
Oracle® Communications ASAP
Cloud Native Deployment Guide

Release 7.4
F40784-03
April 2023

Oracle Communications ASAP Cloud Native Deployment Guide, Release 7.4

F40784-03

Copyright © 2005, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

1 Overview of the ASAP Cloud Native Deployment

About the ASAP Cloud Native Deployment 1-1

ASAP Cloud Native Architecture 1-1

Downloading the ASAP Cloud Native Artifacts 1-2

About the ASAP Docker Image Toolkit 1-3

About ASAP Instance 1-3

About the ASAP Cloud Native Toolkit 1-3

About Helm Overrides 1-3

2 Planning and Validating Your Cloud Environment

Required Components for ASAP and Order Balancer Cloud Native 2-1

Planning Your Cloud Native Environment 2-1

Setting Up Your Kubernetes Cluster 2-2

Synchronizing Time Across Servers 2-3

About Container Image Management 2-3

Installing Helm 2-4

About Load Balancing and Ingress Controller 2-5

Using Domain Name System (DNS) 2-6

Configuring Kubernetes Persistent Volumes 2-7

About NFS-based Persistence 2-7

Using Kubernetes Monitoring Toolchain 2-8

About Application Logs and Metrics Toolchain 2-8

Setting Up Persistent Storage 2-9

Planning Your Container Engine for Kubernetes (OKE) Cloud Environment 2-9

Compute Disk Space Requirements 2-10

Connectivity Requirements 2-10

iii

Using Load Balancer as a Service (LBaaS) 2-10

About Using Oracle Cloud Infrastructure Domain Name System (DNS) Zones 2-11

Using Persistent Volumes and File Storage Service (FSS) 2-11

Leveraging Oracle Cloud Infrastructure Services 2-12

Validating Your Cloud Environment 2-12

Performing a Smoke Test 2-12

Validating Common Building Blocks in the Kubernetes Cluster 2-14

3 Creating an ASAP Cloud Native Image

Downloading the ASAP Cloud Native Image Builder 3-1

Prerequisites for Creating ASAP Image 3-1

Creating the ASAP Cloud Native Image 3-2

Working with Cartridges 3-5

Securing Your ASAP Installation 3-6

4 Creating an ASAP Cloud Native Instance

Installing the ASAP Cloud Native Artifacts and the Toolkit 4-1

Installing the Traefik Container Image 4-1

Creating an ASAP Instance 4-3

Setting Environment Variables 4-3

Creating Secrets 4-3

Registering the Namespace 4-4

Configuring Failed ASAP Instances to Restart Automatically 4-4

Creating an ASAP Instance 4-5

Validating the ASAP Instance 4-9

Submitting Orders 4-11

Deleting and Recreating Your ASAP Instance 4-11

Cleaning Up the Environment 4-12

Troubleshooting Issues with the Scripts 4-12

Accessing the OCA Client 4-13

Next Steps 4-14

5 Creating an Order Balancer Cloud Native Image

Downloading the Order Balancer Cloud Native Image Builder 5-1

Prerequisites for Creating an Order Balancer Image 5-1

Creating the Order Balancer Cloud Native Image 5-2

iv

6 Creating an Order Balancer Cloud Native Instance

Installing the Order Balancer Artifacts and the Toolkit 6-1

Installing the Traefik Container Image 6-1

Creating an Order Balancer Instance 6-3

Setting Environment Variables 6-3

Creating Secrets 6-3

Registering the Namespace 6-4

Creating an Order Balancer Instance 6-4

Validating the Order Balancer Instance 6-9

Scaling the Order Balancer Instance 6-10

Deleting and Recreating Your Order Balancer Instance 6-10

Cleaning Up the Environment 6-11

Troubleshooting Issues with the Scripts 6-11

Next Steps 6-12

7 Planning Infrastructure

Sizing Considerations 7-1

Securing Operations in Kubernetes Cluster 7-1

8 Exploring Alternate Configuration Options

Choosing Worker Nodes for Running ASAP Cloud Native 8-1

Working with Ingress, Ingress Controller, and External Load Balancer 8-2

Using an Alternate Ingress Controller 8-3

Managing Logs 8-4

Managing ASAP Cloud Native Metrics 8-4

Configuring Prometheus for ASAP Cloud Native Metrics 8-5

Viewing ASAP Cloud Native Metrics Without Using Prometheus 8-6

Viewing ASAP Cloud Native Metrics in Grafana 8-7

Exposed ASAP Order Metrics 8-7

9 Integrating ASAP

Integrating With ASAP Cloud Native Instances 9-1

Connectivity Between the Building Blocks 9-1

Inbound HTTP Requests 9-2

Inbound JMS Requests 9-3

Applying the WebLogic Patch for External Systems 9-4

Configuring SAF On External Systems 9-4

Setting Up Secure Communication with SSL/TLS 9-5

v

Configuring Secure Incoming Access with SSL 9-5

Generating SSL Certificates for Incoming Access 9-5

Setting Up ASAP Cloud Native for Incoming Access 9-6

Configuring Incoming HTTP and JMS Connectivity for External Clients 9-7

Debugging SSL 9-8

10

Upgrading the ASAP Cloud Native Environment

ASAP Cloud Native Upgrade Procedures 10-1

Order Balancer Cloud Native Upgrade Procedures 10-3

Upgrades to Infrastructure 10-4

Miscellaneous Upgrade Procedures 10-5

11

Moving to ASAP Cloud Native from a Traditional Deployment

Supported Releases 11-1

About the Move Process 11-1

Pre-move Development Activities 11-2

Moving to an ASAP Cloud Native Deployment 11-2

Quiescing the Traditional Instance of ASAP 11-2

Restoring the Database 11-3

Switching Integration with Upstream Systems 11-3

Reverting to Your ASAP Traditional Deployment 11-3

Cleaning Up 11-3

12

Debugging and Troubleshooting

Troubleshooting Issues with Traefik and WebLogic Administration Console 12-1

Common Problems and Solutions 12-4

Known Issues 12-5

A Differences Between ASAP Cloud Native and ASAP Traditional
Deployments

vi

Preface

This guide describes how to install and administer Oracle Communications ASAP Cloud
Native Deployment Option.

Audience
This document is intended for DevOps administrators and those involved in installing and
maintaining Oracle Communications ASAP Cloud Native Deployment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview of the ASAP Cloud Native
Deployment

Get an overview of Oracle Communications ASAP cloud native deployment, architecture, and
the ASAP cloud native toolkit.

This chapter provides an overview of Oracle Communications ASAP deployed in a cloud
native environment using container images and a Kubernetes cluster.

About the ASAP Cloud Native Deployment
You set up your own cloud native environment and can then use the ASAP cloud native
toolkit to automate the deployment of ASAP instances. By leveraging the pre-configured
Helm charts, you can deploy ASAP instances quickly ensuring your services are up and
running in far less time than a traditional deployment. However, there are a few differences
between traditional and cloud native deployments. For more information, see "Differences
Between ASAP Cloud Native and ASAP Traditional Deployments".

ASAP cloud native supports the following deployment models:

• On Private Kubernetes Cluster: ASAP cloud native is certified for a general deployment
of Kubernetes.

• On Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE): ASAP
cloud native is certified to run on Oracle's hosted Kubernetes OKE service.

ASAP Cloud Native Architecture
This section describes and illustrates the ASAP cloud native architecture and the deployment
environment.

The following diagram illustrates the ASAP cloud native architecture.

1-1

Figure 1-1 ASAP Cloud Native Architecture

The ASAP cloud native architecture requires components such as the Kubernetes
cluster. The WebLogic domain is static in the Kubernetes cluster. For any
modifications, you should update the Docker image and redeploy it. The ASAP cloud
native artifacts include a container image built using Docker and the ASAP cloud
native toolkit.

Downloading the ASAP Cloud Native Artifacts
To deploy ASAP and Order Balancer cloud native instances in the Kubernetes cluster:

1. Download the cloud native tar file, for example ASAP.R7_4_0_Px.Bversion.cn.tar
from Oracle Software Delivery Cloud or from My Oracle Support Website.

Note:

The cloud native tar file is present in the Linux platform only.

Where x is the patch set version of the ASAP cloud native.

version is the release version of the ASAP cloud native.

2. Copy the tar file to the machine where Docker and Kubernetes are installed.

3. Extract the tar file using the following command:

tar -xvf ASAP.R7_4_0_Px.Bversion.cn.tar

The artifacts in the tar file are extracted to the same directory where you ran the
command.

The following zip files are extracted:

• asap-img-builder.zip: To build ASAP Docker image and Order Balancer Docker
image.

• asap-cntk.zip: To create ASAP instance.

• ob-cntk.zip: To create Order Balancer instance.

Chapter 1
ASAP Cloud Native Architecture

1-2

About the ASAP Docker Image Toolkit
The ASAP Docker image builder toolkit (asap-img-builder.zip) creates an image with a base
image as Linux 8 and installs prerequisite packages, Java, WebLogic Server, database client,
and ASAP. The toolkit contains scripts to install the required packages and installers.

The image building process consists of manual steps. ASAP database is not part of the
Docker image. The database should be accessible from Docker host machine and the
Kubernetes cluster.

About ASAP Instance
ASAP instance in the Kubernetes cluster includes deployment, service, and Ingress route.
The Docker image is created using the image builder toolkit, which deploys the ASAP
instance in the Kubernetes cluster by using the ASAP cloud native toolkit.

Once the instance is up, you should not perform any configuration changes such as
deploying a new cartridge, changing configuration parameters, and so on. If you want to
perform such changes, update the Docker image and redeploy the instance.

About the ASAP Cloud Native Toolkit
The ASAP cloud native toolkit (asap-cntk.zip) is an archive file that includes utility scripts and
samples to deploy ASAP in a cloud native environment.

Contents of the ASAP Cloud Native Toolkit

The ASAP cloud native toolkit contains the following artifacts:

• Helm charts for ASAP:

– The Helm chart for ASAP is located in the asap_cntk/charts/asap directory.

• Scripts to manage the lifecycle of an ASAP instance

About Helm Overrides
The specifications of the ASAP deployment are consumed from the values.yaml file. The
values defined in the values.yaml file are used by deployment, service, and ingress yaml
files.

Update the values accordingly to create multiple instances.

Chapter 1
ASAP Cloud Native Architecture

1-3

2
Planning and Validating Your Cloud
Environment

In preparation for Oracle Communications ASAP cloud native deployment, you must set up
and validate prerequisite software. This chapter provides information about planning, setting
up, and validating the environment for ASAP cloud native deployment.

See the following topics:

• Required Components for ASAP and Order Balancer Cloud Native

• Planning Your Cloud Native Environment

• Setting Up Persistent Storage

• Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

• Validating Your Cloud Environment

If you are already familiar with traditional ASAP, for important information on the differences
introduced by ASAP cloud native, see "Differences Between ASAP Cloud Native and ASAP
Traditional Deployments".

Required Components for ASAP and Order Balancer Cloud
Native

To run, manage, and monitor the ASAP and Order Balancer cloud native deployment, the
following components and capabilities are required. These must be configured in the cloud
environment:

• Kubernetes Cluster

• Container Image Management

• Helm

• Load Balancer

• Domain Name System (DNS)

• Persistent Volumes

• Secrets Management

• Kubernetes Monitoring Toolchain

• Application Logs and Metrics Toolchain

For details about the required versions of these components, see ASAP Compatibility Matrix.

Planning Your Cloud Native Environment
This section provides information about planning and setting up an ASAP cloud native
environment. As part of preparing your environment for ASAP cloud native, you choose,

2-1

install, and set up various components and services in ways that are best suited for
your cloud native environment. The following sections provide information about each
of those required components and services, the available options that you can choose
from, and the way you must set them up for your ASAP cloud native environment.

Setting Up Your Kubernetes Cluster
For ASAP cloud native, Kubernetes worker nodes must be capable of running Linux
8.x pods with software compiled for Intel 64-bit cores. A reliable cluster must have
multiple worker nodes spread over separate physical infrastructure and a very reliable
cluster must have multiple master nodes spread over separate physical infrastructure.

The following diagram illustrates the Kubernetes cluster and the components that it
interacts with.

Figure 2-1 Kubernetes Cluster

ASAP cloud native requires:

• Kubernetes
To check the version, run the following command:

kubectl version

• Flannel

Chapter 2
Planning Your Cloud Native Environment

2-2

To check the version, run the following command on the master node running the kube-
flannel pod:

docker images | grep flannel
kubectl get pods --all-namespaces | grep flannel

• Docker
To check the version, run the following command:

docker version

Typically, Kubernetes nodes are not used directly to run or monitor Kubernetes workloads.
You must reserve worker node resources for the execution of the Kubernetes workload.
However, multiple users (manual and automated) of the cluster require a point from which to
access the cluster and operate on it. This can be achieved by using kubectl commands
(either directly on the command line and shell scripts or through Helm) or Kubernetes APIs.
For this purpose, set aside a separate host or set of hosts. Operational and administrative
access to the Kubernetes cluster can be restricted to these hosts and specific users can be
given named accounts on these hosts to reduce cluster exposure and promote traceability of
actions.

In addition, you need the appropriate tools to connect to your overall environment, including
the Kubernetes cluster. For instance, for a Container Engine for Kubernetes (OKE) cluster,
you must install and configure the Oracle Cloud Infrastructure Command Line Interface.

Additional integrations may need to include appropriate NFS mounts for home directories,
security lists, firewall configuration for access to the overall environment, and so on.

Kubernetes worker nodes should be configured with the recommended operating system
kernel parameters listed in "Configuring a UNIX ASAP Group and User" in ASAP Installation
Guide. Use the documented values as the minimum values to set for each parameter. Ensure
that Linux OS kernel parameter configuration is persistent, so as to survive a reboot.

The ASAP cloud native instance, for which specification files are provided with the toolkit for
large systems, requires up to 16 GB of RAM and 2 CPUs, in terms of Kubernetes worker
node capacity. For more details about database sizes, see "ASAP Server Hardware
Requirements" in ASAP Installation Guide. A small increment is needed for Traefik. Refer to
those projects for details.

Synchronizing Time Across Servers
It is important that you synchronize the date and time across all machines that are involved in
testing, including client test drivers and Kubernetes worker nodes. Oracle recommends that
you do this using Network Time Protocol (NTP), rather than manual synchronization, and
strongly recommends it for Production environments. Synchronization is important in inter-
component communications and in capturing accurate run-time statistics.

About Container Image Management
An ASAP cloud native deployment generates a container image for ASAP. Additionally, the
image is downloaded for Traefik (depending on the choice of Ingress controllers).

Oracle highly recommends that you create a private container repository and ensure that all
nodes have access to that repository. The image is saved in this repository and all nodes
would then have access to the repository. This may require networking changes (such as

Chapter 2
Planning Your Cloud Native Environment

2-3

routes and proxy) and include authentication for logging in to the repository. Oracle
recommends that you choose a repository that provides centralized storage and
management for the container image.

Failing to ensure that all nodes have access to a centralized repository will mean that
image has to be synced to the hosts manually or through custom mechanisms (for
example, using scripts), which are error-prone operations as worker nodes are
commissioned, decommissioned, or even rebooted. When an image on a particular
worker node is not available, the pods using that image are either not scheduled to
that node, wasting resources, or fail on that node. If image names and tags are kept
constant (such as myapp:latest), the pod may pick up a pre-existing image of the
same name and tag, leading to unexpected and hard to debug behaviors.

Installing Helm
ASAP cloud native requires Helm, which delivers reliability, productivity, consistency,
and ease of use.

In an ASAP cloud native environment, using Helm enables you to achieve the
following:

• You can apply custom domain configuration by using a single and consistent
mechanism, which leads to an increase in productivity. You no longer need to
apply configuration changes through multiple interfaces such as WebLogic
Console, WLST, and WebLogic Server MBeans.

• Changing the ASAP domain configuration in the traditional installations is a
manual and multi-step process that may lead to errors. This can be eliminated with
Helm because of the following features:

– Helm Lint allows pre-validation of syntax issues before changes are applied

– Multiple changes can be pushed to the running instance with a single upgrade
command

– Configuration changes may map to updates across multiple Kubernetes
resources (such as domain resources, config maps, and so on). With Helm,
you merely update the Helm release and its responsibility to determine which
Kubernetes resources are affected.

• Including configuration in Helm charts allows the content to be managed as code,
through source control, which is a fundamental principle of modern DevOps
practices.

To co-exist with older Helm versions in production environments, ASAP requires Helm
3.1.3 or later saved as helm in PATH.

The following text shows sample commands for installing and validating Helm:

$ cd some-tmp-dir
$ wget https://get.helm.sh/helm-v3.4.1-linux-amd64.tar.gz
$ tar -zxvf helm-v3.4.1-linux-amd64.tar.gz

Find the helm binary in the unpacked directory and move it to its
desired destination. You need root user.
$ sudo mv linux-amd64/helm /usr/local/bin/helm

Optional: If access to the deprecated Helm repository "stable" is
required, uncomment and run

Chapter 2
Planning Your Cloud Native Environment

2-4

helm repo add stable https://charts.helm.sh/stable

verify Helm version
$ helm version
version.BuildInfo{Version:"v3.4.1",
GitCommit:"c4e74854886b2efe3321e185578e6db9be0a6e29", GitTreeState:"clean",
GoVersion:"go1.14.11"}

Helm leverages kubeconfig for users running the helm command to access the Kubernetes
cluster. By default, this is $HOME/.kube/config. Helm inherits the permissions set up for this
access into the cluster. You must ensure that if RBAC is configured, then sufficient cluster
permissions are granted to users running Helm.

About Load Balancing and Ingress Controller
ASAP cloud native instance is running in Kubernetes. To access application endpoints, you
must enable HTTP/S connectivity to the cluster through an appropriate mechanism. This
mechanism must be able to route traffic to the ASAP cloud native instance in the Kubernetes
cluster.

For ASAP cloud native, an ingress controller is required to expose appropriate services from
the ASAP cluster and direct traffic appropriately to the cluster members. An external load
balancer is an optional add-on.

Note:

ASAP does not support multiple replicas. However, if you do not want to expose
Kubernetes node IP addresses to users, use a load balancer.

The ingress controller monitors the ingress objects created by the ASAP cloud native
deployment, and acts on the configuration embedded in these objects to expose ASAP HTTP
and HTTPS services to the external network. This is achieved using NodePort services
exposed by the ingress controller.

The ingress controller must support:

• Sticky routing (based on standard session cookie)

• SSL termination and injecting headers into incoming traffic

Examples of such ingress controllers include Traefik, Voyager, and Nginx. The ASAP cloud
native toolkit provides samples and documentation that use Traefik as the ingress controller.

An external load balancer serves to provide a highly reliable single-point access into the
services exposed by the Kubernetes cluster. In this case, this would be the NodePort
services exposed by the ingress controller on behalf of the ASAP cloud native instance.
Using a load balancer removes the need to expose Kubernetes node IPs to the larger user
base, and insulates the users from changes (in terms of nodes appearing or being
decommissioned) to the Kubernetes cluster. It also serves to enforce access policies. The
ASAP cloud native toolkit includes samples and documentation that show integration with
Oracle Cloud Infrastructure LBaaS when Oracle OKE is used as the Kubernetes
environment.

Using Traefik as the Ingress Controller

Chapter 2
Planning Your Cloud Native Environment

2-5

If you choose to use Traefik as the ingress controller, the Kubernetes environment
must have the Traefik ingress controller installed and configured.

For more information about installing and configuring Traefik ingress controller, see
"Installing the Traefik Container Image".

For details about the required version of Traefik, see ASAP Compatibility Matrix.

Using Domain Name System (DNS)
A Kubernetes cluster can have many routable entry points. Common choices are:

• External load balancer (IP and port)

• Ingress controller service (master node IPs and ingress port)

• Ingress controller service (worker node IPs and ingress port)

You must identify the proper entry point for your Kubernetes cluster.

ASAP cloud native requires hostnames to be mapped to routable entrypoints into the
Kubernetes cluster. Regardless of the actual entry points (external load balancer,
Kubernetes master node, or worker nodes), users who need to communicate with the
ASAP cloud native instances require name resolution.

The access hostnames take the prefix.domain form. prefix and domain are determined
by the specifications of the ASAP cloud native configuration for a given deployment.
prefix is unique to the deployment, while domain is common for multiple deployments.

The default domain in ASAP cloud native toolkit is asap.org.

For a particular deployment, as an example, this results in the following addresses:

• dev1.wireless.asap.org (for HTTP access)

• admin.dev1.wireless.asap.org (for WebLogic Console access)

These "hostnames" must be routable to the entry point of your Ingress Controller or
Load Balancer. For a basic validation, on the systems that access the deployment, edit
the local hosts file to add the following entry:

Note:

The hosts file is located in /etc/hosts on Linux and MacOS machines and in
C:\Windows\System32\drivers\etc\hosts on Windows machines.

ip_address dev1.wireless.asap.org admin.dev1.wireless.asap.org
t3.dev1.wireless.asap.org

However, the solution of editing the hosts file is not easy to scale and coordinate
across multiple users and multiple access environments. A better solution is to
leverage DNS services at the enterprise level.

Chapter 2
Planning Your Cloud Native Environment

2-6

With DNS servers, a more efficient mechanism can be adopted. The mechanism is the
creation of a domain level A-record:

A-Record: *.asap.org IP_address

If the target is not a load balancer, but the Kubernetes cluster nodes themselves, a DNS
service can also insulate the user from relying on any single node IP. The DNS entry can be
configured to map *.asap.org to all the current Kubernetes cluster node IP addresses. You
must update this mapping as the Kubernetes cluster changes with adding a new node,
removing an old node, reassigning the IP address of a node, and so on.

With these two approaches, you can set up an enterprise DNS once and modify it only
infrequently.

Configuring Kubernetes Persistent Volumes
Typically, runtime artifacts in ASAP cloud native are created within the respective pod
filesystems. As a result, they are lost when the pod is deleted. These artifacts include
application logs and WebLogic Server logs.

While this impermanence may be acceptable for highly transient environments, it is typically
desirable to have access to these artifacts outside of the lifecycle of the ASAP could native
instance. It is also highly recommended to deploy a toolchain for logs to provide a centralized
view with a dashboard. To allow for artifacts to survive independent of the pod, ASAP cloud
native allows for them to be maintained on Kubernetes Persistent Volumes.

ASAP cloud native does not dictate the technology that supports Persistent Volumes but
provides samples for NFS-based persistence. Additionally, for ASAP cloud native on an
Oracle OKE cloud, you can use persistence based on File Storage Service (FSS).

Regardless of the persistence provider chosen, persistent volumes for ASAP cloud native
use must be configured:

• With accessMode ReadWriteMany

• With a capacity to support the intended workload

Log size and retention policies can be configured as part of the shape specification.

About NFS-based Persistence
For use with ASAP cloud native, one or more NFS (Network File System) servers must be
designated.

It is highly recommended to split the servers as follows:

• At least one for the development instance and the non-sensitive test instance (for
example, for Integration testing)

• At least one for the sensitive test instance (for example, for Performance testing, Stress
testing, and production staging)

• One for the production instance

In general, ensure that the sensitive instances have dedicated NFS support, so that they do
not compete for disk space or network IOPS with others.

Chapter 2
Planning Your Cloud Native Environment

2-7

The exported filesystems must have enough capacity to support the intended
workload. Given the dynamic nature of the ASAP cloud native instances, and the fact
that the ASAP logging volume is highly dependent on cartridges and on the order
volume, it is prudent to put in place a set of operational mechanisms to:

• Monitor disk usage and warn when the usage crosses a threshold

• Clean out the artifacts that are no longer needed

If a toolchain such as ELK Stack picks up this data, then the cleanup task can be built
into this process itself. As artifacts are successfully populated into the toolchain, they
can be deleted from the filesystem. You must take care to only delete log files that
have rolled over.

Using Kubernetes Monitoring Toolchain
A multi-node Kubernetes cluster with multiple users and an ever-changing workload
require a capable set of tools to monitor and manage the cluster. There are tools that
provide data, rich visualizations, and other capabilities such as alerts. ASAP cloud
native does not require any particular system to be used but recommends using such
a monitoring, visualization, and alerting capability.

For ASAP cloud native, the key aspects of monitoring are:

• Worker capacity in CPU and memory. The pods take up a non-trivial amount of
worker resources. For example, pods configured for production performance use
32 GB of memory.

• Worker node disk pressure

• Worker node network pressure

• The health of the core Kubernetes services

• The health of WebLogic Kubernetes Operator

• The health of Traefik (or other load balancers in the cluster)

The name spaces and pods that ASAP cloud native uses provide a cross instance
view of ASAP cloud native.

About Application Logs and Metrics Toolchain
ASAP cloud native generates all logs that traditional ASAP and WebLogic Server
typically generate. The logs can be sent to a shared filesystem for retention and for
retrieval by a toolchain such as Elastic Stack.

In addition, ASAP cloud native generates metrics. ASAP cloud native exposes metrics
for scraping by Prometheus. These can then be processed by a metrics toolchain, with
visualizations like Grafana dashboards. Dashboards and alerts can be configured to
enable sustainable monitoring of multiple ASAP cloud native instances throughout
their lifecycles. Performance metrics include heap utilization, threads stuck, garbage
collection, and so on.

Oracle highly recommends using a toolchain to effectively monitor ASAP cloud native
instance. The dynamic lifecycle in ASAP cloud native, in terms of deploying, scaling
and updating an instance, requires proper monitoring and management of the
database resources as well. For non-sensitive environments such as development
instances and some test instances, this largely implies monitoring the tablespace
usage and the disk usage, and adding disk space as needed.

Chapter 2
Planning Your Cloud Native Environment

2-8

Setting Up Persistent Storage
ASAP and Order Balancer cloud native can be configured to use a Kubernetes Persistent
Volume to store data that needs to be retained even after a pod is terminated. This data
includes application logs and WebLogic Server logs. When an instance is re-created, the
same persistent volume need not be available. When persistent storage is configured in the
Docker image, these data files, which are written inside a pod are re-directed to the persistent
volume.

Data from all ASAP and Order Balancer instances may be persisted, but each instance does
not need a unique location for logging. Data is written to an asap-instance folder or ob-
instance folder, so multiple instances can share the same end location without destroying
data from other instances.

The final location for this data should be one that is directly visible to the users of ASAP and
Order Balancer cloud native. The development instances may direct data to a shared file
system for analysis and debugging by cartridge developers. Whereas formal test and
production instances may need the data to be scraped by a logging toolchain such as EFK,
which can then process the data and make it available in various forms. The
recommendation, therefore, is to create a PV-PVC pair for each class of destination within a
project. In this example, one for developers to access and one that feeds into a toolchain.

A PV-PVC pair would be created for each of these "destinations", that multiple instances can
then share. A single PVC can be used by multiple ASAP and Order Balancer instances. The
management of the PV (Persistent Volume) and PVC (Persistent Volume Claim) lifecycles is
beyond the scope of ASAP and Order Balancer cloud native.

The ASAP and Order Balancer cloud native infrastructure administrator is responsible for
creating and deleting PVs or for setting up dynamic volume provisioning.

The ASAP and Order Balancer cloud native project administrator is responsible for creating
and deleting PVCs as per the standard documentation in a manner such that they consume
the pre-created PVs or trigger the dynamic volume provisioning. The specific technology
supporting the PV is also beyond the scope of ASAP and Order Balancer cloud native.
However, samples for PV supported by NFS are provided.

Planning Your Container Engine for Kubernetes (OKE) Cloud
Environment

This section provides information about planning your cloud environment if you want to use
Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE) for ASAP cloud native.
Some of the components, services, and capabilities that are required and recommended for a
cloud native environment are applicable to the Oracle OKE cloud environment as well.

• Kubernetes and Container Images: You can choose from the version options available
in OKE as long as the selected version conforms to the range described in the section
about planning cloud native environment.

• Container Image Management: ASAP cloud native recommends using Oracle Cloud
Infrastructure Registry with OKE. Any other repository that you use must be able to serve
images to the OKE environment in a quick and reliable manner. The ASAP cloud native
image is of the order of 5 GB each.

Chapter 2
Setting Up Persistent Storage

2-9

• Oracle Multitenant Database: It is strongly recommended to run Oracle DB
outside of OKE, but within the same Oracle Cloud Infrastructure tenancy and the
region as an Oracle DB service (BareMetal, VM, or ExaData). The database
version should be 19c. You can choose between a standalone DB or a multi-node
RAC.

• Helm: Install Helm as described for the cloud native environment into the OKE
cluster.

• Persistent Volumes: Use NFS-based persistence. ASAP cloud native
recommends the use of Oracle Cloud Infrastructure File Storage service in the
OKE context.

• Monitoring Toolchains: While the Oracle Cloud Infrastructure Console provides a
view of the resources in the OKE cluster, it also enables you to use the
Kubernetes Dashboard. Any additional monitoring capability must be built up.

Compute Disk Space Requirements
Given the size of the ASAP cloud native container image (approximately 5 GB), the
size of the ASAP cloud native containers, and the volume of the ASAP logs generated,
it is recommended that the OKE worker nodes have at least 40 GB of free space that
the /var/lib filesystem can use. Add disk space if the worker nodes do not have the
recommended free space in the /var/lib filesystem.

Work with your Oracle Cloud Infrastructure OKE administrator to ensure worker nodes
have enough disk space. Common options are to use Compute shapes with larger
boot volumes or to mount an Oracle Cloud Infrastructure Block Volume to /var/lib/
docker.

Note:

The reference to logs in this section applies to the container logs and other
infrastructure logs. The space considerations still apply even if the ASAP
cloud native logs are being sent to an NFS Persistent Volume.

Connectivity Requirements
ASAP cloud native assumes the connectivity between the OKE cluster and the Oracle
CDBs is LAN-equivalent in reliability, performance, and throughput. This can be
achieved by creating the Oracle CDBs within the same tenancy as the OKE cluster
and in the same Oracle Cloud Infrastructure region.

ASAP cloud native allows for the full range of Oracle Cloud Infrastructure "cloud-to-
ground" connectivity options for integrating the OKE cluster with on-premise
applications and users. Selecting, provisioning, and testing such connectivity is a
critical part of adopting Oracle Cloud Infrastructure OKE.

Using Load Balancer as a Service (LBaaS)
For load balancing, you have the option of using the services available in OKE. The
infrastructure for OKE is provided by Oracle's IaaS offering, Oracle Cloud
Infrastructure. In OKE, the master node IP address is not exposed to the tenants. The
IP addresses of the worker nodes are also not guaranteed to be static. This makes

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

2-10

DNS mapping difficult to achieve. Additionally, it is also required to balance the load between
the worker nodes. To fulfill these requirements, you can use Load Balancer as a Service
(LBaaS) of Oracle Cloud Infrastructure.

The load balancer can be created using the service descriptor in $ASAP_CNTK/samples/
oci-lb-traefik.yaml. The subnet ID referenced in this file must be filled in from your Oracle
Cloud Infrastructure environment (using the subnet configured for your LBaaS). The port
values assume you have installed Traefik using the unchanged sample values.

The configuration can be applied using the following command (or for traceability, by
wrapping it into a Helm chart):

$ kubectl apply -f oci-lb-traefik.yaml
service/oci-lb-service-traefikconfigured

The Load Balancer service is created for Traefik pods in the Traefik name space. Once the
Load Balancer service is created successfully, an external IP address is allocated. This IP
address must be used for DNS mapping.

$ kubectl get svc -n traefik oci-lb-service-traefik
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S)
oci-lb-service-traefik LoadBalancer 10.96.103.118 100.77.24.178
80:32006/TCP,443:32307/TCP

For additional details, see the following:

• "Creating Load Balancers to Distribute Traffic Between Cluster Nodes" in Oracle Cloud
Infrastructure documentation.

• "Load Balancer Annotations" in Oracle GitHub documentation.

About Using Oracle Cloud Infrastructure Domain Name System (DNS)
Zones

While a custom DNS service can provide the addressing needs of ASAP cloud native even
when ASAP is running in OKE, you can evaluate the option of Oracle Cloud Infrastructure
Domain Name System (DNS) zones capability. Configuration of DNS zones (and integration
with on-premise DNS systems) is not within the scope of ASAP cloud native.

Using Persistent Volumes and File Storage Service (FSS)
In the OKE cluster, ASAP cloud native can leverage the high performance, high capacity, high
reliability File Storage Service (FSS) as the backing for the persistent volumes of ASAP cloud
native. There are two flavors of FSS usage in this context:

• Allocating FSS by setting up NFS mount target

• Native FSS

To use FSS through an NFS mount target, see instructions for allocating FSS and setting up
a Mount Target in "Creating File Systems" in the Oracle Cloud Infrastructure documentation.
Note down the Mount Target IP address and the storage path and use these in the ASAP
cloud native instance specification as the NFS host and path. This approach is simple to set

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

2-11

https://docs.cloud.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancer.htm
https://github.com/oracle/oci-cloud-controller-manager/blob/master/docs/load-balancer-annotations.md
https://docs.cloud.oracle.com/en-us/iaas/Content/File/Tasks/creatingfilesystems.htm

up and leverages the NFS storage provisioner that is typically available in all
Kubernetes installations. However, the data flows through the mount target, which
models an NFS server.

FSS can also be used natively, without requiring the NFS protocol. This can be
achieved by leveraging the FSS storage provisioner supplied by OKE. The broad
outline of how to do this is available in the blog post "Using File Storage Service with
Container Engine for Kubernetes" on the Oracle Cloud Infrastructure blog.

Leveraging Oracle Cloud Infrastructure Services
For your OKE environment, you can leverage existing services and capabilities that
are available with Oracle Cloud Infrastructure. The following table lists the Oracle
Cloud Infrastructure services that you can leverage for your OKE cloud environment.

Table 2-1 Oracle Cloud Infrastructure Services for OKE Cloud Environment

Type of Service Service Indicates Mandatory /
Recommended / Optional

Developer Service Container Clusters Mandatory

Developer Service Registry Recommended

Core Infrastructure Compute Instances Mandatory

Core Infrastructure File Storage Recommended

Core Infrastructure Block Volumes Optional

Core Infrastructure Networking Mandatory

Core Infrastructure Load Balancers Recommended

Core Infrastructure DNS Zones Optional

Database BareMetal, VM, and ExaData Recommended

Validating Your Cloud Environment
Before you start using your cloud environment for deploying cloud native instances,
you must validate the environment to ensure that it is set up properly and that any
prevailing issues are identified and resolved. This section describes the tasks that you
should perform to validate your cloud environment.

You can validate your cloud environment by:

• Performing a smoke test of the Kubernetes cluster

• Validating the common building blocks in the Kubernetes cluster

Performing a Smoke Test
You can perform a smoke test of your Kubernetes cloud environment by running nginx.
This procedure validates basic routing within the Kubernetes cluster and access from
outside the environment. It also allows for an initial RBAC examination as you need to
have permissions to perform the smoke test. For the smoke test, you need nginx
1.14.2 container image.

Chapter 2
Validating Your Cloud Environment

2-12

https://blogs.oracle.com/cloud-infrastructure/using-file-storage-service-with-container-engine-for-kubernetes
https://blogs.oracle.com/cloud-infrastructure/using-file-storage-service-with-container-engine-for-kubernetes

Note:

The requirement of the nginx container image for the smoke test can change over
time. See the content of the deployment.yaml file in step 3 of the following
procedure to determine which image is required. Alternatively, ensure that you have
logged in to Docker Hub so that the system can download the required image
automatically.

To perform a smoke test:

1. Download the nginx container image from Docker Hub.

For details on managing container images, see "About Container Image Management."

2. After obtaining the image from Docker Hub, upload it into your private container
repository and ensure that the Kubernetes worker nodes can access the image in the
repository.

Oracle recommends that you download and save the container image to the private
Docker repository even if the worker nodes can access Docker Hub directly. The images
in the cloud native toolkit are available only through your private Docker repository.

3. Run the following commands:

kubectl apply -f https://k8s.io/examples/application/deployment.yaml #
the deployment specifies two replicas
kubectl get pods # Must return two pods in the Running state
kubectl expose deployment nginx-deployment --type=NodePort --
name=external-nginx
kubectl get service external-nginx # Make a note of the external port
for nginx

These commands must run successfully and return information about the pods and the
port for nginx.

4. Open the following URL in a browser:

http://master_IP:port/

where:

• master_IP is the IP address of the master node of the Kubernetes cluster or the
external IP address for which routing has been set up

• port is the external port for the external-nginx service

5. To track which pod is responding, on each pod, modify the text message in the webpage
served by nginx. In the following example, this is done for the deployment of two pods:

$ kubectl get pods -o wide | grep nginx
nginx-deployment-5c689d88bb-g7zvh 1/1 Running 0 1d
10.244.0.149 worker1 <none>
nginx-deployment-5c689d88bb-r68g4 1/1 Running 0 1d
10.244.0.148 worker2 <none>
$ cd /tmp
$ echo "This is pod A - nginx-deployment-5c689d88bb-g7zvh - worker1" >

Chapter 2
Validating Your Cloud Environment

2-13

index.html
$ kubectl cp index.html nginx-deployment-5c689d88bb-g7zvh:/usr/
share/nginx/html/index.html
$ echo "This is pod B - nginx-deployment-5c689d88bb-r68g4 -
worker2" > index.html
$ kubectl cp index.html nginx-deployment-5c689d88bb-r68g4:/usr/
share/nginx/html/index.html
$ rm index.html

6. Check the index.html webpage to identify which pod is serving the page.

7. Check if you can reach all the pods by running refresh (Ctrl+R) and hard refresh
(Ctrl+Shift+R) on the index.html webpage.

8. If you see the default nginx page, instead of the page with your custom message,
it indicates that the pod has restarted. If a pod restarts, the custom message on
the page gets deleted.

Identify the pod that restarted and apply the custom message for that pod.

9. Increase the pod count by patching the deployment.

For instance, if you have three worker nodes, run the following command:

Note:

Adjust the number as per your cluster. You may find you have to
increase the pod count to more than your worker node count until you
see at least one pod on each worker node. If this is not observed in your
environment even with higher pod counts, consult your Kubernetes
administrator. Meanwhile, try to get as much worker node coverage as
reasonably possible.

kubectl patch deployment nginx-deployment -p '{"spec":
{"replicas":3}}' --type merge

10. For each pod that you add, repeat step 5 to step 8.

Ensuring that all the worker nodes have at least one nginx pod in the Running state
ensures that all worker nodes have access to Docker Hub or to your private Docker
repository.

Validating Common Building Blocks in the Kubernetes Cluster
To approach ASAP cloud native in a sustainable manner, you must validate the
common building blocks that are on top of the basic Kubernetes infrastructure
individually. The following sections describe how you can validate the building blocks.

Network File System (NFS)

ASAP cloud native uses Kubernetes Persistent Volumes (PV) and Persistent Volume
Claims (PVC) to use a pod-remote destination filesystem for ASAP logs and
performance data. By default, these artifacts are stored within a pod in Kubernetes
and are not easily available for integration into a toolchain. For these to be available
externally, the Kubernetes environment must implement a mechanism for fulfilling PV
and PVC. The Network File System (NFS) is a common PV mechanism.

Chapter 2
Validating Your Cloud Environment

2-14

For the Kubernetes environment, identify an NFS server and create or export an NFS
filesystem from it.

Ensure that this filesystem:

• Has enough space for the ASAP logs and performance data

• Is mountable on all the Kubernetes worker nodes

Create an nginx pod that mounts an NFS PV from the identified server. For details, see the
documentation about "Kubernetes Persistent Volumes" on the Kubernetes website. This
activity verifies the integration of NFS, PV/PVC, and the Kubernetes cluster. To clean up the
environment, delete the nginx pod, the PVC, and the PV.

Ideally, data such as logs and JFR data is stored in the PV only until it can be retrieved into a
monitoring toolchain such as Elastic Stack. The toolchain must delete the rolled over log files
after processing them. This helps you to predict the size of the filesystem. You must also
consider the factors such as the number of ASAP cloud native instances that will use this
space, the size of those instances, the volume of orders they will process, and the volume of
logs that your cartridges generate.

Validating the Load Balancer

For a development-grade environment, you can use an in-cluster software load balancer.
ASAP cloud native toolkit provides documentation and samples that show you how to use
Traefik to perform load balancing activities for your Kubernetes cluster.

It is not necessary to run through "Traefik Quick Start" as part of validating the environment.
However, if the ASAP cloud native instances have connectivity issues with HTTP/HTTPS
traffic, and the ASAP logs do not show any failures, it might be worthwhile to take a step back
and validate Traefik separately using Traefik Quick Start.

A more intensive environment, such as a test, a production, apre-production, or performance
environment can additionally require a more robust load balancing service to handle the
HTTP/HTTPS traffic. For such environments, Oracle recommends using a load balancing
hardware that is set up outside the Kubernetes cluster. A few examples of external load
balancers are Oracle Cloud Infrastructure LBaaS for OKE, Google's Network LB Service in
GKE, and F5's Big-IP for private cloud. The actual selection and configuration of an external
load balancer is outside the scope of ASAP cloud native itself but is an important component
to sort out in the implementation of ASAP cloud native. For more details on the requirements
and options, see "Integrating ASAP".

To validate the ingress controller of your choice, you can use the same nginx deployment
used in the smoke test described earlier. This is valid only when run in a Kubernetes cluster
where multiple worker nodes are available to take the workload.

To perform a smoke test of your ingress setup:

1. Run the following commands:

kubectl apply -f https://k8s.io/examples/application/deployment.yaml
kubectl get pods -o wide # two nginx pods in Running state; ensure
these are on different worker nodes
cat > smoke-internal-nginx-svc.yaml <<EOF
apiVersion: v1
kind: Service
metadata:
 name: smoke-internal-nginx
 namespace: default

Chapter 2
Validating Your Cloud Environment

2-15

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.traefik.io/getting-started/quick-start/

spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 selector:
 app: nginx
 sessionAffinity: None
 type: ClusterIP
EOF
kubectl apply -f ./smoke-internal-nginx-svc.yaml
kubectl get svc smoke-internal-nginx

2. Create your ingress targeting the internal-nginx service. The following text shows
a sample ingress annotated to work with the Traefik ingress controller:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: traefik
 name: smoke-nginx-ingress
 namespace: default
spec:
 rules:
 - host: smoke.nginx.asaptest.org
 http:
 paths:
 - backend:
 serviceName: smoke-internal-nginx
 servicePort: 80

If the Traefik ingress controller is configured to monitor the default name space,
then Traefik creates a reverse proxy and the load balancer for the nginx
deployment. For more details, see Traefik documentation.

If you plan to use other ingress controllers, refer to the documentation about the
corresponding controllers for information on creating the appropriate ingress and
make it known to the controller. The ingress definition should be largely reusable,
with ingress controller vendors describing their own annotations that should be
specified, instead of the Traefik annotation used in the example.

3. Create a local DNS/hosts entry in your client system mapping
smoke.nginx.asaptest.org to the IP address of the cluster, which is typically the
IP address of the Kubernetes master node, but could be configured differently.

4. Open the following URL in a browser:

http://smoke.nginx.asaptest.org:Traefik_Port/

where Traefik_Port is the external port that Traefik has been configured to expose.

5. Verify that the web address opens and displays the nginx default page.

Your ingress controller must support session stickiness for ASAP cloud native. To learn
how stickiness should be configured, refer to the documentation about the ingress

Chapter 2
Validating Your Cloud Environment

2-16

controller you choose. For Traefik, stickiness must be set up at the service level itself. For
testing purposes, you can modify the internal-nginx service to enable stickiness by running
the following commands:

kubectl delete ingress smoke-nginx-ingress
vi smoke-internal-nginx-svc.yaml
Add an annotation section under the metadata section:
annotation:
traefik.ingress.kubernetes.io/affinity: "true"
kubectl apply -f ./smoke-internal-nginx-svc.yaml
now apply back the ingress smoke-nginx-ingress using the above yaml
definition

Other ingress controllers may have different configuration requirements for session
stickiness. Once you have configured your ingress controller, and smoke-nginx-ingress
and smoke-internal-nginx services as required, repeat the browser-based procedure to
verify and confirm if nginx is still reachable. As you refresh (Ctrl+R) the browser, you should
see the page getting served by one of the pods. Repeatedly refreshing the web page should
show the same pod servicing the access request.

To further test session stickiness, you can either do a hard refresh (Ctrl+Shift+R) or restart
your browser (you may have to use the browser in Incognito or Private mode), or clear your
browser cache for the access hostname for your Kubernetes cluster. You may observe that
the same nginx pod or a different pod is servicing the request. Refreshing the page
repeatedly should stick with the same pod while hard refreshes should switch to the other
pod occasionally. As the deployment has two pods, the chances of a switch with a hard
refresh are 50%. You can modify the deployment to increase the number of replica nginx
pods (controlled by the replicas parameter under spec) to increase the odds of a switch.
For example, with four nginx pods in the deployment, the odds of a switch with hard refresh
rise to 75%. Before testing with the new pods, run the commands for identifying the pods to
add unique identification to the new pods. See the procedure in "Performing a Smoke Test"
for the commands.

To clean up the environment after the test, delete the following services and the deployment:

• smoke-nginx-ingress
• smoke-internal-nginx
• nginx-deployment

Chapter 2
Validating Your Cloud Environment

2-17

3
Creating an ASAP Cloud Native Image

An ASAP cloud native image is required to create and manage ASAP cloud native instances.
This chapter describes creating an ASAP cloud native image.

An ASAP cloud native requires a container image and access to the database. The ASAP
image is built on top of a Linux base image and the ASAP image builder script adds Java,
WebLogic Server components, database client, and ASAP.

The ASAP cloud native image is created using the ASAP cloud native builder toolkit. You
should run the ASAP cloud native builder toolkit on Linux and it should have access to the
local Docker daemon.

See the following topics for further details:

• Downloading the ASAP Cloud Native Image Builder

• Prerequisites for Creating ASAP Image

• Creating the ASAP Cloud Native Image

• Working with Cartridges

Downloading the ASAP Cloud Native Image Builder
To build the ASAP cloud native Docker image, the asap-img-builder.zip file is required. For
more information about downloading the ASAP cloud native Image Builder, see "Downloading
the ASAP Cloud Native Artifacts".

ASAP cloud native builder kit contains:

• The scripts to install the required packages.

• The scripts to install database client, Java, WebLogic Server, and ASAP.

Prerequisites for Creating ASAP Image
The prerequisites for building ASAP cloud native image are:

• The Docker client and daemon on the build machine.

• Approximately 2 GB of swap space on the machine where the Docker daemon is running.
By running the free -m command, you can verify the swap space.

Note:

If the required swap space is not available, contact your administrator.

• ASAP 7.4.0.0 or later Linux Installer. Download the .tar file from Oracle Software Delivery
Cloud:
https://edelivery.oracle.com

3-1

https://edelivery.oracle.com

• Create the disk1 directory and copy the contents of the .tar file to this directory.

• Installers for WebLogic Server and JDK. Download these from Oracle Software
Delivery Cloud:

https://edelivery.oracle.com

• Oracle Database Client. Download this from Oracle Software Downloads:

https://www.oracle.com/downloads/

• Java, installed with JAVA_HOME set in the environment.

• ASAP is installed in a silent installation mode using the asap.properties file. You
should update the properties file with the database, WebLogic Server,
ORACLE_HOME, port numbers, and all required details.

• Keep the TRAEFIK Ingress service node port details ready where it is being
deployed.

• Create ASAP database users. For more information, see "Creating Oracle
Database Tablespaces, Tablespace User, and Granting Permissions" in ASAP
Installation Guide.

For details about the required and supported versions of the prerequisite software, see
ASAP Software Compatibility Matrix.

Creating the ASAP Cloud Native Image
The ASAP cloud native image builder tool builds the ASAP cloud native Docker image,
which is then pushed to the Docker repository and deployed in the Kubernetes cluster.
If the Docker repository is not available, you copy the image to all the worker nodes of
the cluster.

The ASAP installer is packaged with the ASAP cloud native image builder and the
cloud native toolkit.

Note:

After you download the installer, locate the cloud native image builder asap-
img-builder.zip in the cloud native tar file. The ASAP Docker images are
created automatically for ASAP 7.4.0.1 or later.

To create the ASAP cloud native Docker image:

1. Copy the asap-img-builder.zip file to the machine where the Docker daemon is
running.

2. Extract the contents of the zip file by running the following command:

unzip asap-img-builder.zip
3. Copy the following installers to the $asap-img-builder/installers directory.

• Linux Installer for ASAP 7.4.0.1 or later

• Installers for WebLogic Server and JDK

• Oracle Database Client

4. Copy the required cartridges to the $asap-img-builder/cartridges directory.

Chapter 3
Creating the ASAP Cloud Native Image

3-2

https://edelivery.oracle.com
https://www.oracle.com/downloads/

5. Set the environment variable for ASAP_IMG_BUILDER to the $asap-img-builder
directory.

6. Update the $asap-img-builder/scripts/tnsnames.ora file with the database details. For
example,

orcl19c =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = database host)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = service name)
)
)

7. Update the HTTPS_PROXY and HTTP_PROXY variables in the build_env.sh script.

Note:

The variables in the section Docker details, Installer filenames, and Installation
locations are populated by default with the appropriate information.

base_image=oraclelinux:8
HTTPS_PROXY=
HTTP_PROXY=

Docker details
ASAP_IMAGE_TAG="7.4.0.0.0"
ASAP_VOLUME=dockerhost_volume
ASAP_CONTAINER="asap-c"
DOCKER_HOSTNAME="asaphost"

Installer filenames
JDK_FILE=jdk-8u321-linux-x64.tar.gz
DB_CLIENT_FILE=LINUX_193000_client.zip
FMW_FILE=fmw_14.1.1.0.0_wls_lite_Disk1_1of1.zip

Installation locations
TNS_ADMIN=/scripts/
JAVA_HOME=/usr/lib/jvm/java/jdk1.8.0_321
ORACLE_HOME=/home/oracle/oracle/product/19.3.0/dbhome_1
PATH=$ORACLE_HOME:$JAVA_HOME/bin:$PATH
CV_ASSUME_DISTID=OEL8
WLS_HOME=/home/oracle/weblogic14110/wlserver

Note:

Ensure that the file names of JDK_FILE, DB_CLIENT_FILE, and FMW_FILE
variables match with the file names in the /asap-img-builder/installers/ folder.

Chapter 3
Creating the ASAP Cloud Native Image

3-3

8. Update the following parameters in the $asap-img-builder/asap.properties file
with the required details for ASAP and the WebLogic Server domain. You can
update the configuration parameters that must be updated after ASAP installation
using asap.properties file. All the configuration parameters should be prefixed
with asap.properties. You can create multiple ASAP instances by entering
multiple unique environment IDs in the asap.envid variable separated by a
comma. For example, asap.envid=CNE1, CNE2, CNE3 where CNE1, CNE2, and
CNE3 are unique environment IDs.

asap.tar.file=ASAP.R7_4_0.B196.linux.tar
asap.envid=CNE1
asap.installLocation=/scratch/oracle/asap
asap.db.alias=
asap.db.username=
asap.db.password=
asap.db.tablespace=
asap.db.temp.ts=
weblogic.domainName=asapDomain
weblogic.domainLocation=/u01/oracle/user_projects/domain/
weblogic.username=
weblogic.password=
weblogic.port=7601
weblogic.channel.listenport=7602
weblogic.channel.publicport=30301
asap.server.adm.password=
asap.server.ctrl.password=
asap.server.nep.password=
asap.server.sarm.password=
asap.server.srp.password=
asap.weblogic.adminPassword=
asap.weblogic.cmwsPassword=
asap.weblogic.monitorPassword=
asap.weblogic.operatorPassword=
asap.weblogic.wsPassword=
ASAP.cfg properties
asap.properties.MSGSND_RETRIES=5

Chapter 3
Creating the ASAP Cloud Native Image

3-4

Note:

• If Traefik is configured, weblogic.channel.publicport parameter must
have the traefik ingress controller nodeport value (for http 30305 and for
https 30443).

• If DNS is configured, weblogic.channel.publicport must have the value
same as weblogic.channel.listenport.

• asap.weblogic.adminPassword, asap.weblogic.cmwsPassword,
asap.weblogic.monitorPassword, asap.weblogic.operatorPassword, and
asap.weblogic.wsPassword parameters must have passwords at least 8
characters long, and must contain at least 1 number or special character.

• The asap.properties file is available only in the host machine and not as
part of the Docker image.

9. Run the build-asap-images.sh script using the following command:

./build-asap-images.sh -i asap

The script creates the staging Docker image by installing WebLogic Server, Java, and the
database client.

The script also creates the staging ASAP Docker image for the environment IDs specified
in the asap.properties file.

Working with Cartridges
ASAP cartridges are discrete software components developed for ASAP. An ASAP cartridge
provides specific domain behavior on top of the core ASAP software. This domain behavior
includes a part of, or all services on a network element (NE), element management system
(EMS), or network management system (NMS). For more information about cartridges, see
ASAP Cartridge Development Guide and for installing cartridges, see ASAP Installation
Guide.

To provision orders to network elements, you install cartridges in the ASAP container that are
available in the $ASAP_VOLUME/cartridges/ directory. After installing the cartridges, you
must exit the ASAP container by using the exit command.

To install cartridges:

1. Copy the required cartridges to the $asap-img-builder/cartridges directory.

2. Run the following command to copy installers and cartridges to the volume:

$asap-img-builder/upgradeASAPDockerImage.sh

3. Create a new container with the ASAP Docker image created by the build-asap-
images.sh script using the following command:

docker run --name $ASAP_CONTAINER -dit -h $DOCKER_HOSTNAME -
p $WEBLOGIC_PORT -v $ASAP_VOLUME:/$ASAP_VOLUME ASAP-BASE-IMAGE

Chapter 3
Working with Cartridges

3-5

For example: docker run --name asap-c -dit -h asaphost -p 7601 -v
dockerhost_volume:/dockerhost_volume asapcn:7.4.0.0

The container is created with asap-c.

4. Enter into the ASAP container using the following command:

docker exec -it CONTAINER_NAME bash

where CONTAINER_NAME is the $ASAP_CONTAINER. For example, asap-c.

You have entered into the ASAP container.

5. Start ASAP and WebLogic Server using the startALL.sh script.

6. Navigate to the ASAP installation directory using cd $ASAP_BASE.

7. Source the environment profile using the source Environment_Profile script.

8. Verify the ASAP server status using the status command.

9. Install the cartridges present in the /dockerhost_volume/cartridges directory. For
more information, see "Installing a Cartridge" in ASAP Installation Guide.

10. After you install the cartridge, create an image from the staging container using the
following command:

docker commit CONTAINER_NAME imagename:version

Where

• CONTAINER_NAME is the $ASAP_CONTAINER.

• version is the version of the ASAP Docker image. This version should be
higher than the previous version.

11. Exit the ASAP container by using the following command:

exit

12. Stop and remove the containers using the following commands:

docker stop CONTAINER_NAME

docker rm CONTAINER_NAME

where CONTAINER_NAME is the $ASAP_CONTAINER.

Securing Your ASAP Installation
ASAP security is designed to provide confidentiality, data integrity, and ensure on-
demand access to services for authorized users. For information about ASAP security,
see "Setting Up and Managing ASAP Security" in ASAP System Administrator's
Guide.

Chapter 3
Securing Your ASAP Installation

3-6

4
Creating an ASAP Cloud Native Instance

This chapter describes how to create an ASAP cloud native instance in your cloud
environment using the operational scripts and the base ASAP configuration provided in the
ASAP cloud native toolkit. You can create an ASAP instance quickly to become familiar with
the process, explore the configuration, and structure your own project. This procedure is
intended to validate that you are able to create an ASAP instance in your environment.

Before you create an ASAP instance, you must do the following:

• Download the ASAP cloud native tar file and extract the asap-cntk.zip file. For more
information about downloading the ASAP cloud native toolkit, see "Downloading the
ASAP Cloud Native Artifacts".

• Install the Traefik container images

Installing the ASAP Cloud Native Artifacts and the Toolkit
Build container image for the ASAP application using the ASAP cloud native Image Builder.

You must create a private Docker repository for this image, ensuring that all nodes in the
cluster have access to the repository. See "About Container Image Management" for more
details.

Copy the ASAP cloud native toolkit that is the asap-cntk.zip file to one of the nodes in the
Kubernetes cluster:

• On Oracle Linux: Where Kubernetes is hosted on Oracle Linux, download and extract
the tar archive to each host that has connectivity to the Kubernetes cluster.

• On OKE: For an environment where Kubernetes is running in OKE, extract the contents
of the tar archive on each OKE client host. The OKE client host is the bastion host/s that
is set up to communicate with the OKE cluster.

Set the variable for the installation directory by running the following command, where
asap_cntk_path is the installation directory of the ASAP cloud native toolkit:

$ export ASAP_CNTK=asap_cntk_path

Installing the Traefik Container Image

Note:

If you are installing Order Balancer in the ASAP namespace, ignore this section.

To leverage the ASAP cloud native samples that integrate with Traefik, the Kubernetes
environment must have the Traefik ingress controller installed and configured.

4-1

If you are working in an environment where the Kubernetes cluster is shared, confirm
whether Traefik has already been installed and configured for ASAP cloud native. If
Traefik is already installed and configured, set your TRAEFIK_NS environment variable
to the appropriate name space.

The instance of Traefik that you installed to validate your cloud environment must be
removed as it does not leverage the ASAP cloud native samples. Ensure that you
have removed this installation in addition to purging the Helm release. Check that any
roles and rolebindings created by Traefik are removed. There could be a clusterrole
and clusterrolebinding called "traefik-operator". There could also be a role and
rolebinding called "traefik-operator" in the $TRAEFIK_NS name space. Delete all of
these before you set up Traefik.

To download and install the Traefik container image:

1. Ensure that Docker in your Kubernetes cluster can pull images from Docker Hub.
See ASAP Compatibility Matrix for the required and supported versions of the
Traefik image.

2. Run the following command to create a name space ensuring that it does not
already exist:

Note:

You might want to add the traefik name space to the environment setup
such as .bashrc.

kubectl get namespaces
export TRAEFIK_NS=traefik
kubectl create namespace $TRAEFIK_NS

3. Run the following commands to install Traefik using the $ASAP_CNTK/samples/
charts/traefik/values.yaml file in the samples:

Note:

Set kubernetes.namespaces and the chart version specifically using
command-line.

helm repo add traefik repo_link
helm install traefik-operator traefik/traefik \
 --namespace $TRAEFIK_NS \
 --values $ASAP_CNTK/samples/charts/traefik/values.yaml \
 --set "kubernetes.namespaces={$TRAEFIK_NS}"

where repo_link is https://helm.traefik.io/traefik or https://traefik.github.io/charts
based on the helm chart version. For more details, see: https://github.com/traefik/
traefik-helm-chart

Chapter 4
Installing the Traefik Container Image

4-2

https://helm.traefik.io/traefik
https://traefik.github.io/charts
https://github.com/traefik/traefik-helm-chart
https://github.com/traefik/traefik-helm-chart

After the installation, Traefik monitors the name spaces listed in its
kubernetes.namespaces field for Ingress objects. The scripts in the toolkit manage this
name space list as part of creating and tearing down ASAP cloud native projects.

When the values.yaml Traefik sample in the ASAP cloud native toolkit is used as is, Traefik
is exposed to the network outside of the Kubernetes cluster through port 30305. To use a
different port, edit the YAML file before installing Traefik. Traefik metrics are also available for
Prometheus to scrape from the standard annotations.

Traefik function can be viewed using the Traefik dashboard. Create the Traefik dashboard by
running the instructions provided in the $ASAP_CNTK/samples/charts/traefik/traefik-
dashboard.yaml file. To access this dashboard, the URL is: http://traefik.asap.org. This
is if you use the values.yaml file provided with the ASAP cloud native toolkit; it is possible to
change the hostname as well as the port to your desired values.

Creating an ASAP Instance
This section describes how to create an ASAP instance.

Setting Environment Variables
Order Balancer cloud native relies on access to certain environment variables to run
seamlessly. Ensure the following variables are set in your environment:

• Path to your private specification repository

• Traefik name space

To set the environment variables:

• Set the TRAEFIK_NS variable for Traefik name space as follows:

$ export TRAEFIK_NS=Treafik Namespace

Creating Secrets
You must store sensitive data and credential information in the form of Kubernetes Secrets
that the scripts and Helm charts in the toolkit consume. Managing secrets is out of the scope
of the toolkit and must be implemented while adhering to your organization's corporate
policies. Additionally, Order Balancer cloud native does not establish password policies.

For an ASAP could native instance, the following secrets are required:

• imagepull-secret: If the private registry or repository is password protected, create this
secret.

• tls-secret: If the traefik ingress is ssl-enabled, create this secret. For more information
about creating tls-secret, see "Setting Up ASAP Cloud Native for Incoming Access."

To create imagepull-secret:

1. Run the following command:

docker login

2. Enter the credentials or access token.

Chapter 4
Creating an ASAP Instance

4-3

The login process creates or updates the config.json file that contains an
authorization token.

3. Run the following command to run the secret:

kubectl create secret generic asap-imagepull -n namespace
--from-file=.dockerconfigjson=$HOME/.docker/config.json --
type=kubernetes.io/dockerconfigjson

Registering the Namespace
After you set the environment variables, register the name space. To register the name
space, run the following command:

$ASAP_CNTK/scripts/register-namespace.sh -p sr -t targets
For example, $ASAP_CNTK/scripts/register-namespace.sh -p sr -t
traefik

Where -p is the namespace where ASAP is being deployed.

Note:

traefik is the name of the targets for registration of the namespace sr. The
script uses TRAEFIK_NS to find these targets. Do not provide the traefik
target if you are not using Traefik.

Configuring Failed ASAP Instances to Restart Automatically
You configure the readiness and liveness probes in Kubernetes to restart the failed
ASAP instances automatically and to restore the services. Kubernetes uses the
liveness and readiness probes to find the failed ASAP instances and restarts those
instances to restore the services automatically.

You update the liveness and readiness probes in the $ASAP_CNTK/charts/asap/
values.yaml file with the following values:

readiness:
 enabled: true
 initialDelaySeconds: 240
 periodSeconds: 60
liveness:
 enabled: true
 periodSeconds: 120
 initialDelaySeconds: 120
 failureThreshold: 3

For detailed description of the readiness and liveness parameters, see step 1 in
"Creating an ASAP Instance".

Chapter 4
Creating an ASAP Instance

4-4

Creating an ASAP Instance
This procedure describes how to create an ASAP instance in your environment using the
scripts that are provided with the toolkit.

To create an ASAP instance:

1. Update the $ASAP_CNTK/charts/asap/values.yaml file with the following values:

Default values for asap.
This is a YAML-formatted file.
Declare variables to be passed into your templates.

replicaCount: 1
image:
 repository: asapcn
 pullPolicy: IfNotPresent
 tag: "7.4.0.0.0"
imagePullSecrets:
 - name: asap-imagepull
asapEnv:
 envid: cne1
 port: 7601
 host: asaphost
persistence:
 enabled: false
readiness:
 enabled: true
 initialDelaySeconds: 240
 periodSeconds: 60
liveness:
 enabled: true
 periodSeconds: 120
 initialDelaySeconds: 120
 failureThreshold: 3
nameOverride: ""
fullnameOverride: ""

serviceAccount:
 # Specifies whether a service account should be created
 create: true
 # Annotations to add to the service account
 annotations: {}
 # The name of the service account to use.
 # If not set and create is true, a name is generated using the fullname
template
 name: ""

podAnnotations: {}
podSecurityContext: {}
 # fsGroup: 2000
securityContext: {}
 # capabilities:
 # drop:

Chapter 4
Creating an ASAP Instance

4-5

 # - ALL
 # readOnlyRootFilesystem: true
 # runAsNonRoot: true
 # runAsUser: 1000
servicechannel:
 name: channelport
 type: ClusterIP
 port: 7601
service:
 name: adminport
 type: ClusterIP
 port: 7602

ingress:
 type: TRAEFIK
 enabled: true
 sslIncoming: false
 adminsslhostname: adminhost.asap.org
 adminhostname: adminhostnonssl.asap.org
 secretName: project-instance-asapcn-tls-cert
 hosts:
 - host: adminhost.asap.org
 paths: []
 tls: []
 # - secretName: chart-example-tls
 # hosts:
 # - chart-example.local

resources: {}
autoscaling:
 enabled: false
nodeSelector: {}
tolerations: []

affinity: {}

Where:

• repository is the repository name of the configured container registry

• tag is the version name that is used when you create a final Docker image
from the container

• name is the name of the imagepull-secret if it is configured. For more
information about imagepull-secret, see "Creating Secrets".

• envid is the unique environment ID of the instance. This ID should include only
the lower-case alphanumeric characters. For example, asapinstance1.

• port is the port number of the WebLogic Server where ASAP is deployed.

• host is the hostname of the docker container.

Chapter 4
Creating an ASAP Instance

4-6

Note:

The hostname should match with the hostname when you create the ASAP
Docker image. If the hostname mismatches, the ASAP servers may not
start.

• persistence.enabled is set to true if PVC is enabled.

• readiness.enabled is set to true to enable the readiness probe in Kubernetes.
Kubernetes uses the readiness probe to know when a container is ready to start
accepting traffic.

• initialDelaySeconds is the number of seconds after the ASAP instance has started
before the readiness probes are initiated.

• periodSeconds specifies how often (in seconds) to perform the readiness probe.

• liveness.enabled is set to true to enable the liveness probe. Kubernetes uses the
liveness probes to know when to restart a container.

• periodSeconds specifies how often (in seconds) to perform the liveness probe.

• initialDelaySeconds is the number of seconds after the ASAP instance has started
before the liveness probes are initiated.

• failureThreshold is the number of times that Kubernetes retry the liveness probes
before restarting the ASAP instance.

• servicechannel.port is the channel port when you create a channel in the WebLogic
domain.

• service.port is the admin port of the WebLogic Server.

• type is the ingress controller type. This type can be TRAEFIK or GENERIC or
OTHER.

• enabled is the status of the ingress controller whether it is enabled or not. The value
is true or false. By default, this is set to true.

• sslIncoming is the status of the SSL/TLS configuration on incoming connections
whether it is enabled or not. The configuration value is true or false. By default, this is
set to false. If you want to set the value to true, create keys, certificate, and secret by
following the instructions in the "Setting Up ASAP Cloud Native for Incoming Access"
section.

• adminsslhostname is the hostname of the https access.

• adminhostname is the hostname of the http access.

• secretName is the secret name of the certificate created for SSL/TLS. For more
information about creating keys and secret name, see "Setting Up ASAP Cloud
Native for Incoming Access."

Note:

adminsslhostname and secretName are applicable only if sslIncoming is set to
true.

2. Create PV and PVC if the persistence.enabled is set to true in the $ASAP_CNTK/
charts/asap/values.yaml file for the ASAP instance. The PV path is used to store the

Chapter 4
Creating an ASAP Instance

4-7

logs of the ASAP instance. The sample files are available in the asap_cntk.zip
at $ASAP_CNTK/samples/nfs/ file.

This is pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
 name: <project>-<asapEnv.envid>-nfs-pv
 labels:
 type: local
spec:
 storageClassName: asaplogs
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
hostPath:
path: "/mnt/asap/logs/
 nfs:
 server: <server>
 path: <path>
This is pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: <obEnv.envid>-pvc
 namespace: sr
spec:
 storageClassName: asaplogs
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

Where:

• <project> is the namespace. In the above example, value is sr.

• <asapEnv.envid> is the environment ID provided in the $ASAP_CNTK/
samples/charts/traefik/values.yaml file. In the above example, value is
cn96.

This path will be mounted on the Pod as /scratch/oracle/asap/DATA/logs/
3. Run the following command to create the ASAP instance:

$ASAP_CNTK/scripts/create-instance.sh -p sr -i quick

The create-instance.sh script uses the Helm chart located in the charts/asap
directory to deploy the ASAP docker image, service, and ingress controller for your
instance. If the script fails, see "Troubleshooting Issues with the Scripts" before
you make additional attempts.

Chapter 4
Creating an ASAP Instance

4-8

4. Validate the important input details such as Image name and tag, specification files used
(Values Applied), hostname, and port for ingress routing:

$ASAP_CNTK/scripts/create-instance.sh -p sr -i quick

1 chart(s) linted, 0 chart(s) failed
Project Namespace : sr
Instance Fullname : sr-quick

NAME: sr-quick
LAST DEPLOYED: Sun Feb 27 17:49:25 2022
NAMESPACE: sr
STATUS: deployed
REVISION: 1
TEST SUITE: None

5. If you query the status of the ASAP pod, the READY state of the ASAP pod displays 0/1
for several minutes when the ASAP application is starting.
When the READY state shows 1/1, your ASAP instance is up and running. You can then
validate the instance by submitting work orders.

The base hostname required to access this instance using HTTP is quick.sr.asap.org.
See "Planning and Validating Your Cloud Environment" for details about hostname resolution.

The create-instance script prints out the following valuable information that you can use
when you work with your ASAP domain:

• The T3 URL: http://t3.quick.sr.asap.org This is required for external client
applications such as JMS and WLST.

• The URL for accessing the WebLogic UI, which is provided through the ingress controller
at host: http://admin.quick.sr.asap.org:30305/console.

Validating the ASAP Instance
After creating an instance, you can validate it by accessing the WebLogic Server console.

Run the following command to display the pod details of the ASAP instance that you have
created:

$ kubectl get all -n sr
NAME READY STATUS RESTARTS AGE
pod/asapinstance1-deployment-9845fbcb6-8qq2h 1/1 Running 0
5d15h
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
service/asapinstance1-service ClusterIP 10.99.231.206 <none>
7602/TCP,7601/TCP 5d21h
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/asapinstance1-deployment 1/1 1 1
5d21h
NAME DESIRED CURRENT READY AGE
replicaset.apps/asapinstance1-deployment-d5bd787f8 0 0
0 5d15h

Chapter 4
Creating an ASAP Instance

4-9

To get the ASAP server status enter into the pod by using the following command:

kubectl exec -it asapinstance1-deployment-9845fbcb6-8qq2h bash -n sr

You are now entered into the ASAP pod. Navigate to the ASAP installation directory by
using the following command:

cd $ASAP_BASE
source Environment_Profile
status

The status of ASAP servers are displayed. For example:

[root@asaphost asap]# status
 **** ASAP Application Status ****
 # CPU PID Program
Application Location
 -- --------- -------- --
----------- --------
 1 00:00:01 6712 $ASAP_BASE/programs/ctrl_svr
CTRLCN89 LOCAL
 2 00:00:00 6824 $ASAP_BASE/programs/fork_agent
CTRLCN89 LOCAL
 3 00:00:18 6966 java
JNEP_CN89 LOCAL
 4 00:00:01 7018 $ASAP_BASE/programs/asc_nep
NEP_CN89 LOCAL
 5 00:00:01 7073 $ASAP_BASE/programs/admn_svr
ADM_CN89 LOCAL
 6 00:00:07 7131 $ASAP_BASE/programs/sarm
SARMCN89 LOCAL
 7 00:00:06 7234 java
DAEMCN89 LOCAL
 8 00:00:02 7335 $ASAP_BASE/programs/srp_emul
SRP_CN89 LOCAL
 **** End of Application Status ****

CN89 is the ENV_ID.

Note:

After an ASAP instance is created, it may take a few minutes to start ASAP
servers and WebLogic Server.

To access WebLogic Administration Console outside the cluster, enter the following
URL in the browser:

http://adminhostnonssl.asap.org:30305/console

Chapter 4
Creating an ASAP Instance

4-10

The system prompts for the user name and password. Enter the WebLogic domain user
name and password.

Update the hosts file with the hostname and master_ip address on the machine where the
URL is getting accessed with the following information:

ip_address adminhostnonssl.asap.org

Note:

The hosts file is located in /etc/hosts on Linux and MacOS machines and in
C:\Windows\System32\drivers\etc\hosts on Windows machines.

Submitting Orders
ASAP is installed with the default POTS cartridge. You can submit ASAP orders over JMS
and Web Services.

To submit ASAP orders over JMS, use an external runJMSclient. The endpoint must be as
follows:

System.$
{ENV_ID}.ApplicationType.ServiceActivation.Application.1-0;7-4;ASAP.Comp.Mess
ageQueue

The connection factory's provider URL must be as follows:

For non-SSL:

http://adminhostnonssl.asap.org:30305/

For SSL:

https://adminhostssl.asap.org:30443/

To submit ASAP orders over Web Services, type the following URL in the web browser and
access the ASAP Web Services WSDL:

http://adminhostnonssl.asap.org:30305/env_id/Oracle/CGBU/Mslv/Asap/Ws?WSDL

HTTP protocol is used for a handshake with the application server to authenticate and
request a web service client stub, which is used as the launch pad to talk to Web Services.
Then the client can communicate with the ASAP Web Services using HTTP or HTTPS
protocols.

Deleting and Recreating Your ASAP Instance
Deleting Your ASAP Instance

Chapter 4
Creating an ASAP Instance

4-11

To delete your ASAP instance, run the following command:

$ASAP_CNTK/scripts/delete-instance.sh -p sr -i quick

Recreating Your ASAP Instance

When you delete an ASAP instance, the database state for that instance still remains
unaffected. You can re-create an ASAP instance by using the same Docker image.

To re-create an ASAP instance, run the following command:

$ASAP_CNTK/scripts/create-instance.sh -p sr -i quick

Note:

After recreating an instance, client applications such as SoapUI may need to
be restarted to avoid using expired cache information.
If another ASAP instance is created in the same database using the same
Environment ID, the ASAP installer deletes the previous ASAP database
users and recreates new users.

You should not create multiple ASAP instances with the same Docker image.

Cleaning Up the Environment
To clean up the environment:

1. Delete the instance:

$ASAP_CNTK/scripts/delete-instance.sh -p sr -i quick

2. Delete the name space, which in turn deletes the Kubernetes name space and the
secrets:

$ASAP_CNTK/scripts/unregister-namespace.sh -p sr -d -t target

Note:

traefik is the name of the target for registration of the name space.
The script uses TRAEFIK_NS to find this target. Do not provide the
"traefik" target if you are not using Traefik.

3. Delete the ASAP database users.

Troubleshooting Issues with the Scripts
This section provides information about troubleshooting some issues that you may
encounter when running the scripts.

If you experience issues when running the scripts, do the following:

Chapter 4
Creating an ASAP Instance

4-12

• Check the "Status" section of the domain to see if there is useful information:

kubectl describe pod name -n sr

Cleanup Failed Instance

When a create-instance script fails, you must clean up the instance before making another
attempt at instance creation.

Note:

Do not retry running the create-instance script or the upgrade-instance script
immediately to fix any errors, as they would return errors. The upgrade-instance
script may work but re-running it does not complete the operation.

To clean up the failed instance:

1. Delete the instance:

$ASAP_CNTK/scripts/delete-instance.sh -p sr -i quick

Recreating an Instance

If you encounter issues when creating an instance, do not try to re-run the create-
instance.sh script as this will fail. Instead, perform the cleanup activities and then run the
following command:

$ASAP_CNTK/scripts/create-instance.sh -p sr -i quick

Accessing the OCA Client
Similar to the ASAP traditional deployment, ASAP cloud native also connects through the
Order Control Application (OCA) client using thick and thin clients.

To configure the OCA client:

1. Add an entry to the hosts file to the machine (Unix or Windows) from which the user is
planning to launch the OCA client to resolve DNS.
This entry contains the IP address of the master node and hostname of the ASAP
instance running in a cloud native. You can obtain the hostname from the values.yaml
file.

The hosts configuration file is located at:

• On Windows: C:\Windows\System32\drivers\etc\hosts

• On Linux: /etc/hosts

For example:

Kubernetes_Cluster_Master_IP <hostname provided in the values.yaml file>

2. Update the tbl_server_info table in the CTRL database.
The hostname column contains the hostname mentioned in the values.yaml file and
INFO column contains ‘HTTPS:<ingressport>’

Chapter 4
Creating an ASAP Instance

4-13

For example:

update tbl_server_info set HOST_NAME='adminhost.asap.org';
update tbl_server_info set INFO='HTTP:30305';
update tbl_server_info set INFO='HTTPS:30443';
update tbl_server_info set INFO='HTTPS:80';

Note:

Based on the Ingressroute configuration use HTTP or HTTPS. The port
number is the traefik nodeport.

3. Launch the thin client once the database is updated with the following URL:
https:<HOST>:<ingressport>/<ENVID>/OCA
For the thick client, the OCA.cfg file contains HTTPS_PORT inside SESSION
specifying the ingressport.

Next Steps
The ASAP instance is ready to add the Order Balancer cloud native instance. The
URL for adding the Order Balancer instance is:

t3://<service-name>.<namespace>.svc.cluster.local:<portnumber>
Where:

• <service-name> is the name of the service.

• <namespace> is the namespace of the ASAP instance.

• <portnumber> is the port number of the WebLogic Server Domain in the ASAP
instance.

Here is an example for adding the ASAP instance to Order Balancer:

• ./addASAPServer -asapSrvName ASAP1 -asapSrvURL t3://cn96-
service.sr.svc.cluster.local:7601 -asapSrvUser weblogic -asapSrvRequestQueue
"System.CN96.ApplicationType.ServiceActivation.Application.1-0;7-4;ASAP.Comp.
MessageQueue"

For more information about managing ASAP instances, see "Setting Up ASAP for High
Availability" in ASAP System Administrator's Guide.

Chapter 4
Next Steps

4-14

5
Creating an Order Balancer Cloud Native
Image

Order Balancer cloud native image is required to create and manage Order Balancer cloud
native instances. This chapter describes creating an Order Balancer cloud native image.

Order Balancer cloud native instance requires a container image and access to the database.
The Order Balancer image is built on top of a Linux base image and the Order Balancer
image builder script adds Java, WebLogic Server components, and Order Balancer.

The Order Balancer cloud native image is created using the Order Balancer cloud native
builder toolkit. You should run the Order Balancer cloud native builder toolkit on Linux and it
should have access to the local Docker daemon.

See the following topics for further details:

• Downloading the Order Balancer Cloud Native Image Builder

• Prerequisites for Creating an Order Balancer Image

• Creating the Order Balancer Cloud Native Image

Downloading the Order Balancer Cloud Native Image Builder
To build the Order Balancer cloud native Docker image, the asap-img-builder.zip file is
required. This zip file is packaged as part of the ASAP cloud native tar file. For more
information about downloading the Order Balancer cloud native Image Builder,
see "Downloading the ASAP Cloud Native Artifacts".

See ASAP Software Compatibility Matrix for details about the latest recommended installer
versions of Order Balancer.

The Order Balancer cloud native builder kit contains:

• The scripts to install the required packages.

• The scripts to install database client, install Java, WebLogic Server, and ASAP.

Prerequisites for Creating an Order Balancer Image
The prerequisites for building an Order Balancer cloud native image are:

• The Docker client and daemon on the build machine.

• Approximately 2 GB of swap space on the machine where the Docker daemon is running.
By running the free -m command, you can verify the swap space.

Note:

If the required swap space is not available, contact your administrator.

5-1

• Order Balancer Installer file. For example, ASAP.R7_4_0_Px.Byy.ob.tar file.
Download this file from the Oracle Software Delivery Cloud website:https://
edelivery.oracle.com.

• Installers for WebLogic Server and JDK. Download these from the Oracle
Software Delivery Cloud website: https://edelivery.oracle.com.

• Java, installed with JAVA_HOME set in the environment.

• TRAEFIK Ingress service node port should be ready where it is being deployed.

• Order Balancer database users should be created. For more information, see
"Planning Your Installation" in ASAP System Administrator's Guide.

See ASAP Software Compatibility Matrix for details about the required and supported
versions of the prerequisite software.

Creating the Order Balancer Cloud Native Image
The Order Balancer cloud native image builder tool builds the Order Balancer cloud
native Docker image, which is then pushed to the Docker repository and deployed in
the Kubernetes cluster. If the Docker repository is not available, you copy the image to
all the worker nodes of the cluster.

The ASAP installer is packaged with the Order Balancer cloud native image builder
and the cloud native toolkit.

Note:

After you download the installer, locate the Order Balancer cloud native
image builder asap-img-builder.zip in the ASAP cloud native tar file. The
Order Balancer Docker images are created automatically for ASAP 7.4.0.1 or
later.

To create the Order Balancer cloud native image:

1. Copy the asap-img-builder.zip file to the machine where the Docker daemon is
running.

2. Extract the contents of the zip file by running the following command:

unzip asap-img-builder.zip
3. Copy the following installers to the $asap-img-builder/installers directory.

• Order Balancer Installer

• Installers for WebLogic Server and JDK

4. Update the following parameters in the $asap-img-builder/ob.properties file:

ob.tar.file=ASAP.R7_4_0.B196.ob.tar
ob.weblogic.username=weblogic
ob.weblogic.password=
ob.weblogic.port=7501
ob.weblogic.domainName=ob
ob.weblogic.channel.listenport=7502
ob.weblogic.channel.publicport=30301

Chapter 5
Creating the Order Balancer Cloud Native Image

5-2

https://edelivery.oracle.com
https://edelivery.oracle.com
https://edelivery.oracle.com

ob.ssl.incoming=0
ob.cacheexpiry=60
#Time in seconds
ob.all.servers.down.wait.interval=3600
ob.all.servers.down.retry.interval=120
ob.server.down.retry.interval=2
ob.server.poll.interval=60
ob.webservice.res.timeout=0
ob.asap.conn.timeout=10
Values allowed: SEVERE, WARNING, INFO , FINE , FINEST ,ALL
ob.logger.info=INFO
ob.db.host=
ob.db.port=1521
ob.db.service.name=
ob.db.user=
ob.db.password=
ob.jms.user=
ob.jms.password=

where

• ob.weblogic.username is the user name to log in to WebLogic Server.

• ob.weblogic.password is the password to log in to WebLogic Server.

• ob.weblogic.port is the port of the WebLogic Server.

• ob.weblogic.domainName is the WebLogic Server domain.

• ob.weblogic.channel.listenport is the channel listen port of the WebLogic Server.

• ob.weblogic.channel.publicport is the public port of the WebLogic Server.

• ob.ssl.incoming is set to enable SSL on Order Balancer WebLogic Server. The
default value is 0 which specifies non-SSL.

• ob.cacheexpiry specifies the duration in seconds that Order Balancer JPA shared
query refreshes the cache. Cache is refreshed upon next request after the duration
expires. The default value is 60.

• ob.all.servers.down.wait.interval specifies the duration in seconds that Order
Balancer waits before routing the request back to queue when all the ASAP
instances are down. The default value is 3600.

• ob.all.servers.down.retry.interval specifies the duration in seconds that Order
Balancer waits before retrying to connect to fetch for an active ASAP member
instance while waiting when all servers are down. The default value is 120.

• ob.server.down.retry.interval specifies the duration in seconds that Order
Balancer waits before reattempting to route the order to the same instance. If the re-
attempt fails, the instance is marked as down. The default value is 2.

• ob.server.poll.interval specifies the duration in seconds that Order Balancer
waits before it retries to check the ASAP instance status. The default value is 60.

• ob.webservice.res.timeout specifies the duration in seconds that Order Balancer
waits for response before the read times-out. Order Balancer Web Service waits for a
response from ASAP member instance after invoking the operation. A value of zero
means Order Balancer will wait indefinitely until it receives a response from ASAP.
The default value is 0 seconds (no read time-out).

Chapter 5
Creating the Order Balancer Cloud Native Image

5-3

• ob.asap.conn.timeout specifies the duration in seconds that Order Balancer
reattempts the connection to the ASAP instance. The default value is 10.

• ob.logger.info specifies the log level for initializing the Order Balancer
application root logger. The valid values are SEVERE, WARNING, INFO,
FINE, FINEST, and ALL.

• ob.db.host is the database host name or IP address.

• ob.db.port is the database port.

• ob.db.service.name is the database service name.

• ob.db.user is the database user name.

• ob.db.password is the database password.

• ob.jms.user is the JMS user.

• ob.jms.password is the JMS password.

Note:

Do not add an ASAP instance when you are building the Order Balancer
Docker image. The wallet store is mounted dynamically in the
Kubernetes cluster. The wallet files created in the Docker image are not
accessible in the Kubernetes Pod.

In the cloud native deployment, the WebLogic domain is non-SSL and the ingress
controller is configured as SSL.

5. Update the HTTPS_PROXY and HTTP_PROXY variables in the build_ob_env.sh
script:

base_image=oraclelinux:8
HTTPS_PROXY=
HTTP_PROXY=

Docker details
OB_IMAGE_TAG="obcn:7.4.0.0.0"
OB_VOLUME=obhost_volume
OB_CONTAINER="ob-c"
DOCKER_HOSTNAME="obhost"

Installer filenames
WEBLOGIC_DOMAIN=/u01/oracle/user_projects/domains/
JDK_FILE=jdk-8u321-linux-x64.tar.gz
FMW_FILE=fmw_14.1.1.0.0_wls_lite_Disk1_1of1.zip

Installation locations
JAVA_HOME=/usr/lib/jvm/java/jdk1.8.0_321
PATH=$JAVA_HOME/bin:$PATH
WEBLOGIC_HOME=/home/oracle/weblogic141100

Chapter 5
Creating the Order Balancer Cloud Native Image

5-4

Note:

The file names of JDK_FILE and FMW_FILE variables must match with the file
names in the /asap-img-builder/installers/ folder.

6. Run the build-asap-images.sh script to build the Order Balancer docker images:

./build-asap-images.sh -i ob
The script creates the Order Builder Docker images by running the docker container and
commits the Order Builder image.

Chapter 5
Creating the Order Balancer Cloud Native Image

5-5

6
Creating an Order Balancer Cloud Native
Instance

This chapter describes how to create an Order Balancer cloud native instance in your cloud
environment using the operational scripts and the base Order Balancer configuration
provided in the Order Balancer cloud native toolkit. You can create an Order Balancer
instance quickly to become familiar with the process, explore the configuration, and structure
your own project. You can create multiple Order Balancer instances by using the same Order
Balancer Docker image. This procedure is intended to validate that you are able to create an
Order Balancer instance in your environment.

Before you create an Order Balancer instance, you must do the following:

• Download the ASAP cloud native tar file and extract the ob-cntk.zip file. For more
information about downloading the Order Balancer cloud native toolkit, see "Downloading
the ASAP Cloud Native Artifacts".

• Install the Traefik container images

Installing the Order Balancer Artifacts and the Toolkit
Build container image for the Order Balancer application using the Order Balancer cloud
native Image Builder.

You must create a private Docker repository for this image, ensuring that all nodes in the
cluster have access to the repository. See "About Container Image Management" for more
details.

Copy the Order Balancer cloud native toolkit that is the ob-cntk.zip file to one of the nodes in
the Kubernetes cluster and do the following:

• On Oracle Linux: Where Kubernetes is hosted on Oracle Linux, download and extract
the tar archive to each host that has connectivity to the Kubernetes cluster.

• On OKE: For an environment where Kubernetes is running in OKE, extract the contents
of the tar archive on each OKE client host. The OKE client host is the bastion host/s that
is set up to communicate with the OKE cluster.

Set the variable for the installation directory by running the following command:

$ export OB_CNTK=ob_cntk_path

Where ob_cntk_path is the installation directory of the Order Balancer cloud native toolkit.

Installing the Traefik Container Image
To leverage the Order Balancer cloud native samples that integrate with Traefik, the
Kubernetes environment must have the Traefik ingress controller installed and configured.

6-1

If you are working in an environment where the Kubernetes cluster is shared, confirm
whether Traefik has already been installed and configured for Order Balancer cloud
native. If Traefik is already installed and configured, set your TRAEFIK_NS
environment variable to the appropriate name space.

The instance of Traefik that you installed to validate your cloud environment must be
removed as it does not leverage the Order Balancer cloud native samples. Ensure that
you have removed this installation in addition to purging the Helm release. Check that
any roles and rolebindings created by Traefik are removed. There could be a
clusterrole and clusterrolebinding called "traefik-operator". There could also be a
role and rolebinding called "traefik-operator" in the $TRAEFIK_NS name space.
Delete all of these before you set up Traefik.

To download and install the Traefik container image:

1. Ensure that Docker in your Kubernetes cluster can pull images from Docker Hub.
See ASAP Compatibility Matrix for the required and supported versions of the
Traefik image.

2. Run the following command to create a name space ensuring that it does not
already exist:

Note:

You might want to add the traefik name space to the environment setup
such as .bashrc.

kubectl get namespaces
export TRAEFIK_NS=traefik
kubectl create namespace $TRAEFIK_NS

3. Run the following commands to install Traefik using the $OB_CNTK/samples/
charts/traefik/values.yaml file in the samples:

Note:

Set kubernetes.namespaces and the chart version specifically using
command-line.

helm repo add traefik repo_link
helm install traefik-operator traefik/traefik \
 --namespace $TRAEFIK_NS \
 --values $OB_CNTK/samples/charts/traefik/values.yaml \
 --set "kubernetes.namespaces={$TRAEFIK_NS}"

where repo_link is https://helm.traefik.io/traefik or https://traefik.github.io/charts
based on the helm chart version. For more details, see: https://github.com/traefik/
traefik-helm-chart

After the installation, Traefik monitors the name spaces listed in its
kubernetes.namespaces field for Ingress objects. The scripts in the toolkit manage

Chapter 6
Installing the Traefik Container Image

6-2

https://helm.traefik.io/traefik
https://traefik.github.io/charts
https://github.com/traefik/traefik-helm-chart
https://github.com/traefik/traefik-helm-chart

this name space list as part of creating and tearing down Order Balancer cloud native
projects.

When the values.yaml Traefik sample in the Order Balancer cloud native toolkit is used as is,
Traefik is exposed to the network outside of the Kubernetes cluster through port 30305. To
use a different port, edit the YAML file before installing Traefik. Traefik metrics are also
available for Prometheus to scrape from the standard annotations.

Traefik function can be viewed using the Traefik dashboard. Create the Traefik dashboard by
running the instructions provided in the $OB_CNTK/samples/charts/traefik/traefik-
dashboard.yaml file. To access this dashboard, the URL is: http://traefik.asap.org. This
is if you use the values.yaml file provided with the Order Balancer cloud native toolkit; it is
possible to change the hostname as well as the port to your desired values.

Creating an Order Balancer Instance
This section describes how to create an Order Balancer instance.

Setting Environment Variables
ASAP cloud native relies on access to certain environment variables to run seamlessly.
Ensure the following variables are set in your environment:

• Path to your private specification repository

• Traefik name space

To set the environment variables:

• Set the TRAEFIK_NS variable for Traefik name space as follows:

$ export TRAEFIK_NS=Treafik Namespace

Creating Secrets
You must store sensitive data and credential information in the form of Kubernetes Secrets
that the scripts and Helm charts in the toolkit consume. Managing secrets is out of the scope
of the toolkit and must be implemented while adhering to your organization's corporate
policies. Additionally, ASAP cloud native does not establish password policies.

For an Order Balancer could native instance, the following secrets are required:

• imagepull-secret: If the private registry or repository is password protected, create this
secret.

• tls-secret: If the traefik ingress is ssl-enabled, create this secret. For more information
about creating tls-secret, see "Setting Up ASAP Cloud Native for Incoming Access."

To create imagepull-secret:

1. Run the following command:

docker login

2. Enter the credentials or access token.
The login process creates or updates the config.json file that contains an authorization
token.

Chapter 6
Creating an Order Balancer Instance

6-3

3. Run the following command to run the secret:

kubectl create secret generic asap-imagepull -n namespace
--from-file=.dockerconfigjson=$HOME/.docker/config.json --
type=kubernetes.io/dockerconfigjson

Registering the Namespace
After you set the environment variables, register the name space. To register the name
space, run the following command:

$OB_CNTK/scripts/register-namespace.sh -p sr -t targets
For example, $OB_CNTK/scripts/register-namespace.sh -p sr -t traefik

Where -p is the namespace where Order Balancer is being deployed.

Note:

traefik is the name of the targets for registration of the namespace sr. The
script uses TRAEFIK_NS to find these targets. Do not provide the traefik
target if you are not using Traefik.

Creating an Order Balancer Instance
This procedure describes how to create an Order Balancer instance in your
environment using the scripts that are provided with the toolkit.

To create an Order Balancer instance:

1. Update the $OB_CNTK/charts/asap/values.yaml file with the following values:

replicaCount: 1
image:
 repository: obcn
 pullPolicy: IfNotPresent
 tag: "7.4.0.0"
imagePullSecrets:
 - name: asap-imagepull
obEnv:
 envid: ob96
 port: 7501
 host: obhost
 domain: ob
persistence:
 enabled: true

nameOverride: ""
fullnameOverride: ""

serviceAccount:
 # Specifies whether a service account should be created

Chapter 6
Creating an Order Balancer Instance

6-4

 create: true
 # Annotations to add to the service account
 annotations: {}
 # The name of the service account to use.
 # If not set and create is true, a name is generated using the fullname
template
 name: ""

podAnnotations: {}

podSecurityContext: {}
 # fsGroup: 2000

securityContext: {}
 # capabilities:
 # drop:
 # - ALL
 # readOnlyRootFilesystem: true
 # runAsNonRoot: true
 # runAsUser: 1000
servicechannel:
 name: channelport
 type: ClusterIP
 port: 7502

service:
 name: adminport
 type: ClusterIP
 port: 7501

ingress:
 type: TRAEFIK
 enabled: true
 sslIncoming: false
 adminsslhostname: adminobhostssl.asap.org
 adminhostname: adminobhost.asap.org

 secretName: project-instance-obcn-tls-cert

 hosts:
 - host: adminobhost.asap.org
 paths: []
 tls: []
 # - secretName: chart-example-tls
 # hosts:
 # - chart-example.local

resources: {}

autoscaling:
 enabled: false

nodeSelector: {}

Chapter 6
Creating an Order Balancer Instance

6-5

tolerations: []

To avoid co-locating two OB replicas/pods on the same node remove
{} and
uncomment below lines. Replace <OB-ENV-ID> with OB Env ID
affinity: {}
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: "app"
operator: In
values:
- obEnv.envid
topologyKey: "kubernetes.io/hostname"

Where:

• replicaCount is the number of Order Balancer instances to be created.

• repository is the repository name of the configured container registry.

• tag is the version name that is used when you create a final Docker image
from the container.

• name is the name of the imagepull-secret if it is configured. For more
information about imagepull-secret, see "Creating Secrets".

• envid is the unique environment ID of the instance. This ID should include only
the lower-case alphanumeric characters. For example, asapinstance1.

• port is the port number of the WebLogic Server where Order Balancer is
deployed.

• host is the hostname of the docker container.

• domain is the Order Balancer WebLogic domain name as configured in
ob.properties while creating image.

• servicechannel.port is the channel port when you create a channel in the
WebLogic domain.

• service.port is the admin port of the WebLogic Server.

• type is the ingress controller type. This type can be TRAEFIK or GENERIC or
OTHER.

• enabled is the status of the ingress controller whether it is enabled or not. The
value is true or false. By default, this is set to true.

• sslIncoming is the status of the SSL/TLS configuration on incoming
connections whether it is enabled or not. The configuration value is true or
false. By default, this is set to false. If you want to set the value to true, create
keys, certificate, and secret by following the instructions in the "Setting Up
ASAP Cloud Native for Incoming Access" section.

• adminsslhostname is the hostname of the https access.

• adminhostname is the hostname of the http access.

Chapter 6
Creating an Order Balancer Instance

6-6

• secretName is the secret name of the certificate created for SSL/TLS. For more
information about creating keys and secret name, see "Setting Up ASAP Cloud
Native for Incoming Access."

• podAntiAffinity can be uncommented to avoid co-locating two Order Balancer pods
on the same node.

• requiredDuringSchedulingIgnoredDuringExecution tells the Kubernetes Scheduler
that it should never co-locate two Pods which have app label as envid in the domain
defined by the topologyKey.

• topologyKey kubernetes.io/hostname indicates that the domain is an individual node.

Note:

adminsslhostname and secretName are applicable only if sslIncoming is set to
true.

2. Create PV and PVC for the Order Balancer instance. It is a mandatory step for Order
Balancer instance. The pv path is used to store the wallet and logs of the ASAP instance
added to the Order Balancer. The sample files are available in the ob_cntk.zip
at $OB_CNTK/samples/nfs/ file.

This is pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
 name: <project>-<obEnv.envid>-nfs-pv
 labels:
 type: local
spec:
 storageClassName: wallet
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteMany
Valid values are Retain, Delete or Recycle
persistentVolumeReclaimPolicy: Retain
hostPath:
 nfs:
 server: <server>
 path: <path>
This is pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: <obEnv.envid>-pvc
 namespace: <project>
spec:
 storageClassName: wallet
 accessModes:
 - ReadWriteMany
 resources:

Chapter 6
Creating an Order Balancer Instance

6-7

 requests:
 storage: 10Gi

Where:

• <project> is the namespace. In the above example, value is sr.

• <obEnv.envid> is the environment ID provided in the $OB_CNTK/samples/
charts/traefik/values.yaml file. In the above example, value is ob96.

The below paths from both Order Balancer pods are mounted on to the PV path
as:

For wallet files: /u01/oracle/user_projects/domains/<domainName>/
oracle_communications/asap to PV_mount_path/asap
For log files of each Order Balancer pod: /u01/oracle/user_projects/domains/
<domainName>/oracle_communications/logs to PV_mount_path/OB_pod_name/
logs
For example, /mnt/OB99-1/logs and /mnt/OB99-0/logs

3. Run the following command to create pv and pvc:

Kubectl apply -f pv.yaml
Kubectl apply -f pvc.yaml -n sr

4. Verify that whether pv and pvc are created successfully or not by running the
following command:

kubectl get pv
kubectl get pvc -n sr

5. Run the following command to create the Order Balancer instance:

$OB_CNTK/scripts/create-instance.sh -p sr -i quick

The create-instance.sh script uses the Helm chart located in the charts/ob
directory to deploy the Order Balancer docker image, service, and ingress
controller for your instance. If the script fails, see "Troubleshooting Issues with the
Scripts" before you make additional attempts.

6. Validate the important input details such as Image name and tag, specification files
used (Values Applied), hostname, and port for ingress routing:

$OB_CNTK/scripts/create-instance.sh -p sr -i quick

Calling helm lint
==> Linting ../charts/ob
[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, 0 chart(s) failed
Project Namespace : sr
Instance Fullname : sr-quick
NAME : sr-quick
LB_PORT : 30305
LAST DEPLOYED : Timestamp

Chapter 6
Creating an Order Balancer Instance

6-8

NAMESPACE : sr
STATUS : deployed
REVISION : 1
TEST SUITE : n/a

If PV/PVC is not configured before, the Pod will be in the pending state as shown below:

Kubectl describe pod <pod-name> -n sr
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 2m31s default-scheduler
persistentvolumeclaim "sr-pvc" not found
 Warning FailedScheduling 2m31s default-scheduler
persistentvolumeclaim "sr-pvc" not found

7. When the Pod state shows READY 1/1, your Order Balancer instance is up and running.

The base hostname required to access this instance using HTTP is
adminobhostnonssl.asap.org. See "Planning and Validating Your Cloud Environment"
for details about hostname resolution.

The create-instance script prints out the following valuable information that you can use
when you work with your Order Balancer domain:

• The URL for accessing the WebLogic UI, which is provided through the ingress controller
at host: http://adminobhostnonssl.asap.org:30305/console.

Validating the Order Balancer Instance
After creating an instance, you can validate it by accessing the WebLogic Server console.

Run the following command to display the Pod details of the Order Balancer instances that
you have created:

$ kubectl get all -n OB_namespace
NAME READY STATUS RESTARTS AGE
pod/ob96-0 1/1 Running 0 24h
pod/ob96-1 1/1 Running 0 24h
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
service/ob96-hlservice ClusterIP None <none> 6723/
TCP,6724/TCP 3d18h
service/ob96-service ClusterIP 10.106.240.147 <none> 6723/
TCP,6724/TCP 3d18h
NAME READY AGE
statefulset.apps/ob96 2/2 3d18h

Note:

After the Order Balancer instances are created, it may take a few minutes to start
Order Balancer servers.

Chapter 6
Creating an Order Balancer Instance

6-9

To access WebLogic Administration Console outside the cluster, enter the following
URL in the browser:

For non-SSL:

http://adminhostnonssl.asap.org:30305/console

For SSL:

https://adminhostssl.asap.org:30443/console

The system prompts for the user name and password. Enter the WebLogic domain
user name and password.

Update the hosts file with the hostname and master_ip address on the machine
where the URL is getting accessed.

Note:

The hosts file is located in /etc/hosts on Linux and MacOS machines and in
C:\Windows\System32\drivers\etc\hosts on Windows machines.

ip_address adminhostnonssl.asap.org

Scaling the Order Balancer Instance
You can create multiple instances of Order Balancer by setting the replicaCount
accordingly in the values.yaml file. The Order Balancer helm chart templates create
multiple instances as StatefulSet pods. The unique pod names are automatically
configured by suffixing an ordinal number with the StatefulSet Name. For example, if
the StatefulSet Name is OBapp, the pod names are OBapp-0, OBapp-1 and so on.
The StatefulSet policy ensures that only one pod with the given name is run at a given
point of time.

The number of Order Balancer instances can be scaled up or down by modifying the
replicas count in StatefulSet:

kubectl scale statefulsets stateful_set_name --replicas=replica_count

Where

stateful_set_name is the name of the StatefulSet. In this example, it is OBapp.

replica_count is the number of the Order Balancer instances to be created.

Deleting and Recreating Your Order Balancer Instance
Deleting Your Order Balancer Instance

Chapter 6
Creating an Order Balancer Instance

6-10

To delete your Order Balancer instance, run the following command:

$OB_CNTK/scripts/delete-instance.sh -p sr -i quick

Re-creating Your Order Balancer Instance

When you delete an Order Balancer instance, the database state for that instance still
remains unaffected. You can re-create multiple Order Balancer instance by using the same
Docker image.

To re-create an Order Balancer instance, run the following command:

$OB_CNTK/scripts/create-instance.sh -p sr -i quick

Cleaning Up the Environment
To clean up the environment:

1. Delete the instance:

$OB_CNTK/scripts/delete-instance.sh -p sr -i quick

2. Delete the name space, which in turn deletes the Kubernetes name space and the
secrets:

$OB_CNTK/scripts/unregister-namespace.sh -p sr -d -t target

Note:

traefik is the name of the target for registration of the name space. The
script uses TRAEFIK_NS to find this target. Do not provide the "traefik" target if
you are not using Traefik.

3. Delete the Order Balancer database users.

4. Delete pv and pvc using the following commands:

Kubectl delete pv <pv-name>
Kubectl delete pvc <pvc-name> -n sr

Troubleshooting Issues with the Scripts
This section provides information about troubleshooting some issues that you may come
across when running the scripts.

If you experience issues when running the scripts, do the following:

• Check the "Status" section of the domain to see if there is useful information:

kubectl describe pod name -n sr

Cleanup Failed Instance

Chapter 6
Creating an Order Balancer Instance

6-11

When a create-instance script fails, you must clean up the instance before making
another attempt at instance creation.

Note:

Do not retry running the create-instance script or the upgrade-instance
script immediately to fix any errors, as they would return errors. The
upgrade-instance script may work but re-running it does not complete the
operation.

To clean up the failed instance:

1. Delete the instance:

$OB_CNTK/scripts/delete-instance.sh -p sr -i quick

Recreating an Instance

If you encounter issues when creating an instance, do not try to re-run the create-
instance.sh script as this will fail. Instead, perform the cleanup activities and then run
the following command:

$OB_CNTK/scripts/create-instance.sh -p sr -i quick

Next Steps
The Order Balancer instance is ready to add the ASAP cloud native instance.

For more information about managing ASAP instances, see "Setting Up ASAP for High
Availability" in ASAP System Administrator's Guide.

Chapter 6
Next Steps

6-12

7
Planning Infrastructure

In Creating an ASAP Cloud Native Instance, you learned how to create an ASAP instance in
your cloud native environment. This chapter provides details about setting up infrastructure
and structuring ASAP instances for your organization.

See the following topics:

• Sizing Considerations

• Securing Operations in Kubernetes Cluster

Sizing Considerations
The hardware utilization for an ASAP cloud native deployment is approximately the same as
that of the ASAP traditional deployment.

Consider the following when sizing for your cloud native deployment:

• For ASAP cloud native, ensure that the database is sized to account for work orders
residing in the database. For details, see "ASAP Oracle Database Tablespace Sizing
Requirements" in ASAP Installation Guide.

• Oracle recommends sizing using a configuration as a building block by adjusting the
ASAP.cfg file to meet target order volumes.

Note:

Update the ASAP.cfg file when you build the Docker image.

For more details, see "Installing a Pre-tuned Configuration", in ASAP System
Administrator's Guide.

• In addition to planning hardware for a production instance, Oracle recommends planning
for a Disaster Recovery size and key non-production instances to support functional,
integration, and performance tests. The Disaster Recovery instance can be created
against an Active Data Guard Standby database when needed and terminated when no
longer needed to improve hardware utilization.

• Non-production instances can likewise be created when needed, either against new or
existing database instances.

Contact Oracle Support for further assistance with sizing.

Securing Operations in Kubernetes Cluster
This section describes how to secure the operations of ASAP and Order Balancer cloud
native users in a Kubernetes cluster. A well-organized deployment of ASAP and Order
Balancer cloud native ensures that individual users have specific privileges that are limited to

7-1

the requirements for their approved actions. The Kubernetes objects concerned are
service accounts and RBAC objects.

All ASAP and Order Balancer cloud native users fall into the following three
categories:

• Infrastructure Administrator

• Project Administrator

• ASAP User

Infrastructure Administrator

Infrastructure Administrators perform the following operations:

• Create a project for ASAP and Order Balancer cloud native and configure the
projects

• After creating a new project, run the register-namespace.sh script provided with
the ASAP cloud native toolkit

• Before deleting the ASAP and Order Balancer cloud native projects, run the
unregister-namespace.sh script

• Delete the ASAP and Order Balancer cloud native projects

Project Administrator

Project Administrators can perform all the tasks related to an instance level ASAP and
and Order Balancer cloud native deployments within a given project. This includes
creating and updating ASAP and Order Balancer cloud native instances. A project
administrator can work on one specific project. However, a given human user may be
assigned Project Administrator privileges on more than one project.

RBAC Requirements

The RBAC requirements for Traefik is documented in its user guide. The Infrastructure
Administrator must be able to create and delete name spaces and Traefik name space
(if Traefik is used as the ingress controller). Depending on the specifics of your
Kubernetes cluster and RBAC environment, this may require cluster-admin privileges.

The Project Administrator has limited RBAC privileges. For a start, it would be limited
to only that project's name space. Further, it would be limited to the set of actions and
objects that the instance-related scripts manipulate when run by the Project
Administrator. This set of actions and objects is documented in the ASAP and Order
Balancer cloud native toolkit sample located in the samples/rbac directory.

Structuring Permissions Using the RBAC Sample Files

There are many ways to structure permissions within a Kubernetes cluster. There are
clustering applications and platforms that add their own management and control of
these permissions. Given this, the ASAP and Order Balancer cloud native toolkit
provides a set of RBAC files as a sample. You will have to translate this sample into a
configuration that is appropriate for your environment. These samples are in the
samples/rbac directory within the toolkit.

The key files are project-admin-role.yaml and project-admin-rolebinding.yaml.
These files govern the basic RBAC for a Project Administrator.

Do the following with these files:

Chapter 7
Securing Operations in Kubernetes Cluster

7-2

1. Make a copy of both these files for each particular project, renaming them with the
project/namespace name in place of "project". For example, for a project called "biz",
these files would be biz-admin-role.yaml and biz-admin-rolebinding.yaml.

2. Edit both the files, replacing all occurrences of project with the actual project/namespace
name.

For the project-admin-rolebinding.yaml file, replace the contents of the "subjects"
section with the list of users who will act as Project Administrators for this particular
project.

Alternatively, replace the contents with reference to a group that contains all users who
will act as Project Administrators for this project.

3. Once both files are ready, they can be activated in the Kubernetes cluster by the cluster
administrator using kubectl apply -f filename.

It is strongly recommended that these files be version controlled as they form part of the
overall ASAP cloud native configuration.

In addition to the main Project Administrator role and its binding, the samples contain two
additional and optional role-rolebinding sets:

• project-admin-addon-role.yaml and project-admin-addon-rolebinding.yaml: This role
is per project and is an optional adjunct to the main Project Administrator role. It contains
authorization for resources and actions in the project name space that is not required by
the toolkit, but might be of some use to the Project Administrator for debugging purposes.

Chapter 7
Securing Operations in Kubernetes Cluster

7-3

8
Exploring Alternate Configuration Options

The ASAP cloud native toolkit provides samples and documentation for setting up your ASAP
cloud native environment using standard configuration options. However, you can choose to
explore alternate configuration options for setting up your environment, based on your
requirements. This chapter describes alternate configurations you can explore, allowing you
to decide how best to configure your ASAP cloud native environment to suit your needs.

You can choose alternate configuration options for the following:

• Choosing Worker Nodes for Running ASAP Cloud Native

• Working with Ingress, Ingress Controller, and External Load Balancer

• Using an Alternate Ingress Controller

• Managing Logs

• Managing ASAP Cloud Native Metrics

The sections that follow provide instructions for working with these configuration options.

Choosing Worker Nodes for Running ASAP Cloud Native
By default, ASAP cloud native has its pods scheduled on all worker nodes in the Kubernetes
cluster in which it is installed. However, in some situations, you may want to choose a subset
of nodes where pods are scheduled.

For example, these situations include:

• Non-license restrictions: Limitation on the deployment of ASAP on specific worker nodes
per each team for reasons such as capacity management, chargeback, budgetary
reasons, and so on.

To choose a subset of nodes where pods are scheduled, you can use the configuration in the
asap-cntk/charts/asap/values.yaml file.

If ASAP cloud native instances must be targeted to a subset of worker
nodes in the
Kubernetes cluster, tag those nodes with a label name and value, and choose
that label+value here.
key : any node label key
values : list of values to choose the node.
If any of the values is found for the above label key, then that
node is included in the pod scheduling algorithm.
#
This can be overriden in instance specification if required.
nodeSelector: {} # This empty declaration should be removed if adding items
here.
#asapcnTargetNodes:
nodeLabel:
oracle.com/licensed-for-coherence is just an indicative example, any
label and its values can be used for choosing nodes.

8-1

key: oracle.com/licensed-for-coherence
values:
- true

Consider the following when you update the configuration:

• There is no restriction on the node label key. Any valid node label can be used.

• There can be multiple valid values for a key.

Working with Ingress, Ingress Controller, and External Load
Balancer

A Kubernetes ingress is responsible for establishing access to back-end services.
However, creating an ingress is not sufficient. An Ingress controller connects the back-
end services with the front-end services based on Ingress rules. In ASAP cloud native,
you can configure an ingress controller in the asap-cntk/charts/asap/values.yaml
file. For example,

valid values are TRAEFIK, GENERIC, OTHER
ingressController: "TRAEFIK"

The Traefik ingress controller works by creating an operator in its own "traefik" name
space and exposing a NodePort service. However, all ingress controllers do not
behave the same way. To accommodate all types of ingress controllers, by default, the
values.yaml file provides the loadBalancerPort parameter.

If an external load balancer is used, it needs to be connected to the NodePort service
of the Ingress controller. Hence, externalLoadBalancerIP also needs to be
present in the values.yaml file.

For the Traefik ingress controller, do the following:

• If an external load balancer is not configured, fetch loadBalancerPort by
running the following command:

$kubectl -n $TRAEFIK_NS get service traefik-operator --
output=jsonpath="{..spec.ports[?(@.name=='http')].nodePort}"

• If an external load balancer is used, fetch loadBalancerPort by running the
following command:

kubectl -n $TRAEFIK_NS get service traefik-operator --
output=jsonpath="{..spec.ports[?(@.name=='http')].port}"

Populate the values in the values.yaml file before invoking create-instance.sh
command to create an instance:

If external hardware or software load balancer is used, set this
value to that frontend host IP.
If OCI load balancer is used, then set externalLoadBalancerIP from
OCI LBaaS
#externalLoadBalancerIP: ""

Chapter 8
Working with Ingress, Ingress Controller, and External Load Balancer

8-2

For Traefik Ingress Controller:
If external load balancer is used, then this would be 80, else traefik
pod's Nodeport (30305)
loadBalancerPort: 80

Note:

If you choose Traefik or any other ingress controller such as GENERIC or OTHER
you can update the ingress: section in the asap_cntk/charts/asap/values.yaml
file.

Using an Alternate Ingress Controller
By default, ASAP cloud native supports Traefik and provides sample files for integration.
However, you can use any Ingress controller that supports host-based routing and session
stickiness with cookies. ASAP cloud native uses the term "generic" ingress for scenarios
where you want to leverage the Ingress capabilities that the Kubernetes platform may
provide.

To use a generic ingress controller, you must create the ingress object and configure your
ASAP instance to use it. The toolkit uses an ingress Helm chart ($ASAP_CNTK/samples/
charts/asap/templates/traefik-ingress.yaml) and scripts for creating the ingress objects. If
you want to use a generic ingress controller, these samples can be used as a reference and
customized as necessary.

If your ASAP cloud native instance needs to secure incoming communications, then look at
the $ASAP_CNTK/samples/charts/asap/templates/traefik-ingress.yaml file. This file
demonstrates the configuration for a TLS-enabled Traefik ingress that can be used as a
sample.

The host-based rules and the corresponding back-end Kubernetes service mapping are
provided using the following definition:

• asapUID: Combination of project-instance. For example, sr-quick.

The following table lists the service name and service ports for Ingress rules:

Table 8-1 Service Name and Service Ports for Ingress Rules

Rule Service Name Service Port Purpose

instance.project.loadBalan
cerDomainName

domainUID-cluster-
clusterName

8001 For access to ASAP
through UI, XMLAPI, Web
Services, and so on.

t3.instance.project.loadBal
ancerDomainName

t3.instance.project.loadBal
ancerDomainName

30303 ASAP T3 Channel access
for WLST, JMS, and SAF
clients.

admin.instance.project.loa
dBalancerDomainName

domainUID-admin 7001 For access to ASAP
WebLogic Admin Console
UI.

Chapter 8
Using an Alternate Ingress Controller

8-3

You must update the value of the ingressController parameter in
the $ASAP_CNTK/charts/asap/values.yaml file. For example,

#valid values are TRAEFIK, GENERIC, OTHER
ingressController: "GENERIC"

If any of the supported Ingress controllers or even a generic ingress does not meet
your requirements, you can choose "OTHER".

By choosing this option, ASAP cloud native does not create or manage any ingress
required for accessing the ASAP cloud native services. However, you may choose to
create your own ingress objects based on the service and port details mentioned in the
above table.

Note:

Regardless of the choice of Ingress controller, it is mandatory to provide the
value of loadBalancerPort in one of the specification files. This is used
for establishing a front-end cluster.

Managing Logs
ASAP cloud native generates traditional textual logs. By default, these log files are
generated in the managed server pod but can be re-directed to a Persistent Volume
Claim (PVC) supported by the underlying technology that you choose. See "Setting Up
Persistent Storage" for details.

When you update the staging container, update the LOGDIR attribute in
the $ASAP_BASE/Environment_Profile file:

LOGDIR=/asaplogs

• The ASAP application logs can be found at: pv-directory/asapinstance/logs

Update the WebLogic logs path to the PVC mounted path.

Managing ASAP Cloud Native Metrics
ASAP WebLogic Server exposes the work order metrics deployed in ASAP cloud
native. The following is the work order metrics path:

asapcn.metricspath: /ENV_ID/OrderMetrics

ASAP cloud native metrics expose the Order Balancer metrics along with the work
order metrics. The following is the Order Balancer metrics path:

metrics_path: /ASAPOB/metrics

Chapter 8
Managing Logs

8-4

Configuring Prometheus for ASAP Cloud Native Metrics
ASAP provides the following metrics for monitoring based on the work order status:

• Completed

• Completed in last interval

• Loading Work Orders

• Failed

• Canceled

• In progress

Work order metrics can be queried with different parameter values. To query the work order
metrics, use the following URL in the browser:

http://host:port/env_id/OrderMetrics?query=parameter
The supported parameter values are:

• total: Provides total work order count. This is the the default parameter used.

• today: Provides todays total work order count.

• last_interval: Provides total work order count in the last interval.

• all: Provides all the three work order counts (total + today + last_interval).

The Order Balancer metrics provided are:

• ASAP Count: Provides the number of ASAP instances that are registered with Order
Balancer.

• ASAP instance status: Provides the status of each ASAP instance that is registered in
Order Balancer.

• Order Distribution: Provides the order distribution between the ASAP instances.

Configure the scrape job in Prometheus by updating the prometheus.yml file as follows:

- job_name: 'asapmetrics'
 scrape_interval: 120s
 scrape_timeout: 60s
 metrics_path: /ENV_ID/OrderMetrics
 scheme: http/https
 basic_auth:
 username: WebLogic user name
 password: WebLogic password
 static_configs:
 - targets: ['hostname:port number']
 params:
 query: [all]

 - job_name: 'obmetrics'
 scrape_interval: 120s
 scrape_timeout: 60s
 metrics_path: /ASAPOB/metrics
 scheme: http/https
 basic_auth:

Chapter 8
Managing ASAP Cloud Native Metrics

8-5

 username: WebLogic user name
 password: WebLogic password
 static_configs:
 - targets: ['hostname:port number']

Where

• WebLogic user name is the user name of WebLogic Server.

• WebLogic password is the password of WebLogic Server.

• hostname is the configured host name in the values.yaml file.

– ASAP: $asap_cntk/charts/asap/values.yaml

– Order Balancer: $ob-cntk/charts/ob/values.yaml

• port number is the traefik node port number.

Note:

The filter options are: all, today, and total.

If you use a filter, update query: [filter] in the prometheus.yml file.

If you do not use a filter, comment out params: query: [filter] in the
prometheus.yml file.

If multiple ASAP instances are added, add the respective jobs in
prometheus.yml file

Viewing ASAP Cloud Native Metrics Without Using Prometheus
You can view the ASAP cloud native metrics, such as the work order metrics and the
Order Balancer metrics using the following URLs:

Work order metrics:

http://hostname:traefik_Port/ENV_ID/OrderMetrics

Order Balancer metrics:

http://hostname:traefik_Port/ASAPOB/metrics

Where

• hostname is the configured host name in the values.yaml file

– ASAP: $asap_cntk/charts/asap/values.yaml

– Order Balancer: $ob-cntk/charts/ob/values.yaml

• traefik_Port is the traefik node port number.

These only provide metrics of the WebLogic Server that is serving the request. They
does not provide consolidated metrics for the entire cluster. Prometheus Query and
Grafana dashboards provide consolidated metrics.

Chapter 8
Managing ASAP Cloud Native Metrics

8-6

Viewing ASAP Cloud Native Metrics in Grafana
ASAP cloud native metrics and Order Balancer metrics scraped by Prometheus can be made
available for further processing and visualization. The ASAP cloud native toolkit comes with
sample Grafana dashboards to get you started with visualizations.

Import the dashboard JSON files from $ASAP_CNTK/samples/grafana into your Grafana
environment.

The sample dashboard displays the following:

• ASAP Count

• ASAP Instance Status

• Order Distribution

• Work order count by order state

• Completed work order count in a configured interval

Exposed ASAP Order Metrics
The following ASAP metrics are exposed via ASAP Servlet APIs.

Order Metrics

The following table lists the order metrics exposed.

Table 8-2 Order Metrics Exposed via ASAP Servlet APIs

Name Notes

asap_wo_complete_total The total work orders in the completed state.

asap_wo_loading_total The total work orders in the loading state.

asap_wo_failed_total The total work orders in the failed state.

asap_wo_cancelled_total The total work orders in the canceled state.

asap_wo_inprogress_total The total work orders in the in progress state.

asap_wo_complete_last_interval The total work orders that are in the completed
state in the last interval.

asap_wo_complete_today The total work orders that are in the completed
state as of the current date.

asap_wo_loading_today The total work orders that are in the loading state
as of the current date.

asap_wo_failed_today The total work orders that are in the failed state as
of the current date.

asap_wo_cancelled_today The total work orders that are in the canceled
state as of the current date.

asap_wo_inprogress_today The total work orders that are in the in-progress
state as of the current date.

Chapter 8
Managing ASAP Cloud Native Metrics

8-7

9
Integrating ASAP

Typical usage of ASAP involves the ASAP application receiving work orders from upstream.
Upstream interacts with ASAP using t3/t3s or http/https. This chapter examines the
considerations involved in integrating ASAP cloud native instances into a larger solution
ecosystem.

This section describes the following topics and tasks:

• Integrating with ASAP cloud native instances

• Applying the WebLogic patch for external systems

• Configuring SAF on External Systems

• Setting up Secure Communication with SSL/TLS

Integrating With ASAP Cloud Native Instances
Functionally, the interaction requirements of ASAP do not change when ASAP is run in a
cloud native environment. All of the categories of interaction that are applicable for
connectivity with traditional ASAP instances are applicable and must be supported for ASAP
cloud native.

Note:

Connectivity with the OCA client and SRT are not supported in ASAP cloud native
environment.

Connectivity Between the Building Blocks
The following diagram illustrates the connectivity between the building blocks in an ASAP
cloud native environment using an example:

9-1

Figure 9-1 Connectivity Between Building Blocks in ASAP Cloud Native
Environment

Invoking the ASAP cloud native Helm chart creates a new ASAP instance. In the
above illustration, the name of the instance is "quick" and the name of the project is
"sr". The instance consists of an ASAP pod and a Kubernetes service.

The Cluster Service contains endpoints for both HTTP and T3 traffic. The instance
creation script creates the ASAP cloud native Ingress object. The Ingress object has
metadata to trigger the Traefik ingress controller as a sample. Traefik responds by
creating new front-ends with the configured "hostnames" for the cluster
(quick.sr.asap.org and t3.quick.sr.uim.org in the illustration). The IngressRoute
connects the hostname to the service exposed on the pod. The service is created on
the ASAP WebLogic admin server port.

The prior installation of Traefik has already exposed Traefik itself via a selected port
number (30305 in the example) on each worker node.

Inbound HTTP Requests
An ASAP instance is exposed outside of the Kubernetes cluster for HTTP access via
an Ingress Controller and potentially a Load Balancer.

Because the Traefik port (30305) is common to all ASAP cloud native instances in the
cluster, Traefik must be able to distinguish between the incoming messages headed
for different instances. It does this by differentiating on the basis of the "hostname"
mentioned in the HTTP messages. This means that a client (User Client B in the
illustration) must believe it is talking to the "host" dev2.mobilecom.asap.org when it
sends HTTP messages to port 30305 on the access IP. This might be the Master node
IP, or IP address of one of the worker nodes, depending on your cluster setup. The
"DNS Resolver" provides this mapping.

In this mode of communication, there are concerns around resiliency and load
distribution. For example, If the DNS Resolver always points to the IP address of
Worker Node 1 when asked to resolve dev2.mobilecom.asap.org, then that Worker
node ends up taking all the inbound traffic for the instance. If the DNS Resolver is
configured to respond to any *.mobilecom.asap.org requests with that IP, then that
worker node ends up taking all the inbound traffic for all the instances. Since this latter
configuration in the DNS Resolver is desired, to minimize per-instance touches, the
setup creates a bottleneck on Worker node 1. If Worker node 1 were to fail, the DNS
Resolver would have to be updated to point *.mobilecom.asap.org to Worker node 2.

Chapter 9
Integrating With ASAP Cloud Native Instances

9-2

This leads to an interruption of access and requires intervention. The recommended pattern
to avoid these concerns is for the DNS Resolver to be populated with all the applicable IP
addresses as resolution targets (in our example, it would be populated with the IPs of both
Worker node 1 and node 2), and have the Resolver return a random selection from that list.

An alternate mode of communication is to introduce a load balancer configured to balance
incoming traffic to the Traefik ports on all the worker nodes. The DNS Resolver is still
required, and the entry for *.mobilecom.asap.org points to the load balancer. Your load
balancer documentation describes how to achieve resiliency and load management. With this
setup, a user (User Client A in our example) sends a message to
dev2.mobilecom.asap.org, which actually resolves to the load balancer - for instance,
http://dev2.mobilecom.asap.org:8080/OrderManagement/Login.jsp. Here, 8080 is the
public port of the load balancer. The load balancer sends this to Traefik, which routes the
message, based on the "hostname" targeted by the message to the HTTP channel of the
ASAP cloud native instance.

By adding the hostname resolution such that admin.dev2.mobilecom.asap.org also
resolves to the Kubernetes cluster access IP (or Load Balancer IP), User Client B can access
the WebLogic console via http://admin.dev2.mobilecom.asap.org/console and the
credentials specified while setting up the "wlsadmin" secret for this instance.

Note:

Access to the WebLogic Admin console is provided for review and debugging use
only. Do not use the console to change the system state or configuration. As a
result, any such manual changes (whether using the console or using WLST or
other such mechanisms) are not retained in pod reschedule or reboot scenarios.
The only way to change the state or configuration of the WebLogic domain or the
ASAP installation is inside the Docker image.

Inbound JMS Requests
JMS messages use the T3 protocol. Since Ingress Controllers and Load Balancers do not
understand T3 for routing purposes, ASAP cloud native requires all incoming JMS traffic to be
"T3 over HTTP". Hence, the messages are still HTTP but contain a T3 message as a
payload. ASAP cloud native requires the clients to target the "t3 hostname" of the instance -
t3.dev2.mobilecom.asap.org, in the example. This "t3 hostname" should behave identically
as the regular "hostname" in terms of the DNS Resolver and the Load Balancer. Traefik
however not only identifies the instance this message is meant for (dev2.mobilecom) but also
that it targets the T3 channel of instance.

The "T3 over HTTP" requirement applies for all inbound JMS messages - whether generated
by direct or foreign JMS API calls or generated by SAF. The procedure in SAF QuickStart
explains the setup required by the message producer or SAF agent to achieve this
encapsulation. If SAF is used, the fact that T3 is riding over HTTP does not affect the
semantics of JMS. All the features such as reliable delivery, priority, and TTL, continue to be
respected by the system. See "Applying the WebLogic Patch for External Systems".

An ASAP instance can be configured for secure access, which includes exposing the T3
endpoint outside the Kubernetes cluster for HTTPS access. See "Configuring Secure
Incoming Access with SSL" for details on enabling SSL.

Chapter 9
Integrating With ASAP Cloud Native Instances

9-3

Applying the WebLogic Patch for External Systems
When an external system is configured with a SAF sender towards ASAP cloud native,
using HTTP tunneling, a patch is required to ensure the SAF sender can connect to
the ASAP cloud native instance. This is regardless of whether the connection resolves
to an ingress controller or to a load balancer. Each such external system that
communicates with ASAP through SAF must have the WebLogic patch 30656708
installed and configured, by adding -Dweblogic.rjvm.allowUnknownHost=true
to the WebLogic startup parameters.

For environments where it is not possible to apply and configure this patch, a
workaround is available. On each host running a Managed Server of the external
system, add the following entries to the /etc/hosts file:

0.0.0.0 project-instance-ms1
0.0.0.0 project-instance-ms2
0.0.0.0 project-instance-ms3
0.0.0.0 project-instance-ms4
0.0.0.0 project-instance-ms5
0.0.0.0 project-instance-ms6
0.0.0.0 project-instance-ms7
0.0.0.0 project-instance-ms8
0.0.0.0 project-instance-ms9
0.0.0.0 project-instance-ms10
0.0.0.0 project-instance-ms11
0.0.0.0 project-instance-ms12
0.0.0.0 project-instance-ms13
0.0.0.0 project-instance-ms14
0.0.0.0 project-instance-ms15
0.0.0.0 project-instance-ms16
0.0.0.0 project-instance-ms17
0.0.0.0 project-instance-ms18

You should add these entries for all the ASAP cloud native instances that the external
system interacts with. Set the IP address to 0.0.0.0. The server in the ASAP cloud
native instance must be listed.

Configuring SAF On External Systems
To create SAF and JMS configuration on your external systems to communicate with
the ASAP cloud native instance, use the configuration samples provided as part of the
SAF sample as your guide.

It is important to retain the "Per-JVM" and "Exactly-Once" flags as provided in the
sample.

All connection factories must have the "Per-JVM" flag, as must SAF foreign
destinations.

Each external queue that is configured to use SAF must have its QoS set to "Exactly-
Once".

Enabling Domain Trust

Chapter 9
Applying the WebLogic Patch for External Systems

9-4

To enable domain trust, in your domain configuration, under Advanced, edit the Credential
and ConfirmCredential fields with the same password you used to create the global trust
secret in ASAP cloud native.

Setting Up Secure Communication with SSL/TLS
When ASAP cloud native is involved in secure communication with other systems, you
should additionally configure SSL/TLS. The configuration may involve the WebLogic domain,
the ingress controller, or the URL of remote endpoints, but it always involves participating in
an SSL handshake with the other system. The procedures for setting up SSL use self-signed
certificates for demonstration purposes. However, replace the steps as necessary to use
signed certificates.

If an external client is communicating with ASAP cloud native instance by using SSL/TLS,
you should configure secure incoming access with SSL.

Configuring Secure Incoming Access with SSL
This section demonstrates how to secure incoming access to ASAP cloud native. In this
scenario, SSL termination happens at the ingress. The traffic coming in from external clients
must use one of the HTTPS endpoints. When SSL terminates at the ingress, it also means
that communication within the cluster from Traefik ASAP cloud native instances is not
secured.

The ASAP cloud native toolkit provides the sample configuration for Traefik ingress. If you
use Voyager or other ingress, you can look at the $ASAP-CNTK/charts/asap/templates/
traefik-ingress.yaml file to see what configuration is applied.

Generating SSL Certificates for Incoming Access
The following illustration shows when certificates are generated.

Figure 9-2 Generating SSL Certificates

When ASAP cloud native dictates secure communication, then it is responsible for generating
the SSL certificates. These certificates must be provided to the appropriate client.

Chapter 9
Setting Up Secure Communication with SSL/TLS

9-5

Setting Up ASAP Cloud Native for Incoming Access
The ingress controller routes unique hostnames to different backend services. You can
see this if you look at the ingress controller YAML file (obtained by running kubectl get
ingress -n project ingress_name -o yaml):

Note:

Traefik 2.x moved to use IngressRoute (a CustomResourceDefinition)
instead of the Ingress object. If you are using Traefik, change all references
of ingress to ingressroute in the following command :

rules:
- host: admin.instance.project.asap.org
 http:
 paths:
 - backend:
 serviceName: ENV_ID-service
 servicePort: 7601

To set up ASAP cloud native for incoming access:

1. Generate key pairs for each hostname corresponding to an endpoint that ASAP
cloud native exposes to the outside world:

Create a directory to save your keys and certificates. This is
for sample only. Proper management policies should be used to store
private keys.

mkdir $ASAP_CNTK/charts/asap/ssl

Generate key and certificates
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout $ASAP_CNTK/charts/asap/ssl/admin.key -out $ASAP_CNTK/charts/
asap/ssl/admin.crt -subj "/CN=admin.instance.project.asap.org"

Create secrets to hold each of the certificates. The secret name
must be in the format below. Do not change the secret names
kubectl create secret -n project tls project-instance-admin-tls-
cert --key $ASAP_CNTK/charts/asap/ssl/admin.key --cert $ASAP_CNTK/
charts/asap/ssl/admin.crt

2. Edit the values.yaml file and set incoming to true:

ingress:
 sslIncoming: true

3. After creating the instance by running the create-instance.sh script, you can
validate the configuration by describing the ingress controller for your instance.

Chapter 9
Setting Up Secure Communication with SSL/TLS

9-6

You should see each of the certificates you generated, terminating one of the hostnames:

kubectl get ingress -n project

Once you have the name of your ingress, run the following command:

kubectl describe ingress -n project ingress

TLS:
 project-instance-admin-tls-cert terminates
admin.instance.project.asap.org

Now the ASAP instance is created with the secure connection to the ingress controller.

Configuring Incoming HTTP and JMS Connectivity for External Clients
This section describes how to configure incoming HTTP and JMS connectivity for external
clients.

Note:

Remember to have your DNS resolution set up on any remote hosts that will
connect to the ASAP cloud native instance.

Incoming HTTPS Connectivity

External Web clients that are connecting to ASAP cloud native must be configured to accept
the certificates from ASAP cloud native. They will then connect using the HTTPS endpoint
and port 30443.

Incoming JMS Connectivity

For external servers that are connected to ASAP cloud native through JMS queues, the
certificate for the t3 endpoint needs to be copied to the host where the external client is
running.

If your external WebLogic configuration uses "CustomIdentityAndJavaSTandardTrust", follow
these instructions to upload the certificate to the Java Standard Trust. If, however, you are
using a CustomTrust, then you must upload the certificate into the custom trust keystore.

The keytool is found in the bin directory of your JDK installation. The alias should uniquely
describe the environment where this certificate is from.

./keytool -importcert -v -trustcacerts -alias alias -file /path-to-copied-t3-
certificate/t3.crt -keystore /path-to-jdk/jdk1.8.0_202/jre/lib/security/
cacerts -storepass default_password

For example
./keytool -importcert -v -trustcacerts -alias asapcn -file /scratch/t3.crt -
keystore /jdk1.8.0_202/jre/lib/security/cacerts -storepass default_password

Chapter 9
Setting Up Secure Communication with SSL/TLS

9-7

Debugging SSL
To debug SSL, do the following:

• Verify Hostname

• Enable SSL logging

Verifying Hostname

When the keystore is generated for the on-premise server, if FQDN is not specified,
then you may have to disable hostname verification. This is not secure and should
only be done in development environments.

To do so, when you build the Docker image, update the build_env.sh script and add
the following Java options:

 #JAVA_OPTIONS for all managed servers at project level
 java_options: "-
Dweblogic.security.SSL.ignoreHostnameVerification=true"

Enabling SSL Logging

When trying to establish the handshake between servers, it is important to enabling
the SSL-specific logging.

To do so, when you build the Docker image, update the build_env.sh script and
append the following Java options:

 project:
 #JAVA_OPTIONS for all managed servers at project level
 java_options: "-Dweblogic.StdoutDebugEnabled=true -Dssl.debug=true
-Dweblogic.security.SSL.verbose=true -
Dweblogic.debug.DebugSecuritySSL=true -Djavax.net.debug=ssl"

Chapter 9
Setting Up Secure Communication with SSL/TLS

9-8

10
Upgrading the ASAP Cloud Native
Environment

This chapter describes the tasks you perform in order to apply a change or upgrade to a
component in the cloud native environment.

ASAP supports only one replica per instance. If the same Docker image is used in two
instances, the behavior is undefined. Due to these constraints, ASAP supports only offline
upgrades.

ASAP Cloud Native Upgrade Procedures
ASAP cloud native owns the component and therefore the upgrade procedure applies for the
component. ASAP cloud native provides the mechanism to perform the upgrade using the
scripts that are bundled with the Docker image and cloud native toolkit. The upgrade
procedure includes upgrading the ASAP cloud native Docker image and deploying the
Docker image in the instance.

To upgrade the ASAP installer, Java, WebLogic Server, Database client, and Cartridge install
or uninstall require an upgrade in the ASAP Docker image.

To upgrade the ASAP Docker Image:

1. Delete the running instance using the delete–instance.sh script.

2. Copy the required installers to the $asap-img-builder/installers directory.

3. Copy the required cartridges to the $asap-img-builder/cartridges directory.

4. Run the following commands to copy installers and cartridges to the volume:

$asap-img-builder/upgradeASAPDockerImage.sh

5. Create a new container using the previous version of the Docker image using the
following command:

docker run --name $ASAP_CONTAINER -dit -h $DOCKER_HOSTNAME -
p $WEBLOGIC_PORT -v $ASAP_VOLUME:/$ASAP_VOLUME ASAP-BASE-IMAGE

For example: docker run --name asap-c -dit -h asaphost -p 7601 -v dockerhost_volume:/
dockerhost_volume asapcn:7.4.0.0

The container will be created with asap-c.

6. Enter into the ASAP container using the following command:

docker exec -it asap-c bash

You have entered into the ASAP container. Now, you have to upgrade the ASAP
installation in the console mode.

10-1

7. Upgrade the ASAP installer using the console mode, manually.

8. Run the ./startWeblogic.sh script to start WebLogic Server in the background.

9. Navigate to the installation directory of ASAP as shown below:

cd /dockerhost_volume/installers/new installer

10. Run the following command to install ASAP:

/asap74ServerLinux -console

11. Enter the details for the prompted options.

12. Enter the hostname of WebLogic Server as: 127.0.0.1

13. Enter the port number provided in the domain.xml file.

14. Enter the credentials of the Oracle WebLogic Server Administrator provided when
you created the domain.

15. Select the server as AdminServer.
ASAP installation in the console mode is completed.

Upgrading cartridges
To upgrade cartridges, uninstall the previous cartridges and install the new cartridges.

To uninstall and install cartridges:

1. Repeat steps 1 to 6 to create the staging container.
Cartridges are present in the /dockerhost_volume/cartridges container.

2. Start ASAP and WebLogic Server using the startALL.sh script.

3. Navigate to the ASAP installation directory using cd $ASAP_BASE.

4. Source the environment profile using the source Environment_Profile script.

5. Verify the ASAP server status using the status command.

6. Uninstall the cartridges. For more information, see "Uninstalling a Cartridge" in
ASAP Installation Guide.

7. Install the cartridges present in the /dockerhost_volume/cartridges directory. For
more information, see "Installing a Cartridge" in ASAP Installation Guide.

To upgrade Java, WebLogic Server, and database client, see "About Upgrading ASAP"
in ASAP Installation Guide.

Creating an Image from the Staging Container
The staging container is deployed with all the required updates to provision network
elements. Save this container as a Docker image to deploy in the Kubernetes cluster.

To create an image from the staging container:

1. Run the following command to create an image from the staging container:

docker commit asap-c imagename:version

Where version is the version of the ASAP Docker image. This version should be
higher than the previous version.

Chapter 10
ASAP Cloud Native Upgrade Procedures

10-2

2. To deploy a new Docker image in the Kubernetes cluster, the image should be available
in the configured Docker registry or on all worker nodes. To push the Docker image to the
Kubernetes docker registry, run the following commands:

docker images | grep image name
docker tag imageid <tag-imageid>
-bash-4.2$ docker push tag-imageid

3. Stop and remove the containers using the following commands:

docker stop asap-c
docker rm asap-c

4. Update the Docker image in the $ASAP_CNTK/charts/asap/values.yaml file.

5. Create the ASAP instance using the following command:

$ASAP_CNTK/scripts/create-instance.sh -p sr -i quick

Now the ASAP instance is upgraded successfully.

Order Balancer Cloud Native Upgrade Procedures
To upgrade the Order Balancer Docker Image:

1. Delete the running instance using the delete–instance.sh script.

2. Copy the required installers to the $asap-img-builder/installers directory.

3. Run the following command to copy installers to the volume:

$asap-img-builder/upgradeOBDockerImage.sh

4. Create a new container using the previous version of the Docker image using the
following command:

docker run --name $OB_CONTAINER -dit -h $OB_HOSTNAME -
p $WEBLOGIC_PORT -v $OB_VOLUME:/$OB_VOLUME <OB-BASE-IMAGE>

For example: docker run --name ob-c -dit -h obhost -p 7601 -v obhost_volume:/
obhost_volume obcn:7.4.0.0

The container will be created with ob-c.

5. Enter into the container using the following command:

docker exec -it ob-c bash

You have entered into the Order Balancer container. For upgrading Order Balancer, see
"Updating and Redeploying Order Balancer" in ASAP System Administrator's Guide.

Creating an Image from the Staging Container

The staging container is deployed with all the required updates to route work orders to ASAP
instances. Save this container as a Docker image to deploy in the Kubernetes cluster.

Chapter 10
Order Balancer Cloud Native Upgrade Procedures

10-3

To create an image from the staging container:

1. Run the following command to create an image from the staging container:

docker commit ob-c imagename:version

Where version is the version of the Order Balancer Docker image. This version
should be higher than the previous version.

2. To deploy the new Docker image in the Kubernetes cluster, the image should be
available in the configured Docker registry or on all worker nodes. To push the
Docker image to the Kubernetes docker registry, run the following commands:

docker images | grep image name
docker tag imageid <tag-imageid>
-bash-4.2$ docker push tag-imageid

3. Stop and remove the containers using the following commands:

docker stop ob-c
docker rm ob-c

4. Update the Docker image in the $OB_CNTK/charts/ob/values.yaml file.

5. Create the Order Balancer instance using the following command:

$OB_CNTK/scripts/create-instance.sh -p sr -i quick

Now the Order Balancer instance is upgraded successfully.

Upgrades to Infrastructure
From the point of view of ASAP instances, upgrades to the cloud infrastructure fall into
two categories:

• Rolling upgrades

• One-time upgrades

Note:

All infrastructure upgrades must continue to meet the supported types and
versions listed in the ASAP documentation's certification statement.

Rolling upgrades are where, with proper high-availability planning (like anti-affinity
rules), the instance as a whole remains available as parts of it undergo temporary
outages. Examples of this are Kubernetes worker node OS upgrades, Kubernetes
version upgrades and Docker version upgrades.

One-time upgrades affect a given instance all at once. The instance as a whole suffers
either an operational outage or a control outage. Examples of this is Ingress controller
upgrade.

Kubernetes and Docker Infrastructure Upgrades

Chapter 10
Upgrades to Infrastructure

10-4

Follow standard Kubernetes and Docker practices to upgrade these components. The impact
at any point should be limited to one node - master (Kubernetes and OS) or worker
(Kubernetes, OS, and Docker). If a worker node is going to be upgraded, drain and cordon
the node first. This will result in all pods moving away to other worker nodes. This is
assuming your cluster has the capacity for this - you may have to temporarily add a worker
node or two. For ASAP instances, any pods on the cordoned worker will suffer an outage until
they come up on other workers. However, their messages and orders are redistributed to
surviving pods and processing continues at a reduced capacity until the affected pods
relocate and initialize. As each worker undergoes this process in turn, pods continue to
terminate and start up elsewhere, but as long as the instance has pods in both affected and
unaffected nodes, it will continue to process orders.

Ingress Controller Upgrade

Follow the documentation of your chosen Ingress Controller to perform an upgrade.
Depending on the Ingress Controller used and its deployment in your Kubernetes
environment, the ASAP instances it serves may see a wide set of impacts, ranging from no
impact at all (if the Ingress Controller supports a clustered approach and can be upgraded
that way) to a complete outage.

The new Traefik can be installed into a new name space, and one-by-one, projects can be
unregistered from the old Traefik and registered with the new Traefik.

export TRAEFIK_NS=old-namespace $ASAP_CNTK/scripts/unregister-namespace -p
project -t traefik
export TRAEFIK_NS=new-namespace $ASAP_CNTK/scripts/register-namespace -p
project -t traefik

During this transition, there will be an outage in terms of the outside world interacting with
ASAP. Any data that flows through the ingress will be blocked until the new Traefik takes
over. This includes GUI traffic, order injection, API queries, and SAF responses from external
systems. This outage will affect all the instances in the project being transitioned.

Miscellaneous Upgrade Procedures
This section describes miscellaneous upgrade scenarios.

Network File System (NFS)

If an instance is created successfully, but a change to the NFS configuration is required, then
the change cannot be made to a running ASAP instance. In this case, the procedure is as
follows:

1. Delete the ASAP instance.

2. Update the nfs details in the pv.yaml and pvc.yaml files.

3. Start the instance.

Chapter 10
Miscellaneous Upgrade Procedures

10-5

11
Moving to ASAP Cloud Native from a
Traditional Deployment

You can move to an ASAP cloud native deployment from your existing ASAP traditional
deployment. This chapter describes tasks that are necessary for moving from a traditional
ASAP deployment to an ASAP cloud native deployment.

Supported Releases
You can move to ASAP cloud native from all supported traditional ASAP releases. In addition,
you can move to ASAP cloud native within the same release, starting with the ASAP release
7.3.0.6.0.

About the Move Process
The move to ASAP cloud native involves offline preparation as well as maintenance outage.
This section outlines the general process as well as the details of the steps involved in the
move to ASAP cloud native. However, there are various places where choices have to be
made. It is recommended that a specific procedure be put together after taking into account
these choices in your deployment context.

The ASAP cloud native application layer runs on different hardware locations (within a
Kubernetes cluster) than the ASAP traditional application layer.

The process of moving to ASAP cloud native involves the following sets of activities:

• Pre-move development activities, which includes the following tasks:

– Building ASAP cloud native images (cloud native task)

– Creating project specification ASAP cloud native (cloud native and solution task)

– Creating an ASAP cloud native instance for testing (cloud native task)

– Validating your solution cartridges (solution task)

– Deleting the test ASAP cloud native instance (cloud native task)

• Data synchronization activities, which include the following tasks:

– Preparing a new database server (database task)

– Synchronizing the current database server (database task)

• Tasks for moving to ASAP cloud native, which include the following:

– Quiescing the ASAP traditional instance (solution task)

– Backing up the database (database task)

– Creating an ASAP cloud native instance (cloud native task)

– Performing a smoke test (solution task)

– Importing the database (database task)

11-1

– Switching all upstream systems (solution task)
For more information about creating backup and rolling back the ASAP
database, see "Creating a Backup of the ASAP Schemas" and "Rolling Back
the ASAP Database" in ASAP Installation Guide.

Pre-move Development Activities
In preparation to move your traditional ASAP instance into an ASAP cloud native
environment, you must do the following activities:

1. Build the ASAP cloud native image with the same ENV_ID, database users
credentials, default users credentials, same port numbers, and cartridges
deployed in the traditional deployment. This task includes creating the ASAP
Docker image and using the ASAP cloud native download packages. See
"Creating an ASAP Cloud Native Image" for details.

Note:

The values of ENV_ID and port numbers are present in the
asap73ServerLinux.response file of the ASAP installation directory.

2. Create an ASAP cloud native test instance and test your instance.

3. Validate the solution.

4. Shut down your test instance and remove the associated secrets and ingress.

Moving to an ASAP Cloud Native Deployment
Moving to an ASAP cloud native deployment from an ASAP traditional deployment
requires performing the following tasks:

1. Quiesce the ASAP traditional instance. See "Quiescing the Traditional Instance of
ASAP".

2. Create the ASAP cloud native image. See "Creating the ASAP Cloud Native
Image".

3. Import the restored data from the traditional instance to the cloud native instance.

4. Create the ASAP cloud native instance. See "Creating an ASAP Cloud Native
Instance".

5. Perform a smoke test. See "Performing a Smoke Test". Once the ASAP cloud
native instance passes the smoke test and is optionally resized to the desired
target value, shut down the ASAP traditional instance fully.

6. Switch all upstream systems to the ASAP cloud native instance. See "Switching
Integration with Upstream Systems".

Quiescing the Traditional Instance of ASAP
At the start of the maintenance window, the ASAP traditional instance must be
quiesced. This involves stopping database jobs, stopping all upstream and peer
systems from sending messages (for example, http/s, JMS, and SAF) to ASAP, and
ensuring all human users are logged out. It also involves pausing the JMS queues so

Chapter 11
Pre-move Development Activities

11-2

that no messages get queued or dequeued. The result is that ASAP is up and running, but
completely idle.

Restoring the Database
Before creating the final Docker image, restore the database. For more information, see
"Rolling Back the ASAP Database" in ASAP Installation Guide and follow these steps:

1. Update hostname in tbl_listeners of the CTRL database by running the following
command:

update tbl_listeners set HOST_NAME='asaphost';

where 'asaphost' is the name of the host in which ASAP is deployed.

2. Update the hostname in the TBL_ASAP_SRP table of the SARM by running the following
command:

update TBL_ASAP_SRP set HOST_NAME='asaphost';

3. Update the SRP_HOST_NAME field in the TBL_ASAP_SRP table by running the
following command:

update TBL_ASAP_SRP set SRP_HOST_NAME='asaphost';

Switching Integration with Upstream Systems
After you shut down the ASAP traditional instance fully, do the following:

• Ensure that the ASAP cloud native instance has its JMS.

• Configure the upstream to resume sending messages. See "Integrating ASAP" for more
details.

Reverting to Your ASAP Traditional Deployment
During the move to ASAP cloud native, if there is a need to revert to your ASAP traditional
deployment, the exact sequence of steps that you need to perform depends on the options
you have chosen while moving to ASAP cloud native.

In general, the ASAP traditional deployment application layer should be undisturbed through
the upgrade process. The ASAP traditional instance can simply be started up again, still
pointing to its database.

Cleaning Up
Once the ASAP cloud native instance is deemed operational, you can release the resources
used for the ASAP traditional application layer.

You can delete the database used for ASAP traditional instance and release its resources as
well.

Chapter 11
Reverting to Your ASAP Traditional Deployment

11-3

12
Debugging and Troubleshooting

This chapter provides information about debugging and troubleshooting issues that you may
face while setting up an ASAP cloud native environment and creating ASAP cloud native
instances.

This chapter describes information about the following:

• Troubleshooting Issues with Traefik and WebLogic Administration Console

• Common Error Scenarios

• Known Issues

Troubleshooting Issues with Traefik and WebLogic
Administration Console

This section describes how to troubleshoot issues with access to WLST, and WebLogic
Administration Console.

It is assumed that Traefik is used as the default Ingress controller and the domain name suffix
is asap.org. You can modify the instructions to suit any other domain name suffix that you
may have chosen.

The following table lists the URLs for accessing the WebLogic Administration Console when
the Oracle Cloud Infrastructure load balancer is used and not used:

Table 12-1 URLs for Accessing ASAP Clients

Client If Not Using Oracle Cloud
Infrastructure Load Balancer

If Using Oracle Cloud
Infrastructure Load Balancer

WebLogic Admin Console http://
admin.instance.project.asap.org:30
305/console

http://
admin.instance.project.asap.org:80/
console

Error: Http 404 Page not found

This is the most common problem that you may encounter.

To resolve this issue:

1. Verify the Domain Name System (DNS) configuration.

Note:

These steps apply for local DNS resolution via the hosts file. For any other
DNS resolution, such as corporate DNS, follow the corresponding steps.

12-1

The hosts configuration file is located at:

• On Windows: C:\Windows\System32\drivers\etc\hosts

• On Linux: /etc/hosts

Verify if the following entry exists in the hosts configuration file of the client
machine from where you are trying to connect to ASAP:

• Local installation of Kubernetes without Oracle Cloud Infrastructure load
balancer:

Kubernetes_Cluster_Master_IP <hostname provided in the
values.yaml file>

• If Oracle Cloud Infrastructure load balancer is used:

Load_balancer_IP instance.project.asap. <hostname given in the
values.yaml file>

Resolve the DNS configuration.

2. Verify the browser settings and ensure that *.asap.org is added to the No proxy
list, if your proxy cannot route to it.

3. Verify if the Traefik pod is running and installing or updating the Traefik Helm chart:

kubectl -n traefik get pod
NAME READY STATUS RESTARTS AGE
traefik-operator-657b5b6d59-njxwg 1/1 Running 0
128m

4. Verify if the Traefik service is running:

kubectl -n traefik get svc
NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
oci-lb-service-traefik LoadBalancer 10.96.136.31
100.77.18.141 80:31115/TCP 20d <---- Is
expected in OCI environment only --
traefik-operator NodePort 10.98.176.16
<none> 443:30443/TCP,80:30305/TCP 141m
traefik-operator-dashboard ClusterIP 10.103.29.101
<none> 80/TCP 141m

Note:

If the Traefik service is not running, install or update the Traefik Helm
chart.

5. Verify if the Traefik back-end systems are registered, by using one of the following
options:

Chapter 12
Troubleshooting Issues with Traefik and WebLogic Administration Console

12-2

• Run the following commands to check if your project name space is being monitored
by Traefik. The absence of your project name space means that your managed
server back-end systems are not registered with Traefik.

$ cd $ASAP_CNTK
$ source scripts/common-utils.sh
$ find_namespace_list 'namespaces' traefik traefik-operator
"traefik","project_1", "project_2"

• Verify the Traefik Dashboard and add the following DNS entry in your hosts
configuration file:

Kubernetes_Access_IP traefik.asap.org

Add the same entry regardless of whether you are using Oracle Cloud Infrastructure
load balancer or not. Navigate to: http://traefik.asap.org:30305/dashboard/ and
check the back-end systems that are registered. If you cannot find your project name
space, install or upgrade the Traefik Helm chart. See "Installing the Traefik Container
Image" for more information.

Reloading Instance Backend Systems

If your instance's ingress is present, yet Traefik does not recognize the URLs of your
instance, try to unregister and register your project name space again. You can do this by
using the unregister-namespace.sh and register-namespace.sh scripts in the toolkit.

Note:

Unregistering a project name space will stop access to any existing instances in
that name space that was working prior to the unregistration.

Debugging Traefik Access Logs

To increase the log level and debug Traefik access logs:

1. Run the following command:

$ helm upgrade traefik-operator traefik/traefik --version 9.11.0 --
namespace traefik --reuse-values --set logs.access.enabled=true

A new instance of the Traefik pod is created automatically.

2. Look for the pod that is created most recently:

$ kubectl get po -n traefik
NAME READY STATUS RESTARTS AGE
traefik-operator-pod_name 1/1 Running 0 0 5s

$ kubectl -n traefik logs -f traefik-operator-pod_name

Chapter 12
Troubleshooting Issues with Traefik and WebLogic Administration Console

12-3

3. Enabling access logs generates large amounts of information in the logs. After
debugging is complete, disable access logging by running the following command:

$ helm upgrade traefik-operator traefik/traefik --version 9.11.0
--namespace traefik --reuse-values --set
logs.access.enabled=false

Cleaning Up Traefik

Note:

Clean up is not usually required. It should be performed as a desperate
measure only. Before cleaning up, make a note of the monitoring project
name spaces. Once Traefik is re-installed, run $ASAP_CNTK/scripts/
register-namespace.sh for each of the previously monitored project name
spaces.

Warning: Uninstalling Traefik in this manner will interrupt access to all ASAP
instances in the monitored project name spaces.

To clean up the Traefik Helm chart, run the following command:

helm uninstall traefik-operator -n traefik

Cleaning up of Traefik does not impact actively running ASAP instances. However,
they cannot be accessed during that time. Once the Traefik chart is re-installed with all
the monitored name spaces and registered as Traefik back-end systems successfully,
ASAP instances can be accessed again.

Setting up Logs

As described earlier in this guide, ASAP and WebLogic logs can be stored in the
individual pods or in a location provided via a Kubernetes Persistent Volume. The PV
approach is strongly recommended, both to allow for proper preservation of logs (as
pods are ephemeral) and to avoid straining the in-pod storage in Kubernetes.

Within the pod, logs are available at: /u01/oracle/user_projects/domains/domain/
servers/AdminServer/logs.

ASAP logs: /scratch/oracle/asap/DATA/logs/

When a PV is configured, logs are available at the following path starting from the root
of the PV storage:

project-instance/logs.

Common Problems and Solutions
This section describes some common problems that you may experience because you
have run a script or a command erroneously or you have not properly followed the
recommended procedures and guidelines regarding setting up your cloud
environment, components, tools, and services in your environment. This section
provides possible solutions for such problems.

Chapter 12
Common Problems and Solutions

12-4

Pod Status

While the introspection is running, you can check the status of the introspection pod by
running the following command:

kubectl get pods -n namespace
healthy status looks like this
NAME READY STATUS RESTARTS AGE
project-instance-introspect-domain-job-hzh9t 1/1 Running 0
3s

The READY field is showing 1/1, which indicates that the pod status is healthy.

If there is an issue accessing the image specified in the instance specification, then it shows
the following:

NAME READY STATUS
RESTARTS AGE
project-instance-introspect-domain-job-r2d6j 0/1 ErrImagePull
0 5s
OR
NAME READY STATUS
RESTARTS AGE
project-instance-introspect-domain-job-r2d6j 0/1 ImagePullBackOff
0 45s

This shows that the introspection pod status is not healthy. If the image can be pulled, it is
possible that it took a long time to pull the image.

To resolve this issue, verify the image name and the tag and that it is accessible from the
repository by the pod.

You can also try the following:

• Pull the container image manually on all Kubernetes nodes where the ASAP cloud native
pods can be started up.

Known Issues
This section describes known issues that you may come across, their causes, and the
resolutions.

Email Plugin
The ASAP Email plugin is currently not supported. Users who require this capability can
create their own plugin for this purpose.

Chapter 12
Known Issues

12-5

A
Differences Between ASAP Cloud Native and
ASAP Traditional Deployments

If you are moving from a traditional deployment of ASAP to a cloud native deployment, this
section describes the differences between ASAP cloud native and ASAP traditional.

• ASAP Installer

Distributed installations are not supported in the ASAP cloud native environment. All
ASAP components, including WebLogic Server, must be installed in the same container.

Also, SRT, custom SRPs, and custom NEPs are not supported in the ASAP cloud native
environment.

• WebLogic Domain Configuration

In a traditional deployment of ASAP, the WebLogic domain configuration is done using
WLST or the WebLogic Admin Console. In ASAP cloud native, domain configuration is
done by using WLST. ASAP cloud native does not support the deployment of ASAP in a
Managed Server.

• Incoming JMS and SAF

For incoming JMS and SAF messages, the originator must use T3 over HTTPS
tunneling.

• ASAP OCA

The Order Control Application (OCA) is available in both ASAP traditional and ASAP
cloud native deployments. In a cloud native environment, you can access OCA using the
hostname configured in the ASAP values.yaml file and the port number in the Traefik
values.yaml file. For example, to access the OCA, use:

https://adminhostssl.asap.org:30443/<ENV_ID>/OCA

• Web Services API

The Web Services API is supported in the ASAP cloud native environment. The external
transport protocols are HTTP, HTTPS, and JMS and the data service formats are SOAP
v1.1 and 1.2.

For details about the ASAP Web Services API supported, see ASAP Developer's Guide.

A-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview of the ASAP Cloud Native Deployment
	About the ASAP Cloud Native Deployment
	ASAP Cloud Native Architecture
	Downloading the ASAP Cloud Native Artifacts
	About the ASAP Docker Image Toolkit
	About ASAP Instance
	About the ASAP Cloud Native Toolkit
	About Helm Overrides

	2 Planning and Validating Your Cloud Environment
	Required Components for ASAP and Order Balancer Cloud Native
	Planning Your Cloud Native Environment
	Setting Up Your Kubernetes Cluster
	Synchronizing Time Across Servers
	About Container Image Management
	Installing Helm
	About Load Balancing and Ingress Controller
	Using Domain Name System (DNS)
	Configuring Kubernetes Persistent Volumes
	About NFS-based Persistence
	Using Kubernetes Monitoring Toolchain
	About Application Logs and Metrics Toolchain

	Setting Up Persistent Storage
	Planning Your Container Engine for Kubernetes (OKE) Cloud Environment
	Compute Disk Space Requirements
	Connectivity Requirements
	Using Load Balancer as a Service (LBaaS)
	About Using Oracle Cloud Infrastructure Domain Name System (DNS) Zones
	Using Persistent Volumes and File Storage Service (FSS)
	Leveraging Oracle Cloud Infrastructure Services

	Validating Your Cloud Environment
	Performing a Smoke Test
	Validating Common Building Blocks in the Kubernetes Cluster

	3 Creating an ASAP Cloud Native Image
	Downloading the ASAP Cloud Native Image Builder
	Prerequisites for Creating ASAP Image
	Creating the ASAP Cloud Native Image
	Working with Cartridges
	Securing Your ASAP Installation

	4 Creating an ASAP Cloud Native Instance
	Installing the ASAP Cloud Native Artifacts and the Toolkit
	Installing the Traefik Container Image
	Creating an ASAP Instance
	Setting Environment Variables
	Creating Secrets
	Registering the Namespace
	Configuring Failed ASAP Instances to Restart Automatically
	Creating an ASAP Instance
	Validating the ASAP Instance
	Submitting Orders
	Deleting and Recreating Your ASAP Instance
	Cleaning Up the Environment
	Troubleshooting Issues with the Scripts
	Accessing the OCA Client

	Next Steps

	5 Creating an Order Balancer Cloud Native Image
	Downloading the Order Balancer Cloud Native Image Builder
	Prerequisites for Creating an Order Balancer Image
	Creating the Order Balancer Cloud Native Image

	6 Creating an Order Balancer Cloud Native Instance
	Installing the Order Balancer Artifacts and the Toolkit
	Installing the Traefik Container Image
	Creating an Order Balancer Instance
	Setting Environment Variables
	Creating Secrets
	Registering the Namespace
	Creating an Order Balancer Instance
	Validating the Order Balancer Instance
	Scaling the Order Balancer Instance
	Deleting and Recreating Your Order Balancer Instance
	Cleaning Up the Environment
	Troubleshooting Issues with the Scripts

	Next Steps

	7 Planning Infrastructure
	Sizing Considerations
	Securing Operations in Kubernetes Cluster

	8 Exploring Alternate Configuration Options
	Choosing Worker Nodes for Running ASAP Cloud Native
	Working with Ingress, Ingress Controller, and External Load Balancer
	Using an Alternate Ingress Controller
	Managing Logs
	Managing ASAP Cloud Native Metrics
	Configuring Prometheus for ASAP Cloud Native Metrics
	Viewing ASAP Cloud Native Metrics Without Using Prometheus
	Viewing ASAP Cloud Native Metrics in Grafana
	Exposed ASAP Order Metrics

	9 Integrating ASAP
	Integrating With ASAP Cloud Native Instances
	Connectivity Between the Building Blocks
	Inbound HTTP Requests
	Inbound JMS Requests

	Applying the WebLogic Patch for External Systems
	Configuring SAF On External Systems
	Setting Up Secure Communication with SSL/TLS
	Configuring Secure Incoming Access with SSL
	Generating SSL Certificates for Incoming Access
	Setting Up ASAP Cloud Native for Incoming Access
	Configuring Incoming HTTP and JMS Connectivity for External Clients

	Debugging SSL

	10 Upgrading the ASAP Cloud Native Environment
	ASAP Cloud Native Upgrade Procedures
	Order Balancer Cloud Native Upgrade Procedures
	Upgrades to Infrastructure
	Miscellaneous Upgrade Procedures

	11 Moving to ASAP Cloud Native from a Traditional Deployment
	Supported Releases
	About the Move Process
	Pre-move Development Activities
	Moving to an ASAP Cloud Native Deployment
	Quiescing the Traditional Instance of ASAP
	Restoring the Database
	Switching Integration with Upstream Systems

	Reverting to Your ASAP Traditional Deployment
	Cleaning Up

	12 Debugging and Troubleshooting
	Troubleshooting Issues with Traefik and WebLogic Administration Console
	Common Problems and Solutions
	Known Issues

	A Differences Between ASAP Cloud Native and ASAP Traditional Deployments

