Network Element.

Table 2-100 ttbl_ne_opt_vlu Columns

Column_name Type Length Nulls Description

tech char 255 0 Technology of the Host Network Element.

sftwr_load char 16 0 Software Version of the Host Network Element

asdl_cmd char 80 0 The ASDL Command for which the option
string needs to be sent to the NE.

mask_lbl char 10 1 A masking label for the option format

opt_vlu char 80 1 Option Value

ne_opt_vlu char 80 0 The option value for the particular NE Type and
Software Load.

Chapter 2
NEP database

2-103

Table indexes:

tech, sftwr_load, asdl_cmd, mask_lbl, opt_vlu

tbl_unid
This dynamic table provides a method of generating a serial field. You can manage
unique IDs required by other tables. It is present in most user-created databases.

Table 2-101 tbl_unid Columns

Column_name Type Length Nulls Description

unid_type varchar2 12 0 A unique code identifying the UNID type.
This allows many different UNID values for
different types of UNID.

unid number 38 0 The UNID value for the type.

pad1 char 255 0 Padding to make a table row occupy a
page. This is to reduce concurrence on the
database data page by different database
processes.

pad2 char 255 0 Same as pad1.

pad3 char 255 0 Same as pad1.

pad4 char 255 0 Same as pad1.

Table indexes:

unid_type

tbl_valid_len
This static table contains a set of line equipment numbers that ASAP accesses in a
non-production environment. This table is checked from the CHECK_DATA Interpreter
ASDL when the ASAP_SYS environment variable does not equal PROD, and the
Interpreter is not in loopback mode.

The CHECK_DATA State Table program and tbl_valid_len database table are included
as samples so that you may create your own data checking tables.

tbl_valid_len is used to safeguard line equipment numbers (other than those listed in
this table) when system testing is being conducted on a production NE. If validation is
requested and a particular LEN is not found in this check table, then the order is failed.

Table 2-102 tbl_valid_len Columns

Column_name Type Length Nulls Description

mcli char 80 0 Remote NE of the LEN.

len char 7 0 Valid testing Line Equipment Number (LEN).

Table indexes:

mcli, len

Chapter 2
NEP database

2-104

tbl_valid_nxx_line
This static table contains a set of telephone numbers that the ASAP system accesses in a
non-production environment. This is a search table for the CHECK_DATA Interpreter State
Table program when the ASAP_SYS environment variable does not equal PROD and the
Interpreter is not in loopback mode.

The CHECK_DATA State Table program and tbl_valid_nxx_line database table are included
as samples so that you may create your own data checking tables.

This table is to safeguard telephone numbers (other than those listed in this table) when
system testing is being conducted on a production NE. If validation is requested and a
particular DN is not found in this check table, the ASDL is failed.

Table 2-103 tbl_valid_nxx_line Columns

Column_name Type Length Nulls Description

nxx char 3 0 Valid test NXX.

line char 4 0 Valid test line.

Table indexes:

nxx, line

Admin database
This section describes the Admin database tables.

In addition to the user-created database tables described in the following section, the Admin
database contains a WLStore table that is populated and managed by WebLogic Server to
maintain persistence in their JMS destinations. It is recommended that you manually clean
this tables during development if you want to start with a fresh environment. Otherwise, old
undelivered messages occupy the queues and may cause problems when trying to debug or
test. For production environments, you should design applications to handle undelivered
messages. For instance, you can configure an error destination to use if a message fails to
be delivered after a configurable number of attempts.

For more information on either of these two tables, refer to WebLogic Server documentation.

User-created database tables
Following is a list of user-created database tables.

tbl_asap_sarm
Defines the relationship between which Admin servers monitor which type of SARM servers.

Table 2-104 tbl_asap_sarm Columns

Column_name Type Length Nulls Description

adm_svr char 8 0 Name of the Admin server.

Chapter 2
Admin database

2-105

Table 2-104 (Cont.) tbl_asap_sarm Columns

Column_name Type Length Nulls Description

sarm char 8 0 Name of the SARM server.

Table indexes:

adm_svr, sarm

tbl_oca_svr
This table provides details about the number of active sessions maintained by the old
CORBA SRP Server, if the load balancing feature is enabled. The new OCA SRP does
not use this table.

Table 2-105 tbl_oca_svr Columns

Column_name Type Length Nulls Description

svr_name Varchar2 8 0 Name of the CORBA SRP Server.

host_name Varchar2 80 0 The name of the host on which the CORBA
SRP server application resides.

session_no Number 38 0 The number of sessions that the CORBA
SRP Server is holding.

status Varchar2 16 0 Status of the sessions.

tbl_perf_asdl
Contains ASDL performance information retrieved from the SARM server in the ASAP
system which continually maintains the data in memory. The frequency of the retrieval
is controlled by the POLL_TIMER_ASDL configuration parameter.

You can view CSDL performance information using the asap_utils function: 22. Admin
- ASDL Stats. For more information, refer to the ASAP Server Configuration Guide.

Table 2-106 tbl_perf_asdl Columns

Column_name Type Length Nulls Description

sarm char 8 0 Name of the SARM server providing the
data.

date_recvd date - 0 The date and time stamp of the record.

time_elapse float 8 0 Number of seconds since last performance
data was received.

record_type char 1 0 Type of record recorded. Possible values
include:

• P – Poll record
• S – Summary record

asdl_cmd char 80 1 The ASDL command.

num_execute number 4 0 Number of ASDL executions.

Chapter 2
Admin database

2-106

Table 2-106 (Cont.) tbl_perf_asdl Columns

Column_name Type Length Nulls Description

num_failed number 4 0 Number of ASDL failures.

num_complete number 4 0 Number of successful ASDL completions.

parm_avg float 8 0 Average number of parameters on the
ASDL.

parm_min number 4 0 Minimum number of parameters on the
ASDL.

parm_max number 4 0 Maximum number of parameters on the
ASDL.

num_rollback number 4 0 Number of times the ASDL was rolled back.

num_soft_err number 4 0 Number of soft errors on the ASDL.

num_retries number 4 0 Number of times the ASDL was executed.

num_skipped number 4 0 Number of times the ASDL was skipped in
processing.

comp_tm_avg number 8 0 The average time in seconds for the ASDL
to complete.

comp_tm_min float 8 0 The minimum time in seconds for the ASDL
to complete.

comp_tm_max float 8 0 The maximum time in seconds for the ASDL
to complete.

parm_count number 4 1 Number of ASDL parameters.

comp_tm float 8 1 Total ASDL processing time in seconds.

Table indexes:

sarm, asdl_cmd, date_recvd, record_type

tbl_perf_csdl
Contains CSDL performance information retrieved from the SARM server in the ASAP
system which continually maintains the data in memory. The frequency of the retrieval is
controlled by the POLL_TIMER_CSDL configuration parameter.

You can view CSDL performance information using the asap_utils function: 21. Admin -
CSDL Stats. For more information on asap_utils, refer to the ASAP Server Configuration
Guide.

Table 2-107 tbl_perf_csdl Columns

Column_name Type Length Nulls Description

sarm char 8 0 Name of the SARM server providing the data.

date_recvd date - 0 The date and time stamp of the record.

time_elapse float 8 0 Number of seconds since last performance
data was received.

Chapter 2
Admin database

2-107

Table 2-107 (Cont.) tbl_perf_csdl Columns

Column_name Type Length Nulls Description

record_type char 1 0 Type of record recorded. Possible values
include:

• P – Poll record
• S – Summary record

csdl_cmd char 80 1 The CSDL command.

num_received number 4 0 Number of times the CSDL was received by the
SARM.

num_complete number 4 0 Number of successful CSDL completions.

num_failed number 4 0 Number of CSDL failures.

comp_tm_avg float 8 0 Average completion time in seconds of the
CSDL.

comp_tm_min float 8 0 Minimum completion time in seconds of the
CSDL.

comp_tm_max float 8 0 Maximum completion time in seconds of the
CSDL.

num_asdl_comp number 4 0 Number of completed ASDLs on the CSDL.

num_asdl_skip number 4 0 Number of skipped ASDLs on the CSDL.

parms_avg float 8 0 Average number of CSDL parameters.

parms_min number 4 0 Minimum number of CSDL parameters.

parms_max number 4 0 Maximum number of CSDL parameters.

asdl_comp_avg float 8 0 Average number of completed ASDLs on the
CSDL.

asdl_comp_min number 4 0 Minimum number of completed ASDLs on the
CSDL.

asdl_comp_max number 4 0 Maximum number of completed ASDLs on the
CSDL.

asdl_skip_avg float 8 0 Average number of ASDLs skipped on the
CSDL.

asdl_skip_min number 4 0 Minimum number of ASDLs skipped on the
CSDL.

asdl_skip_max number 4 0 Total number of ASDLs skipped on the CSDL.

asdl_comp_tot number 4 1 Total ASDL Processing time.

asdl_comp_count number 4 1 Number of ASDLs completed.

asdl_skip_count number 4 1 Number of ASDLs skipped.

comp_tm_tot number 4 1 Total ASDL processing time.

parm_count_tot number 4 1 Total number of CSDL parameters.

Table indexes:

sarm, csdl_cmd, date_recvd, record_type

Chapter 2
Admin database

2-108

tbl_perf_ne
Contains NE performance information retrieved from the SARM server in the ASAP system
which continually maintains the data in memory. The frequency of the retrieval is controlled by
the POLL_TIMER_NE configuration parameter.

You can view NE performance information using the asap_utils function: 23. Admin - NE
Stats. For more information on asap_utils, refer to the ASAP Server Configuration Guide.

Table 2-108 tbl_perf_ne Columns

Column_name Type Length Nulls Description

sarm char 8 0 Name of the SARM server providing the data.

date_recvd date - 0 The date and time stamp of the record.

time_elapse float 8 0 Number of seconds since the last performance
data was received.

record_type char 1 0 Type of record. Possible values include:

• P – Poll record
• S – Summary record

nep char 8 1 The NEP server.

host_clli varchar2 80 1 The Host NE.

tech char 16 1 The technology of the Host NE.

sftwr_load char 16 1 The software load of the Host NE.

state char 10 1 The Host NE state.

num_estimate number 4 0 The ASDL estimate for the NE.

num_pending number 4 0 Number of ASDLs in the Pending queue to the
Host NE.

num_in_prog number 4 0 Number of ASDLs in the In Progress queue to
the Host NE.

num_connect number 4 0 Number of connections to the Host NE.

num_retry number 4 0 Number of ASDLs in the Retry queue to the
Host NE.

time_tot_avail float 8 0 Total time in seconds the NE is available.

time_curr_avail float 8 0 Current time in seconds the NE has been
available.

num_asdl_comp number 4 0 Number of ASDLs completed to the Host NE.

num_asdl_fail number 4 0 Number of ASDLs failed to the Host NE.

num_asdl_retry number 4 0 Number of ASDLs retried to the Host NE.

num_asdl_recvd number 4 0 Number of ASDLs received for the Host NE.

num_asdl_xfer number 4 0 Number of ASDLs transferred.

perc_ne_usage float 8 0 Percentage of time that ASAP is provisioning
the Host NE while it has open connections to
the Host NE.

asdl_comp_tm_av
g

float 8 0 Average time in seconds required to complete
an ASDL to the Host NE.

Chapter 2
Admin database

2-109

Table 2-108 (Cont.) tbl_perf_ne Columns

Column_name Type Length Nulls Description

asdl_comp_tm_mi
n

float 8 0 Minimum time in seconds required to complete
an ASDL to the Host NE.

asdl_comp_tm_m
ax

float 8 0 Maximum time in seconds required to complete
an ASDL to the Host NE.

asdl_q_avg float 8 0 Average ASDL Pending queue size to the Host
NE.

asdl_q_min number 4 0 Minimum ASDL Pending queue size to the Host
NE.

asdl_q_max number 4 0 Maximum ASDL Pending queue size to the
Host NE.

pend_q_avg float 8 0 Average number of ASDLs in the SARM.

pend_q_max number 4 0 Maximum number of ASDLs in the SARM.

time_tot_maint float 8 0 Total time in seconds the Host NE is in
Maintenance mode.

time_curr_maint float 8 0 Current time in seconds that the NE is in
Maintenance mode.

comp_tm_tot float 8 1 Total ASDL processing time.

q_time_tot float 8 1 Total ASDL queue time.

tot_pq_sz number 4 1 Total Pending queue size.

pq_samples number 4 1 Number of Pending queue samples.

Table indexes:

sarm, host_clli, date_recvd, record_type

tbl_perf_ne_asdl
Collects the frequency of exit conditions for the various NEs and ASDLs. The
frequency of the retrieval is controlled by the POLL_TIMER_NE_ASDL configuration
parameter.

You can view pseudo real-time statistical information related to SARM NE / ASDL
processing using the asap_utils function: 24. Admin - NE/ASDL Stats. For more
information on asap_utils, refer to the ASAP Server Configuration Guide.

Table 2-109 tbl_perf_ne_asdl Columns

Column_name Type Length Nulls Description

sarm char 8 0 Name of the SARM server providing the
data.

date_recvd date - 0 The date and time stamp of the record.

time_elapse float 8 0 Number of seconds since the last
performance data was received.

Chapter 2
Admin database

2-110

Table 2-109 (Cont.) tbl_perf_ne_asdl Columns

Column_name Type Length Nulls Description

record_type char 1 0 Type of record. Possible values include:

• P – Poll record
• S – Summary record

host_clli varchar2 80 1 The host NE where the ASDL command is
routed by the SARM.

Although one host NE is specified on the
CSDL, different ASDLs on the CSDL is
routed to different Host NEs based on the
ASDL command.

asdl_cmd char 80 1 The ASDL command.

user_exit_type char 20 1 The user-defined ASDL exit type.

counter number 4 0 The number of times the user_exit_type
occurred.

Table indexes:

sarm, host_clli, asdl_cmd, user_exit_type, date_recvd, record_type

tbl_perf_order
Contains work order performance information retrieved from the SARM server in the ASAP
system which continually maintains the data in memory. The frequency of the retrieval is
controlled by the POLL_TIMER_ORDER configuration parameter.

You can view work order performance information using the asap_utils function: 20. Admin -
WO Stats. For more information on asap_utils, refer to the ASAP Server Configuration Guide.

Table 2-110 tbl_perf_order Columns

Column_name Type Length Nulls Description

sarm char 8 0 Name of the SARM server providing data.

date_recvd date - 0 The date and time stamp of the record.

time_elapse float 8 0 Number of seconds since the last performance
data was received.

record_type char 1 0 Type of record recorded. Possible values
include:

• P – Poll record
• S – Summary record

org_unit char 8 1 Organization unit associated with the work
order.

ord_type char 1 1 Work order type.

num_recorded number 4 0 Number of work orders recorded in the SARM.

num_cancelled number 4 0 Number of cancelled work orders.

num_received number 4 0 Number of received work orders.

num_future number 4 0 Number of future-dated work orders.

Chapter 2
Admin database

2-111

Table 2-110 (Cont.) tbl_perf_order Columns

Column_name Type Length Nulls Description

num_immed_fail number 4 0 Number of immediate failed work orders.

num_immed_com
p

number 4 0 Number of immediate completed work orders.

num_tran_err number 4 0 Number of translation errors received.

num_timeout number 4 0 Number of timed out work orders.

num_rollback number 4 0 Number of rolled back work orders.

num_update number 4 0 Number of work orders updated after the
original was sent.

num_collision number 4 0 Number of work order collisions.

num_route_err number 4 0 Number of work orders that have routing errors.

global_p_avg float 8 0 Average number of global parameters on the
work order.

global_p_min number 4 0 Minimum number of global parameters on the
work order.

global_p_max number 4 0 Maximum number of global parameters on the
work order.

latency_avg float 8 0 Average work order replication latency in
seconds.

latency_min number 4 0 Minimum work order replication latency in
seconds.

latency_max number 4 0 Maximum work order replication latency in
seconds.

num_fut_fail number 4 0 The number of future-dated work orders that
have failed.

num_fut_comp number 4 0 The number of future-dated work orders that
have completed.

latency_tot number 4 1 Total work order replication latency in seconds.

latency_count number 4 1 Number of work order replication latencies that
have occurred.

global_p_tot number 4 1 Total number of global parameters on all work
orders.

global_p_count number 4 1 Total number of global parameters that have
occurred.

Table indexes:

sarm, org_unit, ord_type, date_recvd, record_type

tbl_aims_msg_convert
This table stores translations of all localizable ASAP strings to the destination
languages.

Chapter 2
Admin database

2-112

Table 2-111 tbl_aims_msg_convert Columns

Column_name Type Length Nulls Description

lang_cd varchar2 32 0 The language code.

msg_id varchar2 64 0 Unique message identifier to identify the
messages referenced in other tables.

type varchar2 16 0 Specifies the type of message, such as CSDL
description, ASDL description, etc.

message varchar2 255 0 The message test.

var_description varchar2 40 1 Description of the message, for example, the
substitutable fields within it.

tbl_aims_preference
This dynamic table stores preferences in the OCA client.

Table 2-112 tbl_aims_preference Columns

Column_name Type Length Nulls Description

user_id varchar2 30 0 User ID.

name varchar2 100 0 Name of the preference.

value varchar2 200 1 Value for the preference. You are responsible to
convert the preference to a string.

Table indexes:

user_id, name

tbl_aims_map_acl (Not used)
Not used.

tbl_aims_audit_log (Not used)
Not used.

tbl_aims_component
Not used.

tbl_aims_function
Not used.

tbl_aims_operation
Not used.

Chapter 2
Admin database

2-113

tbl_aims_param
Not used.

tbl_aims_rpc
Not used.

tbl_aims_rpc_defn
Not used.

tbl_aims_rpc_dest
Not used.

tbl_aims_rpc_dest_defn
Not used

tbl_aims_rpc_param
Not used.

tbl_aims_rpc_param_defn
Not used.

tbl_aims_rpc_param_type
Not used.

tbl_aims_template
Not used.

C++ SRP API emulator database
SRP emulator is used for performance benchmarking, system testing, and the
prototyping of new SRPs. The SRP emulator is a generic SRP that submits work
orders to the SARM. The SRP emulator makes use of the SRP, Interpreter, Server
Application, and Common API libraries.

Chapter 2
C++ SRP API emulator database

2-114

Figure 2-2 C++ SRP API Emulator Database Tables

Note:

If you shut down and restart the C++ SRP API Emulator when USE_RAW_WO_ID
is set to 0, it may result in a unique work order name containing a recurring prefix.

User-created database tables
Following is a list of user-created database tables.

tbl_aux_wo_prop
tbl_aux_wo_prop is a class A dynamic table that serves as an extension to tbl_wrk_ord.
tbl_aux_wo_prop was designed to accommodate additional pre-defined work order properties
to supplement the ones contained in tbl_wrk_ord. Currently, the only extended property
supported in tbl_aux_wo_prop is WO_SECURITY_PROP. This property is maintained for
each work order. If WO_SECURITY_PROP = 0, then work order information is eligible to be
output to diagnostic files. If WO_SECURITY_PROP = 1, then no work order information is
written to diagnostic files.

Refer to the ASAP System Administrator's Guide for more information on secure work order
information.

When the work orders in the tbl_wrk_ord are deleted, the corresponding records in
tbl_aux_wo_prop are deleted. This table can be purged using function SSP_db_admin. For
guidelines and instructions on database purging, refer to the ASAP System Administrator's
Guide.

Chapter 2
C++ SRP API emulator database

2-115

Table 2-113 tbl_aux_wo_prop

Column Name Type Length Nulls Description

wo_id varchar2 80 0 The ID of the work order property.

name varchar2 80 0 The name of the work order property.

value varchar2 255 1 The value given to the work order property.

Table indexes:

Unique

wo_id, name

tbl_csdl
Used only in conjunction with the SRP Emulator.

This static table contains all CSDLs for each logical work order listed in the tbl_wo_def
table. Each logical work order can have one or more associated CSDLs.

Table 2-114 tbl_csdl

Column_name Type Length Nulls Description

wo_def_id char 80 0 Unique ID of the logical work order
associated with the CSDL.

csdl_seq_no number 38 0 Sequence number of the CSDL within the
logical work order.

csdl_cmd char 80 0 The CSDL command.

csdl_st number 38 0 Initial status of the CSDL that gets
transmitted to the SARM along with the rest
of the work order details.

Possible values include:

• (50) ASAP_CSDL_INITIAL – CSDL
ready for provisioning.

• (51) ASAP_CSDL_HELD – CSDL is to
be held by the SARM, not provisioned.

• (52) ASAP_CSDL_MANUAL_TRAN –
CSDL is later manually translated by a
user.

• (53) ASAP_CSDL_TRAN_ERR – A
translation error has occurred on this
CSDL.

Values are defined in the header file
asap_core.h.

Table indexes:

Unique

wo_def_id, csdl_seq_no

Chapter 2
C++ SRP API emulator database

2-116

tbl_csdl_parm
This static table contains all CSDL parameters associated with a specific CSDL.

Table 2-115 tbl_csdl_parm

Column_name Type Length Nulls Description

wo_def_id char 80 0 The logical work order ID.

csdl_seq_no number 38 0 Sequence number of the CSDL within the
logical work order.

parm_seq_no number 38 0 Sequence number of the CSDL parameter
within the CSDL.

parm_lbl varchar2 80 0 CSDL parameter label; for example, DN, EN,
etc.

parm_vlu varchar2 255 0 CSDL parameter value associated with the
parameter label.

Table indexes:

Unique

wo_def_id, csdl_seq_no, parm_seq_no

tbl_srp_event_status
This dynamic table contains work order status information.

Table 2-116 tbl_srp_event_status

Column_name Type Length Nulls Description

wo_def_id char 80 0 Logical work order ID.

event_name varchar2 50 0 Name of the event to test.

event_status number 38 0 The status that is assigned to the event.

• 1 - Succeed
• 0 - Fail

Table indexes:

Unique

wo_def_id, event_name

tbl_tst_rqst
This dynamic table contains all test requests sent to the C++ SRP API Emulator. It contains
test details to be used by the C++ SRP API Emulator, such as the test suite to use, type of
test to run, number of instances of each work order in the test suite, etc. A test request is an
instance of a test suite.

Chapter 2
C++ SRP API emulator database

2-117

Table 2-117 tbl_tst_rqst

Column_name Type Length Nulls Description

tst_rqst_id number 38 0 Unique test request ID.

tst_suite_cd char 96 0 Test suite code that specifies which test suite
to use.

sync_test char 1 0 Specifies whether the test is synchronous,
for example, waiting for test completion, or
asynchronous.

Possible values are:

• Y – Synchronous test.
• N – Asynchronous test.

repeat_cnt number 38 0 Specifies how many instances are created of
each logical work order in the test suite and
runs stress tests of the system.

all_wos_sent char 1 0 A flag indicating whether all work orders
associated with the test request have been
sent to the SARM.

You can use this field to determine if the test
is complete, for example, if all_wos_sent =
“Y" and wo_cnt = wo_cmp_cnt, the test is
complete.

Possible values are:

• N – More orders are still to be sent to
the SARM.

• Y – All orders were sent to the SARM.

wo_cnt number 38 1 Number of work orders in the test request.

To be initialized to 0 by the user.

The C++ SRP API Emulator updates the
count as each work order is created and the
wo_cnt determines if the test is complete.

wo_cmp_cnt number 38 1 A count of the completed work orders in the
test. You must set this to 0.

The C++ SRP API Emulator updates the
count as each work order is completed and
determines if the test is complete.

tst_userid char 32 1 The ID of the user. This field is only for
diagnostic purposes.

Table indexes:

Unique

tst_rqst_id

tbl_tst_suite
You can use this static table to create test suite definitions. Each test suite has a list of
logical work orders associated with it. A test request is an instance of a test suite.

Chapter 2
C++ SRP API emulator database

2-118

Table 2-118 tbl_tst_suite

Column_name Type Length Nulls Description

tst_suite_cd char 96 0 Identifies a test suite. This column is a foreign
key in tst_rqst.

tst_suite_desc varchar2 255 1 A description of a test suite.

create_dt date - 0 Test suite creation date.

Table indexes:

Unique

tst_suite_cd

tbl_unid
Use this dynamic table to manage unique IDs required by other tables in this database. It is
present in most created databases and provides a method of generating a serial field.

Table 2-119 tbl_unid

Column_name Type Length Nulls Description

unid_type char 32 0 A unique code identifying the UNID type. This
allows many different UNID values for different
types of UNID.

unid number 38 0 The UNID value for that particular type.

pad1 char 255 0 Padding to make a table row occupy a database
page. This reduces concurrence on the
database data page by different database
processes.

pad2 char 255 0 Same as pad1.

pad3 char 255 0 Same as pad1.

pad4 char 255 0 Same as pad1.

Table indexes:

Unique

unid_type

tbl_usr_wo_prop
This table is used to dynamically configure a work order property. It consists of WO ID and
name/value pair for a user-defined work order property, and is used mainly for work order
queries. This table supports only string type user-defined work order properties (also known
as extended work order properties). Extended work order properties are only applicable to
the work order where they are defined.

Chapter 2
C++ SRP API emulator database

2-119

Table 2-120 tbl_usr_wo_prop

Column Name Type Length Nulls Description

wo_id varchar2 80 0 The ID of the work order property.

name varchar2 80 0 The name of the work order property.

value varchar2 255 1 The value given to the work order property.

Table indexes:

Unique

wo_id, name

tbl_wo_def
This static table contains all logical work orders in the C++ SRP API Emulator
database.

Table 2-121 tbl_wo_def

Column_name Type Length Nulls Description

wo_def_id char 80 0 Logical work order ID.

wo_def_desc varchar2 255 1 A description of the work order definition.

origin varchar2 64 0 The user who created the logical work order.

org_unit char 8 0 Organization Unit for the work order.

This is set to the C++ SRP API Emulator
Application server name.

srp_stat char 1 0 The SRP state of the logical work order.

You can use this field to determine the
operation field to transmit from the SRP to
the SARM on the wo_begin RPC.

You can find the field definitions in the local
header file, srp_emul.h.

priority char 1 0 The provisioning priority.

Possible values include:

• (1) ASAP_SRQ_HIGH_PRIO – High
priority.

• (5) ASAP_SRQ_NORMAL_PRIO –
Normal priority.

• (9) ASAP_SRQ_LOW_PRIO – Low
priority.

Values are defined in the header file
asap_core.h.

Chapter 2
C++ SRP API emulator database

2-120

Table 2-121 (Cont.) tbl_wo_def

Column_name Type Length Nulls Description

srq_type char 1 0 Service Request type. Possible values
include:

• (A) ASAP_ADD_SRQ – Addition of
service.

• (R) ASAP_REMOVE_SRQ – Removal
of service.

• (C) ASAP_CHANGE_SRQ – Change/
update of service.

• (Q) ASAP_QUERY_SRQ – Query only;
no provisioning to be performed.

Values are defined in the header file
asap_core.h.

userid varchar2 64 0 Specifies the user ID to be used for SARM
security authorization. This is required only if
the SARM security checking logic is
currently configured.

password char 30 0 Specifies the password to be used for SARM
security authorization.

asdl_timeout number 38 0 Specifies the ASDL time-out interval to be
used on the work order provided that the
configuration parameter ASDL_TIMEOUTS
is set to 1. If the value of the
ASDL_TIMEOUTS is zero (0), the ASDL
timeout feature is not used, regardless of the
asdl_timeout value.

This value is passed to the SARM in the
work order transaction to allow the
specification of a work order dependent
ASDL time-out interval.

parent_wo char 80 1 If set, the parent work order upon which this
work order is dependent. This work order will
not begin provisioning until the parent work
order has been completed.

Chapter 2
C++ SRP API emulator database

2-121

Table 2-121 (Cont.) tbl_wo_def

Column_name Type Length Nulls Description

wo_timeout number 38 1 If set, the work order time-out interval in
seconds to be used on the work order
instead of the system-wide SARM default
(specified by the configuration parameter
ORDER_TIMEOUT in ASAP.cfg).

The order timeout behavior is governed by
two parameters: the wo_timeout parameter
on the work order and the
ORDER_TIMEOUT configuration parameter
in ASAP.cfg.

If wo_timeout has a value greater than one,
it is used.

If wo_timeout has a value of zero or less
than zero, ORDER_TIMEOUT is used.

If wo_timeout has a value of zero or less
than zero and ORDER TIMEOUT has a
value of zero or less than zero, work orders
do not time out.

The work order/ASDL timer starts after the
work order has been submitted and the first
ASDL starts provisioning. This threshold can
be exceeded if, for example, the connection
to an NE is interrupted after the connection
has been established.

asdl_retry_num number 38 1 If set, the number of ASDL retries used on
the work order instead of the system-wide
SARM default.

asdl_retry_int number 38 1 If set, the time in seconds between retries of
an ASDL used on this work order instead of
the system-wide SARM default.

wo_rback char 1 1 Possible values:

• Y – Work order rolls back if it times out
or fails.

• N – Work order does not roll back.
If a value is not specified, the default is D.
This means that the rollback depends on the
CSDL parameter rollback_req. If
rollback_req is set for a CSDL, then the work
order rolls back when it times out or fails

propagate char 1 1 Reserved.

asdl_delay_fail char 1 1 If set, a flag specifying whether to treat hard
errors encountered on the work order as
delayed failures. The order then finishes
processing before failing. You can use this
field to override the behavior of the NEP
State Table.

delay_threshold number 38 1 If set, the number of ASDL delayed failures
given before failing a batch work order. This
permits the overriding of the system-wide
SARM default.

Chapter 2
C++ SRP API emulator database

2-122

Table 2-121 (Cont.) tbl_wo_def

Column_name Type Length Nulls Description

batch_group char 80 1 Batch group for the work order.

extsys_id varchar2 128 1 ID of the source of the work order (optional).

Table indexes:

wo_def_id

tbl_wo_list
This static table contains all logical work orders associated with each test suite listed in
tbl_tst_suite.

Table 2-122 tbl_wo_list

Column_name Type Length Nulls Description

tst_suite_cd char 96 0 The test suite code to which the logical work
order list belongs.

wo_list_seq_no number 38 0 Sequence number of the logical work order
within the test suite.

wo_def_id char 80 0 Logical work order ID.

delay number 38 0 The delay in seconds after the transmission of
the work order to the SARM. This allows the
specification of time intervals between different
work orders or copies of the same order.

operation number 38 0 The work order operation to be transmitted to
the SARM. Possible values include:

• (1) ASAP_CMD_WO_UPDATE – The work
order is either a new work order or an
update to an existing one.

• (2) ASAP_CMD_WO_CANCEL – The work
order is a cancellation request on an
existing work order.

• (3) ASAP_CMD_WO_TRAN_ERROR –
Indicates to the SARM that a translation
error occurred.

• (4) ASAP_CMD_WO_HELD – The work
order is to be held by the SARM until
released by either the originating system
with an update request or through the user
interface.

• (5) ASAP_CMD_WO_REVIEW – The work
order is to be held in a Reviewed state by
the SARM until released by either the
originating system with an update request
or through the user interface.

These values are defined in the header file
asap_core.h.

Chapter 2
C++ SRP API emulator database

2-123

Table 2-122 (Cont.) tbl_wo_list

Column_name Type Length Nulls Description

status char 1 0 The internal status of the work order to be
transmitted to the SARM. Possible values
include:

• (I) SRP_WO_INIT – Initial state work order.
• (H) SRP_WO_HELD – Held work order.
• (R) SRP_WO_REVIEW – Reviewed state

work order.
• (X) SRP_WO_CANCELLED – Cancelled

work order.
• (E) SRP_WO_TRAN_ERROR – Work order

with a translation error.
• (F) SRP_WO_FAIL – Failed work order.
• (C) SRP_WO_COMP – Completed work

order.

due_offset date - 0 The due date increment to be applied to the
work order when transmitting the work order to
the SARM.

parent_wo char 80 1 If set, the parent work order upon which the
work order is dependent. This work order will
not begin provisioning until the parent work
order has been completed.

batch_group char 80 1 Batch group for the work order.

extsys_id varchar2 128 1 Source of the work order (optional).

Table indexes:

tst_suite_cd, wo_list_seq_no

tbl_wrk_ord (user-created database table)

Note:

This table differs from the table of the same name that is located in the
SARM database. See "tbl_wrk_ord (SARM)."

This dynamic table contains instances of logical work orders that belong to a specific
test request listed in tbl_tst_rqst. A test request may have one or more work orders.

Table 2-123 tbl_wrk_ord (user-created database table)

Column_name Type Length Nulls Description

tst_rqst_id number 38 0 Unique ID of the test request to which the
work order belongs.

Chapter 2
C++ SRP API emulator database

2-124

Table 2-123 (Cont.) tbl_wrk_ord (user-created database table)

Column_name Type Length Nulls Description

wo_id char 80 0 Work order ID.

The numeric value is the same as wo_unid.

This can be useful if some conversion of the
work order ID format is required between
this database and the work order ID
transmitted to SARM.

wo_def_id char 80 0 Logical work order ID.

asap_stat char 1 0 Determines the operation field to transmit on
the wo_begin RPC from the SRP to the
SARM.

If HELD_ORDER_STAT (defined in
sarm_defs.h) is specified, the work order
transmits to the SARM and is held awaiting
operator intervention.

estimate number 38 0 The work order processing estimate
returned to the SRP by the SARM after the
work order has been transmitted.

revs_flag char 1 1 The revisions flag returned by the SARM on
the work order completion notification.

exceptions char 1 1 The exceptions flag returned by the SARM
on the work order completion notification.

Table indexes:

wo_id

tbl_wrk_ord_log
This dynamic table contains the information logged for each work order and provides a
history of the events that occurred to the work order.

Table 2-124 tbl_wrk_ord_log

Column_name Type Length Nulls Description

wo_id char 80 0 Identifies the work order.

event_dt date - 0 Date and time of the logged event.

asap_stat char 8 0 ASAP status of the work order at the time the
event occurred.

Possible values are detailed for asap_stat in
tbl_wo_list.

log_unid number 38 0 Unique ID of the log wo_log message.

log_msg varchar2 255 1 A description of the event.

Table indexes:

wo_id, log_unid

Chapter 2
C++ SRP API emulator database

2-125

tbl_wrk_ord_parm
This dynamic table contains work order parameters.

Table 2-125 tbl_wrk_ord_parm

Column_name Type Length Nulls Nulls

wo_id char 80 0 Unique work order ID to which the
parameters belong.

parm_grp varchar2 80 0 The parameter group associated with the
work order ID.

csdl_cmd char 80 0 The CSDL associated with the work order
parameters.

csdl_seq_no number 38 0 The sequence number of the CSDL within
the SRQ.

parm_lbl varchar2 80 0 Work order parameter label, for example
DN, LEN, etc.

parm_vlu varchar2 255 0 Work order parameter value associated with
the work order parameter label.

event_dt date - 0 Date and time of the logged event.

parm_identity number 20 0 Unique ID of the parameter. This is an
identity field that is automatically generated
by the RDBMS upon insertion.

Table indexes:

wo_id, parm_lbl, parm_grp, parm_identity

tbl_wrk_ord_rev
This dynamic table contains work order revision information.

Table 2-126 tbl_wrk_ord_rev

Column_name Type Length Nulls Description

wo_id char 80 0 Work order ID.

The numeric value is the same as wo_unid.

This is useful if some conversion of the work
order ID format is required between the
database and the work order ID transmitted
to the SARM.

flag char 1 0 The revisions flag that is set to (Y)es or (N)o.

csdl_cmd char 80 0 The CSDL associated with the work order
parameters.

parm_seq_no number 38 0 Sequence number of the CSDL parameter.

parm_lbl varchar2 80 0 Work order parameter label, for example
DN, LEN, etc.

Chapter 2
C++ SRP API emulator database

2-126

Table 2-126 (Cont.) tbl_wrk_ord_rev

Column_name Type Length Nulls Description

parm_vlu varchar2 255 0 CSDL parameter value associated with the
parameter label.

parm_desc varchar2 80 1 Description of the parameter.

Table indexes:

wo_id, csdl_cmd, parm_seq_no

Chapter 2
C++ SRP API emulator database

2-127

3
Shared Libraries

This chapter contains information on the ASAP libraries that are shared by the provisioning
(upstream) interface and the downstream interface. This chapter consists of the following
sections:

• Common library interface

• Server library interface

• Client library interface

• Interpreter library

• Control configuration interface

• Object oriented (OO) common library

• ASC thread library

• XML JMX interface

• ASAP daemon API

Common library interface
This section describes the structures (data types) and functions that are common to both
client and server applications. These structures and functions reside in either libasc, or both
libclient and libcontrol. If a function is declared in both libclient and libcontrol, its behavior will
depend on the implementation specifics in each library.

For example, the API function, ASC_sleep(), is common to both clients and servers, but it
works differently in each case. In clients, the function puts the entire process to sleep, but in
servers, it only puts the invoking thread to sleep.

The following subsections provide explanations of the variables, prefixes, and concepts used
in the functions and data types contained in this section.

Global variables
The following list contains the global variables used in the Common Library Interface.

• ProgramName: The current application UNIX executable.

• ApplName: The logical name of the current application. To obtain the real application
name, in other words, the name that is known to the network through the Interfaces file,
refer to ASAP.cfg.

• ControlSrvName: The logical name of the Control Server monitoring this application.

• ApplUserId: The user ID to log in to the database associated with the application.

• ApplPassword: The password for the application.

3-1

Open client library API functions
Structures and functions that begin with the following prefixes are part of the Open
Client Library:

• CM_: Data types and functions common to both clients and servers.

• CP_: Data types and functions related to the CLIENT_PROC structure.

• CPP_: Data types and functions related to the maintenance of pools of
CLIENT_PROC structures used in application servers. This prefix is not used in
the common API.

Structures and functions included in the Open Client category are:

• ASC_cpalloc()

• ASC_cpcheck()

• ASC_cpclose()

• ASC_cpfree()

• ASC_cpopen()

• ASC_cprpcexec()

• CLIENT_HANDLER

• CM_RPC

• CM_RPC_PARAM

Oracle Functions
Functions that begin with ASC_oci are part of the Oracle Library. Functions included in
this category are:

• ASC_lda_to_oci8

• ASC_oci8_to_lda

• ASC_ocican_cursor

• ASC_ociclose

• ASC_ociclose_cursor

• ASC_ocicreate_cmd

• ASC_ocicreate_list

• ASC_ocidestroy_list

• ASC_ocifetch

• ASC_ociopen

• ASC_ociopen_cursor

• ASC_ociparse

• ASC_ocistatus

Chapter 3
Common library interface

3-2

I/O management
The structures and functions included in this category are:

• ASC_accept

• ASC_close

• ASC_connect

• ASC_disconnect

• ASC_get_dest_server

• ASC_getc

• ASC_listen

• ASC_open

• ASC_putc

• ASC_read

• ASC_set_fd_blocking

• ASC_set_fd_nonblocking

• ASC_reset_file_status

• ASC_write

Event notification and diagnostic functions
ASAP provides event notification diagnostic functions that applications can use. These
functions are described in this chapter.

The system events that may be generated by the ASAP core are described in the “ASAP
Core System Events and Alarms" section, which explains how to configure these events to
generate system alarms where appropriate.

Structures and functions included in this category are:

• ASC_diag()

• ASC_diag_format

• ASC_diag_on

• ASC_event()

• ASC_event_initialize

• ASC_hex_dump()

• ASC_hex_dump_to_file()

• DIAG_LEVEL

Application configuration determination functions
ASAP includes a facility to configure the entire system and each application separately, by
means of name\value parameter pairs in ASAP.cfg. Such parameters are termed
configuration parameters within ASAP.

Chapter 3
Common library interface

3-3

You can retrieve configuration parameter values using ASC_get_config_param().

Memory management functions
The memory management functions are available to both clients and servers within
the ASAP environment. Such functions must be used by all clients and servers.

If the application's diagnostic level is KERNEL, these functions log any memory
allocation and deallocation to the application's diagnostic log file. Such KERNEL level
diagnostics should only be used in the ASAP API.

Structures and functions included in this category are:

• ASC_alloc()

• ASC_bmove()

• ASC_bzero

• ASC_free()

• ASC_realloc()

Performance parameter management
Several performance parameter management functions can be used within ASAP.

Performance parameters are maintained in memory. For application servers, you can
retrieve performance parameters from the server with the ASC_dump_param
administrative RPC to the particular server.

You may also determine whether you require such performance parameters to be
logged to the Control database. If so, set the appropriate configuration parameter for
the ASAP Control server.

Self-balancing trees
The self-balancing tree functions are used to manage high-performance self-balancing
trees.

Structures and functions included in this category are:

• ASC_create_SBT()

• ASC_delete_element_SBT()

• ASC_delete_index_SBT()

• ASC_destroy_SBT()

• ASC_find_first_SBT()

• ASC_find_free_SBT()

• ASC_find_index_SBT()

• ASC_find_init_SBT()

• ASC_find_next_SBT()

• ASC_insert_element_SBT()

• ASC_walk_SBT()

Chapter 3
Common library interface

3-4

Date conversion functions
Date conversion functions include the following structures and functions:

• ASC_cur_dts()

• ASC_cur_tm()

• ASC_gettimeofday

• ASC_sec_to_dBdts()

• TODAY()

Miscellaneous functions
The following miscellaneous functions are common to both clients and servers:

• ASC_rstrcmp()

• ASC_sleep()

• ASC_srv_sleep

• get_name_value()

Self-balancing tree examples
This section lists the self-balancing tree examples.

Comparison function
This function defines the logical ordering of elements in the tree.

Syntax:

int (*compare_fnt)(void *, void *)

Arguments:

• First: A void pointer to the first element.

• Second: A void pointer to the second element.

Return values:

• -1: The first element is less than the second element.

• 0: The first element is equal to the second element.

• 1: The first element is greater than the second element.

Example:

int compare(void *e1, void *e2)
{

int c1=*(int *)e1;
int c2=*(int *)e2;
return ((c1==c2)?0:((c1<c2)?-1:1))

}

Chapter 3
Common library interface

3-5

Delete function
The self-balancing tree element can contain complex data structures. This function
deletes an element from the tree and frees the memory used by that element.

Syntax:

int (*delete_fnt)(void *)

Arguments:

• First: A void pointer to the element to be deleted.

Example:

int delete(void *e1)
{

ASC_free(e1)

}

Action function
This function defines an action that will occur at each element of the tree.

Syntax:

int (*action_fnt)(void **, void *, int, int)

Arguments:

• First: A void pointer to the element to be processed.

• Second: A void pointer to the data argument passed to the ASC_walk_SBT
function.

• Third: An integer defining the level that the element is on. The root element(s) are
on level zero.

• Fourth: An integer defining the order which the element was scanned. Possible
values for the fourth argument are:

– INORDER: Scans all elements in the node then proceeds to the next node.

– PREORDER: Scans the element and then proceeds to the next node.

– POSTORDER: Proceeds to the next node and scans the element on the way
back.

Return values:

• 0: If you need to continue to walk the rest of the tree.

• 1: If you are finished with the walk.

Example:

int action(void **e1, void *data, int level, int order)
{
if(order==PREORDER)

Chapter 3
Common library interface

3-6

{
printf("Found(%d) on level(%d) in order(%d) with data(%d)\n",
**(int **)e1, level, order, *(int *)data);
}

return 0;
}

Condition function
Defines the search criteria for the find and delete functions.

Syntax:

int (*condition_fnt)(void *, void *)

Arguments:

• First: A void pointer to the element to determine if it meets the search criteria.

• Second: A void pointer to the data argument passed to the ASC_walk_SBT function.

Return values:

• 0: The element does not meet the search criteria.

• 1: The element meets the search criteria.

Example:

int condition(void *e1, void *data)
{

return(*(int *)e1==*(int *)data)

}

Inline functions
The following list identifies the macros in the Common Library Interface.

• ASC_GET_CMD (CLIENT_PROC *cp): Returns a pointer to the command structure for
the connection associated with the client process (for instance, CLIENT_PROC *cp).

• ASC_GET_NAME_SBT(SBT *sbt): Name of SBT (given when created) – used for mutex
creation names, etc.

• ASC_GET_SERVER(CLIENT_PROC *cp): Returns the name of the server associated
with the client process.

• ASC_GET_USERDATA_SBT(SBT *sbt): Void pointer on SBT. This is used for USER data
storage common to SBT.

• ASC_IS_EMPTY_SBT(SBT *sbt): Possible values:

– 1 – SBT is empty

– 0 – SBT is not empty

• ASC_IS_OPEN (CLIENT_PROC *cp): Boolean value. Indicates whether the connection
is open to the server.

• ASC_NUM_ELEMENTS_SBT(SBT *sbt): Number of elements in SBT.

Chapter 3
Common library interface

3-7

• TODAY(): The current day since 1970. This macro can be used to determine if the
day has changed since last invocation. Used in diagnostic file logging, for
instance.

• CM_RPC_PARAM(pinfo): The number of CM_RPC_PARAM records in the table
represented by pinfo.

Common library interface functions
This section describes the functions in the Common Interface Library. The functions in
this section are listed in alphabetical order.

appl_initialize
This function is the entry point for both ASAP client and server applications. It is called
by the relevant API and supplies application-specific logic to the application.

See also appl_cleanup() in client applications.

For more information, see "Multithreaded procedural server initialization."

Syntax:

CS_RETCODE appl_initialize(int argc, char *argv[])

Arguments:

• argc: Number of arguments passed to ASAP on startup.

• argv: Array of character pointers to the arguments themselves.

Return values:

• CS_SUCCEED: Application initialization was successful.

• CS_FAIL: Application initialization failed.

ASC_accept
This function invokes ASC_poll() to determine whether a socket is readable and
invokes accept() to accept the next client connection request. The file I/O status of the
client socket connection is set to be blocking/nonblocking.

The function returns the new socket stream ID associated with the client connection. It
is the caller's responsibility to set I/O control options on the socket file descriptor
associated with the client connection.

Syntax:

CS_INT ASC_accept (CS_SMALLINT sa_family, CS_INT listen_sockfd, CS_FLOAT
accept_timeout)

Arguments:

• sa_family: Specifies address family.

Valid values are: UNIX_ADDR_FAMILY and INET_ADDR_FAMILY
(IMPLINK_ADDR_FAMILY and XEROX_NS_ADDR_FAMILY are not supported.)

• listen_sockfd: Specifies the listener socket file descriptor ID.

Chapter 3
Common library interface

3-8

• accept_timeout: Specifies the timeout value of the client connect request.

Return values:

• clt_sockfd: Socket file descriptor ID for the newly accepted connection.

ASC_alloc
This function allocates the memory on the heap and null pads the allocated memory. If it is
unable to do so, it issues a diagnostic message and terminates the server.

This function then initializes the allocated memory before returning a pointer to the
appropriate memory segment.

See also ASC_free(), ASC_diag().

Syntax:

VOIDPTR ASC_alloc(CS_INT size)

Arguments:

• size: The size, in bytes, of the memory segment to be allocated.

Return values:

• ptr: Void pointer to the allocated initialized memory segment.

ASC_bmove
This function performs a binary data transfer from the source location to the target location in
both clients and servers.

See also srv_bmove(), memcpy().

Syntax:

void ASC_bmove(CS_VOID *source, CS_VOID *target, CS_INT len)

Arguments:

• source: Pointer to the source buffer location.

• target: Pointer to the target location.

• len: Length of the buffer in bytes.

ASC_bzero
This function offers a common interface to null pad memory areas to both servers and clients.

Syntax:

void ASC_bzero(CS_VOID *ptr, CS_INT len)

Arguments:

• ptr: Pointer to the memory to be null padded.

• len: Length to be padded.

Chapter 3
Common library interface

3-9

ASC_close
This function allows threads to close a UNIX device.

Syntax:

CS_INT ASC_close(CS_INT dev_fd)

Arguments:

• dev_fd: UNIX file descriptor being closed.

Return values:

• 0: Device closed successfully.

• -1: Device did not close successfully.

ASC_connect
This function provides server threads and application clients with the same
functionality as the UNIX connect function.

Syntax:

CS_INT ASC_connect(CS_CHAR socket_client, CS_SMALLINT sa_family, CS_CHAR
*host_name, CS_CHAR *host_ipaddr, CS_USHORT port)

Arguments:

• socket_client: Specifies whether to connect as socket client or socket server.
Valid values are SOCKET_CLIENT, SOCKET_SERVER.

• sa_family: The address family. Valid values are UNIX_ADDR_FAMILY and
INET_ADDR_FAMILY (IMPLINK_ADDR_FAMILY and
XEROX_NS_ADDR_FAMILY are currently unsupported.)

• host_name: The host name. If connecting to a UNIX domain socket, this
argument specifies socket file path.

• host_ipaddr: The host IP address.

• port: The service port number.

Return values:

• 0: Connection to host was successful.

• -1: Connection failed.

ASC_convert_msg
This function applies to the correct variable substitution into a specified international
message. The message strings are standard C/C++ format strings and are stored in
the SARM's database table “tbl_msg_convert". Because the calling function may
accept a variable number of arguments (ellipsis notation “..."), there are two methods
of accepting data into this function. If the calling function accepts a variable number of
arguments, then it must create a va_list and populate it correctly prior to calling this
function. If the calling function does not accept a variable number of arguments, then it

Chapter 3
Common library interface

3-10

simply passes NULL to this function and makes use of the ellipsis provided in this function.

See also ASC_convert_msg_user, ASC_imsg_types(), ASC_imsg_types_user(),
ASC_load_msg_tbl().

Syntax:

CS_BOOL ASC_convert_msg(CS_CHAR *mbuf, CS_INT bsize, long msg_id, va_list ap, ...)

Arguments:

• mbuf: Message buffer (of at least size ASC_IMBUF_L) to populate.

• bsize: Size of the buffer (ASC_IMBUF_L is recommended as the minimum size) (input)
long.

• msg_id ID of the message to post (input).

• va_list_ap: Variable event parameters for the message (NULL or nothing is sufficient for
the messages of type ASC_IMES_NOSUBST_T) (input).

Return values:

• CS_TRUE: The function was successfully executed.

• CS_FALSE: An error occurred.

Example:

void sample_with_va_list(CS_INT msg_id, ...)
{

/*
** The dot dot dot above will be processed and
passed as argument into ASC_convert_msg.
** As developers, we do not know how many
arguments are passed.
*/
va_list ap;
CS_CHAR receive_buffer[MAX_BUFFER_SIZE];
va_start(ap,msg_id);
ASC_msg_convert(receive_buffer , MAX_BUFFER_SIZE ,
msg_id , ap);
va_end(ap);
ASC_diag(NULL , LOW_LEVEL , "sample with va list" ,
__LINE__ , __FILE__ , "returned buffer =
[%s]",receive_buffer);
return;

}
void sample_without_va_list(CS_INT msg_id, CS_INT param1, CS_CHAR *param2, CS_REAL
param3, CS_CHAR param4)
{

/*
** The parameters above (param1, param2, param3,
param4) are fixed and must be defined. They will
be passed
** directly into ASC_convert_msg
*/
CS_CHAR receive_buffer[MAX_BUFFER_SIZE];
ASC_msg_convert(receive_buffer , MAX_BUFFER_SIZE ,
msg_id , NULL, param1, param2, param3, param4);
ASC_diag(NULL , LOW_LEVEL , "sample without va

Chapter 3
Common library interface

3-11

list" , __LINE__ , __FILE__ , "returned buffer =
[%s]",receive_buffer);

return;

ASC_convert_msg_user
This function is similar to ASC_convert_msg function, except that programmers can
define their own message table.

See also ASC_convert_msg, ASC_imsg_types(), ASC_imsg_types_user(),
ASC_load_msg_tbl().

Syntax:

CS_BOOL ASC_convert_msg_user(SRQ_MSG_TBL *user_msg_tbl, CS_INT
user_msg_tbl_count, CS_CHAR *mbuf, CS_INT bsize, long msg_id, ...)

Arguments:

• user_msg_tbl: List of messages contents to be expanded (input).

• user_msg_tbl_count: Size of messages contents list (input).

• mbuf: Message buffer (of at least size ASC_IMBUF_L) to populate (output).

• bsize: Size of the buffer (ASC_IMBUF_L is recommended as the minimum size)
(input) long.

• msg_id: ID of the message to post (input).

Return values:

• CS_TRUE: The function was successfully executed.

• CS_FALSE: An error occurred.

ASC_cpalloc
This function allocates and initializes a CLIENT_PROC structure. This function does
not open connections to the server.

The configuration parameter USE_GLOBAL_CONTEXT determines whether the
global context is used or a separate context is allocated for each connection.

See also ASC_cpopen, ASC_cpfree.

Syntax:

CLIENT_PROC *ASC_cpalloc(CS_CHAR *srv_name, CS_CHAR *userid, CS_CHAR *password)

Arguments:

• srv_name: Name of the server to be used in the connection.

• userid: User ID to establish the connection to the server.

• password: Password to establish the connection to the server.

Return values:

– NULL: The function failed and the client process structure could not be
allocated.

Chapter 3
Common library interface

3-12

– CLIENT_PROC *: Pointer to the CLIENT_PROC structure that was allocated and
initialized.

ASC_cpcheck
This function checks the network connection to verify that the server is available.

Syntax:

CS_RETCODE ASC_cpcheck(CLIENT_PROC *cp)

Arguments:

• cp: Pointer to the client process structure that is managing the connection.

Return values:

• CS_SUCCEED: Server connection is established and available for processing.

• CS_FAIL: The server connection is not available.

ASC_cpclose
This function closes the connection associated with the client process.

See also ASC_cpopen, ASC_cpfree.

Syntax:

CS_RETCODE ASC_cpclose(CLIENT_PROC *cp)

Arguments:

• cp: Pointer to the client process structure that is managing the connection.

Return values:

• CS_SUCCEED: Connection to the server was successfully closed.

• CS_FAIL: The function failed and the server connection was not closed.

ASC_cpfree
This function disconnects from the server and frees the client process structure (if
applicable).

See also ASC_cpalloc, ASC_cpclose.

Syntax:

void ASC_cpfree(CLIENT_PROC *cp)

Arguments:

• cp: Client process structure allocated with ASC_cpalloc.

ASC_cpopen
This function opens a connection to the server that is specified by the client process
structure.

Chapter 3
Common library interface

3-13

See also ASC_cpalloc, ASC_cpclose.

Syntax:

CS_RETCODE ASC_cpopen(CLIENT_PROC *cp)

Arguments:

• cp: Pointer to the client process structure that is managing the connection.

Return values:

• CS_SUCCEED: Connection to the server has been established.

• CS_FAIL: The function failed and the server connection was not created.

When an open server is terminated for any reason, the connections to and from that
server are marked as dead (triggers the connection to be closed upon the next use of
the connection).

The data structure does not have to be freed and reallocated, because a call to
ASC_CPOPEN re-establishes the connection that was marked as dead or closed. It is
recommended that you explicitly close the connection with ASC_CPCLOSE before
opening the connection again.

ASC_cprpcexec
This function executes an RPC or registered procedure on the server and processes
the results. The results returned by the server are mapped and then the appropriate
result handler is called to process the data. If no handler is specified, a default handler
provided by the API is executed.

For an example of how to use ASC_cprpcexec, see appl_init.c in $ASAP_BASE/
samples.

Note:

$ASAP_BASE refers to the ASAP base path that the current ASAP instance
works on.

Syntax:

CS_RETCODE ASC_cprpcexec(CLIENT_PROC *cp, CS_VOID *data, CLIENT_HANDLER
*hand_tbl, CM_RPC *rpcdef, ...)

Arguments:

• cp: Pointer to the client process structure that manages the connection.

• data: Generic data pointer that is passed to the handlers once the results are
returned by the server.

• hand_tbl: Result handler table for processing the return data.

• rpcdef: RPC definition structure specifying the RPC to be executed and its
associated parameters.

• ...: Variable parameter list specifying the values for the RPC parameters identified
by rpcdef. All parameters must be pointers.

Chapter 3
Common library interface

3-14

Return values:

• CS_SUCCEED: RPC execution was successful and the results were handled
successfully.

• CS_FAIL: The function failed due to an RPC execution error or one of the result handlers
failed.

ASC_create_SBT
This function allocates and initializes a self-balancing tree.

Syntax:

SBT *ASC_create_SBT(char name, int unique, int (*compare_fnt)(void *, void *))

Arguments:

• name: Name of the tree or mutex.

• unique: Variable to determine whether or not all elements in the self-balancing tree
should be unique.

• Valid values are 1 (all elements unique) and 0 (duplicate elements permitted)

• compare_fnt: Function that defines the logical ordering of the elements. Valid arguments
are First (void pointer to the first element) and Second (void pointer to the second
element).

Return values:

• NULL: An error has occurred and the tree was not created.

• pointer to SBT: The tree was successfully created.

• -1: If the first is less than the second element.

• 0: If the first is equal to the second element.

• 1: If the first is greater than the second element.

ASC_cur_dts
This function formats the current date and time and inserts the appropriate fields in the
CS_DATETIME structure passed to it.

Syntax:

void ASC_cur_dts(CS_DATETIME *dts)

Arguments:

• dts: Pointer to the CS_DATETIME structure that will have its fields updated.

ASC_cur_tm
Return the current time in seconds and microseconds since 00:00 Universal Coordinated
Time, Jan 1, 1970. It uses the UNIX function call gettimeofday() to get the current time.

Syntax:

CS_FLOAT ASC_cur_tm(void)

Chapter 3
Common library interface

3-15

Return values:

• Current time: Current time in seconds and milliseconds in floating point
representation.

ASC_delete_element_SBT
This function finds and deletes an element in the tree. Deleting elements from this tree
does not affect the balance of the tree.

See also ASC_delete_index_SBT().

Syntax:

int ASC_delete_element_SBT(SBT *root, void *datac, int (*condition_fnt)(void *,
void *), void *datad, int (*delete_fnt)(void **, void *))

Arguments:

• root: Pointer to the tree.

• datac: A void pointer that is passed as the second argument to the condition
function.

• condition_fnt: A function defining the criteria to delete an element. The first
element found (in any logical order) will be used. Only one element is deleted per
function call.

Arguments:

– First: Void pointer to the element determines if it meets the search criteria

– Second: Void pointer to the data argument passed to the ASC_walk_SBT
function

Return values:

– 0: Element does not meet the search criteria

– 1: Element meets the search criteria

• datad: A void pointer that is passed as the second argument to the delete
function.

• delete_fnt: Delete function which deletes data allocated prior to the insert; for
example, if the element is an entire data structure such as a linked list.

Return values:

• 0: No element matched the criteria or the tree is empty.

• 1: An element was deleted.

ASC_delete_index_SBT()
This function deletes an element from a self-balancing tree (SBT) using the logical
ordering of the tree to quickly find the element to delete. The advantage of this delete
function over ASC_delete_element_SBT is that it uses the logical ordering and
comparison function of the tree to delete an element. This function is therefore more
efficient than ASC_delete_element_SBT.

Deleting elements from the tree does not affect the balance of the tree.

Chapter 3
Common library interface

3-16

Syntax

int ASC_delete_index_SBT(SBT *root, void *element, void *data, int (*delete_fnt)(void
**, void *))

Arguments

• root: Pointer to an SBT. This is the tree to delete the element from.

• element: Search node that is used to find the correct element in the SBT to delete. You
must populate all of the fields used by the comparison function when the elements are
first inserted into the tree.

• data: Pointer that is passed into the delete function. Pass NULL if it is not needed.

• delete_fn: Function pointer used to delete the element from the tree. You must correctly
free up all memory that was allocated for this element (such as a link list or another type
of data structure.)

ASC_destroy_SBT
This function deallocates and frees memory used by a self-balancing tree. It is not necessary
to delete the elements of the tree prior to destroying the tree.

Syntax:

void ASC_destroy_SBT(SBT **root, void *data, int (*delete_fnt)(void **, void *))

Arguments:

• root: Pointer to the tree.

• data: A void pointer that is passed as the second argument to the delete function.

• delete_fnt: Function defining the delete algorithm for each element of the tree. This is
useful when the element is an entire data structure such as a link-list or another self-
balancing tree.

ASC_diag
This function lets you specify a printf() format diagnostic message to be appended to the
application's diagnostic file. You may also specify the diagnostic level of the message to be
appended to the diagnostic file. If the application's configured diagnostic level is less than or
equal to that of the function call, the message will be appended to the diagnostic file. For
example, a LOW_LEVEL message will not be written if the server is at SANITY_LEVEL.

See also ASC_event.

You can also call this function with different diagnostic levels throughout the code to denote
varying degrees of message logging.

Whenever a PROGRAM_LEVEL or FATAL_LEVEL diagnostic message is logged, the
libcontrol ASC_diag() function appends a copy of the message to the application's logfile as
well.

The libclient ASC_diag() function writes no message to the client application logfile. The
ASC_diag() function is designed for messages that do not exceed the maximum size of 1024
bytes. To display a longer message, use the ASC_diag_format function. This function allows
you to customize the presentation of any message (for example, a dump of an incoming
message).

Chapter 3
Common library interface

3-17

The output of the diagnostic file is:

>> 141152:12 : LOW:Routing Table:127: router.c
Internal Routing Table: Locked Mutex, Id [15]

The fields in the diagnostic file are:

• >>: Line identifier.

• 141152: The time format in hours, minutes, and seconds (hhmmss).

• 12: The SPID of the thread making the diagnostic function call.

• LOW: The level of the diagnostic message.

• Routing Table: The type character buffer specified in the diagnostic function. This
generally indicates the current function being performed.

• 127: The line number in the file at which the log entry was generated.

• router.c: The file from which the log entry was made.

• Internal...: The diagnostic message itself to a maximum diagnostic file size of
3MB. Once the diagnostic file size reaches this limit, the existing file is moved to
file.old, and a new diagnostics file started. If this happens again, the original
diagnostics file is overwritten. Use the configuration variable, MAX_DIAG_FILE, to
specify the application's configuration file that overrides the default size.

For information on configuring diagnostics for Java-based components, see
com.mslv.activation.server.Diagnostic in the ASAP Online Reference.

Syntax:

void ASC_diag(VOIDPTR ptr, DIAG_LEVEL level,

const char *type,
int line,
const char *file,
const char *fmt, ...);

Arguments:

• ptr: VOIDPTR – only used by the debugger within the Interpreter.

• level: The diagnostic level of this particular function call. The possible diagnostic
levels are outlined in the enumerated data type DIAG_LEVEL description. See
"DIAG_LEVEL abstract data type" for more information.

• type: Character pointer identifying the type or functional origin of the function call.
Only the first 15 characters of this function call appear in the diagnostic file.

• line: The line number of the function in the source file, "__LINE__".

• file: The file from which the function was called, "__FILE__".

• fmt: Character pointer to a sprintf() format buffer containing the diagnostic
message itself.

• "...": Variable number of parameters following the spintf() format.

Example:

The following code segment is an example of how ASC_diag() can be used by the
ASAP Client and/or Server Application for diagnostic purposes.

Chapter 3
Common library interface

3-18

#include "client.h"
CS_INT SRP_get_wo_revs(ASAP_WO_ID wo_id, ...)
{
CS_INT num_rows = -1;
char *diag_buf = "SRP_get_wo_revs";
/* do some processing here */
...;
ASC_diag(NULL, LOW_LEVEL, diag_buf, __LINE__, __FILE__,
"WO: %s, Successfully Retrieved the WO Revisions", wo_id);
return num_rows;
}

ASC_diag_format
You can use this function to generate messages in the diagnostic file of the application. When
the function is called, the diagnostic message heading is generated in the log. The specified
function is called providing access to the FILE pointer for the diagnostic file. The called
function can then generate any message in the diagnostic file.

See also ASC_event.

Syntax:

void ASC_diag_format(VOIDPTR ptr,

DIAG_LEVEL level,
const char *type,
int line,
const char *file,
void ((*format_fn)(FILE *diag_outfile, VOIDPTR ptr)));

Arguments:

• ptr: Pointer to a data segment that is passed into the format_fn as the second argument
to allow ASC_diag format to pass information to the format_fn.

• level: The diagnostic level of this particular function call. The possible diagnostic levels
are outlined in the enumerated data type DIAG_LEVEL description.

• type: Character pointer identifying the type or functional origin of the function call. Only
the first 15 characters of this function call appear in the diagnostic file.

• line: The line number of the function in the source file, "__LINE__".

• file: The file from which the function was called, "__FILE__".

• format_fn: Pointer to the function that is executed to generate a message in the
diagnostic file. When the format_fn function is called, it cannot call any other diagnostic
functions.

ASC_diag_on
This function is used to determine whether or not the application is currently generating
diagnostic messages at the specified level.

Syntax:

CS_BOOL ASC_diag_on(DIAG_LEVEL level)

Arguments:

Chapter 3
Common library interface

3-19

• level: The diagnostic level to query for.

ASC_disconnect
This function closes the specified socket connection to the host.

Syntax:

CS_RETCODE ASC_disconnect(CS_INT sock_fd)

Arguments:

• sock_fd: UNIX socket file descriptor.

ASC_dts_to_str
This function converts CS_DATETIME to string datetime format. This function is used
primarily to convert datetime formats to strings for insertion into Oracle datetime fields.

Syntax:

ASC_dts_to_str(CS_CHAR * date_str, CS_DATETIME *dts)

Arguments:

• date_str: Pointer to datetime string in the following format: YYYYMMDD
24HH:MM:SS. For example, 20030111 16:04:00. This is the format that the Oracle
Server is configured to use and is defined in the set_session database function at
login.

• dts: Returned ASAP datetime.

ASC_event
This function converts the parameters into a system event request and saves the
event in the Control database. Depending on the event type, a system alarm may be
generated.

Message size is limited to 80 bytes.

A system alarm can only be generated as a result of a system event. Therefore, to
generate alarms, the corresponding events must be generated. If SYS_TERM is the
event type, the application terminates.

For information on configuring event generation for Java-based components, see
com.mslv.activation.server.EventLog in the ASAP Online Reference.

Syntax:

void ASC_event(const char *event_type,

short line,
const char *file,
const char *fmt, ...);

Arguments:

• event_type: Specifies the system event to be generated. This code is used to
determine the operation to perform from the configuration tables.

Chapter 3
Common library interface

3-20

• line: Line in source file where system event was generated ("__LINE__").

• file: Source file where system event was generated ("__FILE__").

• fmt: "printf" type format string specifying the cause of the system event.

• "...": Variable number of parameters following the sprintf() format.

ASC_event_initialize
This function initializes system events to be stored in the database. Whether this function
saves events to the tbl_event_log is determined by the configuration variable
DB_EVENT_LOGGING in the ASAP.cfg file.

Possible values for this variable are:

• 1 – Save events to tbl_event_log.

• 0 – Does not save events to tbl_event_log.

If the events are not saved to the database, then alarms cannot be triggered to execute when
these events are generated.

Syntax:

CS_RETCODE ASC_event_initialize (void)

ASC_find_first_SBT
This function finds the first element that meets the criteria specified in the ASC_find_init_SBT
function. The element that is returned can be accessed directly to change the data. It is
recommended that the key fields be left unchanged so that the logical ordering of the tree is
not disrupted.

Syntax:

int ASC_find_first_SBT(SBT_FIND *head,

SBT_FIND **current,
void **element)

Arguments:

• head: Pointer to results of the previous ASC_findinit_SBT function. No maintenance is
required with this data structure.

• current: Pointer that scans the found records. No maintenance is required with this data
structure.

• element: A void pointer that receives the first found element.

Return values:

• 0: No elements were found.

• 1: An element was found.

ASC_find_free_SBT
This function deallocates and frees the memory used by the find functions.

Chapter 3
Common library interface

3-21

The current variable used in the ASC_find_first_SBT and ASC_find_next_SBT
functions is not valid after this function is called and should therefore be set to NULL.

Syntax:

void ASC_find_free_SBT(SBT_FIND **head)

Arguments:

• head: Pointer to the results of previous ASC_findinit_SBT function. No
maintenance is required with this data structure.

ASC_find_index_SBT
This function returns an element that matches the search record using the logical
ordering of the tree as an index. This function uses the same comparison function as
ASC_insert_element_SBT to traverse the tree. To use this function, the programmer
must ensure that the unique argument is set for the tree (as defined in
ASC_create_index_SBT).

The reason for the uniqueness requirement is that only one record is returned (the first
to meet the comparison criteria). A simple way to guarantee the uniqueness of the
index field(s) is to set the unique flag when creating the tree and when inserting a
record:

if ASC_insert_element_SBT!= NULL then

update record

endif

Syntax:

void *ASC_find_index_SBT(SBT *root,

void *data)

Arguments:

• root: Pointer to the tree to walk.

• data: A void pointer that contains the data structure that is stored in the tree with
the indexed field(s) containing the data to find in the tree.

Return values:

• 0: No element was found.

• void *: Pointer to the indexed element that was found.

ASC_find_init_SBT
This function allocates and initializes the find function. This function performs the
search on the tree via a tree walk algorithm. To take advantage of the logical ordering
of the tree, use ASC_find_index_SBT. Observe the following programming technique:

if ASC_find_init_SBT = 1 then

while ASC_find_next_SBT = 1
process found record
ASC_find_free

Chapter 3
Common library interface

3-22

else

no record was found

endif

Syntax:

int ASC_find_init_SBT(SBT *root,

SBT_FIND **head,
void *data,
int(*condition_fnt)(void*, void*))

Arguments:

• root: Pointer to the tree to walk.

• head: Pointer that receives the results of the search. The first time that this function is
used this variable MUST be set to NULL. Before scanning the tree, ASC_find_init_SBT
deletes the previous find results and then passes it to ASC_find_first_SBT and
ASC_find_next_SBT.

• data: Void pointer that is passed as the second argument to the condition function.

• condition_fnt: Function that defines the search criteria for the elements.

Return values:

• 0: No elements were found.

• 1: An element was found.

ASC_find_next_SBT
This function finds the next element that meets the criteria specified in the
ASC_find_init_SBT function. You do not need to call ASC_find_first_SBT prior to this
function.

Syntax:

int ASC_find_next_SBT(SBT_FIND *head,

SBT_FIND **current,
void **element)

Arguments:

• head: Pointer to results of previous ASC_findinit_SBT function. No maintenance is
required with this data structure.

• current: Pointer that scans the found records. No maintenance is required with this data
structure.

• element: Void pointer that receives the next found element.

Return values:

• 0: No elements were found.

• 1: An element was found.

Chapter 3
Common library interface

3-23

ASC_free
This function deallocates the memory previously allocated using ASC_alloc(). If it is
unable to do so, it issues a system event and terminates the server.

See also ASC_alloc(), ASC_diag().

Syntax:

void ASC_free(VOIDPTR ptr)

Arguments:

• ptr: Void pointer to a memory segment previously allocated with ASC_alloc().

ASC_GET_CMD
This is a pointer to the command in the current context on the client process structure.

Syntax:

ASC_GET_CMD(cp)

ASC_get_config_param
This function references the ASAP.cfg configuration file and returns the value of the
requested parameter.

If this type of entry is not present as either an application or global configuration
parameter, then the default value is returned.

The configuration variables listed in the configuration file are read initially by the
application and stored internally from then on. Any change to the configuration files
requires the application to be restarted in order to use the new settings.

Syntax:

CS_RETCODE ASC_get_config_param(char *param,

char *value,
char *default_val)

Arguments:

• param: The parameter name itself.

• value: Character pointer to the value of the requested parameter. The returned
parameter value is placed in this location.

• default_val: Character pointer to the default value to be used for this parameter if
the parameter is not listed in the configuration file.

Return values:

• CS_SUCCEED: Parameter value found in the configuration file or the default
value returned.

Chapter 3
Common library interface

3-24

ASC_GET_CONTEXT
This is a pointer to the context on the client process structure.

Syntax:

ASC_GET_CONTEXT(cp)

ASC_GET_SERVER
This is a pointer to the server name on the client process structure.

Syntax:

ASC_GET_SERVER(cp)

ASC_getc
Gets characters in a non-blocking mode from a stream file. Read timeout is achieved in UNIX
code by setting alarm() before calling the getc system call.

The alarm() call cannot be used to time out the call in the ASAP server because the Sleep
Manager thread provided by the ASAP Server API uses alarm() to implement sleep
management. ASC_getc() calls ASC_poll() to provide timeout. For uniformity, the same
approach is followed in the Client API.

See also ASC_poll(), ASC_putc(), UNIX getc(), putc().

The function declaration is the same as for the UNIX getc except for the additional parameter
that specifies the timeout in seconds.

This function assumes that the file descriptor has not been set to nonblocking mode.

This function invokes ASC_poll() to check if port is readable. It is not intended to be used to
read from disk files.

Syntax:

CS_INT ASC_getc(FILE *stream,

CS_FLOAT timeout)

Arguments:

• stream: Open file descriptor to read from.

• timeout: Timeout in seconds.

Return values:

• c: The character read/written to the stream file.

• -1: A UNIX error occurred on getc/putc.

• -2: ASC_read/ASC_write timed out.

• -3: Port hangup detected.

• -4: EOF returned by getc/putc due to a UNIX error and no port hangup.

Chapter 3
Common library interface

3-25

ASC_gettimeofday
This function gives the API a consistent method of calling the gettimeofday() UNIX
function.

Syntax:

ASC_gettimeofday(tp, tzp)

ASC_hex_dump
By specifying a buffer, length, and diagnostic level similar to ASC_diag(), this function
provides a method of generating a hexadecimal dump of the selected buffer in the
applications diagnostic logfile.

See also ASC_diag().

Syntax:

void ASC_hex_dump(DIAG_LEVEL level,

const char *type,
int line,
const char *file,
CS_BYTE *buf,
int buf_len);

Arguments:

• level: The diagnostic level of the function call. See ASC_diag() for more
information.

• type: Brief description of the circumstances of the function call to identify such
entries in the applications logfile.

• line: The line in the source file at which the function was called.

• file: The source file from which this function was called.

• buf: The character buffer for which the hexadecimal dump is to be generated.

• buf_len: The length of the buffer.

ASC_hex_dump_to_file
This function writes the specified binary buffer to a file in hexadecimal format.

Syntax:

void ASC_hex_dump_to_file(FILE *fptr,

CS_BINARY *buf,
int len)

Arguments:

• fptr: File pointer to open destination file for the hex dump.

• buf: Buffer containing the data to be dumped.

• len: Length of the buffer in bytes.

Chapter 3
Common library interface

3-26

ASC_imsg_types
This function determines the formatting mode and destination types of the specified
international message.

See also ASC_load_msg_tbl(), ASC_convert_msg().

Syntax:

CS_BOOL ASC_imsg_types(long msg_id,

CS_CHAR *frm_type,
CS_CHAR *dest_type)

Arguments:

• long msg_id: ID of the message to post (input).

• frm_type: Formatting type (one character long) of the message (may be NULL) (output).

Substitution type can be one of the following: ASC_IMES_NOSUBST_T,
ASC_IMES_SUBST_T, CS_CHAR

• Dest_type: Destination type (one character long) of the message (may be NULL)
(output).

The destination type can be one of the following: ASAP_LOG_SRQ, ASAP_LOG_WOA,
ASAP_LOG_SRQWOA, ASAP_LOG_NO

Return values:

• CS_TRUE: On success.

• CS_FALSE: On failure.

ASC_imsg_types_user
This function determines the formatting mode and destination types of the specified
international message from a user-defined message table.

See also ASC_load_msg_tbl(), ASC_convert_msg().

Syntax:

CS_BOOL ASC_imsg_types_user(SRQ_MSG_TBL *user_msg_tbl,

CS_INT user_msg_tbl_count,
long msg_id,
CS_CHAR *frm_type,
CS_CHAR *dest_type)

Arguments:

• user_msg_tbl; List of messages contents to be expanded (input).

• user_msg_tbl_count: Size of messages contents list (input).

• long msg_id: ID of the message to post (input).

• frm_type: Formatting type (one character long) of the message (may be NULL) (output).

Substitution type can be one of the following: ASC_IMES_NOSUBST_T,
ASC_IMES_SUBST_T, CS_CHAR

Chapter 3
Common library interface

3-27

• Dest_type: Destination type (one character long) of the message (may be NULL)
(output).

The destination type can be one of the following: ASAP_LOG_SRQ,
ASAP_LOG_WOA, ASAP_LOG_SRQWOA, ASAP_LOG_NO.

Return values:

• CS_TRUE: The function was successfully executed.

• CS_FALSE: An error occurred.

ASC_insert_element_SBT
This function inserts an element into the tree. Inserting elements into the tree does not
affect the balance of the tree. Therefore, a resort to randomness algorithm is not
required on the key fields to improve on the balancing of the tree, as is the case with a
binary search tree.

Syntax:

void *ASC_insert_element_SBT(SBT *root,

void *element)

Arguments:

• root: Pointer to the tree to insert into.

• element: A void pointer to the element to be inserted. It is the caller's
responsibility to maintain the memory for the element since only a pointer is stored
in the tree.

Return values:

• NULL: The node is inserted into the tree.

• not NULL: Pointer to an existing node that matches the key fields of the node to
be inserted. No new node was inserted.

ASC_IS_OPEN
This is a boolean flag to determine whether the current connection is open on the
client process structure.

Syntax:

ASC_IS_OPEN(cp)

ASC_lda_to_oci8
This function switches the Oracle connection between oci8 and oci7.

After obtaining a CLIENT_PROC, using ASC_cppalloc() for example, the
ASC_oci8_to_lda bridge API must be called to switch the OCI8 context to OCI7 LDA.
Once this is done, the OCI7 wrapping functions (such as ASC_ociopen_cursor(),
ASC_ociparse(), ASC_ocirpcexec() and so on) can be used.

Similarly, before freeing a CLIENT_PROC using, for example, ASC_cppfree(cp), the
ASC_lda_to_oci8 API must be called to switch OCI7 LDA back to OCI8 context.

Chapter 3
Common library interface

3-28

If using a high level API like ASC_cprpcexec(), this switching mechanism is not required.

Several high level wrapping functions support one connection-to-cursor array relationships.
As a result, ASC_ociopen() does not open a cursor. The function to open a cursor has been
moved to ASC_oci8_to_lda(). Without this bridge, the OCI parse call will fail.

Syntax:

CS_RETCODE ASC_oci8_to_lda(CLIENT_PROC *cp)

Arguments:

• cp: Connection to the SARM database.

Return values:

• CS_SUCCEED: Successfully switched an Oracle connection.

• CS_FAIL: Failed to switch an Oracle connection.

ASC_listen
This function listens for connection requests on the specified port by invoking the appropriate
local function based on the socket address family you specify.

The caller can then invoke ASC_accept() to accept the next incoming client connection
request.

Setting socket options is not currently supported by ASC_connect().

Syntax:

CS_INT ASC_listen (CS_SMALLINT sa_family,

CS_CHAR *host_name,
CS_CHAR *host_ipaddr,
CS_USHORT port,
CS_INT backlog)

Arguments:

• sa_family: Specifies the address family. Valid values are: UNIX_ADDR_FAMILY,
INET_ADDR_FAMILY. (IMPLINK_ADDR_FAMILY, and XEROX_NS_ADDR_FAMILY are
not supported)

• host_name: The host name. If it is a UNIX domain socket, it specifies the socket file
path.

• host_ipaddr: The host IP address.

• port: The service port number.

• backlog: The maximum allowable length of the queue for pending connections. If a
connection request arrives when the queue is full, the client receives an error.

Backlog is currently limited by the system (silently) to be in the range of 1 to 20. If any
other value is specified, the system automatically assigns the closest value within range.

Return values:

• Listener Socket FID: The socket file descriptor ID that listens for incoming client
requests is returned if the call succeeds.

• -1: If the call fails.

Chapter 3
Common library interface

3-29

ASC_load_msg_tbl
This function loads international messages and audit destinations from the SARM
database into memory. It executes the function SSP_load_msg_tbl using the
requested language code.

Syntax:

CS_BOOL ASC_load_msg_tbl(CLIENT_PROC *cp,

CS_CHAR *lang)

Arguments:

• cp: Connection to the SARM database.

• lang: Language code of messages to be loaded. If NULL, it uses the value of the
configuration parameter LANGUAGE_OF_MSG. If the configuration parameter is
not defined, it defaults to “USA".

Return values:

• CS_TRUE: The function was successfully executed.

• CS_FALSE: An error occurred.

ASC_oci8_to_lda
This function switches the Oracle connection between oci7 and oci8.

Syntax:

CS_RETCODE ASC_oci8_to_lda(CLIENT_PROC *cp)

Arguments:

• cp: Connection to the SARM database.

Return values:

• CS_SUCCEED: Successfully switched an Oracle connection.

• CS_FAIL: Failed to switch an Oracle connection.

ASC_ocican_cursor
This function cancels a query on a cursor after the desired rows have been fetched.

This function is used to free up resources after you have completed processing the
required number of rows and there are rows still pending in the result set.

Syntax:

CS_RETCODE ASC_ocican_cursor(Cda_Def *cda)

Arguments:

• cda: Pointer to a cursor data area structure.

Return values:

Chapter 3
Common library interface

3-30

• CS_SUCCEED: The function was successfully executed.

• CS_FAIL: The function failed.

ASC_ociclose
This function closes a connection between an Open Server or Open Client and an Oracle
database (using oci8 calls).

Syntax:

CS_RETCODE ASC_ociclose(CLIENT_PROC *cp)

Arguments:

• cp: Pointer to the CLIENT_PROC structure to be closed.

Return values:

• CS_SUCCEED: Successfully closed an Oracle connection.

• CS_FAIL: Failed to close an Oracle connection.

ASC_ociclose_cursor
This function closes a cursor. It disconnects a cursor from the data areas in the Oracle Server
with which it is associated.

Syntax:

CS_RETCODE ASC_ociclose_cursor(Cda_def *cda)

Arguments:

• cda: Pointer to cursor data area structure.

Return values:

• CS_SUCCEED: The function closed the cursor.

• CS_FAIL: The function failed to close the cursor.

ASC_ocicreate_cmd
This function builds a PL/SQL block from the passed CM_RPC structure. The resulting
command is passed to ASC_ociparse to be associated with an open cursor.

Syntax:

CS_RETCODE ASC_ocicreate_cmd(CS_CHAR *command, CM_RPC *rpcdef)

Arguments:

• command: PL/SQL command buffer.

• rpcdef: CM_RPC structure containing RPC name and associated parameters.

Return values:

• CS_SUCCEED: The function successfully built PL/SQL block.

• CS_FAIL: The function to build the PL/SQL block.

Chapter 3
Common library interface

3-31

To receive a return status from an RPC to the Oracle server, functions are used on the
server side instead of procedures. Therefore, all command strings receive a return
value.

ASC_ocicreate_list
This function defines an output variable for each column of the result set. This function
uses the odescr function to determine the column name, data type, and data size for
every column in the cursor variable. After the column information is determined, it is
used to populate the call to odefin. The odefin function is required to define the
storage array for each column in the result set.

Syntax:

CS_INT ASC_ocicreate_list(CLIENT_PROC *cp, Cda_Def *cda, ORA_COLUMN *colsptr,
CS_INT numrows)

Arguments:

• cp: Points to a CLIENT_PROC structure.

• cda: Points to a CDA structure.

• colsptr: Points to an Oracle column structure that is defined while processing the
resultant data.

• numrows: The number of rows to allocate in the ORA_COLUMN structure. This
parameter governs how many rows are returned with each fetch of the result set.

Return values:

• CS_INT: The number of columns described in the result set.

ASC_ocidestroy_list
This function deallocates all memory allocated during the ASC_ocicreate_list function.
ASC_ocidestroy_list must accompany each use of ASC_ocicreate_list after processing
is complete. If not, these resources will not be available.

Syntax:

CS_RETCODE ASC_ocidestroy_list(ORA_COLUMN *cols)

Arguments:

• cols: Points to an Oracle column structure that was defined while processing the
resultant data.

Return Value:

• CS_SUCCEED: The function was successful.

• CS_FAIL: The function failed.

ASC_ocifetch
This function attempts to fetch as many rows as were defined by the numrows
argument of the function ASC_ocicreate_list.

Syntax:

Chapter 3
Common library interface

3-32

CS_RETCODE ASC_ocifetch(CLIENT_PROC *cp, Cda_Def *cda, ORA_COLUMN * cols)

Arguments:

• cp: Points to a CLIENT_PROC structure.

• cda: Points to a CDA structure.

• cols: Points to an Oracle column structure that was defined while processing the
resultant data.

Return values:

• CS_SUCCEED: Row returned successfully.

• CS_FAIL: No more rows to process.

ASC_ociopen
Opens a single Oracle connection using oci8 calls.

ASC_ociopen() does not open a cursor. The function to open a cursor has been moved to
ASC_oci8_to_lda(). Custom code must explicitly call ASC_oci8_to_lda() before parsing.
Without this bridge, the OCI parse call will fail.

Syntax:

CS_RETCODE ASC_ociopen(CLIENT_PROC *cp)

Arguments:

• cp: Pointer to the CLIENT_PROC structure to be opened

Return values:

• CS_SUCCEED: Successfully opened an Oracle connection.

• CS_FAIL: Failed to open an Oracle connection.

ASC_ociopen_cursor
This function opens a cursor. It associates a cursor data area in the application with a data
area in the Oracle server. Cursor data areas are used by Oracle to maintain state information
about the processing of a SQL statement.

Syntax:

CS_RETCODE ASC_ociopen_cursor(CLIENT_PROC *cp)

Arguments:

• cp: Pointer to a CLIENT_PROC structure.

Return values:

• CS_SUCCEED: The function opened the cursor.

• CS_FAIL: The function failed to open the cursor.

ASC_ociparse
This function parses a SQL statement or SQL block and associates it with the cursor data
area found in CLIENT_PROC member cda. Note that for performance reasons, all parsing is

Chapter 3
Common library interface

3-33

performed in deferred mode. This means that any errors in the command are not
detected until the command is executed.

Syntax:

CS_RETCODE ASC_ociparse(CLIENT_PROC *cp, CS_CHAR *command)

Arguments:

• cp: Pointer to a CLIENT_PROC structure.

• command: PL/SQL command.

Return values:

• CS_SUCCEED: The function successfully parsed the PL/SQL block.

• CS_FAIL: The function failed to parse the PL/SQL block.

ASC_ocistatus
This function checks the value of the passed CDA to provide error management and
diagnostics. In addition, this function is responsible for determining whether the initial
OCI call is blocked (due to network, server response etc.) and initiating the
synchronous appearance behavior by establishing a poll() on the connection file
descriptor found in the CLIENT_PROC member, connection_fd.

Syntax:

CS_VOID ASC_ocistatus(CLIENT_PROC *cp, Cda_Def *cda);

Arguments:

• cp: Pointer to a CLIENT_PROC structure.

• cda: Points to a CDA structure.

Return values:

• CS_SUCCEED: The function was successful.

• CS_FAIL: The function failed.

ASC_open
This function allows threads to open UNIX devices without blocking the application
server. It is the thread-level version of the UNIX open system call.

This function is intended to be used to open devices that might potentially block and
uses ASC_poll() to check if the port is writable. It is not intended to be used to open
disk files.

Syntax:

CS_INT ASC_open(CS_CHAR *path_name,

CS_INT flags,
CS_FLOAT open_timeout)

Arguments:

• path_name: Pathname to the UNIX device being accessed.

Chapter 3
Common library interface

3-34

• flags: Flags controlling the mode that the device is opened with. The flags used here are
analogous to those used in the UNIX “open()" system call.

• open_timeout: Timeout value, in seconds, to wait for the open call to be successful.

Return values:

• >=0: Operation was successful and the UNIX file descriptor is returned.

• -1: Operation failed.

ASC_putc
Puts characters in a non-blocking mode to a stream file. Read timeout is achieved in UNIX
code by setting alarm() before calling the putc system call.

The alarm() call cannot be used to timeout the call in ASAP server since the Sleep Manager
thread provided by ASAP Server API uses alarm() to implement sleep management.
ASC_putc() calls ASC_poll() to provide timeout. For uniformity, the same approach is
followed in the Client API.

See also ASC_poll(), UNIX getc(), putc().

The function declaration is the same as for the UNIX putc except for the additional parameter
that specifies timeout in seconds.

Until all bytes are written or ASC_poll times out, ASC_putc loops the ASC_poll() to check if
the port is readable/writable or timed out, and then calls read/write.

This function assumes that the file descriptor has not been set to nonblocking mode.

This function invokes ASC_poll() to check if the port is writable. It is not intended to be used
to write to disk files.

Syntax:

CS_INT ASC_putc(CS_INT c,

FILE *stream,
CS_FLOAT timeout)

Arguments:

• stream: Open file descriptor to write to.

• timeout: Timeout in seconds.

Return values:

• c: The character read/wrote to the stream file.

• -1: A UNIX error occurred on getc/putc.

• -2: ASC_read/ASC_write timed out.

• -3: Port hangup detected.

• -4: EOF returned by getc/putc due to a UNIX error and no port hangup.

ASC_read
This function provides timeout using nonblocking read. Read timeout is achieved in UNIX
code by setting alarm() before calling a read system call. The alarm() call to timeout the read

Chapter 3
Common library interface

3-35

call cannot be used since the Sleep Manager thread provided by ASAP Server API
uses alarm() to implement sleep management. Instead, ASC_read() calls ASC_poll()
to provide timeout.

This function assumes that the file descriptor has not been set to nonblocking mode.

This function declaration is the same as for the UNIX read except for the additional
parameter that specifies timeout in seconds.

Until all bytes are read or ASC_poll times out, ASC_read loops the ASC_poll() to
check if the port is readable or timed out, and then calls ASC_read.

This function is intended to be used to read devices that might potentially block and
uses ASC_poll() to check if port is readable. It is not intended to be used to read from
disk files.

Syntax:

CS_INT ASC_read(CS_INT fd,

void *buf,
CS_INT size
CS_INT *bytes_read,
CS_FLOAT timeout)

Arguments:

• fd: Open file descriptor to read from or write to.

• buf: Data buffer to read to or write from.

• size: Size of buffer.

• bytes_read: Actual bytes read.

• timeout: Number of seconds for read timeout. (Within Open Server, you can
obtain granularity less than seconds). Valid values are: -1, 0, >0. If the
timeout_seconds parameter value is -1, ASC_write blocks until the port is
readable. This feature should not be used within the Open Server application since
all files are supposed to be opened and set for nonblocking I/O. If timeout is set to
0, ASC_read returns immediately and mimics UNIX read().

Return values:

• 0: Success.

• -1: A UNIX error occurred.

• -2: ASC_read timed out.

• -3: Port hangup detected.

• -4: EOF detected.

• -5: Network Operational Error.

ASC_realloc
This function initializes newly allocated memory, copies the contents of the previously
allocated memory, and frees previously allocated memory before returning a pointer to
the reallocated memory segment.

See also ASC_free(), ASC_diag().

Chapter 3
Common library interface

3-36

If this function is unable to reallocate previously allocated memory on the heap, this function
issues a system event and terminates the process. If the size of the reallocated memory
segment is specified as zero, the previously allocated memory is available and a null pointer
returned.

The content of the previously allocated memory is preserved if the size of the reallocated
memory segment is greater than the current size. If not, it is truncated.

Syntax:

VOIDPTR ASC_realloc(VOIDPTR ptr,

CS_INT size,
CS_INT cur_size)

Arguments:

• ptr: Pointer to previously allocated and used memory.

• size: The size, in bytes, of the reallocated memory segment.

• cur_size: The size, in bytes, of the currently allocated memory segment.

Return values:

• new_ptr: Void pointer to the re-allocated (possibly moved) memory segment.

• NULL: If requested memory size is zero bytes.

ASC_reset_file_status
This function resets the file status to the previous file status flag value.

For more information on fcntl(), refer to UNIX documentation.

Syntax:

CS_RETCODE ASC_reset_file_status(CS_INT fd,

CS_INT oflags)

Arguments:

• fd: File descriptor value.

• oflags: Saved file status flag value.

Return values:

• CS_SUCCEED: Operation successful.

• CS_FAIL: Operation on the file descriptor failed.

ASC_rstrcmp
This function performs a reverse string comparison. It is used in B Tree search functions to
compare nodes in a more random manner to generate a more balanced B tree structure.

Syntax:

int ASC_rstrcmp(const char *buf1,

const char *buf2)

Chapter 3
Common library interface

3-37

Arguments:

• buf1, buf2: Character pointers to the strings to be compared.

Return values:

• >0: First string is lexicographically greater than the second when compared in
reverse.

• <0: Second string is lexicographically greater than the first when compared in
reverse.

• 0: First string is lexicographically equal to the second.

ASC_sec_to_dBdts
This function converts the UNIX time in seconds to a database format record.

Syntax:

void ASC_sec_to_dBdts(time_t sec,

CS_DATETIME *dts)

Arguments:

• sec: UNIX time in seconds.

• dts: Pointer to datetime variable to return the converted time value in.

ASC_set_fd_blocking
This function sets files to blocking mode, saving the current file status flag value.
Blocking mode I/O must not be performed from within an Open Server, since it will
block the whole server.

For more information on fcntl(), refer to UNIX documentation.

Syntax:

CS_RETCODE ASC_set_fd_blocking(CS_INT fd,

CS_INT *flags)

Arguments:

• fd: File descriptor value.

• flags: Integer pointer. Saves current file status flag value.

Return values:

• CS_SUCCEED: Operation successful.

• CS_FAIL:Operation on the file descriptor failed.

ASC_set_fd_nonblocking
This function sets files to nonblocking mode, saving the current file status flag value.

For more information on fcntl(), refer to UNIX documentation.

Syntax:

Chapter 3
Common library interface

3-38

CS_RETCODE ASC_set_fd_nonblocking(CS_INT fd,

CS_INT *flags)

Arguments:

• fd: File descriptor value.

• flags: Integer pointer to save current file status flag value.

Return values:

• CS_SUCCEED: Operation successful.

• CS_FAIL: Operation on the file descriptor failed

ASC_set_new_handler
This function sets the _new_handler global variable to point to the new_exeption_hdl()
callback function. The previous _new_handler value is not required, and is neither returned
nor saved in a static variable.

Both Control API and Client API main() invoke this function when the ASAP server/client
application is initialized. This eliminates the new exception handling that is specific to a
platform or complier.

Syntax:

void ASC_set_new_handler(CS_BOOL diag_initialized)

Arguments:

• diag_initialized: Boolean variable. Specifies whether ASAP diagnostics and event
management variables have been initialized or not. Uses either system calls or ASAP
API calls to log messages and terminate the application.

ASC_sleep
This function provides a thread with a sleep function similar to the UNIX sleep() function.

See also ASC_wakeup().

If the application is an application server, this function puts the calling thread to sleep for the
specified time interval. If the application is an application client, this function puts the entire
client process to sleep for the specified time interval.

Syntax:

void ASC_sleep(time_t seconds)

Arguments:

• seconds: The sleep period, in seconds, before the application is woken up.

ASC_str_to_dts
This function converts the string date time format to ASAP datetime. This function is used
primarily to convert datetime strings from Oracle database results to ASAP datetime format.

Syntax:

Chapter 3
Common library interface

3-39

ASC_str_to_dts(CS_CHAR * date_str, CS_DATETIME *dts)

Arguments:

• date_str: Pointer to datetime string in the following format: YYYYMMDD
24HH:MM:SS. For example, 19980111 10:04:00. This is the format which is
returned from the Oracle Server as defined in the set_session database function at
login.

• dts: Returned ASAP datetime.

ASC_walk_SBT
This function walks the tree and performs an action at each node.

For more information, refer to the Action Function example on "Action function."

Syntax:

void ASC_walk_SBT(SBT *root,

void *data,
int(*action_fnt)(void **, void *, int, int))

Arguments:

• root: Pointer to the tree to walk.

• data: A void pointer that is passed as the second argument into the action
function.

• action_fnt: Function that defines the action performed by the elements. Note that
a pointer to a pointer is passed and, therefore, the data can change. Do not edit
the key fields as the logical ordering is disrupted.

• First: A void pointer to the element to be processed.

• Second: A void pointer to the data argument passed to the ASC_walk_SBT
function.

• Third: An integer defining the level that the element is on. The root element(s) are
on level zero.

• Fourth: An integer defining the order in which the element was scanned. Possible
values are:

– INORDER – Scans all elements in node before proceeding to the next.

– PREORDER – Scans the elements and then proceeds to the next node.

– POSTORDER – Proceeds to the next node and scans the element on the way
back.

Return values:

• 0: You need to continue to walk the rest of the tree.

• 1: You are finished with the walk.

ASC_write
This function provides a timeout using a nonblocking write. Write Timeout is achieved
in UNIX code by setting alarm() before calling a write system call.

Chapter 3
Common library interface

3-40

This function assumes that the file descriptor has not been set to nonblocking mode.

The alarm() call to time out the write call cannot be used since the Sleep Manager thread
provided by ASAP Server API uses alarm() to implement sleep management. Instead,
ASC_write() calls ASC_poll() to provide timeout.

This function declaration is the same as the UNIX write function, except for the additional
parameter that specifies the timeout in seconds.

Until all bytes are written or ASC_poll times out, ASC_write loops the ASC_poll() call to check
if the port is readable/writable or timed out, and then calls write.

This function invokes ASC_poll() to check if port is readable. It is not intended to be used to
read from disk files.

Syntax:

CS_INT ASC_write(CS_INT fd,

const void *buf,
CS_INT size,
CS_INT *bytes_written,
CS_FLOAT timeout)

Arguments:

• fd: Open file descriptor to read from or write to.

• buf: Data buffer to read from or write to.

• size: Size of buffer.

• bytes_written: Actual number of bytes written.

• timeout: Number of seconds for write timeout. Within the Open Server, you can specify a
granularity of less than a second. Valid values are: -1, 0, >0. If the timeout_seconds
parameter is a value of -1, ASC_write blocks until the port is writable. This should not be
used within the Open Server application since all files are supposed to be opened and
set for nonblocking I/O. If timeout is set to 0, ASC_write returns immediately and mimics
UNIX write().

Return values:

• 0: Okay.

• -1: A UNIX error occurred.

• -2: ASC_write timed out.

• -3: Port hangup detected.

• -5: Network Operational Error (host down, network down, and so on)

get_name_value
This function extracts name and value parts for the next message line beginning in the start
position you specify in the input transaction buffer.

The message is in the format NAME=VALUE;\n and the buffer should look like:
NAME=VALUE;\n[NAME=VALUE;\n]. Ensure that name and value buffers are large enough
to hold the information.

Syntax:

Chapter 3
Common library interface

3-41

int get_name_value(char *input_buf,

int start_pos,
int buf_len,
char *name,
char *value)

Arguments:

• input_buf: Character buffer containing the transaction.

• start_pos: Specifies start position to get current line. (Input)

• buf_len: Specifies length of input buffer. (Input)

• name: Variable to save the name as part of the message in line. (Output)

• value: Variable to save the value as part of the message in line. (Output)

Return values:

• int: Start position for next message line in the input buffer.

MS_DIFF
This function determines the difference between two times expressed in milliseconds.

Syntax:

MS_DIFF(start, end)

TODAY
This function returns the current day of the year.

Syntax:

TODAY() today()
int today(void)

Return values:

• Day of the year: Current day of the year.

Example:

int yday; yday = TODAY();

Common library interface data types
The following list provides an overview of all the data types found in the Common
Library Interface.

For detailed descriptions and a list of public members, arguments, return values, and
remarks associated with each of data types, refer "Common library interface data
types."

CLIENT_HANDLER

Informs API to call certain functions given certain return results.

• CM_RPC: Defines an RPC to invoke or defines a registered procedure.

Chapter 3
Common library interface

3-42

• CM_RPC_PARAM: Defines a parameter for an RPC or registered procedure.

• DIAG_LEVEL: Specifies the valid diagnostic levels of an application process using the
diagnostic API functions.

The following section describes all of the data types in the Common Library Interface. The
functions and structures included in this section are listed in alphabetical order.

CLIENT_HANDLER abstract data type
This structure informs the API which functions to call when certain results are returned. If you
do not include a return result, the API uses the default processing to handle the data for the
result set and continues processing. The default processing generally ignores the result row.

If you want to use the default processing for a return result type, do not include the result type
in the table.

Syntax:

typedef struct {

CS_RETCODE (*handler)(CLIENT_PROC *cp, CS_VOID *data,
CS_INT res_type, CS_BOOL *not_done)
CS_INT res_type;

} CLIENT_HANDLER;

Members:

• handler: The handler function to call when a return result is matched. To indicate the end
of the table, this field should be set to NULL.

• res_type: Return result type. Refer to the description for more information regarding
result types.

CM_RPC abstract data type
This structure is used to define an RPC to invoke or define a registered procedure.

Syntax:

typedef struct{

CS_CHAR *rpcname;
CM_RPC_PARAM *paraminfo;
CS_INT numparam;
CS_RETCODE (*reghandler) (SRV_PROC *srvproc)

} CM_RPC;

Members:

• rpcname: Name of RPC or registered procedure.

• paraminfo: Pointer to the parameter structure. Set it to NULL if there is no parameter.

• numparam: Total number of parameters defined in this structure. Set to NULL if there is
no parameter required, otherwise use the macro NUM_RPC_PARAM().

• reghandler: The handler function that is called when a registered procedure arrives.

Chapter 3
Common library interface

3-43

CM_RPC_PARAM abstract data type
This structure is used to define the parameter for RPCs and registered procedures. It
is used to retrieve parameters when receiving a registered procedure or sending an
RPC. The parameters defined in this structure should be in the correct order expected
for sending and receiving. The first parameter is passed to the function as item 1.

Syntax:

typedef struct {
 CS_DATAFMT dfmt;
 CS_BYTE *datap;
 CS_INT datalen;
} CM_RPC_PARAM;

Arguments:

• dfmt: Data description structure defined by the header file which stores necessary
format information for the parameter.

• datap: Pointer to the data as default parameter used to define a registered
procedure or retrieved from incoming registered procedure.

• datalen: Specify the length of data pointed by the datap member. This is only
used when setting up default data. Check srv_regparam for details.

DIAG_LEVEL abstract data type
This enumeration specifies the valid diagnostic levels of an application process using
the diagnostic API functions.

The diagnostic levels are used with the ASC_diag() function and other diagnostic
functions within the API.

If the diagnostic level of the process is higher or equal to the diagnostic level of the
ASC_diag() function, then that diagnostic message is written to the diagnostic file.

The diagnostic levels are:

• PROG

• SANE

• LOW

• KERN

PROG provides the lowest level of detail of the diagnostics. The details become
progressively greater for each level, with KERN being the most detailed.

The remaining levels are only used to provide backwards compatibility for ASAP, and
are not available to be set.

Syntax:

typedef enum {

KERNEL_LEVEL,
LOW_LEVEL,
FUNCTION_LEVEL,
RPC_LEVEL,

Chapter 3
Common library interface

3-44

CONTRACT_LEVEL,
SANITY_LEVEL,
PROGRAM_LEVEL,
FATAL_LEVEL

} DIAG_LEVEL;

Members:

• KERNEL_LEVEL: Used by the kernel to generate diagnostic messages. It is only to be
used by the core libraries for very low-level debugging of core code. You can set the
application diagnostic level to KERN.

• LOW_LEVEL: Used by the application to generate low-level diagnostic messages from
any of its functions. Such messages enable the programmer to debug an application.
Once debugged, the diagnostic level of the application should be changed to provide less
detail. You can set the application diagnostic level to LOW.

• FUNCTION_LEVEL: Used by the application at the beginning and end of each function
to track the operation of the application. Not generally used in the core application.

• RPC_LEVEL: Used by the application to produce RPC diagnostic messages.

• CONTRACT_LEVEL: Used to specify the start and end of a particular instance of a
contract.

• SANITY_LEVEL: Used by the application for high-level diagnostics. This level of
diagnostic messages provides user information about the processing of the system. It is
used for low level diagnostic messages. A production application has its diagnostic level
set at either PROG or SANE.

• PROGRAM_LEVEL: This is primarily used to generate error messages when the
application is running in a production environment.

• FATAL_LEVEL: Used for fatal error conditions if the process is terminated. Only used if
an error condition occurs within the application such that if the application continued,
more errors would occur and compound the problem. For instance, if a function is
missing from the database, then the application terminates for manual intervention.

Server library interface
This section details the API functionality provided to ASAP application servers. This
functionality is provided by the API library, libcontrol.

This section describes server applications you can use to do the following:

• Manage threads.

• Receive registered procedures or remote procedure calls from client applications.

• Handle language requests.

• Manage the creation of pools of client connections.

• Set up pools of DBPROCESS connections to the SQL server.

• Incorporate I/O functions within an application server.

• Set up utility thread functions.

• Set up gateway functionality.

Chapter 3
Server library interface

3-45

Functions and structures
The following subsections provide you with reference information on the variables,
prefixes, and concepts used in the functions and structures contained in the server
library interface.

Global variables
This section lists the global variables defined by this server API:

• RealSrvName: Actual name of the application server as known to the network
(that is, the name in the Interfaces file). To obtain this name from the application
configuration file, use the logical application name ApplName as the configuration
parameter.

• server_context: Global context for the application server.

• ASAP_high_availability: Boolean flag. Indicates whether or not High Availability
mode is active.

• ASAP_IS_ALIVE_INTERVAL:Global polling interval for checking connections
between the servers.

Thread management functions
The server library interface provides the following thread management structures and
functions:

• ASC_alarm()

• ASC_await_init_completion()

• ASC_lockmutex

• ASC_malarm()

• ASC_msleep()

• ASC_reg_init_func()

• ASC_spawn()

• ASC_unlockmutex

• background_process_init()

• BACKGROUND_PROCESS

Memory management functions
The server library interface provides the following memory management structures
and functions:

• ASC_blk_alloc

• ASC_blk_free

• ASC_blk_realloc()

Chapter 3
Server library interface

3-46

RPCs and registered procedures
This section outlines the steps involved to have the application server receiving registered
procedures or remote procedure calls from client applications.

Structures and functions included in this category are:

• add_appl_rpc()

• add_registered_proc()

• add_rpc

• ASC_define_events()

• ASC_define_rpc()

• ASC_get_reg_param()

• ASC_get_rpc_param()

• ASC_handle_results

• REG_PROC

• RPC

• RPC_PARAM

• USEREVENT

Language requests
This section includes functions and structures to help you handle language requests.
Structures and functions included in this category are:

• add_lang_handler()

• ASC_convert_msg

• ASC_convert_msg_user

• ASC_createmsgq

• ASC_deletemsgq

• ASC_getmsgq

• ASC_imsg_types

• ASC_imsg_types_user

• ASC_load_msg_tbl

• ASC_putmsgq

• ASC_send_text()

• LANG_HANDLER

Client process connection pool functions
Client process connection pool functions create a pool of client connections to SQL servers.
These functions help you manage the creation of pools of client connections for any thread to
use within the application server.

Chapter 3
Server library interface

3-47

The pools of connections assume that connections to the SQL server do not need to
be checked periodically to determine whether the server is still running. Connections to
other application servers are checked regularly because these servers may become
unavailable. If this happens, all connections to that server are released. If
communicating with another application server, an application server spawns a driver
thread to manage the network connections and check the connection periodically.

Structures and functions included in this category are:

• ASC_cppalloc()

• ASC_cpdbpcreate

• ASC_cppfree()

• ASC_in_system()

• ASC_in_territory

• ASC_cpdbpdestroy

Thread I/O functions
This section includes I/O functions you can incorporate within an application server.
Structures and functions included in this category are:

• ASC_poll()

• ASC_poll_timer()

Utility thread functions
Structures and functions included in this category are:

• ASC_getpid()

• ASC_threadproc()

• ASC_sendinfo()

• ASC_thread_field_bool()

• ASC_thread_field_int()

• ASC_thread_field_str()

• ASC_srv_field_bool()

• ASC_srv_field_int()

• ASC_srv_field_str()

• ASC_lock_strtok()

• ASC_stack_trace()

• ASC_unlock_strtok()

Inline functions
The inline functions defined by this server API are as follows:

• APPL_STATE(state): Sets the descriptive state for the current thread. It is
displayed by the sp_ps and sp_who system procedures.

Chapter 3
Server library interface

3-48

• ASC_exit(): Terminates the application server.

• ASC_SRV_MSGQID: Open Server message queue ID that was created due to
ASC_spawn.

• ASC_SRV_DATA: Pointer to the global data segment for the thread.

• ASC_SRV_START-UP: Pointer to the startup data segment for the thread.

• ASC_GET_RPC_PARAM (srvproc, rpc_name, param_name, paramno, dest_type,
dest, dest_len, max_len): Retrieves a parameter from an RPC call. (Note: This cannot
be used for RPCs or registered procedures that are written using the System 10 model.)

Server application functions
This section details server application functions. These functions and structures are listed in
alphabetical order.

add_appl_rpc
This function adds an RPC to the application server, either as an RPC or a registered
procedure depending on a configuration parameter.

See also add_rpc, ASC_define_rpc.

This function has been superseded by ASC_define_rpc().

Syntax:

CS_RETCODE add_appl_rpc(RPC *rpc)

Arguments:

• rpc: Pointer to the RPC definition structure.

Return values:

• CS_SUCCEED: Addition successful.

• CS_FAIL: Too many RPCs added to the server.

add_lang_handler
This function scans the current list of installed language handlers and installs a new language
handler at the end of the list. If the maximum number (100) of language handlers has been
exceeded, a system event is issued.

Syntax:

void add_lang_handler(LANG_HANDLER *hand)

Arguments:

• hand: Pointer to a language handler structure containing the language handler details.

Example:

static int run_lang_handler(SRV_PROC *srvproc, CS_CHAR *langptr, CS_INT langlen);
/* Language Handler Definition */
static LANG_HANDLER run_lang_def = {
 "run", "run", run_lang_handler
};

Chapter 3
Server library interface

3-49

void init_function(void)
{
...
 add_lang_handler(&run_lang_def);
}
static int run_lang_handler(SRV_PROC *srvproc, CS_CHAR *langptr, CS_INT langlen)
{
 /* Process the language buffer */
 ...
 /* Complete the language request */
 srv_sendstatus(srvproc, 0);
 srv_senddone(srvproc, SRV_DONE_FINAL, 0, 0);
 return CS_SUCCEED;
}

add_registered_proc
This function adds the registered procedure specified by the rp argument to the
application server.

The use of this function is no longer recommended. Instead, use the ASC_define_rpc()
function.

Syntax:

CS_RETCODE add_registered_proc(REG_PROC *rp)

Arguments:

• rp: Pointer to the REG_PROC structure.

Return values:

• CS_SUCCEED: Addition successful.

• CS_FAIL: Too many RPCs added to the server.

add_rpc
This function adds a procedure to a server as a remote procedure. Use this function to
add procedures that take optional parameters as registered procedures do not allow
optional arguments.

Only use this function to define RPCs to the server. Such procedures take variable
numbers of arguments. If the procedure takes a fixed number of non-null arguments, it
should be defined as a registered procedure.

Syntax:

CS_RETCODE add_rpc(RPC *rpc)

Arguments:

• rpc: Pointer to the RPC structure.

Return values:

• CS_SUCCEED: Addition successful.

• CS_FAIL: Too many RPCs added to the server.

Chapter 3
Server library interface

3-50

ASC_alarm
This function sets up an asynchronous alarm for a thread. The msg argument uniquely
identifies the alarm and must point to a data segment where the first four bytes is the
message operation. When the alarm expires, the message is sent to msgqid with the
operation set to msg_operation. To cancel the alarm, set the seconds argument of this
function to zero.

Any thread calling this function MUST be awaiting messages on a previously created
message queue.

The thread message structure must have a long integer as the first field. This integer field is
used as the message operation field, identifying the message type to the receiving thread.
The first action of this function is to assign the msg pointer to the msg_operation value, thus
setting the message operation for the alarm wakeup message. After this first message field,
the message can have any format that the sending and receiving threads agree upon.

Syntax:

void ASC_alarm(time_t seconds, SRV_OBJID msgqid, int *msg, long msg_operation)

Arguments:

• seconds: Time, in seconds, after which the alarm is issued.

• msgqid: The thread message queue to which the thread message is to be sent. Note
that the calling thread must have a dedicated thread message queue in order to receive
the alarm notification.

• msg: An integer pointer to the previously allocated alarm message data area.

• msg_operation: The message operation used to identify an alarm message being
received.

ASC_await_init_completion
This function waits for the initialization process to complete before continuing to execute.

Syntax:

void ASC_await_init_completion(void)

ASC_blk_alloc
This function returns a pointer to a memory block of a specified size (bytes). The memory is
from a preallocated pool. ASC_BLK_ALLOC is called to interface with this function.

See also ASC_mem_alloc.

Each memory pool has a default number of blocks. This value is configurable in ASAP.cfg.

Syntax:

VOIDPTR ASC_blk_alloc(int line, char *file, CS_INT size, CS_CHAR *type_name)

Arguments:

• line: The line number of the function in the source file, “__LINE__".

• file: The file from which the function was called, “__FILE__".

Chapter 3
Server library interface

3-51

• size: The number of bytes required.

• type_name: Name of type to be allocated.

ASC_BLK_ALLOC
This macro selects a block of memory from the appropriate memory pool that satisfies
the size requirements of the structure specified by count * struct_name.

One block of memory is returned that is large enough to hold a number of instances of
the structure. The number of instances is specified by count.

If required, you can change the number of blocks in each memory pool in ASAP.cfg.

Table 3-1 Default Memory Pool Blocks

Size of Each Block in
the Pool

Default Number of
Blocks

Configuration Variable

16 1024 ASC_BLOCK16_POOL

32 1024 ASC_BLOCK32_POOL

64 1024 ASC_BLOCK64_POOL

96 1024 ASC_BLOCK96_POOL

128 512 ASC_BLOCK128_POOL

256 256 ASC_BLOCK256_POOL

512 128 ASC_BLOCK512_POOL

1024 64 ASC_BLOCK1024_POOL

2048 32 ASC_BLOCK2048_POOL

4096 16 ASC_BLOCK4096_POOL

8192 8 ASC_BLOCK8192_POOL

Syntax:

(struct_name*) ASC_BLK_ALLOC (struct_name, struct_desc, count)

Example:

void function()
{

MY_STRUCTURE item1, item2;
MY_STRUCTURE *array;
array = ASC_BLK_ALLOC (MY_STRUCTURE, "MY_STRUCTURE", 1);
array[0] = item1;
array = ASC_BLK_REALLOC (array, MY_STRUCTURE, "MY_STRUCTURE", 2);
array[1] = item2;
ASC_BLK_FREE (array);

}

ASC_BLK_FREE
This macro returns the block of memory, specified by ptr, to its memory pool. The
default number of memory blocks is configured in ASAP.cfg.

Chapter 3
Server library interface

3-52

For an example of the use of this macro, refer to ASC_BLK_ALLOC.

Syntax:

void ASC_BLK_FREE (ptr)

ASC_blk_realloc
This function returns a pointer to a new block of a specified size (bytes). The contents of the
specified address are moved to the new block. ASC_BLK_REALLOC is called to interface
with this function.

For more information on the default number of blocks assigned to memory pools, see
"ASC_BLK_ALLOC."

Each memory pool has a default number of blocks. The ASC_BLOCK##_POOL value is
configured in ASAP.cfg.

Syntax:

VOIDPTR ASC_blk_realloc(VOIDPTR addr, int line, char *file, CS_INT size, CS_CHAR
*type_name)

Arguments:

• addr: The address of current allocation.

• line: The line number of the function in the source file, “__LINE__".

• file: The file from which the function was called, “__FILE__".

• size: Number of bytes required.

• type_name: Name of type to be allocated.

ASC_BLK_REALLOC
This macro selects a block of memory from the appropriate pool that will satisfy the size
requirements of the structure specified by count * struct_name.

For an example of the use of this macro, refer to ASC_BLK_ALLOC.

Copies the contents of the previous block (specified by ptr) into the new block, and then
returns the previous block to its pool.

One block of memory is returned that is large enough to hold a number of instances of the
structure. The number of instances is specified by count.

The default number of memory blocks is configured in ASAP.cfg.

Syntax:

struct_name*) ASC_BLK_REALLOC (ptr, struct_name, struct_desc, count)

ASC_cpdbpcreate
This function creates a CLIENT_PROC connection pool to the database server of the size
you specify.

Syntax:

Chapter 3
Server library interface

3-53

CLIENT_PROC_POOL ASC_cpdbpcreate(CS_CHAR *pool_name, CS_CHAR *srv_name, CS_CHAR
*userid, CS_CHAR *password, CS_INT size, CP_CONNECT_TYPE cp_type)

Arguments:

• pool_name: Name of the client process pool.

• srv_name: Name of the server to establish a connection with.

• userid: User ID for security validation by the server.

• password: Password for security validation by the server.

• size: Number of client connection processes to be established.

• cp_type: Connection type. Valid values include:

– OPEN_SERVER – Sybase Open Server Connection type.

– ORACLE – Oracle Server RDBMS Connection type.

ASC_cpdbpdestroy
This function destroys the client process connection pool and frees all processes.

Syntax:

void ASC_cpdbpdestroy(CLIENT_PROC_POOL *cpp)

Arguments:

• cpp: Pointer to the client pool.

ASC_cppalloc
This function allocates a client process from the client process connection pool.

See also ASC_cppfree.

Syntax:

CLIENT_PROC *ASC_cppalloc(CLIENT_PROC_POOL *cpp)

Arguments:

• cpp: Pointer to the client process pool.

Return values:

• NULL: The function failed and the client process could not be allocated. This will
only happen if the client process pool is invalid.

• CLIENT_PROC*: Pointer to the allocated client process.

ASC_cppfree
This function frees an allocated client process and returns it to the original pool.

See also ASC_cppalloc.

Syntax:

void ASC_cppfree(CLIENT_PROC *cp)

Chapter 3
Server library interface

3-54

Arguments:

• cp: Pointer to the client process structure.

ASC_createmsgq
This function creates an Open Server message queue. When a message queue is created, a
mutex for that queue is also created. Therefore, the Open Server must be configured to allow
the creation of enough mutexes.

See also ASC_deletemsgq, ASC_putmsgq and ASC_getmsgq.

Syntax:

CS_RETCODE ASC_createmsgq(CS_CHAR *mqname,

CS_INT mqlen,
SRV_OBJID *mqid)

Arguments:

• mqname: Pointer to the message queue name.

• mqlen: Length of the message queue name.

• mqid: Pointer to the message queue ID.

Return values:

• CS_SUCCEED: The message queue was created successfully.

• CS_FAIL: The creation of the message queue failed.

ASC_createmutex
This function creates a mutex.

See also ASC_deletemutex, ASC_lockmutex, and ASC_unlockmutex.

Syntax:

CS_RETCODE ASC_createmutex(CS_CHAR *mutex_name,

CS_INT mutex_namelen,
SRV_OBJID *mutex_id)

Arguments:

• mutex_name: The name of the mutex.

• mutex_namelen: The length of the mutex name if not null terminated.

• mutex_id: The mutex ID returned during creation.

Return values:

• CS_SUCCEED: The mutex was created successfully.

• CS_FAIL: An error in the operation.

ASC_define_events
This function installs handlers for user-defined events.

Chapter 3
Server library interface

3-55

Syntax:

CS_RETCODE ASC_define_events(USEREVENT *tbl)

Arguments:

• tbl: Table of user events to be installed into the application server.

Return values:

• CS_SUCCEED: The user events were successfully installed into the application
server.

• CS_FAIL: The installation failed.

ASC_define_rpc
This function registers a procedure with the application server.

Syntax:

CS_RETCODE ASC_define_rpc(CM_RPC *reg_def)

Arguments:

• reg_def: Pointer to the RPC definition structure.

Return values:

• CS_SUCCEED: Addition successful.

• CS_FAIL: RPC could not be defined in the server.

ASC_deletemsgq
This function deletes an Open Server message queue. The mutex created when the
message queue was created will be removed.

See also ASC_createmsgq, ASC_putmsgq, and ASC_getmsgq.

Syntax:

CS_RETCODE ASC_deletemsgq(CS_CHAR *name,

CS_INT length,
SRV_OBJID id)

Arguments:

• name: Pointer to the name of the message queue.

• length: Length of the message queue.

• id: The ID of the message queue.

Return values:

• CS_SUCCEED: The message queue was deleted successfully.

• CS_FAIL: The deletion of the message queue failed.

Chapter 3
Server library interface

3-56

ASC_deletemutex
This function deletes a mutex.

See also ASC_createmutex, ASC_lockmutex, and ASC_unlockmutex.

Syntax:

CS_RETCODE ASC_deletemutex(CS_CHAR *mutex_name,

CS_INT mutex_namelen,
SRV_OBJID mutex_id)

Arguments:

• mutex_name: The name of the mutex.

• mutex_namelen: The length of the mutex name if not null terminated.

• mutex_id: The mutex ID specified during deletion.

Return values:

• CS_SUCCEED: The mutex was deleted successfully.

• CS_FAIL: An error occurred during the operation.

ASC_get_reg_param
This function determines the parameters for a registered procedure.

Syntax:

CS_RETCODE ASC_get_reg_param(SRV_PROC *srvproc, CM_RPC *reg_def, ...)

Arguments:

• srvproc: Pointer to the current thread structure.

• reg_def: Pointer to the registered procedure definition.

• ...: Variable list of data value pointers.

Return values:

• CS_SUCCEED: Addition successful.

• CS_FAIL: The determination of the parameters on the registered procedure failed.

ASC_getmsgq
This function retrieves a thread message.

See also ASC_createmsgq, ASC_putmsgq and ASC_deletemsgq.

Syntax:

CS_RETCODE ASC_getmsgq(SRV_OBJID msgqid,

CS_VOID **msg,
CS_INT flags,
CS_INT *info)

Chapter 3
Server library interface

3-57

Arguments:

• msgqid: Name of the message queue.

• msg: Indirect pointer to the thread message.

• flags: Informational flag – Populated upon failure.

• info: Information – Populated upon failure.

Return values:

• CS_SUCCEED: The message was received successfully.

• CS_FAIL: The message was not received.

ASC_getpid
This function gets the server process ID for the thread associated with the current
server process.

Syntax:

CS_INT ASC_getpid(SRV_PROC *srvproc)

Arguments:

• CS_INT: Open Server process ID for the server process you specified.

• srvproc: The Open Server process handle.

Return values:

• SRV_PROC*: Pointer to current server process.

• CS_INT: Open Server process ID for the server process you specified.

ASC_get_securedata
Retrieves a secure data entry.

Syntax:

CS_RETCODE ASC_get_securedata(char *name,

char*value);

Arguments:

• name: Used as key to retrieve secure data entry.

• value: Encrypted password field of the secure data entry.

ASC_handle_results
Once a command has been sent to the SQL Server, this function processes the results
and passes them back to the Open Server client.

Syntax:

CS_RETCODE ASC_handle_results(CLIENT_PROC *rmtproc,

Chapter 3
Server library interface

3-58

SRV_PROC *srvproc,
CS_INT *last_row_cnt,
CS_INT *tot_row_cnt)

Arguments:

• rmtproc: The Open Client Library handle to the remote DBMS.

• srvproc: The Open Server process handle to use to send results to the client.

• last_row_cnt: Pointer to the number of rows transmitted to the client in the last set of
results in the command batch. This can be used by the calling function to determine
whether any such rows were returned to the client and to set the row count in the final
srv_senddone() statement. If not required, set this field to NULL.

• tot_row_cnt: Pointer to the total number of rows transmitted to the client. This
determines whether any command result rows were transmitted to the client. If not
required, set this field to NULL.

Return values:

• CS_SUCCEED: Successfully returned data rows (if any).

• CS_FAIL: Error.

ASC_in_system
This function checks whether or not the specified component is defined in the specified
territory and system. This function is related to high-availability installations.

Syntax:

CS_RETCODE ASC_in_system(CS_CHAR *territory,

CS_CHAR *system,
CS_CHAR *component)

Arguments:

• territory: Name of the ASAP territory to check.

• system: Name of the ASAP system to check within the territory.

• component: Name of the component to check in the system.

Return values:

• CS_SUCCEED: The component is defined for the ASAP territory and system.

• CS_FAIL: The component is not defined for the ASAP territory and system.

ASC_in_territory
This function checks if the specified component is defined in the specified territory.

Syntax:

CS_RETCODE ASC_in_territory(CS_CHAR *territory,

CS_CHAR *component)

Arguments:

Chapter 3
Server library interface

3-59

• territory: Name of the ASAP territory to check.

• component: Name of the component to check in the system.

Return values:

• CS_SUCCEED: The component is defined for the ASAP territory.

• CS_FAIL: The component is not defined for the ASAP territory.

ASC_lockmutex
This function locks mutexes.

See also ASC_unlockmutex.

Syntax:

CS_RETCODE ASC_lockmutex(SRV_OBJID mutex_id,

CS_INT waitflag,
CS_INT *infop)

Arguments:

• mutex_id: The mutex ID returned during locking.

• waitflag: Specifies whether the thread requesting the lock of the mutex should
wait or return if the mutex cannot be locked.

• infop: A pointer to a CS_INT. Refer to the appropriate Sybase documentation for
appropriate values.

Return values:

• CS_SUCCEED: The mutex was locked successfully.

• CS_FAIL: An error in the operation.

ASC_lock_strtok
Since the UNIX function strtok() maintains a global or static variable of its current
position within the string, it is not multi-thread-safe. ASC_lock_strtok is used in
conjunction with strtok() in a multi-threaded environment. After you have finished using
strtok(), ASC_unlock_strtok() must be called to free the associated mutex.

Syntax:

void ASC_lock_strtok(void)

ASC_malarm
This function sets up an asynchronous alarm for a thread. It provides the same
functionality as ASC_alarm but is used to provide timing of less than one second.

See also "ASC_alarm."

Syntax:

void ASC_malarm(CS_FLOAT timeout,

Chapter 3
Server library interface

3-60

SRV_OBJID msgqid,
int *msg,
long msg_operation)

Arguments:

• timeout: Time, in milliseconds, after which the alarm goes off.

• msgqid: The thread message queue to which to send the thread message. Note that the
calling thread must have a dedicated thread-message queue in order to receive the alarm
notification.

• msg: An integer pointer to the previously allocated alarm message data area.

• msg_operation: The message operation used to identify an alarm message being
received.

ASC_mem_alloc
This function allocates a fixed size block from the memory pool.

See also ASC_mem_free, ASC's libcontrol RPC call “mem_usage" for usage statistics, and
ASC_mem_create libcontrol API call to create a memory pool.

Upon startup, a pool of memory is created. The pool can hold several records of information.
If the pool is not large enough, it is automatically resized to accommodate the new records.
When ASC_mem_alloc is called, a record is assigned as in_use and returned as a VOIDPTR
(a generic C pointer which can be defined as any type).

The ASAP Memory Manager controls the constant allocation, deallocation, and reallocation
of memory. These procedures are expensive in terms of CPU usage. The pool is allocated
only once. All the ASC_mem_allocs and ASC_mem_free functions that are called, simply
update the in_use flag of each memory record.

Syntax:

VOIDPTR ASC_mem_alloc(int line, char *file,

ASC_MEM_POOL *pool)

Arguments:

• line: The line number of the function in the source file, "__LINE__".

• file: The file from which the function was called, "__FILE__".

• ASC_MEM_POOL *pool: The name of the memory pool.

ASC_mem_free
This function frees a fixed sized block and returns it to the memory pool.

See also ASC_mem_alloc, ASC's libcontrol RPC call “mem_usage" for usage statistics, and
ASC_mem_create libcontrol API call to create a memory pool.

When the ASC_mem_alloc pointer allocated is no longer needed, ASC_mem_free
automatically returns it to the correct pool.

The ASAP Memory Manager controls the constant allocation, deallocation, and reallocation
of memory. These procedures are expensive in terms of CPU usage. The pool is allocated

Chapter 3
Server library interface

3-61

only once. All the ASC_mem_allocs and ASC_mem_free functions that are called
update the in_use flag of each memory record.

Syntax:

void ASC_mem_free(int line,

char *file,
VOIDPTR p)

Arguments:

• line: The line number of the function in the source file, "__LINE__".

• file: The file from which the function was called, "__FILE__".

• VOIDPTR: A generic C pointer which can be defined as any type.

ASC_msleep
This function allows a thread to sleep for the time, in seconds, that you specify. If you
want to set the time in milliseconds, specify the fractional part of a second.

See also ASC_sleep.

Syntax:

void ASC_msleep(CS_FLOAT seconds)

Arguments:

• seconds: Number of seconds to send the thread into sleep state.

ASC_poll
This function is the Application server poller that provides timeout. The Open Server
Poller function srv_poll() in the blocking mode (SRV_M_WAIT) does not provide a
timeout. The alarm() call cannot be used to time out the srv_poll() call since the Sleep
Manager thread provided by ASAP Server API uses the alarm() to implement sleep
management. ASC_poll() provides srv_poll() functionality allowing for timeout like
UNIX I/O multiplexing call poll().

This function declaration is the same as for srv_poll() except for the additional
parameter that specifies the timeout in seconds. There is also an additional return
value, -2, which indicates that srv_poll() timed out.

ASC_poll() implements the timeout by creating a socketpair and sending the write
endpoint of the socketpair in a timeout request message to the sleep manager. The
read endpoint of the socketpair is added to the list of ports to be watched for. If an
event occurs in any of the ports, the sleep manager is sent a timer cancellation, and
the return value from the srv_poll() is returned. Otherwise, if the timeout message from
sleep manager is received on the read endpoint of the socketpair connection, it returns
a value of -2 to indicate timeout.

All ASAP Application servers should call ASC_poll() instead of directly calling
srv_poll().

Setting a timeout of 0 is equivalent to calling srv_poll() with wait-flag set to
SRV_M_NOWAIT.

Chapter 3
Server library interface

3-62

Setting a timeout of -1 is equivalent to calling srv_poll() with wait-flag set to SRV_M_WAIT.

Setting a timeout > 0 provides poll-like functionality.

Syntax:

CS_INT ASC_poll(SRV_POLLFD *fdsp,

CS_INT nfds,
CS_FLOAT timeout)

Arguments:

• fdsp: Pointer to an array of SRV_POLLFD structures with one element for each open file
descriptor of interest.

• nfds: Number of elements in the *fdsp array.

• timeout: Number of seconds for srv_poll timeout. Open servers do not support
granularity of less than seconds. Valid values are: -1, 0, > 0. If the timeout_seconds
parameter is a value of -1, ASC_poll() does not return until at least one specified event
has occurred. If the value of the parameter is 0, ASC_poll() does not wait for an event to
occur but returns immediately, even if no specified event has occurred. This is consistent
with UNIX poll behavior.

Return values:

• n: The number of file descriptions.

• 0: No file descriptors are ready, or ASC_poll timed out. This is consistent with UNIX poll
behavior.

• -1: An error occurred.

ASC_poll_timer
This function sets up an asynchronous alarm to provide timeout while polling for data for a
thread. The msg argument uniquely identifies the timer and must point to a data segment
where the first (4 bytes) is the message operation. When the timer expires, the message
integer pointer is written to the socket sock_fid.

See also "ASC_poll ."

To cancel the timer, set the timeout argument to zero (0.0) seconds.

Any thread calling this function MUST be polling for messages on the read end of the
socketpair connection.

The format and contents of the message may have any format because the msg pointer is
written to the sock_fid. The caller must be responsible for handling if the message pointed to
has been deallocated.

Syntax:

void ASC_poll_timer(CS_FLOAT timeout,

int sock_fid,
int *msg)

Arguments:

Chapter 3
Server library interface

3-63

• timeout: Time, in seconds, specified as the floating point value after which the
timer expires. The granularity is to the millisecond.

• sock_fid: Write end of the socketpair connection over which the timer notification
is sent. The calling thread must create a socketpair, allocate one end as the write
end and the other as the read end, send it to sleep manager as part of
ASC_poll_timer(), and poll for messages on the read end of the socketpair.

• msg: An integer pointer to the previously allocated timer message data area. The
caller is responsible for populating the data area with information needed on
timeout notification from the sleep manager and deallocating the data area.

ASC_putmsgq
This function adds a thread message to a particular message queue.

See also ASC_createmsgq, ASC_getmsgq, and ASC_deletemsgq.

Syntax:

CS_RETCODE ASC_putmsgq(SRV_OBJID mqid,

CS_VOID *msgp,
CS_INT flags)

Arguments:

• mqid: Name of the message queue.

• msgp: Pointer to the thread message.

• flags: Message processing flags.

Return values:

• CS_SUCCEED: The message was sent successfully.

• CS_FAIL: An error occurred during message send.

ASC_reg_init_func
This function registers an initialization function within the application server with a
priority specified by its first argument. Such functions execute in serial order by priority
by the initialization thread within the server API. While this thread executes these
initialization functions, an initialization mutex is locked, preventing other threads from
starting up until all the initialization functions have finished.

Such initialization functions can perform network I/O activities such as loading static
tables from the database, etc. This type of network activity cannot be performed from
within the SRV_START handler. Therefore, it is necessary to spawn a separate
initialization thread to execute these tasks.

The initialization thread does not begin executing until the SRV_START event handler
has finished, that is, appl_initialize() has returned, allowing the application to register
its initialization functions before the initialization thread begins.

This function must be called from within the SRV_START handler function, either in
the API or in the appl_initialize() application-supplied function.

Syntax:

Chapter 3
Server library interface

3-64

void ASC_reg_init_func(int level,

char *desc,
CS_RETCODE (*init_func)(void))

Arguments:

• level: Priority of the initialization function. 0 to 10 is reserved for the API. The application
server code can use > 10.

• desc: Description of the initialization function.

• init_func: Function pointer to initialization function.

ASC_send_text
This function sends a language command, text buffer, and if required, the contents of the
specified file to an application server. The command that is placed on the first line of the text
to be sent determines which language handler the destination server invokes.

See also add_lang_handler().

If the filename is set, the command, the contents of the file, and the buffer are transmitted in
that order. If the filename is NULL, the command and buffer are transmitted.

This function also determines whether or not there is a thread already spawned to act as a
language driver thread to the specified application server. If a thread exists, it sends a
synchronous thread message to that thread, which then transmits the text buffer and returns
a status value to the calling function.

If no such thread currently exists, a language driver thread is spawned within the server
process to establish and maintain a network connection to the destination application server.
From this point on, all text transmission requests are directed to this thread.

It is important that you specify the correct command in this function so that the destination
application server executes the correct language handler.

Syntax:

CS_RETCODE ASC_send_text(char *server,

char *command,
char *filename,
char *buf)

Arguments:

• server: The logical name for the application server to where the language request is to
be transmitted.

• command:Character pointer to a command that is placed in the first line of the
transmitted text and is used by the receiving application server to determine the relevant
language handler to execute.

• filename: The location for the file that is to be transmitted. If you are not transmitting a
file, set this to NULL.

• buf: Character buffer to be transmitted. If you specify a filename, this buffer is appended
to the file contents in the text. If you are not transmitting a buffer, set this to NULL.

Return values:

Chapter 3
Server library interface

3-65

• CS_FAIL: Unable to open a network connection to the destination server. The
invocation of dbsqlexec() failed.

• CS_SUCCEED: The text was successfully transmitted.

ASC_sendinfo
This function sends an information message to the client.

Syntax:

CS_RETCODE ASC_sendinfo(SRV_PROC *sp,

CS_INT msgno,
CS_CHAR *msg)

Arguments:

• sp: Pointer to the internal thread control structure.

• msgno: Message number being sent.

• msg: Message text to send.

Return values:

• CS_SUCCEED: Message was sent to client.

• CS_FAIL: Error occurred sending message.

ASC_set_securedata
Updates or adds user-defined, secure data.

Syntax:

CS_RETCODE ASC_set_securedata(char *name,

char*value,
char *desc);

Arguments:

• name: Key to retrieve the secure data entry.

• value: Value (password) of the secure data entry.

• desc: Description of the secure data entry.

ASC_spawn
This function sets the server process data segment and then spawns a generic Open
Server thread that sets up the application thread.

Using this function, you can pass a message queue name to be created by this
function. You can also specify a main function, an exit function, and request that a
database connection be established for the spawned thread.

You can access the structure created within the API to manage this spawned thread
using the following in-line functions:

Chapter 3
Server library interface

3-66

• ASC_SRV_DBPROC – If you request that a DBPROC be created, this macro points to
the DBPROCESS structure allocated by the API for use by this thread.

• ASC_SRV_MSGQID – If you request that a message queue be created for this thread,
the message queue ID of the message queue created by the API.

• ASC_SRV_DATA – If the dataseg_size is not zero, this serves as a pointer to the data
segment that is allocated by the API for use by the spawned thread. The thread, or any
function called by it, may reference this data segment at any time using this macro.

• ASC_SRV_STARTUP – The data segment passed as an argument to the spawned
function. This is the start_seg passed to ASC_spawn().

Syntax:

CS_RETCODE ASC_spawn(CS_CHAR *name,

int (*main_fn)(VOIDPTR data_seg),
VOIDPTR start_seg,
CS_INT dataseg_size,
CS_CHAR *msgname,
CS_BOOL dbproc_required,
CS_RETCODE (*exit_handler)(SRV_PROC *srvproc))

Arguments:

• name: Name of the server process.

• main_fn: Pointer to the main function of the application thread. When this function
terminates, the server process terminates.

• start_seg: Pointer to the startup data segment of the server process.

• dataseg_size: Size of local data segment required by the application.

• msgqname: The message queue that the server process will read. If no message queue
is required, set this to NULL.

• dbproc_required: Identifies whether or not the server process requires an application
database process.

• exit_handler: Pointer to the function that is called when the server process terminates. If
no server process is required, set this field to NULL.

Return values:

• CS_SUCCEED: The spawning of the server process was successful.

• CS_FAIL: No server processes were available.

ASC_srv_field_bool
This function calls srv_props to return a field in the server structure:

• ASC_srv_field_str – Retrieves strings

• ASC_srv_field_int – Retrieves integers

• ASC_srv_field_bool – Retrieves boolean

Syntax:

CS_BOOL ASC_srv_field_bool(CS_INT property)

Arguments:

Chapter 3
Server library interface

3-67

• property: The property to retrieve.

Return values:

• CS_BOOL: Boolean value for the server property.

ASC_srv_field_int
This function calls srv_props to retrieve a field in the server structure:

• ASC_srv_field_str – Retrieves strings

• ASC_srv_field_int – Retrieves integers

• ASC_srv_field_bool – retrieves boolean

Syntax:

CS_INT ASC_srv_field_int(CS_INT property)

Arguments:

• property: The property to retrieve.

Return values:

• CS_INT: Integer value for the server property.

ASC_srv_field_str
This function calls srv_props to retrieve a field in the server structure:

• ASC_srv_field_str – retrieves strings

• ASC_srv_field_int – Retrieves integers

• ASC_srv_field_bool – Retrieves boolean

Syntax:

CS_VOID ASC_srv_field_str(CS_INT property,

CS_CHAR *buf,
CS_INT size)

Arguments:

• property: The property to retrieve.

• buf: Pointer to the destination buffer for string properties.

• size: Maximum size of the destination buffer.

ASC_srv_sleep
This is a wrap function around srv_sleep function. ASC adds an extra feature: if sleep
is interrupted by a signal of the same variety, the thread continues to sleep.

The thread sleeps until srv_wakeup is called on the same event.

For more information on the srv_sleep function, refer to Sybase documentation.

Syntax:

Chapter 3
Server library interface

3-68

CS_RETCODE ASC_srv_sleep(CS_VOID *sleepeventp,

CS_CHAR *sleeplabelp,
CS_INT sleepflags,
CS_INT *infop,
CS_VOID *reserved1,
CS_VOID *reserved2)

Arguments:

• sleepeventp: A generic void pointer that srv_wakeup uses to wake the thread or threads.
The pointer should be unique for the operating system event that the threads are
sleeping on. For example, if a message is passed to another thread, the sending thread
could sleep until the message is processed. The pointer to the message would be a
useful sleep event that the receiving thread could pass to srv_wakeup to wake the
sender.

• sleeplabelp: A pointer to a null terminated character string that identifies the event that
the thread is sleeping on. This is useful for determining why a thread is sleeping. An
application can display this information using the Open Server system registered
procedure sp_ps.

• reserved1: A platform-dependent handle to a mutex. This argument is ignored on non-
preemptive platforms. Set it to (CS_VOID*)0 on non-preemptive platforms.

• reserved2: This parameter is not currently used. Set it to 0.

• sleepflags: The value of this flag determines the manner in which the thread wakes up.

• infop: A pointer to a CS_INT.

For more information on the appropriate values for sleepflags and infop, refer to the Sybase
documentation.

ASC_stack_trace
This function prints the stack trace to the server's diagnostic logfile. It calls the Open Server
srv_dbg_stack() function to perform this operation.

See also ASC_diag(), ASC_hex_dump(), ASC_rpc_dump().

This function is supported only on platforms where Sybase supports debug capability (this is
governed by the SRV_C_DEBUG capability). It is not supported under AIX.

Syntax:

void ASC_stack_trace(DIAG_LEVEL level,

char *type,
int line,
char *file)

Arguments:

• level: The diagnostic level for the function call. See ASC_diag() for more information.

• type: Brief description of the circumstances for the function call. It helps to identify such
entries in the server's logfile.

• line: The line in the source file at which the function was called.

• file: The source file from which this function was called.

Chapter 3
Server library interface

3-69

ASC_thread_field_bool
This function calls srv_thread_props to retrieve a field in the thread structure:

• ASC_thread_field_str – Retrieves strings

• ASC_thread_field_int – Retrieves integers

• ASC_thread_field_bool – Retrieves boolean

Syntax:

CS_BOOL ASC_thread_field_bool(SRV_PROC *sp,

CS_INT property)

Arguments:

• sp: Current thread structure.

• property: The property to retrieve.

Return values:

• CS_BOOL: Boolean value for the thread property.

ASC_thread_field_int
This function calls srv_thread_props to retrieve a field in the thread structure:

• ASC_thread_field_str – Retrieves strings

• ASC_thread_field_int – Retrieves integers

• ASC_thread_field_bool – Retrieves boolean

Syntax:

CS_INT ASC_thread_field_int(SRV_PROC *sp,

CS_INT property)

Arguments:

• sp: Current thread structure.

• property: The property to retrieve.

Return values:

• CS_INT: Integer value for the thread property.

ASC_thread_field_str
This function calls srv_thread_props to retrieve a field in the thread structure:

• ASC_thread_field_str – Retrieves strings

• ASC_thread_field_int – Retrieves integers

• ASC_thread_field_bool – Retrieves boolean

Syntax:

Chapter 3
Server library interface

3-70

CS_VOID ASC_thread_field_str(SRV_PROC *sp,

CS_INT property,
CS_CHAR *buf,
CS_INT size)

Arguments:

• sp: Current thread structure.

• property: The property to retrieve.

• buf: Pointer to the destination buffer for string properties.

• size: Maximum size of the destination buffer.

ASC_threadproc
This function gets the pointer to the server process associated with the current thread.

Syntax:

SRV_PROC *ASC_threadproc(void)

Return values:

• SRV_PROC*: Pointer to current server process.

ASC_unlockmutex
This function unlocks mutexes.

See also ASC_lockmutex.

Syntax:

CS_RETCODE ASC_lockmutex(SRV_OBJID mutex_id)

Arguments:

• mutex_id: The mutex ID.

Return values:

• CS_SUCCEED: The mutex was unlocked successfully.

• CS_FAIL: An error occurred.

ASC_unlock_strtok
Because the UNIX function strtok() maintains a global or static variable of its current position
within the string, it is not multi-thread-safe. ASC_lock_strtok is used in conjunction with
strtok() in a multithreaded environment. When finished using strtok(), ASC_unlock_strtok()
must be called to free the associated mutex.

Syntax:

void ASC_unlock_strtok(void)

Chapter 3
Server library interface

3-71

background_process_init
This function initializes the background processes in the server.

Syntax:

CS_RETCODE background_process_init (BACKGROUND_PROCESS *tbl)

Arguments:

• tbl: Table listing the background processes to be started in the server.

Return values:

• CS_SUCCEED: The background processes started successfully.

• CS_FAIL: An error occurred and the processes could not start.

Server application data types
This section describes all of the data types for the Server Application.

The following list provides an overview of the data types for the Server Application.

• BACKGROUND_PROCESS: Defines a background thread or service thread
spawned by the application server.

• LANG_HANDLER: Describes a language event handler.

• REG_PROC: Registered procedure application definition.

• RPC: Defines an RPC that will be accepted by the server.

• RPC_PARAM: Defines the parameters for a specific RPC.

• USEREVENT: Defines user events and the appropriate event handler.

BACKGROUND_PROCESS abstract data type
This structure defines the background or service thread spawned by the application
server.

Refer to ASC_spawn() for further details about spawning service threads.

Syntax:

typedef struct {

char *qname;
SRV_OBJID *msgqxp;
int (*start)(void *data_seg);
void *data_seg;
BACKGROUND_PROCESS;

Members:

• qname: Name of the message queue to be created for this service thread.

• msgqxp: Pointer to the location where the message queue ID is to be placed.

• start: Function pointer to the main thread function.

Chapter 3
Server library interface

3-72

• data_seg: Pointer to a data segment to be made available to the service thread.

LANG_HANDLER abstract data type
This structure describes a language event handler.

Syntax:

typedef struct {

char command[LANG_HAND_COMMAND_L+1];
char usage[LANG_HAND_USAGE_L+1];
int (*handler)(SRV_PROC *srvproc, CS_CHAR *langptr,
CS_INT langlen);
LANG_HANDLER;

Members:

• command: The command associated with the language request. This will be the first line
of the language text buffer that is passed to the application server.

• usage: The usage of language handler. This usage string is returned to the user in the
lang_list RPC.

• handler: The function to call to handle this language request. The function syntax is the
language handler syntax.

REG_PROC abstract data type
This data type has been superseded by the CM_RPC data type.

This data type is a registered procedure application definition.

Syntax:

typedef struct {

char *procname;
CS_RETCODE (*handler)(SRV_PROC *srvproc);
REG_PROC_PARAM *param_tbl;
REG_PROC;

Members:

• proname: Name of the registered procedure being defined.

• handler: RPC handler to process the registered procedure when it is executed.

• param_tbl: Register procedure parameter table.

RPC abstract data type
Any new code for registered procedures should use the CM_RPC data type instead of this
datatype. RPCs continue to use this data type.

This structure defines an RPC that is accepted by the server.

The function add_appl_rpc() is used to add the RPC to the list of RPCs being handled by the
server.

Syntax:

Chapter 3
Server library interface

3-73

typedef struct {

CS_CHAR *rpcname;
CS_CHAR *rpcusage;
RPC_PARAM *rpcparams;
CS_RETCODE (*rpchandler)(SRV_PROC *srvproc);
short min_params;
short max_params;
RPC;

Members:

• rpcname: The name to be used by clients when invoking the RPC (for example,
exec SERVER...rpcname).

• rpcusage: The usage message that is sent to the user if there is a parameter
mismatch.

• rpcparams: Parameters necessary to invoke the RPC. Set this to NULL if no
parameters are required to invoke the RPC.

The “rpcparams" field uses the “RPC_PARAM" datatype to specify the parameters
used by the RPC.

• rpchandler: Pointer to a function to be called when the RPC is received by the
library to handle the request. The function will have to accept a pointer to an
SRV_PROC structure which contains information describing the server process.

• min_params: The minimum number of parameters required by the RPC before it
is executed.

• max_params: The maximum number of parameters that can be accepted by the
RPC before it is executed.

The “min_params" and “max_params" fields are determined at run-time by the API
when it scans the parameter table.

RPC_PARAM abstract data type
This structure defines the parameters for an RPC.

When an RPC is created using the datatype “RPC", you can specify an optional table
of RPC parameters. This optional table contains a list of this datatype. Specify the end
of the table by setting the paramname member to END_PARAM_TABLE.

Any new code should use the CM_RPC_PARAM data type instead of this datatype.

For more information, refer to datatype “RPC".

This structure is used to defined tables and should not be used as a general purpose
data structure.

Syntax:

typedef struct {

char *paramname;
CS_BOOL null_allowed;
CS_BOOL optional;
int paramtype1;
int paramtype2;

Chapter 3
Server library interface

3-74

int paramtype3;
RPC_PARAM;

Members:

• paramname: Parameter name in the form @name. To mark the end of table, set this
parameter to END_PARAM_TABLE.

• null_allowed: A boolean field. Specifies whether the parameter allows null values.

• optional: A boolean field. Specifies whether or not the parameter can be omitted when
the RPC is called. In this case, the processing function for the RPC is generating a
default value.

• paramtype<n>: These fields specify different parameter types (maximum of three) that
are valid for the parameter. The types that can be specified, including CS_CHAR_TYPE,
CS_SMALLINT_TYPE, CS_INT_TYPE, etc.

USEREVENT abstract data type
This structure defines user events and the appropriate event handler. To define events, you
need to define a table of this structure. To mark the end of the table, set the event field to
NULL. The function ASC_define_events() is used to define user events to be handled by the
server.

Syntax:

typedef struct {

int *event;
char *name;
CS_RETCODE (*event_handler)(SRV_PROC *srvproc);
USEREVENT;

Members:

• event: Pointer to the integer that is used to identify the user-defined event in the server.
To mark the end of the table, set this field to NULL.

• name: The name of the event. This is useful for diagnostics and logs to show the current
server event by name.

• event_handler: Pointer to the function that is called to handle the event when it occurs in
the server.

Client library interface
The client application API enables the Control Server to manage a client application. The
client application logic must be written as part of the appl_initialize() function found in the
Common Interface API.

A second client library, libclient_external, is also provided. Use libclient_external for client
applications that require a separate main() function.

The functions in the client application library are:

• Global variable and termination functions

• Inline functions

• Client application library functions

Chapter 3
Client library interface

3-75

Global variable
The following global variable is defined by the Client API:

• SQLSrvName: The name of the SQL Server.

Termination-related functions
The API functions related to application termination allow application-specific cleanup
as part of client application termination.

Inline function
The following inline function is defined by the Client API:

• SQL Server name: Terminates the client application.

Client application library functions
The following is a client application library function.

appl_cleanup
This API function allows the client application to perform application-specific cleanup
during the termination of the application.

See also appl_initialize() in the Common Interface API.

Syntax:

void appl_cleanup(void)

Interpreter library
The Interpreter API is used to execute State Tables in ASAP. Within a server, you can
define custom State Table actions to enhance the standard State Table language. The
functionality described in this section is provided by the API library, libinterpret.

For servers where there are no network elements, you need to define pseudo-network
elements with pseudo network element technologies and software generics. For
example, when the Interpreter is used in an SRP, the network element host is typically
called the name of the SRP, for instance, CISSRP, where the technology is CIS and
the software generic 1.0.

With the functions described in this chapter you can perform:

• Interpreter initialization

• Action handling

Chapter 3
Interpreter library

3-76

Inline functions
The inline functions and macros specified in this section are used within a State Table action
handler. The State Table action handler must be defined with its input argument called data.

• ASDL_CMD: Identifies the current ASDL command being processed by the Interpreter.

• CMD_DBG_INFO: This macro is used to determine whether the debugger is active for
the Interpreter. This macro functions as follows: if (CMD_DBG_INFO != NULL) { ...
Debugger Active ...}

• CMD_DIAG: This macro is used to log diagnostic messages from the State Table action
handlers. The macro should be used instead of ASC_diag calls. If the State Table
debugger is active, the messages are sent to both the diagnostics file for the server and
the trace file for the debugger. If not, the messages are sent to the diagnostics file.

• CMD_USERID: Identifies the user who initiated the work order when the Interpreter is
used in an NEP.

• CMD_WO_ID: Identifies the ASAP work order identifier that the ASDL command belongs
to when the interpreter is used in an NEP.

• CUR_ACT_INT: Specifies the current action integer to be used by the Interpreter's action
handler.

• CUR_ACT_RECORD: Identifies the action record being used to process the current
State Table action.

• CUR_ACT_STRING: Specifies the current action string to be used by the Interpreter's
action handler.

• CUR_ACTION: Specifies the current State Table action being handled by the Interpreter.

• CUR_LINE: Specifies the current State Table program line number being executed by the
Interpreter.

• GEN_RESPONSE_FILE (): Generates the UNIX filename to be used to store the switch
response.

• HOST_CLLI: Identifies the network element host associated with the Interpreter.

• PROGRAM_COUNTER: Specifies the current program counter of the Interpreter. The
State Table action handler changes this value before returning the control to the
Interpreter.

• RESPONSE_FILE: Identifies the UNIX file that is used by the command processor for
storing the switch response to a network element command. This is only meaningful
when used in an NEP.

• SFTWR_LOAD: Identifies the software version of the network element.

• SRQ_ID: Specifies the service request identifier associated with the ASDL when the
Interpreter is used in a NEP.

• TECH: Identifies the technology of the network element (for instance, DMS).

Interpreter library functions
This section describes the functions in the Interpreter Library.

Chapter 3
Interpreter library

3-77

ASC_alloc_Interpreter
This function allocates and initializes an Interpreter data segment and sets it up to be
used by an application that is not the command processor.

Syntax:

CMD_PROC_DATA *ASC_alloc_Interpreter(CS_CHAR *host_clli,

CMD_PROC_MSG *msg,
PORT_BIND_ST *port)

Arguments:

• host_clli: Determines the technology and software version.

• msg: Pointer to the command processor message. Can be null.

• port: Pointer to the Port Bind structure. Can be null.

Return values:

• CMD_PROC_DATA*: Pointer to the Interpreter data segment.

• NULL: An error occurred.

ASC_delete_int_var
This function deletes the Interpreter variable you specify.

This is an inline function.

Syntax:

CS_RETCODE ASC_delete_int_var(CMD_PROC_DATA *data,

char *label)

Arguments:

• data: Pointer to the Interpreter data segment.

• label: Interpreter variable label.

ASC_free_Interpreter
This function releases the memory associated with the Interpreter data segment.

Syntax:

void ASC_free_Interpreter(CMD_PROC_DATA *data)

Arguments:

• data: Interpreter data segment.

ASC_get_dev_sess_data
This function gets the device session information structure from the Interpreter.

This is an inline function.

Chapter 3
Interpreter library

3-78

See also ASC_set_dev_sess_data.

Syntax:

VOIDPTR ASC_get_dev_sess_data(COMM_DATA_ST *comm_data)

Arguments:

• comm_data: Pointer to the communication data structure within the Interpreter data
segment.

Return values:

• dev_sess_data: Pointer to the device-specific information data structure.

ASC_get_int_appl_data
This function retrieves the application data segment for the Interpreter.

This is an inline function.

Syntax:

VOIDPTR ASC_get_int_appl_data(CMD_PROC_DATA *data)

Arguments:

• data: Pointer to the Interpreter data segment.

Return values:

• VOIDPTR: Application data segment in use for the Interpreter.

ASC_get_int_var
This function retrieves the value for the Interpreter variable you specify.

This is an inline function.

Syntax:

CS_RETCODE ASC_get_int_var(CMD_PROC_DATA *data,

char *label,
char *value)

Arguments:

• data: Pointer to the Interpreter data segment.

• label: Interpreter variable label.

• value: Variable to save the value in.

Return values:

• CS_SUCCEED: Interpreter variable retrieval was successful.

• CS_FAIL: The retrieval failed.

Chapter 3
Interpreter library

3-79

ASC_init_Interpreter
This function initializes the Interpreter subsystem within a server. This initialization
includes starting the cache manager, initializing the regular expression system,
initializing the database process pool, etc.

The Interpreter can only be initialized once per process. Subsequent calls to
ASC_init_Interpreter() are ignored.

Syntax:

void ASC_init_Interpreter(CS_CHAR *debug_host,

DEBUG_CONFIGURATION_ST *dbg_cfg)

Arguments:

• debug_host: String that specifies the host CLLI that is used for debugging. It is
currently not required.

• dbg_cfg: Field that specifies the debug configuration structure for the server. For
servers that use an Interpreter other than an NEP, it is set to NULL.

ASC_Interpreter
This function sets up the appropriate data fields in the Interpreter data segment and
calls the main Interpreter function to execute the State Table.

Syntax:

CS_RETCODE ASC_Interpreter(CMD_PROC_DATA *data,

CS_CHAR *asdl_cmd,
CS_BOOL auto_free)

Arguments:

• data: Command processor data segment.

• asdl_cmd: ASDL command to be executed. The ASDL command is directly
related to technology and software load, and this determines the State Table (as
defined in tbl_nep_asdl_prog).

• auto_free: Boolean flag. Indicates if the Interpreter parameters are automatically
made available upon completing the ASDL command.

Return values:

• CS_SUCCEED: State Table execution for the ASDL command was successful.

• CS_FAIL: State Table execution failed for the ASDL command.

ASC_set_dev_sess_data
This function sets the device session information structure for the Interpreter.

This is an inline function.

See also ASC_get_dev_sess_data.

Chapter 3
Interpreter library

3-80

Syntax:

void ASC_set_dev_sess_data (CMD_PROC_DATA *data,

VOIDPTR *dev_sess_data)

Arguments:

• data: Pointer to the Interpreter data segment.

• dev_sess_data: Void pointer to a device-specific information structure.

ASC_set_int_appl_data
This function sets the application data segment for the Interpreter.

This is an inline function.

Syntax:

void ASC_set_int_appl_data(CMD_PROC_DATA *data,

VOIDPTR *appl_seg)

Arguments:

• data: Pointer to the Interpreter data segment.

• appl_seg: Pointer to a user-defined application data segment.

ASC_store_int_var
This function saves the Interpreter variable in the Interpreter application data segment.

Syntax:

CS_RETCODE ASC_store_int_var(CMD_PROC_DATA *data,

char *label,
char *value)

Arguments:

• data: Pointer to the Interpreter data segment.

• label: Interpreter variable label.

• value: Variable to save the value in.

Return values:

• CS_SUCCEED: The variable was saved in the Interpreter application data segment
successfully.

• CS_FAIL: The save failed.

CMD_delete_var
This function deletes a variable in the Interpreter data segment.

Syntax:

CS_RETCODE CMD_delete_var(CMD_PROC_DATA *data,

Chapter 3
Interpreter library

3-81

char *label)

Arguments:

• data: Pointer to the Interpreter data segment.

• label: Interpreter variable label.

Return values:

• CS_SUCCEED: The variable was deleted successfully in the Interpreter data
segment.

• CS_FAIL: The deletion failed.

CMD_expand_action_string
This function copies the current action string into the buffer you specify and performs
variable substitution.

Syntax:

CS_RETCODE CMD_expand_action_string(CMD_PROC_DATA *data,

char *buf)

Arguments:

• data: Pointer to the local data segment for the command processor.

• buf: Pointer to the buffer that holds the expanded action string.

Return values:

• CS_SUCCEED: Successfully expanded the action string to the specified buffer.

• CS_FAIL: Could not expand the action string.

CMD_free_assignment
This function releases the memory for a specified assignment buffer that has been
allocated using the CMD_get_assignment function.

Syntax:

void CMD_free_assignment(CMD_ASSIGNMENT_BUF *buf)

Arguments:

• buf: Pointer to the assignment buffer to be freed.

CMD_free_bvar_assignment
This function releases the memory for an assignment buffer that has been allocated
using the CMD_get_bvar_assignment function.

See also CMD_get_bvar_assignment.

Syntax:

void CMD_free_bvar_assignment(CMD_BVAR_ASSIGNMENT_BUF *buf)

Chapter 3
Interpreter library

3-82

Arguments:

• buf: Pointer to the assignment buffer to be freed.

CMD_free_dbproc
This function frees the database process.

Syntax:

void CMD_free_dbproc(DBPROCESS *dbproc)

Arguments:

• dbproc: Pointer to the DBPROCESS.

CMD_get_assignment
This function allocates an assignment buffer, parses the current action string, and stores the
results in the buffer of a linked list. The primary difference between this function and the
CMD_parse_assignment is that, with this function, the number of arguments is unlimited. If
an error is detected, NULL is returned.

Variable substitution is performed when you specify variables in the action string. The format
of the action string is as follows:

<arg>::=constant/%var
%var::=<arg1>:<arg2>:..:<argN>

It is the caller's responsibility to free the allocated buffer (which is a linked list) by calling
CMD_free_assignment after processing is done.

Syntax:

CMD_ASSIGNMENT_BUF *CMD_get_assignment (CMD_PROC_DATA *data)

Arguments:

• data: Pointer to Interpreter data segment.

Return values:

• Pointer to assignment buffer: Pointer to the retrieved assignment buffer.

CMD_get_bvar
This function scans the variable table for the variable you specify and then returns the
appropriate value and status.

Syntax:

CS_RETCODE CMD_get_bvar(CMD_PROC_DATA *data,

CS_CHAR *label,
CS_VOID **value,
CS_INT *len,
CS_VOID **template)

Arguments:

• data: Pointer to the local data segment for the command processor.

Chapter 3
Interpreter library

3-83

• label: Field that specifies the name of the binary variable.

• value: Indirect pointer to the data buffer in which the binary value is saved (return
parameter).

• len: Integer pointer to save length of the buffer (return parameter).

• template: Indirect pointer to the binary data template structure. If used, it
describes the fields and structure of the binary variable (return parameter).

Return values:

• CS_SUCCEED: The variable is defined and its value has been stored in the
destination specified.

• CS_FAIL: The variable does not exist or it is not a binary variable.

CMD_get_bvar_assignment
This function allocates an assignment buffer, parses the current action string, and
stores the results in the buffer of a linked list. A difference between this function and
the CMD_get_assignment is that, with this function, the linked list node can hold binary
data.

Variable substitution is performed when you specify variables in the action string. The
format of the action string is as follows:

<arg>::=constant/ASCII variable/Binary variable
%var::=<arg1>:<arg2>:..:<argN>

It is the caller's responsibility to free the allocated buffer (which is a linked list) by
calling CMD_free_bvar_assignment after processing is done.

Syntax:

CMD_BVAR_ASSIGNMENT_BUF *CMD_get_bvar_assignment(CMD_PROC_DATA *data)

Arguments:

• data: Pointer to Interpreter data segment.

Return values:

• Assignment buffer: Pointer to assignment buffer.

CMD_get_var
This function scans the variable table for the ASCII variable you specify and then
returns the value and status.

See also "CMD_store_var ."

Syntax:

CS_RETCODE CMD_get_var(CMD_PROC_DATA *data,

char *label,
char *value)

Arguments:

• data: Pointer to the local data segment for the command processor.

Chapter 3
Interpreter library

3-84

• label: Name of the variable.

• value: Buffer where the value of the variable is to be stored.

Return values:

• CS_SUCCEED: The variable is defined and its value has been stored in the destination
specified.

• CS_FAIL: The variable does not exist or is not an ASCII variable.

CMD_lock_regexpr
This function locks the mutex associated with regular expression management.

See also "CMD_unlock_regexpr."

Syntax:

void CMD_lock_regexpr(void)

CMD_parse_assignment
This function is superseded by CMD_get_assignment() which has no limit on the number of
arguments.

This function scans the current action string to locate the destination variable and the three
arguments for the action function. The format for the action string is as follows:

%var ::=<arg1>:<arg2>:<arg3>
where <arg> is a variable <%var> or a value (for example, %x=%y:10:%z)

Syntax:

CS_RETCODE CMD_parse_assignment(CMD_PROC_DATA *data,

PARSE_BUF *buf)

Arguments:

• data: Pointer to the local data segment for the command processor.

• parse_buf: Pointer to a parse buffer.

Return values:

• CS_SUCCEED: Parse of the string was successful.

• CS_FAIL: Parse of the string failed.

CMD_store_bvar
This function stores information about a binary ASDL program variable in the command
processor or program variable table or updates the variable if it already exists in the table.

See also "CMD_get_bvar."

Syntax:

CS_RETCODE CMD_store_bvar(CMD_PROC_DATA *data,

Chapter 3
Interpreter library

3-85

CS_CHAR *label,
CS_VOID *value,
CS_INT len,
CS_VOID * void (*template_destructor)(CS_VOID *template))

Arguments:

• data: Pointer to the local data segment for the command processor.

• label: Name of the binary variable.

• value: Void pointer to the data buffer in which the binary value is saved.

• len: Length of the buffer.

• template: Pointer to the binary data template structure. If used, it describes the
fields and structure of the binary variable.

• template_destructor: Pointer to the destructor function to be called to deallocate
the template. If it is not required, set it to NULL.

Return values:

• CS_SUCCEED: The variable was successfully stored or updated in the variable
table.

• CS_FAIL: The variable was not stored in the variable table.

CMD_store_var
This function stores an ASCII ASDL program variable in the command processor or
program variable table. If the program variable already exists in the table, this function
updates it.

See also "CMD_get_var."

Syntax:

CS_RETCODE CMD_store_var(CMD_PROC_DATA *data,

char *label,
char *value)

Arguments:

• data: Pointer to the local data segment for the command processor.

• label: Name of the variable.

• value: Value of the variable.

Return values:

• CS_SUCCEED: The variable was successfully stored or updated in the variable
table.

• CS_FAIL: The variable was not stored in the variable table.

CMD_store_zero_pad_var
This function stores an ASCII ASDL program variable in the command processor or
program variable table. If the program variable already exists in the table, this function
updates it. In addition, this function formats the variable based on the maximum field

Chapter 3
Interpreter library

3-86

length, padding the field with leading zeroes. If the string length is greater than the total field
length specified, the truncated value is saved in the variable.

See also "CMD_get_var."

Syntax:

CS_RETCODE CMD_store_zero_pad_var(CMD_PROC_DATA *data,

char *label,
char *value,
CS_INT total_field_len zero_pad)

Arguments:

• data: Pointer to the local data segment for the command processor.

• label: Name of the variable.

• value: Value of the variable.

• zero_pad: Maximum field length to be used when formatting this numerical field.

Return values:

• CS_SUCCEED: The variable was successfully stored or updated in the variable table.

• CS_FAIL: The variable was not stored in the variable table.

CMD_unlock_regexpr
This function unlocks the mutex associated with regular expression management.

See also "CMD_lock_regexpr."

Syntax:

void CMD_unlock_regexpr(void)

CMD_user_actions
This function adds an action to the action table in the main Interpreter State Table action tree.
If the action already exists, the new action overrides the existing action.

Syntax:

CS_RETCODE CMD_user_actions(ACTION_RECORD *action_tbl)

Arguments:

• action_tbl: User action table. Must be terminated with the last entry having an action
equal to NULL.

Return values:

• CS_SUCCEED: User-specific State Table action successfully added.

• CS_FAIL: User actions could not be installed into the Interpreter action table.

Control configuration interface
This section describes the functions for the Control subsystem.

Chapter 3
Control configuration interface

3-87

The Control subsystem supports static table configuration. Use functions instead of
SQL insert scripts to interface with the static configuration database tables.

The function-based interface reduces the dependency between administrators who
configure the system and product developers who need to make changes to the static
tables to support new functionality.

Note:

If you invoke an CSP_del_* function without parameters, all rows in the table
are deleted.

If you invoke the CSP_list_* functions without parameters, all rows are listed.

Interface definitions
This section lists the syntax, descriptions, parameters, and results for Control
configuration actions.

CSP_db_admin
This function purges all performance data that have been stored for more than a
specified number of days. The default value of a_days is 3 days if it is not provided.

For more information about using functions, see "Oracle Execution Examples."

Affected tables:

• tbl_alarm_log

• tbl_event_log

• tbl_process_info

Table 3-2 CSP_db_admin Parameters

Name Description Req'd (I)nput/
(O)utput

days Specifies the age (in days) of log data
to delete. All data older than the
specified number of days is deleted.

Yes I

CSP_del_alarm
This function deletes a system alarm code from tbl_system_alarm.

For more information about using functions, see "Oracle Execution Examples."

Chapter 3
Control configuration interface

3-88

Table 3-3 CSP_del_alarm Parameters

Name Description Req'd (I)nput/
(O)utput

alarm_code System alarm code identifier. No I

CSP_del_appl
This function deletes ASAP application registration information from the Control database
(tbl_appl_proc).

For more information about using functions, see "Oracle Execution Examples."

Table 3-4 CSP_del_appl Parameters

Name Description Req'd (I)nput/
(O)utput

appl_cd Logical name of the ASAP application server. No I

CSP_del_center
This function deletes an alarm center definition from the control database (tbl_alarm_center).

For more information about using functions, see "Oracle Execution Examples."

Table 3-5 CSP_del_center Parameters

Name Description Req'd (I)nput/
(O)utput

alarm_center The alarm center to be deleted. No I

CSP_del_code
This function deletes an administration system code from the database (tbl_code_list).

For more information about using functions, see "Oracle Execution Examples."

Table 3-6 CSP_del_code Parameters

Name Description Req'd (I)nput/
(O)utput

code_type Type of code. For example: “DB": database script
related entry.

No I

code The code. No I

value Value of the code. No I

CSP_del_component
This function deletes an ASAP component from tbl_component.

Chapter 3
Control configuration interface

3-89

For more information about using functions, see "Oracle Execution Examples."

Table 3-7 CSP_del_component Parameters

Name Description Req'd (I)nput/
(O)utput

territory The ASAP territory. No I

system The ASAP system. No I

component The ASAP component. No I

CSP_del_db_thresh
This function deletes a database threshold definition from tbl_db_threshold.

For more information about using functions, see "Oracle Execution Examples."

Table 3-8 CSP_del_db_thresh Parameters

Name Description Req'd (I)nput/
(O)utput

asap_sys The ASAP environment (“TEST", “PROD", etc.). No I

db_name The database name. No I

CSP_del_event
This function deletes an ASAP event type from the database (tbl_event_type).

For more information about using functions, see "Oracle Execution Examples."

Table 3-9 CSP_del_event Parameters

Name Description Req'd (I)nput/
(O)utput

event_type The event type. For example, “ABNORMAL",
“SYS_ERR", etc.

No I

CSP_del_fs_thresh
This function deletes a file system threshold definition from tbl_fs_threshold.

For more information about using functions, see "Oracle Execution Examples."

Table 3-10 CSP_del_fs_thresh Parameters

Name Description Req'd (I)nput/
(O)utput

asap_sys The ASAP environment (TEST, PROD, etc.). No I

file_system The UNIX file system for which the threshold
definition is to be deleted.

No I

Chapter 3
Control configuration interface

3-90

CSP_del_listener
This function deletes a listener entry from tbl_listeners.

For more information about using functions, see "Oracle Execution Examples."

Table 3-11 CSP_del_listeners Parameters

Name Description Req'd (I)nput/
(O)utput

srv_name Name of the server that starts a socket listener. The
SARM must start a socket listener to receive
incoming Java SRP requests.

For a Java-enabled NEP, this is the name of the NEP
($NEP).

For the Java SRP, this column contains the SARM
name.

Yes I

listener_name The name of the listener thread.

For a Java-enabled NEP, the listener name describes
the listener in the Java process that accepts
interpreter requests from the C process. This listener
name must always be $NEP_jlistener.

For the Java SRP, observe the naming convention of
“<Java SRP application name>_jsrplistener". This
column is used by the Java SRP to retrieve the
listener configurations.

Yes I

CSP_del_nvp
This function deletes a name/value pair from the database (tbl_name_value_pair).

For more information about using functions, see "Oracle Execution Examples."

Table 3-12 CSP_del_nvp Parameters

Name Description Req'd (I)nput/
(O)utput

name Name of the name/value pair. No I

CSP_get_listener
This function lists listener entries associated with an NEP (tbl_listeners).

For more information about using functions, see "Oracle Execution Examples."

Chapter 3
Control configuration interface

3-91

Table 3-13 CSP_get_listener Parameters

Name Description Req'd (I)nput/
(O)utput

srv_name Name of the server that starts a socket listener.
The SARM must start a socket listener to receive
incoming Java SRP requests.

For a Java-enabled NEP, this is the name of the
NEP ($NEP).

For the Java SRP, this column contains the
SARM name.

Yes I

CSP_list_alarm
This function lists system alarms contained in tbl_system_alarm.

For more information about using functions, see "Oracle Execution Examples."

Table 3-14 CSP_list_alarm Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

alarm_code System alarm code. No I

Table 3-15 CSP_list_alarm Results

Name Datatype Description

alarm_code TYP_code The alarm code.

description TYP_desc Brief description of the system alarm.

alarm_level TYP_alarm_level Level of the alarm.

escalation_code TYP_code Escalation code of the alarm.

escalation_time TYP_time Escalation time.

auto_clear TYP_yes_no Determines whether the alarm must be
automatically cleared.

route#_period TYP_short Interval in minutes for the alarm to be sent to
the alarm center.

can be a number between 1 and 5 to
designate up to five routings.

route#_start TYP_time Daily start time in minutes after midnight.

can be a number between 1 and 5 to
designate up to five routings.

route#_end TYP_time Daily end time in minutes after midnight.

can be a number between 1 and 5 to
designate up to five routings.

Chapter 3
Control configuration interface

3-92

Table 3-15 (Cont.) CSP_list_alarm Results

Name Datatype Description

route#_center TYP_code Alarm center to route alarm to.

can be a number between 1 and 5 to
designate up to five routings.

CSP_list_appl
This function lists ASAP application registration information for the specified appl_cd or all
applications from the Control database (tbl_appl_proc).

For more information about using functions, see "Oracle Execution Examples."

Table 3-16 CSP_list_appl Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

appl_cd The logical name of the ASAP application server. No I

Table 3-17 CSP_list_appl Results

Name Datatype Description

start_seq TYP_start_seq Controls the sequence in which the applications are
started. For example, certain client applications may be
required to start before server applications, and other
client applications after the server applications.

appl_type TYP_appl_type Specifies whether the ASAP application is an application
server or a client application. Specify:

• S – For server
• C – For client
• M – For master control server
• R – For remote slave control server

appl_cd TYP_code ASAP logical client/server name, for example, SARM,
NEP01, NEP02.

control_svr TYP_code The logical ASAP application control server that spawns
this application and monitors its behavior.

description TYP_desc Brief description of the ASAP application.

diag_file TYP_unix_file The name of the diagnostics logfile to which diagnostic
messages are written. This file is created in
the $LOGDIR directory under a dated directory, for
example, in the $LOGDIR/yymmdd format.

auto_start TYP_yesno An autostart flag that determines if the application is to
be started automatically when ASAP starts.

program varchar(40) The name of the UNIX program that executes to start
the ASAP application. The UNIX program must reside in
the $PROGRAMS directory and be executable.

Chapter 3
Control configuration interface

3-93

Table 3-17 (Cont.) CSP_list_appl Results

Name Datatype Description

diag_level TYP_diag_level The diagnostic level of the ASAP application. The
diagnostic level is used to determine whether or not to
log diagnostic information based on the diagnostic level
of the ASC_diag() API function call.

isactive TYP_yesno A yes/no flag denoting whether the ASAP server is
currently active.

last_start datetime The last start date and time of the ASAP server.

last_halt datetime The last halt or terminate date and time of the ASAP
server.

last_abnormal datetime The last abnormal termination of the Control server.

svr_type varchar(8) This field defines the type of server.

CSP_list_center
This function lists alarm center definitions from the control database
(tbl_alarm_center).

For more information about using functions, see "Oracle Execution Examples."

Table 3-18 CSP_list_center Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

alarm_center The alarm center to be deleted. No I

Table 3-19 CSP_list_center Results

Name Datatype Description

alarm_center TYP_code The unique code representing the alarm center.

control_prog TYP_unix_file The program to be executed to communicate the
alarm to the alarm center.

description TYP_desc Brief description of the alarm center.

opt#_type TYP_option First option to the control program, where #
represents a value between 1 and 5.

opt#_value TYP_opt_value Argument to the first option, where # represents a
value between 1 and 5.

CSP_list_code
This function lists Administration System code(s) from tbl_code_list.

If you invoke the function without any parameters, all rows in the table are listed.

For more information about using functions, see "Oracle Execution Examples."

Chapter 3
Control configuration interface

3-94

Table 3-20 CSP_list_code Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

code_type Type of code. For example, DB for a database script
related entry.

No I

code The code entry. No I

value Value of the code. No I

Table 3-21 CSP_list_code Results

Name Datatype Description

code_type TYP_code_type Type of code.

code TYP_code_text Type of code.

value TYP_code_value Parameter value associated with the label.

code_desc TYP_desc Brief description of the code.

parm# TYP_code_parm General purpose parameter, where # represents a value
between 1 and 4.

CSP_list_component
This function lists ASAP components contained in tbl_component.

If you invoke the function without any parameters, all rows in the table are listed.

For more information about using functions, see "Oracle Execution Examples."

Table 3-22 CSP_list_component Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

territory Identifies the ASAP territory. No I

system Identifies the ASAP system. No I

component Identifies the ASAP component. No I

Table 3-23 CSP_list_component Results

Name Datatype Description

territory varchar(20) ASAP territory.

system varchar(20) ASAP system.

component varchar(40) ASAP component.

Chapter 3
Control configuration interface

3-95

CSP_list_db_thresh
This function lists database threshold definition(s) contained in tbl_db_threshold.

If you invoke the function without any parameters, all rows in the table are listed.

For more information about using functions, see "Oracle Execution Examples."

Table 3-24 CSP_list_db_thresh Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

asap_sys The ASAP environment (for example, TEST,
PROD etc.)

No I

db_name Database name. No I

Table 3-25 CSP_list_db_thresh Results

Name Datatype Description

asap_sys TYP_code ASAP environment.

db_name varchar(80) TYP_desc Database name.

data_threshold int Database threshold, in Mb.

tran_threshold int Transaction log threshold.

data_event TYP_code Event issued if the database threshold is
exceeded.

tran_event TYP_code Event to be issued if the transaction log
threshold is exceeded.

CSP_list_event
This function lists ASAP event definitions contained in tbl_event_type.

If you invoke the function without any parameters, all rows in the table are listed.

For more information about using functions, see "Oracle Execution Examples."

Table 3-26 CSP_list_event Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

event_type Event type. For example, the core uses some of
the following event types: ABNORMAL,
SYS_ERR, etc.

No I

Chapter 3
Control configuration interface

3-96

Table 3-27 CSP_list_event Results

Name Datatype Description

event_type TYP_event The event type. The core module includes some of the
following event types: ABNORMAL, SYS_ERR, etc.

description varchar(40) TYP_desc Brief description of the event.

alarm_code TYP_code The alarm code associated with the event.

alarm_action TYP_alarm_action Specifies whether the alarm is enabled or disabled.

CSP_list_fs_thresh
This function lists file system threshold definitions contained in tbl_fs_threshold.

If you invoke the function without any parameters, all rows in the table are listed.

For more information about using functions, see "Oracle Execution Examples."

Table 3-28 CSP_list_fs_thresh Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

asap_sys The ASAP environment (TEST, PROD, etc.). No I

file_system The UNIX file system for which the threshold
definition is to be deleted.

No I

Table 3-29 CSP_list_fs_thresh Results

Name Datatype Description

asap_sys TYP_code The ASAP environment.

file_system varchar(100) TYP_desc File system name.

full_threshold int File system full threshold.

full_event TYP_code Event to be generated if the full threshold is
exceeded.

CSP_list_nvp
This function lists name/value pairs from the database (tbl_name_value_pair).

If you invoke the function without any parameters, all rows in the table are deleted.

For more information about using functions, see "Oracle Execution Examples."

Chapter 3
Control configuration interface

3-97

Table 3-30 CSP_list_nvp Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

name Name of the name-value pair. No I

Table 3-31 CSP_list_nvp Results

Name Datatype Description

name varchar(40) Name of the parameter.

value int Parameter value associated with the label.

CSP_new_alarm
This function defines a system alarm which may be generated by ASAP system
events. This includes the start time, interval, and end time for the alarm.

This function populates tbl_system_alarm.

Example:

The following example creates an alarm for the abnormal termination of an application
process to the ADMINPGR center that is continuous on a five minute period any time
of the day, type the following:

var retval number;
exec :retval := CSP_new_alarm ('ABNORMAL', 'Abnormal process termination',
'CRITICAL', '',NULL, 'N', 5, 0, 1440, 'ADMINPGR');

print retval;

For more information about using functions, see "Oracle Execution Examples."

Table 3-32 CSP_new_alarm Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

alarm_code System alarm code. Yes I

description Brief description of the system alarm. Yes I

alarm_level The level of the alarm, for example, MAJOR,
MINOR, CRITICAL.

Yes I

escalation_code The escalation code for the alarm if the alarm
is not corrected within the escalation time
(defined next).

Yes I

escalation_time Time after the alarm was raised that the
escalation of the alarm must take place.

Yes I

auto_clear Flag that determines if the alarm should be
automatically cleared upon generation.

Yes I

Chapter 3
Control configuration interface

3-98

Table 3-32 (Cont.) CSP_new_alarm Parameters

Name Description Req'd (I)nput/
(O)utput

route#_period Interval in minutes for the alarm to be sent to
the alarm center, where # represents a value
between 1 and 5.

Yes (if #
= 1), No
(if # = 2
to 5)

I

route#_start The daily start time in minutes since midnight
for alarms to go to this alarm center, where #
represents a value between 1 and 5.

Yes (if #
= 1), No
(if # = 2
to 5)

I

route#_end The daily end time in minutes since midnight,
where # represents a value between 1 and 5.

Yes (if #
= 1), No
(if # = 2
to 5)

I

route#_center Alarm center to route alarm to, where #
represents a value between 1 and 5.

Yes (if #
= 1), No
(if # = 2
to 5)

I

CSP_new_appl
This function defines a new ASAP client or server application in tbl_appl_proc.

For more information about using functions, see "Oracle Execution Examples."

Table 3-33 CSP_new_appl Parameters

Name Description Req'd (I)nput/
(O)utput

start_seq Specifies the ASAP startup sequence. This
determines the sequence in which applications are
started.

Yes I

appl_type Specifies the ASAP application server:

• S – For server
• C – For client
• M – For master control server
• R – For remote slave control server

Yes I

appl_cd The logical ASAP application code, for example,
SARM, NEP01, NEP02.

Yes I

control_svr Logical ASAP Control server. Yes I

auto_start An autostart flag. Yes I

program The name of the UNIX program to execute to start
the ASAP application.

Yes I

diag_level The diagnostic level of the ASAP application. This is
used to determine whether or not to log certain
diagnostic information based on the diagnostic level
of the ASC_diag() API function call. See the
associated rule for possible values.

Yes I

Chapter 3
Control configuration interface

3-99

Table 3-33 (Cont.) CSP_new_appl Parameters

Name Description Req'd (I)nput/
(O)utput

diag_file The name of the diagnostics file in which diagnostic
messages are to be placed. This file is created in
the $LOGDIR directory under a dated directory, for
example, using the $LOGDIR/yymmdd format.

Yes I

description A description of the ASAP application. Yes I

svr_type ASAP server type. Possible values include:

• CTRL – Control server
• MASTER – Master Control server (must be only

one per system)
• SARM – SARM server
• SRP – SRP server
• NEP – NEP server
• OTHER

No I

Example:

To configure ASAP to manage and monitor this processes, enter the following
commands. This example assumes this processes is executed automatically at startup
and the Low level diagnostics are active.

var retval number;
exec :retval := CSP_new_appl (4, 'S', 'NEPAXE', 'CONTROL2','Y', 'LOW',
'NEPAXE.diag', 'NEP for AXE Switches')

Once the control servers are started on their respective machines, you can start and
shut down the application processes automatically from the master system.

CSP_new_center
This function defines an alarm center to which alarm notifications are sent by the
Control server. This function populates tbl_alarm_center.

Syntax:

var retval number;
exec :retval := CSP_new_center ('alarm_center', 'control_prog',
['description'], ...);

Example:

In the following example, admin.sh is the ADMIN center and adminpg is the
ADMINPGR center. You must place the final versions of these programs in the ASAP
programs directory and identify them using the environment variable $PROGRAMS.

var retval number;
exec :retval := CSP_new_center ('ADMIN', 'admin.sh', 'General Admin. Center');

For more information about using functions, see "Oracle Execution Examples."

Chapter 3
Control configuration interface

3-100

Table 3-34 CSP_new_center Parameters

Name Description Req'd (I)nput/
(O)utput

alarm_center A unique code representing the alarm center. Yes I

control_prog The program to be executed to communicate the
alarm to the alarm center.

Yes I

description A brief description of the alarm center or control
program.

No I

opt#_type Option name to be passed to the control program,
where # represents a value between 1 and 5.

No I

opt#_value Value of the option, where # represents a value
between 1 and 5.

No I

CSP_new_code
This function populates tbl_code_list with core or custom code used by ASAP. For instance,
this function to identify codes that track the cartridges deployed within ASAP.

For more information about using functions, see "Oracle Execution Examples."

Table 3-35 CSP_new_code Parameters

Name Description Req'd (I)nput/
(O)utput

code_type Type of code. For example, DB for database script
related entry.

Yes I

code The code. Yes I

value Value of the code. Yes I

code_desc Brief description of the code. No I

parm# General purpose parameter, where # can be a
number between 1 and 4.

No I

CSP_new_component
This function defines an ASAP component in a territory and adds it to database table
tbl_component.

For more information about using functions, see "Oracle Execution Examples."

Table 3-36 CSP_new_component Parameters

Name Description Req'd (I)nput/
(O)utput

territory Identifies the ASAP territory. Yes I

system Identifies the ASAP system. Yes I

component Identifies an ASAP system component within a
territory and system. For example, SRP, SARM, etc.

Yes I

Chapter 3
Control configuration interface

3-101

CSP_new_db_thresh
This function defines database and/or transaction log thresholds to be used by the
Control server, and writes the information to tbl_db_threshold. The Control server
monitors the database/transaction log size and issues the appropriate data event/
transaction event when the threshold is exceeded.

Syntax:

var retval number;
exec :retval := CSP_new_db_thresh ('asap_sys', 'db_name', 'db_threshold',
'tran_threshold', 'data_event', 'tran_event')

Example:

var retval number;
exec :retval := CSP_new_db_thresh ('PROD', 'SDB_P01_asap', 80, 20, 'DB2FULL',
'TRANFULL';

in this example, the database threshold is set to 80 percent. If the database becomes
more than 80 percent full, the DB2FULL system event is issued. This command also
sets the transaction log threshold for the database. When the transaction log for the
database exceeds 20 MB, the TRANFULL system event is issued.

Database thresholds must be defined in the component table.

For more information about using functions, see "Oracle Execution Examples."

Table 3-37 CSP_new_db_thresh Parameters

Name Description Req'd (I)nput/
(O)utput

asap_sys The ASAP environment (for example, TEST,
PROD, etc.).

Yes I

db_name Database name. Yes I

db_threshold Database threshold, in Mb. Yes I

tran_threshold Transaction log threshold. Yes I

data_event Data event. Yes I

tran_event Transaction log event. Yes I

CSP_new_event
This function defines an “event type" within ASAP, and optionally, the associated
“alarm code" that is associated with the event. System events can be generated when
an error condition is encountered in ASAP. CSP_new_event populates tbl_event_type.

For more information about using functions, see "Oracle Execution Examples."

Chapter 3
Control configuration interface

3-102

Table 3-38 CSP_new_event Parameters

Name Description Req'd (I)nput/
(O)utput

event_type Event type. For example, the core uses some of the
following event types: ABNORMAL, SYS_ERR, etc.

Yes I

description A brief description of the ASDL command. No I

alarm_code The system alarm code associated with the event. If
NULL, no alarm will be generated and only the database
log entry will be created.

No I

alarm_action Specifies the alarm action, and may specify whether the
alarm is presently enabled or disabled.

No I

notify_aims This is not currently implemented.

Syntax:

var retval number;
exec :retval := CSP_new_event ('event_type', ['description'], ['alarm_code'],
[“alarm_action'];

Example:

The following example shows an ABNORMAL system event mapped to the ABNORMAL
alarm.

var retval number;
exec :retval := CSP_new_event ('ABNORMAL', 'Abnormal Process Termination Event',
'ABNORMAL', 'E';

CSP_new_fs_thresh
This function defines a file system threshold to be used by the Control server. The Control
server monitors the file system size and if the threshold is exceeded, the appropriate system
event is generated. File system threshold information is stored in tbl_fs_threshold.

For more information about using functions, see "Oracle Execution Examples."

CSP_new_listener
This function adds a listener entry to tbl_listeners. You must configure this table to allow the
SARM to start up socket listeners for incoming SRP requests. As well, every Java-enabled
NEP must maintain a dedicated connection to its JInterpreter.

For more information about using functions, see "Oracle Execution Examples."

Chapter 3
Control configuration interface

3-103

Table 3-39 CSP_new_listener Parameters

Name Description Req'd (I)nput/
(O)utput

srv_name Name of the server that starts a socket listener.
The SARM must start a socket listener to receive
incoming Java SRP requests.

For a Java-enabled NEP, this is the name of the
NEP ($NEP).

For the Java SRP, this column contains the
SARM name.

Yes I

host_name The host name or the IP address on which the
server application resides.

For the JInterpreter, this value must always be
localhost.

For the Java SRP, the host_name identifies the
location of the SARM.

Yes I

listener_name The name of the listener thread.

For a Java-enabled NEP, the listener name
describes the listener in the Java process that
accepts interpreter requests from the C process.
This listener name must always
be $NEP_jlistener.

For the Java SRP, observe the naming
convention of “<Java SRP application
name>_jsrplistener". This column is used by the
Java SRP to retrieve the listener configurations.

Yes I

port A free port on which the server can start the
socket listener.

Yes I

CSP_new_nvp
This function defines parameters (name value pairs) that are required to maintain the
control database. Typical parameters include “audit trail window", “log retention
window", etc. This information is stored in tbl_name_value_pair.

For more information about using functions, see "Oracle Execution Examples."

Table 3-40 CSP_new_nvp Parameters

Name Description Req'd (I)nput/
(O)utput

name Name of the parameter. Yes I

value Value of the parameter. Yes I

Object oriented (OO) common library
This section describes the design of an object-oriented programming interface (class
library) that forms the general framework for building object-oriented multithread-safe
applications.

Chapter 3
Object oriented (OO) common library

3-104

An application framework manages initialization and cleanup when you start up and shut
down the system. In addition, it provides basic facilities, including managing connections to
servers, handling client and server messages, retrieving application configurations, logging
diagnostic messages to appropriate files, and generating system events on server side, etc.,
for use within the application.

This object-oriented interface is designed to fulfill the above requirements with guaranteed
multithread safety on these operations in a multithreaded environment. Using the interface in
the object-oriented applications hides the detailed operations behind an interface and
enforces type checking on the interface. In addition, this interface is based on a vendor-
independent general multithreading package. Consequently, it provides a unified way to
handle threads and synchronization regardless of the thread library being used.

The liboo_asc library includes the following classes:

• ASC_Main – Uses all the classes listed below in the library. It establishes and initializes a
default operating environment for the application and then instantiates it. It also provides
a pure virtual method appl_initialize (), that is used to override the code written in the
subclass. You must do the following:

– subclass the ASC_Main class and write the application-specific code within member
function appl_initialize()

– write application specific cleanup code within appl_cleanup() if any

– call startup() after instantiating the subclass in the core code

• Diagnosis – Provides a facility for logging diagnostic messages. It also maintains a
single service thread for dequeueing diagnostic messages from a dedicated message
queue and dumping them to the diagnostic files, if required.

• Event – Logs system events onto the database servers and diagnostic messages into
the local diagnostic files. Event messages are queued on a dedicated event message
queue waiting for pickup by the EventAgent.

• EventAgent – Has only one instance per application. It maintains a service thread to
dequeue event messages from the event message queue and send log_event RPCs to
the appropriate control server ClientProc objects that are managed by ClntProcMgr
objects.

• ClientProc – Manages one connection to a specific server (for example, control server or
database server) and sends RPCs to, and gets results back from, that server through the
connection.

• ClntProcMgr – Manages multiple ClientProc objects (for example, multiple connections
to a server). You can get the required ClientProc objects from appropriate ClntProcMgr
objects using getObj () method and return them using returnObj () method.

• Config – Retrieves application configuration parameters set in the ASAP.cfg file. The
first Config object instantiated from ASC_Main loads all the parameters into a binary
tree, from which subsequent objects can retrieve what they need.

• Common – Utility class containing only static methods. These methods are used by the
classes above and can be used anywhere if needed.

The following sections provide detailed definitions of the C++ classes in the liboo_asc library.

ASC_Main class
This class provides all the initialization methods required by ASAP applications, and it is the
mainline front-end class of ASAP API. Application programmers must derive their own

Chapter 3
Object oriented (OO) common library

3-105

subclass from this class and override the virtual method ApplInit() to provide
application specific features, and then use the startup() method to start it.

The ASC_Main class has the following initialization methods:

• Configuration parameters initialization method config_param_init. This method
loads the parameters from ASAP.cfg file and places them into an SBT.

• Sybase OpenClient library initialization method ct_init. This method does all the
Sybase Open Client library related initialization actions.

• Input arguments processor process_input. This method processes the input
parameters from the command line and places them into appropriate structures
and variables.

• Signal handlers initialization methods default_signal_handlers and
install_signal_handler. These methods install signal handlers and register these
handlers to the Sybase Open Client library.

• Client application environment initialization method, initialize. This method:

– Creates default event and diagnostic message queues.

– Instantiates the first Diagnosis object and performs the initialization required.
A diagnostic service thread is created at this stage if specified in the
configuration file.

– Retrieves server-related parameters.

– Creates a default control database server connection manager (a
ClntProcMgr object) that creates and manages a specified number of
ClientProc objects connecting to the control database server.

– Creates a default master control server connection manager (a ClntProcMgr
object) that creates and manages a specified number of ClientProc objects
connecting to the master control server.

– If the slave control server differs from the master control server, this
initialization method creates the default slave control server connection
manager (a ClntProcMgr object) that creates and manages a specified
number of ClientProc objects that connect to the slave control server.

– Instantiates an EventAgent object that creates and manages an event service
thread to wait for event messages on the default event message queue.

A pure virtual method appl_initialize is provided to enable application programmers to
write their own application code in their subclasses.

If application programmers want to write custom cleanup code, they must define their
own appl_cleanup method to override the do nothing behavior in the default method.

Synopsis
class ASC_Main: public Config, public ASC_ThreadAppl
{
public:
ASC_Main (int argc, char *argv[]);
~ASC_Main (void);
int threadMain(void **Rtn) { return CS_SUCCEED; };
CS_RETCODE config_param_init (void);
CS_RETCODE ctlib_init (void);
void process_input (void);
CS_RETCODE initialize (void);

Chapter 3
Object oriented (OO) common library

3-106

void default_signal_handlers (void);
CS_RETCODE install_signal_handler (CS_INT signum, CS_VOID * func);
virtual CS_RETCODE appl_initialize (void) = 0;
virtual void appl_cleanup (void) {};
void startup(void);
protected:
int m_argc_;
// Local copy of main()'s argc.
char **m_argv_;
// Local copy of main()'s argv;
DIAG_CONFIG m_diag_cfg;
// Initialization structure use by class Diagnosis
// static Diagnosis *m_diag;
// Original diag object pointer.
EventAgent * m_event_ea_;
// EventAgent service thread object pointer.
char m_SQLSrvName[80];
// Physical SQL Server for the Control DB.
char m_MasterCtrlSvr[80];
// Logical Master Control Server.
static CS_CONTEXT *m_client_context_;
// Context of the client process.
// The following routines are Unix signal handlers.
// They are installed by Sybase's ct_callback()
// routine in default_signal_handlers() method.
// They can also be used as other signal's handler
// which should be installed separately by
// install_signal_handler() method.
static void terminate_signal(int sig);
static void core_dump_signal(int sig);
static void child_terminate(int sig);
static void ignore_signal(int sig);
static void terminate_pgm(void);
// routine used by signal handlers.
static ASC_Main *m_this_ptr;
// copy of this pointer.
};

Constructors
ASC_Main (int argc, char *argv[]);

This constructor uses all the initialization methods to establish the required client application
environment. If the ASC_Main object instantiates successfully, the next step is to execute an
application-specific code.

Arguments:

An ASC_Main object must be initialized with the following input arguments:

• argc: The number of elements in the argv[] array. You must pass the argc of main () to
this argument.

• argv: An array of string pointers. You pass the argv of main () to this argument. Valid
elements are:

– applName – Application name

– -c ctrlSvrName – Master control server name

– -l diagLevel – Diagnostic level

Chapter 3
Object oriented (OO) common library

3-107

– -f diagFile – Diagnostic file name

Public methods
The following are the public methods.

appl_initialize, appl_cleanup
You must override appl_initialize and appl_cleanup using the application-specific
methods provided in the application programmers' subclasses. The overridden
methods can use any facility provided by this class library and spawn as many threads
as required, as long as they do not violate the rules.

Syntax:

virtual CS_RETCODE appl_initialize (void) = 0;
virtual void appl_cleanup (void) {};

startup
The startup method is used to start the execution of application code in
appl_initialize () that you have defined. After the ASC_Main object has been
successfully instantiated, startup () should be called to pass program control to the
application.

Syntax:

void startup(void);

threadMain
Required by ASC_ThreadAppl as the thread start function.

Syntax:

int threadMain(void **Rtn) { return CS_SUCCEED; };

config_param_init
This method initializes the configuration B tree.

Syntax:

CS_RETCODE config_param_init (void);

ctlib_init
This method initializes client/server related config parameters.

Syntax:

CS_RETCODE ctlib_init (void);

process_input
This method processes the command line input parameters. It terminates the program
if the input is improper.

Chapter 3
Object oriented (OO) common library

3-108

Syntax:

void process_input (void);

initialize
Client initialization method.

Syntax:

CS_RETCODE initialize (void);

default_signal_handlers
This function installs the signal callback handlers.

Syntax:

void default_signal_handlers (void);

install_signal_handle
This method installs handler func for signal signum.

Syntax:

CS_RETCODE install_signal_handler (CS_INT signum, CS_VOID * func);

appl_initialize
This pure virtual function is the abstract method for application specific activities. Application
programmers should override this function in their subclasses with their self-defined methods.

Syntax:

virtual CS_RETCODE appl_initialize (void) = 0;

appl_cleanup
This pure virtual function is the abstract method for application specific cleanup activities.
Application programmers should override this function in their subclasses with their self-
defined methods if there's any special cleanup to be performed at termination.

Syntax:

virtual void appl_cleanup (void) {};

Diagnosis class
This class provides methods for initializing the diagnostic environment, and generating
diagnostic messages to a log file.

For more information on the ASAP Configuration file, see the ASAP Server Configuration
Guide.

• Direct Mode – In the direct mode, an internal mutex is used in each Diagnosis object to
synchronize the writings from multiple threads.

Chapter 3
Object oriented (OO) common library

3-109

• Indirect Mode – All diagnostic messages are queued to a dedicated message
queue, from which a dedicated thread takes these messages and logs them to the
diagnostic file.

The name of the diagnostic file is specified with an -f prefix when initiating the process.

When you construct a Diagnostic object and generate diagnostic messages, you can
create an object without an argument, or with the thread name, and then use the diag
method to log diagnostic messages. No other action is required.

Internally, the following methods for logging messages are recommended:

• All instances of the Diagnosis class can write messages to the diagnostic files
directly.

• All instances of the Diagnosis class can write to a dedicated diagnostic message
queue with a no-wait option. A service thread is used to dequeue the messages
and write them to the diagnostic files in this case.

If a service thread is required, the Diagnosis can create this thread and instruct it to
wait on the message queue. Only one such service thread can be created if multiple
instances of Diagnosis are used by the application. If the thread or the message
queue do not work well, Diagnosis can switch to the first logging method.

To prevent inconsistent concurrent writings in a multithreaded environment, writing to
the diagnostic files must be synchronized.

Synopsis
class Diagnosis: public Config, public ASC_ThreadAppl {
public:
Diagnosis (DIAG_CONFIG *cfg, ASC_MsgQueue *asc_msgq,

char *thrName);

// Constructor to initialize diagnostic environment with
// configuration structure **cfg**.
Diagnosis (char *thrName = "unknown"):ASC_ThreadAppl

(thrName) {};

// Do nothing constructor.
~Diagnosis(void);
virtual CS_RETCODE initialize (DIAG_CONFIG *cfg);
virtual void diag (VOIDPTR UNUSED(ptr), DIAG_LEVEL level,

char *type,int line, char *file, char *fmt

virtual void diag_format (VOIDPTR ptr, DIAG_LEVEL

level,char *type, int line, char *file, void
(*format_fn)(FILE *outfile, VOIDPTR ptr)) {};

virtual void hex_dump (DIAG_LEVEL level, char *type,

int line, char *file,CS_BYTE *buf, int buf_len) {};

virtual void rpc_dump (DIAG_LEVEL level, int line,

char *file) {};

Chapter 3
Object oriented (OO) common library

3-110

virtual void stack_trace (DIAG_LEVEL level, char *type,

int line, char *file) {};

void * service_mgr (void);
static CS_BOOL m_diag_queue;
static ASC_Mutex m_diag_mtx_;
int threadMain(void **Rtn);
protected:
void multi_diag_init (void);
//
CS_RETCODE print_queue (void);
// This method is used to take an message entry from
// the diag queue and print the associated
// message to the diag file.
CS_RETCODE create_srv_thread (void);
// This method creates a service thread used to process
// diag messages on the diag queue and print
// them to the diag file on a FIFO basis.
DIAG_LEVEL set_diag_level (char *level_msg);
char *set_diag_level_msg (DIAG_LEVEL level);
void pre_write_diag_file (char *file);
void post_write_diag_file (DIAG_LEVEL level,

char *file, long max_size);

void diag_file_open(char *filename);
void diag_file_move(char *filename);
void dump_configuration(void);
static FILE *m_diag_outfile;
private:
static int m_last_day;
static long m_log_file_max;
static DIAG_FILE *m_diag_files;
static CS_INT m_diag_idx;
static DIAG_LEVEL m_diag_level;
static DIAG_CONFIG m_diag_config;
static CS_BOOL m_diag_line_flush;
static CS_INT m_MAX_DIAG_FILES;
static ASC_MsgQueue *m_msgq;
// the pointer to the message queue object used for
// queueing all diag messages.
};

Constructors
This class has two constructors. To create the service thread, use the attachThread method
in ASC_ThreadAppl class. To provide dequeueing and printing services, service_mgr is
called in the thread context.

Syntax:

Diagnosis (DIAG_CONFIG *cfg, ASC_MsgQueue *asc_msgq,

char *thrName);

Diagnosis (char *thrName = "unknown"):ASC_ThreadAppl

(thrName){};

Arguments:

Chapter 3
Object oriented (OO) common library

3-111

• cfg: Initializes Diagnosis-related global settings, diagnostic files, and spawn
service thread if required.

• asc_msgq: Constructs custom Diagnosis objects. The newly-created object uses
the settings, diagnostic files, and message queue initialized when instantiating the
very first Diagnosis object in the ASC Main's constructor.

• thrName: The thread Name in which the object is instantiated. It appears at the
end of each diagnostic message indicating in which thread the message is
generated.

Public methods
The following are the public methods.

diag
ASAP Application Server runtime diagnostic method diag is designed to generate
diagnostic messages in the required format anywhere in the application.

Syntax:

virtual void diag (VOIDPTR UNUSED(ptr), DIAG_LEVEL level,

char *type, int line, char *file, char *fmt, ...);

Arguments:

• ptr: Only used by the debugger within the Interpreter.

• level: The diagnostic level of this particular function call.

• type: Character pointer identifying type or functional origin of the function call.
Only the first 15 characters of this function call appear in the diagnostic file.

• line: The line number of the function in the source file, _ _LINE_ _.

• file: The file name from which the function was called, _ _FILE_ _.

• fmt: Character pointer to a sprintf format buffer containing the diagnostic
message itself.

• ...: Variable number of parameters following the sprintf format.

initialize
Initializes the diagnostic environment with configuration structure **cfg**.

Syntax:

virtual CS_RETCODE initialize (DIAG_CONFIG *cfg);

diag_format
SAP Application Server User Specified Diagnostic Formatting method.

Syntax:

virtual void diag_format (VOIDPTR ptr, DIAG_LEVEL

Chapter 3
Object oriented (OO) common library

3-112

level,char *type, int line, char *file, void
(*format_fn)(FILE *outfile, VOIDPTR ptr)) {};

hex_dump
This function produces a hexadecimal dump of a character buffer in the server diagnostic
logfile.

Syntax:

virtual void hex_dump (DIAG_LEVEL level, char *type,

int line, char *file,CS_BYTE *buf, int buf_len) {};

rpc_dump
This function prints the RPCs supported by the Open Server to the diagnostic logfile.

Syntax:

virtual void rpc_dump (DIAG_LEVEL level, int line,

char *file) {};

stack_trace
virtual void stack_trace (DIAG_LEVEL level, char *type, int line, char *file) {};

service_mgr
This member function is the start function of the queue service thread used to take diagnostic
messages off the diag queue and print them to the diag file.

This method must only be used in conjunction with create_srv_thread() method and must
not be used elsewhere.

Syntax:

void * service_mgr (void);

m_diag_queue
This flag indicates whether diag messages are sent to a message queue. If CS_TRUE is set,
all messages are sent to the queue. If this flag is set to CS_FALSE after the service thread
has been created, the service thread terminates after taking all messages off the queue and
processing them.

Syntax:

static CS_BOOL m_diag_queue;

m_diag_mtx_
This method is a pointer to the mutex used to synchronize access to the diag file.

Syntax:

static ASC_Mutex m_diag_mtx_;

Chapter 3
Object oriented (OO) common library

3-113

threadMain
ASC_ThreadAppl required thread start function.

Syntax:

int threadMain(void **Rtn);

Event class
This class provides the functionality to convert parameters into a system event and
save it in the control database.

All Event objects log the event messages to the diagnostic file and queue them to a
dedicated message queue. From this queue an EventAgent object (in another thread)
takes the messages and logs them to the control server through RPC.

You can create multiple instances of the Event class and you can access different
objects concurrently.

Whenever you generate an event through an Event object, the requested object:

• Logs a diagnostic message to the default diagnostic files.

• Converts your input parameters into an event message.

• Puts this event message onto the dedicated event message queue.

System event requests are not generated by Event objects. An EventAgent object
dequeues the event messages from the dedicated event message queue and sends
the log_event RPCs to the control server.

Synopsis
class Event: public Diagnosis
{
public:
Event (char * thrName =“Event"):

m_eventq_(default_eventq), Diagnosis(thrName) {};

void event(char *event_type, short line, char *file, char *fmt, ...);
// ASAP event logging method.
};

Constructors
The Event class uses a default event message queue to pass event messages to the
EventAgent thread. A pointer to that default queue is recorded into data member
m_eventq_ when an object is constructed.

Event (char * thrName = “Event"):

m_eventq_(default_eventq), Diagnosis(thrName)

You pass the thread name of the creating thread to the constructor when you
instantiate the Event object. This thread name appears at the end of the diagnostic

Chapter 3
Object oriented (OO) common library

3-114

message logged into the diagnostic file. If no thread name is passed when instantiating an
Event object, the event is taken as the name by default.

Arguments:

• event_type: Specifies the system event to be generated. This code is used to determine
the operation to perform from the configuration tables.

• line: Line in source file where the system event was generated. Should be __LINE__.

• file: Source file where the system was generated. Should be __FILE__.

• fmt: sprintf() type format string specifying cause of the system event.

• ...:Variable number of parameters following the sprintf() format.

Public methods
event:

ASAP event logging method.

Syntax:

void event(char *event_type, short line, char *file,

char *fmt, ...);

EventAgent class
The EventAgent class creates a service thread waiting on the dedicated event message
queue for incoming event messages enqueued by Event objects. Each application process
has only one such service thread.

If there is no message to be processed, this thread sleeps on the queue. When an event
message comes, the service thread removes it from the queue, passes the information in the
message structure to a ClientProc object, and then sends an RPC to the designated control
server through the connection managed by that ClientProc object. If the RPC execution fails
on the server side, a diagnostic message is written to the default diagnostic file. The
ClientProc object is obtained from a ClntProcMgr object managing multiple ClientProc objects
connected to the control server.

This class should only be instantiated once in an application and this unique instance should
only be created in the constructor of ASC_Main. The attachThread () method from the class
ASC_ThreadAppl is used in the constructor of the EventAgent class to create the service
thread. The thread calls the start_service () method and waits for event messages on the
default dedicated event message queue.

Synopsis
typedef struct {
int operation;
char event[APPL_EVENT_L+1];
char source_file[SOURCE_FILE_L+1];
short source_line;
char reason[APPL_REASON_L+1];
} CONTROL_AGENT_MSG;
class EventAgent: public ASC_ThreadAppl
{

Chapter 3
Object oriented (OO) common library

3-115

public:
EventAgent (ASC_MsgQueue *eventq = ::default_eventq,

ClntProcMgr *sql_cpp = ::default_sql_cpp,
ClntProcMgr *ctrl_cpp = ::default_ctrl_cpp);

// This constructor initializes private data members,
// ~EventAgent (void) {};
int threadMain(void **Rtn);
// ASC_ThreadAppl required thread start routine.
void startup (void);
void start_service (void);
CS_BOOL m_should_terminate;
virtual void alarm (time_t seconds, ASC_MsgQueue *q,

int *msg, long msg_operation) {};

ASC_Mutex m_ea_mtx_;
protected:
void write_event (ClientProc *sql_cp, ClientProc

*ctrl_cp, CS_CHAR *event, CS_CHAR *file,
CS_INT *line, CS_CHAR *reason);

static CS_RETCODE sys_event_handler (CS_VOID *sql_cp,

CS_VOID *data,CS_RETCODE UNUSED(restype),
CS_BOOL *UNUSED(not_done));

private:
ASC_MsgQueue *m_eventq_;
// Message queue used to pass event messages to the
// agent thread.
ClntProcMgr *m_ctrl_cpp_;
// Pointer to master control server connections
// manager object.
ClntProcMgr *m_sql_cpp_;
// Pointer to control sql server connections
// manager object.
};

Constructors
EventAgent (ASC_MsgQueue *eventq = ::default_eventq,

ClntProcMgr *sql_cpp = ::default_sql_cpp,
ClntProcMgr *ctrl_cpp = ::default_ctrl_cpp);

This constructor initializes private data members, ~EventAgent (void) {};.

Public methods
The following are the public methods.

threadMain
ASC_ThreadAppl is a required thread to start the routine.

Syntax:

Chapter 3
Object oriented (OO) common library

3-116

int threadMain(void **Rtn);

start_service
This method waits for event messages on the previously-created event message queue. If
there is an incoming message, it generates a server event for the message.

Syntax:

void start_service (void);

m_should_terminate
This flag indicates whether the service thread should be terminated. If CS_TRUE is returned,
the service thread must be terminated.

Syntax:

CS_BOOL m_should_terminate;

alarm
virtual void alarm (time_t seconds, ASC_MsgQueue *q,

int *msg, long msg_operation) {};

m_ea_mtx_
Mutex used to synchronize access to should_terminate.

Syntax:

ASC_Mutex m_ea_mtx_;

ClientProc class
The ClientProc class contains methods for client applications to handle connections and
communications between clients and servers, and to send RPC execution requests to
servers through these managed connections. A ClientProc object synchronously waits for the
results of the RPC executions and invokes the appropriate handlers after it receives these
results. It can be used safely in both one-thread-one-connection and multiple-threads-one-
connection models.

Each object of this class is a client process context that manages a connection to a specific
RDBMS Server, through which you can send RPCs to and receive results from the server. A
client message handler and a server message handler, which log messages from the Sybase
Open Client library and servers to a diagnostic file, are also installed internally upon creation
of an object. In addition, concurrent accesses to the connection are synchronized inside an
object so that the object can be used safely in both single and multiple thread connection
models.

The ClientProc class encapsulates Sybase Open Client functionality and synchronization
facilities to provide multithread-safe context allocation/drop, connection open/close,
connection status check, and RPC execution/results binding methods to the application
programmers. In addition, message handler methods for both the Sybase and Oracle Client
Libraries and server feedbacks are provided in the class.

Chapter 3
Object oriented (OO) common library

3-117

A ClientProc object can work in:

• Dedicated mode – Only accessed by a single thread (normally its creating thread)
at any time.

• Shared mode – Accessed from multiple threads, in which case the connection to
the server is shared. Access to a shared ClientProc object's server connection is
serialized by the object itself.

Synopsis
ClientProc class:class ClientProc: public Diagnosis
{
public:
ClientProc (CS_CHAR *srv_name, CS_CHAR *userid,

CS_CHAR *password, CP_CONNECT_TYPE db_conn =
OPEN_SERVER);

ClientProc (CS_CHAR *srv_name, CS_CHAR *userid,

CS_CHAR *password, CS_VOID *data,
CLNT_HANDLER *hand_tbl, CM_RPC *rpcdef,
CP_CONNECT_TYPE db_conn, ...);

~ClientProc (void);
CS_RETCODE cpopen (void);
CS_RETCODE cpclose (void);
CS_RETCODE cpcheck (void);
CS_RETCODE cpbind (CS_INT base_idx, CM_RPC *rpcdef, ...);
CS_BOOL IS_OPEN (void);
CS_RETCODE cprpcexec (CS_VOID *data, CLNT_HANDLER

*hand_tbl, CM_RPC *rpcdef, ...);

CLIENT_PROC * get_cp(void) { return m_cp_ptr_; }
CS_BOOL is_busy (void) { return m_is_busy_; }
CS_INT get_return_status (void){return m_return_status; }
CS_RETCODE cancelOperation(void);
CP_CONNECT_TYPE get_db_type(void) { return m_db_type_; }
static ASC_Mutex *m_alloc_mtx_;
static ASC_Mutex *m_init_mtx_;
static CS_RETCODE ct_msg_handler(CS_CONTEXT *cp,

CS_CONNECTION *chp, CS_CLIENTMSG *msgp);

static CS_RETCODE srv_msg_handler(CS_CONTEXT *cp,

CS_CONNECTION *chp, CS_SERVERMSG *msgp);

#ifdef ORACLE_DB
//**
// ORACLE database connection management public methods.
//
CS_INT ocicreate_list(Cda_Def *cda, ORA_COLUMN **colsptr,

CS_INT numrows);

CS_RETCODE ocidestroy_list(ORA_COLUMN *cols);
CS_RETCODE ocifetch(Cda_Def *cda, ORA_COLUMN *cols);
CS_RETCODE ocistatus(Cda_Def *cda);

Chapter 3
Object oriented (OO) common library

3-118

CS_RETCODE ocican_cursor(Cda_Def *cda);
CS_RETCODE ociopen_cursor(void);
CS_RETCODE ociclose_cursor(Cda_Def *cda);
CS_RETCODE ociparse(CS_CHAR *command);
CS_RETCODE ocicreate_cmd(CS_CHAR *command,

CM_RPC *rpcdef);

CS_RETCODE ocirpcexec(CM_RPC * rpcdef);
#endif
void dts_to_str(CS_CHAR *date_str, CS_DATETIME *dts);
void str_to_dts(CS_CHAR *date_str, CS_DATETIME *dts);
private:
CLIENT_PROC * m_cp_ptr_;
// The unique client process structure used
// within the object.
ASC_Mutex m_glob_sync_mtx_;
// ASC_Mutex used to synchronize the access to the
// object if this object is shared by multiple threads.
virtual CS_RETCODE
process_status(CM_RPC *rpcdef, CS_BOOL *not_done,

CS_BOOL *rpc_error, CS_BOOL *deadlock_error,
CS_INT retry_num);

virtual CS_RETCODE
initialize_ct_context (CS_CONTEXT *cp,

CS_RETCODE (*clientmsg_cb)(CS_CONTEXT *cp,
CS_CONNECTION *conn,
CS_CLIENTMSG *msg),
CS_RETCODE (*servermsg_cb)(CS_CONTEXT *cp,
CS_CONNECTION *conn,
CS_SERVERMSG *msg)
;

// ct library context initialization method.
static CS_RETCODE ct_msg_handler(CS_CONTEXT *cp,

CS_CONNECTION *chp,
CS_CLIENTMSG *msgp);

static CS_RETCODE srv_msg_handler(CS_CONTEXT *cp,

CS_CONNECTION *chp,
CS_SERVERMSG *msgp);

protected:
CS_BOOL m_is_busy_;
// This flag is used to check if this object is
// in use (busy);
// CS_TRUE is set if busy.
CS_BOOL m_is_connected_;
// This flag is used to check if this object is
// connected to the server;
// CS_TRUE is set if connected.
};

Chapter 3
Object oriented (OO) common library

3-119

Constructors
This constructor allocates and initializes CLIENT_PROC structure, and opens
connections to the server. If it is used to instantiate an object, a connection to the
server specified by the input argument srv_name is established by default. RPC
execution method cprpcexec () can be used right after the object initialization. You can
use it to open dedicated connections to servers.

Syntax:

ClientProc (CS_CHAR *srv_name, CS_CHAR *userid,

CS_CHAR *password, CP_CONNECT_TYPE db_conn =
OPEN_SERVER);

This constructor allocates and initializes CLIENT_PROC structure, opens connections
to the server, executes an RPC registered procedure on the server and then
processes the results. If this constructor is used to instantiate an object, a connection
to the server specified by the input argument srv_name is established, an RPC
execution request is sent to the server and the results are processed. You can use this
constructor to execute a single RPC on the server. This constructor initializes its
parent class Diagnosis. This is required when an object is created for use by multiple
threads. A different thread can open a connection to different servers or send RPCs to
different destinations.

Syntax:

ClientProc (CS_CHAR *srv_name, CS_CHAR *userid,

CS_CHAR *password, CS_VOID *data,
CLNT_HANDLER *hand_tbl, CM_RPC *rpcdef,
CP_CONNECT_TYPE db_conn, ...);

Arguments:

• db_conn: Indicates the connection type, and is one of the following:

– OPEN_SERVER – Sybase Open Server connection.

– ORACLE – Oracle Server RDBMS connection.

Public methods
This section lists the public methods.

cprpcexec
CS_RETCODE cprpcexec (CS_VOID *data, CLNT_HANDLER

*hand_tbl, CM_RPC *rpcdef, ...);

This method executes an RPC or a registered procedure on the server and then
processes the results. The returned results are mapped and then the appropriate
result handler is called to process the data.

Arguments:

Chapter 3
Object oriented (OO) common library

3-120

• data: Generic data pointer that is passed to the handlers once the results are returned by
the server.

• hand_tbl: Result handler table to process the return data.

• rpcdef: RPC definition structure specifying the RPC to be executed and its associated
parameters.

• ...: Variable parameter list specifying the values for the RPC parameters identified by
rpcdef. All parameters must be pointers.

Return values:

• CS_SUCCEED: RPC execution was successful and the results were handled
successfully.

• CS_FAIL: The function failed due to an RPC execution error or one of the result handlers
failed.

cpopen
This method opens a connection to the server that is specified by private member cp_ptr_,
which is returned by cpalloc method. CS_SUCCEED is returned if successful.

Syntax:

CS_RETCODE cpopen (void);

cpclose
This method closes the object's connection to the server. CS_SUCCEED is returned if
successful.

Syntax:

CS_RETCODE cpclose (void);

cpcheck
This method checks the network connection to verify that the server is available. When an
error is detected, the connection is automatically closed if it is open.

Syntax:

CS_RETCODE cpcheck (void);

IS_OPEN
This method checks if the current connection associated with the object is still open.

Syntax:

CS_BOOL IS_OPEN (void);

get_cp
Return the unique client process structure pointer.

Syntax:

Chapter 3
Object oriented (OO) common library

3-121

CLIENT_PROC * get_cp(void) { return m_cp_ptr_; }

is_busy
Check if the object is busy.

Syntax:

CS_BOOL is_busy (void) { return m_is_busy_; }

get_return_status
Retrieves the RPC status.

Syntax:

CS_INT get_return_status (void){return m_return_status; }

cancelOperation
Cancels the current database operation.

Syntax:

CS_RETCODE cancelOperation(void);

get_db_type
Returns OPEN_SERVER (0) if connection is Open Server. Returns SYBASE (1) if
connection is Sybase SQL Server. Returns ORACLE (2) if connection is Oracle
Server.

Syntax:

CP_CONNECT_TYPE get_db_type(void) { return m_db_type_; }

m_alloc_mtx_
The ASC_Mutex used to synchronize context allocations and droppings.

Syntax:

static ASC_Mutex *m_alloc_mtx_;

m_init_mtx_
ASC_Mutex is used to synchronize the Open Client library ct_init() and ct_exit()
function calls.

Syntax:

static ASC_Mutex *m_init_mtx_;

Public methods
The following are the ORACLE database connection management public methods.

Chapter 3
Object oriented (OO) common library

3-122

ocicreate_list
This function uses the odescr function to determine the columns name, data type and data
size for every column in the cursor variable.

Syntax:

CS_INT ocicreate_list(Cda_Def *cda, ORA_COLUMN **colsptr, CS_INT numrows);

ocidestroy_list
Frees storage allocated to ORA_COLUMN structure.

Syntax:

CS_RETCODE ocidestroy_list(ORA_COLUMN *cols);

ocifetch
This function attempts to fetch as many rows as specified in numrows.

Syntax:

CS_RETCODE ocifetch(Cda_Def *cda, ORA_COLUMN *cols);

ocistatus
Checks the status of Cda of CLIENT_PROC.

Syntax:

CS_RETCODE ocistatus(Cda_Def *cda);

ocican_cursor
Cancels a query on a cursor after the required rows have been fetched.

Syntax:

CS_RETCODE ocican_cursor(Cda_Def *cda);

ociopen_cursor
This function associates a cursor data area in the application with a data area in the Oracle
server. These are used by Oracle to maintain state information about the processing of a
SQL statement.

Syntax:

CS_RETCODE ociopen_cursor(void);

ociclose_cursor
This function disconnects a cursor from the data areas in the Oracle Server. Because you
can associate more than one cursor with an RPC (cursor variable processing), you cannot
associate all of them with a single CLIENT_PROC. Therefore, this function only takes Cda as
an argument.

Chapter 3
Object oriented (OO) common library

3-123

Syntax:

CS_RETCODE ociclose_cursor(Cda_Def *cda);

ociparse
This function parses a SQL statement and associates it with a cursor. For performance
reasons, all parsing is done in deferred mode. Therefore, PLSQL syntax errors are not
likely to be detected until after the RPC is executed.

Syntax:

CS_RETCODE ociparse(CS_CHAR *command);

ocicreate_cmd
This function builds a PL/SQL call based on the CM_RPC structure. The resulting
command can be passed to ociparse to be associated with an open cursor. To receive
a return status from an RPC to the Oracle server functions are used on the server side
instead of procedures.

Syntax:

CS_RETCODE ocicreate_cmd(CS_CHAR *command, CM_RPC *rpcdef);

ocirpcexec
This function invokes the RPC associated with the specified cursor to the Oracle
Server.

Syntax:

CS_RETCODE ocirpcexec(CM_RPC * rpcdef);

dts_to_str
void dts_to_str(CS_CHAR *date_str, CS_DATETIME *dts);

Converts the SYBASE datetime to string date time format.

str_to_dts
void str_to_dts(CS_CHAR *date_str, CS_DATETIME *dts);

Converts the string date time format to SYBASE datetime.

MT-Safety in shared mode
To ensure multithread safety in the shared mode, access to a shared ClientProc
object must be serialized. This is enforced by lock_object () and trylock_object ()
methods.

Before using other methods in the class, a thread must call lock_object () or
trylock_object () to lock the object. If the object is already in use by another thread,
lock_object () is used. If the object is not free, trylock_object () is used. After using
the object, you must call unlock_object () to enable another thread to lock it.

Chapter 3
Object oriented (OO) common library

3-124

ClntProcMgr class
An object of this class is designed to manage all active ClientProc objects (for example,
shared server connections). These ClientProc objects are connected to the same server. It
maintains a list of CLNT_SVR_ST nodes for available objects. You can obtain a required
ClientProc object from the ClntProcMgr object. When the object is no longer required, you
can return it to the ClntProcMgr.

To replace the ClientProc object, you can call the member function replaceBadObj() directly
(for example, if the object server connection is broken).

A ClntProcMgr object must never be deleted unless you are sure that no other threads are
accessing this object.

The ClntProcMgr class manages grouped ClientProc objects. Each instance of the
ClntProcMgr class manages a group of ClientProc objects initially connected to the same
server. It creates newly managed ClientProc objects after its instantiation, if required, using
the createObj method. Upon destruction, all ClientProc objects managed are deleted.

You can use the getObj method to get a pointer to a free ClientProc object for use, and use
the returnObj method to return that ClientProc object for recycling.

The number of all ClientProc objects managed by an instance and the number of free ones
are tracked. You use the checkNumOfFreeObj method to check the number of free objects
available for use.

Synopsis
class ClntProcMgr
{
public:
ClntProcMgr (char *name, CS_CHAR *srv_name, CS_CHAR

*userid, CS_CHAR *password, CS_INT size,
CP_CONNECT_TYPE db_conn);

~ClntProcMgr (void);
//Class Destructor
CS_RETCODE createObj (void);
void deleteAllObj (void);
ClientProc *getObj (void);
void returnObj (ClientProc *obj);
ClientProc *replaceBadObj(ClientProc *badObj);
CS_INT checkNumOfFreeObj (void);
private:
ASC_Mutex m_conn_mtx_;
// Mutex used by objects of this class to provide
// consistent operations on the following static
// private data members.
CS_INT m_num_of_free_;
// Number of free objects for use.
CS_INT m_num_of_obj_;v// Number of all ClientProc objects managed by this.
CLNT_SVR_ST m_list_head;
// Head of the free objects list.
char m_ObjName[80];
// The name of this ClntProcMgr object.
};

Chapter 3
Object oriented (OO) common library

3-125

Constructors
Only one type of constructor is provided in the class. This constructor calls the
createObj method to create (size) ClientProc objects, allocate and initialize
CLIENT_PROC structures, and open connections to the server specified by the input
argument srv_name. The argument name specifies the name of the ClntProcMgr
object, which you use when you search it from a group of ClntProcMgr objects.

Syntax:

ClntProcMgr (char *name, CS_CHAR *srv_name, CS_CHAR

*userid, CS_CHAR *password, CS_INT size,
CP_CONNECT_TYPE db_conn);

Arguments:

• db_conn: Indicates the connection type, and is one of the following:

– OPEN_SERVER – Sybase Open Server connection.

– ORACLE – Oracle Server RDBMS connection.

Public Methods
The following are the public methods.

createObj
CS_RETCODE createObj (void);

This method creates a ClientProc object, allocates and initializes CLIENT_PROC
structures, and opens connections to the server.

deleteAllObj
void deleteAllObj (void);

This method destroys all free ClientProc objects managed by the class.

getObj
ClientProc *getObj (void);

This method is used to get a free ClientProc object pointer from the ClntProcMgr
object. If no ClientProc object is available, a NULL is returned. You must check the
return value of this method before using the pointer, or check the number of free
ClientProc objects available using checkNumOfFreeObj method before making a
call to getObj ().

returnObj
void returnObj (ClientProc *obj);

Chapter 3
Object oriented (OO) common library

3-126

Returns ClientProc object for recycling. This method puts this object back on the available
objects list. You must ensure each ClientProc is returned after being used to maximize the
usability of this group of ClientProc objects.

replaceBadObj
ClientProc *replaceBadObj(ClientProc *badObj);

Passes the bad ClientProc object back and gets a new one.

checkNumOfFreeObj
CS_INT checkNumOfFreeObj (void);

Returns the number of available objects on the object list.

Config class
This utility class retrieves system configuration parameters originally stored in the ASAP.cfg
configuration file. Because public methods are static, you can use them directly with the
Config:: prefix.

The Config class retrieves configuration parameters initially defined in the ASAP.cfg file. All
parameters in the file are loaded and put into a self-balancing tree (SBT) by the ASC_Main
constructor that initializes the application environment.

Each parameter is identified by a unique name. This class provides the get_config_param
method to search the value of only one parameter per use. If the parameter does not have an
entry in the self-balancing tree, an entry is inserted with the default value provided.

As concurrent access to the SBT is possible in a multithreaded environment, this class uses
a mutex facility to synchronize writing (adding new node) efforts from different threads.

Use the dump_config_params method to dump all the parameters to a specified file for
diagnostic purposes.

Synopsis
class Config
{
public:
Config (void) {};
//Class destructor.
~Config (void) {};
static void get_config_param (char *param,

char *value, char *default_vlu);

//
static void dump_config_params (FILE *fp);
//
static int node_compare(const void *node1,

const void *node2);

//
static void dump_param_dtls(const void *node,

Chapter 3
Object oriented (OO) common library

3-127

VISIT order, int level);

//
protected:
CS_RETCODE config_param_init (void);
// This method will initialize the configuration
// parameter B tree with the parameter present
// in both the global and application specific
// configuration files.
// get_config_param related methods below:
static void process_file(FILE *fp, char *file);
//
static char *insert_updt_node(char *lbl, char *vlu,

char *file, CS_BOOL initialization);

//
static void null_end_pad(char *string);
//
private:
static FILE *m_diag_fp;
static ASC_Mutex m_conf_mtx_;
// the mutex used to synchronize cfg related operations.
};

Constructors
No parameter is required when instantiating an object. A global self-balancing tree
structure is created in the ASC_Main constructor for use by all Config objects.

Syntax:

Config (void) {};

Public methods
The following are the public methods.

get_config_param
If this entry is not present as either an application or global configuration parameter,
then the default value is returned and it is set as a new entry. This method references
the configuration file and returns the value of the requested parameter.

Syntax:

static void get_config_param (char *param, char *value, char *default_vlu);

Arguments:

• param: The parameter name.

• value: Character pointer to the value of the requested parameter. The returned
parameter is placed in this location.

• default_vlu: Character pointer to the default value to be used for this parameter if
the parameter is not listed in the configuration file.

Chapter 3
Object oriented (OO) common library

3-128

dump_config_params
static void dump_config_params (FILE *fp);

This method dumps all parameters listed in the SBT to a file specified by a file descriptor fp.

Common class
The Common class is designed to provide some commonly used general purpose facilities on
a platform independent basis. Currently it only provides time-related methods to get the
current time and date.

Synopsis
class Common
{
public:

Common (void) {};
//Class constructor.
~Common (void) {};
//Class destructor.
static CS_RETCODE curDts(CS_DATETIME &dts);
static CS_FLOAT cur_tm(void);
static int today(void);

};

Constructors
Only one type of constructor is provided in this class.

Syntax:

Common (void) {};

Public Methods
The following are the public methods.

curDts
Gets the current date and time and places them in the dts structure.

Syntax:

static CS_RETCODE curDts(CS_DATETIME &dts);

cur_tm
Returns the current time.

Syntax:

static CS_FLOAT cur_tm(void);

Chapter 3
Object oriented (OO) common library

3-129

today
Returns the current date.

Syntax:

static int today(void);

ASC thread library
Thread Classes are the core of the thread framework. They provide a generic interface
to different thread architectures. Thread Classes consist of generic thread interface
classes and vendor-specific classes.

The thread framework consists of the following classes:

• ASC_Thread – Provides a plain thread which has basic thread functions. The
vendor-specific thread class, for example, DCE_Thread, is derived from this class.

• ASC_ThreadFactory – Has knowledge of instantiating a class.

• ASC_ThreadAppl – The application Appl Class is derived from this class. This
class provides the interfaces for the application to access the thread factor, the
thread, and the messaging system. After you have generated the Appl Class and
attached it to a plain thread, the thread starts to execute the application you have
defined.

• Generic Message Classes – Provides the application a generic interface to
different messaging systems such as interthread communication (ITC),
interprocess communication (IPC) etc. ThreadMsgQueue is ITC.

ASC_Thread class
This is an abstract class. Its member functions provide a generic interface to a thread,
for example, detaching, joining, or exiting a thread. Since not all features are
supported by all thread packages, the isSupported function reports when a feature is
available.

Synopsis
class ASC_Thread {
public:

 ASC_Thread(void){}
 ~ASC_Thread(void){}
 virtual void exitThread(void *RtnData) = 0;
 virtual int detachSelf(void) = 0;
 virtual int detachThread(const ASC_Thread *ThreadObj) = 0;
 virtual void yieldThread(void) = 0;
 virtual int joinThread(const ASC_Thread *ThreadObj, void **RtnData) = 0;
 virtual int threadSigWait(void) = 0;
 virtual int operator==(const ASC_Thread *ThreadObj) = 0;
 virtual int isSupported(int ThreadMethod) = 0;

protected:
private:
};

Chapter 3
ASC thread library

3-130

Public methods
A vendor-specific thread class must subclass from ASC_Thread to interface with the vendor-
specific thread functions.

The thread factory uses spawnThread to start a thread. The function interfaces with the
vendor-specific thread function and physically spawns a thread. To attach the object to the
thread, ApplObj is passed to the function.

ASC_ThreadFactory class
ASC_ThreadFactory is an abstract class. It provides a generic interface to start a thread.
Each class library of the vendor-specific thread, has its own factory class derived from this
class. The derived class contains information on how to instantiate a thread object. The
object instantiated from this class is a singleton object.

Synopsis
class ASC_ThreadFactory {
public:

 ASC_ThreadFactory(void) {}
 ~ASC_ThreadFactory(void);
 ASC_Thread* createThread(ASC_ThreadAppl *ApplObj);
 virtual ASC_Mutex* createMutex(void) = 0;
 virtual ASC_Condition* createCondition(void) = 0;
 virtual void deleteMutex(ASC_Mutex *TheMutex) = 0;
 virtual void deleteCondition(ASC_Condition *TheCondition) = 0;
 virtual ASC_Mutex *getFactoryMutex(void) = 0;
 int getNumThreads(void) const {return m_ThreadInfoByID.size(); }
 const ASC_Thread *getThreadObj(const char *ThreadName);
 void threadTermination(ASC_ThreadAppl *ThreadAppl, int isExit,
 void* ReturnData);
 void ThreadIsJoined(ASC_Thread* TheThread);
 inline std::vector<ThreadInfo*>::iterator
 find_by_threadName(std::vector<ThreadInfo*> &container, const char *threadName);
 inline std::vector<ThreadInfo*>::iterator
 find_by_threadObj(std::vector<ThreadInfo*> &container, const ASC_Thread *obj);

protected:
 virtual ASC_Thread *spawnThread(ASC_ThreadAppl *ApplObj) = 0;
 virtual void threadCleanUp(const ASC_ExitInfo &Info) = 0;

private:
 std::vector<ThreadInfo*> m_ThreadInfoByID;
 ThreadInfo* removeThreadInfo(const ASC_Thread* Thread);
 ASC_ThreadFactory(const ASC_ThreadFactory &TheThreadFactory);
 ASC_ThreadFactory & operator=(const ASC_ThreadFactory &TheThreadFactory);
};

Public methods
To start a thread, createThread is invoked by the application. This function, in turn, invokes
spawnThread to instantiate a thread object and start a thread. In the framework,
createThread is called by ASC_ThreadAppl.

Chapter 3
ASC thread library

3-131

This class also saves the thread information, such as thread identifiers, pointers to
thread objects, and thread names. When a thread is generated, the information is
stored. The information is not used now and can be provided for future
implementation, for example, to query and access a thread from outside of the
process. When a thread is terminated, the information is discarded. Specifically,
createThread saves information and threadTermination removes the information.
When it terminates, threadTermination is invoked by a thread object.

A mutex object is used to ensure the synchronization of starting threads, since the
factory can be used by more than one thread at the same time.

ASC_ThreadAppl class
This is the most important class for those who use the thread framework. Although an
understanding of ASC_Thread and ASC_ThreadFactory is not necessary, you must
understand this class.

This is an abstract class that the application must derive from. This class provides all
the required interface methods for the application to start a thread, attach the
application to the thread, and use the messaging system.

You use this class to generate an application running in a thread.

The subclass from this class is:

class Appl: public ASC_ThreadAppl
{
public:

Appl(char *ApplName):ASC_ThreadAppl(ApplName){}
~Appl(void){}
// This is a pure virtual and you must refine it.
// After the thread is started, this function is
// executed automatically.
int threadMain(void **Rtn);
};
// This thread application does nothing, but sending
// a message through a message queue again and again.
int Appl1:: threadMain(void **Rtn);
{
ASC_MsgQueue *TheQueue;
int QID, i = 0;
char *MsgText;
ASC_Msg *Msg;

// Generate a message queue with name Appl using
// the member function of ASC_ThreadAppl.

TheQueue = genMsgQueue(“Appl", QID);
printf(“This is Appl1 with Queue %d ThreadID
%d\n", QID, getThreadID());

while(1){

MsgText = new char[80];
sprintf(MsgText, “This is message $d", ++i);
Msg = new ASC_Msg(0, MsgText);

// Send a message using the member function
// of ASC_MsgQueue

Chapter 3
ASC thread library

3-132

TheQueue->putMsg(Msg, getThreadID(), 0);
}
return 0;

}

Instantiate the application object and attach it to a thread in main().

main(int argc, char *argv[])
{
// Create a thread object with name Appl

Appl *al = new Appl(“Appl");

// Attach it to a thread. After this call, the
// threadMain function will be executed in the
// thread and all subsequent calls.

a1->attachThread();
...

}

This class must provide all required interfaces for the application to use the thread
framework. This class hides the detail how to:

• Generate a thread through the thread factory.

• Attach the application object to the thread.

• Obtain a message queue from the queue manager.

This class also provides functions for using methods provided by the thread it attached,
retrieving some thread information, terminating the attached thread, etc.

The following is the class definition.

Synopsis
class ASC_ThreadAppl {
public:

ASC_ThreadAppl(char *ThreadName)
:m_TheThread(0), m_QueueList(0), m_Autodelete(0),
m_ThreadStarted(1)
{ m_ThreadName = new char[strlen(ThreadName) + 1];
strcpy(m_ThreadName, ThreadName); }
virtual ~ASC_ThreadAppl(void);
void attachThread(void);
int terminateThread(void *Rtn);
virtual int threadMain(void **Rtn) = 0;
char *getThreadName(void) { return m_ThreadName; }
int getThreadID(void);
const ASC_ThreadAttr & getThreadAttr(void) {return
m_TheAttr; }
void initAttr(void)
void setAttr(int AttrID, in Attribute);
ASC_MsgQueue* genMsgQueue(char *QueueName, int &QueueID);
ASC_MsgQueue* getMsgQueue(int QueueID);
ASC_MsgQueue* getMsgQueue(char *QueueName);
void delMsgQueue(char *QueueName);
void delMsgQueue(int *QueueID);

Chapter 3
ASC thread library

3-133

void delMsgQueue(ASC_MsgQueue* MsgQueue);
void setTheQueue(ASC_MsgQueue* MsgQueue, int QueueID);
ASC_MsgQueue* getTheQueue(int QueueID);
void setTheThread(ASC_Thread *TheThread)
{ m_TheThread = TheThread; }
ASC_Thread* getTheThread(void) { return m_TheThread; }
void theThreadTerminated(void) { m_TheThread = 0; }
void setAutoDelete(void) { m_AutoDelete = 1; }
int AutoDelete(void) { return m_AutoDelete; }
ASC_Mutex & getTheMutex(void) { return m_TheMutex; }
int threadStarted(void) { return m_ThreadStarted; }

private:

char *m_ThreadName;
ASC_Thread *m_TheThread;
ASC_ThreadAttr m_TheAttr;
MsgQueueList *m_QueueList;
int m_AutoDelete;
int m_ThreadStarted;
ASC_Mutex m_TheMutex;

};

Public methods
The following are the public methods.

attachThread
This function creates a new thread and attaches the application object to it. The
implementation protects the race condition, where the attached thread exits before
attachThread is completed. This is achieved using a mutex which attaches to the
application object.

Syntax:

void attachThread(void);

terminateThread
The application uses terminateThread to terminate the attached thread. To use this
method to terminate a thread, the application must not detach the thread. This method
uses a dedicated daemon thread and synchronous message to ensure the application
object is deleted after the thread is terminated.

Syntax:

int terminateThread(void *Rtn);

threadMain
After an application object is attached to a thread, threadMain is executed. All
subsequent calls to the member functions and other functions are executed in the
thread. The thread is terminated when threadMain is exited. The application can exit
threadMain either through a return statement or by invoking the member function
terminateThread.

Chapter 3
ASC thread library

3-134

If the application calls autoDelete, the application object is deleted when the thread is
terminated, otherwise, the application object is kept intact after the thread is terminated.

Syntax:

virtual int threadMain(void **Rtn) = 0;

getThreadName, getThreadID
This function retrieves the thread name.

Syntax:

char *getThreadName(void) { return m_ThreadName; }
int getThreadID(void);

ASC_ThreadAttr, getThreadAttr
Gets the attribute object.

Syntax:

const ASC_ThreadAttr & getThreadAttr(void) {return m_TheAttr; }

initAttr, setAttr
Initializes the attribute object. initAttr should be called once before subsequent calls to
setAttr().

Syntax:

void initAttr(void)
void setAttr(int AttrID, in Attribute);

genMsgQueue
Creates a message queue.

Syntax:

ASC_MsgQueue* genMsgQueue(char *QueueName, int &QueueID);

getMsgQueue
Gets a message queue from the session manager. For performance reasons, the application
should keep the pointer to the message queue(s) it uses, instead of using getMsgQueue to
retrieve it from the queue manager each time.

Syntax:

ASC_MsgQueue* getMsgQueue(int QueueID);
ASC_MsgQueue* getMsgQueue(char *QueueName);

delMsgQueue
Deletes a message by name or ID.

Syntax:

Chapter 3
ASC thread library

3-135

void delMsgQueue(char *QueueName);
void delMsgQueue(int *QueueID);
void delMsgQueue(ASC_MsgQueue* MsgQueue);

setTheQueue
Saves the message queue locally.

Syntax:

void setTheQueue(ASC_MsgQueue* MsgQueue, int QueueID);

getTheQueue
Gets a local message queue by ID.

Syntax:

ASC_MsgQueue* getTheQueue(int QueueID);

setTheThread
Assigns the pointer to the thread to m_TheThread.

Syntax:

void setTheThread(ASC_Thread *TheThread){ m_TheThread = TheThread; }

DCE_Thread class
The DCE thread is typically used when implementing a vendor-specific thread library.
This library is linked with the generic thread class library only when the application
chooses to use the DCE threads. Another vendor-specific thread library is linked
otherwise.

This DCE Thread Class library contains the DCE_Thread and DCE_ThreadFactory
classes.

DCE_Thread is a subclass of ASC_Thread. This class redefines all methods defined
in ASC_thread as pure virtual functions. These methods provide a generic interface
for the application to use the thread functions, provided by DCE thread vendors.

Synopsis
class DCE_Thread : public ASC_Thread {
public:

DCE_Thread(void):m_ThreadID(-1),m_detached(0),
m_SigSet(0),m_ApplObj(0){}~DCE_Thread(void){}
void spawnThread(int &ThreadID, ASC_ThreadAppl *ApplObj);
void exitThread(void *RtnData);
int detachSelf(void);
int detachThread(int ThreadID);
void yieldThread(void);
int joinThread(int ThreadID, void **RtnData);
int threadSigWait(void);
int setSigSet(ASC_SigSet *SigSet);
int isSupported(int ThreadMethod){ return ASC_True; }

Chapter 3
ASC thread library

3-136

// This function retrieves thread ID
int getThreadID(void) { return (int)m_ThreadID; }

// This function converts generic attributes to
// DCE thread attributes.
pthread_attr_t getAttributes(ASC_ThreadAppl *ApplAttr);
;

Public methods
The following are the public methods.

spawnThread
Spawns a DCE thread.

Syntax:

void spawnThread(int &ThreadID, ASC_ThreadAppl *ApplObj);

isSupported
This function retrieves thread ID int getThreadID(void) { return (int)m_ThreadID; }. To
determine whether a method is supported by a particular thread package, use isSupported.
Returning ASC_True identifies that the method is supported. DCE threads support all
methods; therefore, it returns True all the time.

Syntax:

int isSupported(int ThreadMethod){ return ASC_True; }

getAttributes
This function converts generic attributes to DCE thread attributes.

Syntax:

pthread_attr_t getAttributes(ASC_ThreadAppl *ApplAttr);

DCE_ThreadFactory class
DCE_ThreadFactory class is a subclass of ASC_ThreadFactory. This class mainly defines
the spawnThread method because only the DCE thread factory can create a DCE thread
object. This method instantiates the DCE thread object, and then invokes its method,
spawnThread, to spawn a DCE thread.

Synopsis
class DCE_ThreadFactory : public ASC_ThreadFactory {
public:

DCE_ThreadFactory(void){}
~DCE_ThreadFactory(void){}
ASC_Thread *spawnThread(int &ThreadID, ASC_ThreadAppl
*ApplObj);

Chapter 3
ASC thread library

3-137

protected:
};

Public method
The following are the public methods.

spawnThread
Spawns a DCE thread.

Syntax:

void spawnThread(int &ThreadID, ASC_ThreadAppl *ApplObj);

DCE implementation
In addition to the DCE classes mentioned above, there are DCE-related
implementations. The mutex and condition functions are defined in ASC_Mutex class,
however, the implementation of the methods are DCE specific.

The mutex is used by both the framework and the application. The methods of the
mutex class provide a generic interface to use vendor specific mutex and conditions.
The following is a mutex class.

ASC_Mutex class
You can implement these methods in the DCE library to interface with vendor-specific
thread packages. You can also implement the mutex by subclassing ASC_Mutex in
the DCE library and to request a mutex from DCE_ThreadFactory. In this way, a
mutex must be implemented in the application as an object.

Synopsis
class ASC_Mutex {
public:

ASC_Mutex(void);
~ASC_Mutex(void);
ASC_Mutex & operator=(const ASC_Mutex &);
ASC_Mutex(const ASC_Mutex &);
int lock(void);
int unlock(void);
int tryLock(void);
int condWait(void);
int condTimeWait(float Timeout);
int condSignal(void);
int condBroadCast(void);
int isSupported(int MethodID);

private:

void *m_MutexData;

};

Chapter 3
ASC thread library

3-138

Constructors
ASC_Mutex(void);
~ASC_Mutex(void);

This constructor initializes the mutex and condition variables.

ASC_Mutex & operator=(const ASC_Mutex &);

This is the assignment constructor.

ASC_Mutex(const ASC_Mutex &);

This is the Copy constructor.

Public methods
The following are the public methods.

lock, unlock
These functions lock and unlock the mutex.

Syntax:

int lock(void);
int unlock(void);

trylock
This function tries to lock the mutex. If it cannot, it returns instead of blocking the caller.

Syntax:

int tryLock(void);

condWait
This function waits for a condition to become true.

Syntax:

int condWait(void);

condTimeWait
This function waits for a condition to become true during a period of time specified by
Timeout.

Syntax:

int condTimeWait(float Timeout);

condSignal
Sends a signal when a condition is changed.

Chapter 3
ASC thread library

3-139

Syntax:

int condSignal(void);

condBroadCast
Broadcasts a signal when a condition is changed.

Syntax:

int condBroadCast(void);

isSupported
Use this function to determine whether a method is supported.

Syntax:

int isSupported(int MethodID);

ASC_Context class
The mutex and condition are implemented as two classes instead of one.

In this framework, a context class is introduced for the application to retrieve the
thread factory and message manager.

The ASC_Context class can be implemented in the following ways.

• Similar to the implementation of the mutex, the ASC_Context is implemented in
the DCE to instantiate the DCE thread factory. In this way, the application is not
required to choose the thread factory at run time, but at linking time.

• Another way to implement this class is to let the application choose the thread
factory at run and link time. In this approach, the context class is not necessary.

The first approach is not considered proper in a C++ implementation, because it
exposes the class private members to other libraries.

Synopsis
class ASC_Context {
public:

~ASC_Context(void){}
static ASC_Context *getTheContext(void);
ASC_ThreadFactory *getThreadFactory(void);
int deleteThreadFactory(void);
MsgQueueMgr *getMsgQueueMgr(void);
int deleteMsgQueueMgr(void);

protected:

// These routines must be created in platform
// dependent thread libraries.
ASC_ThreadFactory *_getThreadFactory(void);
void _deleteThreadFactory(void);

private:

Chapter 3
ASC thread library

3-140

ASC_Context(void){}

};

// This class provides a dummy message queue manager.
class _MsgQueueMgr : public MsgQueueMgr{

public:

_MsgQueueMgr(void){}
~_MsgQueueMgr(void){}

};

Both methods _getThreadFactory and _deleteThreadFactory must be implemented in the
DCE library. getMsgQueueMgr and deleteMsgQueueMgr are implemented in the message
queue manager.

Public methods
The following are the public methods.

threadMain
The threadMain method permanently blocks on the message queue waiting for requests.
After it receives a request, it cleans up the remainder of a terminated thread.

If a thread object exits from threadMain, the mechanism discussed above is not used.
Instead, the function invokes threadMain to do clean-up work.

Syntax:

TerminatorThread(char *ApplName):ASC_ThreadAppl(ApplName){} ~TerminatorThread(void){}
int threadMain(void **Rtn);

Inter-thread messaging system
The framework provides the inter-thread messaging system for the application to send
messages. Although the design allows more than one type of message to be implemented, in
this release only inter-thread messages are implemented.

The Inter-thread message allows the application to send messages among the threads. The
implementation allows many threads to send and receive messages from the same queue.
The mutex and condition are used to ensure that only one thread can access a message at a
time.

This system supports both synchronous and asynchronous messages. When a thread sends
an asynchronous message, it returns immediately. When a thread sends a synchronous
message, it is blocked until the receiver frees it up. In addition, a sender or receiver can
delete asynchronous messages, but only the sender can delete synchronous messages.

The MsgQueueMgr allows the application to create and retrieve message queues. After the
application obtains the queue, an object of ThreadMsgQueue, it can use it to pass
messages to other threads which monitor this queue, or retrieve messages from this queue.
Asc_MsgQueue provides a generic interface which is redefined by its subclass such as
ThreadMsgQueue.

Chapter 3
ASC thread library

3-141

ASC_Msg provides a default message object which is transferred among threads as
vehicles to carry messages.

Because the system can have many message queues and each queue can contain
many messages at a time, the system uses the Standard C++ containers to fulfill this.

ASC_Mutex is used to coordinate transferring the message among threads so that
only one thread may access a message at a time.

Message queue manager class
MsgQueueMgr describes the message queue manager. It provides an interface for
the application to obtain message queues. Because all message queues in a process
are managed by the manager using the Standard C++ classes, this manager is not hit
each time a thread accesses a queue. Instead, a thread keeps the queue locally after
it obtains the queue. The object generated from this class is a singleton object.

Synopsis
class MsgQueueMgr {
public:

int getNumOfQueues(void);
ASC_MsgQueue* genThreadMsgQueue(char *QueueName,
int &QueueID);
ASC_MsgQueue* getMsgQueue(int &QueueID);
ASC_MsgQueue* getMsgQueue(char *QueueName);
void delMsgQueue(char *QueueName);
void delMsgQueue(int QueueID);
void delMsgQueue(ASC_MsgQueue *MsgQueue);
static MsgQueueMgr* getMsgQueueMgr(void);

protected:

~MsgQueueMgr(void){}
MsgQueueMgr(void){}

private:
 static MsgQueueMgr *m_TheQueueMgr;
ASC_Mutex m_TheMutex;
};

Public methods
The following are the public methods.

genThreadMsgQueue
ASC_MsgQueue* genThreadMsgQueue(char *QueueName, int &QueueID);

Use this function to generate a new message queue. If the message queue exists, this
function returns the queue ID.

getMsgQueue
ASC_MsgQueue* getMsgQueue(int &QueueID);
ASC_MsgQueue* getMsgQueue(char *QueueName);

Chapter 3
ASC thread library

3-142

These functions retrieve a message queue.

delMsgQueue
void delMsgQueue(char *QueueName);
void delMsgQueue(int QueueID);
void delMsgQueue(ASC_MsgQueue *MsgQueue);

These functions remove a message queue.

getMsgQueueMgr
static MsgQueueMgr* getMsgQueueMgr(void);

Gets a pointer to the message queue manager. This function makes the message queue
manager singleton.

Message queue class
MsgQueueMgr uses the Standard C++ container to manage the queue objects. The class is
an abstract class that provides the application a generic interface to access messages.

Synopsis
class ASC_MsgQueue {
public:

 friend class MsgQueueMgr;
 ASC_MsgQueue(const char *MsgQueueName, const int MsgQueueID,
const int QueueType);
 ASC_MsgQueue(const char *MsgQueueName, const int MsgQueueType);
 ASC_MsgQueue(const int MsgQueueID, const int MsgQueueType);
 ASC_MsgQueue(const int MsgQueueType);

 virtual ~ASC_MsgQueue(void);
 void setQueueID(const int MsgQueueID) { m_QueueID = MsgQueueID; }
 void getQueueName(char *Name) const { strcpy (Name, m_QueueName); }
 const char *getQueueName(void) const { return m_QueueName; }
 void getQueueID(int &QueueID) const { QueueID = m_QueueID; }
 const int getQueueID(void) const { return m_QueueID; }
 const int getQueueType(void) const { return m_QueueType; }
 void addOneUser(void) { ++m_numOfUsers; }
 void removeOneUser(void) { --m_numOfUsers; }
 int getNumOfUsers(void) { return m_numOfUsers; }
 virtual int getQueueSize(void) const = 0;
 virtual int putMsg(ASC_Msg *Msg, const int SynchMsg) = 0;
 virtual int getMsg(ASC_Msg **Msg, const float WaitTime) = 0;
 virtual int getMsg(const int MsgType,
 ASC_Msg **Msg, const float WaitTime) = 0;
 virtual int peepMsg(ASC_Msg **Msg) = 0;
 virtual int peepMsg(const int MsgType, ASC_Msg **Msg) = 0;
 virtual void commitMsg(ASC_Msg *Msg) = 0;

protected:
private:
 ASC_MsgQueue(void):m_QueueName(0),m_QueueID(0),m_QueueType(0) {}
 char *m_QueueName;
 int m_QueueType;

Chapter 3
ASC thread library

3-143

 int m_QueueID;
 int m_numOfUsers;
 ASC_MsgQueue(const ASC_MsgQueue & TheQueue);
 ASC_MsgQueue & operator=(const ASC_MsgQueue & TheQueue);
};

Constructors
This constructor is used to construct a queue.

Syntax:

ASC_MsgQueue(const char *MsgQueueName, const int MsgQueueID, const int
QueueType);

These constructors are used to retrieve a message queue.

Syntax:

ASC_MsgQueue(const char *MsgQueueName, const int MsgQueueType);
ASC_MsgQueue(const int MsgQueueID, const int MsgQueueType);
ASC_MsgQueue(const int MsgQueueType);

Public methods
The following ar e the public methods.

addOneUser, removeOneUser, getNumOfUsers
These methods are used to keep track number of users are currently using a queue.
This information is used for deleting a queue, because a queue can be deleted only
when it is currently used by one user.

Syntax:

void addOneUser(void) { ++m_numOfUsers; }
void removeOneUser(void) { --m_numOfUsers; }
int getNumOfUsers(void) { return m_numOfUsers;//

getQueueSize
Gets how many messages are in a queue.

Syntax:

virtual int getQueueSize(void) const = 0;

putMsg
This member function inserts a message into the queue.

Syntax:

virtual int putMsg(ASC_Msg *Msg, const int SynchMsg) = 0;

Chapter 3
ASC thread library

3-144

getMsg
This member function retrieves a message from the top of the queue (the message staying in
the queue the longest). Once the action is completed, the message is removed from the
queue.

Syntax:

virtual int getMsg(ASC_Msg **Msg, const float WaitTime)= 0;

This member function retrieves the first message which matches the type (the message with
the type staying in the queue the longest). Once the action is completed, the message is
removed from the queue.

Syntax:

virtual int getMsg(const int MsgType, ASC_Msg **Msg, const float WaitTime) = 0;

peepMsg
These functions do not remove messages from a queue.

Syntax:

virtual int peepMsg(ASC_Msg **Msg)=0;
virtual int peepMsg(const int MsgType, ASC_Msg **Msg) = 0;

commitMsg
This function is used to commit a synchronous message after the receiver has received the
message. Before the receiver calls this function, the sender thread is blocked.

Syntax:

virtual void commitMsg(ASC_Msg *Msg) = 0;

ThreadMsgQueue class
This class is generated by subclassing the abstract ASC_MsgQueue class to provide
message queues for inter-thread communication. It essentially redefines all message queue
interface functions.

Synopsis
class ThreadMsgQueue : public ASC_MsgQueue {
public:

 ThreadMsgQueue(const char *MsgQueueName, const int MsgQueueID,
 const int MsgQueueType = ASC_ThreadQueue);
 ThreadMsgQueue(const char *MsgQueueName,
 const int MsgQueueType = ASC_ThreadQueue);
 ThreadMsgQueue(const int MsgQueueID,
 const int MsgQueueType = ASC_ThreadQueue);
 ~ThreadMsgQueue(void);

 int getQueueSize(void) const { return m_MsgList.size(); }
 int putMsg(ASC_Msg *Msg, const int AsychMsg);

Chapter 3
ASC thread library

3-145

 int getMsg(ASC_Msg **Msg, const float WaitTime);
 int getMsg(const int MsgType,
 ASC_Msg **Msg, const float WaitTime);
 int peepMsg(ASC_Msg **Msg);
 int peepMsg(const int MsgType, ASC_Msg **Msg);
 void commitMsg(ASC_Msg *Msg) { Msg->commitMsgWait(); }
 inline std::vector<ASC_Msg*>::iterator
 find_by_type(std::vector<ASC_Msg*> &container, int type);

private:
 std::vector<ASC_Msg*> m_MsgList;
 ASC_Mutex *m_TheMutex;
 ASC_Condition *m_TheCond;
 ThreadMsgQueue(const ThreadMsgQueue & TheQueue);
 ThreadMsgQueue & operator=(const ThreadMsgQueue & TheQueue);
};

Public methods
The following are the public methods.

getQueueSize
Retrieves the number of messages in the queue.

Syntax:

int getQueueSize(void)const{return m_MsgList.size(); }

putMsg
Saves a message into the queue. This function returns immediately when it sends an
asynchronous message.

Syntax:

int putMsg(ASC_Msg *Msg, const int AsychMsg);

getMsg
Retrieves a message. This function removes a message from the head of the queue.

Syntax:

int getMsg(ASC_Msg **Msg, const float WaitTime);

getMsg
Retrieves a message. This function removes a message from the queue which
matches up with the type specified.

Syntax:

int getMsg(const int MsgType, ASC_Msg **Msg, const float WaitTime);

Chapter 3
ASC thread library

3-146

peepMsg
The following two functions are similar to get functions, however, they do not remove
messages from the queue.

Syntax:

int peepMsg(ASC_Msg **Msg);
int peepMsg(const int MsgType, ASC_Msg **Msg);

commitMsg
Required to store the message.

Syntax:

void commitMsg(ASC_Msg *Msg) { Msg->commitMsgWait(); }

Message class
Use ThreadMsg to generate message objects. Message objects are transferred among
threads. You can use this basic class to transfer messages containing the message type and
message text. You can generate a customized message object through subclassing this
class, to add desired message contents.

ThreadMsg also provides the means for the message queue object to handle synchronous
and asynchronous messages.

Synopsis
class ASC_Msg {
public:

 ASC_Msg(int MsgType, void *Msg);
 ASC_Msg(int MsgType);
 virtual ~ASC_Msg(void);
 void setType(const int MsgType) { m_Type = MsgType; }
 void setMsg(void *Msg) { m_Text = Msg; }
 int getType(void) const { return m_Type; }
 void getType(int &MsgType) const { MsgType = m_Type; }
 void* getMsg(void) const { return m_Text; }
 void getMsg(void **Msg) const { *Msg = m_Text; }
 operator char*(void) { return (char *)m_Text; }
 operator int&(void) { return m_Type; }
 virtual void commitMsgWait(void);
 virtual void doMsgWait(void);
 void initSyn(void);

protected:
private:
 int m_Type;
 void *m_Text;
 int m_MsgStatus;
 ASC_Mutex *m_TheMutex;
 ASC_Condition *m_TheCond;
 ASC_Msg(void);
};

Chapter 3
ASC thread library

3-147

Constructors
ASC_Msg(int MsgType, void *Msg);

Creates a message.

Public methods
The following are the public methods.

doMsgWait
void doMsgWait(void)

This function blocks the sender and waits for the receiver to commit the message. This
function is used only by ASC_MsgQueue.void commitMsgWait(void).

commitMsgWait
void commitMsgWait(void)

This function commits the message and releases the sender. The application can use
either this one or one in ASC_MsgQueue to commit a message.

initSyn
void initSyn(void);

This function initializes a message.

XML JMX interface
For overview information on the JMX interface, refer to the ASAP Server Configuration
Guide. For complete reference information on the JMX interface, refer to the ASAP
Online Reference.

ASAP daemon API
The ASAP daemon consists of two parts: a daemon server and a group of client APIs
for WebLogic Server application developers.

The ASAP daemon server is packaged in asaplibcommon.jar. It can be started without
ASAP or WLS being activated and keeps running until the user stops the server by
means of a script. For more information, refer to the ASAP System Administrator's
Guide. The server always listens to requests issued from WLS applications. When the
ASAP daemon receives a request, it performs the relevant I/O operation against the
current ASAP instance.

The ASAP daemon client is not an independent program. It consists of the client APIs,
plus the client configuration data in asap.ear. In asap.ear, the ASAP daemon client
requires the following configuration arrangement (particularly those that appear in
bold):

Chapter 3
XML JMX interface

3-148

Contents of asap.ear: after compilation

<root>

ssam<ENV_ID>.jar
srp.jar
jsrp_connector.rar
jmx_connector.rar
sadtConsole.war
sadt.jar
<lib>
xercesImpl.jar
asapd_utils.jar
<META-INF>
weblogic-application.xml
application.xml
MANIFEST.MF

Java Program Sources:

• $ASAP_BASE/jshared/src – build.xml creates $ASAP_BASE/lib/asap.ear with the proper
deployment descriptors, jmx_connector.rar, asapd.jar, jsrp_connector.rar and
xercesImpl.jar

• $ASAP_BASE/jmx/src/web – build.xml adds sadtConsole.war to asap.ear

• $ASAP_BASE/jmx/src/ejb – build.xml adds sadt.jar to asap.ear

• $ASAP_BASE/jsrp/src – build.xml adds srp.jar to asap.ear.

• $ASAP_BASE/security/src – build.xml adds ssam.jar to asap.ear

The following configuration data must be customized before asap.ear is deployed in
WebLogic Server.

Daemon server host and port, defined in META-INF/ra.xml within jmx_connector.rar:

• replace "__HOSTNAME__" and "__PORTNUMBER__" with real host and port values

Daemon client authorized user name, defined in WEB-INF/weblogic.xml within
sadtConsole.war:

• replace "_USERNAME_" with real WLS login name

Daemon client used information, defined in WEB-INF/web.xml within sadtConsole.war:

• replace "ASAPDEV_ASAP_BASE" with ASAP_BASE directory (mirror) in WLS

• replace "ASAPDEV_SYBASE" with Sybase interfaces file path (mirror) in WLS

• replace "ASAPDEV_CTRL_PSWD" with current ASAP control password

Note:

Because ASAP_BASE and SYBASE file are mirrored on the WLS side, the
daemon server can use actual paths.

The two mirrors can be relative paths, e.g., "A46". A relative path is based on the WLS
domain directory. Never replace these paths with the real $ASAP_BASE path or the
real $SYBASE/interfaces path if WLS is on the same machine as ASAP.

The Sybase interfaces file name in the WLS mirror should be same as on the ASAP side.

Chapter 3
ASAP daemon API

3-149

Replace "SAAS-1" with $ENV_ID in the WLS application JNDI prefix string in the
following files:

• META-INF/weblogic-ra.xml within jmx_connector.rar

• WEB-INF/web.xml within sadtConsole.war

• WEB-INF/weblogic.xml within sadtConsole.war

• META-INF/weblogic-ejb-jar.xml with sadt.jar

The necessary "Class-Path" information will be properly defined in the related
MANIFEST.MF files.

Daemon client APIs
The asapd.jar provides daemon client APIs to WebLogic Server application developers
to provide a consistent API for the internal protocols of the daemon process.

The ASAP daemon client APIs are based on two primary classes: RemoteFile,
RemoteCommand. They have a common superclass RemoteAccess, which defines
some common constant data and methods.

RemoteFile
A remote file can be either a file or a directory in remote site, that is, a daemon server
site. The methods of this class are designed to fully or partially substitute for the same/
similar methods in Java File class.

Syntax:

public RemoteFile(ASAPDataSource _ds, String remotePath, int pathBase)
throws Exception

Constructors:

• _ds: An object of ASAPDataSource (this class is provided in asapd_utils.jar); a
factory of connections to the daemon server process.

• remotePath: A string of path of a remote file/directory that the client wants to
access.

• pathBase: An integer that represents the remote path base. The supported bases
are:

– RemoteFile.ROOT_BASED – the remotePath is an absolute path

– RemoteFile.ASAP_BASED – the remotePath is a path relative to the
remote $ASAP_BASE

– RemoteFile.SYBASE_BASED – the remotePath is a path relative to the
remote $SYBASE

Property checking methods
public boolean canRead()
public boolean canWrite()
public boolean exists()
public boolean isFile()
public boolean isDirectory()
public boolean isHidden()

Chapter 3
ASAP daemon API

3-150

public boolean isAbsolute()
public long lastModified()
public long length()
public String toString()
public String getPath()
public String getName()
public String getParent()

All these methods behave in the same way as Java's File class, except for the following
conditions.

• if a RemoteFile isDirectory, calling length() is not relevant.

• if a RemoteFile does not exist, all other state checking return false.

• all the properties have their values same as the RemoteFile constructor was called.

get Methods
This method provides WLS client with the ability to retrieve a file from a remote site. The file
path has been specified in the constructor.

Syntax:

public InputStream get()
throws Exception

put Methods
These methods provide the WLS client with the ability to save a set of data to a remote file.
The file path has been specified in the constructor.

• put(byte[] buffer) is used primarily to save any data set in memory to a remote file.

• put(InputStream is, long size) can be called after the “get" of an InputStream, which is
usually of a subclass of InputStream, such as FileInputStream or PipedInputStream.

• put(String localFilePath) is used to transfer a local file to a remote file whose path has
been specified in the constructor. This method is designed to minimize modification to the
existing WLS application. The application can get a remote file, edit it, and then save it
locally (the WLS application writes files back in many different ways depending on the
particular logic).

Syntax:

public void put(byte[] buffer)
throws Exception
public void put(InputStream is, long size)
throws Exception
public void put(String localFilePath)
throws Exception

RemoteCommand
A remote command can be either a special daemon command or a UNIX script in a remote
site, that is, a daemon server site.

Syntax:

public RemoteCommand(ASAPDataSource _ds, CommandInfo _commInfo)
throws Exception

Chapter 3
ASAP daemon API

3-151

Constructors:

• _ds: An object of ASAPDataSource (this class is provided in jmx_connector.jar); a
factory of connection to the daemon server process.

• _commInfo: A CommandInfo that represents the command property, including:

– public byte command - the command, which can be REM_REQ_COPY_FILE
– copy a file from source file/dir to dest file/dir; REM_REQ_MOVE_FILE –
move a file from source file/dir to dest file/dir; REM_REQ_EXTRACT_JFILE –
unjar a dest file from a source jar file

– public byte base_dir - the path base, same as RemoteFile

– public String src_dir - the resource directory

– public String src_file - the resource file

– public String dest_dir - the destination directory

– public String dest_file - the destination file

action Methods
These three methods provide WLS client with the ability to actually perform the
command specified in the constructor.

public void copy()

throws Exception

public void move()

throws Exception

public void unjar()

throws Exception

Chapter 3
ASAP daemon API

3-152

4
Provisioning Interfaces

This chapter describes the following provisioning (upstream) interfaces:

• SARM configuration interface

• SARM provisioning interface

• C++ SRP API library

SARM configuration interface
This section covers the functions for the SARM and includes the following subsections:

• Static table configuration

• Error management

• Switch blackout processing

• Switch direct interface (SWD)

• Stop work order interface

• Localizing International Messages

Static table configuration
To interface to the static configuration database tables, use the function-based interface
instead of SQL insert scripts.

The function-based interface reduces the dependency between administrators who configure
the system and product developers who need to make changes to the static tables to support
new functionality.

This section lists the syntax, descriptions, parameters, and results for the SARM
configurations and includes the delete, list, and new procedures interface definitions.

SSP_db_admin
This function performs customer-specific database administration functions, such as purging
the database of completed orders, and removing orphaned definitions from the SARM
database.

For more information on this function and database purging, refer to the ASAP System
Administrator's Guide.

For more information about using functions, see "Oracle Execution Examples."

Affected tables:

• tbl_wrk_ord

• tbl_asap_stats

4-1

• tbl_info_parm

• tbl_srq

• tbl_srq_csdl

• tbl_srq_log

• tbl_asdl_log

• tbl_srq_parm

• tbl_srq_asdl_parm

• tbl_wo_event_queue

• tbl_wo_audit

• tbl_usr_wo_prop

• tbl_aux_wo_prop

Table 4-1 SSP_db_admin Parameters

Name Description Req'd (I)nput/
(O)utput

days Specifies the age (in days) of work orders to delete. All completed
work orders older than the specified number of days are deleted.

Yes I

SSP_gather_asap_stats
Gathers statistics for objects in the database (tbl_wrk_ord). The information includes
the distribution of data, the number of rows in the table and other important statistics.
Statistics gathering is governed by the following parameters in ASAP.cfg:

• GATHER_STATS

• GATHER_STATS_PROC

• DB_PCT_ANALYZE

• DB_PCT_ANALYZE_IDX

• GATHER_DEGREE

• DB_ADMIN_TIME

For more information about using functions, see "Oracle Execution Examples."

Syntax:

SSP_gather_asap_stats(
a_tab_estimate_pct number,
a_ind_estimate_pct number,
a_degree number)

Chapter 4
SARM configuration interface

4-2

Table 4-2 SSP_del_asdl_defn Parameters

Name Description Req'd (I)nput/
(O)utput

a_tab_estimate_pct
number

This parameter applies to Oracle only. It is used to
update statistics on all user-defined tables. The
updates are done when the database administrations
tasks are performed. (See also DB_ADMIN_TIME.)
This parameter is used to optimize the database query
performance.

The Oracle SQL statement is “analyze table
table_name estimate statistics sample
DB_PCT_ANALYZE percent". For further information,
refer to “Analyze Command" in the Oracle SQL
Reference manual.

Yes I

a_ind_estimate_pct
number

Percentage of the index to analyze when gathering
statistics.

Yes I

a_degree number Degree of parallelism when gathering statistics. The
degree parameter can take the value of auto_degree.

When you specify the auto_degree, Oracle determines
the degree of parallelism automatically. It will be either
1 (serial execution) or default_degree (the system
default value based on number of CPUs and
initialization parameters), according to the size of the
object.

Yes I

SSP_del_asdl_defn
This function deletes ASDL definitions from tbl_asdl_config. Wildcards are permitted.

Note:

If you do not specify an ASDL command, all ASDL command definitions are deleted
from the configuration records.

Syntax:

var retval number;
exec :retval := SSP_del_asdl_defn ([‘asdl_cmd'])

Example:

var rc refcursor;
var retval number;
exec :retval := SSP_del_asdl_defn (:rc,‘M-CREATE_SINGLE_LINE_ACCESS');

This example removes the M-CREATE_SINGLE_LINE_ACCESS configuration record from
the static configuration tables.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-3

Table 4-3 SSP_del_asdl_defn Parameters

Name Description Req'd (I)nput/
(O)utput

asdl_cmd The ASDL command to be deleted. No I

SSP_del_asdl_map
This function deletes ASDL-to-State Table mappings from tbl_nep_asdl_prog. The
mapping is based on the technology and software load.

For more information about using functions, see "Oracle Execution Examples."

Syntax:

var retval number;
exec :retval := SSP_del_asdl_map [‘tech'] [, ‘sftwr_load'] [, ‘asdl_cmd']

Table 4-4 SSP_del_asdl_map Parameters

Name Description Req'd (I)nput/
(O)utput

tech The technology type of NE or SRP with which the
Interpreter is to interact.

No I

sftwr_load The version of the software currently running on
the NEP or SRP.

No I

asdl_cmd The ASDL command. No I

SSP_del_asdl_parm
This function deletes an ASDL parameter from tbl_asdl_parm.

Note:

If you do not enter a sequence number, all parameters associated with this
ASDL command are deleted.

For more information about using functions, see "Oracle Execution Examples."

This example removes the ASDL command parameter with the sequence number 4
from the configuration table for the command M-CREATE_SINGLE_LINE_ACCESS.

Table 4-5 SSP_del_asdl_parm Parameters

Name Description Req'd (I)nput/
(O)utput

asdl_cmd The ASDL command. No I

parm_seq_no The parameter sequence number. No I

Chapter 4
SARM configuration interface

4-4

SSP_del_clli_map
This function deletes a remote CLLI to host CLLI mapping in tbl_clli_route.

For more information about using functions, see "Oracle Execution Examples."

Table 4-6 SSP_del_clli_map Parameters

Name Description Req'd (I)nput/
(O)utput

mach_clli The remote NE. No I

asdl_cmd ASDL command. No I

SSP_del_comm_param
This function deletes communication parameter information from tbl_comm_param.

For more information about using functions, see "Oracle Execution Examples."

Table 4-7 SSP_del_comm_param Parameters

Name Description Req'd (I)nput/
(O)utput

dev_type The device type. Choose the type of connection from the
following:

• D – Serial Port Dialup
• F – TCP/IP FTP Connection
• G – Generic Terminal Based Connection
• H – Serial Port Hardwired
• M – Generic Message Based Connection
• P – SNMP Connection
• S – TCP/IP Socket Connection
• T – TCP/IP Telnet Connection
• W – LDAP Connection
• C – CORBA

No I

host Host CLLI. Set to COMMON_HOST_CFG or the host
CLLI associated with the command processor. For a
common host, the parameter value is the default value,
otherwise, it is host-specific.

No I

device The physical or logical device name. Set to
COMMON_DEVICE_CFG or the device associated with
the command processor. For a common device, the
parameter value is the default value, otherwise, it is
device-specific.

No I

param_label Specifies the communication parameter label. No I

param_value Specifies the communication parameter value. No I

param_desc Specifies the communication parameter description. No I

Chapter 4
SARM configuration interface

4-5

SSP_del_csdl_asdl
This function deletes a CSDL-to-ASDL mapping definition from tbl_csdl_asdl.

Note:

If you do not specify an ASDL command sequence number, all mapping
relationships for the specified CSDL command are removed from the
configuration tables. If you do not specify a CSDL command, all mapping
relationships are removed.

For more information about using functions, see "Oracle Execution Examples."

Table 4-8 SSP_del_csdl_asdl Parameters

Name Description Req'd (I)nput/
(O)utput

csdl_cmd The CSDL command. No I

asdl_seq_no The sequence number of the ASDL command. No I

SSP_del_csdl_defn
This function deletes CSDL definitions from tbl_csdl_config.

Note:

If you do not specify a CSDL command, all CSDL command definitions are
removed.

Syntax:

var retval number;
exec :retval := SSP_del_csdl_defn [‘csdl_cmd']

Example:

var retval number;
exec :retval := SSP_del_csdl_defn ‘M-CREATE_BUS_LINE'

The configuration record for M-CREATE_BUS_LINE is removed from the configuration
tables.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-6

Table 4-9 SSP_del_csdl_defn Parameters

Name Description Req'd (I)nput/
(O)utput

csdl_cmd The CSDL command. No I

SSP_del_dn_map
This function deletes a directory number mapping from tbl_nep_rte_asdl_nxx.

For more information about using functions, see "Oracle Execution Examples."

Table 4-10 SSP_del_dn_map Parameters

Name Description Req'd (I)nput/
(O)utput

asdl_cmd The ASDL command identifier. No I

npa The Numbering Plan Area code. No I

nxx The Central Office code. No I

from_line The lowest line number in the range. No I

to_line The highest line number in the range. No I

SSP_del_id_routing
This function deletes a host NE and the ID_ROUTING mapping record from tbl_id_routing.
Use this function when routing by ID_ROUTING is used.

For more information about using functions, see "Oracle Execution Examples."

Table 4-11 SSP_del_id_routing Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE identifier. Yes I

asdl_cmd The ASDL command. Yes I

id_routing_from The starting point of a range of ID_ROUTING. Yes I

id_routing_to The end point of a range of ID_ROUTING. Yes I

SSP_del_intl_msg
This function deletes an international message record from the tbl_msg_convert.

If you do not specify a message identifier, all messages with the specified language code are
deleted.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-7

Table 4-12 SSP_del_intl_msg Parameters

Name Description Req'd (I)nput/
(O)utput

lang_cd The language code. No I

msg_id The unique message identifier for the message to
be removed from the SARM database.

No I

The following example shows how to delete an international message:

var retval number;
exec :retval := SSP_del_intl_msg ‘USA', 1

This deletes American English message 1 from the SARM database.

SSP_del_ne_host
This function deletes a host NE definition from tbl_host_clli.

For more information about using functions, see "Oracle Execution Examples."

Table 4-13 SSP_del_ne_host Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE identifier of an NE or SRP. No I

SSP_del_nep
This function deletes an NEP secondary pool definition from tbl_nep.

For more information about using functions, see "Oracle Execution Examples."

Table 4-14 SSP_del_nep Parameters

Name Description Req'd (I)nput/
(O)utput

nep_svr_cd The NEP managing the secondary pool of
devices.

No I

SSP_del_nep_program
This function deletes State Table actions based on the specified program name and/or
line number from tbl_nep_program.

If the line number is not supplied, all actions with positive line numbers are removed.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-8

Table 4-15 SSP_del_nep_program Parameters

Name Description Req'd (I)nput/
(O)utput

program The State Table program identifier. Yes I

line_no The State Table line number to delete. If set to NULL,
all lines of the State Table are deleted.

No I

SSP_del_net_elem
This function deletes an NE definition for an NEP from the SARM database.

This function deletes a network elements from tbl_ne_config.

For more information about using functions, see "Oracle Execution Examples."

Table 4-16 SSP_del_net_elem Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE identifier of an NE or SRP. No I

nep_svr_cd The logical name of the NEP server that connects to
the host NE.

No I

SSP_del_resource
This function deletes a device from tbl_resource_pool.

For more information about using functions, see "Oracle Execution Examples."

Table 4-17 SSP_del_resource Parameters

Name Description Req'd (I)nput/
(O)utput

asap_sys The ASAP environment (TEST, PROD, and so on). No I

device The physical or logical device name. No I

SSP_del_srp
This function deletes an SRP definition from the tbl_asap_srp.

For more information about using functions, see "Oracle Execution Examples."

Table 4-18 SSP_del_srp Parameters

Name Description Req'd (I)nput/
(O)utput

srp_id The logical SRP name. No I

Chapter 4
SARM configuration interface

4-9

SSP_del_stat_text
This function deletes static text labels used in the OCA GUI client from tbl_stat_text.

For more information about using functions, see "Oracle Execution Examples."

Table 4-19 SSP_del_stat_text Parameters

Name Description Req'd (I)nput/
(O)utput

stat_id The logical group of static text messages such as
WO_STATE. If this is not specified, all entries in
tbl_stat_text are deleted.

No I

status The integer identifier for member of logical
grouping.

No I

code The string identifier for member of logical
grouping.

No I

SSP_del_user_err_threshold
This function deletes a user-defined error threshold or set of thresholds from
tbl_user_err_threshold.

For more information about using functions, see "Oracle Execution Examples."

Table 4-20 SSP_del_user_err_threshold Parameters

Name Description Req'd (I)nput/
(O)utput

host The host NE identifier of an NE or SRP. No I

asdl_cmd The ASDL command. No I

user_type The user-defined error type. No I

SSP_del_userid
This function deletes a user ID from tbl_uid_pwd.

For more information about using functions, see "Oracle Execution Examples."

Table 4-21 SSP_del_userid Parameters

Name Description Req'd (I)nput/
(O)utput

uid The user ID. No I

SSP_get_async_ne
This function returns the names of all the NEs that have a ASYNC_CONN
communication parameter defined with a value of TRUE or FALSE. The existence of a

Chapter 4
SARM configuration interface

4-10

parameter labeled ASYNC_CONN indicates that the NE has an asynchronous interface. The
parameter value of TRUE or FALSE indicates whether the NEP server should establish an
NE element connection at NEP start-up. This function has no input parameters.

For more information about using functions, see "Oracle Execution Examples."

Table 4-22 SSP_get_async_ne Parameters

Name Description Req'd (I)nput/
(O)utput

host The host name of the NE having an ASYNCH_CONN
communication parameter defined.

No O

param_value Value of the ASYNCH_CONN parameter - either
TRUE or FALSE. Indicates whether the NEP server
should establish an NE element connection at NEP
start-up.

No O

SSP_get_user_routing
This function returns a Host NE (host_clli) that is used to route the ASDL from
tbl_user_routing. You must write this function and the associated database table based on
the pre-defined interfaces and your own routing algorithm when using a user-defined routing.

For more information about using functions, see "Oracle Execution Examples."

Table 4-23 SSP_get_user_routing Parameters

Name Description Req'd (I)nput/
(O)utput

user_routing The USER_ROUTING defined as a work order
parameter.

No I

asdl_cmd The ASDL command. No I

host_clli The host NE identifier to be routed. If it fails to find the
host NE associated with the USER_ROUTING, it
returns NULL.

No O

SSP_list_asdl
This function retrieves ASDL-related information from tbl_asdl_config, tbl_asdl_parm,
tbl_nep_asdl_prog.

For more information about using functions, see "Oracle Execution Examples."

Table 4-24 SSP_list_asdl Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

RC2 Oracle Database Ref Cursor. Yes I/O

RC3 Oracle Database Ref Cursor. Yes I/O

Chapter 4
SARM configuration interface

4-11

Table 4-24 (Cont.) SSP_list_asdl Parameters

Name Description Req'd (I)nput/
(O)utput

asdl The name of the ASDL. No I

The shaded groupings below indicate that multiple result sets are returned: in this
case, three sets of data.

For more information about using functions, see "Oracle Execution Examples."

Table 4-25 SSP_list_asdl Results

Name Datatype Description

reverse_asdl TYP_asdl_cmd reverse ASDL command

ignore_rollback TYP_yes_no ignore rollback flag

route_flag TYP_route ASDL routing flag

description varchar(40) ASDL command description

asdl_lbl TYP_parm_lbl ASDL parameter label

csdl_lbl TYP_parm_lbl CSDL parameter label

param_typ TYP_parm_typ ASDL parameter type

default_vlu TYP_parm_vlu ASDL parameter default value

tech TYP_tech technology

sftwr_load TYP_load software loads

program TYP_program State Table program

SSP_list_asdl_defn
This function lists all or specific ASDL definitions from the SARM database
(tbl_asdl_config, tbl_csdl_asdl). You can use wildcards in this procedure. If you do not
specify a parameter, all ASDL definitions are returned.

Syntax:

var rc refcursor;
var retval number;
exec :retval := SSP_list_asdl_defn (:rc[,‘asdl_cmd']);
print rc;

Example:

var rc refcursor;
var retval number;
exec :retval := SSP_list_asdl_defn (:rc,'M-CREATE_SINGLE_LINE_ACCESS');
print rc;

The following example lists the information for M-SINGLE_LINE_ACCESS:

asdl_cmd reverse_asdl ignore_rollback
route_flag description
-------- ---------- --

Chapter 4
SARM configuration interface

4-12

M-CREATE_SINGLE_LINE_ACCESS M-DELETE_SINGLE_LINE_ACCESS N B
Create a single-line access service.
(1 row affected, return status = 0)

For more information about using functions, see "Oracle Execution Examples."

Table 4-26 SSP_list_asdl_defn Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

asdl_cmd The ASDL command identifier. No I

Table 4-27 SSP_list_asdl_defn Results

Name Datatype Description

asdl_cmd TYP_asdl_cmd ASDL command.

reverse_asdl TYP_asdl_cmd Reverse ASDL command.

ignore_rollback TYP_yes_no Ignore rollback flag.

route_flag TYP_route ASDL routing flag.

description varchar(40) ASDL command description.

SSP_list_asdl_map
This function lists ASDL-to-State Table mappings according to various criteria. All parameters
take wildcards. This function retrieves asdl mapping information from tbl_nep_asdl_prog.

Syntax:

var rc1 refcurson;
var retval number;
exec :retval := SSP_list_asdl_map (:RC1) [, ‘tech'] [, ‘sftwr_load'] [, ‘asdl_cmd']
[, ‘interpreter_type']

For more information about using functions, see "Oracle Execution Examples."

Table 4-28 SSP_list_asdl_map Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

tech The technology type of the NE or SRP with which the
Interpreter is to interact.

No I

sftwr_load The version of the software currently running on the NEP
or SRP.

No I

asdl_cmd The ASDL command. Wildcards are accepted. No I

program The State Table program. No I

interpreter_type A value of 'S' indicates a State Table interpreter. A value
of J indicates a JInterpreter. A null value defaults to S.

No I

Chapter 4
SARM configuration interface

4-13

Table 4-29 SSP_list_asdl_map Results

Name Datatype Description

tech TYP_tech Technology.

sftwr_load TYP_load Software loads.

asdl_cmd TYP_asdl_cmd ASDL command.

program TYP_program State Table program.

SSP_list_asdl_parm
This function lists ASDL parameters from the SARM database (tbl_asdl_parm) by
ASDL command name and/or ASDL parameter label. Wildcards are allowed.

Syntax:

var rc1 refcurson;
var retval number;
exec :retval := SSP_list_asdl_parm (:RC1) [, ‘asdl_cmd'] [, ‘asdl_parm_lbl']

Example:

var rc refcurson;
var retval number;
exec :retval := SSP_list_asdl_parm ‘M-CREATE_SINGLE_LINE_ACCESS', ‘NPA'

This example retrieves configuration information for the NPA parameter for the ASDL
command M-CREATE_SINGLE_LINE_ACCESS.

For more information about using functions, see "Oracle Execution Examples."

Table 4-30 SSP_list_asdl_parm Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

asdl_cmd The ASDL command. No I

asdl_parm_lbl The ASDL parameter label. No I

Table 4-31 SSP_list_asdl_parm Results

Name Datatype Description

asdl_cmd TYP_asdl_cmd ASDL command.

parm_seq_no TYP_seq_no ASDL parameter number.

asdl_lbl TYP_parm_lbl ASDL parameter label.

csdl_lbl TYP_parm_lbl CSDL parameter label.

default_vlu TYP_parm_vlu ASDL parameter default value.

param_typ TYP_parm_typ ASDL parameter type.

Chapter 4
SARM configuration interface

4-14

SSP_list_clli_map
This function lists remote CLLI-to-Host CLLI mapping definitions that are contained in
tbl_clli_route. All parameters take wildcards.

For more information about using functions, see "Oracle Execution Examples."

Table 4-32 SSP_list_clli_map Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

mach_clli The remote NE. No I

host_clli The host NE identifier of an NE or SRP. No I

Table 4-33 SSP_list_clli_map Results

Name Datatype Description

mach_clli TYP_clli Remote NE.

host_clli TYP_clli Host NE.

asdl_cmd TYP_asdl_cmd ASDL command identifier.

SSP_list_comm_param
This function lists communication parameters based on dev_type, host, device, param_label,
or for all of them. This information is retrieved from tbl_comm_param.

For more information about using functions, see "Oracle Execution Examples".

Table 4-34 SSP_list_comm_param Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

dev_type The device type. Choose from the following types of
connections:

• D – Serial Port Dialup
• F – TCP/IP FTP Connection
• G – Generic Terminal Based Connection
• H – Serial Port Hardwired
• M – Generic Message Based Connection
• P – SNMP Connection
• S – TCP/IP Socket Connection
• T – TCP/IP Telnet Connection
• W – LDAP Connection
• C – CORBA

No I

Chapter 4
SARM configuration interface

4-15

Table 4-34 (Cont.) SSP_list_comm_param Parameters

Name Description Req'd (I)nput/
(O)utput

host The host CLLI. It is set to COMMON_HOST_CFG or the host
CLLI associated with the command processor. If a common
host, the parameter value is the default value, otherwise, it is
host-specific.

No I

device The physical or logical device (port) name. Set to
COMMON_DEVICE_CFG or the device associated with the
command processor. If a common device, the parameter value
is the default value, otherwise, it is device-specific.

No I

param_label The communication parameter label. No I

Table 4-35 SSP_list_comm_param Results

Name Datatype Description

dev_type TYP_dev_type Type of connection. Choose from:

• D – Serial Port Dialup
• F – TCP/IP FTP Connection
• G – Generic Terminal Based Connection
• H – Serial Port Hardwired
• M – Generic Message Based Connection
• P – SNMP Connection
• S – TCP/IP Socket Connection
• T – TCP/IP Telnet Connection
• W – LDAP Connection

host TYP_clli Host CLLI. It is set to COMMON_HOST_CFG or the
host CLLI associated with the command processor. If a
common host, the parameter value is the default value,
otherwise, it is host-specific.

device TYP_device The physical or logical device name. Set to
COMMON_DEVICE_CFG or the device associated with
the command processor. If a common device, the
parameter value is the default value, otherwise, it is
device-specific.

param_label TYP_parm_lbl Specifies the communication parameter label.

param_value TYP_perf_parm_vlu Specifies the communication parameter value.

param_desc TYP_parm_desc Specifies the communication parameter description.

SSP_list_csdl
This function retrieves CSDL-related information from tables tbl_csdl_config and
tbl_csdl_asdl.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-16

Table 4-36 SSP_list_csdl Parameters

Name Description Req'd (I)nput/(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

RC2 Oracle Database Ref Cursor. Yes I/O

csdl The name of the CSDL. Yes I

Table 4-37 SSP_list_csdl Results

Name Datatype Description

asdl_cmd TYP_asdl_cmd ASDL command.

cond_flag TYP_cond_flag Condition flag.

label TYP_parm_lbl Parameter label to test the condition flag.

value TYP_parm_vlu Parameter value associated with the label.

rollback_req TYP_yes_no Flag indicating whether rollback is required.

csdl_level TYP_csdl_level The level of the CSDL in the SRQ. An
integer between 0 and 255 that indicates the
sequence level for the CSDL command
within the work order. The SARM uses this
integer to determine the order in which to
provision CSDL commands from an SRP
and then provisions CSDL commands that
have lower level numbers first. Sequence
levels are only relevant for inter-dependent
CSDL commands.

fail_event TYP_code The system event to be triggered upon
CSDL failure.

complete event TYP_code The system event to be triggered upon
CSDL completion.

option_asdl TYP_seq_no Not used.

description varchar(40) ASDL command description.

SSP_list_csdl_asdl
This function lists CSDL-to-ASDL mapping definitions contained in tbl_csdl_asdl. Wildcards
are allowed.

Syntax:

var rc refcursor;
var retval number;
exec :retval := SSP_list_csdl_asdl (:rc [,'csdl_cmd'] [, 'base_seq_no'] [,'asdl_cmd']
[,'cond_flag'] [,'parm_lbl'] [,'parm_vlu'] [,'eval_exp'])

Example:

var rc refcursor;
var retval number;
exec :retval := SSP_list_csdl_asdl (:rc,'M-CREATE_BUS_LINE');

Chapter 4
SARM configuration interface

4-17

This example lists all mapping relationships associated with the CSDL command M-
CREATE_BUS_LINE as follows:

csdl_cmd asdl_seq_no asdl_cmd
cond_flag label
value

---------- ------------------------------ --------- --------
M-CREATE_BUS_LINE 1
M-CLEAR_INTERCEPT A
M-CREATE_BUS_LINE 2
M-CREATE_SINGLE_LINE_ACCESS A
M-CREATE_BUS_LINE 3 ADD_ALWAYS_ON_3WC D
ALWAYS_ON_AREA
M-CREATE_BUS_LINE 4 ADD_ALWAYS_ON_CRT D
ALWAYS_ON_AREA

(4 rows affected, return status = 0)

Table 4-38 SSP_list_csdl_asdl Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

csdl_cmd The CSDL command. No I

asdl_cmd The ASDL command. No I

cond_flag Used to specify conditions that need to be met in
order for the SARM to generate the ASDL command
for the CSDL command. Type one of the following
values:

• A – Always generates the ASDL command for
the CSDL command

• D – Generates the ASDL command if the CSDL
parameter is defined (present)

• N – Generates the ASDL command if the CSDL
parameter is not defined (present)

• E – Generates the ASDL command if the CSDL
parameter is defined and equal to a value.

The generation of each ASDL command depends
upon the results of the previous ASDL. When the
previous command completes successfully, it returns
parameters to the SARM.

When using ‘cond_flag'='E', the following values are
required:

• ‘lbl1'
• ‘lbl2'
• ‘val1'
• ‘val2'
When using ‘cond_flag'='D' or ‘N', the following
values are required:

• ‘lbl1'
• ‘lbl2'

No I

Chapter 4
SARM configuration interface

4-18

Table 4-38 (Cont.) SSP_list_csdl_asdl Parameters

Name Description Req'd (I)nput/
(O)utput

parm_lbl and
parm_vlu
parameters

Required when you use CSDL parameter-dependent
conditions. Set the CSDL command parameter name
for ‘D', ‘N', and ‘E' condition flags using parm_lbl.
The ‘E' condition flag checks that the CSDL
command parameter is equal to the value specified
by parm_vlu.

For more information about these condition flags,
refer to the previous parameter, cond_flag.

No I

eval_exp Contains combination of parameter names,
operators, and values to which the parameters are
compared.

No I

Table 4-39 SSP_list_csdl_asdl Results

Name Datatype Description

csdl_cmd TYP_csdl_cmd CSDL command name.

asdl_seq_no TYP_seq_no ASDL command sequence number.

asdl_cmd TYP_asdl_cmd ASDL command.

cond_flag TYP_cond_flag Specifies conditions that need to be met for
the SARM to generate the ASDL command
for the CSDL command. One of the following
values:

• A – Always generates the ASDL
command for the CSDL command

• D – Generates the ASDL command if the
CSDL parameter is defined (present)

• N – Generates the ASDL command if the
CSDL parameter is not defined (present)

• E – Generates the ASDL command if the
CSDL parameter is defined and equal to
a value.

Each ASDL command generation depends
upon the results of previous ASDL commands
on the work order which returned parameters
to the SARM upon successful ASDL
command completion.

When using ‘cond_flag'='E', the following
values are required:

• ‘lbl1'
• ‘lbl2'
• ‘val1'
• ‘val2'
When using ‘cond_flag'='D' or ‘N', the
following values are required:

• ‘lbl1'
• ‘lbl2'

label TYP_parm_lbl Parameter label to test the condition flag.

Chapter 4
SARM configuration interface

4-19

Table 4-39 (Cont.) SSP_list_csdl_asdl Results

Name Datatype Description

value TYP_parm_vlu Parameter value associated with the label.

SSP_list_csdl_defn
This function lists configuration information for the CSDL command you specify from
the SARM database (tbl_csdl_config). This information includes the rollback flag,
CSDL command sequence number, fail and completion events, and a description of
the command. If you do not specify a CSDL command, the procedure returns
information on all CSDL commands currently defined in the SARM.

Syntax:

exec :retval := SSP_list_csdl_defn (:RC1[, ‘csdl_cmd']

Example:

var rc refcusror;
var retval number;
exec :retval := SSP_list_csdl_defn (:rc,‘M-CREATE_BUS_LINE')

For more information about using functions, see "Oracle Execution Examples."

Table 4-40 SSP_list_csdl_defn Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

csdl_cmd The CSDL command identifier. No I

Table 4-41 SSP_list_csdl_defn Results

Name Datatype Description

csdl_cmd TYP_csdl_cmd CSDL command name.

rollback_req TYP_yes_no Flag indicating whether rollback is required.

csdl_level TYP_csdl_level The level of the CSDL in the SRQ. An integer between
0 and 255 that indicates the sequence level for the
CSDL command within the work order. The SARM
uses this integer to determine the order in which to
provision CSDL commands from an SRP and then
provisions CSDL commands that have lower level
numbers first. Sequence levels are only relevant for
inter-dependent CSDL commands.

fail_event TYP_code The system event to be triggered upon CSDL failure.

complete_event TYP_code The system event to be triggered upon CSDL
completion.

description varchar(40) ASDL command description.

Chapter 4
SARM configuration interface

4-20

SSP_list_dn_map
This function lists directory mappings for ASDL command, directory, exchange number, or for
all of them from tbl_nep_rte_asdl_nxx.

For more information about using functions, see "Oracle Execution Examples."

Table 4-42 SSP_list_dn_map Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

asdl_cmd The ASDL command. No I

npa The Numbering Plan Area code. No I

nxx The Central Office code. No I

Table 4-43 SSP_list_dn_map Results

Name Datatype Description

asdl_cmd TYP_asdl_cmd ASDL command identifier.

npa TYP_npa The Numbering Plan Area code.

nxx TYP_nxx The Central Office code.

from_line TYP_line Beginning LINE of DN range.

to_line TYP_line End LINE of DN range.

queue_nm TYP_clli Host NE to which the DN routing applies.

SSP_list_host
This function retrieves host-related information from the following tables: tbl_resource_pool,
tbl_ne_config, tbl_clli_route.

For more information about using functions, see "Oracle Execution Examples."

Table 4-44 SSP_list_host Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

RC2 Oracle Database Ref Cursor. Yes I/O

host The host CLLI identifier. Yes I

Table 4-45 SSP_list_host Results

Name Datatype Description

device TYP_device The name of the logical device to be used to establish a
connection to the NE.

Chapter 4
SARM configuration interface

4-21

Table 4-45 (Cont.) SSP_list_host Results

Name Datatype Description

line_type TYP_dev_type The communication protocol used by the specified
device.

vs_key TYP_long Reserved. The shared memory segment identifier for
the Virtual Screen buffer.

mach_clli TYP_clli The remote NE identifier.

asdl_cmd TYP_asdl_cmd The ASDL command.

SSP_list_id_routing
This function lists the host NE and the ID_ROUTING mapping record in tbl_id_routing.
You can use this function when routing by ID_ROUTING is used.

For more information about using functions, see "Oracle Execution Examples."

Table 4-46 SSP_list_id_routing Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. No I/O

host_clli The host NE identifier. Yes I

Table 4-47 SSP_list_id_routing Results

Name Datatype Description

host_clli TYP_clli The host NE identifier.

asdl_cmd TYP_asdl_cmd The ASDL command.

id_routing_from Varchar The starting point of a range of ID_ROUTING.

id_routing_to Varchar The end point of a range of ID_ROUTING.

SSP_list_intl_msg
This function lists the international message records from tbl_msg_convert. It either
lists all messages for a specified language or, if you specify a message identifier, a
single record.

A list of core ASAP messages is contained in the ASAP System Administrator's Guide.

For more information about using functions, see "Oracle Execution Examples."

Table 4-48 SSP_list_intl_msg Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

Chapter 4
SARM configuration interface

4-22

Table 4-48 (Cont.) SSP_list_intl_msg Parameters

Name Description Req'd (I)nput/
(O)utput

lang_cd The language code. No I

msg_id Unique message identifier. No I

Table 4-49 SSP_list_intl_msg Results

Name Datatype Description

lang_cd TYP_lang_cd The language code.

msg_id TYP_unid Message identifier.

msg_type TYP_msg_typ Message formatting types:

• D – Dynamic
• S – Static

message varchar(255) Message text.

var_description varchar(40) Description of the substitute fields.

wo_audit TYP_wo_audit Destination for the log message.

SSP_list_ne_host
This function lists host NE definitions from tbl_host_clli. Wildcards are allowed.

For more information about using functions, see "Oracle Execution Examples."

Table 4-50 SSP_list_ne_host Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

host_clli The host NE identifier of an NE or SRP. No I

Table 4-51 SSP_list_ne_host Results

Name Datatype Description

host_clli TYP_clli The host NE identifier of an NE or SRP.

tech_type TYP_tech Technology type.

sftwr_load TYP_load Software loads.

SSP_list_nep
This function lists NEP secondary pool definitions, stored in tbl_nep. Wildcards are allowed.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-23

Table 4-52 SSP_list_nep Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

nep_svr_cd The NEP managing the secondary pool of devices. No I

Table 4-53 SSP_list_nep Results

Name Datatype Description

nep_svr_cd TYP_code The NEP managing the secondary pool of devices.

dialup_pool TYP_pool Secondary pool of devices.

SSP_list_nep_program
This function lists the State Table program to be used within the Interpreter. This
information is retrieved from tbl_nep_program.

For more information about using functions, see "Oracle Execution Examples."

Table 4-54 SSP_list_nep_program Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

program The State Table program name. No I

Table 4-55 SSP_list_nep_program Results

Name Datatype Description

program TYP_program The name of the State Table program.

line_no int The line number in the State Table program.

action TYP_action The action string used to identify the action performed
by the Interpreter in the command processor.

act_string TYP_action_string The action string associated with the State Table action.

act_int int The action integer which represents the next line
number in the State Table program at which the
execution of the State Table should continue, or a
numeric field specific to the particular action function.

SSP_list_net_elem
This function lists NE definitions based on the host NE and/or NEP server you specify.
This function lists NE definitions from tbl_ne_config. Wildcards are allowed.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-24

Table 4-56 SSP_list_net_elem Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

host_clli The host NE identifier of an NE or SRP. No I

nep_svr_cd The logical name of the NEP server that connects to this
host NE.

No I

Table 4-57 SSP_list_net_elem Results

Name Datatype Description

host_clli TYP_clli The host NE.

nep_svr_cd TYP_code The logical name of the NEP server that connects to this
host NE.

primary_pool TYP_pool The primary resource pool used by the NEP managing
this host NE.

max_connections TYP_short The maximum number of concurrent connections allowed
to this host NE.

drop_timeout TYP_short The maximum inactivity (in minutes) before the NEP
drops the primary connection to this host NE.

spawn_threshold TYP_short The number of ASDL requests in the SARM ASDL Ready
Queue at which point the NEP opens a new auxiliary
connection to the destination NE.

kill_threshold TYP_short The number of ASDL requests in the SARM ASDL Ready
Queue. When the number of requests reaches the kill
threshold, the SARM disconnects one or more auxiliary
connections.

template_flag TYP_short Flag to indicate if this network element entry identifies a
static NE (N) or a dynamic network element template (Y).

SSP_list_resource
This function lists NEP resource records from tbl_resource_pool. Wildcards are allowed.

For more information about using functions, see "Oracle Execution Examples."

Table 4-58 SSP_list_resource Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

asap_sys The ASAP environment (for instance, “TEST", “PROD"). No I

pool The pool name. No I

device The physical or logical device name. No I

Chapter 4
SARM configuration interface

4-25

Table 4-59 SSP_list_resource Results

Name Datatype Description

asap_sys TYP_code The ASAP environment.

pool TYP_pool The pool name.

device TYP_device The physical or logical device name.

line_type TYP_dev_type The device type.

vs_key TYP_long Reserved. The shared memory segment identifier
for the Virtual Screen buffer.

SSP_list_srp
This function lists SRP definitions from tbl_asap_srp. Wildcards are allowed.

For more information about using functions, see "Oracle Execution Examples."

Table 4-60 SSP_list_srp Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

srp_id The logical SRP name. No I

Table 4-61 SSP_list_srp Results

Name Datatype Description

srp_id TYP_code The logical SRP name.

srp_desc varchar(40) The SRP description.

srp_conn_type TYP_srp_conn_type Connection protocol for the SARM to SRP.

srp_host_name TYP_host_name Name of the machine that the SRP resides
upon.

srp_host_port TYP_host_port The port number that the SRP is listening on
for socket connections.

wo_estimate_evt TYP_code The work order estimate notification event.

wo_failure_evt TYP_code The work order failure notification event.

wo_complete_evt TYP_code The work order completion notification event.

wo_start_evt TYP_code The work order startup notification event.

wo_soft_err_evt TYP_code The work order soft error notification event.

wo_blocked_evt TYP_code The work order blocked notification event.

wo_rollback_evt TYP_code The work order rollback notification event.

wo_timeout_evt TYP_code The work order timeout notification event.

wo_accept_evt TYP_code The work order acceptance notification event.

ne_unknown_evt TYP_code The unknown NE notification event.

Chapter 4
SARM configuration interface

4-26

Table 4-61 (Cont.) SSP_list_srp Results

Name Datatype Description

ne_avail_evt TYP_code The NE available notification event.

ne_unavail_evt TYP_code The NE unavailable notification event.

aux_srp_id TYP_code The name of the sister SRP.

aux_srp_conn_type TYP_srp_conn_type Connection protocol for SARM to auxiliary
SRP communications.

aux_srp_host_name TYP_host_name Name of the machine that the auxiliary SRP
resides upon.

aux_srp_host_port TYP_host_port The number of the port that the auxiliary SRP
is listening on for socket connections.

SSP_list_stat_text
This function is used to list static text located in tbl_stat_text. This information is retrieved
from tbl_stat_text.

For more information about using functions, see "Oracle Execution Examples."

Table 4-62 SSP_list_stat_text Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

stat_id The logical group of static text messages such as
WO_STATE. If this is not specified, all entries in
tbl_stat_text are listed.

No I

Table 4-63 SSP_list_stat_text Results

Name Datatype Description

srp_id TYP_code The logical SRP name.

status TYP_stat Integer key field for grouping.

code TYP_stat_code String key field for grouping.

stat_text TYP_stat_txt Text describing the label.

SSP_list_user_err_threshold
This function is used to list the user-defined error thresholds for a specific NE, ASDL
command, and user error type. This information is retrieved from tbl_user_err_threshold.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-27

Table 4-64 SSP_list_user_err_threshold Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

host The host NE identifier of an NE or SRP. No I

asdl_cmd The ASDL command. No I

user_type The user-defined error type. No I

Table 4-65 SSP_list_user_err_threshold Results

Name Datatype Description

host_clli TYP_clli Host NE.

asdl_cmd TYP_asdl_cmd ASDL command.

user_type TYP_code User-defined type.

minor_threshold int Minor event threshold.

minor_event TYP_code System event to be triggered when the minor
threshold is reached.

major_threshold int Major event threshold.

major_event TYP_code System event to be triggered when the major
threshold is reached.

critical_threshold int Critical event notification threshold.

critical_event TYP_code System event to be triggered when the critical
threshold is reached.

SSP_list_userid
This function lists user ID definitions from tbl_uid_pwd for the SARM security check
logic in the SARM connect handler. You can use this procedure to validate SRP
connections to the SARM. Wildcards are allowed.

For more information about using functions, see "Oracle Execution Examples."

Table 4-66 SSP_list_userid Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

uid The user ID. No I

Table 4-67 SSP_list_userid Results

Name Datatype Description

uid TYP_user_id The user ID.

pwd TYP_pwd User password.

Chapter 4
SARM configuration interface

4-28

Table 4-67 (Cont.) SSP_list_userid Results

Name Datatype Description

status varchar(40) User's current status.

SSP_ne_monitor
This is an ASAP function.

SSP_new_asdl_defn
This function defines an ASDL configuration record to tbl_asdl_config.

Syntax:

exec :retval := SSP_new_asdl_defn (‘asdl_cmd',‘reverse_asdl',‘ignore_rollback',
‘route_flag',‘[description]')

Example:

exec :retval := SSP_new_asdl_defn (‘M-CREATE_SINGLE_LINE_ACCESS',‘M-
DELETE_SINGLE_LINE_ACCESS',‘N',‘B',‘Create a single-line access service.')

For more information about using functions, see "Oracle Execution Examples."

This example defines the ASDL command M-CREATE_SINGLE_LINE_ACCESS and routes
it to the NEP. If the ASDL command fails, rollback is initiated and the ASDL command M-
DELETE_SINGLE_LINE_ACCESS is generated using the parameters from the normal
ASDL command.

Table 4-68 SSP_new_asdl_defn Parameters

Name Description Req'd (I)nput/
(O)utput

asdl_cmd The ASDL command. Yes I

reverse_asdl The reverse ASDL to be invoked should this ASDL
require rollback. This ASDL command is only issued if
the ignore_rollback flag is set to ‘N'.

Yes I

ignore_rollback Specifies whether or not to rollback the ASDL command.
If you want rollback to be performed on the ASDL
command, set this flag to ‘N', as well as specifying the
reverse ASDL command.

Yes I

route_flag The routing of the ASDL, where:

N – Routes the ASDL to the NEP. This is the only valid
value.

Yes I

description A brief description of the ASDL command. No I

SSP_new_asdl_map
This function adds a new ASDL command to a State Table based on the technology and
software load in tbl_nep_asdl_prog. The ASDL command must be defined in the
configuration records in order for this function to add a new mapping.

Chapter 4
SARM configuration interface

4-29

Syntax:

exec :retval := SSP_new_asdl_map ('tech',‘sftwr_load',‘asdl_cmd',‘program',
‘interpreter_type')

Example:

exec :retval := SSP_new_asdl_map (‘DMS',‘BCS33',‘M-CREATE_SINGLE_LINE_ACCESS',
‘NEW_LINE_SINGLE',‘S')

This example inserts a mapping for the ASDL command M-
CREATE_SINGLE_LINE_ACCESS for a DMS switch operating with software load
BCS33. For these particular conditions, the Interpreter invokes the State Table
program NEW_LINE_SINGLE.

For more information about using functions, see "Oracle Execution Examples."

Table 4-69 SSP_new_asdl_map Parameters

Name Description Req'd (I)nput/
(O)utput

tech The technology type of the NE or SRP with which
the Interpreter is to interact.

Yes I

sftwr_load The version of the software currently running on the
NEP or SRP.

Yes I

asdl_cmd The ASDL command. Yes I

program The State Table name. Yes I

interpreter_type A value of 'S' indicates a State Table interpreter,
whereas a value of 'J' indicates a JInterpreter. A null
value defaults to 'S'.

Yes I

SSP_new_asdl_parm
This function defines up to nine ASDL parameters for the specified ASDL command
starting at base_seq_no in the SARM database parameters.

You cannot add an ASDL command parameter unless the configuration record for the
ASDL command has been defined in the SARM database. This ensures data
consistency in the static tables.

This function adds new ASDL parameters for a specified ASDL to tbl_asdl_parm.

Syntax:

exec :retval := SSP_new_asdl_parm (‘asdl_cmd',‘base_seq_no',‘asdl_parm_lbl',
‘csdl_parm_lbl',‘[def_vlu]',‘[parm_typ]',‘asdl_parm_lbl'],‘csdl_parm_lbl',
‘[def_vlu]','[parm_typ]'...)

Example:

In the following example, seven parameters are added to the ASDL command M-
CREATE_SINGLE_LINE_ACCESS, starting with parameter sequence number 1. All
parameters are required, and the INPA defaults to 506 if it is not supplied. All other
parameters result in a SARM translation error if the parameter is not supplied.

exec :retval := SSP_new_asdl_parm (‘M-CREATE_SINGLE_LINE_ACCESS', 1,

Chapter 4
SARM configuration interface

4-30

‘NPA', ‘INPA', ‘506', ‘R',
‘NXX', ‘INXX', ‘', ‘R',
‘LINE', ‘ILINE', ‘', ‘R',
‘EXT', ‘IEXT', ‘', ‘R',
‘LEN', ‘ILEN', ‘', ‘R',
‘MCLI', ‘IMCLI', ‘', ‘R',
‘TYPE', ‘TYPE', ‘', ‘R'
‘SUBSCRIPTION[++]', ‘SUBSCRIBER', ‘', ‘C')

For more information about using functions, see "Oracle Execution Examples."

Table 4-70 SSP_new_asdl_parm Parameters

Name Description Req'd (I)nput/
(O)utput

asdl_cmd The ASDL command to add parameters to. You can add
up to nine parameters to asdl_cmd.

Yes I

base_seq_no Starting with a base parameter sequence number (). If
you add new parameters to an existing ASDL command,
enter the next available sequence number for the
base_seq_no so that existing parameters are not
overwritten.

Yes I

asdl_parm_lbl ASDL command parameter is transmitted to the NEP
with the parameter value. The type of value for this
parameter depends on the parameter format you chose:

• Scalar asdl_parm_lbl – Specifies the parameter
label that is sent on the ASDL command.

• Compound asdl_parm_lbl – Specifies the base
name for the parameter that is sent on the ASDL
command.

• Indexed asdl_parm_lbl – Is the base name for the
indexed parameter to be sent on the ASDL
command. The current index value is specified using
the special literal “++".

Yes I

csdl_parm_lbl The parameter label either received from the SRP with
the parameter value on the CSDL command or the WO
parameter label returned from the NEP State Tables. The
label for this parameter depends on the parameter format
you choose:

• Scalar csdl_parm_lbl – Specifies the CSDL
command or global WO parameter label.

• Compound csdl_parm_lbl – Specifies the base
name for the compound parameter in the CSDL
command or global work order parameter list.

• Indexed csdl_parm_lbl – Specifies the base name
for the indexed parameter in the CSDL command or
global work order parameter list. To specify the
current index, enter the special literal “++". The initial
value is 1 and each ASDL command that is sent
causes the value to increment until no more
parameters are found at the current index.

Yes I

def_vlu The default value for the scalar parameter if it is not
specified in the CSDL command or global parameter list.
For compound parameters, a default value is not used if
a mandatory value can be found.

No I

Chapter 4
SARM configuration interface

4-31

Table 4-70 (Cont.) SSP_new_asdl_parm Parameters

Name Description Req'd (I)nput/
(O)utput

parm_typ Indicates the parameter format by using one of the
following values:

• R – Required scalar parameter
• O – Optional scalar parameter
• C – Required compound parameter
• N – Optional compound parameter
• S – Parameter count. This value gives the State

Table or Java method the total number of
parameters associated with this ASDL command.

• I – Optional indexed parameter
• M – Mandatory indexed parameter
• X – Required XML
• Y – Optional XML
• P – Required XPATH
• Q – Optional XPATH
• + – Current index value for the ASDL command

parameter. This value is transmitted to the NEP and
equals the current index value for the indexed
parameter.

Note, the previous example makes use of a compound
indexed parameter (‘SUBSCRIPTION[++]',
‘SUBSCRIBER', ‘', ‘C'). For more information on
compound indexed parameters, refer to the ASAP
Cartridge Development Guide.

No I

al10 Reserved. No I

SSP_new_clli_map
This function defines a mapping from a remote CLLI to a host CLLI in tbl_clli_route.

For more information about using functions, see "Oracle Execution Examples."

Table 4-71 SSP_new_clli_map Parameters

Name Description Req'd (I)nput/
(O)utput

mach_clli The remote NE. Yes I

host_clli The host NE identifier of an NE or SRP. Yes I

asdl_cmd The ASDL command. No I

SSP_new_comm_param
This function adds a communication parameter for a specified device type, host, and
device into tbl_comm_param. The COMMON_HOST_CFG and/or parameter definition
can be used for the following combinations:

• common host and common device

Chapter 4
SARM configuration interface

4-32

• common host and specific device

• specific host and common device

• specific host and specific device

Because the second and third combinations may overlap, the system warns you when
communication parameters are updated.

For more information about using functions, see "Oracle Execution Examples."

Table 4-72 SSP_new_comm_param Parameters

Name Description Req'd (I)nput/
(O)utput

dev_type The device type. Choose from the following connections:

• D – Serial Port Dialup
• F – TCP/IP FTP Connection
• G – Generic Terminal Based Connection
• H – Serial Port Hardwired
• M – Generic Message Based Connection
• P – SNMP Connection
• S – TCP/IP Socket Connection
• T – TCP/IP Telnet Connection
• W – LDAP Connection
• C – CORBA

Yes I

host The host CLLI. Set to COMMON_HOST_CFG or the
host CLLI associated with the command processor. If a
common host, the parameter value is the default value,
otherwise, it is host-specific.

Yes I

device The physical or logical device name. Set to
COMMON_DEVICE_CFG, the device associated with
the command processor, or the name of a multiplexing
device. If a common device, the parameter value is the
default value, otherwise, it is device-specific.

Yes I

param_label The communication parameter label. Yes I

param_value The communication parameter value. Yes I

param_desc The communication parameter description. Yes I

SSP_new_csdl_asdl
This function defines up to nine CSDL-to-ASDL mappings from an CSDL command to an
ASDL command with consecutive numbers starting from base_seq_no to tbl_csdl_asdl.

CSDL and ASDL commands must be defined before adding a CSDL-to-ASDL mapping
relationship, otherwise this function rejects the insertion attempt. This is an enforced integrity
check that ensures configuration consistency. You can add up to nine mapping relationships
with one procedure call.

Syntax:

exec :retval := SSP_new_csdl_asdl (‘csdl_cmd',‘base_seq_no',
‘asdl_cmd',‘cond_flag',‘parm_lbl',‘parm_vlu',‘eval_exp',‘prn',
‘[asdl_cmd]',‘[cond_flag]',‘[parm_lbl]',‘[parm_vlu]',‘[eval_exp]',

‘[prn]', ...)

Chapter 4
SARM configuration interface

4-33

Example:

exec :retval := SSP_new_csdl_asdl ('M-CREATE_BUS_LINE', 1,

'M-CLEAR_INTERCEPT', 'A', '', '', '', '0',
'M-CREATE_SINGLE_LINE_ACCESS', 'A', '', '', '', '0',
'ADD_ALWAYS_ON_3WC', 'D', 'ALWAYS_ON_AREA', '', '', '0',
'ADD_ALWAYS_ON_CRT', 'D', 'ALWAYS_ON_AREA', '', '', '0',
'ADD_ALWAYS_ON_CTR', 'A', '', '','' '0')

In this example, the CSDL command M-CREATE_BUS_LINE is mapped to four ASDL
commands that start with the ASDL sequence number 1.

ASDL commands M-CLEAR_INTERCEPT and M-CREATE_SINGLE_LINE_ACCESS
are always generated.

ADD_ALWAYS_ON_3WC and ADD_ALWAYS_ON_CRT are generated only if the
CSDL command parameter ALWAYS_ON_AREA is defined.

The fifth ASDL command, ADD_ALWAYS_ON_CTR, is generated only if the CSDL
command parameter TRACE_OPT is defined and has an ON value.

For more information about using functions, see "Oracle Execution Examples."

Table 4-73 SSP_new_csdl_asdl Parameters

Name Description Req'd (I)nput/
(O)utput

csdl_cmd The CSDL command identifier. Yes I

base_seq_no The number of the first ASDL mapping to insert.
Because each CSDL command may map to several
ASDL commands, an index is kept in the static table
and used to determine the order of the ASDL
commands being sent to the NEP. Up to nine ASDL
commands can be mapped with a single call of this
procedure. Each call is assigned a sequence
number based on the base_seq_no. For example, if
the CSDL command maps to twelve ASDL
commands, the base sequence number should be 1
for the first procedure call (which will create nine
mapping relationships, ASDL command sequence
numbers 1-9) and 10 for the second procedure call
(which will create the remaining three mapping
relationships, ASDL command sequence numbers
10-12).

Yes I

asdl_cmd The name of the ASDL command that the CSDL
command maps to. The ASDL command is
generated by the CSDL command based on the
value of the condition flag (cond_flag).

Yes I

Chapter 4
SARM configuration interface

4-34

Table 4-73 (Cont.) SSP_new_csdl_asdl Parameters

Name Description Req'd (I)nput/
(O)utput

cond_flag Used to specify conditions that need to be met in
order for the SARM to generate the ASDL command
for the CSDL command. Type one of the following
values:

• A – Always generates the ASDL command for
the CSDL command

• D – Generates the ASDL command if the CSDL
parameter is defined (present)

• N – Generates the ASDL command if the CSDL
parameter is not defined (present)

• E – Generates the ASDL command if the CSDL
parameter is defined and equal to a value.

The generation of each ASDL command depends
upon the results of the previous ASDL. When the
previous command completes successfully, it returns
parameters to the SARM.

When using ‘cond_flag'='E', the following values are
required:

• ‘lbl1'
• ‘lbl2'
• ‘val1'
• ‘val2'
When using ‘cond_flag'='D' or ‘N', the following
values are required:

• ‘lbl1'
• ‘lbl2'

Yes I

parm_lbl and
parm_vlu
parameters

Required when you use CSDL parameter-dependent
conditions. Set the CSDL command parameter name
for ‘D', ‘N', and ‘E' condition flags using parm_lbl.
The ‘E' condition flag checks that the CSDL
command parameter is equal to the value specified
by parm_vlu.

For more information about these condition flags,
refer to the previous parameter, cond_flag.

Yes I

eval_exp Contains combination of parameter names,
operators, and values to which the parameters are
compared.

No I

pnr Value of 'point of no return' for rollbacks.

Values are:

• 0 (default) – This ASDL is not the 'point of no
return' for rollback purposes

• 1 – This ASDL is the 'point of no return' for
partial rollback. If rollback occurs, and execution
has continued beyond this point, roll back to this
ASDL but no further.

• 2 – 'point of no return' for no rollback. Once past
this ASDL, no rollback can occur.

Yes I

Chapter 4
SARM configuration interface

4-35

SSP_new_csdl_asdl_idx
This function allows multiple conditions to be inserted into tbl_csdl_asdl_eval. Up to
nine rules can be inserted with each call. If adding up to nine rules, leave append_rule
set to 0. To add more than nine rules to one mapping, call the function again with
append_rule set to 1.

Syntax:

exec :retval := SSP_new_csdl_asdl_idx (‘append_rule',‘csdl_cmd', ‘base_seq_no',
‘asdl_cmd', c‘cond_flag', ‘parm_lbl', ‘parm_vlu',
‘eval_exp', ‘apply_from', ‘apply_to',
‘[cond_flag]', ‘[parm_lbl]', ‘[parm_vlu]', ‘[eval_exp]',‘[apply_from]',
‘[apply_to])
...

Examples:

exec :retval := SSP_new_csdl_asdl_idx (0,'M-CREATE_BUS_LINE',1,'M-
CLEAR_INTERCEPT','0',
'A', '', '', '', 1, 1)

exec :retval := SSP_new_csdl_asdl_idx (0,'M-CREATE_BUS_LINE',2,
'M-CREATE_SINGLE_LINE_ACCESS', '0',

'A', '', '', '', 1, 1)

exec :retval := SSP_new_csdl_asdl_idx (0,'M-
CREATE_BUS_LINE',3,'ADD_ALWAYS_ON_3WC','0',

'D', 'ALWAYS_ON_AREA', '', '', 1, 1)

exec :retval := SSP_new_csdl_asdl_idx (0,'M-
CREATE_BUS_LINE',4,'ADD_ALWAYS_ON_CRT','0',
'D', 'ALWAYS_ON_AREA', '', '', 1, 1)

exec :retval := SSP_new_csdl_asdl_idx (0,'M-
CREATE_BUS_LINE',5,'ADD_EMAIL_ACCOUT','0',

'E', 'MAX_ADDRESS_EXCEED', 'FALSE', '', 1, 9999,
'E', 'CREATE_ADDRESS_1', 'TRUE', '', 1, 1,
'E', 'CREATE_ADDRESS_2', 'TRUE', '', 2, 2,
'E', 'CREATE_ADDRESS_3', 'TRUE', '', 3, 3,
'E', 'CREATE_ADDRESS_4', 'TRUE', '', 4, 4,
'E', 'CREATE_ADDRESS_5', 'TRUE', '', 5, 5,
'E', 'CREATE_ADDRESS_6', 'TRUE', '', 6, 6,
'E', 'CREATE_ADDRESS_7', 'TRUE', '', 7, 7,
'E', 'CREATE_ADDRESS_8', 'TRUE', '', 8, 8)

exec :retval := SSP_new_csdl_asdl_idx (1,'M-
CREATE_BUS_LINE',5,'ADD_EMAIL_ACCOUT','0',

'E', 'CREATE_ADDRESS_9', 'TRUE', '', 9, 9,
'E', 'CREATE_ADDRESS_10', 'TRUE', '', 10, 10,
'E', 'CREATE_ADDRESS_11', 'TRUE', '', 11, 11)

Chapter 4
SARM configuration interface

4-36

In this example, the CSDL command M-CREATE_BUS_LINE is mapped to five ASDL
commands that start with the ASDL sequence number 1.

ASDL commands M-CLEAR_INTERCEPT and M-CREATE_SINGLE_LINE_ACCESS are
always generated.

ADD_ALWAYS_ON_3WC and ADD_ALWAYS_ON_CRT are generated only if the CSDL
command parameter ALWAYS_ON_AREA is defined.

The fifth ASDL command, ADD_EMAIL_ACCOUNT, is an indexed ASDL command that
contains 12 rules. Each instance of this ASDL command is generated only if the CSDL
command parameter MAX_ADDRESS_EXCEED is defined and the current index rule has a
FALSE value and for each index rule is evaluated to true.

For example, if the current index is 5 then this rule ('E', 'CREATE_ADDRESS_5', 'TRUE', '', 5,
5) says the CSDL command parameter CREATE_ADDRESS_5 is defined and the current
index rule has a TRUE value.

Note that the last call of the fifth example has append_rule set to 1 to indicate that the rules
are to be appended to those added by the previous call:

exec :retval := SSP_new_csdl_asdl_idx (1,'M-CREATE_BUS_LINE',5...)

For more information about using functions, see "Oracle Execution Examples."

Table 4-74 SSP_new_csdl_asdl_idx Parameters

Name Description Req'd (I)nput/
(O)utput

append_rule Indicates whether rules are inserted to a new or existing
mapping.

The initial call, with this parameter set to 0, can insert up
to 9 rules. To add additional rules, call
SSP_new_csdl_asdl_idx again, with this parameter set to
1.

Yes I

csdl_cmd The CSDL command identifier. Yes I

base_seq_no The number of the first ASDL mapping to insert. Because
each CSDL command may map to several ASDL
commands, an index is kept in the static table and used
to determine the order of the ASDL commands being
sent to the NEP. Up to nine ASDL commands can be
mapped with a single call of this procedure. Each call is
assigned a sequence number based on the
base_seq_no. For example, if the CSDL command
maps to twelve ASDL commands, the base sequence
number should be 1 for the first procedure call (which will
create nine mapping relationships, ASDL command
sequence numbers 1-9) and 10 for the second procedure
call (which will create the remaining three mapping
relationships, ASDL command sequence numbers
10-12).

Yes I

asdl_cmd The name of the ASDL command that the CSDL
command maps to. The ASDL command is generated by
the CSDL command based on the value of the condition
flag (cond_flag).

Yes I

Chapter 4
SARM configuration interface

4-37

Table 4-74 (Cont.) SSP_new_csdl_asdl_idx Parameters

Name Description Req'd (I)nput/
(O)utput

pnr Value of 'point of no return' for rollbacks.

Values are:

• 0 (default) – This ASDL is not the 'point of no return'
for rollback purposes

• 1 – This ASDL is the 'point of no return' for partial
rollback. If rollback occurs, and execution has
continued beyond this point, roll back to this ASDL
but no further.

• 2 – 'point of no return' for no rollback. Once past this
ASDL, no rollback can occur.

Yes I

cond_flag Used to specify conditions that need to be met in order
for the SARM to generate the ASDL command for the
CSDL command. Type one of the following values:

• A – Always generates the ASDL command for the
CSDL command

• D – Generates the ASDL command if the CSDL
parameter is defined (present)

• N – Generates the ASDL command if the CSDL
parameter is not defined (present)

• E – Generates the ASDL command if the CSDL
parameter is defined and equal to a value.

The generation of each ASDL command depends upon
the results of the previous ASDL. When the previous
command completes successfully, it returns parameters
to the SARM.

When using ‘cond_flag'='E', the following values are
required:

• ‘lbl1'
• ‘lbl2'
• ‘val1'
• ‘val2'
When using ‘cond_flag'='D' or ‘N', the following values
are required:

• ‘lbl1'
• ‘lbl2'

Yes I

parm_lbl

parm_vlu

Required when you use CSDL parameter-dependent
conditions. Set the CSDL command parameter name for
‘D', ‘N', and ‘E' condition flags using parm_lbl. The ‘E'
condition flag checks that the CSDL command parameter
is equal to the value specified by parm_vlu.

For more information about these condition flags, refer to
the previous parameter, cond_flag.

Yes I

eval_exp Contains combination of parameter names, operators,
and values to which the parameters are compared.

No I

Chapter 4
SARM configuration interface

4-38

Table 4-74 (Cont.) SSP_new_csdl_asdl_idx Parameters

Name Description Req'd (I)nput/
(O)utput

apply_from The first indexed ASDL that this rule should apply to:

Valid range is from 1 to 9999. Must be less than or equal
to the value specified in column apply_to.

If is not specified, then this rule will be applied to any
indexed ASDL up to and including the one specified in
column apply_to.

No I

apply_to The last indexed ASDL that this rule should apply to:

Valid range is from 1 to 9999. Must be greater than or
equal to the value specified in column apply_from.

If is not specified, then this rule will be applied to any
indexed ASDL starting from the one specified in column
apply_from.

No I

SSP_new_csdl_defn
This function adds a new CSDL command into tbl_csdl_config.

Syntax:

exec :retval := SSP_new_csdl_defn (‘csdl_cmd', ‘rollback_req', csdl_level,
‘[fail_event]', ‘[complete_event]', ‘[description]')

Example:

exec :retval := SSP_new_csdl_defn (‘M-CREATE_BUS_LINE', ‘Y', 82, ‘SYS_ERR',
‘SYS_INFO', ‘Add Business Access Line')

In this example, the M-CREATE_BUS_LINE CSDL command adds a business access line
with a CSDL command level of 82. If the CSDL command fails, the SYS_ERR system event
is triggered and rollback is performed on the entire order. Upon successful completion, the
SYS_INFO system event is issued.

For more information about using functions, see "Oracle Execution Examples."

Table 4-75 SSP_new_csdl_defn Parameters

Name Description Req'd (I)nput/
(O)utput

csdl_cmd The name of the CSDL command to add. It should be a
unique CSDL command label in ASAP.

Yes I

rollback_req A Yes/No (Y or N) flag that indicates whether rollback is
required for this CSDL command. If you set this flag to
Y, ASAP automatically rolls back any actions performed
by the work order if the work order fails.

Yes I

Chapter 4
SARM configuration interface

4-39

Table 4-75 (Cont.) SSP_new_csdl_defn Parameters

Name Description Req'd (I)nput/
(O)utput

csdl_level An integer between 0 and 255 that indicates the
sequence level for the CSDL command within the work
order. The SARM uses this integer to determine the
order in which to provision CSDL commands from an
SRP and then provisions CSDL commands that have
lower level numbers first. Sequence levels are only
relevant for inter-dependent CSDL commands.

Yes I

fail_event ASAP system events that are triggered upon completion
or failure of the CSDL command. The events must be
first defined in the control database if alarms are to be
generated from such events. These are optional
parameters.

No I

complete_event No I

description A CSDL command description. ASAP front-end tools
that are monitoring the progress of the work order can
use this description. This is an optional parameter.

No I

SSP_new_dn_map
This function adds new ASDL command routings by directory number to
tbl_nep_rte_asdl_nxx.

For more information about using functions, see "Oracle Execution Examples."

Table 4-76 SSP_new_dn_map Parameters

Name Description Req'd (I)nput/
(O)utput

asdl_cmd The ASDL command. No I

npa The Numbering Plan Area code. No I

nxx The Central Office code. No I

from_line The lowest line number in the range of telephone
numbers to provide routing for.

No I

to_line The highest line number in the range. No I

queue_nm The host NE to which this ASDL should be routed. Yes I

SSP_new_id_routing
This function adds a new host NE and the ID_ROUTING mapping record to
tbl_id_routing. You can use this function when routing by ID_ROUTING is used.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-40

Table 4-77 SSP_new_id_routing Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE identifier. No I

asdl_cmd The ASDL command. Yes I

id_routing_from The starting point of a range of ID_ROUTING. No I

id_routing_to The end point of a range of ID_ROUTING. No I

SSP_new_intl_msg
This function defines an international message for a particular language in tbl_msg_convert.

For more information about using functions, see "Oracle Execution Examples."

Table 4-78 SSP_new_intl_msg Parameters

Name Description Req'd (I)nput/
(O)utput

lang_cd The language code. Yes I

msg_id The unique message identifier. Yes I

type The type of message formatting. Yes I

message The message text. Yes I

var_description The description of the substitutable fields, if any, within
the message.

No I

wo_audit Destination for the log message. No I

The following example shows how to add an international message:

exec :retval := SSP_new_intl_msg ('USA', 1, 'D', 'Work Order %s Timed Out', 'WO Id:
%s')

This example adds an international message to the SARM database for American English
(USA). International messages use parameters to identify the entity they are associated with.
The var_description parameter (‘WO id: %s') specifies the format and the arguments that
are used to generate the actual message.

SSP_new_ne_host
This function defines a host NE with its technology type, software version, and inventory
manager in the SARM database table, tbl_host_clli.

For more information about using functions, see "Oracle Execution Examples."

Table 4-79 SSP_new_ne_host Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE to which the remote NE is connected. Yes I

Chapter 4
SARM configuration interface

4-41

Table 4-79 (Cont.) SSP_new_ne_host Parameters

Name Description Req'd (I)nput/
(O)utput

tech_type The technology type of the host NE or SRP. Yes I

sftwr_load The version of the software currently running on the NEP
or SRP.

Yes I

SSP_new_nep
This function defines a secondary (dialup) pool of devices or connections for a
specified NEP in the SARM database. This function adds a pool of devices or
connections to tbl_nep.

For more information about using functions, see "Oracle Execution Examples."

Table 4-80 SSP_new_nep Parameters

Name Description Req'd (I)nput/
(O)utput

nep_svr_cd The NEP managing the secondary pool of devices. Yes I

dialup_pool The secondary pool of devices. No I

SSP_new_nep_program
This function inserts or updates a line of State Table code into tbl_nep_program. If the
line exists, it will be updated.

If there is no ASDL-to-State Table mapping relationship, the user is warned that the
mapping relationship does not exist. The insertion of the State Table, however, is not
affected.

For more information about using functions, see "Oracle Execution Examples."

Table 4-81 SSP_new_nep_program Parameters

Name Description Req'd (I)nput/
(O)utput

program The State Table program identifier. Yes I

line_no The State Table line number to delete. If set to
NULL, all lines of the State Table are deleted.

Yes I

action The action string identifying a particular action
performed by the Interpreter.

Yes I

act_string The action string associated with the State Table. Yes I

act_int The action integer. Yes I

SSP_new_net_elem
This function defines a host NE in the SARM database (tbl_ne_config).

Chapter 4
SARM configuration interface

4-42

For more information about using functions, see "Oracle Execution Examples."

Table 4-82 SSP_new_net_elem Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE identifier of an NE or SRP. Yes I

nep_svr_cd The logical name of the NEP that connects to this
host NE.

Yes I

primary_pool The primary resource pool used by the NEP
managing this host NE to determine the devices to
use to connect to it.

Yes I

max_connections The maximum number of concurrent connections
allowed to this host NE.

Yes I

drop_timeout The maximum inactivity (in minutes) before NEP
drops the primary connection to this host NE.

Yes I

spawn_threshold Number of ASDL requests in the SARM ASDL Ready
Queue to be exceeded before the NEP opens a new
auxiliary connection to that NE.

Yes I

kill_threshold Once the SARM has fewer ASDL requests in its
ASDL Ready Queue than this number, it disconnects
one or more auxiliary connections.

Yes I

template_flag Flag to indicate whether this network element entry
identifies a static NE (N) or a dynamic network
element template (Y).

Y I

SSP_new_resource
This function defines an NEP resource (“device") to be used for NE access in the SARM
database (tbl_resource_pool).

For more information about using functions, see "Oracle Execution Examples."

Table 4-83 SSP_new_resource Parameters

Name Description Req'd (I)nput/
(O)utput

asap_sys The ASAP environment (TEST, PROD, etc.) Yes I

pool The pool name. Yes I

device The physical or logical device name. Yes I

line_type The type of line for the serial communication. Yes I

vs_key Reserved. The shared memory segment identifier for the
Virtual Screen buffer.

No I

SSP_new_srp
This function adds an SRP to tbl_asap_srp.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-43

Table 4-84 SSP_new_srp Parameters

Name Description Req'd (I)nput/
(O)utput

srp_id The logical SRP name. Yes I

srp_desc The SRP description. Yes I

aux_srp_id The name of the sister SRP. No I

wo_estimate_evt The work order estimate notification event. No I

wo_failure_evt The work order failure notification event. No I

wo_complete_evt The work order completion notification
event.

No I

wo_start_evt The work order startup notification event. No I

wo_soft-err_evt The work order soft error notification event. No I

wo_blocked_evt The work order blocked notification event. No I

wo_rollback_evt The work order rollback notification event. No I

wo_timeout_evt The work order timeout notification event. No I

ne_unknown_evt The unknown NE notification event. No I

ne_avail_evt The NE available notification event. No I

ne_unavail_evt The NE available notification event. No I

wo_accept_evt The system event to be issued. No I

srp_conn_type Connection protocol for SARM to SRP. No I

srp_host_name SRP host machine name. No I

srp_host_port Port number for socket connections. No I

aux_srp_conn_type Connection protocol for SARM
communication to the auxiliary SRP.

No I

aux_srp_host_name Host machine name of the auxiliary SRP. No I

aux_srp_host_port Port number for socket connections on an
auxiliary SRP.

No I

SSP_new_stat_text
This function adds new static text into tbl_stat_text. If an entry already exists for the
static text identifier, the static text is updated with the new information.

For more information about using functions, see "Oracle Execution Examples."

Table 4-85 SSP_new_stat_text Parameters

Name Description Req'd (I)nput/
(O)utput

stat_id The logical group of static text messages. Yes I

status The integer identifier for member of a logical
grouping.

No I

Chapter 4
SARM configuration interface

4-44

Table 4-85 (Cont.) SSP_new_stat_text Parameters

Name Description Req'd (I)nput/
(O)utput

code The string identifier for a member of a logical
grouping.

No I

stat_text The actual text message to use in place of a string/
integer identifier.

Yes I

SSP_new_user_err_threshold
This function creates a new user-defined error threshold in the system for the specified NE,
ASDL command, and the user-defined error type in tbl_user_err_threshold.

For more information about using functions, see "Oracle Execution Examples."

Table 4-86 SSP_new_user_err_threshold Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE identifier of an NE or SRP. Yes I

asdl_cmd The ASDL command. Yes I

user_type The user-defined error type. Yes I

minor_threshold The threshold for minor system events. This is the
number of times the user_type can be returned before
the corresponding minor event is generated.

Yes I

minor_event The minor system event to be generated when the
threshold is exceeded.

Yes I

major_threshold The threshold for major system events. This is the
number of times the user_type can be returned before
the corresponding major event is generated.

Yes I

major_event The major system event to be generated when the major
threshold is reached.

Yes I

critical_threshold The threshold for critical event notifications. This is the
number of times the user_type can be returned before
the corresponding critical event is generated.

Yes I

critical_event The critical system event to be generated when the
critical threshold is reached.

Yes I

SSP_new_userid
This function adds a new user account for the SARM to control access from the SRP in
tbl_uid_pwd.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-45

Table 4-87 SSP_new_userid Parameters

Name Description Req'd (I)nput/
(O)utput

uid The user ID. Yes I

pwd The password. Yes I

status The user's current status. No I

SSP_orphan_purge
This stored procedure scans SARM database tables and deletes fragments of old
work orders that do not have an entry in tbl_wrk_ord. Occasionally, the database
becomes fragmented and records are left behind in various tables, including:

• tbl_asap_stats

• tbl_info_parm

• tbl_srq

• tbl_srq_csdl

• tbl_srq_log

• tbl_asdl_log

• tbl_srq_parm

• tbl_srq_asdl_parm

• tbl_wo_event_queue

This stored procedure is time-consuming and requires considerable system resources.
Therefore, it should not run during peak hours.

For more information, see Database Purging in the ASAP System Administrator's
Guide.

For more information about using functions, see "Oracle Execution Examples."

Error management
The management of errors related to provisioning by an NEP provides a detailed error
tracking scheme and lets the administrator configure error-processing thresholds using
NE and ASDL commands. The thresholds control the release of specific ASDL
commands to the NE to prevent an excessive number of errors from occurring.

The following table lists the types or errors that can occur:

• SUCCEED: The ASDL provisioning was successful.

• FAIL: Fails the current order and stops any subsequent processing.

• RETRY: Retries the current ASDL command after a user-configured interval and
up to a user-configured number of times before failing the order.

• MAINTENANCE: Causes the current ASDL command to wait for the NE to come
out of maintenance before processing continues.

• SOFT_FAIL: An error has occurred at the NE but order processing can continue.

Chapter 4
SARM configuration interface

4-46

• DELAYED_FAIL: An ASDL had failed during provisioning. The SARM skips any
subsequent ASDL in the CSDL, continues provisioning at the next CSDL, and then fails
the order.

Refer to the ASAP Cartridge Development Guide for more detailed descriptions of these
base_types.

User-configured history windows and polling intervals that update the ASAP database are
also supported. Information is available in real-time from the SARM server or in a batch from
the ASAP database. This batch information can then be used by administrative tools to
perform root cause analysis.

SSP_del_err_threshold
This function deletes error thresholds for a specific NE and ASDL command from
tbl_err_threshold.

For more information about using functions, see "Oracle Execution Examples."

Table 4-88 SSP_del_err_threshold Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE identifier of an NE or SRP. No I

asdl_cmd The ASDL command associated with the threshold. This
can be NULL to indicate an NE threshold.

No I

SSP_del_err_type
This function deletes mappings between base and user exit types. These mappings are
defined in tbl_user_err.

For more information about using functions, see "Oracle Execution Examples."

Table 4-89 SSP_del_err_type parameters

Name Description Req'd (I)nput/
(O)utput

user_type The user-defined error type. Yes I

asdl The ASDL that is executing. Error types can be defined
for user_type and ASDL combinations.

No I

csdl The CSDL that is executing. Error types can be defined
for user_type and CSDL combinations.

No I

ne_vendor The vendor of the network element. No I

tech_type The technology of the network element. No I

sftwr_load Software version of the host network element. No I

SSP_err_enable
This function enables the provisioning of an ASDL command that has been disabled because
it exceeded an error threshold. If the NE is down, the NE will be enabled by this function. A

Chapter 4
SARM configuration interface

4-47

particular ASDL may also be marked as disabled to an NE, therefore it may be re-
enabled to that NE by specifying it along with the NE in the call to SSP_err_enable.

Note:

The action performed by this function is not persistent. That is, if the SARM
is taken down after this function has been executed, the changes made to
the state of the NE and ASDL are lost.

For more information about using functions, see "Oracle Execution Examples."

Table 4-90 SSP_err_enable Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE identifier of an NE or SRP. Yes I

asdl_cmd The optional ASDL command to enable a specific
type of provisioning.

No I

SSP_list_err_host
This function lists the NEs and the ASDL commands that have been disabled for
provisioning.

For more information about using functions, see "Oracle Execution Examples."

Table 4-91 SSP_list_err_host Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

host_clli The host NE identifier of an NE or SRP. No I

asdl_cmd The ASDL command. No I

Table 4-92 SSP_list_err_host Results

Name DataType Description

host_clli TYP_clli Host NE.

disable_dts datetime Timestamp when the NE was disabled.

asdl_cmd TYP_asdl_cmd ASDL command that has been disabled.

order_count TYP_long Number of orders waiting for the NE.

SSP_list_err_threshold
This function lists the error thresholds for a specific NE and ASDL command. Error
thresholds are stored in tbl_err_threshold.

Chapter 4
SARM configuration interface

4-48

For more information about using functions, see "Oracle Execution Examples."

Table 4-93 SSP_list_err_threshold Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

host_clli The host NE identifier of an NE or SRP. No I

asdl_cmd The ASDL command associated with the threshold. This
can be NULL to indicate an NE threshold.

No I

Table 4-94 SSP_list_err_threshold Results

Name DataType Description

host_clli varchar(64) The host NE identifier.

asdl_cmd varchar(30) The ASDL command associated with the
threshold. This can be NULL to indicate an
NE threshold.

threshold TYP_long Error threshold.

SSP_list_err_type
This function lists the mapping between user exit types and base exit types. This mapping is
stored in tbl_user_err.

You cannot define both user_type and base_type at the same time.

For more information about using functions, see "Oracle Execution Examples."

Table 4-95 SSP_list_err_type Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

user_type The user-defined error type. No I

base_type The base error type. No I

Table 4-96 SSP_list_err_type Results

Name DataType Description

user_type TYP_code User-defined type.

base_type TYP_code Base error type.

description varchar(50) A brief description of the user exit type.

SSP_new_err_threshold
This function adds a new threshold for a specific NE and ASDL command in
tbl_err_threshold.

Chapter 4
SARM configuration interface

4-49

For more information about using functions, see "Oracle Execution Examples."

Table 4-97 SSP_new_err_threshold Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE identifier. Yes I

asdl_cmd The ASDL command associated with the threshold.
This can be NULL to indicate an NE threshold.

Yes I

threshold The error threshold for the time period (consecutive
number of errors before connection to an NE should
be disabled).

Yes I

SSP_new_err_type
This function adds a new mapping between user exit types and the base exit types in
tbl_user_err.

For more information about using functions, see "Oracle Execution Examples."

Table 4-98 SSP_new_err_type Parameters

Name Description Req'd (I)nput/
(O)utput

user_type The user-defined error type. Yes I

base_type The base error type. Yes I

description A brief description of the ASDL command. No I

asdl The ASDL that is executing. Error types can be
defined for user_type and ASDL combinations.

No I

csdl The CSDL that is executing. Error types can be
defined for user_type and CSDL combinations.

No I

ne_vendor The vendor of the network element. No I

tech_type The technology of the network element. No I

sftwr_load Software version of the host network element. No I

search_pattern Regular expression pattern that is used to match on
network element responses.

No I

Switch blackout processing
If ASAP shared a port to an NE with another system or if regular NE maintenance
must be performed, you can define the NE blackout period during which time the NEP
will not connect to that NE.

To identify switch blackout periods, ASAP checks a database table to see if the current
time is within the user-defined blackout period. You can configure both static (keyed by
date and time) and dynamic (keyed by specific day and time) blackout periods. If a
blackout period is detected, the switch is placed into maintenance mode automatically.

Chapter 4
SARM configuration interface

4-50

SSP_add_blackout
This function configures the static and dynamic blackout periods for a specific NE host.
Blackout information is stored in tbl_blackout.

For more information about using functions, see "Oracle Execution Examples."

Table 4-99 SSP_add_blackout Parameters

Name Description Req'd (I)nput/
(O)utput

dayname The name of the day of the week for a weekly blackout
(such as Mondays). Set to NULL to use specific date and
time intervals for blackout.

No I

host_clli The Host NE identifier of an NE or SRP. Yes I

start_tm, end_tm The start time and end time for the blackout interval. If
you have specified a dayname blackout, the blackout is
based on the day and the start time and end time. If the
dayname parameter is set to NULL, the blackout is
based on a specified date and time.

Yes I

descr A brief description of the blackout. No I

SSP_check_blackout
This function determines whether or not the specified NE is currently blacked out. An NE is
blacked out if an entry exists in tbl_blackout for the specified NE, where the current time is
between the entry's start time and end time.

For more information about using functions, see "Oracle Execution Examples."

Table 4-100 SSP_check_blackout Parameters

Name Description Req'd (I)nput/
(O)utput

curday The current day. Yes I

host_clli The Host NE identifier. Yes I

curr_dt_tm The current time. Yes I

ret The return status. Yes O

SSP_del_blackout
This procedure removes blackout periods for a specific NE host from tbl_blackout.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM configuration interface

4-51

Table 4-101 SSP_del_blackout Parameters

Name Description Req'd (I)nput/
(O)utput

dayname The name of the day of the week for default setup
(e.g., Monday). Set to NULL to use specific day and
time intervals for the blackout.

No I

host_clli The host NE identifier of an NE or SRP. No I

start_tm The start time for the blackout interval. If the
dayname parameter is not NULL, then these fields
are used as time intervals for the day. If the dayname
parameter is NULL, this field must include both date
and time.

No I

SSP_list_blackout
This procedure lists blackout periods for a specific NE host. This information is stored
in tbl_blackout.

For more information about using functions, see "Oracle Execution Examples."

Table 4-102 SSP_list_blackout Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

RC2 Oracle Database Ref Cursor. Yes I/O

RC3 Oracle Database Ref Cursor. Yes I/O

dayname The name of the day of the week for default setup
(e.g., Monday). Set to NULL to use specific date and
time intervals for the blackout.

No I

host_clli The host NE identifier of an NE or SRP. No I

start_tm The start time for the blackout interval. If the dayname
parameter is not NULL, then these fields are used as
time intervals for the day. If the dayname parameter is
NULL, this field must include both date and time.

No I

Table 4-103 SSP_list_blackout Results

Name Datatype Description

dayname varchar(10) The name of the day.

host_clli TYP_clli The host CLLI.

start_tm datetime The start time for the blackout interval.

end_tm datetime The end time for the blackout interval.

description varchar(40) The description of the blackout period.

dayname varchar(10) The name of the day.

host_clli TYP_clli The host CLLI.

Chapter 4
SARM configuration interface

4-52

Table 4-103 (Cont.) SSP_list_blackout Results

Name Datatype Description

start_tm datetime The start time for the blackout interval.

end_tm datetime The end time for the blackout interval.

description varchar(40) The description of the blackout period.

dayname varchar(10) The name of the day.

host_clli TYP_clli The host CLLI.

start_tm datetime The start time for the blackout interval.

end_tm datetime The end time for the blackout interval.

description varchar(40) The description of the blackout period.

Switch direct interface (SWD)
This section describes ASAP's support of direct terminal session access to NEs (SWDs).

The following assumptions apply:

• Only one SWD session is allowed per NE.

• ASAP automatically selects the port that is used in the session.

• An SWD Client does not have access to the NE if the NE is in maintenance mode or
provisioning black-out mode.

• An SWD request has the highest priority in ASAP, but an active ASDL command is not
pre-empted.

• The activity that occurs during the session is not logged by ASAP.

• BSD style sockets are used on the server side.

• The SWD Client Application sends/receives only raw data to/from ASAP because ASAP
just acts as a gateway for passing data to and from the NE. The SWD Client Application
is responsible for mapping raw data received from ASAP to terminal emulation: specific
data and vice versa. The SWD client must support the terminal emulation interface used
by the NE (for example, VT220).

• Security validation checks for SWD access are controlled by the SWD client.

• When an SWD session is completed, ASAP disconnects from the NE before resuming
normal provisioning activities.

• No message is sent to the SWD client if the connection cannot be granted immediately.

• An NEP supports SWD sessions only if it supports Multi-Protocol Manager functionality
(that is, it links in the ASAP Communication API libasccomm).

• SWD sessions to an NE are possible only if the communication to the NE is terminal-
based, not message-based.

• As the number of SWD sessions increases, performance may degrade because all the
SWD sessions are managed by a single thread. This arrangement ensures that SARM's
primary function of provisioning is not affected by SWD access.

Chapter 4
SARM configuration interface

4-53

Configuration parameters

Table 4-104 SWD Configuration parameters

Name Default
Value

Cfg File Description

SWD_LISTEN_PORT N/A Global TCP/IP listen port for the SARM server.

SWD_IDLE_TIMEOUT 120 Global Idle period in seconds for automatically
disconnecting the SWD session if no
activity is detected.

General message format

Table 4-105 SWD General message format

Field Name Offset Length Description

Message Type 0 4 Integer message type to be processed.

Data Length 4 4 Integer message data length.

Message Data 8 variable Optional message data. The format is dependent
on message type and is specified below for each
type.

All fields are passed using the standard network independent format (i.e., network byte
ordering).

SWD Client-to-SARM messages

Table 4-106 SWD Client-to-SARM messages

Msg
Type

Msg Format Description

1 HOST=<hostname>
; USERID=<userid>

Connect to the specified NE for an SWD session
(SWD_CLT_\CONNECT).

2 keystroke data User entered keystroke data. This is binary data
(SWD_CLT_DATA).

3 User entered break key (SWD_CLT_BREAK_KEY).

4 SWD session complete (SWD_CLT_NE_DISCONNECT).

SARM-to-SWD client messages

Table 4-107 SARM-to-SWD client messages

Msg
Type

Msg Format Description

10 STATUS=<2-digit status value>;
ERR_MSG=<error message>

Connection acknowledgment message
(SWD_SESS_CONNECT_ACK).

Chapter 4
SARM configuration interface

4-54

Table 4-107 (Cont.) SARM-to-SWD client messages

Msg
Type

Msg Format Description

11 session data Session data returned by the NE
(SWD_SESS_DATA).

12 Unexpected port disconnection
(SWD_SESS_NE_PORT_FAILURE).

13 SWD session timeout (SWD_SESS_TIMEOUT).

The following table lists all of the valid availability status values and the associated error
message formats for message type 10.

Table 4-108 Message Type 10 Information

Availability
Status

Error Msg Description Error Msg Format

1 SWD Session to Host established
successfully.

Connected successfully to Host.

2 Time out waiting for NE Connection
Request from SWD Client.

Timed out waiting for SWD Connect Request.

3 ASAP not configured to connect to
NE.

Invalid Host CLLI.

4 NE does not support SWD Session. NEP does not support SWD Sessions

5 NEP in loopback mode. NEP in loopback mode.

6 SWD Session to NE already
attempted or in use.

SWD Session to NE already exists or
attempted.

7 NEP connecting to NE is down. NEP down.

8 NE is down. NE down.

9 NEP connecting to NE is in
maintenance mode.

NE in maintenance or blackout mode.

10 NE is disabled. NE is disabled.

11 NE is busy provisioning for more
than the
“SWD_CONNECT_WAIT_TIMEOUT
" seconds.

Timed out waiting for connection. NE is busy
provisioning.

12 Resource Allocation Error; Cannot
connect to NEP.

System Resource Error.

13 Not connected yet. Data/Break/Disconnect request from SWD
Client rejected because NE Connect Request
not received yet.

14 Connected already. NE Connect Request rejected since the SWD
Client is already connected to an NE.

Chapter 4
SARM configuration interface

4-55

Stop work order interface
The Stop Work Order feature is a user-generated event from the OCA client or the
JSRP that is received directly by the SARM and applied to a specific work order. The
event is received as a function aims_stop_wo.

Syntax:

CS_RETCODE aims_stop_wo_rpc(SRV_PROC *srvproc)
{
 ASAP_WO_ID wo_id;
 CS_INT rollback;
 CS_RETCODE ret_status;
 CS_CHAR tmp[ASAP_SRQ_EVENT_TEXT_L],evt_text[ASAP_SRQ_EVENT_TEXT_L];
 CS_CHAR audit_flag[10];
 CS_CHAR user_id[32];

The aims_stop_wo function stops a work order that is in progress. This allows the
user to correct any problems that may be occurring before continuing the work order.

The function determines:

• When to stop a work order.

• When to roll back a work order once it has been stopped. Once the function has
been received, the SARM applies it as an asynchronous event to the specified
work order.

• When to send a return status variable to indicate whether or not the operation was
successful.

• A work order for which an aims_stop_wo function was received can go through
two states:

– WO_STOP_WAIT if rollback is required and is in progress. While in this state,
the work order can be cancelled.

– WO_STOPPED if rollback is not required or has finished. While in this state,
the work order can be cancelled or its status changed to WO_HELD,
WO_INIT, or WO_REVIEW.

A work order is stopped only if it is in the WO_IN PROGRESS state when the
aims_stop_wo function is received. A request for a work order in any other state is
rejected immediately without affecting the work order.

Table 4-109 aims_stop_wo Arguments

Name Description Req'd (I)nput/
(O)utput

wo_id The work order identifier. Yes I

rollback An integer value that specifies whether or not to roll back
the work order before it is stopped. Valid values are:

• 1 – Rollback
• 0 – Do not rollback
Any other value causes the work order to be stopped
without rollback.

Yes I

Chapter 4
SARM configuration interface

4-56

Table 4-109 (Cont.) aims_stop_wo Arguments

Name Description Req'd (I)nput/
(O)utput

ret_status A return parameter that stores the return value of the
RPC. Valid values are:

• 0 – Request to stop the work order was not
accepted.

• 1 – Request to stop the work order was accepted.

Yes O

evt_text The text of the message associated with the event. No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

userid Optional user identification for audit log. Set to NULL to
disable the audit log. Set to the user ID of the user who
executes the procedure to enable the audit log.

No I

Localizing International Messages
Localization is the process of preparing a product for use with a single language and
character set. Localization can include:

• Translating the user interface and documentation

• Adapting time, date, and number formats

• Adding punctuation conventions

• Reconstructing icons and symbols

With the support of the ASAP localization toolkit, you can localize software and non-software
components to any language based on the Roman alphabet (English, German, French,
Spanish, etc.). Localization usually involves translating the user interface and documentation
and adapting time, date, and number formats. In some cases, more significant changes may
be required, and sometimes icons, symbols, metaphors, and even concepts must be
reconsidered.

The localization toolkit does not let you localize or translate the system messages generated
by third-party tools or operating systems.

The stored procedures locate international messages in the SARM database. The default
language of American English is provided in the base release for ASAP. You can use it as a
guide for defining other languages in ASAP.

Such messages are generated by the SARM and logged in the SARM database. They may
be retrieved by the SRP and passed back to the originating system.

Use the following stored procedures to add, remove, and query international messages.

• SSP_new_intl_msg

• SSP_del_intl_msg

• SSP_list_intl_msg

Chapter 4
SARM configuration interface

4-57

Table 4-110 lists the current messages used by ASAP and distributed as part of the
core release.

Table 4-110 ASAP Messages

lang_cd msg_id type message var_description

USA 1 D Work Order %s Timed Out WO Id: %s

USA 2 D ASDL Command %s Skipped ASDL: %s

USA 3 D Cannot Find Mandatory Parameter
%s, ASDL %s Fails

Parameter: %s, ASDL: %s

USA 4 D Soft Error on ASDL %s, WO
Processing Continuing

ASDL: %s

USA 5 D ASDL %s of SRQ %d Completed ASDL: %s, SRQ Id: %d

USA 6 D ASDL %s of SRQ %d Failed ASDL: %s, SRQ Id: %d

USA 7 D Start of ASDL Provisioning Request
for SRQ %d

SRQ Id: %d

USA 8 D Sent ASDL %s to NE, Awaiting NE
Response

ASDL: %s

USA 9 D Unable to get ASDL Command %s of
SRQ %d

ASDL: %s, SRQ Id: %d

USA 10 D SRQ %d (Last CSDL %s) has
Completed

SRQ Id: %d, CSDL: %s

USA 11 D CSDL %s of SRQ %d has Completed CSDL: %s, SRQ Id: %d

USA 12 D Will Retry ASDL Command %s of
SRQ %d. Current Retry # is %d

ASDL: %s, SRQ Id: %d,
Retry #: %d

USA 13 D ASDL Command %s of SRQ %d
Failed after %d Retries

ASDL: %s, SRQ Id: %d

USA 14 D NE %s Unavailable while Processing
%s

Host Clli: %s, ASDL: %s

USA 15 D Q Info:

Queued: %02d:%02d:%02d, Start:
%02d:%02d:%02d, Comp:
%02d:%02d:%02d

NEP Queue Information

USA 16 D ASDL Failure Msg: %s NE %s ASDL Failed
Message

USA 17 D ASDL Command %s of SRQ %d
Failed on Unknown NE Return Status

ASDL: %s, SRQ Id: %d

USA 18 D NE Command: %s\nASDL
Command: %s

NE Command Returned
From NE: %s

USA 19 D Network Element Routing Error,
Failed SRQ %d

SRQ Id: %d

USA 20 D ASDL %s of SRQ %d Rollback
Ignored

ASDL: %s, SRQ Id: %d

USA 21 D NE %s Unavailable while Rolling
Back ASDL %s of SRQ %d

Host Clli: %s, ASDL: %s,
SRQ Id: %d

USA 22 D Roll Back ASDL %s Sent to NE ASDL: %s

Chapter 4
SARM configuration interface

4-58

Table 4-110 (Cont.) ASAP Messages

lang_cd msg_id type message var_description

USA 23 D Roll Back ASDL %s Rejected by NE
%s

ASDL: %s

USA 24 D Will Retry Roll Back of ASDL %s,
SRQ %d, Current Retry # %d

ASDL: %s, SRQ Id: %d,
Retry #: %d

USA 25 D Roll Back ASDL %s, SRQ %d Failed
After %d Retries

ASDL: %s, SRQ Id: %d, #
Retries: %d

USA 26 D Roll Back ASDL %s, SRQ %d
Completed

ASDL: %s, SRQ Id: %d

USA 27 D Roll Back ASDL %s of SRQ %d
Failed\nNEP Message %s

ASDL: %s, SRQ Id: %d,
NEP Message: %s

USA 28 D Roll Back ASDL %s Failed due to
Unknown NE Return Status

ASDL: %s

USA 29 D State Table Syntax Error Processing
%s

ASDL: %s

USA 30 D Error Detected Loading State Table
for ASDL %s

ASDL: %s

USA 31 D Unknown ASDL Error %s ASDL: %s

USA 32 D Continue to Process Next ASDL ASDL: %s

USA 33 D N.E. Host %s ASDL: %s Host %s

USA 34 S Invalid ASDL Parameter Type in
Configuration

-

USA 35 D No ASDL Configuration defined for
%s

ASDL: %s

USA 36 D Network Element %s is in
maintenance

Host: %s

USA 37 D Port Failure on Connection to %s Host: %s

USA 38 S SRQ Provisioning Stopped

USA 39 D Updated for ASDL %s of SRQ %d ASDL: %s SRQ %d

USA 40 D End of Indexed Parameters for ASDL
%s

ASDL: %s

USA 41 D ASDL %s Provisioning Request to
%s

ASDL: %s Host: %s

USA 42 D ASDL %s for %s Route to NE %s ASDL: %s MCLI/DN: %s
Host: %s

USA 43 D Delay failure threshold exceeded,
SRQ Provisioning Stopped

-

USA 44 S Delay failure with rollback required,
SRQ Provisioning Stopped

-

SARM provisioning interface
This section covers the functions for the SARM configuration. The following topics are
discussed:

Chapter 4
SARM provisioning interface

4-59

• SARM Interface RPCs

• Update RPC Interface Definitions

• Control Interface RPCs

• Retransmission of Recent Change Messages

• Real-Time Performance Data Gathering

• Switch Activation and Deactivation

SARM interface RPCs
This section defines the function interface that accesses the SARM database. These
procedures provide query and update facilities that allow an OCA or JSRP application
to monitor system performance, perform error correcting, and resubmit failed work
orders.

This subsection lists the syntax, descriptions, parameters, and results for the functions
that apply to the Inquiry RPC interface definition.

SAS_asdl_counts
This function generates a list of statistical information for an ASDL command on the
service request (specified by srq_id and asdl_unid).

For more information about using functions, see "Oracle Execution Examples."

Table 4-111 SAS_asdl_counts Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier. Yes I

asdl_unid ASDL identifier. Yes I

num_sw_history Number of ASDL switch history occurrences
for this ASDL.

Yes O

num_params Number of parameters used by this ASDL. Yes 1

SAS_asdl_list
This function retrieves a list of ASDL commands and their information for a CSDL on
the service request (specified by srq_id and csdl_seq_no). This information is retrieved
from tbl_asdl_log.

For more information about using functions, see "Oracle Execution Examples."

Table 4-112 SAS_asdl_list Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

srq_id Service request identifier. Yes I

Chapter 4
SARM provisioning interface

4-60

Table 4-112 (Cont.) SAS_asdl_list Parameters

Name Description Req'd (I)nput/
(O)utput

csdl_seq_no CSDL sequence number. Yes I

Table 4-113 SAS_asdl_list Results

Name Datatype Description

asdl_cmd TYP_asdl_cmd ASDL command.

asdl_stat TYP_asdl_stat ASDL status updated while this ASDL is in progress.

asdl_unid TYP_seq_no A unique ASDL identifier generated when an ASDL is
routed to an NE.

host_clli TYP_clli The Host NE to which the ASDL command is routed by
the SARM.

rollback_asdl TYP_asdl_cmd ASDL command used to roll back the original ASDL.

comp_dts datetime The completion date and time of the ASDL processing.

rollback_dts datetime The date and time of the ASDL rollback, if rollback was
required on this ASDL.

description varchar(40) ASDL command description.

queue_dts datetime Queuing date and time for the ASDL command to the NE.

start_dts datetime Provisioning start date and time for the ASDL command.

retry_count TYP_long Number of times the ASDL command was retried.

stat_text TYP_stat_text The status text for the ASDL.

SAS_asdl_parms
This function retrieves the ASDL parameters for an ASDL command on the service request
that has been provisioned. These parameters are used and generated during the provisioning
process. This information is retrieved from tbl_srq_asdl_parm.

For more information about using functions, see "Oracle Execution Examples."

Table 4-114 SAS_asdl_parms Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

srq_id Service request identifier. Yes I

asdl_unid ASDL identifier. Yes I

Table 4-115 SAS_asdl_parms Results

Name Datatype Description

parm_lbl TYP_parm_lbl Parameter name.

Chapter 4
SARM provisioning interface

4-61

Table 4-115 (Cont.) SAS_asdl_parms Results

Name Datatype Description

parm_vlu TYP_parm_vlu Parameter value.

SAS_asdl_sw_history
This function retrieves the switch history for an ASDL command from tbl_srq_log on
the service request (specified by srq_id and asdl_unid).

For more information about using functions, see "Oracle Execution Examples."

Table 4-116 SAS_asdl_sw_history Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

srq_id Service request identifier. Yes I

asdl_unid ASDL identifier. Yes I

Table 4-117 SAS_asdl_sw_history Results

Name Datatype Description

evt_dt_tm datetime Event timestamp.

csdl_seq_no TYP_seq_no Sequence number for the CSDL associated with the
ASDL command.

srq_stat TYP_srq_stat Service request status.

evt_text TYP_evt_text Switch history record. Note that each returned event
text field may contain new line characters within the
event text itself.

SAS_csdl_counts
This function generates statistical information for a CSDL command on the service
request.

Affected tables:

• tbl_srq_parm

For more information about using functions, see "Oracle Execution Examples."

Table 4-118 SAS_csdl_counts Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier. Yes I

csdl_seq_no CSDL sequence number. Yes I

Chapter 4
SARM provisioning interface

4-62

Table 4-118 (Cont.) SAS_csdl_counts Parameters

Name Description Req'd (I)nput/
(O)utput

num_events Number of CSDL provisioning events for
this CSDL.

Yes O

num_sw_history Number of ASDL switch history
occurrences for this ASDL.

Yes O

num_asdl Number of ASDLs which have been
executed for this CSDL.

Yes O

num_csdl_params Number of CSDL parameters for this
CSDL.

Yes O

SAS_csdl_event_history
This function generates a listing of provisioning events for a CSDL command on the service
request. This information is contained in tbl_srq_log, tbl_stat_text.

For more information about using functions, see "Oracle Execution Examples."

Table 4-119 SAS_csdl_event_history Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

srq_id Service request identifier. Yes I

csdl_seq_no CSDL sequence number. Yes I

Table 4-120 SAS_csdl_event_history Results

Name Datatype Description

evt_dt_tm datetime Date and time that the event occurred.

evt_text TYP_evt_text Switch history record. Note that each returned event text
field may contain new line characters within the event
text itself.

srq_evt TYP_srq_evt The service request log event.

srq_stat TYP_srq_stat Status of the service request at the time the event
occurred.

stat_text TYP_stat_text Status text for the service request.

SAS_csdl_list
This function generates a list of CSDL commands and information pertaining to them for a
service request. This information is contained in tbl_srq_csdl, tbl_stat_text.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM provisioning interface

4-63

Table 4-121 SAS_csdl_list Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

srq_id Service request identifier. Yes I

Table 4-122 SAS_csdl_list Results

Name Datatype Description

csdl_seq_no TYP_seq_no Sequence number for the CSDL associated
with the ASDL command.

actn_noun_lbl TYP_csdl_cmd CSDL command.

csdl_st TYP_csdl_st CSDL command status.

asdl_seq_no TYP_seq_no ASDL command sequence number.

index_parm_cnt TYP_seq_no Index parameter count for the current ASDL
command.

asdl_route TYP_asdl_route Routing status of the current ASDL command.

csdl_id TYP_unid CSDL identification specified by SRP.

asdl_route_rep_1 TYP_asdl_route Routing status of the current ASDL command.

csdl_type TYP_csdl_type Type of CSDL command (for example,
ORIGINAL, REVISION, SAS_ORIGINAL,
SAS_REVISION).

orig_seq_no TYP_seq_no Original CSDL command sequence number
associated with revision CSDL commands.

estimate TYP_long Initial estimate for ASDL processing calculated
when the CSDL command was received.

start_dts datetime Provisioning start date and time for the first
ASDL command of the CSDL command.

abort_dts datetime Abort time for the CSDL command.

failure_dts datetime Failure time for the CSDL command.

comp_dts datetime Completion time for the CSDL command.

update_dts datetime Last update timestamp for the CSDL command.

update_uid TYP_user_id User ID of user who last updates the CSDL
command.

prov_sequence TYP_seq_no Provisioning sequence number for the CSDL
command.

stat_text TYP_stat_text CSDL status text.

description varchar(40) CSDL description.

SAS_csdl_parms
This function retrieves the CSDL parameters for a CSDL command on the service
request (specified by srq_id and csdl_seq_no). This information is retrieved from
tbl_srq_parm.

Chapter 4
SARM provisioning interface

4-64

For more information about using functions, see "Oracle Execution Examples."

Table 4-123 SAS_csdl_parms Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

srq_id Service request identifier. Yes I

csdl_seq_no CSDL sequence number. Yes I

Table 4-124 SAS_csdl_parms Results

Name Datatype Description

parm_lbl TYP_parm_lbl Parameter name.

parm_vlu TYP_parm_vlu Parameter value.

SAS_csdl_sw_history
This function retrieves the switch history for a CSDL command on the service request
(specified by srq_id and csdl_seq_no) from tbl_srq_log.

For more information about using functions, see "Oracle Execution Examples."

Table 4-125 SAS_csdl_sw_history Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

srq_id Service request identifier. Yes I

csdl_seq_no CSDL sequence number. Yes I

Table 4-126 SAS_csdl_sw_history Results

Name Datatype Description

evt_dt_tm datetime Event timestamp.

csdl_seq_no TYP_seq_no Sequence number for the CSDL associated with the
ASDL command.

srq_stat TYP_srq_stat Service request status.

evt_text TYP_evt_text Switch history record. Note that each returned event text
field may contain new line characters within the event
text itself.

SAS_info_parms
This function retrieves the information parameters for a work order (specified by wo_id). This
information is retrieved from tbl_info_parm.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM provisioning interface

4-65

Table 4-127 SAS_info_parms Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

wo_id Work order identifier. Yes I

Table 4-128 SAS_info_parms Results

Name Datatype Description

parm_lbl TYP_parm_lbl Parameter name.

parm_group TYP_parm_grp Parameter group.

parm_vlu TYP_parm_vlu Parameter value.

csdl_seq_no TYP_seq_no Sequence number for the CSDL which generated
the information parameter.

csdl_cmd TYP_csdl_cmd CSDL command name.

csdl_id TYP_unid CSDL identification specified by SRP.

description archar(40) CSDL description.

SAS_map_srq_id
This function maps the service request ID to the work order identifier.

For more information about using functions, see "Oracle Execution Examples."

Table 4-129 SAS_map_srq_id Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier. Yes I

wo_id Work order identifier associated with the service
request. Set to NULL if srq_id is invalid.

Yes O

SAS_map_wo_id
This function maps the work order identifier to its service request ID. This information
is stored in tbl_srq.

For more information about using functions, see "Oracle Execution Examples."

Table 4-130 SAS_map_wo_id Parameters

Name Description Req'd (I)nput/
(O)utput

wo_id Work order identifier. Yes I

Chapter 4
SARM provisioning interface

4-66

Table 4-130 (Cont.) SAS_map_wo_id Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier associated with the
work order. Set to NULL if the work order is not
found.

Yes I

SAS_wo_detail
This function retrieves the detailed information for a work order specified in the input
parameter wo_id. This information is retrieved from tbl_wrk_ord.

For more information about using functions, see "Oracle Execution Examples."

Table 4-131 SAS_wo_detail Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

wo_id Work order identifier. Yes I

Table 4-132 SAS_wo_detail Results

Name Datatype Description

wo_id TYP_wo_id Work order identifier associated with the ASDL
command.

wo_stat TYP_wo_stat Work order status.

org_unit TYP_org_unit Organization unit specified on order.

sched_dts datetime Due date and time.

orig_login TYP_user_id Originator of the work order in the host system.

comp_dts datetime The completion date and time of the ASDL processing.

srp_id TYP_code Name of the SRP that transmits the work order.

update_dts datetime Update date and time.

revs_flag char(1) Indicates whether any revisions were made.

exceptions char(1) Indicates whether there are any exceptions in the
completion of the work order.

pend_cancel char(1) Indicates whether there is a pending order cancellation
for this work order.

rollback_stat TYP_status Work order roll back status.

command TYP_long Provisioning command transmitted from SRP

srq_id TYP_srq_id Service request identifier.

grp_cd TYP_grp_cd Action to be taken by ASAP, which is transmitted from
SRP.

srq_pri TYP_srq_pri Work order priority.

Chapter 4
SARM provisioning interface

4-67

Table 4-132 (Cont.) SAS_wo_detail Results

Name Datatype Description

proc_type TYP_proc_typ Process type which specifies if the work order is
immediate or a future type.

SAS_wo_by_host_clli
This function retrieves a list of work orders by host_clli in combination with other
parameters from tbl_wrk_ord and tbl_srq.

For more information about using functions, see "Oracle Execution Examples."

Table 4-133 SAS_wo_by_host_clli Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli Host CLLI identifier. No I

sched_dts The date and time the work order is scheduled to
begin provisioning.

No I

wo_stat Work order status. No I

wo_id Work order identifier or partial work order
identifier. You can use wildcards.

No I

SAS_wo_list
This function retrieves a list of work orders based on specified query criteria from
tbl_wrk_ord, tbl_stat_text.

Three independent types of queries are supported by this function:

• By specifying wo_id, the work orders exactly matching the work order ID are
selected.

• If wo_id is not specified (set to null), then the wo_stat, sched_dts_from,
sched_dts_to and org_unit can be specified individually or in any combination.
Work orders are retrieved based on all the parameters specified (and boolean
relationships are used among the parameters).

• When no parameters are supplied (that is, all fields are NULL), all work orders in
SARM are retrieved.

For more information about using functions, see "Oracle Execution Examples."

Table 4-134 SAS_wo_list Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

wo_state Work order status. No I

sched_dts_from Start point of due date range. No I

Chapter 4
SARM provisioning interface

4-68

Table 4-134 (Cont.) SAS_wo_list Parameters

Name Description Req'd (I)nput/
(O)utput

sched_dts_to End point of due date range. No I

org_unit Organization Unit Code. This could be a
partial org_unit with wildcards.

No I

wo_id Work order identifier or partial work order
identifier. You can use wildcards.

No I

Table 4-135 SAS_wo_list Results

Name Datatype Description

wo_id TYP_wo_id Work order identifier associated with the ASDL
command.

srp_id TYP_code The logical SRP name.

wo_stat TYP_wo_stat Work order status.

org_unit TYP_org_unit Organization unit specified on order.

sched_dts datetime Due date and time.

orig_login TYP_user_id Originator of the work order in the host system.

lock_uid TYP_user_id User ID of the user who has locked the order for update.

lock_dts datetime Lock timestamp.

stat_text TYP_stat_text The work order status.

SAS_wo_parms
This function retrieves the global parameters for a service request (specified by srq_id) from
tbl_srq_parm.

For more information about using functions, see "Oracle Execution Examples."

Table 4-136 SAS_wo_parms Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

srq_id Service request identifier. Yes I

Table 4-137 SAS_wo_parms Results

Name Datatype Description

parm_lbl TYP_parm_lbl Parameter name.

parm_vlu TYP_parm_vlu Parameter value.

Chapter 4
SARM provisioning interface

4-69

Update RPC interface definitions
This section describes the RPC interface definitions.

CSDL processing model

Note:

The work order must be in the LOCK state before the update can be
performed. To avoid race conditions when updating a work order, the order
must be locked using SAS_lock_wo.

Once the work order has been locked for processing, the following CSDL state
transition model must be observed.

Figure 4-1 CSDL State Transition Model

Order management transactions:

The following table contains work order transactions and their associated functions.

Chapter 4
SARM provisioning interface

4-70

Table 4-138 Order management transactions:

Transaction function Description

Change Due Date SAS_change_due_dt Changes the due date on one work order or
a range of work orders.

Change Priority SAS_change_priority Changes the priority on the locked work
order.

Lock service request SAS_lock_wo Locks the work order for update.

Hold service request SAS_hold_wo Holds the work order in ASAP to prevent
provisioning. If the order is to be reviewed,
the review indicator should be set.

Release service
request to pending
queue

SAS_release_wo Releases a work order from the HELD,
REVIEW, or LOCKED state to the ready
queue for provisioning.

Before you can update a CSDL command on
a locked order, the CSDL command must be
in the INITIAL state. This is done by using
the SAS_release_wo procedure.

Global parameter
maintenance

1. SAS_lock_wo

2. SAS_add_wo_parm

3. SAS_delete_wo_parm

4. SAS_updt_wo_parm

5. SAS_release_wo

1. Locks the work order for update.

2. Creates a global work order parameter for
the work order.

3. Deletes an existing work order parameter
on the work order.

4. Updates an existing work order parameter
on the work order.

5. Releases the work order to the pending,
held, or review queue.

CSDL Management Transactions:

Table 4-139 CSDL Management Transactions

Transaction Function Description

Add a new CSDL
command to an order

1. SAS_lock_wo

2. SAS_csdl_list (Optional)

3. SAS_renumber_csdl
(Optional)

4. SAS_add_csdl

5. SAS_add_csdl_parm

6. SAS_release_wo

1. Locks the work order for update.

2. Determines the sequence insertion point
for the CSDL command within the order.

3. Optional CSDL sequencing renumber
that creates an insertion point for the new
CSDL command.

4. Adds the CSDL command to the order for
provisioning.

5. Adds the necessary parameters to the
CSDL command.

6. Releases the work order to the pending,
held, or review queue.

Chapter 4
SARM provisioning interface

4-71

Table 4-139 (Cont.) CSDL Management Transactions

Transaction Function Description

Delete a CSDL
command from the order

1. SAS_lock_wo

2. SAS_csdl_list (Optional)

3. SAS_abort_csdl

4. SAS_release_wo

1. Locks the work order for update.

2. Selects an INITIAL state CSDL command
on the order.

3. Aborts the CSDL command to prevent
provisioning. Do not set the “copy CSDL"
parameter.

4. Releases the work order to the pending,
held, or review queue.

Update a CSDL
command on the order

- Aborts the specified CSDL command and
then creates a new CSDL command.

CSDL parameter
maintenance

1. SAS_lock_wo

2. SAS_csdl_list (Optional)

3. SAS_add_csdl_parm

4. SAS_csdl_parms
(Optional)

5. SAS_updt_csdl_parm

6. SAS_delete_csdl_parm

7. SAS_release_wo

1. Locks the work order for update.

2. Selects an INITIAL state CSDL command
on the order.

3. Creates a new CSDL parameter on a
specific CSDL command.

4. Selects the CSDL parameter to be
modified or deleted.

5. Updates the CSDL parameter value.

6. Deletes the CSDL parameter.

7. Releases the work order to the pending,
held, or review queue.

Change the CSDL
command provisioning
sequence

1. SAS_lock_wo

2. SAS_csdl_list (Optional)

3. SAS_renumber_csdl
(Optional)

4. SAS_move_csdl

5. SAS_release_wo

1. Locks the work order for update.

2. Selects an INITIAL state CSDL command
on the order.

3. Optional CSDL sequencing renumber
that creates an insertion point for the CSDL
command.

4 .Moves the selected CSDL command
within the order.

5. Releases the work order to the pending,
held, or review queue.

Failed Order Processing Transactions:

Chapter 4
SARM provisioning interface

4-72

Table 4-140 Failed Order Processing Transactions:

Transaction Function Description

Fix an order with inconsistent
or missing parameters (Note:
This includes routing errors.)

1. SAS_wo_list
(Optional)

2. SAS_lock_wo

3. SAS_csdl_list
(Optional)

4. SAS_abort_csdl

5. SAS_release_wo,
SAS_hold_wo,
SAS_resubmit_wo

1. Selects the failed orders or a specific order.

2. Locks the work order for update.

3. Analyzes the CSDL commands on the order
to determine the failed CSDL. Fixes the global
work order parameters as described in “Global
parameter maintenance".

4. Aborts the failed CSDL command and
creates a revision copy of the CSDL
command. Fixes the CSDL parameters as
described in “CSDL parameter maintenance".

5. Releases the work order to the pending,
held, or review queue or resubmits for
immediate processing.

Retry a failed order with no
changes

1. SAS_wo_list
(Optional)

2. SAS_lock_wo

3. SAS_csdl_list
(Optional)

4. SAS_release_wo,
SAS_resubmit_wo

1. Selects the failed orders or a specific order.

2. Locks the work order for update.

3. Analyzes the CSDL commands on the order
to determine the failed CSDL.

4. Releases the work order to the pending
queue or resubmits for immediate processing.

Fix a failed order with a
translation error

1. SAS_lock_wo

2. SAS_release_wo

1. Locks the work order for update.Fixes the
global and/or CSDL parameters that caused
the translation error.

2. Releases the work order to the pending,
held, or review queue.

functions
This section lists the syntax, descriptions, parameters, and results for the functions that apply
to the Update RPC interface definition.

SAS_abort_csdl
This function aborts a CSDL and creates a copy of that CSDL. When the copy is created, the
copy can be edited, or changes can be made to the CSDL parameters to fix provisioning
problems. Upon the order completion, the original CSDL and copy of the CSDL command is
available for revisions and for further processing. Updates tbl_srq_parm.

For more information about using functions, see "Oracle Execution Examples."

Table 4-141 SAS_abort_csdl Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier that is used to specify the
work order.

Yes I

csdl_seq_no Sequence number used to identify the CSDL
command within the service request.

Yes I

Chapter 4
SARM provisioning interface

4-73

Table 4-141 (Cont.) SAS_abort_csdl Parameters

Name Description Req'd (I)nput/
(O)utput

copy_flag Yes/no flag indicating whether or not a copy of the
CSDL command should be made.

Yes I

new_seq_no Sequence number used to identify the copy of the
CSDL command within the service request. If the
copy cannot be created, this parameter is returned as
-1.

Yes O

userid Optional user identification for audit log. Set to NULL
to disable the audit log. Set to the user ID of the user
who executes the procedure to enable the audit log.

No I

evt_text The text of the message associated with the event. No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_abort_wo
This function aborts a work order that has not begun provisioning, or one that has
failed during the translation or provisioning phase. Affected tables: tbl_wrk_ord,
tbl_srq,

For more information about using functions, see "Oracle Execution Examples."

Table 4-142 SAS_abort_wo Parameters

Name Description Req'd (I)nput/
(O)utput

wo_id Work order identifier or partial work order identifier.
For a partial work order, use a syntax similar to
“C1234%". Using partial order numbers like “%123"
when using this function requires considerable
system resources and therefore may affect system
performance.

Yes I

userid Optional user identification for the audit log. Set to
NULL to disable the audit log. Set to the user ID of
the user who executes the procedure to enable the
audit log.

No I

evt_text The text of the message associated with the event. No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

Chapter 4
SARM provisioning interface

4-74

SAS_add_csdl
This function adds a CSDL command to the service request (tbl_srq_csdl).

For more information about using functions, see "Oracle Execution Examples."

Table 4-143 SAS_add_csdl Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier that is used to specify the
work order.

Yes I

csdl_seq_no Sequence number used to identify the sequence of
the CSDL command within the service request.

Yes O

csdl_cmd The CSDL command to add to the service request. Yes I

userid Optional user identification for the audit log. Set to
NULL to disable the audit log. Set to the user ID of
the user who executes the procedure (for instance,
guest) to enable the audit log.

No I

rev_seq_no Sequence number for the original CSDL command
used to identify that this is a revision.

Yes I

csdl_id CSDL identification for the SRP. Yes I

sequence Sequence number. No I

evt_text The text of the message associated with the event. No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_add_csdl_parm
This function adds CSDL parameters to an existing CSDL command, which is in the INIT
state (tbl_srq_parm).

For more information about using functions, see "Oracle Execution Examples."

Table 4-144 SAS_add_csdl_parm Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier that is used to specify the
work order.

Yes I

csdl_seq_no Sequence number used to identify the CSDL
command within the service request.

Yes I

parm_lbl CSDL parameter name. Yes I

parm_vlu CSDL parameter value. Yes I

Chapter 4
SARM provisioning interface

4-75

Table 4-144 (Cont.) SAS_add_csdl_parm Parameters

Name Description Req'd (I)nput/
(O)utput

userid Optional user identification for the audit log. Set to
NULL to disable the audit log. Set to the user ID of
the user who executes the procedure to enable the
audit log.

No I

evt_text The text of the message associated with the event. No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_add_wo_parm
This function adds global work order parameters to an existing service request
(tbl_srq_parm).

For more information about using functions, see "Oracle Execution Examples."

Table 4-145 SAS_add_wo_parm Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier that is used to specify
the work order.

Yes I

parm_lbl CSDL parameter name. Yes I

parm_vlu CSDL parameter value. Yes I

userid Optional user identification for the audit log. Set
to NULL to disable the audit log. Set to the user
ID of the user who executes the procedure to
enable the audit log.

No I

evt_text The text of the message associated with the
event.

No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_change_due_dt
This function changes the due date on specified work orders in tbl_srq. It is not
necessary for work orders to be in the LOCKED state. The criteria must comply with
the following rules:

Chapter 4
SARM provisioning interface

4-76

• Either wo_id or wo_stat must be supplied.

• wo_id can be supplied with the wildcard % for an approximate search.

• If wo_id is given, wo_stat, date range and org_unit are ignored.

• If wo_id is not given, but wo_stat is given, date range and org_unit take effect.

For more information about using functions, see "Oracle Execution Examples."

Table 4-146 SAS_change_due_dt Parameters

Name Description Req'd (I)nput/
(O)utput

wo_id Work order identifier or a partial work order identifier.
For a partial work order use a syntax similar to
“C1234%". Note: using partial order numbers like
“%123" when using this function requires
considerable system resources and therefore may
affect system performance.

No I

due_dt New due date for the work orders. Yes I

wo_stat Work order status. This parameter cannot be set if
the wo_id parameter is specified.

No I

from_dt, to_dt Optional due date range for specifying the work
orders to update. These parameters cannot be set if
the wo_id parameter is specified.

No I

org_unit Optional organization unit identifier. No I

userid Optional user identification for the audit log. Set to
NULL to disable the audit log. Set to the user ID of
the user who executes the procedure to enable the
audit log.

No I

evt_text The text of the message associated with the event. No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_change_priority
Changes the priority on the work orders specified by the query criteria. Work orders do not
need to be in the LOCKED state. Affected tables: tbl_wrk_ord, tbl_srq. The query criteria
must comply with the following rules:

• Either wo_id or wo_stat must be supplied.

• wo_id can be supplied with the wildcard % for an approximate search (like in SQL).

• If wo_id is given, wo_stat, date range and org_unit are ignored.

• If wo_id is not given, but wo_stat is given, date range and org_unit take effect.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM provisioning interface

4-77

Table 4-147 SAS_change_priority Parameters

Name Description Req'd (I)nput/
(O)utput

wo_id Work order identifier or partial work order
identifier. For a partial work order use syntax
similar to “C1234%". Note: using a partial order
numbers like “%123" when using this function
requires considerable system resources and
therefore may affect system performance.

No I

priority New priority for the work order(s). Yes I

wo_stat Optional work order status. This parameter
cannot be set if the wo_id parameter is specified.

No I

from_dt, to_dt Optional due date range to specify the work
orders to update. These parameters cannot be
set if the wo_id parameter is specified.

No I

org_unit Optional organization unit identifier. No I

userid Optional user identification for the audit log. Set
to NULL to disable the audit log. Set to the user
ID of the user who executes the procedure (for
instance, guest) to enable the audit log.

No I

evt_text The text of the message associated with the
event.

No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_delete_csdl_parm
This function deletes CSDL parameters from an existing CSDL command
(tbl_srq_parm).

For more information about using functions, see "Oracle Execution Examples."

Table 4-148 SAS_delete_csdl_parm Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier that is used to specify
the work order.

Yes I

csdl_seq_no Sequence number used to identify the CSDL
command within the service request.

Yes I

parm_lbl CSDL parameter name. Yes I

Chapter 4
SARM provisioning interface

4-78

Table 4-148 (Cont.) SAS_delete_csdl_parm Parameters

Name Description Req'd (I)nput/
(O)utput

userid Optional user identification for the audit log. Set
to NULL to disable the audit log. Set to the user
ID of the user who executes the procedure (for
instance, guest) to enable the audit log.

No I

evt_text The text of the message associated with the
event.

No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_delete_wo_parm
This function deletes work order parameters from a service request (tbl_srq_parm).

For more information about using functions, see "Oracle Execution Examples."

Table 4-149 SAS_delete_wo_parm Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier that is used to specify the
work order.

Yes I

parm_lbl CSDL parameter name. Yes I

userid Optional user identification for the audit log. Set to
NULL to disable the audit log. Set to the user ID of
the user who executes the procedure (for instance,
guest) to enable the audit log.

No I

ora_option If option is set to Y, the parameters deleted are based
on a wildcard search; if option is N, only the
parameter exactly matching parm_lbl will be deleted.

No I

evt_text The text of the message associated with the event. No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_get_csdl_stat
This function is used to retrieve the status of a CSDL command in a service request.

Chapter 4
SARM provisioning interface

4-79

For more information about using functions, see "Oracle Execution Examples."

Table 4-150 SAS_get_csdl_stat Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id The service request identifier. Yes I

csdl_seq_no The sequence number used to identify the CSDL
command within the service request.

Yes I

csdl_stat The status of the CSDL when the function is
returned.

Yes O

SAS_get_srq_stat
This function is used to retrieve the status of a service request from tbl_srq.

For more information about using functions, see "Oracle Execution Examples."

Table 4-151 SAS_get_srq_stat Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id The service request identifier. Yes I

srq_stat The status of the service request when the
function is returned.

Yes O

SAS_get_wo_stat
This function is used to retrieve the status of a work order from tbl_wrk_ord.

For more information about using functions, see "Oracle Execution Examples."

Table 4-152 SAS_get_wo_stat Parameters

Name Description Req'd (I)nput/
(O)utput

wo_id The work order identifier. Yes I

wo_stat The status of the work order when the function is
returned.

Yes O

SAS_hold_wo
This function holds a work order specified by wo_id. Only work orders in the LOCKED
state can be held. Work order status information is contained in tbl_wrk_ord.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM provisioning interface

4-80

Table 4-153 SAS_hold_wo Parameters

Name Description Req'd (I)nput/
(O)utput

wo_id Work order identifier. Yes I

review Yes/no flag indicating whether or not the order should
be set for REVIEW.

No I

userid Optional user identification for the audit log. Set to
NULL to disable the audit log. Set to the user ID of
the user who executes the procedure (for instance,
guest) to enable the audit log.

No I

evt_text The text of the message associated with the event. No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_lock_wo
This function locks the work order specified and sets its state to LOCKED. Only work orders
in INIT, REVIEW, TRANSLATION FAILED, HELD and FAILED state can be locked.
Transfer_WO and latency_timout parameters can be used in high availability mode only.
Work order status information is contained in tbl_wrk_ord.

For more information about using functions, see "Oracle Execution Examples."

Table 4-154 SAS_lock_wo Parameters

Name Description Req'd (I)nput/
(O)utput

wo_id Work order identifier. Yes I

userid Optional user identification for the audit log. Set
to NULL to disable the audit log. Set to the user
ID of the user who executes the procedure (for
instance, guest) to enable the audit log.

No I

result Set to:

• 0 – Indicates successful order lock
• 1 – Indicates order lock failed

Yes I

evt_text The text of the message associated with the
event.

No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

Chapter 4
SARM provisioning interface

4-81

Table 4-154 (Cont.) SAS_lock_wo Parameters

Name Description Req'd (I)nput/
(O)utput

latency_timeout Deprecated.

transfer_wo Deprecated.

SAS_move_csdl
This function changes the provisioning sequence number for an existing CSDL
command on a service request. This information is contained in tbl_srq_csdl.

For more information about using functions, see "Oracle Execution Examples."

Table 4-155 SAS_move_csdl Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

srq_id Service request identifier used to specify the
work order.

Yes I

csdl_seq_no Sequence number used to identify the CSDL
command within the service request.

Yes I

prov_seq The new provisioning sequence number for the
CSDL on the service request.

Yes I

userid Optional user identification for audit log. Set to
NULL to disable the audit log. Set to the user ID
of the user who executes the procedure (for
instance, guest) to enable the audit log.

No I

evt_text The text of the message associated with the
event.

No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_release_wo
This function releases a work order for ASAP processing. The work order must be in a
HELD, REVIEW or LOCKED state before it can be released. Work order status
information is contained in tbl_srq_csdl.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM provisioning interface

4-82

Table 4-156 SAS_release_wo Parameters

Name Description Req'd (I)nput/
(O)utput

wo_id Work order identifier. Yes I

immediate A flag indicating if the order should be released
immediately or on the due date. Possible values:

• Y – Immediate release
• N – Release on due date

No I

due_dt Optional due date used to specify a new due date for the
work order. If the order is immediate, then this parameter
is ignored.

No I

rel_to_fail Yes/no flag indicating the value of new_wo_stat. Possible
values:

• N – new_wo_stat is set to WO_INIT.
• Y – new_wo_stat is set to WO_FAILED.

No I

userid Optional user identification for the audit log. Set to NULL
to disable the audit log. Set to the user ID of the user
who executes the procedure to enable the audit log.

No I

evt_text The text of the message associated with the event. No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_renumber_csdl
This function renumbers the provisioning sequence of all CSDL commands on a service
request using the interval specified by the interval parameter. This information is contained in
tbl_srq_csdl.

For more information about using functions, see "Oracle Execution Examples."

Table 4-157 SAS_renumber_csdl Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier that is used to specify the
work order.

Yes I

interval Optional renumbering interval for the CSDL
commands within the order (defaults to 5).

No I

userid Optional user identification for audit log. Set to NULL
to disable the audit log. Set to the user ID of the user
who executes the procedure (for instance, guest) to
enable the audit log.

No I

evt_text The text of the message associated with the event. No I

Chapter 4
SARM provisioning interface

4-83

Table 4-157 (Cont.) SAS_renumber_csdl Parameters

Name Description Req'd (I)nput/
(O)utput

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_resubmit_wo
This function resubmits a failed or locked work order for provisioning. The work order
must be in the FAILED or LOCKED state before it can be resubmitted. Work order
information is contained in tbl_wrk_ord.

For more information about using functions, see "Oracle Execution Examples."

Table 4-158 SAS_resubmit_wo Parameters

Name Description Req'd (I)nput/
(O)utput

wo_id Work order identifier. Yes I

abort_cur_csdl Yes/no flag indicating whether or not the current
CSDL should be aborted before resubmitting
the order (defaults to No).

No I

userid Optional user identification for the audit log. Set
to NULL to disable the audit log. Set to the user
ID of the user who executes the procedure (for
instance, guest) to enable the audit log.

No I

evt_text The text of the message associated with the
event.

No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_updt_csdl_parm
This function updates the CSDL parameters of an existing CSDL command in a
service request (tbl_srq_parm).

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM provisioning interface

4-84

Table 4-159 SAS_updt_csdl_parm Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier that is used to specify the
work order.

Yes I

csdl_seq_no Sequence number used to identify the CSDL
command within the service request.

Yes I

parm_lbl CSDL parameter name. Yes I

parm_vlu CSDL parameter value. Yes I

userid Optional user identification for audit log. Set to NULL
to disable the audit log. Set to the user ID of the user
who executes the procedure (for instance, guest) to
enable the audit log.

No I

evt_text The text of the message associated with the event. No I

audit_flag Indicates which audit log receives the message:

• S – SRQ log
• W – Work order audit log
• B – Both
• N – Neither

No I

update_dts Date and time of the last update. No I

SAS_updt_wo_parm
This function updates global work order parameters on the service request (tbl_srq_parm).

For more information about using functions, see "Oracle Execution Examples."

Table 4-160 SAS_updt_wo_parm Parameters

Name Description Req'd (I)nput/
(O)utput

srq_id Service request identifier that is used to specify the
work order.

Yes I

parm_lbl CSDL parameter name. Yes I

parm_vlu CSDL parameter value. Yes I

userid Optional user identification for the audit log. Set to
NULL to disable the audit log. Set to the user ID of the
user who executes the procedure (for instance, guest)
to enable the audit log.

No I

evt_text The text of the message associated with the event. No I

audit_flag Indicates which audit log receives the message:

• S for SRQ log
• W for work order audit log
• B for both
• N for neither

No I

update_dts Date and time of the last update. No I

Chapter 4
SARM provisioning interface

4-85

Control interface RPCs
This section describes the function interface that accesses the dynamic data in the
Control database.

SAS_list_alarm_log
This function lists system-generated alarms contained in tbl_alarm_log. Alarms can be
retrieved using the ID of the event that generates the alarm (event_unid), system
alarm code (alarm_code), or alarm ID (alarm_unid), or any combination of these three
parameters (and Boolean relationships). If no parameters are specified, all the alarms
saved to the alarm log.

For more information about using functions, see "Oracle Execution Examples."

Table 4-161 SAS_list_alarm_log Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

event_unid Unique ID of the event that generated the alarm. No I

alarm_code The alarm code of the generated alarm. No I

alarm_unid Unique ID of the alarm. No I

Table 4-162 SAS_list_alarm_log Results

Name Datatype Description

event_unid TYP_unid Unique ID of the event that generated the alarm.

alarm_code TYP_code The alarm code of the generated alarm.

alarm_unid TYP_unid Unique ID of the alarm.

start_dts datetime The start date and time of the system alarm.

escalation_dts datetime The date and time of the last alarm escalation.

clear_dts datetime The date and time when the alarm was cleared.

SAS_list_appl_proc
This function lists ASAP application configuration information contained in
tbl_appl_proc. Application configuration information can be retrieved using the ASAP
application server (appl_cd) or the ASAP startup sequence (start_seq), or by
combining these two parameters. If neither parameter is specified, configuration
information for all the ASAP application servers is retrieved.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM provisioning interface

4-86

Table 4-163 SAS_list_appl_proc Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

appl_cd The logical ASAP application client/server code, for
instance SARM, NEP01, etc.

No I

start_seq Specifies the ASAP startup sequence. This allows
control to be exercised over the sequence in which
applications are started.

No I

Table 4-164 SAS_list_appl_proc Results

Name Datatype Description

start_seq TYP_start_seq Startup sequence number.

appl_type TYP_appl_type Application type, i.e., Client (“C") or Server (“S"), Master
Control Server (“M"), Remote Slave Control Server
(“R").

appl_cd TYP_code ASAP logical Client/Server name.

control_svr TYP_code The logical ASAP control server that spawns and
monitors the application.

description TYP_desc Brief description of the ASAP application.

diag_file TYP_unix_file Diagnostic file name where all application diagnostic
messages are output.

auto_start TYP_yesno Determines if the application is started automatically
when ASAP starts.

program varchar(40) The name of the executable UNIX file that corresponds
to the application.

diag_level TYP_diag_level Diagnostic level of the ASAP application.

isactive isactive Indicates whether the application is currently active.

last_start datetime The last date and time when the application was started.

last_halt datetime The last date and time when the application was
terminated.

last_abnormal datetime The last date and time when the application was
abnormally terminated.

svr_type varchar(8) This field defines the type of server.

SAS_list_event_log
This function lists system events generated by ASAP applications. This information is
retrieved from tbl_event_log. Events can be retrieved using event ID (event_unid), ASAP
application server (appl_cd) or date range that the event is generated (from_dt and to_dt), or
any combination of these parameters (and boolean relationships). If no parameters are
specified, the events for all the ASAP application servers are retrieved.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM provisioning interface

4-87

Table 4-165 SAS_list_event_log Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

event_unid Unique ID of the event that generated the alarm. No I

appl_cd Logical name of the ASAP application server. No I

from_dt The start from date and time in the date range
that the events are generated.

No I

to_dt End date and time in the date range that the
events are generated.

No I

Table 4-166 SAS_list_event_log Results

Name Datatype Description

appl_cd TYP_code Logical name of the ASAP application that
generated the system event.

event_type TYP_event The event type that determines if the alarm is to be
generated when the event occurs.

event_unid TYP_unid Unique ID of the event that generated the alarm.

source_file TYP_unix_file Source file that corresponds to the ASAP
application that generated the event.

source_line TYP_short Line number in the source file.

reason TYP_reason Brief description of the reason for the event.

evt_dts datetime Date and time of the system event.

SAS_list_proc_info
This function retrieves process information from tbl_process_info for a specified
application server.

Table 4-167 SAS_list_proc_info Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

appl_cd Logical name of the ASAP application server. No I

from_dt The start from date and time in the date range that
the application process information is logged.

No I

to_dt End date and time in the date range that the
application process information is logged.

No I

Chapter 4
SARM provisioning interface

4-88

Table 4-168 SAS_list_proc_info Results

Name Datatype Description

appl_cd TYP_code ASAP logical Client/Server name.

info_dts datetime Date and time when process information was logged.

sys_events TYP_short The number of system events generated by the ASAP
application process.

user_cpu TYP_long The user CPU usage of the process.

system_cpu TYP_long The system CPU usage of the process.

Real-time performance data gathering
To support the use of real-time performance monitoring tools, the SARM server maintains
statistical data such as the number of orders that have been processed, flowed through,
required manual intervention, and so on.

First, an Administration Server (ADMS) off-loads the performance data inquiry processing
required by the SARM. Then, ADMS queries the SARM based on a system-configured
parameter and responds to queries from the monitoring clients for real-time data. The polling
requests from the clients are independent of the polling requests performed by the ADMS to
the SARM. Finally, the ADMS updates the performance monitoring database periodically to
generate historical information.

The RPCs defined in the Interface Definition are sent to ADMS for real-time information
(ADM_*) and to the database server (PSP_*) for historical information.

For more information about using functions, see "Oracle Execution Examples."

Table 4-169 Real-time Performance Data Gathering Configuration Parameters

Name Default
Value

Config File Description

POLL_TIMER_ORDER 120 Global Polling time, in minutes, to query order-
related statistics from the SARM.

POLL_TIMER_CSDL 120 Global Polling time, in minutes, to query CSDL-
related statistics from the SARM.

POLL_TIMER_ASDL 120 Global Polling time, in minutes, to query ASDL
related statistics from the SARM.

POLL_TIMER_NE 120 Global Polling time, in minutes, to query NE-related
statistics from the SARM.

POLL_TIMER_NE_ASDL 120 Global The polling timer is limited to the following
values: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30,
60, and 120. ADMS queries the SARM at
these intervals to store historical
information in the database. These queries
occur on the exact hour and at regular
intervals within the hour.

Chapter 4
SARM provisioning interface

4-89

ADM_asdl_stats, PSP_asdl_stats
These RPCs query the ASDL command statistics. ADM_asdl_stats performs a
wildcard match on the ASDL. For example, if the ASDL passed is “A-ADD_", statistics
are returned for all ASDLs that start with “A-ADD_".

Similarly, the PSP RPC is used for the same ASDL, together with a timestamp range.
Historical statistics are returned from tbl_perf_asdl for all ASDLs meeting the criteria.

For more information about using functions, see "Oracle Execution Examples."

Table 4-170 ADM_asdl_stats, PSP_asdl_stats Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

sarm SARM where data originated. No I/O

asdl_cmd ASDL command. No I

from_dts, to_dts Historical inquiry timestamp range. No I

Table 4-171 ADM_asdl_stats, PSP_asdl_stats Results

Name Datatype Description

sarm char(8) SARM where data originated.

update_dts datetime Update timestamp.

asdl_cmd TYP_asdl_cmd ASDL command.

asdl_exe int Number of times an ASDL command was sent to
the NEP.

asdl_fail int Number of times an ASDL command failed.

asdl_comp int Number of times an ASDL command
successfully completed.

asdl_parm_avg float Average number of ASDL parameters on the
ASDL command.

asdl_parm_min int Minimum number of parameters on the ASDL
command.

asdl_parm_max int Maximum number of parameters on the ASDL
command.

asdl_rbacks int Number of times the ASDL command was rolled
back.

asdl_soft_err int Number of times the ASDL command returned
with a soft error.

asdl_retries int Number of times the ASDL was executed.

asdl_skipped int Number of times that the ASDL command was
skipped.

comp_time_avg float Average completion time of the ASDL command.

comp_time_min float Minimum completion time of the ASDL
command.

Chapter 4
SARM provisioning interface

4-90

Table 4-171 (Cont.) ADM_asdl_stats, PSP_asdl_stats Results

Name Datatype Description

comp_time_max float Maximum completion time of the ASDL
command.

ADM_csdl_stats, PSP_csdl_stats
These RPCs query CSDL command statistics from tbl_perf_csdl.

For more information about using functions, see "Oracle Execution Examples."

Table 4-172 ADM_csdl_stats, PSP_csdl_stats Parameters

Name Description Req'd (I)nput/(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

sarm SARM where data originated. No I/O

csdl_cmd The CSDL command. No I

from_dts, to_dts Historical inquiry timestamp range. No I

Table 4-173 ADM_csdl_stats, PSP_csdl_stats Results

Name Datatype Description

sarm char(8) SARM where data originated.

update_dts datetime Update timestamp.

csdl_cmd csdl_cmd CSDL command name.

csdl_rcvd int Number of times CSDL command was received by the
SARM from the SRP.

csdl_prov int Number of times the CSDL command was provisioned.

csdl_comp int Number of times the CSDL command successfully
completed.

csdl_fail int Number of times the CSDL command failed.

comp_time_avg float Average completion time of the ASDL command.

comp_time_min float Minimum completion time of the ASDL command.

comp_time_max float Maximum completion time of the ASDL command.

asdl_comp_avg float Average number of completed ASDLs for the CSDL
command.

asdl_comp_min int Minimum number of completed ASDLs for the CSDL
command.

asdl_comp_max int Maximum number of completed ASDLs for the CSDL
command.

asdl_skip_avg float Average number of skipped ASDLs for the CSDL
command.

asdl_skip_min int Minimum number of skipped ASDLs for the CSDL
command.

Chapter 4
SARM provisioning interface

4-91

Table 4-173 (Cont.) ADM_csdl_stats, PSP_csdl_stats Results

Name Datatype Description

asdl_skip_max int Maximum number of skipped ASDLs for the CSDL
command.

csdl_parm_avg float Average number of CSDL parameters on the CSDL
command.

csdl_parm_min int Minimum number of CSDL parameters on the CSDL
command.

csdl_parm_max int Maximum number of CSDL parameters on the CSDL
command.

PSP_db_admin
This function purges all admin performance data that have been stored for more than
a specified number of days. The default value of a_days is 3 days if it is not provided.

Affected tables:

• tbl_perf_order

• tbl_perf_ne_asdl

• tbl_perf_ne

• tbl_perf_csdl

• tbl_perf_asdl

For more information about using functions, see "Oracle Execution Examples."

Table 4-174 PSP_db_admin Parameters

Name Description Req'd (I)nput/
(O)utput

days Specifies the age (in days) of
performance datato delete. All data
older than the specified number of
days is deleted.

Yes I

ADM_ne_asdl_stats, PSP_ne_asdl_stats
These RPCs query NE statistics from tbl_perf_ne_asdl.

For more information about using functions, see "Oracle Execution Examples."

Table 4-175 ADM_ne_asdl_stats, PSP_ne_asdl_stats Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

sarm SARM where data originated. No I/O

Chapter 4
SARM provisioning interface

4-92

Table 4-175 (Cont.) ADM_ne_asdl_stats, PSP_ne_asdl_stats Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE identifier of an NE or
SRP.

No I

asdl_cmd ASDL command. No I

user_type User defined error type. No I

from_dts, to_dts Historical inquiry timestamp range. No I

Table 4-176 ADM_ne_asdl_stats, PSP_ne_asdl_stats Results

Name Datatype Description

sarm char(8) SARM where data originated.

update_dts datetime Update timestamp.

host_clli TYP_mcli Host NE identifier.

asdl_cmd TYP_asdl_cmd ASDL command.

user_type TYP_code User defined error type.

value int User exit type count.

ADM_ne_stats, PSP_ne_stats
These RPCs query NE statistics from tbl_perf_ne.

For more information about using functions, see "Oracle Execution Examples."

Table 4-177 ADM_ne_stats, PSP_ne_stats Parameters

Name Description Req'd (I)nput/(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

sarm SARM where data originated. No I/O

host_clli The host NE identifier of an NE or SRP. No I

from_dts, to_dts Historical inquiry timestamp range. No I

Table 4-178 ADM_ne_stats, PSP_ne_stats Results

Name Datatype Description

sarm char(8) SARM where data originated.

update_dts datetime Update timestamp.

nep_svr_cd TYP_code The NEP managing the secondary pool of devices.

host_clli TYP_mcli Host NE identifier.

tech TYP_tech NE technology.

sftwr_load TYP_load NE software version.

Chapter 4
SARM provisioning interface

4-93

Table 4-178 (Cont.) ADM_ne_stats, PSP_ne_stats Results

Name Datatype Description

state varchar(25) Current NE status.

estimate int ASDL estimate for the NE.

pending int Pending queue size.

in_progress int In progress queue size.

connect_count int Number of connections to NE.

retry_count int Retry queue size.

asdl_qtm_avg float Average time for an ASDL in the pending queue.

asdl_qtm_min int Minimum time for an ASDL in the pending queue.

asdl_qtm_max int Maximum time for an ASDL in the pending queue.

tot_ne_avail float Total time in seconds for which the NE is available.
NE available time is defined as the time from when
NE became available (successful connect), to the
time that a disconnect was sent to the NE.

cur_ne_avail float Amount of time for which the NE has been
available. If the NE is currently down, this time will
be 0.

ne_usage float Percentage of time that the NE was used for
provisioning activities.

num_asdl_comp int Number of ASDLs completed at the NE.

num_asdl_fail int Number of ASDLs that failed at the NE.

num_asdl_retry int Number of ASDLs that were retried at the NE.

tot_maint_tm float Total time for which NE has been in maintenance
mode.

cur_maint_tm float Current time for which the NE is in maintenance
mode.

num_asdl_rcvd int Total number of ASDLs received by the NE.

num_asdl_xfer int Total number of ASDLs transferred.

asdl_comp_tm_avg float Average completion time for an ASDL command.

asdl_comp_tm_min float Minimum completion time for an ASDL command.

asdl_comp_tm_max float Maximum completion time for an ASDL command.

pend_q_avg float Average number of ASDLs in the pending queue.

pend_q_max int Maximum number of ASDLs in the pending queue.

ADM_order_stats, PSP_order_stats
These RPCs query order statistics from tbl_perf_order.

For more information about using functions, see "Oracle Execution Examples."

Chapter 4
SARM provisioning interface

4-94

Table 4-179 ADM_order_stats, PSP_order_stats Parameters

Name Description Req'd (I)nput/(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

sarm SARM where data originated. No I/O

org_unit Organization unit. No I

ord_type Order type. No I

from_dts, to_dts Historical inquiry timestamp range. No I

Table 4-180 ADM_order_stats, PSP_order_stats Results

Name Datatype Description

sarm char(8) SARM where data originated.

update_dts datetime Update timestamp.

org_unit TYP_org_unit Organization unit specified on order.

org_type TYP_grp_cd Order type.

global_p_avg Float Average number of global parameters.

global_p_min int Minimum number of global parameters.

global_p_max int Maximum number of global parameters.

ord_rec int Number of orders recorded.

ord_cancelled int Number of orders cancelled.

ord_rcvd int Number of order operations received. This value
can be greater than the number of orders saved in
the database.

ord_future int Number of future orders received.

ord_imm_fail int Number of orders that have failed.

ord_imm_comp int Number of orders that have been completed.

ord_tran_err int Number of orders that have translation errors.

ord_tmout int Number of orders timed-out.

ord_auto_rback int Number of orders that have been rolled back
automatically.

ord_update int Number of orders that were updated after the
original order was sent.

ord_collision int Number of order collisions.

ord_rtng_err int Number of orders that had routing errors.

latency_avg float Average order latency.

latency_min int Minimum order latency.

latency_max int Maximum order latency.

ord_fut_fail int The number of future-dated work orders that have
failed.

ord_fut_comp int The number of future-dated work orders that have
completed.

Chapter 4
SARM provisioning interface

4-95

Switch activation and deactivation
A system administrator can activate and deactivate NE access using ASAP.

Once the system has been taken down and then brought back up, the NEs are
automatically enabled.

SSP_ne_control
This function controls NE access by ASAP.

For more information about using functions, see "Oracle Execution Examples."

Table 4-181 SSP_ne_control Parameters

Name Description Req'd (I)nput/
(O)utput

host_clli The host NE identifier of an NE or SRP. Yes I

activate Yes/no to activate or deactivate access to the NE. Yes I

C++ SRP API library
This chapter describes the ASAP C++ SRP API functions implemented in the
libcsolsrp. This library provides an object-oriented API interface to the SARM to submit
work orders and receive information about the progress of work orders, including
events generated by the SARM.

SRP_Context class
The SRP_Context class initializes and starts the SRP. You must call the getInstance
function with arguments before calling any functions in the libcsolsrp. This object has
only one instance in the SRP.

Synopsis
class SRP_Context
{
public:

static SRP_Context * getInstance(void);
static SRP_Context * getInstance(int argc, char **argv,
SRP_EventInterfaceFactory *eventInterfaceFactory);
static SRP_WoUtils *getWoUtils(void);
static SRP_EventInterfaceFactory *getEventInterfaceFactory(void);
CS_RETCODE getUnId(WORK_ORD_NUM unIdType,
CS_INT &unIdValue, CS_INT nonBlock);
CS_RETCODE extSysAvailable(ASAP_EXTSYS_ID extSysId,
CS_INT nonBlock);
;

Chapter 4
C++ SRP API library

4-96

Public methods
The following are the public methods.

getInstance
Returns the object of this class. Returns 0 if failed. This can only be used after the one with
the arguments is called.

Syntax:

static SRP_Context * getInstance(void);

getInstance
Returns the object of this class. If the object does not exist, a new object of the class is
created and returned. The argc and argv arguments make an analogy to the arguments of
main().

For more information, see "SRP_EventInterfaceFactory class."

The eventInterfaceFactory is an object of the SRP_EventInterfaceFactory class. You must
create an object of the SRP_EventInterfaceFactory class before calling or using
SRP_Context class. It returns 0 if failed.

Syntax:

static SRP_Context * getInstance(int argc, char **argv, SRP_EventInterfaceFactory
*eventInterfaceFactory);

getWoUtils
Returns the object of the SRP_WoUtils class. It returns 0 if failed.

Syntax:

static SRP_WoUtils *getWoUtils(void);

getUnId
Returns the unId value of a specified unIdType from the SARM database. If the nonBlock is
set to 1, this function returns CS_FAIL when a Sybase RPC communication problem occurs.
If the nonBlock is set as 0, this function does not return CS_FAIL even if a Sybase RPC
communication problem occurs. This function returns CS_SUCCEED if successful; CS_FAIL
if failed.

Syntax:

CS_RETCODE getUnId(WORK_ORD_NUM unIdType, CS_INT &unIdValue, CS_INT nonBlock);

extSysAvailable
This function notifies SARM that a specified external system has become available again. If
the nonBlock is set as 1, this function returns CS_FAIL when a Sybase RPC communication
problem occurs. If the nonBlock is set as 0, this function does not return CS_FAIL even if a

Chapter 4
C++ SRP API library

4-97

Sybase RPC communication problem occurs. This function returns CS_SUCCEED if
successful; CS_FAIL if failed.

Syntax:

CS_RETCODE extSysAvailable(ASAP_EXTSYS_ID extSysId, CS_INT nonBlock);

getEventInterfaceFactory
Returns the object of the SRP_EventInterfaceFactory class. The user application
must pass the object when it creates the object of the SRP_Context class.

Syntax:

static SRP_EventInterfaceFactory *getEventInterfaceFactory(void);

SRP_Parameter class
You can use the SRP_Parameter class to create and manipulate a parameter object.
The object of this class is assigned to a CSDL or work order.

Synopsis
class SRP_Parameter
{
public:

 SRP_Parameter(const CSDL_PARAM_LABEL label, const CSDL_PARAM_VALUE value);
 SRP_Parameter(SRP_CSDL *csdl, const CSDL_PARAM_LABEL label,
 const CSDL_PARAM_VALUE value);
 SRP_Parameter(SRP_WO *wo, const CSDL_PARAM_LABEL label,
 const CSDL_PARAM_VALUE value);
 SRP_Parameter(const SRP_Parameter ¶meter); // new!
 ~SRP_Parameter(void);
 inline void getParameterLabel(CSDL_PARAM_LABEL &label) const;
 inline void setParameterLabel(const CSDL_PARAM_LABEL label);
 inline void getParameterValue(CSDL_PARAM_VALUE &value) const;
 inline void setParameterValue(const CSDL_PARAM_VALUE value);
 CS_BOOL operator==(const SRP_Parameter ¶meter) const;
 SRP_Parameter& operator=(const SRP_Parameter ¶meter);
 void print(std::ofstream &outFile);
 inline CS_RETCODE lock(void);
 inline CS_RETCODE unlock(void);

private:
 SRP_Parameter(void) {};
 CSDL_PARAM_LABEL m_label;
 CSDL_PARAM_VALUE m_value;
 ASC_Mutex *m_mutex;
 Diagnosis m_diag; Event m_event;
};

Constructors
Use this constructor to provide the label and value arguments for the parameter object.

Syntax:

SRP_Parameter(const CSDL_PARAM_LABEL label, const CSDL_PARAM_VALUE value);

Chapter 4
C++ SRP API library

4-98

In addition to providing the label and value arguments, this constructor function inserts the
parameter object into the specified CSDL object.

Syntax:

SRP_Parameter(SRP_CSDL *csdl, const CSDL_PARAM_LABEL label, const CSDL_PARAM_VALUE
value);

Provides the label and value arguments. In addition, this constructor function inserts the
parameter object into the specified work order object as a global parameter.

Syntax:

SRP_Parameter(SRP_WO *wo, const CSDL_PARAM_LABEL label, const CSDL_PARAM_VALUE value);

Public methods
The following are the public methods.

getParameterLabel
Returns the parameter label.

Syntax:

void getParameterLabel(CSDL_PARAM_LABEL &label) const;

setParameterLabel
Sets the parameter label. You can use this function to modify the object.

Syntax:

void setParameterLabel(const CSDL_PARAM_LABEL label);

getParameterValue
Returns the parameter value.

Syntax:

void getParameterValue(CSDL_PARAM_VALUE &value) const;

setParameterValue
Sets the parameter value. You can use this function to modify the object.

Syntax:

void setParameterValue(const CSDL_PARAM_VALUE value);

operator==
This operator compares two parameter objects. If the parameter labels are the same, this
function returns CS_TRUE. If the labels are different, this function returns CS_FALSE.

Syntax:

CS_BOOL operator==(const SRP_Parameter ¶meter) const;

Chapter 4
C++ SRP API library

4-99

print
This function writes the label and value of the current parameter object into the output
file that you specify. You must open the output file before calling this function.

Syntax:

void print(std::ofstream &outFile);

lock
This function locks the current parameter object. Returns CS_SUCCEED if successful.

Syntax:

CS_RETCODE lock(void);

unlock
This function unlocks the current parameter object. Returns CS_SUCCEED if
successful.

Syntax:

CS_RETCODE unlock(void);

SRP_CSDL class
The SRP_CSDL class is used to create and manipulate a CSDL object. The object of
this class is assigned to a work order object.

Synopsis
class SRP_CSDL
{
public:

 SRP_CSDL(
 const CSDL_CMD_ST csdlCmd,
 const ASAP_CSDL_TRAN_STATUS csdlStatus,
 ASAP_CSDL_DESC csdlDesc = "",
 ASAP_CSDL_ID csdlId = 0);
 SRP_CSDL(
 SRP_WO *wo,
 const CSDL_CMD_ST csdlCmd,
 const ASAP_CSDL_TRAN_STATUS csdlStatus,
 ASAP_CSDL_DESC csdlDesc = "",
 ASAP_CSDL_ID csdlId = 0);
 SRP_CSDL(const SRP_CSDL &csdl);
 ~SRP_CSDL(void);
 inline ASAP_CSDL_ID getCsdlId(void) const;
 inline void setCsdlId(const ASAP_CSDL_ID csdlId);
 inline void getCsdlCmd(CSDL_CMD_ST &csdlCmd) const;
 inline void setCsdlCmd(const CSDL_CMD_ST csdlCmd);
 inline ASAP_CSDL_TRAN_STATUS getCsdlStatus(void) const;
 inline void setCsdlStatus(const ASAP_CSDL_TRAN_STATUS csdlStatus);
 inline void getCsdlDesc(ASAP_CSDL_DESC &csdlDesc) const;

Chapter 4
C++ SRP API library

4-100

 inline void setCsdlDesc(const ASAP_CSDL_DESC csdlDesc);
 SRP_CSDL& operator=(const SRP_CSDL& csdl);
 CS_RETCODE addParameter(SRP_Parameter *parameter);
 CS_INT getParameterCount(void);
 void print(std::ofstream &outFile);
 void deleteAllParameters(void);
 SRP_Parameter * findParameter(const CSDL_PARAM_LABEL label);
 SRP_Parameter * findParameter(SRP_Parameter *parameter);
 SRP_Parameter * findParameter(CS_INT sequence);
 SRP_Parameter * removeParameter(const CSDL_PARAM_LABEL label);
 SRP_Parameter * removeParameter(SRP_Parameter *parameter);
 inline std::set<SRP_Parameter*, SRPParamComparator>::iterator
 find_by_label(std::set<SRP_Parameter*, SRPParamComparator> &container, const
CSDL_PARAM_LABEL label);
 inline CS_RETCODE lock(void);
 inline CS_RETCODE unlock(void);
 inline std::set<SRP_Parameter*, SRPParamComparator>* getParameters(void) const;

private:
 friend class SRP_RPCSubmitInterface;
 SRP_CSDL(void) {};
 ASC_Mutex *m_mutexParameters;
 CSDL_CMD_ST m_csdlCmd;
 ASAP_CSDL_TRAN_STATUS m_csdlStatus;
 ASAP_CSDL_DESC m_csdlDesc;
 ASAP_CSDL_ID m_csdlId;
 std::set<SRP_Parameter*, SRPParamComparator> m_parameters;
 ASC_Mutex *m_mutex;
 Diagnosis m_diag;
 Event m_event;
};

Constructors
This constructor function must include the CSDL command and status. The CSDL description
and CSDL ID are optional.

Syntax:

SRP_CSDL(const CSDL_CMD_ST csdlCmd, const ASAP_CSDL_TRAN_STATUS csdlStatus,
ASAP_CSDL_DESC csdlDesc = ““, ASAP_CSDL_ID csdlId = 0);

This constructor function must include the CSDL command and status. The CSDL description
and CSDL ID are optional. In addition, this function inserts the CSDL object into the specified
work order object.

Syntax:

SRP_CSDL(SRP_WO *wo, const CSDL_CMD_ST csdlCmd, const ASAP_CSDL_TRAN_STATUS
csdlStatus, ASAP_CSDL_DESC csdlDesc = ““, ASAP_CSDL_ID csdlId = 0);

This constructor function must include an object of type SRP_CSDL.

Syntax:

SRP_CSDL(const SRP_CSDL &csdl);

Public methods
The following are the public methods.

Chapter 4
C++ SRP API library

4-101

getCsdlId
Returns the CSDL unique identifier.

Syntax:

ASAP_CSDL_ID getCsdlId(void) const;

setCsdlId
Sets the CSDL ID is used to modify the object.

Syntax:

void setCsdlId(const ASAP_CSDL_ID csdlId);

getCsdlCmd
Returns the CSDL command.

Syntax:

void getCsdlCmd(CSDL_CMD_ST &csdlCmd) const;

setCsdlCmd
Sets the CSDL value and is used to modify the object.

Syntax:

void setCsdlCmd(const CSDL_CMD_ST csdlCmd);

getCsdlStatus
Returns the CSDL status. Possible values are:

• ASAP_CSDL_INITIAL – The CSDL command is ready to be provisioned.

• ASAP_CSDL_HELD – The CSDL command is held from provisioning.

• ASAP_CSDL_MANUAL_TRAN – CSDL command to be manually translated. This
causes the work order not to be provisioned.

• ASAP_CSDL_TRAN_ERR – CSDL command translation error.

Syntax:

ASAP_CSDL_TRAN_STATUS getCsdlStatus(void) const;

setCsdlStatus
Sets the CSDL status.

Syntax:

void setCsdlStatus(const ASAP_CSDL_TRAN_STATUS csdlStatus);

Chapter 4
C++ SRP API library

4-102

getCsdlDesc
Returns the CSDL description.

Syntax:

void getCsdlDesc(ASAP_CSDL_DESC &csdlDesc) const;

setCsdlDesc
Sets the CSDL description.

Syntax:

void setCsdlDesc(const ASAP_CSDL_DESC csdlDesc);

addParameter
Adds a parameter to the CSDL.

Syntax:

CS_RETCODE addParameter(SRP_Parameter *parameter);

getParameterCount
Returns the number of parameters in the CSDL.

Syntax:

CS_INT getParameterCount(void);

print
Writes the contents of the CSDL into the output file.

Syntax:

void print(std::ofstream &outFile);

deleteAllParameters
Removes all parameters from the CSDL and deletes the parameters. After the execution of
this command, the result of referencing the deleted parameters is unpredictable.

Syntax:

void deleteAllParameters(void);

findParameter
Finds a specified parameter from the CSDL by the parameter label. The operation does not
remove the parameter from the C++ SRP API.

Syntax:

SRP_Parameter * findParameter(const CSDL_PARAM_LABEL label);

Chapter 4
C++ SRP API library

4-103

Finds a specified parameter from the CSDL by the parameter object.

Syntax:

SRP_Parameter * findParameter(SRP_Parameter *parameter);

Finds a specified parameter from the CSDL by the sequence of the parameters in the
CSDL.

Syntax:

SRP_Parameter * findParameter(CS_INT sequence);

removeParameter
Removes a specified parameter from the CSDL by the parameter label. This operation
does not delete the parameter removed.

Syntax:

SRP_Parameter * removeParameter(const CSDL_PARAM_LABEL label);

Removes a specified parameter from the CSDL by parameter object. This operation
does not delete the parameter removed.

Syntax:

SRP_Parameter * removeParameter(SRP_Parameter *parameter);

lock
Locks the current CSDL. The operation is blocked until it obtains the lock.

Syntax:

CS_RETCODE lock(void);

find_by_label
Finds a specified parameter from the CSDL by the parameter label. This function takes
the container, set, as an argument and returns the iterator to the specified parameter.

Syntax:

find_by_label(std::set<SRP_Parameter*, SRPParamComparator> &container, const
CSDL_PARAM_LABEL label);

unlock
Unlocks the current CSDL. You must always use the lock() method before using
unlock() in a thread.

Syntax:

CS_RETCODE unlock(void);

getParameters
Returns a set of parameters corresponding to the CSDL.

Chapter 4
C++ SRP API library

4-104

inline std::set<SRP_Parameter*, SRPParamComparator>* getParameters(void) const;

SRP_WO class
The SRP_WO class is used to create and manipulate a work order object. The SRP_WO
class provides all services for the upstream application to submit a service request to ASAP.
The upstream application must generate a work order object in order to complete a service
request. This class provides work order generation and submission functions.

Synopsis
class SRP_WO
{
public:

SRP_WO(void);
SRP_WO(const WORK_ORD_NUM woId);
SRP_WO(
const WORK_ORD_NUM woId,
const CS_DATETIME dueDate,
CS_INT operation = ASAP_CMD_WO_UPDATE,
CS_INT asdlTimeout = 0,
SRP_USERID userId = ““,
SRP_PASSWORD password = ““,
ASAP_SRQ_PRIORITY priority = ASAP_SRQ_NORMAL_PRIO,
DAT_ACTN_ST srqAction = ADD_ACTN,
ASAP_ORG_UNIT orgUnit = ““,
SRP_LOGIN origin = ““,
WORK_ORD_NUM parentWo = ““,
CS_INT woTimeout = USE_DEFAULT,
CS_INT retry = USE_DEFAULT,
CS_INT retryInt = USE_DEFAULT,
ASAP_BOOL_PROP_TYPE rback = “D",
ASAP_BOOL_PROP_TYPE delayFail = “N",
CS_INT delayFailThreshold = 0
);
// Work Order General Transaction Member Functions

// Property processing functions
void getWoId(WORK_ORD_NUM &workId) const;
void setWoId(const WORK_ORD_NUM workId);

void getDueDate(CS_DATETIME &dueDate) const;
CS_RETCODE getDueDate(CS_CHAR *dueDate) const;
void setDueDate(const CS_DATETIME dueDate);
void setDueDate(const CS_INT dtdays, const CS_INT dttime);
CS_RETCODE setDueDate(CS_CHAR *dueDate) const;

CS_INT getOperation(void) const;
void setOperation(const CS_INT operation);

void getMisc(ASAP_WO_MISC &misc) const;
void setMisc(const ASAP_WO_MISC misc);

void getOrgUnit(ASAP_ORG_UNIT &orgUnit) const;
void setOrgUnit(const ASAP_ORG_UNIT orgUnit);

void getOrigin(SRP_LOGIN &origin) const;

Chapter 4
C++ SRP API library

4-105

void setOrigin(const SRP_LOGIN origin);

CS_INT getEstimate(void) const;
void setEstimate (const CS_INT estimate);

CS_INT getStatus(void) const;
void setStatus (const CS_INT status);

CS_INT getAsdlTimeout(void) const;
void setAsdlTimeout(const CS_INT asdlTimeout);

void getUserId(SRP_USERID &userId) const;
void setUserId(const SRP_USERID userId);

void getPassword(SRP_PASSWORD &password) const;
void setPassword(const SRP_PASSWORD password);

void getPriority(ASAP_SRQ_PRIORITY &priority) const;
void setPriority(const ASAP_SRQ_PRIORITY priority);

void getSrqAction(DAT_ACTN_ST &srqAction) const;
void setSrqAction(const DAT_ACTN_ST srqAction);

void getParentWo(WORK_ORD_NUM &parentWo) const;
void setParentWo(const WORK_ORD_NUM parentWo);

CS_INT getWoTimeout(void) const;
void setWoTimeout(const CS_INT woTimeout);

CS_INT getRetry(void) const;
void setRetry(const CS_INT retry);

CS_INT getRetryInt(void) const;
void setRetryInt(const CS_INT retryInt);

void getRback(ASAP_BOOL_PROP_TYPE &rback) const;
void setRback(const ASAP_BOOL_PROP_TYPE rback);

void getDelayFail(ASAP_BOOL_PROP_TYPE &delayFail) const;
void setDelayFail(const ASAP_BOOL_PROP_TYPE delayFail);

CS_INT getDelayFailThreshold(void) const;
void setDelayFailThreshold(const CS_INT delayFailThreshold);

void getBatchGroup(WORK_ORD_NUM &batchGroup) const;
void setBatchGroup(const WORK_ORD_NUM batchGroup);

void getExtSysId(ASAP_EXTSYS_ID &extSysId) const;
void setExtSysId(const ASAP_EXTSYS_ID extSysId);

VOIDPTR getUserData(void) const;
void setUserData(const VOIDPTR userData);

void getApplName(APPL_NAME & applName) const;
void setApplName(const APPL_NAME applName);

CS_RETCODE getProperty(CS_INT property, CS_CHAR * value);
CS_RETCODE getProperty(CS_INT property, CS_INT &value);
CS_RETCODE getProperty(CS_INT property, CS_DATETIME &value);

CS_RETCODE setProperty(CS_INT property, const CS_CHAR * value);

Chapter 4
C++ SRP API library

4-106

CS_RETCODE setProperty(CS_INT property, const CS_INT value);
CS_RETCODE setProperty(CS_INT property, const CS_DATETIME value);

// Transaction processing functions
CS_RETCODE addCsdl(SRP_CSDL *csdl);
CS_RETCODE addGlobalParameter(SRP_Parameter *parameter);

CS_RETCODE restore(void);

CS_INT getGlobalParameterCount(void);
CS_INT getCsdlCount(void);

void print(ofstream &outFile);
//Work Order Submission member functions
CS_RETCODE submit(CS_INT noneBlock = 0);
CS_RETCODE deleteInSarm(CS_INT noneBlock = 0);
CS_RETCODE changeStatus(CS_INT noneBlock = 0);

// Special delete functions
void deleteAll(void);
SRP_Parameter * findGlobalParameter(const CSDL_PARAM_LABEL label);
SRP_Parameter * findGlobalParameter(SRP_Parameter *parameter);
SRP_Parameter * findGlobalParameter(CS_INT sequence);

SRP_Parameter * removeGlobalParameter(const
CSDL_PARAM_LABEL label);
SRP_Parameter * removeGlobalParameter(SRP_Parameter
*parameter);

SRP_CSDL * findCsdl(const CSDL_CMD_ST csdlCmd);
SRP_CSDL * findCsdl(const ASAP_CSDL_ID csdlId);
SRP_CSDL * findCsdl(SRP_CSDL *csdl);
SRP_CSDL * findCsdlBySequence(CS_INT sequence);

SRP_CSDL * removeCsdl(const CSDL_CMD_ST csdlCmd);
SRP_CSDL * removeCsdl(const ASAP_CSDL_ID csdlId);
SRP_CSDL * removeCsdl(SRP_CSDL *csdl);

CS_RETCODE lock(void);
CS_RETCODE unlock(void);

};

Constructors
This constructor invokes a work order object.

Syntax:

SRP_WO(void);

This constructor invokes a work order object. This function requires specified work order
identification.

Syntax:

SRP_WO(const WORK_ORD_NUM woId);

Chapter 4
C++ SRP API library

4-107

Work order properties
SRP_WO(const WORK_ORD_NUM woId,

const CS_DATETIME dueDate,
CS_INT operation = ASAP_CMD_WO_UPDATE,
CS_INT asdlTimeout = 0,
SRP_USERID userId = ““,
SRP_PASSWORD password = ““,
ASAP_SRQ_PRIORITY priority =
ASAP_SRQ_NORMAL_PRIO,
DAT_ACTN_ST srqAction = ADD_ACTN,
ASAP_ORG_UNIT orgUnit = ““,
SRP_LOGIN origin = ““,
WORK_ORD_NUM parentWo = ““,
CS_INT woTimeout = USE_DEFAULT,
CS_INT retry = USE_DEFAULT,
CS_INT retryInt = USE_DEFAULT,
ASAP_BOOL_PROP_TYPE rback = “D",
ASAP_BOOL_PROP_TYPE delayFail = “N",
CS_INT delayFailThreshold = 0

);

This constructor requires the following attributes which assign all work order
properties:

• woId: Work order identification.

• dueDate: The due date and time for work order provisioning.

• operation: The operation that the SARM is to perform with the work order. The
values are defined in the asap_core.h.

• asdlTimeout: ASDL timeout.

• userId: The user ID to be used for security authorization.

• password: The password to be used for security authorization.

• priority: The provisioning priority of the Service Request. The values are defined
in the asap_core.h.

• srqAction: The action type of the Service Request being sent. The values are
defined in the libcsolsrp.h.

• orgUnit: Organization Unit associated with the work order. This is the ID of a
person or group to whom notification should be transmitted should an error or
exception occur on the work order.

• origin: Identifies the Host system user who created the work order.

• parentWo: Parent work order for work order dependencies.

• woTimeout: Work order timeout. If a work order is in progress more than the set
number of seconds, then the SARM will fail the work order.

• retry: The number of times to retry the work order.

• retryInt: The retry interval on the work order.

• rback: Rollback flag on the work order.

• delayFail: Treat Hard ASDL errors in the SARM as Delayed Errors.

Chapter 4
C++ SRP API library

4-108

• delayFailThreshold: If delayFail is set, this field represents the number of such delayed
errors that must occur for the SARM to stop the work order processing.

Most of these attributes have a default value that is used if you do not provide one. To modify
the properties after a work order object is created, you can also use the set operations below.

Public methods
The following are the public methods.

getWoId
Returns the work order ID.

Syntax:

void getWoId(WORK_ORD_NUM &workId) const;

setWoId
Sets a specified work order ID.

Syntax:

void setWoId(const WORK_ORD_NUM workId);

getDueDate
Returns the duration date by the CS_DATETIME data type.

Syntax:

void getDueDate(CS_DATETIME &dueDate) const;

Returns the due date by the CS_CHAR data type.

Syntax:

CS_RETCODE getDueDate(CS_CHAR *dueDate) const;

setDueDate
Sets the CSDL description by the CS_DATETIME.

Syntax:

void setDueDate(const CS_DATETIME dueDate);

Sets the due date and time by the dtdays and dttime.

Syntax:

void setDueDate(const CS_INT dtdays, const CS_INT dttime);

Sets the due date and time by CS_CHAR data type.

Syntax:

CS_RETCODE setDueDate(CS_CHAR *dueDate) const;

Chapter 4
C++ SRP API library

4-109

getOperation
Returns the operation.

Syntax:

CS_INT getOperation(void) const;

setOperation
Sets a specified operation.

Syntax:

void setOperation(const CS_INT operation);

getMisc
Returns the miscellaneous information.

Syntax:

void getMisc(ASAP_WO_MISC &misc) const;

setMisc
Sets miscellaneous information.

Syntax:

void setMisc(const ASAP_WO_MISC misc);

getOrgUnit
Returns the organization unit.

Syntax:

void getOrgUnit(ASAP_ORG_UNIT &orgUnit) const;

setOrgUnit
Sets a specified organization unit.

Syntax:

void setOrgUnit(const ASAP_ORG_UNIT orgUnit);

getOrigin
Returns the origin.

Syntax:

void getOrigin(SRP_LOGIN &origin) const;

Chapter 4
C++ SRP API library

4-110

setOrigin
Sets a specified origin.

Syntax:

void setOrigin(const SRP_LOGIN origin);

getEstimate
Returns the estimated amount of time (in seconds) for a work order to be completed by the
SARM. The value is the total time from the work order being initially received by the SARM.
The upstream application can set the estimate using the setEstimate function.

Syntax:

CS_INT getEstimate(void) const;

getStatus
Returns the status of a specified work order transaction, returned by the SARM. These
values are defined in asap_core.h. This value must be checked after the submission to
determine if the submission is successful.

Syntax:

CS_INT getStatus(void) const;

getAsdlTimeout
Returns the ASDL timeout.

Syntax:

CS_INT getAsdlTimeout(void) const;

setAsdlTimeout
Sets a specified ASDL timeout.

Syntax:

void setAsdlTimeout(const CS_INT asdlTimeout);

getUserId
Returns the user ID.

Syntax:

void getUserId(SRP_USERID &userId) const;

setUserId
Sets the user ID.

Syntax:

Chapter 4
C++ SRP API library

4-111

void setUserId(const SRP_USERID userId);

getPassword
Returns the password.

Syntax:

void getPassword(SRP_PASSWORD &password) const;

setPassword
Sets the password.

Syntax:

void setPassword(const SRP_PASSWORD password);

getPriority
Returns the priority of the Service Request.

Syntax:

void getPriority(ASAP_SRQ_PRIORITY &priority) const;

setPriority
Sets the priority of the Service Request.

Syntax:

void setPriority(const ASAP_SRQ_PRIORITY priority);

getSrqAction
Returns the action type of the Service Request.

Syntax:

void getSrqAction(DAT_ACTN_ST &srqAction) const;

setSrqAction
Sets the specified action type of the Service Request.

Syntax:

void setSrqAction(const DAT_ACTN_ST srqAction);

getParentWo
Returns the parent work order for work order dependencies.

Syntax:

void getParentWo(WORK_ORD_NUM &parentWo) const;

Chapter 4
C++ SRP API library

4-112

setParentWo
Sets the parent work order.

Syntax:

void setParentWo(const WORK_ORD_NUM parentWo);

getWoTimeout
Returns the work order timeout.

Syntax:

CS_INT getWoTimeout(void) const;

setWoTimeout
Sets the work order timeout.

Syntax:

void setWoTimeout(const CS_INT woTimeout);

getRetry
Returns the number of times to retry the work order.

Syntax:

CS_INT getRetry(void) const;m

setRetry
Sets the number of retries.

Syntax:

void setRetry(const CS_INT retry);

getRetryInt
Returns the retry interval.

Syntax:

CS_INT getRetryInt(void) const;

setRetryInt
Sets a specified retry interval.

Syntax:

void setRetryInt(const CS_INT retryInt);

Chapter 4
C++ SRP API library

4-113

getRback
Returns the rollback flag.

Syntax:

void getRback(ASAP_BOOL_PROP_TYPE &rback) const;

setRback
Sets the rollback flag.

Syntax:

void setRback(const ASAP_BOOL_PROP_TYPE rback);

getDelayFail
Returns the delay fail flag.

Syntax:

void getDelayFail(ASAP_BOOL_PROP_TYPE &delayFail) const;

setDelayFail
Sets the delay fail flag.

Syntax:

void setDelayFail(const ASAP_BOOL_PROP_TYPE delayFail);

getDelayFailThreshold
Returns the delay fail threshold.

Syntax:

CS_INT getDelayFailThreshold(void) const;

setDelayFailThreshold
Sets the delay fail threshold.

Syntax:

void setDelayFailThreshold(const CS_INT delayFailThreshold);

getBatchGroup
Returns the batch group.

Syntax:

void getBatchGroup(WORK_ORD_NUM &batchGroup) const;

Chapter 4
C++ SRP API library

4-114

setBatchGroup
Sets the batch group.

Syntax:

void setBatchGroup(const WORK_ORD_NUM batchGroup);

getExtSysId
Returns the external system ID for this work order.

Syntax:

void getExtSysId(ASAP_EXTSYS_ID &extSysId) const;

setExtSysId
Sets a specified external system ID.

Syntax:

void setExtSysId(const ASAP_EXTSYS_ID extSysId);

getUserData
Returns the user-defined data segment in the work order.

Syntax:

VOIDPTR getUserData(void) const;

setUserData
Sets a user-defined data segment.

Syntax:

void setUserData(const VOIDPTR userData);

getApplName
Returns the application name.

Syntax:

void getApplName(APPL_NAME & applName) const;

setApplName
Sets a specified application name in the work order. If you do not define a specified
application name, the default is the current SRP name.

Syntax:

void setApplName(const APPL_NAME applName);

Chapter 4
C++ SRP API library

4-115

getProperty
Returns the value of a specified property. This is one of the overloaded operations.
The properties are defined in libcsolsrp.h.

Syntax:

CS_RETCODE getProperty(CS_INT property, CS_CHAR * value);

Returns the value of a specified property. This is one of the overloaded operations.
The properties are defined in libcsolsrp.h.

Syntax:

CS_RETCODE getProperty(CS_INT property, CS_INT &value);

Returns the value of a specified property. This is one of the overloaded operations.
The properties are defined in libcsolsrp.h.

Syntax:

CS_RETCODE getProperty(CS_INT property, CS_DATETIME &value);

setProperty
Sets the value for a specified property whose data type is CS_CHAR.

Syntax:

CS_RETCODE setProperty(CS_INT property, const CS_CHAR * value);

Sets the value for a specified property whose data type is CS_INT.

Syntax:

CS_RETCODE setProperty(CS_INT property, const CS_INT value);

Sets the value for a specified property whose data type is CS_DATETIME.

Syntax:

CS_RETCODE setProperty(CS_INT property, const CS_DATETIME value);

addCsdl
Adds a specified CSDL into the work order.

Syntax:

CS_RETCODE addCsdl(SRP_CSDL *csdl);

addGlobalParameter
Adds a specified global parameter into the work order.

Syntax:

CS_RETCODE addGlobalParameter(SRP_Parameter *parameter);

Chapter 4
C++ SRP API library

4-116

restore
Rebuilds the current work order from the SARM.

Syntax:

CS_RETCODE restore(void);

getGlobalParameterCount
Returns the number of global parameters.

Syntax:

CS_INT getGlobalParameterCount(void);

getCsdlCount
Returns the number of CSDLs.

Syntax:

CS_INT getCsdlCount(void);

print
Prints the content of the work order. The upstream application must provide a file descriptor
to print. The file must be opened.

Syntax:

void print(ofstream &outFile);

submit
Submits the current work order. If nonBlock is set, this function returns a fail when the
connection to the SARM is unavailable. If nonBlock is not set, this function retries sending the
RPC until it succeeds. The default is block.

Syntax:

CS_RETCODE submit(CS_INT nonBlock = 0);

deleteInSarm
Deletes the current work order from the SARM. If nonBlock is set, this function returns a fail
when the connection to the SARM is unavailable. If nonBlock is not set, this function retries
sending the RPC until it succeeds. The default is block.

Syntax:

CS_RETCODE deleteInSarm(CS_INT nonBlock = 0);

Chapter 4
C++ SRP API library

4-117

changeStatus
Changes the status of the current work order from the SARM. If nonBlock is set, this
function returns a fail when the connection to the SARM is unavailable. If nonBlock is
not set, this function retries sending the RPC until it succeeds. The default is block.

Syntax:

CS_RETCODE changeStatus(CS_INT nonBlock = 0);

deleteAll
Removes all global parameter and CSLD objects from the current work order, and
deletes them. The result is unpredictable if you reference those objects after deleting
them.

Syntax:

void deleteAll(void);

findGlobalParameter
Finds a global parameter by parameter label. This operation does not remove the
object.

Syntax:

SRP_Parameter * findGlobalParameter(const CSDL_PARAM_LABEL label);

Finds a global parameter by parameter object. This operation does not remove the
object.

Syntax:

SRP_Parameter * findGlobalParameter(SRP_Parameter *parameter);

Finds a global parameter by sequence of parameter in the work order. This operation
does not remove the object.

Syntax:

SRP_Parameter * findGlobalParameter(CS_INT sequence);

removeGlobalParameter
Removes a global parameter from the work order by parameter label. This operation
does not delete the object.

Syntax:

SRP_Parameter * removeGlobalParameter(const CSDL_PARAM_LABEL label);

Removes a global parameter from the work order by a specified parameter. This
operation does not delete the object.

Syntax:

SRP_Parameter * removeGlobalParameter(SRP_Parameter *parameter);

Chapter 4
C++ SRP API library

4-118

findCsdl
Finds a CSDL by a specified CSDL command. This operation does not remove the object.

Syntax:

SRP_CSDL * findCsdl(const CSDL_CMD_ST csdlCmd);

Finds a CSDL by a specified CSDL ID. This operation does not remove the object.

Syntax:

SRP_CSDL * findCsdl(const ASAP_CSDL_ID csdlId);

Finds a CSDL by a specified CSDL object. This operation does not remove the object.

Syntax:

SRP_CSDL * findCsdl(SRP_CSDL *csdl);

findCsdlBySequence
Finds a CSDL by the sequence of CSDLs in the work order. This operation does not remove
the object.

Syntax:

SRP_CSDL * findCsdlBySequence(CS_INT sequence);

removeCsdl
Removes a specified CSDL by CSDL command from the work order. This operation does not
delete the object.

Syntax:

SRP_CSDL * removeCsdl(const CSDL_CMD_ST csdlCmd);

Removes a specified CSDL by CSDL ID from the work order. This operation does not delete
the object.

Syntax:

SRP_CSDL * removeCsdl(const ASAP_CSDL_ID csdlId);

Removes a specified CSDL by CSDL object from the work order. This operation does not
delete the object.

Syntax:

SRP_CSDL * removeCsdl(SRP_CSDL *csdl);

lock
Locks the work order object. The operation is blocked until it obtains the lock.

Syntax:

CS_RETCODE lock(void);

Chapter 4
C++ SRP API library

4-119

unlock
Releases the work order object. You must always use the lock() method before using
unlock() in a thread.

Syntax:

CS_RETCODE unlock(void);

SRP_WoUtils class
The SRP_WoUtils class is used to lock work orders by work order ID.

Synopsis
class SRP_WoUtils
{
public:

CS_RETCODE lockWo(const WORK_ORD_NUM woId);
CS_RETCODE unlockWo(const WORK_ORD_NUM woId);
CS_RETCODE accessWo(const WORK_ORD_NUM woId);

};

Public methods
The following are the public methods.

lockWo
This function locks a specified work order by work order ID. Used to synchronize work
order submission and work order event handling.

If the work order has been locked already, this operation is blocked until the work order
is unlocked. Returns CS_SUCCEED if successfully completed.

Syntax:

CS_RETCODE lockWo(const WORK_ORD_NUM woId);

unlockWo
Unlocks a specified work order by work order ID. Returns CS_SUCCEED if
successfully completed.

Syntax:

CS_RETCODE unlockWo(const WORK_ORD_NUM woId);

accessWo
This function is called by the work order event notification handlers upon receiving an
event for a work order, and before performing any processing of the event involving
work order access or update in the SRP database. This helps avoid data integrity
problems when the SARM returns an event for the work order before the order is

Chapter 4
C++ SRP API library

4-120

saved in the SRP database. This function returns CS_SUCCEED if successfully completed;
CS_FAIL if failed.

Syntax:

CS_RETCODE accessWo(const WORK_ORD_NUM woId);

SRP_EventInterfaceFactory class
The SRP_EventInterfaceFactory class is used to instantiate the SRP_EventInterface
objects that you define. This is an abstract class that you must define as a subclass, typically
by overwriting create(). The C++ SRP API calls this function to create the event interface
object that you define.

Synopsis
class SRP_EventInterfaceFactory
{
public:

SRP_EventInterfaceFactory(void);

virtual SRP_EventInterface* create(void) = 0;
void setCondition(void *condition);
void* getCondition(void);

protected:

void * m_condition;

Diagnosis m_diag;
Event m_event;

};

Constructors
This constructor invokes a SRP_EventInterfaceFactory object.

Syntax:

SRP_EventInterfaceFactory(void);

Public methods
The following are the public methods.

create
This function that you have defined, creates and returns an object of the event interface that
you have defined.

Syntax:

virtual SRP_EventInterface* create(void) = 0;

Chapter 4
C++ SRP API library

4-121

setCondition
Sets the condition for instantiating an event interface object. You can use this condition
to create a different event interface object. For example, you can change the condition
from time to time, and when the create() operation is invoked, it can check the
condition to determine which event interface object must be created.

Syntax:

void setCondition(void *condition);

getCondition
Returns the condition.

Syntax:

void* getCondition(void);

SRP_EventInterface class
The SRP_EventInterface class is the base class for specific event interface objects.
The SRP_EventInterface object calls the required event handler that you have
defined when the corresponding events are received by the SRP from the SARM.

This is an abstract class. You must create a subclass from the SRP_EventInterface,
and redefine the work order complete and work order failure event handlers. C++ SRP
API provides other types of undefined event handlers. If you define these optional
handlers, the event interface object calls the event handler that you have defined with
the event object as the argument.

Synopsis
class SRP_EventInterface
{
public:
SRP_EventInterface(void);

virtual CS_RETCODE woCompleteHandler (SRP_Event *event) = 0;
virtual CS_RETCODE woFailureHandler (SRP_Event *event) = 0;
virtual CS_RETCODE softErrorHandler (SRP_Event *event);
virtual CS_RETCODE woEstimateHandler(SRP_Event *event);
virtual CS_RETCODE woStartupHandler (SRP_Event *event);
virtual CS_RETCODE woRollbackHandler (SRP_Event *event);
virtual CS_RETCODE neUnknownHandler (SRP_Event *event);
virtual CS_RETCODE woBlockHandler(SRP_Event *event);
virtual CS_RETCODE woTimeOutHandler (SRP_Event *event);
virtual CS_RETCODE neAvailHandler (SRP_Event *event);
virtual CS_RETCODE neUnavailHandler (SRP_Event *event);
virtual CS_RETCODE woAcceptHandler (SRP_Event *event);

protected:

Diagnosis m_diag;
Event m_event;

Chapter 4
C++ SRP API library

4-122

};

Constructor
Constructor of the class.

Syntax:

SRP_EventInterface(void);

Public methods
The following are the public methods.

woCompleteHandler
The event handler is for the WO_COMPLETE event. You must redefine this function in the
subclass of this class.

Syntax:

virtual CS_RETCODE woCompleteHandler (SRP_Event *event);

woFailureHandler
The event handler is for the WO_FAILURE event. You must redefine this function in the
subclass of this class.

Syntax:

virtual CS_RETCODE woFailureHandler (SRP_Event *event);

softErrorHandler
The optional event handler is for the SOFT_ERROR event.

Syntax:

virtual CS_RETCODE softErrorHandler (SRP_Event *event);

woEstimateHandler
The optional event handler is for the WO_ESTIMATE event.

Syntax:

virtual CS_RETCODE woEstimateHandler(SRP_Event *event);

woStartupHandler
This optional event handler is for the WO_STARTUP event.

Syntax:

virtual CS_RETCODE woStartupHandler (SRP_Event *event);

Chapter 4
C++ SRP API library

4-123

woRollbackHandler
The optional event handler is for the WO_ROLLBACK event.

Syntax:

virtual CS_RETCODE woRollbackHandler (SRP_Event *event);

neUnknownHandler
This optional event handler is for the NE_UNKNOWN event.

Syntax:

virtual CS_RETCODE neUnknownHandler (SRP_Event *event);

woBlockHandler
The optional event handler is for the WO_BLOCKED event.

Syntax:

virtual CS_RETCODE woBlockHandler(SRP_Event *event);

woTimeOutHandler
The optional event handler is for the WO_TIMEOUT event.

Syntax:

virtual CS_RETCODE woTimeOutHandler (SRP_Event *event);

neAvailHandler
The optional event handler is for the NE_AVAIL event.

Syntax:

virtual CS_RETCODE neAvailHandler (SRP_Event *event);

neUnavailHandler
The optional event handler is for the NE_UNAVAIL event.

Syntax:

virtual CS_RETCODE neUnavailHandler (SRP_Event *event);

woAcceptHandler
The optional event handler is for the WO_ACCEPT event.

Syntax:

virtual CS_RETCODE woAcceptHandler (SRP_Event *event);

Chapter 4
C++ SRP API library

4-124

SRP_Event class
The SRP_Event class is a base class for different event classes. This class delivers specified
event information to the event handlers. Normally, the upstream application retrieves the
content in the event object to check work order provisioning status. It does not need to use
the set functions in this class, except to produce a copy of the event object in the event
handlers.

Note:

You must not delete this object. C++ SRP API creates and deletes this object.

Synopsis
class SRP_Event
{
public:

SRP_Event(void);
void getWoId(WORK_ORD_NUM& woId) const;
CS_INT getEventUnId(void) const;
void getExtsysId(ASAP_EXTSYS_ID& extsysId) const;
CS_INT getEventStatus(void) const;
void setWoId (const WORK_ORD_NUM woId);
void setEventUnId(const CS_INT eventUnId);
void setExtsysId(const ASAP_EXTSYS_ID extsysId);
void setEventStatus(const CS_INT eventStatus);

};

Public methods
The following are the public methods.

getWoId
Returns the work order identification.

Syntax:

void getWoId(WORK_ORD_NUM& woId) const;

getEventUnId
Returns the event unit ID.

Syntax:

CS_INT getEventUnId(void) const;

getExtsysId
Returns the external system ID.

Chapter 4
C++ SRP API library

4-125

Syntax:

void getExtsysId(ASAP_EXTSYS_ID& extsysId) const;

getEventStatus
Returns the event status.

Syntax:

CS_INT getEventStatus(void) const;

setWoId
Sets the work order identification.

Syntax:

void setWoId (const WORK_ORD_NUM woId);

setEventUnId
Sets the event unit ID.

Syntax:

void setEventUnId(const CS_INT eventUnId);

setExtsysId
Sets the external system ID.

Syntax:

void setExtsysId(const ASAP_EXTSYS_ID extsysId);

setEventStatus
Sets the event status.

Syntax:

void setEventStatus(const CS_INT eventStatus);

SRP_WoCompleteEvent class
This class delivers the WO_COMPLETE event information to the completion event
handler. It inherits from the SRP_Event class.

Synopsis
class SRP_WoCompleteEvent : public SRP_Event
{
public:

SRP_WoCompleteEvent(void);
SRP_WoCompleteEvent(WORK_ORD_NUM woId, CS_INT eventUnId,
ASAP_EXTSYS_ID extSysId, ASAP_REVISIONS_FLAG

Chapter 4
C++ SRP API library

4-126

revFlag, ASAP_EXCEPTIONS_FLAG except);

void getRevFlag(ASAP_REVISIONS_FLAG& revFlag) const;
void getExcept(ASAP_EXCEPTIONS_FLAG& except) const;
void setRevFlag(const ASAP_REVISIONS_FLAG revFlag);
void setExcept(const ASAP_EXCEPTIONS_FLAG except);

};

Public methods
The following are the public methods.

getRevFlag
Returns the revision flag.

Syntax:

void getRevFlag(ASAP_REVISIONS_FLAG& revFlag) const;

getExcept
Returns the exception flag.

Syntax:

void getExcept(ASAP_EXCEPTIONS_FLAG& except) const;

setRevFlag
Sets the revision flag.

Syntax:

void setRevFlag(const ASAP_REVISIONS_FLAG revFlag);

setExcept
Sets the exception flag.

Syntax:

void setExcept(const ASAP_EXCEPTIONS_FLAG except);

SRP_WoFailureEvent class
The SRP_WoFailureEvent class delivers the WO_FAILURE event information to the failure
event handler. This class inherits from the SRP_Event class.

Synopsis
class SRP_WoFailureEvent : public SRP_Event
{
public:

SRP_WoFailureEvent(void);
SRP_WoFailureEvent(WORK_ORD_NUM woId, CS_INT eventUnId,

Chapter 4
C++ SRP API library

4-127

ASAP_EXTSYS_ID extSysId, ASAP_CSDL_SEQ_NO csdlSeqNo,
ASAP_CSDL_ID csdlId);
ASAP_CSDL_SEQ_NO getCsdlSeqNo(void) const;
ASAP_CSDL_ID getCsdlId(void) const;
void setCsdlSeqNo(const ASAP_CSDL_SEQ_NO csdlSeqNo);
void setCsdlId(const ASAP_CSDL_ID csdlId);

};

Public methods
The following are the public methods.

getCsdlSeqNo
Returns the CSDL sequence number.

Syntax:

ASAP_CSDL_SEQ_NO getCsdlSeqNo(void) const;

getCsdlId
Returns the CSDL ID.

Syntax:

ASAP_CSDL_ID getCsdlId(void) const;

setCsdlSeqNo
Sets the CSDL sequence number.

Syntax:

void setCsdlSeqNo(const ASAP_CSDL_SEQ_NO csdlSeqNo);

setCsdlId
Sets the CSDL ID.

Syntax:

void setCsdlId(const ASAP_CSDL_ID csdlId);

SRP_SoftErrorEvent class
The SRP_SoftErrorEvent class delivers the SOFT_ERROR event information to the
soft error event handler. This class inherits from the SRP_Event class.

Synopsis
class SRP_SoftErrorEvent : public SRP_Event
{
public:

SRP_SoftErrorEvent(void);
SRP_SoftErrorEvent(WORK_ORD_NUM woId, CS_INT eventUnId,

Chapter 4
C++ SRP API library

4-128

ASAP_EXTSYS_ID extSysId, ASAP_CSDL_SEQ_NO csdlSeqNo,
ASAP_CSDL_ID csdlId);
ASAP_CSDL_SEQ_NO getCsdlSeqNo(void) const;
ASAP_CSDL_ID getCsdlId(void) const;
void setCsdlSeqNo(const ASAP_CSDL_SEQ_NO csdlSeqNo);
void setCsdlId(const ASAP_CSDL_ID csdlId);

};

Public methods
The following are the public methods.

getCsdlSeqNo
Returns the CSDL sequence number.

Syntax:

ASAP_CSDL_SEQ_NO getCsdlSeqNo(void) const;

getCsdlId
Returns the CSDL ID.

Syntax:

ASAP_CSDL_ID getCsdlId(void) const;

setCsdlSeqNo
Sets the CSDL sequence number.

Syntax:

void setCsdlSeqNo(const ASAP_CSDL_SEQ_NO csdlSeqNo);

setCsdlId
Sets the CSDL ID.

Syntax:

void setCsdlId(const ASAP_CSDL_ID csdlId);

SRP_WoEstimateEvent class
The SRP_WoEstimateEvent class delivers the WO_ESTIMATE event information to the
work order estimate event handler.

Synopsis
class SRP_WoEstimateEvent: public SRP_Event
{
public:

SRP_WoEstimateEvent(void);
SRP_WoEstimateEvent(WORK_ORD_NUM woId, CS_INT eventUnId,

Chapter 4
C++ SRP API library

4-129

ASAP_EXTSYS_ID extSysId, ASAP_ESTIMATE estimate, ASAP_WO_MISC misc);
ASAP_ESTIMATE getEstimate(void) const;
void getMisc(ASAP_WO_MISC& misc) const;
void setEstimate(const ASAP_ESTIMATE estimate);
void setMisc(const ASAP_WO_MISC misc);

};

Public methods
The following are the public methods.

getEstimate
Returns the estimation.

Syntax:

ASAP_ESTIMATE getEstimate(void) const;

getMisc
Returns miscellaneous information.

Syntax:

void getMisc(ASAP_WO_MISC& misc) const;

setEstimate
Sets the estimation.

Syntax:

void setEstimate(const ASAP_ESTIMATE estimate);

setMisc
Sets the miscellaneous information.

Syntax:

void setMisc(const ASAP_WO_MISC misc);

SRP_WoStartupEvent class
The SRP_WoStartupEvent class delivers the WO_STARTUP event information to the
work order startup handler.

Synopsis
class SRP_WoStartupEvent: public SRP_Event
{
public:

SRP_WoStartupEvent(void);
SRP_WoStartupEvent(WORK_ORD_NUM woId, CS_INT eventUnId,
ASAP_EXTSYS_ID extSysId);

Chapter 4
C++ SRP API library

4-130

};

SRP_WoRollbackEvent class
The SRP_RollbackEvent class is used to deliver the WO_ROLLBACK event information to
the work order roll-back event handler.

To inplement rollback of completed ASDLs, you must configure the WO_ROLLBACK,
ROLLBACK_REQ, and IGNORE_ROLLBACK variables.

Synopsis
class SRP_WoRollbackEvent: public SRP_Event
{
public:

SRP_WoRollbackEvent(void);
SRP_WoRollbackEvent(WORK_ORD_NUM woId, CS_INT eventUnId,
ASAP_EXTSYS_ID extSysId);

};

SRP_NEUnknownEvent class
The SRP_NEUnknownEvent class delivers the NE_UNKNOWN event information to the NE
unknown event handler.

Synopsis
class SRP_NEUnknownEvent : public SRP_Event
{
public:

SRP_NEUnknownEvent(void);
SRP_NEUnknownEvent(WORK_ORD_NUM woId, CS_INT eventUnId,
ASAP_EXTSYS_ID extSysId, ASAP_CSDL_SEQ_NO csdlSeqNo,
ASAP_CSDL_ID csdlId, ASAP_CLLI machClli);
ASAP_CSDL_SEQ_NO getCsdlSeqNo(void) const;
ASAP_CSDL_ID getCsdlId(void) const;
void getMachClli(ASAP_CLLI& machClli) const;
void setCsdlSeqNo(const ASAP_CSDL_SEQ_NO csdlSeqNo);
void setCsdlId(const ASAP_CSDL_ID csdlId);
void setMachClli(const ASAP_CLLI machClli);

};

Public methods
The following are the public methods.

getCsdlSeqNo
Returns the order sequence of the CSDL command within the work order.

Syntax:

ASAP_CSDL_SEQ_NO getCsdlSeqNo(void) const;

Chapter 4
C++ SRP API library

4-131

getCsdlId
Returns the CSDL ID. The CSDL ID uniquely identifies the CSDL command to be
provisioned.

Syntax:

ASAP_CSDL_ID getCsdlId(void) const;

getMachClli
Returns the machine CLLI. The machine CLLI identifies the NE that is not known to
SARM.

Syntax:

void getMachClli(ASAP_CLLI& machClli) const;

SRP_WoBlockEvent class
The SRP_WoBlockEvent class delivers the WO_BLOCKED event information to the
work order block event handler.

Synopsis
class SRP_WoBlockEvent : public SRP_Event
{
public:

SRP_WoBlockEvent(void);
SRP_WoBlockEvent(WORK_ORD_NUM woId, CS_INT eventUnId,
ASAP_EXTSYS_ID extSysId, ASAP_WO_BLOCK_REASON
m_reason);
void getReason(ASAP_WO_BLOCK_REASON& reason) const;
void setReason(const ASAP_WO_BLOCK_REASON reason);

};

Public methods
The following are the public methods.

getReason
Returns the reason why provisioning of the work order has been blocked.

Syntax:

void getReason(ASAP_WO_BLOCK_REASON& reason) const;

setReason
Sets the reason why provisioning of the work order can be blocked.

Syntax:

Chapter 4
C++ SRP API library

4-132

void setReason(const ASAP_WO_BLOCK_REASON reason);

SRP_WoTimeOutEvent class
The SRP_WoTimeOutEvent class delivers the WO_TIMEOUT event information to the work
order timeout event handler.

Synopsis
class SRP_WoTimeOutEvent: public SRP_Event
{
public:

SRP_WoTimeOutEvent(void);
SRP_WoTimeOutEvent(WORK_ORD_NUM woId, CS_INT eventUnId,
ASAP_EXTSYS_ID extSysId, ASAP_WO_TIMEOUT_STATUS status);
ASAP_WO_TIMEOUT_STATUS getStatus(void) const;
void setStatus(const ASAP_WO_TIMEOUT_STATUS status);

};

Public methods
The following are the public methods.

getStatus
Returns the status of the work order. Possible values include:

(ASAP_TIMEOUT_EXECUTING, ASAP_TIMEOUT_FAIL, ...) These are defined in the
“asap_core.h".

Syntax:

ASAP_WO_TIMEOUT_STATUS getStatus(void) const;

setStatus
void setStatus(const ASAP_WO_TIMEOUT_STATUS status);

SRP_NEAvailEvent class
The SRP_NEAvailEvent class delivers the NE_AVAIL event information to the NE available
event handler.

Synopsis
class SRP_NEAvailEvent : public SRP_Event
{
public:

SRP_NEAvailEvent(void);
SRP_NEAvailEvent(WORK_ORD_NUM woId, CS_INT eventUnId,
ASAP_EXTSYS_ID extSysId, ASAP_CLLI hostClli);
void getHostClli(ASAP_CLLI& hostClli) const;
void setHostClli(const ASAP_CLLI hostClli);

Chapter 4
C++ SRP API library

4-133

};

Public methods
The following are the public methods.

getHostClli
void getHostClli(ASAP_CLLI& hostClli) const;

Syntax:

Returns the host CLLI.

setHostClli
void setHostClli(const ASAP_CLLI hostClli);

SRP_NEUnAvailEvent class
The SRP_NeUnAvailEvent class delivers the NE_UNAVAIL event information to the
NE unavailable event handler.

Synopsis
class SRP_NEUnavailEvent : public SRP_Event
{
public:

SRP_NEUnavailEvent(void);
SRP_NEUnavailEvent(WORK_ORD_NUM woId, CS_INT eventUnId,
ASAP_EXTSYS_ID extSysId, ASAP_CLLI hostClli);

void getHostClli(ASAP_CLLI& hostClli) const;
void setHostClli(const ASAP_CLLI hostClli);

};

Public methods
The following are the public methods.

getHostClli
Returns the host CLLI.

Syntax:

void getHostClli(ASAP_CLLI& hostClli) const;

setHostClli
void setHostClli(const ASAP_CLLI hostClli);

Chapter 4
C++ SRP API library

4-134

SRP_WoAcceptEvent class
The SRP_WoAcceptEvent class is used to deliver the WO_ACCEPT event information to
the work order accepted event handler.

Synopsis
class SRP_WoAcceptEvent : public SRP_Event
{
public:

SRP_WoAcceptEvent(void);
SRP_WoAcceptEvent(WORK_ORD_NUM woId, CS_INT eventUnId,
ASAP_EXTSYS_ID extSysId, CS_INT newWoStat, CS_INT
oldWoStat, CS_INT status);
CS_INT getNewWoStat(void) const;
CS_INT getOldWoStat(void) const;
CS_INT getStatus(void) const;
void setNewWoStat(CS_INT newWoStat);
void setOldWoStat(CS_INT oldWoStat);
void setStatus(CS_INT status);

};

Public methods
The following are the public methods.

getNewWoStat
Returns the new work order status.

Syntax:

CS_INT getNewWoStat(void) const;

getOldWoStat
Returns the old work order status.

Syntax:

CS_INT getOldWoStat(void) const;

getStatus
Returns the event status.

Syntax:

CS_INT getStatus(void) const;

setNewWoStat
Returns the new work order status.

Chapter 4
C++ SRP API library

4-135

Syntax:

CS_INT setNewWoStat(void) const;

setOldWoStat
Returns the old work order status.

Syntax:

CS_INT setOldWoStat(void) const;

setStatus
Returns the event status.

Syntax:

CS_INT setStatus(void) const;

ASC_RetrieveInfo class
This class is the base class of all other information classes described in this section.

Synopsis
class ASC_RetrieveInfo
{
public:

 ASC_RetrieveInfo(void) {}
 ~ASC_RetrieveInfo(void) {}
 void getWoId(ASAP_WO_ID& woId) const
 { strcpy(woId, m_woId); }
 VOIDPTR getDataPtr(void) const
 { return m_dataPtr; }
 void setWoId(const ASAP_WO_ID woId)
 {
 ::memset(m_woId, '\0', sizeof(ASAP_WO_ID));
 ::strncpy(m_woId, woId, sizeof(ASAP_WO_ID)-1);
 }
 void setDataPtr(const VOIDPTR dataPtr) { m_dataPtr = dataPtr; }

private:
 ASAP_WO_ID m_woId;
 VOIDPTR m_dataPtr;
};

Constructor
Constructor of the class.

Syntax:

ASC_RetrieveInfo(void);

Chapter 4
C++ SRP API library

4-136

Public methods
The following are the public methods.

getWoId
Returns the work order ID.

Syntax:

void getWoId(ASAP_WO_ID& woId) const;

setWoId
Sets the work order ID. Ensure the work order ID does not exceed the length of the
ASAP_WO_ID data type. Otherwise, the work order will be rejected.

Syntax:

void setWoId(const ASAP_WO_ID woId)
{
::memset(m_woId, '\0', sizeof(ASAP_WO_ID));::strncpy(m_woId, woId,
sizeof(ASAP_WO_ID)-1);
}

getDataPtr
Returns the data pointer. Currently not used by C++ SRP API.

Syntax:

VOIDPTR getDataPtr(void) const
 { return m_dataPtr; }

setDataPtr
Sets the data pointer. Currently not used by C++ SRP API.

Syntax:

void setDataPtr(const VOIDPTR dataPtr)
 { m_dataPtr = dataPtr; }

ASC_CsdlListInfo class
This class defines the information objects for CSDL list retrieval information. The CSDL list
information is retrieved from the SARM database row by row and parsed into the
ASC_CsdlListInfo objects. All objects are inserted into an ASC_RetrieveInfoSet container
object, which is then passed to the handler that you define.

Synopsis
class ASC_CsdlListInfo : public ASC_RetrieveInfo
{
public:

Chapter 4
C++ SRP API library

4-137

ASC_CsdlListInfo(void)
void getCsdlCmd(ASAP_CSDL_CMD& csdlCmd) const;
ASAP_STAT getCsdlStat(void) const;
ASAP_SEQ_NO getCsdlSeqNo(void) const;
ASAP_CSDL_ID getCsdlId(void) const;
ASAP_CSDL_ESTIM getCsdlEst(void) const;
void getCsdlDesc(ASAP_CSDL_DESC& csdlDesc) const;
void setCsdlCmd(const ASAP_CSDL_CMD csdlCmd);
void setCsdlStat(const ASAP_STAT csdlStat);
void setCsdlSeqNo(const ASAP_SEQ_NO csdlSeqNo);
void setCsdlId(const ASAP_CSDL_ID csdlId);
void setCsdlEst(const ASAP_CSDL_ESTIM csdlEst);
void setCsdlDesc(const ASAP_CSDL_DESC csdlDesc);

};

Constructor
Constructor of the class.

Syntax:

ASC_CsdlListInfo(void);

Public methods
The following are the public methods.

getCsdlCmd
Returns the CSDL command.

Syntax:

void getCsdlCmd(ASAP_CSDL_CMD& csdlCmd) const;

setCsdlCmd
Sets the CSDL command. The CSDL command length must not exceed the length of
the ASAP_CSDL_CMD data type. Otherwise, the work order will be rejected.

Syntax:

void setCsdlCmd(const ASAP_CSDL_CMD csdlCmd);

getCsdlStat
Returns the CSDL state. Possible values include ASAP_CSDL_INITIAL,
ASAP_CSDL_HELD, ASAP_CSDL_MANUAL_TRAN, ASAP_CSDL_TRAN_ERR.

Syntax:

ASAP_STAT getCsdlStat(void) const;

setCsdlStat
Sets the CSDL state. Possible values include ASAP_CSDL_INITIAL,
ASAP_CSDL_HELD, ASAP_CSDL_MANUAL_TRAN, ASAP_CSDL_TRAN_ERR.

Chapter 4
C++ SRP API library

4-138

Syntax:

void setCsdlStat(const ASAP_STAT csdlStat);

getCsdlSeqNo
Returns the CSDL sequence number.

Syntax:

ASAP_SEQ_NO getCsdlSeqNo(void) const;

setCsdlSeqNo
Sets the CSDL sequence number.

Syntax:

void setCsdlSeqNo(const ASAP_SEQ_NO csdlSeqNo);

getCsdlId
Returns the CSDL ID.

Syntax:

ASAP_CSDL_ID getCsdlId(void) const;

setCsdlId
Sets the CSDL ID.

Syntax:

void setCsdlId(const ASAP_CSDL_ID csdlId);

getCsdlEst
Returns the CSDL estimation.

Syntax:

ASAP_CSDL_ESTIM getCsdlEst(void) const;

setCsdlEst
Sets the CSDL estimation.

Syntax:

void setCsdlEst(const ASAP_CSDL_ESTIM csdlEst);

getCsdlDesc
Returns the CSDL description. The length of the description must not exceed the size of
ASAP_CSDL_DESC data type. Otherwise, the work order will be rejected.

Syntax:

Chapter 4
C++ SRP API library

4-139

void getCsdlDesc(ASAP_CSDL_DESC& csdlDesc) const;

setCsdlDesc
Sets the CSDL description. The length of the description should not exceed the size of
ASAP_CSDL_DESC data type. Otherwise, the work order will be rejected.

Syntax:

void setCsdlDesc(const ASAP_CSDL_DESC csdlDesc);

ASC_CsdlLogInfo class
The ASC_CsdlLogInfo class defines the information objects for CSDL log retrieval
information. The CSDL log information is retrieved from the SARM database row by
row, and parsed into the ASC_CsdlLogInfo objects. All objects will be inserted to an
ASC_RetrieveInfoSet container object, which will in turn be passed to the user-defined
handler.

Synopsis
class ASC_CsdlLogInfo : public ASC_RetrieveInfo
{
public:

ASC_CsdlLogInfo(void);

ASAP_DTS getDateTm(void) const;
void getEventType(SRQ_EVENT_TYPE& evtBuf) const;
void getEventText(SRQ_EVENT_TEXT& evtLineBuf) const;
void getCsdlCmd(ASAP_CSDL_CMD& csdlCmd) const;
ASAP_SEQ_NO getCsdlSeqNo(void) const;
void getHostClli(ASAP_CLLI& hostClli) const;
void setDateTm(const ASAP_DTS dateTm);
void setEventType(const SRQ_EVENT_TYPE evtBuf);
void setEventText(const SRQ_EVENT_TEXT evtLineBuf);
void setCsdlCmd(const ASAP_CSDL_CMD csdlCmd);
void setCsdlSeqNo(const ASAP_SEQ_NO csdlSeqNo);
void setHostClli(const ASAP_CLLI hostClli);

}

Public methods
Constructor of the class.

See also ASC_RetrieveRequest, ASC_RetrieveInfo, and ASC_RetrieveInfoSet.

Syntax:

ASC_CsdlLogInfo(void);

getDateTm
Returns the date and time.

Syntax:

Chapter 4
C++ SRP API library

4-140

ASAP_DTS getDateTm(void) const;

setDateTm
Sets the date and time.

Syntax:

void setDateTm(const ASAP_DTS dateTm);

getEventType
Returns the event types. Ensure the type name does not exceed the length of the
SRQ_EVENT_TYPE data type. Otherwise, the work order will be rejected.

Syntax:

void getEventType(SRQ_EVENT_TYPE& evtBuf) const;

setEventType
Sets the event types. Ensure the type name does not exceed the length of the
SRQ_EVENT_TYPE data type. Otherwise, the work order will be rejected.

Syntax:

void setEventType(const SRQ_EVENT_TYPE evtBuf);

getEventText
Returns the event text. Ensure the event text does not exceed the length of the
SRQ_EVENT_TEXT data type. Otherwise, the work order will be rejected.

Syntax:

void getEventText(SRQ_EVENT_TEXT& evtLineBuf) const;

setEventText
Sets the event text. Ensure the event text does not exceed the length of the
SRQ_EVENT_TEXT data type. Otherwise, the work order will be rejected.

Syntax:

void setEventText(const SRQ_EVENT_TEXT evtLineBuf);

getCsdlCmd
Returns the CSDL command. Ensure the CSDL command does not exceed the length of the
ASAP_CSDL_CMD data type. Otherwise, the work order will be rejected.

Syntax:

void getCsdlCmd(ASAP_CSDL_CMD& csdlCmd) const;

Chapter 4
C++ SRP API library

4-141

setCsdlCmd
Sets the CSDL command. Ensure the CSDL command does not exceed the length of
the ASAP_CSDL_CMD data type. Otherwise, the work order will be rejected.

Syntax:

void setCsdlCmd(const ASAP_CSDL_CMD csdlCmd);

getCsdlSeqNo
Returns the CSDL sequence number.

Syntax:

ASAP_SEQ_NO getCsdlSeqNo(void) const;

setCsdlSeqNo
Sets the CSDL sequence number.

Syntax:

void setCsdlSeqNo(const ASAP_SEQ_NO csdlSeqNo);

getHostClli
Returns the host_clli name. Ensure the host_clli name does not exceed the length of
the ASAP_CLLI data type. Otherwise, the work order will be rejected.

Syntax:

void getHostClli(ASAP_CLLI& hostClli) const;

setHostClli
Sets the host_clli name. Ensure the host_clli name does not exceed the length of the
ASAP_CLLI data type. Otherwise, the work order will be rejected.

Syntax:

void setHostClli(const ASAP_CLLI hostClli);

ASC_WoLogInfo class
This class defines the information objects for work order log retrieval information. The
work order log information is retrieved from the SARM database row by row, and
parsed into the ASC_WoLogInfo objects. All objects will be inserted to an
ASC_RetrieveInfoSet container object, which will in turn be passed to the user-defined
handler.

Synopsis
class ASC_WoLogInfo : public ASC_RetrieveInfo
{
public:

Chapter 4
C++ SRP API library

4-142

ASC_WoLogInfo(void);
ASAP_DTS getDateTm(void) const;
void getEventType(SRQ_EVENT_TYPE& evtBuf) const;
void getEventText(SRQ_EVENT_TEXT& evtLineBuf) const;
ASAP_SEQ_NO getCsdlSeqNo(void) const;
void getHostClli(ASAP_CLLI& hostClli) const;
void setDateTm(const ASAP_DTS dateTm);
void setEventType(const SRQ_EVENT_TYPE evtBuf);
void setEventText(const SRQ_EVENT_TEXT evtLineBuf);
void setCsdlSeqNo(const ASAP_SEQ_NO csdlSeqNo);
void setHostClli(const ASAP_CLLI hostClli);

}

Public methods
Constructor of the class.

See also ASC_RetrieveRequest, ASC_RetrieveInfo, and ASC_RetrieveInfoSet.

Syntax:

ASC_WoLogInfo(void);

getDateTm
Returns the date and time.

Syntax:

ASAP_DTS getDateTm(void) const;

setDateTm
Sets the date and time.

Syntax:

void setDateTm(const ASAP_DTS dateTm);

getEventType
Returns the event type name. Ensure the type name does not exceed the length of the
SRQ_EVENT_TYPE data type. Otherwise, the work order will be rejected.

Syntax:

void getEventType(SRQ_EVENT_TYPE& evtBuf) const;

setEventType
Sets the event type name. Ensure the type name does not exceed the length of the
SRQ_EVENT_TYPE data type. Otherwise, the work order will be rejected.

Syntax:

void setEventType(const SRQ_EVENT_TYPE evtBuf);

Chapter 4
C++ SRP API library

4-143

getEventText
Returns the event text. Ensure the event text does not exceed the length of the
SRQ_EVENT_TEXT data type. Otherwise, the work order will be rejected.

Syntax:

void getEventText(SRQ_EVENT_TEXT& evtLineBuf) const;

setEventText
Sets the event text. Ensure the event text does not exceed the length of the
SRQ_EVENT_TEXT data type. Otherwise, the work order will be rejected.

Syntax:

void setEventText(const SRQ_EVENT_TEXT evtLineBuf);

getCsdlSeqNo
Returns the CSDL sequence number.

Syntax:

ASAP_SEQ_NO getCsdlSeqNo(void) const;

setCsdlSeqNo
Sets the CSDL sequence number.

Syntax:

void setCsdlSeqNo(const ASAP_SEQ_NO csdlSeqNo);

getHostClli
Returns the host_clli name. Ensure the host_clli name does not exceed the length of
the ASAP_CLLI data type. Otherwise, the work order will be rejected.

Syntax:

void getHostClli(ASAP_CLLI& hostClli) const;

setHostClli
Sets the host_clli name. Ensure the host_clli name does not exceed the length of the
ASAP_CLLI data type. Otherwise, the work order will be rejected.

Syntax:

void setHostClli(const ASAP_CLLI hostClli);

ASC_WoParamInfo class
This class defines the information objects for the retrieval of work order parameter
information. The work order parameter information is retrieved from the SARM
database row by row, and parsed into the ASC_WoParamInfo objects on a one-row-

Chapter 4
C++ SRP API library

4-144

one-object basis. All objects will be inserted to an ASC_RetrieveInfoSet container object,
which will in turn be passed to the user-defined handler.

Synopsis
class ASC_WoParamInfo : public ASC_RetrieveInfo
{
public:

ASC_WoParamInfo(void);
void getParmGrp(ASAP_PARM_GRP& parmGrp) const;
void getParmLbl(ASAP_CSDL_LABEL& parmLbl) const;
void getParmVlu(ASAP_CSDL_VALUE& parmVlu) const;
void getCsdlCmd(ASAP_CSDL_CMD& csdlCmd) const;
ASAP_SEQ_NO getCsdlSeqNo(void) const;
ASAP_CSDL_ID getCsdlId(void) const;
void setParmGrp(const ASAP_PARM_GRP parmGrp);
void setParmLbl (const ASAP_CSDL_LABEL parmLbl);
void setparmVlu(const ASAP_CSDL_VALUE parmVlu);
void setCsdlCmd(const ASAP_CSDL_CMD csdlCmd);
void setCsdlSeqNo(const ASAP_SEQ_NO csdlSeqNo);
void setCsdlId(ASAP_CSDL_ID csdlId);

};

Public methods
Constructor of the class.

See also ASC_RetrieveRequest, ASC_RetrieveInfo, and ASC_RetrieveInfoSet.

Syntax:

ASC_WoParamInfo(void);

getParmGrp
Returns the parameter group name. Ensure the group name does not exceed the length of
the ASAP_PARM_GRP data type. Otherwise, the work order will be rejected.

Syntax:

void getParmGrp(ASAP_PARM_GRP& parmGrp) const;

setParmGrp
Sets the parameter group name. Ensure the group name does not exceed the length of the
ASAP_PARM_GRP data type. Otherwise, the work order will be rejected.

Syntax:

void setParmGrp(const ASAP_PARM_GRP parmGrp);

getParmLbl
Returns the parameter label name. Ensure the label name does not exceed the length of the
ASAP_CSDL_LABEL data type. Otherwise, the work order will be rejected.

Syntax:

Chapter 4
C++ SRP API library

4-145

void getParmLbl(ASAP_CSDL_LABEL& parmLbl) const;

setparmLbl
Sets the parameter label name. Ensure the label name does not exceed the length of
the ASAP_CSDL_LABEL data type. Otherwise, the work order will be rejected.

Syntax:

void setparmLbl(const ASAP_CSDL_LABEL parmLbl);

getParmVlu
Returns the parameter value. Ensure the value does not exceed the length of the
ASAP_CSDL_VALUE data type. Otherwise, the work order will be rejected.

Syntax:

void getParmVlu(ASAP_CSDL_VALUE& parmVlu) const;

setparmVlu
Sets the parameter value. Ensure the value does not exceed the length of the
ASAP_CSDL_VALUE data type. Otherwise, the work order will be rejected.

Syntax:

void setparmVlu(const ASAP_CSDL_VALUE parmVlu);

getCsdlCmd
Returns the CSDL command. Ensure the command does not exceed the length of the
ASAP_CSDL_CMD data type. Otherwise, the work order will be rejected.

Syntax:

void getCsdlCmd(ASAP_CSDL_CMD& csdlCmd) const;

setCsdlCmd
Sets the CSDL command. Ensure the command does not exceed the length of the
ASAP_CSDL_CMD data type. Otherwise, the work order will be rejected.

Syntax:

void setCsdlCmd(const ASAP_CSDL_CMD csdlCmd);

getCsdlSeqNo
Returns the CSDL sequence number.

Syntax:

ASAP_SEQ_NO getCsdlSeqNo(void) const;

setCsdlSeqNo
Sets the CSDL sequence number.

Chapter 4
C++ SRP API library

4-146

Syntax:

void setCsdlSeqNo(const ASAP_SEQ_NO csdlSeqNo);

getCsdlId
Returns the CSDL ID.

Syntax:

ASAP_CSDL_ID getCsdlId(void) const;

setCsdlId
Sets the CSDL ID.

Syntax:

void setCsdlId(ASAP_CSDL_ID csdlId);

ASC_WoRevInfo class
This class defines the information objects for the retrieval information of work order revisions.
The work order revision information is retrieved from the SARM database row by row, and
parsed into the ASC_WoRevInfo objects on a one-row-one-object basis. All objects will be
inserted to an ASC_RetrieveInfoSet container object, which will in turn be passed to the
user-defined handler.

Synopsis
class ASC_WoRevInfo : public ASC_RetrieveInfo
{
public:

ASC_WoRevInfo(void);
CS_CHAR getRevFlag(void) const;
void getLabel(ASAP_CSDL_LABEL& label) const;
void getValue(ASAP_CSDL_VALUE& value) const;
void getCsdlCmd(ASAP_CSDL_CMD& csdlCmd) const;
void getCsdlDesc(ASAP_CSDL_DESC& csdlDesc) const;
ASAP_SEQ_NO getCsdlSeqNo(void) const;
ASAP_SEQ_NO getParmSeqNo(void) const;
void setRevFlag(const CS_CHAR revFlag);
void setLabel(const ASAP_CSDL_LABEL label);
void setValue(const ASAP_CSDL_VALUE value);
void setCsdlCmd(const ASAP_CSDL_CMD csdlCmd);
void setCsdlDesc(const ASAP_CSDL_DESC csdlDesc);
void setCsdlSeqNo(const ASAP_SEQ_NO csdlSeqNo);
void setParmSeqNo(const ASAP_SEQ_NO parmSeqNo);

};

Public methods
Constructor of the class.

See also ASC_RetrieveRequest, ASC_RetrieveInfo, and ASC_RetrieveInfoSet.

Chapter 4
C++ SRP API library

4-147

Syntax:

ASC_WoRevInfo(void);

getRevFlag
Returns the revision flag. The revision flag indicates whether a work order CSDL has
been revised, possible values include ASAP_WO_REVISIONS,
ASAP_WO_NO_REVISIONS.

Syntax:

CS_CHAR getRevFlag(void) const;

setRevFlag
Sets the revision flag. The revision flag indicates whether a work order CSDL has
been revised, possible values include ASAP_WO_REVISIONS,
ASAP_WO_NO_REVISIONS.

Syntax:

void setRevFlag(const CS_CHAR revFlag);

getLabel
Returns the parameter label. Ensure the label name does not exceed the length of the
ASAP_CSDL_LABEL data type. Otherwise, the work order will be rejected.

Syntax:

void getLabel(ASAP_CSDL_LABEL& label) const;

setLabel
Sets the parameter label. Ensure the label name does not exceed the length of the
ASAP_CSDL_LABEL data type. Otherwise, the work order will be rejected.

Syntax:

void setLabel(const ASAP_CSDL_LABEL label);

getValue
Returns the parameter value. Ensure the value does not exceed the length of the
ASAP_CSDL_VALUE data type. Otherwise, the work order will be rejected.

Syntax:

void getValue(ASAP_CSDL_VALUE& value) const;

setValue
Sets the parameter value. Ensure the value does not exceed the length of the
ASAP_CSDL_VALUE data type. Otherwise, the work order will be rejected.

Syntax:

void setValue(const ASAP_CSDL_VALUE value);

Chapter 4
C++ SRP API library

4-148

getCsdlCmd
Returns the CSDL command. Ensure the command does not exceed the length of the
ASAP_CSDL_CMD data type. Otherwise, the work order will be rejected.

Syntax:

void getCsdlCmd(ASAP_CSDL_CMD& csdlCmd) const;

setCsdlCmd
Sets the CSDL command. Ensure the command does not exceed the length of the
ASAP_CSDL_CMD data type. Otherwise, the work order will be rejected.

Syntax:

void setCsdlCmd(const ASAP_CSDL_CMD csdlCmd);

getCsdlDesc
Returns a brief CSDL description. Ensure the description does not exceed the length of the
ASAP_CSDL_DESC data type. Otherwise, the work order will be rejected.

Syntax:

void getCsdlDesc(ASAP_CSDL_DESC& csdlDesc) const;

setCsdlDesc
Sets a brief CSDL description. Ensure the description does not exceed the length of the
ASAP_CSDL_DESC data type. Otherwise, the work order will be rejected.

Syntax:

void setCsdlDesc(const ASAP_CSDL_DESC csdlDesc);

getCsdlSeqNo
Returns the CSDL command sequence number.

Syntax:

ASAP_SEQ_NO getCsdlSeqNo(void) const;

setCsdlSeqNo
Sets the CSDL command sequence number.

Syntax:

void setCsdlSeqNo(const ASAP_SEQ_NO csdlSeqNo);

getParmSeqNo
Get/set the parameter sequence number.

Syntax:

Chapter 4
C++ SRP API library

4-149

ASAP_SEQ_NO getParmSeqNo(void) const;

setParmSeqNo
Get/set the parameter sequence number.

Syntax:

void setParmSeqNo(const ASAP_SEQ_NO parmSeqNo);

ASC_RetrieveInfoSet class
This class defines the container for the information objects described above. An
ASC_RetrieveInfoSet object, which possibly contains zero to multiple information
objects, is passed to the user-defined handler for a particular type of retrieval when the
retrieval is done. You must retrieve the information objects from the
ASC_RetrieveInfoSet object,and process them before returning from the handler.

The C++ SRP API library will delete the ASC_RetrieveInfoSet object and all the
information objects it contains, upon the termination of the user-defined handler. Make
copies if you want to keep the information beyond the lifetime of the handler.

Synopsis
class ASC_RetrieveInfoSet
{
public:
 ASC_RetrieveInfoSet(void)
 : m_iter(retInfoList.begin()) {}
 ~ASC_RetrieveInfoSet(void);
 void goToHead(void);
 int itemCount(void);
 void *goToNext(void);
 void *removeNext(void);
 void *insertItem(void *c);

private:
 std::list<ASC_RetrieveInfo *> retInfoList;
 std::list<ASC_RetrieveInfo *>::iterator m_iter;
 int current_position;
};

Public methods
Constructor of the class.

See also ASC_RetrieveRequest, ASC_CsdlListInfo, ASC_CsdlLogInfo,
ASC_WoLogInfo, ASC_WoParamInfo, ASC_WoRevInfo, and ASC_RetrieveInfo.

Syntax:

ASC_RetrieveInfoSet(void);

goToHead
This method resets the retrieval pointer to the starting status.

void goToHead(void);

Chapter 4
C++ SRP API library

4-150

itemCount
This method returns the number of items in the container.

Syntax:

int itemCount(void);

goToNext
This method moves the retrieval pointer to the next item and returns it. The returned item is
not removed from the list. NULL will be returned if the end of the list is reached.

Syntax:

void *goToNext(void);

removeNext
This method removes the next item from the list and returns it. If the end of the list is reached,
it will return NULL. If you remove an information object from the container, you must delete
this object.

Syntax:

void *removeNext(void);

insertItem
This method inserts an item into the container. If the equivalent is already in, the new one will
not be inserted and the old one is returned.

Syntax:

void *insertItem(void *c);

ASC_RetrieveRequest class
This class is used to construct retrieval requests to the SARM databases. Whenever you
need to retrieve the persistent data (for example, work order logs, revisions, parameters,
and/or CSDL logs, lists, parameters, and/or SRP event handler listening port) or rebuild a
work order from the SARM database, a request object of this class type should be created.

The class provides five default (do nothing) processing functions for retrieval types of CSDL
list, CSDL logs, work order parameters, work order revisions, and work order logs,
respectively.

Create a subclass from this class and override these processing functions if you would like to
handle the retrieval results with your own logic.

There are no virtual processing functions defined for rebuilding work order objects and
retrieving the SRP event handler listen port, because a request object directly populates the
work order object passed to it, and copies the port number (string) to the user-supplied buffer.

Synopsis
class ASC_WoRetrieveRequest : public Diagnosis

Chapter 4
C++ SRP API library

4-151

// DESC: This class is used to construct a retrieval request and then
// fire the request down.

{
public:

// For WO_REVS, CSDL_LIST, REBUILD_WO.
ASC_WoRetrieveRequest(const ASAP_WO_ID woId,
const CS_INT retrieveType);

// For WO_PARAM.
ASC_WoRetrieveRequest(const ASAP_WO_ID woId,
const ASAP_CSDL_LABEL label, const ASAP_PARM_GRP group);

// For WO_LOG.
ASC_WoRetrieveRequest(const ASAP_WO_ID woId,
const SRQ_EVENT_TYPE srqEvt, const CS_BOOL neRespLineByLine);

// For CSDL_LOG.
ASC_WoRetrieveRequest(const ASAP_WO_ID woId,
const SRQ_EVENT_TYPE logType, const ASAP_CSDL_ID csdlId,
const CS_BOOL neRespLineByLine);

// For SRP PORT Retrieval.
ASC_WoRetrieveRequest(void) {}

// Following functions are used by ASC_WoRetrieveInterface.

CS_INT getRetrieveType(void) const;
void getWoId(ASAP_WO_ID& woId) const;
void getLogType(SRQ_EVENT_TYPE& logType) const;
ASAP_CSDL_ID getCsdlId(void) const;
CS_BOOL getNeRespLineByLine(void) const;
void getSrqEvt(SRQ_EVENT_TYPE& srqEvt) const;
void getLabel(ASAP_CSDL_LABEL& label) const;
void getGroup(ASAP_PARM_GRP& group) const;
CS_RETCODE retrieve(void);
CS_RETCODE rebuildWo(SRP_WO *wo);
CS_RETCODE getMyPort(char *srpId, SRP_PORT_NUM& port) const;

virtual void csdlListProcessFn(ASC_RetrieveInfoSet *) {}
virtual void csdlLogProcessFn(ASC_RetrieveInfoSet *) {}
virtual void woLogProcessFn(ASC_RetrieveInfoSet *) {}
virtual void woParamProcessFn(ASC_RetrieveInfoSet *) {}
virtual void woRevProcessFn(ASC_RetrieveInfoSet *) {}

};

Public methods
Constructor for types of work order revision, CSDL list, and rebuilding work order.

See also ASC_RetrieveInfoSet, ASC_CsdlListInfo, ASC_CsdlLogInfo,
ASC_WoLogInfo, ASC_WoParamInfo, ASC_WoRevInfo, and ASC_RetrieveInfo.

ASC_WoRetrieveRequest(const ASAP_WO_ID woId, const CS_INT retrieveType);

Constructor for work order parameter retrieval type.

ASC_WoRetrieveRequest(const ASAP_WO_ID woId, const ASAP_CSDL_LABEL label, const
ASAP_PARM_GRP group);

Chapter 4
C++ SRP API library

4-152

Constructor for work order log retrieval type.

ASC_WoRetrieveRequest(const ASAP_WO_ID woId, const SRQ_EVENT_TYPE srqEvt, const
CS_BOOL neRespLineByLine);

Constructor for CSDL log retrieval type.

ASC_WoRetrieveRequest(const ASAP_WO_ID woId, const SRQ_EVENT_TYPE logType, const
ASAP_CSDL_ID csdlId, const CS_BOOL neRespLineByLine);

Constructor for retrieving SRP listen-port.

ASC_WoRetrieveRequest(void);

getRetrieveType
Get the retrieval type of the object.

Syntax:

CS_INT getRetrieveType(void) const;

getUserData
Get user-defined data from the object.

Syntax:

VOIDPTR getUserData(void) const;

getWoId
Get the work order ID from the object.

Syntax:

void getWoId(ASAP_WO_ID& woId) const;

getLogType
Get the log type of the request.

Syntax:

void getLogType(SRQ_EVENT_TYPE& logType) const;

getCsdlId
Get the CSDL ID recorded by the object.

Syntax:

ASAP_CSDL_ID getCsdlId(void) const;

getNeRespLineByLine
Get the flag for whether one-object-one-line mode should be used for CSDL or work order log
retrievals.

Chapter 4
C++ SRP API library

4-153

Syntax:

CS_BOOL getNeRespLineByLine(void) const;

getSrqEvt
Get the retrieval event type for the request.

Syntax:

void getSrqEvt(SRQ_EVENT_TYPE& srqEvt) const;

getLabel
Get the parameter label.

Syntax:

void getLabel(ASAP_CSDL_LABEL& label) const;

getGroup
Get the group name for the work order parameter retrieval.

Syntax:

void getGroup(ASAP_PARM_GRP& group) const;

retrieve
Start up the retrieval (of type WO_REVS, CSDL_LIST, CSDL_LOG, WO_LOG,
WO_PARAM) defined by the object. The function will return CS_SUCCEEDon
successfully completing the retrieval; otherwise it will return CS_FAIL.

Syntax:

CS_RETCODE retrieve(void);

rebuildWo
Start up to rebuild a work order object. The input argument is a pointer to the work
order skeketon object. Upon successful completion, the function returns
CS_SUCCEED. The work order object has been populated with all the attributes,
global parameters, and CSDLs and their parameters.

Syntax:

CS_RETCODE rebuildWo(SRP_WO *wo);

getMyPort
Get the SRP event handler's listen port number from the SARM database. If
successful, CS_SUCCEED will be returned with the argument port populated with the
port number (string). If the retrieval is not successful, CS_FAIL will be returned and
port will have a value of “0".

Syntax:

Chapter 4
C++ SRP API library

4-154

CS_RETCODE getMyPort(char *srpId, SRP_PORT_NUM& port) const; virtual void
csdlListProcessFn(ASC_RetrieveInfoSet *); virtual void
csdlLogProcessFn(ASC_RetrieveInfoSet *); virtual void
woLogProcessFn(ASC_RetrieveInfoSet *); virtual void
woParamProcessFn(ASC_RetrieveInfoSet *); virtual void
woRevProcessFn(ASC_RetrieveInfoSet *);

Retrieval results in processing functions for CSDL list, CSDL log, work order log, work order
parameter, and work order revision retrievals, respectively. No action is defined in any of
these functions. You should subclass this class to provide your own processing functions.

You should not delete the ASC_RetrieveInfoSet object passed to a processing function and
any information objects contained in the ASC_RetrieveInfoSet object.

Note:

You should make your own copy of this information if you want to keep the
information stored in an object beyond the lifetime of the processing function.

Chapter 4
C++ SRP API library

4-155

5
Downstream Interfaces

This chapter describes the following downstream interfaces:

• NEP library

• Protocol-specific libraries

• External device driver

• Action functions

NEP library
If the customized NEP has links to the Communication library, you will only need to define the
CMD_com_init() function, since libasccomm has the CMP_connect_port() and
CMD_disconnect_port() API calls.

This chapter defines the base requirements of the command processor. These base
requirements include the mandatory functions required by the NEP core system to generate a
customized NEP server. The required functions are listed in this chapter with their appropriate
prototypes and brief descriptions.

The NEP Library contains the following functions:

• ASC_loadCommParams: Returns the list of communication parameters for the specified
device type, host, and device.

• CMD_comm_init: Initializes the communications interface library.

• CMD_connect_port: Opens the connection to the device specified by the port
information structure.

• CMD_disconnect_port: Closes the connection to the device specified by the port
information structure.

NEP library functions
This section details all the functions (in alphabetical order) in the NEP Library.

ASC_loadCommParams
This function returns the list of communication parameters for the specified device type, host,
and device.

Syntax:

CS_RETCODE ASC_loadCommParams(CS_CHAR devType, const CS_CHAR *clli, const CS_CHAR
*device, COMM_PARAM_ST **commParams))

Arguments:

• devType: The type of device to load the parameters.

5-1

• clli: The host clli to load the parameters.

• device: The device ID to load the parameters.

• commParams: This is a pointer to the created list of communications parameters.
Upon failure, or if there are no communications parameters, commParams is set to
0.

Return Values:

• CS_SUCCEED: Operation was successful.

• CS_FAIL: Operation failed.

CMD_comm_init
This function initializes the communications interface library. When interface-specific
State Table actions are required by the NEP, you use this function to register the
actions with CMD_user_actions.

This function is only required if you are using the ASC communication interface. In
other words, if you are building your own communication interface, this function is not
required.

For more information on CMD_user_actions, refer to "CMD_user_actions."

Syntax:

CS_RETCODE CMD_comm_init(void)

Return Values:

• CS_SUCCEED: Initialization of the NEP was successful.

• CS_FAIL: Initialization failed.

CMD_connect_port
This function opens the connection to the device specified by the port information
structure. It registers an association between the command processor initiating the
connect and the device. This function is supplied by the NEP application. However, if
the NEP application links to libasccomm, the custom NEP does not need to define this
function.

Syntax:

CS_RETCODE CMD_connect_port(CMD_PORT_INFO *port)

Arguments:

• port: Pointer to the port information data structure.

Return Values:

• CS_SUCCEED: Connection was successful.

• CS_FAIL: Connection attempt failed.

Chapter 5
NEP library

5-2

CMD_disconnect_port
This function closes the connection to the device specified by the port information structure.
This function is supplied by the NEP application. However, if the NEP application links to
libasccomm, the custom NEP does not need to define this function.

Syntax:

CS_RETCODE CMD_disconnect_port(CMD_PORT_INFO *port, SRV_OBJID cmd_qid)

Arguments:

• port: Pointer to the port information data structure.

• qid: Auxiliary command processor message queue ID.

NEP configuration
The interface to the static configuration database tables uses a function-based interface
instead of SQL insert scripts. The function-based interface reduces the dependency between
administrators who configure the system and product developers who need to make changes
to the static tables to support new functionality.

This section lists the descriptions, parameters, and results for the NEP configuration actions.
It includes the delete, list, and new procedures interface definitions.

NEP_add_feat
This function maps generic feature names to the feature name for the switch in
tbl_march_feat.

Table 5-1 NEP_add_feat Parameters

Name Description Req'd (I)nput/
(O)utput

generic_feat The generic feature name. Yes I

tech The technology type of the NE or SRP with which the
Interpreter is to interact.

Yes I

switch_feat The switch feature name. Yes I

NEP_add_parm
This function adds a provisioning parameter to the NEP database (tbl_march_rpm).

Chapter 5
NEP library

5-3

Table 5-2 NEP_add_parm Parameters

Name Description Req'd (I)nput/
(O)utput

type The type of message formatting. Possible values
include:

• H: host parameters
• HN: host/nxx parameters
• HU: host/usoc parameters
• HUN:host/usoc/nxx parameters
• HF: host/feature parameters
• HP: host

Yes I

mcli The host network element. Yes I

nxx The Central Office code. Yes I

usoc The Universal Service Order Code. No I

feat The switch feature name (this is not the generic
feature name).

No I

lcc The line class code. No I

pname The parameter name. When the type is HP,
RCCF, or NACT then this parameter is the USO
PIC, remote activation CCF, or no activation
CCF, respectively.

Yes I

NEP_del_feat
This function deletes a mapping from a generic feature name to the feature name for a
switch type from tbl_march_feat.

If you invoke the procedure without any parameters, all rows in the database table are
deleted.

Table 5-3 NEP_del_feat Parameters

Name Description Req'd (I)nput/
(O)utput

generic_feat The generic feature name. No I

tech The technology type of the NE or SRP
with which the Interpreter is to interact.

No I

switch_feat The switch feature name. No I

NEP_del_parm
This function deletes provisioning parameter(s) from tbl_march_rpm.

If you invoke the function without any parameters, all the rows in the database table
are deleted.

To delete all USOC parameters for all hosts, the following command can be used:

NEP_del_parm type = HU.

Chapter 5
NEP library

5-4

Table 5-4 NEP_del_parm Parameters

Name Description Req'd (I)nput/
(O)utput

type The type of message formatting. Possible values:

• H: host parameters
• HN: host/nxx parameters
• HU: host/usoc parameters
• HUN:host/usoc/nxx parameters
• HF: host/feature parameters
• HP: host pic conversion
• HUL: host/usoc/lcc parameters
• HUNL: host/usoc/nxx/lcc

No I

mcli The host network element. No I

nxx The Central Office code. No I

usoc The Universal Service Order Code. No I

feat The switch feature name (this is not the generic
feature name).

No I

lcc The line class code. No I

pname The parameter name. Note that when type is HP,
RCCF, or NACT then this parameter is the USO PIC,
remote activation CCF, or no activation CCF,
respectively.

No I

NEP_show_feat
This function displays the mapping of generic feature names to switch feature names based
upon switch type. This information is contained in tbl_march_feat.

If you invoke the procedure without any arguments, all mapping records are displayed.

Table 5-5 NEP_show_feat Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 Oracle Database Ref Cursor. Yes I/O

RC2 Oracle Database Ref Cursor. Yes I/O

generic_feat The generic feature name. No I

tech The technology type of the NE or SRP with
which the Interpreter is to interact.

No I

Table 5-6 NEP_show_feat Results

Name Datatype Description

generic_feat TYP_feat The generic feature name.

tech TYP_swtype The technology type of the NE or SRP with which the
Interpreter is to interact.

Chapter 5
NEP library

5-5

Table 5-6 (Cont.) NEP_show_feat Results

Name Datatype Description

switch_feat TYP_feat The switch feature name.

generic_feat TYP_feat The generic feature name.

tech TYP_swtype The technology type of the NE or SRP with which the
Interpreter is to interact.

switch_feat TYP_feat The switch feature name.

NEP_show_parm
This function is used to show provisioning parameter(s) contained in tbl_march_rpm.

If you invoke the function without any arguments, all the provisioning parameters are
displayed. To show all USOC parameters for all hosts, use the following command:

NEP_show_parm type = "HU"

Table 5-7 NEP_show_parm Parameters

Name Description Req'd (I)nput/
(O)utput

RC1 to RC8 Oracle Database Ref Cursor. Yes I/O

type The type of message formatting. Possible values:

• H: host parameters
• HN: host/nxx parameters
• HU: host/usoc parameters
• HUN:host/usoc/nxx parameters
• HF: host/feature parameters
• HP: host pic conversion
• HUL: host/usoc/lcc parameters
• HUNL: host/usoc/nxx/lcc

No I

mcli The host network element. No I

nxx The Central Office code. No I

usoc The Universal Service Order Code. No I

feat The switch feature name (this is not the generic
feature name).

No I

lcc The line class code. No I

pname The parameter name. Note that when type is HP,
RCCF, or NACT then this parameter is the USO
PIC, remote activation CCF, or no activation CCF,
respectively.

No I

Table 5-8 NEP_show_parm Results

Name Datatype Description

host_clli TYP_clli The host CLLI.

Chapter 5
NEP library

5-6

Table 5-8 (Cont.) NEP_show_parm Results

Name Datatype Description

nxx TYP_nxx The Central Office code.

usoc TYP_usoc The Universal Service Order Code.

feat TYP_feat The switch feature name.

lcc TYP_lcc The line class code.

param_lbl TYP_name The parameter name.

param_vlu TYP_value The parameter value.

host_clli TYP_clli The host CLLI.

param_lbl TYP_name The parameter name.

param_vlu TYP_value The parameter value.

host_clli TYP_clli The host CLLI.

nxx TYP_nxx The Central Office code.

param_lbl TYP_name The parameter name.

param_vlu TYP_value The parameter value.

host_clli TYP_clli The host CLLI.

param_lbl TYP_name The parameter name.

param_vlu TYP_value The parameter value.

host_clli TYP_clli The host CLLI.

nxx TYP_nxx The Central Office code.

usoc TYP_usoc The Universal Service Order Code.

param_lbl TYP_name The parameter name.

param_vlu TYP_value The parameter value.

host_clli TYP_clli The host CLLI.

feat TYP_feat The switch feature name.

param_lbl TYP_name The parameter name.

param_vlu TYP_value The parameter value.

host_clli TYP_clli The host CLLI.

usoc TYP_usoc The Universal Service Order Code.

lcc TYP_lcc The line class code.

param_lbl TYP_name The parameter name.

param_vlu TYP_value The parameter value.

host_clli TYP_clli The host CLLI.

nxx TYP_nxx The Central Office code.

usoc TYP_usoc The Universal Service Order Code.

lcc TYP_lcc The line class code.

param_lbl TYP_name The parameter name.

param_vlu TYP_value The parameter value.

Chapter 5
NEP library

5-7

NEP administration
This section lists NEP administration functions.

RPC screen_dump
This function dumps the virtual screen for the specified port to a file.

Syntax:

screen_dump @device, @filename

Table 5-9 RPC screen_dump Parameters

Name Description Req'd (I)nput/
(O)utput

@device The name of the device (port) from the
table tbl_resource_pool of $SARM_DB

Yes I

@filename The name of the file to direct the virtual
screen content.

Yes I

RPC screen_enable
This function enables the tbl_resource_pool to dump data from the virtual screen,
assigned to each device (port), into the specified file. If the file already exists, the data
shall be appended to the file.

This RPC shall be useful during testing and debugging of devices.

Note:

You must ensure that sufficient space is available on the file systems.
Depending on the switch technology, the virtual screen outputs can be quite
bulky, with potential to overflow the file storage resources quickly. For this
reason, this RPC should only be used for testing or debugging, and not for
prolonged periods of time.

Syntax:

screen_enable @device, @filename

Table 5-10 RPC screen_enable Parameters

Name Description Req'd (I)nput/
(O)utput

@device The name of the device (port) from the
table tbl_resource_pool of $SARM_DB

Yes I

@filename The name of the file to direct the virtual
screen content.

Yes I

Chapter 5
NEP library

5-8

RPC screen_disable
This function disables continuous dumping of the virtual screen diagnostics, enabled by RPC
screen_enable, into the file.

Syntax:

screen_disable @device

Table 5-11 RPC screen_disable Parameters

Name Description Req'd (I)nput/
(O)utput

@device The name of the device (port) from the
table tbl_resource_pool of $SARM_DB

Yes I

RPC line_enable
This function enables a continuous line diagnostics dump of the specified device (port), from
the tbl_resource_pool of $SARM_DB.

Note:

You must ensure that sufficient space is available on the file systems. Depending on
the switch technology, the virtual screen outputs can be quite bulky, with potential to
overflow the file storage resources quickly. For this reason, this RPC should only be
used for testing or debugging, and not for prolonged periods of time.

Syntax:

line_enable @device, @filename

Table 5-12 RPC line_enable Parameters

Name Description Req'd (I)nput/
(O)utput

@device The name of the device (port) from the
table tbl_resource_pool of $SARM_DB

Yes I

@filename The name of the file to direct the dump
content.

Yes I

RPC line_disable
This function disables the line diagnostics dump of the specified device (port), from the
tbl_resource_pool of $SARM_DB.

Syntax:

line_disable @device

Chapter 5
NEP library

5-9

Table 5-13 RPC line_disable Parameters

Name Description Req'd (I)nput/
(O)utput

@device The name of the device (port) from the
table tbl_resource_pool of $SARM_DB

Yes I

RPC edd_diag
This function allows the External Device Driver (EDD) to dump data of the specified
debugging type into the file. Depending on EDD implementation, the requested output
can overwrite the file or append to the file.

Syntax:

edd_diag @device, @filename, @type

Table 5-14 RPC edd_diag Parameters

Name Description Req'd (I)nput/
(O)utput

@device The name of the device (port) from the
table tbl_resource_pool of $SARM_DB

Yes I

@filename The name of the file to direct the content of
the diagnostics.

Yes I

@type Debugging data type. Possible values are:

• start_dump
• stop_dump
• dump_info
• start_dump_all
• stop_dump_all

Yes I

RPC enable
This function allows an administrative enabling (setting) of the device (port), from
tbl_resource_pool of $SARM_DB.

Syntax:

enable @device

Table 5-15 RPC enable Parameters

Name Description Req'd (I)nput/
(O)utput

@device The name of the device (port) from the table
tbl_resource_pool of $SARM_DB

Yes I

Chapter 5
NEP library

5-10

RPC disable
This function allows an administrative disabling of the device (port), from tbl_resource_pool
of $SARM_DB. For the device (port) in the connected state, the disconnection is issued.

Syntax:

disable @device

Table 5-16 RPC disable Parameters

Name Description Req'd (I)nput/
(O)utput

@device The name of the device (port) from the table
tbl_resource_pool of $SARM_DB

Yes I

Switch configuration library
The following section provides details on the interface for the Switch Configuration library.
There are no global variables or inline functions for this library.

ASC_libnecfg_init
This function initializes the Switch Configuration library. Currently, this function adds support
for March, DMS, and blackout-related functions. This routine must be called from the
CMD_comm_init() function in the custom NEP application. For more information on
CMD_comm_init, see "CMD_comm_init."

Syntax:

CS_RETCODE ASC_libnecfg_init(void)

Return Values:

• CS_SUCCEED: Switch configuration library was successfully initialized.

• CS_FAIL: Initialization has failed. The NEP server diagnostics recognize the problem.

Protocol-specific libraries
This section describes the TL1 library used by the NEP.

The ASAP State Tables provide a means for provisioning network elements using
Transaction Language 1 (TL1) Interface. ASAP enhances the TL1 support capability by
providing action functions to simplify State Table programming. The following information on
TLI is included:

• Design Assumptions

• Functional Architecture

• Technical Architecture

• TL1 State Table API

• TL1 State Table Action Examples

Chapter 5
Protocol-specific libraries

5-11

Note:

Enhanced Transaction Language 1 (TL1) conforms to Bellcore standard,
version TR-NWT-000831, Issue 3.

Design assumptions
The development of new action functions is based on the following assumptions:

• TL1 implemented by the NE vendor conforms with Bellcore TR-NWT-000831.

• Provisioning using TL1 may be established over several different communication
protocols, including: modem dial-up line, RS232 serial line, X.25, etc. Besides
currently supported dial-up line, RS232 serial line, AIX X.25 interface and TCP/IP
Telnet, ASAP will support an X.25 interface on SUN Solaris.

• X.25 PAD connection is not supported.

• ASAP supports command line interface of TL1 on NEs, but not menu or GUI
interface.

• Autonomous messages are not supported.

Functional architecture
The TL1 language structure consists of input and output messages that are described
by functional parameter blocks and parameters in those blocks. Although current core
ASAP action functions support the TL1 language, ASAP provides an additional set of
actions to simplify the utilization of TL1 in State Tables.

TL1 support in ASAP is provided in the NEP through TL1 action functions that address
the issues described in the following sections.

Building message block
A TL1 action automatically inserts ASDL parameters (more precisely State Table
variables) into the corresponding blocks of a TL1 input message, according to the
prefix of the parameters. The dot notion is used to specify the prefix. For example,
BLK_A.OE denotes that the parameter OE is in the block BLK_A. While ASAP
provides default names for a block, these default names can be overridden in the
State Table programs.

If there is no parameter for an optional block, an empty block is formed by the action
function.

Parameter handling
The TL1 action constructs a parameter block with name-defined parameters. The
exception is in the case of a block that allows only position-defined parameters, for
instance, Target Identifier Block.

Chapter 5
Protocol-specific libraries

5-12

Submit TL1 input message
Once a TL1 input message is constructed, you invoke a TL1 process action to trigger the NE
to process the message. The process action blocks the State Table until all output messages
are received or a time-out occurs. When the action times out, it aborts the process.

Processing output message
Some TL1 output messages are machine-parsable. TL1 actions can access TL1 output
message blocks.

A parser parses both name-defined parameters and position-defined parameters of output
messages. Parsed parameters are saved as State Table variables with either parameter
names or position identifiers. You can then access output data items directly through State
Table variables.

Technical architecture
TL1 support in ASAP is provided in the NEP through a State Table program executed in a
thread. The technical implementation of TL1 support consists of a set of action functions and
a parser.

Action functions are implemented using current ASAP libraries that provide the basic building
blocks for action functions.

TL1 support constructs TL1 input messages using name-defined parameters wherever valid
(based on the Bellcore definition). This method is used because of its suitability for machine-
to-machine interfaces.

The parser is a new layer built on the top of the ASAP communication unit: multiple protocol
manager that is transparent to all communication protocols. This plug and play layer ensures
that the NEP is fully backward-compatible.

TL1 actions interface with an NE in an interactive mode. Typically, it sends a command to a
network element and waits for responses. In addition to this synchronous processing of each
State Table program, ASAP processes more than one State Table program simultaneously
through multiple connections to network elements.

TL1 State Table API
ASAP provides a set of actions to help implement TL1 in ASAP State Tables. If the TL1
language provided by the NEs does not fully conform with TR-NWT-000831, this set of “TL1-
Convenient" actions cannot be used; generic actions provided by ASAP must be used
instead.

In State Table programming, there is a significant difference in the handling of input and
output messages from TL1. These differences are described below. This section frequently
references TL1 language syntax defined in TR-NWT-000831. For more detailed information,
please refer to TR-NWT-000831 itself.

A sample of the characters used in TR-NWT-000831 is shown below to describe the TL1
language syntax.

• <> – Encloses a symbol specifier.

• [] – Encloses an optional symbol.

Chapter 5
Protocol-specific libraries

5-13

• () – Encloses a group of symbols for the following operators.

• * – Is a postfix operator meaning that the preceding symbol or group of symbols
can occur zero or more times.

• ^ – Indicates a space.

• + – Is a postfix operator meaning that the preceding symbol or group of symbols
can occur one or more times.

• | – Is the infix operator meaning that either the preceding or succeeding symbol
can occur, but not both in succession.

Input messages
The TL1 input message has the following format:

<command_code>:<staging_parameter_block>:<message_payload_block(s)>;

where staging_parameter_blocks contains:

:[<target identifier>]:[<access identifier(s)>]:
<correlation tag>:[<general block>]:

and message_payload_block(s) contains zero or many data blocks.

Parameters in each block can be parameters that are defined by position or name
depending on the rule of blocks or your defined preference. The following provides
examples of these two types of parameters in a block.

Position-defined parameters:

:123, ON, abc:

Name-defined parameters:

:P1=123, P2=ON, P3=abc:

Block name
To automatically insert parameters into the correct block when constructing a TL1
message, pre-agreed block names are used. ASAP internally keeps default block
names, but you can choose block names by overriding the defaults in the State Table
programs. To override default block names, pass new block names as arguments to
the TL1 action. The following block names can be modified:

Table 5-17 TL1 Block Names

TL1 Blocks Default Block Base
Name

<general block> TL1_GB

<message payload block(s)>. Since this block can have many
occurrences, an array identifier [n] is appended to the base name
forming the block name. For example, the base name is TL1_MSG,
then you can have TL1_MSG[1], TL1_MSG[2], TL1_MSG[3], etc.

TL1_MSG

Chapter 5
Protocol-specific libraries

5-14

For all parameters in <general block> block, the parameters can have names such as
TL1_GB. ON, TL1_GB.DATE, etc. To put the parameter LINE into the first <message payload
block>, the parameter is TL1_MSG[1].LINE.

If there is no parameter found for a certain block, the action constructs an empty block or
returns an error if it is a mandatory block.

The message payload block must be in sequence. The action function stops adding message
blocks into a TL1 message whenever there are no remaining parameters for that block. If
there are no parameters for <message payload block> two, TL1_MSG[2], the action function
will not append TL1_MSG[3] even if there are parameters for it.

Some vendors add blocks (not in conformity with the recommendation), but do not use them,
so that empty blocks are required. To do this, it is necessary to create dummy parameters to
generate empty message payload blocks.

Parameter name
A variable name must have a block name and a TL1 parameter name. The TL1 action strips
off the block name before it constructs a block. The TL1 parameter name is the name that is
inserted into the corresponding block.

For example, in the block TL1_MSG[1] there are three parameters:

:OC=OC3, GOS=COT_GOS4, PST=OOS:

You must have the State Table variables TL1_MSG[1].OC=OC3,
TL1_MSG[1].GOS=COT_GOS4, and TL1_MSG[1].PST=OOS.

Output messages
TL1 acknowledgments consists of <acknowledgment code> and <ctag> and the TL1
response consists of a response header, an identification portion, and a text block.

<header> <response identification> [<text block>] <terminator>

where the following formats apply:

Header

<cr><lf><lf>^^^<sid>^<year>-<month>-
<day>^<hour>:<minute>:<second>

Response Identifier

<cr><lf>M^^<ctag>^<completion code>

Text Block

((<cr><lf>^^^<unquoted line>)|(<cr><lf>^^^<quoted line>)|(<cr><lf>^^^<comment>))*

TL1 actions provide the means to process TL1 output messages. The messages are
automatically parsed and stored in State Table variables. ASAP provides default base names
for the variables, but they can be overridden in State Table programs. An identifier is used as
a sub-name to further identify data items in the block. The following table lists the base
names and identifiers.

Chapter 5
Protocol-specific libraries

5-15

Table 5-18 TL1 Base Names and Identifiers

Default Base
Name

Identifier Description

TL1_ACK CODE

CTAG

<acknowledgment code>

<ctag>

TL1_HDR SID

DATE

TIME

<sid> in <header>

<year>-<month>-<day> in <header>

<hour>:<minute>:<second> in <header>

TL1_RESP_ID CODE

CTAG

<completion code> in <response identification>

<ctag> in <response identification>

TL1_QUOTED TL1 Block B[i]
and Parameter
Name or P[m]

<quoted line> in <text block>

The block inside <quoted line> is identified as the
position block, so the first block is B[1], the second is
B[2] etc.

Since this block can appear many times, [n] is
appended to the base name. For example:

name-defined: TL1_QUOTED[1].B[1].id

position-defined: TL1_QUOTED[1].B[2].P[1]

TL1_UNQUOTED TL1 Block B[i]
and Parameter
Name or P[m]

<unquoted line> in <text block>

If it is a name-defined parameter, the parameter
name is used as the identifier. If it is a position-
defined parameter, P[m] is used, where m identifies
the position.

The block inside <quoted line> is identified as the
position block, so the first block is B[1], the second is
B[2] and so on.

Since this block may appear many times, [n] is
appended to the base name.For example:

name-defined: TL1_QUOTED[1].B[1].id

position-defined: TL1_QUOTED[1].B[2].P[1]

TL1_COMMENT not applicable <comment> in <text block>

Since this block may appear many times, [n] is
appended to the base name.

All variables that save parsed data items have the format base_name.identifier. The
exception is TL1_COMMENT.

For example, TL1_ACK.CODE=IP. TL1_QUOTED, TL1_UNQUOTED, and
TL1_COMMENT can appear zero or more times. Therefore an array identifier [n] is
appended to base name forming a block name. For example,
TL1_UNQUOTED[2].B[1].P[3]=5 means that 5 is the third parameter of the first block
in the second <unquoted line> block.

An array index [i] is appended to the base name, block and position-defined parameter
even if there is only one occurrence of the item. For example, if there is only one block
in <unquoted line>, B[1] is used.

After a variable is assigned, you can access it in the same way as other State Table
variables.

Chapter 5
Protocol-specific libraries

5-16

TL1 State Table action functions
TL1 action functions allow you to use fewer actions to implement TL1 in State Tables only.
Normally, several general action calls and more sophisticated programming techniques are
required, especially when parsing TL1 output messages. The actions provided are:

• TL1_BUILD_MSG

• TL1_PROCESS_MSG

• TL1_BUILD_TSN

TL1_BUILD_MSG
The TL1_BUILD_MSG action is used to construct a TL1 message from State Table variables.

See also TL1_PROCESS_MSG, BUILD_STRUCT.

This action constructs a TL1 message using state table variables.

• MSG_ID – Used to save the identifier of the input message

• %CMD – TL1 command code

• %TID – TL1 target identifier

• %AID – Access identifier

• %CTAG – TL1 correlation tag

• %TID – Optional argument

The following optional arguments are used to override default block base names. If changed,
they both must be changed.

The default base names are:

• TL1_GB – General block

• TL1_MSG – Message payload block(s)

Upon invocation, the TL1_BUILD_MSG action function finds the variables matching the
prefix block names among all state table variables. The matching parameters are then
inserted into the corresponding blocks.

Since message payload block(s) can appear more than once, an array identifier is appended
to the base. This identifier forms the block name. For example, TL1_MSG[1] identifies the
first base name, TL1_MSG[2] identifies the second, and so on.

The action function searches for matching base name parameters until there is no match for
that array number. For example, if there is a parameter TL1_MSG[1].name and
TL1_MSG[3].value, only the name parameter is added.

Colons in the action syntax are action delimiters and do not pertain to TL1 block delimiters.
The arguments in the last square bracket are the base names used to replace default base
names; however, the arguments before it are the data which is inserted into the TL1 input
message.

TL1_PROCESS_MSG is used to send this input message to the NE and then retrieve the
resulting TL1 output message.

Errors:

Chapter 5
Protocol-specific libraries

5-17

State Table program execution ends in failure if you do not provide correct information.
You must provide a command and a CTAG. Both the TID and AID are optional,
however, the colons between them are not.

Syntax:

TL1_BUILD_MSG ‘MSG_ID=%CMD:[%TID]:[%AID]:%CTAG [: %GB_BASE:%MSG_BASE]'

Example:

The following example displays OC and PST going into the first message payload
block. You must first construct parameters:

TL1_MSG[1].OC=OC3 and TL1_MSG[1].PST=OOS

The following example displays a portion of a State Table program using the action:

Construct a message using saved values for AID, TID and inputted values for
command and CTAG. Default base names for general block and message block will be
used.
...
1000 TL1_BUILD_MSG ‘%MSG_1=UPDATE:%TID:%AID: C10-10'
Trigger the NE to process message and wait 60 seconds for output message
before it times out

1100 TL1_PROCESS_MSG ‘%MSG_1' 60
...

TL1_PROCESS_MSG
The TL1_PROCESS_MSG action sends the target NE a TL1 input message and then
processes the output message.

This action must be used only after a message is constructed with TL1_BUILD_MSG,
otherwise it may cause a failure of the program.

Once the output message is received, the message is parsed and information is stored
in state table variables. The variable names consist of two parts: base name and
identifier. The action provides default base names for variables, but you can change
base names through variable or constant arguments presented in square brackets. If
you are changing base names, you must either change all of them or none of them.

Each type of argument exhibits different behavior. Variable arguments represent State
Table parameters. Constant arguments are static parameters that have no external
reference.

Variable Argument:

2030 CONCAT '%TEST1=LABEL1'
2050 CONCAT '%TEST2=LABEL2'
2080 CONCAT '%TEST3=LABEL3'
2100 CONCAT '%TEST4=LABEL4'
2130 CONCAT '%TEST5=LABEL5'
2140 CONCAT '%TEST6=LABEL6'
3000 TL1_PROCESS_MSG '%MSG1=%TEST1:%TEST2:%TEST3:%TEST4:%TEST5:%TEST6' 60

Constant Argument:

3000 TL1_PROCESS_MSG '%MSG1=LABEL1:LABEL2:LABEL3:LABEL4:LABEL5:LABEL6' 60

Chapter 5
Protocol-specific libraries

5-18

Although they demonstrate different approaches, both examples have the same end result:
the change of a base name. The base names as shown in both examples change to LABEL1
through LABEL6.

For example, if you want to change the default base names when storing the TL1 output
message values, you would set up the State Table as follows:

1000 CONCAT '%ACK=AAA'
1100 CONCAT '%HDR=HHH'
1200 CONCAT '%RESP=RRR'
1500 TL1_PROCESS_MSG'%MSG1=%ACK:%HDR:%RESP:QUOTED:UNQUOTED:COMMENT'

When storing the output message values, the following values are valid:

• Ack message – AAA.CODE

• Header message – HHH.SID

• Response message – RRR.CODE

• Quoted message – QUOTED.B[1].P[1]

• Unquoted message – UNQUOTED.B[1].P[1]

• Comment message – COMMENT[1]

The timeout value specifies the maximum time of execution for this action function.

After the successful execution of this action, information can be accessed through these
defined variables. The following table displays the relationship between an argument and
output message.

Table 5-19 Argument - output message relationships

Argument Output Message

ACK <acknowledgments>

HEADER <header>

RESP_ID <response identifier>

QUOTED <quoted line>

UNQUOTED <unquoted line>

COMMENT <comment>

Errors:

Communication problems and timeouts trigger ASAP to automatically reprocess the related
ASDL later. If one base name is changed, all of the other base names must contain a value in
the action string.

Failure to execute within the timeout value specified causes a communication failure.

Syntax:

TL1_PROCESS_MSG ‘%MSG_ID[=%ACK:%HEADER:%RESP_ID:%QUOTED:%UNQUOTED:%COMMENT]' timeout

Example:

Construct a message
...
1000 TL1_BUILD_MSG ‘%MID=%UPDATE:::RDBKNJNVK01'

Chapter 5
Protocol-specific libraries

5-19

Process the message and wait the output message for 120 sec. before time-out
1110 TL1_PROCESS_MSG ‘%MID' 120
Check results
1200 IF_THEN ‘%TL1_RESP_ID.CODE==COMPLD'
1300 TL1_BUILD_MSG ‘%MSG2 = %RTRV: %TID: %AID: C11'
this is an example where the default base names are changed. Note that both
constants and State Table variables can be used.
1400 TL1_PROCESS_MSG ‘%MSG2 = %ACK:HHH:%RESP:‘%QUOTED:TL1_QUOTED2:%COMMENT:60
1500 ELSE
...
1600 END_IF
...

TL1_BUILD_TSN
Constructs a TL1 test session between an OS and an NE using state table variables.
in this way, an AID value is an alias which represents the tested objects. Bellcore TR-
NWT-000831 provides some examples of how to use this feature.

• %MSG_ID – Used to save the identifier of the input message.

• CMD – TL1 command code.

• TID – TL1 target identifier.

• AID – TL1 access identifier.

• CTAG – TL1 correlation tag.

• TID – An optional argument.

The last optional parameter is a base name used to automatically construct parameter
blocks. All State Table variables matching the block name (base name + [n]) is
inserted into the block. The default base name is TL1_MSG and can be changed
using the optional MSG_BASE argument.

TL1_PROCESS_MSG must be used to retrieve the TL1 output message after
execution of this action.

Errors:

Program execution ends with failure if you do not provide correct information. If the
communication channel is not available, the ASDL that triggers this action is retried.

Syntax:

TL1_BUILD_TSN ‘%MSG_ID=%CMD:[%TID]:%AID:%CTAG:%TSN
[:%MSG_BASE]'

Example:

Construct a test session using command ‘CONN-TACC', no TID, AID ‘3-24' CTAG
‘1234', and test session ‘T1'
...
1100 TL1_BUILD_TSN ‘%MID=CONN-TACC::3-24:1234:T1'
...

External device driver
This section provides details of the External Device Driver (EDD), API detailed design,
and the design of the sample application using the API.

Chapter 5
External device driver

5-20

The External Device Driver (EDD) acts as a gateway to transmit data between the network
elements (NEs) and the network element processors NEP. The EDD is used for terminal
emulation type and message type communication.

The EDD consists of:

• driver in the NEP – Known as a Generic Driver

• Independent Process – Known as an External Device Driver (EDD)

The NEP driver and Independent Process are both referred to as a system of the EDD.

The EDD application uses the non-UNIX device API to manage the communication with
network elements. The UNIX socket is used to transfer data between the generic driver and
the EDD. The generic driver provides the NEP application a communication vehicle to
interface with libgedd.

External device driver architecture
The External Device Driver (EDD) is an independent UNIX process. ASAP requires one EDD
for each non-UNIX device communicating with the NEs. The EDD acts as a gateway and
forms pseudo connections between the NEP and the NEs. The EDD ensures that the data
transmitted from the NEP over a certain connection is forwarded through the associated
connection to the NE for that connection. This is a one-to-one relationship between the
connections on both sides of the EDD.

Figure 5-1 External Device Driver Architecture

The EDD application interfaces with the NEP using libgedd and with network elements using
the appropriate communication API. As a gateway, the EDD is an event-driven device. It is a
single-thread process which monitors data from two directions (NEP and NEs) at the same
time.

Chapter 5
External device driver

5-21

The libgedd uses a signal, poll, or application approach. Each EDD application uses
one approach. It is important to select the approach specific to your requirements and
only some applications have a choice.

Signal approach
With the signal approach, the EDD application has no control over the events that
transmit data from the NEP, however, a UNIX signal interrupts the EDD when data
arrives. The EDD application must be written to call a function in libgedd to retrieve the
data whenever it detects an interruption by the SIGIO signal. Libgedd maintains an
internal data structure to store the connection information. Each connection has its
own node of the structure and is identified by an index. The EDD application must use
the functions in libgedd to update and access this data structure if it is necessary.

There is a limitation for this approach. Most UNIX functions are written to return the
control to the caller when a signal goes off. If the monitor of the communication API is
written in this way, the signal approach is used. Some functions do not pass the control
back to the caller even if there is a signal, but simply reprocess internally. If so, the
only choice is to repeatedly poll on both connections. This creates a problem with
performance.

Poll approach
The EDD application must pass the UNIX file descriptor associated with each
connection (EDD to NEs) it maintains to the libgedd. The libgedd polls on all
connections. The poll function returns an index to the application to identify the
connection over which the data is received. The application uses routines provided by
the libgedd to retrieve and send data from the NEP. The communication API provides
routines to forward and receive data from the NEs.

Application poll approach
In this approach, the application polls the connections (EDD to NEP) on behalf of the
libgedd. Once it detects an event on a connection, it uses the routines provided to
retrieve data.

Data architecture
The EDD uses the following data types:

• EDD Information Abstract

• Parameter Abstract

• Debugging Abstract

• Generic Driver Abstract

EDD information abstract data type
This structure describes the data used by libgedd to track connections to its managers
and the data used by an EDD application to track connections to its managers. The
library libgedd owns this structure and provides a set of routines for the application to
access it. No application should access this structure directly.

Syntax:

Chapter 5
External device driver

5-22

typedef struct edd_info_st {
int fd;
int node_idx;
int node_ind;
CS_BOOL in_use;
int debug;
FILE *debug_fptr;
char debug_fname[EDD_DEBUG_FNAME_L+1];
char device[CMD_PROC_DEV_L+1];
CS_BINARY *buf;
int len;
int comm_type;
EDD_COMM_PARAM_ST *comm_param;
int comm_param_len;
void *appl_data;
void (*appl_free)(void *appl_data);
}EDD_INFO_ST;

Public members:

• fd: File descriptor of the connection.

• node_idx: Index identifies the connection.

• node_ind: Identifies whether a connection is to the NEP or NE.

• in_use: Identifies whether this entry is used.

• debug: Identifies whether the debugger is turned on.

• debug_fptr: File pointer of the debug file that contains dumped information.

• debug_fname: Debug file name.

• device: Device name in NEP related to this connection.

• buf: Temporary place to save the data coming from NEP.

• len: Length of data saved in buf.

• comm_param: Communication parameters for this connection. These parameters are
saved in the ASAP database and sent to the EDD by the NEP.

• comm_param_len: Number of parameters in comm_param.

• appl_data: Pointer to data saved by the EDD application.

• appl_free: Pointer to a function of the EDD application. When the connection is removed,
the libgedd calls it to remove appl_data.

Parameter abstract data type
This structure describes communication parameters. It is used by both the NEP and EDD.

Syntax:

typedef struct {
char label[EDD_PARAM_LABLE_L+1];
char value[EDD_PARAM_VALUE_L+1];
}EDD_COMM_PARAM_ST

Public members:

• label: Label of the parameter.

Chapter 5
External device driver

5-23

• value: Value of the parameter.

Debugging abstract data type
This structure describes data used for the debugging process.

Syntax:

typedef struct {
char device[CMD_PROC_DEV_L+1];
char file_name[EDD_DEBUG_FNAME_L+1];
int type;
}EDD_DEBUG_MSG;

Public members:

• device: Device name that identifies the connection.

• file_name: File name that information is dumped into.

• type: Identifies the type of data to dump.

Generic driver abstract data type
This structure describes information used by the generic driver in the NEP to manage
the connections to the EDD.

Syntax:

typedef struct {
CS_CHAR socket_client;
CS_USHORT sa_family;
CS_CHAR host_name[EDD_HOST_NAME_L+1];
CS_CHAR host_ipaddr[EDD_HOST_IPADDR_L+1];
CS_USHORT port;
CS_CHAR *comm_params;
CS_INT len;
CS_INT write_timeout;
CS_BINARY *buffered_data;
CS_INT buf_len;
}GENERIC_SESS_DATA;

Public members:

• socket_client: Identifies whether the process is a server or a client from the
socket.

• sa_family: Identifies the kind of socket.

• host_name: Remote host name the socket is connecting to.

• host_ipaddr: Remote host IP address.

• port: Remote port number.

• comm_params: Pointer to a buffer where the communication parameters are
saved.

• len: Length of the communication parameter buffer.

• write_timeout: Time available for writing to the socket.

• buffered_data: Buffering data to be sent while the socket is not available.

Chapter 5
External device driver

5-24

• buf_len: Length of buffered_data.

Transactions
All data transferred between the NEP and EDD has header and data information. The header
identifies the length and type of data to be transferred. The data contains raw data that an
application intends to transfer. The data header is hidden from the application. The API
interprets the message and passes the necessary data type and data to the application.

Data format

Table 5-20 EDD Data Format

Field Type Length (in
bytes)

Description

Length Header 4 Total length of data field.

Data type Header 4 Identify the type of data.

Raw Data Data vary Data (binary or ASCII). Its length is
identified by Length.

The application uses the data types listed below to determine the state of a transaction and
communication.

Data type

Table 5-21 EDD Data Types

Message Type Description

EDD_CONNECT The NEP requires a new connection to an NE. The connection and
option parameters are stored in the data field. When the application
receives this message, it establishes a connection with an NE. It
then puts monitors the connection.

EDD_ACCEPT A new connection has been established between the NEP and
EDD. This data type is only for Application Poll Approach.

When the application receives this message, it retrieves a file
descriptor which identifies the newly established connection. The
application must monitor this connection on behalf of the API.

EDD_CONNECTED The EDD sends the NEP the confirmation. There is no data field
(length = 0).

After a connection to an NE is established, the application sends
this message to the NEP to confirm. The application does not
directly deal with the message. It calls an API function that
constructs the message and sends it.

EDD_DISCONNECT The NEP requires a disconnect from an NE. There is no data field
(length = 0). When the application receives this message, it
disconnects from the NE and sends the confirmation to the NEP.

Chapter 5
External device driver

5-25

Table 5-21 (Cont.) EDD Data Types

Message Type Description

EDD_DISCONNECTED The message is sent to the NEP to:

Confirm that it has disconnected from the NE on receiving the
disconnecting request from the NEP.

Inform the NEP that it has lost the connection to the NE.

The application does not directly deal with the message. It calls an
API function that constructs the message and sends it.

EDD_DATA Data sent from the EDD or NEP. When the application receives this
message, it uses the API to retrieve and process the data. It passes
the data to the NE.

EDD_BREAK_KEY The NEP requests the application to send a break to the NE. When
the application receives this message, it sends a break to the NE.

EDD_OPTION The NEP requests the application to send a option to the NE.

EDD_NO_ACTION The application ignores this message, since the API handles the
NEP request internally.

The application does not see this one for Poll Approach since the
API detects the event and handles it without knowledge of the
application.

EDD_DEBUG The NEP requires the EDD to start dumping debug information.

This is an internal message which is handled by libgedd to dump
some diagnostic data.

EDD_DEBUG_DISCONN The NEP requires to close a debugging connection.

The EDD transaction involves the following processes:

• Connection process

• Disconnection process

• Forward data from the NEP to the NE

• Forward data from the NE to the NEP.

Connection process
• Once the EDD is started, it opens the socket listening channel and waits for the

connection request.

• The generic driver in the NEP sends the socket connection request to the EDD.
Once the request is accepted, the generic driver sends the connection request for
establishing a connection to the NE. This request has a data type
EDD_CONNECT. The communication parameters saved in tbl_comm_param for
this connection are transferred to the EDD at the same time.

• On receiving the NE connection request, the EDD saves the communication
parameters in the format described by the structure EDD_COMM_PARAM_ST
and passes the request to the EDD application.

• The EDD application establishes the connection to an NE identified by the
communication parameters. An ACK (EDD_CONNECTED) or NACK
(EDD_DISCONNECTED) is sent back to the generic driver by calling a routine in
libgedd.

Chapter 5
External device driver

5-26

• If the connection is established successfully, it is put under the monitoring provided by
one of the approaches.

• If the attempt of establishing a connection fails, a NACK is sent to the NEP and the
socket connection to the NEP is closed.

Disconnection process
• If the NEP initiates the disconnection process, the generic driver sends

EDD_DISCONNECT to the EDD.

• On receiving the request, the EDD application is informed to close the connection to the
NE. The application then sends EDD_DISCONNECTED to the NEP and closes the
socket connection to the NEP.

• If the EDD initiates the disconnection process, usually due to a lost connection to the NE,
it sends EDD_DISCONNECTED to the NEP and then closes the connection to the NEP.

Forward data from NEP to NE
• Connections to the NEP are being monitored constantly. Whenever an arrival of data

from the NEP is detected, the EDD application is informed.

• The EDD application uses a routine in libgedd to retrieve the data.

• The EDD application forwards the data retrieved to a designated NE using the
communication API.

Forward data from NE to NEP
• Connections to the NE are being monitored constantly. Whenever an arrival of data from

an NE is detected, the EDD application is informed.

• The EDD application retrieves the data using the communication API.

• The EDD application calls a routine in libgedd to forward the data to the NEP.

Functions of libgedd
The library, libgedd, handles the communication between the NEP and the EDD. The library
provides a set of functions for the EDD application (EDD AP) to:

• access the internal data structure of the libgedd library

• monitor connections

• transmit data between the NEP and EDD.

The following sections provide details on the functions specific to the signal approach, poll
approach, and application poll approach.

For backward compatibility, the function names in the bracket represent the previously used
names, and are still valid.

Chapter 5
External device driver

5-27

Signal approach

Table 5-22 Signal Approach

Event Functions Required Description

SIGIO signal
interrupt.

gedd_signal_get_req

(gedd_process_nep_req)

Yes Retrieve data and data type from
the NEP. Possible types are the
header types described in
"Transactions."

After and
before the
application
monitors
connections.

gedd_block_sigio

gedd_unblock_sigio

Yes The EDD application must block
the SIGIO signal before it starts
to process data and unblock it to
monitor the connections.

N/A gedd_sigio_occurred Yes Check if the signal has gone off.
This is used to protect the
application from missing signals
because of race conditions
caused by the gap after the
application unblocks the signal
and monitors connections.

N/A gedd_sigio_reset Yes Reset flag which is set when the
signal went off.

Used together with
gedd_sigio_occurred.

Poll approach

Table 5-23 Poll Approach

Event Functions Required Description

Wait for events gedd_poll Yes gedd_poll monitors all connections and
reports the events to the application.

It returns:

POLL_NE_CONNECT – There is data
from the NE.

POLL_NEP_CONNECT – There is data
from the NEP.

POLL_FAIL – This is the system
problem. UNIX system calls return
error.

POLL_TIMEOUT – Before an event
occurs, gedd_poll times out.

POLL_HANGUP – It detects that the
connection is hung up.

After connection
to an NE.

gedd_add_fd Yes Pass file descriptor to the libgedd to be
monitored.

Chapter 5
External device driver

5-28

Application poll approach

Table 5-24 Application Poll Approach

Event Functions Required Description

Data comes from the
NEP

gedd_appl_poll_get_req
(gedd_fetch_nep_req)

Yes The application retrieves data from
the NEP. Possible types returned
are those data types described in
"Transactions."

After initialization gedd_get_listen_fd

(get_listen_fd)

Yes The application uses it to obtain the
file descriptor that the API uses to
listen for the connecting request.
The application must monitor this
connection for the API.

After receive
EDD_ACCEPT

gedd_get_fd Yes The application calls this function to
extract the file descriptor from the
data buffer. After the application
gets the file descriptor, it must
monitor this connection for the API.

Common functions

Table 5-25 Common Functions

Event Functions Required Description

EDD application
startup.

gedd_init Yes Initializes libgedd.

Connect to the NE
succeed.

gedd_api_connect_ack Yes The application confirms to the
NEP that connecting to the NE
has been completed successfully.

Disconnect from
the NE.

gedd_api_disconnect_ack Yes The application confirms to the
NEP that the disconnection has
been successfully completed.

Data comes from
NEs and must be
forwarded to the
NEP.

gedd_send_to_nep Yes The application uses this routine
to send data to the NEP.

N/A gedd_set_appl_data No Saves connection-related
information by an EDD
application. The application
retrieves this information using
gedd_get_appl_data.

N/A gedd_get_appl_data No Retrieves data saved by
gedd_set_appl_data. It is strongly
recommended to use these
functions to save connection-
related data.

Chapter 5
External device driver

5-29

Table 5-25 (Cont.) Common Functions

Event Functions Required Description

Connection
Request

gedd_get_conn_param Yes Retrieve communication
parameters sent by the NEP.
These parameters tell the EDD
application which NE to connect
and information required to
establish the connection.

Note: These parameters are
stored in the ASAP database
table tbl_comm_param and
transferred to the EDD from the
NEP.

Library functions
This section lists the library functions.

gedd_add_fd
This function allows the application to instruct the API to monitor a connection. An
added connection is always a connection to the NE that has a corresponding
connection to the NEP.

Syntax:

CS_VOID gedd_add_fd (CS_INT conn_idx, int fd)

Arguments:

• conn_idx: Identifies the connection to the NEP that the new file descriptor is
related to.

• fd: The file descriptor to be added.

Return Values:

gedd_poll

gedd_api_connect_ack
See also gedd_api_disconnect_ack.

This function is called after the application successfully connects to an NE. If the NEP
does not receive the confirmation in a certain period of time, the connection attempt
fails. Since a connection to an NE is always related to a connection to the NEP, the
identifier of the connection to the NEP is used as a reference.

Syntax:

CS_VOID gedd_api_connect_ack (CS_INT conn_idx)

Arguments:

• conn_idx: Identifies the connection to the NEP.

Chapter 5
External device driver

5-30

gedd_api_disconnect_ack
See also gedd_api_connect_ack.

This function is used in the following scenarios:

• The application calls this function to inform the NEP that establishing a connection with
an NE has failed. The NEP tries to reestablish the connection and reprocess the
incomplete task

• The application calls this function to confirm to an NEP that a disconnect request has
completed (successful or failed).

• The application informs the NEP that it has just lost a connection to the NE. The NEP
tries to reestablish the connection and reprocess the incomplete task

Syntax:

CS_VOID gedd_api_disconnect_ack(CS_INT conn_idx)

Arguments:

• conn_idx: Identifies the connection to NEP.

gedd_appl_poll_get_req
See also gedd_get_fd.

This function is only used for the Application Poll Approach and allows the application to
retrieve data from the NEP. When the application detects event(s) from connections to the
NEP, it must call this function to retrieve data. Based on the data type returned by this
function, the application takes proper action.

The following lists the valid data types.

• edd_connect: NEP requests a connection to an NE.

• edd_accept: A new connection to the NEP is established. The application should get the
related file descriptor.

• edd_disconnect: NEP requests to disconnect from an NE.

• edd_data: Data from the NEP is ready.

• edd_break_key: NEP requests to send a break to an NE.

• edd_option: NEP requests to send a option to an NE.

• edd_no_action: API internally accepts a connection. The application should ignore this
event.

Syntax:

CS_VOID gedd_appl_poll_get_req(int fd, CS_INT *request, CS_BINARY *buf, CS_INT *len)

Arguments:

• fd: File descriptor that has data.

• request: Returns the data type mentioned in the previous table.

• buf: Returns the data from the NEP.

Chapter 5
External device driver

5-31

• len: Returns the length of the data.

gedd_block_sigio
See also gedd_unblock_sigio, gedd_signal_get_req, gedd_sigio_occurred, and
gedd_sigio_reset.

This function is only used for Signal Approach and blocks the signal SIGIO. The
application uses this function to prevent signal interruption when it is processing data.
It unblocks the signal when it starts to poll connections.

Syntax:

CS_VOID gedd_block_sigio(CS_VOID)

gedd_get_appl_data
This function allows the application to retrieve the data it saved before using
gedd_set_appl_data. This function and gedd_set_appl_data are used together for the
application to save the data that is related to a connection.

See also "gedd_set_appl_data."

Syntax:

CS_VOID *gedd_get_appl_data (CS_INT conn_idx)

Arguments:

• conn_idx: Identifies the connection to the NEP.

Return Values:

The data retrieved.

gedd_get_conn_param
This function allows the application to access parameters defined in tbl_comm_param.
The application uses these parameters to establish a connection to an NE. This
function only returns parameters that relate to the specified connection. Since this
function returns a pointer to the parameter, the application does not delete it.

Syntax:

CS_CHAR *gedd_get_conn_param(CS_INT conn_idx, CS_CHAR *label)

Arguments:

• conn_idx: Identifies the connection to the NEP.

• label: Parameter label interested.

Return Values:

The value of the parameter.

gedd_get_fd
This function allows the application to retrieve the file descriptor that identifies a
connection to the NEP. This function is used only for the Application Poll Approach.

Chapter 5
External device driver

5-32

This function must be used after a call to gedd_appl_poll_get_req returns data type
EDD_ACCEPT. The application puts the file descriptor into its poll list.

See also "gedd_appl_poll_get_req."

Syntax:

int gedd_get_fd(CS_CHAR *buf, CS_INT len) q

Arguments:

• buf: The buffer returned by a call to gedd_appl_poll_get_req.

• len: The length of the data in the buf.

Return Values:

File descriptor.

gedd_get_listen_fd
This function is only used for the Application Poll Approach and allows the application to
obtain the EDD listening-file-descriptor. The application must call this function after it calls
gedd_init. It must then monitor it on behalf of the API.

See also gedd_init.

Syntax:

int gedd_get_listen_fd (CS_VOID)

Return Values:

File descriptor.

gedd_poll
This function is only used for the Poll Approach and allows the application to poll all
connections to the NEP and NEs. The application calls this function whenever it finishes
processing data and this function returns the next event. If it detects events, the application
calls gedd_poll_get_req to retrieve data.

Syntax:

CS_INT gedd_poll(CS_INT timeout, CS_INT *conn_idx)

Arguments:

• timeout: Time in milliseconds that gedd_poll should wait for events. If a machine does
not support milliseconds, it is rounded up to the nearest legal value available on the
system. Possible values are:

– 0 – Returns immediately

– -1 – Waits until there is at least one event

• conn_idx: Connection identifier returned by gedd_poll. It identifies which connection
receives events. This identifier is used in subsequent API calls.

Return Values:

• POLL_NE_CONNECT: Events from connection to NEs.

Chapter 5
External device driver

5-33

• POLL_NEP_CONNECT: Events from connection to the NEP.

• POLL_FAIL: System error.

• POLL_TIMEOUT: Specified time is expired while gedd_poll has not detected any
event.

• POLL_HANGUP: One of connections hangs up.

gedd_poll_get_req
This function is only used for the Poll Approach and allows the application to retrieve
data from the NEP. The application must use it to retrieve data when a call to
gedd_poll returns events. Based on the data type returned by this function, the
application takes the appropriate action.

See also gedd_poll.

The valid data types are:

• edd_connect: NEP requests a connection to an NE.

• edd_disconnect: NEP requests to disconnect from an NE.

• edd_data: Data from the NEP is ready.

• edd_break_key: NEP requests to send a break to an NE.

• edd_option: NEP requests to send a option to an NE.

Syntax:

CS_VOID gedd_poll_get_req(int fd, CS_INT *request,
CS_BINARY *buf, CS_INT *len)

Arguments:

• fd: File descriptor that has data.

• request: Returns the data type mentioned in the previous table.

• buf: Returns the data from NEP.

• len: Returns the length of the data.

gedd_send_to_nep
This function allows the application to send data to the NEP. If this function, the
application disconnects the connection.

Syntax:

CS_INT gedd_send_to_nep (CS_INT conn_idx, CS_VOID *buf, CS_INT len)

Arguments:

• conn_idx: Connection identifier.

• buf: Pointer to the data to be sent. The data can be either ASCII or binary as long
as the NEP can handle it.

• len: The length of the data.

Return Values:

Chapter 5
External device driver

5-34

• cs_succeed: The data was successfully sent to the NEP.

• cs_fail: Either data cannot be delivered or allowed time has expired. It is set by
IO_TIMEOUT in ASAP.cfg or default value of three minutes.

gedd_set_appl_data
This function allows the application to save data related to a connection. When the
application uses the function, it provides a free function that is used by the API to free up the
memory at disconnection time.

See also "gedd_get_appl_data."

Syntax:

CS_VOID gedd_set_appl_data(CS_INT conn_idx,
CS_VOID *appl_data, CS_VOID (*free_ap_data)(CS_VOID *appl_data))

Arguments:

• conn_idx: Identifies the connection.

• appl_data: The data the application wants to save.

• free_ap_data: The function pointer to the cleanup function. It is called when the
connection is dropped.

gedd_sigio_occurred
This function allows the application to check whether a signal is delivered during a period of
time.

See also gedd_sigio_reset, gedd_block_sigio, and gedd_unblock_sigio.

Syntax:

CS_INT gedd_sigio_occurred(CS_VOID)

Return Values:

• TRUE: There is a signal.

• FALSE: There is no signal.

gedd_sigio_reset
This function resets the flag that is used by gedd_sigio_reset to determine if a signal has
gone off.

See also "gedd_sigio_occurred," "gedd_block_sigio," and "gedd_unblock_sigio."

Syntax:

CS_VOID gedd_sigio_reset(CS_VOID)

gedd_signal_get_req
This function is only used for the Signal Approach and allows the application to retrieve data
from the NEP. Once the application has detected an interruption of SIGIO, it calls this function
to retrieve data. Based on the data type returned, the application takes proper action.

Chapter 5
External device driver

5-35

See also gedd_block_sigio, gedd_unblock_sigio, gedd_sigio_occurred, and
gedd_sigio_reset.

The valid data types are:

• edd_connect: NEP requests a connection to an NE.

• edd_disconnect: NEP requests to disconnect from an NE.

• edd_data: Data from NEP is ready.

• edd_break_key: NEP requests to send a break to an NE.

• edd_option: NEP requests to send a option to an NE.

• edd_no_option: API internally accepts a connection. The application should
ignore this event.

Syntax:

CS_VOID gedd_signal_get_req (int fd, CS_INT *request,
CS_BINARY *buf, CS_INT *len)

Arguments:

• fd: File descriptor that has data.

• request: Returns the data type mentioned in the table.

• buf: Returns the data from the NEP.

• len: Returns the length of the data.

Return Values:

None

gedd_unblock_sigio
This function is only used for the Signal Approach and unblocks the signal SIGIO.
Before the application starts to poll its connections to the NEs, it calls this function to
unblock the signal SIGIO. When the poll function is interrupted by SIGIO, the
application calls gedd_signal_get_req() to retrieve data.

See also "gedd_block_sigio," "gedd_signal_get_req," "gedd_sigio_occurred," and
"gedd_sigio_reset."

Syntax:

CS_VOID gedd_unblock_sigio(CS_VOID)

Arguments:

None

Return Values:

None

Chapter 5
External device driver

5-36

Building an EDD application
An EDD application is built on top of libgedd and network communication APIs. It uses
functions provided by libgedd to interface with the NEP and network APIs to interface with
NEs.

To generate an EDD application, you enable it to monitor all connections to the NEP and
NEs.

Figure 5-2 shows the EDD applications, EDDX25 and EDDLU62, interfacing with NEs
through different networks.

Figure 5-2 EDD applications interfacing with NEs

The following scenarios describe how to determine which approach you use to transmit data
between the NEP and the EDD.

Using the poll approach
If the network API can convert a connection to the UNIX file descriptor, use the Poll
Approach. For the Poll Approach, the application passes the file descriptor to libgedd after it
has established a connection to an NE. The application call gedd_poll() monitors all
connections.

Chapter 5
External device driver

5-37

Using the application poll approach
If the network API can monitor the connections to the NEP on behalf of libgedd, you
use the Application Poll Approach. For the Application Poll Approach, the application
must monitor all connections including connections to the NEP. For this approach, the
application uses APIs to retrieve data to and from the NEP.

Using the signal poll approach
For the Signal Approach, the application uses routines provided by the network API to
monitor the connection to the NEs. When data is coming from the NEP, a UNIX signal,
SIGIO, interrupts the monitoring. Once the monitoring is interrupted, the application
calls routines provided by libgedd to retrieve the data.

Approach examples
The following examples outline how to implement the Signal, Poll and Application Poll
Approach in the application. The examples highlight each approach, although you can
use alternative ways.

Signal Approach:

/* application initialization */
void edd_ap_init(void)
{
 ...
 gedd_init(EDD_SIGNAL_TYPE); /* signal approach */
 ...
}

void edd_ap_main(void)
{
 ...
 edd_ap_init();
 ...
 while(TRUE){
gedd_unblock_sigio();
/* Any signal during the block period */
if(gedd_sigio_occurred()){

gedd_sigio_reset();
cc = EDD_NEP_DATA_IN;

}
else{

alarm(300); /* in case we missed a signal */
/* start to monitor connection to NE */
cc = edd_ap_wait();

}
/* we don't want to be interrupted */
gedd_block_sigio();
alarm(0);
switch(cc){
case EDD_NEP_DATA_IN:

Chapter 5
External device driver

5-38

edd_ap_int_handler();
break;
case EDD_NE_DATA_IN:
edd_ap_receive();
break;
...
}

 }
 ...
}
void edd_ap_int_handler(void)
{
 ...
 /* get data from all connections they have data to be retrieved */
 while(gedd_signel_get_req(&request, &conn_idx, &buf, &len)){
switch(request){
case EDD_CONNECT:

if((conn_id = edd_ap_connection(conn_idx))== FAIL){
gedd_api_disconnect_ack(conn_idx);
else{

/* save conn_id & conn_idx together in "appl_data" */

edd_ap_save_conn_idx(conn_id, conn_idx);
gedd_api_connect_ack(conn_idx);
}
break;
case EDD_DISCONNECT:
/* disconnect from NE and inform the disconnection */
appl_data = gedd_get_appl_data(conn_idx);
edd_ap_disconnection(appl_data->conn_id);
gedd_api_disconnect_ack(conn_idx);
break;

case EDD_DATA:

/* send data to NE */
appl_data = gedd_get_appl_data(conn_idx);
edd_ap_send(appl_data->conn_id, buf, len);
break;

}
...
 }
 ...
}

void edd_ap_receive(void)
{
 ...
 /* this routine finds conn_idx first, then related conn_id */
 conn_idx = edd_ap_next_active_conn();
 appl_data = gedd_get_appl_data(conn_idx);
 edd_ap_retrieve_data(appl_data->conn_id, &buf, *len);
 /* send data to NEP */
 gedd_send_to_nep(conn_idx, buf, len);
 ...
}

Chapter 5
External device driver

5-39

edd_ap_wait() must detect whether it is awakened by a signal or data coming over
the connection from an NE. If it is a signal, gedd_process_nep_req must be called to
handle the event. This function is also required to block the process even if there is no
connection.

The EDD application must associate each connection it manages with the conn_idx
that it receives when it is connecting. In the example, this is done using the following
routines: edd_ap_save_conn_idx() and edd_ap_next_active_conn().

The alarm() function used in the example is necessary, because the SIGIO signal can
go off at any time in between the statements, "else{" and "cc = edd_ap_wait". If the
signal goes off in this period, the system can go into a dead lock.

In edd_ap_save_conn_idx, the gedd_set_appl_data function is used to save
connection-related data.

Poll approach:

void edd_ap_init(void)
{

 gedd_init(EDD_POLL_TYPE); /* poll approach */
 ...
}
void edd_ap_main(void)
{
 ...
 edd_ap_init();
 ...
 while(TRUE){
/* monitor all connections */
cc = gedd_poll(POLL_BLOCK, &conn_idx);
switch(cc){
/* where data comes from */

case POLL_NEP_CONNECT:
edd_ap_int_handler(conn_idx);
break;
case POLL_NE_CONNECT:
edd_ap_receive(conn_idx);
break;
...
}

 }
 ...
}

void edd_ap_int_handler(int conn_idx)
{
 ...
/* retrieve data from NEP */
 gedd_poll_get_req(conn_idx, &request, &buf, &len)){
 switch(request){
 case EDD_CONNECT:
if(fd = edd_ap_connection(conn_idx, &conn_id) == FAIL){
gedd_disconnect_ack(conn_idx);
}
 else {
 /* passes file descriptor to libgedd */

Chapter 5
External device driver

5-40

gedd_add_fd(conn_idx, fd);
edd_ap_set_ap_data(conn_idx, conn_id);
gedd_connect_ack(conn_idx);
}
break;
case EDD_DISCONNECT:
appl_data = gedd_get_appl_data(conn_idx);
edd_ap_disconnection(appl_data->conn_id);
gedd_disconnect_ack(conn_idx);
break;
case EDD_DATA:
appl_data = gedd_get_appl_data(conn_idx);
edd_ap_send(appl_data->conn_id, buf, len);
break;

 }
 ...
}

void edd_ap_receive(int conn_idx)
{
 ...
 ap_data_st = (AP_DATA_ST *)gedd_get_appl_data(conn_idx);
 edd_ap_retrieve_data(ap_data_st->conn_id, &buf, *len);
/* send data to NEP */
 gedd_send_to_nep(conn_idx, buf, len);
 ...
}

The key difference between the routines above and the routines in the Signal Approach
section is that the call to gedd_add_fd(conn_idx, fd) right after the EDD application
establishes the connection.

The conn_id, in the example, is a connection identifier used by a non-UNIX device API to
access the connection to the NEs.

In this example, the programs calls edd_ap_set_ap_data() (it calls gedd_set_appl_data())
to save the API conn_id and other information into the array of EDD_INFO_ST. The
gedd_get_appl_data() retrieves the conn_id back. In this approach, the application does not
build a relationship between its connections and conn_idx, since it uses the conn_idx as an
index to save and retrieve the information it needs. The libgedd takes care of the correlation
among the connections.

Application poll approach:

void edd_ap_init(void)
{
 /* code here to do the application initialization */
....
 gedd_init(EDD_APPL_POLL_TYPE); /* poll approach */

 /* pass fd to the application for monitoring */

 edd_add_fd(gedd_get_listen_fd());
 ...
}
void edd_ap_main(void)
{
 ...
 edd_ap_init();
 ...

Chapter 5
External device driver

5-41

 while(TRUE){
/* monitor all connections */
cc = edd_ap_monitor(&fd);
switch(cc){
/* check where data comes from and handle it */
case NEP_CONNECTION:

edd_ap_nep_data_handler(fd);
break;
case NE_CONNECTION:
edd_ap_ne_data_handler(fd);
break;
...
}

 }
 ...
}

void edd_ap_nep_data_handler(int fd)
{
 ...
/* retrieve data from NEP */
 gedd_appl_poll_nep_req(fd, &request, &buf, &len)){
 switch(request){
 case EDD_ACCEPT:

new_fd = gedd_get_fd(buf, len);
/* code here to put fd in application poll list */
...
break;

case EDD_CONNECT:
 /* Connect to NE. Assume edd_ap_connection does all works such as puting new
fd under monitoring and connecting to NE */

if (edd_ap_connection(fd) == FAIL){

gedd_disconnect_ack(fd);

else {
gedd_connect_ack(fd);
}
break;

case EDD_DISCONNECT:
appl_data = gedd_get_appl_data(fd);
edd_ap_disconnection(appl_data);
gedd_disconnect_ack(fd);
break;

case EDD_DATA:
appl_data = gedd_get_appl_data(fd);
edd_ap_send(appl_data, buf, len);
break;

 }
 ...
}

Chapter 5
External device driver

5-42

void edd_ap_ne_data_handler(int fd)
{
 ...
/* retrieve data from NE */
 edd_ap_retrieve_data(fd, &buf, *len);

 /* get file descriptor for NEP here */
 ...
/* send data to NEP */
 gedd_send_to_nep(nep_fe, buf, len);
 ...
}

The key difference between the above routines and the routines in other approaches is to
retrieve the file descriptor and put it under the monitoring. The API does not monitor data
from the NEP.

For the Application Poll Approach, the API uses the file descriptor as a connection identifier.

In this example, the program uses the appl_data to correlate connections. When a
connection request is received, it should save the connection identifier to an NE into
appl_data. The application can use other ways to do this.

Action functions
The State Table Interpreter interprets script programs (similar to Basic) which are maintained
in static database tables. The scripts in these tables control the operation of a State engine,
also known as State Tables.

State Tables provide a table-driven user-programmable scripting language to customize the
ASAP provisioning process. They can be incorporated into any ASAP application server
process, control the ASAP dialog with external systems, and provide a flexible mechanism for
you to modify ASAP functionality without changing source code.

State Tables are used extensively in the NEP to interface to network elements and upstream
systems respectively. They are also employed in the SRP to facilitate customer controlled
translation logic in addition to that provided by the static translation tables.

State Table Components
This section explains the various state table components.

State Table environment
The State Table Environment consists of the following components:

• State Table Compiler – allows the State Table developer to create State Table programs
in normal UNIX files, and then compile them into suitable database insert scripts. If no
ASDL to State Table mapping is defined, ASAP uses the State Table name as the default
ASDL name.

• State Table Optimizer – as the State Tables are loaded from the database by the
Interpreter, they can be optimized for better performance before execution. This is a user-
configurable process.

• State Table Cache – once a State Table program has been compiled, optimized, and
executed, the Interpreter maintains it in a State Table Cache. The next request for that

Chapter 5
Action functions

5-43

State Table is read from the cache, not the database, yielding better State Table
performance.

The Interpreter also provides an administrative RPC to flush the State Table cache
to force a cache reload as the system is running. This enables you to change
State Table programs without shutting down the specific application server.

• State Table Debugger – A State Table debugger application interacts with the
Interpreter to debug State Tables. You can test and debug State Tables in the
development phase of a project implementation using a State Table debugger.

The State Table debugger currently supports the following front-end interfaces:

– UNIX character-based interface.

– MS Windows interface, which requires a PC networked to ASAP with the
appropriate networking software.

The State Table debugger provides a command line interface that facilitates the
testing of the State Table Interpreter in an ASAP application server. The following
features are supported:

– Breakpoints – You can set, clear, or list Interpreter breakpoints at specific line
numbers in a State Table program. You can set up to 1000 breakpoints.

– Watch Variables – You can set and configure up to 1000 watch variables.
These are compound parameters that are displayed when the State Table
execution is stopped.

– State Table Execution Tracing – You can test the execution of a State Table
using the Step command to step through the current State Table one line at a
time.

ASDL-to-State Table translation
At this stage of the translation process, the network element-specific processing is
performed according to the ASDL that is being provisioned. The network element type
and its software version are determined for the provisioning network element Host
using configuration tables. ASAP uses these fields along with the ASDL command to
find the State Table with the switch-specific information. When there are different
network element Hosts, the command processor executes different State Tables.

Automatic State Table variables
You do not need to declare or define State Table variables since they are automatically
created in State Table programs when they are used for the first time in a State Table.
When a variable is assigned a value, that variable is created if it does not already
exist. If the variable already exists, it is overwritten.

State Table extensibility
In addition to the action functions provided by the core libraries, an application such as
a NEP or SRP can define action functions of its own, that can either overwrite or
change the core action functions already provided. This ability to define and customize
action functions, facilitates the encapsulation of provisioning-related activity into a
single State Table action function, for use in State Table programs.

Chapter 5
Action functions

5-44

Loopback support
The State Table Interpreter supports the following modes of input/output operation:

• normal – All input and output is transmitted to and received from the external system.

• loopback – All input and output operations are “looped around". This allows the testing of
State Tables prior to interfacing with external systems. Any State Table action that
performs input/output operations must provide its own loopback behavior.

You can test the ASAP interfaces (SRP to Host and NEP to NEs) independently of each other
by running ASAP in one of the following loopback modes:

• Provide loopback at both the work order system and NE interfaces.

• Provide loopback at the work order system interface and valid connections to the NEs.

• Provide loopback at the NE interface and valid connections to the work order system.

Figure 5-3 outlines these loopback modes.

Chapter 5
Action functions

5-45

Figure 5-3 Loopback Modes

SRP loopback:

ASAP provides loopback at the work order system interface via an emulator-type
application that can simulate an upstream system.

NEP loopback:

ASAP provides a test harness to the network elements by ensuring that as State Table
action functions are written, they behave correctly when the NEP is put in loopback
mode. Action functions that interact with network elements do not perform these
actions while in loopback mode, but return success conditions instead. Therefore, you
can configure the NEP in loopback mode by modifying a configuration parameter.

You can configure a static user-populated database table to determine the ASDL
states that must be passed back to the SARM. Whenever an ASDL command is
successfully completed in loopback mode, the State Table Interpreter in the NEP

Chapter 5
Action functions

5-46

references this table to determine the return status of the ASDL. This table allows all ASDL
states to be passed back to the SARM and facilitates network element error condition testing
within ASAP, even though ASAP is in loopback mode to the network elements.

Lexical Analysis Machine (LAM)
The State Table Interpreter includes a Lexical Analysis Machine (LAM) to parse complex
network element reports from State Tables. The LAM is a set of action functions and data
registers that allow the State Table developer to write State Tables that parse complicated
data inputs, and extract formatted data for further processing or viewing.

Network element response parsing is the process of analyzing and creating data from the
standard response provided by the network element. The LAM provides the State Table
developer with a powerful tool for varying State Table execution based on network element
responses.

Every operation that a State Table initiates updates a set of global registers within the State
Table Interpreter. State Tables can access these registers through a pre-defined set of
parameter names. Based on the content of the register, a State Table takes appropriate
action

Note:

Only LAM actions can update global registers. All other actions use global registers
in a read-only manner.

For more information on the LAM action functions, refer to the ASAP Developer Reference.

Database access from within State Tables
State Table programs can make calls to databases. These calls are generally made to SQL
Server stored procedures which can perform static table lookups, dynamic table updates, etc.
This allows you to create static and dynamic tables of provisioning-related information that is
required in the provisioning process, and perform lookups and updates from within the State
Table.

If data lookups are performed frequently, you can achieve better performance by loading the
data into memory upon startup and writing a State Table action function to be called by the
State Tables to perform a lookup of the in-memory copy.

Regular expression support
The core Interpreter action functions support the recognition of regular expressions which aid
the parsing of information from external systems such as network elements.

Diagnostic and event support
The Interpreter provides State Table actions that support the writing of diagnostic messages
to the server's diagnostic file and the raising of system events which can be mapped to
system alarms from within the State Tables.

Chapter 5
Action functions

5-47

Customizing action functions
An action function is a C subroutine or a function that performs the associated State
Table action. An action may have arguments called action strings and action integers.
The action string of an action may contain no argument, one argument, or more than
one argument. All arguments in the action string are separated by an "=" or ":". The
action integer of an action can only be an integer. The following is an example format
of an action in the State Table program.

CONCAT ‘%NEW_VAR=ABC_:%OLD_VAR' 0

The action function associated with this action retrieves all the arguments,
concatenates ABC_ with the value of the variable %OLD_VAR, and then saves it in
%NEW_VAR. After the execution of this action function, if not already defined, the
NEW_VAR becomes a new variable retrievable by subsequent actions in the State
Table program and chained State Table programs.

Writing action functions
Syntax:

The following is the syntax for an action function:

ACTION_STATUS action_func(CMD_PROC_DATA *data);

Input Parameters:

Each action function takes a pointer to the CMD_PROC_DATA structure as its
argument. This data structure contains the following information:

• The ASDL parameters and variables generated in the State Table program before
this action function is called.

• The communication variables for the device defined in the database table
tbl_comm_param.

• The arguments passed to the action associated with this function in State Table
program.

Return Values:

The action function returns ACTION_SUCCEED or ACTION_FAIL.

Using API routines
Use the ASAP API or database vendor routines to access databases.

Use system calls to access all resources available to the system. It is recommended
that you check the ASAP and database vendor documents to find out whether similar
routines are provided by the ASAP API and database vendor libraries.

Since the ASAP API is built on top of the database vendor and UNIX system libraries,
and the database vendor API is built on the top of the UNIX system libraries, the ASAP
API routine should be considered first, the database vendor API routine next, and the
UNIX system routine last. For example, to move bytes from one location to another,
the UNIX system call is memcpy(), the SYBASE API routine is srv_bmove() and the
ASAP API routine is ASC_bmove() and should be used.

Chapter 5
Action functions

5-48

Retrieve arguments
Most actions accept one or more arguments in their action strings. The action function
associated with the action should retrieve and check those arguments first.

Use CMD_get_assignment() to retrieve ASCII variables or use CMD_get_bvar_assignment()
to retrieve binary variables. These two routines return the arguments to caller by the
structures as below for CMD_get_assignment():

typedef struct cmd_assignment_arg {
 struct cmd_assignment_arg *next;
 CS_CHAR value[VAR_STR_L+1];
} CMD_ASSIGNMENT_ARG;
typedef struct {
 CS_CHAR label[VAR_NAME_L+1];
 CS_INT num_fields;
 CMD_ASSIGNMENT_ARG *arg_list;
} CMD_ASSIGNMENT_BUF;
for CMD_get_bvar_assignment():
typedef struct cmd_bvar_assignment_arg {
 struct cmd_bvar_assignment_arg *next;
 CS_INT len;
 CS_CHAR label[VAR_NAME_L+1];
 VOIDPTR value;
} CMD_BVAR_ASSIGNMENT_ARG;
typedef struct {
 CS_CHAR label[VAR_NAME_L+1];
 CS_INT num_fields;
 CMD_BVAR_ASSIGNMENT_ARG *arg_list;
} CMD_BVAR_ASSIGNMENT_BUF;

To expand the action string without delimiters (for example, SEND ‘%DMS_CMD' 5), use
CMD_expand_action_string() to retrieve the argument passed to action.

Check the number of arguments passed to the action function (see sample program) to
ensure that subsequent operations will be accomplished successfully.

Retrieving and storing parameters and variables
The ASDL parameters passed from the SARM and variables generated in the State Table
program before the action function is called, may be accessed by the following routines.
Once a variable is stored using CMD_store_var() and CMD_store_bvar(), it may be retrieved
from this action function and the subsequent State Table program actions. Observe the
following rules:

• Use CMD_get_var() to retrieve the parameters, ASCII variables and communication
variables.

• Use CMD_store_var() to store the ASCII variables.

• Use CMD_get_bvar() to retrieve the binary variables.

• Use CMD_store_bvar() to store the binary variables.

Processing:

Call routines are provided by the ASAP, the database vendor, and UNIX library to process
data.

Chapter 5
Action functions

5-49

Exit action function
An action function may exit in two conditions: ACTION_SUCCEED and ACTION_FAIL.

An action function must deallocate all spaces it has allocated before it exits. The
routine CMD_free_assignment() is provided to deallocate the memory allocated by
CMD_get_assignment().

Before an action function exits with a succeed status, it has to increase the variable
PROGRAM_COUNTER by one in order to make the Interpreter proceed to the next
action. The return statement will be:

return ACTION_SUCCEED;

When an action function exits with a failed status, the Interpreter will stop processing
the rest of the actions in the State Table program. The return statement will be:

return ACTION_FAIL;

Action function example
static ACTION_STATUS get_field_func(CMD_PROC_DATA *data)
{
 CMD_ASSIGNMENT_BUF *assign_buf;

CMD_ASSIGNMENT_ARG *rec_label, *field_name, *rtn_data;
RECORD_LIST *rec_list;
CS_CHAR ascii[BINARY_TO_ASCII_L+1];

 DBBINARY *record;
 CS_INT len;
 /*
 The action associated with this function has format:

ACTION ‘%RTN=FIELD_A:%RTN_DATA`

 */
 /* Retrieve action arguments */
 if ((assign_buf = CMD_get_assignment(data)) == NULL) {
/* Log event and trigger alarm */

CMD_EVENT (CMD_DBG_INFO, "SYS_ERR", __LINE__, __FILE__,
"%d State Table Error: Can't Expand Action String [%s]",
SRQ_ID, CUR_ACT_STRING);
/* Stop processing the state table program */
return ACTION_FAIL;

 }
 /* Check whether the number of arguments is correct */
 if (assign_buf->num_fields != NUM_GET_FIELD_ARGS) {

CMD_DIAG(CMD_DBG_INFO, PROGRAM_LEVEL, "", __LINE__, __FILE__,
"Error: Not correct arguments for GET_FIELD");
CMD_free_assignment(assign_buf);
return ACTION_FAIL;

 }
 /* Pass arguments to variables which are easier to handle */
 rec_label = assign_buf->arg_list;

Chapter 5
Action functions

5-50

 field_name = rec_label->next;
 rtn_data = field_name->next;
 /* Pre-assign a return status to RTN */
 CMD_store_var(data, assign_buf->label, RTN_FAIL);
 /* Retrieve binary data saved under label rec_label->value */
 if (CMD_get_bvar(data, rec_label->value, (CS_VOID **)&record,

&len, (CS_VOID **)&rec_list)!= SUCCEED) {
CMD_EVENT (CMD_DBG_INFO, "SYS_ERR", __LINE__, __FILE__,
"Error: Can't Provide Get Binary Variable ");

 }
 /* process data - application specific */
 /* Save data with the label rtn_data->value */
 else if (CMD_store_var(data, rtn_data->value, ascii) == FAIL) {

CMD_EVENT(CMD_DBG_INFO, "SYS_ERR", __LINE__, __FILE__,
"Error: Can't store [%s]", ascii);

 }
 else
/* Since every thing is OK, set RTN to succeed */

CMD_store_var(data, assign_buf->label, RTN_SUCCEED);

 /* It mandatory to remove space allocated by CMD_get_assignment */
 CMD_free_assignment(assign_buf);
 /* Increase the program counter by 1 */
 PROGRAM_COUNTER++;
 /* Action function is done successfully */
 return ACTION_SUCCEED;
}

State Table Interpreter action functions
State Table Interpreter action functions are the core functions provided by the Interpreter
library. Action functions control many aspects of state table operations and are used in most
State Tables.

Interpreter Action Functions are used in all State Tables.

The core Interpreter Action Functions support the recognition of regular expressions that aid
the parsing of information from external systems such as NEs.

A major feature of the Interpreter design is nested State Tables: the ability to call other State
Table programs from the current one. This facilitates simpler, modular, and more compact
State Table design. The State Table Interpreter supports the creation of libraries of State
Table functions. Other State Tables can call these functions to perform well-defined tasks
before returning to the calling State Table. This allows similar functionality to be collected in
the same library.

Applications such as NEPs or SRPs can define their own action functions that either
overwrite or change those already provided in the core libraries. This ability to define and
customize action functions allows you to encapsulate provisioning-related activities into a
single State Table action function.

• General action functions

• NEP action functions

Chapter 5
Action functions

5-51

• LAM action functions

• FTP action functions

• I/O Action Functions

• SNMP action functions

• LDAP action functions

General action functions
The following tables list State Table action functions and their equivalent JInterpreter
actions and/or applicable classes. For more information on JInterpreter classes, refer
to the ASAP Online Reference.

Table 5-26 General action functions

Action
Function

Description JInterpreter
Action

Notes

Embeds comments in
the State Table NPG
file only.

Native Use // or /** style comments in Java
source files.

CALL Calls a procedure. Native Invoke the Java class.method
directly as a regular function call.

CASE,
DEFAULT,
SWITCH,
ENDSWITCH

Makes decisions. Native Use Java switch statement.

CHAIN - Native Invoke the Java class.method
directly as a regular function call.

CLEAR Manipulates variables. Native Assign null to the variable.

CMD_DUMP Dumps the command
processor's working
data parameters.

- Implement custom command
dumping functionality using java.io
classes.

COMMENT Embeds comments in
the State Table.

Native Use // or /** style comments in Java
source files.

CONCAT Manipulates strings. Native Use Java String or Byte classes.

DECREMENT Manipulates variables. Native Use arithmetic functionality in Java
programming language.

DEF_REGEXPR Defines a regular
expression.

GNU Regular
Expression
library

Java-enabled NEP bundles a
regular expression library that
provides comparable functionality.

DIAG Logs messages to the
diagnostics/NE
history.

com.mslv.acti
vation.server
Class
Diagnostic

Class Diagnostic can be used to log
messages to the diagnostic file.

EVENT Issues system events. com.mslv.acti
vation.server
Class
EventLog

Class EventLog can be used to
generate system events.

EXEC_RPC Calls a database
procedure.

- Use JDBC library to invoke
functions.

Chapter 5
Action functions

5-52

Table 5-26 (Cont.) General action functions

Action
Function

Description JInterpreter
Action

Notes

EXIT Deprecated. - -

EXPR_GOSUB - GNU Regular
Expression
library.

Java-enabled NEP bundles a
regular expression library that
provides comparable functionality.

FUNCTION Defines a procedure. Use Java language constructs to
define functions.

GET_REGEXPR Gets a regular
expression

GNU Regular
Expression
library

Java-enabled NEP bundles a
regular expression library that
provides comparable functionality.

GOSUB - Native Use Java language constructs to
control program flow.

GOTO Jumps to a new
program statement
with the indicated line
number.

Native Use Java language constructs to
control program flow.

IF - Native Use Java if statement.

IF_THEN, ELSE,
ELSE_IF, ENDIF

Makes decisions. Native Use Java if statement.

IFDEF - com.mslv.acti
vation.jinterpr
eter Class
JProcessor

-

IFNDEF - getAllParams The getAllParams methods returns
a java.util.Properties object which
can test for existence with the
getProperty method.

INCREMENT Manipulates variables. Native Use arithmetic functionality in Java
programming language.

IND_SET References complex
compound variables
(e.g. Arrays,
Structures, etc.).

Native Use String classes to concatenate
values.

LENGTH Manipulate strings Native Use String classes to concatenate
and determine length values.

MAP_GOSUB Maps a procedure. - Use Java Map interface and
implementation classes to create
and manipulate a custom map.

MAP_OPTION Defines a map option. - Use Java Map interface and
implementation classes to create
and manipulate a custom map.

NEW_MAP Defines a new map. - Use Java Map interface and
implementation classes to create
and manipulate a custom map.

RETURN Exits a procedure and
return to the calling
State Table.

Native Use Java language constructs to
control program flow.

Chapter 5
Action functions

5-53

Table 5-26 (Cont.) General action functions

Action
Function

Description JInterpreter
Action

Notes

SUBSTR Manipulates strings Native Use Java String classes.

TRIM Manipulates strings Native Use Java String classes.

WAIT Pauses the program. Native Use java.lang.Thread.sleep.

WHILE,
ENDWHILE

Creates loops. Native Use Java while statement.

For all general action functions, binary data types are handled as well as ASCII data
types.

– Comment character
You can specify a comment that is ignored by the Interpreter while processing the
State Table. This comment is stored in the database and is helpful to document
particular State Table functionality.

See also "COMMENT."

Java equivalent – Use // or /** style comments in Java source files.

Syntax:

Comment String

Example:

This is a comment.

BCONCAT
Used for the concatenation of binary and ASCII variables into a binary variable.

See also "CONCAT," LENGTH," "SUBSTR," "TRIM."

The last colon in the action string is used to specify the concatenation of a blank
terminated string.

Table 5-27 BCONCAT Parameters

Parameter Description

%DEST The destination variable name of the result of the concatenation.

a1, a2, .., an Where A1 can be one of [%var | constant].

Syntax:

BCONCAT ‘%DEST=a1:a2:a3...:an:'

Example:

Chapter 5
Action functions

5-54

1000 CONCAT ‘%DEST1=ABC:DEF'
1010 CONCAT ‘%DEST2=%BinaryVar1:%AsciiVar1'
1020 BCONCAT ‘%DEST=%DEST1:%DEST2'

To embed the colon character with BCONCAT, use ASCII variable and CONCAT until ":"
character is attached. When the colon character is attached at the end of a string, use
BCONCAT to make the final destination variable a variable of the binary type.

The SOLUTION for BCONCAT concatenation of two arguments with a colon character
between is:

1000 CONCAT '%VAR10=ABC'
1001 CONCAT '%VAR11=DEF'
1002 CONCAT '%VAR12=%VAR10:%;:'
1003 BCONCAT '%FINAL=%VAR12:%VAR11'

Therefore, the final binary destination variable (FINAL) is a concatenation of two arguments
with a colon character between them (ABC:DEF).

CALC
Evaluates the arithmetic expression in the action string and saves the numerical value in the
result variable. The arithmetic expression can be formed with decimal number, specified as
literal or string variables, and the following operators:

• +

• -

• *

• /

• (

•)

The order of preference of the above variables is:

• (and)

• * and /

• + and -

The precision and scale of the output depends on the input. For example, the result of the
expression (12.54 + 99.555) is 122.095. The result for the expression (555.55*-66) is
-36666.30.

The result variable must be an ASAP Scalar variable and cannot be a Compound parameter.
If no result variable exists, it is created and the result of the expression is saved in the
variable. Any earlier value of a result variable is overwritten with the result of the expression.

Errors:

If the expression cannot be evaluated, due to mismatched brackets, undefined variables, etc.,
the action fails. This causes the associated ASDL to fail with an ASDL_STATE_TABLE_ERR
status. The action function issues a SYS_ERR event.

Syntax:

CALC ‘%RES=<arithmetic expression>'

Chapter 5
Action functions

5-55

Example:

CALC ‘%RES=(%a * ((%b / %d) + %e))'

CALL
This action function executes a specific function within a State Table. The State Table
is identified by the ASDL command to be executed, as well as the technology and
software load of the NE to be provisioned. This indirect mapping (defined in
tbl_nep_asdl_prog) is necessary to ensure that the correct version of the function is
executed.

See also "CHAIN," "FUNCTION," "RETURN."

This action uses the asdl_cmd, technology, and software load to determine the State
Table where this function resides. It then executes this function.

To use this function, the translation tables must be configured appropriately. In
particular, the asdl_cmd must have a mapping to the relevant state table.

Java equivalent – Invoke the Java class.method directly as a regular function call.

Syntax:

CALL asdl_cmd::name

Example:

BEGIN EXAMPLE_1
#
Call a function from a State Table utilities library and
then chain the main processing ASDL.
#
1000 CALL ‘UTILS_LIBRARY::RESET'
1010 CHAIN ‘PROCESS_DATA'
1020 ASDL_EXIT ‘SUCCEED'
END EXAMPLE_1
BEGIN UTILS_LIBRARY
#
Library Function to reset variables
#
1000 FUNCTION ‘RESET'
1010 CLEAR ‘%TEST_VAR'
1020 RETURN ‘‘
END UTILS_LIBRARY
BEGIN PROCESS_DATA
#
1000 IF_THEN ‘%TEST_VAR DEFINED'
1010 CONCAT ‘%RESULT=%TEST_VAR'
1020 COMMENT ‘Do other processing'
1030 ENDIF ‘‘
1040 RETURN ‘‘
#
END PROCESS_DATA

CASE
Checks a value against the current SWITCH value. If the values are equal, a
subroutine call is made to the specified function address at the action integer.

Chapter 5
Action functions

5-56

See also "DEFAULT," "SWITCH," "ENDSWITCH."

Java equivalent – Use Java switch statement.

Syntax:

CASE <expand string> function address

Example:

1000 SWITCH ‘%TMP'
1010 CASE ‘TEST' 2000
1020 CASE ‘%VAR1' 2500
1030 DEFAULT ‘‘5000
1040 ENDSWITCH ‘‘
1050 ASDL_EXIT ‘SUCCEED'
Handle TEST Case
2000 CONCAT ‘%TMP1=1'
2010 RETURN ‘‘
Handle Dynamic match of "%VAR1" and "%TMP"
2500 CONCAT ‘%TMP2=1'
2510 RETURN ‘‘
Handle Default case of no match
5000 CONCAT ‘%TMP3=1'
5010 RETURN ‘‘

CHAIN
This action function is expanded to determine the ASDL command. The ASDL command is
then used to determine which state table the Interpreter invokes.

See also "CALL," "FUNCTION," "RETURN."

It also uses the ASDL command in the expand string, technology, and software load to
determine which state table to call. It then executes the state table.

The current state table is suspended until the chained state table completes.

To use the function, CHAIN, the translation tables must be configured appropriately. In
particular, the ASDL must have a mapping to the relevant state table.

Java equivalent – Invoke the Java class.method directly as a regular function call.

Syntax:

CHAIN <expand string>

Example:

1000 CHAIN ‘DMS_CHECK'

CLEAR
Sets the specified variable to NULL. It is the same as CONCAT “%variable=".

See also "CONCAT."

Java equivalent – Assign null to the variable.

Syntax:

CLEAR ‘%variable'

Chapter 5
Action functions

5-57

CMD_DUMP
This action function is expanded to determine the specified UNIX filename that is used
to dump the Interpreter working data. This data includes all parameters currently set
within the Interpreter.

Java equivalent – Implement custom command dumping functionality using java.io
classes.

Syntax:

CMD_DUMP ‘<filename>‘

Example:

Sample output appears below.

sunen214@caribou /u/itg/TEST/APIAF/EXECUTION >cat dump_file.doc
Command Processor FTP_DEV3 Data
Tech: DMS Software Version: BCS33 ASDL Command: A_CMD_DUMP_1 Port State: 1
Error :
ASDL Status : 0
Response :
Param Group : Undefined
Switch Value:
Variable Count: 0 Stack Depth 0 Program Counter 0
SARM Notify Needed: 1Port: 400618b0 Message: 406bfd58 Stack: 406af548 Var_tbl:
40919e70
Program Tbl: 4068f4b8, Current_Prog: 4068f4b8
Port Bind Dump
Device: FTP_DEV3 Pool SSTNDMS Line_type: F Command Prod Queue: 51
Vs Key: 0 Disabled: 0 Binded: 1 VS Qid: 56 Host: SSTNNBSCDS1 Sess Qid: 50

Variable Dump
Level 2 ASDL_CMD = [A_CMD_DUMP_1]
Level 2 DEVICE = [FTP_DEV3]
Level 1 DIAL_NO = []
Level 2 HOSTCLLI = [SSTNNBSCDS1]
Level 2 HOST_IPADDR = [<IP address>]
Level 2 HOST_NAME = [supra]
Level 0 HOST_PASSWORD = [<password>]
Level 2 HOST_USERID = [rtcenv20]
Level 1 IS_ROLLBACK = [NO]
Level 2 LOOPBACK_ON = [1]
Level 0 MCLI = [SSTNNBSCDS1]
Level 2 PORT = [21]
Level 2 SOFTWARE = [BCS33]
Level 2 SRQ_ID = [9]
Level 1 TECH = [DMS]
Level 2 WO_ID = [WO_CMD_DUMP_1]

Stack Trace

Active Program Dump
4068f4b8 A_CMD_DUMP_1 Action Tbl 406cf880 Count 2 Next 00000000

Chapter 5
Action functions

5-58

CMPND_COPY
Copies all parameters from one Compound parameter to another. The parameter to the right
of the equal sign must be defined and must be a Compound parameter. In the example,
OLD.a and OLD.b are copied into the new parameters NEWER.a and NEWER.b respectively.

Errors:

If the source parameter is undefined or is not a Compound parameter, the action fails. The
failure of the action causes the associated ASDL to fail with an ASDL_STATE_TABLE_ERR
status. The action function also issues a SYS_ERR system event.

Syntax:

CMPND_COPY ‘%variable=%variable'

Example:

CMPND_COPY ‘%NEWER=%OLD'

COMMENT
Specifies a comment that is ignored by the Interpreter.

See also "# – Comment character."

Java equivalent – Use // or /** style comments in Java source files.

Syntax:

COMMENT ‘comment string'

Example:

1000 COMMENT ‘This is a comment'

CONCAT
Concatenates the arguments into a value and then sets the destination variable to the new
value. When it is necessary to append spaces to the end of a string, the action argument
must be terminated with a colon. For example:

CONCAT ‘a1:a2: :'

See also "BCONCAT," "LENGTH," "SUBSTR," "TRIM."

Note:

There is a size constraint for the concatenated string by the "CONCAT" action
function. When the combined string length of the three possible sources is greater
than 255, a system event "SYS_ERR" is generated.

Java equivalent – Use Java String or Byte classes.

Syntax:

Chapter 5
Action functions

5-59

CONCAT %dest=a1:a2:a3:

Parameters:

• %dest: The destination variable name of the result of the concatenation.

• a1:a2:a3: Where a1 can be one of [%var | constant]. a2 and a3 are optional.

Example:

1000 CONCAT %TMP=ABC: :DEF
1010 CONCAT %TMP2=# Equivalent to CLEAR
1020 CONCAT %TMP3=%TMP:%TMP2:At the end
1030 CONCAT %TMP4=A:%;:B #results in A:B

The following table describes which built-in variables create reserved characters.

Table 5-28 Variables to create reserved characters

To insert Use Or

; %COLON %;

<space> %SPACE %<space>

= %EQUAL %=

% %PERCENT %%

COPY_TO_ASCII
Copies a state table binary variable value to an ASCII variable.

Syntax:

COPY_TO_ASCII ‘%Ret=%Bvar[:If_Conversion]'

Parameters:

• If_Conversion: If the value is 0, no conversion is done and source (Bvar) is
copied to destination (Ret), as is (Binary copy).

If the value is 1, the source is converted to ascii values and then copied to the
destination (only printable characters are copied, and the rest are converted to ".")

Remarks:

• %BVar must be a binary variable.

• No restrictions are imposed on the size of %BVar value.

• If %Bvar value is truncated, the action function sets the State Table variable
%ASC_INFO_VAR to "TRUNCATED"; otherwise, it sets it to its default value (the
empty string). The variable %ASC_INFO_VAR may be used to test for the
condition if the value has been truncated.

Errors:

In the event of any of the following errors, state table program execution fails
immediately.

• Number of arguments is less than (%BVar is missing). The following error
message is printed: ‘Missing Mandatory Parameters'.

Chapter 5
Action functions

5-60

• %BVar does not exist or is not a binary variable. The following error message is printed:
‘Var %BVar does not exist or is not a binary variable'.

Example:

100 BCONCAT ‘%N=1234'
110 COPY_TO_ASCII ‘%N1=%N'
120 COPY_TO_ASCII ‘%N2=%N:0'
130 COPY_TO_ASCII ‘%n3=%N:1'
140 IF_THEN ‘%ASC_INFO_VAR == ‘TRUNCATED'
150 CONCAT ‘%I=O'
160 END_IF ‘'

DECREMENT
Decrements a variable within the State Table program by the value specified. If you do not
specify a value, a default value of 1 is used.

See also INCREMENT.

Java equivalent – Use arithmetic functionality in Java programming language.

Syntax:

DECREMENT ‘%var' value

Example:

Decrement INDEX by 1
1000 DECREMENT '%INDEX'
Decrement VALUE by 5
1010 DECREMENT '%VALUE' 5

DEF_REGEXPR
Defines a regular expression that can be matched with a call to EXPR_GOSUB.

See also "EXPR_GOSUB."

You can have many regular expressions defined and then use EXPR_GOSUB to call the
function of the first match it finds. This is similar to the UNIX awk utility.

The term regular expression is used here in the same general sense as UNIX uses the
term. For more information, refer to regexp in the UNIX documentation.

Regular expressions are stored in a linked list. When a new regular expression is added, it is
appended to the end of the list. Traversal of the list is performed from the head of the list until
a match is found.

Syntax:

DEF_REGEXPR ‘regular expression' function address

Example:

1000 DEF_REGEXPR ‘[A-Z].[A-Z]' 2000 # (e.g."A.A" or "ABC")
1010 EXPR_GOSUB ‘%BUF' 5000
If value of %BUF is ‘C1F', EXPR_GOSUB will set program counter to 2000.
If value of %BUF is null, EXPR_GOSUB will set program counter to 5000.

Chapter 5
Action functions

5-61

DEFAULT
This action is a default processing action for a SWITCH statement when none of the
cases is satisfied.

See also "ENDSWITCH," "SWITCH," "CASE."

If none of the cases you specify can be satisfied, a subroutine call is made to the
function address that you specify.

Java equivalent – Use Java switch statement.

Syntax:

DEFAULT ‘ ' function address

Example:

1000 SWITCH ‘%TMP'
1010 CASE ‘TEST' 2000
1020 CASE ‘%VAR1' 2500
1030 DEFAULT ‘‘ 5000
1040 ENDSWITCH ‘‘
1050 ASDL_EXIT ‘SUCCEED'
Handle TEST Case
2000 CONCAT ‘%TMP1=1'
2010 RETURN ‘‘
Handle Dynamic match of "%VAR1" and "%TMP"
2500 CONCAT ‘%TMP2=1'
2510 RETURN ‘‘
Handle Default case of no match
5000 CONCAT ‘%TMP3=1'
5010 RETURN ‘‘

DEL_REGEXPR
Deletes the specified regular expression from the list of regular expressions. If the
action string is empty, all regular expressions are deleted from the list.

See also "DEF_REGEXPR," "EXPR_GOSUB."

The term regular expression is used here in the same general sense as UNIX uses
the term.

For more information, refer to regexp in the UNIX documentation.

Syntax:

DEL_REGEXPR ‘regular expression'

Example:

Delete the regular expression ‘*.AB*'
1000 DEL_REGEXPR ‘*.AB*'
Delete all regular expressions
1010 DEL_REGEXPR ‘'

Chapter 5
Action functions

5-62

DIAG
Writes the expanded action string to the application's diagnostic file as a message with
diagnostic level DiagLevel. If DiagLevel: is skipped, the level is defaulted to LOW_LEVEL.
The diagnostic string can have ‘:' within it. This action is useful for cases in which you want to
log a message only to the diagnostic file, not to the database.

See also "EVENT."

Java equivalent – com.mslv.activation.server Class Diagnostic. The Class diagnostic can be
used to log messages to the diagnostic file.

Syntax:

DIAG ‘DiagLevel:Diagnostic string'

Example:

1000 DIAG ‘LOW:Invalid Remote NE %MCLI'
Lines 1000 and 1010 are equivalent.
1010 DIAG ‘Invalid Remote NE %MCLI'
1020 DIAG ‘SANE:NE: %MCLI SRQ: %SRQID'

ELSE
Defines the section of the state table that is executed if a previous IF or ELSE_IF cannot be
executed.

See also "IF_THEN," "ELSE_IF," "ENDIF."

This action is a logical construct that must match with corresponding IF_THEN or ELSE_IF,
and ENDIF constructs.

To accomplish the jump to the end of the IF_THEN clause, the command processor inserts
the reserved action __GOTO_ENDIF just before each ELSE. If you are debugging State
Tables, this statement is apparent.

Java equivalent – Use Java if statement.

Syntax:

ELSE ‘‘

Example:

1000 IF_THEN ‘%TMP == "1"‘
1010 LOG ‘Test # 1 Complete'
1020 ELSE_IF ‘%TMP == "2"‘
1030 LOG ‘Test # 2 Complete'
1040 ELSE ‘‘
1050 LOG ‘Unknown Test Completion'
1060 ENDIF ‘‘

ELSE_IF
If the expression specified is True, the next state table instruction is executed. Otherwise,
execution continues at the next ELSE_IF, ELSE, or ENDIF state table instruction.

See also "IF_THEN," "ELSE," "ENDIF."

Chapter 5
Action functions

5-63

This logical construct must match with corresponding IF and ENDIF constructs.

To accomplish the jump to the end of the IF clause, the command processor inserts
the reserved action __GOTO_ENDIF just before each ELSE. If you are debugging
state tables, this statement becomes apparent.

Java equivalent – Use Java if statement.

Syntax:

ELSE_IF ‘expression'

Example:

1000 IF_THEN ‘%TMP == "1"'
1010 LOG ‘Test # 1 Complete'
1020 ELSE_IF ‘%TMP == "2"'
1030 LOG ‘Test # 2 Complete'
1040 ELSE ‘‘
1050 LOG ‘Unknown Test Completion'
1060 ENDIF ‘'

ENDIF
Defines the end of a block of IF_THEN, ELSE, and ELSE_IF.

See also "IF_THEN," "ELSE," "ELSE_IF."

This logical construct must match the corresponding IF or IF_THEN constructs.

Java equivalent – Use Java if statement.

Syntax:

ENDIF ‘'

Example:

1000 IF_THEN ‘%TMP == "1"'
1010 LOG ‘Test # 1 Complete'
1020 ELSE_IF ‘%TMP == "2"‘
1030 LOG ‘Test # 2 Complete'
1040 ELSE ‘'
1050 LOG ‘Unknown Test Completion'
1060 ENDIF ‘'

ENDSWITCH
Marks the end of the SWITCH statement. A subroutine call made as a result of a
CASE or DEFAULT statement returns to this point.

See also "CASE," "DEFAULT," "SWITCH."

This logical construct must match with a corresponding SWITCH construct.

Java equivalent – Use Java switch statement.

Syntax:

ENDSWITCH ‘'

Example:

Chapter 5
Action functions

5-64

1000 SWITCH ‘%TMP'
1010 CASE ‘TEST' 2000
1020 CASE ‘%VAR1' 2500
1030 DEFAULT ‘' 5000
1040 ENDSWITCH ‘'
1050 ASDL_EXIT ‘SUCCEED'
Handle TEST Case
2000 CONCAT ‘%TMP1=1'
2010 RETURN ‘'
Handle Dynamic match of "%VAR1" and "%TMP"
2500 CONCAT ‘%TMP2=1'
2510 RETURN ‘'
Handle Default case of no match
5000 CONCAT ‘%TMP3=1'
5010 RETURN ‘'

ENDWHILE
Marks the end of a WHILE loop. Nested WHILE loops are not supported.

See also "WHILE."

Java equivalent – Use Java while statement.

Syntax:

ENDWHILE ‘'

Example:

1000 CONCAT ‘%I=1'
1010 WHILE ‘%I != "10"‘
1020 LOG ‘Loop iteration %I'
1030 INCREMENT ‘%I'
1040 ENDWHILE ‘'

ERROR_STATUS
Deprecated. Use "ASDL_EXIT."

EVENT
You can log ASAP system events from inside a State Table.

See also "DIAG."

Java equivalent – com.mslv.activation.server Class EventLog. Class EventLog can be used
to generate system events.

Syntax:

EVENT ‘Event:Event String'

The Event parameter must be the name of an event (maximum 8 characters) defined in the
Control server, and the Event String parameter is used as the event text for the event
(maximum 80 characters).

For more information on configuring events, refer to the ASAP System Administrator's Guide.

Chapter 5
Action functions

5-65

EXEC
Deprecated. This action function is provided for backward compatibility only. Use
"EXEC_RPC."

EXEC_RPC
This is a more general purpose action than EXEC and must be used in any new State
Table development instead of EXEC.

This action executes the function in the NEP database (NEP_USER and
NEP_PASSWORD are used to determine the source of the STORED_PROC) as
follows:

EXEC_RPC STORED_PROC @asdl="Current ASDL Command",

@tech = "Technology",
@sftwr_load = "Software Load",
@arg1 = arg1, ... @argn = argn

Only arg1, arg2, etc. arguments are acceptable.

Multiple columns and rows of data can be returned by the function. The following rules
are used to store the variables for later use:

• Each row increments an index value by 1 starting at 1.

• For the first row, the column labels are used to set up parameters in a structure,
for example, var.column1, var.column2, var.column3.

• For each row returned, including the first row, the column labels are used in
conjunction with the current index to create an array of structures, for example,
var[%index].column1, var[%index].column2.

If the column label is NULL or '', a normal array element is created, for example,
var[%index] and "var" is also assigned the value. In this case, "%var" is set to the
value in the last row where column label is NULL or ''.

Examples:

var[1].column1 and var.column1 = value at row 1, column 1
var[1].column2 and var.column2 = value at row 1, column 2
var[1] and var = value at row 1, column 3 # if column 3 has no label
var[2].column1 = value at row 2, column 1
var[2].column2 = value at row 2, column 2
var[2] = value at row 2, column 3

This function can pass many parameters to the stored function. It can also retrieve
many data rows and columns back from the stored function. These data rows and
columns are stored as indexed parameters within the Interpreter.

The EXEC_RPC function can retrieve only one result set specified with a cursor
variable in the stored function.

The stored functions to execute via EXEC_RPC should be defined as functions with
the following first four parameters mandatory:

cursor_var CURSOR
asdl CHAR

Chapter 5
Action functions

5-66

tech CHAR
sftwr_load CHAR

Converting float data types can cause rounding errors. All data types are converted into
characters.

Java equivalent – Use JDBC library to invoke functions.

Syntax:

EXEC_RPC ‘%var=STORED_PROC:arg1:.:argn'

Example:

State table 1:
1000 EXEC_RPC '%X=SSP_get_dn_list:%MACH_CLLI:%LEN'
dir_no dn_type
2531920SINGLE PARTY LINE
2531921MULTIPLE APPEARANCE DIRECTORY NUMBER

Results:
X[1].dir_no = "2531920",
X[1].dn_type = "SINGLE PARTY LINE",
X[2].dir_no = "2531921",
X[2].dn_type = "MULTIPLE APPEARANCE DIRECTORY NUMBER"

State Table 2:
1000 EXEC_RPC '%X=SSP_get_dn_list:%HOST_CLLI:%SITE:%FROM_LEN'
X[1] = MCLI or 'UNKNOWN'

Stored function:
TYPE SSP_get_mcli_rt1 IS RECORD (
 tmp VARCHAR2(255)
);

TYPE SSP_get_mcli_1 IS REF CURSOR RETURN SSP_get_mcli_rt1;

CREATE OR REPLACE FUNCTION SSP_get_mcli(
RC1 IN OUT NepPkg.SSP_get_mcli_1,
asdl CHAR ,
tech CHAR ,
sftwr_load CHAR ,
arg1 tbl_clli_len_ltg.host_clli%TYPE,
arg2 tbl_clli_len_ltg.site%TYPE,
arg3 tbl_clli_len_ltg.from_len%TYPE)
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
tmp VARCHAR2(128);
BEGIN
 BEGIN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := 0;
 SELECT mach_clli
 INTO SSP_get_mcli.tmp

Chapter 5
Action functions

5-67

 FROM tbl_clli_len_ltg
 WHERE host_clli = SSP_get_mcli.arg1
 AND site = SSP_get_mcli.arg2
 AND SSP_get_mcli.arg3 >= from_len
 AND SSP_get_mcli.arg3 <= to_len;
 StoO_rowcnt := SQL%ROWCOUNT;
 EXCEPTION
 WHEN OTHERS THEN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := SQLCODE;
 END;
 IF StoO_rowcnt = 0 THEN
 SSP_get_mcli.tmp := 'UNKNOWN';
 END IF;
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := 0;
 OPEN RC1 FOR
 SELECT SSP_get_mcli.tmp
 FROM DUAL;
RETURN 0;
END

EXEC_RPCV
To improve the efficiency of database queries conducted by ASAP, the EXEC_RPC
action function has been split into two groups: EXEC_RPC is used for database
update/insert functionality and has a cursor and EXEC_RPCV is used for database
queries and employs no cursor.

Syntax:

 EXEC_RPCV '%DEST=SSP:arg1:.:argn'

where…

• DEST is the name of the return variable that holds the result from the stored
procedure.

• SSP is the name of the stored procedure in the NEP database to execute.

• arg1...argn are the input paramters provided for use in the stored procedure.

Example (usage in a state table):

BEGIN ST1
......
100 EXEC_RPCV '%R1=SSP_test:1:35'
110 LOG 'Stored procedure returned %R1'
......
500 ASDL_EXIT 'SUCCEED'
END ST1

In this sample, R1 holds the result. %R1 will log the result into tbl_srq_log.

The stored procedure declaration and definition for EXEC_RPCV is similar to
EXEC_RPC. The difference is that the first parameter declared in stored procedures
for EXEC_RPCV is an OUT (output variable) instead of a cursor variable.

The following is an example of a stored procedure in the NEP database:

Chapter 5
Action functions

5-68

CREATE OR REPLACE FUNCTION SSP_test(
retv OUT VARCHAR2 ,
asdl CHAR ,
tech CHAR ,
sftwr_load CHAR ,
op VARCHAR2 ,
data VARCHAR2)
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
BEGIN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;
 StoO_error := 0;
 SSP_test.retv := TO_NUMBER(SSP_test.op) || TO_NUMBER(SSP_test.data);
 RETURN 0;
END SSP_test;
/

This sample stored procedure has the following parameters:

• retv OUT VARCHAR2: This return parameter will return the result (see R1 state table
variable in the state table above). This should less than 256 characters.

• asdl CHAR: ASDL name (this is not provided through EXEC_RPCV state table action
function, but passed internally to the stored procedure).

• tech CHAR: Technology (this is not provided through EXEC_RPCV state table action
function, but passed internally to the stored procedure).

• sftwr_load CHAR: Software load (this is not provided through EXEC_RPCV state table
action function, but passed internally to the stored procedure).

• op VARCHAR2: Optional input parameter 1.

• data VARCHAR2: Optional input parameter 2.

The first four parameters are mandatory. After these four parameters, optional parameters
should be declared.

Note that the return result is assigned to the variable SSP_test.retv so that it can be retreived
via %R1.

You do not need to provide optional parameters. In this case, the stored function appears as
follows:

CREATE OR REPLACE FUNCTION SSP_test1(
retv OUT VARCHAR2 ,
asdl CHAR ,
tech CHAR ,
sftwr_load CHAR)
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
BEGIN
 StoO_rowcnt := 0;
 StoO_selcnt := 0;

Chapter 5
Action functions

5-69

 StoO_error := 0;
 SSP_test1.retv := 'This is the return result from SSP_test1 stored
function.';
 RETURN 0;
END SSP_test1;
/
Only the mandatory parameters are declared. There are no optional parameters. In
a State Table, EXEC_RPCV is executed as follows for this stored function:
BEGIN ST2
......
100 EXEC_RPCV '%R2=SSP_test1'
110 LOG 'Stored procedure returned %R2'
......
500 ASDL_EXIT 'SUCCEED'
END ST2

The R2 variable in this State Table will have the following string after EXEC_RPCV is
executed:

"This is the return result from SSP_test1 stored function".

EXIT
Deprecated. Use "ASDL_EXIT."

EXPR_GOSUB
The buffer is checked against all the regular expressions that have been defined using
DEF_REGEXPR. If a match is found, a gosub is executed to the function specified by
the expression. If no expression is found, the default function specified by this action is
used to execute a gosub.

See also "GOSUB," "GOTO," "MAP_GOSUB," "RETURN."

Syntax:

EXPR_GOSUB ‘buf' function address

Parameters:

• buf: The buffer to be checked.

• function address: The default function address if no match is found in the buffer.

Example:

1000 DEF_REGEXPR ‘[A-Z].[A-Z].[0-9]' 2000 # (e.g. "A.AB3
or C1D77")
1030 EXPR_GOSUB ‘ %BUF' 5000
If value of %BUF is ‘S.F.9', for example, EXPR_GOSUB will set program counter
to 2000.
If value of %BUF is null, EXPR_GOSUB will set program counter to 5000.

FUNCTION
Defines a function in a State Table program. The function can be defined as part of a
library or locally as part of the State Table program from which it is invoked. If invoked
locally, the function must be defined after all the invocations.

See also "CALL," "CHAIN," "RETURN."

Chapter 5
Action functions

5-70

Syntax:

FUNCTION ‘name'

Example:

BEGIN EXAMPLE_1
#
Call a function from a State Table utilities library and
then chain the main processing ASDL.
#
1000 CALL ‘UTILS_LIBRARY::RESET'
1010 CHAIN ‘PROCESS_DATA'
1020 asdl_EXIT ‘SUCCEED'
END EXAMPLE_1
BEGIN UTILS_LIBRARY
#
Library Function to reset variables
#
1000 FUNCTION ‘RESET'
1010 CLEAR ‘%TEST_VAR'
1020 RETURN ‘'
END UTILS_LIBRARY
BEGIN PROCESS_DATA
#
1000 IF_THEN ‘%TEST_VAR DEFINED'
1010 CONCAT ‘%RESULT=%TEST_VAR'
1030 ENDIF ‘'
1040 RETURN ‘'
#
END PROCESS_DATA

GET_REGEXPR
Retrieves an array of regular expressions (specified by expr from the buffer (specified by
buf).

See also "DEF_REGEXPR."

The array is built as follows: dest[1], dest[2], etc.

Syntax:

GET_REGEXPR ‘%dest=expr:buf'

Example:

1000 CONCAT ‘%BUF=HOST 00 1 10 23 NEWC 10 1 23 01'
1010 GET_REGEXPR ‘%SITE=[A-Z][A-Z][A-Z][A-Z]:%BUF'
#
SITE[1]= HOST, SITE[2] = NEWC

GOSUB
Makes a subroutine call to the function specified by the function address.

See also "EXPR_GOSUB," "GOTO," "MAP_GOSUB," "RETURN."

Java equivalent – Use Java language constructs to control program flow.

Syntax:

Chapter 5
Action functions

5-71

GOSUB ‘ ' function_address

Example:

1000 GOSUB ‘' 2000
Continue Processing ...
#
Subroutine
#
2000 CONCAT ‘%TMP=1'
2010 RETURN ‘'

GOTO
Goes to the function address you specify and continues executing.

Note:

Avoid using GOTO if possible. The use of GOTO can seriously impair the
readability of and ability to debug a state table. Instead, use GOSUB, CHAIN
or FUNCTION.

See also "EXPR_GOSUB," "GOSUB," "MAP_GOSUB," "RETURN."

Java equivalent – Use Java language constructs to control program flow.

Syntax:

GOTO ‘ ‘ function address

Example:

1000 GOTO ‘' 2000
1010 CONCAT ‘%TMP=Executed Second'
2000 CONCAT ‘%TMP=Executed First.'
2010 RETURN ‘'

IF
If the specified expression is True, a subroutine call is made to the specified line
number. Otherwise, execution continues with the next state table instruction.

See also "IFDEF," "IFNDEF."

The IF_THEN action, similar to this action, does not perform a subroutine call.

Java equivalent – Use Java if statement.

Syntax:

IF ‘expression' line #

Example:

1000 IF ‘%TMP >= "TEST"' 2000
Continue Processing ...
2000 LOG ‘This is Test %TMP'
2010 RETURN ‘'

Chapter 5
Action functions

5-72

IF_THEN
If the specified expression is True, the next state table instruction executes. Otherwise,
execution continues at the next ELSE_IF, ELSE or ENDIF state table instruction.

See also "ELSE," "ELSE_IF," "ENDIF."

An expression is defined as follows:

operator::= { ==, !=, <=, >=, <, >, NOT_NULL, IS_NULL, DEFINED, NOT_DEFINED}
expression ::= %var operator [{ %var | number | “string"}]

The maximum number size must be within the boundary of double precision.

The State Table interpreter compares the values of integers or real numbers if the contents of
the both value1 and value2 are numbers in the IF_THEN value1 REL_OP value2. An
example of numbers in this format are 123, 12.3, +123, -123.

If using the IF_THEN clause to compare IP addresses, keep in mind that only IPv4 addresses
are supported. The '= =' comparison for IP addresses behaves as follows:

• the format of the IP address should be a.b.c.d. Formats such as 'a.b.c', 'a.b', 'a', 'a..b.c'
are not supported.

• leading 0s are considered to be an octet. For example, if the IP address is 010.9.12.1,
then 010 is considered to be an octet and the actual IP address is interpreted as 8.9.12.1.
In other words, 010.9.12.1 does not equal 10.9.12.1.

• all digits that have leading 0s should be less than 8 since it is recoginzed as an octet.
089.20.1.195 is a malformed IP address which is consequently not recognized as an IP
address.

• 10.001.24.196 and 10.1.24.196 are recognized as same IP address. Although though
second part of first IP address "001" is considered as an octet and is therefore "1".

Note:

If the IP address is not valid, it is considered to be a string.

Java equivalent – Use Java if statement.

Syntax:

IF_THEN ‘expression'

Example:

1000 IF_THEN ‘%TMP == "1"'
1020 LOG ‘Test # 1 Complete'
1030 ELSE_IF ‘%TMP == "2"‘
1040 LOG ‘Test # 2 Complete'
1050 ELSE ‘'
1060 LOG ‘Unknown Test Completion'
1070 ENDIF ‘'

Example for IP addresses:

Chapter 5
Action functions

5-73

1000 CONCAT ‘%TMP' = 10.1.9.125
1010 IF_THEN ‘%TMP == "10.1.9.125"' (returns true)
...
2000 IF_THEN ‘%TMP == "010.1.9.125"' (returns false)
2010 IF_THEN ‘%TMP == "10.1.09.125"' (returns false)

IFDEF
Checks the variable that you specify. If it is defined, the action makes a subroutine call
to the function that you specify.

See also "IF," "IFNDEF."

Java equivalent – com.mslv.activation.jinterpreter Class JProcessor

Syntax:

IFDEF ‘%var' function address

Example:

1000 IFDEF ‘%TMP' 2000
1010 ...
2000 LOG ‘TMP Variable Defined.'
2010 RETURN ‘'

IFNDEF
Checks the variable that you specify. If it is not defined, the action makes a subroutine
call to the function that you specify.

See also "IF," "IFDEF."

Java equivalent – getAllParams. The getAllParams methods returns a
java.util.Properties object which can test for existence with the getProperty method.

Syntax:

IFNDEF ‘%var' function address

Example:

1000 IFNDEF ‘%TMP' 2000
1010 ...
2000 LOG ‘TMP Variable Undefined.'
2010 RETURN ‘'

INCREMENT
Increments a variable within the state table program by the specified value.

See also "DECREMENT."

Java equivalent – Use arithmetic functionality in Java programming language.

Syntax:

INCREMENT ‘%var' value

Example:

Chapter 5
Action functions

5-74

1000 INCREMENT ‘%INDEX'
Increment INDEX by 1
1010 INCREMENT ‘%VALUE' 5
Increment INDEX by 5

IND_SET
Concatenates the parameters specified by p1, p2, and p3 to generate the name of the
variable to be retrieved. For example, %OPT=OPT:%OPT_IDX can be used to generate
OPT1, OPT2, ..., OPTn.

See also "CONCAT."

Note:

Do not use this action for any new state table development. This action is included
for backward compatibility only. Any new state tables must use the extended
variable syntax (in other words, %{...}).

Java equivalent – Use String classes to concatenate values.

Syntax:

IND_SET ‘%dest=p1:p2:p3'

Example:

1000 CONCAT ‘%IDX=3'
1005 CONCAT ‘%ARRAY[3]=abc'
#
These two statements are equivalent.
#
1010 CONCAT ‘%TMP=%{ARRAY[%IDX]}'
1020 IND_SET ‘%TMP=ARRAY[:%IDX:]'
Value of variable TMP will be: ‘abc'.

LENGTH
Concatenates the parameters specified by p1, p2 and p3 and then sets the destination
parameter to the length of the string (maximum 255 bytes). The optional parameters are p2
and p3.

See also "CONCAT," "SUBSTR," "TRIM."

Java equivalent – Use String classes to concatenate and determine length values.

Syntax:

LENGTH ‘%dest=p1:p2:p3'

Example:

1000 CONCAT ‘%TMP1=abc'
1010 CONCAT ‘%TMP2=defg'
1020 CONCAT ‘%TMP3=hijklm'
1020 LENGTH ‘%LEN1=%TMP1:%TMP2:XX'

Chapter 5
Action functions

5-75

1030 LENGTH ‘%LEN2=12:%TMP3:21'
In this example, LEN1 = 9 and LEN2 = 10.

MAP_GOSUB
Searches the specified map to locate a value. If the value is found, the subroutine
specified by the MAP_OPTION action is called. If the value is not found, the default
subroutine specified when the map was created, for example, NEW_MAP action is
executed.

See also "MAP_OPTION," "NEW_MAP," "RETURN."

Java equivalent – Use Java Map interface and implementation classes to create and
manipulate a custom map.

Syntax:

MAP_GOSUB ‘%mapname "%value"'

Example:

1000 NEW_MAP ‘PARSER_MAP' 2000
1010 MAP_OPTION ‘PARSER_MAP "LEN:"' 2100
1020 MAP_OPTION ‘PARSER_MAP "TYPE:"' 2200
1030 MAP_OPTION ‘PARSER_MAP "SNPA:"' 2300
1040 MAP_GOSUB ‘PARSER_MAP "%PARSE_BUF"'

In this example, if %PARSE_BUF = "LEN", execution of the program continues from
line 2100.

MAP_OPTION
Specifies the subroutine to call when the specified option value is used with the
MAP_GOSUB function.

See also "MAP_GOSUB," "NEW_MAP."

Java equivalent – Use Java Map interface and implementation classes to create and
manipulate a custom map.

Syntax:

MAP_OPTION ‘%mapname "%value"' function address

Example:

1000 NEW_MAP ‘PARSER_MAP' 2000
1010 MAP_OPTION ‘PARSER_MAP "LEN:"' 2100
1020 MAP_OPTION ‘PARSER_MAP "TYPE:"' 2200
1030 MAP_OPTION ‘PARSER_MAP "SNPA:"' 2300
1040 MAP_GOSUB ‘PARSER_MAP "%PARSE_BUF"'

MASK
Concatenates variables A1, ... A(n) and then applies the mask to the resulting string.

• source – String to which MASK string is applied to.

• destination – The resulting string after MASK operation.

• mask – A string that modifies the source according to next rules:

Chapter 5
Action functions

5-76

If the mask includes the following characters:

• x – Ignores source character (delete). It does not appear in the destination string.

• y – Copies a character from the source to the destination string.

• Any other character – Inserts that character from MASK into the destination string.

• Use \x or \y – Forces (inserts) an x or y from MASK into the destination strings.

Syntax:

MASK‘%DEST=%MASK:%A1:%A2:... :%An'

Example:

If the parse string is ‘ABCDEF', the following MASKs produce the following results:

Table 5-29 Sample mask results

MASK Results

yyyyyy ABCDEF

yy.yy.yy AB.CD.EF

xy.xy.xy B.D.F

yx.yx.yx A.C.E

XYZ-yy-\x\y\z XYZ-AB-xyz

<yyy><yyy> <ABC><DEF>

<yxy><xyx> <AC><E>

Each x and y in the MASK (not including the ones prefixed with a "\") map directly to a
character in the source string. Therefore, the 4th "x" or "y" in the MASK determines the
processing on the 4th character in the source, and so on.

Incorrect:

“yy yy yy" => AB CD EF

Correct:

yy yy yy => AB CD EF

NEW_MAP
If a value cannot be located in the map options, this action defines a new map within the state
table and the default subroutine to be executed.

See also "MAP_GOSUB," "MAP_OPTION."

Java equivalent – Use Java Map interface and implementation classes to create and
manipulate a custom map.

NEW_MAP ‘mapname' function address

Example:

1000 NEW_MAP ‘PARSER_MAP' 2000
1010 MAP_OPTION ‘PARSER_MAP "LEN:"' 2100
1020 MAP_OPTION ‘PARSER_MAP "TYPE:"' 2200

Chapter 5
Action functions

5-77

1030 MAP_OPTION ‘PARSER_MAP "SNPA:"' 2300
1040 MAP_GOSUB ‘PARSER_MAP "%PARSE_BUF"'

PAD_CHAR
Allows the size of the variable %VAR to be expanded to the length, LENGTH. The new
expanded area will be filled with the argument character, CHARACTER. The value of
the variable is preserved if the size of the expanded variable is greater than the current
size. Otherwise, an error occurs.

See also "ZERO_PAD."

Syntax:

PAD_CHAR ‘%RTN=%VAR:LENGTH:CHARACTER'

Example:

1000 BCONCAT ‘%DEST=Sample1:Sample2'
1010 PAD_CHAR ‘%RTN=%DEST:%Length:0'

PAUSE
Deprecated. Use "WAIT."

RETURN
Returns from a subroutine or state table chain.

See also "CALL," "CHAIN," "EXPR_GOSUB," "FUNCTION," "GOSUB,"
"MAP_GOSUB."

Java equvalent – Use Java language constructs to control program flow.

Syntax:

RETURN ‘ count

Parameters:

• count: Optional, default is 1. If the count is set, multiple returns can be executed
at once. A count of 0 is equivalent to a count of 1.

Note:

The count value must be used with caution as this is the equivalent to
using a GOTO by skipping return points on the stack.

Example:

1000 GOSUB ‘' 2000
1010 Continue Processing ...
Subroutine
#
2000 CONCAT ‘%TMP=1'
2010 RETURN ‘'

Chapter 5
Action functions

5-78

SUBSTR
Sets the destination variable to a substring of the source string of the length you specify and
starting at the offset you specify.

See also "CONCAT," "LENGTH," "TRIM."

Java equivalent – Use Java String classes.

Syntax:

SUBSTR ‘%dest=%sr c:off:len'

Parameters:

• %des t: The destination string variable name.

• %src: The source string variable name.

• off: The offset at which to begin the substring. The first character of the source string is
offset at 0.

• len: The length of the substring.

Example:

1000 CONCAT ‘%TMP=1234567890'
1010 SUBSTR ‘%TMP1=%TMP:0:2' # %TMP1 = 12
1020 SUBSTR ‘%TMP2=%TMP:9:5' # %TMP2 = 0

SWITCH
Sets the current switch value for the state table.

See also "CASE," "DEFAULT," "ENDSWITCH."

The use of curly braces is highly recommended when fully expanding variable names that
include non-alphanumeric characters (especially dot “.", left bracket [, or right bracket])
carrying special meaning.

Java equivalent – Use Java switch statement.

Syntax:

SWITCH ‘<expand string>'

Example:

1000 SWITCH ‘%TMP'
1010 CASE ‘TEST' 2000
1020 CASE ‘%VAR1' 2500
1030 DEFAULT ‘' 5000
1040 ENDSWITCH ‘'
1050 ASDL_EXIT ‘SUCCEED'
Handle TEST Case
2000 CONCAT ‘%TMP1=1'
2010 RETURN ‘'
Handle Dynamic match of "%VAR1" and "%TMP"
2500 CONCAT ‘%TMP2=1'
2510 RETURN ‘'
Handle Default case of no match

Chapter 5
Action functions

5-79

5000 CONCAT ‘%TMP3=1'
5010 RETURN ‘'

TRIM
Concatenates the parameters p1, p2, and p3 into a larger parameter and then trims
the parameter based on the trim_flag. The trimmed result is stored in the destination
variable.

See also "CONCAT," "LENGTH," "SUBSTR."

Java equivalent – Use Java String classes.

Syntax:

TRIM ‘%dest=p1:p2:p3' trim_flag

Parameters:

• %dest: Destination variable.

• p1, p2, p3: Parameters passed to this action. Optional parameters are p2 and p3.

• trim_flag: Can be set to indicate whether or not leading blanks, trailing blanks, or
both must be stripped. Possible values are:

– 0 – No trimming

– 1 – Leading blanks trim

– 2 – Trailing blanks trim

– 3 – Leading and trailing blanks trim

Example:

Trim leading and trailing blanks from TMP
1000 TRIM ‘%TMP=%TMP' 3
Trim trailing blanks
1010 TRIM ‘%TMP=%BUF:%XYZ' 2

WAIT
Pauses the State Table execution for the time you specify in seconds. If the time is 0, it
defaults to one second.

Java equivalent – Use java.lang.Thread.sleep.

Syntax:

CONCAT ‘%WTIME=15'
WAIT ‘%WTIME'

Example:

WAIT State Table execution for 120 seconds.
1000 WAIT ‘120 '

Chapter 5
Action functions

5-80

WHILE
Starts a WHILE loop. If the expression is “True", State Table execution continues with the
next State Table operation. If the expression is not true, the State Table execution resumes at
the point following the ENDWHILE statement.

See also "ENDWHILE."

Java equivalent – Use Java while statement.

Syntax:

WHILE ‘expression'

Example:

1000 CONCAT ‘%I=1'
1010 WHILE ‘%I != "10"‘
1020 LOG ‘Loop iteration %I'
1030 INCREMENT ‘%I'
1040 ENDWHILE ‘‘

ZERO_PAD
Specifies the state table variable label. The state table variable is retrieved and the numeric
value is saved in the variable which is preceded with leading zeroes. The number of leading
zeroes equals field length as specified - (minus) value length. For example:

See also "PAD_CHAR."

 ZERO_PAD ‘%NUM_VAR' 5

If the variable %NUM_VAR contains a numeric field 345, ZERO_PAD action causes the
value 00345 to be saved in the NUM_VAR variable. The number of leading zeroes is 2 in this
case. If NUM_VAR contains a value of 3, 00003 is stored.

If NUM_VAR contains 1234567, ZERO_PAD truncates the field to 12345. The action integer
specifies the total field length. If the action integer is set to 0, the number of leading zeroes is
defaulted to 1.

Note:

To reset the parameter that ZERO_PAD has been applied to its original value, set
the action integer to -1. For example: ZERO_PAD '%NUM_VAR' -1

Syntax:

ZERO_PAD ‘variable label' field length

NEP action functions
NEP action functions relate primarily to switch history and parameter management tasks,
such as:

• Data transmission and reception between ASAP and NEs.

Chapter 5
Action functions

5-81

• Virtual screen manipulation, if the communication to the network element is
terminal-based

• NE access control

• NE response logging and switch history

• NE blackout management

NEP action functions support the manipulation and transmission of all types and
formats of parameters, including indexed and compound parameters.

You can change the core action functions that are provided in the NEP library or
overwrite the existing ones as required.

The sample NEP provides some additional functions that perform NE-specific activities
such as lookups from static tables and data formatting.

Other NEP action functions provide functions related to the transmission of network
element responses and parameters from the NEP to the SARM, as well as some
statistical functionality.

The following NEP action functions relate to the transmission of NE responses and
parameters back from the NEP to the SARM and also offer some statistical
functionality.

Table 5-30 NEP Action Functions

Action Function Description Java Method Notes

LOG Log messages to the
NE history.

log JProcessor class. Generate
an NE history log item.

PARAM_GROUP Set parameter
grouping field.

setParamGroup JProcessor class. Sets a
group identifier.

SEND_COMPND

SEND_PARAM

Send parameters to
SARM.

returnCSDLParam

returnCompoundC
SDLParam

returnGlobalParam

returnCompoundG
lobalParam

returnInfoParam

returnCompoundIn
foParam

returnRollbackPara
m

returnCompoundR
ollbackParam

JProcessor class. Return
parameters up to SARM.

ASDL_EXIT Exit the program
specifying the
ASDL_EXIT status.

setASDLExitType Set exit type and return
from the function.

The following table describes ASAP NEP action functions that manage the following:

• The data transmission and reception between ASAP and the NE.

• Virtual screen manipulation, if the communication to the NE is terminal-based.

• NE access control.

Chapter 5
Action functions

5-82

• NE response logging.

In addition, the Virtual Screen NEP provides some action functions which perform NE specific
functions such as lookups from static tables and NE-specific data formatting.

Table 5-31 Core NEP Action Functions

Action Function Description Java Method Notes

ERROR Deprecated. - VirtualScreen class.

RESPONSELOG

VS_STOP_RESP

VS_COPY_RESP

VS_SEND_RESP

Start, stop logging of
NE responses.

startResponselog()

stopResponselog()

copyResponselog()

returnResponselog()

TelnetConnection class.

VS_GET_RESP

VS_SEND_RESP

SCREEN_RESP

Create switch history
from the response log.

loadResponselog()

returnResponselog()

returnVirtualScreen()

TelnetConnection class.

SEND Sends data. send() TelnetConnection class.

SENDKEY Sends a key to a
network element.

sendKey() TelnetConnection class.

MSGSEND Sends data. write SocketConnection
class. Send binary data.

MSGRECV Receives data. read SocketConnection
class. Receive binary
data.

SETOPTION - setOption() TelnetConnection class.

DMS_LEN

DMS_FEATS

DMS_NAME

GET_INCPT

GET_LTG

GET_P_PARMS

GET_SW_FEAT

Deprecated. Applicable
only to DMS NEs.

- -

ADD_HEADER
Adds a specified header into the message that is ready to be sent to an EDD, and is awaiting
a header.

See also "MSGSEND."

Syntax:

ADD_HEADER ‘%RTN=%VAR:TYPE'

Parameters:

• %RTN: The return variable (either SUCCEED or FAIL).

• %VAR: The variable that includes a message. A header type that must be one of the
following:

– CONNECT

Chapter 5
Action functions

5-83

– CONNECTED

– CONNECT_FAIL

– DISCONNECT

– DISCONNECTED

– DATA

– NO_ACTION

– BREAK_KEY

– OPTION

– DEBUG

– DEBUG_DISCONN

Example:

1000 BCONCAT ‘%MESSAGE=%MSG1:%MSG2:%MSG3'
1010 ADD_HEADER ‘%RTN=%MESSAGE:DATA'
1020 MEGSEND ‘%MESSAGE'
1030 MSGRECV ‘%RTN=MESSAGE_ACK'

ASC_TO_BIN
Converts the value of the numeric variable, %VAR, from ASCII data type to binary.

The maximum length of the ASCII variable must be:

• decimal – 10 characters or less

• octal – 11 characters or less

• hexadecimal – 8 characters or less

This action function does not issue error messages when there are invalid characters
in the string for the specified base.

For octal conversion, within the limit of 2^32-1, the action function does not allow the
string to have the 11th character specified because the code only checks for 10
characters regardless of the base.

Syntax:

ASC_TO_BIN ‘%RTN=%VAR:TYPE'

Parameters:

Table 5-32 ASC_TO_BIN parameters

Name Description Req'd Input/Output

%RTN The return variables are:

• SUCCEED
• FAIL

4 O

%VAR The variable to be used by the action
function.

4 I

Chapter 5
Action functions

5-84

Table 5-32 (Cont.) ASC_TO_BIN parameters

Name Description Req'd Input/Output

TYPE Data type. Must be one of the following:

• O – OCTAL_FIELD
• D – DECIMAL_FIELD
• H – HEX_FIELD
The default value is D.

8 I

Example:

100 BCONCAT '%MSG1=32'
110 BCONCAT '%MSG2=37'
120 CONCAT '%AsciiVar=49'
130 ASC_TO_BIN '%RTN=%AsciiVar:D'
140 BCONCAT '%MESSAGE=%MSG1:%MSG2:%AsciiVar'
150 MSGSEND '%MESSAGE'

ASC_TO_BIN will cause %AsciiVar to have 31 which the binary equivalent of 49.

ASDL_EXIT
Used in State Table programs that access NEs to complete an ASDL command. The
programs then return the appropriate error, classified by an error type, and an optional error
description. ASDL exit types include:

• SUCCEED – Successful ASDL command execution.

• FAIL – Hard error.

• RETRY – An ASDL command failed, but retries.

• MAINTENANCE – An ASDL command failed because the NE is currently unavailable to
receive provisioning requests.

• SOFT_FAIL – An ASDL command failed but processing continues; does not result in
failure of the order.

• DELAYED_FAIL – An ASDL had failed during provisioning. The SARM skips any
subsequent ASDL in the CSDL, continues provisioning at the next CSDL, and then fails
the order.

• STOP – Stops the ASDL command from processing.

Refer to the ASAP Cartridge Development Guidefor more detailed descriptions of these
base_types.

Java equivalent – setASDLExitType. Sets the exit type and returns from the function.

Syntax:

ASDL_EXIT ‘%ERR_TYPE:%ERR_DESC'

Parameters:

• %ERR_TYPE: A required parameter. Specifies the error type for the ASDL command.
This can be one of the base error types or a user-defined type created using the
Enhanced Error Management functionality.

Chapter 5
Action functions

5-85

• %ERR_DESC: An optional parameter. Optional error description field that can be
used to provide a descriptive message about the error that occurred.

Example 1:

1100 IF_THEN ‘%ANALOG == "N"'
1110 CONCAT ‘%OPTION=CDB'
1120 CHAIN ‘M-SET_OPTION_ON'
1130 ENDIF ‘'
1150 CONCAT ‘%ERR_TYPE=U_FAIL1'
1160 CONCAT ‘%ERR_DESC=Unable to add Feature 1001'
1170 ASDL_EXIT ‘%ERR_TYPE:%ERR_DESC'

Example 2:

|
|
2000 CONCAT '%msg=Fail adding 3 features for :%MOBILE_NUMBER:'
2010 CONCAT '%msg=%msg: - Mobile number is invalid'
2020 LOG '%msg'
2030 VS_SEND_RESP ''
2040 ASDL_EXIT 'INVALID_NUMBER:%msg'

BIN_TO_ASC
Converts the value of the binary variable, %VAR, from binary to a numeric ASCII
value.

The maximum length of the ASCII variable must be:

• decimal – 10 characters or less

• octal – 11 characters or less

• hexadecimal – 8 characters or less

This action function does not issue error messages when there are invalid characters
in the string for the specified base.

For octal conversion, within the limit of 2^32-1, the action function does not allow the
string to have the 11th character specified because the code only checks for 10
characters regardless of the base.

See also ASC_TO_BIN, MSGRECV.

Syntax:

BIN_TO_ASC ‘%RTN=%VAR:TYPE'

Parameters:

Table 5-33 BIN_TO_ASC parameters

Name Description Req'd Input/Output

%RTN The return variables are

• SUCCEED
• FAIL

4 O

%VAR The variable to be used by action function. 4 I

Chapter 5
Action functions

5-86

Table 5-33 (Cont.) BIN_TO_ASC parameters

Name Description Req'd Input/Output

TYPE Data type. Must be one of the following.

• O – OCTAL_FIELD
• D – DECIMAL_FIELD
• H – HEX_FIELD
The default value is D.

8 I

Example:

1000 ASC_TO_BIN ‘%RTN=%AsciiVariable:D'
1010 CONCAT ‘%MESSAGE=%MSG1:VALUE=
 :%AsciiVariable:%MSG2'
1020 MSGSEND ‘%MESSAGE'
1030 MSGRECV ‘%RTN=MESSAGE_ACK:%Length'
1040 NVIS_PARSE ‘%MESSAGE'
1050 BIN_TO_ASC ‘%RTN:%AsciiVariable:D'

CLEAR_VS
Clears the virtual screen.

See also "GET."

Syntax:

CLEAR_VS‘'

ERROR
Deprecated.

Java equivalent – VirtualScreen class.

GET
Retrieves data from the virtual screen at a specified location. If the data retrieved from the
virtual screen does not match the specified value, it retries once every second for
num_retries times.

ROW, COL, and LEN are required keywords. ROW and COL specify the screen location
using (1,1) as the top left corner. The lower right corner of the screen is specified by the
appropriate communication parameters in the device configuration, for instance 80, 24.

Relative screen row positioning is specified using C for the current row only, for example, C-1
in row implies the line above the current row.

It is also possible to use state table variables for ROW, COL, and LEN and wildcard matches
are possible for ROW and COL. The wildcard character is “*".

If the GET action references areas outside of the virtual screen, it returns to the calling state
table. Check the value returned by the GET action in the state tables.

Syntax:

Chapter 5
Action functions

5-87

GET‘ROW:row:COL:col:LEN:len:INT:retry_interval %var=value:' num_retries
OR
GET‘ROW:row:COL:col:LEN:len:%var=value:' num_retries

Parameters:

• ROW:row: The row number. Possible values are:

– A number – For example, ROW:4:.

– A relative location – For example, ROW:C-2: – two rows above the current
one.

– A variable – For example, ROW:%Row: – references the variable specified in
%Row.

– A wildcard – For example, for any row on the screen, specify ROW:*:. If
wildcards are used, the search value must be specified.

• COL:col: The column number. Possible values are:

– A number – For example, COL:4:.

– A variable – For example, COL:%Col: – references the variable specified in
%Col.

– A wildcard – For example, for any column on the screen, specify COL:*:. If
wildcards are used, the search value must be specified.

• LEN:len: The length of the field to be retrieved. Possible values are:

– A number – For example, LEN:4:.

– A variable – For example, LEN:%Len: –references the variable specified in
%Len.

• %var: Specifies the NEP variable that stores the value read from the virtual
screen. This variable is referenced in the State Table after the GET call.

• value: Specifies the value expected to be read. This value can be hard-coded or
passed through a variable.

If a value is not specified, the virtual screen is read and no checks are performed.

The GET action retries for num_retries times in this case. If the value is not being
specified, you must specify num_retries as 1 (the default).

If wildcards are used as either the row or column specifiers, you must specify this
value.

• INT:retry_interval: Optional function that specifies the time in seconds to wait
between attempts.

• num_retries: The maximum number of retries. If a number is not specified, it
defaults to 1.

For the state table to determine the coordinates at which a match was found (for
instance, using wildcard matching), the GET action defines two reserved State Table
variables. These variables specify the matching x and y coordinates. These are only
created by the GET action in non-loopback mod e. Possible values are:

• VS_X_COORD: The column offset at which point a match was found.

• VS_Y_COORD: The row offset at which point a match was found.

Example:

Chapter 5
Action functions

5-88

Search for "Journal File" at row %Row, col %Col and len %Len
1000 GET ‘ROW:%Row:COL:%Col:LEN:%Len:%Var=Journal
 File' 5
Search for "Journal File" anywhere on the current line
1010 GET ‘ROW:C:COL:*:LEN:12:%Var=Journal File' 5
Search for "Journal File" anywhere on the virtual screen
1020 GET ‘ROW:*:COL:*:LEN:12:%Var=Journal File' 5
Search for "Journal File" at row 10, col 1 and len 12
1030 GET ‘ROW:10:COL:1:LEN:12:%Var=Journal File' 5
Search for "IBM test user"
2000 CONCAT '%Row=3'
2010 CONCAT '%Len=13'
2020 GET 'ROW:%Row:COL:*:LEN:%Len:%prompt=IBM test user' 10
Only reference the returned coordinates if not in Loopback Mode
2030 IF_THEN '%LOOPBACK_ON == 0'
2040 DIAG 'SANE:[%prompt] Found @ (%VS_X_COORD, %VS_Y_COORD)'
2050 ENDIF ''

GET_INCPT
Deprecated.

GET_LTG
Deprecated.

GET_P_PARMS
Deprecated.

GET_SECUREDATA
Retrieves a user-defined secure data entry.

See also "SET_SECUREDATA."

Syntax:

GET_SECUREDATA '%RTN=%NAME'

Arguments:

• %RTN: The return value of the action function.

• %NAME: The name of the secure data entry used as a key to retrieve the encrypted
data.

GET_SW_FEAT
Deprecated.

LOG
Generates a miscellaneous message and transmits it as part of the NE history information to
the SARM to be stored in the SARM database.

When logging a compound variable, the variable must appear in braces (as indicated in the
example). Otherwise, only the first part of the variable is parsed.

Chapter 5
Action functions

5-89

Java equivalent – log method, JProcessor class. Generates an NE history log item.

Syntax:

LOG ‘<expand string>'

Example:

2030 CONCAT ‘%MSG=msg'
2330 LOG ‘Output Text = [%{MSG.msg_txt}]'

LOG_STAT
Deprecated.

MSGSEND
Sends a binary message to the NE when the communication with the NE is message-
based. The binary message must be built as per ASAP-NE protocol and saved in
%BVAR prior to invoking this action.

See also "ADD_HEADER," "ASC_TO_BIN," "MSGRECV."

Java equivalent – write method. SocketConnection class.

Syntax:

MSGSEND ‘%RTN=%BVAR'

Example:

Build a specific record and send it
1005 BUILD_MSG '%LENGTH=%REC_TYPE:PACKET'
1010 IF_THEN '%LENGTH < 1'
1020 CONCAT '%ERR_MSG=BUILD_MSG Action Error'
1025 CALL 'SPACE_LIB::ERR_EXIT'
1030 ENDIF ''
1040 MSGSEND '%RTN=%PACKET'
1050 IF_THEN '%RTN != "SUCCEED"'
1051 CONCAT '%ERR_MSG=MSGSEND Failed'
1052 CALL 'SPACE_LIB::ERR_EXIT'
1070 ENDIF ''

MSGRECV
Receives binary messages from the NE when the communication with the NE is
message-based. The binary message of length LEN is expected to be received from
the NE and saved in %BVAR by this action. The length LEN can be specified using a
hard-coded value or a variable can also be passed.

See also "BIN_TO_ASC," "MSGSEND."

Java equivalent – read method. SocketConnection class.

Syntax:

MSGRECV ‘%RTN=%BVAR:LEN' wait_time

Example:

Chapter 5
Action functions

5-90

Recv Hdr msg for Request-Completion notification
NOTE: The value of LEN is hardcoded to 12
1190 MSGRECV '%RTN=PACKET:12'
1200 IF_THEN '%RTN != "SUCCEED"'
1201 CONCAT '%ERR_MSG=MSGRECV Failed for HDR_MSG'
1210 CALL 'SPACE_LIB::ERR_EXIT'
1220 ENDIF ''
1230 EXTRACT_MSG '%RTN=HDR_MSG:PACKET'
1240 IF_THEN '%RTN != "SUCCEED"'
1241 CONCAT '%ERR_MSG=EXTRACT_MSG Failed for HDR_MSG'
1250 CALL 'SPACE_LIB::ERR_EXIT'
1260 ENDIF ''
Recv CMD_RESP Msg and extract it
NOTE: The value of LEN is saved in the variable %RET_PAYLOAD_LENGTH
1270 MSGRECV '%RTN=PACKET:%RET_PAYLOAD_LENGTH'
1280 IF_THEN '%RTN != "SUCCEED"'
1281 CONCAT '%ERR_MSG=MSGRECV Failed for CMD_RESP_MSG'
1290 CALL 'SPACE_LIB::ERR_EXIT'
1300 ENDIF ''

Parameters:

• %RTN: SUCCEED – If the action function was successful.

• %BVAR: Stores binary data.

• LEN: Amount of data to retrieve.

• wait_time: Number of seconds to wait. <0 = infinite wait

NVIS_PARSER
Deprecated.

PARAM_GROUP
Sets the parameter group field to be passed back on any information parameters generated
within the State Table. The information parameters that are saved to the SARM database are
associated with the specified parameter group in the database.

When querying the SARM for any generated information parameters, the SRP specifies this
parameter group as part of the query criteria.

For instance, if you want to return multiple instances of the same data from the NEP State
Tables to the SRP (such as configuration details on each of a number of trunk lines), then
prior to calling SEND_CMPND, you must specify the parameter group for this instance using
PARAM_GROUP. The SRP then queries on the information parameters using both the
parameter group as well as the parameter labels.

See also "SEND_PARAM," "SEND_COMPND."

Java equivalent – setParamGroup method. JProcessor class. Sets a group identifier.

Syntax:

PARAM_GROUP ‘<expand string>'

Example:

1000 PARAM_GROUP ‘GROUP1'
1010 SEND_PARAM ‘PARM1 "TEST1" I'

Chapter 5
Action functions

5-91

1020 SEND_PARAM ‘PARM1-A "TEST1A" I'
1030 ...
1040 PARAM_GROUP ‘GROUP2'
1050 SEND_PARAM ‘PARM2 "TEST2" I'
1060 SEND_PARAM ‘PARM2-A "TEST2A" I'

RESPONSELOG
Enables the response log for any data that is returned from the NE. It causes the
Interpreter to open the NE History file for an SRQ. The file can be transmitted back to
the SARM using the VS_SEND_RESP action.

Upon completion of an ASDL, the Interpreter removes this file regardless of whether
its contents were transmitted back to the SARM or not.

See also "VS_COPY_RESP," "VS_GET_RESP," "VS_SEND_RESP,"
"VS_STOP_RESP."

Java equivalent – startResponselog method. TelnetConnection class.

Syntax:

RESPONSELOG ‘'

Example:

1000 RESPONSELOG ‘'
2000 VS_SEND_RESP

SCREEN_RESP
Sends the data represented in the virtual screen coordinates that you specify to the
SARM as an NE response.

See also "RESPONSELOG," "VS_COPY_RESP," "VS_SEND_RESP,"
"VS_STOP_RESP."

Java equivalent – returnVirtualScreen method. TelnetConnection class.

Syntax:

SCREEN_RESP‘X1:Y1:X2:Y2'

SEND
This action string is expanded and then sent to the NE when the communication with
the NE is terminal-based.

See also "SENDKEY."

Java equivalent – send method. TelnetConnection class.

Syntax:

SEND ‘string'

Example:

Send the NEW command to the NE with parameters $, NXX and LINE
1000 SEND ‘NEW $ %NXX%LINE'
1010 SENDKEY ‘ENT' # Send the "ENTER KEY" to apply the MML.

Chapter 5
Action functions

5-92

SEND_COMPND
Transmits the specified CSDL, Global, Rollback or Information Compound parameters with
the specified base name back to the SARM.

See also "SEND_PARAM," "PARAM_GROUP."

Java equivalent – returnCSDLParam, returnCompoundCSDLParam, returnGlobalParam,
returnCompoundGlobalParam, returnInfoParam, returnCompoundInfoParam,
returnRollbackParam, returnCompoundRollbackParam. JProcessor class. Returns
parameters to SARM.

Syntax:

SEND_COMPND ‘basename flags, NOT_NULL'
SEND_COMPND ‘basename flags'

Parameters:

• basename: Identifies the basename for the Compound parameter.

• flags: A string that has one or more of the following values:

– C – CSDL Parameter

– G – Global SRQ Parameter

– R – Rollback Log Parameter

– I – Work Order Information Parameter

• NOT_NULL: Only variables that are NOT_NULL are sent to the SARM.

Example:

#
Send Scalar parameters from LEN_HDR structure
#
1000 SEND_PARAM ‘LEN_HDR.LEN "%LEN" RI'
1010 SEND_PARAM ‘LEN_HDR.MCLI "%MCLI" RI'
#
Send the entire LEN_HDR structure as a compound structure
Send Return and Information Parameters
#
1020 SEND_COMPND ‘LEN_HDR RI'

SENDECHO
Deprecated.

SENDKEY
Sends a function key to an NE. Upon receiving a response, it delays for the sleep value (in
seconds), that you specify. This action is applicable only if the communication with the NE is
terminal-based.

See also "SEND."

sleep_value is an optional parameter; when no sleep_value is specified, a value of zero
(seconds) is passed. The function key, BRK, ignores the sleep_value option after receiving a
response from the switch. Otherwise, the sleep_value option is not ignored.

Chapter 5
Action functions

5-93

If the sleep value time interval is set to "-1", the action function will return without
waiting for a response.

The following values are valid function keys.

Table 5-34 Function key values

Value Meaning

“ENT" Enter key

“ESC" Escape key

“BRK" Sends the break condition to the NE

“SET" Sends no data to NE, waits for data

“F01 - F24" Function keys F1 to F24

“PF1 - PF4" Function key PF1 to PF4

“AET" Application Keypad Enter key

“A00 - A09" Application Keypad 0 to 9

“DOT" Application Keypad “."

“CMA" Application Keypad “,"

“DSH" Application Keypad “-"

ALT-F1 through ALT-F12 Function keys F1 to F12 (Alt)

CTRL-F1 through CTRL-F12 Function keys F1 to F12 (CRTL)

Shift-F1 through Shift-F12 Function keys F1 to F12 (Shift)

CTRL_A through CTRL_Z Sends control characters (A through Z)

Java equivalent – sendKey method. TelnetConnection class.

Syntax:

SENDKEY ‘function_key' sleep_value

Example:

#Send the MML to the switch, followed by the enter key to apply the command.
1000 SEND ‘NEW $ %NXX%LINE'
1010 SENDKEY ‘ENT' 1

SETOPTION
Performs option negotiation with the peer end (NE) where the communications is
client-server/peer based. This action is primarily used by the TELNET Interface to set
telnet options. The names of the telnet options include:

Table 5-35 Telnet options

Telnet Option Description

TELOPT_BINARY 8-bit data path

TELOPT_ECHO echo

TELOPT_RCP prepare to reconnect

Chapter 5
Action functions

5-94

Table 5-35 (Cont.) Telnet options

Telnet Option Description

TELOPT_SGA suppress to go ahead

TELOPT_NAMS approximate message size

TELOPT_STATUS give status

TELOPT_TM timing mark

TELOPT_RCTE remote controlled transmission and echo

TELOPT_NAOL negotiate about output line width

TELOPT_NAOP negotiate about output page size

TELOPT_NAOCRD negotiate about CR disposition

TELOPT_NAOHTS negotiate about horizontal tab stops

TELOPT_NAOHTD negotiate about horizontal tab disposition

TELOPT_NAOFFD negotiate about formfeed disposition

TELOPT_NAOVTS negotiate about vertical tab stops

TELOPT_NAOVTD negotiate about vertical tab disposition

TELOPT_NAOLFD negotiate about output LF disposition

TELOPT_XASCII extended ascii character set

TELOPT_LOGOUT force logout

TELOPT_BM byte macro

TELOPT_DET data entry terminal

TELOPT_SUPDUP supdup protocol

TELOPT_SUPDUPOUTPUT supdup output

TELOPT_SNDLOC send location

TELOPT_TTYPE terminal type

TELOPT_EOR end of record

TELOPT_TUID TACACS user identification

TELOPT_OUTMRK output marking

TELOPT_TTYLOC terminal location number

TELOPT_3270REGIME 3270 regime

TELOPT_X3PAD X.3 PAD

TELOPT_NAWS window size

TELOPT_TSPEED terminal speed

TELOPT_LFLOW remote flow control

TELOPT_LINEMODE linemode option

Usage:

• 1 – to set option (ON)

• 0 – to unset Telnet option (OFF)

The following is the function that sets Telnet options:

Chapter 5
Action functions

5-95

CS_RETCODE Telnet_set_option(CMD_PROC_DATA *data, CS_CHAR *telnet_option,
CS_CHAR *value)

The following is an example of case TELOPT_TTYPE:

 case TELOPT_TTYPE:
 if (option_value) {
 /* The scenario will be:
 * . send "will TELOPT_TTYPE"
 * . recv "do TELOPT_TTYPE"
 * . recv "send TELOPT_TTYPE"
 * . send "TELOPT_TTYPE is XXXX"
 */
 .
 .
 .

 else {
 /* The scenario will be:
 * . send "wont TELOPT_TTYPE"
 * . recv "dont TELOPT_TTYPE"
 */

Telnet _set_option() converts value to integer. You cannot place plain text in the value
argument of SETOPTION.

For more information on TELNET options, refer to the UNIX man pages.

The following State Table program provides an example of the TELOPT_ECHO option
name to set the telnet session to stop echoing.

#%VALUE is 0 or 1
1005 CONCAT '%TE=TELOPT_ECHO'
1006 CONCAT '%OFF=0'
1011 SETOPTION '%SO=%TE:%OFF'

Java equivalent – setOption method. TelnetConnection class.

Syntax:

SETOPTION ‘%RTN=%LABEL:%VALUE'

SEND_PARAM
Sends the specified variable as a network element parameter to the SARM.

See also "SEND_COMPND," "PARAM_GROUP."

Java equivalent – returnCSDLParam, returnCompoundCSDLParam,
returnGlobalParam, returnCompoundGlobalParam, returnInfoParam,
returnCompoundInfoParam, returnRollbackParam, returnCompoundRollbackParam.
JProcessor class. Returns parameters to SARM.

Syntax:

SEND_PARAM ‘label value flags'

Parameters:

• label: The parameter name (Max. 80 characters).

Chapter 5
Action functions

5-96

• value: The variable or quoted string specifying the parameter. Use the escape character
(‘\') when quotation characters (“ “) are used in a string value.

• flags: A string that has one of the following values:

– C – CSDL Parameter (adds parameter to current CSDL).

– G – Global SRQ Parameter (adds parameter to work order).

– R – Rollback Log Parameter (reverses ASDL).

– I – Work Order Information Parameter (sends data back to the SRP).

For more information, see SRP_asap_get_wo_param in the SRP Library of the ASAP API
Reference).

Example:

#
Send Scalar Parameters
#
Send CSDL parameter
1000 SEND_PARAM ‘CFN "%CFNDN" C'
Send a global parameter
1010 SEND_PARAM ‘MDN_DEFINED "YES" G'
Send information parameter
1020 SEND_PARAM ‘LEN_HDR.MCLI "%MCLI" I'

SEND_RESP
Deprecated. Use "VS_SEND_RESP."

SET_SECUREDATA
Updates or adds a user-defined secure data entry.

See also "GET_SECUREDATA."

Syntax:

SET_SECUREDATA ‘%RTN=%NAME:%VALUE'

Arguments:

• %RTN: Return value of the action function.

• %NAME: Data containing information that can be used as a key in the secure data
storage.

• %VALUE: The data to be secured.

STATS_ON
Deprecated.

VS_COPY_RESP
Stops the logging of information from the NE and then copies the response log file to the
filename that you specify. The pathname is preceded with the current $LOGDIR, for
example, $LOGDIR/pathname.

Chapter 5
Action functions

5-97

See also "RESPONSELOG," "VS_GET_RESP," "VS_SEND_RESP,"
"VS_STOP_RESP."

Java equivalent – copyResponselog method. TelnetConnection class.

Syntax:

VS_COPY_RESP‘pathname'

Example:

Copy Switch history to sub-directory keyed by the SITE
code using LEN number as the filename.
1000 VS_COPY_RESP ‘LEN%SITE/%LEN'
...

VS_GET_RESP
Copies the current response file to the NE history file. The specified pathname is
preceded with the current $LOGDIR, for example, $LOGDIR/pathname.

See also "RESPONSELOG," "VS_COPY_RESP," "VS_SEND_RESP,"
"VS_STOP_RESP."

Java equivalent – loadResponselog method. TelnetConnection class.

Syntax:

VS_GET_RESP‘pathname'

Example:

Copy data from the specified file to the switch history file.
2000 VS_GET_RESP ‘LEN%SITE/%LEN'

VS_SEND_RESP
Stops the logging of information from an NE and then sends the information to the
SARM as switch history.

See also "RESPONSELOG," "VS_COPY_RESP," "VS_SEND_RESP,"
"VS_STOP_RESP."

Java equivalent – returnResponselog method. TelnetConnection class.

Syntax:

VS_SEND_RESP ‘'

Example:

1000 RESPONSELOG ‘'
2000 VS_SEND_RESP ‘'

VS_STOP_RESP
Similar to the VS_SEND_RESP action, this action stops the logging of information
from the NE. However, VS_STOP_RESP does not send the information to the SARM
as switch history, but rather as a closed response file that can be parsed/processed by
the state table or any chained state table.

Chapter 5
Action functions

5-98

See also "RESPONSELOG," "VS_COPY_RESP," "VS_SEND_RESP," "VS_GET_RESP."

Java equivalent – stopResponselog method. TelnetConnection class.

Example:

1000 RESPONSELOG ‘'
...
2000 VS_STOP_RESP ‘'

LAM action functions
The LAM (Lexical Analysis Machine) is a parser used for retrieving information from a data
file that is being processed. High-level action functions are provided to interface with the LAM
and control its operation.

NE response parsing is the process of analyzing and creating data from the standard
responses provided by an NE. The LAM is a powerful tool that enables the State Table
programmer to vary the State Table execution based on the NE responses.

Every operation that the State Table initiates updates a set of global registers within the
Interpreter. The State Table can access these registers through a predefined set of parameter
names. Based on the contents of the registers, the State Table can take the appropriate
actions. Only LAM actions can be used to update these registers. All other actions use the
registers in a read-only manner.

Table 5-36 LAM Action Functions

Action Function Description Java Method Notes

SET_MARK Create a mark. - Supported only in State Tables.

GOTO_MARK Move to a mark. - Supported only in State Tables.

DEF_COLUMN Define a table column. - Supported only in State Tables.

RESET_FILE Reset file pointer. - Supported only in State Tables.

SKIP_ITEMS Skip forward items. - Supported only in State Tables.

SKIP_LINES Skip forward lines. - Supported only in State Tables.

UNDO_READ Move back from the last
read.

- Supported only in State Tables.

READ_TO_EOL Read lines. - Supported only in State Tables.

READ_FIXED,
READ_GROUP,
READ_ITEM,
READ_LAST

Read fields. - Supported only in State Tables.

READ_ROW Read a row of table data. - Supported only in State Tables.

READ_STRING Read strings. - Supported only in State Tables.

DEF_COLUMN
Defines a tabular column field to be read at the specified offset and length. Up to 10 columns
can be read at a time, as col # is used to identify the data register.

See also READ_ROW."

Chapter 5
Action functions

5-99

Syntax:

DEF_COLUMN ‘offset:length' col #

Parameters:

• offset: The offset at which the column starts. Starts at position 1. This parameter
can be a variable.

• length: The length from offset at which the column ends. This parameter can be a
variable.

• col #: The number of the data register for up to 10 columns (0-9).

Example:

900 CONCAT ‘%START=6'
950 CONCAT ‘%LEN=10'
1000 DEF_COLUMN ‘1:10' 0
1010 DEF_COLUMN ‘11:5' 1
1020 DEF_COLUMN ‘%START:%LEN' 2

This example defines three columns:

1. Starts at position 1 and has a length of 10.

2. Starts at position 11 and has a length of 5.

3. Starts at position 6 and has a length of 10.

GOTO_MARK
Goes to a mark that has been created in the file.

See also "SET_MARK."

Syntax:

GOTO_MARK ‘ ' mark #

Parameters:

• Mark #: The number of the mark to GOTO. A maximum of 10 marks (0-9) can be
used.

Example:

1000 SET_MARK ‘' 0
1010 READ_ITEM ‘'
1020 Process Item
1030 GOTO_MARK ‘' 0
1040 READ_TO_EOL ‘' 3
1050 Reprocess using the whole line

READ_FIXED
From the current cursor position, this action reads a fixed-length field of sizes (bytes)
or to the end of the line.

See also "READ_GROUP," "READ_ITEM," "READ_LAST," "READ_ROW,"
"READ_STRING," "READ_TO_EOL."

Syntax:

Chapter 5
Action functions

5-100

READ_FIXED ‘ ' size

READ_GROUP
Reads a group of count fields on the current line into the data registers. If the end of the line
is reached before the required number of fields is retrieved, the remaining field is set to the
NULL string. Valid value for count is 1-10.

See also "READ_FIXED," "READ_ITEM," "READ_LAST," "READ_ROW," "READ_STRING,"
"READ_TO_EOL."

Syntax:

READ_GROUP ‘ ' count

Example:

The following is the current line:
CWT 3WC AUL 2962986 LOD 2962987
If this code is executed:
1000 READ_GROUP ‘' 4
The data registers would be:
_D0 = CWT, _D1 = 3WC, _D2 = AUL, _D3 = 2962986

READ_ITEM
Reads a field from the data file into register _D0 where the field is delimited by a space, tab,
or new line. This state table action also performs an automatic line feed.

See also "READ_FIXED," "READ_LAST," "READ_ROW," "READ_STRING,"
"READ_TO_EOL."

Syntax:

READ_ITEM ‘ '

READ_LAST
Reads to the last field in the current line.

See also "READ_FIXED," "READ_GROUP," "READ_ITEM," "READ_ROW,"
"READ_STRING," "READ_TO_EOL."

Syntax:

READ_LAST ‘ '

READ_ROW
Reads a fixed-format table row, defined by the current column definition, into the data
registers. For columns that do not exist in the row, the data register is set to the NULL string
(" ").

See also "READ_FIXED," "READ_GROUP," "READ_ITEM," "READ_LAST,"
"READ_STRING," "READ_TO_EOL."

Syntax:

READ_ROW ‘ ' trim_flag

Chapter 5
Action functions

5-101

Parameters:

• trim_flag: Can be set to indicate whether or not leading blanks, trailing blanks, or
both must be stripped. Possible values are:

– 0 – No trimming

– 1 – Leading blanks trim

– 2 – Trailing blanks trim

– 3 – Leading and trailing blanks trim

READ_STRING
Reads a string of bytes into register _D0 up to one of the specified delimiters. If the
end of the line is reached before one of the delimiters, _D0 is set to the NULL string, ("
") and the current file position remains unchanged.

See also "READ_FIXED," "READ_GROUP," "READ_ITEM," "READ_ROW,"
"READ_ROW," "READ_TO_EOL."

Syntax:

READ_STRING ‘delimiters' trim_flag

Parameters:

• delimiters: Specifies the delimiter to use in the read operation. Space is specified
as ‘ " "'.

• trim_flag: Can be set to indicate whether or not leading blanks, trailing blanks, or
both must be stripped. Possible values are listed in the following table.

– 0 – No trimming

– 1 – Leading blanks trim

– 2 – Trailing blanks trim

– 3 – Leading and trailing blanks trim

READ_TO_EOL
Reads all bytes from the current line position to the end of the line into register _D0.

See also "READ_FIXED," "READ_GROUP," "READ_ITEM," "READ_LAST,"
"READ_ROW," "READ_STRING."

Syntax:

READ_TO_EOL ‘ ' trim_flag

Parameters:

• trim_flag: Can be set to indicate whether or not leading blanks, trailing blanks, or
both must be stripped. Possible values are:

– 0 – No trimming

– 1 – Leading blanks trim

– 2 – Trailing blanks trim

Chapter 5
Action functions

5-102

– 3 – Leading and trailing blanks trim

RESET_FILE
Resets the LAM file pointer to the beginning of the file.

Syntax:

RESET_FILE ‘ '

SET_MARK
Marks a location in the file that can be used to move around in the file. You can define a
maximum of 10 marks and all marks are initialized to point to the start of the file.

See also "GOTO_MARK."

Parameters:

• Mark #: The number of the mark to set (maximum 10). The mark numbers can range
from 0 to 9.

Syntax:

SET_MARK ‘ ' mark #

Example:

1000 SET_MARK ‘' 0
1010 READ_ITEM ‘'
1020 Process Item
1030 GOTO_MARK ‘' 0
1040 READ_TO_EOL ‘' 3
1050 Reprocess using the whole line

SKIP_ITEMS
Moves the current file position to a location that is an x number of items ahead of the current
location. This action skips the end of the line.

See also "SKIP_LINES."

Syntax:

SKIP_ITEMS ‘ ' count

SKIP_LINES
Moves the file pointer to the beginning of a line that is an x number of lines later in the file.

See also "SKIP_ITEMS."

A count value of 1 means to move to the next line in the file.

Syntax:

SKIP_LINES ‘ ' count

Chapter 5
Action functions

5-103

UNDO_READ
Moves the current file pointer to the location in the file before the last read operation.

See also "READ_FIXED," "READ_GROUP," "READ_ITEM," "READ_LAST,"
"READ_ROW," "READ_STRING," "READ_TO_EOL."

Syntax:

UNDO_READ ‘ '

FTP action functions
The NEP FTP services are provided as action functions to State Table programs only.
Through the user-created State Table programs, you can perform the following FTP
functions:

• Receive a file from the NE FTP server.

• Send a file to the NE FTP Server.

• Delete a remote file at the NE file system.

• Change the File Type option for transferring files.

• Change the current local working directory.

• Change the current remote working directory.

• Get the name for the current remote working directory.

The Network Element Processor (NEP) is an ASAP application server that executes
State Table programs for the communicating operations to the Network Elements in
response to ASDL commands received from the SARM. The NEP File Transfer
Protocol (FTP) is the FTP client component of the NEP. It provides State Table
programs with the ability to delete files, and send and receive files to and from an NE.

Figure 5-4 illustrates the high level architecture of the NEP FTP component
communicating with the NE FTP server.

Chapter 5
Action functions

5-104

Figure 5-4 NEP FTP Component Architecture

To perform the NEP FTP services, you must use the following State Table action functions:

Table 5-37 State Table Action Functions

Action Function Description

FTP_APPE Appends to a file on the NE host server.

FTP_CD Changes the remote present working directory to the specified path.

FTP_CDUP Changes the working directory to the parent directory on the NE host server.

FTP_DELE Deletes a file from the NE host file system.

FTP_DIR Lists contents of the directory on the NE host server.

FTP_LCD Changes the local present working directory to the specified path.

FTP_LS Lists contents of directory on the NE host server.

Chapter 5
Action functions

5-105

Table 5-37 (Cont.) State Table Action Functions

Action Function Description

FTP_MKDIR Makes a new directory on the NE host server.

FTP_RMDIR Removes a directory on the NE host server.

FTP_PWD Gets the remote present working directory.

FTP_RECV Receives a file from the NE host server.

FTP_REN Renames a file on the NE host server.

FTP_RUNIQUE Toggles store unique for local files.

FTP_SEND Transfers a file to the NE host server.

FTP_SUNIQUE Toggles store unique on the NE host server.

The general syntax for invoking the action functions is:

Line Action ‘%Return=Arguments'

Table 5-38 Action Function Syntax

Parameter Description

Line The state table program line number.

Action One of the FTP actions.

Return A state table variable to store SUCCEED, FAIL, or an FTP-related error code.

Arguments Parameters that are passed. Arguments can be state table variables.

FTP_APPE
This action causes the local file to be appended to the file on the remote server. If the
remote file is not specified, then the remote file is the name of the local file name.

Syntax:

FTP_APPE ‘%RETURN=LocalFileName:RemoteFileName'

Parameters:

• LocalFileName: Specifies the local file to append to the file on the remote server.
Can be a literal value or a state table variable. Maximum length of the file name is
255 alphanumeric characters.

• RemoteFileName: Specifies the remote file to be appended on the remote server.
Can be a literal value or a state table variable. Maximum length of the file name is
255 alphanumeric characters.

Return Values:

• SUCCEED: The local file is appended to the file on the remote server. %RETURN
contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP-related error code.

See also FTP_SEND.

Chapter 5
Action functions

5-106

Example 1:

1010 FTP_APPE '%RET=aaa:bbb'

Example 2:

1010 FTP_APPE '%RET=/tmp/aaa:bbb'

Example 3:

1010 FTP_APPE '%RET=aaa:/tmp/bbb'

Example 4:

1010 FTP_APPE '%RET=/tmp/aaa:/tmp/bbb'

Example 5:

1010 CONCAT '%LOC_FILE=aaa'
1020 CONCAT '%REM_FILE=/tmp/bbb'
1030 FTP_APPE '%RET=%LOC_FILE:%REM_FILE'

Example 6:

1010 FTP_APPE '%RET=aaa'

FTP_CD
This action causes the remote present working directory to be changed to the directory
specified by the argument, directoryName. The directory name can be a full or partial path
name.

See also "FTP_LCD" and "FTP_PWD."

Syntax:

FTP_CD '%RETURN=directoryName'

Parameters:

• directoryName: Specifies the remote host directory to change to. Can be a literal value
or a state table variable.

Return Values:

• SUCCEED: The current remote working directory is changed to the specified directory
and the action succeeds. %RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP error code.

Example – Changing the current remote working directory:

1010 FTP_CD '%RET=/hpdev/hpenv5/NE_RESPONSES'
1020 FTP_CD '%RET=LOGS/980315'

The current remote working directory after line 1020 is:

 /hpdev/hpenv5/NE_RESPONSES/LOGS/980315.

Chapter 5
Action functions

5-107

FTP_CDUP
This action causes the remote server working directory to be changed to the parent of
the current remote server working directory.

See also "FTP_CD" and "FTP_LCD."

Syntax:

FTP_CDUP ‘%RETURN'

Parameters:

None.

Return Values:

• SUCCEED: The remote server working directory is changed to the parent of the
current remote server working directory. %RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP-related error code.

Example:

1010 FTP_CDUP '%RET'

FTP_DELE
This action causes the file specified by fileName to be deleted from the remote NE
host file system. fileName cannot contain a directory path name. The FTP_CD action
is used first to change a remote current directory to the directory containing the file.
This action fails if an error occurs, for example, the file does not exist.

See also "FTP_CD."

Syntax:

FTP_DELE '%RETURN=fileName'

Parameters:

• fileName: Specifies the file name to be retrieved from the remote server. Can be a
literal value or a state table variable.

Return Values:

• SUCCEED: Specified file is deleted from the remote server and the action
succeeds. %RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or FTP-related error code.

Example 1 – Deleting a file located in the remote present working directory:

1010 CONCAT '%FILE_NAME=NEResp.dat'
1020 FTP_DELE '%FILE_NAME'

The NEResp.dat file located in a remote present working directory is deleted.

Example 2 – Deleting a file located in a non-current remote working directory:

1010 FTP_CD '/hpdev/hpenv10/NE_FILES/NE_RESPONSES'
1030 FTP_DELE 'NEResp.dat'

Chapter 5
Action functions

5-108

The NEResp.dat file is deleted.

FTP_DIR
This action causes a listing of the directory contents of the directory, RemoteDir, on the
remote server to be put into the local file, LocalFileName. If the local file name is not
specified, then a default local file name, ftp_dir.out, in the current local working directory is
chosen.

See also "FTP_LS," "FTP_CD," and "FTP_LCD."

Syntax:

FTP_DIR ‘%RETURN=RemoteDir:LocalFileName'

Parameters:

• RemoteDir: Specifies the directory on the remote server to be listed. Can be a literal
value or a state table variable.

• LocalFileName: Specifies the local file to store the listing of the contents of the directory
on the remote server. Can be a literal value or a state table variable. Maximum length of
the file name is 255 alphanumeric characters.

Return Values:

• SUCCEED: Listing of the directory on the remote server is stored in the local file.
%RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP-related error code.

Example 1:

1010 FTP_DIR '%RET=aaa*:bbb'

Example 2:

1010 FTP_DIR '%RET=/tmp:bbb'

Example 3:

1010 FTP_DIR '%RET=/tmp:/tmp/bbb'

Example 4:

1010 FTP_DIR '%RET=-al:/tmp/bbb'

Example 5:

1010 FTP_DIR '%RET=-alR:bbb'

Example 6:

1010 CONCAT '%REM_DIR=/tmp'
1020 CONCAT '%LOC_FILE=bbb'
1030 FTP_DIR '%RET=%REM_DIR:%LOC_FILE'

Example 7:

1010 FTP_DIR '%RET=-alR'

The listing is stored in the ftp_dir.out file in current local directory.

Chapter 5
Action functions

5-109

FTP_LCD
This action causes the local present working directory to be changed to the directory
specified by the argument, directoryName. The directory name can be a full or partial
path name. This action fails if an error occurs for example, directory does not exist.

See also "FTP_CD" and "FTP_PWD."

Syntax:

FTP_LCD '%RETURN=directoryName'

Parameters:

• directoryName: Specifies the local host directory to change to. Can be a literal
value or a state table variable.

Return Values:

• SUCCEED: The current local working directory is changed to the specified
directory and the action succeeds. %RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP-related error code.

Example – Changing the local present working directory:

1010 FTP_LCD '%RET=/hpdev/hpenv10/NE_RESPONSES'
1020 FTP_LCD '%RET=/LOGS/980315'

The local present working directory after line 1020 is now:

/hpdev/hpenv10/NE_REPSONSES/LOGS/980315.

FTP_LS
This action results in a listing of the directory contents of the directory, RemoteDir, on
the remote server to be put into the local file, LocalFileName. If the local file name is
not specified, then a default local file name, ftp_ls.out, in the current local working
directory is chosen.

The listing is stored in the ftp_ls.out file in the current local directory.

See also "FTP_DIR," "FTP_CD," and "FTP_LCD."

Syntax:

• FTP_LS: ‘%RETURN=RemoteDir:LocalFileName'

Parameters:

• RemoteDir: Specifies the directory on the remote server to be listed. Can be a
literal value or a state table variable.

• LocalFileName: Specifies the local file to store the listing of the contents of the
directory on the remote server. Can be a literal value or a state table variable.
Maximum length of the file name is 255 alphanumeric characters.

Return Values:

• SUCCEED: The listing of the directory on the remote server is stored in the local
file. %RETURN contains SUCCEED.

Chapter 5
Action functions

5-110

• FAIL: Action fails. %RETURN contains FAIL or an FTP- error code.

Example 1:

1010 FTP_LS '%RET=aaa*:bbb'

Example 2:

1010 FTP_LS '%RET=/tmp:bbb'

Example 3:

1010 FTP_LS '%RET=/tmp:/tmp/bbb'

Example 4:

1010 FTP_LS '%RET=-al:/tmp/bbb'

Example 5:

1010 FTP_LS '%RET=-alR:bbb'

Example 6:

1010 CONCAT '%REM_DIR=/tmp'
1020 CONCAT '%LOC_FILE=bbb'
1030 FTP_LS '%RET=%REM_DIR:%LOC_FILE'

Example 7:

1010 FTP_LS '%RET=-alR'

FTP_MKDIR
This action creates a new directory on the remote server. The directory name can be a full or
partial path name.

Syntax:

FTP_MKDIR ‘%RETURN=directoryName'

Parameters:

• directoryName: Specifies the remote host directory to create. It can be a literal value or
a state table variable.

Return Values:

• SUCCEED: Specified directory is created. %RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP-related error code.

Example 1:

1010 FTP_CD '%RET=/tmp'
1020 FTP_MKDIR '%RET=sub_tmp'

Example 2:

1010 CONCAT '%REM_DIR=sub_tmp'
1020 FTP_CD '%RET=/tmp'
1030 FTP_MKDIR '%RET=%REM_DIR'

Example 3:

Chapter 5
Action functions

5-111

1010 CONCAT '%REM_DIR=/tmp/sub_tmp'
1020 FTP_MKDIR '%RET=%REM_DIR'

FTP_PWD
This action causes the remote server to return to the Present Working Directory. If the
action is successful, the state table variable, DirectoryName, is assigned the returned
value. This action fails if an error occurs.

See also "FTP_CD" and "FTP_LCD."

Syntax:

FTP_PWD '%RET=%DirectoryName'

Parameters:

• DirectoryName: An output parameter that contains the name of the remote
present working directory. Can be a literal value or a state table variable.

Return Values:

• SUCCEED: Remote present working directory name is returned and the action
succeeds. %RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP-related error code.

Example – Changing the remote present working directory:

1010 FTP_CD '%RET=/hpdev/hpenv5/NE_RESPONSES'
1020 FTP_PWD '%RET=%DIR'

The variable DIR contains the value:

 ‘/hpdev/hpenv5/NE_RESPONSES'

FTP_RECV
This action causes the file specified by fileName to be retrieved from the remote NE
host server. fileName cannot contain directory path name. The FTP_CD action can be
used first to change the remote current directory to the directory where the file is
present.

See also "FTP_SEND," "FTP_CD," and "FTP_LCD."

Syntax:

FTP_RECV '%RETURN=fileName'

Parameters:

• fileName: Specifies the file name to be retrieved from the remote server. Can be a
literal value or a state table variable.

Return Values:

• SUCCEED: The specified file is retrieved from the remote server and the action
succeeds. %RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP error code.

Example 1 – Retrieving a file and storing it in a non-current local directory:

Chapter 5
Action functions

5-112

1010 RESPONSELOG ''
1020 FTP_LCD '%RET=/hpdev/hpenv5/NE_RESPONSES'
1030 CONCAT '%FILE_NAME=NEResp.dat'
1040 FTP_RECV '%RET=%FILE_NAME'

The NEResp.dat file is retrieved and stored in the NE_RESPONSES directory. The call to
RESPONSELOG initiates the logging of FTP commands and the FTP server replies to be
logged on as switch history. You can check the SARM table tbl_srq_log.

Example 2 – Retrieving a file located in a non-current remote working directory :

1010 FTP_CD '%RET=NE_FILES/NE_RESPONSES'
1030 FTP_RECV '%RET=NEResp.dat'

The NEResp.dat file is retrieved and stored in the local present working directory.

FTP_REN
This action causes the file named from on the remote server to be renamed as to.

See also "FTP_CD" and "FTP_CDUP."

Syntax:

FTP_REN ‘%RETURN=from:to'

Parameters:

• from: Specifies the old file name on the remote server. Can be a literal value or a state
table variable.

• to: Specifies the new file name on the remote server. Can be a literal value or a state
table variable.

Return Values:

• SUCCEED: The file on the remote server is renamed to the new file name. %RETURN
contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or related FTP error code.

Example 1:

1010 FTP_REN '%RET=aaa:bbb'

Example 2:

1010 CONCAT '%FROM=aaa'
1020 CONCAT '%TO=bbb'
1030 FTP_REN '%RET=%FROM:%TO'

Example 3:

1010 CONCAT '%FROM=aaa'
1020 FTP_REN '%RET=%FROM:bbb'

Example 4:

1010 CONCAT '%TO=bbb'
1020 FTP_REN '%RET=aaa:%TO'

Chapter 5
Action functions

5-113

FTP_RMDIR
This action removes a directory on the remote server. The directory name can be a full
or partial path name.

See also "FTP_MKDIR," "FTP_CD," "FTP_CDUP," and "FTP_PWD."

Syntax:

FTP_RMDIR ‘%RETURN=directoryName'

Parameters:

• directoryName: Specifies the remote host directory to remove. Can be a literal
value or a state table variable.

Return Values:

• SUCCEED: Specified directory is removed. %RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP-related error code.

Example 1:

1010 CONCAT '%REM_DIR=/tmp/subtmp'
1020 FTP_RMDIR '%RET=%REM_DIR'

Example 2:

1010 CONCAT '%REM_DIR=sub_tmp'
1020 FTP_CD '%RET=/tmp'
1030 FTP_RMDIR '%RET=%REM_DIR'

FTP_RUNIQUE
This action function toggles storing of files on the local system with unique file names.
If a file already exists with a name equal to the target local file name for FTP_RECV
command, a .1 is appended to the name. If the resulting name matches another
existing file, a .2 is appended to the original name. If this process exceeds .99, an
error message is printed, and the transfer does not take place. The default value is off.

See also "FTP_RECV," "FTP_LS," and "FTP_DIR."

Syntax:

FTP_RUNIQUE ‘%RETURN=RUNIQUE'

Parameters:

• RUNIQUE: Can be 0 or 1. Can be a literal value or a state table variable.

Return Values:

• SUCCEED: For the file transfer operations to be successful, local file names are
unique. %RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP-related error code.

Example 1:

1020 FTP_RUNIQUE '%RET=0'

Chapter 5
Action functions

5-114

Example 2:

1010 CONCAT '%RUNIQUE=0'
1020 FTP_RUNIQUE '%RET=%RUNIQUE'

Example 3:

1010 CONCAT '%UNIQ=1'
1020 FTP_RUNIQUE '%RET=%UNIQ'

FTP_SEND
This action causes the file specified by fileName to be sent to the remote NE host server.
fileName cannot contain the directory path name. FTP_LCD can be used to change the local
directory to where the file is currently located. This action fails if an error occurs, for example,
if the file does not exist.

See also "FTP_RECV," "FTP_CD," "FTP_LCD," and "FTP_SUNIQUE."

Syntax:

FTP_SEND '%RETURN=fileName'

Parameters:

• fileName: Specifies the file name to be transferred to the remote server. Can be a literal
value or a state table variable.

Return Values:

• SUCCEED: The specified file is transferred to the remote server and the action
succeeds. %RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP-related error code.

Example 1 – Transferring a file located in the present local directory:

1010 CONCAT '%FILE_NAME=NEScript.dat'
1020 FTP_SEND '%RET=%FILE_NAME'

The NEScript.dat file is sent and stored in the remote present working directory.

Example 2 – Transferring a file not present in the current working directory:

1010 FTP_LCD '%RET=/hpdev/hpenv10/FTP'
1020 FTP_SEND '%RET=NEData'

The NEData file is sent and stored in the remote present working directory.

FTP_SUNIQUE
This action function toggles the storing of files on the remote system with unique file names.
The remote FTP server must support the STOU command for successful completion. The
remote FTP server will report the unique name. If a file already exists with a name equal to
the target local file name for FTP_SEND command, a .1 is appended to the name. If the
resulting name matches another existing file, a .2 is appended to the original name. If this
process exceeds .99, an error message is printed, and the transfer does not take place. The
default value is Off.

See also "FTP_SEND."

Chapter 5
Action functions

5-115

Syntax:

FTP_SUNIQUE ‘%RETURN=SUNIQUE'

Parameters:

• SUNIQUE: Can be 0 or 1. SUNIQUE can be a literal value or a state table
variable.

Return Values:

• SUCCEED: For the file transfer send operations to be successful, remote file
names are unique. %RETURN contains SUCCEED.

• FAIL: Action fails. %RETURN contains FAIL or an FTP-related error code.

Example 1:

1020 FTP_SUNIQUE '%RET=0'

Example 2:

1010 CONCAT '%SUNIQUE=0'
1020 FTP_SUNIQUE '%RET=%SUNIQUE'

Example 3:

1010 CONCAT '%UNIQ=1'
1020 FTP_SUNIQUE '%RET=%UNIQ'

I/O Action Functions
With the following Input/Output (I/O) action functions, you can open, close, read, write,
and delete files from State Tables:

Table 5-39 I/O Action Functions

Action Function Description Java Method Notes

OPEN_FILE Opens the file. - Supported only in State Tables.

READ_FILE Reads from a file. - Supported only in State Tables.

WRITE_FILE Writes ASCII or binary
variables to a file

- Supported only in State Tables.

CLOSE_FILE Closes a file. - Supported only in State Tables.

DEL_FILE Deletes a file. - Supported only in State Tables.

OPEN_FILE
Opens the file whose pathname is stored in the NAME variable. It returns a file handler
in the FH variable. You can set the default directory by setting the variable
FILE_DEFAULT_DIR in the ASAP.cfg file. If the variable is not defined in the
ASAP.cfg file, the present directory is the default directory. For example, if you set the
first argument of the action function to file_name, then the file_name file is searched
in "./" directory.

Chapter 5
Action functions

5-116

You are responsible for opening the file in a proper mode. You can get unpredictable results
by opening a binary file in ASCII mode or opening an ASCII file in a binary mode.

Syntax:

OPEN_FILE '%FH= %NAME:%MODE'

Parameters:

• FH: Contains the file handle of the file whose name is stored in NAME variable.

• NAME: Variable contains the absolute full path name of the file.

• MODE: Contains the file open mode. The following is a list of file modes:

– r – Opens the ASCII file with read-only permission.

– rb – Opens the binary file with read-only permission.

– w – Truncates the ASCII file to zero length or create for writing.

– wb – Truncates the binary file to zero length or create for writing.

– a+ – Opens or creates an ASCII file for update at end-of-file. You can also read the
file in this mode.

– ab+ – Opens or creates a binary file for update at end-of-file.

Return Values:

• SUCCESS: A file handler is returned in the FH variable.

• FAILURE: The ASDL fails.

READ_FILE
Reads from a file that is represented by the file handler.

ASCII File:

To use the action function, READ_FILE, you must open the file in ASCII mode. The action
function reads lines or characters from an ASCII file to ASCII variables. The first argument
contains the file handler. The second argument represents the variable name that holds
characters.

The function returns the number of bytes read from the file. You have the option to place ALL
in the third argument. The READ_FILE then attempts to read the total file. If you place a
positive number as the third argument, then the READ_FILE reads the number of bytes from
the file indicated by the number. If the data length is larger than 254 bytes, it is split to a set of
254 byte long strings. These strings are stored in a set of variables, RBUF_1, RBUF_2,
RBUF_3, … RBUF_n.

RBUF is the name of the base variable obtained from the second argument of the action
string. While reading a file, the empty lines (only one new line character) is ignored by the
action function. If reading only one line, the action ignores multiple empty lines. The action
keeps reading the file until it reads a line with characters or encounters the end of the file.

Binary File:

To use the action function, READ_FILE, you must open the file in binary mode. The action
function reads bytes from a binary file to binary variables. The first argument contains the file
handler. The second argument represents the variable name that holds the data.

Chapter 5
Action functions

5-117

The function returns the number of bytes read from the file. RBUF is the name of the
base variable obtained from the second argument of the action string.

For more information, see the OPEN_FILE action description.

Syntax:

READ_FILE '%RTN=%FH:%RBUF:[%OPTION]'

Parameters:

• RTN: Contains the number of bytes read from the file. If RTN = 0, the end of file is
reached.

• FH: Contains the file handler that is obtained with OPEN_FILE action function.

• RBUF: Contains the name of a variable that stores bytes read from the file that
has the file handle in the %FH variable. The name of the variable can be stored in
%RBUF. If "%" is not prefixed before RBUF, then RBUF is treated as the name of
the variable.

OPTION
ASCII File:

This is an optional parameter. The parameter can have positive numbers or a string,
ALL. If a positive number is defined through the argument, the number represents the
number of bytes to be read from the file. If more than 254 bytes are read, the action
function splits the data to multiple segments of 254 bytes and stores them in ASCII
variables. However, if the read from the file is not larger than 254 bytes, the data is
stored in one ASCII variable. For multiple variables, all (except the last variable)
contain a string of 254 bytes long. If the parameter is not defined, then all characters of
a line (excluding the new line character) are read to a variable. In case a line is more
than 254 bytes, the characters read from the file are broken into 254-byte segments.

RTN contains the total number of bytes read. If ALL is defined in the OPTION variable,
the file is read and stored in multiple ASCII variables. RTN returns the number of bytes
read.

Binary File:

This is an optional parameter. The parameter can have positive numbers or a string,
ALL. If a positive number is defined through the argument, the number represents the
number of bytes to be read from the file. RTN returns a positive number to show
number of bytes read. It returns 0 to indicate the end of a file. If you set ALL as an
option, the file is read in the default mode (without the option argument). The default
option is to store the file in one variable.

Return Values:

• SUCCESS: The number of bytes read is returned in the RTN variable.The RTN
variable 0 means you have reached the end of the file for an ASCII file.

• FAILURE: The ASDL fails.

Example 1 (ASCII File):

READ_FILE '%RTN = %FH:RBUF'

READ_FILE reads bytes (up to a new line character) from the file (pointed to by file
handler, %FH) and stores the data in the variable "RBUF". If the data length is larger

Chapter 5
Action functions

5-118

than 254 bytes, but less than (2 x 254 + 1) = 509 bytes, then two variables contain the data.

The first part of the data is stored in RBUF_0 and the rest is stored in RBUF_1. If the data
length is less than or equal to 254 bytes, the data is stored in the RBUF_0 variable. RTN
returns the total number of bytes read.

Example 2 (ASCII File):

READ_FILE '%RTN = %FH:%RBUF'

If FILE_NAME is stored in the variable %RBUF, the READ_FILE reads bytes from the file
(pointed by the file handle in %FH) until a new line character is encountered and stores the
data in variable FILE_NAME.

Example 3 (ASCII File):

READ_FILE '%RTN = %FH:RBUF:500'

The READ_FILE reads 500 characters from the file (pointed to by file handler, %FH) and
stores them in variable(s) that have a base name of RBUF. If the file is smaller than 255
characters, the file is stored in the RBUF_0 variable. If the file is larger than 254 characters
but less than 509 characters, then two variables stores the data. The first part of the data is
stored in RBUF_0 and the following is stored in RBUF_1. In this case, the RTN returns the
total number of bytes read.

Example 4 (ASCII File):

READ_FILE '%RTN = %FH:RBUF:ALL'

The READ_FILE reads the whole file (pointed to by file handler, %FH) and stores it over a
set of variables that has a base name of RBUF. RTN returns the total number of bytes read.
If the file is smaller than 255 characters, then the file is stored in one variable. If the file is
larger than 254 characters, then multiple variables contain the bytes from the file.

Example 5 (Binary File):

READ_FILE '%RTN = %FH:RBUF'

The READ_FILE reads the total file (pointed to by file handler, %FH) and stores it to the
variable RBUF. RTN returns the number bytes read.

Example 6 (Binary File):

READ_FILE '%RTN = %FH:RBUF:100'

If the file length is less than or equal to 100 bytes, then RBUF contains the whole file and
RTN returns the number of bytes read. If the file is larger than 100 bytes, then RBUF and
RTN contain 100 bytes.

WRITE_FILE
ASCII File:

To use the action function, WRITE_FILE, you must open the file in ASCII mode. The action
function writes ASCII variables to a file. The first argument is a file handler for the file. The
second argument contains the base name of variables that contain strings.

If the second argument is not prefixed with %, then the argument is treated as a string and is
written to the file. If the third argument is set to FLUSH, then the function attempts to flush on
write to the file. Writing to the file in such case depends on how the system sets the buffer

Chapter 5
Action functions

5-119

default size. If the argument is set to COMPOUND, the action function attempts to
write all variables to the file. If no option is defined, the action writes one variable
specified in the second argument without flushing.

You can place the following control characters

• \t – Tab

• \v – Vertical tab

• \r – Carriage return

• \n – New line

• \f – Form feed. All other control characters have no effect on the action string.

Binary File:

For more information, see the "OPEN_FILE" action description.

To use the action function, WRITE_FILE, you must open the file in binary mode. The
action function writes binary variables to a file. The first argument is a file handler for
the file. The second argument contains the base name of variables that contain data to
be written to the file. If the second argument is not prefixed with %, then the action
function fails.

If you place COMPOUND in the third argument, the action writes all variables that are
prefixed with the base name. The FLUSH option is similar to the one described for the
ASCII file.

Note:

Be careful when defining the size of the buffer for the binary file. If the buffer
size defined is 200 and the actual data size is 40, it is the operating system's
choice to place any number to occupy the empty space.

Syntax:

WRITE_FILE '%RTN=%FH:%WBUF:[%WOPTION]'

Parameters:

• RTN: Returns the number of bytes written to the file.

• FH: Contains the file handle created by the OPEN_FILE action.

• WBUF: Contains the name of a variable with data that needs to be written to the
file. The name can be stored in %WBUF. If % is not prefixed before WBUF, the
WBUF is treated as a string and is written to the file. If you enter ABC\n as the
second argument instead of %WBUF, then ABC\n is written to the file. The new
line character is \n.

WOPTION
This is an optional variable. If you set this argument to FLUSH, the action function
writes a variable to the file and flushes it. If the argument is set to COMPOUND, the
function writes contents to the file of all variables in the variable tree that has a base
name contained in %WBUF. For example, if WOPTION is set to COMPOUND and the

Chapter 5
Action functions

5-120

base name is WBUF, then the WRITE_FILE action function attempts to read WBUF_1,
WBUF_2, … WBUF_n variables from the variable tree and writes them to the file.

Additional variables can be added as long as base name WBUF is prefixed in the variable
name. For example, WBUF[1], WBUF.1 is written to the file if COMPOUND is defined. If the
optional variable is not defined, the action writes one variable specified in the %WBUF
variable.

Return Values:

• SUCCESS: The number of bytes written is returned in the RTN variable. If the RTN
variable is '0', then no variable is available to write to the file.

• FAILURE: The ASDL fails.

The WRITE_FILE action follows the Compound parameter behavior. If the base name is
ABC, then the action function writes contents of all variables that are prefixed by ABC. If you
have ABCC, ABCD and a set of variables (from the READ_FILE action) ABC_1, ABC_2, …
ABC_n, then the WRITE_FILE writes these variables to a file. If you want to write all
variables from the READ_FILE action, then the base name must be changed to ABC_.

The order of the variables to be written to the file is based on ASCII value of the trailing
characters.

CLOSE_FILE
Closes the file related to the file handler contained in %FH.

Syntax:

CLOSE_FILE %FH

Parameters:

• FH: Contains the file handler of the file to be closed.

Return Values:

• SUCCESS: Closes the file represented by the file handler.

• FAILURE: The ASDL fails.

DEL_FILE
Deletes the file.

Syntax:

DEL_FILE %NAME

Parameters:

• NAME: Contains the file name that must be deleted.

Return Values:

• SUCCESS: Removes the file.

• FAILURE: The ASDL fails.

Chapter 5
Action functions

5-121

Note:

The file must be closed before the action DEL_FILE is called. You can
open the same file twice in a state table, but removing a file from the
directory causes a read/write action failure after the removal.

I/O Action Function Error Messages
Message: WO: YY, Error: File path name is larger than 255 [YY].

Meaning: Maximum length of the File path is 255 bytes.

Message: WO: YY, Error: Incorrect number[YY] of arguments.

Meaning: Check the syntax of the action.

Message: WO YY, Error: Invalid file open mode [Y] for file [YY].

Meaning: File open mode is not properly defined in the action string OPEN_MOD
action. Check the syntax.

Message: WO YY, Error: Failed to open file YY [AA BB].

Meaning: Failed to open the file. Check the unix error message in the diagnostic
message. AA represents the unix error message number and BB represents the unix
error message.

Message: WO YY, Error: Failed to add the file [YY] in the active file list.

Meaning: Check the file pointer, file handler and file name, and the file name length.
Also, check other messages in th: e diagnostic file.

Message: WO: YY, Error: Incorrect number [YY] of arguments for READ_FILE.

Meaning: Check the number of arguments in the action string.

Message: WO YY, Error: File handler [YY] conversion failed [AA BB].

Meaning: This points to conversion failure for the file handler. AA represents the unix
error message number and BB represents the unix error message.

Message: WO YY, Error:Failed to get the read buffer name for [YY].

Meaning: Check the second argument of the action string for a proper syntax.

Message: WO YY, Error: File stat failed [AA BB].

Meaning: Failed to get file related information. AA represents the unix error message
number and BB represents the unix error message.

Message: WO YY, Error: Failed to parse the second argument.

Meaning: Check the syntax of the second argument of the action string.

Message: Wrong file type.

Meaning: Contact Product Support.

Message: WO YY, Error: Error in the option argument [YY] [AA BB].

Chapter 5
Action functions

5-122

Meaning: Check the third argument of the READ_FILE action string for the proper syntax. AA
represents the unix error message number and BB represents the unix error message. The
syntax of the action function is important.

Message: WO YY, Error: Failed to locate the file with the file handler [ZZ].

Meaning: Check if the file is opened properly. If the problem persists, contact Product
Support.

Message: WO YY, Error: Error in reading the file with the file handler [ZZ] [AA BB].

Meaning: This is a unix problem. AA represents the unix error message number and BB
represents the unix error message.

Message: WO YY, Error: Failed to break the line to multiple lines.

Meaning: The read data cannot be broken and stored on a multiple variable. Check the data
and syntax. Save the diagnostics and contact Product Support.

Message: WO YY: Error in reading the file pointed by the file handle YY [AA BB].

Meaning: Check the unix error message. AA represents the unix error message number and
BB represents the unix error message.

Message: WO YY, Error: Invalid write argument [YY].

Meaning: Check the third argument of WRITE_FILE for valid options.

Message: WO YY: Error in writing to the file with the file handler [YY] [AA BB].

Meaning: Check the unix message. AA represents the unix error message number and BB
represents the unix error message.

Message: WO YY: Error in getting the file handler value [YY].

Meaning : Check the action function syntax.

Message: WO YY: File handler [YY] can not be deleted.

Meaning: Check the logic of the state table to see if the file was previously opened. If the
problem persists, contact Product Support.

Message: WO YY: Error in getting the file name from [YY].

Meaning: Check the action string of DEL_FILE.

Message: WO YY: File [YY] deletion failed.

Meaning: Check the existence of the file in the directory.

Message: WO YY: File [YY] can not be removed [AA BB].

Meaning: Check the unix message. AA represents the unix error message number and BB
represents the unix error message.

SNMP action functions
This section details each category of Interpreter State Table action functions. These action
functions are supported in State Tables only.

Chapter 5
Action functions

5-123

The Network Element Processor (NEP) Simple Network Management Protocol
(SNMP) Option provides you with an interface to perform all standard SNMP functions
by using the ASAP State Table program to any SNMP network element.

These action functions are supported in State Tables only.

You can write a State Table Program by using the SNMP action functions provided by
the NEP. The request is then submitted through the SNMP External Device Driver
(EDD) to the network element. The network element sends the correct response back
to the NEP through the SNMP EDD and is printed to the ASAP diagnostic file.

Figure 5-5 Communicating with NEs through the SNMP EDD

Variables
Variables in State Table programs are created when you use them for the first time in a
State Table. You do not have to define or declare them before they are used for the

Chapter 5
Action functions

5-124

first time. If a variable is assigned a value, and does not already exist, it is created. If it does
exist, it will be overwritten.

Variable names can consist of the following characters: a to z, A to Z, 0 to 9, “.", “[", “]" and
“_", the underscore character.

Note:

The contents of variables is limited to 255 characters. When the length of each
action string is greater than 255, an error is generated during compilation of the
State Table. The configuration variable STRING_LENGTH_CHECK in ASAP.cfg,
permits this from happening. For more information, see STRING_LENGTH_CHECK
refer to the ASAP System Administrator's Guide.

The curly braces “{“ and "}" provide extended variable syntax and are used to inform the
Interpreter to explicitly expand their contents first before expanding the rest of the action
string. For example, consider the case in which an array index is itself a variable:

1000 CONCAT ‘%TMP=%{ARRAY[%IDX]}'

To ensure the correct expansion of this option string, it is essential that %IDX be expanded
first before the %ARRAY. The % means that the value has been previously stored and will be
substituted by the action function at run-time.

The use of curly braces is highly recommended when fully expanding variable names that
include non-alphanumeric characters (especially dot “.", left bracket “[", or right bracket “]")
carrying special meaning.

Regular expressions
The term regular expression is used in the same context as the standard UNIX usage. A
formal definition of regular expressions is available in the standard UNIX documentation
under regexp. Most UNIX systems have this documentation on-line. It is available by typing
the UNIX command:

man regexp

Expressions:

An expression is any legal combination of symbols that represents a value. An expression is
defined as follows:

operator::= { ==, !=, <=, >=, <, >, NOT_NULL, IS_NULL, DEFINED, NOT_DEFINED}
expression ::= %var operator [{ %var | number | "string"}]

LAM registers
Data registers are a set of global registers in the Interpreter that are updated when the state
table initiates an operation. The state table can access these registers by using a predefined
set of variable names. Based on these and the contents of the registers, appropriate actions
are taken in the state table. Only LAM actions can be used to update these registers. All
other actions use the registers in a read-only manner.

The LAM registers are defined below.

Chapter 5
Action functions

5-125

Table 5-40 LAM Registers

Register Description

_D0, .. _D9 Data registers being filled by LAM on read operations. _D0 is the
primary data register for single item read operations. The other
registers are used when groups and rows are being read.

_EOF End of file indicator.

_FOFF Current file offset in bytes from the start of the file.

_FSIZ Size of the data file in bytes.

_M0,..,_M9 Marking registers used by the LAM to move around in the file.

The SNMP API provides the following actions to construct and submit requests:

Table 5-41 SNMP Action Functions

Action Function Description Java
Method

Notes

SNMP_GET_REQ Get Request. - Supported only in State Tables.

SNMP_GET_NEXT_REQ Get Next Request. - Supported only in State Tables.

SNMP_GET_BULK_REQ Get Bulk Request. - Supported only in State Tables.

SNMP_SET_REQ Set Request. - Supported only in State Tables.

SNMP_INFORM_REQ Inform Request. - Supported only in State Tables.

SNMP_TABLE_REQ Table Request. - Supported only in State Tables.

The general syntax for invoking the above actions is:

Line Action '%Ret=Pid:Method:ArgList'

SNMP_GET_REQ
With this action you can invoke the SNMP GET request to retrieve the value of one or
more variables from an SNMP agent.

Syntax:

SNMP_GET_REQ '%PID=newPid'
SNMP_GET_REQ '%RET=%PID:setOid:Oid1[…:OidN]'
SNMP_GET_REQ '%RET=%PID:setAuthInfo:AuthInfo'
SNMP_GET_REQ '%RET=%PID:setContextName:Name'
SNMP_GET_REQ '%RET=%PID:setContextID:ContextID'
SNMP_GET_REQ '%RET=%PID:send' [Timeout]

Table 5-42 SNMP_GET_REQ Methods

Method Description

%PID=newPid Returns an identifier for a new SNMP_GET_REQ.
The return identifier is unique across all SNMP
requests for the ASDL.

Chapter 5
Action functions

5-126

Table 5-42 (Cont.) SNMP_GET_REQ Methods

Method Description

%RET=%PID:setOid:Oid1[…:OidN] Adds to the variable binding list of the SNMP request
identified by PID object identifiers Oid1, Oid2,…,
OidN.

%RET=%PID:setAuthInfo:AuthInfo Sets the authentication information AuthInfo for the
SNMP request identified by PID.

%RET=%PID:setContextName:Name Sets the SNMPv3 Context Name for the SNMP
request identified by PID.

%RET=%PID:setContextID:ContextID Sets the SNMPv3 Context ID for the SNMP request
identified by PID.

%RET=%PID:send' [Timeout] Submits the request identified by PID to the SNMP
Agent, that is, makes the actual SNMP_GET_REQ
request invocation. The State Table is blocked until
the response is delivered, or a timeout threshold is
reached. The timeout threshold is given by the value
Timeout (if it is given), or the configured value of the
communication parameter WRITE_TIMEOUT.

See also "SNMP_RESPONSE," "SNMP_TABLE_REQ."

Table 5-43 SNMP_GET_REQ Return Values

Return Value Description

SUCCEED Request completed with no local error.

TIMEOUT Request timed out.

Example:

Get a fresh PID
1000 SNMP_GET_REQ '%PID=newPid'
Get the sysDescr object
2000 SNMP_GET_REQ '%RET=%PID:setOid:sysDescr.0'
Submit the request
3000 SNMP_GET_REQ '%RET=%PID:send'

SNMP_GET_NEXT_REQ
This action provides methods to construct an SNMP Get Next request and submit it to the
agent. You can invoke the SNMP_GET_NEXT_REQ to retrieve the next variable after one or
more specified variables from an SNMP agent.

Syntax:

SNMP_GET_NEXT_REQ '%PID=newPid'
SNMP_GET_NEXT_REQ '%RET=%PID:setOid:Oid1[…:OidN]'
SNMP_GET_NEXT_REQ '%RET=%PID:setAuthInfo:AuthInfo'
SNMP_GET_NEXT_REQ '%RET=%PID:setContextName:Name'
SNMP_GET_NEXT_REQ '%RET=%PID:setContextID:ContextID'
SNMP_GET_NEXT_REQ '%RET=%PID:send' [Timeout]

Chapter 5
Action functions

5-127

Table 5-44 SNMP_GET_NEXT_REQ Methods

Method Description

%PID=newPid Returns an identifier for a new
SNMP_GET_NEXT_REQ. The return identifier is
unique across all SNMP requests for the ASDL.

%RET=%PID:setOid:Oid1[…:OidN] Adds to the variable binding list of SNMP request
identified by PID object identifiers Oid1, Oid2,…, OidN.

%RET=%PID:setAuthInfo:AuthInfo Sets the authentication information AuthInfo for the
SNMP request identified by PID.

%RET=%PID:setContextName:Name Sets the SNMPv3 Context Name for the SNMP
request identified by PID.

%RET=%PID:setContextID:ContextID Sets the SNMPv3 Context ID for the SNMP request
identified by PID.

%RET=%PID:send' [Timeout] Submits the request identified by PID to the SNMP
Agent, that is, makes the actual
SNMP_GET_NEXT_REQ invocation. The State Table
is blocked until the response is delivered or a timeout
threshold is reached. The timeout threshold is given by
the value Timeout (if it is given), or the configured
value of the communication parameter
WRITE_TIMEOUT.

See also "SNMP_RESPONSE," "SNMP_TABLE_REQ."

Table 5-45 SNMP_GET_NEXT_REQ Return Values

Return Value Description

SUCCEED Request completed with no local error.

TIMEOUT Request timed out.

Example:

Get a fresh PID
1000 SNMP_GET_NEXT_REQ '%PID=newPid'
Get the object next to sysUpTime object
2000 SNMP_GET_NEXT_REQ
 '%RET=%PID:setOid:sysUpTime.0'
Submit the request
3000 SNMP_GET_NEXT_REQ '%RET=%PID:send'

SNMP_GET_BULK_REQ
You can invoke SNMP_GET_BULK_REQ to retrieve large blocks of data efficiently
from an SNMP agent.

See also "SNMP_RESPONSE," "SNMP_TABLE_REQ."

Syntax:

SNMP_GET_BULK_REQ '%PID=newPid'
SNMP_GET_BULK_REQ '%RET=%PID:setOid:Oid1[…:OidN]'
SNMP_GET_BULK_REQ '%RET=%PID:setNonRepeaters:%Non-Repeaters'

Chapter 5
Action functions

5-128

SNMP_GET_BULK_REQ '%RET=%PID:setMaxRepetitions:%Max-Repetitions'
SNMP_GET_BULK_REQ '%RET=%PID:setAuthInfo:AuthInfo'
SNMP_GET_BULK_REQ '%RET=%PID:setContextName:Name'
SNMP_GET_BULK_REQ '%RET=%PID:setContextID:ContextID'
SNMP_GET_BULK_REQ '%RET=%PID:send' [Timeout]

Table 5-46 SNMP_GET_BULK_REQ Methods

Method Description

%PID=newPid Returns an identifier for a new SNMP_GET_BULK_REQ.
The return identifier is unique across all SNMP requests
for the ASDL.

%RET=%PID:setOid:Oid1[…:OidN] Adds to the variable binding list of the SNMP request
identified by PID object identifiers Oid1, Oid2,…, OidN.

%RET=%PID:setNonRepeaters:%Non-
Repeaters

Sets the Non-Repeaters parameter of the
SNMP_GET_BULK_REQ identified by PID to be %Non-
Repeaters.

%RET=%PID:setMaxRepetitions:%Max-
Repetitions

Sets the Max-Repetitions parameter of the Get-Bulk
request identified by PID to be %Max-Repetitions.

%RET=%PID:setAuthInfo:AuthInfo Sets the authentication information AuthInfo for the
SNMP request identified by PID.

%RET=%PID:setContextName:Name Sets the SNMPv3 Context Name for the SNMP request
identified by PID.

%RET=%PID:setContextID:ContextID Sets the SNMPv3 Context ID for the SNMP request
identified by PID.

%RET=%PID:send' [Timeout] Submits the request identified by PID to the SNMP
Agent, that is, makes the actual SNMP-Get-Bulk request
invocation. The state table is blocked until the response is
delivered or a timeout threshold is reached. The timeout
threshold is given by the valueTimeout (if it is given), or
the configured value of the communication parameter
WRITE_TIMEOUT.

Table 5-47 SNMP_GET_BULK_REQ Return Values

Return Value Description

SUCCEED Request completed with no local error.

TIMEOUT Request timed out.

Example:

Get a fresh PID
1000 SNMP_GET_BULK_REQ '%PID=newPid'
Set the Non-Repeaters parameter
2000 SNMP_GET_BULK_REQ '%RET=%PID:setNonRepeaters:1'
Set the Max-Repetitions parameter
3000 SNMP_GET_BULK_REQ
 '%RET=%PID:setMaxRepetitions:2'
Get entries in the IP net-to-media table
4000 SNMP_GET_BULK_REQ '%RET=%PID:setOid:sysUpTime
 :ipNetToMediaPhysAddesss
 :ipNetToMediaType'

Chapter 5
Action functions

5-129

Submit the request
5000 SNMP_GET_BULK_REQ '%RET=%PID:send'

SNMP_SET_REQ
Invokes the SNMP SET request to set the value of one or more variables from an
SNMP agent.

See also "SNMP_RESPONSE," "SNMP_TABLE_REQ."

Syntax:

SNMP_SET_REQ '%PID=newPid'
SNMP_SET_REQ '%RET=%PID:setOidVal:Oid:Val'
SNMP_SET_REQ '%RET=%PID:setAuthInfo:AuthInfo'
SNMP_SET_REQ '%RET=%PID:setContextName:Name'
SNMP_SET_REQ '%RET=%PID:setContextID:ContextID'
SNMP_SET_REQ '%RET=%PID:send' [Timeout]

Table 5-48 SNMP_SET_REQ Methods

Method Description

%PID=newPid Returns an identifier for a new SNMP Set request.
The return identifier is unique across all SNMP
requests for the ASDL.

%RET=%PID:setOidVal:Oid:Val Adds to the variable binding list of SNMP request
identified by PID object identifiers Oid and its value
Val. A binary value can be set by providing a HEX
value with the first 2 characters as 0x prefix. Note that
x here is not capital, it has to be a small character.

%RET=%PID:setAuthInfo:AuthInfo Sets the authentication information AuthInfo for the
SNMP request identified by PID.

%RET=%PID:setContextName:Name Sets the SNMPv3 Context Name for the SNMP
request identified by PID.

%RET=%PID:setContextID:ContextID Sets the SNMPv3 Context ID for the SNMP request
identified by PID.

%RET=%PID:send' [Timeout] Submits the request identified by PID to the SNMP
Agent, that is, makes the actual SNMP-Set request
invocation. The State Table is blocked until the
response is delivered or a timeout threshold is
reached. The timeout threshold is given by the value
Timeout (if it is given), or the configured value of the
communication parameter WRITE_TIMEOUT.

Table 5-49 SNMP_SET_REQ Return Values

Return Value Description

SUCCEED Request completed with no local error.

TIMEOUT Request timed out.

Example:

100 SNMP_SET_REQ '%PID=newPid'
120 SNMP_SET_REQ '%RET=%PID:setOidVal:notifyConfirm.0:0x 07'

Chapter 5
Action functions

5-130

#120 SNMP_SET_REQ '%RET=%PID:setOidVal:notifyConfirm.0:0x 01 03'
#120 SNMP_SET_REQ '%RET=%PID:setOidVal:notifyConfirm.0:0x 0b 1f'
124 SNMP_SET_REQ '%RET=%PID:setAuthInfo:public'
200 SNMP_SET_REQ '%RET=%PID:send'

SNMP_INFORM_REQ
Provides methods to construct an SNMP Inform request and submit it to another SNMP entity
acting in a manager role.

See also "SNMP_RESPONSE."

Syntax:

SNMP_INFORM_REQ '%PID=newPid'
SNMP_INFORM_REQ '%RET=%PID:setSysUpTime:Time'
SNMP_INFORM_REQ '%RET=%PID:setInfoNameVal:Name:Val'
SNMP_INFORM_REQ '%RET=%PID:setOidVal:Oid:Val'
SNMP_INFORM_REQ '%RET=%PID:setAuthInfo:AuthInfo'
SNMP_INFORM_REQ '%RET=%PID:setContextName:Name'
SNMP_INFORM_REQ '%RET=%PID:setContextID:ContextID'
SNMP_INFORM_REQ '%RET=%PID:send' [Timeout]

Table 5-50 SNMP_INFORM_REQ Methods

Method Description

%PID=newPid Returns an identifier for a new SNMP Inform request.
The return identifier is unique across all SNMP requests
for the ASDL.

%RET=%PID:setSysUpTime:Time Sets the value of the first object sysUpTime.0 in the
Variable Binding List.

%RET=%PID:setInfoNameVal:Name:Val Sets the snmpEventID.i as the second object in the
Variable Binding List.

%RET=%PID:setOidVal:Oid:Val Adds to the variable binding list of the SNMP request
identified by PID object identifiers Oid and its value Val.

%RET=%PID:setAuthInfo:AuthInfo Sets the authentication information AuthInfo for the
SNMP request identified by PID.

%RET=%PID:setContextName:Name Sets the SNMPv3 Context Name for the SNMP request
identified by PID.

%RET=%PID:setContextID:ContextID Sets the SNMPv3 Context ID for the SNMP request
identified by PID.

%RET=%PID:send' [Timeout] Submits the request identified by PID to the SNMP
Manager, that is, makes the actual SNMP-Inform request
invocation. The State Table is blocked until the response
is delivered or a timeout threshold is reached. The
timeout threshold is given by the value Timeout. If it is
given, the configured value of the communication
parameter is WRITE_TIMEOUT.

Table 5-51 SNMP_INFORM_REQ Return Values

Return Value Description

SUCCEED Request completed with no local error.

Chapter 5
Action functions

5-131

Table 5-51 (Cont.) SNMP_INFORM_REQ Return Values

Return Value Description

TIMEOUT Request timed out.

Example:

Get a fresh PID
1000 SNMP_INFORM_REQ '%PID=newPid'
Set the sysUpTime and snmpEventID object
2000 SNMP_INFORM_REQ
 '%RET=%PID:setSysUpTime:87956'
3000 SNMP_INFORM_REQ
 '%RET=%PID:setInfoNameVal:surgeBreakerAlarm:0.0'

4000 SNMP_INFORM_REQ
 '%RET=%PID:setOidVal:surgeBreakerStatus.0
 :unknown'
Submit the request
4000 SNMP_INFORM_REQ '%RET=%PID:send'

SNMP_TABLE_REQ
Provides methods to construct a request to retrieve all the rows in a table and submit it
to the agent.

See also "SNMP_RESPONSE."

Syntax:

SNMP_TABLE_REQ '%PID=newPid'
SNMP_TABLE_REQ '%RET=%PID:setTableName:Table'
SNMP_TABLE_REQ '%RET=%PID:setAuthInfo:AuthInfo'
SNMP_TABLE_REQ '%RET=%PID:setContextID:ContextID'
SNMP_TABLE_REQ '%RET=%PID:setContextName:Name'
SNMP_TABLE_REQ '%RET=%PID:send' [Timeout]

Table 5-52 SNMP_TABLE_REQ Methods

Method Description

%PID=newPid Returns an identifier for a new Table request. The
return identifier is unique across all SNMP requests
for the ASDL.

%RET=%PID:setTableName:Table Specifies the table name.

%RET=%PID:setAuthInfo:AuthInfo Sets the authentication information AuthInfo for the
SNMP request identified by PID.

%RET=%PID:setContextName:Name Sets the SNMPv3 Context Name for the SNMP
request identified by PID.

%RET=%PID:setContextID:ContextID Sets the SNMPv3 Context ID for the SNMP request
identified by PID.

Chapter 5
Action functions

5-132

Table 5-52 (Cont.) SNMP_TABLE_REQ Methods

Method Description

%RET=%PID:send' [Timeout] Submits the request identified by PID to the SNMP
Agent, that is, makes the actual SNMP-Get-Next or
SNMP-Get-Bulk request invocation. The State Table
is blocked until the response is delivered or a timeout
threshold is reached. The timeout threshold is given
by the value Timeout (if it is given), or the configured
value of the communication parameter
WRITE_TIMEOUT.

Table 5-53 SNMP_TABLE_REQ Return Values

Return Value Description

SUCCEED Request completed with no local error.

TIMEOUT Request timed out.

Example:

Get a fresh PID
1000 SNMP_TABLE_REQ '%PID=newPid'
Set the Table Name
2000 SNMP_TABLE_REQ
 '%RET=%PID:setTableName:udpTable'

Submit the request
4000 SNMP_TABLE_REQ '%RET=%PID:send'

SNMP_RESPONSE
Provides methods to process the SNMP Get-Response for any type of SNMP Request
identified by PID.

Syntax:

SNMP_RESPONSE '%RSP=%PID:allParams'
SNMP_RESPONSE '%ERR_STAT=%PID:errorStatus'
SNMP_RESPONSE '%ERR_IDX=%PID:errorIndex'
SNMP_RESPONSE '%RET=%PID:hasVarBindList'
SNMP_RESPONSE '%VAR=%PID:varBindList'

The methods provided by SNMP_RESPONSE are:

Table 5-54 SNMP_RESPONSE Methods

Method Description

%RSP=%PID:allParams Retrieves all parameters of the response for the SNMP request
identified by PID. The response is stored into a Compound
variable RSP.

%ERR_STAT=%PID:errorStatus Retrieves the Error Status parameter of the response for the
SNMP request identified by PID. The Error Status value is
stored into a Scalar variable ERR_STAT.

Chapter 5
Action functions

5-133

Table 5-54 (Cont.) SNMP_RESPONSE Methods

Method Description

%ERR_IDX=%PID:errorIndex Retrieves the Error Index parameter of the response for the
SNMP request identified by PID. The Error Index value is stored
into a Scalar variable ERR_IDX.

%RET=%PID:hasVarBindList Reports whether the Variable Binding List parameter of the
response for the SNMP request identified by PID is present. If
present, 1 is returned; if not present, 0 is returned.

%VAR=%PID:varBindList Retrieves the Variable Binding List of the response. If the
Variable Binding List is not present, it returns an empty string.
Otherwise, for each variable, which is the n-th element of the
list, it creates the variable VAR[n].oid and VAR[n].val, and
copies to them the object identifier and its value. You must
invoke the hasVarBindList method before invoking this method.

Example:

Check whether this is a success or failure response
500 ###### Set the Request ######
1000 '%RET=%PID:send'
1010 IF_THEN '%RET == "SUCCEED"'
1020 SNMP_RESPONSE '%ERR=%PID:errorStatus'
1030 IF_THEN '%ERR != "noError"'
1040 SNMP_RESPONSE '%IDX=%PID:errorIndex'
1050 ELSE ''
1060 SNMP_RESPONSE '%RET=%PID:hasVarBindList'
1070 IF_THEN '%RET == "1"'
1080 SNMP_RESPONSE'%VAR=%PID:varBindList'
1090 ENDIF ''
1100 ENDIF ''
1110 ENDIF ''

LDAP action functions
Lightweight Directory Access Protocol (LDAP) is an open standard protocol that
provides uniform access to Directory Services. The LDAP Action Functions are written
so that ASAP implements a LDAP client that is generic and not specific to a given
ASAP application. The LDAP action functions provide read and write access to
information stored in a directory service at the time of executing state tables in ASAP.

Connectivity to the LDAP Directory Servers (NEs) is provided through the Multi-
Protocol Manager. The LDAP state table action functions provide a transparent access
to the LDAP directory servers through the LDAP API, a set of functions (or classes)
that request the servers to perform operations defined by the LDAP protocol.

ldap Directory Entry Structure
The LDAP directory service is based on a set of entries, a collection of attributes
identified by a name called a distinguished name (DN). The DN is a unique entry
name. Each of the attributes of an entry has a type and one or more values. The types
are mnemonic strings, for example, cn for a common name, and the values depend on
what type of attribute it is.

Chapter 5
Action functions

5-134

The LDAP Action Functions contain the necessary input and output information that is carried
in compound variables with syntactical structure. This allows for results of one query to be the
input for another. Compound variables in ASAP are constructed by adding a ‘.' followed by a
part name to the root name.

For example, the variable QUERY.DN.ALL:

• QUERY – Is the root name

• DN – Is a part name

• ALL – Is a sub-part name

Extended State Table variables
State table variables are limited to a maximum size of 255 characters. Since the directory
service can store arbitrary data, it is possible that a DN or an attribute value is longer than
255 characters. You can append numbers to compound variable parts and sub-parts to
overcome this size limitation. If the attribute value is longer than the 255 characters, the string
must be split up into multiple strings (additional buffers) which are assigned to separate
compound variable sub-parts by adding ‘.' followed by a number to the part name.

For example, if the string of DN types was 600 characters, you must split it up into three
separate strings. The first string is stored in QUERY._DN, the second string in QUERY._DN.0,
and the third in QUERY._DN.1. You can apply this structure to any compound variable that is
used by any of the LDAP action functions. If the value stored in QUERY._DN.du0 must be
longer than 255 then the second string would go into QUERY._DN.du0.0, the third into
QUERY._DN.du0.1 etc.

You must not split the long strings in the middle of a word but on spaces between words. You
must also verify that the variables returned from LDAP action functions have been split
correctly and you must insert spaces as required. While this approach is cumbersome, in
most cases it will not be necessary since the 255 characters size is sufficient.

Keywords:

The special keywords (_DN) that are used as parts or sub-parts always start with an
underscore to distinguish them from data. There are a limited number of such keywords and
they are discussed in the Action Function sections in which they are used.

LDAP Entry Examples:

Most of the LDAP action functions require a Distinguished Name (DN) as one of their inputs.
The Distinguished Name is the location of a given entry in a hierarchical directory, for
example, “cn=John Smith,, ou=Employee, d=Engineering, c=Canada, o=xyz.com". Since this
path can be quite long (over the 225 limit) it is represented with compound variable parts and
sub-parts. Therefore, the representation of the example above would be as follows (core
name being QUERY):

QUERY._DN = “cn ou d c o"
QUERY._DN.cn = “John Smith"
QUERY._DN.ou = “Employee"
QUERY._DN.d = “Engineering"
QUERY._DN.c = “Canada"
QUERY._DN.o = “xyz.com"

In the above example, the part _DN is set to a string containing all the attribute types in the
order in which they appear in a DN. Each attribute type also appears as a sub-part following
the _DN part and they are set to their respective values. If the same attribute type is repeated

Chapter 5
Action functions

5-135

within a DN, a sequence number must be appended to the sub-part. For example, the
DN: “cn=John, ou=Employee, du=eng, du=xyz, du=com' would be represented in a
following compound variable:

QUERY._DN = “cn ou du du du"
QUERY._DN.cn = “John Smith"
QUERY._DN.ou = “Employee"
QUERY._DN.du = “eng"
QUERY._DN.du0 = “xyz"
QUERY._DN.du1 = “com"

The attribute type list appears exactly as in a DN (without any additional numbers) but
the sub-parts of recurring attribute types have numbers appended to them starting at
0. Since most of the time a given type only appears once in a DN the first occurrence
of du type has nothing appended to it. The next du type has 0 appended to it, next
one has a 1, and so on.

LDAP Operations:

The main use of LDAP is to search for information in the directory. The LDAP search
operation allows a portion of the directory to be searched for entries that match criteria
specified by a search filter. A client can request information from each entry that
matches the criteria. LDAP defines operations for interrogating and updating the
directory. It provides operations for adding and deleting an entry from the directory,
changing an existing entry, and changing the name of an entry.

Configuring LDAP:

To configure LDAP, you must do the following:

1. Set the following configuration variable in ASAP.cfg:

LDAP_IF_SUPPORTED=1

2. Set the device type to W.

LDAP Configuration Example:

var retval number
exec :retval := SSP_new_resource ('$ASAP_SYS',
 'DMS_POOL','W' 1);

exec :retval := SSP_new_comm_param('W','COMMON_HOST_CFG','COMMON_DEVICE_CFG',
 'HOST_NAME','toronto.xyz.com', 'LDAP server host name');
exec :retval := SSP_new_comm_param ('W','COMMON_HOST_CFG','COMMON_DEVICE_CFG',
 'HOST_USERID','cn=manager', 'dc=metasolv', 'userid');
exec :retval := SSP_new_comm_param ('W','COMMON_HOST_CFG','COMMON_DEVICE_CFG',
 'HOST_PASSWORD','secret','user password');
exec :retval := SSP_new_comm_param ('W','COMMON_HOST_CFG','COMMON_DEVICE_CFG',
 'HOST_IPADDR','47.11.145.143', 'IP address);
exec :retval := SSP_new_comm_param ('W','COMMON_HOST_CFG','COMMON_DEVICE_CFG',
 'PORT','390','port number');

Communication Parameters
The following communication parameters must be defined:

Chapter 5
Action functions

5-136

Table 5-55 LDAP Communication Parameters

Parameter Description

HOST_NAME Name of the computer that hosts the directory service (for example,
dir.xyz.com) or the IP address of the host.

HOST_USERID Full DN of an existing user that has appropriate privileges. Maximum 255
characters.

HOST_PASSWORD User password. Maximum 255 characters.

PORT Port number of the directory service (optional – default port is 389).

OPEN_TIMEOUT Duration in seconds to wait for binding to the directory server. Possible
values:

• Default – 5 seconds
• Minimum – 2 seconds
• Maximum – 600 seconds

READ_TIMEOUT Maximum time in seconds to wait for results from the directory server.
Possible values:

• Default – 1 second
• Minimum – 1 second
• Maximum – 3600 seconds

LDAP_VERSION LDAP version to use. If VERSION2, use 2. If VERSION3, use 3. (Default
value is 2.)

SIZELIMIT The size of the search results set asked from the directory server.
Possible values:

• Default – 2
• Minimum – 1
• Maximum – 500

The LDAP action functions implemented in ASAP are:

• LDAP_SEARCH

• LDAP_COMPARE

• LDAP_ADD

• LDAP_DELETE

• LDAP_MODIFY

• LDAP_RENAME

• STRTOK

LDAP_SEARCH
This function searches the directory for entries that meet specified search criteria.

Syntax:

LDAP_SEARCH '%<COUNT>=<SEARCH>:<RESULT>'

where:

• <SEARCH>: The name of compound variable that holds the search criteria information.

• <RESULT>: T he name of compound variable that will hold the search results.

Chapter 5
Action functions

5-137

• <COUNT>: A return value that indicates the number of result sets. If this action
function fails, FAIL is returned.

The Search compound variable contains the following parts:

Table 5-56 Search compound variable parts

Variable Description

_DN

_DN.<type>

Distinguished name of the directory entry that serves as a starting
point (base) for the search. For example, setting this to “o=xyz.com"
restricts the search entries at xyz.com.

_SCOPE Scope of the search. Possible values are:

• BASE – Searches the entry specified by base.
• ONELEVEL – Searches all entries one level beneath the entry

specified by base.
• SUBTREE (default) – Searches the entry specified by base and

all entries at all levels beneath the entry specified by base.

_FILTER String representation of the filter to apply in the search. The format
for the filter is (attribute operator value) where:

attribute – Is one of the valid entry attributes as defined by the
Directory Server schema.

operator – Is one of:

• = – Returns entries whose attribute is equal to the value.
• >= – Returns entries whose attribute is greater than or equal to

the value
• <= – Returns entries whose attribute is less than or equal to the

value
• =* – Returns entries that have a value set for that attribute
• ~= – Returns entries whose attribute value approximately

matches the specified value. Typically, this is an algorithm that
matches words that sound alike.

value – Is the value to match (wildcard * can be used, e.g. “F*" for
values starting with F).

Search filters can also be combined using the following syntax:

(boolean_operator (filter1) (filter2) (filter3))
where boolean_operator can be one of:

• & – Returns entries matching all specified filter criteria
• | – Returns entries matching one or more of the filter criteria
• ! – Returns entries for which the filter is not true. You can only

apply this operator to a single filter, for example: (!(filter)).

_ATTR String of attributes to return from the entry. If this keyword is omitted,
all attributes of the entry are returned.

Servers do not normally return operational attributes in search
results unless you specify the attributes by name.

Search Results:

The result of a search are stored in compound variable(s) that has the name passed in
<RESULT> and has a result set number between 0 and <COUNT>-1 appended to it.
For example, if the name of the result variable is OUT and the number of results is 4,
then the variables OUT0, OUT1, OUT2, and OUT3 are created by the action function.

The Result Set variable contains the following parts:

Chapter 5
Action functions

5-138

Table 5-57 Result set variable

Variable Description

_DN

_DN.<type>

The Distinguished Name for the found entry formatted as described above.

_DN._ALL This convenience variable stores the DN, as returned by the server, in one
string. Use this variable when you need to send the entire DN to another
system. For example, “cn=Arthur, ou=Person, c=Canada".

_ATTR List of attributes returned by this search, for example, “cn ou c".

<type> Value for the specific attribute, for example, OUT1.cn, OUT1.ou, OUT1.c.

Example:

For more information on the STRTOK function, see "STRTOK."

The following is an example of a state table that performs a simple search and sends the
results back to the switch history using the LOG action function. This state table is using a
string tokenizer function, STRTOK. In addition, there are no checks performed for additional
buffers (_DN.0, _ATTR.0, etc.). State table line numbers have been omitted.

BEGIN LDAP_SEARCH_EXAMPLE
Setup search parameters
CONCAT '%IN._DN=o'
CONCAT '%IN._DN.o=xyz.com'
CONCAT '%IN._SCOPE=ONELEVEL'
CONCAT '%IN._FILTER=(cn=a*)'
Peform search
LDAP_SEARCH '%COUNT=IN:OUT'
Check for FAIL return value should be done here
Process search results and store in switch history
CONCAT '%I=0'
CONCAT '%LAST=0'
WHILE '%I < %COUNT'

STRTOK '%TOKEN=%{OUT%I._DN}:" ":LAST'
WHILE '%TOKEN != ""'
CONCAT '%VALUE=%{OUT%I._DN.%TOKEN}'
LOG 'DN%I %TOKEN -> %VALUE'
STRTOK '%TOKEN=%{OUT%I._DN}:" ":LAST'
ENDWHILE
CONCAT '%LAST=0'
STRTOK '%TOKEN=%{OUT%I._ATTR}:" ":LAST'
WHILE '%TOKEN != ""'
CONCAT '%VALUE=%{OUT%I.%TOKEN}'
LOG 'ATTR%I %TOKEN -> %VALUE'
STRTOK '%TOKEN=%{OUT%I._ATTR}:" ":LAST'
ENDWHILE
INCREMENT '%I'
CONCAT '%LAST=0'

ENDWHILE
ASDL_EXIT 'SUCCEED'
END LDAP_SEARCH_EXAMPLE

Chapter 5
Action functions

5-139

LDAP_COMPARE
This function checks if an attribute of an entry contains specified value.

Syntax:

LDAP_COMPARE '%<RET>=<DN>:<ATTRIBUTE>:<VALUE>'

where:

• <DN>: The name of a compound variable that holds the Distinguished Name. The
<DN> compound variable requires the _DN part.

• <ATTRIBUTE>: The name of the attribute.

• <VALUE>: The attribute value passed in the parameter that will be compared to its
value in the directory.

• <RET>: Possible values are:

– TRUE – Match is found

– FALSE – No match is found

– FAIL – Operation failed

Example:

CONCAT '%COM._DN=cn ou o'
CONCAT '%COM._DN.cn=John Smith
CONCAT '%COM._DN.ou=People'
CONCAT '%COM._DN.o=xyz.com'
LDAP_COMPARE '%RET=COM:sn:Smith
SEND_PARAM 'COMP_RESULT "%RET" I'
ASDL_EXIT 'SUCCEED'

LDAP_ADD
This function inserts a new entry into the directory.

Syntax:

LDAP_ADD '%<RET>=<VAR>'

where:

• <VAR>: A name of a compound variable that holds the DN, attributes and their
values to be added

• <RET>: A return value that takes SUCCEED and FAIL values.

The Add compound variable contains the following parts

Table 5-58 Add compound variable parts

Variable Description

_DN

_DN<type>

Distinguished name of the entry to add. With the exception of the
leftmost component, all components of the distinguished name (for
example, o=organization or c=country) must already exist.

_ATTR List of attributes of the entry to add, for example, “cn ouc"

Chapter 5
Action functions

5-140

Table 5-58 (Cont.) Add compound variable parts

Variable Description

<type> Values for the specified attributes.

Example:

CONCAT '%ADD._DN=cn ou o'
CONCAT '%ADD._DN.cn=John Smith"
CONCAT '%ADD._DN.ou=People'
CONCAT '%ADD._DN.o=xyz.com'
CONCAT '%ADD._ATTR=objectclass cn sn'
CONCAT '%ADD.objectclass=top'
CONCAT '%ADD.objectclass.0=person'
CONCAT '%ADD.cn=John Smith'
CONCAT '%ADD.sn=Smith'
LDAP_ADD '%RET=ADD'
ASDL_EXIT 'SUCCEED'

LDAP_DELETE
This function deletes an entry from the directory.

Syntax:

LDAP_DELETE '%<RET>=<DN>'

where:

• <DN>: A name of a compound variable that holds the DN of the entry that needs to be
deleted.

• <RET>: A return value that takes SUCCEED and FAIL values.

The <DN> compound variable needs the _DN part specified as in other functions.

Example:

DIAG 'LOW:LDAP_DELETE Example'
CONCAT '%DEL._DN=cn ou o'
CONCAT '%DEL._DN.cn=John Smith'
CONCAT '%DEL._DN.ou=People'
CONCAT '%DEL._DN.o=xyz.com'
LDAP_DELETE '%RET=DEL'
SEND_PARAM 'DeleteRes "%RET" I'
ASDL_EXIT 'SUCCEED'

LDAP_MODIFY
This function modifies an existing directory entry.

Syntax:

LDAP_MODIFY '%<RET>=<VAR>'

where:

• <VAR>: A compound variable name that holds the DN, attributes and their modifications.

Chapter 5
Action functions

5-141

• <RET>: A return value that takes SUCCEED and FAIL values.

The Modify compound variable contains following parts:

Table 5-59 Modify compound variable parts

Variable Description

_DN

_DN.<type>

Distinguished Name of an existing entry that will be modified.

_ATTR List of attributes that are added, deleted or replaced.

<type>._OP Indicates type of operation performed for the given attribute type.
Possible values are:

• ADD – Adds the given attribute and its value to the entry
• DEL – Deletes the given attribute and its value from the entry
• REP – Replaces the existing attribute value with a new one.
• If the <type>._OP is not specified, then the ADD operation is

assumed.

<type> Value for the specified attributes. Not required for the DEL operation.

Example:

CONCAT '%MOD._DN=cn ou o'
CONCAT '%MOD._DN.cn=John Smith'
CONCAT '%MOD._DN.ou=People'
CONCAT '%MOD._DN.o=xyz.com'
CONCAT '%MOD._ATTR=sn'
CONCAT '%MOD.sn_OP=REP'
CONCAT '%MOD.sn=Smith66666'
LDAP_MODIFY '%RET=MOD'
SEND_PARAM 'CompareRes "%RET" I'
ASDL_EXIT 'SUCCEED'

LDAP_RENAME
This function changes the DN of an entry in the directory. You use this function to
change the DN of a given entry (right most part of a DN) or to move a given entry to
another location in a directory by changing the parent of a DN (all left side).

Syntax:

LDAP_RENAME '%<RET>=<VAR>'

where:

• <VAR>: A name of a compound variable that holds the DN and other necessary
information

• <RET>: A return value that takes SUCCEED and FAIL values.

The Rename compound variable contains following parts:

Chapter 5
Action functions

5-142

Table 5-60 Rename compound variable parts

Variable Description

_DN

_DN.<type>

Distinguished Name of an existing entry that will be renamed or
moved.

_NEW._DN

_NEW._DN.<type>

New Relative Distinguished Name (RDN, rightmost part) to assign to
the entry.

_PAR._DN

_PAR._DN.<type>

If the entry is being moved this part specifies the new parent (left side)
of the DN. This part can be omitted if entry is not being moved.

Note: The _PAR._DN.<type> variable is used in LDAP version 3 only.

_DEL If present and set to TRUE then the old RDN value is deleted. By
default, the old RDN value is appended as another value to the given
RDN attribute.

Example:

CONCAT '%MOD._DN=cn ou o'
CONCAT '%MOD._DN.cn=John Smith'
CONCAT '%MOD._DN.ou=People'
CONCAT '%MOD._DN.o=xyz.com'
CONCAT '%MOD._NEW._DN=cn'
CONCAT '%MOD._NEW._DN.cn=John Smith the Third'
LDAP_RENAME '%RET=MOD'
SEND_PARAM 'RenameRes "%RET" I'
ASDL_EXIT 'SUCCEED'

STRTOK
This function takes a string to be tokenized and returns the string that is split up, on a
specified delimiter returning one token per call.

Syntax:

STRTOK '%<TOKEN>=<STR>:<DELIM>:<LAST>'

where:

• <STR>: The string to tokenize. The input string <STR> should not be changed while it is
tokenized.

• <DELIM>: A string containing delimiter characters. The value of the <DELIM> string can
change between calls.

• <LAST>: The name of the variable that stores the position of the last found token. Set
this value to 0 when starting to tokenize a new string and do not change it between calls
to the STRTOK function.

• <TOKEN>: The return value that is set to the last found token.

In addition, the input string <STR> should not be changed while it is tokenized. The value of
the <DELIM> string can change between calls.

Chapter 5
Action functions

5-143

6
Web Services

This chapter describes the Oracle Communications ASAP's Web Services interface. It
includes the following topics:

• Web Services Overview

• Architectural Overview of Web Services

• Web Services Interface

Web Services Overview
ASAP provides a web services interface through which external applications can manage
service activation activities and operations. Using the web services interface, you can
develop distributed platform-and-application-server agnostic in-house solutions.

The interface is defined in the ASAP Web Services Web Service Definition Language
(WSDL) file.

ASAP Web Services runs on Oracle WebLogic Application Server. See the discussion on
specific version numbers of mandatory and optional third-party software in ASAP Installation
Guide.

The external transport protocols are HTTP, HTTPS, and JMS and the data service formats
are SOAP v1.1 and 1.2.

Access-level security is provided through the implementation of the WebLogic Server WS-
Policy specification, enforcing authentication.

ASAP Web Services takes advantage of the existing JSRP functionality to interact with the
ASAP core.

Web Services Definition Language (WSDL)
WSDL is an XML format for describing network services as a set of endpoints operating on
messages containing either document-oriented or procedure-oriented information. The
operations and messages are described abstractly, and then bound to a concrete network
protocol and message format to define an endpoint. Related concrete endpoints are
combined into abstract endpoints (services). WSDL is extensible to allow description of
endpoints and their messages regardless of which message formats or network protocols are
used in implementation. Type the following URL in your web browser and access the ASAP
Web Services WSDL:

http://server:port/env_id/Oracle/CGBU/Mslv/Asap/Ws?WSDL

where:

• server is the server address.

• port is the port number of the Oracle WebLogic Server installation.

• env_id is the environment identifier specified when ASAP was installed.

6-1

HTTP protocol is used for a handshake with the application server to authenticate and
request a web service client stub, which is used as the launch pad to talk to the web
service. Then the client can communicate with the ASAP Web Services using one of
the HTTP, HTTPS, or JMS protocols.

Architectural Overview of Web Services
ASAP Web Services supports the OSS/J standard to interact with web services clients.
The ASAP Web Services WSDL works with values compliant with
com.sun.java.product.oss data types. See the TM Forum website at:

http://www.tmforum.org/browse.aspx?catID=2896
Web services exposes a web interface according to the ASAP Web Service WSDL
contract for ASAP Service Activation. Web services clients can take advantage of the
web services interface in accordance with ASAP's WSDL contract to exploit service
activation functionality. This interface works with OSS/J compliant data types.

The ASAP Web Services message validator will check the incoming messages for
compliance with ASAP OSS/J data types (for example,
com.sun.java.product.oss.xml.serviceactivation.OrderValue message values actually
need to be com.metasolv.serviceactivation.ASAPOrderValue values) and if incoming
messages are of the expected types, submits the request to the JSRP. The JSRP
forwards the request to SARM, and the results will be returned to the web services
client.

Currently, web services does not support asynchronous operations and does not
return JSRP event queue messages back to the clients. Web services creates a
temporary queue but this queue is only for the purpose of notification of an operation
completion.

Figure 6-1 illustrates the flow of messages between ASAP Web Services client and the
JSRP.

Figure 6-1 ASAP Web Services with JSRP

Chapter 6
Architectural Overview of Web Services

6-2

http://www.tmforum.org/browse.aspx?catID=2896

Web Services Interface
The ASAP Web Services WSDL exposes most of the functionality that is available through
JSRP in ASAP for flow through activation. See "About Web Service Operations" for more
information about WSDL operations.

ASAP Web Services must use OSS/J compliant data types. The WSDL file defines message
types according to the OSS/J-type XML files with ASAP extensions. You can refer to the
following XSD files provided with the ASAP application for extension descriptions:

• XmlCommonSchema.xsd

• XmlServiceActivationSchema.xsd

• ASAPServiceActivation.xsd

See ASAP Online Reference for more information about the XSD files. The ASAP Online
Reference can be extracted from the ASAP_src/doc.tar file, where ASAP_src is the location
of the ASAP installation files. The annotated XSD files can also be found in the ASAP
environment at ASAP_Home/xml/xsd.

The WSDL document declares the OSS/J elements for each web services operation.
Following is a snippet for the startOrderByKey operation in a WSDL document:

<xs:element name="startOrderByKey">
<xs:complexType>
<xs:sequence>
<xs:element ref="s4:startOrderByKeyRequest"/>
</xs:sequence>
</xs:complexType>
</xs:element>

For ASAP, we need to pass a raw XML document in OSS/J plus ASAP extension type.

Security
ASAP Web Services access control security determines the functionality that each user will
be able to access. In order to set up access control security, create a security role. Give this
role the privilege to invoke ASAP Web Services. When the web services client needs to
access the web service, the client will need to authenticate itself to the Oracle WebLogic
Server hosting ASAP Web Services. (Refer to the WebLogic Server Administration Guide for
details on how to set up access security.)

Note: WebLogic Server access control security only protects WebLogic Server resources and
does not cover secure communication with ASAP Web Services. As a result, SOAP
messages transmitted between the web service and its invoking clients are in plain text.

Currently, web services only offers access level security. Clients must use a user ID that is a
member of group ASAP_WS_USERS_GROUP to communicate with ASAP WebServices.
The web.xml file defines the security role ASAP_WS_USERS and weblogic.xml file defines
the security principal name as ASAP_WS_USERS_GROUP. The ASAP installer creates a
default user named asap_ws_user. This user is a member of the
ASA_WS_USERS_GROUP group. Due to limitations of the WebLogic Administration
Console, information created by the command-line tools such as the role name may not be
available in the console.

Chapter 6
Architectural Overview of Web Services

6-3

About Web Service Operations
Table 6-1 lists the supported and unsupported web services OSS/J Common Schema
base operations.

Table 6-1 Web Services Common Schema Base Operations

Supported Unsupported

getManagedEntityTypes

getQueryTypes

getSupportedOptionalOperations

getEventDescriptor

getEventTypes

Table 6-2 lists the supported and unsupported web services OSS/J Service Activation
Schema base operations.

Table 6-2 Web Services Service Activation Schema Base Operations

Supported Unsupported

abortOrderByKey

createOrderByValue

getOrderByKey

getOrdersByKeys

getOrderTypes

getServiceTypes

queryOrders

removeOrderByKey

resumeOrderByKey

setOrderByValue

startOrderByKey

suspendOrderByKey

tryAbortOrdersByKeys

tryCreateOrdersByValues

tryRemoveOrdersByKeys

tryStartOrdersByKeys

getOrdersByTemplates

getSupportedOptionalAttributes

makeOrderValue

makeServiceValue

orderAttributeValueChangeEvent

orderCreateEvent

orderRemoveEvent

orderState

orderStateChangeEvent

priority

serviceState

trySetOrdersByValues

Table 6-3 lists the supported and unsupported web services OSS/J ASAP Service
Activation Schema base operations.

Chapter 6
Architectural Overview of Web Services

6-4

Table 6-3 Web Service ASAP Service ACtivation Schema Base Operations

Supported Unsupported

cancelOrderByKey

lockOrder

stopOrderByKey

unlockOrder

abortService

addExtendedOrderProperty

addOrderParameter

addServiceParameter

addService

deleteService

getInitOrderByKey

orderCompleteEvent

orderEstimateEvent

orderFailEvent

orderNEUnknownEvent

orderRollbackEvent

orderSoftErrorEvent

orderStartupEvent

orderTimeoutEvent

orderTimeoutWarningEvent

removeExtendedOrderProperty

removeOrderParameter

removeServiceParameter

resubmitOrderByKey

retryService

setExtendedOrderProperty

setOrderParameter

setServiceParameter

validateOrderOperation

validateServiceOperation

Chapter 6
Architectural Overview of Web Services

6-5

A
Sample Thread Framework Application

EDD framework is a layer on the top of the thread framework. This layer provides basic
functionality of the EDD which allows the application to use its API to monitor th e
connections to NEP, receive data from the NEP and send data to NEP.

The design of the EDD framework in this section is an example of using thread framework.
EDD Data Architecture.

Many other features used by EDD such as logging diagnostic messages, generating events
and retrieving configuration variables are described in document -- MT-Safe Common Class
Library, which is part of the framework also.

Essentially, the framework maintains one thread for each connection to NEP. A dedicated
thread is generated at startup time to listen connecting requests initiated by NEP. These
threads are generated from the classes inherited from ASC_ThreadAppl. Typically, the EDD
application should subclass from these two classes to build the application specific classes.
This is to be demonstrated in the section describing DCE API.

The classes used in this framework are:

• EDD Connection Listening

• Connection Handler Class

EDD connection listening class
This EDD_Listen class provides the functionality of listening to incoming connecting requests
from NEP and generating the connection handler threads to handle connections to NEP. This
is very similar to a server spawning a thread to handle a request. The object created from this
class is attached to a DCE thread.

This class provides functionality to handle connection request both the UNIX domain socket
and Internet domain socket. Once a request is accepted, the listener spawns an
EDD_ConnHandler thread to handle the connection.

This is an abstract class that you must subclass from. The main reason for subclassing this
class is to provide a method to instantiate connection handler objects, since you must
subclass EDD_ConnHandler to build the application.

The following is the class definition.

Synopsis
class EDD_Listener : public ASC_ThreadAppl
{
public:
EDD_Listener(char* Listener);
// This is the entry point which is called when the
// thread is up. It, in turn, calls function to
// monitor the listening socket.
int threadMain(void **Rtn);

A-1

// This function has to be redefined by the
// application to generate connection handler.
// Usually, a new command is used to create a
// new connection handler object.
virtual EDD_ConnHandler *genConnHandler(const

ConnStartInfo &ConnInfo) = 0;

protected:
Diagnosis *m_Diag;
Event *m_Event;
Config m_Config;
private:
// This function is called by threadMain to
// initialize the listening socket.
void initListener(void);
// This function retrieves listening file descriptor.
void getListenFileDes(int SocketFamily, char *IPAddr,

 int Port);

// Constructs listening socket for UNIX domain.
int unixDomainSocket(char *PathName);
// Constructs listening socket for internet domain.
int inetDomainSocket(char *HostIPAddr, short Port);
// This function accepts a request to establish a
// socket connection to NEP.
int newConnection(void);
// The following two connections are used by
// newConnection to establish a socket connection to NEP.
int unixSocketConnect(int SocketID);
int inetSocketConnect(int SocketID);
int m_FileDes;
};

Public methods
int threadMain(void **Rtn);

This function is invoked when the thread is up. It initializes the listening channel and
then blocks the thread on UNIX system call accept(). The thread is woken up when a
request is coming. Upon accepting the request, the thread spawns a connection
handler thread to handle it. Most functions in the private section are directly or
indirectly used by this function.

virtual EDD_ConnHandler *genConnHandler(const ConnStartInfo &ConnInfo) = 0;

This function is used to generate a connection handler thread. ConnInfo is passed to
the new thread object to transfer the file descriptor. It returns the pointer to the new
thread. The user has to redefine this function. Refer to the DCE API section for
examples.

The following is the flow of the control:

1. ThreadMain() calls initListener().

2. initListener calls either unixDomainSocket or inetDomainSocket depending on
the configuration.

3. Once the listening channel is established, newConnection is called to establish
listening channel.

Appendix A
EDD connection listening class

A-2

4. newConnection invokes either unixSocketConnect or inetSocketConnect to wait for
the requests.

5. Once a connection is established, a connection handler is spawned to handle the
connection.

Connection handler class
This is an abstract class that you derive the application from. You must redefine some
member functions which are invoked for different transactions (see the Transaction chapter
for detail). For example, when the NEP requests to establish a connection to a network
element or a remove server, the member function connectReq is called. You redefine this
function to establish the connection to network elements.

After the object of the class is created, it attaches to a thread. The object then invokes the
readSocket member function which blocks the thread to wait for data coming from NEP.
Based on the header information in data read, the object invokes proper functions redefined
by the application to handle requests.

The following describes those member functions.

Synopsis
class EDD_ConnHandler : public ASC_ThreadAppl
{
public:
EDD_ConnHandler(char *ConnectionName);
~EDD_ConnHandler(void){}
// This is the entry point of the thread.
int threadMain(void **Rtn);
// This function is called when the thread is just up,
// so that the user may use this function to perform
// their own initializetion.
virtual void applInitialize(void) = 0;
// The user may use the following two functions to
// save the application specific data. setApplData
// calls the user defined deleteApplData internally
// to make sure that there is no memory leak.
void setApplData(void *ApplData);
void *getApplData(void) { return m_ApplData; }
// The user has to redefine this function to delete
// the data that was saved using setApplData().
virtual void deleteApplData(void *ApplData) = 0;
// Redefine this function to clean up the application
// data. This function is called whenever the thread
// is terminated.
virtual void cleanup(void) = 0;
// This function is called whenever NEP requests a
// connection to a remote server or network element.
// The connection to the NEP is closed if this
// function returns ASC_Fail.
virtual int connectReq(void) = 0;
// The user uses this function to retrieve connection
// parameters stored in tbl_comm_param of SARM database.
const char *getConnParam(const char *ParamLabel);
// This function is called whenever NEP requests to send
// data or perform some operation on remote server. The
// application has to redefine this one to provide

Appendix A
Connection handler class

A-3

// the service.
virtual int processDataReq(const unsigned char *Data,

 const int Len) = 0;

// This one allows the user to pass data to NEP.
int sendDataToNEP(const unsigned char *Data,

const int Len);

// This function is called whenever NEP requests to
// close a connection to a remote server or network
// element. The connection to the NEP is closed
// whenever this function is returned.
virtual void disconnectReq(void) = 0;
// This function is provided for the user to close the
// connection to NEP whenever it detects that connection
// to remote server is gone.
void disconnectACK(void);
virtual void sendKeyReq(void *data, int len) = 0;
void setFileDes(const int FileDes){ m_FileDes=FileDes; }
const int getFileDes(void) { return m_FileDes; }
// These three objects are used by DCE routines to
// log diagnostic messages and events and also
// get configuration variables.
Diagnosis *m_Diag;
Event *m_Event;
Config m_Config;
protected:
private:
// send ACK and NACK to NEP
void connectACK(void);
void connectNACK(void);
// Retrieve EDD header
int getEddHeader(int &Len, int &Type);
// Build a EDD header to data to be sent to NEP.
int buildEddHeader(unsigned char **Buf, const

unsigned char *data, const int DataLen,
const int DataType);

// Retrive connection data. The data contains
// parameters saved in tbl_comm_param of SARM dB.
const char* getConnectionData(const int ExpectedLen);
// These two functions read and write to sockets
// connect to NEP.
int readSocket(unsigned char *Buffer, const

int ExpectedLen);

int writeSocket(const unsigned char *Buffer, const

int Length);

// This function configures the socket.
int tuneFileDes(void);
char *m_ConnParam;
int m_DataType;
int m_FileDes;
void *m_ApplData;
};

Appendix A
Connection handler class

A-4

Description
EDD_ConnHandler(pthread_t &ThreadID, EDD_ApplInit *ApplObj);

The constructor obtains the file descriptor from ApplObj. The file descriptor identifies the
connection to be handled.

void threadMain(EDD_ApplInit *ApplObj);

This is the main routine that waits for a request coming from the message queue. After it
receives a request, it invokes a corresponding transaction member function. It also manages
to send connection ACK/NACK, disconnection ACK and terminates the thread when a
connection is relinquished.

virtual void applInitialize(EDD_ApplInit *ApplObj){}

You can redefine this function to perform the application initialization. This function is invoked
when the thread is just up.

virtual int connectReq(void) = 0;

You must redefine this function. It is invoked from threadMain whenever the NEP requests a
connection to a network element or a remote server. Typically, you call getConnectParam to
retrieve the connection parameters defined in tbl_comm_param and then establish the
connection. This function returns ASC_Succeed, if a connection is established successfully,
otherwise, it returns ASC_Fail. When it returns ASC_Fail, the connection to NEP is removed
and the thread is terminated.

char *getConnectParam(char *ParamLabel);

This function is provided to retrieve the connection parameters defined in tbl_comm_param.
The ParamLabel is defined in tbl_comm_param. It returns a pointer to the value of the
parameter or a 0 if the parameter is not defined.

virtual int processDataReq(void *Data, int Len) = 0;

You must redefine this function. It is invoked whenever the NEP requests to send data to or
perform some operation on a network element or a remote server. The argument Data points
to data coming from NEP and Len is the length of the data in byte. This function returns
ASC_Fail, if it detects that the connection to the network element is unavailable. This event
triggers the thread to close the connection to the NEP and exit.

void sendDataToNEP(void *Data, int Len);

You can use this function to send data back to the NEP. Typically, you forward the data
coming from a network element or remote server to the NEP.

virtual void disconnectReq(void) = 0;

You must redefine this function. It is invoked whenever NEP requests to close the connection
to a network element which is handled by this object. Once this function returns, the thread
closes the connection to NEP and exits.

void setApplData(void *ApplData){ m_ApplData=ApplData; }
void *getApplData(void) { return m_ApplData; }
virtual void deleteApplData(void *ApplData) = 0;

Appendix A
Connection handler class

A-5

You call these three functions to save the data specific to the application. Typically, this
data is used between two calls to processDataReq or the data needed by the
application during the thread life time. It is the application's responsibility to coordinate
the use of this data field for different purposes.

You must redefine the deleteApplData function, since setApplData and the destructor
calls this function to delete the application data. If you delete the data from outside of
this function, you must set m_ApplData to 0.

void cleanup(void);

This function cleans up all spaces allocated for the application to execute RPCs.

Three public member attributes are used by the framework and the application to log
diagnostic messages, generate events and retrieve configuration variables.

All functions in the private section are used to handle the connections to NEP.

Appendix A
Connection handler class

A-6

B
Oracle Execution Examples

The following examples demonstrate the execution of Oracle functions through the SQL*Plus
client utility. These samples cover the general methods of function invocation. The Oracle
login user requires execute permission on the function invoked; normally, the login user is the
owner of the object (for example, the SARM database user).

Example 1
A function is invoked with no input or output arguments.

SQL> var retval number;
SQL> exec :retval := SSP_del_csdl_defn

Example 2
A function is invoked with several input arguments which are specified positionally. Note that
empty strings are denoted as a <space> character if the parameter is required. If the
parameter is optional, the null string can be denoted by two consecutive single quotes without
a <space> character.

SQL> var retval number;
SQL> exec :retval := SSP_new_csdl_defn('M-CREATE_BUS_LINE', 'Y', 82, ' ', ' ', ' ');

Example 3
This example illustrates how to add or delete information from a database. The following
example clears out and then adds several rows into tbl_csdl_config.

SQL> set serveroutput on
SQL> var retval number

SQL> prompt Removing CSDL Definitions from the SARM

SQL> exec :retval := SSP_del_csdl_defn;

SQL> prompt Adding CSDL Definitions to the SARM

SQL> exec :retval := SSP_new_csdl_defn ('C_NEW_FLAT_LINE', 'Y', 60, '', '', 'Add flat-
rate line');

SQL> exec :retval := SSP_new_csdl_defn ('C_ADD_CIDB', 'Y', 65, '', '', 'Add Always-on
CID Block');

SQL> exec :retval := SSP_new_csdl_defn ('C_ADD_DNY_IC', 'Y', 65, '', '', 'Deny
incoming calls');

SQL> exec :retval := SSP_new_csdl_defn ('C_ADD_DNY_TOLL', 'Y', 65, '', '', 'Deny toll
calls');

SQL> exec :retval := SSP_new_csdl_defn ('C_ADD_CWT', 'Y', 80, '', '', 'Add Call

B-1

Waiting');

SQL> exec :retval := SSP_new_csdl_defn ('C_ADD_CID', 'Y', 80, '', '', 'Add
Caller ID');

SQL> exec :retval := SSP_new_csdl_defn ('C_ADD_ACB', 'Y', 80, '', '', 'Add
Repeat Dial--*66');

SQL> exec :retval := SSP_new_csdl_defn ('C_ADD_AR', 'Y', 80, '', '', 'Add Return
Call--*69');

SQL> exec :retval := SSP_new_csdl_defn ('C_ADD_SCS', 'Y', 80, '', '', 'Add Speed
Call Short');

SQL> exec :retval := SSP_new_csdl_defn ('C_ADD_3WC', 'Y', 80, '', '', 'Add 3-Way
calling');

SQL> exec :retval := SSP_new_csdl_defn ('C_ADD_CFW', 'Y', 80, '', '', 'Add Call
Forward');

Example 4
A function is invoked with input arguments that are bound by parameter name.
Optional arguments are not passed. The order of the arguments is not relevant when
binding by parameter name.

SQL> var retval number;
SQL> exec :retval := SSP_new_csdl_defn(csdl_cmd=>'M-CREATE_BUS_LINE',
csdl_level=>82,rollback_req=>'Y');

Example 5
All the previous examples may be run within a PL/SQL block, as shown here:

SQL> declare retval number;
2> begin
3> retval := SSP_new_csdl_defn('M-CREATE_BUS_LINE', 'Y', 82, ' ', ' ', ' ');
4> end;
5> /

Example 6
A function with a cursor result set is invoked. This case is the most complex since the
cursor must be processed before SQL*Plus can view the result set. You require the
definition of the return cursor, defined in the database package object (in this example,
SarmPkg). The execution and results processing is performed within a PL/SQL block.

SQL> set serveroutput on
SQL> declare
 2 retcode integer;
 3 rc1 SarmPkg.SSP_list_csdl_defn_1;
 4 cur_rc1 SarmPkg.SSP_list_csdl_defn_rt1;
 5 csdl varchar2(25) := '&csdl';
 6 begin
 7 retcode := SSP_list_csdl_defn (rc1, csdl);
 8 dbms_output.put_line('Return code: ' || retcode);
 9 if rc1%isopen then
 10 loop

Appendix B
Example 4

B-2

 11 fetch rc1 into cur_rc1;
 12 exit when rc1%notfound;
 13 dbms_output.put_line('csdl_cmd = '||cur_rc1.csdl_cmd);
 14 dbms_output.put_line('rollback_req = '||cur_rc1.rollback_req);
 15 dbms_output.put_line('csdl_level = '||cur_rc1.csdl_level);
 16 dbms_output.put_line('fail_event = '||cur_rc1.fail_event);
 17 dbms_output.put_line('complete_event = '||cur_rc1.complete_event);
 18 dbms_output.put_line('description = '||cur_rc1.description);
 19 end loop;
 20 close rc1;
 21 end if;
 22 end;
 23 /

Example 7
In the following example, a Korn shell wrapper enables you to set values before running the
script. The following example sets the diag level for all of the servers in one place, and
change the name of the SRP client in all places at the same time.

CTRL Tables: tbl_appl_proc
tbl_component
#
File: svr_cfg
#
Purpose: To define the ASAP servers, and allow use of the
Class A start scripts.
#
Stored Procedure Parameter Format:
CSP_del_appl:
*Application Code (Server Name)
CSP_new_appl:
Start Sequence
Server Type (M-Master Control, S-Server, C-Client)
Application Code (Server Name)
Control Server
Auto-Start (Y/N)
Program (name of executable in $PROGRAMS)
Diagnostic level
Diagnostic file name
Description of server
*Server type (ADM, CTRL, MASTER, SARM, SRP, OTHER)
CSP_del_component:
*ASAP Territory
*ASAP System
*Server Name
CSP_new_component:
ASAP Territory
ASAP System
Server Name

* indicates an optional parameter
#
#

scr=$(whence $0)

Get database password
CTRL_PASSWORD=$(GetPassword $CTRL_USER 2)

Appendix B
Example 7

B-3

Define Local Servers
LOC_SRPC=SRPC$ASAP_ENV

Define default diagnostic level
DIAG_LEVEL=LOW

sqlplus -s $CTRL_USER/$CTRL_PASSWORD <<HERE | grep -v "successfully completed"
set serveroutput on
var retval number

prompt Removing the ASAP Applications

exec :retval := CSP_del_appl;

prompt Defining the ASAP Applications in Territory $ASAP_TERRITORY, Local
System $ASAP_SYSTEM

exec :retval := CSP_new_appl (1, 'M', '$CTRL', '$CTRL', 'N', 'ctrl_svr',
'$DIAG_LEVEL', '${CTRL}.diag', 'Master Control Server', 'MASTER');
exec :retval := CSP_new_appl (2, 'S', '$SARM', '$CTRL', 'Y', 'sarm',
'$DIAG_LEVEL', '${SARM}.diag', 'SARM Server','SARM');
exec :retval := CSP_new_appl (3, 'S', '$SRP', '$CTRL', 'Y', 'srp_emul',
'$DIAG_LEVEL', '${SRP}.diag', 'SRP Emulator','SRP');
exec :retval := CSP_new_appl (4, 'S', '$ADM', '$CTRL', 'N', 'admn_svr',
'$DIAG_LEVEL', '${ADM}.diag', 'Administration Server','ADM');
exec :retval := CSP_new_appl (5, 'S', '$NEP', '$CTRL', 'Y', 'asc_nep',
'$DIAG_LEVEL', '${NEP}.diag', 'NEP Server','NEP');
exec :retval := CSP_new_appl (10, 'C', '$DAM', '$CTRL', 'N', 'run_asapd',
'$DIAG_LEVEL', '${DAM}.diag', 'ASAP Daemon','daem');
exec :retval := CSP_new_appl (13, 'C', '$JSRP', '$CTRL', 'N', 'srp.ear',
'$DIAG_LEVEL', '${JSRP}.diag', 'Java SRP Server','SRP');
exec :retval := CSP_new_appl (14, 'C', '$LOC_SRPC', '$CTRL', 'Y',
'runSrpClient', '$DIAG_LEVEL', '${LOC_SRPC}.diag', 'Java SRP Client','SRP');

prompt Removing the ASAP Components

exec :retval := CSP_del_component;

prompt Defining the ASAP Components for Territory $ASAP_TERRITORY, Local
System $ASAP_SYSTEM

exec :retval := CSP_new_component ('$ASAP_TERRITORY', '$ASAP_SYSTEM', '$CTRL');
exec :retval := CSP_new_component ('$ASAP_TERRITORY', '$ASAP_SYSTEM', '$SARM');
exec :retval := CSP_new_component ('$ASAP_TERRITORY', '$ASAP_SYSTEM', '$SRP');
exec :retval := CSP_new_component ('$ASAP_TERRITORY', '$ASAP_SYSTEM', '$ADM');
exec :retval := CSP_new_component ('$ASAP_TERRITORY', '$ASAP_SYSTEM', '$NEP');
exec :retval := CSP_new_component ('$ASAP_TERRITORY', '$ASAP_SYSTEM', '$DAM');
exec :retval := CSP_new_component ('$ASAP_TERRITORY', '$ASAP_SYSTEM', '$JSRP');
exec :retval := CSP_new_component ('$ASAP_TERRITORY', '$ASAP_SYSTEM',
'$LOC_SRPC');

HERE

Appendix B
Example 7

B-4

C
C++ SRP API Template Design

This chapter is intended for C++ SRP API developers and designers who have no prior
experience developing the C++ SRP API. The following sections are included:

• API library structures

• C++ SRP API components

• Communication between threads

• Multiple instances of threads

• Communications with ASAP internal systems

• Upstream system interface

• API libraries

• C++ SRP threads

• C++ SRP API specification template example

• Communication interface

API library structures
Figure C-1 illustrates the APIs that can be linked to a C++ SRP API.

C-1

Figure C-1 C++ SRP APIs

The C++ SRP API provides the following capabilities:

• Interface protocols with external systems.

• Functionalities of the C++ SRP API library

• Controls data transfer between upstream systems (submitting work order to ASAP
for provisioning) and the SARM.

Appendix C
API library structures

C-2

Figure C-2 Data Transfer Through the C++ SRP API

Fundamental tasks performed by all C++ SRP API:

1. Converts work orders containing service requests in their native format to CSDL and
sends work order to the SARM for provisioning.

2. Returns the work order provisioning status passed from the SARM to the upstream
system.

C++ SRP API library
The C++ SRP API library is a library in ASAP to let the user applications interface with
SARM. In addition, the library will help the users to develop SRP in ASAP with an object-
oriented interface. It provides the POSIX thread interfaces.

The C++ SRP API library provides the following functionality:

• OO interface to generate and submit work orders.

• OO interface to manipulate work orders.

• OO interface to process work orders.

• OO interface to retrieve work order information in ASAP.

• ASAP high availability.

• Reliable communication between SRP and SARM.

Appendix C
API library structures

C-3

Common object library (liboo_asc)
The liboo_asc library provides you with the following functionality:

• Diagnostic message logging facility to the application programmers.

• System event generation.

• Application configuration parameter determination.

• Remote Procedure Calls API.

• Network connection management.

ASC thread library (libthreadfw)
Thread Framework provides an object-based interface for the application use threads.
Other applications, which use UNIX threads, typically, POSIX thread and DCE threads
can use this interface.

C++ SRP API components
Non-interfering tasks are separated into threads in the C++ SRP. Different threads
(non-interfering task) can process their own task at the same time to improve
performance (increase parallel processing). The threads in C++ server are:

Work order submission
• Receiver – Establishes connection and receives service request data from

upstream system.

• Translator – Translates service request in native format to CSDL command, Work
Order and Parameters.

• SARM Driver – Submits ASAP work order to SARM for ASAP provisioning.

Event notification
• Work Order Manager – Accepts provisioning event from SARM. Sends event

handling message to event handler.

• Event Handler – Passes appropriate data to sender thread for different
provisioning events.

• Sender – Connects and returns the provisioning status to the upstream system.

Communication between threads
Threads communicate with each other using the message queue.

• Synchronous Message Transfer – Message sender waits for the message
receiver to finish processing (Sequential).

• Asynchronous Message Transfer – Message sender does not wait for message
receiver to finish processing (Parallel).

Appendix C
C++ SRP API components

C-4

Figure C-3 Communication Between Threads

The following message queues are used in the communication between threads:

• Translator message queue – The receiver thread sends a pointer to a work order
structure containing a service request in native format to a translator thread.

• SARM Driver message queue – The translator thread sends a pointer to the ASAP work
order structure containing the CSDL commands to the SARM Driver thread.

• Work Order Manager message queue – The work order manager thread sends the
provision status to the event handler thread.

• Sender message queue – Event handler passing message structure returns to
Upstream system to sender thread.

Multiple instances of threads
Multiple instances of the same type of thread can process multiple work orders in parallel.
The number of thread instances can be configured in the configuration file to obtain optimal
results. To improve performance, multiple work orders can be processed at the same time.
The complexity of the C++ SRP increases due to the synchronization between threads and
work order dependency.

Appendix C
Multiple instances of threads

C-5

Figure C-4 Multiple Threads

Communications with ASAP internal systems
The C++ SRP maintains constant connection with the following internal systems:

• SARM – C++ SRP API submits CSDL commands and obtains provisioning status.

• SRP database – C++ SRP API obtains static information from the SRP database
and may use the database to store work order information.

Appendix C
Communications with ASAP internal systems

C-6

Figure C-5 C++ SRP API Communication

Communication between C++ SRP API and SARM
• SARM Driver thread and the Work Order Manager thread in the CsolSrp Library, and the

SRP Driver thread in SARM, handle the connections between the C++ SRP API and
SARM.

• Sybase Open Client RPC handles the data transfer between the C++ SRP API and
SARM. The Socket RPC message goes from SARM to the C++ SRP API.

Communication between C++ SRP API and SRP database
• C++ SRP API maintains a pool of connections with the SRP database using the Sybase

Open Client connection routines.

• Any thread in the C++ SRP API can allocate connection from the pool using
ClntProcMgr Class.

• RPCs are preferred over SQL statements to transfer data between the C++ SRP API and
the SRP database.

Upstream system interface
This section describes upstream system interface.

Protocol
The Upstream System interface protocol consists of:

• Communication between the C++ SRP API and Upstream systems

• TCP/IP Sockets

• Connection Verification

Appendix C
Upstream system interface

C-7

Communication between C++ SRP API and upstream systems
• Sender thread and Receiver thread in each C++ SRP API handles the connections

between C++ SRP API and upstream system.

• Connection method is site specific.

• Commonly used communication protocol, for example, TCP/IP (socket), Open
Client/Server Language Communication, SNA LU 6.2).

• Routines must be thread-saved with the Sybase multithread library.

• Synchronous communication is used, for example, acknowledgement required for
data transfer.

TCP/IP sockets
• Implementation of TCP/IP requires a new thread (Connection Handler thread) in

the C++ SRP API server.

• Connection Handler Thread [server] constantly waits for connection from the
upstream system [client].

• IP address and port number belong to the upstream system, and the C++ SRP
API is defined in command line or input file.

• To create a socket, the Connection Handler Thread uses listen.

• To wait for I/O from the upstream system and connection socket, Accept is used.

• To handle the data transfer between C++ SRP API and upstream system, the
Connection Handler thread spawns the Receiver thread.

• Read and write are used for data transfer between receiver and upstream system.

Connection verification
The Receiver thread verifies the upstream system connection before accepting data
from connection (for example, disconnect connection if limit reached).

Data format
The data format used must be the same for both the upstream system and customized
SRP.

Appendix C
Upstream system interface

C-8

Figure C-6 C++ SRP API Data Format

Input message from upstream system
The message from the upstream system received by receiver thread, for example, service
request.

Label value pair:

• Linear representation of the work order.

• Simple format, hard to represent complex work order.

• API function get_name_value() can extract the work order with the format
label=value;\n.

Return message to upstream system
• Message that is returned to the upstream system concerns provisioning status of work

orders.

• Message can also be SARM submission status of Translator in the asynchronous
processing.

• Work Order identifier is included as part of the message.

Synchronous processing
1. The C++ SRP API returns the acknowledgment to the Upstream system after the work

order submits to SARM.

2. Upstream system submits the next work order after it receives an acknowledgment from
the C++ SRP API.

Appendix C
Upstream system interface

C-9

Asynchronous processing
1. The C++ SRP API returns acknowledgment to the Upstream system after the C++

SRP API successfully receives a message from the Upstream system.

2. Upstream system submits the next work order after it receives an
acknowledgement from the C++ SRP API.

3. The C++ SRP API translates the work order and submits the work order to SARM.
During this time, the current work order has no persistence (for example, if the C+
+ SRP API system goes down, the work order cannot be recovered).

4. The C++ SRP API returns to the Upstream system after the work order
successfully submits to SARM.

5. Upstream system needs to maintain the work order submitted to the C++ SRP API
until the C++ SRP API successfully submits the work order to SARM.

Figure C-7 Synchronous and Asynchronous C++ SRP API Processing

If Upstream system can persist, the work order is submitted to the C++ SRP API
before the work order is submitted to the SARM, therefore work order dependency is
not important or is maintainable. The asynchronous processing is recommended
because of its faster throughput.

Appendix C
Upstream system interface

C-10

Table C-1 Processing characteristics

Synchronous Asynchronous

Receiver and Translator thread process in
sequence.

Receiver and Translator thread process in parallel.

SRP return SARM submission status to upstream
through receiver thread.

C++ SRP API return SARM submission status
through sender thread (other connect to upstream
system).

Slow throughput. Fast throughput for work order submission.

Simpler Implementation Harder implementation

Easy re-submission of work order during system
failure.

Hard implementation of re-submission of work
order during system failure.

Upstream system does not need to maintain work
order once acknowledgement received from SRP.

Upstream system needs to maintain work order
after acknowledgement received, until the SRP
returns stating work order successfully saved in
SARM.

Work Order dependency preserves because work
order submits to SARM in the same sequence
work order submitted from Upstream.

Work Order dependency needs to manage by C++
SRP API because work order might not submit to
SARM in the same sequence work order submits
from upstream system.

If throughput is not as important, synchronous processing should be used for simple
implementation.

Single and multiple connections
If the volume of depending work order is very low and the upstream system can handle
multiple connections, you should use multiple connections for increased parallel processing
(better speed).

If the volume of depending work order is high, you should use a single connection for easier
implementation.

Table C-2 Single and multiple connections

Single Connection Multiple Connections

One receiver thread in C++ SRP system submits
work order to translator thread.

Multiple receiver threads submit work order
message to translator thread.

Work order dependency can be maintained if the
submission sequence is the same as the
dependency sequence.

Method handling work order dependency is
required if the depending work order can be sent
through a different connection.

Easier implementation. Complex implementation.

Sequential processing. Parallel processing.

Low throughput. High throughput.

No backup connection if connection fails. Backup connection available when one connection
fails.

Appendix C
Upstream system interface

C-11

API libraries
The following API libraries are used to develop SRPs:

• Common API (liboo_asc) – Network connection handling functions.

• Thread API (libthreadfw) – Multithread Server routines.

• C++ SRP API (libCsolSrp) – CsolSrp required routines

• Interpreter API (libinterpret) – Interpreter routines

Main()
The program starts up in single-thread mode. The initialization code in main() is
executed while the process is still in single-thread mode. After initialization, the
process turns multi-thread.

Application threads are spawned and wait for the initialization thread to release the
initialization mutex. When the initialization thread has finished, it releases the
initialization mutex. Application threads can start its process.

Figure C-8 Multithread Server Initialization

SRP_initialize
Calls SRP_initialize() in appl_initialize() before other initialization routines. Add
functionality that is generic to all SRP servers.

SRP_initialize() creates the following threads:

• SARM Driver thread

• Work Order Manager thread

• part of event handler thread

SRP_initialize() creates the following message queues:

Appendix C
API libraries

C-12

• Work Order Manager

• SARM Driver

Figure C-9 shows the components that are added to C++ SRP API server after call to
SRP_initialize.

Figure C-9 SRP_initialize Processing

You must develop code that:

• Interfaces with the Upstream system (receiver thread and sender thread).

• Translates a service request in native format to CSDL (Translator thread).

• Submits an ASAP work order containing CSDL to SARM Driver message queue.

• Handles a provisioning event from SARM by defining the event handling function.

C++ SRP threads
The following section describes the threads in the C++ based SRP server:

• Receiver

• Translator

• Event Handler

• Sender

Receiver
The following tasks are performed by the receiver:

Appendix C
C++ SRP threads

C-13

• Connects to the Upstream system using the protocol agreed with upstream
system.

• Validates the connection for security purposes.

• Waits for the work order containing the service request in the native format from
upstream system.

• Checks the dependency of work order.

• Allocates the translator message structure, stores the work order in the native
format and provides the field containing the translator return status (synchronous).

• Submits the pointer to the translator message to the Translator message queue.

• Waits for the return status from the translator.

• Formats the acknowledgement message.

• Returns the acknowledgement message to the upstream system.

• Waits for the next request from the upstream system.

Connecting with the upstream system
This is site specific. The common protocols used are TCP/IP sockets.

Multiple concurrent connections can be accepted from the upstream system, that is,
multiple instances of the receiver thread. However, the dependency between work
orders submitted from different connections must be managed properly by the receiver
before it is sent to the translator message queue for translation.

To benefit from multiple connections, multiple translator threads and the SARM driver
must be present to obtain maximum performance.

Verifying incoming message
Verification can be performed after a formatted data string is successfully received
from the upstream system. The purpose of the verification is to check if the message is
in the appropriate format that is understandable by the SRP or any other restriction
without delimiting the raw message.

Synchronous processing
• The receiver thread submits the message to translator message queue with wait.

• Translator thread wakes up the receiver thread after the work order successfully
submits to SARM.

• Translator message contains the field to store the SARM submission status. The
receiver has the responsibility to deallocate the translator message structure after
translator returns.

• Receiver returns the acknowledgment to the upstream system and waits for the
work order from the upstream system.

Asynchronous processing
• Receiver thread submits the message to the translator message queue with no

wait.

Appendix C
C++ SRP threads

C-14

• Translator thread process in parallel with the receiver thread.

• Receiver thread returns the acknowledgement to the upstream system after it submits the
message to the translator thread.

• After the work order submits to SARM, the translator is responsible for freeing memory
allocated for the translator message.

Thread examples
This section provides thread examples.

Single connection, asynchronous processing (work order dependency)
• One Receiver thread and multiple Translator thread is used.

• Dependent work orders are submitted to the C++ SRP API in sequence.

• Work orders are submitted to the SARM in parallel when asynchronous processing. Child
work orders might be submitted to SARM and processed by SARM before parent work
orders.

• Receiver thread maintains the work order list order by a key value that determines
dependency.

• Work order received from the upstream system will check the list if the key is found. The
parent work order of the current work order is updated to the work order already in the
list. Then the work order is submitted to translator.

• When SARM returns successful provision status of the work order, the work order will be
deleted from the list.

Appendix C
C++ SRP threads

C-15

Figure C-10 Single Connection, Asynchronous Processing (Work Order Dependency)

Single connection, synchronous processing (batch submission of work order)
• One Receiver thread and multiple Translator thread are used.

• Multiple work orders are submitted to the C++ SRP API in batches within one data
transfer from the upstream system.

• Receiver maintains a counter of the number of work orders and a message queue
(Receiver message queue).

• After the receiver thread submits all work orders of a batch to the Translator
thread, it waits for the message from the Receiver message queue.

• Translator thread sends a message to the Receiver message after finish
submitting one work order to SARM.

• Receiver thread decrements the work order counter when it receives one message
from the translator. Once the counter reaches zero, the Receiver returns an
acknowledgement message to the upstream system and waits for the next batch
of work orders.

Appendix C
C++ SRP threads

C-16

Figure C-11 Single Connection, Synchronous Processing (Batch Submission of Work Order)

Translator
The following tasks are performed by the translator:

• Receives the message from the translator message queue

• Constructs the work order (intermediate structure) from the service request passed in
from the upstream system.

• Translates the work order into the ASAP work order structure and sends it to SARM.

• Synchronous translation – Updates the return status inside the translator message, and
wakes up receiver thread.

• Asynchronous translation – Allocates to the sender message structure and sends the
structure to the sender message queue asynchronously.

The following steps are required to return the translation status to the upstream system:

Table C-3 Synchronous vs asynchronous processing

Synchronous Processing Asynchronous Processing

Update the return status in the Translator
Message structure.

Allocate and populate the Sender Message
structure with the status of translation.

Appendix C
C++ SRP threads

C-17

Table C-3 (Cont.) Synchronous vs asynchronous processing

Synchronous Processing Asynchronous Processing

Wake up the Receiver Thread. Send a message to Sender Message queue
without waiting (asynchronously).

Receiver thread will lookup the translation status
in the Translator Message structure.

Translator frees the memory allocated for the
Translator Message structure.

Receiver frees the memory allocated for
the Translator Message structure.

Translator status will send through the connection
established with Sender Thread.

Receiver will return the Translation status as
ACK/NACK to the upstream system through the
connection established with receiver

-

Event handling
This section describes event handling.

SARM events
At different stages of provisioning, SARM will notify the C++ SRP Work Order Manager
thread. The Work Order Manager (handled by API), in turn, spawns threads to handle
the event.

The SRP_EventManager manages a connection with SARM to receive work order
events. When a SRP_EventManager thread starts up, it waits to receive a message,
which is an event, from SARM. The message is constructed as a DU packet format,
which is provided. The SRP_EventManager thread decodes the message and creates
the SRP_Event object to the corresponding event type in the messsage. The thread
calls the corresponding event handler for the event with the SRP_Event object. After
the event handler is done, it returns to receive an event. If an event is the kick_start,
the thread does not create a SRP_Event object. It just sends CS_TRUE back to the
SARM.

The following are the possible events and the sequence of events for a work order:

1. SRP_WO_ESTIMATE_EVENT

2. WO_STARTUP_EVENT

3. WO_SOFT_ERROR_EVENT

4. WO_NE_UNKNOWN_EVENT

5. WO_ROLLBACK_EVENT

6. WO_TIMEOUT_EVENT

7. WO_FAILURE_EVENT

8. WO_COMPLETE_EVENT

The sequence of events is guaranteed for a work order. For example, a WO_FAILURE
event will not occur before a WO_STARTUP event.

Appendix C
C++ SRP threads

C-18

Actions performed by event handler
All action methods send a diagnostic message for performance testing to indicate in what is
the status of the work order and then calls the appropriate RPC to update the SRP database
to reflect the new conditions of the work order.

• EventHandler::softErrorHandler().

• EventHandler::woEstimateHandler()

• EventHandler::woStartHandler()

• EventHandler::woRollbackHandler()

• EventHandler::neUnknownHandler()

• EventHandler::woBlockHandler()

• EventHandler::woTimeOutHandler()

• EventHandler::neAvailHandler()

• EventHandler::neUnavailHandler()

• EventHandler::woAcceptHandler()

• EventHandler::woCompleteHandler()

• EventHandler::woFailureHandler()

Sender
Sender manages the connection with the upstream system to return provisioning information
to the upstream system. The Sender thread can receive a message from an event handler or
translator (asynchronous processing).

The following tasks are performed by the Sender thread:

• Establishes the dedicated connection with the upstream system.

• Waits for a message from sender message queue.

• Formats the sender message.

• Sends the message to the upstream system.

• If the sender message comes from the event handler, it wakes up the event handler
thread.

• If the message comes from the translator, it deallocates the sender message.

Sender message
Wo_id must be part of the sender message to allow the upstream system to recognize which
work order the message belongs to.

If the Translator sends a message to the Sender, all Sender Messages should include the
type of message (for example, translator or event message) because the translation
message is different from the event message.

Appendix C
C++ SRP threads

C-19

C++ SRP API specification template example
The C++ SRP API Template example contains the following:

• Support TCP/IP socket connection.

• Choose either Asynchronous or Synchronous Translation with compile option –
DASYNC or –DSYNC respectively.

• If the static table or interpreter translation is used, the database table and function
in the Translator Thread must be created and populated.

Figure C-12 Specification Template Example

Communication interface
This section describes the communication interface.

TCP/IP socket interface
The TCP/IP socket interface contains the following:

Appendix C
C++ SRP API specification template example

C-20

• Connection Handler

• Receiver

Connection handler
• One instance of this thread is spawned when the C++ SRP API server starts.

• Connection Handler thread will listen for the connection from the port specified in the
ASAP configuration file.

• When the connection is detected, it can check the client connection information.

• Spawns the Receiver thread and passes in the socket descriptor of the client connection
to handle the incoming data.

• Waits for the next connection.

Receiver
• Spawned by the connection handler once the connection is detected.

• Loops and does the following:

– Reads the message header and message from the socket connected to the upstream
system and populates the translator message structure.

– If the connection drop is detected, it terminates the current receiver thread only.

– If the connection drop is not detected, it verifies the message retrieved from the
socket.

Table C-4 Compilation options

Compile with SYNC defined Compile with ASYNC defined

Submits message to the translator synchronously. Submits message to the translator
asynchronously.

Waits for the translator to finish translation. Returns ACK/NACK to the upstream system
through the socket connected to the upstream
system.

Retrieves the return status of translation from
translator message.

-

Returns ACK/NACK to the upstream system
through the socket connected to the upstream
system.

-

Translator thread
• Main program spawns the translator threads and creates the translator message queue

when the server starts up.

• Repeat the following:

– Translator thread waits for the message from the receiver through translator
message queue.

– Translator parses out the service request in the native format and stores the tokens
in the SRP work order structure.

Appendix C
Communication interface

C-21

– Creates SRP_WO object base on SRP work order structure.

– Translators submit SRP_WO to SARM using submitWO.

Table C-5 Compilation options

Compile with SYNC defined Compile with ASYNC defined

Translator populates the translation message
status passed in from the receiver thread.

Translator constructs the sender message with
translator type.

Wakes up the receiver thread. Submits the sender message to the sender
message queue with no waiting.

- Free memory allocated for the translator
message.

Translation process
The C++ SRP API template supports translation methods. You must provide the
mapping of the native service request to CSDL command.

1 to 1 mapping:

Direct mapping of the service request to the CSDL with no translation.

Static Table translation:

• Load data in the database tables into SRP memory using the RPC (function in
SRP database).

• For each service request in SRP work order, look up the CSDL from the table in
memory using bsearch.

• For every parameter of the CSDL, search for the appropriate parameters in the
SRP WO and add to the ASAP WO.

Event handling
• Events – woStartupHandler, woCompleteHandler, woFailureHandler, etc.

• Populates the sender message.

• Retrieves the CSDL log from the SARM database.

• Submits the message to the sender with wait (synchronous transfer).

• Frees the sender message.

Sender thread
• C++ SRP API server spawns sender threads when the server starts up.

• Sender message can be an event message or a translation status message (if
ASYNC is defined).

• Sender will format the return message based on the message type and sends it
back to the upstream system.

Appendix C
Communication interface

C-22

Event message handling
The Event sender message is submitted synchronously. Upon completion, the Sender will
wakeup the event handler thread.

Translation message handling
The Translator sender message is submitted asynchronously. The Sender can free memory
after the message has been sent to the upstream system.

Upstream system
The following is the upstream system process.

WO submission
• Program will connect to C++ SRP API server.

• Read message files from a directory.

• Send data in the file to C++ SRP API.

• Print an acknowledgment message to standard output.

• TCP/IP.

Handling WO provision results
• TCP/IP version only – The program acts as server.

• Listen for C++ SRP API connections.

• Read the message from the connection socket with the C++ SRP API.

• Print message to standard output.

Configuration for C++ SRP API
To add a C++ SRP API to the system, the following steps are required:

1. Add the C++ SRP API to the SARM database (tbl_asap_srp).

2. Set auto-start to N in the ASAP start-up procedure (tbl_appl_proc).

Appendix C
Communication interface

C-23

D
API and Other Configuration Changes

This appendix outlines various API issues related to upgrading ASAP from ASAP 4.5 to later
versions.

OSS through Java service activation API
The OSS through Java service activation API used in ASAP 4.5 was JSR 89 v0.8. The new
Java service activation API is: JSR 89 v1.0

JVT API changes
Following list outlines the interface changes between the JSR 89 v0.8 and v1.0 API.

Table D-1 JVT API changes

- ASAP 4.5 ASAP 4.6.x and later

REQUESTED
_COMPLETIO
N_DATE

- javax.oss.order.OrderValue defines an attribute called
REQUESTED_COMPLETION_DATE. If it is populated when the order is
created, ASAP uses this attribute as the work order due date. If a client
invokes JVTActivationSession.startOrderByKey(OrderKey key), the order is
started immediately. In this situation it resets the
REQUESTED_COMPLETION_DATE to be the current date time regardless
of whether it was previously set or not.

JVTActivation
SessionOption
Ops

javax.oss.order.JV
TActivationOption

javax.oss.order.JVTActivationSessionOptionOps.

JNDI Naming System.<Environm
entID>.Application
Type.Activation.Ap
plication.1-0-4_5-
ASAP.Comp.<Com
ponentName>

System.<EnvironmentID>.ApplicationType.ServiceActivation.Application.1-0;
4-6;ASAP.Comp.<Component Name>

System/<EnvironmentID>/ApplicationType/ServiceActivation/Application/
1-0;4-6;ASAP/Comp/MessageQueue

JVTEventTopic, to which the Java SRP sends events if clients make requests
through JVT interface

System/<EnvironmentID>/ApplicationType/ServiceActivation/Application/
1-0;4-6;ASAP/Comp/JVTEventTopic

XVTEventTopic, to which the Java SRP sends events if clients make requests
through XML/JMS interface

System/<EnvironmentID>/ApplicationType/ServiceActivation/Application/
1-0;4-6;ASAP/Comp/XVTEventTopic

com.mslv.oss.
activation.JVT
XAcvtivationS
ession

queryAudit(QueryV
alue, String[]),
queryServiceHistor
y(QueryValue,
String[]),
queryAsdlHistory(
QueryValue,
String[]) removed

Same functionality can be performed by queryManagedEntities(QueryValue,
String[]) in JVTActivationSession interface

D-1

Table D-1 (Cont.) JVT API changes

- ASAP 4.5 ASAP 4.6.x and later

JMS Message
Headers

OSS_APPLICATIO
N_DN -identifying
the OSS
application that
has published the
message.

OSS_ORDER_TY
PE - describing the
type of order that
has changed.

OSS_EVENT_TYP
E - describing what
kind of event has
been sent.

OSS_API_CLIENT
_ID -identifying the
client that owns
the order entity.

OSS_APPLICATION_DN, identifying the OSS application that has published
the message.

OSS_EVENT_TYPE, describing what kind of event has been sent.

OSS_ORDER_TYPE, describing the type of order that has changed.

OSS_API_CLIENT_ID, identifying the client that owns the order entity.

Java SRP defines additional properties specific to ASAP:

OSS_ORDER_PRIMARY_KEY, identifies an order's primary key, same as
orderKey.getPrimaryKey(). This property applies to all messages sent by
Java SRP, except the messages that contain multiple orders, in which case,
the property will be set empty.

OSS_ORDER_EXCEPTION, indicates the work order was completed with
exceptions. Used by OrderCompleteEvent. Such exceptions are generally the
result of a “Fail but Continue" status being returned to the SARM for one of
the ASDLs on the work order. This field is set by the SARM and
communicated to the relevant SRP, which then requests the exception
details. The possible values include:

• _ (Y) ASAP_WO_EXCEPTIONS-the work order completed with
exceptions.

• _ (N) ASAP_WO_NO_EXCEPTIONS-the work order completed without
any exceptions.

• OSS_ORDER_ESTIMATE, the estimated amount of time (in seconds)
for the work order to be completed by the SARM. This is the total time
from the order initially being received by the SARM, to it being
provisioned by the SARM. Used by OrderEstimateEvent

• OSS_ORDER_MISC, the miscellaneous information. Used by
OrderEstimateEvent

• OSS_ORDER_SERVICE_NE, identifies the Network Element that is not
known to the SARM. Used by OrderNEUnknownEvent

• OSS_ORDER_CURRENT_STATE, identifies the current state of the
order. Used by OrderStateChangeEventOSS_ORDER_REASON,
describing the reason of the order state change. Used by
OrderStateChangeEvent

IllegalStateEx
ception

javax.oss.order.Ille
galStateException

javax.oss.IllegalStateException.

Appendix D
JVT API changes

D-2

Table D-1 (Cont.) JVT API changes

- ASAP 4.5 ASAP 4.6.x and later

javax.oss.orde
r.JVTActivation
Session

createOrder(Order
Value)

startOrder(OrderK
ey)

suspendOrder(Ord
erKey)

resumeOrder(Orde
rKey)

abortOrder(OrderK
ey)

removeOrder(Orde
rKey)

setOrder(OrderVal
ue, boolean)

tryCreateOrders(O
rderValue[])

tryStartOrders(Ord
erKey[])

tryAbortOrders(Or
derKey[])

tryRemoveOrders(
OrderKey[])

trySetOrders(Orde
rValue[])

getOrder(OrderKey
)

getOrders(OrderKe
y[], String[])

getOrders(OrderVa
lue[], String[])

queryManagedEntities(QueryValue, String[]) added

createOrderByValue(OrderValue)

startOrderByKey(OrderKey)

suspendOrderByKey(OrderKey)

resumeOrderByKey(OrderKey)

abortOrderByKey(OrderKey)

removeOrderByKey(OrderKey)

setOrderByValue(OrderValue, boolean)

tryCreateOrdersByValues(OrderValue[])

tryStartOrdersByKeys(OrderKey[])

tryAbortOrdersByKeys(OrderKey[])

tryRemoveOrdersByKeys(OrderKey[])

trySetOrdersByValues(OrderValue[], boolean)

getOrderByKeyAllAttr(OrderKey)

getOrdersByKeys(OrderKey[], String[])

getOrdersByTemplates(OrderValue[], String[])

javax.oss.orde
r.OrderValue

- In this implementation two attributes are optional:

• PRIORITY
• SERVICES

javax.oss.Attri
buteAccess

- New: getSupportedOptionalAttributeNames()

New exception

• getAttributeValue(java.lang.String attributeName)throws
IllegalArgumentException, IllegalStateException,
UnsupportedAttributeException

• public java.util.Map getAttributeValues(java.lang.String[]
attributeNames)throws IllegalArgumentException, IllegalStateException,
UnsupportedAttributeException

• public void setAttributeValue(java.lang.String attributeName,
java.lang.Object Value)throws IllegalArgumentException,
UnsupportedAttributeException

• public void setAttributeValues(java.util.Map
attributeNamesAndValuePairs) throws IllegalArgumentException,
UnsupportedAttributeException

Appendix D
JVT API changes

D-3

Table D-1 (Cont.) JVT API changes

- ASAP 4.5 ASAP 4.6.x and later

javax.oss.Man
agedEntityVal
ue

- Added setLastUpdateVersionNumber(long)

javax.oss.Man
agedEntityKey

- New methods

• makeApplicationContext()
• setApplicationContext(ApplicationContext)
• setApplicationDN(String)

javax.oss.Man
agedEntityKey
Result

- New methods:

• setException(Exception)
• setManagedEntityKey(ManagedEntityKey)
• setSuccess(Boolean)

javax.oss.Appl
icationContext

- Add the following methods:

• clone()
• setFactoryClass(String)
• setSystemProperties(Map)
• setURL(string)

Java provisioning API changes
The following table provides a comparison between the Java Provisioning APIs used
in ASAP 4.5 and ASAP 4.6.x.

Table D-2 Java provisioning API changes

ASAP 4.5 ASAP 4.6.x and later

Packages:

• com.nortel.pc
• architel.jinterpreter

Packages:

• com.mslv.activation
• com.mslv.activation.jinterpreter

Configure connection handler in
tbl_comm_param

Configure connection handler in
tbl_nep_asdl_prog

Specify 'J' device type in tbl_comm_param Specify interpreter type in tbl_nep_asdl_prog

Configure directly into database using
SQL

Configure using XML and apply using JMX
MBeans

Class Diagnosis deprecated Class Diagnostic added

set/getExitType deprecated set/getASDLExitType added

set/getExitType deprecated from class
NEConnection

-

Appendix D
Java provisioning API changes

D-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Development Overview
	Application architecture
	Client/server architecture
	Multithreaded architecture
	Open Server/Open Client ASAP components
	RDBMS Server
	Open Client
	Open Server

	The Gateway Server application
	Multithreaded environment
	Open Server thread scheduler
	Programming in a multithreaded environment
	Multithreaded procedural server initialization

	Inter-process communication
	RPCs and registered procedures
	Language requests
	Application server driver threads

	Inter-thread communication
	Mutually exclusive semaphores (mutexes)
	Thread message queues
	Sample message queue statistics
	Device-oriented threads and socketpair messaging
	Notes for C++ compilation

	Library architecture
	ASAP API development structure
	API library structures
	Common API library – libasc
	Client application API library – libclient
	Server application API library – libcontrol
	Interpreter API library – libinterpret
	SRP API library – libsrp
	NEP API library – libnep
	Multi-protocol communications API library – libasccomm
	Generic external device driver library – libgedd
	Network element configuration library – libnecfg

	ASAP API application development
	Client application structure
	Server application structure

	SRP server application structure
	Generic NEP application structure
	Multi-protocol NEP structure
	Development of Cartridges supporting Asynchronous NEs
	Asynchronous NE Response Handler
	Response handler manager

	2 ASAP Database Tables
	Control database
	User-created database tables
	tbl_alarm_center
	tbl_alarm_log
	tbl_appl_proc
	tbl_classA_secu
	tbl_classB_secu
	tbl_code_list
	tbl_component
	tbl_db_threshold
	tbl_event_log
	tbl_event_type
	tbl_fs_threshold
	tbl_listeners
	tbl_name_value_pair
	tbl_process_info
	tbl_server_info
	tbl_system_alarm
	tbl_unid
	tbl_unload_param
	tbl_unload_sp

	SARM database
	Work order audit information
	Viewing work order audit information

	SARM database tables
	tbl_asap_srp
	tbl_asap_stats
	tbl_asdl_config
	tbl_asdl_log
	tbl_asdl_parm
	tbl_asdl_response
	tbl_aux_wo_prop
	tbl_blackout
	tbl_clli_route
	tbl_comm_param
	tbl_cp_mux
	tbl_csdl_asdl
	tbl_csdl_asdl_eval
	tbl_csdl_config
	tbl_err_threshold
	tbl_event_dataset
	tbl_event_template
	tbl_ext_method_lib
	tbl_host_clli
	tbl_id_routing
	tbl_info_parm
	tbl_label_value
	tbl_large_data
	tbl_msg_convert
	tbl_ne_config
	tbl_ne_event
	tbl_ne_monitor
	tbl_ne_strsub
	tbl_nep
	tbl_nep_asdl_prog
	tbl_nep_mux
	tbl_nep_jprogram
	tbl_nep_program
	tbl_nep_program_source
	tbl_nep_rte_asdl_nxx
	tbl_order_events
	tbl_order_translation
	tbl_resource_pool
	tbl_srq
	tbl_srq_asdl_parm
	tbl_srq_csdl
	tbl_srq_log
	tbl_srq_parm
	tbl_srt_bundle
	tbl_srt_bundle_csdl
	tbl_srt_config_reload
	tbl_srt_correlation
	tbl_srt_csdl_parm
	tbl_srt_ctx
	srt_header_mapping
	tbl_srt_lookup
	tbl_srt_lookup_input
	tbl_srt_lookup_output
	tbl_srt_query_spawn
	tbl_stubs
	tbl_test_rpc_parm
	tbl_stat_text
	tbl_unload_sp
	tbl_unload_param
	temp_wrk_ord
	tbl_uid_pwd
	tbl_unid
	tbl_user_err
	tbl_user_err_threshold
	tbl_usr_wo_prop
	tbl_wo_audit
	tbl_wo_event_queue
	tbl_wrk_ord (SARM)
	temp_csdl_estim
	temp_csdl_list

	NEP database
	User-created database tables
	tbl_asdl_lcc
	tbl_clli_len_ltg
	tbl_dms_logins
	tbl_dms_options
	tbl_march_feat
	tbl_march_rpm
	tbl_ne_opt_vlu
	tbl_unid
	tbl_valid_len
	tbl_valid_nxx_line

	Admin database
	User-created database tables
	tbl_asap_sarm
	tbl_oca_svr
	tbl_perf_asdl
	tbl_perf_csdl
	tbl_perf_ne
	tbl_perf_ne_asdl
	tbl_perf_order
	tbl_aims_msg_convert
	tbl_aims_preference
	tbl_aims_map_acl (Not used)
	tbl_aims_audit_log (Not used)
	tbl_aims_component
	tbl_aims_function
	tbl_aims_operation
	tbl_aims_param
	tbl_aims_rpc
	tbl_aims_rpc_defn
	tbl_aims_rpc_dest
	tbl_aims_rpc_dest_defn
	tbl_aims_rpc_param
	tbl_aims_rpc_param_defn
	tbl_aims_rpc_param_type
	tbl_aims_template

	C++ SRP API emulator database
	User-created database tables
	tbl_aux_wo_prop
	tbl_csdl
	tbl_csdl_parm
	tbl_srp_event_status
	tbl_tst_rqst
	tbl_tst_suite
	tbl_unid
	tbl_usr_wo_prop
	tbl_wo_def
	tbl_wo_list
	tbl_wrk_ord (user-created database table)
	tbl_wrk_ord_log
	tbl_wrk_ord_parm
	tbl_wrk_ord_rev

	3 Shared Libraries
	Common library interface
	Global variables
	Open client library API functions
	Oracle Functions
	I/O management
	Event notification and diagnostic functions
	Application configuration determination functions
	Memory management functions
	Performance parameter management
	Self-balancing trees
	Date conversion functions
	Miscellaneous functions
	Self-balancing tree examples
	Comparison function
	Delete function
	Action function
	Condition function

	Inline functions
	Common library interface functions
	appl_initialize
	ASC_accept
	ASC_alloc
	ASC_bmove
	ASC_bzero
	ASC_close
	ASC_connect
	ASC_convert_msg
	ASC_convert_msg_user
	ASC_cpalloc
	ASC_cpcheck
	ASC_cpclose
	ASC_cpfree
	ASC_cpopen
	ASC_cprpcexec
	ASC_create_SBT
	ASC_cur_dts
	ASC_cur_tm
	ASC_delete_element_SBT
	ASC_delete_index_SBT()
	ASC_destroy_SBT
	ASC_diag
	ASC_diag_format
	ASC_diag_on
	ASC_disconnect
	ASC_dts_to_str
	ASC_event
	ASC_event_initialize
	ASC_find_first_SBT
	ASC_find_free_SBT
	ASC_find_index_SBT
	ASC_find_init_SBT
	ASC_find_next_SBT
	ASC_free
	ASC_GET_CMD
	ASC_get_config_param
	ASC_GET_CONTEXT
	ASC_GET_SERVER
	ASC_getc
	ASC_gettimeofday
	ASC_hex_dump
	ASC_hex_dump_to_file
	ASC_imsg_types
	ASC_imsg_types_user
	ASC_insert_element_SBT
	ASC_IS_OPEN
	ASC_lda_to_oci8
	ASC_listen
	ASC_load_msg_tbl
	ASC_oci8_to_lda
	ASC_ocican_cursor
	ASC_ociclose
	ASC_ociclose_cursor
	ASC_ocicreate_cmd
	ASC_ocicreate_list
	ASC_ocidestroy_list
	ASC_ocifetch
	ASC_ociopen
	ASC_ociopen_cursor
	ASC_ociparse
	ASC_ocistatus
	ASC_open
	ASC_putc
	ASC_read
	ASC_realloc
	ASC_reset_file_status
	ASC_rstrcmp
	ASC_sec_to_dBdts
	ASC_set_fd_blocking
	ASC_set_fd_nonblocking
	ASC_set_new_handler
	ASC_sleep
	ASC_str_to_dts
	ASC_walk_SBT
	ASC_write
	get_name_value
	MS_DIFF
	TODAY

	Common library interface data types
	CLIENT_HANDLER abstract data type
	CM_RPC abstract data type
	CM_RPC_PARAM abstract data type
	DIAG_LEVEL abstract data type

	Server library interface
	Functions and structures
	Global variables
	Thread management functions
	Memory management functions
	RPCs and registered procedures
	Language requests
	Client process connection pool functions
	Thread I/O functions
	Utility thread functions

	Inline functions
	Server application functions
	add_appl_rpc
	add_lang_handler
	add_registered_proc
	add_rpc
	ASC_alarm
	ASC_await_init_completion
	ASC_blk_alloc
	ASC_BLK_ALLOC
	ASC_BLK_FREE
	ASC_blk_realloc
	ASC_BLK_REALLOC
	ASC_cpdbpcreate
	ASC_cpdbpdestroy
	ASC_cppalloc
	ASC_cppfree
	ASC_createmsgq
	ASC_createmutex
	ASC_define_events
	ASC_define_rpc
	ASC_deletemsgq
	ASC_deletemutex
	ASC_get_reg_param
	ASC_getmsgq
	ASC_getpid
	ASC_get_securedata
	ASC_handle_results
	ASC_in_system
	ASC_in_territory
	ASC_lockmutex
	ASC_lock_strtok
	ASC_malarm
	ASC_mem_alloc
	ASC_mem_free
	ASC_msleep
	ASC_poll
	ASC_poll_timer
	ASC_putmsgq
	ASC_reg_init_func
	ASC_send_text
	ASC_sendinfo
	ASC_set_securedata
	ASC_spawn
	ASC_srv_field_bool
	ASC_srv_field_int
	ASC_srv_field_str
	ASC_srv_sleep
	ASC_stack_trace
	ASC_thread_field_bool
	ASC_thread_field_int
	ASC_thread_field_str
	ASC_threadproc
	ASC_unlockmutex
	ASC_unlock_strtok
	background_process_init

	Server application data types
	BACKGROUND_PROCESS abstract data type
	LANG_HANDLER abstract data type
	REG_PROC abstract data type
	RPC abstract data type
	RPC_PARAM abstract data type
	USEREVENT abstract data type

	Client library interface
	Global variable
	Termination-related functions
	Inline function
	Client application library functions
	appl_cleanup

	Interpreter library
	Inline functions
	Interpreter library functions
	ASC_alloc_Interpreter
	ASC_delete_int_var
	ASC_free_Interpreter
	ASC_get_dev_sess_data
	ASC_get_int_appl_data
	ASC_get_int_var
	ASC_init_Interpreter
	ASC_Interpreter
	ASC_set_dev_sess_data
	ASC_set_int_appl_data
	ASC_store_int_var
	CMD_delete_var
	CMD_expand_action_string
	CMD_free_assignment
	CMD_free_bvar_assignment
	CMD_free_dbproc
	CMD_get_assignment
	CMD_get_bvar
	CMD_get_bvar_assignment
	CMD_get_var
	CMD_lock_regexpr
	CMD_parse_assignment
	CMD_store_bvar
	CMD_store_var
	CMD_store_zero_pad_var
	CMD_unlock_regexpr
	CMD_user_actions

	Control configuration interface
	Interface definitions
	CSP_db_admin
	CSP_del_alarm
	CSP_del_appl
	CSP_del_center
	CSP_del_code
	CSP_del_component
	CSP_del_db_thresh
	CSP_del_event
	CSP_del_fs_thresh
	CSP_del_listener
	CSP_del_nvp
	CSP_get_listener
	CSP_list_alarm
	CSP_list_appl
	CSP_list_center
	CSP_list_code
	CSP_list_component
	CSP_list_db_thresh
	CSP_list_event
	CSP_list_fs_thresh
	CSP_list_nvp
	CSP_new_alarm
	CSP_new_appl
	CSP_new_center
	CSP_new_code
	CSP_new_component
	CSP_new_db_thresh
	CSP_new_event
	CSP_new_fs_thresh
	CSP_new_listener
	CSP_new_nvp

	Object oriented (OO) common library
	ASC_Main class
	Synopsis
	Constructors
	Public methods
	appl_initialize, appl_cleanup
	startup
	threadMain
	config_param_init
	ctlib_init
	process_input
	initialize
	default_signal_handlers
	install_signal_handle
	appl_initialize
	appl_cleanup

	Diagnosis class
	Synopsis
	Constructors
	Public methods
	diag
	initialize
	diag_format
	hex_dump
	rpc_dump
	stack_trace
	service_mgr
	m_diag_queue
	m_diag_mtx_
	threadMain

	Event class
	Synopsis
	Constructors
	Public methods

	EventAgent class
	Synopsis
	Constructors
	Public methods
	threadMain
	start_service
	m_should_terminate
	alarm
	m_ea_mtx_

	ClientProc class
	Synopsis
	Constructors
	Public methods
	cprpcexec
	cpopen
	cpclose
	cpcheck
	IS_OPEN
	get_cp
	is_busy
	get_return_status
	cancelOperation
	get_db_type
	m_alloc_mtx_
	m_init_mtx_
	Public methods
	ocicreate_list
	ocidestroy_list
	ocifetch
	ocistatus
	ocican_cursor
	ociopen_cursor
	ociclose_cursor
	ociparse
	ocicreate_cmd
	ocirpcexec
	dts_to_str
	str_to_dts
	MT-Safety in shared mode

	ClntProcMgr class
	Synopsis
	Constructors
	Public Methods
	createObj
	deleteAllObj
	getObj
	returnObj
	replaceBadObj
	checkNumOfFreeObj

	Config class
	Synopsis
	Constructors
	Public methods
	get_config_param
	dump_config_params

	Common class
	Synopsis
	Constructors
	Public Methods
	curDts
	cur_tm
	today

	ASC thread library
	ASC_Thread class
	Synopsis
	Public methods

	ASC_ThreadFactory class
	Synopsis
	Public methods

	ASC_ThreadAppl class
	Synopsis
	Public methods
	attachThread
	terminateThread
	threadMain
	getThreadName, getThreadID
	ASC_ThreadAttr, getThreadAttr
	initAttr, setAttr
	genMsgQueue
	getMsgQueue
	delMsgQueue
	setTheQueue
	getTheQueue
	setTheThread

	DCE_Thread class
	Synopsis
	Public methods
	spawnThread
	isSupported
	getAttributes

	DCE_ThreadFactory class
	Synopsis
	Public method
	spawnThread

	DCE implementation
	ASC_Mutex class
	Synopsis
	Constructors
	Public methods
	lock, unlock
	trylock
	condWait
	condTimeWait
	condSignal
	condBroadCast
	isSupported

	ASC_Context class
	Synopsis
	Public methods
	threadMain

	Inter-thread messaging system
	Message queue manager class
	Synopsis
	Public methods
	genThreadMsgQueue
	getMsgQueue
	delMsgQueue
	getMsgQueueMgr

	Message queue class
	Synopsis
	Constructors
	Public methods
	addOneUser, removeOneUser, getNumOfUsers
	getQueueSize
	putMsg
	getMsg
	peepMsg
	commitMsg

	ThreadMsgQueue class
	Synopsis
	Public methods
	getQueueSize
	putMsg
	getMsg
	getMsg
	peepMsg
	commitMsg

	Message class
	Synopsis
	Constructors
	Public methods
	doMsgWait
	commitMsgWait
	initSyn

	XML JMX interface
	ASAP daemon API
	Daemon client APIs
	RemoteFile
	Property checking methods
	get Methods
	put Methods
	RemoteCommand
	action Methods

	4 Provisioning Interfaces
	SARM configuration interface
	Static table configuration
	SSP_db_admin
	SSP_gather_asap_stats
	SSP_del_asdl_defn
	SSP_del_asdl_map
	SSP_del_asdl_parm
	SSP_del_clli_map
	SSP_del_comm_param
	SSP_del_csdl_asdl
	SSP_del_csdl_defn
	SSP_del_dn_map
	SSP_del_id_routing
	SSP_del_intl_msg
	SSP_del_ne_host
	SSP_del_nep
	SSP_del_nep_program
	SSP_del_net_elem
	SSP_del_resource
	SSP_del_srp
	SSP_del_stat_text
	SSP_del_user_err_threshold
	SSP_del_userid
	SSP_get_async_ne
	SSP_get_user_routing
	SSP_list_asdl
	SSP_list_asdl_defn
	SSP_list_asdl_map
	SSP_list_asdl_parm
	SSP_list_clli_map
	SSP_list_comm_param
	SSP_list_csdl
	SSP_list_csdl_asdl
	SSP_list_csdl_defn
	SSP_list_dn_map
	SSP_list_host
	SSP_list_id_routing
	SSP_list_intl_msg
	SSP_list_ne_host
	SSP_list_nep
	SSP_list_nep_program
	SSP_list_net_elem
	SSP_list_resource
	SSP_list_srp
	SSP_list_stat_text
	SSP_list_user_err_threshold
	SSP_list_userid
	SSP_ne_monitor
	SSP_new_asdl_defn
	SSP_new_asdl_map
	SSP_new_asdl_parm
	SSP_new_clli_map
	SSP_new_comm_param
	SSP_new_csdl_asdl
	SSP_new_csdl_asdl_idx
	SSP_new_csdl_defn
	SSP_new_dn_map
	SSP_new_id_routing
	SSP_new_intl_msg
	SSP_new_ne_host
	SSP_new_nep
	SSP_new_nep_program
	SSP_new_net_elem
	SSP_new_resource
	SSP_new_srp
	SSP_new_stat_text
	SSP_new_user_err_threshold
	SSP_new_userid
	SSP_orphan_purge

	Error management
	SSP_del_err_threshold
	SSP_del_err_type
	SSP_err_enable
	SSP_list_err_host
	SSP_list_err_threshold
	SSP_list_err_type
	SSP_new_err_threshold
	SSP_new_err_type

	Switch blackout processing
	SSP_add_blackout
	SSP_check_blackout
	SSP_del_blackout
	SSP_list_blackout

	Switch direct interface (SWD)
	Configuration parameters
	General message format
	SWD Client-to-SARM messages
	SARM-to-SWD client messages

	Stop work order interface
	Localizing International Messages

	SARM provisioning interface
	SARM interface RPCs
	SAS_asdl_counts
	SAS_asdl_list
	SAS_asdl_parms
	SAS_asdl_sw_history
	SAS_csdl_counts
	SAS_csdl_event_history
	SAS_csdl_list
	SAS_csdl_parms
	SAS_csdl_sw_history
	SAS_info_parms
	SAS_map_srq_id
	SAS_map_wo_id
	SAS_wo_detail
	SAS_wo_by_host_clli
	SAS_wo_list
	SAS_wo_parms

	Update RPC interface definitions
	CSDL processing model
	functions
	SAS_abort_csdl
	SAS_abort_wo
	SAS_add_csdl
	SAS_add_csdl_parm
	SAS_add_wo_parm
	SAS_change_due_dt
	SAS_change_priority
	SAS_delete_csdl_parm
	SAS_delete_wo_parm
	SAS_get_csdl_stat
	SAS_get_srq_stat
	SAS_get_wo_stat
	SAS_hold_wo
	SAS_lock_wo
	SAS_move_csdl
	SAS_release_wo
	SAS_renumber_csdl
	SAS_resubmit_wo
	SAS_updt_csdl_parm
	SAS_updt_wo_parm
	Control interface RPCs
	SAS_list_alarm_log
	SAS_list_appl_proc
	SAS_list_event_log
	SAS_list_proc_info
	Real-time performance data gathering
	ADM_asdl_stats, PSP_asdl_stats
	ADM_csdl_stats, PSP_csdl_stats
	PSP_db_admin
	ADM_ne_asdl_stats, PSP_ne_asdl_stats
	ADM_ne_stats, PSP_ne_stats
	ADM_order_stats, PSP_order_stats
	Switch activation and deactivation
	SSP_ne_control

	C++ SRP API library
	SRP_Context class
	Synopsis
	Public methods
	getInstance
	getInstance
	getWoUtils
	getUnId
	extSysAvailable
	getEventInterfaceFactory

	SRP_Parameter class
	Synopsis
	Constructors
	Public methods
	getParameterLabel
	setParameterLabel
	getParameterValue
	setParameterValue
	operator==
	print
	lock
	unlock

	SRP_CSDL class
	Synopsis
	Constructors
	Public methods
	getCsdlId
	setCsdlId
	getCsdlCmd
	setCsdlCmd
	getCsdlStatus
	setCsdlStatus
	getCsdlDesc
	setCsdlDesc
	addParameter
	getParameterCount
	print
	deleteAllParameters
	findParameter
	removeParameter
	lock
	find_by_label
	unlock
	getParameters

	SRP_WO class
	Synopsis
	Constructors
	Work order properties
	Public methods
	getWoId
	setWoId
	getDueDate
	setDueDate
	getOperation
	setOperation
	getMisc
	setMisc
	getOrgUnit
	setOrgUnit
	getOrigin
	setOrigin
	getEstimate
	getStatus
	getAsdlTimeout
	setAsdlTimeout
	getUserId
	setUserId
	getPassword
	setPassword
	getPriority
	setPriority
	getSrqAction
	setSrqAction
	getParentWo
	setParentWo
	getWoTimeout
	setWoTimeout
	getRetry
	setRetry
	getRetryInt
	setRetryInt
	getRback
	setRback
	getDelayFail
	setDelayFail
	getDelayFailThreshold
	setDelayFailThreshold
	getBatchGroup
	setBatchGroup
	getExtSysId
	setExtSysId
	getUserData
	setUserData
	getApplName
	setApplName
	getProperty
	setProperty
	addCsdl
	addGlobalParameter
	restore
	getGlobalParameterCount
	getCsdlCount
	print
	submit
	deleteInSarm
	changeStatus
	deleteAll
	findGlobalParameter
	removeGlobalParameter
	findCsdl
	findCsdlBySequence
	removeCsdl
	lock
	unlock

	SRP_WoUtils class
	Synopsis
	Public methods
	lockWo
	unlockWo
	accessWo

	SRP_EventInterfaceFactory class
	Synopsis
	Constructors
	Public methods
	create
	setCondition
	getCondition

	SRP_EventInterface class
	Synopsis
	Constructor
	Public methods
	woCompleteHandler
	woFailureHandler
	softErrorHandler
	woEstimateHandler
	woStartupHandler
	woRollbackHandler
	neUnknownHandler
	woBlockHandler
	woTimeOutHandler
	neAvailHandler
	neUnavailHandler
	woAcceptHandler

	SRP_Event class
	Synopsis
	Public methods
	getWoId
	getEventUnId
	getExtsysId
	getEventStatus
	setWoId
	setEventUnId
	setExtsysId
	setEventStatus

	SRP_WoCompleteEvent class
	Synopsis
	Public methods
	getRevFlag
	getExcept
	setRevFlag
	setExcept

	SRP_WoFailureEvent class
	Synopsis
	Public methods
	getCsdlSeqNo
	getCsdlId
	setCsdlSeqNo
	setCsdlId

	SRP_SoftErrorEvent class
	Synopsis
	Public methods
	getCsdlSeqNo
	getCsdlId
	setCsdlSeqNo
	setCsdlId

	SRP_WoEstimateEvent class
	Synopsis
	Public methods
	getEstimate
	getMisc
	setEstimate
	setMisc

	SRP_WoStartupEvent class
	Synopsis

	SRP_WoRollbackEvent class
	Synopsis

	SRP_NEUnknownEvent class
	Synopsis
	Public methods
	getCsdlSeqNo
	getCsdlId
	getMachClli

	SRP_WoBlockEvent class
	Synopsis
	Public methods
	getReason
	setReason

	SRP_WoTimeOutEvent class
	Synopsis
	Public methods
	getStatus
	setStatus

	SRP_NEAvailEvent class
	Synopsis
	Public methods
	getHostClli
	setHostClli

	SRP_NEUnAvailEvent class
	Synopsis
	Public methods
	getHostClli
	setHostClli

	SRP_WoAcceptEvent class
	Synopsis
	Public methods
	getNewWoStat
	getOldWoStat
	getStatus
	setNewWoStat
	setOldWoStat
	setStatus

	ASC_RetrieveInfo class
	Synopsis
	Constructor
	Public methods
	getWoId
	setWoId
	getDataPtr
	setDataPtr

	ASC_CsdlListInfo class
	Synopsis
	Constructor
	Public methods
	getCsdlCmd
	setCsdlCmd
	getCsdlStat
	setCsdlStat
	getCsdlSeqNo
	setCsdlSeqNo
	getCsdlId
	setCsdlId
	getCsdlEst
	setCsdlEst
	getCsdlDesc
	setCsdlDesc

	ASC_CsdlLogInfo class
	Synopsis
	Public methods
	getDateTm
	setDateTm
	getEventType
	setEventType
	getEventText
	setEventText
	getCsdlCmd
	setCsdlCmd
	getCsdlSeqNo
	setCsdlSeqNo
	getHostClli
	setHostClli

	ASC_WoLogInfo class
	Synopsis
	Public methods
	getDateTm
	setDateTm
	getEventType
	setEventType
	getEventText
	setEventText
	getCsdlSeqNo
	setCsdlSeqNo
	getHostClli
	setHostClli

	ASC_WoParamInfo class
	Synopsis
	Public methods
	getParmGrp
	setParmGrp
	getParmLbl
	setparmLbl
	getParmVlu
	setparmVlu
	getCsdlCmd
	setCsdlCmd
	getCsdlSeqNo
	setCsdlSeqNo
	getCsdlId
	setCsdlId

	ASC_WoRevInfo class
	Synopsis
	Public methods
	getRevFlag
	setRevFlag
	getLabel
	setLabel
	getValue
	setValue
	getCsdlCmd
	setCsdlCmd
	getCsdlDesc
	setCsdlDesc
	getCsdlSeqNo
	setCsdlSeqNo
	getParmSeqNo
	setParmSeqNo

	ASC_RetrieveInfoSet class
	Synopsis
	Public methods
	goToHead
	itemCount
	goToNext
	removeNext
	insertItem

	ASC_RetrieveRequest class
	Synopsis
	Public methods
	getRetrieveType
	getUserData
	getWoId
	getLogType
	getCsdlId
	getNeRespLineByLine
	getSrqEvt
	getLabel
	getGroup
	retrieve
	rebuildWo
	getMyPort

	5 Downstream Interfaces
	NEP library
	NEP library functions
	ASC_loadCommParams
	CMD_comm_init
	CMD_connect_port
	CMD_disconnect_port

	NEP configuration
	NEP_add_feat
	NEP_add_parm
	NEP_del_feat
	NEP_del_parm
	NEP_show_feat
	NEP_show_parm

	NEP administration
	RPC screen_dump
	RPC screen_enable
	RPC screen_disable
	RPC line_enable
	RPC line_disable
	RPC edd_diag
	RPC enable
	RPC disable

	Switch configuration library
	ASC_libnecfg_init

	Protocol-specific libraries
	Design assumptions
	Functional architecture
	Building message block
	Parameter handling
	Submit TL1 input message
	Processing output message
	Technical architecture

	TL1 State Table API
	Input messages
	Block name
	Parameter name
	Output messages

	TL1 State Table action functions
	TL1_BUILD_MSG
	TL1_PROCESS_MSG
	TL1_BUILD_TSN

	External device driver
	External device driver architecture
	Signal approach
	Poll approach
	Application poll approach

	Data architecture
	EDD information abstract data type
	Parameter abstract data type
	Debugging abstract data type
	Generic driver abstract data type

	Transactions
	Data format
	Data type
	Connection process
	Disconnection process
	Forward data from NEP to NE
	Forward data from NE to NEP

	Functions of libgedd
	Signal approach
	Poll approach
	Application poll approach
	Common functions

	Library functions
	gedd_add_fd
	gedd_api_connect_ack
	gedd_api_disconnect_ack
	gedd_appl_poll_get_req
	gedd_block_sigio
	gedd_get_appl_data
	gedd_get_conn_param
	gedd_get_fd
	gedd_get_listen_fd
	gedd_poll
	gedd_poll_get_req
	gedd_send_to_nep
	gedd_set_appl_data
	gedd_sigio_occurred
	gedd_sigio_reset
	gedd_signal_get_req
	gedd_unblock_sigio

	Building an EDD application
	Using the poll approach
	Using the application poll approach
	Using the signal poll approach
	Approach examples

	Action functions
	State Table Components
	State Table environment
	ASDL-to-State Table translation
	Automatic State Table variables
	State Table extensibility
	Loopback support
	Lexical Analysis Machine (LAM)
	Database access from within State Tables
	Regular expression support
	Diagnostic and event support

	Customizing action functions
	Writing action functions
	Using API routines
	Retrieve arguments
	Retrieving and storing parameters and variables
	Exit action function
	Action function example

	State Table Interpreter action functions
	General action functions
	# – Comment character
	BCONCAT
	CALC
	CALL
	CASE
	CHAIN
	CLEAR
	CMD_DUMP
	CMPND_COPY
	COMMENT
	CONCAT
	COPY_TO_ASCII
	DECREMENT
	DEF_REGEXPR
	DEFAULT
	DEL_REGEXPR
	DIAG
	ELSE
	ELSE_IF
	ENDIF
	ENDSWITCH
	ENDWHILE
	ERROR_STATUS
	EVENT
	EXEC
	EXEC_RPC
	EXEC_RPCV
	EXIT
	EXPR_GOSUB
	FUNCTION
	GET_REGEXPR
	GOSUB
	GOTO
	IF
	IF_THEN
	IFDEF
	IFNDEF
	INCREMENT
	IND_SET
	LENGTH
	MAP_GOSUB
	MAP_OPTION
	MASK
	NEW_MAP
	PAD_CHAR
	PAUSE
	RETURN
	SUBSTR
	SWITCH
	TRIM
	WAIT
	WHILE
	ZERO_PAD

	NEP action functions
	ADD_HEADER
	ASC_TO_BIN
	ASDL_EXIT
	BIN_TO_ASC
	CLEAR_VS
	ERROR
	GET
	GET_INCPT
	GET_LTG
	GET_P_PARMS
	GET_SECUREDATA
	GET_SW_FEAT
	LOG
	LOG_STAT
	MSGSEND
	MSGRECV
	NVIS_PARSER
	PARAM_GROUP
	RESPONSELOG
	SCREEN_RESP
	SEND
	SEND_COMPND
	SENDECHO
	SENDKEY
	SETOPTION
	SEND_PARAM
	SEND_RESP
	SET_SECUREDATA
	STATS_ON
	VS_COPY_RESP
	VS_GET_RESP
	VS_SEND_RESP
	VS_STOP_RESP

	LAM action functions
	DEF_COLUMN
	GOTO_MARK
	READ_FIXED
	READ_GROUP
	READ_ITEM
	READ_LAST
	READ_ROW
	READ_STRING
	READ_TO_EOL
	RESET_FILE
	SET_MARK
	SKIP_ITEMS
	SKIP_LINES
	UNDO_READ

	FTP action functions
	FTP_APPE
	FTP_CD
	FTP_CDUP
	FTP_DELE
	FTP_DIR
	FTP_LCD
	FTP_LS
	FTP_MKDIR
	FTP_PWD
	FTP_RECV
	FTP_REN
	FTP_RMDIR
	FTP_RUNIQUE
	FTP_SEND
	FTP_SUNIQUE

	I/O Action Functions
	OPEN_FILE
	READ_FILE
	OPTION
	WRITE_FILE
	WOPTION
	CLOSE_FILE
	DEL_FILE
	I/O Action Function Error Messages

	SNMP action functions
	Variables
	Regular expressions
	LAM registers
	SNMP_GET_REQ
	SNMP_GET_NEXT_REQ
	SNMP_GET_BULK_REQ
	SNMP_SET_REQ
	SNMP_INFORM_REQ
	SNMP_TABLE_REQ
	SNMP_RESPONSE

	LDAP action functions
	ldap Directory Entry Structure
	Extended State Table variables
	Communication Parameters
	LDAP_SEARCH
	LDAP_COMPARE
	LDAP_ADD
	LDAP_DELETE
	LDAP_MODIFY
	LDAP_RENAME
	STRTOK

	6 Web Services
	Web Services Overview
	Web Services Definition Language (WSDL)

	Architectural Overview of Web Services
	Web Services Interface
	Security

	About Web Service Operations

	A Sample Thread Framework Application
	EDD connection listening class
	Synopsis
	Public methods

	Connection handler class
	Synopsis
	Description

	B Oracle Execution Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	C C++ SRP API Template Design
	API library structures
	C++ SRP API library
	Common object library (liboo_asc)
	ASC thread library (libthreadfw)

	C++ SRP API components
	Work order submission
	Event notification

	Communication between threads
	Multiple instances of threads
	Communications with ASAP internal systems
	Communication between C++ SRP API and SARM
	Communication between C++ SRP API and SRP database

	Upstream system interface
	Protocol
	Communication between C++ SRP API and upstream systems
	TCP/IP sockets
	Connection verification

	Data format
	Input message from upstream system
	Return message to upstream system

	Synchronous processing
	Asynchronous processing
	Single and multiple connections

	API libraries
	Main()
	SRP_initialize

	C++ SRP threads
	Receiver
	Connecting with the upstream system
	Verifying incoming message
	Synchronous processing
	Asynchronous processing

	Thread examples
	Single connection, asynchronous processing (work order dependency)
	Single connection, synchronous processing (batch submission of work order)

	Translator
	Event handling
	SARM events
	Actions performed by event handler

	Sender
	Sender message

	C++ SRP API specification template example
	Communication interface
	TCP/IP socket interface
	Connection handler
	Receiver

	Translator thread
	Translation process

	Event handling
	Sender thread
	Event message handling
	Translation message handling

	Upstream system
	WO submission
	Handling WO provision results

	Configuration for C++ SRP API

	D API and Other Configuration Changes
	OSS through Java service activation API
	JVT API changes
	Java provisioning API changes

