
Oracle® Communications ASAP
Cartridge Development Guide

Release 7.4.1
G13671-01
March 2025

Oracle Communications ASAP Cartridge Development Guide, Release 7.4.1

G13671-01

Copyright © 2012, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Diversity and Inclusion xii

1 Overview

About Cartridge Creation Options 1-1

Design Studio for ASAP 1-1

XML 1-2

Stored Procedures 1-2

About ASAP Cartridges 1-2

ASAP Cartridge Contents 1-2

Cartridge Creation Workflow 1-3

About Cartridge XML Schemas 1-4

ServiceModel.xsd 1-4

SA_archive.xsd 1-6

About Service Modeling 1-7

2 Creating a Cartridge Project

About Cartridge Types 2-1

Defining Network Cartridge Project Parameters 2-1

Defining Network Cartridge Identification Tokens 2-2

Selecting the Vendor Token 2-2

Selecting the Technology Token 2-2

Selecting the Software Load Token 2-3

Defining the Scope of the Network Cartridge 2-3

Creating a Design Studio Project 2-4

Defining Service Cartridge Project Parameters 2-4

Importing and Extending Network Cartridges in Service Cartridges 2-4

iii

3 Configuring Network Element Connections

About Network Element Configuration Components 3-1

About Network Elements and Network Element Connections 3-1

Network Elements and Network Element Connections 3-2

Creating and Configuring Network Element and Network Element Connections 3-2

Adding Target Network Elements 3-4

Setting Network Element Throughput Control 3-4

About Configuring a Java Network Connection Handler 3-5

Creating an Network Element Connection Handler 3-5

Mapping a Network Element to a Network Element Processor 3-6

4 Mapping Network Element Commands to Actions, Entities, and
Parameters

About Identifying Network Element Commands and Parameters 4-1

Defining Actions and Entities 4-1

Selecting the Action Tokens 4-1

Selecting Entity Tokens 4-2

Generating a Cartridge Layout 4-3

About Parameter Types 4-3

Default Values Rules and Guidelines 4-5

About Creating a Data Dictionary 4-5

Creating an ASAP Cartridge Project Data Dictionary Using Design Studio 4-6

Scalar Parameters 4-6

Creating a Scalar Parameter using Design Studio 4-6

Indexed Parameters 4-7

Compound Parameters 4-7

Creating a Compound Parameter using Design Studio 4-8

Compound Indexed Parameters 4-10

Compound Parameters Rules and Guidelines 4-10

XML Parameters 4-11

Creating an XML Parameter using Design Studio 4-11

XPath Parameters 4-12

Creating an XPATH Parameter using Design Studio 4-12

Grouping Scalar Parameters using Design Studio Structured Elements 4-13

5 Creating and Configuring Atomic Actions

About Creating and Configuring Atomic Actions 5-1

Creating and Configuring an Atomic Action 5-1

About Retry Properties 5-3

iv

Example 1: Configuring Retry Properties at the Network Element Instance Level 5-5

Example 2: Configuring Retry Properties at the Atomic Action Level 5-6

About Delayed Failure Properties 5-7

About Composite Priorities 5-7

About Configuring a Rollback Atomic Action 5-10

About Rollback Atomic Action Parameters 5-11

About Atomic Action Rollback Functionality 5-11

Rollback Order 5-11

Rollback Failure 5-11

Order Timeout 5-12

Rollback Completion 5-12

Rollback Upon Failure 5-12

Rollback Upon Cancellation of an Order 5-12

Rollback Upon Revision to an Order 5-14

Configuring ignore_rollback 5-14

6 Configuring Static Routing

Configuring Static Network Element Routing 6-1

Configuring Atomic Action Routings by Using a Network Element 6-2

Configuring Atomic Action Routings by Using ID_ROUTING 6-4

Routing by ID_ROUTING 6-5

Configuring Atomic Action Routings by Using USER_ROUTING 6-6

Configuring Atomic Action Routings by Using a Directory Number 6-7

7 Configuring Dynamic Routing

Configuring Dynamic Network Element Routing 7-1

Enabling Dynamic Routing 7-1

Network Template Configuration 7-1

Dynamic Network Element Routing Scenarios 7-3

Network Element Identification 7-3

Scenario 1 – One Service Action to Multiple Atomic Actions Routed to One NE 7-4

Scenario 2 – One Service Action to Multiple Atomic Actions Routed to Different NEs 7-6

Scenario 3 – One Service Action to Multiple Atomic Actions Routed to Different NEs 7-7

Scenario 4 – One Service Action to Multiple Atomic Actions Routed to Multiple NEs 7-9

Scenario 5 – One Service Action to Multiple Atomic Actions Routed to Different NEs 7-10

Scenario 6 – Common URL 7-13

Dynamic Routing Configuration Errors 7-14

Managing Communication and Order Parameters 7-14

Backward Support for MPM Protocols 7-15

Software Load and Technology Type 7-15

v

NE Configuration Parameters 7-16

8 Creating Service Actions

About Creating and Configuring Service Actions 8-1

Creating Service Actions 8-2

Configuring Service Action Default Sequence 8-2

Configuring Service Action Fail and Complete Events 8-3

About Mapping a Service Action to Atomic Actions 8-3

About Limiting Independent Network Element Commands to Optimizing the Network
Element Interface 8-4

Adding Atomic Actions to a Service Action 8-5

About Atomic Action Spawning Logic 8-6

Configuring Atomic Action Spawning Conditions 8-7

Components of Service-Action-to-Atomic-Action Translation Expressions 8-7

Supported Parameters for Translation Expressions 8-7

Supported Operators for Translation Expressions 8-8

Supported Values for Translation Expressions 8-8

Defining Service Action-Atomic Action Translation Expressions 8-9

Translation Function Conflicts 8-10

About Service Actions and Rollback 8-10

Enabling the CSDL Rollback Functionality 8-10

Enabling Work Order Rollback Functionality for the Service Request Processor Emulator 8-11

About Configuring a Rollback Point (Point of No Return) 8-11

Configuring a Rollback Point 8-12

9 Configuring Base Exit and User Exit Types

About User Errors and Thresholds 9-1

About Base Exit Types 9-1

Behaviors of RETRY and RETRY_DIS 9-3

About User Exit Types 9-4

Using Regular Expression Search Patterns 9-4

Using Search Patterns Against Long Switch Responses 9-4

About User Exit Types for Unknown Errors 9-5

About User Exit Types for Success Cases 9-6

Mapping User Exit Types to Base Exit Types Based on Context 9-6

Creating New User Exit Types 9-6

Configuring User Exit Types 9-6

Examples: User Exit Types 9-7

Example: Unstable Network Element Connections 9-7

Example: Configuration of Context Sensitive Exit Types 9-7

vi

Example: Exit Type Rationalization 9-8

10

Configuring Dynamic and Static Event Templates for Return Parameters

About Static and Dynamic Event Templates for Return Parameters 10-1

Configuring a Dynamic Events Template 10-2

JSRP (OSS/J) Work Order Event Information 10-5

Extended Work Order Complete and Failure Schemas 10-5

FailedServicesType Schema Type 10-7

Services Schema Type 10-8

Controlling the Return of Enhanced Event Information with includeServiceActionDetail 10-9

JSRP Server Configuration Parameter INCLUDE_SERVICE_ACTION_DETAIL 10-9

Additional Event Data 10-10

OSS/J Support by Schema Parameters 10-10

Work Order Property includeServiceActionDetail 10-10

JSRP Server Configuration Parameter USE_ORIGINAL_INSTANCE_NUMBER 10-11

11

Creating Java Connection Handlers

About Java Network Element Connection Handlers 11-1

Creating New Network Element Connection Handlers 11-1

Generating a Telnet Network Element Connection Handler Implementation 11-2

Generating a Custom NE Connection Handler Implementation 11-3

About Communication Protocol Parameters 11-3

Specifying Global or Local Communication Parameters 11-4

User-defined Parameters 11-4

Device-specific Interface Parameters 11-5

CORBA Interface Communication Parameters 11-6

Serial Port Hardwired Communication Parameters 11-6

Serial Port Dialup Communication Parameters 11-7

Telnet Port Communication Parameters 11-8

SSH Telnet Communication Parameters 11-9

Socket Port Communication Parameters 11-11

SFTP Port Communication Parameters 11-12

LDAP Port Communication Parameters 11-12

TL1 Port Communication Parameters 11-13

StreamConnection Interface 11-13

Creating Connection Methods and Helper Classes 11-14

Creating a Provisioning Prompt 11-14

Enabling Loopback Mode 11-15

Implementing Secure Login Functionality 11-15

Connection Management Issues 11-16

vii

Creating a Java Telnet Connection Class 11-16

12

Creating Action Processors and Programs for Processing Requests and
Responses

About Action Processors and Programs 12-1

About the Ratio of Provisioning Commands to Atomic Actions 12-2

About Creating and Configuring Action Processors 12-3

Creating an Action Processor 12-3

Understanding the Auto-Generated Java CLI Code 12-3

About Configuring the CLI Command Structure 12-4

About the CLI Command Structure Elements 12-5

Configuring the CLI Command Structure 12-5

About Parsing and Configuring CLI Command Requests 12-6

Provided Methods for Manipulating Parameters 12-6

Defining Custom Methods for Manipulating Parameters 12-8

Configuring CLI Command Requests 12-8

About Configuring CLI Command Responses 12-10

Configuring CLI Command Responses 12-10

Auto-Generating the Java CLI Files 12-11

About Auto-Generated and Synchronized CLI Java Files 12-11

Backing Up Files 12-15

Understanding the Auto-Generated Java Code Stubs 12-16

Auto-Generating the Java Stubs 12-17

About Auto-Generated Java Files 12-18

Understanding Generated Code for Compound Parameters 12-20

Example: Typical Processor Call Sequence 12-23

Writing Java Processor Execute Method Logic 12-24

Example: Telnet Provisioning Class Flow 12-24

About Writing Java Programs from Scratch and Naming Conventions 12-25

Associating an Action Processors to the Java Code 12-25

Java Package Naming Convention 12-25

Java Class Naming Convention 12-26

Java Helper and Utility Class Naming Convention 12-26

Java Method Naming Convention 12-27

Java Variables Naming Convention 12-27

Java Constants Naming Convention 12-27

Understanding Unit Testing 12-27

Running Unit Test Cases 12-29

Running Unit Tests with the JDT Debugger 12-29

Understanding Unit Test Property Files 12-29

Configuring a Unit Test 12-31

viii

Understanding Java Libraries in Design Studio 12-31

Referenced Libraries 12-31

Other Libraries 12-32

Programming Best Practices 12-32

Using Default Values 12-32

Enabling Value and Range Checking 12-32

Logging Diagnostic Messages 12-33

TCP/IP Message Parsing Options 12-33

Use of Journal Functionality 12-34

13

Creating Java User Exit Types

Developing Return Parameters in Java Action Processors 13-1

About Return Parameters in Java Action Processors 13-1

Configuring Java Methods for Return Parameters to SARM 13-1

Return Parameter Types 13-4

Global Returned Parameter 13-4

Service Action Returned Parameter 13-4

Atomic Action Returned Parameter 13-4

Returned Information for Upstream Purposes 13-4

Indexed Rollback Returned Parameter 13-4

Use Cases for Returning Parameters 13-5

Query for Rollback Information 13-5

Error and Diagnostic Information 13-5

Configuring Response Logging and Network Element History Capture 13-5

User Defined Exit Types 13-6

14

Documenting ASAP Cartridges

About Design Studio Cartridge Documentation 14-1

15

Work Order Processing and Sample Work Orders

Work Order Processing Overview 15-1

General Work Order Processing 15-2

OSS/J or Web Service Work Order Processing with XML or XPath Parameters 15-2

About Testing Cartridge Elements with Sample Work Orders 15-4

About SRP Emulator Sample Work Orders 15-4

About JSRP Sample OSS/J Work Orders 15-5

Sample OSS/J Work Order with Conditional Logic Using XML Parameters 15-5

Sample OSS/J Work Order with Conditional Logic using XPath Parameters 15-9

About Web Service Sample Work Orders 15-12

ix

Guidelines for Creating Sample Work Orders 15-12

Troubleshooting Atomic Actions 15-13

Troubleshooting Service-Action-to-Atomic-Action Translation Errors 15-14

16

Creating and Deploying a SAR File (ASAP Cartridge)

SAR File Creation and Deployment Options 16-1

SAR File Folder Structure Options 16-1

ASAP 4.7 SAR File Folder Structure 16-2

ASAP 4.6 SAR File Folder Structure 16-2

Creating an ASAP 4.6 SAR File 16-5

Deploying Service Models with the Service Activation Deployment Tool 16-5

Using the SADT Command Line Interface 16-5

Using the SADT Command Line Interface in Interactive Mode 16-6

Using the SADT Command Line Interface in Script Mode 16-8

Using the SADT Web Interface 16-9

Viewing Deployed Service Activation Models 16-9

Deploying a service activation archive file 16-11

Undeploying a Service Activation Model 16-11

Deploying Multiple Cartridges 16-12

Using the SADT JMX Interface 16-12

Configuring JMX Interfaces to Validate XML Documents 16-13

Loading ASAP Services Dynamically 16-14

A Configuring Services Using XML

Configuration Restrictions and Limitations A-1

Configuring ASAP Services A-1

Planning A-2

Configuring Atomic Actions A-2

Adding Supporting Data A-4

Configuring Service Actions A-5

Mapping Atomic Actions to Service Actions A-5

Mapping User Exit Types to Base Exit Types A-7

Creating Activation-Model.xml A-9

Configuring Network Element Throughput Using XML A-10

B Configuring Services Using Stored Procedures

Configuring ASAP Services Using Stored Procedures B-1

Configuring Service Actions B-1

Configuring Atomic Actions B-1

x

Configuring Atomic Action Parameters B-2

Configuring Service Action-to-Atomic Action Mappings B-2

Configuring Atomic Action-to-Program Mappings B-2

Configuring Network Elements Using Stored Procedures B-3

Configuring Host Network Elements B-3

Configuring Host to Remote Network Element Mappings B-3

Configuring NEP-to-Host NE Mappings B-4

Configuring Resource Pools B-4

Configuring Communication Parameters B-5

Configuring Network Element Error Thresholds B-5

Configuring User Errors and Thresholds B-5

Configuring Static Routing B-6

Configuring Atomic Action Routings by ID_ROUTING Using Stored Procedures B-6

Configuring Atomic Action Routings by USER_ROUTING B-6

Configuring Atomic Action Routings by Distinguished Name B-7

Configuring Network Element Blackout Periods (optional) B-7

Checking Network Element Blackout Periods B-8

xi

Preface

This guide provides guidance and best practices for creating Oracle Communications ASAP
cartridges using Oracle Communications Service Catalog and Design - Design Studio for
Activation.

Audience
This guide includes information for:

• Business analysts

• Cartridge service or network modelers

• Cartridge developers

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview

This chapter provides an overview of the cartridge contents and the creation process.

About Cartridge Creation Options
Oracle Communications ASAP supports the following methods for creating cartridges:

• Design Studio for ASAP

• XML

• Stored Procedures

Design Studio for ASAP
The recommended development environment for creating a cartridge is Oracle
Communications Service Catalog and Design - Design Studio. This guide describes the
cartridge development process with Design Studio.

Design Studio simplifies the creation, assembly, and deployment of services across multiple
domains. Design Studio functionality includes:

• Creating, deploying, and managing cartridges

• Extending cartridges into customer specific service configurations

• Managing and deploying complex multi-domain services to production, test, and
development environments

• Modeling network element instances using predefined network element instance and
connection attributes

• Creating and deploying patches

Design Studio has been optimized for developing Java-based ASAP cartridges.

Even though activation cartridges can be built outside Design Studio, this is not the
recommended approach. Design Studio speeds up the development process and optimizes
cartridge design and implementation by providing:

• Service model and Java stubs autogeneration feature

• Enforced naming conventions and consistency

• Cartridge documentation autogeneration

• Standard Eclipse development editors for business logic implementation (Java classes)

• Intuitive cartridge deployment/undeployment

• Testing harness

• Identifies problems and errors at development time

• GUI interface

1-1

ASAP cartridges created in Design Studio are validated again the ASAP schemas described in
"About Cartridge XML Schemas" during the build process and when deploying the cartridge
service activation archive (SAR) file to the ASAP environment.

For more information, see the Design Studio Help.

XML
You can create ASAP Java using XML that must conform to ASAP cartridge schemas. See
"About Cartridge XML Schemas". This is an older way of creating ASAP cartridges described
in "Configuring Services Using XML."

Stored Procedures
Stored procedures have been deprecated.

You can directly add cartridge-specific information to the ASAP databases using SQL*Plus
stored procedures. All cartridge-related stored procedures are described in "Configuring
Services Using Stored Procedures."

About ASAP Cartridges
ASAP cartridges are discrete software components developed for ASAP. An ASAP cartridge
provides specific domain behavior on top of the core ASAP software. This domain behavior
includes a part of, or all services on a network element (NE), element management system
(EMS), or network management system (NMS). In this guide, all of these systems are
collectively called NEs.

An ASAP cartridge is not a standalone component, but it operates in conjunction with the core
ASAP software. Cartridges can be designed for a specific vendor, technology, and software
load, and elements within each network cartridge can be reused in the creating of common or
mixed service model cartridges. For more information, see "About Service Modeling."

An ASAP cartridge can be used to configure ASAP to provision the following:

• NEs from a specific vendor (for example, Nokia).

• Technologies, such as HLR and GSM.

• Services that are supported on an NE, such as Wireless, Optical for VoIP, IPTV, or high
speed internet.

ASAP Cartridge Contents
An ASAP cartridge contains the following components:

• An interface from ASAP to the NE that includes the following:

– NE, NE template, or dynamic NE template containing connection protocol details,
connection parameters required by the connection handler, and other services.

– One or more connection handlers with associated Java code to run connection details
provided in the NE, NE template, or dynamic NE template elements.

• A mapping of NE generated user exit types that you defined in the action processor
methods to one of eight ASAP base exit types. You can also optionally map your user exit
types to a regular expression search pattern.

• A set of action processors that include the following:

Chapter 1
About ASAP Cartridges

1-2

– The action processor type: A Java processor class.

– The action processor class: This Java class can be manually or automatically
generated using Design Studio.

– The action processor method: If you selected the option to autogenerate your Java
code, Design Studio creates an execute method contained in the action processor
class where you must implement the man-machine language (MML) commands that
ASAP sends to the NE using the attributes and parameters specified in the atomic
actions. You must also specify logic for your user exit types in this method. If you did
not select the option to autogenerate your Java code, Design Studio allows you to
create and select your own method.

• A set of atomic actions in the form of Atomic Service Description Layer (ASDL) commands
that include the following:

– A list of user-defined attributes that include the kind of routing support required to route
the atomic action to an NE, and any parameters required by the associated MML
command that ASAP implements and sends to the NE.

– Rollback, retry, and index related atomic action configuration attributes.

– A list of associated action processors that implement the MML command that ASAP
sends to the NE.

• A set of service action commands in the form of Common Service Description Layer
(CSDL) commands that form meaningful service actions. Each service action can
incorporate one or more atomic actions.

• Sample work orders.

Cartridge Creation Workflow
You should fully understand the functionality and attributes for each NE that your cartridge
must manage before you start to develop an ASAP cartridge. With this understanding, you can
develop a service model focused on capturing the re-usable behavior in each NE.

The following list outlines the workflow required to build a cartridge. For additional details,
rules, and guidelines for each step in the cartridge creation process, refer to subsequent
sections in this document.

1. Select your cartridge type: service or network cartridge.

2. Define your NE details (for example, connection protocol and the maximum number of
connections the NE supports, and so on). You can also create NE templates and dynamic
NE templates at this time.

3. Define the corresponding connection handler for your NE.

4. Implement one or more Java classes with methods to run the NE connection details. You
must associate your Java classes to your connection handler.

5. Identify the MML commands or API calls and parameters that your NE requires.

6. Map user-defined exit types (UDETs) to a base exit type.

7. Create corresponding atomic actions for each MML command or API call.

8. Specify the parameters used for the MML command or API call in the corresponding
atomic action.

9. Create action processors and associated Java execute methods that implement the
associated MML command.

Chapter 1
About ASAP Cartridges

1-3

10. Configure the Java execute method to handle MML response messages from the NE.
Associate each NE response message to a UDET.

11. Associate the action processors to a corresponding atomic action.

12. Create a service action and associate it to one or more atomic actions to create a
meaningful service.

13. Create sample work orders.

14. Deploy the cartridge.

15. Test the cartridge.

About Cartridge XML Schemas
ASAP cartridges created using Design Studio or with XML must conform to the
ASAP_Home/xml/xsd/ServiceModel.xsd schema. The SAR file structure (created
automatically when you use Design Studio, or manually when you use XML) must conform to
the ASAP_Home/xml/xsd/SA_Archive.xsd schema.

This section describes the uses and structure of ServiceModel.xsd and SA_archive.xsd.

ServiceModel.xsd
The ServiceModel.xsd file defines the content and structure of one or more
ServiceModel.xml files. This file ensures that the element hierarchy and document structure
of the ServiceModel.xml file are correct and ensures that element and attribute content
adheres to the defined datatype.

Figure 1-1 shows the element and structure of the ServiceModel.xsd schema as described in
the Java Online Reference available with the ASAP installation files.

Chapter 1
About Cartridge XML Schemas

1-4

Figure 1-1 ServiceModel.xsd Elements and Structure

The ServiceModel.xsd file contains the elements and structure to define:

Chapter 1
About Cartridge XML Schemas

1-5

• Atomic actions and their associated rollback conditions, timeout and retry settings,
parameters and associated devices and software loads

• Device mappings (atomicDeviceMap), which provide a type definition to map atomic
actions to NE types

• Service actions and their associated rollback conditions, priorities, provisioning events, and
mappings to atomic actions

• Base-exit-type-to-user-exit-type mappings

• Event template mappings to return extended event information

Note:

Design Studio automatically conforms to this schema when you generate a cartridge,
although the Design Studio GUI screens do not necessarily map to each schema
elements.

Depending on the service modeling strategy, the service definition can be contained in one or
more service model files. For example, all of your service definitions can be contained in a
single service model file. Alternatively, larger organizations can distribute, add, modify, and
delete service actions over three different service model files or create a service model file for
each service.

The ServiceModel.xsd file is fully annotated, and the ASAP_Home/samples/sadt directory
contains sample service models.

The XML files you create that contain the service models can have any name, provided the
<ServiceModel> element in the activation model deployment descriptor (activation-
model.xml) correctly references it.

SA_archive.xsd
The SA_Archive.xsd file is the schema upon which activation-model.xml is based. The
activation-model.xml file identifies the components contained in the service activation archive
to be deployed by the SADT or the installCartridge script.

Note:

Design Studio automatically conforms to this schema when you generate a cartridge
SAR file.

These components include, at a minimum, one or more service models and the required
JInterpreter provisioning classes. You can optionally include other components, such as:

• Customized SQL (the SQLDeploy type allows you to add customer data to both the SRP
and NEP schemas).

• Documentation (including design guidelines, API documentation, and so forth).

The ComponentType attribute appears as follows in the SA_Archive.xsd file:

<xsd:complexType name="ComponentType">
<xsd:annotation> <xsd:documentation>A component type can one of either a serviceModel,

Chapter 1
About Cartridge XML Schemas

1-6

or a customized SQL.
 </xsd:documentation>
</xsd:annotation>
<xsd:choice>
<xsd:element name="serviceModel" type="am:XMLFileType"/>
<xsd:element name="javaProvisioningFile" type="am:ProvisioningClassFileType"/>
<xsd:element name="srpSQLFile" type="am:SQLDeployType"/>
<xsd:element name="nepSQLFile" type="am:SQLDeployType"/>
</xsd:choice>

The activation-model.xml file must reside in the META-INF directory.

The SA_Archive.xsd file is fully annotated, and the ASAP_Home/samples/sadt directory
contains activation-model.xml files contained in the sample SAR files included with ASAP.

About Service Modeling
ASAP supports the following service models:

• Vendor, technology, and software load-specific service model

This service model aligns common service actions and atomic actions with one vendor,
technology, and software load. Design Studio for ASAP refers to this model as a network
cartridge.

• Common service model

This service model groups service actions and atomic actions for different vendor,
technology, and software loads into one service cartridge. Each service action and atomic
action combination supports only one vendor, technology, and software load. Design
Studio for ASAP refers to this model as a service cartridge.

• Mixed service model

This service model associates a service action to atomic actions created for different
vendor, technology, and software loads. Design Studio for ASAP also refers to this model
as a service cartridge.

For more information on these service models, see Design Studio Modeling Activation.

You must design your cartridges to enable the use of the service models you require, for
example, by applying naming conventions and parameter standards across cartridges so that
merging of cartridge-specific objects into a common or mixed service model can occur on a
customer project. This guide provides guidelines and best practices for creating each element
using such consistent conventions and standards to facilitate service modeling.

Chapter 1
About Service Modeling

1-7

2
Creating a Cartridge Project

This chapter describes how to define an Oracle Communications ASAP cartridge project.

About Cartridge Types
ASAP provides two cartridge types that support the three service models (see "About Service
Modeling"):

• Network cartridges

• Service cartridges

Network cartridges can be used to implement the vendor, technology, and software load
specific service models. Service cartridges can be used to implement both common and mixed
service models.

Note:

You can select the cartridge type and all components described in this chapter using
the New Studio Activation Cartridge Project Wizard in Design Studio for ASAP. For
more information about this wizard, see the discussion on setting up an activation
cartridge in Design Studio Help.

Defining Network Cartridge Project Parameters
Network cartridges target a single vendor, technology, and software load. The development
process starts with the network element (NE) interface documents, identifying the services and
commands supported and then deciding which set of services to be implemented. Specific
customer business logic has no impact, because the solution layer must be implemented as a
service cartridge. The scope is to develop generic, reusable libraries of atomic actions, which
can then be used for custom solutions projects.

Network cartridges typically support a one-to-one mapping between service action and atomic
actions, simplifying service modeling; however, this pushed back the problem of creating
meaningful services to the work order level. For more recommendations about scenarios
where network cartridges are appropriate, see the Design Studio Help.

You can purchase network cartridges from Oracle, or you can create your own network
cartridge.

Defining network cartridge project parameters includes the following tasks:

• Defining Network Cartridge Identification Tokens

• Defining the Scope of the Network Cartridge

• Creating a Design Studio Project

2-1

Defining Network Cartridge Identification Tokens
Name each network cartridge using elements that uniquely identify it. The following items are
included in a cartridge name:

• Vendor

• Technology

• Software load

Note:

You define these three elements using the New Studio Activation Cartridge Project
Wizard in Design Studio for ASAP. For more information about this wizard, see the
discussion on setting up an activation cartridge in the Design Studio Help.

Selecting the Vendor Token
The Vendor token is a string that uniquely identifies the manufacturer of the NE: for example,
ALU for Alcatel-Lucent, or ERIC for Ericsson. It is embedded in the service modeling object
names and Java method names. Use Table 2-1 to select a vendor token, otherwise check the
NASDAQ symbol for hints but do not use symbols that are cryptic, for example the SONUS
NASDAQ symbol is SONSE which is not as meaningful as SONUS.

Table 2-1 Vendor Token Examples

Company Vendor Token

Alcatel-Lucent ALU

Ericsson ERIC

Cisco CSCO

Comverse CMVT

Copper Mountain CMTN

Logica LGIA

Lucent LUC

Nokia NOK

Nortel NT

Redback RBAK

Siemens SIEM

Sonus SONUS

Vodafone VF

Selecting the Technology Token
The technology token is a string that identifies the category of services or vendor classification
of equipment to which the NE belongs: for example, HLR for Home Location Register or

Chapter 2
Defining Network Cartridge Project Parameters

2-2

DSLAM for Digital Subscriber Line Access Module. In some cases, a vendor specific term
(such as DMS or STINGER) may be used in place of the technology token.

See Table 2-2 for technology token examples.

Table 2-2 Technology Token Examples

Vendor Technology Token Description

Generic HLR Home Location Register NE

Generic DSLAM Digital Subscriber Line Access Module

Generic VMS Voice Mail Server

Generic SMS Short Message Server

Nortel DMS Digital Multiplex System Voice NE

Alcatel-Lucent STINGER Digital Subscriber Line Access Module

Selecting the Software Load Token
The software load is an alphanumeric string representing the software load of the element
management system (EMS) that manages the NE, or the software load running on the NE
itself. The selection of the software load to be supported is based on the entity (EMS, Network
Management System (NMS), or NE itself) that the cartridge is designed to interface with.

A software load containing a minor release number (for example, 1.2) has a corresponding
software load token of 1-2. This is the same token used in the name and configuration of the
sample NE and in the atomic action to Java method mapping (see the sftwr_load token of
tbl_nep_asdl_prog). Do not use periods in the name of the software load token, use dashes
instead.

A cartridge only supports one technology and software load. When the software load for a
particular technology changes, build a new cartridge to support the new software load.

In general, create a new cartridge release when a major or minor change in the software load
occurs, and specifically when the changes between these releases are significant. Some
vendors make significant changes in their software between minor releases (for example 1.2 to
1.3); other vendors make the significant changes in their cartridges between major releases
(for example 3.0 to 4.0).

Using an x in the second or third digit of the cartridge software load value indicates that the
release does not have significant changes for any releases that change the digit marked as x.
For example, a cartridge marked with software load 1-2-x, assumes that small changes occur
in the third digit. Changes in the cartridge may be needed if additions are made to the NE
software as part of such a release, but the cartridge software load remains intact and the
cartridge remains backward compatible.

Defining the Scope of the Network Cartridge
Two approaches can be taken in determining the scope of the network cartridge:

• Comprehensive - aimed at supporting as much functionality as provided by the NE. You
may develop more than one service package (see "Selecting Entity Tokens") for the
various services supported on an NE (for example, Frame Relay, FRATM, and ATM
services). For cartridges supporting many different types of services, the comprehensive
approach can require significant development effort.

Chapter 2
Defining Network Cartridge Project Parameters

2-3

• Service-specific – often driven by a customer request or market demand for support for a
particular set of services on an NE: for example, ATM PVCs. Because the scope of the
cartridge is limited to a subset of functionality, this approach often requires less
development effort. Additional services in the form of sub-cartridges can be supported on
the NE in the future.

Factors influencing the approach that is taken include the time available to implement the
cartridge, customer priorities and the number of services provided by the NE.

Creating a Design Studio Project
Design Studio for ASAP automatically creates your directory structure for you as you add new
service actions, atomic actions, and action processors.

The project name should identify the name of the vendor, the technology, and the software
load to differentiate your cartridge from other cartridge projects.

Defining Service Cartridge Project Parameters
Service cartridge can select components from any network cartridge to create customized
service models that can simultaneously activate and configure diverse NEs from any vendor,
technology, and software release.

For more information about the kinds service cartridges, see the Design Studio Help.

Importing and Extending Network Cartridges in Service Cartridges
Service cartridges extend and customize the services provided in network cartridges. To
access the service action, atomic actions, action processors, network connections, user exit
types, and event templates configured in network cartridges, you must import the network
cartridges in Design Studio before creating a service cartridge project.

For more information about importing cartridge projects from SAR files, see Design Studio
Help.

Note:

Importing cartridge projects from SAR files is deprecated functionality. Oracle
recommends that you distribute and deploy Design Studio Projects rather than SAR
files.

Note:

You can reuse service actions, atomic actions, action processors, network
connections, user exit types, and event templates configured in network cartridges
purchased from Oracle in a customized service cartridge. However, the source code
for Java action processor classes, methods are not provided. If you require access to
specific code in order to extend existing network cartridge, Java implementations,
request access by raising a service request with Oracle Support.

Chapter 2
Defining Service Cartridge Project Parameters

2-4

3
Configuring Network Element Connections

This chapter describes how to configure Oracle Communications ASAP to connect to a
network element (NE).

About Network Element Configuration Components
Every cartridge must create the following components to enable a connection to an NE:

• NEs and NE connections: see "About Network Elements and Network Element
Connections"

• NE connection handler and associated Java code: see "About Configuring a Java Network
Connection Handler"

• NE to network element processor (NEP) mapping: see "Mapping a Network Element to a
Network Element Processor"

You can also create the following:

• NE templates

NE templates provide reusable NE information that can be used to quickly create new NEs
with similar attribute requirements. For more information, see the Design Studio Help.

• Dynamic NE templates

Use the Dynamic NE Template editor to define a dynamic NE template entity. The entity
routes orders based on network and communication data provided as order parameters,
rather than using preconfigured static, locally maintained data. For more information, see
"Configuring Dynamic Routing ."

About Network Elements and Network Element Connections
ASAP supports two types of NE connections:

• Host: Indicating a programmable NE directly connected to ASAP.

• Remote: Associated with the host NE and programmed through the designated host.
ASAP routes service requests in the form of atomic actions through the host NE to the
appropriate remote NE.

A host NE is an NE that has an interface through which remote NEs can be programmed.
Several remote NEs covering a given area can be associated with a host NE, which increases
the effective coverage of the NE group. Host NEs are not required to have remote NEs
assigned to them.

ASAP can interface with many NE technologies and software loads over several logical and
physical interfaces. The definitions for each host NE resides in tbl_host_clli in the service
activation request manager (SARM) database. The records in this table define the different
technologies (switch types) and software loads that are currently used by all service request
processors (SRPs) and NEs in the system. The Java method interpreters reference this table
to find the technology and software version for each SRP/NE in the system.

3-1

The definition for the remote NE resides in the user-configurable table (tbl_clli_route), which
maps host NEs to remote NEs. Work orders sent to ASAP target the remote NE value
populated within tbl_clli_route, so if the target NE is the host NE, then you must enter the
name of the host NE in the remote NE field.

For more information about these tables, see ASAP Developer's Guide.

You can create and configure a host NE with Design Studio using the Network Element
Wizard. You can designate one or more remote NEs or specify a host NE as the target for work
orders after you have created a host NE from the Network Element editor Target Network
Element tab.

To create and configure host NEs and remote NEs, see the following sections:

• Network Elements and Network Element Connections

• Adding Target Network Elements

• Setting Network Element Throughput Control

Network Elements and Network Element Connections
When you create an NE, you populate the tbl_host_clli table. This static table contains the
host NE, the technology, and the software load of each NE in the ASAP system. It also
contains records for each host NE to which the NEPs interface.

You can create an NE using Oracle Communications Service Catalog and Design - Design
Studio with the Network Element Wizard.

tbl_resource_pool is a static table that defines the collection of command processors
(devices) that the NEP uses to establish connections to NEs. Groups of command processors
are called resource pools. Each NE configuration determines a primary resource pool that
defines one or more devices the NEP uses to connect to that NE. These devices are not used
to connect to other NEs. Each NEP has an auxiliary resource pool that contains devices used
by the NEP to establish connections to any NE managed by the NEP. These primary and
auxiliary resource pools are defined in this table. You must populate this table to add command
processors.

The devices contained in resource pools are configured for a specific type of connection
protocol.

The maximum connections setting for an NE must not exceed the number of devices in the
primary resource pool.

If an NE allows for multiple simultaneous connections, the NE should have more than one
device configured in its primary resource pool. Oracle recommends two or more connections in
the resource pool.

For more information about connection pools, see the discussion about the NEP session
manager in ASAP Server Configuration Guide.

Creating and Configuring Network Element and Network Element Connections
To create and configure NEs and NE connections:

1. In Design Studio, open an Activation project.

2. Select the Studio menu, then select New, then select Activation, and then select
Network Element.

The Network Element Wizard appears.

Chapter 3
About Network Elements and Network Element Connections

3-2

3. In the Entity field, enter an entity name.

4. Click Finish.

The Network Element editor appears.

5. In the General tab, do the following:

a. In the Connection Pool Name field, enter a connection pool name. Creates a
connection pool of devices that the NEP uses to establish connections to NEs. For
more information about connection pools, see ASAP Server Configuration Guide.

b. In the Protocol field, enter a connection protocol. ASAP supports multiple
communication protocols, and provides optional pre-configured parameters for these
protocols. For more information about these protocols and parameters, see "About
Communication Protocol Parameters."

c. In the Drop Timeout (minutes) field, enter the drop timeout threshold in minutes. This
field specifies the time threshold in which an NE receives no work orders from ASAP
after which ASAP drops the connection. For more information about the Drop Timeout
parameter, see ASAP Server Configuration Guide.

d. In the Spawn Threshold (AA) field, enter the spawn threshold. This field specifies the
number of pending atomic actions in an NE connection queue before the SARM spawn
a new NE connection. For more information, see ASAP Server Configuration Guide.

e. In the Maximum Connections field, enter the maximum number of connections. This
field specifies the maximum number of connections that can be established to an NE.
For more information, see ASAP Server Configuration Guide.

f. In the Kill Threshold (AA) field, enter a kill threshold. This field specifies the
termination of an NE connection when the number of atomic actions within an NE
queue falls below this threshold. For more information, see ASAP Server Configuration
Guide.

g. In the Retry Count field, enter a the maximum number of retries. This field specifies
the maximum number of retries, if an NE work order requests times out. If the number
of retries exceeds retry count, then the order fails and rolls back. This attribute is
configurable at the NE level, the atomic action level, the system level, and the work
order level. For more information, see "About Retry Properties."

h. In the Retry Interval field, enter a retry interval time. This field specifies the time
period in seconds between NE retries. This attribute is configurable at the NE level, the
atomic action level, the system level, and the work order level. For more information,
see "About Retry Properties."

i. In the Throughput field, enter the minimum number of transaction per NE instance.
This field specifies the NE instance throughput control – the minimum number of
transaction per NE instance. For more information, see "Setting Network Element
Throughput Control."

j. In the Transaction Per field, enter a time value for the Throughput parameter. For
more information, see "Setting Network Element Throughput Control."

6. In the Connection tab, click Add.

The Add Predefined Parameters dialog box appears.

7. Do one of the following:

• To accept the auto generated parameters that ASAP preconfigures for the protocol,
click Yes.

• To create your own parameters click No.

Chapter 3
About Network Elements and Network Element Connections

3-3

Adding Target Network Elements
tbl_clli_route is a static table that contains the mapping between a remote NE and its host
NE. You must populate this table if you want to specify a remote NE-to-host NE mapping. If
you do not want to use a remote NE, you must specify the host NE as the target NE. Work
orders are routed based on the Target NE Name field (called mach_clli in tbl_clli_route). In
addition, you can associate individual atomic actions to specific remote NEs.

Any changes you make to the mapping relationships between host NEs to remote NE take
effect at runtime. All other changes require that you restart the SARM.

To configure and create a network connection:

1. In Design Studio, open an Activation project.

2. Open an existing Network Element.

3. From the Network Element editor, on the Target Network Elements tab, click Add.

4. In the Target NE Name area, do one of the following:

• If you want to route work orders to the host NE, enter the name of the host NE.

• If you want to route work orders through the host NE to one ore more remote NEs,
enter the name of the remote NE.

5. (Optional) If you want to associate an atomic action to your NE, click Select and add an
atomic action from the list of available atomic actions. This option is available only if you
have already created atomic actions.

Setting Network Element Throughput Control
Throughput control mechanism controls the number of transactions per unit of time. This
mechanism ensures that networks elements are not overloaded.

To prevent certain types of NEs from becoming overloaded, it may be necessary to control the
volume of transactions that are being sent from ASAP. A central throughput control mechanism
enables you to configure a specific throughput per unit of time for NE instances, which ensures
that no more than a specific number of transactions are sent to the NE per unit of time.

Consider the following scenario:

It has been discovered that the throughput limitations of a specific NE (that responds to ASAP
asynchronously) require that no more than 20 transactions per second can be sent to the NE.
Otherwise, some response messages are not generated and are therefore never received by
ASAP. To prevent overloading and ensure the NE generates all required response messages,
the service modeler configures throughput controls for this NE instance as described below.

To configure the throughput control for a NE instance:

1. In the NE Template editor, modify the throughput properties used to create new NE
instances.

When modifying the properties used to create new NE instances, you ensure that any
future NE instances use the appropriate throughput properties. To do this, update the
throughput values in the NE Template editor as follows:

a. In the Throughput field, enter 20 as the number of transactions.

Valid Throughput field values range from 1 - 9999.

b. In the Transactions Per field, enter Seconds as the unit of time.

Chapter 3
About Network Elements and Network Element Connections

3-4

2. In the Network Element editor, modify the throughput properties for any existing NE
instances of that type.

Update the throughput values as follows:

a. In the Throughput field, enter 20 as the number of transactions.

Valid Throughput field values range from 1 - 9999.

b. In the Transactions Per field, enter Seconds as the unit of time.

3. In the Dynamic NE Template editor, modify the throughput properties for any existing
Dynamic NE Template used for NE instances of that type.

Update the throughput values as follows:

a. In the Throughput field, enter 20 as the number of transactions.

Valid Throughput field values range from 1 - 9999.

b. In the Transactions Per field, enter Seconds as the unit of time.

4. Save all modified NE templates, NEs, and dynamic NE templates.

You can now deploy the configuration to an ASAP environment for testing.

About Configuring a Java Network Connection Handler
An NE connection handler associates an NE to Java code that implements the connection from
the NEP to the NE.

In Design Studio, when you create an NE, you must choose a supported protocol for your
NEP-to-NE connection. Then you can add one or more connections to the NE. ASAP provides
you with optional base connection parameters. If you choose to accept these base parameters,
ASAP will automatically generate supporting Java code (for more information about
autogenerated protocol-specific communication parameters, see "About Communication
Protocol Parameters").

ASAP sends these communication parameters to Java methods that you create to implement
the connection. For more information about the Java code used to implement the connection,
see "Creating Connection Methods and Helper Classes."

Note:

Communication parameters are not part of the data dictionary used for atomic
actions.

Creating an Network Element Connection Handler
To create an NE connection handler:

1. In Design Studio, open an Activation project.

2. Select Studio, then select New, then select Activation, then select NE Connection
Handler.

The NE Connection Handler Wizard appears.

3. Do the following:

• In the Project field, enter the name of the project.

Chapter 3
About Configuring a Java Network Connection Handler

3-5

• In the Name field, enter the name of the network connection handler element.

• In the Folder field, you can choose to create a new folder, or select an existing folder.

4. Click Finish.

The NE Connection Handler editor appears.

5. In the Connection Handlers section, click Add.

A new connection handler appears with the same vendor, technology, and software load of
the project.

6. Click New.

The Studio Activation Java Connection Handler Wizard appears.

Note:

Ensure that a dot does not precede the package name. If a dot precedes the
package name, remove it.

7. In the Name field, enter a connection handler name.

8. From the Connection Type list, do one of the following:

• To create a new telnet NE connection handler, select Telnet. Telnet NE Connection
Handler automatically generates the code for telnet connections. This extends the
telnet connection to support the interface. The NE Connection Handler editor indicates
where additional code is required.

• To create a custom NE connection handler, select Custom. Use this NE Connection
Handler if the connections are not telnet. Custom Connection Handlers generate a
skeleton to implement the IconnectionHandler and extends the base NE connection
class. The NE Connection Handler editor indicates where additional code is required.

9. Click Finish.

Note:

The code is generated after but is not synchronized (that is, it does not
automatically generate every time you change the NE Java code.) The developer
must manage all the changes to automatically generated classes after they are
created.

Mapping a Network Element to a Network Element Processor
You must map NEs to NEPs. NEPs perform the following tasks related to NE connectivity:

• Support a session manager that manages high level interaction with an NE. This includes
routing to resource pools and determining which command processor (a thread that
implements user-defined Java methods for connecting to an NE) to use within a resource
pool.

• Provide interpreters (JInterpreter for Java methods) that run custom code that handles
protocol and device-specific communication with NEs.

Chapter 3
Mapping a Network Element to a Network Element Processor

3-6

• Support for a connection handler method within the command processor that provides a
transparent interface between the user-created Java methods and the protocol-specific
communication details: for example, TCP/IP, serial, SSH, SSH FTP, and so on.

• Support for a Multi-Protocol Manager (MPM) within the command processor. ASAP
maintains protocol-specific communication parameters in the SARM and loads them from
the database by the NEP after you determine the communication protocol to use and prior
to connecting to the NE.

• Manage connect, disconnect, login, connection spawning thresholds, connection
destruction thresholds, maximum connections, and device throughput as defined in the
information configured in ASAP cartridges.

For more information about NEP functionality, see ASAP Server Configuration Guide.

To map an NE to an NEP:

1. In Design Studio, select Studio, then New, then Project, then Environment Project.

The New Studio Environment Project Wizard appears.

2. In the Project name field, enter a project name.

3. Click Finish.

The Open Associated Perspective? dialogue box appears.

4. Click No.

5. From an Activation project, select Studio, then New, then Environment, then Studio
Environment.

The Studio Environment Wizard appears.

6. In the Name field, enter a name for the Studio Environment.

7. Click Finish.

8. From an Activation project, select Studio, then New, then Environment, then NEP Map.

The NEP Map Wizard appears.

9. Do the following:

a. From the Project list, select an environment project.

b. From the Studio Environment list, select an environment.

c. In the Entity field, enter a name for the NEP-to-NE mapping.

d. Click Finish.

The NEP Map editor appears.

10. In the Network Element Processor Map area, click Add.

The Select a Network Element screen appears.

11. Select the NE you want to map your NEP to.

12. Click OK.

13. (Optional) If you have more than one NEP server, you can specify the name of the NEP
server in the NEP Server field.

Chapter 3
Mapping a Network Element to a Network Element Processor

3-7

4
Mapping Network Element Commands to
Actions, Entities, and Parameters

This chapter describes how to map network element (NE) commands to cartridge actions,
entities, and parameters.

About Identifying Network Element Commands and Parameters
The bottom-up methodology begins with the identification of the NE commands, man-machine
language (MML) commands or API calls, to be supported in the NE specification for the
relevant service packages. You must develop an understanding of the services provided by the
NE and the sequence in which the commands are provisioned to implement the services. This
simplifies the effort of identifying action processors, atomic actions, and service action
commands. You must also identify the parameters required to provision each action.

Defining Actions and Entities
Every service action, atomic action, and action processor consists of a combination of the
following:

• Vendor, technology, and software load (see "Defining Network Cartridge Project
Parameters" and "Defining Service Cartridge Project Parameters")

• Actions (see "Selecting the Action Tokens")

• Entities (see "Selecting Entity Tokens")

Note:

Using Design Studio for ASAP, you can define actions and entities using the Atomic
Action Wizard, Service Action Wizard, Action Processor Wizard, or Cartridge Layout
tool. For more information on these features, see Design Studio Help.

Selecting the Action Tokens
This set of tokens represents the actions that can be taken on the NE. Different NE vendors
may use different tokens to represent identical actions (for example, ADD and SET). NEs from
different vendors may use similar tokens to represent different actions (for example ADD and
ACTIVATE). Oracle recommends that you select one of the mainstream actions (as shown in
the list below) without distorting the meaning of the action taken. If this is not possible, select
the action token reflected in the vendor documentation.

Actions can be any verb however the mainstream actions recommended by Oracle are as
follows:

• ADD

4-1

• DEL

• CHG

• ACTIVATE

• DEACTIVATE

• QRY

The action token used in a service action is in most cases the same as the action token used
in the corresponding atomic action, and action processor when there is a one-to-one mapping.
Many-to-one mapping reflects the net result of the actions taken at the atomic action and
action processor level in the action of the service action. Action processors in most cases
should use the same action as defined in the atomic action.

Table 4-1 provides an example of a service action-to-atomic and action processor mapping.

Table 4-1 Service Action, Atomic Action, and Action Processor Action Mapping

Service Action Verb Atomic Action Verbs Action Processor Verbs

C_ALU-MOCA_R6_ADD_CAW A_ALU-MOCA_R6_ASSIGN_CAW
A_ALU-MOCA_R6_ENABLE_CAW

I_ALU-MOCA_R6_ASSIGN_CAW
I_ALU-MOCA_R6_ENABLE_CAW

Selecting Entity Tokens
NEs can have various domain-specific entities that require further specification. These entities
are the recipient of the action verbs.

In some cases, the volume of services supported on an NE requires that you create logical
functional groups of services called service packages. For example, a cartridge for an NE that
supports various types of data services might have the following service packs:

• ATM
• FRAME
• FRATM
• BGP
When multiple service packages organize a cartridge, a common service package can contain
common components, if applicable, such as connection classes, helper classes, common
actions taken across service packages, and so on.

You can also choose the service names that can be manipulated in the cartridge. Services
could be subscribers, features such as call waiting, three way calling, or logical components
such as cross connects. For example:

• X-CONN
• SUBS
• CALL-FORWARD
• THREE-WAY-CALLING
• PORT
• GSM-SUBS

Chapter 4
Defining Actions and Entities

4-2

Service package and service name should be used in the naming convention of service action,
atomic action, and action processor commands. Separate compound service package and
service sub-tokens with a dash rather than an underscore. For example:

Table 4-2 Service Action, Atomic Action, and Action Processors Entity Tokens

Service Action Entity Atomic Action Entity Action Processor Entity

C_NOK-HLR-R4_ADD_BGP-SUBS A_NOK-HLR-R4_ADD_BGP-SUBS
A_NOK-HLR-R4_ENABLE-BGP-SUBS

I_NOK-HLR-R4_ADD_BGP-SUBS
I_NOK-HLR-R4_ENABLE_BGP-SUBS

Generating a Cartridge Layout
For activation network cartridges, service actions, atomic actions, and action processors are
created and linked in a 1:1:1 relationship for all combinations of the actions and entities you
specify.

For an activation service cartridge, only service actions are created, allowing a non-restricted
association either with already existing network activation cartridges atomic actions or new
atomic actions defined as part of the solution. For activation service cartridges, a decision must
also be made about the type of service model you create (common, mixed, or vendor/
technology/software load-specific), which affects the naming convention used for the atomic
actions.

When using the cartridge generation feature, you specify the actions that will be performed by
the cartridge (for example, ADD, MOD, DEL, QUERY and so on) and the entities targeted by
these actions (for example, PORT, SUBSCRIBER, SUBSCRIPTION, LINE, and so on). After
entering this information into the Project editor Cartridge Layout tab, you can generate a
framework model by clicking the Generate Cartridge button.

Design Studio uses the action and entity tokens in the Java autogeneration feature (class and
package names) therefore do not use special characters (like dashes) when naming these
components. Use single tokens when defining actions and entities. Use standard names for
actions whenever possible, like ADD, DELETE, QUERY and MODIFY across all the cartridges.
Use short and descriptive names for entities. Whenever the cartridge template cannot be auto
generated in a single pass, use the feature several times. For example:

• In the first pass, generate a template for ADD, DELETE, QUERY, MODIFY actions and
SUBSCRIBER and FEATURE entities

• Remove actions and entities for which the template has been generated under the
Cartridge Layout tab and add new actions and entities (like ENABLE, DISABLE, BLOCK,
UNBLOCK actions and SERVICE entity).

The cartridge generation feature does not overwrite a framework that already exists. Rather, it
adds to framework new and modified actions and entities. Additionally, Design Studio does not
delete old actions or entities. You can, however, delete them manually.

About Parameter Types
Each atomic action has parameters that are sent to the NEP by the atomic action. The
parameters determine whether the SARM transmits a particular atomic action.

tbl_asdl_parm is a Static Table that is used by the SARM to define the parameter labels and
values associated with a given atomic action. It also provides the mapping between the service
action parameter labels received from the service request processor (csdl_lbl) and the atomic
action parameter labels (asdl_lbl) transmitted to the NEP for interpretation.

Chapter 4
Generating a Cartridge Layout

4-3

For each service action label (csdl_lbl), the SARM checks the current service action
parameter name-value pairs for a matching label. If no matching label is found, it checks for a
label in the work order global parameter name-value pairs. If no matching label is found in
either of these parameter name value pairs and the parameter type (param_typ) which is
mandatory, the default value (default_vlu), is used.

If no default value is set, the SARM registers an atomic action parameter mapping failure. If the
parameter is indexed, the csdl_lbl must contain a ++ or the SARM will not start.

Atomic action parameters can be one of the following types:

• R: required scalar

• O: optional scalar

• C: required compound

• N: optional compound

• M: mandatory indexed

• I: optional indexed

• X: required XML

• Y: optional XML

• P: required XPATH

• Q: optional XPATH

• + –: the current index value for this atomic action. Only applicable to indexed atomic
actions.

Note:

You can create, modify, or delete new runtime parameters, specify the parameter
type, and specify whether the parameter is optional or mandatory using the Design
Studio Data Schema editor. See Design Studio Help references for the Activation
tab and the Details tab for the ASAP Data Schema editor.

Chapter 4
About Parameter Types

4-4

Figure 4-1 ASAP Parameter Types

Default Values Rules and Guidelines
Provide default values for parameters only when the NE documentation suggests that one
value or setting is much more common to use than another.

About Creating a Data Dictionary
You may use a data dictionary with ASAP in the following two scenarios:

• When you have identified the NE commands and identified actions and entities (or
generated a cartridge framework), you must create a data dictionary of all parameters
required for the NE commands. In this scenario, you are creating the data dictionary based
on the information you have gathered about the NE.

• You import an existing data dictionary into Design Studio, and you must associate the
relevant data or structured elements to NE commands, actions, and entities. In this
scenario, the data dictionary already exists, and you must map and configure these data
elements for use with ASAP.

For more information about creating a data dictionary, see Design Studio Help.

After you have created the data dictionary, you must encapsulate the parameters within atomic
actions. In most cases, you create one atomic action for each of the provisioning actions that

Chapter 4
About Creating a Data Dictionary

4-5

can be taken on the NE. For more information about creating atomic actions, see "Creating
and Configuring Atomic Actions ."

Creating an ASAP Cartridge Project Data Dictionary Using Design Studio
Design Studio automatically creates a data dictionary for each cartridge project when you
create a new Design Studio cartridge project. Design Studio also creates data dictionaries for
cartridges imported into Design Studio.

Scalar Parameters
Scalar parameters are conventional name-value pair parameters.

 Service Action C-ADD_FEATURE
 PARM NE_ID NEWYORK
 PARM LEN 2111112
 PARM LATA 516
 PARM LCC 555

Creating a Scalar Parameter using Design Studio
To create a mandatory, optional, or indexed scalar parameter using Design Studio:

1. Select Studio, then select Show Design Perspective.

2. Select the Data Element tab.

3. Right click in the Data Element dialog box.

4. Select Add Simple Schema Element.

The Create Data Schema Element wizard appears.

5. Enter the following:

a. In the Entity field, enter the name of the project to which you want to add a scalar
parameter.

b. In the Name field, enter an element name.

c. In the Display Name field, enter a display name. The Data Schema editor supports
multiple languages for this field. The field adjacent to Display Name displays your
language. You can define a Display Name field value for any language you select
from the list. For more information, see Design Studio Help.

d. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is considered
a mandatory ASAP parameter. Any ranged parameter with a Minimum value of 0
is considered an optional ASAP parameter.

6. Click Finish.

The new parameter appears in the Data Element dialog box.

7. Click the new parameter.

The Data Schema editor appears.

8. In the Element section, click the Activation tab.

Chapter 4
About Creating a Data Dictionary

4-6

9. From the Runtime type list, select SCALAR.

10. (Optional) Select Indexed to index the parameter.

Indexed Parameters
These parameters contain a sequential numerical index value to tell the SARM that it should
run the same operation (for example, an atomic action) for all occurrences of that index.
Consequently, if there are several options on a particular service action command (OPT1,
OPT2, OPT3, etc.), you can specify the OPT parameter as an indexed parameter. When you
specify the OPT parameter as an indexed parameter, the SARM generates several
occurrences of that same atomic action, and each command has a different value for the
option being transmitted to the NEP.

If there are 100 such indexed parameters on the service action command, the SARM transmits
the same atomic action 100 times. Each time the SARM transmits the atomic action, the
parameter has a different option value.

If an indexed parameter is configured to be transmitted on a given atomic action, only one
indexed parameter value is transmitted with each atomic action, and the same atomic action is
run repeatedly.

For instance, if the work order contains:

• OPT1 = 3WC

• OPT2 = CWT

And the service action-to-atomic action mapping contains the following:

Service Action Parameter Atomic Action parameter
------------------------ -------------------------
OPT[++] OPTION

Note:

By convention, the ++ notation appears at the end of the label within square
brackets. This convention makes it easy to identify the index.

That particular atomic action is run twice. The first time, the atomic action has an OPTION
parameter with the value 3WC. The second time, the atomic action has an OPTION parameter
with the value of CWT.

Regardless of whether the service action references a Java provisioning class, the service
action has access only to one parameter, which in this example is OPTION.

Compound Parameters
Compound parameters contain structures or arrays of information that are represented by a
particular structure name or compound parameter name. Each compound parameter can
contain a large number of elements. If you use compound parameters, you only require a
single entry in the ASAP translation tables to call the compound parameter and all its
associated parameter elements.

If you configure a compound parameter to be transmitted on an atomic action, ASAP transmits
all elements for the compound parameter to the NEP at the same time.

Chapter 4
About Creating a Data Dictionary

4-7

Note:

In the case of compound parameters, the base name of the parameter on the work
order must be exactly as specified in the tbl_asdl_parm and the base name must
not have a period in it.

For example, if there is a compound parameter with the base name CMPNDPARAM specified
in the tbl_asdl_parm as type C, you can define a work order with the following parameters:

CMPNDPARAM1=value1
CMPNDPARAM2=value2
CMPNDPARAM3=value3
CMPNDPARAMABC=value4

A compound parameter can be used by selecting parameter type C or N. A compound
parameter (whether it is indexed or not) does not trigger the multiple execution of the same
atomic action.

The following formats are supported for compound parameters:

• Format 1 – Suffix cannot contain a period. For example:

– BasenameSuffixA

– BasenameSuffixB

– BasenameSuffixC

• Format 2 – a period comes directly after the basename. For example:

– Basename.SuffixA

– Basename.SuffixB

– Basename.SuffixC

Note:

The basename must match the name defined in tbl_asdl_parm.

Creating a Compound Parameter using Design Studio
To create a compound parameter using Design Studio:

1. Select Studio, then select Show Design Perspective.

2. Select the Data Element tab.

3. Right click in the Data Element dialog box.

4. Select Add Structured Schema Element.

The Create Data Schema Structure wizard appears.

5. Enter the following:

a. In the Entity field, enter the name of the project to which you want to add a scalar
parameter.

b. In the Name field, enter an element name.

Chapter 4
About Creating a Data Dictionary

4-8

c. In the Display Name field, enter a display name. The Data Schema editor supports
multiple languages for this field. The field adjacent to Display Name displays your
language. You can define a Display Name field value for any language you select
from the list. For more information, see the Design Studio Help.

d. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is considered
a mandatory ASAP parameter. Any ranged parameter with a Minimum value of 0
is considered an optional ASAP parameter.

6. Click Finish.

The new parameter appears in the Data Element dialog box.

7. Click the new parameter.

The Data Schema editor appears.

8. In the Element section, click the Activation tab.

9. From the Runtime type list, select COMPOUND.

Note:

All child elements inherit the Activation tab attributes from the base compound
element.

10. (Optional) Select Indexed to index the parameter.

11. From the Data Element area, right click the new parameter.

12. Select Add Simple Child Schema Element.

Note:

Compound parameters do not support structured child schema elements.

13. Enter the following:

a. In the Name field, enter an element name.

b. In the Display Name field, enter a display name. The Data Schema editor supports
multiple languages for this field. The field adjacent to Display Name displays your
language. You can define a Display Name field value for any language you select
from the list. For more information, see the Design Studio Help.

c. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is considered
a mandatory ASAP parameter. Any ranged parameter with a Minimum value of 0
is considered an optional ASAP parameter.

14. Click Finish.

Chapter 4
About Creating a Data Dictionary

4-9

15. Repeat steps 7 to 10 for any additional parameters to be included in the compound
parameter.

Compound Indexed Parameters
The compound parameter can have an index. If using a compound indexed parameter, the
parameter type must be C. The following format is supported for only indexed compound
parameters.

• Basename[1].Suffix

• Basename[2].Suffix

• Basename[3].Suffix

You can define compound parameters and indexed parameters at the same time. This allows
for the specification of multi-dimensional data elements.

Note:

For an example of a compound indexed parameter, see "Scenario 4 – One Service
Action to Multiple Atomic Actions Routed to Multiple NEs."

Compound Parameters Rules and Guidelines
Avoid the use of compound parameters unless absolutely necessary. Using compounds makes
the SARMs error checking capability far less effective and makes order entry through Order
Control Application (OCA) more difficult. When multiple sets of parameters that have variable
numbers of elements must be passed to the same implementation method for provisioning, a
compound parameter with an associated index can be used (the index is purely for logical
representation of the data and should not be confused with the atomic action indexing
capability in ASAP). For example, a Java method that provisions multiple features in an
optimized manner could be passed a compound structure containing variables as shown:

FEATURE[1].NAME = 3WC
FEATURE[2].NAME = CFD
FEATURE[2].NUM_RINGS = 5
BLOCKED_NUMBER[1].PATTERN[1]
BLOCKED_NUMBER[1].PATTERN[2]

Whenever an index is used within an atomic action parameter label, the index is encapsulated
within brackets (regardless of the type of ASAP parameter):

SUD[1].CODE = A
SUD[1].VALUE = 1
SUD[2].CODE = C
SUD[2].VALUE = 7

Though rarely configured within a cartridge, support for dynamic routing should be considered
in certain scenarios such as IP (routers) configuration. In such cases, the reserved
COMM_PARAM label should be configured as an optional compound in the parameter list for
each atomic action.

Chapter 4
About Creating a Data Dictionary

4-10

XML Parameters
Thee XML and XPATH parameter types are used in service modeling for network actions
(atomic actions), similar to existing scalar, index, and compound parameter type. XML can be
used as values for both information parameters and extended work order properties.

If the network action (atomic action) contains an XML parameter; JProcessor class within the
Java enabled NEP loads the XML data from the SARM database and makes the raw XML
available as the value of the XML parameter and as a Document Object Model (DOM) object.

XML parameters pass structured information into ASAP. The values of these XML parameters
must be well formed XML that can be successfully processed by a standard XML parser.

Creating an XML Parameter using Design Studio
To create an XML parameter using Design Studio:

1. Select Studio, then select Show Design Perspective.

2. Select the Data Element tab.

3. Right click in the Data Element dialog box.

4. Select Add Simple Schema Element.

The Create Data Schema Element wizard appears.

5. Enter the following:

a. In the Entity field, enter the name of the project to which you want to add a scalar
parameter.

b. In the Name field, enter an element name.

c. In the Display Name field, enter a display name. The Data Schema editor supports
multiple languages for this field. The field adjacent to Display Name displays your
language. You can define a Display Name field value for any language you select
from the list. For more information, see the Design Studio Help.

d. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is considered
a mandatory ASAP parameter. Any ranged parameter with a Minimum value of 0
is considered an optional ASAP parameter.

6. Click Finish.

The new parameter appears in the Data Element dialog box.

7. Click the new parameter.

The Data Schema editor appears.

8. In the Element section, click the Activation tab.

9. From the Runtime type list, select XML.

Chapter 4
About Creating a Data Dictionary

4-11

XPath Parameters
The XPath parameter type defines an XPath expression into XML data. From the runtime
perspective, the JSRP, SARM and Java enabled NEP transfers XML data and XPath
expressions to each other by saving the complex data into the SARM database, loading them
from the database, and evaluating the XPath expression against the XML data.

When you provision a work order, the SARM loads the XML data from the SARM database and
evaluates an XPath expression against the XML data in the following cases:

• An XPath parameter is used as part of service action spawning logic to determine whether
an atomic action should be spawned or not

• An XPath parameter is used to spawn multiple instances of the same atomic actions
depending on how many instances of XML elements are present in the work order

If there is an XPath parameter present in the atomic action, JProcessor evaluates the
associated XPath expression when a user requests the value of the XPath parameter.

XPath parameters provide a mechanism to extract fragments from another XML parameter at
runtime. In ASAP they are always used in association with an XML parameter, called in Design
Studio, the Dependent XML. Design Studio enforces the association when defining XPath
parameter in the context of an atomic action, but not in the context of data schema entity. If the
association is defined in the context of a data schema entity, Design Studio makes an attempt
to recreate it when the XPath data element is used in the context of an atomic action.

Creating an XPATH Parameter using Design Studio
To create an XML parameter using Design Studio:

1. Select Studio, then select Show Design Perspective.

2. Select the Data Element tab.

3. Right click in the Data Element dialog box.

4. Select Add Simple Schema Element.

The Create Data Schema Element wizard appears.

5. Enter the following:

a. In the Entity field, enter the name of the project to which you want to add a scalar
parameter.

b. In the Name field, enter an element name.

c. In the Display Name field, enter a display name. The Data Schema editor supports
multiple languages for this field. The field adjacent to Display Name displays your
language. You can define a Display Name field value for any language you select
from the list. For more information, see the Design Studio Help.

d. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is considered
a mandatory ASAP parameter. Any ranged parameter with a Minimum value of 0
is considered an optional ASAP parameter.

6. Click Finish.

Chapter 4
About Creating a Data Dictionary

4-12

The new parameter appears in the Data Element dialog box.

7. Click the new parameter.

The Data Schema editor appears.

8. In the Element section, click the Activation tab.

9. From the Runtime type list, select XPATH.

10. (Optional) Select Indexed to index the parameter.

11. In the Dependent XML field create or select a dependent XML. This attribute displays the
path of the XML file that defines the parameter. This field is available only for the XPATH
run-time type parameter.

Grouping Scalar Parameters using Design Studio Structured Elements
You can group ASAP scalar parameters in Design Studio by using the structured schema
element feature. The structure element is a container that holds ASAP parameters. For
example the following scalar groups can be defined using two levels of structure elements:

Structure element1
 Structure element2
 Scalar1
 Scalar2
Structure element3
 Structure element4
 Scalar3
 Scalar4

In a real world scenario, these structure could be as follows:

Person
 Name
 First_name
 Last_name
Place
 Address
 Number
 Street

The structure elements used in Design Studio are converted into individual ASAP scalar
parameters by absorbing the structured element names into the scalar parameter name. The
example used above describing a person and place would by default look as follows as ASAP
parameters:

Person_Name_First_name
Person_Name_Last_name
Place_Address_Number
Place_Address_Street

The default character used to separate the elements in the ASAP parameter names is the
underscore (_). It is possible to change this character. See Design Studio for more information.

To group scalar parameters using Design Studio:

1. Select Studio, then select Show Design Perspective.

2. Select the Data Element tab.

3. Right click in the Data Element dialog box.

4. Select Add Structured Schema Element.

Chapter 4
About Creating a Data Dictionary

4-13

The Create Data Schema Structure wizard appears.

5. Enter the following:

a. In the Entity field, enter the name of the project to which you want to add a scalar
parameter.

b. In the Name field, enter an element name.

c. In the Display Name field, enter a display name. The Data Schema editor supports
multiple languages for this field. The field adjacent to Display Name displays your
language. You can define a Display Name field value for any language you select
from the list. For more information, see Design Studio Help.

d. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is considered
a mandatory ASAP parameter. Any ranged parameter with a Minimum value of 0
is considered an optional ASAP parameter.

6. Click Finish.

The new parameter appears in the Data Element dialog box.

7. Click the new parameter.

The Data Schema editor appears.

8. In the Element section, click the Activation tab.

9. From the Runtime type list, select SCALARS.

10. From the Data Element area, right click the new parameter.

11. Select one of the following:

• Add Simple Child Schema Element: Select this attribute if you want to immediately
define xml or scalar parameters within the first structured element. If you select this
option, go to step 12.

• Add Structured Child Schema Element: Select this attribute if you want additional
structured child schema elements below the first structured element. If you select this
option, repeat steps 5 to 11.

12. Enter the following:

a. In the Name field, enter an element name.

b. In the Display Name field, enter a display name. The Data Schema editor supports
multiple languages for this field. The field adjacent to Display Name displays your
language. You can define a Display Name field value for any language you select
from the list. For more information, see the Design Studio Help.

c. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is considered
a mandatory ASAP parameter. Any ranged parameter with a Minimum value of 0
is considered an optional ASAP parameter.

13. Click Finish.

Chapter 4
About Creating a Data Dictionary

4-14

14. Repeat steps 12 to 13 for any additional parameters to be included in the scalar or xml
parameter group.

Chapter 4
About Creating a Data Dictionary

4-15

5
Creating and Configuring Atomic Actions

This chapter describes how to create and configure Oracle Communications ASAP atomic
actions.

About Creating and Configuring Atomic Actions
An Atomic Service Activation Layer (ASDL) or atomic action is an ASAP command that is
associated with a particular Common Service Description Layer (CSDL) or service action
command. A service action describes the service action to be performed, and can contain one
or more atomic action. The atomic actions associated with the service action performs the
operations on one or more Network Elements (NEs) in order to fulfil the services action.

The naming convention for a network cartridge atomic action is as follows:

A_vendor-technology_softwareload_action_entity

where:

• A: indicates an atomic action.

• vendor: vendor identifies the manufacturer of the NE. See "Selecting the Vendor Token."

• technology: technology identifies the category of services or vendor's equipment
classification to which the NE belongs. See "Selecting the Technology Token."

• softwareload: softwareload represents the version of the EMS that manages the NE, or the
version running on the NE. See "Selecting the Software Load Token."

• action: action is the action that can be taken on the NE. See "Selecting the Action Tokens."

• entity: entity is a domain-specific entity that is the recipient of the action. See "Selecting
Entity Tokens."

The tokens in the name are separated by underscore characters. Compound tokens include a
dash as a separator. If the software load token includes a dot (.), the system replaces it with a
dash. All characters in the name must be in upper case.

If entities are used, entity must include the service package in its name. For example an atomic
action belonging to the GSM service package would be named as follows:

A_CSCO-IOS_12-2-X_ADD_GSM-MAX-PREFIX

Service cartridge atomic actions do not have to follow the naming convention.

Design Studio for ASAP enforces this naming convention when you create an atomic action
using the Atomic Action Wizard.

Creating and Configuring an Atomic Action
You can create an atomic action using Design Studio with the Atomic Action Wizard.

Each atomic action within the SARM has a configuration record that you can set up. This
record contains the following attributes:

5-1

• Atomic action timeout and retry properties.

• Atomic action used for rollback: Determines which rollback atomic action the SARM must
use if a rollback is required.

• Routing support: You can choose the routing method you want to use to send the atomic
action to the Network Element Processor (NEP).

tbl_asdl_config is a user-populated static table that defines the atomic action configuration
information required to handle routing and rollback at the atomic action level. It is used by the
SARM to determine whether rollback is required for this atomic action, and if so, the rollback
atomic action to use.

To configure an atomic action using Design Studio:

1. Select Studio, then New, then Activation, then Atomic Action.

2. From the Atomic Action Wizard, do the following:

• Enter an action name that corresponds to a network element (NE) command.

• Enter an entity name that corresponds to an NE service name or service package you
want to configure.

3. Click Finish.

The Atomic Action editor appears.

4. In the Parameters tab, add right click in the dialog box.

5. Do one of the following:

• If you want to add a simple element:

a. Click Add Simple Data Element.

The Add Simple Element dialog box appears.

b. Select one or more elements.

c. Click Finish.

• If you want to add a structured element:

a. Click Add Structured Data Element.

The Add Structured Element dialog box appears.

b. Select one or more elements.

c. Click Finish.

6. In the Details tab, select a routing method for the atomic action from the Routing Support
list:

• None: Indicates that no routing method has been selected.

• DN Routing: Indicates that DN routing has been selected. For more information about
DN routing, see "Configuring Atomic Action Routings by Using a Directory Number."

• NE Routing: Indicates that NE routing has been selected. For more information about
NE routing, see "Configuring Atomic Action Routings by Using a Network Element."

• ID Routing: Indicates that ID routing has been selected. For more information about ID
routing, see "Configuring Atomic Action Routings by Using ID_ROUTING."

• User Defined Routing: Indicates that user-defined routing has been selected. For
more information about user-defined routing, see "Configuring Atomic Action Routings
by Using USER_ROUTING."

Chapter 5
About Creating and Configuring Atomic Actions

5-2

• Dynamic Routing: Indicates that dynamic routing has been selected. For more
information about user-defined routing, see "Configuring Dynamic Routing ."

Note:

Selecting a routing method populates parameters specific to the routing method
you selected in the Atomic Action editor Parameters tab.

7. In the Details tab, select atomic action routing configuration information from the Details
Information section:

• Provide Parameter Count: Select to indicate that the NEP should send the current
index value for the atomic action.

• Index Count: Specify the name of the parameter for obtaining the index value in Java
provisioning classes.

• Timeout (Second): Specify the number of seconds before the ASAP server considers
an atomic action in-progress as failed. The default value is 0, which means ASAP
server will not consider the atomic action in-progress as failed. For more information,
see "About Retry Properties."

• Rollback Atomic Service: Specify an atomic action that rolls back the changes of the
current atomic action in a failure scenario.

For example, atomic action A is mapped to service action B. The rollback is configured
on the service action. On the Atomic Action editor, in the Details tab, for the atomic
action entity A, you select an atomic action Y. In case of a failure scenario, the service
action B is rolled back and atomic action Y is called to rollback the action of atomic
action A. For more information, see "About Configuring a Rollback Atomic Action."

• Retry: Enables the Retry Count and the Retry Interval fields. For more information,
see "About Retry Properties."

• Retry Count: Specifies the number of times the atomic action can be tried at the NE.
For more information, see "About Retry Properties."

• Retry Interval (Second): Specifies the time interval, in seconds, between each retry
attempt by ASAP. For more information, see "About Retry Properties."

8. In the Mappings tab, click Add.

The Action Processor Selection Dialog appears.

9. Do one of the following:

• If you have already created an action processor, select the action processor and click
OK.

• If you have not created an action processor and you want to create one now, click
New.

The Action Processor Wizard appears. For more information about creating and
configuring an action processor, see "Creating an Action Processor."

About Retry Properties
Retry properties instruct the SARM to retry an atomic action according to the Retry Count and
Retry Interval parameter that you have configured. If the atomic action does not complete
after the final retry, the SARM fails it.

Chapter 5
About Retry Properties

5-3

Timeout and retry attributes are configurable at:

• The atomic action level using the Timeout (second), Retry Count, and Retry Interval
(second) attributes. These attributes are defined in the Design Studio Atomic Action editor
Details tab.

• At the NE level using the Drop Time Out (minutes), Retry Count and Retry Interval
attributes. These attributes are defined in the Design Studio Network Element editor
General tab.

• At the work-order level.

• At the system level.

If an atomic action needs to be retried, the atomic action timeout and retry attributes are
applied first. If no atomic action timeout and retry attributes are configured, the attributes
configured for the NE apply. If no timeout and retry attributes are configured for the NE, the
work order attributes are applied. If no work order timeout and retry attributes are configured,
system-wide attributes are used.

If ASDL_TIMEOUTS is disabled in the ASAP.cfg file, all atomic action timeouts are disabled,
regardless of whether timeout and retry data is configured for the atomic action.

These properties are specified on the work order. Default retry properties are also specified in
ASAP.cfg.

Table 5-1 Retry Properties

Property Description

NUM_TIMES_RETRY Specifies the number of atomic action retries to be applied to an atomic
action if the atomic action fails with a “Fail But Retry" condition.

RETRY_TIME_INTERVAL Defines the time interval between atomic action retries if an atomic
action fails with a “Fail but Retry" condition.

When defining hard error thresholds, you must consider the following points:

• The host NE, atomic action, and atomic action user exit code must already be defined.

• The same host NE, atomic action, and atomic action user exit code combination can only
be used once.

For more information about configuring user exit types, see "Configuring Base Exit and User
Exit Types ."

Because different NEs often have different retry requirements, it is necessary to provide a
flexible retry mechanism that enables retry properties to be specified at the NE instance level
and at the atomic action level (this is in addition to the ability to configure a single set of
system-wide retry properties, which apply to all atomic actions and all NEs that trigger a retry).

Flexible retry configuration in ASAP enables specification of retry properties in the following
locations:

• ASAP.cfg: This configuration file contains values for the Number of Retries and the Retry
Interval, which will be used whenever a retry occurs, on any NE or atomic action, if no
other values are configured elsewhere.

• Work Order: If the Number of Retries and Retry Time Interval are specified on a work
order, these values will override those defined elsewhere in the system (including the
ASAP.cfg: file, atomic action level, or NE instance level).

Chapter 5
About Retry Properties

5-4

• Atomic Action: If you specify the Number of Retries and Retry Interval at the atomic
action level, and a retry is encountered on any of the action processors mapped to that
atomic action, the values you specify will be used. These values will override those defined
at the NE instance level and at the ASAP.cfg: level.

• Network Element Instance: If you specify the Number of Retries and Retry Interval on the
Network Element editor, any command triggering a retry against this NE instance will use
the retry values you specify. These values will override those defined at the ASAP.cfg:
level.

• NE Template: If you specify the Number of Retries and Retry Interval on the NE Template
editor, any NE created from the template will inherit the retry values you specify.

• Dynamic NE Template: If you specify the Number of Retries and Retry Interval on the
Dynamic NE Template editor, any NE instances dynamically created using the template will
inherit the retry values you specify. These values will override those defined at the
ASAP.cfg: level.

Figure 5-1 Retry Properties Locations

Example 1: Configuring Retry Properties at the Network Element Instance
Level

A specific vendor's NE often responds with a FUNCTION BUSY message, meaning that it
cannot presently process commands and that the command should be retried at a later time
(there is not necessarily any problem with the command itself, but the load on the NE is too
large at this particular moment). Best practices dictate that a command will eventually succeed
if tried 3 times with a 10-second interval between tries. To ensure that the command is properly
retried, the service modeler should configure the retry properties at the NE instance level. The
work order will fail only if the configured Number of Retries is exceeded.

To configure retry properties at the NE instance level:

Chapter 5
About Retry Properties

5-5

1. In the User Defined Exit Type editor, update the user-defined exit type configuration entry
that corresponds to the FUNCTION BUSY response to specify an exit type of RETRY
when this response message is encountered.

2. Modify the retry properties for any existing NE instances of that type.

To do this, update the retry values in the NE editor for each NE instance as follows:

• In the Number of Retries field, enter 3.

• In the Retry Interval field, enter 10. (seconds)

3. Modify the retry properties for any existing Dynamic NE Template used for NE instances of
that type.

To do this, update the retry values in the Dynamic NE Template editor as follows:

• In the Number of Retries field, enter 3.

• In the Retry Interval field, enter 10. (seconds)

4. Ensure that all NE templates, NEs, and dynamic NE templates that were changed have
been saved.

After saving, you can deploy the configuration to an ASAP environment for testing.

Example 2: Configuring Retry Properties at the Atomic Action Level
When trying to change the LEN on a specific vendor's NE, the NE responds with an INVALID
STATE error message if the customer line is in use. In this scenario, best practices dictate that
ASAP retry the atomic action 10 times with an interval of 300 seconds between each attempt
before a failure is be generated. The following example demonstrates how the service modeler
configures the retry properties at the atomic action level to meet this criteria.

1. In the User Defined Exit Type editor, update the user-defined exit type configuration entry
that corresponds to the INVALID STATE response to specify an exit type of RETRY when
this response message is encountered.

2. When examining this NE's retry requirement, there are two options that would support the
requirement:

a. Modify the retry properties for the NE template (so that the configuration is carried over
to any new NE instances that are created), for each NE instance of that type, and for
each Dynamic NE template of that type.

b. Modify the retry properties for the specific service action (change LEN). In this
example, assuming the change LEN atomic action is specific to the vendor equipment
in question (either a common atomic action mapping to only one vendor and
technology, or a vendor and technology-specific atomic action mapping to a single
action processor), and assuming the retry behavior specified for this requirement is
unique to the atomic action (change LEN), then simply update the retry properties for
the atomic action.

Note:

Option a) requires multiple updates (to the NE Template, each NE instance,
and each Dynamic NE Template). Option b) requires a single update.

3. Modify the retry properties for the change LEN atomic action.

Update the retry values in the Atomic Action editor as follows:

Chapter 5
About Retry Properties

5-6

a. In the Number of Retries field, enter 10.

b. In the Retry Interval field, enter 300. (seconds)

Note:

To update the retry value in an editor field, activate the field by selecting the
corresponding check box. Retry values have no digit limit but must be positive
integers. Retry values can be 0 if overriding the ASAP.cfg configured retry values
is required.

4. Save changes to atomic actions.

You can now deploy the configuration to an ASAP environment for testing.

About Delayed Failure Properties
Delayed Failure properties instruct the SARM to continue provisioning an order until the Order
Delayed Failure Threshold is reached and the order is failed. These properties are work order
properties.

Table 5-2 Delayed Failure Properties

Property Description

Delayed Failure
Property

Requests the SARM to treat all hard errors on atomic actions as Delayed
Failures. The SARM skips any subsequent atomic action in the service action,
continues provisioning at the next service action, and then fails the order. You can
use the Delayed Failure property to override the ASDL_EXIT configuration in the
Java method. This property should only be set when there are no dependencies
on subsequent service actions on the work order.

Upon hard failure of an atomic action, the associated service action is failed by
ASAP, even if the Delayed Failure property is set.

Order Delayed Fail
Threshold

Specifies the number of delayed failures that a particular order can have before
the order is explicitly failed. This property is intended for batch orders.

Rollback must be turned off for delayed failure to work.

About Composite Priorities
The composite priority mechanism ensures a balance between maximizing throughput and the
need to provision higher priority atomic actions over those with lower priority. This mechanism
does not guarantee the explicit sequential execution of work orders. Rather, it is designed to
ensure that high priority orders are not impeded by lower priority orders that are in progress at
the same time. ASAP will use any available processing power to activate orders, and does so
by activating many orders in parallel across many network devices.

After orders are placed in the in-progress queue, each atomic action on the order inherits the
work order properties including the due date and time, order priority and action. These
attributes are used to determine where the atomic action should be placed in the pending
queue but do not guarantee that it will be provisioned in advance of any other atomic action.
The following diagram shows the importance of the attributes (from left to right) in the
prioritization of the atomic action. Details of the algorithm are explained in the main flow of the
use case.

Chapter 5
About Delayed Failure Properties

5-7

Figure 5-2 Composite Priorities

ASAP maintains one pending queue for each NE. Many orders are processed at the same time
but only a single atomic action is active for each order at any given time due to the serial
nature of atomic action processing within an order. In other words, if there are 100 orders in
progress, there are 100 active atomic actions. While ASAP is processing a high priority atomic
action for one work order, atomic actions from lower priority orders will also be processed
against different NEs. ASAP retrieves future-dated orders from the database based on their
due date/time, and subjects these orders to composite prioritization at the atomic action level.
When a work order is submitted to ASAP, it is subject to BATCH_SLEEP_INTERVAL, which is
the time period between SARM database queries for orders that have become due.

Composite priorities operate as follows:

1. A work order is submitted into ASAP with the following attributes:

a. Due date and time

b. Priority

c. Action (query, remove, change or add)

2. When the order arrives at its due date and time and BATCH_SLEEP_INTERVAL expires,
its first atomic action, referred to as the active atomic action for the purposes of this
example, is inserted into the pending queue according to the following algorithm:

a. Search through the pending queue comparing the priority of the active atomic action
(as inherited from the work order) to those already in the queue. If there are no atomic
actions with identical priorities insert the atomic action into the queue according to its
priority (in other words, an active atomic action with a priority of 4 is inserted behind an
atomic action with a priority of 3 but ahead of an atomic action with a priority of 6 – the
lower the number, the higher the priority and hence the closer to the front of the
pending queue) and proceed to step 3.

Chapter 5
About Composite Priorities

5-8

b. For the subset of atomic actions in the pending queue whose priorities match the
active atomic actions priority, ASAP examines the due dates and times of each and
inserts the active atomic action into the queue according to its due date and time. In
other words, the active atomic action is inserted behind atomic actions with older due
dates and times but ahead of atomic actions with newer due dates and times. atomic
actions with older due dates and times are closer to the front of the pending queue. Go
to step 3.

c. For the subset of atomic actions in the pending queue whose priorities and due dates
and times match the priority and due date and time of the active atomic action, insert
the atomic action into the pending queue according to its action. An active atomic
action with an action of “Query" is inserted ahead of atomic actions with other actions.
The priority of the action from highest to lowest is Query, Remove, Change, Add.

3. Eventually the atomic action is moved to the in-progress queue where it provisions and
completes. While the SARM is being notified that the atomic action has completed an idle
connection is detected and another atomic action may be scheduled.

If the active atomic action is placed in the retry queue, the retry timer starts. During the
time the active atomic action remains in the retry queue other atomic actions may be
scheduled.

When the retry time interval expires and the atomic action is placed back in the pending
queue, step 2 is repeated.

Figure 5-3 shows multiple pending queues (one for NE A and one for NE B). NE A has many
high priority atomic actions (for example: priority 1, 2) in its pending queue while NE B has
many lower priority atomic actions (for example priority 7, 8, 9) in its pending queue. Because
there only low priority atomic actions in NE Bs pending queue, these will be provisioned at the
same time as the high priority atomic actions on NE As pending queue.

Figure 5-3 Pending Queues

The following diagram shows a single queue containing low priority atomic actions when a high
priority atomic action arrives. The high priority atomic action is inserted ahead of all lower

Chapter 5
About Composite Priorities

5-9

priority atomic actions in the pending queue and as a result will be placed in-progress before
any of the others. When the high priority atomic action has completed, the SARM must be
notified and an idle connection will be detected. At this time another atomic action (possibly of
greater, equal or lower priority) may be scheduled (for example: in this example the atomic
action with priority 7).

Figure 5-4 Pending Queues

About Configuring a Rollback Atomic Action
You can configure atomic actions in the system to perform rollback on a failed provisioning
activity by setting its rollback flag and specifying a rollback atomic action. For example, if you
have an atomic action for creating a service, you can select a rollback atomic action from
deleting a service. See "Creating and Configuring an Atomic Action" for instructions about
enabling the rollback feature and assigning a rollback atomic action to a standard atomic
action. You must also enable the rollback functionality at the service action level to enable
atomic action rollback. To enable rollback at the service action level, see "Enabling the CSDL
Rollback Functionality."

Note:

The SARM will only roll back atomic actions that you have configured with these
settings.

Atomic actions can perform the following types of rollback:

Chapter 5
About Configuring a Rollback Atomic Action

5-10

Table 5-3 Atomic Action Rollback Types

Rollback Description

Provisioning Rollback Used when a work order fails while provisioning.

Cancellation Rollback Used when a cancellation request is applied to an existing order in the
SARM.

Correction Rollback Used when a correction request is applied to an existing order in the SARM.

About Rollback Atomic Action Parameters
The parameters that are sent to the rollback atomic action are automatically pre-determined,
consequently, you do not need to define or configure the atomic action parameters for a
rollback atomic action in tbl_asdl_parm. Rollback parameters are created using the
SEND_PARAM action function with an option of R (or ReturnRollbackParam) in the
JInterpreter.

If a rollback parameter is created for an atomic action using SEND_PARAM, the value of this
parameter remains the same for the rollback atomic action. For example, if a rollback
parameter is created in another atomic action using the same name as the initial rollback
atomic action parameter, the value of this new rollback parameter will not overwrite the value
provided to the initial rollback atomic action. If you send a rollback atomic action parameter that
has the same name as the forward atomic action, the rollback atomic action parameter takes
precedence. When the rollback atomic action is run, it receives the value of the rollback atomic
action parameter.

The rollback parameters created by a particular atomic action are provided exclusively to its
rollback atomic action, and are not shared with other atomic actions. You cannot use rollback
parameters to share information between rollback atomic actions.

About Atomic Action Rollback Functionality
The following sections describe additional considerations for rollback functionality.

Rollback Order
Atomic actions are rolled back in reverse order of completion. When the rollback process
begins, the last completed atomic action is rolled back first, followed by the second-to-last
completed atomic action, etc.

Rollback Failure
The rollback of an atomic action can either complete or fail. During rollback processing, the
status of every rollback atomic action is recorded as either Completed or Failed.

If the configuration variable is set to 0, the service action status will be set to "rollback
successful" even if one or more rollback atomic actions fail to complete. The failure of a
rollback atomic action is ignored and the rollback of previous atomic actions continues.

If the configuration variable is set to 1, the service action status will be set to "rollback failed" if
a rollback atomic action fails for any reason.

Chapter 5
About Configuring a Rollback Atomic Action

5-11

Order Timeout
The order timeout parameter is ignored on rollback.

Rollback Completion
Rollback processing ends when the final rollback atomic action has either completed or failed.
If the rollback was initiated as a result of a cancellation, a work order Completion Notification is
sent to the SRP. In all other cases, the SRP receives a work order Failure Notification.

Rollback Upon Failure
When a work order fails, the SARM performs the following rollback steps:

1. As the SARM loads a work order for provisioning, it scans all of the service actions in the
work order to determine if one or more has been configured for rollback in the event of
failure.

2. If none of the service actions have been configured for rollback in the event of failure,
rollback is not performed if the work order fails.

3. If rollback has been configured on one or more service actions and the work order property
specifies rollback, the SARM sets a global flag on the work order to indicate that rollback is
required.

4. If the work order fails, the SARM notifies the SRP that rollback is to be performed and
starts the procedure.

5. When rollback is complete, the SARM sends an Order Failure notification to the SRP.

Note:

During normal provisioning, when atomic action failure occurs, the SARM
immediately fails the work order and rolls back all successfully completed atomic
actions.

Rollback Upon Cancellation of an Order
When processing a work order cancellation, the SARM does not reference the service action
rollback configuration, but invokes rollback at the atomic action level.

Chapter 5
About Configuring a Rollback Atomic Action

5-12

Note:

The ASAP work order cancellation functionality is intended to provide the ability to
cancel a work order in the short period of time between the submission of an order to
ASAP and the reception of an event indicating the order is in a final state (such as
completed, failed). Oracle recommends that orders are not canceled outside this
window as this can lead to additional un-needed performance overhead and fallout
risk in ASAP. For example, terminating the service of a subscriber that has been
successfully created means rolling back all of the original atomic actions rather than
simply deleting the subscriber (a single atomic action). In addition, because data in
ASAP should be maintained only for a limited period of time (see data purging and
archival strategies section), use of cancellation functionality is subject to purging
constraints.

The SARM performs the following rollback steps when a work order is cancelled:

1. When the SARM receives the cancellation request, it halts the work order when the current
atomic action completes.

2. Before the rollback operation begins, the SARM notifies the SRP that the work order
rollback is to be performed.

3. The SARM references the atomic action log to determine which atomic actions have been
completed on the order.

4. The SARM rolls back completed atomic actions for which rollback is configured and
rollback atomic actions are defined.

5. Upon completion, the SARM sends the SRP a Completion Notification.

Depending on the status of the work order when it is cancelled, a different rollback procedure is
performed. The different work order status values and their corresponding rollback procedures
are described in Table 5-4:

Table 5-4 Cancellation Order Status Rollback Procedures

Order Status Rollback Procedure

Initial order The order is cancelled and no provisioning is needed or occurs.

In Progress order The SARM accepts the cancellation request and begins to roll back the order
when the current atomic action on the work order completes. It reloads all
completed atomic actions from the database, determines which ones require
rollback by referencing their rollback flags, and then runs the rollback atomic
actions. When the rollback procedure is complete, the SARM transmits a
work order Completion Notification to the SRP. No reference is made to the
work order rollback flag or to the rollback status of the service actions.

Completed order The rollback procedure is identical to the procedure used for In-Progress
orders, except there is no delay at the start, such as waiting for the last
atomic action to complete before starting to roll back the order.

Failed order The rollback procedure is identical to the procedure used for Completed
orders.

Chapter 5
About Configuring a Rollback Atomic Action

5-13

Rollback Upon Revision to an Order
For the failed order to be rolled back explicitly, one or more service actions must be configured
for rollback. The SARM automatically rolls back the work order before receiving and
processing a new copy of it.

The rollback procedure for a revision or correction request depends on the state of the work
order as described in Table 5-5:

Table 5-5 Revision Order Status Rollback Procedures

Order Status Rollback Procedure

Initial order The order is overwritten and no rollback occurs.

In Progress order The SARM rejects the request for an order revision or correction from the
SRP and no rollback occurs.

Completed order The SARM rejects the order revision or correction request and no rollback
occurs.

Failed order If all service actions on the work order are terminated, then no explicit
rollback is performed.

If explicit rollback is not performed upon receipt of an order failure and revision request, the
activation of a new copy of the work order may cause a fallout at the NE because parts of the
original work order may have been activated. After concluding that a provisioning request has
failed, the queries switch and determines if the provisioning activity represented by this
command has already been applied to the NE. If so, ASAP issues a soft error and continues
processing the new order.

Note:

If rollback is not performed explicitly, the SRP can be designed to transmit a
cancellation request on the original order, and then send a correction order that is
dependent on the cancellation. In this way, the failed order is rolled back and the
revision is only applied when the cancellation is complete.

Table 5-6 shows database variables and tables that you must configure to implement rollback
of completed atomic actions:

Table 5-6 Rollback of Completed Atomic Actions Parameters

Variable In Table

ignore_rollback tbl_asdl_config

rollback_req tbl_csdl_config

For information about these database tables, refer to ASAP Developer's Guide.

Configuring ignore_rollback
This configuration variable is located in the tbl_asdl_config table in the SARM database:

Chapter 5
About Configuring a Rollback Atomic Action

5-14

• If it is set to Y, rollback is ignored for the specified atomic action even if the rollback flag on
the work order is set to Y.

• If it is set to N, rollback is required for the specified atomic action.

Note:

If employing the delayed_failure property (see "About Delayed Failure
Properties"), rollback must be turned off. Service action-level rollback must be set
to N, and ignore rollback must be set to Y.

The following example employs a configuration that requires:

• Setting the work order wo_timeout parameter to the required value.

• Configuring the rollback parameters in tbl_asdl_config.

In this example, the work order has one service action with three atomic actions. The expected
result is that the work order fails after exceeding the time specified in the wo_timeout
parameter on the work order and all completed atomic actions are rolled back.

Figure 5-5 Rollback Sequence of Operations

1. SRP submits work order to the SARM for provisioning.

2. The SARM starts provisioning the work order and sets the timer for work order timeout
based on the timeout value. The SARM sends a WO_STARTUP event notification to the
SRP.

Chapter 5
About Configuring a Rollback Atomic Action

5-15

3. The SARM starts provisioning the first atomic action in the work order.

4. The first atomic action is successfully provisioned.

5. The SARM starts provisioning the second atomic action in the work order.

6. While provisioning the second atomic action, a work order timeout occurs.

7. The SARM sends a WO_TIMEOUT (Fail) event notification to the SRP. The SARM resets
the timer to zero and waits until the second atomic action completes.

8. When the second atomic action completes (with a Success or Fail status) all successfully
completed atomic actions are rolled back.

9. The SARM sends a WO_ROLLBACK event notification to the SRP.

10. Rollback completes and the work order is failed. The SARM sends a WO_TIMEOUT (Fail)
event notification to the SRP. The SARM may also send a WO_FAILURE event notification
to the SRP.

Chapter 5
About Configuring a Rollback Atomic Action

5-16

6
Configuring Static Routing

This chapter describes how to configure static network element (NE) routing for Oracle
Communications ASAP.

Configuring Static Network Element Routing
To increase the coverage of a host NE, several remote NEs covering a given area can be
associated with a host NE. Service requests in the form of atomic actions are routed through
the host NE to the appropriate remote NE.

ASAP determines the host NE using one of the following routing mechanisms:

• Dynamic Routing – See "Dynamic Network Element Routing Scenarios."

• Remote Network – The NE identifier determines the communication parameters for the
NE on which the service is to be provisioned. See "Configuring Atomic Action Routings by
Using a Network Element."

• Atomic Action Parameter – ID_ROUTING information specified as an atomic action
parameter. See "Configuring Atomic Action Routings by Using ID_ROUTING."

• User Routing – User-defined stored procedure that uses information from the
USER_ROUTING atomic action parameter and/or the atomic action. See "Configuring
Atomic Action Routings by Using USER_ROUTING."

• Directory Number – The host NE is not identified but is determined by the directory
number specified on the work order. See "Configuring Atomic Action Routings by Using a
Directory Number."

The routing logic has embedded priorities, which can affect the routing option you choose
when multiple parameters are defined for work order information. Priorities between the routing
logic are as follows:

• Routing by remote NE.

• Routing by ID_ROUTING.

• Routing by user-defined procedure.

• Routing by DN.

Figure 6-1 shows a system view of the atomic action routing logic in ASAP.

6-1

Figure 6-1 Atomic Action Routing Logic

Configuring Atomic Action Routings by Using a Network Element
The service action commands the Service Activation Request Manager (SARM) receives from
the Service Request Processor (SRP) contain an NE identifier. This NE identifier is a reference
to the communication parameters for the NE that ASAP should connect to. Based on these
communication parameters, ASAP determines the host NE upon which the atomic action is to
be provisioned.

The mandatory MCLI parameter that must be configured as an atomic action parameter when
using static routing by NE ID must include the NE technology token as part its corresponding
asdl_lbl. The convention is shown as follows:

Chapter 6
Configuring Static Network Element Routing

6-2

NE_ID_technology

This is the same token that is used to populate the technology field when defining new NE
instances to ASAP and in the naming convention for service action and atomic actions.
Examples are shown in table 6-1:

Table 6-1 MCLI to NE_ID Technology Parameter Mapping

asdl_lbl (Atomic Action Label) csdl_lbl (Service Action label)

MCLI NE_ID_GWC

MCLI NE_ID_HLR

An atomic action that queries an NE must be configured with a parameter (see
tbl_asdl_parm) called RET_PARM_TYPE that has a default of IC indicating that both
information parameters and service action parameters are to be returned from the
implementation method. During the implementation of the associated method, these parameter
combinations will be supported and the appropriate parameters and types shall be passed
back to the SARM. Other possible values that the default may be changed to include:

• C: service action parameters

• W: work order parameters

• I: information parameters

• IC: information parameters and service action parameters

• IW: information parameters and WO parameters

Note:

If a value is not provided for the RET_PARM_TYPE parameter or if it is left out of the
atomic action parameter list, no parameters are returned from the query.

An atomic action may or may not be able to identify the host or remote NE to which it is to be
routed. If the service action command received by the SARM contains a remote NE identifier,
routing is achieved through a user-populated routing table in the SARM.

If the remote NE is not identified in the service action command, the host NE is determined by
the directory number specified in the atomic action. The directory number consists of the NPA,
NXX, and Line. Figure 6-2 illustrates this routing.

Chapter 6
Configuring Static Network Element Routing

6-3

Figure 6-2 Routing by Host/Remote NE Identifier

Configuring Atomic Action Routings by Using ID_ROUTING
For flexible routing between atomic actions and NEs, you can use the ID_ROUTING atomic
action parameter, and the tbl_id_routing database table. tbl_id_routing is a static database
table that enables you to map between ID_ROUTING and the NE. Based on the information in
the table, the ID_ROUTING is mapped to the host NE, which is loaded into memory when the
SARM starts.

The ID_ROUTING parameter can be represented as any string of numbers and or characters
to a maximum of 255 characters (or, in the case of an IP address, four sets of 255 characters –
255.255.255.255). You can define the parameter as part of a work order or a service action.
ID_ROUTING can be a phone number, customer number, IP address, or any other identifier
you choose.

Chapter 6
Configuring Static Network Element Routing

6-4

If the work order provides ID_ROUTING information, such as phone number or customer
number, you can get the host NE associated with the ID_ROUTING using the mapping table.
The mapping table will provide the following matches:

• Exact matching

• Range matching

This allows precise matches or ranges within which the supplied parameters fall, so that one or
multiple atomic actions can be routed to an NE at a time, based on configuration.

The ID_ROUTING/atomic action host common language location identifier code (CLLI)
mapping table is binary-searched to get the associated host NE, associated with the atomic
action to be provisioned and the ID_ROUTING. In the case of characters, the ASCII order is
compared; in the case of numbers, the size of the number is compared.

The following mapping example displays how the characters can be compared.

"1" !="+1", "01"=="1","1"<"A", "A"<"a", "A"<"AA"

Note:

Refer to ASAP Developer's Guide for information on using "= =" operators with IP
addresses.

The stored procedures that you can use as external interfaces are the following:

• SSP_list_id_routing (RC1, host_clli) – Lists the host NE and ID_ROUTING mapping
records in the SARM database.

• SSP_new_id_routing (host_clli, asdl_cmd, id_routing_from, id_routing_to) – Defines
the host NE and ID_ROUTING mapping records in the SARM database.

• SSP_del_id_routing (host_clli, asdl_cmd, id_routing_from, id_routing_to) – Deletes
the host NE and ID_ROUTING mapping records from the SARM database.

For more information on these stored procedures, refer to the ASAP Developer's Guide.

Routing by ID_ROUTING
The following steps must be followed when routing by ID_ROUTING:

• Populating the routing table (tbl_id_routing).

• Defining the atomic action parameter. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\oraRoutingServices.

• Defining the work order. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\RoutingSrpInput.

• Starting ASAP and submitting the work order.

The following example displays how to populate tbl_id_routing.

sqlplus -s $SARM_USER/$(GetPassword $SARM_USER 2)
<<HERE | grep -v "successfully completed"

set serveroutput on
var retval number

prompt Defining the ID_ROUTING Configurations

Chapter 6
Configuring Static Network Element Routing

6-5

exec :retval := SSP_del_id_routing ;

exec :retval := SSP_new_id_routing ('BALTIMORE', '', 'BAL', 'CAL');
exec :retval := SSP_new_id_routing ('BALTIMORE', '', 'DEL', 'FAL);
exec :retval := SSP_new_id_routing ('BOSTON', '', '120000', '220000');

HERE

You can add new records to the database dynamically without downtime on the server by using
the Add new NE Configuration command (113) of asap_utils. This command must be used
after loading the ASAP database.

For more information about asap_utils, see ASAP Server Configuration Guide.

For more information about the tbl_id_routing table, see the ASAP Developer's Guide.

Configuring Atomic Action Routings by Using USER_ROUTING
You can perform atomic action routing by using a user-defined procedure. Routing by user-
defined procedure provides the following:

• Allows for custom provided logic for atomic action routing

• Uses the atomic action parameter USER_ROUTING

• Uses the external interface SSP_get_user_routing

• Allows you to write your own routing logic using the predefined external user interface

The USER_ROUTING parameter can be represented as any string of characters to a
maximum of 255 characters. You can define it as part of a work order, or as a service action
parameter.

If the atomic action parameter USER_ROUTING information is provided in the work order, then
the user-defined stored procedure is called. The user-defined procedure takes the asdl_cmd
and the value of USER_ROUTING as input arguments, and returns the host NE to be routed.

You can use the following stored procedure as an external interface:

• SSP_get_user_routing (user_routing, asdl_cmd, host_clli, ret_val) – Returns a host
NE (host_clli) that is used to route the atomic action. You must provide your own routing
logic in the body of SSP_get_user_routing to find the host NE (CLLI) using the
USER_ROUTING atomic action parameters, and the asdl_cmd if required.

For more information on the above stored procedure, refer to the ASAP Developer's Guide.

To use USER_ROUTING, perform the following steps:

1. Write the stored procedure SSP_USER_ROUTING. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\user_routing_proc.sp.

2. Define and populate the routing table, if required. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\user_routing_table.tbl and
ASAP_Home\samples\ASDL_ROUTE\oraLoadRouting.

3. Define the atomic action parameter. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\oraRoutingServices.

4. Define the work order. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\RoutingSrpInput.

5. Run ASAP and submit the work order.

Chapter 6
Configuring Static Network Element Routing

6-6

When you choose a user-defined procedure with a database table, the database must be
accessed every time the routing is requested. Consequently, there will be a slight performance
degradation.

Configuring Atomic Action Routings by Using a Directory Number
Atomic actions are routed through a directory number (DN) identifier. The DN is identified on
the work order and is passed to an atomic action as a parameter. Figure 6-3 illustrates atomic
action routing by DN.

Figure 6-3 Routing by DN

Depending on your telecommunications situation, you may require routing based on different
parts of the phone number/atomic action combination; for example, NXX and the first two digits
of the line number.

An atomic action instance will be routed according to the DN/atomic action routing table if the
atomic action parameter MCLI is set to SKIPCLLI on the work order. This value implies that the
remote NE information is not known.

Before you can add a new routing, you must have already defined both the host NE and the
atomic action in ASAP.

Chapter 6
Configuring Static Network Element Routing

6-7

You can edit routing definitions provided the new routing definition does not already exist in
ASAP.

• SSP_new_dn_map – This stored procedure defines atomic action routings by directory
number.

• SSP_list_dn_map – This stored procedure lists directory mappings for atomic action,
directory, exchange number, or for all of them.

• SSP_del_dn_map – This stored procedure deletes a directory number mapping from the
SARM database.

Chapter 6
Configuring Static Network Element Routing

6-8

7
Configuring Dynamic Routing

This chapter describes how to configure dynamic routing for Oracle Communications ASAP
atomic actions.

Configuring Dynamic Network Element Routing
The Dynamic Network Element (NE) Routing feature allows ASAP to provision NEs based on
network and communication data provided as order parameters rather than loaded from static
Service Activation Request Manager (SARM) configuration tables. ASAP routes the translated
Atomic Service Description Layer (atomic action) commands to the appropriate NEs based on
specific routing information contained in the work order. This dynamically provided
communication data is identical to the communication data normally defined in static tables
and used by the devices [command processor threads in the Network Element Processor
(NEP) to connect and log in to.

For information on configuring static routing, see " Configuring Static Network Element
Routing."

Dynamic NE routing is most commonly used for IP-based provisioning, but is applicable to all
downstream communication protocols. For example, it is possible to dynamically route
provisioning tasks that use serial dialup connections in the downstream.

Dynamic routing functions as follows:

1. The SARM receives a work order.

2. The SARM uses the NE_ID (mapped to the atomic action label MCLI) parameter to
determine if the order is to be routed statically or dynamically. The NE_ID, or any other
Common Service Description Layer (service action) label defined for the parameter,
identifies either an NE resource or a dynamic routing template resource configured in
ASAP. Examples for mapping the atomic action label MCLI to different service action labels
are provided later in this chapter.

3. If the NE_ID identifies a network template, the SARM uses this to dynamically set up a
session manager, connection pool, and command processors.

4. The SARM uses the drop timeout (discussed later in this chapter) to terminate connections
to the NE.

5. After the primary connection is dropped, the command processor, connection pool, and
session manager are cleaned up.

Enabling Dynamic Routing
This section describes how to configure ASAP to enable dynamic routing.

Network Template Configuration
A network template describes an ASAP connection environment that consists of an NEP,
primary connection pool and its attributes (spawn threshold, kill threshold, max connections,

7-1

and drop-timeout). ASAP uses the template to set up a connection pool and session manager
for each dynamically identified NE.

In conventional static configurations, the work order identifies a real NE to be provisioned via
the reserved atomic action parameter named MCLI. In dynamic routing, this parameter
identifies a template for dynamic routing.

A static routing definition contains a parameter that references MCLI as follows:

<parameter name="MCLI" xsi:type="SimpleParameterType">
<required>true</required>
<parameterValueMap>NE_ID</parameterValueMap>
</parameter>

In this situation, a work order can identify the target NE by defining a parameter called NE_ID
and assigning a value that references a statically configured NE resource in ASAP.

A dynamic routing configuration appears as follows:

<parameter name="MCLI" xsi:type="SimpleParameterType">
<required>true</required>
<parameterValueMap>TEMPLATE_ID</parameterValueMap>
</parameter>

In this situation, a work order can identify a network template by defining a parameter called
TEMPLATE_ID and assigning a value that references a network template resource in ASAP.

Table 7-1 Comparing Static and Dynamic Configuration

Static Dynamic

Atomic action reserved work
order parameter MCLI

Identifies NE Identifies network template

tbl_clli_route, tbl_host_clli,
tbl_nep, tbl_ne_config,
tbl_resource_pool,
tbl_comm_param

Specifies connection
environment for a specific NE

Specifies a dynamic routing
template

You can use the Service Activation Configuration Tool (SACT) and ActivationConfig.xsd
schema to create and deploy network templates. When deployed, the network template is
identified in tbl_ne_config. For more information on the SACT, see ASAP Server
Configuration Guide. You can alternatively use Design Studio to create and deploy network
templates. For more information about using Design Studio to configure dynamic routing, see
the Design Studio Modeling Activation Help.

If you are going to use SACT, you can write the XML configuration file from scratch, use an
XML editor to generate the XML code, or use a sample from the ASAP_home/samples/sadt/
SampleCommonConfig directory as the basis for the XML configuration file, where
ASAP_home is the directory in which ASAP is installed.

A sample XML configuration file for dynamic routing appears below:

<dynamicRoutingTemplate name="DYN_DALLAS">
<nepServerName>NEP_S235</nepServerName>
<vendor>DYNAMIC_VENDOR</vendor>
<technology>DYNAMIC_TECH</technology>
<softwareLoad>DYNAMIC_SL</softwareLoad>
<maximumConnections>5</maximumConnections>
<dropTimeout>1</dropTimeout>
<spawnThreshold>3</spawnThreshold>
<killThreshold>0</killThreshold>

Chapter 7
Configuring Dynamic Network Element Routing

7-2

<read_timout>5</read_timeout>
<write_timeout>5</write_timeout>
<lineType>TELNET_CONNECTION</lineType>
<communicationParameter>
<label>DynLab1</label>
<value>
<value>DynVal1</value>
</value>
<description>DynDesc1</description>
</communicationParameter>
<label>LOGIN_PROMPT</label>
<value defaultValue="login:">
<value>login:</value>
<description>Login prompt.</description>
</communicationParameter>
<communicationParameter>
<label>READ_TIMEOUT</label>
<value defaultValue=5>
<value>5</value>
<description>Integer</description>
</communicationParameter>
<communicationParameter>
<label>WRITE_TIMEOUT</label>
<value defaultValue=5>
<value>5</value>
<description>Integer</description>
</communicationParameter>
</dynamicRoutingTemplate>

The template name (DYN_DALLAS) specified in the dynamicRoutingTemplate tag identifies
the template that must be specified in the work order.

Parameters provided on the work order override statically defined values in the template.

For specific tag definitions, refer to the comments in activationConfig.xsd.

After you have written the dynamic routing XML configuration file, you can use a command-line
tool to configure it into ASAP. For more information, see the ASAP Server Configuration Guide.

Dynamic Network Element Routing Scenarios
This section describes different routing scenarios and the configurations required to support
them. Dynamic routing requires that communication parameters used in creating a connection
must be passed down as order parameters.

Dynamic routing is supported by any protocol including TCP/IP. Consequently, ASAP cannot
mandate keyword parameters to specify a target NE's communication parameters. For TCP/IP-
based protocols, an IP address and port are usually sufficient parameters to specify a
connection. Other protocols require different communication parameters: HTTP may include a
URL, and Common Object Request Broker Architecture (CORBA) may use an Interoperable
Object Reference (IOR) string. There is no limit to the set of communication parameters that
can be used to uniquely identify a target NE.

Network Element Identification
NE identification is provided by means of the reserved compound parameter COMM_PARM
and its reserved member COMM_PARM.NE_ID. Only work order parameters mapped to the
key compound parameter of COMM_PARM are identified as dynamic communication
parameters. The subset of communication parameters identified by COMM_PARM.NE_ID is
used by ASAP to uniquely identify a specific NE.

Chapter 7
Configuring Dynamic Network Element Routing

7-3

For example, you could identify the communication parameters for an NE instance using
TCP/IP connections with one or more of the following:

• COMM_PARM.NE_ID.HOST_IPADDR

• COMM_PARM.NE_ID.PORT

• COMM_PARM.NE_ID.HOST_USERNAME

• COMM_PARM.NE_ID.HOST_PASSWORD

For CORBA devices, the communication parameter may appear as follows:

• COMM_PARM.NE_ID.IOR

• COMM_PARM.NE_ID.USERNAME

• COMM_PARM.NE_ID.PASSWORD

Each parameter is used to create a key that uniquely identifies that NE. Based on the key, the
SARM initializes a session manager. For instance, if you wanted only the IP address and
security credentials to uniquely identify an NE, you would specify port as COMM_PARM.PORT
(without the NE_ID) so that it does not come into play when identifying a target NE.

Another provisioning request with the same set of communication parameters but with a
different user name and password identifies a different NE to ASAP. ASAP would create two
sets of resources for each NE: connection pool, session manager, command processor,
devices, and so on.

The following sections describe different routing scenarios.

Scenario 1 – One Service Action to Multiple Atomic Actions Routed to One NE
In this scenario, an upstream inventory system is used to maintain certain logical NE attributes
including routing information. The set of NEs that will use dynamic routing have identical
connection characteristics, consequently, they can share a single dynamic routing template.
Work orders are submitted to ASAP with enough information to identify the template to be used
for dynamic routing. All values configured in the template are then applied to establish the
connection.

Figure 7-1 shows a single service action mapped to one or more atomic actions, all of which
are routed to a single NE.

Figure 7-1 One Service Action to Multiple Atomic Actions Routed to One NE

The work order includes the following service action and communication parameters:

Chapter 7
Configuring Dynamic Network Element Routing

7-4

C-SERVICE
TEMPLATE_ID_A=TEMPLATE_1
COMM_PARM.NE_ID.URL=http://www.abc.com
COMM_PARM.NE_ID.HOST_USERNAME=jsmith
COMM_PARM.NE_ID.HOST_PASSWORD=<password1>

Table 7-2 shows the parameter mappings service model configuration.

Table 7-2 Scenario 1 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM COMM_PARM Compound

A-SERVICE_1 MCLI TEMPLATE_ID_A Scalar

A-SERVICE_2 COMM_PARM COMM_PARM Compound

A-SERVICE_2 MCLI TEMPLATE_ID_A Scalar

A-SERVICE_3 COMM_PARM COMM_PARM Compound

A-SERVICE_3 MCLI TEMPLATE_ID_A Scalar

This configuration routes all three atomic actions to the same NE because they each receive
the same set of communication parameters. Table 7-3 shows the downstream program
(JInterpreter class) parameters:

Table 7-3 Scenario 1 Parameters

Label Value

A-SERVICE_1 -

MCLI TEMPLATE_1

URL http://www.abc.com

username jsmith

password <password1>

A-SERVICE_2 -

MCLI TEMPLATE_1

URL http://www.abc.com

username jsmith

password <password1>

A-SERVICE_3 -

MCLI TEMPLATE_1

URL http://www.abc.com

username jsmith

password <password1>

The COMM_PARM and COMM_PARM.NE_ID are stripped from the work order parameter so
that the downstream provisioning program receives the parameters in the name/value pair that
is expected.

Chapter 7
Configuring Dynamic Network Element Routing

7-5

Scenario 2 – One Service Action to Multiple Atomic Actions Routed to Different NEs
Figure 7-2 presents a single service action mapped to two or more atomic actions, each of
which is routed to a different NE but all using the same network template.

Figure 7-2 One Service Action to Multiple Atomic Actions Routed to Different NEs

The work order includes the following service action and communication parameters:

C-SERVICE
TEMPLATE_ID=TEMPLATE_1
SUBSCRPTION_A.NE_ID.URL=http://www.abc.com
SUBSCRIPTION_A.NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION_A.NE_ID.HOST_PASSWORD=<password1>
SUBSCRPTION_B.NE_ID.URL= http://www.def.com/
SUBSCRIPTION_B.NE_ID.HOST_USERNAME=dmiller
SUBSCRIPTION_B.NE_ID.HOST_PASSWORD=<password2>
SUBSCRPTION_C.NE_ID.URL=http://www.ghi.com
SUBSCRIPTION_C.NE_ID.HOST_USERNAME=djones
SUBSCRIPTION_C.NE_ID.HOST_PASSWORD=<password3>

Table 7-4 shows the service model configuration parameter mappings.

Table 7-4 Scenario 2 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM SUBSCRIPTION_A Compound

A-SERVICE_1 MCLI TEMPLATE_ID Scalar

A-SERVICE_2 COMM_PARM SUBSCRIPTION_B Compound

A-SERVICE_2 MCLI TEMPLATE_ID Scalar

A-SERVICE_3 COMM_PARM SUBSCRIPTION_C Compound

A-SERVICE_3 MCLI TEMPLATE_ID Scalar

The atomic action parameter MCLI in this case identifies the network template. In static
routing, the atomic action parameter MCLI identifies the NE.

Chapter 7
Configuring Dynamic Network Element Routing

7-6

This configuration routes each atomic action to a different NE. Table 7-5 shows the
downstream program (JInterpreter class) parameters.

Table 7-5 Scenario 2 Parameters

Label Value

A-SERVICE_1 -

MCLI TEMPLATE_1

URL http://www.abc.com

HOST_USERNAME jsmith

HOST_PASSWORD <password1>

A-SERVICE_2 -

MCLI TEMPLATE_1

URL http://www.def.com

HOST_USERNAME jsmith

HOST_PASSWORD <password2>

A-SERVICE_3 -

MCLI TEMPLATE_1

URL http://www.ghi.com

HOST_USERNAME jsmith

HOST_PASSWORD <password3>

Scenario 3 – One Service Action to Multiple Atomic Actions Routed to Different NEs
Figure 7-3 shows a single service action that is mapped to two or more atomic actions, each of
which is routed to a different NE. Each NE is using a different network template.

Figure 7-3 One Service Action to Multiple Atomic Actions Routed to Different NEs

The work order includes the following service action and communication parameters:

C-SERVICE
TEMPLATE_ID_A=TEMPLATE_1

Chapter 7
Configuring Dynamic Network Element Routing

7-7

SUBSCRPTION_A.NE_ID.URL=http://www.abc.com
SUBSCRIPTION_A.NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION_A.NE_ID.HOST_PASSWORD=<password1>
TEMPLATE_ID_B=TEMPLATE_2
SUBSCRPTION_B.NE_ID.URL= http://www.def.com/
SUBSCRIPTION_B.NE_ID.HOST_USERNAME=dmiller
SUBSCRIPTION_B.NE_ID.HOST_PASSWORD=<password2>
TEMPLATE_ID_C=TEMPLATE_3
SUBSCRPTION_C.NE_ID.URL=http://www.ghi.com
SUBSCRIPTION_C.NE_ID.HOST_USERNAME=djones
SUBSCRIPTION_C.NE_ID.HOST_PASSWORD=<password3>

Table 7-6 shows the service model configuration parameter mappings.

Table 7-6 Scenario 3 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM SUBSCRIPTION_A Compound

A-SERVICE_1 MCLI TEMPLATE_ID_A Compound

A-SERVICE_2 COMM_PARM SUBSCRIPTION_B Compound

A-SERVICE_2 MCLI TEMPLATE_ID_B Compound

A-SERVICE_3 COMM_PARM SUBSCRIPTION_C Compound

A-SERVICE_3 MCLI TEMPLATE_ID_C Compound

The atomic action parameter MCLI in this case identifies the network template. In static
routing, the atomic action parameter MCLI identifies the NE.

This configuration routes each atomic action to a different NE. Table 7-7 shows the
downstream program (JInterpreter class) parameters.

Table 7-7 Scenario 3 Parameters

Label Value

A-SERVICE_1 -

MCLI TEMPLATE_1

URL http://www.abc.com

HOST_USERNAME jsmith

HOST_PASSWORD <password1>

A-SERVICE_2 -

MCLI TEMPLATE_2

URL http://www.def.com

HOST_USERNAME dmiller

HOST_PASSWORD <password2>

A-SERVICE_3 -

MCLI TEMPLATE_3

URL http://www.ghi.com

HOST_USERNAME djones

HOST_PASSWORD <password3>

Chapter 7
Configuring Dynamic Network Element Routing

7-8

Scenario 4 – One Service Action to Multiple Atomic Actions Routed to Multiple NEs
Figure 7-4 shows a case that differs from the previous scenario in that all of the atomic actions
are sent to each NE.

Figure 7-4 One Service Action to Multiple Atomic Actions Routed to Multiple NEs

The work order includes the following service action and communication parameters:

C-SERVICE
TEMPLATE_ID[1]=<TEMPLATE_1>
SUBSCRIPTION[1].NE_ID.URL=http://www.abc.com
SUBSCRIPTION[1].NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION[1].NE_ID.HOST_PASSWORD=<password1>
TEMPLATE_ID[2]=<TEMPLATE_2>
SUBSCRIPTION[2].NE_ID.URL= http://www.def.com/
SUBSCRIPTION[2].NE_ID.HOST_USERNAME=dmiller
SUBSCRIPTION[2].NE_ID.HOST_PASSWORD=<password2>
TEMPLATE_ID[3]=<TEMPLATE_3>
SUBSCRIPTION[3].NE_ID.URL=http://www.ghi.com
SUBSCRIPTION[3].NE_ID.HOST_USERNAME=djones
SUBSCRIPTION[3].NE_ID.HOST_PASSWORD=<password3>

Table 7-8 shows the service model configuration parameter mappings.

Table 7-8 Scenario 4 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM SUBSCRIPTION[++] Compound

A-SERVICE_1 MCLI TEMPLATE_ID[++] Compound

A-SERVICE_2 COMM_PARM SUBSCRIPTION[++] Compound

A-SERVICE_2 MCLI TEMPLATE_ID[++] Compound

Chapter 7
Configuring Dynamic Network Element Routing

7-9

Table 7-8 (Cont.) Scenario 4 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_3 COMM_PARM SUBSCRIPTION[++] Compound

A-SERVICE_3 MCLI TEMPLATE_ID[++] Compound

This configuration routes each atomic action to each NE. Table 7-9 shows the downstream
program (JInterpreter class) parameters.

Table 7-9 Scenario 4 Parameters

Iteration Label Value

A-SERVICE_1

- MCLI TEMPLATE_1

1 URL http://www.abc.com

1 HOST_USERNAME jsmith

1 HOST_PASSWORD <password1>

- MCLI TEMPLATE_2

2 URL http://www.def.com

2 HOST_USERNAME dmiller

2 HOST_PASSWORD <password2>

- MCLI TEMPLATE_3

3 URL http://www.ghi.com

3 HOST_USERNAME djones

3 HOST_PASSWORD <password3>

Each atomic action is called three times, each time with a different set of communication
parameters.

Table 7-9 applies to A-SERVICE_2 and A-SERVICE_3 as well.

Scenario 5 – One Service Action to Multiple Atomic Actions Routed to Different NEs
Figure 7-5 shows atomic actions that are routed to one or more NEs, and others that are
routed to another NE.

Chapter 7
Configuring Dynamic Network Element Routing

7-10

Figure 7-5 One Service Action to Multiple Atomic Actions Routed to Different NEs

The work order includes the following service action and communication parameters:

C-SERVICE
TEMPLATE_ID_A[1]=<template_1>
SUBSCRIPTION_A[1].NE_ID.URL=http://www.abc.com
SUBSCRIPTION_A[1].NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION_A[1].NE_ID.HOST_PASSWORD=<password1>
TEMPLATE_ID_A[2]=<template_2>
SUBSCRIPTION_A[2].NE_ID.URL=http://www.pqr.com
SUBSCRIPTION_A[2].NE_ID.HOST_USERNAME=dabrams
SUBSCRIPTION_A[2].NE_ID.HOST_PASSWORD=<password4>
TEMPLATE_ID_B[1]=<template_1>
SUBSCRIPTION_B[1].NE_ID.URL=http://www.abc.com
SUBSCRIPTION_B[1].NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION_B[1].NE_ID.HOST_PASSWORD=<password1>
TEMPLATE_ID_B[2]=<template_2>
SUBSCRIPTION_B[2].NE_ID.URL=http://www.pqr.com
SUBSCRIPTION_B[2].NE_ID.HOST_USERNAME=dabrams
SUBSCRIPTION_B[2].NE_ID.HOST_PASSWORD=<password4>
TEMPLATE_ID_B[3]=<template_3>
SUBSCRIPTION_B[3].NE_ID.URL= http://www.c.com/
SUBSCRIPTION_B[3].NE_ID.HOST_USERNAME=drichler
SUBSCRIPTION_B[3].NE_ID.HOST_PASSWORD=<password9>
TEMPLATE_ID_C[1]=<template_2>
SUBSCRIPTION_C[1].NE_ID.URL=http://www.pqr.com
SUBSCRIPTION_C[1].NE_ID.HOST_USERNAME=dabrams
SUBSCRIPTION_C[1].NE_ID.HOST_PASSWORD=<password4>
TEMPLATE_ID_C[2]=<template_3>
SUBSCRIPTION_C[2].NE_ID.URL= http://www.c.com/
SUBSCRIPTION_C[2].NE_ID.HOST_USERNAME=drichler
SUBSCRIPTION_C[2].NE_ID.HOST_PASSWORD=<password9>

Table 7-10 shows the service model configuration parameter mappings.

Chapter 7
Configuring Dynamic Network Element Routing

7-11

Table 7-10 Scenario 5 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM SUBSCRIPTION_A[++] Compound

A-SERVICE_1 MCLI TEMPLATE_ID_A[++] Compound

A-SERVICE_2 COMM_PARM SUBSCRIPTION_B[++] Compound

A-SERVICE_2 MCLI TEMPLATE_ID_B[++] Compound

A-SERVICE_3 COMM_PARM SUBSCRIPTION_C[++] Compound

A-SERVICE_3 MCLI TEMPLATE_ID_C[++] Compound

This configuration routes atomic action

• A-SERVICE_1 to NE_1 and NE_2

• A-SERVICE_2 to NE_1, NE_2, and NE_3

• A-SERVICE_3 to NE_2 and NE_3

Table 7-11 shows the downstream program (JInterpreter class) parameters.

Table 7-11 Scenario 5 Parameters

Iteration Label Value

A-SERVICE_1 - -

- MCLI <template_1>

1 URL http://www.abc.com

1 HOST_USERNAME jsmith

1 HOST_PASSWORD <password1>

- MCLI <template_2>

2 URL http://www.pqr.com

2 HOST_USERNAME dabrams

2 HOST_PASSWORD <password4>

A-SERVICE_2 - -

- MCLI <template_1>

1 URL http://www.abc.com

1 HOST_USERNAME jsmith

1 HOST_PASSWORD <password1>

- MCLI <template_2>

2 URL http://www.pqr.com

2 HOST_USERNAME dabrams

2 HOST_PASSWORD <password4>

3 MCLI <template_3>

3 URL http://www.c.com

3 HOST_USERNAME drichler

3 HOST_PASSWORD <password9>

Chapter 7
Configuring Dynamic Network Element Routing

7-12

Table 7-11 (Cont.) Scenario 5 Parameters

Iteration Label Value

A-SERVICE_3 - -

1 MCLI <template_2>

1 URL http://www.pqr.com

1 HOST_USERNAME dabrams

1 HOST_PASSWORD <password4>

- MCLI <template_3>

2 URL http://www.c.com

2 HOST_USERNAME drichler

2 HOST_PASSWORD <password9>

Scenario 6 – Common URL
The following sample shows a common URL that is shared:

• Global Parameter

SUBSCRIPTION_A.NE_ID.URL=http://www.abc.com
• C-SERVICE

TEMPLATE_ID=<template_1>
SUBSCRIPTION_A[1].NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION_A[1].NE_ID.HOST_PASSWORD=<password1>
SUBSCRIPTION_A[2].NE_ID.HOST_USERNAME=dabrams
SUBSCRIPTION_A[2].NE_ID.HOST_PASSWORD=<password4>

Table 7-12 shows the service model configuration parameter mappings.

Table 7-12 Common URL Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM SUBSCRIPTION_A[++] Compound

A-SERVICE_1 MCLI TEMPLATE_ID Scalar

Table 7-13 shows the downstream program (JInterpreter class) parameters.

Table 7-13 Common URL Parameters

Iteration Label Value

A-SERVICE_1 - -

- MCLI <template_1>

1 URL http://www.abc.com

1 HOST_USERNAME jsmith

1 HOST_PASSWORD <password1>

- MCLI <template_2>

Chapter 7
Configuring Dynamic Network Element Routing

7-13

Table 7-13 (Cont.) Common URL Parameters

Iteration Label Value

2 URL http://www.pqr.com

2 HOST_USERNAME dabrams

2 HOST_PASSWORD <password4>

Dynamic Routing Configuration Errors
If the maximum connections limit is reached, an exception is thrown indicating that the atomic
action cannot be dispatched because all connections are in use. The atomic action is put in
pending queue so that it can be processed when a connection is available.

A routing error (ROUT_ERR) event is logged and the work order fails in the following
circumstances:

• The network template identifier is not defined on the order, or the identifier does not
reference a valid template resource configured in ASAP.

• The combined total length of all communication labels and values exceeds 2048.

When dynamic communication parameters (as provided on an ASAP work order) are invalid
(due to an incorrect IP address or port, for instance) the work order is not explicitly failed.
Failing an order in this manner is generally reserved for incorrect activation parameters rather
than invalid communication parameters. When incorrect communication parameters are
detected (by the inability to establish a connection with the NE) the work order is placed in the
retry queue. When the error in communication parameters is detected, use Order Control
Application (OCA) to stop the order, change the invalid communication parameters and re-
submit the order to ASAP.

OCA tracks the revision history of all orders.

Refer to ASAP OCA User Guide for information about OCA.

Managing Communication and Order Parameters
Parameters defined with the same label as both communication and order parameters will
conflict. In order of precedence, order communication parameters override static parameters if
they have the same label. Oracle recommends that solutions developers not use conflicting
labels for both communication and order parameters.

During provisioning, parameters contained in work orders override work order communication
parameters (COMM_PARM), which override static communication parameters contained in
tbl_comm_param (see Figure 7-6).

Chapter 7
Configuring Dynamic Network Element Routing

7-14

Figure 7-6 Order Parameter Precedence

Backward Support for MPM Protocols
Dynamic routing can be used in conjunction with Multi-Protocol Manager-supported protocols
such as Telnet, FTP, and socket. These protocols require recognized keywords such as
HOST_IPADDR, HOST_NAME and PORT to create a connection. These parameter names
must be used to enable the MPM supported protocols.

An atomic action requires the following parameters to be routed using the MPM socket
protocol:

• COMM_PARM.NE_ID.HOST_IPADDR or COMM_PARM.NE_ID.HOST_NAME

• COMM_PARM.NE_ID.PORT

Software Load and Technology Type
Software load and technology type may be defined statically (tbl_host_clli) or provided by an
upstream system as parameters on a work order.

Consequently, each atomic action requires the following reserved communication parameters:

• COMM_PARM.NE_ID.SFTWR_LOAD or COMM_PARM.SFTWR_LOAD

• COMM_PARM.NE_ID.TECH_TYPE or COMM_PARM.TECH_TYPE

These parameters can be defined dynamically on each order or statically in the network
template.

Chapter 7
Configuring Dynamic Network Element Routing

7-15

The software load and technology type are established after when the NEP first establishes a
connection to the NE. After the connection has been established, all subsequent values of
SFTWR_LOAD and TECH_TYPE received from subsequent work orders destined to the same
NE instance are ignored. The software load and technology type are reloaded the next time
ASAP sets up a session manager, connection pool, and command processors for that NE.

NE Configuration Parameters
Some of NE configuration parameters (such as max_connections, drop_timeout,
spawn_threshold, kill_threshold, and line_type) may be provided by an upstream system
as Work Order communication parameters.

The following work order communication parameters can be specified to override the defaults:

• COMM_PARM.NE_ID.MAX_CONNECTIONS or COMM_PARM.MAX_CONNECTIONS

• COMM_PARM.NE_ID.DROP_TIMEOUT or COMM_PARM.DROP_TIMEOUT

• COMM_PARM.NE_ID.SPAWN_THRESHOLD or COMM_PARM.SPAWN_THRESHOLD

• COMM_PARM.NE_ID.KILL_THRESHOLD or COMM_PARM.KILL_THRESHOLD

• COMM_PARM.NE_ID.LINE_TYPE or COMM_PARM.LINE_TYPE

These parameters are used to initialize the session manager and command processors. After
the session is established for the NE, parameters those coming from subsequent work orders
to the same NE instance will be ignored until the session manager is removed from memory
(when the primary connection to the NE is closed).

Chapter 7
Configuring Dynamic Network Element Routing

7-16

8
Creating Service Actions

This chapter describes how to create service actions for Oracle Communications ASAP.

About Creating and Configuring Service Actions
A Common Service Description Layer (CSDL) or service action command is an ASAP
command that is associated with a particular work order. The service action command is
associated with one or more operations on one or more network elements (NEs).

Service action command names are comprised of the string C_ (for Service Action) as well as
attributes including the cartridge identification elements (tokens), actions, and services that
have been selected for the cartridge. The tokens are separated by underscores, and
compound tokens (if required) include a dash as a separator. If the software load token
includes a "." it is replaced by a dash. All characters in the name must be in uppercase. The
naming convention is as follows:

C_vendor-technology_softwareload_action_entity

Where

• C_: This prefix indicates a service action.

• vendor: see "Selecting the Vendor Token"

• technology: see "Selecting the Technology Token"

• softwareload: see "Selecting the Software Load Token"

• action: see "Selecting the Action Tokens"

• entity: see "Selecting Entity Tokens"

Note:

If service packages are used, the service token should include the service package in
its name. For example a service action belonging to the BGP service package would
be named as follows:

C_CSCO-IOS_12-2-X_ADD_BGP-MAX-PREFIX

Identify and model meaningful services as service action commands. The first step is to create
a one-to-one mapping between each service action and atomic action. For example, an atomic
action that adds three-way calling to a subscriber line should have an associated service action
that allows for this feature to be activated individually by an upstream system:

Table 8-1 Service-Action-to-Atomic-Action Mapping (One-to-One)

Service Action Atomic Action

C_NOKIA_HLR_M11_ADD-3WC A_NOKIA_HLR_M11_ADD-3WC

8-1

Where possible, also model other meaningful services. For example an atomic action to nail up
a relay point on a Nortel Passport NE should also be modeled into a more meaningful service.
The service action configuration should therefore include an individual service action that
allows the relay point to be nailed up as well as a service action that implements a more
meaningful service such as the activation of permanent virtual circuit (which makes use of the
atomic action to nail up a relay point among other atomic actions that are used to construct the
PVC):

Table 8-2 Meaningful Service-Action-to-Atomic-Action Mapping

Service Action Atomic Action Meaningful Service

C_NT-PP_12-4_SPECIFY_NRP A_NT-PP_12-4_SPECIFY_NRP No

C_NT-PP_12-4_ADD_ATM-PVC A_NT-PP_12-4_ADD_VCC
A_NT-PP_12-4_SPECIFY_NRP
A_NT-PP_12-4_CREATE_X-CONN

Yes

Service cartridge service actions do not have to follow this naming convention.

Design Studio for ASAP automatically enforces this naming convention when you create a
service action with the Service Action Wizard.

Creating Service Actions
To create a service action using Design Studio, use the following procedure:

1. Select Studio, then New, then Activation, and then Service Action.

2. From the Service Action Wizard, do the following:

• In the Action field, enter an action name that corresponds to an NE command.

• In the Entity field, enter an entity name that corresponds to an NE service name or
service package you want to configure.

3. Click Finish.

The Service Action editor appears.

Configuring Service Action Default Sequence
Service action level refers to the relative ordering of the service action within the work order.
The SARM must have the service action level in case it receives service actions from a service
request processor (SRP) or a Java SRP that is not in the work order in which it must be
provisioned. Using the service action level, the SARM can re-order the service actions on an
ASAP work order.

Assign service action levels based on the logical sequence in which the service action
commands would need to occur if they were contained within a single work order. For example,
on some NEs where a change line command is not available, a work order may contain service
actions to

1. Query the line for line attribute information.

2. Delete the line.

3. Recreate the line with new attributes.

4. Re-assign the old attributes

Chapter 8
About Creating and Configuring Service Actions

8-2

Assigning the levels as shown in the following list ensures that service actions are run in the
correct order if they were for some reason out of sequence on the original order:

• Query 100

• Delete 120

• Add 140

• Modify/change 160

To configure a service action sequence using Design Studio:

1. From the Service Action editor, click the Properties tab.

2. In the Level field, enter a service action sequence level.

Configuring Service Action Fail and Complete Events
You can optionally configure a service action to trigger a return event to the SRP or JSRP
when it receives a defined event.

• Service Action Completion Event – The event that is triggered if this service action
completes successfully. These events can either be system events or custom events. For
information about system events and configuring system events see the ASAP System
Administrator's Guide.

• Service Action Failure Event – The event that is triggered if this service action fails.
These events can either be system events or custom events. For information about system
events and configuring system events, see the ASAP System Administrator's Guide.

Each service action command must be defined in a static user-configured translation table that
specifies the particular characteristics of the service action command. tbl_csdl_config is a
user-created static table that contains all service actions. Each work order submitted to can
have one or more associated service actions.

To configure a service action fail or complete event using Design Studio:

1. From the Service Action editor, in the Properties tab, select a service action completion
event from the Service Action Completion Event list.

2. From the Service Action Failure Event list, select a service action failure event.

About Mapping a Service Action to Atomic Actions
After you have defined service action commands, atomic actions, and atomic action
parameters, you can establish mapping relationships between the service action commands
and atomic actions. You must define which atomic actions are transmitted to the NEP for a
given service action command.

A service action command can have one or more atomic actions. Multiple atomic actions must
be performed in the correct sequence, otherwise the service action can fail. This sequence is
identified when creating the mapping relationship. In the example below, the atomic action
CREATE_LINE must be performed before any options are added to that line.

Chapter 8
About Mapping a Service Action to Atomic Actions

8-3

Table 8-3 Service-Action-to-Atomic-Action Mappings

Service Action Atomic Action Parameters Description

CREATE_RES_LINE CLEAR_INTERCEPT MCLI="NEWYORK",

NPA="516",

NNX="555",

LINE="1212"

Clear the intercept for the
directory number before
adding line.

CREATE_RES_LINE CREATE_LINE MCLI="NEWYORK",

LEN="2111112",

NPA="516",

NNX="555",

LINE="1212",

PARTY="I",

PIC="333"

Create the line in the NE.

CREATE_RES_LINE SET_OPTION_ON MCLI="NEWYORK",

LEN="2111112",

NPA="516",

NNX="555",

LINE="1212",

OPT="TTR"

Add the Touch Tone
feature to the line.

ADD_FEATURE SET_OPTION_ON MCLI="NEWYORK",

LEN="2111112",

NPA="516",

NNX="555",

OPT="CAW"

Add the Call Waiting
feature to the line.

Note:

Any changes or additions you make to mapping relationships only take effect after
the SARM server is restarted.

About Limiting Independent Network Element Commands to Optimizing the
Network Element Interface

The goal of NE interface optimization is to limit the number of independent NE commands
(either MML or API calls) that ASAP sends to an NE. Collect related service activation requests
and combine them into a single service activation request that ASAP sends to the NE. This
avoids performance overhead associated with checking multiple NE responses and provides a
higher degree of throughput to the NE.

In the non-optimized (standard) approach, a number of independent atomic actions are
combined together to create a service action as shown in the following example:

C_NOKIA-HLR_M11_ADD_FEATURES
 A_NOKIA-HLR_M11_ADD_CW
 A_NOKIA-HLR_M11_ADD_3WC

Chapter 8
About Mapping a Service Action to Atomic Actions

8-4

 A_NOKIA_HLR_M11_ADD_CF
 …others feature atomic actions…

In this example, a service, C_NOKIA-HLR_M11_ADD_FEATURES, spawns multiple atomic
actions that activate features on a subscriber line. Because each Java method has one
feature-related NE command embedded in it, each atomic action that runs sends one NE
command to the NE and each atomic action is responsible for checking the response from the
NE to verify its success. Though this approach enables tight feature-specific parameter
checking in the SARM, the error checking required after ASAP sends each command creates a
significant amount of overhead. This approach is suitable when ASAP provisions a small
volume of work orders and performance is not a major factor; however, when ASAP provisions
a large volume of work orders, this approach may impair the performance of ASAP.

When NE interface optimization is used, a Java method is created that combines the multiple
feature requests into one or more NE commands. Some NEs have a length limit to the
command string and therefore some splitting of commands may be necessary. The Java
method is used to examine the feature flags on the work order and then construct a larger NE
command. A generic atomic action maps to the main Java method and all of the possible
atomic action parameters for adding the supported features to the subscriber line are
associated with the following atomic action:

C_NOKIA-HLR_M11_ADD_FEATURES
 A_NOKIA-HLR_M11_ADD_FEATURES

When a Java method sends more than one command to an NE, it must be transaction
oriented. For example, if a Java method sends multiple commands to an NE and the third
command fails, it is necessary to roll back the previous two commands before failing the
atomic action

An optimized design requires that all of the atomic action parameters provided to the Java
method be configured as optional in the SARM. This reduces the error-checking ability of the
SARM and results in a higher degree of fallout at the NE level. Additional coding, maintenance,
and testing effort is also required within each Java method. The benefits of this design includes
reducing the number of independent commands that are sent to the NE and reducing the
number of atomic actions and responses that ASAP must manage. For more information about
atomic action to Java method and MML command ratio, see "About the Ratio of Provisioning
Commands to Atomic Actions."

In addition to providing a standard set of atomic actions that map to the individual NE
commands on an NE, it may be possible to implement atomic actions that support NE interface
optimization if coupling of commands is supported by the NE. This is most common in the
voice networks where numerous features (such as creating a subscriber and adding a number
of features) are needed to provide different levels of service to a customer. If the NE does
support this functionality, it must be supported in the cartridge in addition to the standard
service modeling approach.

Adding Atomic Actions to a Service Action
To add atomic actions to a service action using Design Studio:

1. From the Service Action editor, click the Atomic Actions tab, and then click Add.

The Atomic Action Selection dialog box appears.

2. In the Matching items list, select an atomic action.

3. Click OK.

The atomic action you selected is added to the atomic action list in the Atomic Actions
tab.

Chapter 8
About Mapping a Service Action to Atomic Actions

8-5

Note:

Atomic actions are run in the order in which they are added to a service action
from the top of the list to the bottom. You can change the position of atomic
actions in Atomic Actions tab using the up and down arrows.

About Atomic Action Spawning Logic
When given a particular service action command and its parameters, the SARM refers to a
static user-populated translation table to generate one or more atomic actions for this service
action with certain conditions. tbl_csdl_asdl is a static table that is used by the SARM and
contains these mappings between service action commands and atomic actions. For each
atomic action associated with a service action, the SARM verifies whether the atomic action
should be spawned for the specified service action. The final determination of whether the
atomic action is spawned depends on the atomic action parameter translation process
specified in the tbl_asdl_parm database table.

ASAP's translation logic makes it possible to determine whether or not to spawn an atomic
action based on a range of values, or based on equal, not equal, greater than or less than
conditions. It is also possible to combine conditions using an AND or OR operator. This logic
permits detailed computations required to run an atomic action on the NE, to be performed in
the service-action-to-atomic-action translation step, rather than in the atomic action to NE
translation step, and streamlines bandwidth usage during NEP to NE communications. The
expanded set of possibilities for service-action-to-atomic-action translation allows for a greater
flexibility in the translation and mapping process and a more efficient processing effort.

The generation of each atomic action can also depend on the results of previous atomic
actions that return parameters to the SARM upon successful completion.

This arrangement provides a mechanism for flexible translation, allowing the SARM to use one
of the following methods to perform service-action-to-atomic-action translation.

• Unconditional translation: The SARM always generates the atomic action for this service
action. ASAP supports the following unconditional translation option:

– Always – The SARM always generates the atomic action for this service action.

• Conditional translation: The SARM uses conditional logic to decide whether to generate
the atomic action. If the label and/or values associated with the conditional translation are
not configured in the database, the atomic action fails. ASAP supports the following
conditional translation options:

– Always with Include Expression option: The user can define a logical expression
using a number of criteria for a service action parameter. The range of options
available allows an atomic action to be generated if the service action parameter value
is within a set range of values or if the service action parameter is greater than, or less
than, or equal to, a specified value. More than one condition can be combined in the
expression, using an AND or OR operator. For more information about creating logical
expressions, see "Components of Service-Action-to-Atomic-Action Translation
Expressions" and "Defining Service Action-Atomic Action Translation Expressions."

– Defined – The SARM only generates a particular atomic action if the stated service
action parameter is defined on the service action.

– Not Defined – The SARM only generates a particular atomic action if the stated
service action parameter is not defined on the service action.

Chapter 8
About Atomic Action Spawning Logic

8-6

– Equals – The SARM only generates a particular atomic action if the stated service
action parameter is defined on the service action and has a particular parameter value.

Note:

Always use optional parameters to spawn atomic actions using the Equals,
Defined, and Not Defined conditional translation options. Using a mandatory
parameter creates error messages if the mandatory parameter is not used.

Configuring Atomic Action Spawning Conditions
To configure atomic action spawning conditions using Design Studio:

1. From the Service Action editor, in the Atomic Actions tab, select one of the following
options:

• Always

• Defined

• Not Defined

• Equals

2. (Optional) Select Include Expression. This option is only available with the Always
condition.

3. (Optional) Enter a logical expression in the Include Expression text box. This option is
only available with the Always condition.

4. (Optional) Enter an atomic action parameter label in the Parameter Label field. This option
is available for the Defined, Not Defined, and Equals conditions.

5. (Optional) Enter an atomic action parameter label value in the Parameter Value field. This
option is only available for the Equals condition.

Components of Service-Action-to-Atomic-Action Translation Expressions
The eval_exp column (also called Include Expression field in Design Studio) in the
tbl_csdl_asdl_eval table contains an algebraic expression (as a string) that combines all the
parameters to be checked. If the value of the eval_exp in the tbl_csdl_asdl_eval is not NULL,
the string is parsed and the expression is evaluated to TRUE or FALSE. If the expression
cannot be evaluated (for example, incorrect semantics or non-existent parameter), the
translation fails.

The expression for the service-action-to-atomic-action translation contains <parameter
operator [value]> groups. To specify the order operations, you must use brackets in the
algebraic expression. A string with a length of 255 can accommodate a number of conditions.
The average is 20 groups of <parameter operator [value]> groups. Each parameter or value
should not exceed 30 bytes in length.

Supported Parameters for Translation Expressions
The parameters that may be included in the expression and to be checked are:

• Service action parameters and work order parameters

• Technology and software load

Chapter 8
About Atomic Action Spawning Logic

8-7

Table 8-4 shows the predefined parameters available to use with each translation expression.

Table 8-4 Predefined Parameters

Parameters Description

HOST_NE Remote NE.

TECH Technology or NE type. This parameter is read from memory and loaded when
SARM starts.

SFTWR Software that runs on the NE. This parameter is read from memory and loaded
when SARM starts.

The parameters in the algebraic expression must match one of the parameter names that
come from SARM, such as service action or work order parameters. You can define all other
parameters and you can check any number of parameters in the algebraic expression (limit of
255 bytes.)

Supported Operators for Translation Expressions
Table 8-5 shows the operators you can use in the service-action-to-atomic action translation
expression.

Table 8-5 Service-Action-to-Atomic-Action Translation Expression Operators

Operators Description

Boolean: AND, OR and NOT These Boolean operators are applied against Boolean values returned
by operations performed on parameters. For example: NUM3 < 9999
AND NUM2 <333

The expression to enter in tbl_csdl_asdl is (NUM3 < 9999) AND (NUM2
<333)

Operators to be used against
parameters

Parameter value not required: ISDEF, NOTDEF. For example: NOTDEF
VAR7 AND NUM2 > 333

The expression in tbl_csdl_asdl is (NOTDEF VAR7) AND (NUM2 > 333)

Parameter value is required Integer operators: >, <, >=, =<, =, !=

String operators: LIKE, !LIKE

For example: (VAR7=72) AND (CENTER !LIKE “YORK")

Supported Values for Translation Expressions
The operators >, <, >=, =<, != and = are used only for integer values. The values provided for
these operators in the expression must be convertible to an integer or the translation will fail.
These operators trigger the conversion when the expression is parsed.

For string values, you use the operators LIKE and !LIKE (that is, not LIKE) and the values
require quotation marks, for example, CENTER !LIKE “YORK". These operators accept the
wildcards % and ?. For example: (TECH LIKE “D?S") AND (SFTWR !LIKE “BCS%")

A value is not required for the ISDEF and NOTDEF operators. The groups evaluate to TRUE
or FALSE and they can be aggregated together using the operands AND and OR.

All other parameters to be included in the expression can have any name, as long as they
match a service action or work order parameter label. If a parameter label is not defined on the
incoming work order, translation will fail.

Chapter 8
About Atomic Action Spawning Logic

8-8

Defining Service Action-Atomic Action Translation Expressions
The use of brackets in the service-action-to-atomic-action translation expression to specify the
order of the operations simplifies the following aspects of the service-action-to-atomic-action
translation process:

• Precedence of the operators is already determined

• Increased performance when evaluating each atomic action for service action translation

• Coding, maintenance, and enhancements of service actions and atomic actions

To avoid errors, you must use spaces between Literal operators and labels and Literal
operators and values.

The format is:

(DIS LIKE "B747")

Note:

Literal operators are: LIKE, !LIKE, ISDEF, NOTDEF. The operators AND and OR
always have their operands in brackets, therefore no blank space is mandatory on
either side.

A space between other operators and the operands is recommended but not mandatory.

(AAA < 72) AND (NOTDEF BBB)

To specify the order of the operations, each operator and its operands must be enclosed in a
set of brackets:

((A < 8) OR ((NOTDEF B) AND ((C != 3) OR (NOT(D = 9)))))

Table 8-6 shows the possible values in the eval_exp column of tbl_csdl_asdl_eval.

Table 8-6 eval_exp column values

Value Description

NULL Used when you do not require the enhanced service-action-to-atomic- action
translation. You can leave the eval_exp column of tbl_csdl_asdl_eval empty. This
expression translates to TRUE, which means the translation relies completely on
the cond_flag column. As a result, existing functionality is not affected and an AND
is placed between the new and the existing functionality.

These conditions are identified in columns cond_flag and eval_exp. An atomic
action is valid only if both conditions are satisfied.

Valid algebraic
expression

If you require the enhanced service-action-to-atomic-action translation, you must
use a valid algebraic expression that evaluates to TRUE or FALSE in the eval_exp
column of the tbl_csdl_asdl_eval table. The evaluation of an expression fails if it
finds any syntax error in the expression, or if it cannot get a value for a parameter
when the value is required.

TRUE The string that is evaluated by the C code to the boolean value TRUE. This is
similar to A (always) for existing functionality.

Chapter 8
About Atomic Action Spawning Logic

8-9

If the evaluation of the expression fails, a SYS_ERR diagnostic message is logged in the
diagnostic file, and the atomic action is not included on the service action.

The expression evaluates to TRUE or FALSE, which would result in spawn or don't spawn the
atomic action, respectively. You must ensure that the translation expression is correct. When
the SARM starts or the configuration changes are dynamically re-loaded, the syntax of the
translation expressions is checked.

Translation Function Conflicts
Ensure that there is no conflict between the conditions set by the different entities, if you use
the following:

• Conditional service-action-to-atomic-action spawning logic

• Standard service-action-to-atomic-action spawning logic

• Atomic action to program or Java method mapping logic

You must also consider that the SARM service-action -to-atomic-action spawning logic creates
an AND condition between these entities.

About Service Actions and Rollback
As part of the service action configuration, you must identify whether the service action rolls
back in the event of failure. When the SARM begins provisioning a work order, it scans each
service action on the order to determine if rollback has been configured. If rollback has been
configured for one or more service actions, the SARM flags the work order as requiring
rollback in the event of failure.

Table 8-7 shows the service action level rollback qualifications.

Table 8-7 Service Action-Level Rollback Qualifications

Qualification Description

Atomic actions must also be configured for
rollback separately

Atomic actions associated with the service actions are
not affected by the rollback configuration for service
actions.

Override default behavior using order property The service action Level Rollback Configuration defines
the default behavior for a service action. This setting is
ignored if the work order Rollback Property specifies no
rollback in the event of a work order failure.

Service action rollback configuration is a
prerequisite for work order rollback

If the WO Rollback Property is turned on and no service
actions are configured to require rollback, the work
order will not roll back in the event of a failure.

The end state of rolled back service actions is
unknown

During rollback processing, a list of all completed
atomic actions is obtained. Regardless of whether an
atomic action completes or fails, rollback of previous
atomic actions continues. Consequently, the end state
of the service action is unknown and must be tested.

Enabling the CSDL Rollback Functionality
The rollback_req configuration variable is located in tbl_csdl_config in the SARM database.
If it is set to Y, rollback occurs. If it is set to N, no rollback occurs.

Chapter 8
About Service Actions and Rollback

8-10

If a service action that requires rollback fails, the dynamic work order structure in the SARM
memory is flagged and the entire work order is rolled back.

Note:

If employing the delayed_failure property (see "About Delayed Failure Properties"),
rollback must be turned off, rollback_req must be set to N, and ignore rollback must
be set to Y.

To enable CSDL rollback functionality using Design Studio:

1. From the Service Action editor, click the Properties tab, select Rollback.

Enabling Work Order Rollback Functionality for the Service Request
Processor Emulator

The wo_rback configuration variable located in tbl_wo_def in the SRP database defines
whether the work order rolls back in the event of failure.

Note:

tbl_wo_def and this variable are only applicable when using the SRP emulator.

• If set to Y, rollback for a work order occurs if the work order times out or fails.

• If set to N, no rollback for the work order occurs.

• If not specified, the SARM uses D, the default value. In this case, rollback depends on the
service action parameter rollback_req in tbl_csdl_config. If rollback_req is set for service
action, then the work order rolls back when it times out or fails.

About Configuring a Rollback Point (Point of No Return)
You can configure atomic actions so that when a rollback situation occurs, rollback will only be
partially performed, stopping at the atomic action configured to be the point of no return. By
configuring the Rollback Point (pointOfNoReturn in the XML) value in an atomic action, you
can cause the following actions:

• No point of no return functionality - Rollback is performed normally.

• State: An atomic action can be configured as the rollback point (also called a point of no
return) for partial rollback. If rollback occurs, and execution has continued beyond this
point, execution is rolled back to this atomic action but no further.

• Stop: An atomic action can be configured as the rollback point for a rollback. After
execution has continued past this atomic action, no rollback can occur.

An example scenario with atomic action1, atomic action2, atomic action3 and atomic action4,
with atomic action2 configured for point of no return for partial rollback (for example, with a
PNR=1), would work as follows. atomic action1, atomic action2 and atomic action3 run
correctly. A work order timeout occurs on atomic action4. atomic action3 is rolled back but

Chapter 8
About Service Actions and Rollback

8-11

because atomic action2 is considered to be the point of no return for partial rollback, neither
atomic action2 nor atomic action1 is rolled back.

In the same scenario, if atomic action2 is configured for point of no return with no rollback (for
example, PNR=2), then no rollback occurs at all.

Configuring a Rollback Point
To configure a point of no return using Design Studio:

1. From the Service Action editor, click the atomic actions tab, and then click the empty
Rollback Point field for an atomic action.

A list appears.

2. Select one of the following options:

• Leave the field blank to maintain full rollback functionality.

• State

• Stop

Chapter 8
About Service Actions and Rollback

8-12

9
Configuring Base Exit and User Exit Types

This chapter describes how to define an Oracle Communications ASAP user-defined exit types
(UDETs) and map them to ASAP base exit types.

About User Errors and Thresholds
Network element errors can be associated with exit types. An exit type reflects the status of an
atomic action at any point during the processing of that atomic action. Atomic action exit types
that are associated with atomic action completion and failure scenarios are termed base exit
types. The Service Activation Request Manager (SARM) database contains several tables that
reference base exit types (in other words, contain a base_types column). You can define
custom user-defined exit types (also known as user errors) that you can then map to ASAP
events. User-defined errors are stored in the Service Request Manager (SARM) tbl_user_err
table.

After you have defined user errors, you can define user error thresholds to elicit user-defined
responses or events should the failure threshold for an atomic action be exceeded. For
example, if a host network element (NE) returns a given error notification from a specific
atomic action a given number of times (the defined threshold), the appropriate user-defined
event is issued. User defined error thresholds are stored in tbl_err_threshold.

About Base Exit Types
In provisioning, when a user exit type is returned from a JNEP Java code, the corresponding
base type is found. For the JNEP Java code, JNEP finds the base type and sends this base
type to the NEP.

There are seven base types defined in SARM database tbl_user_err. If you try to define more
base types in tbl_user_err, at startup and load time, the NEP server detects it as an error and
terminates the server.

These base exit types include the following:

• SUCCEED – The atomic action ran successfully. The NEP successfully completes the
atomic action and the SARM provisions the next atomic action on the work order. The
completed atomic action and its associated parameters are saved by the SARM to
facilitate rollback, if necessary.

• FAIL – Hard error; the atomic action failed, which results in the failure of the work order.
The JInterpreter method sends this response if the provisioning activity has failed and work
order provisioning must stop. The SARM then fails the entire work order and notifies the
SRP of the work order failure event. If rollback is configured on the work order, the SARM
rolls back any previously completed atomic actions.

9-1

Note:

FAIL is predefined in the Java code like other base types. You may define other
user exit types based on it.

To use this exit type from Java code, the Java method should call the
setASDLExitType method. Oracle recommends adding error text to the failure to
clarify diagnostic messages. For example:

setASDLExitType("FAIL", "User error text for FAIL");

• RETRY – The atomic action will be retried later. The JInterpreter method sends this
response when it is determined that the atomic action must be retried. While the atomic
action is waiting to be retried, the connection to the NE can be used to provision other
atomic actions destined to that NE. This is in contrast to the Maintenance Mode condition
in which no other atomic actions are transmitted to the NE. If the atomic action does not
complete after the final retry, the SARM fails it. The atomic action and associated
parameters are logged only once by the SARM after the final try. When the retry threshold
is reached, a system event indicates that the atomic action (and consequently the work
order) has failed. Using the Control subsystem, you can map this system event to generate
the appropriate alarm.

The number and frequency of retry attempts are governed by work order properties, and in
the event that these properties are not defined on the work order, by ASAP.cfg
configuration parameters.

For more information about RETRY behavior, see "Behaviors of RETRY and RETRY_DIS."

• RETRY_DIS – This is a base type which is similar to RETRY. This base type means the
atomic action did not complete and needs to be retried. You can base new user exit types
on RETRY_DIS. (DIS refers to disconnect rather than disable).

When RETRY_DIS is returned from a Java provisioning class, the related port is
disconnected. The atomic action will fail but will be retried by NEP server. The NEP server
will indicate this to the SARM server. Just before the NEP server retries the atomic action,
it has to establish a new connection because it was disconnected. The NEP will establish a
connection again and will retry the same atomic action. This will continue as long as
RETRY_DIS is returned from the Java provisioning class.

If the parameter IO_ASDL_RETRY (which has a default value of 0) is defined as 1 in the
ASAP.cfg file, the atomic action with RETRY_DIS exit code will be only retried as many
times as is indicated by NUM_TIMES_RETRY. In this case, RETRY_DIS functions similar
to RETRY with the difference of the additional disconnect and reconnect after each atomic
action retry.

The NUM_TIMES_RETRY parameter represents the number of times the SARM sends an
atomic action to the NEP to be processed after the NEP returns it with a 'Fail but Retry'
status. A work order is failed when the number of retries equals the value specified for
NUM_TIMES_RETRY. The RETRY_DIS base exit type can occur if a device is found to be
in an abnormal state and must be manually reset.

For more information about RETRY_DIS behavior, see "Behaviors of RETRY and
RETRY_DIS."

• MAINTENANCE – The atomic action failed because the NE is currently unavailable to
receive provisioning requests. The JInterpreter method sends this atomic action response
after being notified that the NE is currently unable to accept provisioning updates. The
NEP automatically logs off and disconnects from the NE. On receiving this atomic action
response, the SARM moves the atomic action from the In Progress atomic action queue to

Chapter 9
About Base Exit Types

9-2

the Pending queue, and then marks the status of the NE as Maintenance. The SARM waits
for the NEP to transmit an NE Available notification after it has successfully re-established
its primary connection to the NE. The atomic action and its associated parameters are not
logged by the SARM because the atomic action itself did not actually fail.

• SOFT_FAIL – The atomic action has encountered an error has occurred that is not serious
enough to halt the successful provisioning of the order. For example, this event can occur
when the JInterpreter method logic detects that a user is attempting to add a feature to a
line that already has that option. The SARM receives the relevant atomic action response
and manages it in the same manner as an atomic action completion, with one exception.
The SARM sets the Exceptions flag on the work order Completion notification returned to
the SRP to indicate that some of the provisioning activity that was requested by the
originating system was not performed. The failed atomic action and its associated
parameters are saved by the SARM.

• DELAYED_FAIL – The atomic action had failed during provisioning. The SARM skips any
subsequent atomic action in the service action, continues provisioning at the next service
action, and then fails the order. The failed atomic action and its associated parameters are
saved by the SARM. Rollback and delayed failure are incompatible because the intent of
this base type is to continue provisioning subsequent Service Actions, while rollback would
reverse successfully provisioned Service Actions. It it therefore recommended that you set
the service action rollback parameter to N and the ignore_rollback parameter to Y.
Delayed failure should only be used when there are no dependencies on subsequent
Service Actions. If dependencies exist, the subsequent provisioning actions will fail.

• STOP – The atomic action has stopped processing. The JInterpreter method sends this
response when it detects that the work order has been set in a stopped state. While the
work order is in a stopped state, the Work Order Manager in the SARM only accepts
requests to resume or cancel this work order. You can submit such requests through an
Order Control Application (OCA) or Service Request Processor (SRP) API call by
resubmitting the stopped work order.

Behaviors of RETRY and RETRY_DIS
When IO_ASDL_RETRY is a set to 0 (the default value):

1. The atomic action will fail but will be retried again (same behavior for both RETRY and
RETRY_DIS).

2. The related port used will be kept intact for RETRY but disconnected for RETRY_DIS.

3. The port will be connected again (only for RETRY_DIS).

For RETRY, retry happens according to the NUM_TIMES_RETRY and
RETRY_TIME_INTERVAL parameters, but not for RETRY_DIS.

For RETRY_DIS, steps a), b) and c) will be repeated as long as the Java provisioning class for
that atomic action returns with RETRY_DIS.

When IO_ASDL_RETRY is set to 1:

1. Atomic action will fail but will be retried again (same behavior for RETRY and
RETRY_DIS).

2. The related port used will be kept intact for RETRY but disconnected for RETRY_DIS.

3. The port will be connected again (only for RETRY_DIS).

For both RETRY and RETRY_DIS, retry happens according to the NUM_TIMES_RETRY and
RETRY_TIME_INTERVAL parameters.

Steps a), b) and c) will be repeated NUM _TIMES_RETRY times only.

Chapter 9
About Base Exit Types

9-3

How to use RETRY_DIS:

JNEP

RETRY_DIS is predefined in the Java code like other base types. You may define other user
exit types based on it.

To use this exit type from Java code, the Java method should call the setASDLExitType
method. For example:

setASDLExitType("RETRY_DIS", "User error text for RETRY_DIS");

About User Exit Types
User exit types allow cartridge developers and systems administrators to map atomic action
exit codes to one of the predefined base exit types. Base exit types determine the product
behavior. Cartridges map return codes and status values from an NE to a user-defined exit
type.

Regular expressions (regex) are used to perform pattern searches on responses from NEs.
The pattern used is stored in tbl_user_err in the SARM database. The user exit type contains
a regex pattern that is applied at runtime.

Regular expressions enable users to associate a series of responses to a specific base type.
For example, a regular expression 6 can identify a pattern where any response with the
character 6 followed by any number of characters will translate to base type of FAIL. Regular
expressions can also allow very specific searches within a response from an NE.

Regular expressions are typically compiled before being run. Compilation produces a binary
version of the expression and ensures that the syntax of the regular expression is correct. This
compilation occurs using SACT and SADT when user exit types are deployed into ASAP as
part of a cartridge. If the syntax is incorrect during compilation, SADT displays an error
message and the deployment of the user exit type fails.

The supported regular expression version is consistent with Java 1.4.x regular expressions.

Using Regular Expression Search Patterns
The following provides additional regular expression search examples:

• ^.*\b(one|two|three)\b.*$ = matches a complete line of text that contains one, two or three.

• ^(?=.*?\bone\b)(?=.*?\btwo\b)(?=.*?\bthree\b).*$ matches a complete line of text that
contains all of the words one, two and three.

• "[^"\r\n]*" matches a single-line string that does not allow the quote character to appear
inside the string.

• \b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b matches any IP address.

For more information about search patterns, refer to the Java SE website:

http://docs.oracle.com/javase/8/

Using Search Patterns Against Long Switch Responses
There is a known issue with the Java.util.regex package from Java. Any match pattern with
alteration on a string that is greater than 1400 bytes causes an exception and a stack overflow.
This situation is not uncommon, particularly when implementing services and you want to

Chapter 9
About User Exit Types

9-4

http://docs.oracle.com/javase/8/

match the appearance of a word in a switch response. The following describes how to work
around this issue.

In the following example, a command is sent to an NE and a multiline reply is received in which
you want to match a keyword:

You may attempt to match the word COMPLETED in the reply as follows:

if (Pattern.matches("(.|\r|\n)*COMPLETED(.|\r|\n)*", replyString)){
System.out.println("Matches \"COMPLETED\"");
} else {
System.out.println("No Match");
}

The problem will be encountered if the length of the replyString length exceeds 1400 bytes.

In the above sample, the “." signifies any character except a line terminator, that is, any of the
following set of characters:

• \n (line feed, the UNIX line terminator)

• \r (carriage return)

• \u0085 (next line)

• \u2028 (line separator)

• \u2029 (paragraph separator)

• the sequence \r\n

Typically, to match . and \r and \n (or any combination of these), you would use (.|\r\n)* and this
causes the problem.

However, Java Regexp enables you to match any characters including line terminator by
means of an embedded flag expression. ((s).)* enables the flag to let "." match any character
as well as line terminator. The problem is avoided by changing the search pattern to "((?
s).)*COMPLD((?s).)*".

About User Exit Types for Unknown Errors
You must identify as many error codes or error messages from the NE as possible, and create
user exit types for these errors. However; it is often difficult or impossible to map every
possible error message. For these unknown error messages, create a catch-all user exit type,
such as NO_MATCH_FOUND with a base exit type of FAIL.

The API call setTypeByMatch returns the error label (user-defined exit type field, as defined in
Design Studio) for each match, but in case that no match is found (there is no modeled entry
for this response pattern) it returns NULL. The code should associate all unknown errors with
this type. setTypeByMatch can be overridden to handle this case. For example:

……………………………
logger.logDebug("NE REPLY: " + reply);
String exitValue = exitType.setTypeByMatch(reply);
logger.logDebug("Match returned for pattern <<" + reply + ">> is: "+ exitValue);
//If no match can be found among the defined exit types
if (exitValue == null) {
 exitValue = "NO_MATCH_FOUND";
 exitType.setTypeByMatch(exitValue);
}…………………..

Chapter 9
About User Exit Types

9-5

About User Exit Types for Success Cases
Always identify the success case. This success case is the response pattern that means that
the request successfully completed on the NE. Add it to the user-defined exit type mapping
entries. This avoids failing the atomic action if no mapping is found for this case.

Mapping User Exit Types to Base Exit Types Based on Context
In some cases may require different atomic action exit types based on the context (like service)
when the same response is received from the NE. For example, the same atomic action may
be linked with various service actions (services) and should have a different exit status based
on the service it is part of. The error code received is the same, but the outcome (fail, retry,
warning) depends in this case on the incoming service action. For example, it is possible that
the business requirements allow certain actions to be performed when creating an account but
bar them when modifying the same account. In any of such cases, UDET granularity can be
defined at service action or atomic action level. The UDET editor allows specifying the service
action or atomic action for which the defined pattern and exit type will apply.

Creating New User Exit Types
Use the User Exit Type Wizard to create a user-defined exit type.

To create a new user-defined exit type:

1. Select Studio, then select Show Design Perspective.

2. Select Studio, select New, select Activation, then select User Defined Exit Type.

3. Select the project for this element and enter a name for the entity.

4. (Optional) Select a location for the entity.

By default, Design Studio saves the entity to your default workspace location. You can
enter a folder name in the Folder field or select a location different from the system
provided default location. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

5. Click Finish to create the user-defined exit type.

Configuring User Exit Types
You can configure user-defined exit types using the User Defined Exit Type editor.

To configure a user exit type:

1. In the Cartridge view, double-click a User-Defined Exit Type entity to open the User
Defined Exit Type editor.

2. In the User Defined Exit Types area, click Add.

This enables the fields in the User Defined Exit Types Detail area of the editor and
populates those fields with default values.

3. In the Pattern field, enter a value.

For example, enter SUCCESS, DENIED, RESOURCE BUSY, and so on.

Chapter 9
About User Exit Types

9-6

4. Select the corresponding base exit type.

5. Enter the User Defined Exit Type for this pattern.

For example, you might enter AA1_SUCCESS.

6. Select File, then Save.

Note:

Use the Service Action and Atomic Action fields when creating Service Cartridges.

Examples: User Exit Types
Consider the following user exit type examples:

• Example: Unstable Network Element Connections

• Example: Configuration of Context Sensitive Exit Types

• Example: Exit Type Rationalization

Example: Unstable Network Element Connections
Problem: On an Ericsson network element during activation (after a successful connection and
login to the network element) the login to the network element is randomly terminated. As an
atomic action may be in progress against the network element at the time the connection was
dropped it must be placed back in the queue for later activation and the connection must be re-
established.

Solution: Configure a user exit type with the RETRY_DIS base type that triggers when the login
prompt is detected during normal activation. This allows for the atomic action to retry at a later
time after instructing ASAP to disable the current connection. If there is only one connection to
the network element then ASAP eventually re-enables the connection and re-login.

Example: Configuration of Context Sensitive Exit Types
Problem: The customer has a network in which each HLR (referred to as a primary HLR) has a
backup HLR (referred to as a secondary HLR). Services must be activated on both HLRs but if
activations fail on primary HLRs the work order must be failed; if activations fail on secondary
HLRs they must be soft failed.

Solution: Create different atomic actions that map to the same implementation. Configure two
user-defined exit types that include the atomic action names in the configuration. Configure the
base type for the primary atomic action with FAIL. Configure the base type for the secondary
atomic action with SOFT_FAIL. The service model for this configuration is shown in the
following diagram:

Chapter 9
Examples: User Exit Types

9-7

The user-defined exit type configuration is shown as follows:

In this example, whenever the response from the network element contains the strings SUB and
EXISTS and the atomic action is A_HLR_ADD_SUB-PRIMARY, then a failure is triggered.
Whenever the response from the network element contains the strings SUB and EXISTS and
the atomic action is A_HLR_ADD_SUB-SECONDARY then a soft failure is triggered.

Example: Exit Type Rationalization
Problem: There are too many exit type entries with similar attributes present in the
configuration, resulting in potentially high maintenance costs.

Solution: Where possible, collapse multiple exit type rows. For example, collapsing rows that
have identical attributes other than the software load may be possible when the network
element responses remain the same across software loads. A prime example of when exit type
rationalization should occur is when multiple delivered cartridges are employed in the solution
for the same network element. Because the user exit types in delivered cartridges always
contain the vendor, technology, and software load attributes to ensure uniqueness, exit type
rationalization is generally possible.

Chapter 9
Examples: User Exit Types

9-8

10
Configuring Dynamic and Static Event
Templates for Return Parameters

This chapter describes how to create static and dynamic event templates for parameters
returned from an network element (NE) as the result of an Oracle Communications ASAP work
order.

About Static and Dynamic Event Templates for Return
Parameters

Return parameters such as work order properties, information parameters, global work order
parameters and service action return parameters can be returned on an ASAP Event. The
details returned are controlled by template entries. These are configured using the
eventTemplate object. The serviceAction and eventType attributes are used to identify the
template. The returnDataSet object indicates which parameter names to retrieve. For more
information refer to the descriptions of the tbl_event_dataset and tbl_event_template tables
in the ASAP Developer's Guide.

Event templates can be configured statically or dynamically. Dynamic event templates are
configured within work order properties sent to ASAP. Static event templates are configured
within a cartridge. Dynamic event templates have precedence over static ones. Therefore, if
there is any work order with a dynamic event template that matches an ASAP event related to
that work order, no static event template will be checked.

For information about configuring dynamic event templates, see "Configuring a Dynamic
Events Template." For information about creating a static event template, see Design Studio
Help.

ASAP searches for any configured event template when any one of the following events
occurs:

• Order Startup Event

• Order Complete Event

• Order Timeout Event

• Order Fail Event

Note:

If work order event is not an Order Fail Event, ignore the service action specified in
the Service Action field.

For an Order Startup event:

1. ASAP searches for an event template with the event type Order Startup Event and that
has the same parameter name and value as the work order.

10-1

2. If the search returns nothing, ASAP searches for an event template that has the event type
Order Startup Event.

3. If the search returns nothing, no event template is configured.

For an Order Complete event:

1. ASAP searches for an event template with the event type Order Complete Event and that
has the parameter name and value as the work order.

2. If the search returns nothing, ASAP searches for an event template that has the event type
Order Complete Event.

3. If the search returns nothing, no event template is configured.

For an Order Timeout event:

1. ASAP searches for an event template with the event type Order Timeout Event and that
has same parameter name and value as the work order.

2. If the search returns nothing, ASAP searches for an event template that has the event type
Order Timeout Event.

3. If the search returns nothing, no event template is configured.

For an Order Fail event:

1. ASAP searches for an event template with the event type Order Fail Event, has the
service action specified in the Service Action field, and that has the same parameter
name and value as the work order.

2. If the search returns nothing, ASAP searches for an event template that has the event type
Order Fail Event, has the service and has the same parameter name and value as the
work order.

3. If the search returns nothing, ASAP searches for an event template that has the event type
Order Fail Event and has the service action specified in the Service Action field.

4. If the search returns nothing, ASAP searches for an event template that has the event type
Order Fail Event.

5. If the search returns nothing, no event template is configured.

Configuring a Dynamic Events Template
The extended work order property (or parameter) should be in the following format:

return_<event_template_name>%<event_type>%[service_action]

In this syntax, <...> means mandatory parameter, [...] means optional parameter; % is a
separator.

Example:

return_ETEMP1%CompleteEvent%Service Action_1

Here,

• ETEMP1 is the event template name.

• CompleteEvent is the work order event type.

• Service Action_1 is the service action name.

An extended work order parameter in the format above is passed from the work order as an
extended work order property. The value of that parameter, even if specified, is ignored.

Chapter 10
Configuring a Dynamic Events Template

10-2

return_dataset_<event_template_name>%<parameter_type>%[service_action]%<parameter_name>"

In this syntax, <...> means mandatory parameter, [...] means optional parameter; % is
separator.

Example:

return_dataset_ETEMP1%infoParam%Service Action_1%MCLI

Here,

• ETEMP1 is the event template name.

• infoParam is the parameter type.

• Service Action_1 is the service action name (Service Action name)

• MCLI is the name of the parameter.

The parameter type has to be one of the following event parameter types:

• infoParam

• orderParameter

• serviceValue

• extendedWoProperty

Example (xml) 1:

<createOrderByValueRequest…..
……
….
…
<mslv-sa:extendedWoProperties>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_ETEMP1%orderStartupEvent</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%apiClientId</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%XYZ</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>XYZ</mslv-sa:name>
<mslv-sa:value>12349</mslv-sa:value>
</mslv-sa:extendedWoProperty>
</mslv-sa:extendedWoProperties>
</orderValue>
</createOrderByValueRequest>

Example (xml) 2:

<createOrderByValueRequest…..
……
….
…
<mslv-sa:extendedWoProperties>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_ETEMP1%orderStartupEvent</mslv-sa:name>
<mslv-sa:value/>

Chapter 10
Configuring a Dynamic Events Template

10-3

</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%apiClientId</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%XYZ</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>XYZ</mslv-sa:name>
<mslv-sa:value>12349</mslv-sa:value>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_ETEMP2%orderCompleteEvent</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%infoParam%INFOP_N1</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%orderParameter%TESTP2</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%serviceValue%Service Action_TELNET%XML_csdl_P1</mslv-
sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
</mslv-sa:extendedWoProperties>
</orderValue>
</createOrderByValueRequest>

Example (xml) 3:

<createOrderByValueRequest…..
……
….
…
<mslv-sa:extendedWoProperties>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_ETEMP1%orderStartupEvent</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%apiClientId</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%XYZ</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>XYZ</mslv-sa:name>
<mslv-sa:value>12349</mslv-sa:value>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_ETEMP2%orderCompleteEvent</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>

Chapter 10
Configuring a Dynamic Events Template

10-4

<mslv-sa:name>return_dataset_ETEMP2%infoParam%INFOP_N1</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%orderParameter%TESTP2</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%serviceValue%Service Action_TELNET%XML_csdl_P1</mslv-
sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%infoParam%INFOP_N2</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%infoParam%INFOP_A1_N1</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%infoParam%Service Action_TELNET_B%INFOP_B1_N1</mslv-
sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
</mslv-sa:extendedWoProperties>
</orderValue>
</createOrderByValueRequest>

JSRP (OSS/J) Work Order Event Information
Additional information is returned for work order complete and failure events processed
through JSRP servers. Network information is provided for failed services indicating what the
last communicated network was when the service failed.

Extended work order complete and failure events contain the tags failedServices and
services. This extension is configurable through a work order user property in order to provide
backward compatibility. The failed services and services tags also contain the event template
service parameters and info parameters, which may be used to pass upstream parameters that
are relevant to services within an order.

For complete details of schema elements, refer to the ASAP Online Reference.

After ASAP is installed, you can access the schema files in the ASAP_Home/xml/xsd
directory.

Extended Work Order Complete and Failure Schemas
The work order complete event (CompleteEventType) schema type includes the extended
tags - failedServices, and services.

The failed event (FailEventType) schema type is extended as shown to include the two new
tags - failedServices, and services.

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-5

Figure 10-1 Work Order Complete Event Schema

The failed event (FailEventType) schema type is extended as shown to include the two new
tags - failedServices, and services.

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-6

Figure 10-2 Work Order Failed Event Schema

FailedServicesType Schema Type
The failedServicesType tag contains information detailing a failed work order's services. A
failed service has the new fields reason, neId, tech_type and softwareLoad. These fields
give the reason the work order failed failure for the service specified by serviceKey, and
identify the NE that a network action (for example, atomic action, atomic action) was executing
when the failure occurred.

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-7

Services Schema Type
The ServicesType tag includes details on services for a work order, except those that failed.
As shown, each service inside the ServicesType tag includes a tag serviceState, which
contains the state of the service.

The information parameters (infoParams) and service parameters (serviceParameters) are
shown within the related service (instead at the order level as with previous releases).

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-8

Controlling the Return of Enhanced Event Information with
includeServiceActionDetail

The work order user property includeServiceActionDetail is used to control the inclusion of
the work order complete (CompleteEvent) and failure (FailedEvent) types.

If includeServiceActionDetail is true, the failedServices and services information will be
included in the work order complete and failure events. If includeServiceActionDetail is false or
if includeServiceActionDetail does not exist (the default), then the extra information is not
included in the work order complete and failure events.

For example:

<mslv-sa:extendedWoProperties>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>includeServiceActionDetail</mslv-sa:name>
<mslv-sa:value>true</mslv-sa:value>
</mslv-sa:extendedWoProperty>
...
<\mslv-sa:extendedWoProperties>

JSRP Server Configuration Parameter
INCLUDE_SERVICE_ACTION_DETAIL

The JSRP server configuration parameter INCLUDE_SERVICE_ACTION_DETAIL controls
this feature in addition to the work order user property includeServiceActionDetail.

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-9

If the JSRP server configuration parameter is set to true, then the failedServices and
services information will be included in every work order complete, failure, or timeout event.
The work order user property will override the JSRP server configuration parameter. The JSRP
server configuration parameter is defined in the deployment descriptor for JSRP in the
deployed ASAP$env_id.ear file.

Additional Event Data
With augmented event data, the work order properties, infoparms, global work order
parameters, and service action return parameters can be returned on an ASAP event.

This additional event data and the contents of the additional event data are controlled by
template entries. The extra parameter information is sent from the SARM to the JSRP,
eliminating the need for the JSRP to perform additional queries to the database. Additionally,
the SRT is able to add XML event data to the JMS header properties.

Refer to ASAP Developer's Guide for schema and other information.

OSS/J Support by Schema Parameters
The ASAP JSRP supports the following:

• The co:type and sa:primaryKey tags of the sa:serviceKey tag in work orders are OSS/J
compliant - the name of the service is provided by the tag co:type and the service instance
number is provided by the tag sa:primaryKey.

• Soft failures (that is, exceptions) and rollback exceptions are provided based on a service
(for example, Service Action), in addition to the work order level and rollback exceptions.

• You can specify the service sequence numbers for a work order. (Previous versions of
ASAP number the services according to the order in which they are put inside a work
order.)

Note:

Service and failed service information is only provided only for work order complete,
failure, and timeout events.

The enhancements to the events apply only to events processed through JSRP
servers.

The network information is provided only for failed services that indicate the last
network communicated with when the service failed.

Work Order Property includeServiceActionDetail
The work order user property includeServiceActionDetail controls the extension of the work
order complete, failure, and timeout event types with the two extended tags.

If the value is true, the failedServices and services information are included in the work order
complete, failure, and timeout events. If the value is false or such a property does not exist
(the default), then this extra information is not included in the work order complete, failure, and
timeout events.

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-10

JSRP Server Configuration Parameter
USE_ORIGINAL_INSTANCE_NUMBER

When the value of USE_ORIGINAL_INSTANCE_NUMBER is set to true, the <co:type> tag
should be populated with service detail. The USE_ORIGINAL_INSTANCE_NUMBER
parameter can be found in the ejb-jar.xml file in ASAP$env_id.ear:srp and in the ejb-jar.xml
file in SRT.ear. Ensure that the values in both files match. For more information, see ASAP
Server Configuration Guide.

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-11

11
Creating Java Connection Handlers

This chapter describes how to create Java implementations for network element (NE)
connections and atomic action scripts that implement MML commands for Oracle
Communications ASAP.

The following sections provide information about the Java connection handler:

• About Java Network Element Connection Handlers

• Creating New Network Element Connection Handlers

• Generating a Telnet Network Element Connection Handler Implementation

• Generating a Custom NE Connection Handler Implementation

• About Communication Protocol Parameters

• Creating Connection Methods and Helper Classes

• Creating a Provisioning Prompt

• Enabling Loopback Mode

• Implementing Secure Login Functionality

• Connection Management Issues

• Creating a Java Telnet Connection Class

The NE Connection Handlers with Java implementation manage the connections with network
elements based on the communication parameters in an NE Template.

About Java Network Element Connection Handlers
The Java implementation NE Connection Handler needs to implement the
IConnectionHandler interface, which provides a common interface for interacting with
connections and requires few methods to be written.

Different types of NE Connection Handlers can be created:

• Telnet: When you create a new telnet NE Connection Handler, it generates code for telnet
connections. This extends the telnet connection to support the interface. The NE
Connection Handler editor indicates where additional code is required.

• Custom: Create this NE Connection Handler if the connections are not telnet. Custom
Connection Handlers generate a skeleton to implement the IconnectionHandler and
extends the base NE connection class. The NE Connection Handler editor indicates where
additional code is required.

Creating New Network Element Connection Handlers
You use the NE Connection Handler Wizard to create new NE Connection Handler entities.

To create a new NE Connection Handler entity:

1. Select Studio, select New, select Activation, then select NE Connection Handler.

11-1

The NE Connection Handler Wizard appears.

2. Select the project for this element and enter a name for the entity.

3. (Optional) Select a location for the entity.

By default, Design Studio saves the entity to your default workspace location. You can
enter a folder name in the Folder field or select a location different from the system-
provided default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

4. Click Finish to create the NE Connection Handler.

Generating a Telnet Network Element Connection Handler
Implementation

You need to generate a Telnet Network Element Connection Handler implementation if you
want to extend a telnet connection to support the interface.

To generate a Telnet NE Connection Handler Implementation:

1. Create an NE Connection Handler with the NE Connection Handler Wizard.

See "Creating New Network Element Connection Handlers" for more information.

2. In the Cartridge view, double-click the entity to open the NE Connection Handler editor.

3. In the editor, enter a description and select Java Connection Handler as the NE
Connection Handler type.

4. Click Add.

The Vendor, Technology, and Software Load fields are populated.

5. Click New.

The Studio Activation Java Connection Handler Wizard appears.

6. Ensure that Telnet appears in the Connection Type field.

Note:

Ensure that a dot does not precede the package name. If a dot precedes the
package name, remove it.

7. Click Finish.

The code is generated ready for implementation.

Note:

The code is generated once but not synchronized (that is, it will not be rewritten
and the developer owns the generated class).

Chapter 11
Generating a Telnet Network Element Connection Handler Implementation

11-2

Generating a Custom NE Connection Handler Implementation
Generate a custom NE Connection Handler implementation if you want to extend the base NE
connection class of a connection other than telnet.

To generate a custom NE Connection Handler implementation:

1. Create an NE Connection Handler with the NE Connection Handler Wizard.

See "Creating New Network Element Connection Handlers" for more information.

2. In the Cartridge view, double-click the entity to open the NE Connection Handler editor.

3. In the editor, enter a description and select Java Connection Handler as the NE
Connection Handler type.

4. Click Add.

The vendor, technology, and software Load fields are populated.

5. Click New.

The Studio Activation Java Connection Handler Wizard appears.

6. In the Connection Type field, select Custom.

Note:

Ensure that a dot does not precede the package name. If a dot precedes the
package name, remove it.

7. Click Finish.

The code is generated ready for implementation.

Note:

The code is generated once but not synchronized (that is, it will not be rewritten
and the developer owns the generated class).

About Communication Protocol Parameters
Communication parameters enable you to configure the information required to communicate
through one of the ASAP-supported device interfaces. When the NEP command processor
connects to an NE, these parameters are loaded into memory and used in the connection
process. When the NEs are connected, they are loaded as NE program (Java program)
variables prior to the execution of each program. This method ensures that the program has
access to any user-defined information through the communication parameters.

Communication parameters can also be defined on the work order. These parameters defined
on the work order override the statically pre-configured values contained in an ASAP cartridge.
This feature is used for dynamic NE routing (see "Configuring Dynamic Routing ").

The NEP supports the following interfaces to the downstream network:

• Dedicated and dialup serial

Chapter 11
Generating a Custom NE Connection Handler Implementation

11-3

• TCP/IP socket (standalone and in conjunction with the JInterpreter)

• Telnet

• Hostpad device interfaces

• LDAP, as the standard for uniform access to directory services.

• CORBA over IIOP (in conjunction with the JInterpreter)

• CAPI

• X.25, X.29, and TL1

• SFTP

Refer to the ASAP Developer's Guide for information on the action functions that support for
these interfaces.

Interfaces using such technologies can be developed rapidly due to their script-driven nature,
requiring little or no additional software development. These supported network interfaces
allow telecommunications carriers to interface with external systems using simple scripts,
thereby isolating end users from specific communication details.

Specifying Global or Local Communication Parameters
Using Design Studio, you can specify global communication parameters that apply to all
connections to a particular NE. You can also customize a connection with local parameters that
apply only to that connection.

Typically, a parameter is defined for a specific host NE and connection. If the various host NEs
and connections share the same parameter values, however, the number of communication
parameter entries can be reduced.

For example, you must define 33 mandatory X29 Pad interface-specific communication
parameters for the X29 Pad interface. Most of these parameters have the same value. Defining
each parameter separately for every X29 connection to each host NE results in the following:

• Considerable effort to configure these parameters one at a time.

• Additional memory resources required by the NEP to maintain these parameters in
memory.

You can resolve these issues by defining one common set of parameters for all X29
connections to avoid repetition. Specifically, for a particular device interface, you can define
parameters with the following groupings:

• All host NEs and all connections (common host, common device).

• All host NEs and a specific connection (common host, specific device).

• A specific NE and all connections to that NE (specific host, common device).

• A specific NE and a specific connection (specific host, specific device).

These parameters are processed in the order they are listed. They override any previous
entries defined for the host NE and the device of a particular command processor in the NEP.
Communication parameters defined on the work order override preconfigured values if the
NEP is configured for dynamic NE routing.

User-defined Parameters
Communication parameters are available to every Java method that is running. You can
specify various parameters that can be host NE or device-specific on the Java provisioning

Chapter 11
About Communication Protocol Parameters

11-4

method, and then the Java provisioning methods can employ host NE or device-specific
processing.

Device-specific Interface Parameters
Typically, a parameter is defined for a specific host NE and connection. If the various host NEs
and connections share the same parameter values, those values can be defined once to avoid
repetition.

To communicate with the NE, ASAP opens a connection through the device interface, writes
data to the device, and reads data from the device using I/O-related communication
parameters.

The following communication parameters apply only to serial, telnet, and other terminal-based
interfaces:

• Terminal based interface communication parameters.

• Serial interface communication parameters.

• Telnet interface communication parameters.

• Socket interface communication parameters.

• Generic interface communication parameters.

The following sections describe device interface types which are associated with mandatory
parameters.

Table 11-1 illustrates the device types associated with each interface type:

Table 11-1 Interface – Device Type Matrix

Interface Device Types Applies to

Terminal-based communication
devices

G – Generic Port Terminal-Based Java

Terminal-based communication
devices

T – Telnet Port Java

Message-based communication
devices

S – Socket Port Java

Message-based communication
devices

F - FTP Port for SFTP Java

Message-based communication
devices

W – LDAP Port Java

Message-based communication
devices

C – CORBA Java

Table 11-2 describes the communication parameters that apply for terminal based interfaces.

Table 11-2 Common Terminal-based Communication Parameters

Parameter Default Description

VS_WIDTH - Virtual Screen width.

VS_LENGTH - Virtual Screen length.

VS_CRLF_MAP - A boolean flag that you can set to map LF to CR_LF
automatically. The default is set not to map.

Chapter 11
About Communication Protocol Parameters

11-5

Table 11-2 (Cont.) Common Terminal-based Communication Parameters

Parameter Default Description

GR_WAIT_TIMEOUT - The wait timeout period, in seconds, that the thread
reading from the Virtual Screen waits for the thread
writing to the Virtual Screen to notify it of any new data.
Increase this value if the processing fails before data
arrives from the NE.

Generic Port Terminal Based and Generic Port Message-Based are specific to EDDs. For
information on the communication parameters for these device types, see the discussion about
generic EDD API parameters in the ASAP Server Configuration Guide.

tbl_comm_param contains communication parameters required for the NEP to communicate
with various external systems. You must populate this table to configure communication
parameters.

For more information about these parameters, see the discussion about NE API parameters in
the ASAP Server Configuration Guide.

To set up a control connection to the appropriate server, you must also set up the
communication parameters in the SARM database table tbl_comm_param.

CORBA support is offered for Java provisioning only. There is no CORBA_IF_SUPPORTED
variable in ASAP.cfg.

The following sections describe the required parameters for each interface.

CORBA Interface Communication Parameters
The CORBAConnection class provides basic functionality to connect to NEs with CORBA
interfaces. The custom classes can inherit from this class and implement the connect() and
disconnect() methods.

The CORBAConnection class provides a wrapper around an ORB. The initialization of the
ORB can be customized by extending CORBAConnection and overriding the functions
getInitialArguments and getInitialProperties. Both of these values are used in the ORB.init
call implemented in the connect method. The default is to use null for both arguments and
properties, which loads the ORB provided by the JRE.

The “C" device type is used in tbl_comm_param and tbl_resource_pool to relate
communication parameters to a CORBA device type.

In situations where the NEP is configured for LOOPBACK, all of the operations on
CORBAconnection return success.

For more information on Class CORBAConnection and com.mslv.activation.jinterpreter, refer
to the ASAP Java Online Reference.

Serial Port Hardwired Communication Parameters
The NEP server provides built-in support for serial port hardwired communications interfaces.

Table 11-3 lists and describes the serial port hardwired communication parameters that are in
addition to the common terminal-based parameters described in Table 11-2.

Chapter 11
About Communication Protocol Parameters

11-6

Table 11-3 Serial Port Hardwired Communication Parameters

Parameter Default Description

TTY Not
Applicable

UNIX or Linux port. For a hardwired interface, this value is
specific to each host. For a dialup interface, this value remains
the same for all host NEs.

DIALUP_NUM Not
Applicable

Dialup number. This parameter is required only for a dialup
interface and is different for every NE.

OPEN_TIMEOUT Not
Applicable

The wait timeout period, in seconds, that ASAP waits to open
the device. The wait timeout parameter is only applicable to
the serial interface.

WRITE_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to write
to the device.

READ_TIMEOUT Not
Applicable

The wait timeout period, in seconds, that ASAP waits to read
from the device. Currently, this is only applicable to the socket
interface.

DISABLE_PORT_ON_LO
GIN

Not
Applicable

Determines whether the port should be disabled if login to the
NE fails. If the parameter is equal to zero, then the port is not
disabled.

BAUD Not
Applicable

Baud rate for transmission. The valid values are ‘300', ‘600',
‘1200', ‘2400', ‘4800', ‘9600', and ‘19200'.

PARITY Not
Applicable

The parity, which can be either odd, even, or no parity. Enter
‘O' for odd, ‘E' for even, and ‘N' for no parity.

STOP Not
Applicable

Number of stop bits per character. The valid values are ‘1' and
‘2'.

SIZE Not
Applicable

Number of bits per character. The valid values are ‘5', ‘6', ‘7',
‘8'.

Serial Port Dialup Communication Parameters
The NEP server provides built-in support for serial port dialup communications interfaces.

Table 11-4 lists and describes serial port dialup communication parameters, in addition to the
common terminal-based parameters described in Table 11-2.

Table 11-4 Serial Port Dialup Communication Parameters

Parameter Default Description

TTY Not
Applicable

UNIX or Linux port. For a hardwired interface, this value is
specific to each host. For a dialup interface, this value remains
the same for all host NEs.

DIALUP_NUM Not
Applicable

Dialup number. This parameter is required only for a dialup
interface and is different for every NE.

OPEN_TIMEOUT Not
Applicable

The wait timeout period, in seconds, that ASAP waits to open
the device. The wait timeout parameter is only applicable to
the serial interface.

WRITE_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to write
to the device.

Chapter 11
About Communication Protocol Parameters

11-7

Table 11-4 (Cont.) Serial Port Dialup Communication Parameters

Parameter Default Description

READ_TIMEOUT Not
Applicable

The wait timeout period, in seconds, that ASAP waits to read
from the device. Currently, this is only applicable to the socket
interface.

DISABLE_PORT_ON_L
OGIN

Not
Applicable

Determines whether the port should be disabled if login to the
NE fails. If the parameter is equal to zero, then the port is not
disabled.

BAUD Not
Applicable

Baud rate for transmission. The valid values are ‘300', ‘600',
‘1200', ‘2400', ‘4800', ‘9600', and ‘19200'.

PARITY Not
Applicable

The parity, which can be either odd, even, or no parity. Enter
‘O' for odd, ‘E' for even, and ‘N' for no parity.

STOP Not
Applicable

Number of stop bits per character. The valid values are ‘1' and
‘2'.

SIZE Not
Applicable

Number of bits per character. The valid values are ‘5', ‘6', ‘7',
‘8'.

Telnet Port Communication Parameters
The NEP server provides built-in support for a TCP/IP Telnet communications interface. You
can enable and configure the NEP Telnet driver to communicate with NEs using the standard
Telnet terminal emulation.

ASAP also contains a Java telnet library. A virtual screen implementation is provided to simplify
data manipulation.

NEConnection is an abstract class defined in package jinterpreter. All JInterpreter connection
classes must extend this class in order to be evocable by the NEP. Oracle Communications
provides the TelnetConnection class, which integrates the telnet and virtual screen
implementations provided by the telnet library.

The TelnetConnection class also supports a piped stream interface, similar to the raw input
stream available from the underlying TCP/IP connection. The read, write and waitfor
operations defined on TelnetConnection act on the stream to retrieve and send data. This
interface leaves the incoming data in a stream format for simple parsing scenarios. In simple
parsing situations, a provisioning activity may only need to pick off a simple response string
from the NE. In these situations, it can be simpler to use a waitfor call to track the response
from the NE rather than use the structured format of the virtual screen.

By default, both the virtual screen and piped stream are enabled by the TelnetConnection
class. The method TelnetConnection.setStreamEnabled (boolean enabled) can be used to
enable or disable the stream.

In situations where the NEP is configured for LOOPBACK, the InputStream and
OutputStream returned by the StreamConnection always return success for every read and
write call. The InputStream.read methods return a size read integer of 1 with the value set to
an empty character ' '. All of the TelnetConnection send and VirtualScreen get/read calls
always return success.

For information on the JInterpreter API for the Telnet connection class, refer to the ASAP Java
Online Reference.

Table 11-5 lists and describes the Java telnet port communication parameters for the
JInterpreter, in addition to the common terminal-based parameters described in Table 11-2.

Chapter 11
About Communication Protocol Parameters

11-8

Table 11-5 Telnet Port Communication Parameters for the JInterpreter

Parameter Default Description

HOST_USERID Not Applicable User name.

HOST_PASSWORD Not Applicable Password.

OPEN_TIMEOUT 5 seconds Connection establishment timeout (in seconds).

READ_TIMEOUT 1 second Timeout for the telnet read functions (in seconds).

HOST_NAME Not Applicable Machine name for the host NE.

HOST_IPADDR Not Applicable Network IP address for the host NE.

PORT 23 Telnet service port. If SSH_SUPPORT is set to NO, then
the PORT value applies. If SSH_SUPPORT is set to YES,
the SSH_PORT value applies.

LOGIN_PROMPT login: Reserved. The login prompt expected in the telnet session.

PASSWORD_PROMPT Password > Reserved. The password prompt expected in the telnet
session.

Note:

The default TelnetConnection class uses parameters defined in tbl_comm_param
(VS_LENGTH, VS_WIDTH, HOST_USERID, HOST_PASSWORD, HOST_NAME,
HOST_IPADDR, PORT) to initialize the telnet session. A solutions developer may
use the provided TelnetConnection class as a connection handler as configured in
tbl_nep_asdl_prog. It is also possible to extend the TelnetConnection class to
override the provided functionality. For instance, a solutions developer may wish to
override the connect, login or disconnect methods to implement custom functionality.

Refer to the Common Terminal-based Communication Parameters table for more
information on virtual screen-related parameters.

SSH Telnet Communication Parameters
Table 11-6 contains the communication parameters for the SSH protocol in addition to the
common terminal-based parameters described in Table 11-2.

Table 11-6 SSH Communication Parameters

Parameter Default Description

HOST_NAME Not Applicable The machine name of the NE.

HOST_IPADDR Not Applicable The IP address of the NE.

SSH_SUPPORT NO Indicates if SSH is supported. The valid values are
YES or NO. If SSH_SUPPORT is set to NO, then
the PORT value applies. If SSH_SUPPORT is set to
YES, the SSH_PORT value applies.

SSH_PORT 22 The SSH port number.

SSH_VERSION SSH2 The SSH version; either SSH1 or SSH2.

Chapter 11
About Communication Protocol Parameters

11-9

Table 11-6 (Cont.) SSH Communication Parameters

Parameter Default Description

SSH_AUTH_METHOD PASSWORD The authentication method; either PASSWORD or
PUBLIC_KEY.

SSH_PREF_PUBLIC_KEY PUBLIC_KEY_SSH
RSA

The preferred public key; either
PUBLIC_KEY_SSHRSA or
PUBLIC_KEY_SSHDSS.

SSH_PREF_CIPHER_CS CIPHER_BLOWFIS
H_CBC

The preferred CS cipher; either
CIPHER_BLOWFISH_CBC,
CIPHER_TRIPLEDES_CBC, TWOFISH128_CBC,
TWOFISH192_CBC, TWOFISH256_CBC,
TWOFISH_CBC, CAST128_CBC, AES128_CBC,
AES192_CBC, AES256_CBC

SSH_PREF_CIPHER_SC CIPHER_BLOWFIS
H_CBC

The preferred SC cipher: either
CIPHER_BLOWFISH_CBC,
CIPHER_TRIPLEDES_CBC, TWOFISH128_CBC,
TWOFISH192_CBC, TWOFISH256_CBC,
TWOFISH_CBC, CAST128_CBC, AES128_CBC,
AES192_CBC, AES256_CBC

SSH_PREF_MAC_CS HMAC_MD5 The preferred CS message authentication; either
HMAC_MD5 or HMAC_SHA1.

SSH_PREF_MAC_SC HMAC_MD5 The preferred SC message authentication
HMAC_MD5 or HMAC_SHA1.

SSH_PREF_COMP_CS COMPRESSION_N
ONE

The preferred CS compression
COMPRESSION_NONE or COMPRESSION_ZLIB.

SSH_PREF_COMP_SC COMPRESSION_N
ONE

The preferred SC compression
COMPRESSION_NONE or COMPRESSION_ZLIB.

VS_TYPE vt100 Virtual screen type.

VS_WIDTH 80 Virtual screen width.

VS_LENGTH 24 Virtual screen length.

SSH_TRANSPORT SOCKET Specifies the SSH Transport to be used.

Set the value to SOCKET for direct SSH
connections.

Set the value to HTTP_PROXY if SSH connections
need to be established via an HTTP proxy.

The value SOCKET indicates SocketTransport and
the value HTTP_PROXY indicates
HttpProxyTransport.

HTTP_PROXY_HOST NA The host name of the HTTP proxy server.

Note: Configure this parameter if
SSH_TRANSPORT is set to HTTP_PROXY.

HTTP_PROXY_PORT NA The HTTP proxy port number.

Note: Configure this parameter if
SSH_TRANSPORT is set to HTTP_PROXY.

Login information for the NE/device needs to be populated in the Control database
(TBL_CLASSB_SECU) in order for SSH to work. Table 11-7 lists and describes the SSH
security parameters for the SSH protocol that should be stored in the Control database. For
more information about securely storing NE login information, see "Implementing Secure Login
Functionality."

Chapter 11
About Communication Protocol Parameters

11-10

Table 11-7 SSH Security Parameters

Parameter Default Description

HOST_USERID NA User name to log in to the NE.

HOST_PASSWORD NA For telnet: the password authentication: user password to login
the NE.

For SSH: Public key authentication: The passphrase used for
the private key.

PRIV_KEY_FILE NA The machine name of the NE

HTTP_PROXY_USER NA The user name of the HTTP proxy server.

Note: Configure this parameter if SSH_TRANSPORT is set to
HTTP_PROXY and HTTP proxy requires authentication.

HTTP_PROXY_PASSW
ORD

NA The HTTP proxy password.

Note: Configure this parameter if SSH_TRANSPORT is set to
HTTP_PROXY and HTTP proxy requires authentication.

Socket Port Communication Parameters
The NEP server provides built-in support for a TCP/IP socket-based communications interface.
You can enable and configure the NEP socket driver to communicate with NEs using message-
based communication.

A SocketConnection class is provided which wrappers a java.net.Socket instance. The
SocketConnection class can be extended to provide custom functionality on top of the
conventional socket interface. A SocketConnection implements the StreamConnection
interface. The StreamConnection interface defines methods common to stream-based
protocols.

By default, the connect method uses the communication parameters defined by HOST_NAME,
HOST_IPADDR and PORT.

In situations where the NEP is configured for LOOPBACK, the InputStream and
OutputStream returned by the StreamConnection always return success for every read and
write call. The InputStream.read methods return a size read integer of 1 with the value set to
an empty character ' '.

For information on the JInterpreter API for the Socket connection class, refer to the ASAP Java
Online Reference.

Table 11-8 Socket Port Communication Parameters

Parameter Default Description

PORT Not Applicable Port of the remote socket listener.

OPEN_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to
open the device. The wait timeout parameter is only
applicable to the serial interface.

WRITE_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to
write to the device.

READ_TIMEOUT 1 The wait timeout period, in seconds, that ASAP waits to
read from the device. Currently, this is only applicable to the
socket interface.

Chapter 11
About Communication Protocol Parameters

11-11

Table 11-8 (Cont.) Socket Port Communication Parameters

Parameter Default Description

DISABLE_PORT_ON_L
OGIN

0 Determines whether the port should be disabled if login to
the NE fails. If the parameter is equal to zero, then the port
is not disabled.

SOCKET_CLIENT Not Applicable Socket server or client. The only valid value is ‘C' because
the communication is a Socket client.

HOST_NAME HOST_CLLI Machine name for the host NE.

HOST_IPADDR Not Applicable Network IP address for the host NE.

SOCKET_FAMILY 2 The only valid value is ‘2' because only the Internet address
family is supported.

SFTP Port Communication Parameters
The SftpConnection class provides basic functionality to connect to NEs with SFTP interfaces.
It can be used to perform standard SFTP commands like 'cd', 'get', and 'put'. For more
information on Class SftpConnection and com.mslv.activation.jinterpreter, refer to the
ASAP Java Online Reference.

Table 11-9 lists the port parameters for SFTP communication.

Table 11-9 SFTP Port Communication Parameters

Parameter Default Description

HOST_USERID None User name.

HOST_PASSWORD None Password associated with HOST_USERID

HOST_NAME HOST_CLLI Machine name for the host NE.

HOST_IPADDR Not Applicable Network IP address for the host NE.

PORT 21 Telnet service port.

LDAP Port Communication Parameters
The NEP server enables ASAP to communicate with LDAP (Lightweight Directory Access
Protocol) Directory Servers through the LDAP protocol using TCP/IP. Connectivity to LDAP
Directory Servers (NEs) is provided by the Multi-Protocol Manager. The LDAP interface allows
inquiries, additions, modifications, and deletions of records stored in LDAP-enabled directories.
The LDAP interface is implemented using Version 3 of the LDAP protocol.

The LdapConnection class provides a wrapper around a netscape.ldap.LDAPConnection
class. As with SocketConnection, it provides a simple interface for returning the underlying
netscape.ldap.LDAPConnection class for manipulation. A solutions developer is free to
extend the default LdapConnection class to implement custom functionality.

For more information on Class LdapConnection and com.mslv.activation.jinterpreter, refer
to the ASAP Java Online Reference.

In situations where the NEP is configured for LOOPBACK, all operations on LdapConnection
return success.

Chapter 11
About Communication Protocol Parameters

11-12

HOST_NAME or HOST_IPADDR represent a hostname to which to connect or a dotted string
representing the IP address of this host.

Table 11-10 LDAP Port Communication Parameters

Parameter Default Description

HOST_USERID None User name.

OPEN_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to
open the device. The wait timeout parameter is only
applicable to the serial interface.

WRITE_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to
write to the device.

READ_TIMEOUT 1.0 The wait timeout period, in seconds, that ASAP waits to
read from the device. Currently, this is only applicable to the
socket interface. 0 = no timeout.

DISABLE_PORT_ON_L
OGIN

Not Applicable Determines whether the port should be disabled if login to
the NE fails. If the parameter is equal to zero, then the port
is not disabled.

HOST_NAME HOST_CLLI Machine name for the host NE.

HOST_IPADDR Not Applicable Network IP address for the host NE.

PORT 389 the TCP or UDP port number to which to connect or
contact.

LDAP_VERSION 2 LDAP version to use. If VERSION2, use 2. If VERSION3,
use 3.

SIZELIMIT 2 The size of the search results set asked from the directory
server. Minimum 1, Maximum 500.

TL1 Port Communication Parameters
TL1 is a communication standard for specifying information exchanges between Operations
Support Systems (OSSs) and NEs. Several NEs and/or Element Management Systems use
TL1 for communication with external systems. TL1 can be used in conjunction with Telnet or
X.25 protocols.

StreamConnection Interface
The StreamConnection interface allows a solutions developer to write JProcessor
implementations independent of specific protocol APIs. This means that a single JProcessor
implementation can reference only StreamConnection interface methods, and be able to
switch underlying connection handler classes such as Socket and Telnet without having to
modify the provisioning code.

All stream-based protocols such as socket and telnet implement the StreamConnection
interface. See "Telnet Port Communication Parameters" and "Socket Port Communication
Parameters" for more details.

For more information on the StreamConnection interface, refer to the ASAP Java Online
Reference.

Chapter 11
About Communication Protocol Parameters

11-13

Creating Connection Methods and Helper Classes
Connection methods are used by ASAP core to establish a connection (also referred to as a
device) and/or to login to an NE.

To implement a connection method and connection handler, you need to know:

• The NE activation interface and protocol

• The logic and parameters required for connecting and disconnecting to and from the NE

• Knowledge for implementing client protocols such as HTTP, web service, CORBA, TCP/IP

• Knowledge about third party libraries or frameworks required to implement a non TCP/IP
protocol. For example, Apache AXIS for WSDL defined web service, Apache Common
HttpClient for HTTP, and so on.

• If any secure data must be stored in the ASAP database

In Design Studio, a Java class maps to a connection handler (see "Creating an Network
Element Connection Handler"). This Java class must implement the IConnectionHandler
interface that provides a common interface for the various protocols. It contains some standard
methods such as connect () and disconnect (). The business logic depends on the NE
interface protocol and connection/disconnection handshake sequence.

For non-telnet based cartridges the connection class should typically contain a connect()
method and a disconnect() method. Helper methods are implemented to get at variables or
objects that are stored by the connection class. For example the prompt is picked up from
tbl_comm_param and when a provisioning method needs to get at it, it will invoke a method
of the connection class to get the provisioning prompt. There may be helper methods for
getting username, password, and so on. Sometimes a send() method may be implemented
and called from the provisioning method after getting a reference to the connection object.

In case of a Telnet interface to the NE, Design Studio auto generates the skeleton code for the
connection handler. The TelnetConnection class from the core framework is extended by the
cartridge. The login() and disconnect() methods are implemented (the connect() method as
supported in the core can be re-used as is). For telnet based cartridges there is also no need
to implement send() and waitfor() methods because they are available in the core framework.

Other protocols, such as SOAP XML, TCP/IP, web services, CORBA, and so on) depend much
more on the server side implementation; therefore more code has to be written to handle
connections to these NEs. Write a dummy client outside the ASAP environment to test
connectivity. Many of the provisioning guides give sample code illustrating how to connect and
provision a service. After that is tested in a standalone mode, it can be ported into an ASAP
cartridge because Java is platform independent.

Other cartridges that use generic protocols need to implement their own send() and waitfor()
methods. Sometimes (for example with Soap/XML protocols) establishing a connection on the
URL to the remote server does not guarantee that the connection is usable. In this case an
actual query message for a non-existing subscriber is made within the connection class itself to
ensure that the connection is valid. If this query fails, then a ConnectionException() is thrown
back so that the connection can be retried instead of all the provisioning orders failing.

Creating a Provisioning Prompt
Where possible (for example for certain TCP/IP based protocols such as telnet) checking that
the correct prompt and level are present should be performed before each command is sent to
the NE. This should be implemented as a separate callable method. In addition a method

Chapter 11
Creating Connection Methods and Helper Classes

11-14

should be provided to be able to obtain the correct prompt and/or level in case an error has
occurred.

Enabling Loopback Mode
When using the standard core ASAP send() and get() Java methods no additional loopback
code should be required to be implemented in the cartridge because the standard loopback
mechanism takes care of providing the exact responses requested.

Implementing Secure Login Functionality
In the current ASAP implementation login information for NEs is stored in tbl_comm_param in
"clear" format. This makes it possible for sensitive data to be easily accessible by un-
authorized persons (ASAP also automatically displays communication parameters in
diagnostic files). It is very important to be able to store this type of data in a non-readable
(encrypted) format.

There are two aspects to security: secure data storage and secure data encryption. The
cartridge must be able to accommodate both:

1. Secure Data Storage - There are two types of data: ASAP secure data and custom secure
data, which are identified by two class types (0- ASAP data, 1- custom data). ASAP secure
data is stored in credential store factory (CSF) wallet located in ASAP_Home/install/
cwallet.sso and custom secure data in tbl_classB_secu table in the control database.
tbl_classB_secu allow entries in a name/value format with other fields for class type,
security level, caching of data etc. The layout of this table is as follows:

SQL> desc tbl_classB_secu;
Name Null? Type
--- -------- ----------------------------
NAME NOT NULL VARCHAR2(80)
VALUE NOT NULL VARCHAR2(255)
CLASS NOT NULL NUMBER(38)
S_CACHE NOT NULL NUMBER(38)
C_DATE NOT NULL DATE
DESC1 VARCHAR2(255)

2. Secure Data Encryption – Custom secure data can be stored either in "clear" or in
"encrypted" format. ASAP secure data is always encrypted.

To load the class B data, which contains NE access information, use the following steps:

1. Create an input file that contains the data to be stored in tbl_classB_secu. For example:

###
#
This info is added to 'tbl_classB_secu' entries -
to be added using asap_security_tool
#
Entries format: NAME:VALUE:CLASS:S_CACHE:DESCRIPTION
#
Example: DMS_USER:user123:1:0:User name for DMS100 access
#
###
#
USER_NOKIA:username:1:0:Login name for Nokia HLR
PASS_NOKIA:password:1:0:Password for Nokia HLR
#

2. Load the content of this file into control database using asap_security_tool utility:

Chapter 11
Enabling Loopback Mode

11-15

asap_security_tool -r <secure data input file>
To retrieve the secure data from the tables within the cartridge Java code use the methods
provided in the Security Java class (see Java Online Reference). The following sample code
shows how the encrypted user ID and password are retrieved from the secure tables:

logger.logDebug("Getting access secure data");
Security sec = ASCAppl.getSecurity();
try {
 String secUsername = sec.getSecureData("USER_NOKIA", 1);
 logger.logDebug("Retrieved secure user name");
 String secPassword = sec .getSecureData("PASS_NOKIA", 1);
 logger.logDebug("Retrieved secure password");
} catch (SQLException e) {
 logger.logDebug("Exception caught while retrieving secure data: " + e);
}

After being retrieved, this data is automatically decrypted and ready to be sent to the NE. Make
sure that this data is not written into the cartridge diagnostics. Display 10 asterisks instead (the
number of asterisks should not match the actual length of the password).

Connection Management Issues
Never fail a work order due to connection failure in the case where connection management
(for example corba connections) is supported within the cartridge code. Orders are only failed
when the NE returns an error message indicating that data on the order is invalid.

Where possible avoid explicitly disabling connections from within the cartridge code. ASAP
core handles the disabling of connections when the connection class exits with failure.

When communication parameters necessary to establish a connection are missing (as
determined in the connection class for the cartridge) the cartridge must log a meaningful error
message to the diagnostic files to indicate which parameter is missing and what the expected
parameter is used for.

A new and improved Java SEND method has been implemented in ASAP core which will not
force the calling cartridge code to handle exceptions (for example IOException or
TelnetException), but will manage these exceptions internally. When connections go down
atomic actions should be put back in the appropriate queue and rescheduled by ASAP
automatically. The core should manage disabling and re-enabling the device accordingly.

In some cases (with certain TCP/IP-based cartridges and possibly others) certain delays are
incurred when connecting and/or logging into NEs (reference the Ericsson MSS-C cartridge).
In such cases implement a communication parameter (tbl_comm_param) that allows for a
delay (thread.sleep()) interval to be configured in the field. It should be possible to set this to 0
so that no delay is incurred.

Creating a Java Telnet Connection Class
This section describes the steps to create a Java Telnet connection class. Use these steps as
a guideline for constructing your own cartridge.

To create a Java Telnet connection class:

1. Create an NE as described in "Creating and Configuring Network Element and Network
Element Connections" with the following exceptions:

a. In the Protocol field, select the Telnet/SSH.

b. When adding a connection, accept the autogenerated parameters.

Chapter 11
Connection Management Issues

11-16

c. Select the All Communications Parameters tab.

d. Modify the communication parameter values that your connection requires.

e. Click Add Global to add any additional parameters that your connection requires.

f. Edit the Label, Value and Description columns to specify the new parameter. For
example:

• In the Label field, enter PROMPT.

• In the Value field, enter #.

• In the Description field, enter This value defines the initial prompt symbol.

2. Create a Network Handler as described in "Creating an Network Element Connection
Handler" with the following exceptions:

a. From the Connection Type list, select the Telnet.

b. In the Class field, click New.

The Studio Activation Java Connection Handler wizard appears.

c. In the Name field, enter a name for the connection handler.

d. In the Connection Type list, select the Telnet.

e. Click Finish.

The connection_handler_name.java file opens in Design Studio (where
connection_handler_name is the name of the connection handler).

3. In the connection_handler_name.java file, get the connection parameters for any
parameters you added in addition to the autogenerated parameters. For example:

 try {
 String n_prompt = getCommParam("PROMPT");
 setPrompt(n_prompt);

This sample uses the getCommParam method to retrieve data from the PROMPT
parameter defined in addition to the autogenerated parameters.

Note:

The following method gets all autogenerated parameters:

super.login();

4. Add code to wait for the login prompt. For example:

 -- Wait for the login prompt from the network element.
 if (login_prompt != null)
 waitfor(login_prompt);
 else
 waitfor("login:");

5. Add code to send the username. For example:

 this.sendln(userid);
6. Add code to wait for the password prompt. For example:

 -- Wait for the password prompt. --
 if (password_prompt != null)
 waitfor(password_prompt);

Chapter 11
Creating a Java Telnet Connection Class

11-17

 else
 waitfor("Password:");

7. Add code to send the password. For example:

 this.sendln(password);
8. Add code to wait for the unix prompt. For example:

 -- Wait for the normal network element prompt. --
 if (n_prompt != null)
 waitfor(n_prompt);
 else
 waitfor(">");

In this example, the prompt was defined using the PROMPT parameter with the = value.
Had this value not been defined, it would have used the default > value.

9. Add code to specify an error diagnostic message. For example:

 } catch (Exception e) {
 Diagnostic.diag(Diagnostic.SANE, this, "Login failed: " +
 e.getMessage());
 throw new TelnetException("Login failed: " + e.getMessage());
 }

10. Add code to specify a success diagnostic message. For example:

 Diagnostic.diag(Diagnostic.SANE, this, "Successfully logged in to the " +
"network element.");
}

Chapter 11
Creating a Java Telnet Connection Class

11-18

12
Creating Action Processors and Programs for
Processing Requests and Responses

This chapter describes how to create action processors and Java programs for atomic actions
that implement man-machine language (MML) commands for Oracle Communications ASAP.

About Action Processors and Programs
The Network Element Processor (NEP) is the ASAP server component that manages
interactions with network elements (NEs) and element management systems (EMSs). The
NEP receives atomic actions from the service activation request manager (SARM) and uses
programs to interact with the NE. Based on the programs, the NEP sends commands to the
NE and returns responses from the NE to the SARM.

The NEP must choose the correct program to fulfill the atomic action. To determine which
program to use, the NEP uses action processors. Action processors map atomic actions to
programs. When you create ASAP cartridges, you can write Java programs from scratch, or
configure the action processor to auto-generate Java programs.

This chapter describes the following:

• How to create and configure action processors.

• How to auto-generate Java command line interface (CLI) code and the situations where
you need to write custom business logic. Auto-generating CLI code is available for
cartridges that use CLI commands, such as TL1 over TCP/IP and Telnet over TCP/IP.

• How to auto-generate Java code stubs and the places where you need to write custom
business logic. Auto-generating a Java stub is available for any cartridge type.

• Recommendations for writing Java programs from scratch.

• How to auto-generate unit test cases and the places where you need to write custom
business logic.

Note:

While you can write a Java implementation, Oracle recommends that you auto-
generate Java stubs. This method provides code that you would normally have to
write yourself.

When the NEP receives an atomic action and its parameters from the SARM, the NEP
determines what program to run based on the SARM tbl_nep_asdl_prog table. This table
contains the mappings between atomic actions and programs that is defined in the action
processor. The table defines the following columns:

• asdl_cmd: The atomic action passed to the NEP interpreter or jinterpreter.

12-1

• tech: The technology type of the NE that the NEP interpreter or jintepreter interacts with.
With Java programs, the values in this column are a combination of vendor and technology
separated by a dash (for example, ALU-FTTU).

• sftwr_load: The software version of the software currently running on the NE.

• program: The Java program that the jinterpreter must run to fulfill the atomic action.

• interpreter_type: A value of J indicates a Java program.

Table 12-1 shows how the same atomic action can map to various vendors, technologies, and
software versions.

Table 12-1 Atomic-Action-to-Program Mappings

asdl_cmd tech sftwr_loa
d

program interpreter_
type

CLEAR_INTERCEPT ALU-DMS BCS35 com.alu.dms.bcs35.ClearInterceptProxy.execute J

CREATE_LINE ALU-DMS BCS35 com.alu.dms.bcs35.CreateLineProxy.execute J

SET_OPTION_ON ALU-DMS BCS35 com.alu.dms.bcs35.SetOptionOnProxy.execute J

CLEAR_INTERCEPT CSCO-INV 1.0 com.csco.inv.1_0.ClearInterceptProxy.execute J

CREATE_LINE CSCO-INV 1.0 com.csco.inv.1_0.CreateLineProxy.execute J

SET_OPTION_ON CSCO-INV 1.0 com.csco.inv.1_0.SetOptionOnProxy.execute J

For more information about the NEP and the JInterpreter, see ASAP Server Configuration
Guide. For more information about tbl_nep_asdl_prog, see ASAP Developer's Guide.

About the Ratio of Provisioning Commands to Atomic Actions
Whenever possible, map each atomic action to a program containing only one provisioning
command. As a general rule, the fewer commands associated with the atomic action, the
easier it is to use the atomic action as a building block in the implementation of higher level
services. However, in some less common scenarios, several actions must be run on the NE in
sequence. In such cases, you map a single atomic action to more than one action.

For example, NEs that require certain modes to be set before a provisioning command can be
sent to the NE may need to encapsulate the commands to set the modes along with the
provisioning command.

Review the following considerations before deciding whether to encapsulate several
commands:

• Determine whether encapsulating the mode commands substantially increases ASAP and
router performance.

• Determine whether the service model becomes less complicated when commands are
encapsulated. Reducing service model complexity allows the service modeler to focus on
implementing service offerings rather than on understanding and modeling mode setting
dependencies for every service.

• Determine whether encapsulating mode commands removes the need to have complex
mutex logic within the cartridge. For example, multiple ASAP work orders destined to the
same NE may result in interleaved atomic actions. In some devices, without implementing
mutex logic, atomic actions fail because the router is in an indeterminate mode for any
given atomic action.

Chapter 12
About Action Processors and Programs

12-2

• Determine whether encapsulating mode commands removes the for implement additional
logic for connection handlers. For example, if each atomic action sets its own mode, when
a connection to a router is lost, at any point the connection handler would not have to
determine whether any mode setting commands must be re-run.

For additional considerations at the service action level, see "About Limiting Independent
Network Element Commands to Optimizing the Network Element Interface."

About Creating and Configuring Action Processors
An action processor maps an atomic action to a Java program. For every action processor, you
need to define a program as the implementation that performs the work.

The naming convention for action processors is the same as the naming convention for atomic
actions, with the exception of the prefix: Action processors use the prefix I whereas atomic
actions use the prefix A. See "About Creating and Configuring Atomic Actions" for information
about the naming convention.

Design Studio for ASAP automatically enforces this naming convention when you create an
action processor with the Action Processor Wizard.

Creating an Action Processor
To create an action processor:

1. From an Activation project, select Studio, then select New, then Activation, and then
Action Processor.

2. From the Action Processor Wizard, enter the following:

• From the Project list, select a cartridge project in which to create the action processor.

• In the Action field, the name of the action that the action processor performs (see
"Selecting the Action Tokens").

• In the Entity field, enter an entity that is the object of the action (see "Selecting Entity
Tokens").

3. Click Finish.

The Action Processor editor appears. From the action processor, you can either auto-
generate code or associate the action processor with code that you have written yourself.
For more information about these options, see:

• Understanding the Auto-Generated Java CLI Code

• Understanding the Auto-Generated Java Code Stubs

• About Writing Java Programs from Scratch and Naming Conventions

• Understanding Unit Testing

Understanding the Auto-Generated Java CLI Code
After you create the action processor, you can auto-generate the CLI Java code. You auto-
generate the code when you want ASAP to interact with NEs that use CLI-based commands
such as TL1 over TCP/IP or Telnet over TCP/IP. The code that is generated sends requests.
You can include additional post processing logic if required. You must add business logic to the
generated code for receiving responses.

Chapter 12
About Creating and Configuring Action Processors

12-3

Note:

The CLI code generation option is available for cartridges created or upgraded to
ASAP 7.3.2 or later releases. If you are designing a cartridge that is not CLI-based,
see "Understanding the Auto-Generated Java Code Stubs."

Before you can auto-generate CLI Java code, you must have created and configured the
atomic action associated to the action processor. See "Creating and Configuring Atomic
Actions " for instructions.

To auto-generate CLI Java code, you perform the following tasks:

• Configure the default command structure of the CLI commands that ASAP sends to the
NE. For more information, see "About the CLI Command Structure Elements."

• The action processor editor Request tab. This tab defines the CLI commands that ASAP
builds and sends to the NE. You can parse sample CLI commands to generate the
elements names that are part of the outgoing command or manually add the command
parameters. You can map these command parameters to atomic action parameters or
define them as static parameters. For more information, see "Configuring CLI Command
Requests."

• The action processor editor Response tab. This tab defines a response pattern and the
position of the value within the response pattern that matches with an ASAP user exit type.
You must also add response handling logic to the generated Java code. For more
information, see "About Configuring CLI Command Responses."

Consider the following restrictions when choosing to auto-generate CLI Java code:

• The auto-generated code applies to network cartridges only; not to service cartridges.

• The auto-generated code supports only a one-to-one mapping ratio between the action
processor and CLI command.

• If you want to use the CLI code generation function in cartridges developed before Design
Studio 7.3, you must delete the old action processor and generate a new action processor.
You must manually copy over any descriptive information contained in the old action
processor.

About Configuring the CLI Command Structure
After you create an activation project, you can define the Java CLI command structure. The
command structure defines the delimiters to use in CLI commands. You define a general
command structure for request commands. When you configure the request commands, you
can overwrite the general structure if a command you're configuring requires a different
structure.

You must enable auto-parsing of CLI commands if you want Design Studio to automatically
parse and map CLI command parameters to atomic action parameters when you configure
your Java CLI command requests.

When automatically parsed, the command parameters are mapped to the atomic action
parameters that have the same parameter names. If a command parameter name does not
match any atomic action parameter name, you must manually map that command parameter
to an action parameter.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-4

About the CLI Command Structure Elements
After you create an activation project, you can define the CLI command structure. The
command structure can have one or more of the following elements:

• Header Body Separator: Defines the separator between the header and the rest of the
CLI command.

• Parameter Separator: Defines the separator between parameters within the CLI
command.

• Parameter Name-Value Separator: Defines the separator between a parameter and its
value.

• Compound Parameter Encloser: Defines the separator that encloses compound
parameters.

• Compound Parameter Index Separator: Defines the separator between members of a
compound parameter.

• Command Tail: Defines the character at the end of the CLI command.

• End of Command Control Character: Defines the command control character or string at
the end of the CLI command. For example, a carriage return or a line-feed character.

Each command structure elements can take one of the following values:

• NONE: Select this value if the CLI command does not use the element.

• : COLON: Select this value if the element should be a colon.

• , COMMA: Select this value if the element should be a comma.

• . DOT: Select this value if the element should be a period.

• = EQUAL: Select this value if the element should be the equals sign.

• ; SEMI_COLON: Select this value if the element should be a semicolon.

• SPACE: Select this value if the element should be a space.

• CARRIAGE: Select this value if the element should be a carriage return.

• NEW LINE: Select this value if the element should be a new line.

• Ctrl+C: Select this value if the element should be the Ctrl+C key combination.

• OTHER: Select this value if the element requires one or more characters not specified in
this list. When you select OTHER, a field appears next to the list in which you enter one or
more special characters. For example, if the End of Command Control Character is the
word COMMIT, you could specify this using the OTHER option.

Configuring the CLI Command Structure
To configure the Java CLI command structure:

1. Open the activation project editor.

2. Click the Command Structure tab.

3. For each command structure element, do the following:

a. From the Header Body Separator list, select the command structure element.

b. From the Parameter Separator list, select the command structure element.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-5

c. From the Parameter Name-Value Separator list, select the command structure
element.

d. From the Compound Parameter Encloser list, select the command structure
element.

e. From the Compound Parameter Index Separator list, select the command structure
element.

f. From the Command Tail list, select the command structure element.

g. From the End of Command Control Character list, select the command structure
element.

h. Click OK.

4. Enable the Command Auto-Parsing check box if you want to enable the Command
Auto-Parse Override check box for all new action processors in the action processor
editor Request tab.

5. Save the changes.

About Parsing and Configuring CLI Command Requests
Parsing Java CLI command parameters extracts the parameters from a sample CLI command
and maps the parameters to corresponding atomic action parameters. You parse command
parameters when you configure your CLI command requests. When you parse and configure
CLI command requests, you can do the following:

• Manually parse the parameters or specify to automatically parse the parameters.

• Add logic that calls a helper method that manipulates atomic action parameters for name-
value parameters or value-only parameters. Helper methods are not used for static string
parameters because those parameters are not mapped to atomic action parameters.

You can use the helper methods defined in these files:

– Utils.java: This file contains predefined methods. See "Provided Methods for
Manipulating Parameters" for more information.

– ReusableMethods.java: You can define your own custom helper methods in this file.
See "Defining Custom Methods for Manipulating Parameters" for more information.

Provided Methods for Manipulating Parameters
The Utils.java file contains helper methods that you can use to manipulate atomic action
parameters and values. The methods include tasks such as appending characters to a
parameter, concatenating two or more parameters, and so on. Design Studio generates the
Ultils.java file when you configure your request CLI commands. You can access this file from
the Design Studio Package Explorer view in the src directory.

All methods defined in Utils.java throw exceptions defined in the
ProvCartridgeException.java file, which is auto-generated when you add a sample
command.

Table 12-2 describes the methods contained in Utils.java and provides examples. For more
information about using the methods, open the Utils.java file in the Package Explorer view.
You can access this file after entering a CLI command to parse when configuring your CLI
command requests.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-6

Table 12-2 Utils.java Methods

Method Description Example

append This method appends a value to a
parameter.

The following appends the hash character to the MSISDN parameter:

append(MSISDN,"#")

concat This method concatenates
multiple parameters together with
a specified delimiter. The first
value specifies the delimiter. You
can specify multiple parameters
after the delimiter using the Java
variable arguments feature. The
method returns a string after
concatenating all the parameters
passed. For example, you can use
this method when you have to join
two atomic action parameters into
one parameter in the CLI
command.

The following concatenates the MSISDN and LCC_CODE parameters
using a dash delimiter:

concat("-","MSISDN","LCC_CODE")

encloseWith This method encloses a
parameter between two strings.

The following encloses the MSISDN parameter between two hash
characters:

encloseWith(MSISDN,"#","#")

fixedLength This method ensures that a
parameter value is of a fixed
number of characters. The
method takes the required length
of the parameter, the character to
be used as padding, and the
mapped parameter. If appender is
true, the padding characters are
prefixed otherwise it is suffixed.
The method returns a string with a
length equal to the length passed
by prefixing or suffixing the
padded character to the value
passed.

The following appends the * padding character to the MSISDN
parameter value if its value length is less than 5. Because the boolean
flag is set to true, the padding character is added to the beginning of
the value:

fixedLength("MSISDN",MSISDN,5, '*', true)

prepend This method adds a value to the
beginning of a parameter.

The following adds the hash character to the beginning of the MSISDN
parameter:

prepend(MSISDN,"#")

replaceWith This method replaces all
occurrences of a string in the
parameter value with a new string.

The following replaces dashes with hash characters within the
MSISDN parameter value:

replaceWith(MSISDN,"--", "##")

substring This method extracts a substring
from a parameter value. The
substring is identified by its start
and end character positions in the
value. For example, if the value of
MSDN were ABCDE and the start
position is 3 and end position is 5,
then the return value is CDE.

The following extracts the 3rd, 4th, and 5th characters from the value of
the MSISDN parameter:

substring(MSISDN,3,5)

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-7

Table 12-2 (Cont.) Utils.java Methods

Method Description Example

translate This method translates a
parameter value to a specified
value. You specify the translation
using value pairs separated by an
equals sign (=). Delimit each pair
with a comma (,).

For example if an upstream
system sends "Y" or "N", and the
NE expects "Yes" or "No", you can
translate the incoming values
using "Y=Yes, N=No".

This method returns the new
value. If the method syntax is
incorrect, the method returns null.

The following takes the ACTIVATE parameter value from the atomic
action and translates the value from Y to Yes or from N to No.:

translate(ACTIVATE,"Y=Yes,N=No")

Defining Custom Methods for Manipulating Parameters
When you configure you Java CLI command requests, you can add logic that calls a helper
method to manipulate atomic action name-value parameters or value-only parameters. If you
need helper methods other than those defined in the Utils.java file, you can define your own in
the ReusableMethods.java file. (For information about the methods in the Utils.java file, see
"Provided Methods for Manipulating Parameters.") Design Studio generates the
ReusableMethods.java file when you configure your request CLI commands. You can access
this file from the Design Studio Package Explorer view in the src directory.

The methods you define in ReusableMethods.java must throw exceptions defined in the
ProvCartridgeException.java file.

Configuring CLI Command Requests
To configure a CLI command request:

1. Open the action processor editor and click the Editor tab.

2. From the Type list, select CLI Code Generation.

The Request and Response tabs appears.

3. Click the Request tab.

4. If the CLI command you want to configure does not conform to the command structure you
previously configured (in "About the CLI Command Structure Elements"), select Overwrite
in Separators area and configure the command structure you need. Do the following:

a. From the Header Body Separator list, select the command structure element.

b. From the Parameter Separator list, select the command structure element.

c. From the Parameter Name-Value Separator list, select the command structure
element.

d. From the Compound Parameter Encloser list, select the command structure
element.

e. From the Compound Parameter Index Separator list, select the command structure
element.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-8

f. From the Command Tail list, select the command structure element.

g. From the End of Command Control Character list, select the command structure
element.

See "About Configuring the CLI Command Structure" for information about the structure
elements and their values.

5. In the Input Command field, enter a sample CLI command to use as a template for
defining the action processor parameters. The sample command should be a typical CLI
command that you want ASAP to send to NEs to fulfill the atomic action that the action
processor is associated with.

6. Parse the command and map the command parameters to action parameters by doing one
of the following:

Tip:

Preview the structure of the command in the Preview area as you map CLI
command elements to atomic action parameters.

For example, the following command shows a header called HSDPA, a value-
only parameter, two value-pair parameters, two static parameters, and ends with
the COMMIT control character:

HSDPA:<mcliVal>,LCC_CODE=<user_routingVal>,LINE=<lineVal>,static,
program,;COMMIT

To automatically parse the CLI command:

a. Select the Command Auto-Parsing check box.

The Parse Input Command button becomes selectable.

b. Click the Parse Input Command button.

The command parameters are parsed based on the parameter structure separators
you configured. The parameters appear in the Parameters area in the Element Name
list.

If the parameter name does not match any atomic action parameter, then the
parameter is still added to the Element Name list, but does not map to any atomic
action parameter in the Maps To field.

c. If all parameter names are mapped to atomic action parameters, go to step 7.

d. If some parameters are not mapped to atomic action parameters, go to the instructions
for manually parsing the CLI command below.

To manually parse the sample CLI command:

a. Using your mouse, highlight and right-click on a parameter in the command.

b. If you want to designate the parameter as the command header, select Command
Header.

The parameter appears in the Command Header field.

c. If you want to designate the parameter as a command parameter, select Command
Parameter, then select the value type to use in the command:

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-9

• Name Value Pair: When you select this option, the parameter name and value are
used. You must select a parameter from the atomic action from which the value is
populated.

• ValueOnly: When you select this option, only the parameter value is used. You
must select a parameter from the atomic action from which the value is populated.

• StaticString: When you select this option, only the parameter name is used. Static
strings do not contain values and cannot be associated with atomic action
parameters.

After you make your selection, the highlighted parameter appears in the Element
Name list. When you select one of the auto-generated parameters from the Element
Name list, the associated atomic action parameters appear in the Maps To field
(except for StaticString parameters).

7. (Optional) For Name Value Pair and ValueOnly parameters, add a line of logic in the
Parameter Logic field that calls a helper method that manipulates the atomic action
parameter and click OK.

You can use the helper methods defined in either the Utils.java file (see "Provided
Methods for Manipulating Parameters" or the ReusableMethods.java file (see "Defining
Custom Methods for Manipulating Parameters."

You can nest two or more commands in the Parameter Logic field. For example, the
following line nests the encloseWith method within the concat method:

concat("*",encloseWith(MCLI,"#","#"),MY_TEST)
8. If you need to add more complex logic for a particular parameter that can be enabled by a

one line method as in the Parameter Logic field, click Edit Parameter Logic. The first
time you click this button Design Studio generates additional java files where you can
make these modifications. If you make changes to the command parameter to atomic
action parameter mappings after you have clicked the Edit Parameter Logic button for the
first time, new files are not generated if you click the Edit Parameter Logic button again.
For more information about the files generated when you click the Edit Parameter Logic
button, see "About Auto-Generated and Synchronized CLI Java Files."

About Configuring CLI Command Responses
You must write additional code for handling CLI command responses. Design Studio generates
the ResponseHandlerImplementation.java file when you configure your CLI commands. You
can access this file from the Design Studio Package Explorer view in the src directory.

You can also configure the action processor to search for a specific response snippet in
response messages before sending the response to the user defined exit type code you have
written.

Configuring CLI Command Responses
To configure a CLI command response:

1. Open the action processor editor and click the Editor tab.

2. From the Type list, select CLI Code Generation.

The Request and Response tabs appears.

3. Click the Response tab.

4. In the Response Section, Response area, Response field, enter a description of the
response.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-10

5. If you want the action processor to search for responses with specific headers or exit type
patterns before sending the response to the user exit type code, do the following:

a. In the Response Section, Exit Type, Response Header field, enter a response
header.

b. In the Response Section, Exit Type, Exit Type Pattern field, enter a response
pattern.

c. Click Mark Positions button.

The Mark Positions Specifier dialog appears.

d. In the Start Position field, enter a starting position from 1 to 10. The start position
must be less than the end position.

e. In the End Position field, enter an end position from 1 to 10. The end position must be
greater than the start position.

6. Click Edit Response Logic. The ResponseHanderlImplementation.java file opens in
the Package Explorer view.

7. Add response handling code to the file. For more information about the
ResponseHanderlImplementation.java file, see "Auto-Generating the Java CLI Files."

Auto-Generating the Java CLI Files
To auto-generate the Java CLI code files:

1. Open the action processor editor and select the Editor tab.

2. From the Type list, select CLI Code Generation.

3. Click New.

Design Studio automatically generates Java code.

The Class field points to the auto-generated proxy java file (for example,
alu.fttu.x74.ont.add.generated.AddOntProxy). This file contains a proxy class that is
situated between the NEP and action processor and manages the interaction between
them.

The Method field points to the execute method within the processor java file (for example
alu.fttu.x74.action.ont.add.AddOntProcessor.java).

For more information about the auto-generated Java files and code and the areas where
you must include additional business logic, see "About Auto-Generated and Synchronized
CLI Java Files."

4. Click Finish.

About Auto-Generated and Synchronized CLI Java Files
After the Java files are generated, Design Studio automatically updates those files that are
synchronized whenever you build the cartridge. Never make changes to synchronized files
because Design Studio overwrites these files when you build the cartridge. You can, however,
modify files that are not synchronized.

Oracle recommends that you backup the cli_project/src directory (where cli_project is the
activation project that contains the CLI code) to a source control system. This directory
contains all the modifiable CLI Java files. For more information about backing up this folder,
see Developer's Guide.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-11

Table 12-3 describes the Java files that are created when you auto-generated them, and
whether the generated files are synchronized and modifiable.

Note:

In the files specified in Table 12-3, action and entity represent the action and entity
values you selected when you created the action processor (see "Creating an Action
Processor").

Table 12-3 CLI Code Generation Java Files

Java File Description Sync Mod

ActionEntityPro
cessor.java

This file contains the ActionEntityProcessor class that implements the generated
processor interface. The ActionEntityProcessor class includes the execute class and the
following methods:

• ILogger is an interface for debug logs. When the processor is running on the ASAP
system, it logs to the Diagnosis log. If you are running the processor in JUnit, you can
use other implementations of logger to log to the console instead.

• IExitType enables you to set the exit type explicitly or by matching a response string
against the user-defined exit types.

• ActionEntityInput For more information, see ActionEntityInput.java in this table.
• ActionEntityOutput For more information ActionEntityOutput.java in this table.
• IConnectionHander For more information, see "Creating Java Connection Handlers."
The logic in the execute class is fully functional when you auto-generate the CLI Java files.
The code is generated based on the command element to atomic action mappings that you
configured using the action processor editor Request tab. The code is also based on the
Exit Type Pattern field in the action processor editor, Response tab. You specify a
response snippet in this field that the code searches for in response messages. You use
the Mark Positions button to specify what part of the response snippet to verify before
sending the response to the user defined exit type code you have written. For more
information about exit types, see "Creating Java User Exit Types."

The ActionEntityProcessor.java file is auto-generated when you click the New button as
described in "Auto-Generating the Java CLI Files." However, if the file already exists when
you click the New button, then the file will not be auto-generated and will not reflect any
changes that you made to the action processor since you first auto-generated the file. If
you want to Design Studio to auto-generate the file, you must delete the old file first.

No Yes

ModifyGenera
tedMML.java

This file contains methods you can use to augment the generated MML command if you
require any additional post processing. For example, you may need to encrypt the CLI
command before sending it.

No Yes

ResponseHan
dlerImplement
ation.java

This file contains the ResponseHandlerImplementation class that implements the
ResponseHandlerInterface. You must do the following in this file:

• Declare return parameter variables.
• Write response parsing code.
• Return the parameter value in the response.

No Yes

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-12

Table 12-3 (Cont.) CLI Code Generation Java Files

Java File Description Sync Mod

ActionEntityInp
ut.java

This file contains the InputBean. The InputBean has set and get methods for all
parameters of the atomic action and provides setters and getters for manipulating
parameters.

If the parameter is a scaler (simple type), it is received as a string and can be used
immediately.

For information about compound parameters, see "Understanding Generated Code for
Compound Parameters" If you need to add logic to the input parameters, for example, if
you are mapping a CLI command to more than one compound parameter, you can click
the Edit Parameter Logic button in the action processor editor Request tab to generate
files where you can add this logic. For more information about these generated files, see
Table 12-4.

Yes No

ActionEntityOu
tput.java

This file contains the Output class that enables you to populate output parameters. There
are convenience methods for populating parameters to varying scope within a work order.
Examples of parameters are as follows:

• Action parameters, which are available to the service action
• Input parameters
• Global parameters, which are available to everything
• Rollback parameters, which enable you to populate for the rollback action if it is

defined in the atomic action
The output parameters are not explicitly defined in the model, so there are no convenience
methods. To set a parameter, you need to know its string name and include it.

Yes No

ActionEntityPro
cessorInterfac
e.java

This file contains the processor interface that is implemented by the
ActionEntityProcessor class. This interface is synchronized whenever the cartridge model
changes so the ActionEntityProcessor class always has the correct cartridge data
available.

Yes No

ActionEntityPro
xy.java

This file contains the Proxy that is situated between the NEP and Processor class and
manages the interaction between them. Proxy sets up all classes used by the processor
and initiates and calls the processor. Most importantly, the proxy simplifies the work
required by the Processor by:

• Creating all instances of the InputBean and initializing CompoundBeans so they are
available and populated through the processor.

• Performing much of the standard logging, including the entry and exit of the processor
and the contents of the parameters passed in for debugging.

• Extending the JProcessor. This isolates the portion of the Java processor code that
needs to relate directly to the version of the activation, and allows the processor, its
interface, and all its related classes and interfaces to run outside of the ASAP system
and, therefore, to be unit tested

When creating a Java processor from the action processor editor, the resulting class name
is "Proxy" because the proxy gets initiated by the NEP (the Proxy is registered to be called
in the activation).

Yes No

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-13

Table 12-3 (Cont.) CLI Code Generation Java Files

Java File Description Sync Mod

ConnectionHa
ndler.java

This file contains the ConnectionHandler class that extends a protocol class and
implements the IConnectionHandler. IConnectionHandler is an instance of the connection
handler that is associated with the vendor, technology, and software version of the action
processor. For the Telnet connection handler, the basic methods on the interface can be
used to send requests (because it is string-based). For technologies (for example, SOAP
or XML) that provide multiple convenience methods, the processor may test the type of
connection handler and pass the request to a more specific connection handler to obtain
access to the convenience methods. If you want to expose more explicit methods when
writing a connection handler, you can define an interface that extends
IConnectionHandler and ensure that those methods are available through that interface.
The processor should always use an interface when interacting with the
ConnectionHandler, to achieve the implementation in more than one way and allow for unit
testing. For more information about unit testing, see "Understanding Unit Testing."

No Yes

BaseActionEnti
tyTestCase.jav
a

This file contains the unit test case for the action processor. For more information about
this generated file, see "Understanding Unit Testing."

Yes No

MMLConstruc
tor.java

This file contains the code that builds the CLI command based on the command structure.
For information about the command structure, see "About the CLI Command Structure
Elements." The code does the following:

• Adds the command header to the CLI command
• Adds the header body separator after the header
• Adds parameters to the CLI command after the header
• Adds the command tail to the CLI command
• Adds the command end-of-message character to the CLI command

Yes No

MMLConstruc
tor.Interface.ja
va

This file provides the methods that the MML Constructor class implements. Yes No

ResponseHan
dlerInterface.j
ava

This file contains the interface code that ResponseHandlerImplementation.java
implements.

Yes Yes

Separators.jav
a

This file contains the command separators you specified when configuring the command
structure. For more information about configuring the command structure, see "About the
CLI Command Structure Elements."

Yes No

ISystemParam
eters.java

This file contains the interface that extends the IBaseSystemParameters interface. The
methods in IBaseSystemParameters class are implemented by the SystemParameter
class.

Yes No

SystemParam
eters.java

This file contains the SystemParameter class that implements the methods in the
IBaseSystemParameters interface, such as getWorkOrderId(), getActionName(), and so
on. The SystemParameter class extends the BaseSystemParameters class.

Yes No

Table 12-4 describes the Java files that Design Studio creates when perform the tasks required
to auto-generate Java CLI code.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-14

Note:

The files generated when using the Parameter Logic field or the Edit Parameter
Logic field specified in Table 12-4 use the ElementName variable. ElementName is
the parameter name in the Element Name list when the parameter is a Name Value
Pair (for example ID_ROUTING.java). ElementName is a combination of the atomic
action parameter in the Maps To field followed by an underscore and the parameter
name in the Element Name list when the parameter is ValueOnly (for example,
MCLIValue_LINE.java).

Note:

The files generated when using the Parameter Logic field or the Edit Parameter
Logic field specified in Table 12-4 that are not synchronized will not reflect any
changes made to the mappings between the command parameters and the atomic
action parameters after you generate these files for the first time. You must delete
these files manually if you want to auto-generate them again.

Table 12-4 Parameter Logic, Edit Parameter Logic, and Input Command Java Files

Java Files Description Sync Mod

ProvCartridge
Exception.java

This file contains the exception class used by the methods defined in the Utils.java file. Yes No

ReusableMeth
ods.Java

This file contains the ReusableMethods class. You can use this file to define one-line
methods that you can use when configuring your CLI command requests (see "Configuring
CLI Command Requests"). This class should use the exception logic defined in
ProvCartridgeException.java.

No Yes

Utils.java This file contains predefined one-line methods that you can use in the action processor
editor Request tab Parameter Logic field. For more information about these methods, see
"Provided Methods for Manipulating Parameters."

Yes No

ElementName.j
ava

This file is generated when you add a one-line method to the parameter logic when
configuring your CLI command requests (see "Configuring CLI Command Requests").

Yes No

ElementName_
Implementatio
n.java

This file is generated when you modify the parameter logic that you specified when
configuring your CLI command requests. You can add custom logic to this file if you need
to include more complicated processing instructions than those in Utils.java or in
ResuableMethods.java.

No Yes

ElementName_
Interface.java

This file defines an interface for the ElementName_Implementation class in the
ElementName_Implementation.java file. This file is generated when you modify the
parameter logic that you specified when configuring your CLI command requests.

Yes No

Backing Up Files
You should implement source control for the cli_project/src directory (where cli_project is the
Design Studio Activation project root folder)

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-15

Understanding the Auto-Generated Java Code Stubs
You can use the action processor to auto-generate Java files with classes and methods
configured for the protocol and attributes you selected. The auto-generated code are code
stubs that provides a logical framework where you must include your business logic for
sending and receiving responses.

The Java with code generation implementation for an action processor creates a Java
processor that composes messages to be sent to a device, evaluates the response for errors,
extracts output information from the response, and populates the information into output
parameters.

Figure 12-1 shows some of the auto-generated files, whether they are synchronized, and how
they relate to each other.

Figure 12-1 Generated and Synchronized Java Files

When you configure the action processor to auto-generate Java code stubs, the central class
is the Processor. You must add business logic to this class. The Processor is created only
once. The processor includes sample code based on the associated atomic action parameters
at creation time. You should delay creating the processor until the action processor is
associated with an atomic action that has fully defined parameters. If parameters are not yet

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-16

defined or the action processor is not yet associated with the atomic action, then the generated
sample code will be incomplete and will require additional coding.

Note:

Synchronized classes or interfaces are rebuilt every time you save changes to atomic
action parameters (for example, classes and interfaces are synchronized with the
model and reflect the model). Therefore, you should never make code changes to
any synchronized class or interface. Design Studio overwrites the code when you run
the next build (with changes in the model). You should write code only for the
Processor class.

There are 2 methods in the Processor:

• execute
• init
The main method is execute. When called, it is provided with the following:

• A number of classes to perform operations.

• An input class that contains all input parameters.

• An output class to populate the output parameters.

• Access to a logger.

• An implementation of the exit type to match responses against user-defined exit types and
to set the exit type for the processor.

• Access to the Connection Handler to send requests and get responses from a connected
device.

Auto-Generating the Java Stubs
To auto-generate Java stubs:

1. Open the action processor editor and select the Editor tab.

2. From the Type list, select Java Action Processor (with Code Generation).

3. If you have not already done so, create and fully configure an atomic action that includes
the required parameters. You must associate the atomic action to this action processor. For
more information about creating and configuring an atomic action, see "Creating and
Configuring an Atomic Action."

Note:

If you do not create and configure the atomic action the auto-generated code will
not function properly.

4. Click New.

The Studio Activation Java Implementation Wizard appears.

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-17

5. In the Package field, enter a valid package name. You can use the default package name
or enter a name of your choice. The default Package name uses the vendor, technology,
software version, entity, and action that you selected when creating the action processor
(see step 2).

For example:

alu.fttu.x74.ont.add
6. In the Name field, enter a name that appears in many of the auto-generated Java files and

the classes they contain. You can use the default name or enter a name of your choice.
The default name is a combination of the action and the entity.

For example:

AddOnt
7. Click Finish.

Design Studio automatically generates Java code.

The Method field points to the auto-generated proxy java file (for example,
alu.fttu.x74.ont.add.generated.AddOntProxy). This file contains a proxy class that is
situated between the NEP and Processor class and manages the interaction between
them.

The Class field points to the execute method within the processor java file (for example
alu.fttu.x74.action.ont.add.AddOntProcessor.java). You must add business logic to this
class.

For more information about the auto-generated Java code and where you must include
business logic, see "About Auto-Generated Java Files ."

About Auto-Generated Java Files
Table 12-5 shows the Java files containing the classes and interfaces used by the Processor.

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-18

Table 12-5 Auto-Generated Java Files

Java Files Description Sync Mod

ActionEntityPro
cessor.java

This file contains the ActionEntityProcessor class that implements the generated and
synchronized processor interface. The ActionEntityProcessor class includes the execute
class with following methods:

• ILogger is an interface for debug logs. When the processor is running on the Oracle
Communications ASAP system, it logs to the Diagnosis log. If you are running the
processor in JUnit, you can use other implementations of logger to log to the console
instead.

• IExitType enables you to set the exit type explicitly or by matching a response string
against the user-defined exit types.

• ActionEntityInput For more information, see ActionEntityInput.java in this table.
• ActionEntityOutput For more information ActionEntityOutput.java in this table.
• IConnectionHander For more information, see "Creating Java Connection Handlers."
You need to write the logic in the execute class for each atomic action to achieve the
desired action in a NE. Use the Java editor in the Package Explorer view of the Java
perspective to write the code.

When implementing the action processor, Design Studio provides you with support such
as auto-generation of code and sample data. In Design Studio, this is currently set up
specifically for the Telnet protocol (Soap, CORBA, and other protocols require more
coding; for example, you must write your own logic for send methods, requests, to extend
the connection class, and so on.).

Code for the processor is auto-generated by the proxy (getter and setter methods for each
parameter) which provides you with an API to manipulate the data. For example, for an
incoming object, methods such as getBilling are auto-generated (the type of methods
depend on the parameters specified in the service model and how they are mapped). You
can use these auto-generated methods in the processor class to get the value for the
parameters.

To obtain the required method to get a value for a parameter, type the name of the
parameter followed by a dot. This displays all available methods for the parameter.

No No

ActionEntityInp
ut.java

This file contains the InputBean. The InputBean is tied to the parameters of the atomic
action (has set and get methods for all parameters of the atomic action), and provides
setters and getters for manipulating parameters.

If the parameter is a scaler (simple type), it is received as a string and can be used
immediately

If the parameter is a compound, see "Understanding Generated Code for Compound
Parameters."

Yes No

ActionEntityOu
tput.java

The Output class enables you to populate output parameters. There are convenience
methods for populating parameters to varying scope within a work order. Examples of
parameters are as follows:

• Action parameters are available to the service action.
• Input parameters.
• Global parameters are available to everything.
• Rollback parameters enable you to populate for the rollback action if it is defined

within the atomic action.
The output parameters are not explicitly defined in the model, so there are no convenience
methods. To set a parameter you need to know its string name and include it.

Yes No

ActionEntityPro
cessorInterfac
e.java

The processor interface is implemented by the ActionEntityProcessor class. This interface
is synchronized whenever the cartridge model changes.

Yes No

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-19

Table 12-5 (Cont.) Auto-Generated Java Files

Java Files Description Sync Mod

ActionEntityPro
xy.java

Proxy is situated between the NEP and Processor class and manages the interaction
between them. Proxy sets up all classes used by the Processor and initiates and calls the
Processor. Most importantly, the proxy simplifies the work required by the Processor by:

• Creating all instances of the InputBean and initializes CompoundBeans so they are
available and populated through the processor.

• Performing much of the standard logging, including the entry and exit of the processor
and the contents of the parameters passed in for debugging.

• Extending the JProcessor. This isolates the portion of the Java processor code that
needs to relate directly to the version of the activation, and allows the processor, its
interface, and all its related classes and interfaces to run outside of the ASAP system
and, therefore, to be unit tested

When creating a Java processor from the action processor editor, the resulting class name
is "Proxy" because the proxy gets initiated by the NEP (Proxy is registered to be called in
the activation). When you open that implementation it opens to the Processor class,
where you write your code for editing.

Yes Yes

ConnectionHa
ndler.java

This file contains the ConnectionHandler class that extends a protocol class and
implements the IConnectionHandler. IConnectionHandler is an instance of the Connection
Handler that is associated with the vendor, technology, and software load of the action
processor. For the Telnet Connection Handler, the basic methods on the interface can be
used to send requests (because it is string-based). For technologies (for example, SOAP
or XML) that provide multiple convenience methods, the Processor may want to test the
type of Connection Handler and pass it to a more specific Connection Handler to obtain
access to the convenience methods. If you want to expose more explicit methods when
writing a Connection Handler, you can define an interface that extends the
IConnectionHandler and ensure that those methods are available through that
interface. The Processor should always use an interface when interacting with the
ConnectionHandler, to achieve the implementation in more than one way and allow for unit
testing. For more information about unit testing, see "Understanding Unit Testing."

No Yes

BaseActionEnti
tyTestCase.jav
a

This file contains the unit test case for the action processor. For more information about
this generated file, see "Understanding Unit Testing."

Yes No

ISystemParam
eters.java

This file contains the interface which extends the IBaseSystemParameters interface.
Those functions within IBaseSystemParameters class are implemented by
SystemParameter class.

Yes No

SystemParam
eters.java

This file contains the the SystemParameter class that implements the respective functions
of IBaseSystemParameters interface such as getWorkOrderId(), getActionName(), and so
on, by extending BaseSystemParameters class.

Yes No

Understanding Generated Code for Compound Parameters
The InputBean returns another bean that represents the compound if the parameter is a
compound parameter with named members,. The returned bean has convenience methods to
get the members within the compound. A compound bean for every defined type of compound
parameter is created. You also get a set of instances of these beans based on the work order
(you get a list of these). If the compound parameter does not have named members, it
provides a vector of the members.

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-20

Note:

Specify the compound members whenever possible. Indicating the members will
simplify the coding required and eliminate possible code to mode synchronization
issues.

Multi-instance Compound parameters start at index one (e.g. CMPD[1]).

Bracket type (Index Parameter Identification Tokens) and delimiter (Indexed Parameter
Delimiter) settings are configured on the Project editor Cartridge Locations tab in the Code
Generation area. Design Studio applies these settings to all generated code within the
cartridge. The following examples assume the defaults (square brackets with a period
delimiter).

The following example shows a scalar parameter.

Service Action Parameter Name: SCALAR
Atomic Action Parameter Name: SCALAR
Order Format:
 SCALAR
Usage:
 String myscalar = parms.getMyScalar();

The following example shows a compound parameter with no members specified.

Service Action Parameter Name: CMPD
Atomic Action Parameter Name: CMPD
Order Format:
Entries will have the compound name as a prefix. There may be multiple entries with that
prefix. For example, a compound named "CMPD" may have the following entries on an order.
 CMPD
 CMPD.X
 CMPD.Y
 CMPD.Z
Usage:
 String mycmpd = parms.getMyCmpd
 String x = parms.getMyCmpd ("X");
 String y = parms.getMyCmpd ("Y");
 String z = parms.getMyCmpd ("Z");

The following example shows a compound parameter with members.

Service Action Parameter Name: CMPDMBR
Atomic Action Parameter Name: CMPDMBR
Order Format:
 CMPDMBR.A
 CMPDMBR.B
 CMPDMBR.C
Usage:
 MyCmdMbrBean mycmpdmbr = parms.getMyCmpdMbr();
 mycmpdmbr.getA();
 mycmpdmbr.getB();
 mycmpdmbr.getC();

The following example shows a multi-instance compound parameter with no members
specified.

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-21

Service Action Parameter Name: CMPDMULTI
Atomic Action Parameter Name: CMPDMULTI
Order Format:
Entries will have the compound name as a prefix. There may be multiple entries with that
prefix. For example, a compound named "CMPDMULTI" may have the following entries on an
order.
 CMPDMULTI[1]
 CMPDMULTI[1].X
 CMPDMULTI[1].Y
 CMPDMULTI[1].Z
 CMPDMULTI[2].X
 CMPDMULTI[2].Y
 CMPDMULTI[2].Z
Usage:
 String mycmpdmulti = parms.getMyCmpdMulti ();
 String x1 = parms.getMyCmpdMulti (1, "X");
 String y1 = parms.getMyCmpdMulti (1, "Y");
 String z1 = parms.getMyCmpdMulti (1, "Z");
 String x2 = parms.getMyCmpdMulti (2, "X");
 String y2 parms.getMyCmpdMulti (2, "Y");
 String z2 = parms.getMyCmpdMulti (2,"Z");

The following example shows a multi-instance compound parameter with members.

Service Action Parameter Name: CMPDMULTIMBR
Atomic Action Parameter Name: CMPDMULTIMBR
Order Format:
 CMPDMULTIMBR[1].A
 CMPDMULTIMBR[1].B
 CMPDMULTIMBR[1].C
 CMPDMULTIMBR[2].A
 CMPDMULTIMBR[2].B
 CMPDMULTIMBR[2].C
Usage:
 MyCmpdMultiMbrBean[] mycmpdmultimbr = parms.getMyCmpdMultiMbr();
 for (int i = 0; i <mycmpdmultimbr.length; i++)
 {
 MyCmpdMultiMbrBean bean = mycmpdmultimbr[i];
 bean.getA();
 bean.getB();
 bean.getC();
 }

The following example shows an indexed compound parameter with no members.

Service Action Parameter Name: CMPDIDX[++]
Atomic Action Parameter Name: CMPDIDX
Order Format:
Entries will have the compound name as a prefix. There may be multiple entries with that
prefix. For example, a compound named "CMPDIDX" may have the following entries on an
order.
 CMPDIDX[0]
 CMPDIDX[0].X
 CMPDIDX[0].Y
 CMPDIDX[0].Z
 CMPDIDX[1].X
 CMPDIDX[1].Y
 CMPDIDX[1].Z
Usage:
 String mycmpdidx = parms.getMyCmpdIdx();
 String x = parms.getMyCmpdIdx ("X");
 String y = parms.getMyCmpdIdx ("Y");
 String z = parms.getMyCmpdIdx ("Z");

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-22

Note:

The implementation will be called multiple times, providing one instance of the
compound during each call.

The following example shows a compound parameter with members.

Service Action Parameter Name: CMPDIDXMBR[++]
Atomic Action Parameter Name: CMPDIDXMBR
Order Format:
 CMPDIDXMBR[0].A
 CMPDIDXMBR[0].B
 CMPDIDXMBR[0].C
 CMPDIDXMBR[1].A
 CMPDIDXMBR[1].B
 CMPDIDXMBR[1].C
Usage:
 MyCmpdIdxMbrBean mycmpdidxmbr = parms.getMyCmpdIdxMbr();
 mycmpdidxmbr.getA();
 mycmpdidxmbr.getB();
 mycmpdidxmbr.getC();

Note:

• The implementation will be called multiple times providing one instance of the
compound during each call.

• For multi-instance compounds, member parameters cannot be set as required
because the system cannot determine whether a member is present or if there
are additional entries.

Example: Typical Processor Call Sequence
The proxy:

1. The proxy creates the input, the output, and the exit type classes.

2. The proxy populates the exit type classes and initializes them.

3. The proxy creates the processor that will be called and initializes it.

4. If the logger needs to be used by the processor, the proxy provides this during the init
method call.

5. The proxy invokes the processor by calling the execute method with the input, output,
connection, and exit type.

6. The processor obtains parameters from the InputBean to compose a message or
command to be sent to a device.

7. The processor calls the send request to send that message to the device.

8. The processor sets the exit type based on the response.

9. The processor sets output parameters based on the response.

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-23

The processor may parse the response to obtain additional values for populating the
output parameters.

10. The proxy cleans up the processor.

11. The proxy looks at the exit type that was set and populates it for return to the NEP, and
cleans up the exit type.

12. The proxy extracts all output parameters for return to the NEP and to populate the work
order.

The proxy then cleans up this class and (16) the remaining classes.

Note:

You are only responsible for the items related to the processor (steps 6 through 9);
the proxy handles all other items.

Writing Java Processor Execute Method Logic
The basic development steps to write the logic for the execute method of a Java Processor
class are as follows:

To write Java Processor execute method logic:

1. Extract parameters from InputBean (retrieve information).

2. Use these parameters to build a command.

3. Send a message or command to the switch using the send request in Telnet.

4. Handle the response by setting the user-defined exit type.

See "Configuring Base Exit and User Exit Types " for more information about setting the
user-defined exit type.

5. Using the OutputBean, you have the option to return some parameters upstream to log,
infoparm, and so on.

Occasionally, for Telnet, you may need to build some helper classes, perform data derivation,
and create parsers.

Example: Telnet Provisioning Class Flow
The following list describes the flow for Telnet provisioning classes.

1. Initialize generic data

2. Get the connection reference

3. Get the NE ID

4. Enable the response log

5. Get the work order parameters and build the AsapParameter objects passing the
parameter label and value

6. Build the provisioning command with a specific action type and append parameter objects
to the command

7. Convert the command to a string

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-24

8. send the command to the switch

9. Obtain the NE response

10. Exit with the appropriate user-defined -> base exit type.

//***** initialize generic data: get connection reference, get ne ID, enable response log
initialize();
//****** get work order parameters and build AsapParameter objects passing the param
label and value
String imsi = getParam(IMSI);
String bserv = getParam(BSERV);
String msisdn = getParam(MSISDN);
String nbr = getParam(NBR);
AsapParameter imsiParm = new AsapParameter(IMSI, imsi);
AsapParameter bservParm = new AsapParameter(BSERV, bserv);
AsapParameter msisdnParm = new AsapParameter(MSISDN, imsi);
AsapParameter nbrParm = new AsapParameter(NBR, bserv);
//***** Build the provisioning command with a specific action type and append parameter
objects to the command
ProvisioningCommand cmd = new ProvisioningCommand(SAConstants.CREATE_BASIC_SRV); //
***create command for adding a basic service
cmd.append(imsiParm).append(bservParm).append(msisdnParm).append(nbrParm);
//***** command ready! convert it to string mml and send it to the switch
String strCmd = cmd.toString();
String reply = sendNeRequest(strCmd);
//*****handle response, set user exit type etc
handler.checkResponse(reply); //optional
UserExitType uet = handler.getUserExitType(reply);
setASDLExitType(uet.getUserExitType(), uet.getUserErrorText());

About Writing Java Programs from Scratch and Naming
Conventions

You must extend the com.mslv.activation.jinterpreter.JProcessor class when writing Java
code from scratch. Oracle recommends using the auto-generated code options. For more
information about JProcessor, see ASAP Java Online Reference.

This section provides naming convention recommendations when writing Java programs from
scratch.

Associating an Action Processors to the Java Code
To associate and action processor to the Java code you created:

1. Open the action processor editor and select the Editor tab.

2. From the Type list, select Java Action Processor.

3. In the Class field, enter a class name.

4. In the Method field, enter a method name.

5. Manually create the Java classes and methods to implement your network connection.

Java Package Naming Convention
The Java package naming convention consists of the constant prefix
com.oracle.cartridge.oss in lowercase, with each of the tokens separated by a period (.)

Chapter 12
About Writing Java Programs from Scratch and Naming Conventions

12-25

character. Each of the tokens must be separated by an underscore (_) character. The format of
a Java package is as follows:

com.oracle.cartridge.oss.vendor_technology_softwareload_entity_action_

Where:

• vendor: specifies the vendor name (see "Selecting the Vendor Token").

• technology: specifies the technology (see "Selecting the Technology Token").

• softwareload: specifies the software load (see "Selecting the Software Load Token"). Java
class naming conventions exclude all period (.) characters from the software load token.
For example, software load version 5.1 must appear as 51.

• entity: specifies the entity (see "Selecting Entity Tokens").

• action: specifies the action (see "Selecting the Action Tokens").

The following example illustrates the structure of a Java package used for the Alcatel-Lucent
fiber to the user (FTTU) node running software load 7, providing the pay-per-view (PPV)
service, with a buy action:

com.mslv.activation.cartridge.alu.fttu.7.ppv.buy

The convention used in most cartridges is based on the Metasolv name. For example
com.mslv.cartridge.activation.cartridge.

Java Class Naming Convention
A Java class is a single entity that is contained within a Java package. The following list
contains each of the types of cartridge Java classes and their corresponding naming
conventions:

Connection class—Connection.java (for example HLRConnection.java)
Provisioning class—<*>Provisioning.java (for example HLRProvisioning.java)
Library class—<*>Lib.java

Class names should be nouns, in mixed case, with the first letter capitalized and with the first
letter of each internal word capitalized. Try to keep your class names simple and descriptive.
The wildcard token (*) used in the naming convention for provisioning and library classes is an
optional string that can be used to either divide a provisioning or library class that is too large in
size or identify a group of related features that are contained in the provisioning or library
classes.

Java Helper and Utility Class Naming Convention
Java helper and utility class file names consists of a series of tokens that are separated by the
underscore (_) character. Each token must begin with a lowercase letter. The ".jar" constant
always appears at the end of the Java library file name to identify the file as a Java library file.
The maximum allowable length for a Java library file name is dictated by the operating system.

The format of Java helper and utility classes is as follows:

vendor_technology_softwareload_entity.jar

Where:

• vendor: specifies the vendor name (see "Selecting the Vendor Token").

• technology: specifies the technology (see "Selecting the Technology Token").

Chapter 12
About Writing Java Programs from Scratch and Naming Conventions

12-26

• softwareload: specifies the software load (see "Selecting the Software Load Token"). Java
class naming conventions exclude all period (.) characters from the software load token.
For example, software load version 5.1 must appear as 51.

• entity: specifies the entity (see "Selecting Entity Tokens").

The following example illustrates the structure of a Java library file that contains the byte code
to support VDSL service activation on a Alcatel-Lucent FTTU NE running software load 7.2:

alu_fttu_72_vdsl.jar

Java Method Naming Convention
Methods should be verbs. Tokens contained in the Java methods names are concatenated or
separated using a combination of the period (.) and underscore (_) characters. The Java
method naming convention consists of two tokens that are concatenated. The format of a Java
method is as follows:

actionentity

Where:

• action: specifies the action (see "Selecting the Action Tokens").

• entity: specifies the entity (see "Selecting Entity Tokens").

The first letter of the action must appear in lowercase and the first letter of all subsequent
tokens must appear in uppercase. The following example illustrates the structure of a Java
method used for the Alcatel-Lucent FTTU NE supporting a pay per view (PPV) service:

addPpv

Java Variables Naming Convention
Variable names should be short yet meaningful. The choice of a variable name should be a
mnemonic, and designed to indicate the intent of its use. One-character variable names should
be avoided except for temporary "throwaway" variables. Common names for temporary
variables are i, j, k, m, and n for integers; c, d, and e for characters.

Java Constants Naming Convention
The names of variables declared class constants should be all uppercase with words
separated by underscores (_).

Understanding Unit Testing
Unit testing in Design Studio does not need to be implemented to complete a cartridge,
although it is highly recommended for these reasons:

• Unit testing contributes to building quality code.

• Unit testing provides repeatable tests for regression.

You can test the processor outside of the ASAP system because the interfaces and generative
classes of the Java processor are all independent of the ASAP system and its classes (the
generated InputBeans and output are not tied to ASAP). To run the processor, a TestCase is
generated once (with a sample test based on information at the time of creation), after which
the developer owns it and can extend it.

Chapter 12
Understanding Unit Testing

12-27

The unit test framework initiates all tests in test subfolder. Unit testing is implemented as a
JUnit test. JUnit tests can optionally be run with the JDT Debugger.

Figure 12-2 shows the generated test case and how it relates to the processor, input, and
output files.

Figure 12-2 Generated Test Cases

The TestCase simulates the proxy for each individual test, and:

• Creates an implementation of the interfaces, either the real implementation or a stubbed
test implementation.

• Generates input and output beans.

• Invokes the processor.

The TestCase is a JUnitTestCase. Each TestCase can contain many tests, and each test is
defined by a no-parameter method beginning with "test".

The generated TestCase has a framework that provides a test. The test runs based on input
files, which find the data and test criteria for a particular test. This framework enables
developers to create simple files to define new tests. This works for any standard type of test
where you pass in data and check the request to ensure it was sent as expected, and that the
returned exit type is the one you expected. Also, this allows for a simple, standard response to
be used inside the test.

Chapter 12
Understanding Unit Testing

12-28

Sample test classes are provided for simulating IExit and ILogger. A base output class
provides the methods required for output classes.

Running Unit Test Cases
Run the TestCase class as a JUnit test, or as a Java application. Running as a JUnit test
provides a richer user experience by providing results in the JUnit view. Running as a Java
application allows the TestCase to be run as part of an automated test framework. Java
application test case results appear in the Eclipse IDE in the Console view.

To run unit test cases:

1. Right click the TestCase class and select Run As.

2. Select JUnit Test or Java Application.

Design Studio displays the results in the JUnit view or Console view, depending on your
selection in step 2. Logging information is sent to the Console View.

Running Unit Tests with the JDT Debugger
To run unit test cases with the JDT debugger:

1. Set breakpoints in your Processor class as desired.

2. Right click the TestCase class and select Run As.

3. Select JUnit Test or Java Application.

The unit test is run and the debugger will break as appropriate, allowing for full debugger
functionality, including variable inspection and code stepping.

Understanding Unit Test Property Files
You use a set of property files to set up a unit test (both are property file and follow the Java
property file format):

• testdata file (for example, TestExample.testdata)

• testinfo file (for example, TestExample.testinfo).

Note:

The testinfo file is optional. Design Studio uses defaults if it is not present.

Testdata file

The testdata format for naming the input parameters is similar to that within a work order.
However, you must populate the test data with atomic action labels (and not service action
labels). Run the unit test as if the parameters have been previously defaulted.

Apply the defaults that are normally set by the SARM (based on what is configured in the
atomic action) as if they had been applied in the test data (the processor runs after those
defaults have been set). The unit test data should be based on data that has already been
defaulted and based on names relating to the atomic action label (and not the service action
label).

Chapter 12
Understanding Unit Testing

12-29

When you fill in the test data for compounds or incoming repeating elements, use square
brackets to indicate the index for a compound as in the following example.

Example Action Processor input property file
NETID=ERIC-SDP_3-6-2-HOST
MSISDN=0701234567
FAF_LIST[1].FAF_N=0701237777
FAF_LIST[1].TSC=O
FAF_LIST[1].RCO=1
FAF_LIST[1].K=400
FAF_LIST[2].FAF_N=07052
FAF_LIST[2].TSC=4
FAF_LIST[2].K=100
FAF_LIST[3].FAF_N=071
FAF_LIST[3].K=500

Testinfo file

You can use this optional file to define the properties for which you are testing. You can also
define what expected request the processor should create, the expected canned response
returned to the processor, the expected exit type and whether it should be tested.

Note:

If you do not define a testinfo file, then by default the test case only tests whether
the exit type is succeed (that is, to confirm that the test data has gone through).

Example Action Processor test info property file
request.check=true
request.value=Test Message
response.value=Test Response
Exit Type values:
SUCCEED
FAIL
RETRY
MAINTENANCE
SOFT_FAIL
DELAYED_FAIL
STOP
exittype.check=true
exittype.value=SUCCEED

If you wish to have multiple request and response values in your test, you can specify multiple
values in the testinfo file. Add a dot separated numeric suffix to the value (starting at 1).

If your request or response has multiple lines or special character, follow the standard Java
property guidelines.

Example Action Processor test info property file
request.check=true
request.value.1=Test Message 1
request.value.2=Test Message 2
response.value.1=Test Response 1
response.value.2=Test Response 2
Exit Type values:
SUCCEED
FAIL
RETRY
MAINTENANCE

Chapter 12
Understanding Unit Testing

12-30

SOFT_FAIL
DELAYED_FAIL
STOP
exittype.check=true
exittype.value=SUCCEED

Configuring a Unit Test
To configure a unit test:

1. Select File, select New, then select File.

2. Create a file name.testdata.

For example, you might create a file called TestExample.testdata.

Note:

Place this file in a subfolder of the action processor implementation package
named test.

3. Enter the text for the file.

The file format is a Java property file, so each entry specifies the parameter and its value.

4. Repeat steps 1 and 2 as necessary to create a second file name.testinfo.

For example, you might create a file called TestExample.testinfo.

Understanding Java Libraries in Design Studio
There are several types of Java libraries available in Design Studio.

Referenced Libraries
Activation libraries are utilized by many cartridges and include the following:

• studio_2_6_0.jar: This library contains the base implementation files extending
JProcessor for auto-generated Java stubs and auto-generated CLI code. For more
information about JProcessor, see the ASAP Java Online Reference.

• asaplibcommon.jar: This library contains the core ASAP packages. For more information,
see the ASAP Java Online Reference.

• JInterp.jar: This library contains the jinterpreter packages, classes, and methods that you
can use to develop Java programs that the JNEP uses to communicate with NEs. For
more information about the jinterpreter packages, see the ASAP Java Online Reference.

Activation libraries are automatically added to the project when you create an action processor.
They are added to the project classpath to enable the Java development toolkit access.

Chapter 12
Understanding Java Libraries in Design Studio

12-31

Note:

• The studio_2_6_0.jar file is not installed by the ASAP installation. The
studio_2_6_0.jar must be added to the ASAP installation prior to deployment of
a Design Studio-created cartridge. Configure the studio_2_6_0.jar,
asaplibcommon.jar, and JInterp.jar files on the server. See the discussion of
installing a cartridge using Design Studio in ASAP Installation Guide.

• When you are packaging a cartridge, exclude the studio_2_6_0.jar,
asaplibcommon.jar, and JInterp.jar files. These JAR files are installed on the
Activation server and are shared by all cartridges If you include these JAR files,
Design Studio generates an error.

Other Libraries
Add other libraries to the lib folder under the project. Update the Java project properties to set
the Java buildpath to make use of those libraries. See Eclipse help for adding folder or
packages to the Java buildpath.

In the Project editor Packaging tab, select Libraries to display any jar files contained in the lib
folder.

Programming Best Practices
The following sections include programming best practices applicable for writing Java
implementations.

Using Default Values
Avoid hard coding default values in the Java methods. If there is a need to set a default value
for one or more parameter the atomic action default configuration should be used (see
tbl_asdl_parm).

Even if a default value has been configured in the cartridge (tbl_asdl_parm) for a particular
parameter there is no guarantee that a default will be assigned in the customer specific service
model (for example common service model), therefore the Java code cannot assume that the
parameter will have a value and should therefore verify that it is not NULL before attempting to
use it.

Enabling Value and Range Checking
The Java code must verify that parameters have a non-null value and log an error to the
diagnostic file if such a parameter is missing (even if it is expected that it will be configured as
a "required" parameter within the SARM) that are needed by an NE to ensure successful
execution of the provisioning command. This checking is often used in common service
modeling scenarios where it is not possible to perform error checking at the atomic action level.
For example, a parameter may be required by one vendor, technology and software load and
not another.

Perform value and range checking of atomic action parameters where possible within the Java
code when an NE does not respond with a meaningful error message indicating which
parameter has an invalid range/value.

Chapter 12
Programming Best Practices

12-32

If an NE expects a variable to be padded in some way the cartridge should perform the
padding.

Logging Diagnostic Messages
Ensure that the ASAP core code (as well as cartridge code) does not write to stdout and
stderr unless absolutely necessary. Instead, diagnostic messages should be written to the
ASAP diagnostic files when required. For more information, see the Java diag method in the
Diagnosis class in the ASAP Java Online Reference.

When ASAP is started, stderr and stdout messages are explicitly redirected to a file called
ASAP.Console. For more information about the start_control_sys script that is called by the
start_asap_sys script, see ASAP System Administrator's Guide. Writing to stdout and stderr
can result in the ASAP.Console file dramatically increasing in size.

When logging optional parameters to the diagnostic files be sure to check if they have actually
been defined first (including the MCLI parameter which is optional if ID_ROUTING is being
used).

Do not log passwords of any kind (NE login passwords, database connection passwords etc.)
to the ASAP diagnostic files.

Remove all internal debugging related diagnostic messages from the cartridge code when unit
testing by the cartridge developer is complete.

Three diagnostic logging levels can be used within the cartridges. The developer can use
KERN that should provide diagnostic messages more technical and debugging related. Use
LOW for diagnostic message that are more cartridge related to show important information
during development phase and test phase. Use SANE for diagnostic messages that are more
informational. For more information about diagnostic levels, see ASAP Administrator's Guide.

Log messages which are stored in SARM database table tbl_srq_log to provide cartridge
related information about work orders. For the telnet base cartridge, ASAP has already
implemented that functionality, but for the CORBA, SOAP and another protocols you need to
implement log messages, providing information about which method was run, and provide all
atomic action parameters implemented in the method, log NE response, and error messages.

TCP/IP Message Parsing Options
When using the TCP/IP protocol you can take the following two approaches when parsing
responses from the NE:

• parsing the raw response

• using the virtual screen in conjunction with ASAP core method calls.

Parsing the raw response means that more cartridge code is required, however it results in
improved performance. In domains such as wireless where high volumes of work orders are
expected, consider parsing the raw response from the NE.

The virtual screen mechanism extracts only the meaningful text strings from the responses and
places them in the correct position on a two dimensional virtual screen where responses may
be extracted using Cartesian coordinates. This approach results in less cartridge code
however it decreases the performance of the cartridge. Use the virtual screen approach in low
volume scenarios where ease of implementation is preferred.

Chapter 12
Programming Best Practices

12-33

Use of Journal Functionality
Some switches provide a journal ID as a response when a command is processed. If a
subsequent error occurs on a later provisioning activity (either to the same switch or a different
one) and rollback is therefore initiated, the journal ID can be used to undo commands that
have previously been processed. This way, the cartridge does not have to keep track of exactly
what commands were performed or query the switch in anticipation of rollback being performed
(for example, to get the features on a line before a delete is performed so that they could be
reapplied to the line at a later time). The journal IDs do however need to be remembered as
each command is processed until the work order is completed.

Cartridges must support journaling capability where provided by the NE and should support
use of this approach for rollback purposes.

Chapter 12
Programming Best Practices

12-34

13
Creating Java User Exit Types

This chapter describes how to create Java implementations for network element (NE)
connections and atomic action scripts that implement MML commands for Oracle
Communications ASAP.

Developing Return Parameters in Java Action Processors
The following sections provide information about the Java action processor:

• About Return Parameters in Java Action Processors

• Configuring Java Methods for Return Parameters to SARM

• Return Parameter Types

• Use Cases for Returning Parameters

• Configuring Response Logging and Network Element History Capture

• User Defined Exit Types

About Return Parameters in Java Action Processors
Parameters are returned individually as a name value pair using the following API calls:

• returnCSDLParam

• returnRollbackParam

• returnInfoParam

• returnGlobalParam

Parameters can also be returned in a properties list which can contain multiple name value
pairs using the following API calls:

• returnCompoundCSDLParam

• returnCompoundRollbackParam

• returnCompoundInfoParam

• returnCompoundGlobalParam

This API is available the Java JProcessor class described in the ASAP Java Online Reference.

Configuring Java Methods for Return Parameters to SARM
For Java methods that perform querying, depending on the value of the atomic action
parameter RET_PARM_TYPE responses must be passed back to the SARM as either service
action parameters, work order parameters, information parameters or some combination of
these as follows:

• C - service action parameters

• W - work order parameters

13-1

• I - information parameters

• IC - information parameters and service action parameters

• IW - information parameters and WO parameters

If a default value is not provided for the RET_PARM_TYPE parameter or if it is left out of the
atomic action parameter list then no parameters is returned from the query. The parameter
names for service action and work order parameters must not conflict with the parameter
names that come in on the work order therefore parameters of type "C" and "W" must be
prefixed with the token "OLD_". Information parameters do not require this prefix.

Query responses should be parsed where possible rather than passing raw responses
upstream including responses that are organized into columns. In general the format for the
labels would be feature tag_column header = value. For example a query for feature
information that results in the following response:

NAME PROV ACT NPI C-NUMBER
CFU ...CALL FWD Y A I 6742727

Should return the following:

CFU_PROV = Y
CFU_ACT = A
CFU_NPI = I
CFU_C-NUMBER = 6742727

If a column does not have a value then no parameter needs to be defined for that item.

Data extracted from a switch printout (for example, a query) must be passed back to the SARM
as NE history for retrieval by clients such as OCA. For TCP/IP telnet the startResponseLog
and returnResponse Java methods perform this automatically. For non-TCP/IP telnet
protocols such as CORBA, the log method must be explicitly invoked to capture the name
value pairs.

If an error occurs on the NE, an error text variable and an error code variable (if an error code
is present) must be created and passed to the SARM as service action parameters. The value
passed back for the exit text should be a meaningful alphabetic string created from the NE
response. These variables are often used in customer defined atomic action spawning logic.
The naming convention for the error text label and value is:

technology_action_entity_EXIT_TEXT = generic error

For example,

AUC_ADD_SUBS_EXIT_TEXT = SUBSCRIBER_ALREADY_EXISTS

The naming convention for the error code label and value is:

technology_action_entity_EXIT_CODE = <error code>

For example,

AUC_ADD_SUBS_EXIT_CODE = 00016

For all atomic actions that ran successfully on the NE, the error text and error code passed
back to the SARM should be set to the value "SUCCEED" and "–1" respectively. For example:

AUC_ADD_SUBS_EXIT_TEXT = SUCCEED
AUC_ADD_SUBS_EXIT_CODE = -1

Chapter 13
Developing Return Parameters in Java Action Processors

13-2

If it is not possible to determine the context for which the error occurred (for example for some
NEs an error code and/or error text is not provided or cannot be interpreted) than the exit text
and exit code should be set as appropriately as possible to reflect the error even if they may
not be as visually meaningful.

AUC_ADD_SUBS_EXIT_TEXT = UNDEFINED
AUC_ADD_SUBS_EXIT_CODE = exception number

If an error code is not provided by the NE leave it without a value.

The presence of the generic error text will ensure that the cartridge implementation methods
are compatible with a common service model. The presence of the technology token in the
naming convention prevents collisions from occurring when similar atomic actions are being
run on multiple NEs from a single service action (for example a service action to create a new
subscriber may mean that the subscriber needs to be created on the FNR, AUC and HLR).

In common service modeling scenarios the error text code needs to follow the format described
above; however, currently the team is using the actual user-defined exit type label (stored in
the config file) as the label for the service action parameter. This includes the vendor,
technology and software load which means that spawning logic implemented by customers
would need to be implemented as follows:

A_DO_SOMETHING (if ERIC-AUC_3-1_ADD_SUBS_EXIT_TEXT = SUBSCRIBER_ALREADY_EXISTS ||

 if NOK-AUC_3-1_ADD_SUBS_EXIT_TEXT = SUBSCRIBER ALREADY EXIST ||

 if NT-AUC_7-2_ADD_SUBS_EXIT_TEXT = SUBSCRIBER ALREADY EXIST)

The future guideline will likely be to provide both a vendor specific code and a generic code.
There could be hundreds or thousands of codes coming back from a vendor and it may be
difficult to map them uniquely across multiple vendors. The generic code is the cartridge
interpretation and the vendor code gives the service modeler access to the precise code if
desired.

When a hard failure is detected by the cartridge (this means a call will need to be made to
return the core exit type), prior to exiting from the cartridge code the following two information
parameters must be created:

USER_EXIT_TYPE = <the user defined exit type tag>
USER_EXIT_DESC = <the user defined exit type description - human readable description of
the error>

The description should be retrieved from tbl_user_err along with the base and core exit types.
If the description is not available the actual error message from the switch should be provided.

An enhancement has been opened on the user-defined exit type mechanism to ensure that
this is handled automatically by the core in the future. The core will automatically generate
these labels, populate them with the user type and description and pass them back to the
SARM as information parameters.

When a hard failure is detected on a rollback atomic action (this means a call will need to be
made to return the core exit type), prior to exiting from the cartridge code the following two
information parameters must be created:

ROLLBACK_USER_EXIT_TYPE = <the user defined exit type tag>
ROLLBACK_USER_EXIT_DESC = <the user defined exit type description - human readable
description of the error>

If the method is set to soft fail when a certain error is received the error code value should still
be set to the generic error (because additional atomic actions may need to be spawned based
on the error that has occurred).

Chapter 13
Developing Return Parameters in Java Action Processors

13-3

Return Parameter Types
The following sections describes return parameter types and usage.

Note:

Any return parameter cannot exceed 255 characters. If it does, the return parameter
value will be empty, and the information will not be returned.

To avoid this situation, split large return values into multiple return messages when
you implement your Java code.

Global Returned Parameter
Global parameters provide contextual information that different service actions can use. These
global parameters are valid for the entire work order scope. Local parameters have
precedence over Global parameters if the local parameters are defined.

Global and local work order parameters can be defined when you create a work order
Activation Test Case, or an NE Template using Design Studio for ASAP. For more information,
see Design Studio for ASAP.

Service Action Returned Parameter
Parameters defined in a service action overrides global parameters and there is no limit to the
number of parameters you can associate with a service action.

Service action parameters are returned to give context between different atomic actions, and
are valid in the service action scope. Returned service action parameters overwrites the
previous parameter of the same type. Any subsequent atomic actions associated to the service
action use the returned value.

Atomic Action Returned Parameter
Atomic action parameters are not returned explicitly; however, service action parameters are
returned which may be implicitly be re-mapped to subsequent future forward atomic actions.

Returned Information for Upstream Purposes
SRP can only retrieve these parameters. Used usually for upstream information purposes.
Error code and diagnostic information can be set in this type of return parameter. These
parameters are not used parameter data for subsequent service model interactions at the
service action or atomic action level.

Information parameters are returned for the upstream system only for future retrieval. These
parameters are not available to any future forward or rollback atomic actions within the current
or other service actions.

Indexed Rollback Returned Parameter
Rollback parameters may be returned as indexed scalar or compound parameters. However,
each separate instance must be returned as a name-value pair with the name corresponding to

Chapter 13
Developing Return Parameters in Java Action Processors

13-4

the correct index. For example, name=BASE[1] = AAA, BASE[2] = BBB. For a compound each
element within the structure and its instance number must be explicitly returned.

Use Cases for Returning Parameters
The following section will outline some of the current best practice guidelines used in the field
to address particular use cases implemented in existing cartridges.

Query for Rollback Information
The convention is to return service action parameters with the prefix ?OLD_?, which will then
be the service action service parameters used for any rollback atomic actions.

There may be uses where it is desired to simply return the service action parameter with the
same name as in the forward scenario if this simplifies the service model from having to re-
map the service action to atomic action parameter in different context‘s.

Any parameter whether it is service action or ROLLBACK can be used in a Rollback atomic
action; however CDSL parameters are persisted in the service action scope.

Error and Diagnostic Information
Generally error parameters are returned as Information parameters to the SRQ to be retrieved
later by an upstream system. This error information can be returned as a series of one or more
information parameters, or it can be custom encoded into a single value to be associated with
one parameter name. For example, Name = ERRORINFO, Value = ?ERRORCODE |
ERRORDESCRIPTION | MODULE?. This custom encoding needs to agree with the upstream
system which will decode the single value.

If an error value is required as part of the evaluation expression in the service model for
subsequent service logic, then the error value should be passed back to SARM as service
action parameters and named appropriately in the parameter name.

Note that there are no specific Error parameters, it depends its uses.

Configuring Response Logging and Network Element History Capture
For stream-based protocols supported by core ASAP (for example TCP/IP Telnet) the Java
startResponseLog and returnResponse methods should be called whether the virtual screen is
being employed by the cartridge or not. This results in switch responses being stored in
tbl_srq_log where they can be retrieved by upstream systems or viewed through OCA and
hence explicit calls to the Java log method can be avoided.

Response logging can be activated/deactivated by setting the NE_CMD_LOG_ON option
(which can be configured on a per NEP basis) in ASAP.cfg.

For stream-based protocols supported by core ASAP (for example TCP/IP Telnet), whenever
confidential data must be sent to an NE the data should be prevented from being written into
tbl_srq_log. There are two sets of methods that can be used as wrappers around the ?send?
method calls to control core ASAP behavior in this manner:

• The disableCommandLog and enableCommandLog method calls result in no data being
written into tbl_srq_log and should therefore only be employed if absolutely necessary (this
impairs the ability to debug).

• The maskCommandLog and unMaskCommandLog result in asterisks being written to
tbl_srq_log instead of the raw characters and is the preferred approach when secure data
is being managed.

Chapter 13
Developing Return Parameters in Java Action Processors

13-5

RULE: for non-stream based protocols such as CORBA it is not possible to use the core ASAP
response logging functionality and therefore explicit calls to the log method (JProcessor class)
must be made within the cartridge to capture NE history into tbl_srq_log. Ensure that for such
protocols explicit calls are made to the log method to record the API call that is being made as
well as the return code and/or return text received back from the NE if they are available. For
performance reasons at this time do not place calls to log each parameter used in the API call
(because these are available through OCA by querying on the work order and also through the
diagnostics). In the case where XML documents are being constructed within the cartridge and
transmitted using non-stream based protocols the entire XML document should be recorded
using a call to the log method.

User Defined Exit Types
Where possible, user-defined exit types will be provided in the cartridge.

In the absence of a user-defined exit type configuration (for example the customer has
removed those provided by the cartridge) the cartridge default should be to fail responses that
lie outside the normal success detection criteria.

The mapping between a message received from the switch and its corresponding user-defined
exit type (user_type) should be kept within a cartridge specific configuration file with the
following naming convention:

<vendor>_<technology>_<swld>_UserExitTypes.xml

The mapping between the user-defined exit type and its corresponding base exit type
(base_type) is contained in tbl_user_err.

Improvements to the user-defined exit type lookup mechanism in ASAP core are pending.

The following data columns in tbl_user_err must be populated:

• NE_VENDOR

• TECH_TYPE

• SFTWR_LOAD

• USER_TYPE

• BASE_TYPE

• DESCRIPTION

• SEARCH_PATTERN

The naming convention of user_type, <vendor>_<technology>_<swld>_<error tag>, is no
longer required. user_type is for <error_tag> only.

tbl_user_err currently has a 20-character limit and therefore some truncation of the user_type
may be required for it to be successfully loaded into the table. An issue is opened on core to
increase the size of this table.

The data contained in tbl_user_err must be loaded into a RAM cache upon startup of the NEP.

When regular expressions (regex) are used to perform pattern searches on responses from
NE, the following situations should be considered when defining a search pattern (to avoid
exception and stack overflow). If the NE response is greater than 1400 characters, then
suggest to use the search pattern as follow:

((?s).)*<search string>((?s).)*

Chapter 13
Developing Return Parameters in Java Action Processors

13-6

Use the fail exit type when the NE indicates that an order cannot be processed due to incorrect
parameter values.

In the case where numerous (for example hundreds) of responses/error codes are described in
the NE specification, a subset of the most commonly occurring responses will be supported.

Apply the following guidelines when assigning exit types to error messages:

• Hard Fail—used for non-recoverable errors that cause the immediate failure of a work
order. For example, when an invalid provisioning parameter has been used.

• Soft Fail—may be used when for minor errors that should not stop the provisioning of the
order for example assigning a feature that has already been added to the subscriber line.

• Retry—used when an activation request fails due to reasons other than data errors. For
example, if the NE is temporarily unavailable or too busy to handle the provisioning
request.

• Fail—used when the NE indicates that an order cannot be processed due to incorrect
parameter values

User defined exit types are most often configured without associated atomic actions (see
tbl_user_err), however on occasion when the same Java method is associated with two
different atomic actions it may be necessary to trigger different exit types. This is most often
done as project configuration work and is not typically part of the cartridge.

The following is the naming convention for user-defined exit type:

<Severity Level>_<Error Label>

The following is the mapping between severity level and base type

Table 13-1 Severity Level Mapping to Base Type

Severity Level Base Type

SUCCEED (S) SUCCEED

CRITICAL (C) FAIL

WARNING (W) SOFT_FAIL

RETRY (R) RETRY_DIS

The following are the common labels used in user-defined exit types:

Table 13-2 Common User-Defined Exit Type Labels

User Exit Type Base Type Search Pattern Description

S_SUCCEED SUCCEED TBD Succeed.

C_FAIL FAIL TBD Fail.

C_INVALID-DATA-TYPE FAIL TBD Data is specified in wrong data type.

C_DATA-OUT-OF-RANGE FAIL TBD Data value is out of range.

C_INVALID-DATA-LNGTH FAIL TBD The length of the given data exceeds the limit.

C_CMD-SYNTAX-ERR FAIL TBD Command syntax error.

C_MISSING-PARAM FAIL TBD Missing parameter in command (MML).

C_MISSING-DATA FAIL TBD Expected data is missing.

C_SRV-NOT-IMPLMNT FAIL TBD Service is not yet implemented.

Chapter 13
Developing Return Parameters in Java Action Processors

13-7

Table 13-2 (Cont.) Common User-Defined Exit Type Labels

User Exit Type Base Type Search Pattern Description

C_FEAT-NOT-IMPLMNT FAIL TBD Feature is not yet implemented.

C_UNKNOWN-ERR FAIL TBD Unknown response from the NE.

C_MATCH-NOT-FND FAIL TBD No matching exit type is found.

S_DATA-NOT-FND SUCCEED TBD No data/object is found in query.

C_DATA-NOT-FND FAIL TBD No data/object is found in query.

W_DATA-NOT-FND SOFT_FAIL TBD No data/object is found in query.

S_DATA-EXISTS SUCCEED TBD Data/object already exists.

C_DATA-EXISTS FAIL TBD Data/object already exists.

W_DATA-EXISTS SOFT_FAIL TBD Data/object already exists.

S_WARNING SUCCEED TBD Warning Message.

W_WARNING SOFT_FAIL TBD Warning Message.

C_TIMEOUT FAIL TBD Time out.

R_BUSY RETRY_DIS TBD Network is busy.

R_CONNECTION-LOST RETRY_DIS ((?s).)*Connection to
the NE lost((?s).)*

Connection to the NE is lost. You must define
this user exit type in your cartridge.

R_BROKEN-PIPE RETRY_DIS ((?s).)*Broken pipe((?
s).)*

Broken Pipe. Connection to the NE is lost. You
must define this user exit type in your cartridge.

C_PROVCART-EXCEPTION FAIL ((?
s).)*ProvCartridgeExce
ption((?s).)*

Provisioning Cartridge Exception. You must
define this user exit type in your cartridge.

CL_EXCEPTION FAIL ((?s).)*Exception((?
s).)*

General Exception. You must define this user exit
type in your cartridge.

Chapter 13
Developing Return Parameters in Java Action Processors

13-8

14
Documenting ASAP Cartridges

This chapter describes how to use Oracle Communications Service Catalog and Design -
Design Studio to document Oracle Communications ASAP cartridges.

About Design Studio Cartridge Documentation
Design Studio provides a cartridge guide generation feature that simplifies the documentation
process. The feature becomes available whenever you create a network cartridge project.
Design Studio provides a template for the guide, and generates most of the cartridge
documentation with information added to entities modeled in the project and the information
entered in various editors during development process. An HTML version of the cartridge
documentation can be found in the doc/guide folder.

The following list describes the components required to ensure that the cartridge contains all
necessary information:

• Make sure all description fields for various entities, default values for parameters, and data
restrictions are completed.

• The Document Command Overview tab in Action Processor editor should describe the
MML command string that ASAP sends to the network element (NE). Whenever possible
(for example, with the TCP/IP NE interfaces) document the logic of the conditional building
of the MML command as pseudo-code, explaining the conventions/syntax used. For
example:

Router# configure terminal
if(INTERFACE_TYPE="optical"){
Router(config)# controller SONET {SLOT}/[MODULE]/{PORT}
Router(config-controller)# au-4 {AU4_NUMBER} tug-3 {TUG3_Number}
}else ………

When this is not possible (for example, in the case of CORBA or web service NE
interfaces), document the API calls and parameters and if the case provide the request
XML (web services). For example:

This is a sample of SOAP Activate service request:
<?xml version='1.0' encoding='UTF-8'?> <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://
schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <SOAP-ENV:Body>
<ns1:submitSync xmlns:ns1="urn:ProvisioningRequestServer" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <request
xmlns:ns2="java:provision.services.web.rpc.ejb" xsi:type="ns2:ProvisionRequest">
<body xmlns:ns3="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns3:Array"
ns3:arrayType="ns2:ProvisionReqEntity[1]"> <
xmlns:ns5="http://schemas.xmlsoap.org/soap/encoding/" </header>
</request> ……………….
………………………………….etc
</SOAP-ENV: Envelope>

• Document the output parameters, returned by the cartridge, under Action Processor
Output tab. Provide the label and the value format for returned data as Service Action or
INFO parameters. Such parameters are retrieved by the upstream system or can be used
in the service model for conditional executions of the next mapped atomic actions. Make

14-1

sure that returned labels are unique and easy to be identified. It is a good practice to use
as prefix the atomic action name. For example:

Return as Service Action parameter:
A_NT-DMS100_SN06_ADD_LINE_RETURNCODE=<user defined exit type>
Return as info parameter:
A_NT-DMS100_SN06_ADD_LINE_RETURNINFO=<NE error code>:<NE error description>

• Enter information under Development Notes tab. Describe the business logic, triggered
by the atomic action execution, as implemented in the Java action processor class. For
example:

Business Logic Flow:
- Get atomic action parameters from the work order
- Build the User object and set the content (parameters)
- Check if the system is in loopback or not
- If loopback, print the log the API call and parameters
- If not loopback send request to the NE by calling addSubscriber
- Set atomic action exit type by using user defined exit types
- Return out parameters (Service Action and INFO)

Chapter 14
About Design Studio Cartridge Documentation

14-2

15
Work Order Processing and Sample Work
Orders

This chapter describes how to create sample work orders for Oracle Communications ASAP
cartridges.

Work Order Processing Overview
At a high level, the process of configuring the interaction between provisioning and activation
includes the following steps.

1. Familiarize yourself with the order data definition that is associated with an automated task
in the predefined provisioning model (the ASAP cartridge). In this case, refer to the
Provisioning system's order schema.

2. If you are using an XML editor like Design Studio to view the schema, you can generate
sample XML order data (see "About JSRP Sample OSS/J Work Orders").

3. Based on the automated task in the provisioning system, determine the service actions
and atomic actions that are required to activate the service on the network elements (NEs).
Table 15-1 shows the C-ADD_LINE mappings table and displays a sample service action
with associated atomic actions.

4. Review the Activation schema ServiceModel.xsd file to review the components of a
service model. For more information, see "About Cartridge XML Schemas."

5. To handle the order data from the Provisioning system, define one or more atomic actions
and associated parameters of XML type (see "XML Parameters") so that the upstream
order data is available to the network implementation (provisioning method) at run time.
For an example of an atomic action parameter configuration, see Table 15-2 and
Table 15-3.

6. You can define additional atomic action parameter labels of XPath type (see "XPath
Parameters") using an XPath expression to control the spawning of ASDLs based on data
of the XML document, provided that the evaluation of XPath expression resulted in a scalar
value (see "About Atomic Action Spawning Logic"). You can also define atomic action
parameter labels of XPath type to pass information of the XML so that the system
integrators at the network element processor (NEP) level do not have to manipulate the
XML document. Regardless of whether the you define atomic action parameter labels of
XPath type, system integrators can retrieve information of the XML at the NEP level.

If you want to directly manipulate the XML at the NEP level, you can retrieve the raw XML
as a Document Object Model (DOM) object through Java-enabled NEP's public Java APIs.
Refer to the ASAP Online Reference.

You can use XPath technology to retrieve certain information of the XML document and
then marshal the information to activate the NE.

7. Save the changes made to the service actions and atomic actions and then package the
service model so that it can be deployed to the Activation system later through the SADT
command line interface.

15-1

General Work Order Processing
A work order that has been submitted for provisioning is processed as follows:

1. A work order enters the service request processor (SRP) or Java SRP (JSRP) server,
where it is initialized. Information such as the due date, order number, and priority of the
work order is fed into ASAP.

2. The SRP converts work order information such as universal service order codes (USOCs)
and service offerings (SOFFs) into service requests appropriate for the Service Activation
Request Manager (SARM). During this process, the SRP translates work order
components to their corresponding Common Service Description Layer (CSDL) commands
and parameters that are sent to the SARM.

3. After the work order enters the SARM, CSDL commands are mapped into a set of
corresponding Atomic Service Description Layer (ASDL) commands.

4. ASDL commands and parameters are translated to switch-specific commands for
execution on the network element (NE).

5. ASDL commands with their corresponding parameters are directed to the appropriate
switch (network) elements.

6. Execution on the NE results in various responses that are communicated back to the
SARM.

OSS/J or Web Service Work Order Processing with XML or XPath
Parameters

ASAP has the ability for structured XML order data to be passed from an upstream system
through the Activation system and to be flowed back to Provisioning or another upstream
system. Using this mechanism, the upstream system can include structured XML data on an
Activation order. The process is as follows:

1. The user enters multi-instance data in the Provisioning application or using the XML API as
part of a process flow.

2. The upstream system sends some or all of the order data. The upstream system performs
the following actions:

a. Creates an OSS/J XML or web service order request containing the order data
information. Instead of marshalling the multi-instance order data into name/value pairs,
the multi-instance XML order data is included as a parameter of the provisioning work
order. See "Sample OSS/J Work Order with Conditional Logic Using XML Parameters"
and "Sample OSS/J Work Order with Conditional Logic using XPath Parameters" for a
sample activation work order with multi-instance XML order data.

b. Submits the OSS/J order request to the JSRP of the Activation system for
provisioning.

3. When the incoming order request comes into the JSRP, the JSRP determines whether
XML data is present as part of the request. The JSRP sends a commit acknowledgement
to the Provisioning system if the work order is accepted in the Activation system.

Chapter 15
Work Order Processing Overview

15-2

Note:

If a work order already exists in the Activation system with the same work order
ID, the new work order is rejected.

Any work order data that exceeds allowed data sizes will cause the work order to
be rejected.

4. The JSRP saves the XML order data to the SARM database and updates the order
request with a reference ID that is returned by the database.

5. The SARM periodically picks up work orders and starts provisioning the work order.

6. When the work order is provisioned, the SARM loads the XML data from the database
table by using the reference ID. The work order can contain the following types of XML
parameters:

• XML – If passing complex structured data downstream.

• XPath – The SARM runs an XPath expression against the XML data in the following
cases:

– An XPath parameter is included in the CSDL spawning logic to determine whether
an ASDL should be spawned or not.

– An XPath parameter is used to spawn multiple instances of the same ASDLs
depending on how many instances of XML elements are present in the work order.

If an XPath parameter is used as part of spawning logic, the evaluation of the XPath
expression must result in a scalar value. The XPath parameter can also be used to
conditionally run ASDLs multiple times depending on how many instances of XML
elements present in the XML document. See "Sample OSS/J Work Order with Conditional
Logic using XPath Parameters."

7. The SARM examines each ASDL and evaluates its corresponding spawning expression
based on the work order parameters and CSDL parameters. This examination
encompasses the data within the multi-instance XML order data from the Provisioning
system by referring to the CSDL label of an XPath type parameter. In the case of an ASDL,
if the spawning expression is evaluated to be true, the ASDL is scheduled for provisioning
with its mapped ASDL parameters. For indexed ASDL parameters, the ASDL may be
provisioned multiple times for multi-instance order data (see "Indexed Parameters" for
more information). If the ASDL spawning expression evaluates to false, the ASDL is
omitted from provisioning. See "About Atomic Action Spawning Logic."

Spawning can fail under the following circumstances:

• The XML parameter that the XPath evaluates on is missing from the work order

• The XML document that the XPath evaluates on is not well structured

• The work order contains an invalid XPath expression

• The evaluation of XPath expression results fails

• The evaluation of an XPath expression results in a non-scalar value

8. The SARM provisions the ASDL to the NEP.

9. The NEP sends all ASDL parameters to the Java-enabled NEP.

10. If the ASDL contains an XML parameter, the Java-enabled NEP loads the XML data from
the SARM database table and makes the raw XML available as the value of the XML
parameter.

Chapter 15
Work Order Processing Overview

15-3

11. If the ASDL contains an XPath parameter, the Java-enabled NEP evaluates the associated
XPath expression when the value of the XPath parameter is requested.

For more information on the XML and XPath parameter types, refer to the ServiceModel
schema reference material, accessible through the ASAP Online Reference, "XML
Parameters," and "XPath Parameters."

12. After the MML command is sent to the NE, custom provisioning code may optionally
update the XML data with the NE's response by calling the Java-enabled NEP API (for
example, returnXMLCSDLParm(name, value)) so that subsequent ASDLs may make use
of this information. For more information, refer to the ASAP Online Reference.

13. If there is an update to the XML parameter, the Java-enabled NEP saves the modified XML
data to a SARM database table and updates the parameter value with a new reference ID
before returning the exit status of ASDL along with return parameters. These parameters
include updated global, CSDL, and information parameters that are returned to the NEP
(see "Return Parameter Types" for more information).

14. The NEP sends the ASDL's exit value and all returned parameter values for each returned
parameter (see "Configuring Base Exit and User Exit Types ").

15. The SARM continues to provision the next ASDL until the work order completes
successfully or fails.

16. After the work order is finished provisioning, SARM publishes the work order event to
various SRP servers (such as the JSRP) to indicate whether the work order has
completed.

17. Upon receiving the work order event from the SARM server, the JSRP server publishes
appropriate events (such as orderCompleteEvent, orderFailEvent) so that the automated
task in the Provisioning system can update the state of the task and transition to the next
task in the process flow (see "Configuring Service Action Fail and Complete Events").

About Testing Cartridge Elements with Sample Work Orders
Developer unit testing should occur as the cartridge is created so that all service actions,
atomic actions, and code are fully tested. When unit testing is complete, run all of the sample
work orders that have been created against the cartridge to ensure that the desired outcome is
achieved.

There are two ways to test a cartridge: using the SRP Emulator or the JSRP. Both of these
components are available with the ASAP installation.

About SRP Emulator Sample Work Orders
The SRP Emulator is an ASAP application server that fully emulates the complete behavior of
any SRP application. It is used to create and transmit work orders to the SARM generally in the
development and service modeling phases of project implementation. The SRP Emulator has
no external system interface. Instead of externally generated work orders, the SRP Emulator
employs user-defined test suites of work order definitions created in the SRP Emulator
database for execution by the emulator. Orders in such test suites are created in Service
Action format together with the appropriate parameters.

The file format is described using the following symbols and is detailed below.

WO <WO_ID> [WO Description] [ORG_UNIT <WorkGroup>] [ORIGIN <Originator>] [SRP_STAT
<SRP Status>] [PRIORITY <Priority>] [SRQ_TYPE <Service Request Type>] [USERID
<Security Userid on WO>] [PASSWORD <Security Password on WO>] [ASDL_TIMEOUT <atomic
action Timeout Value>] [PARENT_WO <Parent WO (Related Order)>] [WO_TIMEOUT <WO Timeout
Value>] [ASDL_RETRY_NUM <Number of atomic action Retries on WO>] [ASDL_RETRY_INT

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-4

<Interval between atomic action Retries>] [WO_RBACK <Rollback WO upon Failure>]
[ASDL_DELAY_FAIL <Treat Failures as Delayed Failures>] [DELAY_THRESHOLD <Delayed
Failure Threshold>] [BATCH_GROUP <Batch group to which order belongs>]

 [WO_PARM <ParmLbl> <ParmVlu>]... [WO_PARM <ParmLbl> <ParmVlu>]

 [BATCH_WO_PARM <BatchNum> <ParmLbl> <ParmVlu>]... [BATCH_WO_PARM <BatchNum> <ParmLbl>
<ParmVlu>]

 [[Service Action <Service Action Command>] [PARM <ParmLbl> <ParmVlu>]...
[PARM <ParmLbl> <ParmVlu>] [BATCH_PARM <BatchNum> <ParmLbl> <ParmVlu>]...
[BATCH_PARM <BatchNum> <ParmLbl> <ParmVlu>]]... [[Service Action <Service Action
Command>] [PARM <ParmLbl> <ParmVlu>]... [PARM <ParmLbl> <ParmVlu>]
[BATCH_PARM <ParmLbl> <ParmVlu>]... [BATCH_PARM <ParmLbl> <ParmVlu>]][SUITE <Suite
Name> [Suite description] [[WO_ID <WO_ID> [WO Delay] [WO Operation] [WO Due Date
Offset] [Parent WO]
 [WO Batch Group]]... [[WO_ID <WO_ID> [WO Delay] [WO
Operation] [WO Due Date Offset] [Parent WO]
 [WO Batch Group]]]
\

where:

• <>: indicates a mandatory parameter

• []: indicated an optional parameter

• ...: indicates multiple occurrences of a parameter

SRP Emulator sample orders are created under a project test folder (Package Explorer view).
As the tokens from the test file are positional parsed during loading, a very strict format is
imposed (assuming space separation between tokens). To avoid mistakes, it is easier to build
a sample test file from an old template, replacing the tokens and values with the new ones.

For more information about running a work order through the SRP Emulator, see ASAP
Installation Guide.

About JSRP Sample OSS/J Work Orders
The ASAP Java SRP (JSRP) component supports upstream requests in XML format bound by
OSS/J standards. Using Design Studio, you can create activation OSS/J test cases, which
generate work orders targeting the JSRP. These sample work orders can be sent from Design
Studio, after connecting to an ASAP environment where the cartridge to be tested has been
deployed. For details on how to create and run test cases from the Activation Test Cases
editor, see the Design Studio Help.

Sample OSS/J Work Order with Conditional Logic Using XML Parameters
This section describes the structure of a work order that contains XML data.

Table 15-1 shows a CSDL (C-ADD_LINE) mapped to three ASDLs.

Table 15-1 C_ADD_LINE mappings

Seq ASDL Condition Condition
Label

Condition
Value

Expression

1 A-
ADD_POTS_LI
NE

Always - - -

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-5

Table 15-1 (Cont.) C_ADD_LINE mappings

Seq ASDL Condition Condition
Label

Condition
Value

Expression

2 A-
ADD_CODES

Equals A1141 BD/U2B -

3 A-
ADD_OPTION
S

Equals A1141 BD/U2B -

ASDLs 2 and 3 have spawning logic associated with them. A-ADD_CODES and A-
ADD_OPTIONS are spawned only if A1141 is present in the upstream order with the value of
BD/U2B.

For A-ADD_CODES (see Table 15-2), in addition to the standard parameters (NE_ID and DN),
this ASDL expects the CSDL to contain parameters MY_OMS_DATA and MY_XML_DATA.
These two parameters are of XML type.

Table 15-2 A_ADD_CODES

CSDL Label ASDL Label Default1 Parameter Type Required

NE_ID MCLI NA Scalar Yes

MY_OMS_DATA OMS_DATA NA XML Yes

MY_XML_DATA XML_DATA NA XML No

DN DN NA Scalar Yes

1 The default is not applicable to XML and XPath

The CSDL parameter MY_OMS_DATA maps to the OMS_DATA ASDL parameter.

The following is a sample OSS/J XML work order createOrderByValueRequest that shows the
configuration described in Table 15-1 and Table 15-3:

<?xml version="1.0" encoding="UTF-8"?>
<createOrderByValueRequest xmlns="http://java.sun.com/products/oss/xml/
ServiceActivation" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:mslv-
sa="http://www.metasolv.com/oss/ServiceActivation/2003" xmlns:co="http://java.sun.com/
products/oss/xml/Common" xsi:schemaLocation="http://java.sun.com/products/oss/xml/
ServiceActivation ../../xsd/XmlServiceActivationSchema.xsd http://www.metasolv.com/oss/
ServiceActivation/2003 ../../xsd/ASAPServiceActivation.xsd">
<orderValue xsi:type="mslv-sa:ASAPOrderValue">
<apiClientId>SRL</apiClientId>
<orderKey>
<co:applicationContext>
<co:factoryClass/>
<co:url/>
<co:systemProperties/>
</co:applicationContext>
<co:type/>
<primaryKey>POTS-60</primaryKey>
</orderKey>
<priority>3</priority>
<requestedCompletionDate>2005-12-01T12:00:00</requestedCompletionDate>
<services>
<item xsi:type="mslv-sa:ASAPService">

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-6

<serviceKey xsi:type="mslv-sa:ASAPServiceKey">
<co:applicationContext>
<co:factoryClass/>
<co:url/>
<co:systemProperties/>
</co:applicationContext>
<co:applicationDN>System/DEV1/ApplicationType/ServiceActivation/Application/1-0;5-0;ASAP/
Comp/</co:applicationDN>
<co:type/>
<primaryKey>C-ADD_LINE</primaryKey>
</serviceKey>
<mslv-sa:asdlRoute>TO_BE_DETERMINED</mslv-sa:asdlRoute>
<mslv-sa:serviceValues>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>NE_ID</mslv-sa:name>
<mslv-sa:value>TOR_REM1</mslv-sa:value>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue>
<!-- Xpath type parameter with CSDL parameter name "A1141"
 and value "/exchange/a1141" -->
<mslv-sa:name>A1141</mslv-sa:name>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">1

 <mslv-sa:name>MY_OMS_DATA</mslv-sa:name>
 <mslv-sa:xmlValue>
 <exchange xmlns="">
 <a1141>BD/U2B</a1141>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue>
<!-- Xml type parameter with CSDL parameter name "MY_OMS_DATA" and value of order data
from Provisioning -->
<mslv-sa:name>MY_OMS_DATA</mslv-sa:name>2

<mslv-sa:xmlValue>
<exchange>3

<a1141>BD/U2B</a1141>
<codes>
<code>4

<poe>984</poe>
<decode>01246811</decode>
<pds_list>
<pds>2134</pds>
<pds>3265</pds>
<pds>1234</pds>
<pds>2345</pds>
<pds>4321</pds>
</pds_list>
</code>
<code>
<poe>984</poe>
<decode>01246812</decode>
<pds_list>
<pds>6789</pds>
<pds>9876</pds>
<pds>5432</pds>
<pds>2345</pds>
<pds>2354</pds>

1 Identifies an XPATH, where the associated ASDL is spawned only if A1141 is present in the XML order data with the value
of BD/U2B.

2 A CSDL parameter on the order that references an ASDL parameter label. This ASDL parameter label of type X (required
XML parameter) is associated with.

3 Root element of the XML fragment.
4 The data from the XML order. In this example, found between <code> and </code>.

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-7

</pds_list>
</code>
<code>
<poe>984</poe>
<decode>01246813</decode>
<pds_list>
<pds>3421</pds>
<pds>5632</pds>
<pds>1020</pds>
</pds_list>
</code>
…
</codes>
<errors>
<error>
<error_priority>1</error_priority>
<error_name>BROKEN PIPE</error_name>
<error_description>Lost switch connection</error_description>
</error>
…
</errors>
</exchange>
</mslv-sa:xmlValue>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>DN</mslv-sa:name>
<mslv-sa:value>6742727</mslv-sa:value>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>LATA</mslv-sa:name>
<mslv-sa:value>236</mslv-sa:value>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>LCC</mslv-sa:name>
<mslv-sa:value>1</mslv-sa:value>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>LTG</mslv-sa:name>
<mslv-sa:value>1</mslv-sa:value>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>LEN</mslv-sa:name>
<mslv-sa:value>1010101</mslv-sa:value>
</mslv-sa:serviceValue>
</mslv-sa:serviceValues>
</item>
</services>
<mslv-sa:parentKey>
<co:applicationContext>
<co:factoryClass/>
<co:url/>
<co:systemProperties/>
</co:applicationContext>
<co:applicationDN/><co:applicationDN/>
<co:type/>
<primaryKey/>
</mslv-sa:parentKey>
<mslv-sa:origin>ASC Test Orders</mslv-sa:origin>
<mslv-sa:organizationUnit>POTS</mslv-sa:organizationUnit>
<mslv-sa:timeout>-1</mslv-sa:timeout><!-- Use Default -->
<mslv-sa:secureData>true</mslv-sa:secureData>
<mslv-sa:maximumDelayFail>0</mslv-sa:maximumDelayFail>

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-8

<mslv-sa:rollbackIfFail>false</mslv-sa:rollbackIfFail>
<mslv-sa:batchGroup/>
<mslv-sa:asdlTimeout>-1</mslv-sa:asdlTimeout> <!-- Use Default -->
<mslv-sa:asdlRetry>5</mslv-sa:asdlRetry>
<mslv-sa:asdlRetryInterval>120</mslv-sa:asdlRetryInterval>
<mslv-sa:asdlDelayFail>false</mslv-sa:asdlDelayFail>
<mslv-sa:externalSystemId/>
<mslv-sa:srqAction>ADD</mslv-sa:srqAction>
<mslv-sa:command>UPDATE</mslv-sa:command>
<mslv-sa:orderParameters>
<mslv-sa:orderParameter>
<mslv-sa:name>ACCT</mslv-sa:name>
<mslv-sa:value>1764571</mslv-sa:value>
</mslv-sa:orderParameter>
</mslv-sa:orderParameters>
<mslv-sa:infoParms/>
<mslv-sa:extendedWoProperties/>
</orderValue>
</createOrderByValueRequest>

After the MML command is sent to the NE, a system integrator can persist the response from
the NE in the Activation system so that the upstream system can retrieve information from the
NE's response. The response from the NE may also update the XML order data as part of
Activation work order. The response from the NE can be used by:

• Subsequent ASDLs

To send information between ASDLs, system integrators can call JNEP's API (such as
returnXMLCSDLParm(name, value), returnGlobalParam(name, value)) to return CSDL
parameters or global work order parameters.

Consider the sample work order: A-ADD_CODES can pass an XML document to
subsequent ASDL A-ADD_OPTION by calling returnXMLCSDLParm() function with the
MY_XML_DATA parameter, where the value of parameter is the XML document. For
example:

<switch>
<a1141>BD/U2B</a1141>
<options>
<feature>1100</feature>
<feature>3232</feature>
<feature>2000</feature>
</options>
</switch>

• The Provisioning system to update the order in Provisioning

• Any upstream system to update the NEs status

Sample OSS/J Work Order with Conditional Logic using XPath Parameters
This section describes the structure of a work order that contains XPath parameters.

Table 15-3 describes the same ASDL using XPath parameters.

Table 15-3 A_ADD_CODES Parameters

CSDL Label ASDL Label Default1 Parameter Type Required Dependent
ASDL Label2

NE_ID MCLI NA Scalar Yes -

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-9

Table 15-3 (Cont.) A_ADD_CODES Parameters

CSDL Label ASDL Label Default1 Parameter Type Required Dependent
ASDL Label2

MY_OMS_DATA OMS_DATA NA XML Yes -

MY_XML_DATA XML_DATA NA XML No -

A1141 A1141 NA XPath Yes OMS_DATA

CODE++ CODE NA XPath No OMS_DATA

DN DN NA Scalar Yes -

1 The default is not applicable to XML and XPath
2 Applies only to the XPath type

The following sample code illustrates how the service model for this ASDL may appear. Note
the parameter types.

<?xml version="1.0" encoding="UTF-8"?>
<serviceModel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:sam="http://
www.metasolv.com/ServiceActivation/2003/ServiceModel" xmlns="http://www.metasolv.com/
ServiceActivation/2003/ServiceModel" xmlns:fo="http://www.w3.org/1999/XSL/Format">
<description>Adds a line.</description>
<atomicService name="A_ADD_CODES" xsi:type="AtomicServiceType">
<description>Adds codes.</description>
<rollbackService enable="false">
</rollbackService>
<sendParameterCount>false</sendParameterCount>
<parameter name="MCLI" xsi:type="SimpleParameterType">
<description>Host NE identifier.</description>
<required>true</required>
<default/>
<parameterValueMap>NE_ID</parameterValueMap>
</parameter>
<parameter name="OMS_DATA" xsi:type="XMLParameterType">
<description>OMS data.</description>
<required>true</required>
<default/>
<parameterValueMap>MY_OMS_DATA</parameterValueMap>
</parameter>
<parameter name="XML_DATA" xsi:type="XMLParameterType">
<description>XMLDATA.</description>
<required>false</required>
<default/>
<parameterValueMap>MY_XML_DATA</parameterValueMap>
</parameter>
<parameter name="A1141" xsi:type="XPathParameterType">
<description>Description.</description>
<required>true</required>
<default/>
<parameterValueMap>A1141</parameterValueMap>
<dependentXMLParameter>OMS_DATA</dependentXMLParameter>
</parameter>
<parameter name="CODE" xsi:type="XPathParameterType">
<description>Code.</description>
<required>false</required>
<default/>
<parameterValueMap>CODE#</parameterValueMap>

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-10

</parameter>
<parameter name="DN" xsi:type="SimpleParameterType">
<description>DN.</description>
<required>true</required>
<default/>
<parameterValueMap>DN</parameterValueMap>
</parameter>

In A_ADD_CODES Parameters table, OMS_DATA is an ASDL parameter that is associated
with two network action labels that invoke the evaluation of an XPath expression. As a result, if
the CSDL contains a parameter A1141, the SARM attempts to locate a set of data in the order
designated by <a1141>. The incoming XML must identify that specific CSDL parameter name
and its XPath value, an example of which follows:

<mslv-sa:serviceValue>
<!-- Xpath type parameter with CSDL parameter name "A1141" and value "/exchange/a1141" --
>
<mslv-sa:name>A1141</mslv-sa:name>
<mslv-sa:xpathValue>/exchange/a1141</mslv-sa:xpathValue>

The XML should have an XPath name and value declaration for each CSDL parameter that is
subject to an XPath expression.

If the A1141 parameter exists on the order, ASAP will apply the data at the specified location in
the file, in the <a1141> element:

<exchange>
<a1141>
...
</a1141>

The spawning logic for A-ADD_CODES (described in C-ADD_LINE mappings table) requires
that a condition value of BD/U2B be defined for parameter a1141 for that ASDL to be spawned.
For this ASDL to be spawned, the incoming XML must contain data formulated as follows:

<exchange>
<a1141>BD/U2B</a1141>
<codes>
<code>
...
</code>
...
</codes>

For parameter CODE, the ++ at the end of service action label CODE++ indicates that at run
time, the current network action may be spawned multiple times depending on how many
instances of "exchange/codes/code" are present in the work order. In addition, the network
action label CODE for each A-ADD_CODE, execution will have a different value.

In the following example, the ASDL is spawned based on the evaluation of the XPath
expression, and the order data contained in the exchange/codes/code location is passed to the
NE.

<exchange>
<a1141>BD/U2B</a1141>
<codes>
<code>
<poe>984</poe>
<decode>01246811</decode>
<pds_list>
<pds>2134</pds>
<pds>3265</pds>

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-11

<pds>1234</pds>
<pds>2345</pds>
<pds>4321</pds>
</pds_list>
</code>
<code>
…

About Web Service Sample Work Orders
You can create web service work orders by taking the OSS/J work order information generated
using Design Studio and placing it within this web service sample wrapper:

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
<env:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" env:mustUnderstand="1">
 <wsse:UsernameToken xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="unt_AF6po7ocfkMUDzde">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-username-token-profile-1.0#PasswordText">password</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </env:Header>
 <env:Body>
 <m:order_type xmlns:m="http://xmlns.oracle.com/communications/activation/asap/
webservices">

OSS/J_work_order

 </m:order_type>
 </env:Body>
</env:Envelope>

where:

• username is the user name for the web service user-defined in the ASAP WebLogic Server
instance.

• password is the password for the web service user-defined in the ASAP WebLogic Server
instance.

• order_type is the type of work order sent.

• OSS/J_work_order is the OSS/J work order information. When you add the work order
information, do not include the XML header information (<?xml version="1.0"
encoding="UTF-8"?>) because this has already been provided in the sample. Ensure that
there are no namespace conflicts.

Guidelines for Creating Sample Work Orders
Always create sample work orders that test all of the service action and atomic actions in the
cartridge. This includes work orders that test for sunny day as well as rainy day scenarios.
Though it may not be possible to exercise all of the method logic (for example, all NE response
combinations), mainstream paths (both common success and failure paths) should be invoked
by the test suite.

Chapter 15
Guidelines for Creating Sample Work Orders

15-12

Use consistent values for the parameters when creating sample work orders. This is useful
when using the OCA GUI to query on orders by the field names and distinguish other orders
from the sample cartridge orders.

ORG_UNIT MetaSolv
ORIGIN TEST

The value of the SRQ_TYPE variable should be appropriately set depending on the context of
the work order (A – add, R – remove, C – change/update, Q - query).

SRQ_TYPE = A/R/C/Q

Troubleshooting Atomic Actions
Each atomic action-command has associated parameters that are sent to the NEP by the
SARM when the ASAP is selected to provision.

Note:

An atomic action parameter value must be specified at the time of provisioning. If the
parameter is not supplied at the time of provisioning, a SARM translation error
results.

The following errors can occur during atomic-action-to-service-action translation:

• No service action configuration in database – The SARM receives a service action
whose configuration is unknown and rejects the work order.

• No service action To atomic action translation in database – The service action is
skipped because there is no work order to be done.

• No atomic action configuration in database – The SARM shuts down upon finding that
an atomic action configuration is missing while loading the atomic action configurations
associated with each service action. If all atomic action configurations are not defined, the
work order being provisioned is failed.

• Atomic action parameters not specified – The SARM treats mandatory and optional
parameters differently. If a mandatory atomic action parameter is not translated
successfully with a name-value pair in the work order (empty string for the value is
allowed), and no default value is available in the database, the work order is failed. The
reason can be the label is missing in the work order. If the parameter is optional, order
provisioning continues.

On startup, the SARM ensures that the following tables exist and have been populated:

• Service action configuration table

• Service-action-to-atomic-action translation table

• Atomic action configuration table

• Atomic action parameter table

If any of these tables is empty, the SARM shuts down.

Chapter 15
Troubleshooting Atomic Actions

15-13

Troubleshooting Service-Action-to-Atomic-Action Translation
Errors

The following errors can occur during atomic action to service action translation:

• No Service Action configuration in database – The SARM receives a service action
whose configuration is unknown and rejects the work order.

• No Service Action To Atomic Action translation in database – The service action is
skipped because there is no work order to be done.

• No Atomic Action configuration in database – The SARM shuts down upon finding that
an atomic action configuration is missing while loading the atomic action configurations
associated with each service action. If all atomic action configurations are not defined, the
work order being provisioned is failed.

• Atomic Action parameters not specified – The SARM treats mandatory and optional
parameters differently. If a mandatory atomic action parameter is not translated
successfully with a label-value pair in the work order (empty string for the value is allowed),
and no default value is available in the database, the work order is failed. The reason can
be the label is missing in the work order. If the parameter is optional, order provisioning
continues.

Chapter 15
Troubleshooting Service-Action-to-Atomic-Action Translation Errors

15-14

16
Creating and Deploying a SAR File (ASAP
Cartridge)

This chapter describes how to create and deploy a service activation archive (SAR) file (Oracle
Communications ASAP cartridge).

SAR File Creation and Deployment Options
ASAP provides the following SAR file creation tools:

• Design Studio: Design Studio automatically generates a SAR file when you build an ASAP
cartridge project without errors. Design Studio generates SAR files that support the ASAP
4.7 folder structure (see "ASAP 4.7 SAR File Folder Structure").

• CreateSar: The ASAP_Home/programs/CreateSar script generates ASAP 4.6 SAR files.
This script generates SAR files that support the ASAP 4.6 folder structure (see "ASAP 4.6
SAR File Folder Structure") and is included for backward compatibility. For more
information about the CreateSar script, see "Creating an ASAP 4.6 SAR File."

ASAP provides several SAR file deployment tools:

• The Service Activation Deployment Tool (SADT): This tool can be used to deploy the
ASAP service model contained in the SAR file. For more information, see "Deploying
Service Models with the Service Activation Deployment Tool."

• The Service Activation Configuration Tool (SACT): This tool is primarily used to configure
ASAP servers using XML; however, SACT can also be used to deploy server-specific
configuration changes within a SAR file contained in SarPatch_configure and
SarPatch_unconfigure files. Design Studio cannot be used to generate these files: You
must create them manually. For more information about this tool, see ASAP Server
Configuration Guide.

• The ASAP_Home/scripts/PostDeploySarFile: This tool can be used to deploy SQL*Plus-
specific configuration changes within a SAR file contained in SarPatch and
SarPatch_undeploy files. In addition, this tool searches SAR file directories for SQL files
with no undeploy_ prefix and work order TST files and commits them to the database.
Design Studio cannot be used to generate these files: You must create them manually.

• The ASAP_Home/samples/DIT/scripts/installCartridge file: This sample script
consolidates the SACT, SADT and PostDeploySarFile deployment options and should be
customized for cartridges deployed in production environments.

• Design Studio: Design Studio provides the same functionality as SADT, but does not
support PostDeploySarFile or SACT functionality. This tool should be used in
development environments. For more information about the Design Studio cartridge
deployment feature, see the Design Studio Help.

SAR File Folder Structure Options
ASAP supports the following SAR file folder structure options:

• ASAP 4.7 SAR File Folder Structure

16-1

• ASAP 4.6 SAR File Folder Structure

ASAP 4.7 SAR File Folder Structure
Table 16-1 lists and describes the ASAP 4.7 SAR file folder structure used by Design Studio
and supported for XML-based cartridges. You can enhance this directory structure with
additional directories based on your requirements and deliverables.

Table 16-1 Design Studio ASAP 4.7 Folder Structure

Directory Description

ActionProcessor This folder contains action processor XML information used by Design
Studio. This information is stored in the SAR file but is not used by
ASAP.

doc This folder contains Design Studio autogenerated cartridge
documentation. For more information about autogenerated cartridge
documentation, see "Documenting ASAP Cartridges ."

lib This folder contains a .jar that provides the Java classes
(autogenerated, or non-autogenerated) created to implement
connections, or send network element (NE) commands as MML or API
calls.

META-INF This folder contains the following files:

• activation-model.xml: For more information about this file, see
"SA_archive.xsd."

• cartridge.xml: This file defines the ASAP cartridge version, target
platform, and the packaged deployment list.

NetworkElements This folder contains NE XML information that ASAP uses to make NE
connections.

ServiceModel This folder contains service model XML information, such as atomic
actions, service actions, connection handlers, user-defined exit types,
and so on.

src This folder contains the source files for the Java classes compiled in
the .jar file.

ASAP 4.6 SAR File Folder Structure
When creating an ASAP 4.6 SAR file, you must use a fixed directory structure. This folder
structure was developed in ASAP 4.6 and was replaced by the ASAP 4.7 folder structure (see
"ASAP 4.7 SAR File Folder Structure"). ASAP supports the ASAP 4.6 folder structure for
backward compatibility.

Note:

Design Studio uses the ASAP 4.7 SAR file folder structure when generating SAR
files; however, you can import ASAP SAR files with the 4.6 folder structure into
Design Studio.

This section describes the minimum required structure; you can enhance this directory
structure with additional directories based on your requirements and deliverables.

Chapter 16
SAR File Folder Structure Options

16-2

META-INF/activation-model.xml
vendor/
 NE technology/
 service pack/
 sample_wo/
 sarm/
 ne_progs/
 PLSQL/
 control/
 PLSQL/
 nep/
 PLSQL/
 java/
 lib/
 cpp/
 lib/
 service_model/{at least one .xml file}
 application_config/ {optional}
 common/
 sarm/
 ne_progs/
 PLSQL/
 control/
 PLSQL/
 nep/
 PLSQL/
 java/
 lib/
 cpp/
 lib/
 service_model/ {optional}
 application_config/ {optional}
 scripts/ {optional}
vendor
…

The elements that uniquely identify an archive are a combination of the following:

• NE or EMS/NMS vendor name

• NE name and technology/software

• Service provided by the service model

The directory format of vendor/NE technology/service pack/ avoids collisions with other
activation model directory structures.

• vendor directory – All ASAP service activation models developed for the same
NE/EMS/NMS vendor reside in this directory.

• vendor/NE Technology – All ASAP service activation models for the same NE/EMS/NMS
vendor and the same software load reside in this directory.

• vendor/NE Technology/service pack – The base directory for a specific service activation
model. The following are examples of services: ADSL_ATM, SDSL_FR and Mail_Box.

An example of the directory format is Nortel/UEIMAS_5_2/ADSL_ATM.

Table 16-2 lists the directories supported for ASAP 4.6 SAR files.

Chapter 16
SAR File Folder Structure Options

16-3

Table 16-2 ASAP 4.6 SAR File Directory Structure

Directory Description

sample_wo Contains sample work order test files.

sarm Contains files specific to the current activation model and targeted for service in
the SARM database.

• PLSQL – Contains files with sample ASAP configuration data specific to the
SARM database.

control Contains files specific to the current activation model and targeted for service in
the CONTROL database.

• PLSQL – Contains files with sample ASAP configuration data specific to the
CONTROL database.

nep Contains files specific to the current activation model and targeted for service in
the NEP database.

• PLSQL – Contains files with sample ASAP configuration data specific to the
NEP database.

java Contains all implementation files for the JInterpreter.

• lib – Contains JAR files for JInterpreter provisioning implementations and
third-party libraries.

service_model Contains the XML documents that define the service models for this activation
model. There must be at least one XML file in this directory. All documents in this
service model directory must conform to the ServiceModel schema (refer to the
following section).

application_config Contains the XML documents that define configurations other than the service
models for this activation model. There is no restriction on the number of XML files
in this directory. All XML documents in this directory must conform to the
activationConfig schema. The XML file in this directory can be an alternative to the
SQL file in PLSQL directories above. This subdirectory is optional.

common/scripts Contains the user patch script file SarPatch that is invoked by other utilities, such
as PostDeploySarFile and asapConfig. These scripts customize the content
within the SAR file, such as replacing fixed strings in the SQL or non-service-
model XML files with relevant environment variables. The creator of the SAR file is
responsible for providing this customization script file. The scripts and SarPatch
are both optional.

SarPatch is invoked after a SAR file has been deployed. It seeks any SQL file in
PLSQL/ and WO test file in the sample_wo directory, and populates data into the
relevant ASAP databases. Before populating, the utility tries to run SarPatch in
the common/scripts directory, if it exists in the SAR file, to make generic SQL data
specific to the current activation model.

This utility is invoked as follows:

PostDeploySarFile [-b] sar_file_with_path

This directory also contains the SarPatch_configure and SarPatch_unconfigure
scripts. These scripts are invoked by the script asapConfig to perform
customizations or patching against the application configuration within the SAR
file.

The common directory has a directory structure similar to service pack, with one more scripts
subdirectory. The common directory contains all common files across different cartridges that
share the same vendor/NE technology/ but offer different services. These files can include
common definitions such as connect/disconnect classes, and so on. It also contains some
supplementary files such as the SarPatch script.

The SARM, Java, NEP, Control and CPP directories under the common directory have a
similar structure and meaning as the directories located under the <service_pack> directory.

Chapter 16
SAR File Folder Structure Options

16-4

Creating an ASAP 4.6 SAR File
You can archive the directory using the assembly tool. The assembly tool:

• Validates the directory structure

• Ensures that an activation-model.xml file and at least one service model XML file exist

• Validates the activation-model.xml file and all service model xml files against their
respective schemas. This validation is performed using the Oracle9_0_2_0_0D XML
parsers.

• Picks up the activation model ID from the activation-model.xml file

You can also archive the directory using the jar command. Components other than service
model components can be packaged in an archive file; for example, Design guidelines, API
documentation, and source files.

After all validation is successfully completed, the assembly tool assembles the components to
generate an archive file with a base file name that is the same as the ID, and supplies the sar
extension. The assembly tool accepts the directory where the SAR file is to be placed as a
parameter.

To run the assembly tool, enter the following command:

CreateSar [-help] [-v] <sar_file_dir>

The current directory must be the base from which the SAR file is made and it is the parent
directory of the <vendor> directory. The <sar_file_dir> specifies where you want to put the
SAR file you have created. The -v parameter enables directory structure validation. If you omit
this parameter, no directory structure validation is performed. The SAR file name is generated
based on the name in activation-model.xml.

Deploying Service Models with the Service Activation
Deployment Tool

The SADT deploys the SAR file. The SADT has three interfaces:

• Using the SADT Command Line Interface

• Using the SADT Web Interface

• Using the SADT JMX Interface

You can use the SADT to assemble and deploy generic service models and cartridge-specific
service models.

Using the SADT Command Line Interface
You can invoke the SADT using a command-line interface. The command-line interface must
be invoked by passing in the WebLogic Server URL, a user name and a password.

The command-line interface supports two modes of invocation:

• Interactive – You can select options and enter data

• Script-based – You can start the SADT from within scripts by passing in all parameters on
the command-line.

Chapter 16
Creating an ASAP 4.6 SAR File

16-5

Note:

A customizable script sadtclient is available in ASAP_Home/scripts. This script
enables you to pre-populate the information required in Step 2 for up to four
working environments. The first time you use the script, you will be prompted to
modify the script.

You can choose from the following actions:

• List all deployed Service Activation Archive model

• Deploy a Service Activation Archive model

• Undeploy a Service Activation Archive model

• Query a Service Activation Archive model

Using the SADT Command Line Interface in Interactive Mode
To access the command-line utility in interactive mode, do the following.

1. From within a UNIX or Linux script, enter the following:

java -classpath $CLASSPATH com.mslv.activation.management.application.sadtClient

Note:

If sadtClient.jar, asaplibcommon.jar or weblogic.jar are not in $CLASSPATH, add
them.

2. A login screen appears. Type the information that appears in italics.

Welcome to Service Activation Deployment Tool
Please enter WebLogic login information
WebLogic host:port -> myhost:1234
Username -> username
Password -> password
JNDI Context -> (long JNDI string)
Replace ('t' for true, else false) -> (t or others)
Connecting to WebLogic server...

An example of a long JNDI string is System/S123/ApplicationType/ServiceActivation/
Application/1-0;4-7;ASAP/Comp/

When you have defined your JNDI prefix, replace "S123" above with the appropriate $ENV_ID
value in your ASAP environment, for example, "TST1".

1. After you have logged in, the following menu appears. Select the option you require:

***** Service Activation Deployment Tool *****
1. Deploy an activation model
2. Undeploy an activation model
3. Query an activation model
4. List all deployed activation models
5. Export existing service model
Enter Choice, <Q - Quit): 1

Option 5 enables you to save the activation model to a SAR file.

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-6

Deploying a Service Activation Model Archive
This menu option prompts you to do one of the following:

• Type the absolute file path for a Service Activation Model Archive to be installed on the
ASAP instance

• Specify the SAR ID if the SAR already exists in ASAP but has not yet been deployed.

The status of deployment is displayed on screen and the menu option does not return until the
SAR is successfully or unsuccessfully deployed.

***** 1. Deploy an activation model *****
Enter the file path or ID of the SAR you want to deploy
-> /sunenv123/samples/sadt/sar/Nortel_HLR_GEM14_MSP.sar
Deploying model...
Activation model </sunenv123/samples/sadt/sar/Nortel_HLR_GEM14_MSP.sar> has been deployed
Press ENTER to continue ...

Undeploying a Service Activation Model Archive
This menu option prompts you to type the ID of an activation model to uninstall from an ASAP
instance. If you do not know the SAR ID, refer to "List All Deployed Activation Models."

*****2. Undeploy an activation model *****
Enter the ID of the model you want to undeploy
-> Nortel_DMS_POTS
Activation model Nortel_DMS_POTS has been undeployed

Querying an Activation Model
This menu option prompts you to type the ID of an activation model to query. It only queries
models that are deployed in ASAP. If the model is undeployed, it returns with a message
stating the requested model is not deployed.

If you select Query an Activation Model, the following appears:

***** 3. Query an Activation Model *****
Enter the ID of the activation model you want to query
-> Nortel_HLR_GEM14_MSP
Querying activation model <Nortel_HLR_GEM14_MSP> ...
id: Nortel_HLR_GEM14_MSP
deployed: Yes
description: Nortel 3G Wireless GEM14 Cartridge
vendor: Nortel
technology: HLR
softwareLoad: GEM14
version:
author: Nortel Networks
label: 1.2
majorVersion: 1
minorVersion: 2
createDate: Sun Aug 13 00:00:00 GMT-05:00 2000
validDuration: P1Y2M3DT10H30M

All information in the deployment descriptor is returned except for the icon and all component
elements.

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-7

List All Deployed Activation Models
This action lists IDs for all deployed models.

***** 4. List all deployed activation models *****
IDs of all deployed activation models are:
Nortel_HLR_GEM14_MSP
Nortel_PASSPORT_3_0_ATM_FR

Using the SADT Command Line Interface in Script Mode
You can access SADT using scripting through the command line interface. All functions in the
command line interface are accessible from a single invocation of the tool. All parameters to a
function can be passed on the command line.

Examples of invoking the command line tool for script-based usage:

• Deploying a service activation model

This function call deploys the activation model specified by the file name:

java sadtClient -url myhost:1234 -username system -password admin - jndiContext
"System/S123/ApplicationType/ServiceActivation/Application/1-0;4- 6;ASAP/Comp/"
deploy /sunenv123/samples/sadt/sar/Nortel_HLR_GEM14_MSP.sar

This function call returns the same status as AMDT-450-1.2:

Activation model </sunenv123/samples/sadt/sar/Nortel_HLR_GEM14_MSP.sar> has been
deployed

• Undeploying an activation model

java sadtClient -url myhost:1234 -username system -password admin -jndiContext
System/S123/ApplicationType/ServiceActivation/Application/1-0;4-7;ASAP/Comp/ -
replace false undeploy Nortel_HLR_GEM14_MSP

This function call returns the same status as AMDT-450-1.3:

Activation model <Nortel_HLR_GEM14_MSP> has been undeployed
• Querying for an activation model

java sadtClient -url myhost:1234 -username system -password admin -jndiContext
System/S123/ApplicationType/ServiceActivation/Application/1-0;4-7;ASAP/Comp/ -
replace false query Nortel_HLR_GEM14_MSP

This function call returns the information about the model, same as ADMT-450-1.4.

id: Nortel_HLR_GEM14_MSP
deployed: Yes
description: Nortel 3G Wireless GEM14 Cartridge
vendor: Nortel
technology: HLR
softwareLoad: GEM14
version:
author: Nortel Networks
label: 1.2
majorVersion: 1
minorVersion: 2
createDate: Sun Aug 13 00:00:00 EDT 2000
validDuration: P1Y2M3DT10H30M

• List all deployed activation models, by doing one of the following:

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-8

– Enter java sadtClient and follow the prompts

– Enter the following:

java sadtClient -url myhost:1234 -username system -password admin -jndiContext
System/S123/ApplicationType/ServiceActivation/Application/1-0;4-7;ASAP/Comp/ -
replace false list

This function call returns a list of all model IDs that are deployed, same as ADMT-450-1.1.

IDs of deployed activation models are:
Nortel_DMS_POTS Deployed
Nortel_HLR_GEM14_MSP Undeployed

The following is a sample script to invoke the commands:

#!/bin/ksh
if [-f /sunenv123/samples/sadt/sar/Nortel_HLR_GEM14_MSP.sar]; then
java sadtClient -url myhost:1234 -username system -password admin -jndiContext System/
S123/ApplicationType/ServiceActivation/Application/1-0;4-7;ASAP/Comp/ -replce true
deploy /sunenv123/samples/sadt/sar/Nortel_HLR_GEM14_MSP.sar
fi

Note:

In an actual script line, all the semicolons above must be preceded by an escape
character "\".

To simplify the use of the command scripts, ASAP includes scripts that prompt you to
personalize them when invoked. Edit this script and follow the instructions placed at the
beginning of the script to change required strings. After the script is personalized, you will not
have to type the host name, port number, long JNDI string, user name, and password, which
seldom need to be changed in a working environment.

For more information on personalized scripts, see ASAP Server Configuration Guide.

Using the SADT Web Interface
The web-based SADT GUI is a standalone client application. Using the SADT GUI, you can:

• Viewing Deployed Service Activation Models

Deploying a service activation archive file

• Undeploying a Service Activation Model

• Deploying Multiple Cartridges

Viewing Deployed Service Activation Models
To view deployed service activation models:

1. In the Address field of your web browser, type the login URL (for example, http://
<BEA_HOST>:<BEA_PORT>/<ENV_ID>/sadtConsole), and press Enter.

The Enter Network Password dialog box appears.

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-9

Note:

<ENV_ID> represents the environment ID chosen in the installer. See the table of
installation values in the ASAP Installation Guide.

2. In the User Name field, enter your user name.

3. In the Password field, enter your password, and then click OK.

4. Click OK. The Service Activation Deployment Tool view appears.

5. View the details of a service activation model, by clicking the appropriate service activation
label. The service activation model details are displayed in the lower part of the window.

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-10

Deploying a service activation archive file
To deploy a service activation archive file, select a service activation archive file and then
deploy the selected SAR file.

When deploying service models, you must pay special attention to dependencies (displayed in
the Dependent Service Models column of the SADT console). If service model B is
dependent on service model A, service model A must be deployed before service model B.

To deploy a service activation archive file:

1. In the Service Activation Deployment Tool view, do one of the following:

• If the service activation archive file already appears in the list, click Deploy.

The Deploy Service Activation Models view appears.

• If the service activation archive file that you want to deploy does not appear in the list,
click Browse and navigate to the location of the SAR files. The SAR file name appears
in the Select a model to deploy field.

2. Depending on your action above, click Deploy either in the list or in the Deploy New SADT
section. All successfully deployed service activation models are flagged with True in the
Deployed column.

Note:

You can redeploy a service activation model that has already been deployed. If
you change the contents of the deployment descriptor (activation-model.xml) of
a SAR file, the modified SAR file is considered as a different version of the
service activation model. In this case, you must undeploy the existing service
activation model and then deploy the modified SAR file.

Undeploying a Service Activation Model
You can undeploy one or more service activation models from an ASAP instance.

If you are undeploying a service model, you must undeploy the dependent service model
before undeploying its parent. The SADT console displays an error message if you attempt to
undeploy a service model that has dependent service models.

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-11

To undeploy a service activation model:

1. In the Service Activation Deployment Tool view, click Undeploy.

The screen refreshes and the Deployed column displays False.

Deploying Multiple Cartridges
You can deploy (and undeploy) SAR cartridge files without conflicts, even if multiple cartridges
with the same content are deployed. When a SAR file is deployed through either the command
line, GUI, or JMX-based interfaces, a target directory is created using the cartridge ID as a
component in the directory name. The Java provisioning files are placed into this unique target
directory where they will not be overwritten by future deployments.

After the Java provisioning files are placed in the target directory, the CLASSPATH is modified
to contain references to the newly added Java JAR files.

Using the SADT JMX Interface
With the Java Management Extension based interface, you can access all deployment
functionality programmatically.

Figure 16-1 JMX-based Interface

The ServiceActivationMBean is the base interface for all MBeans in the system. Every MBean
is registered into the WebLogic Server (as MBeanServer) with an object name.
ApplicationMBean represents an ASAP instance. Currently, its interface only defines some
simple management functionality to retrieve and create new ActivationModelMBeans. An

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-12

ActivationModelMBean represents an activation model archive. To create a new
ActivationModelMBean, invoke the createActivationModelMBean method on an
ApplicationMBean. After an ActivationModelMBean has been created, the archive can be
deployed or undeployed.

Configuring JMX Interfaces to Validate XML Documents
You can configure JMX interfaces to validate all XML documents against their respective
schemas within the WebLogic server. To enable validation, you must change the VALIDATE
option to True in the web.xml deployment descriptor, through the WebLogic Administration
Console.

To enable the Validate option:

1. Navigate to ASAP domain name > Deployments > Web Applications, right-click
sadtConsole and choose Edit Web Application Deployment Descriptor. A new browser
window opens in which you can edit the deployment descriptors.

2. Navigate to Web Descriptor > Web App Descriptor. Right-click Env Entries and choose
Configure a new EnvEntry.

3. In the screen that appears, enter the following:

• Description – An optional description

• Env Entry Name – VALIDATE

• Env Entry Value – true

• Env Entry Type – java.lang.String

4. Click Create.

The EnvEntry portion of web.xml appears as follows:

<env-entry>
 <env-entry-name>ASAP_BASE</env-entry-name>
 <env-entry-value>ASAPDEV_ASAP_BASE</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>SYBASE</env-entry-name>
 <env-entry-value>ASAPDEV_SYBASE</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
 </env-entry>

<env-entry>
 <env-entry-name>VALIDATE</env-entry-name>
 <env-entry-value>false</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
 </env-entry>

<env-entry>
 <env-entry-name>SA-jndi-context</env-entry-name>
 <env-entry-value>System/SAAS-1/ApplicationType/ServiceActivation/Application/
1-0;4-7
;ASAP/Comp/</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
 </env-entry>

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-13

Loading ASAP Services Dynamically
When an ASAP server such as a SARM or NEP is initialized, configuration data groups are
loaded from the database into memory. These configuration data groups are:

• ASAP service definitions – Includes all service-action and atomic-action related
configurations.

• ASAP network interface configurations – Includes hosts, NE resources.

In some cases, configuration data can be loaded into memory after initialization (namely, NE
communication parameters). For all other new service definitions or network interface
configurations to take effect, you must do one of the following:

• Restart the SARM and NEP

• Dynamically add service definitions using asap_utils

For more information on asap_utils, see ASAP Server Configuration Guide

With asap_utils, you can dynamically add new items to the configuration without having to
restart the ASAP servers. You can dynamically add service actions, atomic actions, mapping
configuration, NEPs, hosts, routing, and NE resources by:

• Updating the ASAP databases through asap_utils

• Synchronizing the ASAP servers with the databases

Note:

Only new configuration entries are added to the in-memory caches. Any updates
and deletions of existing entries are ignored by the update procedure. These still
require a restart of the affected ASAP servers.

To dynamically configure service actions, atomic actions, mapping configuration, or NEPs, you
must set up the ASAP system and its components as follows.

1. Make the configuration addition in the ASAP database manually by scripting (SQL inserts).
You can add the configuration entries in Table 14-3 dynamically to ASAP. All other changes
are ignored by the sychronization process.

Table 16-3 Configuration Entries and Synchronization

Configuration Entry Description Synchronization Details

Service Definition Service actions, atomic actions,
service-action-TO-atomic mappings
and service action-to-atomic action
parameters.

Internal cache update with new
entries in SARM and NEP servers.

Network Element
Definition

NE definitions and associated NE
connection properties, including
primary and secondary devices,
and host-to-remote NE mappings.

Internal cache and thread updates in
SARM (atomic action queues) and
NEP (session managers, command
processors) application servers.

NEP Entirely new NEP added to ASAP. Internal cache and thread updates in
SARM (NEP drivers, atomic action
queues).

Chapter 16
Loading ASAP Services Dynamically

16-14

Table 16-3 (Cont.) Configuration Entries and Synchronization

Configuration Entry Description Synchronization Details

Secondary NE
Devices

Communication devices in the
auxiliary resource pool in existing
NEPs.

Internal cache and thread updates in
NEP (command processors).

Note:

A service definition consists of a service action and all its associated atomic
actions and parameters. Adding a new atomic action to an existing service action
or adding a new service action to an existing atomic action is considered a
change to the service definition. The SARM server must be restarted before the
new service definition takes effect.

2. You can request the SARM and NEP servers to refresh the configuration in memory
through the command options available in asap_utils. There are two commands in the
asap_utils client application for the addition of new configuration entries. You use these
commands to request that the ASAP servers synchronize the in-memory configuration with
the configuration of the databases. You are responsible for ensuring that the database
configurations have been applied (for example, through database insert scripts).

By sending RPCs to notify ASAP servers of the additional configuration entries, a
synchronization process is performed in each of the ASAP servers to update the in-
memory caches with the latest data of the configurations in the database. The
synchronization reloads the relevant configuration information from the database into the
memory. With the synchronization, you can add new service actions, atomic actions,
mapping configurations, NEPs, host NEs, NE routings, and NE resources dynamically.

Note:

You can only dynamically add new items, you cannot modify or delete new
configurations.

In asap_utils, the command choices for the newly added configuration are:

• 112. Load New Service Configuration into Cache

• 113. Load New NE Configuration into Cache

You are asked to provide the SARM and NEP names to which the updates apply. The
defaults are the $SARM and $NEP environment variables. If multiple NEPs are to be
updated, you can enter a list of NEP server names and the utility issues the appropriate
request to each listed NEP. You are notified whether each RPC was successful or not. In
all cases, the NEP update requests are issued.

3. After receiving the synchronization RPC, the ASAP server works with a specific handler to
reload the relevant configuration data from the ASAP database into memory. The RPC
returns a status to the client application, indicating whether reloading was successful or
not.

4. The synchronization sequence is the reverse of the normal processing flow; in other words,
the NEP is synchronized first, then the SARM.

Chapter 16
Loading ASAP Services Dynamically

16-15

You must ensure that the time interval between the database modification and the memory
flush is as short as possible.

Note:

Only SARM and NEP servers support the synchronization.

Chapter 16
Loading ASAP Services Dynamically

16-16

A
Configuring Services Using XML

This appendix describes how to configure Oracle Communications ASAP services using XML
schemas and deploy these services using the Service Activation Deployment Tool (SADT).

This service configuration method supersedes the use of stored procedures to configure
services.

Note:

Schema validation for XML data processed by the Service Activation Configuration
Tool (SACT) and the SADT is turned off by default. If you turn on schema validation
and use these tools to deploy ASAP configuration data and service models, and you
upgrade ASAP to version 7.2 or later, errors may be reported where previously none
were reported.

Configuration Restrictions and Limitations
You can add, update, or delete an entity within the provisioning translation configuration.
Before doing so, however, Oracle recommends that you review the structure of the existing
configuration to ensure that real-time translation is carried out accurately and successfully.

Specifically, consider the following when you configure provisioning translation:

• Constraint conditions, such as switch technology and software load (the software version
of the specific switch).

• Prerequisite information, such as translation mappings from service actions to atomic
actions, that cannot be defined unless the atomic action is already defined.

You can add configurations at run time without restarting the SARM or network element
processor. For more information, see "Loading ASAP Services Dynamically."

Configuring ASAP Services
This section describes the steps for configuring ASAP services.

The configuration of ASAP services using XML consists of the following steps:

• Planning

• Configuring Atomic Actions

• Adding Supporting Data

• Configuring Service Actions

• Mapping Atomic Actions to Service Actions

• Mapping User Exit Types to Base Exit Types

• Creating Activation-Model.xml

A-1

• Configuring Network Element Throughput Using XML

Planning
Based on the services and network elements to be supported, determine the NE-specific
commands used for identified service (API calls, MML commands).

Create the service model components and scripts to support the service requirements.
Specifically:

• Create a Java method for each NE-specific API call or MML command.

• Identify an atomic action for each script (Java method).

• Identify the atomic action parameters and values for atomic action.

• Identify the mapping between each atomic action.

• Identify service action commands required for each supported service.

• Identify service-action-to-atomic-action mappings.

• Plan enhanced service-action-atomic-action translation.

Configuring Atomic Actions
A typical atomic action XML definition appears as follows:

<?xml version="1.0" encoding="UTF-8"?>
<serviceModel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:sam="http://
www.metasolv.com/ServiceActivation/2003/ServiceModel" xmlns="http://www.metasolv.com/
ServiceActivation/2003/ServiceModel" xmlns:fo="http://www.w3.org/1999/XSL/Format">
<description>Nortel NT-DMS10 atomic action Services</description>
<atomicService name="A_NT-DMS10_503-10_ADD_POTS-LINE" xsi:type="AtomicServiceType">
<description>Adds a POTS line.</description>
<timeout>20</timeout>
<retryCount>3</retryCount>
<retryInterval>6</retryInterval>
<rollbackService enable="true">
<rollbackService>A_NT-DMS10_503-10_ADD_POTS-LINE-RB</rollbackService>
</rollbackService>
<sendParameterCount>false</sendParameterCount>
<parameter name="MCLI" xsi:type="SimpleParameterType">
<description>Host NE identifier.</description>
<required>true</required>
<default/>
<parameterValueMap>NE_ID_NT-DMS10</parameterValueMap>
</parameter>
<parameter name="NPA" xsi:type="SimpleParameterType">
<description>3 digit area code.</description>
<required>false</required>
<default/>
<parameterValueMap>NPA</parameterValueMap>
</parameter>
<parameter name="NXX" xsi:type="SimpleParameterType">
<description>First 3 digits of the line number.</description>
<required>true</required>
<default/>
<parameterValueMap>NXX</parameterValueMap>
</parameter>
<parameter name="LINE" xsi:type="SimpleParameterType">
<description>4 digit line extension.</description>
<required>true</required>

Appendix A
Configuring ASAP Services

A-2

<default/>
<parameterValueMap>LINE</parameterValueMap>
</parameter>
<parameter name="LEN" xsi:type="SimpleParameterType">
<description>Line equipment number.</description>
<required>true</required>
<default/>
<parameterValueMap>LEN</parameterValueMap>
</parameter>
<parameter name="LOC" xsi:type="SimpleParameterType">
<description>Equipment location.</description>
<required>false</required>
<default/>
<parameterValueMap>LOC</parameterValueMap>
</parameter>
<parameter name="LCC" xsi:type="SimpleParameterType">
<description>The line or agent class code. 1FR, 1MR, 2FR, 8FR, 10FR, 1MB, 2MR, 4MR.</
description>
<required>true</required>
<default/>
<parameterValueMap>LCC</parameterValueMap>
</parameter>
<parameter name="RINGCODE" xsi:type="SimpleParameterType">
<description>The ringing code input for two-party or multiparty services.</description>
<required>false</required>
<default/>
<parameterValueMap>RINGCODE</parameterValueMap>
</parameter>
<parameter name="ZONE" xsi:type="SimpleParameterType">
<description>The OUTWATS zone identification number.</description>
<required>false</required>
<default/>
<parameterValueMap>ZONE</parameterValueMap>
</parameter>
<parameter name="LTG" xsi:type="SimpleParameterType">
<description>Line treatment group.</description>
<required>false</required>
<default/>
<parameterValueMap>LTG</parameterValueMap>
</parameter>
<parameter name="OPT" xsi:type="CompoundParameterType">
<description>Options associated with a service to be established or deleted. A maximum
of 20 options can be specified in any single command.</description>
<required>false</required>
<default/>
<parameterValueMap>OPT</parameterValueMap>
</parameter>
<parameter name="IS_OPTIMIZED" xsi:type="SimpleParameterType">
<description>A flag to indicate MML optimization of the command. The values are false
and true.</description>
<required>false</required>
<default>true</default>
<parameterValueMap>IS_OPTIMIZED</parameterValueMap>
</parameter>
<parameter name="ACT_CFB" xsi:type="SimpleParameterType">
<description>Conditional flag to activate the CFB feature.</description>
<required>false</required>
<default/>
<parameterValueMap>ACT_CFB</parameterValueMap>
</parameter>
<parameter name="ACT_CFD" xsi:type="SimpleParameterType">
<description>Conditional flag to activate the CFD feature.</description>

Appendix A
Configuring ASAP Services

A-3

<required>false</required>
<default/>
<parameterValueMap>ACT_CFD</parameterValueMap>
</parameter>
<parameter name="ACT_CFDA" xsi:type="SimpleParameterType">
<description>Conditional flag to activate the CFD feature.</description>
<required>false</required>
<default/>
<parameterValueMap>ACT_CFDA</parameterValueMap>
</parameter>
<parameter name="CUSTOM" xsi:type="CompoundParameterType">
<description>Customer-specific parameter.</description>
<required>false</required>
<default/>
<parameterValueMap>CUSTOM</parameterValueMap>
</parameter>
</atomicService>
<atomicService name="A_NT-DMS10_503-10_DEL_POTS-LINE" xsi:type="AtomicServiceType">
<description>Deletes a POTS line.</description>
<sendParameterCount>false</sendParameterCount>
<parameter name="MCLI" xsi:type="SimpleParameterType">
<description>Host NE identifier.</description>
<required>true</required>
<default/>
<parameterValueMap>NE_ID_NT-DMS10</parameterValueMap>
</parameter>
<parameter name="NPA" xsi:type="SimpleParameterType">
<description>3 digit area code.</description>
<required>false</required>
<default/>
<parameterValueMap>NPA</parameterValueMap>
</parameter>
<parameter name="NXX" xsi:type="SimpleParameterType">
<description>First 3 digits of the line number.</description>
<required>true</required>
<default/>
<parameterValueMap>NXX</parameterValueMap>
</parameter>
<parameter name="LINE" xsi:type="SimpleParameterType">
<description>4 digit line extension.</description>
<required>true</required>
<default/>
<parameterValueMap>LINE</parameterValueMap>
</parameter>
<parameter name="CUSTOM" xsi:type="CompoundParameterType">
<description>Customer-specific parameter.</description>
<required>false</required>
<default/>
<parameterValueMap>CUSTOM</parameterValueMap>
</parameter>
</atomicService>

Adding Supporting Data
For atomic actions that map to the JInterpreter device type, the supporting data will consist of
Java classes. Java classes are placed in the ..\java\lib directory within a .jar file. The
deviceMap section of the atomic action definition appears as follows:

<atomicDeviceMap name="A_NT-DMS10_503-10_ADD_POTS-LINE">
<deviceMap>
<description>(user_msg_only)</description>

Appendix A
Configuring ASAP Services

A-4

<type>NT-DMS10</type>
<version>503-10</version>
<implementation>com.metasolv.cartridge.oss.nt_dms10_503_10.
 DMS10PotsLineProv.addNewLine</implementation>
<interpreter>JINTERPRETER_PROGRAM</interpreter>
</deviceMap>
</atomicDeviceMap>
<atomicDeviceMap name="A_NT-DMS10_503-10_DEL_POTS-LINE">
<deviceMap>
<description>(user_msg_only)</description>
<type>NT-DMS10</type>
<version>503-10</version>
<implementation>com.metasolv.cartridge.oss.nt_dms10_503_10.
 DMS10PotsLineProv.delPotsLine</implementation>
<interpreter>JINTERPRETER_PROGRAM</interpreter>
</deviceMap>
</atomicDeviceMap>

Configuring Service Actions
A service action command (referred to as a CommonServiceType in the XML schema) is an
ASAP command that is associated with a particular work order. The service action command is
associated with one or more operations on one or more NEs.

Each service action command within the SARM has a configuration record that you can set up.
This record contains the following attributes:

A service action definition appears as follows:

<commonService name="C_NT-DMS10_503-10_ADD_POTS-LINE">
<description>Adds a POTS line.</description>
<rollbackOnFailure>false</rollbackOnFailure>
<priority>30</priority>
<failEvent>
<customEvent/>
</failEvent>
<completeEvent>
<customEvent/>
</completeEvent>

Mapping Atomic Actions to Service Actions
Following the service action configuration parameters, add one or more atomic actions within
<serviceMap> element. Atomic-action-to-service-action mappings consist of the
<atomicService> identifier and one or more optional conditions.

• atomicService – The atomic action identified in the atomicService name.

• pointOfNoReturn – The 'point of no return' value for partial rollbacks. Values are:

– 0 (default) – This atomic action is not the 'point of no return' for rollback purposes

– 1 – This atomic action is the 'point of no return' for partial rollback. If rollback occurs,
and execution has continued beyond this point, roll back to this atomic action but no
further.

– 2 – 'point of no return' for no rollback. After past this atomic action, no rollback can
occur.

For more information, see "About Configuring a Rollback Point (Point of No Return)."

• description – You can optionally provide a description of the atomic action.

Appendix A
Configuring ASAP Services

A-5

• condition – Can be one of four types "A" (AlwaysConditionType),"D"
(DefinedConditionType),"N" (NotDefinedConditionType) and "E" (EqualConditionType).

– If the condition is A, the SARM always generates the network action for this service
action. For example:

...
<condition xsi:type="AlwaysConditionType">
<expression>true</expression>
</condition>

or

<condition xsi:type="AlwaysConditionType"/>

• If the condition is D, the SARM only generates a particular atomic action if the stated
service action parameter is defined on the current service action. For example:

...
<condition xsi:type="DefinedConditionType">
<expression/>
<parameterLabel>CCC</parameterLabel>
</condition>

• If the condition is N, the SARM only generates a particular atomic action if the stated
service action parameter is not defined on the current service action. For example:

...
<condition xsi:type="NotDefinedConditionType">
<expression/>
<parameterLabel>DDD</parameterLabel>
</condition>

• If the condition is E, the SARM only generates a particular atomic action if the stated
service action parameter is defined on the current service action and has a particular
parameter value. For example:

...
<condition xsi:type="EqualConditionType">
<expression>ABC LIKE "BCS%"</expression>
<parameterLabel>AAA</parameterLabel>
<parameterValue>12345</parameterValue>
</condition>
...

A complete service action definition, with the atomic action mappings highlighted in bold,
appears as follows:

<commonService name="C_NT-DMS10_503-10_ADD_POTS-LINE">
<description>Adds a POTS line.</description>
<rollbackOnFailure>false</rollbackOnFailure>
<priority>30</priority>
<failEvent>
<customEvent/>
</failEvent>
<completeEvent>
<customEvent/>
</completeEvent>
<serviceMap>
<atomicService>A_NT-DMS10_503-10_ADD_POTS-LINE</atomicService>
</serviceMap>
<serviceMap>
<atomicService>A_NT-DMS10_503-10_ACT_CFB-OPT</atomicService>
<pointOfNoReturn>1</pointOfNoReturn>

Appendix A
Configuring ASAP Services

A-6

<condition xsi:type="AlwaysConditionType">
<expression>(ACT_CFB LIKE "Y%")</expression>
</condition>
</serviceMap>
<serviceMap>
<atomicService>A_NT-DMS10_503-10_ACT_CFD-OPT</atomicService>
<condition xsi:type="AlwaysConditionType">
<expression>(ACT_CFD LIKE "Y%")</expression>
</condition>
</serviceMap>
<serviceMap>
<atomicService>A_NT-DMS10_503-10_ACT_CFDA-OPT</atomicService>
<condition xsi:type="AlwaysConditionType">
<expression>(ACT_CFDA LIKE "Y%")</expression>
</condition>
</serviceMap>
</commonService>

Mapping User Exit Types to Base Exit Types
The ServiceModel.xsd XML schema file contains the following definitions:

<xsd:simpleType name="RegexPattern">
<xsd:annotation>
<xsd:documentation>Simple data type for representing regular
expression search pattern</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="255"/>
<xsd:minLength value="1"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="BaseType">
<xsd:annotation>
<xsd:documentation>Simple data type for representing base
atomic action exit types</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">1

<xsd:enumeration value="SUCCEED"/>
<xsd:enumeration value="FAIL"/>
<xsd:enumeration value="RETRY"/>
<xsd:enumeration value="RETRY_DIS"/>
<xsd:enumeration value="MAINTENANCE"/>
<xsd:enumeration value="SOFT_FAIL"/>
<xsd:enumeration value="DELAYED_FAIL"/>
<xsd:enumeration value="STOP"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="UserType">
<xsd:annotation>
<xsd:documentation>Simple data type for representing user
defined atomic action exit types</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="20"/>
</xsd:restriction>

1 The base types supported by this service model

Appendix A
Configuring ASAP Services

A-7

</xsd:simpleType>

<xsd:complexType name="NEDescriptor">
<xsd:annotation>
<xsd:documentation>
Identifier used for representing network element software load
and technology software load. Put in place so that
this information is represented as one logical unit of data.
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="softwareLoad" type="sam:SoftwareLoadType"
minOccurs="0"/>
<xsd:element name="technology" type="sam:TechnologyType"/>
<xsd:element name="neVendor" type="sam:VendorType"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="UserDefinedExitType">
<xsd:annotation>
<xsd:documentation>
A logical representation of a user defined exit type to base type
mapping.
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="CSDL" type="sam:CommandType" minOccurs="0"/>
<xsd:element name="ASDL" type="sam:CommandType" minOccurs="0"/>
<xsd:element name="neDescriptor" type="sam:NEDescriptor"
minOccurs="0"/>
<xsd:element name="searchPattern" type="sam:RegexPattern" 2minOccurs="0"/>
<xsd:element name="userType" type="sam:UserType"/>
<xsd:element name="baseType" type="sam:BaseType"/>
<xsd:element name="description" type="sam:DescriptionType"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

A sample instance document is illustrated below:

<serviceModel xmlns=http://www.metasolv.com/ServiceActivation/2003/ServiceModel
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/
ServiceModel
X:\...\Program\ASAP\4.7.1\920_Analysis+Design\Schema\ServiceModel.xsd">
…
…
</commonService>
<userDefinedExitType>
<CSDL>C-ADD_POTS_LINE</CSDL>
<ASDL>A-ADD_POTS_LINE</ASDL>
<neDescriptor>
<softwareLoad>DYNAMIC_SL</softwareLoad>
<technology>DYNAMIC_VENDOR-DYNAMIC_TECH</technology>
</neDescriptor>
<searchPattern>SUCCESS.</searchPattern>3

<userType>U_SUCCEED</userType>4

2 The mapping between base and user types, with an optional search pattern and description.
3 Pattern searches accommodate situations in which responses from the device contain small variants that represent the

same meaning. The user type contains an associated search pattern that is applied at runtime. Using regular expressions,
you can default a series of responses. For example a regular expression "90." can specify a pattern where any response

Appendix A
Configuring ASAP Services

A-8

<baseType>SUCCEED</baseType>5

<description>The Atomic Action provisioning was successful</description>
</userDefinedExitType>
<userDefinedExitType>
<searchPattern>90.</searchPattern>
<userType>U_FAIL</userType>
<baseType>FAIL</baseType>
<description>The Atomic Action failed - fail the current order
and stop processing.</description>
</userDefinedExitType>
<userDefinedExitType>
<searchPattern>101-110[201-215]</searchPattern>6

<userType>U_SOFT_FAIL</userType>
<baseType>SOFT_FAIL</baseType>
<description>The Atomic Action has encountered a soft failure. Processing will
continue.</description>
</userDefinedExitType>
<userDefinedExitType>
<searchPattern>801-850</searchPattern>7

<userType>U_MINOR_ERROR</userType>
<baseType>SOFT_FAIL</baseType>
<description>The Atomic Action has encountered a soft failure. Processing will
continue.</description>
</userDefinedExitType>
<userDefinedExitType>
<searchPattern>251-275&&[ˆ261-265]</searchPattern>8

<userType>U_DELAYED_FAIL</userType>
<baseType>DELAYED_FAIL</baseType>
<description>The Atomic Action has failed during provisioning.</description>
</userDefinedExitType>
<userDefinedExitType>
<CSDL>C-DEL_POTS_LINE</CSDL>
<ASDL>A-DEL_POTS_LINE</ASDL>
<neDescriptor>
<softwareLoad>BCS36</softwareLoad>
<technology>NORTEL_DMS</technology>
<neVendor>Nortel</neVendor>
</neDescriptor>
<searchPattern>*.</searchPattern>
<userType>U_MAINTAIN</userType>
<baseType>MAINTENANCE</baseType>
<description>The Atomic Action will Wait until the NE comes out of
Maintenance Mode</description>
</userDefinedExitType>
</serviceModel>

The previous code sample shows some typical search pattern examples.

Creating Activation-Model.xml
The deployment descriptor must be named activation-model.xml and must reside in the top
level of the META-INF directory of the service activation archive (SAR) file. The deployment

with the character "90" followed by any character will translate to base type of FAIL. If the regular expression is defined as
"90*", then any response with the character "90" followed by any number of characters will translate to base type of FAIL

4 The user type that the search pattern maps to.
5 The base type that maps to the user type.
6 101 to 110 and 201 to 215 will translate to a base type of SOFT_FAIL
7 801-850 will translate to a base type of SOFT_FAIL. Note that the user type differs from the previous range.
8 251 to 275 but not 261 to 265 will translate to a base type of DELAYED_FAILURE.

Appendix A
Configuring ASAP Services

A-9

descriptor must be a valid XML document according to the schema for an activation model
deployment descriptor XML document.

When you define an activation model, Oracle recommends that you define your own unique
namespace and corresponding namespace prefix for your names. For example:

<activationModel targetNamespace="Nortel,UEIMAS,5.2,ADSL/ATM,DSL 2.0.7"
xmlns="http://www.metasolv.com/2003/ServiceActivation/ActivationModel" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
xmlns:imas="Nortel,UEIMAS,5.2,ADSL/ATM,DSL 2.0.7"
xmlns:foo="foo,bar"
xsi:schemaLocation="http://www.metasolv.com/2003/ServiceActivation/ActivationModel
D:\ccm_databases\ASAP~smith_windows\ASAP\jmx\xsd\SA_Archive.xsd">
 <vendor>String</vendor>
 <version/>
 <name>String</name>
 <components>
 <component>
 <serviceModel>my_service_model.xml</serviceModel>
 </component>
 </components>
</activationModel>

In this example, any new IDs (commonServices, atomicServices, etc.) defined in the activation
model are scoped by the target namespace. Any references to IDs in other activation models
must be prefixed by the appropriate namespace (for example, foo:name). Any references to
IDs in the current activation model must also be prefixed because the default namespace
(xmlns=) refers to the activation model schema namespace. The semantics for the XML
schema are the same.

Any service models defined in this SAR must also define the IMAS namespace because any
common services, atomic services, and so forth, defined in the service model are scoped by
the target namespace. Any references to IDs in other cartridges must be prefixed by the
appropriate namespace.

Configuring Network Element Throughput Using XML
NE instance throughput (expressed as the number of milliseconds per transaction on an NE)
can be configured using XML through the SACT or using asap_utils. (See asap_utils option
18. Set NE instance throughput in the ASAP Server Configuration Guide for more
information).

For general information on NE throughput configuration, see the ASAP Server Configuration
Guide.

The Activation Configuration XML schema supports configuration of NE instance throughput
through the ElementType and DynamicRoutingTemplateType schema definitions, illustrated
below:

Appendix A
Configuring ASAP Services

A-10

Figure A-1 ElementType Schema

Appendix A
Configuring ASAP Services

A-11

Figure A-2 DynamicRoutingTemplateType Schema

Appendix A
Configuring ASAP Services

A-12

B
Configuring Services Using Stored Procedures

This appendix describes stored procedures used to create Oracle Communications ASAP
service models.

Note:

Stored procedures have been deprecated.

Configuring ASAP Services Using Stored Procedures
The configuration of ASAP services using stored procedures consists of the following steps:

• Configuring Service Actions

• Configuring Atomic Actions

• Configuring Atomic Action Parameters

• Configuring Service Action-to-Atomic Action Mappings

• Configuring Atomic Action-to-Program Mappings

Configuring Service Actions
Use the following stored procedures to define, list, and delete service action commands:

• SSP_new_csdl_defn – Defines a service action command in the SARM database.

• SSP_list_csdl_defn – Lists configuration information for the service action command you
specify from the SARM database. This information includes the rollback flag, service action
command service action level, fail and completion events, and a description of the
command. If you do not specify a service action command, the procedure returns
information on all service action commands currently defined in the SARM.

• SSP_del_csdl_defn – Deletes service action definitions from the SARM database.

For more information on these stored procedures and tbl_csdl_config, refer to the ASAP
Developer's Guide.

Configuring Atomic Actions
Use the following stored procedures to define, list, and delete atomic actions:

• SSP_new_asdl_defn – Defines an atomic action configuration record in the SARM
database.

• SSP_list_asdl_defn – Lists all or specific atomic action definitions from the SARM
database. You can use wildcards in this procedure. If you do not specify a parameter, all
atomic action definitions are listed.

• SSP_del_asdl_defn – Deletes atomic action definitions from the SARM database.

B-1

For more information on these stored procedures and tbl_asdl_config, refer to the ASAP
Developer's Guide.

Configuring Atomic Action Parameters
Use the following stored procedures to define, list, and delete atomic action parameters:

• SSP_new_asdl_parm – This stored procedure defines up to nine atomic action
parameters in a single stored procedure call for the specified atomic action starting at
base_seq_no.

• SSP_list_asdl_parm – This stored procedure lists atomic action parameters from the
SARM database by atomic action name and/or atomic action parameter label.

• SSP_del_asdl_parm – This stored procedure deletes an atomic action parameter from the
specified atomic action.

These stored procedures populate tbl_asdl_parm. For more information, refer to the ASAP
Developer's Guide.

Configuring Service Action-to-Atomic Action Mappings
The following stored procedures update tbl_csdl_asdl. tbl_csdl_asdl is a static table that is
used by the SARM and contains the mapping between service action commands and atomic
actions. For each atomic action associated with a service action, the SARM verifies whether
the atomic action should be spawned for the specified service action. The final determination of
whether the atomic action is spawned depends on the atomic action parameter translation
process specified by tbl_asdl_parm.

Use the following stored procedures to define, list, and delete service action to atomic action
mappings:

• SSP_new_csdl_asdl – This stored procedure defines up to nine service action-to-atomic
action mappings at a time from a service action command to one or more atomic actions
with consecutive numbers starting at base_seq_no=1 in the SARM database.

• SSP_new_csdl_asdl_idx – This stored procedure allow multiple conditions to be inserted
into tbl_csdl_asdl_eval.

• SSP_list_csdl_asdl – This stored procedure lists service action-to-atomic action mapping
definitions.

• SSP_del_csdl_asdl – This stored procedure deletes service action-to-atomic action
mapping definitions from the SARM database.

These stored procedures populate tbl_csdl_asdl and tbl_csdl_asdl_eval. For more
information, refer to the ASAP Developer's Guide.

Configuring Atomic Action-to-Program Mappings
Use the following stored procedures to define, list, and delete atomic action-to-program
mappings:

• SSP_new_asdl_map – This stored procedure defines a mapping from an atomic action to
a program based on the technology and software load in the SARM database.

• SSP_list_asdl_map – This stored procedure lists atomic action-to-program mappings
according to various criteria.

• SSP_del_asdl_map – This stored procedure deletes atomic action-to-program mappings.
The mapping is based on the technology and software load.

Appendix B
Configuring ASAP Services Using Stored Procedures

B-2

For more information on these stored procedures and tbl_nep_asdl_prog, refer to the ASAP
Developer's Guide.

Configuring Network Elements Using Stored Procedures
The definition of host network elements (NEs) consists of the following procedures:

• Configuring Host Network Elements

• Configuring Host to Remote Network Element Mappings

• Configuring NEP-to-Host NE Mappings

• Configuring Resource Pools

• Configuring Communication Parameters

• Configuring Network Element Error Thresholds

• Configuring User Errors and Thresholds

• Configuring Static Routing

• Configuring Network Element Blackout Periods (optional)

Configuring Host Network Elements
tbl_host_clli is a static table that contains the host NE, the technology, and the software load
of each NE in the ASAP system. It also contains records for each host NE to which the NEPs
interface. You must populate this table to determine which NEs the NEP interfaces with.

Use the following stored procedures to define, list, and delete host NEs:

• SSP_new_ne_host – This stored procedure defines a host NE with its technology type,
software version, and inventory manager in the SARM database.

• SSP_list_ne_host – This stored procedure lists host NE definitions.

• SSP_list_host – This stored procedure retrieves host-related information from
tbl_resource_pool, tbl_ne_config, and tbl_clli_route.

• SSP_del_ne_host – This stored procedure deletes a host NE definition from the SARM
database.

Note:

You cannot delete a host NE that has a mapping relationship with either an NEP
or a remote NE. Any mapping relationship must therefore be deleted prior to
deleting the host NE.

For more information on these stored procedures and tbl_host_clli, refer to the ASAP
Developer's Guide.

Configuring Host to Remote Network Element Mappings
tbl_clli_route is a static table that contains the mapping between a remote NE and its host
NE. You must populate this table to specify remote NE to host NE mappings.

Appendix B
Configuring Network Elements Using Stored Procedures

B-3

Use the following stored procedures to define, list, and delete mappings from a remote NE to a
host NE:

• SSP_new_clli_map – This stored procedure defines a mapping from a remote CLLI to a
Host CLLI in the SARM database.

• SSP_list_clli_map – This stored procedure lists remote CLLI-to-Host CLLI mapping
definitions.

• SSP_del_clli_map – This stored procedure deletes a remote CLLI to host CLLI mapping.

For more information on these stored procedures and tbl_clli_route, refer to the ASAP
Developer's Guide.

Any changes you make to the mapping relationships between host NEs to remote NEs, only
take effect at runtime. All other changes require that you restart the SARM.

Configuring NEP-to-Host NE Mappings
NEP to host NE mappings are defined in tbl_ne_config.

Use the following stored procedures to configure NEP to host NE mappings.

• SSP_new_net_elem – This stored procedure defines a host NE in the SARM database
and identifies the logical name of the NEP that connects to this host NE. It also defines the
loopback setting for the NE.

• SSP_list_net_elem – This stored procedure lists NE definitions based on the host NE
and/or NEP server you specify.

• SSP_del_net_elem – This stored procedure deletes an NE definition for an NEP from the
SARM database.

• SSP_set_ne_loopback – This stored function is called by NEP server to update the table
tbl_ne_config when the loop back state is set to ON, OFF, or GLOBAL through the utility
tool asap_utils.

For more information on these stored procedures and tbl_ne_config, refer to the ASAP
Developer's Guide.

Configuring Resource Pools
tbl_resource_pool is a static table that defines the collection of command processors
(devices) that the NEP uses to establish connections to NEs. Groups of command processors
are called resource pools. Each NE configuration determines a primary resource pool that
defines one or more devices the NEP uses to connect to that NE. These devices are not used
to connect to other NEs. Each NEP has an auxiliary resource pool that contains devices used
by the NEP to establish connections to any NE managed by the NEP. These primary and
auxiliary resource pools are defined in this table. You must populate this table to add command
processors.

Use the following stored procedures to define, delete, and list command processors:

• SSP_new_resource – This stored procedure defines an NEP resource (“device") to be
used for NE access in the SARM database.

• SSP_del_resource – This stored procedure deletes an NEP resource record from the
SARM database.

• SSP_list_resource – This stored procedure lists NEP resource records.

Appendix B
Configuring Network Elements Using Stored Procedures

B-4

For more information on these stored procedures and tbl_resource_pool, refer to the ASAP
Developer's Guide.

Configuring Communication Parameters
tbl_comm_param contains communication parameters required for the NEP to communicate
with various external systems. You must populate this table to configure communication
parameters.

For more information on tbl_comm_param, refer to the ASAP Developer's Guide.

Use the following stored procedures to define, list, and delete communication parameters:

• SSP_new_comm_param – This stored procedure defines a communication parameter for
a specified device type, host, and device into the SARM database.

• SSP_list_comm_param – This stored procedure lists communication parameter
information for dev_type, host, device, param_label, or for all of them.

• SSP_del_comm_param – This stored procedure deletes communication parameter
information from the SARM database.

Configuring Network Element Error Thresholds
Use the following stored procedures to define, list, and delete error thresholds.

• SSP_new_err_threshold – This stored procedure defines error thresholds for a specific
NE and atomic action.

• SSP_list_err_threshold – This stored procedure lists the error thresholds for a specific
NE and atomic action.

• SSP_del_err_threshold – This stored procedure deletes error thresholds for a specific NE
and atomic action.

For more information on these stored procedures, refer to ASAP Developer's Guide.

Configuring User Errors and Thresholds
Use the following stored procedures to define, list, and delete user errors.

• SSP_new_err_type – This function configures the mapping between user-defined error
types and the base-error types.

• SSP_list_err_type – This function lists the mapping between user-defined error types and
the base-error types.

• SSP_del_err_type – This function deletes the mapping of user-defined error types.

Use the following stored procedures to define, list, and delete user error thresholds.

• SSP_new_user_err_threshold – This stored procedure creates a new user-defined error
threshold in the system for the specified NE, atomic action, and the user-defined error
type.

• SSP_list_user_err_threshold – This stored procedure is used to list the user-defined
error thresholds for a specific NE, atomic action, and user error type.

• SSP_del_user_err_threshold – This stored procedure deletes a user-defined error
threshold or set of thresholds.

For more information on these stored procedures, refer to ASAP Developer's Guide.

Appendix B
Configuring Network Elements Using Stored Procedures

B-5

Configuring Static Routing

Configuring Atomic Action Routings by ID_ROUTING Using Stored Procedures
The stored procedures that you can use as external interfaces are the following:

• SSP_list_id_routing (RC1, host_clli) – Lists the host NE and ID_ROUTING mapping
records in the SARM database.

• SSP_new_id_routing (host_clli, asdl_cmd, id_routing_from, id_routing_to) – Defines the
host NE and ID_ROUTING mapping records in the SARM database.

• SSP_del_id_routing (host_clli, asdl_cmd, id_routing_from, id_routing_to) – Deletes the
host NE and ID_ROUTING mapping records from the SARM database.

For more information on these stored procedures, refer to the ASAP Developer's Guide.

The following steps must be followed when routing by ID_ROUTING:

1. Populating the routing table (tbl_id_routing).

2. Defining the atomic action parameter. A sample is located
in ..\samples\ASDL_ROUTE\oraRoutingServices.

3. Defining the work order. A sample is located in ..\samples\ASDL_ROUTE\RoutingSrpInput.

4. Starting ASAP and submitting the work order.

The following examples provide samples of how each step can be configured.

The following example displays how to populate tbl_id_routing.

sqlplus -s $SARM_USER/$(GetPassword $SARM_USER 2)
<<HERE | grep -v "successfully completed"

set serveroutput on
var retval number

prompt Defining the ID_ROUTING Configurations

exec :retval := SSP_del_id_routing ;

exec :retval := SSP_new_id_routing ('BALTIMORE', '', 'BAL', ‘CAL');
exec :retval := SSP_new_id_routing ('BALTIMORE', '', 'DEL', ‘FAL);
exec :retval := SSP_new_id_routing ('BOSTON', '', '120000', ‘220000');

HERE

You can add new records to the database dynamically without downtime on the server by using
the “Add new NE Configuration" command (113) of asap_utils. This command must be used
after loading the ASAP database.

For more information on asap_utils, see the ASAP Server Configuration Guide.

For more information on the tbl_id_routing table, see the ASAP Developer's Guide.

Configuring Atomic Action Routings by USER_ROUTING
You can perform atomic action routing by using a user-defined procedure. Routing by user-
defined procedure provides the following:

Appendix B
Configuring Network Elements Using Stored Procedures

B-6

• Allows for custom provided logic for atomic action routing.

• Uses the atomic action parameter USER_ROUTING.

• Uses the external interface SSP_get_user_routing.

• Allows you to write your own routing logic using the predefined external user interface.

The USER_ROUTING parameter can be represented as any string of characters to a
maximum of 255 characters. You can define it as part of a work order, or as a service action
parameter.

If the atomic action parameter USER_ROUTING information is provided in the work order, then
the user-defined stored procedure is called. The user-defined procedure takes the asdl_cmd
and the value of USER_ROUTING as input arguments, and returns the host NE to be routed.

You can use the following stored procedure as an external interface:

• SSP_get_user_routing (user_routing, asdl_cmd, host_clli, ret_val) – Returns a host NE
(host_clli) that is used to route the atomic action. You must provide your own routing logic
in the body of SSP_get_user_routing to find the host NE (CLLI) using the
USER_ROUTING atomic action parameters, and the asdl_cmd if required.

For more information on the above stored procedure, refer to the ASAP Developer's Guide.

To use USER_ROUTING, perform the following steps:

1. Write the stored procedure SSP_USER_ROUTING. A sample is located
in ..\samples\ASDL_ROUTE\user_routing_proc.sp.

2. Define and populate the routing table, if required. A sample is located
in ..\samples\ASDL_ROUTE\user_routing_table.tbl
and ..\samples\ASDL_ROUTE\oraLoadRouting.

3. Define the atomic action parameter. A sample is located
in ..\samples\ASDL_ROUTE\oraRoutingServices.

4. Define the work order. A sample is located in ..\samples\ASDL_ROUTE\RoutingSrpInput.

5. Run ASAP and submit the work order.

When you choose a user-defined procedure with a database table, the database must be
accessed every time the routing is requested. Consequently, there will be a slight performance
degradation.

Configuring Atomic Action Routings by Distinguished Name
You can edit routing definitions provided the new routing definition does not already exist in
ASAP.

• SSP_new_dn_map – This stored procedure defines atomic action routings by directory
number.

• SSP_list_dn_map – This stored procedure lists directory mappings for atomic action,
directory, exchange number, or for all of them.

• SSP_del_dn_map – This stored procedure deletes a directory number mapping from the
SARM database.

Configuring Network Element Blackout Periods (optional)
Use the following stored procedures to define, list, and delete blackout definitions.

Appendix B
Configuring Network Elements Using Stored Procedures

B-7

• SSP_add_blackout – This procedure configures the static and dynamic blackout periods
for a specific NE host.

• SSP_list_blackout – This procedure lists blackout periods for a specific NE host.

• SSP_del_blackout – This procedure removes blackout periods for a specific NE host.

For more information on these stored procedures, refer to ASAP Developer's Guide.

Checking Network Element Blackout Periods
The stored procedure SSP_check_blackout enables you to check whether or not the
specified NE is currently blacked out.

For more information on this stored procedures, refer to ASAP Developer's Guide.

Appendix B
Configuring Network Elements Using Stored Procedures

B-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview
	About Cartridge Creation Options
	Design Studio for ASAP
	XML
	Stored Procedures

	About ASAP Cartridges
	ASAP Cartridge Contents
	Cartridge Creation Workflow

	About Cartridge XML Schemas
	ServiceModel.xsd
	SA_archive.xsd

	About Service Modeling

	2 Creating a Cartridge Project
	About Cartridge Types
	Defining Network Cartridge Project Parameters
	Defining Network Cartridge Identification Tokens
	Selecting the Vendor Token
	Selecting the Technology Token
	Selecting the Software Load Token

	Defining the Scope of the Network Cartridge
	Creating a Design Studio Project

	Defining Service Cartridge Project Parameters
	Importing and Extending Network Cartridges in Service Cartridges

	3 Configuring Network Element Connections
	About Network Element Configuration Components
	About Network Elements and Network Element Connections
	Network Elements and Network Element Connections
	Creating and Configuring Network Element and Network Element Connections

	Adding Target Network Elements
	Setting Network Element Throughput Control

	About Configuring a Java Network Connection Handler
	Creating an Network Element Connection Handler

	Mapping a Network Element to a Network Element Processor

	4 Mapping Network Element Commands to Actions, Entities, and Parameters
	About Identifying Network Element Commands and Parameters
	Defining Actions and Entities
	Selecting the Action Tokens
	Selecting Entity Tokens

	Generating a Cartridge Layout
	About Parameter Types
	Default Values Rules and Guidelines

	About Creating a Data Dictionary
	Creating an ASAP Cartridge Project Data Dictionary Using Design Studio
	Scalar Parameters
	Creating a Scalar Parameter using Design Studio

	Indexed Parameters
	Compound Parameters
	Creating a Compound Parameter using Design Studio
	Compound Indexed Parameters
	Compound Parameters Rules and Guidelines

	XML Parameters
	Creating an XML Parameter using Design Studio

	XPath Parameters
	Creating an XPATH Parameter using Design Studio

	Grouping Scalar Parameters using Design Studio Structured Elements

	5 Creating and Configuring Atomic Actions
	About Creating and Configuring Atomic Actions
	Creating and Configuring an Atomic Action

	About Retry Properties
	Example 1: Configuring Retry Properties at the Network Element Instance Level
	Example 2: Configuring Retry Properties at the Atomic Action Level

	About Delayed Failure Properties
	About Composite Priorities
	About Configuring a Rollback Atomic Action
	About Rollback Atomic Action Parameters
	About Atomic Action Rollback Functionality
	Rollback Order
	Rollback Failure
	Order Timeout
	Rollback Completion
	Rollback Upon Failure
	Rollback Upon Cancellation of an Order
	Rollback Upon Revision to an Order

	Configuring ignore_rollback

	6 Configuring Static Routing
	Configuring Static Network Element Routing
	Configuring Atomic Action Routings by Using a Network Element
	Configuring Atomic Action Routings by Using ID_ROUTING
	Routing by ID_ROUTING

	Configuring Atomic Action Routings by Using USER_ROUTING
	Configuring Atomic Action Routings by Using a Directory Number

	7 Configuring Dynamic Routing
	Configuring Dynamic Network Element Routing
	Enabling Dynamic Routing
	Network Template Configuration

	Dynamic Network Element Routing Scenarios
	Network Element Identification
	Scenario 1 – One Service Action to Multiple Atomic Actions Routed to One NE
	Scenario 2 – One Service Action to Multiple Atomic Actions Routed to Different NEs
	Scenario 3 – One Service Action to Multiple Atomic Actions Routed to Different NEs
	Scenario 4 – One Service Action to Multiple Atomic Actions Routed to Multiple NEs
	Scenario 5 – One Service Action to Multiple Atomic Actions Routed to Different NEs
	Scenario 6 – Common URL
	Dynamic Routing Configuration Errors
	Managing Communication and Order Parameters
	Backward Support for MPM Protocols
	Software Load and Technology Type
	NE Configuration Parameters

	8 Creating Service Actions
	About Creating and Configuring Service Actions
	Creating Service Actions
	Configuring Service Action Default Sequence
	Configuring Service Action Fail and Complete Events

	About Mapping a Service Action to Atomic Actions
	About Limiting Independent Network Element Commands to Optimizing the Network Element Interface
	Adding Atomic Actions to a Service Action

	About Atomic Action Spawning Logic
	Configuring Atomic Action Spawning Conditions
	Components of Service-Action-to-Atomic-Action Translation Expressions
	Supported Parameters for Translation Expressions
	Supported Operators for Translation Expressions
	Supported Values for Translation Expressions

	Defining Service Action-Atomic Action Translation Expressions
	Translation Function Conflicts

	About Service Actions and Rollback
	Enabling the CSDL Rollback Functionality
	Enabling Work Order Rollback Functionality for the Service Request Processor Emulator
	About Configuring a Rollback Point (Point of No Return)
	Configuring a Rollback Point

	9 Configuring Base Exit and User Exit Types
	About User Errors and Thresholds
	About Base Exit Types
	Behaviors of RETRY and RETRY_DIS

	About User Exit Types
	Using Regular Expression Search Patterns
	Using Search Patterns Against Long Switch Responses
	About User Exit Types for Unknown Errors
	About User Exit Types for Success Cases
	Mapping User Exit Types to Base Exit Types Based on Context
	Creating New User Exit Types
	Configuring User Exit Types

	Examples: User Exit Types
	Example: Unstable Network Element Connections
	Example: Configuration of Context Sensitive Exit Types
	Example: Exit Type Rationalization

	10 Configuring Dynamic and Static Event Templates for Return Parameters
	About Static and Dynamic Event Templates for Return Parameters
	Configuring a Dynamic Events Template
	JSRP (OSS/J) Work Order Event Information
	Extended Work Order Complete and Failure Schemas
	FailedServicesType Schema Type
	Services Schema Type
	Controlling the Return of Enhanced Event Information with includeServiceActionDetail
	JSRP Server Configuration Parameter INCLUDE_SERVICE_ACTION_DETAIL
	Additional Event Data
	OSS/J Support by Schema Parameters
	Work Order Property includeServiceActionDetail
	JSRP Server Configuration Parameter USE_ORIGINAL_INSTANCE_NUMBER

	11 Creating Java Connection Handlers
	About Java Network Element Connection Handlers
	Creating New Network Element Connection Handlers
	Generating a Telnet Network Element Connection Handler Implementation
	Generating a Custom NE Connection Handler Implementation
	About Communication Protocol Parameters
	Specifying Global or Local Communication Parameters
	User-defined Parameters
	Device-specific Interface Parameters
	CORBA Interface Communication Parameters
	Serial Port Hardwired Communication Parameters
	Serial Port Dialup Communication Parameters
	Telnet Port Communication Parameters
	SSH Telnet Communication Parameters
	Socket Port Communication Parameters
	SFTP Port Communication Parameters
	LDAP Port Communication Parameters
	TL1 Port Communication Parameters
	StreamConnection Interface

	Creating Connection Methods and Helper Classes
	Creating a Provisioning Prompt
	Enabling Loopback Mode
	Implementing Secure Login Functionality
	Connection Management Issues
	Creating a Java Telnet Connection Class

	12 Creating Action Processors and Programs for Processing Requests and Responses
	About Action Processors and Programs
	About the Ratio of Provisioning Commands to Atomic Actions

	About Creating and Configuring Action Processors
	Creating an Action Processor

	Understanding the Auto-Generated Java CLI Code
	About Configuring the CLI Command Structure
	About the CLI Command Structure Elements
	Configuring the CLI Command Structure

	About Parsing and Configuring CLI Command Requests
	Provided Methods for Manipulating Parameters
	Defining Custom Methods for Manipulating Parameters
	Configuring CLI Command Requests

	About Configuring CLI Command Responses
	Configuring CLI Command Responses

	Auto-Generating the Java CLI Files
	About Auto-Generated and Synchronized CLI Java Files
	Backing Up Files

	Understanding the Auto-Generated Java Code Stubs
	Auto-Generating the Java Stubs
	About Auto-Generated Java Files
	Understanding Generated Code for Compound Parameters

	Example: Typical Processor Call Sequence
	Writing Java Processor Execute Method Logic
	Example: Telnet Provisioning Class Flow

	About Writing Java Programs from Scratch and Naming Conventions
	Associating an Action Processors to the Java Code
	Java Package Naming Convention
	Java Class Naming Convention
	Java Helper and Utility Class Naming Convention
	Java Method Naming Convention
	Java Variables Naming Convention
	Java Constants Naming Convention

	Understanding Unit Testing
	Running Unit Test Cases
	Running Unit Tests with the JDT Debugger
	Understanding Unit Test Property Files
	Configuring a Unit Test

	Understanding Java Libraries in Design Studio
	Referenced Libraries
	Other Libraries

	Programming Best Practices
	Using Default Values
	Enabling Value and Range Checking
	Logging Diagnostic Messages
	TCP/IP Message Parsing Options
	Use of Journal Functionality

	13 Creating Java User Exit Types
	Developing Return Parameters in Java Action Processors
	About Return Parameters in Java Action Processors
	Configuring Java Methods for Return Parameters to SARM
	Return Parameter Types
	Global Returned Parameter
	Service Action Returned Parameter
	Atomic Action Returned Parameter
	Returned Information for Upstream Purposes
	Indexed Rollback Returned Parameter

	Use Cases for Returning Parameters
	Query for Rollback Information
	Error and Diagnostic Information

	Configuring Response Logging and Network Element History Capture
	User Defined Exit Types

	14 Documenting ASAP Cartridges
	About Design Studio Cartridge Documentation

	15 Work Order Processing and Sample Work Orders
	Work Order Processing Overview
	General Work Order Processing
	OSS/J or Web Service Work Order Processing with XML or XPath Parameters

	About Testing Cartridge Elements with Sample Work Orders
	About SRP Emulator Sample Work Orders
	About JSRP Sample OSS/J Work Orders
	Sample OSS/J Work Order with Conditional Logic Using XML Parameters
	Sample OSS/J Work Order with Conditional Logic using XPath Parameters

	About Web Service Sample Work Orders

	Guidelines for Creating Sample Work Orders
	Troubleshooting Atomic Actions
	Troubleshooting Service-Action-to-Atomic-Action Translation Errors

	16 Creating and Deploying a SAR File (ASAP Cartridge)
	SAR File Creation and Deployment Options
	SAR File Folder Structure Options
	ASAP 4.7 SAR File Folder Structure
	ASAP 4.6 SAR File Folder Structure

	Creating an ASAP 4.6 SAR File
	Deploying Service Models with the Service Activation Deployment Tool
	Using the SADT Command Line Interface
	Using the SADT Command Line Interface in Interactive Mode
	Deploying a Service Activation Model Archive
	Undeploying a Service Activation Model Archive
	Querying an Activation Model
	List All Deployed Activation Models

	Using the SADT Command Line Interface in Script Mode

	Using the SADT Web Interface
	Viewing Deployed Service Activation Models
	Deploying a service activation archive file
	Undeploying a Service Activation Model
	Deploying Multiple Cartridges

	Using the SADT JMX Interface
	Configuring JMX Interfaces to Validate XML Documents

	Loading ASAP Services Dynamically

	A Configuring Services Using XML
	Configuration Restrictions and Limitations
	Configuring ASAP Services
	Planning
	Configuring Atomic Actions
	Adding Supporting Data
	Configuring Service Actions
	Mapping Atomic Actions to Service Actions
	Mapping User Exit Types to Base Exit Types
	Creating Activation-Model.xml
	Configuring Network Element Throughput Using XML

	B Configuring Services Using Stored Procedures
	Configuring ASAP Services Using Stored Procedures
	Configuring Service Actions
	Configuring Atomic Actions
	Configuring Atomic Action Parameters
	Configuring Service Action-to-Atomic Action Mappings
	Configuring Atomic Action-to-Program Mappings

	Configuring Network Elements Using Stored Procedures
	Configuring Host Network Elements
	Configuring Host to Remote Network Element Mappings
	Configuring NEP-to-Host NE Mappings
	Configuring Resource Pools
	Configuring Communication Parameters
	Configuring Network Element Error Thresholds
	Configuring User Errors and Thresholds
	Configuring Static Routing
	Configuring Atomic Action Routings by ID_ROUTING Using Stored Procedures
	Configuring Atomic Action Routings by USER_ROUTING
	Configuring Atomic Action Routings by Distinguished Name

	Configuring Network Element Blackout Periods (optional)
	Checking Network Element Blackout Periods

