
Oracle® Communications ASAP
Concepts

Release 7.4
F40776-02
January 2024

Oracle Communications ASAP Concepts, Release 7.4

F40776-02

Copyright © 2005, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

1 Introduction

ASAP Activation Processing Features 1-2

ASAP Management Components 1-3

2 ASAP Component Overview

ASAP Architecture 2-2

Customer Service Request Sources 2-2

ASAP Clients 2-3

The Order Control Application Client 2-4

Design Studio 2-4

ASAP Servers 2-4

The Service Request Processor 2-4

The Service Activation Request Manager 2-5

The Network Element Processor 2-5

The Admin Server 2-5

The Control Server 2-5

ASAP Configuration Management 2-6

Operational Configuration Management 2-6

Service Configuration Management 2-6

The ASAP Development Toolkit 2-7

ASAP Client/Server APIs 2-7

The ASAP Interpreter and JInterpreter 2-7

ASAP Utilities 2-7

ASAP Security Components 2-7

User Administration and Security 2-8

Data Security 2-8

iii

ASAP Database Components 2-8

The RDBMS Server 2-9

Sybase Open Client/Open Server 2-10

Services and Network Elements Implemented 2-10

Network Technologies Implemented Using ASAP 2-10

Interface Protocols/Standards Supported by ASAP 2-10

BSS / OSS Interfaces 2-10

Network Element and Element Management System Interfaces 2-11

Cartridge Overview 2-11

Cartridge Content 2-12

3 Service Request Processor and Java Service Request Processor

SRP Order Properties 3-3

Batch Orders 3-3

SRP Notification Reception 3-4

SRP Information Retrieval 3-5

4 The Service Activation Request Manager

Order Management 4-1

Order Acceptance/Rejection 4-2

Order Security 4-2

Order Collisions 4-2

Order Processing 4-2

Update 4-2

Cancel 4-3

Translation Error 4-3

Hold 4-3

Stop 4-4

Order Types 4-4

Connection Management 4-4

Order Scheduling 4-5

Network Element Routing Management 4-7

Network Element Response Management 4-7

SRP Notifications 4-8

5 The Network Element Processor

State Tables 5-1

Java-Enabled NEP 5-1

NEP Features 5-2

iv

ASAP Cartridges 5-2

ASAP Documentation 5-2

v

Preface

This guide provides an overview of Oracle Communications ASAP, explains its
functional architecture, and describes the working of various ASAP components.

Audience
This document is intended for business analysts, planners, system administrators,
system integrators, and other individuals who must understand ASAP.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction

Oracle Communications ASAP equips telecommunications service providers with a single
platform for automated service activation. ASAP receives service requests from any source
and transmits the required service activation information to any destination network device.

ASAP's core architecture isolates business semantics (rules and behavior) from technology
semantics (interface implementations and protocols). This architecture allows ASAP to
handle multiple, heterogeneous network technologies and supports various interfaces,
including:

• SOAP/XML

• HTTP/S

• TCP/IP

• Telnet

• SSH

• FTP/SFTP

• CORBA

• LDAP

• TL1

• SNMP

• OSS through Java

Because ASAP complies with accepted international standards, ASAP supports all
convergent technology domains with a flexible and customizable repository of service
definitions and business semantics. ASAP can activate services on network elements or
element management systems.

ASAP offers the following characteristics:

• Flow-through activation – You can enable ASAP's automated flow-through capability
directly at the source of the service request. Service providers can eliminate manual
hand-offs and provisioning fallout. ASAP allows the configuration of flexible service
definitions and business rules. It allows rapid queries of network inventory and access to
other operations support systems (OSS) to collect information required for uninterrupted
activation. ASAP can handle a range of error conditions to provide flow-through and
resilience to service order fallout.

• Convergent activation – ASAP activates convergent service offerings with a
combination of Wireline, Wireless, IP VPN, xDSL, and other services. ASAP coordinates
bundled service packages with full transaction control. ASAP supports:

– Heterogeneous requests for service – Service requests can originate from a
variety of sources and customer interfaces, including interactive voice recognition,
the Internet, kiosks, and customer service agents. For each service request source
(including new customer interfaces), ASAP can use the same service definitions,
ensuring consistency across all sources.

1-1

– Heterogeneous network support – ASAP concurrently supports multiple
types of network elements and multiple software loads within each specific
network element. This ensures support for evolving network topologies.

• Transaction control – ASAP transaction control ensures the coordination of
requests that consist of multiple services. Transaction control ensures that the
service request is activated in the correct sequence on all required network
elements. ASAP provides an audit trail of all transactions related to each service
request.

Transaction control is equipped with a rollback option. In case of a failure, you can
roll back the changes to restore the network to a known state.

• Intelligent horizontal deployment – ASAP can be deployed to support multiple
services in multiple network domains. In a single ASAP system, service providers
can expand the number of interfaces to service-originating systems and to network
elements. Consequently, ASAP eliminates the need to implement multiple
activation systems for different service and network domains.

• Data-driven architecture – ASAP enables rapid introduction of new services and
technology. New services, business rules, and network elements can be
introduced quickly. ASAP provides a set of APIs and interface development
toolkits. ASAP also supports numerous transport and application-level protocols
and standards. These capabilities simplify the development of OSS interfaces.

• High availability – ASAP has been deployed in high-availability environments,
where service activation operates 24/7 with minimal downtime. Support for these
HA environments are built upon intelligent ASAP processing logic that provides
automatic process recycling and failover. These ASAP features, along with real
application clustering (RAC) integration, minimize downtime.

ASAP Activation Processing Features
ASAP's activation processing features are:

• Flexible error processing – Various return states can be defined for specific
network conditions (for example, soft-error processing, retry logic, or delayed
errors). A combination of script-driven interfaces and soft-error processing logic
allows ASAP to handle different network conditions automatically. This feature
reduces the fallout that is caused by inconsistent data.

• Scheduling, order relationships, and prioritization – Service requests can be
scheduled immediately or for a future date or time. ASAP manages and resolves
parent/child relationships to control dependency and activation sequencing.
ASAP's built-in prioritization allows for efficient scheduling. Prioritization can
expedite requests through ASAP when customer service agents are activating
services in real-time.

• Network element routing and connectivity – ASAP routes requests to
destination network elements and runs the corresponding script on the destination
network element through a connection that is automatically established, or through
a dynamic connection if required. Connectivity to network elements is based on
user-defined communications devices and their parameters, including connection
thresholds.

• Audit trails, statistics, and reporting – ASAP maintains detailed logs, audit
trails, and statistics of all processing, both system and user-initiated. A reporting
option allows the service provider to report against operational, statistical, and

Chapter 1
ASAP Activation Processing Features

1-2

configuration data maintained in ASAP. Service providers can use the reports supplied or
custom-developed reports.

ASAP Management Components
ASAP's flow-through activation and activation processing features are managed by the
following components:

• Activation fallout management – Support for activation fallout management is provided
through the Order Control Application (OCA) Client. The OCA Client can be deployed as
a standalone application or within a web browser as an applet.

• ASAP operational configuration – ASAP supports a command-line mode using XML
configuration files to configure, update, and view the ASAP operational configuration.
This configuration includes ASAP process distribution and network topology. The network
topology specifies details of network element IDs, activation routing, communication
devices and parameters, and thresholds of automated and transparent connections to
network elements.

• ASAP monitoring and control – ASAP enables telecommunications operational centers
to configure operational parameters, including ASAP events and alarms. These centers
can monitor and manage ASAP operations including ASAP process run-time status,
process startup and shutdown, communications device status, and connectivity to
network elements, pending requests, and event/alarm acknowledgment.

• Localization capability – ASAP provides the capability to translate ASAP to one or more
western languages represented by the 8-bit character set. Items that can be localized
include:

– Activation messages

– Service command descriptions such as Common Service Description Layer (CSDLs),
Atomic Service Description Layer (ASDLs), and so on

– Operational parameter descriptions (events, alarms)

– Graphical user interface screens and labels

– Time, date, and number formats

The Localization Toolkit is an optional ASAP component.

Note:

The OCA SDK enables you to localize the OCA client.

Chapter 1
ASAP Management Components

1-3

2
ASAP Component Overview

Figure 2-1 illustrates the functional architecture of Oracle Communications ASAP.

Figure 2-1 ASAP Functional Architecture

The ASAP multitier architecture operates on an Oracle database engine.

To run ASAP, install the ASAP software and then implement the service order and network
element interfaces to support specific services and network elements by using the following
customizable modules:

• Service Request Processor (SRP) or Java SRP modules interface with the host system

• Network Element Processor (NEP) and Java NEP modules interface with network
elements

2-1

Note:

These interfaces can be purchased from Oracle in the form of cartridges
or they can be developed.

ASAP Architecture
ASAP consists of a set of multithreaded UNIX client/server processes and Java 2
Platform, Enterprise Edition (J2EE) applications that communicate with one another
and with the appropriate database server. This arrangement has several advantages:

• Flexibility – Client/server applications are easily distributed across several,
possibly heterogeneous platforms. The result is a scalable architecture that can
expand to meet evolving requirements.

• Manageability – Because common services are handled on a server, application
size and complexity are reduced. Client applications are simplified, duplicate code
is minimized, and application maintenance is easier.

• Customization – Client/server architecture enables applications to be developed
with distinct components. You can modify or replace these components without
affecting other parts of the application.

• Improved performance – Multithreaded application architecture improves
performance by enabling you to add additional processing functionality as threads
within the process, as opposed to additional processes within the network. This
capability enables greater throughput for the following reasons:

– A threaded application makes better use of operating system resources than
the conventional, multiprocess application.

– Interthread communication is much faster than interprocess communication.

• Improved communication between applications – Client applications that use
different communication protocols cannot communicate directly. A client/server
architecture, however, allows communication using a “gateway" server that
understands both protocols.

Customer Service Request Sources
The ASAP provisioning process begins when customer service requests are sent from
an order management or service order entry system. These requests use either batch
or transaction-based interfaces.

The most common format for customer service requests is the conventional work order
generated by service representatives or automated systems, such as a web interface
or voice response program. Work orders generally require other activities, such as
updates to customer, billing, and assignment records, in addition to the provisioning
operation.

Figure 2-2 illustrates the work order translations performed as part of the provisioning
process.

Chapter 2
ASAP Architecture

2-2

Figure 2-2 Work Order Translations

The Service Request Translator (SRT) is an optional component that accommodates
upstream requests (requests from business and operations support systems) defined within
XML documents. Based on the incoming request (XML document), the SRT enables a variety
of tasks within a transformation computation, including mapping, data lookup, and message
transformation. Mapping tasks allow upstream requests to be broken into one or more
downstream requests (request sent to the network element). The SRT output is also an XML
document. See SRT User Guide for more information.

ASAP Clients
The following client application enables you to define services, create work orders, and
configure ASAP.

Chapter 2
ASAP Architecture

2-3

The Order Control Application Client
The Order Control Application (OCA) Client enables users to query and create work
orders, monitor work order-related events, define notifications based on generated
events, and manage fallout work orders.

The OCA Client is a Java-based GUI that communicates with the OCA SRP. The OCA
Client allows you to interact with ASAP in a flexible manner, providing a single entry
point where you can create and manage work orders.

The OCA Client is also available as a Java applet that can be embedded in an HTML
web page and run in a browser.

Access to the Java source code for the OCA Client is provided by the OCA Toolkit
option.

Design Studio
Oracle Communications Service Catalog and Design - Design Studio is a GUI-based
application that enables users to quickly develop, package, and deploy services in
ASAP. Using Design Studio, you can:

• Define new services

• Extend the services that have been defined in an ASAP cartridge

• Reuse existing service definitions

• Deploy services to development or production environments

ASAP Servers
The following server applications contribute to the working of an ASAP system.

The Service Request Processor
The customer's service request systems communicate with one or more SRPs. If the
same provisioning request is received from more than one source, it is translated by
an SRP into identical sets of Common Service Description Layer (CSDL) also called
service action commands and parameters.

Service action commands are independent of the originating system. The
communications capability, the standard representation of services, and the
multiprocess deployment of the SRP allow the same ASAP system to adapt to new
customer service request sources without the need to change the existing service
delivery flow.

After the SRP has translated the service and action combinations into service action
commands, the SRP extracts service, action, and associated parameters from the
native order format. It determines parameters for the work order that constitute the
header portion of the ASAP work order (such as due date, order number, and priority).
In addition, the SRP finds the global parameters for the work order that are required
for provisioning.

When the translation is complete, the SRP sends the ASAP version of the work order
to the Service Activation Request Manager.

Chapter 2
ASAP Architecture

2-4

The Service Activation Request Manager
The Service Activation Request Manager (SARM) acts as a request controller that
determines and coordinates requests between the various SRPs and NEPs in the ASAP
system. The SARM enables you to efficiently manage connections to network elements,
including work order priority and load balancing (managing multiple connections to network
elements according to configurable thresholds).

The SRP transmits the service actions and parameters to the SARM. The SARM provides
centralized coordination and transaction management of provisioning activities across diverse
networks in a high-performance environment. Using a data-driven service model, the SARM
translates service actions into one or more Atomic Service Description Layer commands
(ASDLs) also called atomic actions. Each atomic action represents a single task to be
performed on a network element. The SARM then determines the routing for each atomic
action and transmits it and its provisioning parameters to the appropriate NEP for
provisioning.

The atomic action command parameters are derived from both the service action and global
work order parameters.

The Network Element Processor
The SARM routes each atomic action to a NEP. The NEP provides transparent connections
to network elements or element management systems. The dialog with the network element
is completed by using State Table scripts or Java scripts. State Tables are programs used
internally by ASAP to control the dialog with external systems, such as NEs, and perform
service order translations.The NEP maps the atomic action to the user-defined script and
conducts the activation dialog with the external network devices. To manage a large number
of network elements, multiple NEPs can be deployed.

During the NEP translation process, atomic actions become network-element-specific
commands. After the NEP has received atomic action commands and their associated
parameters from the SARM, the NEP selects either a user-defined State Table (for C-based
processes) or the JInterpreter (for Java-based processes) to provision each atomic action
command for a network element.

The Admin Server
The Admin server maintains performance data generated by other ASAP components,
principally by the SARM. It polls the application servers periodically for their real-time
performance data and stores the results in its database. You can reference this performance
data, accessible through an API, by using monitoring and reporting tools.

The Control Server
The Control server manages the overall run-time distribution of ASAP components. The
Control server has the following management functions:

• System startup and shutdown

• System alarm generation

• System distribution

• Secure data storage

Chapter 2
ASAP Architecture

2-5

• Encryption key distribution

One Control server must reside on each machine on which ASAP processes run.

ASAP Configuration Management
Configuration management involves two sets of activities:

• Operational configuration – The configuration of ASAP components

• Service configuration – The definition, configuration, and deployment of services

New configuration entries can be added dynamically. Once you add new configuration
entries to the database, you can send a request to each relevant ASAP server to load
the configuration changes from the database into memory. This enables you to add
service actions, atomic actions, service action-to-atomic action mappings, new NEPs,
hosts, routings, and network element resources dynamically.

Operational Configuration Management
Using the command-line interface, you can manage the following operational
configurations:

• Operational configuration – You can configure the operational components of
ASAP, including the distribution of ASAP over one or more machines and the
definition of ASAP servers.

• Event/alarm configuration – You can define system events and specify the
circumstances under which system event alarms are issued.

• Network element configuration – You can manage mapping relationships, create
and maintain NEPs, create network element blackout periods, define a new Host
network element, and create new atomic action command routings.

• Other SARM configurations – You can configure miscellaneous SARM
operations, including atomic action responses for system testing, file system
thresholds, modifiable text, ASAP international message conversion setup, SRP-
to-SARM security setup, SRP definition to SARM, and management of database
monitoring thresholds.

Service Configuration Management
Using the command-line interface, you can manage the following service
configurations:

• Provisioning translation – You can create and maintain service actions and
atomic actions, along with service action-to-atomic action mapping relationships
and atomic action-to-State Table or Java script mapping relationships.

Services can be developed according to the Service Model XML Schema.
Alternatively, a set of specific services in the form of a cartridge can be purchased or
developed. Cartridges provide plug-and-play domain behavior into a core product and
include the configuration of the core product. An ASAP cartridge follows the guidelines
specified in the ASAP Cartridge Development Guide.

Whether services are developed or purchased, the Service Activation Deployment Tool
(SADT), Service Activation Configuration Tool (SACT), and the PostDeploySarFile
script enables you to assemble and deploy generic or cartridge-specific service

Chapter 2
ASAP Architecture

2-6

models. The functionality provided by these scripts can be implemented using the
installCartridge script.

The installCartridge script does the following:

• Facilitates the development of generic service packages, cartridges, and solutions

• Defines a structure for packaging an activation model

• Defines a process for deploying an activation model

You can use this script to bundle and deploy cartridges into an ASAP instance. Packetizing a
service bundle also lends itself to version control. The benefits are:

• Reduced deployment time

• Reduced deployment costs

• Ability to layer and version control service models

• Facilitation of cross-product service model deployments

The ASAP Development Toolkit
The ASAP Development Toolkit provides a set of APIs that you can use to customize ASAP
client and server applications.

ASAP Client/Server APIs
ASAP provides C/C++, Java, and CML/JMS to create custom SRPs JSRPs, NEPs, and
JNEPs or provide programmatic integration with ASAP. These APIs include:

• APIs common to both client and server applications

• Client APIs

• Server APIs

• Java

The ASAP Interpreter and JInterpreter
The ASAP Interpreter and JInterpreter libraries are script engines that allow State Table
scripts or Java scripts to be developed, configured dynamically, and run without the need to
recompile C/C++ or Java code. This library can be incorporated into application servers to
provide internal ASAP State Table scripting or Java scripting capabilities. The interpreter and
JInterpreter libraries are provided to build State Table and Java capability in customer NEPS,
and JNEPs.

ASAP Utilities
The ASAP utilities are bundled UNIX command-line management tools for developing,
monitoring, and controlling ASAP development activities.

ASAP Security Components
This section describes the features and functions of ASAP security components.

Chapter 2
ASAP Architecture

2-7

User Administration and Security
You can manage ASAP users with Oracle WebLogic Server. Oracle WebLogic Server
uses an enterprise-level framework that allows multiple servers to share a common
security architecture.

For information on the default permissions that are available to users and user groups,
refer to ASAP System Administrator's Guide.

Data Security
ASAP provides enhanced security functionality that is designed to respond to the
increased security requirement when provisioning over distributed networks.

ASAP security is designed to provide maximum confidentiality and data integrity while
ensuring on-demand access to services for authorized users. ASAP security is
designed for two essential functions: managing secure data and protecting diagnostics
files.

ASAP security incorporates the following features:

• Secure data storage – Your ASAP security administrator predefines the nature of
the secure data and the accessibility by each ASAP server. There are two classes
in the secure data: ASAP secure data, such as ASAP database passwords, and
custom secure data, such as network element passwords.The ASAP secure data
is stored in a Credential Store Factory (CSF) wallet, accessible to each ASAP
server. The custom secure data is stored in a central repository called the Control
server.

• Secure data encryption – The CSF wallet that contains ASAP secure data
provides transparent encryption functionality. ASAP supports a symmetric secret
key encryption method to achieve data confidentiality for custom secure data.

• Key distribution – Each ASAP server can locally access the ASAP secure data
contained in the CSF wallet. The Control server acts as a key distribution server
and distributes custom secure data to every ASAP server during provisioning. To
acquire the custom secure data, the ASAP server has to follow the predefined key
distribution protocol.

• Secure NE dialog – The ASAP NEP diagnostic file contains switch-sensitive
information sent to and received from network elements. The NE dialog can be
configured to secure the provisioning information.

• Secure work order information – Work order information that originates from the
upstream system and is sent to network elements contains business-sensitive
information. As the work order progresses through several components (SRP,
SARM, NEP, and so on), the information is exposed to different diagnostic files.
For example, some database queries in the SARM can reveal work order
information. By setting a configuration variable or a work order property, you can
ensure that work order information is not exposed in any diagnostic files.

ASAP Database Components
Every ASAP component application can have its own database. This close coupling of
processes to databases distributes ASAP efficiently in a networked environment.

Figure 2-3 illustrates the process and database components of ASAP.

Chapter 2
ASAP Architecture

2-8

Figure 2-3 ASAP Process and Database Components

ASAP uses Oracle's relational database management system (RDBMS) as the database
engine. A single database can contain one or more ASAP databases. Or every ASAP
database in a fully-distributed environment can reside on a separate RDBMS, on separate
machines. This ability to distribute transparently and to scale ASAP accordingly is a feature of
ASAP.

The RDBMS Server
The RDBMS employed by ASAP uses an Oracle server. The Oracle RDBMS is a specialized
server process that manages ASAP databases. It offers the following features:

Chapter 2
ASAP Architecture

2-9

• Client/server architecture

• Stored procedures

• Server-enforced integrity and security

• High application availability

• Open, distributed RDBMS

• Scalable high-performance programmable server

• Online backups and maintenance

• Rapid recovery

• Distributed access, data, retrievals, and updates

Sybase Open Client/Open Server
ASAP uses Sybase Open Client and Open Server run-time libraries. The Sybase
Open Client provides a library of functions for use when creating Open Client
applications that communicate with Sybase Open Server applications. The Open
Server offers a set of functions you can use when writing a multithreaded Open Server
application to receive requests from Open Client applications. It is a platform
independent, multithreading, and remote procedure call (RPC) library.

Services and Network Elements Implemented
You can deploy ASAP across a broad range of services and network element
technologies. Tier 1 operators globally are using ASAP for multiple domains including
Mobile, Voice (Circuit switched and packet voice), Data (xDSL and HFC) and Video
(CATV and Satellite).

Network Technologies Implemented Using ASAP
ASAP has a robust cartridge development program. Oracle offers over 80 certified
cartridge adapters for various network elements from different vendors. ASAP
customers can license these productized cartridges and receive fully tested and
supported solutions for activating services on the various network elements.

Oracle Communications Service Catalog and Design - Design Studio allows you to
extend or build new cartridge adapters for new network elements or versions that are
being introduced into the network.

Interface Protocols/Standards Supported by ASAP
ASAP supports the following interface protocols and standards:

BSS / OSS Interfaces
• Web Services

• OSS through JAVA API (JSR 89)

• SA API

• TCP/IP

Chapter 2
Services and Network Elements Implemented

2-10

• JMS/XML

• C/C++

• CAPI

Network Element and Element Management System Interfaces
• SOAP/XML

• HTTP/S

• SNMP Manager

• TL1

• TCP/IP

– Socket interface

– Telnet interface

– SSH

– File Transfer Protocol (FTP) interface

– Secure FTP (SFTP) interface

• Serial asynchronous

• External device driver API for proprietary or custom interfaces as required

Note:

Protocols that are not included in the above list can be supported through
extensibility.

Cartridge Overview
ASAP cartridges are discrete software components that are developed for the ASAP product.
An ASAP cartridge offers specific domain behavior on top of the core ASAP software, and
provides the configuration that supports a set of services on a NE.

An ASAP cartridge is not a standalone component, but operates with the ASAP core product.
ASAP cartridges offer the following benefits:

• Reduced Time to Market: Time to market of new services is reduced through simplified
development, implementation, and extension of cartridges on customer sites.

• Extendable: Cartridges can be extended to include additional services and components
that deliver business value, without requiring changes to the original cartridge.

• Simplified Effort: The effort and technical knowledge that is required to perform
customizations is reduced.

• Ease of Installation: Cartridges can be installed into an ASAP environment without
interfering with the existing install base.

An ASAP cartridge allows you to configure ASAP to provision the following:

• NEs from a specific vendor, such as Ericsson or Huawei.

Chapter 2
Cartridge Overview

2-11

• Technologies, such as GSM or xDSL.

• Services that are supported on the NE, Mobile, Data, or Video.

Note:

Cartridges are designed for a specific technology, software load, and service.

An ASAP cartridge supports a particular set of services on an NE. These services are
independent of customer-specific service definitions. Professional Services or systems
integrators can perform extensions to the cartridge to support customer-specific
requirements.

Cartridge Content
An ASAP cartridge contains the following:

• An interface to the NE

• A set of scripts, such as State Tables or Java methods

• A set of atomic actions in the form of ASDL commands

• A set of CSDL commands that form meaningful service actions

• Sample work orders

• Installation scripts

Chapter 2
Cartridge Overview

2-12

3
Service Request Processor and Java Service
Request Processor

The Service Request Processor (SRP) and Java SRP (JSRP) bridge external systems and
the Service Activation Request Manager (SARM). The SRP and JSRP performs the following
functions:

• Receives work orders from external sources

• Updates work order status requests to the SARM

• Deletes work order requests to the SARM

• Receives work order event notifications from the SARM

• Submits work order queries to the SARM for additional work order details

• Transmits work order provisioning notifications and details back to the originating system

The SRP and JSRP provide interoperability to interface with one or more Business Support
Systems (BSSs) and Operations Support Systems (OSSs) in parallel. Oracle
Communications ASAP can interface with one or more of these information systems in
parallel using the object-oriented SRP toolkit, the Order Control Application (OCA) SRP, and
the Java SRP. These SRPs are customizable to support communication with any upstream
system.

Figure 3-1 represents the technology support provided by the SRP and Java SRP.

3-1

Figure 3-1 Technology Supported by the SRP

Telecommunications carriers can use ASAP to manage technologies from different
vendors and to facilitate the flow-through of information from those devices, using
either internal or external networks.

ASAP provides the following types of SRPs that are designed to accommodate a wide
variety of upstream technologies:

The SRP provides the following interfaces:

• Web Services API – provides a web services interface through which external
applications can manage service activation activities and operations. The interface
is defined in the ASAP web service Web Service Definition Language (WSDL) file.

• Java SRP – Provides both an XML/JMS, Java Value Type, and web service
interface into ASAP's provisioning functionality. The Java SRP adheres to OSS/J,
an initiative that defines and implements an open, standard set of Java
technology-based APIs for OSS.

The Java SRP can operate with an optional ASAP component, the Service
Request Translator (SRT). The SRT enables a variety of tasks within a
transformation computation, including mapping, data lookup, and message
transformation. The mapping of tasks allows upstream requests to be
decomposed into one or more downstream requests, data lookup functions can
involve the retrieval data from external systems (such as databases), and
transformation actions can involve presentation formatting. The translator is
triggered by an XML source document and generates an XML target document as
its output. See SRT User Guide for more information.

Chapter 3

3-2

• OCA SRP – Co-exists with the Java SRP in WebLogic and shares some JSRP
interfaces. The OCA Client application uses the OCA SRP.

• C++ SRP API – Provides a C++ API to interface with ASAP and is used to support
object-oriented technologies. The Object SRP uses native threads to support symmetric
multiprocessing and provides maximum scalability of ASAP across multiple CPUs. Refer
to ASAP Developer's Guide for C++ SRP API design guidelines.

• C SRP API – Provides a C API to interface with ASAP.

Note:

C SRP API and C++ SRP API enhancements are not supported.

SRP Order Properties
SRP order properties contain ASAP order details that are required for SARM provisioning.
Some are optional. You can set and retrieve work order properties using SRP API calls.

The following are some major work order properties:

• Order types – Order type properties are used to pass provisioning instructions to the
SARM, such as activating or canceling the order.

• Order scheduling – Order scheduling properties enable you to specify whether the
SARM is to process orders immediately or based on a user-defined due date and time.

• Timeouts – The timeout function at the service-order level prevents a work order from
staying in ASAP indefinitely. You can configure the timeout period so that a work order
fails if it remains in the system longer than required.

Note:

The work order timer is set when the SARM starts provisioning the work order
or when the work order is in progress. The order is failed after the current ASDL
finishes provisioning.

If the work order fails due to the work order or ASDL timeout, ASAP rolls back ASDLs
that have completed.

• Related order properties – An optional Related Order property is included in the SRP
order to identify a prerequisite work order, such as a parent work order upon which a
child order is dependent. The SARM activates the child only when the provisioning of its
parent is complete. The Related Order property is used for from/to and multiline order
processing, revisions, and cancellations.

• Rollback properties – ASAP can be configured to roll back ASDLs upon ASDL failure.
This field is used to override the default rollback behavior defined in the SARM translation
tables.

Batch Orders
Provisioning activities can be batched in the following ways:

Chapter 3
SRP Order Properties

3-3

• Single batch orders – Large orders that contain many instances. Such orders are
processed serially within ASAP and are most efficient when all instances in the
batch are destined to the same network element. You can specify an error
threshold associated with a single batch order that, if exceeded, results in the
entire batch being stopped.

• Multiple orders in a batch – The SRP provides the capability to aggregate a set
of otherwise independent orders into a logical batch group and then activate these
orders in parallel. This technique is best suited to a batch consisting of several
instances that span many network elements. You can specify an error threshold
associated with such batch groups that, if exceeded, results in the entire batch
being stopped.

Once the SRP has completed the translation process, it transmits the SRP version of
the work order with the specified properties to the SARM for provisioning. The SARM
can either accept or reject the work order.

When the SARM receives the SRP version of the work order, it stores details such as
work order properties, CSDLs, and parameters in the SARM database.

SRP Notification Reception
The SRP receives notification events from the SARM while a work order is being
provisioned. Specifically, whenever the state of the work order changes (whether the
work order is part of a batch or individual), the SARM notifies the SRP. The SRP can
then notify the originating system of the change in work order status.

SRP notification events include:

• Work order timeout – If the SARM is configured to calculate the work order
timeout, it sends a timeout notification to the SRP when the ASDL processing time
exceeds the configured time limit. One of the following situations can occur:

– Timeout and executing – The first ASDL timeout that occurs during the
provisioning of the work order. The timeout notification is sent to the SRP, and
the SARM sets the timer again to provide a grace period for the ASDL and
continues provisioning of the ASDL. It does not fail the work order.

– Timeout and fail – Work order timeout or an ASDL timeout for the grace
period on a work order. A timeout notification is sent to the SRP and the work
order is failed in the SARM.

• Work order rollback – This notification type informs the SRP that rollback is
being invoked on the work order. In general, Work Order Rollback is produced
whenever a work order fails and rollback is configured on one or more ASDLs.

• Work order failure – The Work Order Failure notification is triggered by the
SARM whenever a work order fails there. The notification includes details on the
CSDL that failed.

• Work order accept – Transmitted to the SRP when the SARM accepts the work
order.

• Work order estimate – Transmitted when the SARM receives a work order from
the SRP. If the SARM is configured to perform a work order estimated time
calculation, it calculates the average time, in seconds, for this work order to be
provisioned.

Chapter 3
SRP Notification Reception

3-4

• Work order completion – Transmitted to the SRP when the work order completes in the
SARM. This notification can report Normal Completion (no errors) or Completion with
Exceptions (such as soft errors).

• Work order start up – Informs the SRP that the work order has started provisioning in
the SARM. When possible, this information is passed back to the originating system to
provide feedback on the progress of the work order.

• Work order soft error – Generated whenever an ASDL response on the work order is
labeled Fail But Continue. If the work order fails or completes, this notification is followed
with a Failure or Completion notification.

• NE unknown – Identifies a Remote NE on the work order that could not be routed to an
appropriate Host NE, causing a SARM Remote NE routing error to occur.

When the SRP receives work order event notifications, it can query the SARM for additional
details. Queries are generally made when the order is in a final state such as Failed or
Completed, but can be made at any point in the provisioning process.

SRP Information Retrieval
When the SRP receives work order event notifications, it can query the SARM for additional
details. Queries are generally made when the order is in a final state such as Failed or
Completed, but they can be called at any point in the order provisioning process.

The SRP can query the SARM for the following information.

• Work order parameters – Work order parameters are created by the State Tables in the
NEP or by the JInterpreter provisioning method used by the NEP, while the ASDL
commands are being processed on the ASAP work order. Query results from the NEP
such as formatted NE configuration information are transmitted back to the SRP, which
can then pass them on to the originating system in their native format.

• Work order log – The work order log is the SARM log of all events that took place on a
particular ASAP work order. Although you can query any event type, failure is the primary
event to be queried. The work order log retrieves the history of all NE commands and
responses transmitted to, and received from, all NEs during the processing of a failed
work order. This information is useful for analysis.

• Work order CSDL log – This function returns SARM CSDL log information for a
particular CSDL command on the ASAP work order.

• Work order CSDL list – This function returns a list of CSDLs on a particular ASAP work
order with a time estimate for each CSDL.

• Work order revisions – The Work Order Revisions function records changes made to
failed work orders in the SARM so that they can be completed at the NE. This facility
provides a “before and after" picture of any modified CSDLs or parameters on the work
order, which is an important feature if you update failed work orders from the OCA. This
allows the originating system to be notified of all changes to the original work order.

Chapter 3
SRP Information Retrieval

3-5

4
The Service Activation Request Manager

The Service Activation Request Manager (SARM) provides much of the functionality for
Oracle Communications ASAP. The SARM performs the following functions:

• Maintains connections to all Service Request Processors (SRPs) and Network Element
Processors (NEPs) within ASAP

• Controls all ASAP operations in both directions

• Manages host feedback

• Manages connection load balancing

During the provisioning process, the SRP transmits the Common Service Description Layer
(CSDL) commands and parameters for a work order to the SARM and receives event
notifications from the SARM. The SARM translates these CSDLs into Atomic Service
Description Layer (ASDL) commands and then sends the ASDL commands and their
associated parameters to the appropriate NEP. The NEP returns the resulting ASDL
responses to the SARM, where they are processed.

Figure 4-1 illustrates the various ASAP data components and APIs relating to the SARM
process.

Figure 4-1 ASAP Components and APIs

The following sections describe the main order management and connection management
features for the SARM.

Order Management
Order management within the SARM refers to the process of scheduling and coordinating the
provisioning activities associated with work orders. These activities include releasing
immediate orders, managing and releasing future-dated orders, and managing order
dependencies (parent/child relationships).

The SARM contains most of the high-level intelligence for network element management,
including the following:

• Rollback Management – You can configure rollback at the CSDL level or the ASDL
level. Should an order be cancelled or encounter an error during provisioning, rollback
returns the network element to its original state.

For more information on rollback, refer to ASAP System Administrator's Guide.

4-1

• Managing Dependencies – When one work order is dependent on another (a
parent/child relationship), the SARM manages the dependency and starts
provisioning the child order once the parent order is complete.

Order Acceptance/Rejection
After receiving a work order, the SARM either accepts or rejects the work order based
on the following:

• Order security

• Order collisions

Order Security
As part of the SRP-to-SARM protocol, the SARM performs a security check on all work
orders transmitted for provisioning. The SRP passes a user ID and password to the
SARM using the protocol. The SARM checks these values with a list of valid users in a
static user-populated database table. If the user ID and password combination is not
valid, the SARM rejects the work order. If the combination is valid, the SARM accepts
the work order.

The order security logic is centralized in the SARM to avoid having each SRP conduct
its own security check. As new SRPs are added to the system, centralization becomes
a critical advantage.

Order Collisions
The SARM rejects a work order sent by the SRP for provisioning if a version of this
work order already exists in the SARM in one of the following states.

• In-Progress WO – An existing copy of the work order is currently in progress in
the SARM.

• Completed WO – An existing copy of the work order has already been completed
in the SARM.

• Timeout WO – An existing copy of the work order has timed out in the SARM.

• Configuration error – The work order has been rejected due to a configuration
error, such as an unknown CSDL command, and a copy of the rejected order was
saved in the Translation Error state in the SARM database.

Order Processing
The SARM processes a work order by performing one of the following operations.

Update
The Update operation provisions the work order at its due date and time. Once the
provisioning begins, the status of the work order is updated to In-Progress.

The activation date and time is not necessarily the same as the due date and time.
The SRP can request the SARM to activate the work order at a date and time other
than the due date and time, dependent upon business rules in the SRP.

Chapter 4
Order Acceptance/Rejection

4-2

The SARM manages a work order according to its status:

• New order – If the order does not already exist in the SARM, the SARM accepts the
order.

• Initial, Held, Reviewed, or Translation Error states – The SARM overwrites the
existing copy of the order.

• In-Progress, Cancelled, or Completed states – The SARM rejects the order.

• Failed state – The SARM cancels all CSDLs on the work order and updates the existing
copy of the order, using a newly generated work order with the same work order ID and a
different service request ID (SRQ_ID).

Cancel
The Cancel operation cancels an existing order in ASAP. The SARM manages a work order
according to its status:

• Non-Existent orders – If the order does not already exist in the SARM, the SARM
accepts the cancellation request and maintains a cancelled record.

• Initial, Held, Reviewed, or Translation Error states – The status of the work order
changes to Cancelled.

• In-Progress state – The order is stopped at the end of the next ASDL command. The
ASDL rollback mechanism is used to roll back the provisioning activities performed by
completed ASDLs. The status of the work order changes to Cancelled.

• Completed or Failed states – The ASDL rollback mechanism is used to roll back all
completed ASDLs. The status of the work order changes to Cancelled.

• Stopped state – If the work order is stopped without rollback, the completed ASDLs are
rolled back and the order is moved into a Cancelled state. If the work order is stopped
with rollback, the order is moved directly into a Cancelled state.

Translation Error
The Translation Error operation applies when the SRP transmits a work order that contains
translation errors to the SARM. The SARM does not activate the work order; instead, it
maintains it in a Translation Error state. The following qualifications apply when the states
listed below are updated with a Translation Error order:

• Non-Existent orders – The SARM accepts the work order.

• Initial, Held, Reviewed, or Translation Error states – The SARM accepts the work
order and overwrites the existing copy of the work order with the order update.

• In Progress, Cancelled, or Completed states – The SARM rejects the translation error
work order.

• Failed states – the SARM cancels all CSDLs on the work order and updates the existing
copy of the order using a newly generated work order, with the same work order ID and a
different service request ID.

Hold
During a Hold operation, a work order is given the Held status, and the SARM retains the
work order and activates it only after receiving a release request or an order update. The
following qualifications apply when the states listed below are updated with a Hold order:

Chapter 4
Order Processing

4-3

• Non-Existent orders – The SARM accepts the work order.

• Initial, Held, Reviewed, or Translation Error states – The SARM accepts the
work order and overwrites the existing copy of the work order with the order
update.

• In Progress, Cancelled, or Completed states – The SARM rejects the Hold
order.

• Failed states – The SARM cancels all CSDLs on the work order and updates the
existing copy of the order using a newly generated work order with the same work
order ID and a different service request ID.

Stop
The Stop operation halts a work order that is in the In-Progress state. It contains an
option to specify whether the completed ASDLs must be rolled back. Once the work
order is stopped, you can restart it by changing its status to the Initial or Cancelled
state.

The Stop operation can only be used on a work order that is in the In-Progress state.
This operation is rejected on all orders that are in other states.

Order Types
The SARM accepts the following order types:

• Immediate

• Future

• Batch

Provisioning activities can be batched in the following ways:

• Single batch orders – Large orders that contain many instances. Such orders are
processed serially within ASAP and are most efficient when all instances in the
batch are destined to the same NE. You can specify an error threshold associated
with a single batch order that, if exceeded, results in the entire batch being
stopped.

• Multiple orders in a batch – The SRP provides the capability to aggregate a set
of otherwise independent orders into a logical batch group and then activate these
orders in parallel with each other. This is best suited to large numbers of instances
in the batch that span many NEs for better performance. The user can specify an
error threshold associated with such batch groups that, if exceeded, results in the
entire batch being stopped.

Connection Management
The SARM contains many features that enable you to efficiently manage connections
to network elements.

• Managing Connect/Disconnect Requests – When the SARM establishes that a
particular ASDL must be routed to a network element, it determines the NEP that
manages the network element and the current status of that network element.
When a connection to the network element has been established, the SARM
transmits the highest priority ASDL for that network element to the NEP.

Chapter 4
Order Types

4-4

• Primary/Auxiliary Connection Requests – The first connection opened to a network
element is called the primary connection. If the SARM determines that additional
connections to a network element are required, it opens auxiliary connections.

• Spawn and Kill Thresholds – ASAP enables you to configure the SARM to control the
number of connections to a particular network element according to the number of ASDL
commands awaiting processing on that network element. If the number of ASDL
commands exceeds a configurable limit (the spawn threshold), the SARM automatically
transmits a request to spawn another connection to the network element.

The SARM sends a network element Disconnect request via the NEP according to the
number of ASDL commands awaiting processing on the network element.

• Work Order Priority – Orders that have higher work order priorities assigned to them are
given processing preference at the ASDL level. The work order priority dictates the
sequence in which ASDLs are queued for the same network element. This queueing
ensures that if there are multiple ASDLs from different work orders in a particular network
element pending queue, the higher priority ASDLs are sent to the network element first.
The priority of the ASDLs is dictated by the priority of the work order from which they are
spawned.

For more information, refer to ASAP System Administrator's Guide.

• Recent Change Retransmission – The Recent Change Retransmission (RCR)
functionality in the SARM lets you retransmit all provisioning commands in their original
provisioning sequence to a particular network element, within a specified time period.

This functionality is required for some older network elements that may lose their recent
change commands due to an unexpected outage, and therefore require retransmission of
these commands.

Order Scheduling
The SARM performs the following order scheduling activities:

• Releases immediate orders – Batch or individual orders are released immediately upon
receipt and are processed by composite priority. CSDLs (and attached ASDLs) within
work orders are processed in the order in which they were configured in the work order.

• Releases future-dated orders – Batch or individual orders are released at their
respective due dates and times. To determine which orders are past due and must be
released for provisioning, the SARM polls the database for such orders every user-
configured interval. These work orders are processed by composite priority. CSDL (and
attached ASDLs) within work orders are processed in the following way:

1. The SARM checks an OSSJ work order for a provisioningSequenceNumber for
each CSDL within the work order.

– If no such number is found, ASAP checks for originalSequenceNumber

– If the value is found, then ASAP applies this value to the
ServiceSequenceNumber. If all other CSDLs within the work order also use the
provisioningSequenceNumber, then ASAP processes each CSDL based on
this value.

2. The SARM checks an OSSJ work order for a originalSequenceNumber for each
CSDL within the work order.

– If no such number is found, then ASAP processes the CSDLs in the order in
which they were received, and gives them a sequence number that start at 5 and
increments by 5 for each new CSDL.

Chapter 4
Order Scheduling

4-5

– If the value is found, then ASAP applies this value to the
ServiceSequenceNumber. If all other CSDLs within the work order also
use the originalSequenceNumber, then ASAP processes each CSDL
based on this value.

• Manages explicit order dependencies – If the SRP notifies the SARM that a
particular work order depends on the completion of another work order, the SARM
manages the dependency and starts provisioning the child order once the parent
order is complete. This is useful for from-and-to orders, multiline orders, etc.

The following dependency conflicts can arise:

– A child work order is not released for processing until the parent work order is
processed.

– A separate cancellation request is required for each child and parent work
order.

– The parent work order is not cancelled until all of its child work orders have
been cancelled.

• Manages implicit order dependencies – If the SRP does not specify explicit
dependencies for future-dated work orders, the SARM manages the dependencies
for orders with the same due date and time.

This feature lets you schedule large numbers of orders of equal work order priority for
the same due date and time. The SARM prioritizes these orders using the order
action, potentially avoiding the Interfering Station or Blocking Service conditions that
have implicit ordering of one or more orders. For example, from-and-to orders whose
relationship has not been explicitly specified by the SRP.

For each NE, the SARM releases delete action orders first, change action orders next,
and add action orders last. It uses the composite work order priority to determine this
ordering.

When one work order is dependent on another (a parent/child relationship), the SARM
manages the dependency and starts provisioning the child order once the parent order
is complete. This feature is useful for from and to and multiline orders.

The following are possible parent/child relationships:

• Multiple child orders with a parent – A parent work order can have more than
one child.

• Parent work order transmitted first – If a parent work order is transmitted before
any child work orders, the parent work order is processed first. Child work orders
start provisioning once the parent order is complete.

• Child work order transmitted first – If a child work order is transmitted before its
parent, it is saved in the database in the Initial state until the parent order is
complete. Once the parent work order is complete, the Batch Handler picks up the
child order for provisioning. When there are multiple child orders, they are picked
up for provisioning in a sequence determined by their composite order priority.

The Batch Handler is a SARM thread that periodically fetches all pending
provisioning and cancellation requests for the system (territory in HA mode) and
processes them based on the composite priority mechanism.

• Child order without a parent – If a child work order is transmitted without a
parent, it is saved in the database in the Initial state.

Chapter 4
Order Scheduling

4-6

• Child order with in-progress parent – The child work order is saved in the database in
Initial state until the parent work order is complete. The child work order is picked up for
provisioning after the parent completes.

• Child order with completed parent – If the child work order is an immediate order, it is
released at once for provisioning. If the child work order is not an immediate order, it is
saved in the database in the Initial state, and the Batch Handler picks it up and releases it
for provisioning at the scheduled due date and time.

• Child order with failed parent – The child work order is saved in the database in the
Initial state.

Network Element Routing Management
Routing information is defined either in the SARM database tables (static routing) or in the
work order itself (dynamic routing).

The static routing feature reads network element information, such as network element
technology and software load, from static, user-controlled configuration tables in the SARM
database.

ASAP also provides extended dynamic routing functionality. Using dynamic routing, ASAP
routes work orders according to routing information that is already contained in the work
order (such as IP addresses and user IDs), rather than information configured in the SARM
database tables. Based on specific information contained in the work order, ASAP routes the
translated ASDLs to the appropriate network element.

Dynamic routing provisioning supports the many smaller network elements that can be found
in IP-based networks, but the feature can be used by all of the downstream communication
protocols supported by the NEP.

ASAP contains the facilities to analyze work orders and to provision them accordingly. For
example, when ASAP recognizes that dependencies exist between service actions, it
determines what actions can be performed in parallel. The SARM processes work orders in
one of two ways:

• Serial processing is performed when the SARM processes ASDLs on a particular work
order as there are often dependencies between ASDL commands. The SARM processes
ASDLs serially when there are dependencies between different ASDL commands. For
example, in a POTS activation, an option can be added only after a line is created. At any
given time, there is a maximum of one ASDL being provisioned on a particular work
order.

• Parallel processing occurs when the SARM processes the ASDLs from different work
orders at the same time and can interleave them with each other at the network element
interface. In addition, ASDLs on different work orders can use different connections to the
same network element, if multiple connections are available for that network element.

Network Element Response Management
In addition to transmitting ASDL commands to the NEP, the SARM is also responsible for
interpreting the resulting ASDL responses.

ASDL responses include ASDL success, failure, retry and so forth.

In ASAP, you can define variables that apply to ASDL responses. For example, you can
configure a retry threshold should the ASDL command fail to be completed in a prescribed

Chapter 4
Network Element Routing Management

4-7

time period. The retry threshold defines the number of times that an ASDL command
is retried before being failed by the SARM.

The SARM performs error threshold management to control the release of ASDL
commands to a network element and prevent an excessive number of errors from
occurring.

The error threshold specifies the number of delayed failures that can occur before the
SARM stops the order. This error threshold can be set on the individual work order or,
if not specified, assumes a default specified by a SARM configuration variable. This
functionality can accommodate batch orders containing many instances of the same
provisioning activity within one SARM work order. If a specified number of such
instances fail, the SARM stops the work order.

SRP Notifications
In addition to managing responses from the network element, the SARM generates
notification events and sends them to the SRP while provisioning a work order.

ASAP system events can be configured to trigger system alarms. For example, if a
routing error occurs, or if the provisioning of a work order exceeds a configurable
period of time, SARM can generate an event that triggers an alarm in an upstream
system.

You can configure system events for each CSDL completion and failure. For example,
you can configure the CSDL commands associated with cellular work order
provisioning to issue a particular system event, which triggers a system alarm to page
a user about the cellular work order failure.

In addition to notifying the SRP of events, the SARM server maintains statistical data
on work order provisioning, including the number of orders processed, successfully
completed, and requiring user intervention.

This information is available to real-time performance monitoring tools. ASAP provides
the ability to audit all transactions involved in work order provisioning. All work order
auditing messages are stored in an audit table in the SARM database. The user can
query work order audit trail records through an ASAP client or third-party monitoring
tools.

Chapter 4
SRP Notifications

4-8

5
The Network Element Processor

The Network Element Processor (NEP) is the Oracle Communications ASAP component that
manages all interactions with network elements. An NEP sends work orders in the form of
Atomic Service Description Layer (ASDL) commands to a network element and receives
responses from the network element about network activity.

Through the NEP, ASAP can manage multiple connections to network elements. ASAP
supports proprietary State Tables and Java.

State Tables
State Tables are programs that act as an interface between specific network elements and
ASDL command execution. They also translate a service request within a customer-based
Service Request Processor (SRP) into an ASAP work order format.

State Tables interface with network elements through the NEP.

The advantages of using State Tables to interface with network elements are:

• The State Table language is relatively simple and easy to learn, and it does not require
the developer to have previous experience with advanced programming languages.This
makes State Tables appropriate for switch engineers, who are knowledgeable about
network interfaces and the switch commands that must be supported.

• The State Tables provide out-of-the-box action functions for manipulating data, such as
switch response handling.

• You can develop custom action functions to manage more advanced logic, such as
performing complex mathematical calculations, interacting with custom databases, or
supporting custom protocols.

• A variety of communication protocols are supported, including TCP/IP, Telnet, SNMP,
LDAP, and FTP.

Java-Enabled NEP
The Java-enabled NEP is fully compatible with traditional State Tables and can still run the
State Table Interpreter when Java is not the defined interpreter. A single NEP can
communicate with network elements through both the State Tables and the Java interface.

In addition to State Tables ASAP supports a Java-enabled NEP that supports common next-
generation protocols such as CORBA, HTTP, SFTP, and XML.

The advantages of using Java to communicate with network elements are:

• Java is a known and accepted programming language.

• You can modify the implementation of Java classes without recompiling the core Java
framework.

• Java provides access to a large repository of third-party libraries and allows for easy
incorporation of external libraries.

5-1

• Java provides the ability to design or structure provisioning classes in an object-
oriented fashion, rather than the procedural framework of State Tables.

NEP Features
The NEP contains the following additional features:

• Customizable NEP database – You can include network element technology-
specific and customer-specific database tables within the NEP database to
generate MML commands that are transmitted to the network elements. Such
tables can be accessed directly from the State Table or Java method during the
provisioning process or can be cached in memory within the NEP for better
performance.

• Program network element response analysis – Network element responses
can be analyzed by the program (State Table or Java Interpreter). After analysis,
the ASDL status is returned to the SARM. Switch history information and
parameters generated during the provisioning process are passed back to the
SARM as specified by the program.

• Network element blackout support – Blackouts identify periods when the
network element is unavailable to ASAP for provisioning. The NEP provides
support for both static (day of the week and time) and dynamic (specific date and
time) user-defined network element blackout periods.

• Automatic NEP port re-enabling – Whenever an NEP connection attempt to a
network element fails, the port within the NEP is disabled. If a network element
login attempt fails, the port is also disabled if it has been configured to do so. This
allows the NEP to use other ports to connect to the network element, if so
configured. The port is disabled to allow manual intervention to determine and
address the cause.

The NEP also provides configurable port re-enable logic that automatically re-
enables disabled ports after a user-configured time period. This negates the need
for manual re-enabling of such disabled ports.

ASAP Cartridges
ASAP cartridges are optional, discrete software components that are developed for
ASAP. An ASAP cartridge provides specific domain behavior on top of the core ASAP
software and productizes the configuration that supports a set of services on an NE.
An ASAP cartridge is not a standalone component, but it operates with the ASAP core
product.

ASAP Documentation
For an overview of ASAP documentation, refer to the publication information in ASAP
Release Notes.

Chapter 5
NEP Features

5-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Introduction
	ASAP Activation Processing Features
	ASAP Management Components

	2 ASAP Component Overview
	ASAP Architecture
	Customer Service Request Sources
	ASAP Clients
	The Order Control Application Client

	Design Studio
	ASAP Servers
	The Service Request Processor
	The Service Activation Request Manager
	The Network Element Processor
	The Admin Server
	The Control Server

	ASAP Configuration Management
	Operational Configuration Management
	Service Configuration Management

	The ASAP Development Toolkit
	ASAP Client/Server APIs
	The ASAP Interpreter and JInterpreter
	ASAP Utilities

	ASAP Security Components
	User Administration and Security
	Data Security

	ASAP Database Components
	The RDBMS Server
	Sybase Open Client/Open Server

	Services and Network Elements Implemented
	Network Technologies Implemented Using ASAP
	Interface Protocols/Standards Supported by ASAP
	BSS / OSS Interfaces
	Network Element and Element Management System Interfaces

	Cartridge Overview
	Cartridge Content

	3 Service Request Processor and Java Service Request Processor
	SRP Order Properties
	Batch Orders

	SRP Notification Reception
	SRP Information Retrieval

	4 The Service Activation Request Manager
	Order Management
	Order Acceptance/Rejection
	Order Security
	Order Collisions

	Order Processing
	Update
	Cancel
	Translation Error
	Hold
	Stop

	Order Types
	Connection Management
	Order Scheduling
	Network Element Routing Management
	Network Element Response Management
	SRP Notifications

	5 The Network Element Processor
	State Tables
	Java-Enabled NEP
	NEP Features
	ASAP Cartridges
	ASAP Documentation

