
Oracle® Communications
EAGLE Application Processor Provisioning
Database Interface User's Guide

Release 17.0
F58687-01
March 2023

Oracle Communications EAGLE Application Processor Provisioning Database Interface User's Guide,
Release 17.0

F58687-01

Copyright © 2000, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction

Overview 1-1

2 Functional Description

General Description 2-1

System Architecture 2-7

Provisioning Database Interface Description 2-10

Socket Based Connection 2-10

String-Based Messages 2-10

Security 2-11

Remote Port Forwarding 2-11

How to Configure the CPA for Connecting to the PDBA 2-13

Transaction-Oriented API 2-13

Batch-Oriented/Bulk Load 2-14

Command Atomicity 2-14

Provisioning Ranges of Subscriber Numbers 2-15

Transparency of Redundant Systems 2-16

Logs 2-17

Crash Recovery 2-17

Request IDs 2-17

Multiple Session Connectivity 2-17

Request Queue Management 2-18

Interface Configuration and Installation 2-18

File Formats 2-18

Debug Log 2-18

Import/Export Files 2-18

Import File 2-18

Export File 2-21

3 PDBI Request/Response Messages

Overview 3-1

iii

Messages 3-6

Connect 3-6

Disconnect 3-9

Begin Transaction 3-10

End Transaction 3-12

Abort Transaction 3-13

Create Subscription 3-14

Subscription Containing a Single IMSI with No DNs 3-14

Subscription Containing an IMSI and One to Eight DNs 3-15

One or More DNs on the Same NE with no IMSI 3-17

Subscription Porting a Block of DNs 3-21

Create Subscription Responses 3-25

Update Subscription 3-28

Modify the SP for a Specific IMSI 3-28

Modify the Subscription Data of a Single DN 3-29

Move an existing DN to an Existing IMSI 3-32

Modify the Subscription Information for a DN Block 3-33

Update Subscription Responses 3-37

Delete Subscription 3-39

Delete an IMSI 3-39

Delete a Single DN 3-40

Delete a DN block 3-40

Delete Subscription Responses 3-41

Retrieve Subscription Data 3-42

Retrieve Subscription Information About a Specific DN 3-42

Retrieve Subscription Information for a Range of DNs 3-46

Retrieve Subscription Information About a Specific IMSI 3-50

Retrieve Subscription Information for a Range of IMSIs 3-50

Retrieve Subscription Data Responses 3-51

Create Network Entity 3-53

Update Network Entity 3-57

Delete Network Entity 3-61

Retrieve Network Entity 3-62

Retrieve the Information for a Specific NE 3-62

Retrieve the Information for a Range of NEs 3-63

Retrieve the Information for All NEs 3-64

Retrieve Network Entity Responses 3-64

Switchover 3-65

PDBA Status Query 3-68

Dump Connections 3-69

Create IMEI Data 3-70

iv

Create a Single Entry IMEI 3-71

Create a Block Entry of IMEIs 3-72

Create a New IMSI and Associate it with an Existing IMEI 3-73

Create IMEI Data Responses 3-74

Update IMEI Data 3-76

Update a Single Entry IMEI 3-76

Update a Block Entry of IMEIs 3-78

Update IMEI Data Responses 3-79

Delete IMEI Data 3-80

Delete a Single Entry IMEI 3-80

Delete a Block of IMEIs 3-81

Delete IMSI(s) from the Associated IMEI 3-81

Delete the IMSI from all IMEIs 3-82

Delete IMEI Data Responses 3-83

Retrieve IMEI Data 3-83

Retrieve All the Data Associated with a Single IMEI Entry 3-84

Retrieve IMEI Data: Retrieve a Range of IMEIs 3-84

Retrieve IMEI Data Responses 3-86

Request Service Module Card Report 3-87

Retrieve Service Module Card Report 3-89

Retrieve a List of the Service Module Cards 3-91

4 PDBI Sample Sessions

Introduction 4-1

Network Entity Creation 4-1

Simple Subscription Data Creation 4-2

Update Subscription Data 4-2

Simple Queries 4-6

Multiple Response Query 4-7

Abort Transaction 4-8

Update Request In Read Transaction 4-9

Write Transaction In Standby Connection 4-9

Simple Subscription Data Creation with Single Txnmode 4-10

Single IMEI Data 4-11

IMEI Block Data 4-11

Asynchronous Service Module Card Report 4-12

Synchronous Service Module Card Report 4-13

Service Module Card List 4-13

v

A PDBI Message Error Codes

PDBI Message Error Codes A-1

B TIF Number Substitution Relationships

TIF Number Substitution Relationships B-1

C TIF Linkset Based Blocklist Feature

D DN Block Self Healing

DN Block Self Healing D-1

vi

My Oracle Support

My Oracle Support (https://support.oracle.com) is your initial point of contact for all product
support and training needs. A representative at Customer Access Support can assist you with
My Oracle Support registration.

Call the Customer Access Support main number at 1-800-223-1711 (toll-free in the US), or
call the Oracle Support hotline for your local country from the list at http://www.oracle.com/us/
support/contact/index.html. When calling, make the selections in the sequence shown below
on the Support telephone menu:

• For Technical issues such as creating a new Service Request (SR), select 1.

• For Non-technical issues such as registration or assistance with My Oracle Support,
select 2.

• For Hardware, Networking and Solaris Operating System Support, select 3.

You are connected to a live agent who can assist you with My Oracle Support registration and
opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

7

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

Acronyms

The following table provides information about the acronyms and the terminology used
in the document.

Table Acronyms

Acronym Definition

GPL General Public License

ASD Additional Subscriber Data

AINPQ ANSI-41 Number Portability Query

CCGT Cancel Called Global Title

CPA Customer Provisioning Application

EIR Equipment Identity Register

FTP File Transfer Protocol

GC Group Code

GRN Generic Routing Number

IMEI International MobileEquipment Identity

INP INAP-based Number Portability

MOS My Oracle Support

PDB Provisioning Database

PDBA Provisioning Database Application

PDBI Provisioning Database Interface

PPSMS Prepaid Short Message Service Intercept

PT Portability Type

RTDB Real Time Database

SFTP Secure File Transfer Protocol

SR Service Request

TIF NS TIF Number Substitution

8

What's New in This Guide

This section introduces the documentation updates for Release 17.0 in Oracle
Communications EAGLE Application Processor Provisioning Database Interface User's
Guide.

Release 17.0 -F58687-01, March 2023

There are no updates in this document for this release.

9

1
Introduction

This chapter contains general information about the PDBI documentation, the organization of
this manual, and how to get technical assistance.

Overview
The Provisioning Database Interface User's Guide defines the interface that is used to
populate the Provisioning Database (PDB) for the G-Flex, G-Port, EIR, INP, A-Port, AINPQ,
V-Flex, and IS41GSM Migration features of the EAGLE.

1-1

2
Functional Description

This chapter provides an overview of PDBI, EPAP, PDBA, and DSM functions.

General Description
The Provisioning Database Interface (PDBI) provides commands that communicate
provisioning information from the customer database to the Provisioning Database (PDB) in
the Active PDBA in an EAGLE. The customer executes provisioning commands using a
provisioning application. This application uses the PDBI request/response messages to
communicate with the EPAP Provisioning Database Application (PDBA) over the customer
network.

EPAP

As shown in Figure 2-1, the provisioning system contains two mated EPAPs. Of the two
mated EPAPs, only one is the Active PDBA, while the other acts as a Standby PDBA.

Each EPAP maintains two copies of the RTDB in the B-Tree format. When a Service Module
card needs a copy of the RTDB, the Active RTDB downloads the B-Tree file to the Service
Module card. Each Service Module card uses the B-Tree file to create its own copy of the
RTDB database. The primary purpose of an EPAP is to download the RTDB to the Service
Module cards.

The Active PDBA interfaces with the customer database through the PDBI, which provides
PDB updates. When the customer submits provisioning requests, the Active PDBA updates
its PDB. After the updates are applied to the PDB of the Active PDBA, the updates are sent
to the Standby PDBA.

Standalone PDB EPAP - This configuration supports only the Provisioning Database (PDB)
and its associated processes. The Real Time Database (RTDB), EAGLE interfaces, Service
Module cards, Mate Servers, and associated processes are not supported by this
configuration. Standalone PDB EPAP is identified as an EPAP. Content in this chapter and
subsequent chapters which is RTDB-related or requires a Mate server or EAGLE interface
does not apply to this configuration. Refer to Administration Guide for specific information
about the Standalone PDB EPAP configuration.

Service Module Card

As Figure 2-1 shows, the provisioning system uses up to 32 Service Module cards. Multiple
Service Module cards are used to provide a means of load balancing in high-traffic situations.
The database is in a B-Tree format to facilitate rapid lookups.

2-1

Figure 2-1 Example EPAP/PDBA Network

Each Service Module card contains an identical database. The RTDB on the Service
Module cards must be identical to the RTDB maintained by the EPAPs. However, there
are several reasons why the various databases might not be identical. When a Service
Module card is initialized, it has to download a current copy of the B-Tree RTDB file
from the EPAP. While that card is being downloaded, it cannot be used to provide
VSCCP services. Another condition that leads to the databases being out-of-sync
occurs when the EPAP processes an update from its provisioning source. These
updates are applied immediately to the Active EPAP PDB as they are received, but
there is a delay before sending the updates to each EPAP RTDB and then
subsequently to the Service Module cards.

Two possible scenarios lead to the condition when a Service Module card might not
have enough memory to hold the entire database:

• The database is downloaded successfully to Service Module card, but subsequent
updates eventually increase the size of the database beyond the Service Module

Chapter 2
General Description

2-2

card memory capacity. In this situation, it is desirable to continue message processing,
even though the database might not be as up-to-date as it could be.

• When a Service Module card is booted, if it is determined that the card does not have
sufficient memory to hold the entire database, the database is not loaded on that card.
The Service Module card is responsible for recognizing and reporting out-of-memory
conditions. Under this condition, a Service Module card cannot process provisioning
traffic.

Introduction to Platform Services

The PDBI allows one or several independent information systems supplied and maintained
by the network operator to be used for provisioning the G-Flex, G-Port, INP, EIR, A-Port, IS41
GSM Migration, V-Flex, and AINPQ databases and for configuring the G-Flex, G-Port, INP,
EIR, A-Port, IS41 GSM Migration, and AINPQ systems. Through the PDBI, the independent
information systems can add, delete, change or retrieve information about any IMSI/MSISDN/
SP association or portability information.

The active/standby status of the PDBA can also be changed. For the G-Flex and G-Port
features, SP generally refers to an HLR. Also note that the terms MSISDN and DN are used
interchangeably throughout this document.

The ANSI-41 Mobile Number Portability (A-Port) feature supports mobile number portability in
ANSI-based networks. The ANSI-41 Mobile Number Portability feature uses the EAGLE
Application Processor (EPAP) provisioning database to retrieve the subscriber portability
status and provision directory numbers for exported and imported IS41 subscribers. The A-
Port feature supports both IS41 LOCREQ and SMSREQ messages for number portability
handling. The A-Port feature uses the MNP SCCP Service Selector to process GTT-routed
LOCREQ and SMSREQ SCCP messages.

The IS41 GSM Migration feature refers to the movement of the subscribers of an ANSI
IS-41MAP protocol based network to a GSM MAP protocol based network while retaining
their mobile telephone numbers.

After migration, subscribers are able to:

• Use GPRS-based data services that are provided only by GSM networks.

• Enhance their roaming capability to a larger number of countries because GSM networks
are more widely deployed worldwide than IS41 networks.

The IS41 GSM Migration feature uses the G-Port MSISDN portability type (PT) field to
identify subscribers that have migrated from IGM to GSM, but maintain only a single GSM
handset. This category also includes new subscribers who sign up for GSM service only and
have only one handset, but are given a number from the existing IS41 number range. Since
these subscribers are either migrated (PT=5) or not migrated (PT=0), the new PT values do
not logically overlap the existing values. PT values are mutually exclusive of each other.

The ANSI-41 Number Portability Query (AINPQ) feature provides number portability in
networks that support a mix of ITU and ANSI protocols by allowing ANSI-41 NPREQ queries
on the EAGLE database. INP uses the INAP TCAP protocol and AINPQ uses the ANSI-41
TCAP protocol for Query functions.

The G-Flex feature allows mobile network operators to optimize the use of subscriber
numbers (IMSIs and MSISDNs) and number ranges by providing a logical link between any
MSISDN and any IMSI. This allows subscribers to be easily moved from one HLR to another.
It also allows each HLR to be filled to 100 percent capacity by allowing MSISDN/IMSI ranges
to be split over different HLRs and individual MSISDNs/IMSIs to be assigned to any HLR. G-

Chapter 2
General Description

2-3

Flex also eliminates the need to maintain subscriber routing information at every MSC
in the network.

The GSM Mobile Number feature implements mobile number portability for GSM
networks and supports the SRF-based MNP solution as defined in ETSI standards. G-
Port allows the subscriber to retain the MSISDN number when changing subscription
networks. The user's IMSI is not portable. For call-related messages, G-Port acts as a
“NP HLR”, in the case where the number has been exported, by responding to the
switch with a MAP SRI ack message. For calls to imported numbers and non-call
related messages, G-Port performs message relay.

The INP (INAP-based Number Portability) feature implements IN-based number
portability (using INAP protocol). It is also used by wireline network operators in
accordance with ITU Number Portability supplements, or by wireless network
operators in accordance with ETS I NP standards. INP provides both query/response
and message relay functionality.

The EIR (Equipment Identity Register) feature implements handset security within the
GSM network. It does this by allowing carriers to provision IMEIs (International Mobile
Equipment Identity) in the database and assigning them a list type. List types are
Block, Gray, and Allow. When an IMEI is placed on the block list, the carrier is able to
prevent the handset from accessing their network. An Allow listed IMEI is allowed
access to the network, while a Gray may require additional screening but is typically
allowed access to the network.

EAGLE generates logs for Block list, Allow list, and Grey list IMEIs for all other
possible scenarios. Following are a few examples:

• IMEI was block listed but blocklist was overridden because IMSI was present in
the database

• IMEI was block listed and IMSI was not present in the database, therefore,
blocklist continued.

• IMEI was not Block/Gray/Allow Listed, resulting in Allow List. The EIR log file is
present at the location /var/TKLC/epap/free folder with the name
eirlog_<hostname> where MPS server where the log file is stored.
Along with the response code of EIR, each entry in the log file has the following
information.

< Time/Date stamp>, < Source Identifier>, <Source Sequence
Number>, <IMSI>, <IMEI>, <response Code>, <Point Code Type>,
<point Code or Hostname>
For example,
20030715163600,192.168.61.1,1234,9195551212,12345678901234,0
,ansi,3-3-1

EIR logs are sent through UDP socket to the EPAP. The EPAP processes and stores
these logs in the EIR List Log files.

The Prepaid Short Message Service Intercept (PPSMS) feature uses the G-Port DN
portability type (PT) field to identify prepaid subscribers. These subscribers can be
categorized as subscribers that are ported and subscribers that are not ported. The
originated short messages (as part of SMS) of these subscribers need to be
intercepted and forwarded to a corresponding intelligent network platform for
verification. However, the new PT values of the subscribers that are ported in or not
ported do not logically overlap with the existing values. Therefore, the PT values for
these subscribers cannot be set when the DN associated with an SP is removed. In

Chapter 2
General Description

2-4

order to minimize changes to the interface, the PT field is not added to the commands where
an IMSI is provided as input. PPSMS is a part of G-Port that is activated separately.

The V-Flex feature is used to route calls to a specific VMS based on subscription (voice,
multimedia) data provisioned via the EAGLE MMI port and EPAP PDBI . The V-Flex feature
utilizes VMS and GRN Network Entity types. In addition, the Multiple Network Entities per
Subscriber feature introduces the ability to associate DN Blocks and individual DNs with up to
2 NEs. SP and RN remain mutually exclusive, however any combination of 2 NEs per DN is
allowed so long as there is only 1 of each Network Entity type.

The ASD (Additional Subscriber Data) feature enables generic data to be associated with DN
and DN Block subscriber records.

The EPAP Provisioning blocklist feature helps prevent provisioning of protected E.164
address strings in the EPAP G-Flex database. Provisioning a protected E.164 address string
as a DN, DN Block, or IMSI may result in unintended and incorrect routing of messages by
the EAGLE Service Module card. The EPAP Provisioning blocklist feature allows the user to
define a list of address strings that cannot be provisioned as DN, DN Block or IMSI address
strings. The E.164 addresses of all HLRs must be provisioned in the provisioning blocklist.

The TIF Number Substitution feature is used to provision a new DN association for DNs and
DN Blocks. All DN and DN Block records have a subscriber type to identify them as either
public or private. Public DN and DN Block records may substitute to private DN. Likewise,
private DN and DN Blocks may substitute to a public DN. Records are public by default; this
default applies to pre-existing records and new records for which subscriber type is not
explicitly defined.

The TIF Linkset Based blocklist functionality enables a misused user to make legitimate calls
in case it is blocked on a particular linkset. The feature stores the blocklisted information for
each number including the blocklisted SetID. Therefore, all the messages arriving on EAGLE
are screened with the following combination:

• The blocklisted SetID referred in incoming linkset

• The blocklisted SetID configured in RTDB

The IDP A-Party blocklist feature provides subscriber blocklisting capability on the Calling
Party (A-Party or CgPN) number in the IDP CAMEL message. The blocklisting function is
achieved using either a query-based mode, or a relay-based mode in conjunction with IDP
Relay feature processing. The blocklist data is used by the EAGLE to support IDP queries. If
the calling party is associated with a blocklisted flag and a GRN has been provisioned against
the associated DN or DN Block, then a connect message is sent back to the switch along
with the GRN number. The GRN is then used to re-route the call to a predetermined
destination. Pre-existing DN and DN Block records have blocklisting disabled by default.

EPAP-related features share the same Real Time Database (RTDB) database when operated
together on a single node. EIR and INP/AINPQ are mutually exclusive on a node.

Introduction to the Data Model on the Platform

The PDBA uses an object-oriented approach for data organization. The data is organized into
three independent “objects” that correspond to MSISDNs, IMSIs and SPs/RNs. These
“objects” are a subset of the database. Associations are established between an IMSI and
MSISDN, IMSI and SP/RN, MSISDN and SP/RN or IMSI, MSISDN and SP/RN through the
use of pointers between the objects.

The database is created as follows:

Chapter 2
General Description

2-5

• When an IMSI, MSISDN or NE (that is, an SP identifier) is created, this data is
added to the corresponding object, which is a subset of the database.

• When an IMSI, MSISDN or NE is deleted, the related data is removed from the
corresponding object.

• When an association is established between an IMSI, MSISDN and SP/RN,
pointers are set up between the appropriate objects.

• When an association is removed, the pointers between the objects are removed.

For example, assume that the database already contains several IMSIs, MSISDNs
and SP addresses, but that no associations have been established. The IMSIs exist in
the ‘IMSI object,’ that is, the IMSI portion of the database. Likewise, the MSISDNs
exist in the ‘MSISDN object’ and the SP addresses exist in the ‘SP object.’ When the
ent_sub or upd_sub commands are used to establish an association between an
IMSI and an MSISDN, a pointer is created that points to the correct location in the
‘MSISDN object,’ that is, the correct portion of the database where the MSISDNs
reside. The same process occurs when other associations are established, such as
IMSI pointing to SP, MSISDN pointing to SP, or IMSI pointing to MSISDN pointing to
SP.

The EIR feature introduces the IMEI to the database. The IMEI for EIR may be
associated with up to 8 IMSIs, but it is important to note that this IMSI has no
relationship to the existing IMSI used by the G-Port/G-Flex feature (ent_sub,
upd_sub,dlt_sub, rtrv_sub) commands. In other words, IMSIs provisioned for EIR are
strictly added to the EIR database only. An IMSI may appear in both the G-Port/G-Flex
database and the EIR database, but must be provisioned by both sets of commands
(ent-eir and ent-sub).

Data Organization

MSISDN data is provisioned into two tables: a single instance table (Single DNs) and a
block instance table (DN Blocks). The database considers both Single DNs and DN
Blocks as entities in their own right. Therefore, a distinction must be made between
the terms ‘DN range’ and ‘DN Block’ as they are used in this document. A DN Block is
considered to be an autonomous entity, just as a Single DN is. A DN range is just a
range of numbers. Within a specified DN range, several Single DNs and also several
DN Blocks may exist. For instance, consider the following example:

Assume the following single DNs are provisioned:

10050

10080

10900

Also assume the following DN blocks are provisioned:

10000-10100

10500-10800

11000-12000

Some commands accept a DN range as a requesting parameter (for example, the
rtrv_sub command). Assume the following DN ranges are used in a command:

10080-10600

Chapter 2
General Description

2-6

10850-11500

10000-10040

10400-13000

Then the following relationships are true:

• DN range 10080-10600 encompasses the Single DN 10080 and DN Blocks 10000-10100
and 10500-10800

• DN range 10850-11500 encompasses the Single DN 10900 and DN Block 11000-12000

• DN range 10000-10040 encompasses no Single DNs and DN Block 10000-10100

• DN range 10400-13000 encompasses the Single DN 10900 and DN Blocks 10500-10800
and 11000-12000

The IMEI is also provisioned into two tables: a single instance table (Individual IMEIs) and a
block instance table (IMEI Blocks). IMEIs work the same way as the DNs and DN Blocks.

System Architecture
There are two PDBAs, one in EPAP A on each EAGLE. They follow an Active/Standby
model. These processes are responsible for updating and maintaining the Provisioning
Database (PDB). Customer provisioning applications connect to the Active PDBA and use
PDBI request/response messages to populate and query the PDB. The PDBA then forwards
the updates to the EPAP real-time database (RTDB). See Figure 2-2.

Figure 2-2 PDBI System Architecture

Updates that are sent to the active PDBA are also sent asynchronously to the standby PDBA
after being successfully committed into the active PDB. This methodology allows for
provisioning to be performed quickly from the PDBI client’s point of view because the client
receives the success message as soon as the update is committed to the active database.
The client does not have to wait for the update to be forwarded across their WAN and
replicated on the standby database.

Chapter 2
System Architecture

2-7

This design contains an inherent short delay between the time the active PDB receives
the update and when the standby PDB does. Because of this delay, clients only
reading the database might be better off reading from the standby PDBA. It should
also be noted that both PDBA clients must be up for the asynchronous replication to
occur.

Note:

The active/standby status of the two PDBA processes can be switched
through a PDBI command or through the configuration user interface for the
PDBA.

Also, the PDBA uses 5873 as its well-known listen port, although this value is
modifiable through a command line argument.

You can configure which PDBA forwards updates to an RTDB. Due to the
asynchronous nature of the PDBA replication, it is recommended that the RTDBs
select the standby PDBA. This configuration ensures that there are no problems with
differing levels if the active PDBA is stopped while there are many levels left to send to
the standby PDBA. The RTDBs are guaranteed to always be on the PDBA that has the
lower level number.

System Overview and Terminology

Figure 2-3 shows a block diagram of the MPS/EPAP platform. It also shows a mated
pair of EAGLE. The EAGLE are the large blocks at the bottom. The MPSs, which are
attached to the EAGLE, are above the EAGLE and contain EPAP A and EPAP B.

An MPS system consists of two MPS servers and associated hardware Each EAGLE
in a mated pair has one MPS system attached. The two MPS systems are referred to
as a mated MPS system. Within one MPS system (the MPS system for one EAGLE),
the two MPS servers are considered mated MPS servers and are referred to as MPS
A (the upper server) and MPS B (the lower server).

The application bundle that runs G-Flex, G-Port, INP, EIR, A-Port, AINPQ, and IGM
is referred to as the EPAP. The EPAP consists of software applications needed to
provision the databases, including the Provisioning database. That is the database
referred to as the PDB. In terms of G-Flex, G-Port, INP, EIR, A-Port, AINPQ, and IS41
GSM Migration provisioning, the MPS upper and lower servers are called simply EPAP
A and EPAP B or MPS A and MPS B.

EPAP A and EPAP B are slightly different in their configuration. EPAP A runs the
PDBA software and thus holds a copy of the PDB. This is the EPAP that is accessed
using the PDBI. EPAP A also holds a copy of the RTDB for downloading to the Service
Module cards. EPAP B contains a redundant copy of the RTDB, but contains none of
the PDBA software. This architecture is duplicated on the mated MPS system on the
mated EAGLE. Typically the redundant EAGLE are called EAGLE A and EAGLE B.

The EPAPs are connected to the Service Module cards via a 10/100/1000 BASE-T
Ethernet for the downloading of the RTDB; these Ethernet connections are called the
main and backup DSM networks.

Chapter 2
System Architecture

2-8

Network Connections

Connections and IP addressing for the customer (or provisioning) network, the main and
DSM networks, and the RTDB are described in detail in EPAP Administration Guide.

Figure 2-3 MPS/EPAP System Configuration

EPAP Status Reporting and Alarm Handling

Maintenance, measurements, status, and alarm information is routed from the Active EPAP to
a primary Service Module through EPAP Maintenance Blocks and Service Module Status
Requests.

The status reporting, message format, and various alarm messages are explained in detail in
EPAP Administration Guide.

Chapter 2
System Architecture

2-9

Provisioning Database Interface Description
This section describes the Provisioning Database Interface (PDBI) at a high level. The
interface consists of the definition of provisioning messages only.

The customer must write a client application that uses the PDBI request/response
messages to communicate with the PDBA. Details of the request/response messages
appear in Chapter 3, "PDBI Request/Response Messages."

Socket Based Connection
The PDBI messages are sent across a TCP/IP socket. The client application is
responsible for connecting to the PDBA well-known port and being able to send and
receive the defined messages. It is also the responsibility of the customer’s
provisioning system to detect and deal with socket errors. Oracle recommends that the
TCP ‘keepalive’ interval on the customer’s socket connection be set such that a socket
disconnection problem is promptly detected and reported.

There is a limit to the number of PDBI connections; the default is 16 clients. If an
attempt is made to connect more than the current client limit, a response is returned to
the client: PDBI_TOO_MANY_CONNECTIONS. After the response is returned, the
socket is automatically closed.

Note:

Although the default limit is 16 PDBI connections, Tekelec is able to
configure and support up to 128 connections. If you require more than 16
connections, contact Tekelec for information. concurrent client

String-Based Messages
The PDBI messages (requests and responses) are NULL-terminated strings. This has
several benefits.

• It simplifies sending and receiving the messages from any language that has
socket capability (for example, Perl or Java).

• It is easier for the PDBA to support any combination of the G-Flex, G-Port, and
INP features at previous and new levels. Because the messages are not tied to C
structures, differences between previous and new versions of the PDBI calls will
not cause possible memory corruption. For example, if a new parameter is added
to the connect(…) command, a client using the previous version of the command
will simply receive a parsing error. The same change in a C structure-based
interface could result in the new C structure being filled in with wrong data.

• It is easier for the PDBA to support any combination of the G-Flex, G-Port, INP,
EIR, A-Port, AINPQ and IGM Migration features at previous and new levels.
Because the messages are not tied to C structures, differences between previous
and new versions of the PDBI calls do not cause possible memory corruption. For
example, if a new parameter is added to the connect(…) command, a client
using the previous version of the command simply receives a parsing error. The

Chapter 2
Provisioning Database Interface Description

2-10

same change in a C structure-based interface could result in the new C structure being
filled in with wrong data.

• Because the messages are user readable, debugging errors in messages is easier.

• Messages can easily be stored in a request log for review or replay later.

Security
The PDBA maintains a list of IP addresses that are allowed to connect through the PDBI. Any
connect request coming from an IP address that is not in the list is rejected. Each IP address
in the list has either READ or READ/WRITE permission. IP addresses can be added to and
removed from the list and permissions can be modified using the EPAP user interface PDBA
menu items (refer to the PDBA Menu description in the EPAP Administration Guide).

Remote Port Forwarding
Remote Port Forwarding refers to the SSH tunneling approach where the SSH tunnel is
created from the client side of the tunnel towards the server side. The CPA machine is the
server and the PDBA machine is the client.

Note:

SSH tunneling/Remote port forwarding can be simultaneously used with Normal
(Transaction oriented) Provisioning mode.

Figure 2-4 shows an SSH tunnel on a connection between the Customer Provisioning
machine and the PDBA machine.

Chapter 2
Provisioning Database Interface Description

2-11

Figure 2-4 SSH Tunnel Between the CPA and PDBA Machines

The PDBA machine user specifies a particular port number (configurable from GUI) to
be opened on the CPA machine. Any data received on this port on the CPA machine is
forwarded to the PDBA machine's IP address and the port number, 5873, through the
secured SSH tunnel.

Note:

To implement Remote Port Forwarding to work, the CPA machine must have
the OpenSSH suite (version 3.6.1 or later) installed and the SSH daemon
must be running.

Request/Response Cycle in SSH Tunnel

When an SSH tunnel is in use, a complete request and response cycle takes place as
follows:

1. The CPA sends a connect request to its local port number used for creating the
tunnel.

2. The SSH encrypts the request message and sends it to the PDBA machine's SSH
client port.

3. On the PDBA machine, the SSH client decrypts the message and forwards it to
the PDBA port.

4. The PDBA gets the request message in unencrypted form and sends an
unencrypted response to the SSH client.

5. The SSH client encrypts the response message and sends it to the SSH port on
the CPA machine.

Chapter 2
Provisioning Database Interface Description

2-12

6. On the CPA machine, the SSH daemon decrypts the message and forwards it to the
CPA. The CPA receives the message unencrypted.

How to Configure the CPA for Connecting to the PDBA
This section describes the parameters that must be defined on a CPA (Customer
Provisioning Application) machine to allow it to connect to the PDBA. The parameters used to
configure a CPA machine for connecting to the PDBA depend on whether SSH tunneling is to
be used.

How to Configure the CPA When SSH Tunneling Is Not Used

If SSH tunneling is not to be used, configure the CPA with the following parameters:

• IP address of the PDBA

• PDBA port number 5873

How to Configure the CPA When SSH Tunneling Is Used

If SSH tunneling is to be used, the OpenSSH suite (version 3.6.1 or later) must be installed
on the CPA, the sshd daemon must be running, and the following parameters configured on
the CPA machine:

• IP address: either 127.0.0.1 or localhost

• Port number: Use the same port number as is configured through the EPAP GUI (for
more information, refer to Administration Guide.)

In addition, provide the following information to the EPAP administrator:

• Port number on the CPA to be used for tunneling (this port number should be the same
as the port number specified on the CPA machine)

• Username and password of the CPA machine

Note:

The password is not stored by the EPAP software. It is used only one time for
setting up the SSH tunnel.

Transaction-Oriented API
The PDBI is a transaction-oriented API. This means that all subscription-related commands
are sent within the context of a transaction. Two transaction modes are supported, normal
and single.

Normal Transaction Mode

The normal transaction mode is the default method and has two main benefits:

• Many updates can be sent in a large transaction, and written to the database all at once
when the transaction is completed. This results in a much faster rate of updates per
second.

• It provides transaction integrity by allowing updates to be aborted or rolled back if there is
an unexpected failure of some kind before the transaction is completed. Updates are not

Chapter 2
Provisioning Database Interface Description

2-13

committed to the database until the end_txn command is issued. If an
unexpected failure occurs or if the transaction is manually aborted, the database is
maintained in the state before the start of the transaction (seer Command
Atomicity).

Single Transaction Mode

When sending a series of single-update transactions in normal transaction mode,
considerable overhead is required for sending transaction boundary tags. Because
some clients want to send only one update per transaction, an alternative PDBI
connection type is available, called 'single transaction mode.'

When using this connection type, PDBI clients can send updates outside of the 'begin'
and 'end' transaction delimiters. The PDB treats each single transaction mode update
as being its own transaction. However, transaction delimiters are not ignored in 'single
mode'. If the PDBI client issues these delimiters, the series of updates encapsulated
by them are treated as one transaction, as they are been under the default normal
transaction mode. For details on the PDBI connect options, refer to the Connect
command on and the txnmode parameter.

Batch-Oriented/Bulk Load
The system can also accept batch files via SFTP (Secure File Transfer Protocol) or
removable media (that is, MO, CD-R). The preferred method is SFTP.

The system can also accept batch files via FTP (File Transfer Protocol) or removable
media (that is, MO, CD-R). The preferred method is FTP.

The format of the batch file looks like a series of normal PDBI commands, such as
ent_sub, dlt_sub, etc. However, the connect/disconnect request and transaction
begin/end commands are not included.

During a batch file import, transactions are handled in the same manner as with
individual commands: the write transaction must be released by the client doing the
batch file import before a new write transaction may be granted. Read transactions are
always available, assuming the customer's interface network is available. The import
file can contain as many commands as the storage media used to hold the batch file
allows. The PDBA does not have a limit on the number of commands allowed.

The batch file is committed in stages; several transactions are opened to import the
entire file. There is one commit for approximately every 200 entries. Therefore, it is
impossible to rollback or abort a transaction after the import is complete. This also
means that the dblevel returned at the end of the import may be increased by several
levels since each transaction would increment it. The time needed to complete an
import of a batch file depends upon several variables, including the size of the file.

Although the import is processed as a series of transactions, the write transaction is
unavailable to other clients for the entire duration of the import, that is until all
transactions related to the import have been processed.

Command Atomicity
Commands are atomic, that is, they cannot be interrupted. Once a command is begun,
it is performed completely or not at all; an atomic command cannot be partly
performed or partly completed.

Chapter 2
Provisioning Database Interface Description

2-14

Consequently, if one command in a transaction fails, the results of that one command are not
committed to the database upon execution of the end_txn command. However, all the other
commands in the transaction that did execute successfully are committed upon execution of
the end_txn command.

Provisioning Ranges of Subscriber Numbers

Currently, there is no method directly accessible from the PDBI for provisioning ranges of
IMSIs (only individual IMSIs are supported), but provisioning MSISDNs Blocks and IMEIs
Blocks is supported.

Note that the EPAP GUI provides menus to provision IMSI Ranges, however these are not
equivalent to MSISDN Blocks or IMEI Blocks. These IMSI Ranges are not provisioned via
PDBI and are not downloaded to the EPAP RTDBs or Service Module RTDBs.

Transparency of Redundant Systems

The network operator is responsible for provisioning to only one PDBA. Once the active PDB
is provisioned, the system automatically passes down the data to the active and standby
RTDBs on that EAGLE. At the same time, the data is also passed, asynchronously, to the
standby PDB and subsequently to the mated RTDBs on the mated EAGLE. Provisioning of
redundant systems, therefore, is transparent to the user.

When the active PDBA becomes unavailable, the standby PDBA does not automatically
switch to active. The PDBA client must send a switchover command to tell the standby PDBA
to become active.

Logs

Several logs are available to the user, including a Command Log, which contains a trace of
the commands sent to the PDBA, and an Error Log, which contains a trace of all errors
encountered during provisioning, in addition to several other options.

Crash Recovery

If a crash occurs while a transaction is in process and does not cause database corruption,
the database remains in the state before the crash after the reboot.

In the event of a catastrophic failure or corruption of a database, several options exist for
reloading the data. For more information, refer to Administration Guide.

Request IDs

Each request has an ID, called the ‘iid’, as its first element. Its purpose is to allow
responses to be matched up with requests as they arrive back at the client. Its value is an
integer between 1 and 4294967295, expressed as a decimal number in ASCII.

The iid is optional. If an iid is not provided on a request, the corresponding response also
does not have one. The iid is selected by the client when a command is sent and the
selected value is returned by the PDBA in the subsequent response. A different iid could be
selected for each request.

Multiple Session Connectivity

Multiple information systems can be connected via the PDBI simultaneously. All systems can
open read transactions, but only one system at a time can open a write transaction. If more

Chapter 2
Provisioning Database Interface Description

2-15

than one system requests a write transaction, contention for write access is handled
as follows:

• The first user to submit a write request is granted access, if it is authorized for
write access.

• If a second user submits a write request while the first transaction is still open, the
second user is either immediately rejected or is queued for a specified timeout
period.

• The time out period can be specified by the user in the write request as a value
from 0 to 3600 seconds. If the value is not included or is set to 0, the second write
request is immediately rejected.

• If the time out value is set to any non-zero value, the second request is held for
that time period before being rejected. If the first user releases the write
transaction before the second user time out period has expired, the second user is
then granted write access.

• If a third user submits a write request after the second user with a specified time
out period, the third user's request is queued behind the second user's request.
When the first user releases the transaction, the second user is granted access.
After the second user releases the transaction, the third user is granted access,
and so forth. Of course, whenever any user's time out period expires, his/her
request is rejected immediately.

• If the third user sets a time out period longer than the second user and the second
user's time out period expires before the first user releases the transaction, the
second user's request is dropped from the queue. The third user subsequently
moves up in the queue. Thus, if the first user releases the transaction before the
third user's time out has expired, the third user is granted access.

Request Queue Management

If multiple command requests are issued simultaneously, each request is queued and
processed in the order it was received. The user is not required to wait for a response
from one command before issuing another.

Incoming requests, whether multiple requests from a single user or requests from
multiple users, are not prioritized. Multiple requests from a single user are handled on
a first-in, first-out basis. Simply put, requests are answered in the order in which they
are received. Servicing of requests from multiple users is dependent upon traffic in the
data network.

Interface Configuration and Installation

In addition to this manual, additional information concerning PDBI installation,
configuration and integration with the network operator's information system is
provided in Administration Guide.

Transparency of Redundant Systems
The network operator is responsible for provisioning to only one PDBA. Once the
active PDB is provisioned, the system automatically passes down the data to the
active and standby RTDBs on that EAGLE. At the same time, the data is also passed,
asynchronously, to the standby PDB and subsequently to the mated RTDBs on the
mated EAGLE. Provisioning of redundant systems, therefore, is transparent to the
user.

Chapter 2
Provisioning Database Interface Description

2-16

When the active PDBA becomes unavailable, the standby PDBA does not automatically
switch to active. The PDBA client must send a switchover command to tell the standby PDBA
to become active.

Logs
Several logs are available to the user, including a Command Log, which contains a trace of
the commands sent to the PDBA, and an Error Log, which contains a trace of all errors
encountered during provisioning, in addition to several other options.

Crash Recovery
If a crash occurs while a transaction is in process and does not cause database corruption,
the database remains in the state before the crash after the reboot.

In the event of a catastrophic failure or corruption of a database, several options exist for
reloading the data. For more information, refer to Administration Guide.

Request IDs
Each request has an ID, called the ‘iid’, as its first element. Its purpose is to allow
responses to be matched up with requests as they arrive back at the client. Its value is an
integer between 1 and 4294967295, expressed as a decimal number in ASCII.

The iid is optional. If an iid is not provided on a request, the corresponding response also
does not have one. The iid is selected by the client when a command is sent and the
selected value is returned by the PDBA in the subsequent response. A different iid could be
selected for each request.

Multiple Session Connectivity
Multiple information systems can be connected via the PDBI simultaneously. All systems can
open read transactions, but only one system at a time can open a write transaction. If more
than one system requests a write transaction, contention for write access is handled as
follows:

• The first user to submit a write request is granted access, if it is authorized for write
access.

• If a second user submits a write request while the first transaction is still open, the
second user is either immediately rejected or is queued for a specified timeout period.

• The time out period can be specified by the user in the write request as a value from 0 to
3600 seconds. If the value is not included or is set to 0, the second write request is
immediately rejected.

• If the time out value is set to any non-zero value, the second request is held for that time
period before being rejected. If the first user releases the write transaction before the
second user time out period has expired, the second user is then granted write access.

• If a third user submits a write request after the second user with a specified time out
period, the third user's request is queued behind the second user's request. When the
first user releases the transaction, the second user is granted access. After the second
user releases the transaction, the third user is granted access, and so forth. Of course,
whenever any user's time out period expires, his/her request is rejected immediately.

Chapter 2
Provisioning Database Interface Description

2-17

• If the third user sets a time out period longer than the second user and the second
user's time out period expires before the first user releases the transaction, the
second user's request is dropped from the queue. The third user subsequently
moves up in the queue. Thus, if the first user releases the transaction before the
third user's time out has expired, the third user is granted access.

Request Queue Management
If multiple command requests are issued simultaneously, each request is queued and
processed in the order it was received. The user is not required to wait for a response
from one command before issuing another.

Incoming requests, whether multiple requests from a single user or requests from
multiple users, are not prioritized. Multiple requests from a single user are handled on
a first-in, first-out basis. Simply put, requests are answered in the order in which they
are received. Servicing of requests from multiple users is dependent upon traffic in the
data network.

Interface Configuration and Installation
In addition to this manual, additional information concerning PDBI installation,
configuration and integration with the network operator's information system is
provided in Administration Guide.

File Formats
All file formats described in this section are text files.

The EPAP menu items for importing files to the PDB and exporting files from the PDB
are described in the PDBA menu section of Administration Guide.

Debug Log
The debug log format varies from process to process. Most entries contain a
timestamp followed by a description of the logged event and some relevant data.

The EPAP menu for viewing the PDBA debug log is described in the PDBA menu
section of Administration Guide.

Import/Export Files
The Import and Export files use the PDBI create command format (see Create
Subscription and Create Network Entity). A carriage return separates each command
in the file.

Import File
To achieve faster loading rates, large numbers of PDBI commands can be placed
together in a file and loaded into the PDB through the Import option on the EPAP user
interface. (For more information, refer to Administration Guide.) The format of the

Chapter 2
File Formats

2-18

commands in the file is exactly the same as the PDBI commands specified in this document.

rtrv_sub([iid XXXXX,] dn XXXXX, [data <all/neonly>]

Caution:

Do not use tabs instead of spaces in the commands. Using tabs causes the
command and replication to the standby PDB to fail.

The valid import file commands are:

• ent_sub
• upd_sub
• dlt_sub
• ent_entity
• upd_entity
• dlt_entity
• ent_eir
• upd_eir
• dlt_eir

Note:

Do not include rtrv_sub, rtrv-entity, or rtrv_eir commands in an import
file. The inclusion of rtrv commands causes an import to take a very long time to
complete. During an import, a write transaction lock is in place for the entire import
for a manual import, and intermittently in place for an automatic import. While the
write transaction lock is in place during an import, no other updates to the database
can be made.

Data can be imported manually or automatically, as described in the following sections:

• Manual Import

• Automatic Import

The syntax of the imported file data is described in Import File Syntax .

Manual Import

The manual import mode is used to import data typically on a one-time basis or as needed
and is configured by the Import File to PDB Screen. The selected file is processed
immediately. A manual import locks the PDB write transaction; other users will not be able to
obtain the write transaction until the import operation is complete.

Chapter 2
File Formats

2-19

Automatic Import

As long as the PDB is active, the automatic import searches the/var/TKLC/epap/free/
pdbi_import directory for new files on a remote system for import every 5 minutes. If a
file exists in the directory and it is not being modified or in the process of being
transferred when it is polled, the import will run automatically at that time. If the file is
being modified or is in the process of being transferred, the automatic import tries
again after five minutes. Delaying when a file is being modified or in the process of
being transferred prevents the import of incomplete files.

The automatic import option can import up to 16 files at a time. This is limited by the
available number of PDBI connections. If more than 16 files exist in the directory, as
soon as one file completes, another file is started until all files have completed. The
results of the import are automatically exported to the remote system specified by the
Configure File Transfer Screen (described in Administration Guide).

Once the import is complete, the data file is automatically removed and a results file is
automatically transferred back to the remote system. An automatic import obtains the
PDB write transaction and processes several of the import file commands. Then the
write transaction is released, allowing other connections to provision data. An
automatic import obtains the write transaction repeatedly until all the import file
commands have been processed.

Automatic import is also called "Batch-oriented/bulk load" (see Batch-Oriented/Bulk
Load).

Import File Syntax

There is no need to place any other commands, such as begin_txn, in the file. If the
PDBI user interface is used to send the import command, the user interface
automatically handles establishing a connection with an open write transaction.
Because the import operation has the write operation throughout its entire duration,
normal updates from other PDBI users cannot obtain the write transaction until the
import operation is finished.

Any errors encountered while processing the file are logged in the error log file of the
PDBA. The processing of the import file continues. When the file is completely
processed, the user interface displays a warning that errors were encountered. The
error log file of the PDBA can then be viewed through the EPAP user interface. (For
more information, refer to Administration Guide.)

Commands in the import file are handled as though they were received across a
normal PDBI connection. It is important that dependencies are listed in the file in the
correct order. For example, if a DN is to be created and assigned to a specific NE
(either SP/RN), that NE must exist before the DN can be created. The NE could either
already exist in the database before the import file was sent, or it could be created in
the import file before any DNs that need it.

Since there is limit to the number of commands that can be contained in a single
transaction (see Transaction Too Big Response), the PDBA may have to break up the
import into several separate transactions. This is handled internally in the PDBA. The
user may notice only that the database level has grown by more than one.

Blank lines and lines beginning with the '#' character are skipped.

If any PDBI commands other than the six mentioned above are placed in an import
file, each occurrence generates a BAD_IMPORT_CMD error internally while parsing the

Chapter 2
File Formats

2-20

file. The total import error count is incremented, and the processing of the import file
continues with the next line. The BAD_IMPORT_CMD return code never actually is returned to
the PDBI client, but it may be seen in the PDBA error log file.

Export File
It is possible to export the contents of the PDB to an ASCII file. Perform this through the
Export option on the EPAP user interface. (For more information, refer to Administration
Guide.) The data can be formatted in two ways, either as PDBI commands or as raw
delimited ASCII.

Three modes of export are supported in the EPAP software. Depending on the mode of
export selected, the EPAP may be blocked from performing database updates or allowed to
provision new data and data retrieve operations on the EPAP provisioning database PDB)
during the export.

EPAP provides the following modes of operation:

• Blocking mode

The Blocking mode blocks write requests to the EPAP database during a database
export. Writes will not be allowed until the export completes.

• Snapshot mode

Note:

This mode causes the server to run increasingly slower as updates are
received on the other connections.

The Snapshot mode allows write operations on the database during a database export.
This mode provides the exported database as a complete snapshot of the database at
the time the export started. This implies that changes to the database after the export
started are not reflected in the exported database. This allows for a logically complete
export file.

• Real Time mode

The Real Time mode allows write operations during a database export, and provides the
export file in real-time fashion rather than as a snapshot. Changes to the DB after the
export has started may or may not be reflected in the export file, depending whether the
changes are to an area of the DB that has already been exported. This mode also
provides a file that could be imported back into the database later, but is less than ideal,
since it is not a complete snapshot of a given time. As an additional point of data, the
level of the database when the export finished is placed at the end of the export file.

PDBI Format
Formatting the output as PDBI commands allows the resulting file to be used as an import
file. The format of the commands in the file is exactly the same as the PDBI commands
specified in this document.

Commands placed in the export file may not be the actual commands that originally created
the instances. For example, if a DN was created originally on SP1 and subsequently updated
to move to SP2, there would only be one command that creates the DN on SP2.

Chapter 2
File Formats

2-21

If the Number Prefix feature is turned on in the EPAP user interface, the generated
PDBI commands follow the Number Prefix rules described in the Number Prefix
section.

The file is ordered as follows:

1. Network Entities

2. IMSIs (with associated DNs if any exist and DN updates for individualized data)

3. Single DNs (that are not associated with any IMSI)

4. DN Blocks

5. IMEIs (with associated IMSIs)

6. IMEI blocks

7. Update DNs (with information like TIF Number Substitution)

Raw Delimited ASCII Format
Formatting the output as raw delimited ASCII creates a file that can easily be read by
other client applications. The delimiter can be chosen on the EPAP user interface from
a short list of possible delimiter types (for example, comma, pipe, space). The resulting
file contains six separate sections.

Each of the following sections corresponds to a data type, as follows:

• Network Entities

• IMSIs

• Single DNs

• DN Blocks

• Single IMEIs

• IMEI Blocks

The start of each section has a comment line (line starting with #) as its header. The
content of the data lines depends on the section. In an effort to keep the resulting file
as small as possible, fields whose values come from enum-like list of strings use only
the first character of the choice.

Network Entities

The first section in the file contains all of the Network Entities. The data on each line is
similar to the data that can be provided on a ent_entity command.

<ID>,<Type>,<PCType>,<PC>,<GC>,<RI>,<SSN>,<CCGT>,<NTT>,<NNAI>,
<NNP>, <DA>,<SRFIMSI>
Where:

ID
Identifier for this Network Entity
Values:
1 to 15 hexadecimal digits expressed using ASCII characters

Type
Type of Network Entity

Chapter 2
File Formats

2-22

Values:

S - Signal Point
R - Routing Number
V - Voicemail Server
G - Generic Routing Number

PCType
Specifies the type of the point code. The absence of a value in this field means that the NE
did not have a point code.
Values:

i - ITU international point code in the form zone-area-id (z-aaa-i).
n - ITU national point code in the form of ITU number (nnnnn).
a - ANSI point code in the form of network-cluster-member (nnn-ccc-mmm).

PC
The point code value. The valid values depend on the PCType parameter. If the PCType
field did not have a value, then this field also does not have a value.
Values:
For PCType of i (intl) the format is zone-area-id [(s-)z-aaa-i].

s - Optional spare point code indicator
z - 0 - 7
aaa - 0 - 255.
i - 0 - 7

Note:

The value 0-0-0 is not valid

For PCType of n (natl) the format is number [(s-)nnnnn].

s - Optional spare point code indicator
nnnnn - 0 - 16383

For PCType of a (ANSI), the format is network-cluster-member (nnn-ccc-mmm).

nnn= 1 - 255
ccc= 1 - 255 (if network = 1 - 5)
= 0 - 255 (if network = 6 - 255)
mmm= 0 - 255

GC
(Optional) Group Code. This optional parameter is part of the point code value for ITU
Duplicate Point Code Support feature.
Values:

aa - zz

RI
Routing Indicator. This parameter indicates whether a subsequent global title translation is
required.
Values:

Chapter 2
File Formats

2-23

G = Global Title. Indicates that a subsequent translation is required.
S = Subsystem Number. Indicates that no further translation is required.

SSN
(Optional) New subsystem number. This parameter identifies the subsystem address
that is to receive the message.
Values:

0, 2 - 255

CCGT
(Optional) Cancel Called Global Title.
Values:

y or n (default)

NTT
(Optional) New translation type. This parameter identifies the translation type value to
replace the received translation type value.
Values:

0 - 255

NNAI
(Optional) New nature of address.
Values:

0 - 127

NNP
(Optional) New numbering plan.
Values:

0 - 15

DA
(Optional) Digit action. The parameter specifies what changes, if any, to apply to the
Called Party GTA.
Values:

r- Replace Called Party GTA with the entity id
p - Prefix Called Party GTA with the entity id
I - Insert Entity Id after country code
4 - Delete the country code
5 - Delete the country code and prepend with entity id
6 - Send a digit action of 6 to the EAGLE
7 - Send a digit action of 7 to the EAGLE

SRFIMSI
(Optional) The IMSI returned by a SRF indicating the Subscription Network of the
subscriber. This parameter is only used by the G-Port features and only for RNs.
Values:

a string with 5 to 15 characters where each character must be a number from 0 to
F.

Example Network Entity Entry:

101010,s,a,2-2-2,g,100,,,,,,r,

Chapter 2
File Formats

2-24

IMSIs

The second section contains the IMSI data. For the raw delimited format, any DNs that an
IMSI has are not listed with the IMSI. There is a field on the DN entry that points to the IMSI.
This leaves only three pieces of data for the IMSI entries.

<IMSI>,<SP>
Where:

SP
(Optional) Specifies which SP the DN is on. The SP and RN fields do not both have values
at the same time.
Values:

1 to 15 hexadecimal digits expressed using ASCII characters.

Example IMSI Entry:

1234567890,101010
Since it is not possible to have an IMSI without an SP, at least one field must be populated.

Single DNs

The third section in the export file contains the single DNs. The data in the entries is similar to
the data in the ent_sub command.

<DN>,<IMSI>,<PT>,<SP>,<RN>,<VMS>,<GRN> ,<ASD>,<ST>,<NSDN>,<CGBL>,<CDBL
>,<LSBLSET>
Where:

DN
A DN (specified in international format).
Values:

a string with 5 to 15 characters where each character must be a number from 0 to F.

IMSI
The IMSI to which the DN is associated. This field does not have a value if the DN is not
associated with any IMSI.
Values:

a string with 5 to 15 characters where each character must be a number from 0 to F.

PT
(Optional) The portability type for the created DN. This field is only used by G-Port, IS41
GSM Migration, A-Port, and PPSMS. For G-Port and A-Port, it controls number Portability
Status encoding in SRI acks. For IS41 GSM Migration, it identifies whether a subscriber has
or has not migrated from IS41 to GSM, (maintaining a single GSM handset). For PPSMS, it
identifies a DN as one of thirty-two types needing PPSMS intercept.
Values:

none– no status (default = none)
0 – not known to be ported, migrated to IS41 or non-migrated IS41 sub (used for IS41
GSM Migration)
1 – own number ported out (used for G-Port and A-Port)

Chapter 2
File Formats

2-25

2 – foreign number ported to foreign network (used for G-Port and A-Port)
3 – prepaid 1 (used by PPSMS)
4 – prepaid 2 (used by PPSMS)
5 – migrated to GSM (used for IS41 GSM Migration)
6 – prepaid 3 (used by PPSMS)
7 – prepaid 4 (used by PPSMS)
8 – prepaid 5 (used by PPSMS)
9 – prepaid 6 (used by PPSMS)
10 – prepaid 7 (used by PPSMS)
11 – prepaid 8 (used by PPSMS)
12 – prepaid 9 (used by PPSMS)
13 – prepaid 10 (used by PPSMS)
14 – prepaid 11 (used by PPSMS)
15 – prepaid 12 (used by PPSMS)
16 – prepaid 13 (used by PPSMS)
17 – prepaid 14 (used by PPSMS)
18 – prepaid 15 (used by PPSMS)
19 – prepaid 16 (used by PPSMS)
20 – prepaid 17 (used by PPSMS)
21 – prepaid 18 (used by PPSMS)
22 – prepaid 19 (used by PPSMS)
23 – prepaid 20 (used by PPSMS)
24 – prepaid 21 (used by PPSMS)
25 – prepaid 22 (used by PPSMS)
26 – prepaid 23 (used by PPSMS)
27 – prepaid 24 (used by PPSMS)
28 – prepaid 25 (used by PPSMS)
29 – prepaid 26 (used by PPSMS)
30 – prepaid 27 (used by PPSMS)
31 – prepaid 28 (used by PPSMS)
32 – prepaid 29 (used by PPSMS)
33 – prepaid 30 (used by PPSMS)
34 – prepaid 31 (used by PPSMS)
35 – prepaid 32 (used by PPSMS)
36 – not identified to be ported

SP
(Optional) Specifies which SP the DN is on. The SP and RN fields do not both have
values at the same time.
Values:

1 to 15 hexadecimal digits expressed using ASCII characters.

RN
(Optional) Specifies which RN the DN is on. The SP and RN fields do not both have
values at the same time.
Values:

1 to 15 hexadecimal digits expressed using ASCII characters.

Chapter 2
File Formats

2-26

VMS
(Optional) Specifies which Voicemail Server the DNs are on. Corresponds to the E.164
address of the voicemail server. The VMS must correspond to an existing VMS entity.
Values:

1 to 15 hexadecimal digits expressed using ASCII characters.

GRN
(Optional) Specifies which Generic Routing Number the DNs are on. Corresponds to the
E.164 address used when the EAGLE “NE Query Only Option” has been turned on. The
GRN must correspond to an existing GRN entity.
Values:

1 to 15 hexadecimal digits expressed using ASCII characters.

ASD
(Optional) Specifies the Additional Subscriber Data that is associated with this DN. Leading
zeros are significant.

Values
1 to 10 hexadecimal digits expressed using ASCII characters. Leading zeros are
significant.

ST
(Optional) The subscriber type for created DNs.

Values
A decimal number in the range
0 - public
1 - private

NSDN
A TIF Number Substitution DN (specified in international format).
Values:

a string with 5 to 15 characters where each character must be a number from 0 to F.

CGBL
(Optional) IDP calling party blocklist.

Values
yes - IDP calling party blocklist is enabled

Note:

The cgbl parameter will only be listed in the export file if its value is yes.

CDBL
(Optional) IDP called party blocklist.

Values
yes - IDP called party blocklist is enabled

Chapter 2
File Formats

2-27

Note:

The cdbl parameter will only be listed in the export file if its value is yes.

lsblset
(Optional) A TIF Linkset based blocklist parameter that is used to decide if the DN
needs to be blocklisted or not.

Values
a number from 1 to 255.

By default, no value is selected.

Example DN Entry:

12345,1234567890,,101010,,202020,,,,,,

DN Blocks

The fourth section in the export file contains the DN Blocks. The data in the entries are
similar to the data in the ent_sub command.

<BDN>,<EDN>,<PT>,<SP>,<RN>
<VMS>,<GRN>,<ASD>,<ST>,<NSDN>,<CGBL>,<CDBL>,<LSBLSET>
Where:

BDN
The beginning DN (specified in international format).

Values:
5 to 15 hexadecimal digits expressed in the decimal format using ASCII
characters.

EDN
The ending DN (specified in international format).

Values:
a string with 5 to 15 characters where each character must be a number from0
toF.

PT
(Optional) The portability type for the created DN. This field is only used by G-Port,
IS41 GSM Migration, A-Port, and PPSMS. For G-Port and A-Port, it controls number
Portability Status encoding in SRI acks. For IS41 GSM Migration, it identifies whether
a subscriber has or has not migrated from IS41 to GSM, (maintaining a single GSM
handset). For PPSMS, it identifies a DN as one of thirty-two types needing PPSMS
intercept.
Values:

none– no status (default = none)
0 – not known to be ported
migrated to IS41 or non-migrated IS41 sub (used for IS41GSM Migration)
1 – own number ported out (used for -Port and A-Port)

Chapter 2
File Formats

2-28

2 – foreign number ported to foreign network (used for G-Port and A-Port)
3 – prepaid 1 (used by PPSMS)
4 – prepaid 2 (used by PPSMS)
5 – migrated to GSM (used for IS41 GSM Migration)
6 – prepaid 3 (used by PPSMS)
7 – prepaid 4 (used by PPSMS)
8 – prepaid 5 (used by PPSMS)
9 – prepaid 6 (used by PPSMS)
10 – prepaid 7 (used by PPSMS)
11 – prepaid 8 (used by PPSMS)
12 – prepaid 9 (used by PPSMS)
13 – prepaid 10 (used by PPSMS)
14 – prepaid 11 (used by PPSMS)
15 – prepaid 12 (used by PPSMS)
16 – prepaid 13 (used by PPSMS)
17 – prepaid 14 (used by PPSMS)
18 – prepaid 15 (used by PPSMS)
19 – prepaid 16 (used by PPSMS)
20 – prepaid 17 (used by PPSMS)
21 – prepaid 18 (used by PPSMS)
22 – prepaid 19 (used by PPSMS)
23 – prepaid 20 (used by PPSMS)
24 – prepaid 21 (used by PPSMS)
25 – prepaid 22 (used by PPSMS)
26 – prepaid 23 (used by PPSMS)
27 – prepaid 24 (used by PPSMS)
28 – prepaid 25 (used by PPSMS)
29 – prepaid 26 (used by PPSMS)
30 – prepaid 27 (used by PPSMS)
31 – prepaid 28 (used by PPSMS)
32 – prepaid 29 (used by PPSMS)
33 – prepaid 30 (used by PPSMS)
34 – prepaid 31 (used by PPSMS)
35 – prepaid 32 (used by PPSMS)
36 – not identified to be ported

SP
(Optional) Specifies which SP the DN is on. The SP and RN fields do not both have values
at the same time.
Values:

1 to 15 hexadecimal digits expressed using ASCII characters.

RN
(Optional) Specifies which RN the DN Block is on. The SP and RN fields do not both have
values at the same time.
Values:

1 to 15 hexadecimal digits expressed using ASCII characters.

Chapter 2
File Formats

2-29

VMS
(Optional) Specifies which Voicemail Server the DNs are on. Corresponds to the
E.164 address of the voicemail server. The VMS must correspond to an existing VMS
entity.
Values:

1 to 15 hexadecimal digits expressed using ASCII characters.

GRN
(Optional) Specifies which Generic Routing Number the DNs are on. Corresponds to
the E.164 address used when the EAGLE “NE Query Only Option” has been turned
on. The GRN must correspond to an existing GRN entity.
Values:

1 to 15 hexadecimal digits expressed using ASCII characters.

ASD
(Optional) Specifies the Additional Subscriber Data that is associated with this DN.
Leading zeros are significant.

Values
1 to 10 hexadecimal digits expressed using ASCII characters. Leading zeros are
significant.

ST
(Optional) The subscriber type for created DNs.

Values
A decimal number in the range
0 - public
1 - private

NSDN
A TIF Number Substitution DN (specified in international format).
Values:

a string with 5 to 15 characters where each character must be a number from 0 to
F.

CGBL
(Optional) IDP calling party blocklist.

Values
yes - IDP calling party blocklist is enabled

Note:

The cgbl parameter wil only be listed in the export file if its value is yes.

CDBL
(Optional) IDP called party blocklist.

Values
yes - IDP called party blocklist is enabled

Chapter 2
File Formats

2-30

Note:

The cdbl parameter wil only be listed in the export file if its value is yes.

lsblset
(Optional) A TIF Linkset based blocklist parameter that is used to decide if the DN needs to
be blocklisted or not.

Values
a number from 1 to 255.

By default, no value is selected.

SPLIT
(Optional) DN Block splitting ability

Values
yes - DN Block splitting is enabled

no - DN Block splitting is disabled

Note:

The split parameter will be listed in the export file only if its value is no

Example DN Block Entry:

9195550000,919555ffff,0,,e1e10,,,,,,,

Single IMEIs

The 5th section in the export file contains the single IMEIs. The data in the entries are similar
to the data in the ent_eir command. 8 IMSIs can be provided. If 8 IMSIs are not provisioned
for that IMEI, then a NULL value is supplied.

<IMEI>,<SVN>,<Allow>,<GRAY>,<block>,<IMSI>,….,<IMSI>
Where:

IMEI
Specifies the IMEI
Values:

a string with 14 characters where each character is a number from 0 to F.

SVN
(Optional) Specifies the Software Version Number
Values:

A 2 digit number (0-99)

Allow
(Optional) Specifies a List Type of Allow
Values:

Chapter 2
File Formats

2-31

yes or no

GRAY
(Optional) Specifies a List Type of Gray
Values:

yes or no

Block
(Optional) Specifies a List Type of block
Values:

yes or no

IMSI
The IMSI to which the IMEI is associated. This field will not have a value if the IMEI is
not associated with any IMSI.

Values:
a string with 5 to 15 characters where each character must be a number from0
toF.

IMEI Blocks

The 6th section in the export file contains the block IMEIs. The data in the entries are
similar to the data in the ent_eir command.

<BIMEI>,<EIMI>,<ALLOW>,<GRAY>,<block>
Where:

BIMEI
Specifies the beginning of the MEI block
Values:

a string with 14 characters where each character is a number from 0 to F.

EiMEI
Specifies the ending of the IMEI block
Values:

a string with 14 characters where each character is a number from 0 to F.

ALLOW
(Optional) Specifies a List Type of Allow
Values:

yes or no

GRAY
(Optional) Specifies a List Type of Gray
Values:

yes or no

Block
(Optional) Specifies a List Type of block
Values:

yes or no

Chapter 2
File Formats

2-32

3
PDBI Request/Response Messages

This chapter describes available requests and the possible responses for PDBI request/
response messages.

Overview
This chapter defines the Database Interface (PDBI) request and response messages. The
messages are listed in alphabetical order.

Provisioning

Provisioning clients connect to the EPAPs through the PDBI. The PDBI consists of
commands and their parameters, which allow you to define the messages that provision the
G-Flex, G-Port, INP, EIR, A-Port, and/or IS41 GSM Migration features and allow the
retrieval of feature data.

PDBI messages are sent across a TCP/IP socket. The client application (defined by the
customer) is responsible for connecting to the Provisioning Database Application (PDBA)
well-known port and being able to send and receive the defined messages.

Note:

The customer must write his own client application that uses the PDBI to
communicate with the PDBA.

PDBI messages (requests and responses) are NULL-terminated strings, which allows
sending and receiving the messages from any language that has socket capability (for
example, Perl or Java).

Message Definitions

Each message definition consists of one request and one or more responses. A request is a
message sent by the client to the client application to invoke a service. A response is a
message returned to the client by the client application to confirm that the a requested
service has been invoked, the transaction has been completed, or a connection has been
established.

Request IDs

Each request has an integer identification (iid) as its first element. The client can use the
iid to match returned responses with the original requests The integer is expressed as a
decimal number in ASCII and has a range from 1 to 4294967295. The iid is optional. If an
iid is not provided on a request, the corresponding response also does not have one.

3-1

Optional Parameters

Optional parameters are surrounded by square brackets [] in the syntax examples. If
you want to omit an optional parameter from the request command, omit the entire
field including the label, value, and following comma. Do not leave a comma in as a
place holder. The parameter labels in the fields that are sent on the request provide
enough information to determine which parameters were omitted. However, the field
labels must be present on all specified parameters.

For example, examine the following syntax:

 sample_msg(field1 #, field2 #, [field3 <yes/no>], field4 <0..255>)

If you want to omit the field3 parameter of a request, you might enter the request
command using the following syntax:

sample_msg(field1 123, field2 456, field4 128)

Common Response Format

Responses use the same basic format.

If an integer identification (iid) was provided in the request, the response iid
corresponds to the iid of the original request. A return code indicates either success
(zero) or failure (non-zero). See Appendix A, “PDBI Message Error Codes, for a
mapping between the return code labels described in this section and the real integer
value.

Additionally, an optional data element returns request-specific return information.

Each defined response declares the errors it returns (with their meanings) and what
the data section should look like for each error. If a response does not require a data
section (meaning it is just a simple ACK or NAK), the data section does not appear at
all. In that case, the last item in the response is the return code (rc).

The following example shows the syntax of the common response format. This format
applies to all response messages described in this chapter unless stated otherwise.

rsp ([iid <iid from request>,] rc <return code>, [data (. . .)])

The format of each command response is shown in this chapter. The response
information for each command is described in detail in Commands User's Guide.

Number Prefixes

The PDBA has the concept of default number prefixes. These are PDBA parameters
that are configurable from Administration Guide. There are two number prefixes, one
for DNs and DN Blocks and the other for IMSIs. They are completely separate and
can be set or not set independently. When set, the number prefix values are
automatically prepended to all DNs and DN Blocks or IMSIs (depending on the prefix
type) in PDBI requests. The values are also stripped off of the DNs, DN Blocks and
IMSIs in PDBI responses.

Chapter 3
Overview

3-2

For example, if the DN Prefix is set to “34” in the UI and then an ent_sub request is sent to
create DN 12345, the actual DN stored in the database and sent to the EAGLE is “3412345”.
If a PDBI query is done for DN “12345” while the number prefix is still “34”, the “3412345” is
found in the database, but only the DN value “12345” is returned in the PDBI response.

It is possible to override a default number prefix. The symbol ‘#’ at the beginning of a DN, DN
Block, or IMSI means that it is the actual value and that no number prefix should be applied.
This can occur in both requests and responses.

For example, if the PDBI client sends a value “#12345” in a request, it means that he literally
means the value “12345”, not “3412345” (assuming that “34” is the that type's number prefix).
If a PDBI response comes back with a “#12345”, it means that the DN, DN Block or IMSI
literally had the value “12345”, not “3412345” (still assuming that “34” is the Number Prefix).
A response with a “#” value is returned if a DN, DN Block or IMSI is found in the database
that did not match its type's number prefix.

It is important to note that the “#” number prefix override is only valid for DNs, DN Blocks, and
IMSIs. The “#” symbol at the beginning of any other parameter value does not parse.

Since the number prefix and the number prefix override apply to all requests and responses
that have DNs, DN Blocks or IMSIs, it is not mentioned on each command separately.

The Number Prefix must conform to syntax rules for DN, NSDN, and DN Block values. Prefix
lengths must not exceed 10 digits.

Common Responses

The response code examples given for each message indicate those codes that are specific
for that message. Other response codes may apply, such as the more general error
responses like PDBI_NOT_CONNECTED, PDBI_NO_ACTIVE_ TXN, PDBI_NOT_FOUND,
PDBI_BAD_ARGS. These are not repeated for each message for simplicity.

No command can be issued until a connection has been established by issuing the connect
request to a PDBA. This restriction includes data provisioning commands such as ent_sub,
rtrv_sub, etc., as well as query commands such as status, dump_conn, etc.

Common Response Messages

Because the PDBI is a string-based API, all requests can return a Parse Failed response
message or a Bad Argument response message.

Parse Failed Response

The Parse Failed response message is identified by return code PARSE_FAILED. This
response message indicates a syntactical problem with the command received and can have
a data section present to provide more information about the parse failure. Table 3-1 lists
possible reasons for parse failures.

If the data section exists, two optional parameters are possible. The first parameter is a
reason text string stating explicitly what was wrong with the request. The second parameter is
a location string containing the place where the error occurs and, surrounded by curly braces,
the portion of the original request that contained the error. If no specific information is
available, the data section is not present in the response.

The following example shows the syntax of a Parse Failed response message:

data ([reason “Missing comma”], [location “XXXXXXX{} dn XXXXXXXXX”])

Chapter 3
Overview

3-3

Table 3-1 Parse Failure Reasons

Reason Description

Unknown request verb The request verb did not match any of the known commands.

Space required A white space character was missing after some element of the
request.

Missing paren An opening or closing parenthesis was missing.

Invalid value An invalid value was provided for one of the parameters.

<name of parameter>
parameter expected

Some mandatory parameter was missing.

Multiple <name of
parameter> found

Multiple occurrences of a parameter were found that does not
allow multiple occurrences.

Unknown parameter An unknown parameter was found.

Missing comma A comma was missing after a parameter.

Value expected A parameter label was found with no value following it.

Duplicate parameter A parameter that should have occurred only once was found
more than once.

Numeric value too large The value specified for a numeric parameter specified a number
greater than the maximum integer.

Bad Arguments Response

The Bad Arguments response message is identified by return code BAD_ARGS. This
response message indicates a semantic problem with the command received (for
example, missing mandatory parameters or invalid parameter combinations). The data
section of a Bad Arguments response message has a reason string that indicates what
problem was encountered.

The following example shows the syntax of a Bad Arguments response message:

data (reason "No version provided")

Transaction Too Big Response

The internal EAGLE RTDB imposes a transaction size limit on the PDBA. In order to
ensure that the PDBA and the EAGLE databases are truly equivalent, this limit must
be propagated by the PDBA onto the PDBI clients. As a result, all database changing
commands that occur within a write transaction have the potential to fail with a
TXN_TOO_BIG error.

The transaction size limit is 200. It limits the number of modifications to the EAGLE
database. The limit is 200 EAGLE RTDB updates. Unfortunately, this may not have a
one to one correlation to the PDBI update commands. This is because a single PDBI
command can result in several changes to the underlying database.

For example, a single PDBI command ent_sub, which contains IMSI 12345, DN
67890, DN 67891, and SP 101010, is performed by two EAGLE database commands,
one for the IMSI and one for the DNs. The worst case number of EAGLE database
commands that can occur due to one PDBI command is nine if the force parameter

Chapter 3
Overview

3-4

is not used. If the force parameter is set to yes, the highest possible number of EAGLE
database commands in a single PDBI command is 17.

Multiple Segmented Responses

For some responses, it is possible that all of the data cannot be returned in one response. In
this case, multiple responses for the same request are returned. The first through (N-1)th
response have a return code of PARTIAL_SUCCESS to indicate that there should be more
following them. The Nth response has the return code SUCCESS to indicate that it is the final
response. Multiple responses also use the segment parameter at the beginning of the data
section to allow the client to know that no responses have been missed. The segment
parameter value starts at one for the first response and is incremented by 1 in each
subsequent response for that request up to and including the final response that contains the
SUCCESS return code. For consistency, the segment parameter is also present in single
message responses with the value of 1.

Errors Not Returned to Client

Two return codes are not returned to a PDBI client. They are PDBI_INTERRUPTED and
PDBI_UNIMPLEMENTED.

• PDBI_INTERRUPTED is used internally to cancel requests that are in progress if the
PDBI client abnormally disconnects. Since the return value is only used when the
connection is broken, obviously the return code cannot be returned to the client.

• PDBI_UNIMPLEMENTED is used during development of new features and commands to
allow a valid return from commands that have been defined but are not implemented yet.
Since the PDBA currently implements all of the commands described in this specification,
the return code cannot be returned to the client.

Service Module Card Report

The PDBA keeps track of the status of the Service Module cards that it has connectivity to in
the customer's network. Each card reports its information to the PDBA at regular intervals.
The PDBA makes this information available to the PDBI clients in a Service Module card
Report. The Service Module card Report can be requested by the client in several ways.
These ways are spelled out in various commands that actually do the requesting. In all cases,
the content and structure of the Service Module card Report is the same. The intent of the
Service Module card Report is to inform the receiver what percentage of Service Module
cards are at a specific database level. This information can be used by the client to determine
when enough Service Module cards have a specific update to consider it safe for traffic.

The report includes the database level being reported on, the percentage of Service Module
cards that have that level, and the total number of known Service Module cards. Also
included is a list of all Service Module cards whose level did not meet or exceed the
mentioned level. For each card in this list, the report provides the CLLI, card location,
database status, and database level. If the database status is "loading", a percent loaded
status is shown.

The client can either receive this report as a response to the rtrv_dsmrpt request, or it may be
periodically received asynchronously if the client specifies the appropriate connect
parameters. When the report is sent as a response to a normal synchronous request, the
message begins with the normal rsp(…) label. However, when the report is sent as an
asynchronous message, it begins with dsmrpt(…) to help identify that this is not a response
to any recent request sent.

Chapter 3
Overview

3-5

Messages
The messages described in this section are defined by commands and their
parameters defined in the PDBI.

Connect
After a client has established a socket connection with the PDBA on its well- known
port (5873), the client must issue a Connect request message. The PDBA returns a
response message that indicates whether it is capable of accepting a new connection.
There is a limit to the number of PDBI connections; the default is 16 clients. The
connect command defines the Connect message.

If an attempt is made to connect more than the current client limit, a response is
returned to the client: PDBI_TOO_MANY_CONNECTIONS. After the response is
returned, the socket is automatically closed.

Note:

Although the default limit is 16 PDBI connections, Oracle is able to configure
and support up to 128 connections. If more than 16 concurrent client
connections are required, contact My Oracle Support for more information.

Request

The Connect request message is issued by the client to request a connection to the
PDBA.

Parameters :

version
(Optional) Informs the PDBA of the API version this client application knows. This
parameter decides whether or not the client application can successfully communicate
with the PDBA.

Values:
1.0

rspsize
(Optional) Allows the client to specify the maximum size in Kilobytes of responses that
the PDBA sends back. This parameter ensures that retrieve requests that result in a
large number of instances being returned come back in manageable-sized responses
to the client.

Values:
1 – 32 (default = 4)

switchactn
(Optional) Allows the client to specify what action is to be taken if the Active or
Standby status of the PDBA changes as the result of a Switchover request.

Chapter 3
Messages

3-6

Values:
none – No action taken (default)
close– Terminate this connection by closing the socket

endchar
(Optional) Allows the client to specify what character the PDBA uses to terminate responses.

Values:
null – Responses terminated with a NULL (\0) character (default)
newline– Responses terminated with a newline (\n) character

idletimeout
(Optional) Allows the client to specify the amount of time that the connection can remain idle
before the PDBA should terminate it.

Values:
none – Connection is never terminated by PDBA for idleness. (default)
1 – 44640 – Terminate this connection after this many idle minutes.
[00-44640]:[00-59] – Terminate this connection after this many idle minutes and
seconds. Limit is 44640:00.

txnmode
(Optional) Transaction mode allows the client to specify whether this connection operates in
single transaction or normal transaction mode. This selection determines whether update
requests can be sent individually or require the use of begin_txn and end_txnboundaries,
to be considered write transactions on their own and allowed.

Values:
normal – All updates must be specified inside begin_txn and end_txn boundaries,
which is the ‘normal transaction mode.’ (default)
single – Individual update requests are their own transactions. The use of begin_txn
and end_txn boundary commands is not required in single transaction mode.

dsmrpt
(Optional) Allows the client to specify whether or not it wants to receive the asynchronous
Service Module card Report messages.

Values:
no – The Service Module card Reports are not wanted (default).
yes – The Service Module card Reports are wanted.

dsmrptperc
(Optional) Allows the client to specify what percent to use in the Service Module card Report.
This overrides the system wide default Service Module card Report percent value for this
one connection.

Values:
1 – 100

dsmrptfreq
(optional) Allows the client to specify how often, in seconds, that the connection wants to
receive the SM Report. This overrides the system wide default SM Report frequency value
for this one connection. This parameter is only meaningful if dsmrpt has been specified as
yes.

Chapter 3
Messages

3-7

Note:

If a connection is configured to send asynchronously SM Reports and
processes a command that takes a long time, SM Reports will be
suspended until after the long running command is completed. For example,
if a client connects with a dsmrptfreq of 1 and then requests a retrieve of
millions of DNs, the SM Reports will be suspended until the retrieve
command has completed. Once the SM Reports resume they will continue
at the configured frequency..

Values:
1 – 86400 – Send the Service Module card Report in this many seconds.

Request syntax :

Connect([iid XXXXX,] [version 1.0], [rspsize <1..32>], [switchactn
<none/close>], [endchar <null/newline>], [idletimeout <none/
1..44640/[00-44640]:[00-59]>], [txnmode <normal/single>],
[dsmrpt <no/yes>], [dsmrptperc <1..100>], [dsmrptfreq <1..86400>])

Note:

The limit is 44640:00.

Response

The Connect response message indicates whether or not the PDBA is capable and
willing to accept a new connection. If the connection is accepted, the data section in
the response indicates the connection ID (iid) that was assigned and whether the
PDBA connected to was running as the Active or Standby PDBA.

The return codes listed in this topic indicate the result of the Connect request. See
PDBI Message Error Codes for the recommended actions to help resolve the error
related return codes.

Table 3-2 Connect Response Return Codes

Return
Code

Text Description Data Section Contents

0 SUCCESS Everything worked. The assigned connection
id and Active status are
returned.

data (connectId
########, side
active/standby)

1003 ALREADY_CONNECTED A connect request was
sent on a socket that
already had an established
connection.

NONE

Chapter 3
Messages

3-8

Table 3-2 (Cont.) Connect Response Return Codes

Return
Code

Text Description Data Section Contents

1012 INVALID_VALUE One of the fields specified
had an invalid value.

The offending field is
returned in the data
section:

data (param
<field label>)

1023 UNKNOWN_VERSION The specified version is
not known or not
supported.

NONE

Disconnect
The Disconnect message is required to disconnect from the PDBA. The disconnect
command defines the Disconnect message.

Request

The Disconnect request message is issued by the client to request a disconnect from the
PDBA. This request tells the PDBA that the client has finished and allows the PDBA to clean
up any connection-related data. If the client has a transaction open, the transaction is
automatically aborted and any updates in the transaction are backed out. All
Disconnectrequests result in the connection being broken.

Note:

The PDBA behavior is the same if the client neglects to send this request and just
closes the socket, or if the client abnormally terminates and the operating system
closes the socket.

Request syntax :

disconnect([iid XXXXX])

Response

The Disconnect response message indicates either that the disconnect was successful
without problems or that the disconnect was achieved through aborting a still-active
transaction. Aborting an active transaction can occur because there were issues on the
PDBA while cleaning up.

The return codes listed in Table 3-3 indicate the result of the Disconnect request. See PDBI
Message Error Codes for the recommended actions to help resolve the error related return
codes.

Chapter 3
Messages

3-9

Table 3-3 Disconnect Response Return Codes

Return
Code

Text Description Data Section Contents

0 SUCCESS Everything worked. NONE

1010 ACTIVE_TXN There was a transaction still active. It
was aborted.

NONE

Begin Transaction
The Begin Transaction message starts a read or write transaction, which is required
for all data-related commands (to create, update, delete, or retrieve subscriptions). A
client connection can only have one transaction open at a time. The
begin_txncommand defines the Begin Transaction message.

The following commands are not required to be issued from within a transaction:
switchover, status, dump_conn.

Begin Transaction Request

By opening a read transaction, the client indicates to the PDBA that only data querying
requests are sent; no database-changing requests (create, update, or delete) are sent.
Any database-changing requests sent in a read transaction return a failure. Multiple
client applications can have read transactions open at the same time. Responses from
querying requests are sent back to the client immediately. There is no need to end the
read transaction until you are through sending requests. Read transactions can be
sent to either the Active or Standby PDBAs.

Take care when opening a read transaction on the standby PDBA. While two PDBAs
are communicating normally, the data on the standby is valid. However, if the
connection between the two PDBAs is broken and they cannot communicate, the
information contained on the standby PDBA does not contain the new updates written
to the active PDBA while the connection was broken. Thus in this case, data obtained
from a read transaction on the standby PDBA would not be current and accurate
information.

When the connection is re-established, the standby PDB is automatically re-synched
to the current level of the active PDB. It is possible to achieve greater performance by
sending read transactions to the standby PDB and write transactions to the active
PDB. However, the precautions noted above should be considered.
By opening a write transaction, the client informs the PDBA that the database is
updated in some way. After opening a write transaction, the client can send database-
changing requests. Each command is evaluated for validity and cached locally.

Note:

The commands are not saved in the database or sent to the RTDB until the
write transaction is ended.

The commands within the transaction can also be aborted (or rolled back) with an
abort_txn command any time before the transaction is ended with the end_txn

Chapter 3
Messages

3-10

command. Only one client is allowed to open a write transaction at a time. Write transactions
can be opened only on the Active PDBA. Attempts to open a write transaction on the
Standby PDBA result in an error response.

It is possible for a client to make querying requests inside a write transaction. In this case, it
is important for the client to remember that the data returned can reflect any updates that the
write transaction has made so far but not yet committed. If the write transaction is aborted,
the data retrieved from the query might no longer be valid.

The begin_txn command defines the Begin Transaction request message.

Parameters :

type
(Mandatory) Type of transaction to open.

Values:
read or write

timeout
(Optional) How many seconds to wait for the write transaction if another connection already
has it.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Request syntax :

begin_txn([iid XXXXX,] type <read|write>, [timeout <0..3600>])

Begin Transaction Response

The return codes in Table 3-4 indicate the result of the Begin Transaction request. See PDBI
Message Error Codes for the recommended actions to help resolve the error related return
codes.

Table 3-4 Begin Transaction Response Return Codes

Return
Code

Text Description Data Section
Contents

0 SUCCESS Everything worked. NONE

1005 WRITE_UNAVAIL Another client already has a write
transaction open. This is returned
only to clients who have WRITE
access permissions.

Clients who have only READ
access receive
NO_WRITE_PERMISSION even
when another write transaction is
open.

The IP address
information of the
client that already
has the write
transaction.

data (id
<connection
id>, ip <ip
addr>, port
<port num>)

Chapter 3
Messages

3-11

Table 3-4 (Cont.) Begin Transaction Response Return Codes

Return
Code

Text Description Data Section
Contents

1006 NO_WRITE_PERMISSION The PDBI client making the
connection does not have WRITE
access permissions.

NONE

1008 STANDBY_SIDE An attempt to open a write
transaction occurred on the
Standby PDBA.

NONE

1010 ACTIVE_TXN A read or write transaction is
already open on this connection.

NONE

1012 INVALID_VALUE One of the fields specified had an
invalid value.

The offending field is
returned in the data
section:

data (param
<field label>)

End Transaction
The End Transaction message completes a read or write transaction. The behavior
depends on whether the active transaction was a read or write transaction. The
end_txn command defines the End Transaction message.

End Transaction Request

For a read transaction, the End Transaction request message informs the PDBA that it
is done making queries. There are no database commitment.

For a write transaction that had successful updates, the End Transaction request
message causes the database changes to be committed and sent to the RTDB. The
new database level is returned in the data section of the response. The updates are
not committed to the PDB until the end_txn command is received.

If none of the updates was successful, a NO_UPDATES code is returned, and the
dblevel does not change. If any one of the commands was successful, a SUCCESS
code is returned, and the dblevel is incremented. Note that the dblevel is incremented
to the same value following a transaction with successful updates regardless of
whether all updates were successful or only one.

The dblevel indicates the database level of the destination after the database action
has occurred. It is incremented after every write transaction. The level is incremented
by one after each successful write transaction, regardless of how many commands are
sent in the transaction or whether the commands are creates or deletes. This value
is used by the Service Module cards to check consistency with the RTDB.

Request syntax :

end_txn([iid XXXXX])

Chapter 3
Messages

3-12

End Transaction Response

The End Transaction response message signals that the database update is done. This
response does not imply anything about whether or not the updates have made it to the
RTDB yet. If the response contains the SUCCESS return code, then the update was
successfully committed in the PDB. If any failure response is returned, the database commit
failed. The end_txn request causes the transaction to end regardless of whether any
updates were actually made to the PDB.
The return codes listed in Table 3-5 indicate the result of the End Transaction request. See
PDBI Message Error Codes for the recommended actions to help resolve the error related
return codes.

Table 3-5 End Transaction Response Return Codes

Return
Code

Text Description Data Section Contents

0 SUCCESS Database update was successful. If the transaction type was
write, the new database level is
returned.

data (dblevel
#######)

1009 NO_ACTIVE_TX
N

There was no currently active
transaction for this connection.

NONE

1017 NO_UPDATES The write transaction had no
successful updates. No database
change occurs, and no new
database level is returned.

NONE

1031 DB_EXCEPTIO
N

An unexpected exception was
thrown during the database commit.
The entire transaction was rolled
back to ensure predicable behavior.
Contact Oracle.

NONE

Abort Transaction
The Abort Transaction message aborts a currently executing read or write transaction. If the
transaction was a read transaction, the transaction is simply closed. The abort_txn
command defines the Abort Transaction message.

Request

This request aborts the currently executing transaction. If the current transaction is a write
transaction, any updates are rolled back.

Note:

Sending an abort transaction request while receiving responses from a query
request does not cause the query responses to stop.

Chapter 3
Messages

3-13

Request syntax :

abort_txn([iid XXXXX])

Response

The return codes listed in Table 3-6 indicates the result of the Abort Transaction
request. See PDBI Message Error Codes for the recommended actions to help resolve
the error related return codes.

Table 3-6 Abort Transaction Response Return Code

Return
Code

Text Description Data Section Contents

0 SUCCESS Abort successful. NONE

1009 NO_ACTIVE_T
XN

There was no currently active
transaction for this
connection.

NONE

Create Subscription
Create Subscription messages define different combinations of subscriptions by using
the ent_sub command with a different set of parameters. The following subscriptions
can be created:

• Subscription containing a single IMSI with no DNs

• Subscription containing an IMSI and one to eight DNs

• One or more DNs on the same NE with no IMSI

• Subscription porting a block of DNs

When a request to create a subscription fails due to provisioning checks added for the
EPAP Provisioning Blocklist feature, the beginning (bprovbl) and ending (eprovbl)
address string of the conflicting EPAP Provisioning Blocklist will be returned in the
response.

Subscription Containing a Single IMSI with No DNs
This command attempts to create an IMSI record that contains no DNs. By default, if
the IMSI already exists, the command is rejected. Using the optionalforce parameter
changes the default behavior to overwrite an existing IMSI. If the existing IMSI that is
overwritten has DNs, those DNs are deleted. If the IMSI conflicts with an entry in the
EPAP Provisioning Blocklist table, the command will be rejected and use of the
optional force parameter will not override this function.

Note:

Only the G-Flex feature uses this type of subscription data.

Chapter 3
Messages

3-14

The ent_sub command defines the request message for a subscription containing a single
IMSI with no DNs.

Parameters :

imsi
A single IMSI.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

sp
Specifies which SP the IMSI is on. The sp must correspond to an existing SP entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

force
(Optional) Indicates whether the client wants existing instances to be overwritten.

Values:
yes or no (default = no).

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are
processed in the order that their requests were received. This option is only allowed if the
client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules :

1. Using the force parameter cannot override conflicts with a provisioning blocklist entry.

Request syntax :

ent_sub([iid XXXXX,] imsi XXXXX , sp XXXXX
[, force yes/no] [, timeout <0..3600>])

Subscription Containing an IMSI and One to Eight DNs
This command attempts to create a subscription with one IMSI and up to eight DNs. If the
IMSI already exists and none of the DNs specified in the request exists as a stand-alone DN
or on another IMSI, the request adds the specified DNs to the existing IMSI. If the number of
DNs currently existing on the IMSI and the number of DNs specified in the request total more
than eight, the request is rejected. If any of the DNs in the request match a DN already
existing on the specified IMSI, it is not counted twice toward the eight-DN limit.The optional
force parameter allows the client to change the default behavior and overwrite existing
entries. If any of the DNs in the request conflict with a DN Block marked ineligible for splitting,
the request is rejected. The use of optional force parameter would not change this behavior.
If the IMSI already existed, it is deleted and recreated with the data in the request. This
means that if the existing IMSI had DNs, those DNs are also deleted. If any of the DNs
specified in the request already exist, those existing DNs are changed to point to the new

Chapter 3
Messages

3-15

IMSI and removed from the existing IMSI table. If removing the DNs results in the
previous IMSI having no DNs, the IMSI with no DN is not deleted. If the IMSI or any of
the DNs specified conflicts with an entry in the EPAP Provisioning Blocklist table, the
command will be rejected and use of the optional force parameter will not override this
function.

Note:

This type of subscription data is used only by the G-Flex feature.

The ent_sub command defines the request message for a subscription containing
one IMSI and one to eight DNs.

Parameters :

imsi
A single IMSI.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

dn
A DN (specified in international format) to be associated with the specified IMSI.
There can be up to eight DNs specified.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

sp
Specifies which SP the IMSI and DNs are on. The sp must correspond to an existing
SP entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

force
(Optional) Indicates whether the client wants existing instances to be overwritten.

Values:
yes or no (default = no)

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism
are processed in the order that their requests were received. This option is only
allowed if the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules :

1. Using the force parameter cannot override conflicts with a provisioning blocklist
entry.

Chapter 3
Messages

3-16

2. When the IMSI does not already exist, the sp parameter is required. If the command
specifies new DNs for an existing, IMSI, the sp parameter is not required and the existing
sp is not changed.

Request syntax :

ent_sub([iid XXXXX,] imsi XXXXX, dn XXXXX, …, dn XXXXX
, sp XXXXX, [, force yes/no] [, timeout <0..3600>])

One or More DNs on the Same NE with no IMSI
This command attempts to create up to eight single DNs without associating any of them with
an IMSI. They are all stand-alone DNs. Specifying more than one DN per request is only for
performance reasons. When the request is complete, there is no relationship between them.

By default, if any of the specified DNs conflicts with an existing single DN, the entire
command is rejected (including the DNs without conflict). The optional force parameter
allows you to change the default behavior to overwrite existing DNs.

If any of the DNs specified conflicts with an entry in the EPAP Provisioning Blocklist table or
with a DN Block marked ineligible for splitting, the command will be rejected and use of the
optional force parameter will not override this function.

Stand-alone DNs might or might not be associated with a network entity, but they cannot be
associated with both an SP and an RN at the same time.

If the newly created DN falls in the middle of an existing DN block, the new DN is considered
to be an exception to the block. The block is still kept intact; it is not split into separate blocks
around the new single DN, and the enter will succeed.

Guidelines for using the TIF Number Substitution parameter nsdn and st can be found in TIF
Number Substitution Relationships . The default value for subscriber type st is Public. The
rtrv_sub() command will not list st in its response for records that have the default value
Public.

The IDP calling and called party blocklist parameters (cgbl/cdbl) are optional and have a
default value of no. The GRN entity can optionally be associated with the DN. The GRN is
used as redirection digits if either the calling or called party blocklist parameters are set to
yes. The IDP blocklist feature is not related to the EPAP Provisioning Blocklist feature.

The (pt) parameter also defines the prepaid type. The prepaid type (portability type value of 3
or 4) determines which IN platform the short message is directed to. The pt parameter can
be specified only for DNs; it cannot be specified when an IMSI is in the command.portability
type (

For example, if a single ent_sub request specifies both an IMSI and a DN, you cannot
specify pt. However, you can use the upd_sub request to add a pt to the DN. To add a DN
and pt in one request, theent_sub must not specify an IMSI.
The pt values are mutually exclusive, that is, a single subscription cannot have
simultaneously a value 1 (ported out) and also 3 (prepaid 1). However, there is no effect on
the G-Port function if pt type 3 through 35 is specified. In these cases, if a message is being
processed for G-Port and the DN block matches with a pt type 3 through 35, G-Port
considers it the same as if the pt type = none.

The ent_sub command defines the request message for one or more DNs on the same NE
with no IMSI.

Chapter 3
Messages

3-17

Parameters :

dn
A DN (specified in international format). There can be up to eight DNs specified.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

pt
(Optional) The portability type for the created DN. This field is only used by G-Port, A-
Port, IS41 GSM Migration, and PPSMS. For G-Port and A-Port, it controls number
Portability Status encoding in SRI acks. For IS41 GSM Migration, it identifies whether
a subscriber has or has not migrated from IS41 to GSM, (maintaining a single GSM
handset). For PPSMS, it identifies a DN as one of two types needing PPSMS
intercept.

Values:
none – no status (default = none)
0 – not known to be ported, migrated to IS41 or non-migrated IS41 sub (used for
IS41 GSM Migration)
1 – own number ported out (used for G-Port and A-Port)
2 – foreign number ported to foreign network (used for G-Port and A-Port)
3 – prepaid 1 (used by PPSMS)
4 – prepaid 2 (used by PPSMS)
5 – migrated to GSM (used for IS41 GSM Migration)
6 – prepaid 3 (used by PPSMS)
7 – prepaid 4 (used by PPSMS)
8 – prepaid 5 (used by PPSMS)
9 – prepaid 6 (used by PPSMS)
10 – prepaid 7 (used by PPSMS)
11 – prepaid 8 (used by PPSMS)
12 – prepaid 9 (used by PPSMS)
13 – prepaid 10 (used by PPSMS)
14 – prepaid 11 (used by PPSMS)
15 – prepaid 12 (used by PPSMS)
16 – prepaid 13 (used by PPSMS)
17 – prepaid 14 (used by PPSMS)
18 – prepaid 15 (used by PPSMS)
19 – prepaid 16 (used by PPSMS)
20 – prepaid 17 (used by PPSMS)
21 – prepaid 18 (used by PPSMS)
22 – prepaid 19 (used by PPSMS)
23 – prepaid 20 (used by PPSMS)
24 – prepaid 21 (used by PPSMS)
25 – prepaid 22 (used by PPSMS)
26 – prepaid 23 (used by PPSMS)
27 – prepaid 24 (used by PPSMS)
28 – prepaid 25 (used by PPSMS)
29 – prepaid 26 (used by PPSMS)
30 – prepaid 27 (used by PPSMS)
31 – prepaid 28 (used by PPSMS)
32 – prepaid 29 (used by PPSMS)
33 – prepaid 30 (used by PPSMS)
34 – prepaid 31 (used by PPSMS)

Chapter 3
Messages

3-18

35 – prepaid 32 (used by PPSMS)
36 – not identified to be ported

sp
(Optional) Specifies which SP the DN(s) are on. The sp must correspond to an existing SP
entity. Most INP-only customers do not need to use SP.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

rn
(Optional) Specifies which RN the DNs are on. If the requested RN does not already exist, a
blank one with no values is automatically created. G-Flex-only customers should not use
RNs.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

vms
(Optional) Specifies which Voicemail Server the DN(s) are on and corresponds to the E.164
address of the voicemail server. The VMS must correspond to an existing VMS entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

grn
(Optional) Specifies which Generic Routing Number the DN(s) are on and corresponds to the
E.164 address used when the EAGLE “NE Query Only Option” has been turned on. The
GRN must correspond to an existing GRN entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

asd
(Optional) Additional Subscriber Data to be associated with the DN.

Values
1 to 10 hexadecimal digits expressed using ASCII characters.

st
(Optional) The subscriber type for created DNs.

Values
A decimal number in the range
0 - public
1 - private

nsdn
A TIF Number Substitution DN (specified in international format).
Values:

a string with 5 to 15 characters where each character must be a number from 0 to F.

cgbl
(Optional) IDP calling party blocklist.

Chapter 3
Messages

3-19

Values
no - IDP calling party blocklist is disabled.

yes - IDP calling party blocklist is enabled

cdbl
(Optional) IDP called party blocklist.

Values
no - IDP called party blocklist is disabled.

yes - IDP called party blocklist is enabled.

lsblset
(Optional) A TIF Linkset based blocklist parameter that is used to decide if the DN
needs to be blocklisted or not.

Values
a number from 1 to 255.

By default, no value is selected.

force
(Optional) Indicates whether the client wants existing instances to be overwritten.

Values:
yes or no (default = no)

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism
are processed in the order that their requests were received. This option is only
allowed if the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules :

1. It is not valid to specify bothsp andrn.

2. Conflicts with an EPAP Provisioning blocklist entry and cannot be circumvented
using the force parameter.

3. It is not valid to specify more than 2 Network Entity types (sp,rn,vms,grn).

4. Total command length must not exceed 247 characters.

Note:

Entering commands that exceed this length will result in the
PDBI_CMD_LENGTH_EXCEEDED error (value 1045). In order to avoid
this, remove unnecessary characters (including white space and
parameters that are specified as the default value). If necessary,
consider performing this provisioning in two steps by using an enter
command followed by an update command.

Chapter 3
Messages

3-20

5. The DN given bynsdn must exist.

6. Subscriber typest must be defined when using thensdn parameter

7. It is not legal to specify the 2 Network Entitiesasd, andnsdn.

Request syntax:

Ent_sub([iid XXXXX,] dn XXXXX, . . ., dn XXXXX, [pt <none/0/1/2/3/4……35>,]
[st <0/1>,]
[nsdn XXXXX,] [sp XXXXX,] [rn XXXXX,] [vms XXXXX,] [grn XXXXX,] [asd XXXXX,]
[cgbl < no/yes>,] [cdbl <no/yes>,] [lsblset <1,2……255>,] [force yes/no,]
[timeout <0..3600>])

Subscription Porting a Block of DNs
This command attempts to create a new DN block. By default, if the new DN block conflicts
with any part of an existing DN block, the command is rejected. When the DN Block Self
Healing feature is on, if the new DN Block to be added is a subset of the existing block with
different properties and the existing DN Block has the splitting ability set to yes. The original
DN Block will be split to accommodate the new DN Block. A new parameter split is added
for this purpose. The default value for split parameter is yes.The force parameter is not
supported for this command.

DN blocks might or might not be associated with a network entity, but they cannot be
associated with both an SP and an RN at the same time.

Guidelines for using the TIF Number Substitution (TIF NS) parameter nsdn and st can be
found in TIF Number Substitution Relationships . The default value for subscriber type st is
Public. The rtrv_sub() command will not list st in its response for records that have the
default value Public.

Guidelines for using the DN Block Self Healing parameter split can be found in DN Block
Self Healing. The default value for the split parameter is yes. The rtrv_sub() command
does not list split in its response for records that have the default value yes.

The IDP calling and called party blocklist parameters (cgbl/cdbl) are optional and have a
default value of no. The GRN entity can optionally be associated with the DN Block. The
GRN is used as redirection digits if either the calling or called party blocklist parameters are
set toyes. The IDP A-Party Blocklist feature is not related to the EPAP Provisioning Blocklist
feature.

The pt parameter is used to define the prepaid type. The prepaid type (value of 3 through
35) determines which IN platform the short message is directed to. The pt values are
mutually exclusive, that is, a single subscription cannot have simultaneously a value 1 (ported
out) and also 3 (prepaid 1). However, there is no effect on the G-Port function if pt type 3
through 35 is specified. In these cases, if a message is being processed for G-Port and the
DN block matches with a pt type 3 through 35, G-Port considers it the same as if the pt type
= none. This command is used only in the G-Port (and by extension PPSMS), V-Flex, and
INP features; the portability type parameter applies only to G-Port and PPSMS.

The ent_sub command defines the request message for a block of DNs.

Parameters :

Chapter 3
Messages

3-21

bdn
The beginning DN (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

edn
The ending DN (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

pt
(Optional) The portability type for the created DN. This field is only used by G-Port, A-
Port, IS41 GSM Migration, and PPSMS. For G-Port and A-Port, it controls number
Portability Status encoding in SRI acks. For IS41 GSM Migration, it identifies whether
a subscriber has or has not migrated from IS41 to GSM, (maintaining a single GSM
handset). For PPSMS, it identifies a DN as one of two types needing PPSMS
intercept.

Values:
none – no status (default = none)
0 – not known to be ported, migrated to IS41 or non-migrated IS41 sub (used for
IS41 GSM Migration)
1 – own number ported out (used for G-Port and A-Port)
2 – foreign number ported to foreign network (used for G-Port and A-Port)
3 – prepaid 1 (used by PPSMS)
4 – prepaid 2 (used by PPSMS)
5 – migrated to GSM (used for IS41 GSM Migration)
6 – prepaid 3 (used by PPSMS)
7 – prepaid 4 (used by PPSMS)
8 – prepaid 5 (used by PPSMS)
9 – prepaid 6 (used by PPSMS)
10 – prepaid 7 (used by PPSMS)
11 – prepaid 8 (used by PPSMS)
12 – prepaid 9 (used by PPSMS)
13 – prepaid 10 (used byPPSMS)
14 – prepaid 11 (used by PPSMS)
15 – prepaid 12 (used by PPSMS)
16 – prepaid 13 (used by PPSMS)
17 – prepaid 14 (used by PPSMS)
18 – prepaid 15 (used by PPSMS)
19 – prepaid 16 (used by PPSMS)
20 – prepaid 17 (used by PPSMS)
21 – prepaid 18 (used by PPSMS)
22 – prepaid 19 (used by PPSMS)
23 – prepaid 20 (used by PPSMS)
24 – prepaid 21 (used by PPSMS)
25 – prepaid 22 (used by PPSMS)
26 – prepaid 23 (used by PPSMS)
27 – prepaid 24 (used by PPSMS)
28 – prepaid 25 (used by PPSMS)
29 – prepaid 26 (used by PPSMS)
30 – prepaid 27 (used by PPSMS)

Chapter 3
Messages

3-22

31 – prepaid 28 (used by PPSMS)
32 – prepaid 29 (used by PPSMS)
33 – prepaid 30 (used by PPSMS)
34 – prepaid 31 (used by PPSMS)
35 – prepaid 32 (used by PPSMS)
36 – not identified to be ported

sp
(Optional) Specifies which SP the DN(s) are on. The sp must correspond to an existing SP
entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

rn
(Optional) Specifies which RN the DNs are on. If the requested RN does not already exist, a
blank one with no values is automatically created. G-Flex-only customers should not use
RNs.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

vms
(Optional) Specifies which Voicemail Server the DN(s) are on and corresponds to the E.164
address of the voicemail server. The VMS must correspond to an existing VMS entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

grn
(Optional) Specifies which Generic Routing Number the DN(s) are on and corresponds to the
E.164 address used when the EAGLE “NE Query Only Option” has been turned on. The
GRN must correspond to an existing GRN entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

asd
(Optional) Additional Subscriber Data to be associated with the DN Block.

Values
1 to 10 hexadecimal digits expressed using ASCII characters.

st
(Optional) The subscriber type for created DNs.

Values
A decimal number in the range
0 - public
1 - private

nsdn
A TIF NS DN (specified in international format).
Values:

a string with 5 to 15 characters where each character must be a number from 0 to F.

Chapter 3
Messages

3-23

cgbl
(Optional) IDP calling party blocklist.

Values
no - IDP calling party blocklist is disabled.

yes - IDP calling party blocklist is enabled

cdbl
(Optional) IDP called party blocklist.

Values
no - IDP called party blocklist is disabled.

yes - IDP called party blocklist is enabled.

lsblset
(Optional) A TIF Linkset based Blocklist parameter that is used to decide if the DN
needs to be blocklisted or not.

Values
a number from 1 to 255.

By default, no value is selected.

split
(Optional) Specifies whether a DN Block is eligible for splitting.

Values
yes – splitting is enabled for DN Block self heal (default= yes).

no – splitting is disabled for DN Block self heal.

force
(Optional) Indicates whether the client wants existing instances to be overwritten.

Values
yes or no (default=no)

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism
are processed in the order that their requests were received. This option is only
allowed if the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules :

1. The bdn and edn parameter values must have the same number of digits.

2. It is not valid to specify bothsp andrn.

3. It is not valid to specify more than 2 Network Entity types (sp,rn,vms,grn).

4. The DN given by nsdn must exist.

5. Subscriber type st must be defined when using the nsdn parameter

Chapter 3
Messages

3-24

6. It is not legal to specify the 2 Network Entitiesasd, andnsdn.

The DN given by nsdn must exist. The DN given by nsdn must exist.

Request syntax :

Ent_sub([iid XXXXX,] bdn XXXXX, edn XXXXX, [pt <none/0/1/2/3/4/….35>,] [st
<0/1>,]
[nsdn XXXXX,] [sp XXXXX,] [rn XXXXX,] [vms XXXXX,] [grn XXXXX,] [asd XXXXX,]
[cgbl < no/yes>,] [cdbl <no/yes>,][lsblset <1,2……255>,] [split yes/no,]
[force yes/no,] [timeout <0..3600>])

Create Subscription Responses
The return codes in Table 3-7 might result from the Create Subscription request. See PDBI
Message Error Codes for the recommended actions to help resolve the error related return
codes.

Table 3-7 Create Subscription Response Return Codes

Return
Code

Text Description Data Section Contents

0 SUCCESS Everything worked. NONE

1005 WRITE_UNAVAIL Another client already has a
write transaction open.

IP address information of client
that already has the write
transaction.

data (id <connection
id>, ip <ip addr>,
port <port num>)

1006 NO_WRITE_PERMISSI
ON

The PDBI client making
request does not have write
access permissions.

NONE

1009 NO_ACTIVE_TXN There was no currently active
transaction for this connection.

NONE

1011 WRITE_IN_READ_TXN The create command was
sent on a read transaction.

NONE

1012 INVALID_VALUE One of the fields specified had
an invalid value.

The offending field is returned
in the data section:

data (param <field
label>)

1014 CONFLICT_FOUND An entry was found already in
database matching an
element of this request. If
force yes parameter is
used and this option is
supported for this dta type,
this error is not returned.
Rather, existing instances are
overwritten.

The offending existing element
is returned. The type depends
on the type of request.

data (dn XXXXX)
data (imsi XXXXX)
data (bdn XXXXX, edn
XXXXX)
data (bprovbl XXXX, eprovBL
XXXX)

Chapter 3
Messages

3-25

Table 3-7 (Cont.) Create Subscription Response Return Codes

Return
Code

Text Description Data Section Contents

1017 NO_UPDATES The database already
contains data in request. No
update was necessary.

NONE

1021 NE_NOT_FOUND The specified NE does not
exist.

NONE

1027 IMSI_DN_LIMIT The addition of DNs specified
in request would cause IMSI
to have more than eight DNs

NONE

1029 TXN_TOO_BIG This request would cause
current transaction to be
larger than limit.

NONE

1032 MAX_IMSI_LIMIT Could not add new IMSI to the
database. Adding a new IMSI
would exceed the max
allowed IMSIs.

NONE

1033 MAX_DN_LIMIT Could not add new DN(s) to
the database. Adding a new
DN(s) would exceed the max
allowed DNs.

NONE

1034 MAX_DNBLK_LIMIT Could not add new DN Block
to the database. Adding a new
DN Block would exceed the
max allowed DN Blocks.

NONE

1044 SUB_NE_LIMIT There are too many network
entities for a DN or DN Block.

NONE

1046 MAX_ASD_LIMIT The database to exceeds the
global limit of unique ASD
records.

NONE

1047 DN_NOT_FOUND The DN specified by nsdn
does not exist.

The offending existing element
will be returned. data (nsdn
XXXXX)

1048 MAX_ASSOCIATIONS This request contains too
many associations for a DN or
DN Block. The error is raised
when TIF Number Substitution
is combined with other
associations and distinct from
SUB_NE_LIMIT.

NONE

1049 UNRESOLVED_DEPEND
ENCY

This record is referred to by
other records.

When using force to enter a
pre-existing IMSI that has a DN
with unresolved dependencies,
the DN and the count of each
dependency are returned. If
more than one DN has
unresolved dependencies, only
one will be returned in this
error. Data (dn XXXXX,
counts([nsdn
#####]))

Chapter 3
Messages

3-26

Table 3-7 (Cont.) Create Subscription Response Return Codes

Return
Code

Text Description Data Section Contents

1050 INCOMPATIBLE_ST The specified ST value
conflicts with the ST value of
NSDN.

The ST value of NSDN will be
returned in the data section
data (st <0/1>)

1051 INCOMPATIBLE_ROP The GRN ROP value conflicts
with the GMT value for the
specified ASD.

The GRN value for the ASD will
be returned in the data section.
data (grn #####)

1052 DNB_SAME_PROPERTI
ES

The new DN Block requested
by the operator is a subset of
an existing block with same
properties.

The bdn and edn of conflicting
block will be returned.

1053 MULTI_DNB_CONFLIC
T

The new DN Block could not
be added to the database as
multiple conflicting DN Blocks
were found within given bdn-
edn.

NONE

1054 DNB_SPLIT_NOT_ALL
OWED

The new DN Block tries to
split an existing DN Block that
is not allowed to be split or a
new individual DN is entered
within an existing DN Block
that is not allowed to be split.

The bdn and edn of conflicting
block will be returned.

1058 IMSI_FULL Could not add new IMSI to the
database. Adding new IMSI
would exceed the supported
SMxG card size. The other
supported subscriptions are
allowed if space is available
on the corresponding SMxG
card.

NONE

1060 DN_FULL Could not add new DN to the
database. Adding new DN
would exceed the supported
SMxG card size. The other
supported subscriptions are
allowed if space is available
on the corresponding SMxG
card.

NONE

1061 ASD_FULL Could not add new ASD to the
database. Adding new ASD
would exceed the supported
SMxG card size. The other
supported subscriptions are
allowed if space is available
on the corresponding SMxG
card.

NONE

1062 IMSI_ENT_NOT_ALLO
WED

Could not add new IMSI to the
database. The RTDB is either
down or incoherent. Adding
new IMSI requires creation of
new IMSI table which may
lead to over-allocation.

NONE

Chapter 3
Messages

3-27

Update Subscription
Update Subscription

This command modifies existing subscription data. Specific scenarios are described in
the usage variations below. Although all of the usage variations are called upd_sub ,
the existence of certain parameters changes what is meant.

Modify the SP for a Specific IMSI
This command attempts to modify the sp field for a specific IMSI. If the IMSI has any
DNs associated with it, the DNs are modified to use the specified SP.

Note:

This type of subscription data is used only by the G-Flex feature.

Parameters:

imsi
A single IMSI.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

sp
Specifies which SP the IMSI is being moved to. The SP must correspond to an
existing SP entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism
are processed in the order that their requests were received. This option is only
allowed if the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules :

1. Thesp parameter must be specified.

Request syntax :

upd_sub([iid XXXXX,] imsi XXXXX, sp XXXXX,
[timeout <0..3600>])

Chapter 3
Messages

3-28

Modify the Subscription Data of a Single DN
This command attempts to modify the Network Entity (SP, RN, VMS,or GRN) and portability
type fields of a specific DN. If the DN is a stand-alone DN, the fields are simply modified. If
the DN is associated with an IMSI and a new NE was specified in the request, the DN is
removed from the IMSI and changed to use the specified NE directly.

Updating a DN by setting the sp and rn to the value none will result in a DN that is not
associated with a Network Entity. If a DN was already associated with a sp or rn, specifying a
new sp or rn will result in a replacement. Any update in which a Network Entity type is
specified will only be allowed if the DN has not reached its maximum of 2 NEs per DN.

If a DN has a NE association and an update command specifies a new NE of the same NE
type, a replacement is attempted. Updating a DN by setting a NE type (sp/rn/vms/grn) to the
value none, results in a DN that is no longer associated with that NE. If a DN has an existing
NE association and an update command specifies a NE of a different NE type, will attempt to
add a new NE association. To replace a NE association with a new NE association of a
different type, remove the old NE (specifying value none) and enter the new NE. This is done
in a single request or as two separate requests (one command to remove the old NE and one
command to add the new NE). Any update in which a Network Entity type is specified is only
allowed if the DN has not reached its maximum of 2 NEs.

Guidelines for using the TIF Number Substitution parameter nsdn and st can be found in TIF
Number Substitution Relationships . The default value for subscriber type st is Public. The
rtrv_sub() command will not list st in its response for records that have the default value
Public.

The IDP calling and called party blocklist parameters (cgbl/cdbl) are optional and have a
default value of no. The GRN entity can optionally be associated with the DN. The GRN is
used as redirection digits if either the calling or called party blocklist parameters are set to
yes. The IDP A-Party Blocklist feature is not related to the EPAP Provisioning Blocklist
feature.

If an update requires a replacement other than sp/rn for sp/rn, the user may specify the new
Network Entity and the Network entity to be removed should be specified as a value of none.
This may be done in a single request or as two separate requests (1 to remove the old NE
and 1 to add the new NE).

This command is used for G-Flex, G-Port, and INP features, although some of the specific
parameters are only meaningful on specific features.

Parameters:

dn
A single DN (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

pt
(Optional) The portability type for the created DN. This field is only used by G-Port, A-Port,
IS41 GSM Migration, and PPSMS. For G-Port and A-Port, it controls number Portability
Status encoding in SRI acks. For IS41 GSM Migration, it identifies whether a subscriber has
or has not migrated from IS41 to GSM, (maintaining a single GSM handset). For PPSMS, it
identifies a DN as one of two types needing PPSMS intercept.

Chapter 3
Messages

3-29

Values:
none – no status (default = none)
0 – not known to be ported, migrated to IS41 or non-migrated IS41 sub (used for
IS41 GSM Migration)
1 – own number ported out (used for G-Port and A-Port)
2 – foreign number ported to foreign network (used for G-Port and A-Port)
3 – prepaid 1 (used by PPSMS)
4 – prepaid 2 (used by PPSMS)
5 – migrated to GSM (used for IS41 GSM Migration)
6 – prepaid 3 (used by PPSMS)
7 – prepaid 4 (used by PPSMS)
8 – prepaid 5 (used by PPSMS)
9 – prepaid 6 (used by PPSMS)
10 – prepaid 7 (used by PPSMS)
11 – prepaid 8 (used by PPSMS)
12 – prepaid 9 (used by PPSMS)
13 – prepaid 10 (used by PPSMS)
14 – prepaid 11 (used by PPSMS)
15 – prepaid 12 (used by PPSMS)
16 – prepaid 13 (used by PPSMS)
17 – prepaid 14 (used by PPSMS)
18 – prepaid 15 (used by PPSMS)
19 – prepaid 16 (used by PPSMS)
20 – prepaid 17 (used by PPSMS)
21 – prepaid 18 (used by PPSMS)
22 – prepaid 19 (used by PPSMS)
23 – prepaid 20 (used by PPSMS)
24 – prepaid 21 (used by PPSMS)
25 – prepaid 22 (used by PPSMS)
26 – prepaid 23 (used by PPSMS)
27 – prepaid 24 (used by PPSMS)
28 – prepaid 25 (used by PPSMS)
29 – prepaid 26 (used by PPSMS)
30 – prepaid 27 (used by PPSMS)
31 – prepaid 28 (used by PPSMS)
32 – prepaid 29 (used by PPSMS)
33 – prepaid 30 (used by PPSMS)
34 – prepaid 31 (used by PPSMS)
35 – prepaid 32 (used by PPSMS)
36 – not identified to be ported

sp
(Optional) Specifies which SP the DN is being moved to. The sp must correspond to
an existing SP entity. Most INP only customers do not need to use sp.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Sets the sp to not point to any network entity.

vms
(Optional) Specifies which Voicemail Server the DN(s) are on and corresponds to the
E.164 address of the voicemail server. The VMS must correspond to an existing VMS
entity.

Chapter 3
Messages

3-30

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

grn
(Optional) Specifies which Generic Routing Number the DN(s) are on and corresponds to the
E.164 address used when the EAGLE “NE Query Only Option” has been turned on. The
GRN must correspond to an existing GRN entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Sets the rms to not point to any GRN entity.

rn
(Optional) Specifies which RN the DN is being moved to. If the requested RN does not
already exist, a blank one with no values is automatically created. G-Flex-only customers
should not use RNs.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Sets the rn to not point to any network entity.

asd
(Optional) Additional Subscriber Data to be associated with the DN Block. Leading zeros are
significant.

Values
1 to 10 hexadecimal digits expressed using ASCII characters. Leading zeros are
significant.
none – Removes additional subscriber data from the DN.

st
(Optional) The subscriber type for created DNs.

Values
A decimal number in the range
0 - public
1 - private

nsdn
A TIF NS DN (specified in international format).
Values:

a string with 5 to 15 characters where each character must be a number from 0 to F.

cgbl
(Optional) IDP calling party blocklist.

Values
no - IDP calling party blocklist is disabled.

yes - IDP calling party blocklist is enabled

cdbl
(Optional) IDP called party blocklist.

Chapter 3
Messages

3-31

Values
no - IDP called party blocklist is disabled.

yes - IDP called party blocklist is enabled.

lsblset
(Optional) A TIF Linkset based Blocklist parameter that is used to decide if the DN
needs to be blocklisted or not.

Values
a number from 1 to 255.

By default, no value is selected.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism
are processed in the order that their requests were received. This option is only
allowed if the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules :

1. It is not valid to create more than 2 Network Entity associations.

2. The DN given by nsdn must exist.

3. Cannot update a DN to have the 2 Network Entities asd and nsdn together.

4. It is not valid to specify both sp andrn, unless they are both set tonone.

Request syntax :

Upd_sub([iid XXXXX,] dn XXXXX, [pt <none/0/1/2/3//….35>,] [st <0/1>,]
[nsdn XXXXX,]
[sp XXXXX,] [rn XXXXX,] [vms XXXXX,] [grn XXXXX,] [asd XXXXX,] [cgbl
<no/yes>,]
[cdbl < no/yes>,][lsblset <1,2……255>,] [force yes/no,] [timeout
<0..3600>])

Move an existing DN to an Existing IMSI
This command is used to move an existing DN to an existing IMSI. The DN is changed
to use the SP of the IMSI.

If the DN is already associated with an IMSI, it will be removed from that IMSI and
associated with the new IMSI. The original IMSI will not be removed, even if this
results in it having no DNs associated with it.

If the DN is already associated with a vms or grn, those NE associations will be
removed when the DN is moved to the specified IMSI. IMSIs and DNs on IMSIs can
only be associated with 1 NE.

Parameters :

Chapter 3
Messages

3-32

dn
A single DN (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

imsi
A single IMSI.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are
processed in the order that their requests were received. This option is only allowed if the
client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Request syntax :

upd_sub([iid XXXXX,] dn XXXXX, imsi XXXXX
[, timeout <0..3600>])

Modify the Subscription Information for a DN Block
This command modifies the subscription data for a DN block. The block specified must
exactly match an existing block. It cannot span multiple blocks or into unused DNs. It cannot
be a subset of an existing block

DN blocks might or might not be associated with a network entity, but they cannot be
associated with both an SP and an RN at the same time. If a DN block has a NE association
and the update command specifies a new NE of the same NE type, a replacement is
attempted. Updating a DN block by setting a NE type (sp/rn/vms/grn) to the value none,
results in a DN that is no longer associated with that NE. If a DN block has an existing NE
association and the update command specifies a NE of a different NE type, will attempt to
add a new NE association. To replace a NE association with a new NE association of a
different type, remove the old NE (specifying value none) and enter the new NE. This is done
in a single request or as two separate requests (one command to remove the old NE and one
command to add the new NE). Any update in which a Network Entity type is specified is only
allowed if the DN block has not reached its maximum of 2 NEs.

Guidelines for using the Number Substitution parameter nsdn and st can be found in TIF
Number Substitution Relationships . The default value for subscriber type st is Public. The
rtrv_sub() command will not list st in its response for records that have the default value
Public.

The IDP calling and called party blocklist parameters (cgbl/cdbl) are optional and have a
default value of no. The GRN entity can optionally be associated with the DN. The GRN is
used as redirection digits if either the calling or called party blocklist parameters are set to

Chapter 3
Messages

3-33

yes. The IDP A-Party blocklist feature is not related to the EPAP Provisioning Blocklist
feature.

The DN Block Self Healing parameter (split) is optional and has a default value of
yes. This parameter can be modified by the user at any time without affecting any
other attribute of the DN Block. Guidelines for the DN Block Self Healing feature can
be found in DN Block Self Healing. The rtrv_sub() command will not list split in
its response for records that have the default value yes.

Note:

DN blocks are used only in the G-Port, PPSMS, and INP features.

Parameters :

bdn
The beginning DN (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

edn
The ending DN (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

pt
(Optional) The portability type for the created DN. This field is only used by G-Port, A-
Port, IS41 GSM Migration, and PPSMS. For G-Port and A-Port, it controls number
Portability Status encoding in SRI acks. For IS41 GSM Migration, it identifies whether
a subscriber has or has not migrated from IS41 to GSM, (maintaining a single GSM
handset). For PPSMS, it identifies a DN as one of two types needing PPSMS
intercept.

Values:
none – no status (default = none)
0 – not known to be ported, migrated to IS41 or non-migrated IS41 sub (used for
IS41 GSM Migration)
1 – own number ported out (used for G-Port and A-Port)
2 – foreign number ported to foreign network (used for G-Port and A-Port)
3 – prepaid 1 (used by PPSMS)
4 – prepaid 2 (used by PPSMS)
5 – migrated to GSM (used for IS41 GSM Migration)
6 – prepaid 3 (used by PPSMS)
7 – prepaid 4 (used by PPSMS)
8 – prepaid 5 (used by PPSMS)
9 – prepaid 6 (used by PPSMS)
10 – prepaid 7 (used by PPSMS)
11 – prepaid 8 (used by PPSMS)
12 – prepaid 9 (used by PPSMS)
13 – prepaid 10 (used by PPSMS)

Chapter 3
Messages

3-34

14 – prepaid 11 (used by PPSMS)
15 – prepaid 12 (used by PPSMS)
16 – prepaid 13 (used by PPSMS)
17 – prepaid 14 (used by PPSMS)
18 – prepaid 15 (used by PPSMS)
19 – prepaid 16 (used by PPSMS)
20 – prepaid 17 (used by PPSMS)
21 – prepaid 18 (used by PPSMS)
22 – prepaid 19 (used by PPSMS)
23 – prepaid 20 (used by PPSMS)
24 – prepaid 21 (used by PPSMS)
25 – prepaid 22 (used by PPSMS)
26 – prepaid 23 (used by PPSMS)
27 – prepaid 24 (used by PPSMS)
28 – prepaid 25 (used by PPSMS)
29 – prepaid 26 (used by PPSMS)
30 – prepaid 27 (used by PPSMS)
31 – prepaid 28 (used by PPSMS)
32 – prepaid 29 (used by PPSMS)
33 – prepaid 30 (used by PPSMS)
34 – prepaid 31 (used by PPSMS)
35 – prepaid 32 (used by PPSMS)
36 – not identified to be ported

sp
(Optional) Specifies which SP the DN Block is being moved to. The sp must correspond to
an existing SP entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Sets the sp to not point to any SP entity.

rn
(Optional) Specifies which RN the DN is being moved to. If the requested RN does not
already exist, a blank one with no values is automatically created. G-Flex-only customers
should not use RNs.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Sets the rn to not point to any RN entity.

vms
(Optional) Specifies which Voicemail Server the DN(s) are on and corresponds to the E.164
address of the voicemail server. The VMS must correspond to an existing VMS entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Sets the vms to not point to any VMS entity.

grn
(Optional) Specifies which Generic Routing Number the DN(s) are on and corresponds to the
E.164 address used when the EAGLE “NE Query Only Option” has been turned on. The
GRN must correspond to an existing GRN entity.

Chapter 3
Messages

3-35

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Sets the grn to not point to any GRN entity.

asd
(Optional) Additional Subscriber Data to be associated with the DN Block.

Values
1 to 10 hexadecimal digits expressed using ASCII characters. Leading zeros are
significant.
none – Removes additional subscriber data from the DN.

st
(Optional) The subscriber type for created DNs.

Values
A decimal number in the range
0 - public
1 - private

nsdn
A TIF Number Substitution DN (specified in international format).
Values:

a string with 5 to 15 characters where each character must be a number from 0 to
F.

cgbl
(Optional) IDP calling party blocklist.

Values
no - IDP calling party blocklist is disabled.

yes - IDP calling party blocklist is enabled

cdbl
(Optional) IDP called party blocklist.

Values
no - IDP called party blocklist is disabled.

yes - IDP called party blocklist is enabled.

lsblset
(Optional) A TIF Linkset based blocklist parameter that is used to decide if the DN
needs to be blocklisted or not.

Values
a number from 1 to 255.

By default, no value is selected.

split
(Optional) Specifies whether a DN Block is eligible for splitting.

Chapter 3
Messages

3-36

Values
yes – splitting is enabled for DN Block self heal (default = yes).

no – splitting is disabled for DN Block self heal.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are
processed in the order that their requests were received. This option is only allowed if the
client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules :

1. The bdn and edn parameter values must have the same number of digits.

2. It is not valid to create more than 2 Network Entity associations.

3. The DN given by nsdn must exist.

4. A DN Block cannot be updated to have two Network Entities, asd and nsdn, together.

5. See TIF Number Substitution Relationships for complete rules.

6. See DN Block Self Healing for complete rules.

The bdn and edn parameter values must have the same number of digits.

Request syntax :

Upd_sub([iid XXXXX,] bdn XXXXX, edn XXXXX, [pt <none/0/1/2/3//….35>,] [st
<0/1>,]
[nsdn XXXXX,] [sp XXXXX,] [rn XXXXX,] [vms XXXXX,] [grn XXXXX,] [asd XXXXX,]
[cgbl < no/yes>,] [cdbl <no/yes>,] [lsblset <1,2……255>,] [split <no/yes>,]
[timeout <0..3600>])

Update Subscription Responses
The return codes listed in Table 3-8 indicate the result of the Update Subscription request.
See PDBI Message Error Codes for the recommended actions to help resolve the error
related return codes.

Table 3-8 Update Subscription Response Return Codes

Return
Code Text Description Data Section

Contents

0 SUCCESS Everything worked. NONE

1012 INVALID_VALUE One of the fields specified had an
invalid value.

The offending
field is returned
in data section:

data (param
<field label>)

Chapter 3
Messages

3-37

Table 3-8 (Cont.) Update Subscription Response Return Codes

Return
Code Text Description Data Section

Contents

1011 WRITE_IN_
READ_TXN

The command was sent on a read
only transaction.

NONE

1013 NOT_FOUND The requested DN, DN block, or
IMSI was not found.

NONE

1027 IMSI_DN_LIMIT The IMSI already has maximum
number of DNs.

NONE

1029 TXN_TOO_BIG This request would cause current
transaction to be larger than limit.

NONE

1017 NO_UPDATES Database already contains date in
request. No update is necessary.

NONE

1009 NO_ACTIVE_TXN There is no currently active
transaction for this connection.

NONE

1021 NE_NOT_FOUND NE specified does not exist. NONE

1006 NO_WRITE_PERMISSION PDBI client making request does not
have write access permissions.

NONE

1005 WRITE_UNAVAIL Another client already has a write
transaction open.

IP address
information of
client that
already has
write
transaction.

data (id
<connectio
n id>, ip
<ip addr>,
port <port
num>)

1044 SUB_NE_LIMIT This request would cause the DN or
DN Block to have more than the
maximum of 2 NE associations

NONE

1046 MAX_ASD_LIMIT This request would cause the
database to exceed the global limit of
unique ASD records.

NONE

1047 DN_NOT_FOUND The DN specified by nsdn does not
exist.

The offending
existing
element will be
returned. data
(nsdn XXXXX)

1048 MAX_ASSOCIATIONS This request contains too many
associations for a DN or DN Block.
The error is raised when Number
Substitution is combined with other
associations and distinct from
SUB_NE_LIMIT.

NONE

Chapter 3
Messages

3-38

Table 3-8 (Cont.) Update Subscription Response Return Codes

Return
Code Text Description Data Section

Contents

1049 UNRESOLVED_DEPENDENCY This record is referred to by other
records.

When using
force to enter a
pre-existing
IMSI that has a
DN with
unresolved
dependencies,
the DN and the
count of each
dependency
are returned. If
more than one
DN has
unresolved
dependencies,
only one will be
returned in this
error. Data (dn
XXXXX,
counts([ns
dn
#####]))

1050 INCOMPATIBLE_ST The specified ST value conflicts with
the ST value of NSDN.

The ST value
of NSDN will be
returned in the
data section
data (st <0/1>)

Delete Subscription
This command deletes subscription records. The specific usage variations follow. Although all
of the usage variations are called dlt_sub, the existence of certain parameters change what
is meant.

Delete an IMSI
This command attempts to delete the specified IMSI. If the IMSI has any DNs associated with
it, the DNs are also deleted.

Parameters :

imsi
The IMSI to delete.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are

Chapter 3
Messages

3-39

processed in the order that their requests were received. This option is only allowed if
the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Request syntax :

dlt_sub([iid XXXXX,] imsi XXXXX, [timeout <0..3600>])

Delete a Single DN
This command attempts to delete a single DN. The DN is deleted even if the DN is
associated with an IMSI. The IMSI remains even if this operation results in no DNs
being associated with the IMSI.

Parameters :

dn
The single DN to delete (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism
are processed in the order that their requests were received. This option is only
allowed if the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Request syntax :

dlt_sub([iid XXXXX,] dn XXXXX, [timeout <0..3600>])

Delete a DN block
This command attempts to delete an existing DN block. The block specified must
exactly match an existing block. It cannot span multiple blocks or into unused DNs. It
cannot be a subset of an existing block.

If the DN Block Self Healing feature is on, an attempt to delete the subrange when
master range properties mismatch or an attempt to delete the master range itself will
be rejected. Guidelines for the DN Block Self Healing feature can be found in DN
Block Self Healing.

Parameters :

Chapter 3
Messages

3-40

bdn
The beginning DN of the block to delete (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

edn
The ending DN of the block to delete (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are
processed in the order that their requests were received. This option is only allowed if the
client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules :

1. The bdn and edn parameter values must have the same number of digits.

Request syntax :

dlt_sub([iid XXXXX,] bdn XXXXX, edn xxxxx, [timeout <0..3600>])

Delete Subscription Responses
The return codes listed in Table 3-9 indicate the result of the Delete Subscription request.
See PDBI Message Error Codes for the recommended actions to help resolve the error
related return codes.

Table 3-9 Delete Subscription Response Return Codes

Return
Code Text Description Data Section

Contents

0 SUCCESS Everything worked. NONE

1011 WRITE_IN_READ_TXN The command was sent on a read
only transaction.

NONE

1013 NOT_FOUND The requested DN, DN block, or
IMSI was not found.

NONE

1029 TXN_TOO_BIG This request would cause current
transaction to be larger than the
limit.

NONE

1009 NO_ACTIVE_TXN There is no currently active
transaction for this connection.

NONE

1006 NO_WRITE_PERMISSION PDBI client making request does
not have write access permissions.

NONE

Chapter 3
Messages

3-41

Table 3-9 (Cont.) Delete Subscription Response Return Codes

Return
Code Text Description Data Section

Contents

1005 WRITE_UNAVAIL Another client already has a write
transaction open.

IP address
information of client
that already has the
write transaction.

data (id
<connection
id>, ip <ip
addr>, port
<port num>)

1049 UNRESOLVED_DEPENDENC
Y

This record is referred to by other
records.

When using force to
enter a pre-existing
IMSI that has a DN
with unresolved
dependencies, the
DN and the count of
each dependency
are returned. If more
than one DN has
unresolved
dependencies, only
one will be returned
in this error. Data
(dn XXXXX,
counts([nsdn
#####]))

1055 DNB_PARENT_PROPERTY
_MISMATCH

Fragments of a master range have
differing attributes. No automated
resolution is possible to coalesce
these records to satisfy a delete
command.

The bdn and edn of
two differing master
range fragments are
returned.

1056 DNB_DLT_NOT_ALLOWED Fragments of a master range
cannot be deleted while subranges
are present

The bdn and edn of a
subrange are
returned.

Retrieve Subscription Data
The command allows the client to retrieve information about the existing subscription
data. The specific usage variations follow. Although all of the usage variations are
called rtrv_sub, the existence of certain parameters change what is meant.

When multiple filtering parameters are specified (pt, sp, and rn), any output data must
pass ALL of the filters specified. For example, if sp is specified, only instances
referencing the specified SP values will be returned.

Retrieve Subscription Information About a Specific DN
This command retrieves the subscription information for a specific DN. If the G-Port or
INP feature is available and the specific DN is not found, the PDBA also tries to find a
DN block that the DN is in.

Chapter 3
Messages

3-42

Parameters :

dn
The specific DN to retrieve (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

pt
(Optional) The portability type for the created DN. This field is only used by G-Port, A-Port,
IS41 GSM Migration, and PPSMS. For G-Port and A-Port, it controls number Portability
Status encoding in SRI acks. For IS41 GSM Migration, it identifies whether a subscriber has
or has not migrated from IS41 to GSM, (maintaining a single GSM handset). For PPSMS, it
identifies a DN as one of two types needing PPSMS intercept.

Values:
none – no status (default = none)
0 – not known to be ported, migrated to IS41 or non-migrated IS41 sub (used for IS41
GSM Migration)
1 – own number ported out (used for G-Port and A-Port)
2 – foreign number ported to foreign network (used for G-Port and A-Port)
3 – prepaid 1 (used by PPSMS)
4 – prepaid 2 (used by PPSMS)
5 – migrated to GSM (used for IS41 GSM Migration)
6 – prepaid 3 (used by PPSMS)
7 – prepaid 4 (used by PPSMS)
8 – prepaid 5 (used by PPSMS)
9 – prepaid 6 (used by PPSMS)
10 – prepaid 7 (used by PPSMS)
11 – prepaid 8 (used by PPSMS)
12 – prepaid 9 (used by PPSMS)
13 – prepaid 10 (used by PPSMS)
14 – prepaid 11 (used by PPSMS)
15 – prepaid 12 (used by PPSMS)
16 – prepaid 13 (used by PPSMS)
17 – prepaid 14 (used by PPSMS)
18 – prepaid 15 (used by PPSMS)
19 – prepaid 16 (used by PPSMS)
20 – prepaid 17 (used by PPSMS)
21 – prepaid 18 (used by PPSMS)
22 – prepaid 19 (used by PPSMS)
23 – prepaid 20 (used by PPSMS)
24 – prepaid 21 (used by PPSMS)
25 – prepaid 22 (used by PPSMS)
26 – prepaid 23 (used by PPSMS)
27 – prepaid 24 (used by PPSMS)
28 – prepaid 25 (used by PPSMS)
29 – prepaid 26 (used by PPSMS)
30 – prepaid 27 (used by PPSMS)
31 – prepaid 28 (used by PPSMS)
32 – prepaid 29 (used by PPSMS)
33 – prepaid 30 (used by PPSMS)
34 – prepaid 31 (used by PPSMS)
35 – prepaid 32 (used by PPSMS)
36 – not identified to be ported

Chapter 3
Messages

3-43

sp
(Optional) Filters the request to just retrieve the DNs in the range that are on the
provided SP.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Filters for instances not on an SP.

rn
(Optional) Filters the request to just retrieve the DNs in the range that are on the
provided RN.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Filters for instances not on an RN.

vms
(Optional) Specifies which Voicemail Server the DN(s) are on and corresponds to
the E.164 address of the voicemail server. The VMS must correspond to an
existing VMS entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Sets the vms to not point to any network entity.

grn
(Optional) Specifies which Generic Routing Number the DN(s) are on and
corresponds to the E.164 address used when the EAGLE “NE Query Only Option”
has been turned on. The GRN must correspond to an existing GRN entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Sets the grn to not point to any network entity.

asd
(Optional) Additional Subscriber Data to be associated with the DN Block.

Values
1 to 10 hexadecimal digits expressed using ASCII characters. Leading zeros
are significant.
none – Removes additional subscriber data from the DN.

st
(Optional) The subscriber type for created DNs.

Values
A decimal number in the range
0 - public
1 - private

nsdn
A Number Substitution DN (specified in international format).
Values:

a string with 5 to 15 characters where each character must be a number from
0 to F.

Chapter 3
Messages

3-44

cgbl
(Optional) IDP calling party blocklist.

Values
no - IDP calling party blocklist is disabled.

yes - IDP calling party blocklist is enabled

cdbl
(Optional) IDP called party blocklist.

Values
no - IDP called party blocklist is disabled.

yes - IDP called party blocklist is enabled.

lsblset
(Optional) A TIF Linkset based Blocklist parameter that is used to decide if the DN needs
to be blocklisted or not.

Values
a number from 1 to 255.

By default, no value is selected.

split
(Optional) Specifies the DN Block splitting ability. This parameter filters the request to
retrieve only those DN Blocks that have the specified split value. This parameter must be
specified in order to be used as a filter. If this parameter is not specified, filtering on the
split value is not performed.

Values
no – DN Block splitting is disabled.

yes – DN Block splitting is enabled.

data
(Optional) Lets the requester specify the type of output data to be returned. See Retrieve
Subscription Data Responses for additional information.

Values:
all– Return all known data for each instance (default).
neonly – Return only the Network Element information for each instance.
count – Return only a single instance count of all instances matching the query.

num
(Optional) Allows the client to limit the number of items that are returned.

Values:
1 - 40000000

Request syntax :

Rtrv_sub([iid XXXXX,] dn XXXXX, [type <block/single>,] [pt <none/0/1/2/3/4/
….35>],
[st <0/1>,] [nsdn XXXXX,] [sp XXXXX,] [rn XXXXX,] [vms XXXXX,] [grn XXXXX,]

Chapter 3
Messages

3-45

[asd XXXXX,]
[cgbl <no/yes>,] [cdbl <no/yes>,] [lsblset <1,2……255>,] [split <no/
yes>,] [data <all/neonly/count>,] [num <1..40000000>])

Retrieve Subscription Information for a Range of DNs
This command retrieves all of the subscription data within a range of DNs.

Parameters :

bdn
The starting dn for the DN range (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

edn
The ending dn for the DN range (specified in international format).

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

type
(Optional) Whether to report the DN blocks or the single DNs.

Values:
block – Searches the DN Block table. Reports only DN Blocks, regardless of
whether any provisioned Single DNs fall within the specified number range
single (default) - Searches the Single DN table. Returns only DNs that were
provisioned as Single DNs, regardless of whether the DN number falls within the
number range of a provisioned DN block)

pt
(Optional) The portability type for the created DN. This field is only used by G-Port, A-
Port, IS41 GSM Migration, and PPSMS. For G-Port and A-Port, it controls number
Portability Status encoding in SRI acks. For IS41 GSM Migration, it identifies whether
a subscriber has or has not migrated from IS41 to GSM, (maintaining a single GSM
handset). For PPSMS, it identifies a DN as one of two types needing PPSMS
intercept.

Values:
none – no status (default = none)
0 – not known to be ported, migrated to IS41 or non-migrated IS41 sub (used for
IS41 GSM Migration)
1 – own number ported out (used for G-Port and A-Port)
2 – foreign number ported to foreign network (used for G-Port and A-Port)
3 – prepaid 1 (used by PPSMS)
4 – prepaid 2 (used by PPSMS)
5 – migrated to GSM (used for IS41 GSM Migration)
6 – prepaid 3 (used by PPSMS)
7 – prepaid 4 (used by PPSMS)
8 – prepaid 5 (used by PPSMS)
9 – prepaid 6 (used by PPSMS)
10 – prepaid 7 (used by PPSMS)

Chapter 3
Messages

3-46

11 – prepaid 8 (used by PPSMS)
12 – prepaid 9 (used by PPSMS)
13 – prepaid 10 (used by PPSMS)
14 – prepaid 11 (used by PPSMS)
15 – prepaid 12 (used by PPSMS)
16 – prepaid 13 (used by PPSMS)
17 – prepaid 14 (used by PPSMS)
18 – prepaid 15 (used by PPSMS)
19 – prepaid 16 (used by PPSMS)
20 – prepaid 17 (used by PPSMS)
21 – prepaid 18 (used by PPSMS)
22 – prepaid 19 (used by PPSMS)
23 – prepaid 20 (used by PPSMS)
24 – prepaid 21 (used by PPSMS)
25 – prepaid 22 (used by PPSMS)
26 – prepaid 23 (used by PPSMS)
27 – prepaid 24 (used by PPSMS)
28 – prepaid 25 (used by PPSMS)
29 – prepaid 26 (used by PPSMS)
30 – prepaid 27 (used by PPSMS)
31 – prepaid 28 (used by PPSMS)
32 – prepaid 29 (used by PPSMS)
33 – prepaid 30 (used by PPSMS)
34 – prepaid 31 (used by PPSMS)
35 – prepaid 32 (used by PPSMS)
36 – not identified to be ported

sp
(Optional) Filters the request to just retrieve the DNs in the range that are on the provided
SP.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Filters for instances not on an SP.

rn
(Optional) Filters the request to just retrieve the DNs in the range that are on the provided
RN.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Filters for instances not on an RN.

vms
(Optional) Specifies which Voicemail Server the DN(s) are on and corresponds to the E.164
address of the voicemail server. The VMS must correspond to an existing VMS entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Sets the vms to not point to any network entity.

grn
(Optional) Specifies which Generic Routing Number the DN(s) are on and corresponds to the
E.164 address used when the EAGLE “NE Query Only Option” has been turned on. The
GRN must correspond to an existing GRN entity.

Chapter 3
Messages

3-47

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.
none – Sets the grn to not point to any network entity.

asd
(Optional) Additional Subscriber Data to be associated with the DN Block.

Values
1 to 10 hexadecimal digits expressed using ASCII characters. Leading zeros are
significant.
none – Removes additional subscriber data from the DN.

st
(Optional) The subscriber type for created DNs.

Values
A decimal number in the range
0 - public
1 - private

nsdn
A Number Substitution DN (specified in international format).
Values:

a string with 5 to 15 characters where each character must be a number from 0 to
F.

cgbl
(Optional) IDP calling party blocklist.

Values
no - IDP calling party blocklist is disabled.

yes - IDP calling party blocklist is enabled

cdbl
(Optional) IDP called party blocklist.

Values
no - IDP called party blocklist is disabled.

yes - IDP called party blocklist is enabled.

lsblset
(Optional) A TIF Linkset based Blocklist parameter that is used to decide if the DN
needs to be blocklisted or not.

Values
a number from 1 to 255.

By default, no value is selected.

split
(Optional) Specifies the DN Block splitting ability. This parameter filters the request to
retrieve only those DN Blocks that have the specified split value. This parameter must
be specified in order to be used as a filter. If this parameter is not specified, filtering on
the split value is not performed.

Chapter 3
Messages

3-48

Values
no – DN Block splitting is disabled.

yes – DN Block splitting is enabled.

data
(Optional) Lets the requester specify the type of output data to be returned. See Retrieve
Subscription Data Responses for additional information.

Values:
all– Return all known data for each instance (default).
neonly – Return only the Network Element information for each instance.
count – Return only a single instance count of all instances matching the query.

num
(Optional) Allows the client to limit the number of items that are returned.

Values:
1 - 40000000

Rules :

1. Specifying both sp and rn is not allowed because it would always result in no instances
being found.

2. Thetype parameter acts to filter the responses based on how the data was provisioned.
For instance, ifblock is specified, only DN blocks (that were provisioned as blocks) are
returned. Ifsingle is specified, only DNs that were provisioned as single DNs are
returned.

Note:

If a substantial number of records are requested, there is a significant delay
before responses start coming back.

3. Specifying a combination of 2 Network Entity types (sp, rn, vms, grn) other than sp and rn
is allowed and will result in instances matching both associations. Only specifying 1 NE
will return all instances associated with the NE, even if instances are associated with
other NEs.

There is no association between the position of a DN in the database and the chronological
order in which it is provisioned. Thus, the response to the retrieve command gives no
indication of which DNs were provisioned first and which were provisioned last. It simply
returns all DNs associated with an IMSI. Likewise, the provisioning order of DNs have no
effect on where DNs are physically placed in the database.

The instance count values are given as optional because they are not returned for every
procedure call. For instance, IMSIs are not returned for commands related to retrieval of
DNs.

Request syntax :

Rtrv_sub([iid XXXXX,] bdn XXXXX, edn XXXXX, [type <block/single>,] [pt
<none/0/1/2/3/4/….35>],
[st <0/1>,] [nsdn XXXXX,] [sp XXXXX,] [rn XXXXX,] [vms XXXXX,] [grn XXXXX,]

Chapter 3
Messages

3-49

[asd XXXXX,] [cgbl <no/yes>,] [cdbl <no/yes>,] [lsblset <1,2……255>,]
[split <no/yes>,] [data <all/neonly/count>,] [num <1..40000000>])

Retrieve Subscription Information About a Specific IMSI
This command retrieves the subscription information for a specific IMSI. If the IMSI is
associated with DNs, they are returned as well.

Parameters :

imsi
The specific IMSI to retrieve.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

data
(Optional) Lets the requester specify the type of output data to be returned. See
Retrieve Subscription Data Responses for additional information.

Values:
all – Return all known data for each instance (i.e., list the DNs on each IMSI)
(default).
neonly – Return only the Network Element information for each instance.

Request syntax :

rtrv_sub([iid XXXXX,] imsi XXXXX, [data <all/neonly>])

Retrieve Subscription Information for a Range of IMSIs
This command retrieves all of the subscription data within a range of IMSIs.

Parameters :

bimsi
The starting IMSI for the IMSI range.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

eimsi
The ending IMSI for the IMSI range.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters.

sp
(Optional) Filters the request to just retrieve the DNs in the range that are on the
provided SP.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

Chapter 3
Messages

3-50

data
(Optional) Lets the requester specify the type of output data to be returned. See Retrieve
Subscription Data Responses for additional information.

Values:
all – Return all known data for each instance (i.e., list the DNs on each IMSI) (default).
neonly – Return only the Network Element information for each instance.
count – Return only a single instance count of all instances matching the query.

num
(Optional) Allows the client to limit the number of items to be returned.

Values:
1 - 40000000

Note:

If a substantial number of records are requested, there is a significant delay before
the responses start coming back.

Request syntax :

rtrv_sub([iid XXXXX,] bimsi XXXXX, eimsi XXXXX, [sp XXXXX,]
[data <all/neonly/count>,] [num <1..40000000>])

Retrieve Subscription Data Responses
The syntax of the data section of responses to a successful Retrieve Subscription Data
request depends on the type of records being returned. DN records, DN block records, IMSI
records, or instance counts can be returned. Each type of data being returned has a different
syntax.

The responses that actually return instance data also have optional relationship information
that can be present. For example, in an IMSI response there is a list of the DNs that are on
that IMSI. If all the requester cares about is the IMSI-to-SP mapping, this additional DN
relationship information can be omitted from the IMSI section of the response by specifying
the value neonly in the data parameter. Adata value of all returns all of the optional
information that is present in the instances. The same type of relationship information is also
present in the DN section and the same parameter has the effect of omitting it.

Chapter 3
Messages

3-51

Note:

1. The st parameter will appear in the response only if its value differs from
the system default (Public). See TIF Number Substitution Relationships
for more details about number substitution.

2. The cdbl parameter will be listed in the rtrv_sub() command
response only when it’s value is yes.

3. The cgbl parameter will be listed in the rtrv_sub() command
response only when it’s value is yes.

4. In case of DN Block, the split parameter will be listed in the
rtrv_sub() command response only when its value is no.

• Response syntax for an IMSI query:

data ([segment XXXXX], imsis (imsi (id XXXXX,
[dns (XXXXX, . . .),] sp XXXXX)),
. . .
(. . .)))

• Response syntax for a DN query:

data (segment XXXXX, dns (dn (id XXXXX, [imsi XXXXX,] [pt
<none/0/1/2/3/4/….35>], [sp XXXXX,] [rn XXXXX] [vms XXXXX,] [grn
XXXXX,] [asd XXXXX,] [st <1>,] [nsdn XXXXX]), [cgbl <yes>,] [cdbl
<yes>,]
. . .,
(. . .)))

data ([segment XXXXX], dns (dn (id XXXXX, [imsi XXXXX,]
[pt <0/1/2/3/4/5/none>], [sp XXXXX,] [rn XXXXX])),
. . .,
(. . .)))

• Response syntax for a DN block query:

data (segment XXXXX, dnblocks (dnblock (bdn XXXXX, edn XXXXX, [pt
<none/0/1/2/3/4/….35>], [sp XXXXX,] [rn XXXXX,] [vms XXXXX,] [grn
XXXXX,] [asd XXXXX,] [st <1>,] [nsdn XXXXX]), [cgbl <yes>,] [cdbl
<yes>,] [split <no>,]
. . .,
(. . .)))

• Response syntax for a count query:

Chapter 3
Messages

3-52

Requests that specify adata parameter ofcount gets just one response that contains the
instance count for the type of subscription data that they are querying. Only one of the
optional counts would be present in the response.

data (counts ([imsi #####,] [dn #####,] [dnblock #####]))

The return codes listed in Table 3-10 indicate the result of the Retrieve Subscription Data
request. See PDBI Message Error Codes for the recommended actions to help resolve the
error related return codes.

Table 3-10 Retrieve Subscription Data Response Return Codes

Return
Code Text Description Data Section

Contents

0 SUCCESS The request succeeded and this is the last
(or only) response.

Depends on the
request type, etc.

1012 INVALID_VALUE One of the fields specified had an invalid
value.

Offending field is
returned in data
section:

data (param <field
label>)

1016 PARTIAL_SUCCESS The request has succeeded, but this is
only one of many responses.

Depends on the
request type, etc.

1013 NOT_FOUND The requested DN, DN block, or IMSI was
not found.

NONE

1009 NO_ACTIVE_TXN There is no currently active transaction for
this connection.

NONE

1021 NE_NOT_FOUND An NE to filter was specified, but the NE
does not exist.

NONE

Create Network Entity
The ent_entity command creates an entity object (such as an SP) and its corresponding
global title translation. There is a limit of 150,000 network entity instances.

It is valid for entities of different types to have the same id. Spare point codes, indicated by
an optional s- prefix, are supported for Network Entities with a pctype of intl and natl.

Create Network Entity Request

Parameters :

id
Identifier for this network entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

type
Type of network entity being created.

Chapter 3
Messages

3-53

Values:
SP – Signal Point
RN – Routing Number. (G-Flex only customers do not use RNs. Used for A-Port
and IS41 GSM Migration features.)
VMS – Voicemail Server. (Used for V-Flex customers.)
GRN – Generic Routing Number

pctype
Specifies the type of the point code.

Values:
intl - ITU international point code in the form zone-area-id (z-aaa-i).
natl - ITU national point code in the form of ITU number (nnnnn).
nl24 - ITU national 24-bit point code in the form of msa-ssa-sp (mmm-sss-ppp).
ansi - ANSI point code in the form of network-cluster-member (nnn-ccc-mmm).
none - No point code specified. (Only valid for RNs, VMSs, and GRNs.)

pc
Point code value. The valid values depend on the pctype parameter.

Values:
For pctype of intl the format is zone-area-id [(s-)z-aaa-i].
s - Optional spare point code indicator
z= 0 – 7
aaa= 0 – 255
i= 0 - 7
Note: The value 0-0-0 is not valid.
For pctype of natl the format is number [(s-)nnnnn].
nnnnn= 1 – 16383
For pctype of ansi, the format is network-cluster-member (nnn-ccc-mmm).
s - Optional spare point code indicator
nnn= 1 – 255
ccc= 1 – 255 (if network = 1 – 5)
= 0 – 255 (if network = 6 – 255)
mmm= 0 – 255
For pctype of none, the pc parameter is not allowed.

gc
(Optional) Group code. This optional parameter is part of the point code value for ITU
Duplicate Point Code Support feature.

Values:
aa - zz

ri
Routing indicator. This parameter indicates whether a subsequent global title
translation is required.

Values:
GT = Global Title. Indicates that a subsequent translation is required.
SSN = Subsystem Number. Indicates that no further translation is required.

ssn
(Optional) New subsystem number. This parameter identifies the subsystem address
that is to receive the message.

Chapter 3
Messages

3-54

Values:
0, 2 – 255
none (default)

ccgt
(Optional) Cancel called global title.

Values:
yes or no (default)

ntt
(Optional) New translation type. This parameter identifies the translation type value to
replace the received translation type value.

Values:
0 – 255
none (default)

nnai
(Optional) New nature of address.

Values:
0 – 127
none (default)

nnp
(Optional) New numbering plan.

Values:
0 – 15
none (default)

da
(Optional) Digit action. The parameter specifies what changes, if any, to apply to the Called
Party GTA.

Values:
none – No change to the Called Party GTA (default)
replace – Replace Called Party GTA with the entity id
prefix – Prefix Called Party GTA with the entity id
insert – Insert entity id after country code (CC + Entity Id + NDC + SC)
delccprefix – Delete country code, then prepend the entity id.
delcc – Delete country code.
spare1 – No change to GTA. Digit action value of 6 passed to EAGLE.
spare2 – No change to GTA. Digit action value of 7 passed to EAGLE.

srfimsi
(Optional) The IMSI returned by a SRF indicating the Subscription Network of the subscriber.
This parameter is only used by the G-Port features and only for RNs.

Values:
5 to 15 hex digits expressed using ASCII characters.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are

Chapter 3
Messages

3-55

processed in the order that their requests were received. This option is only allowed if
the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules :

1. If the pctype is none, none of the optional parameters can be specified.

2. If ri is GT,ccgt must be no.

3. Ifccgt isyes, the parameters ntt, nnai, nnp, and da cannot be set.

4. The maximum number of network entities (150,000) must not be reached.

5. Parameter gc can be specified only when pctype = natl.

Request syntax :

ent_entity([iid XXXXX,] id XXXXX, type <SP/RN/VMS/GRN>, pctype
<intl/natl/ansi/none>, [pc <pc value>,], [gc <gc value>,]
[ri <GT/SSN>,] [ssn <0/2..255/none>,] [ccgt <yes/no>,]
[ntt <0..255/none>,] [nnai <0..127/none>,] [nnp <0..15/none>,]
[da <none/replace/prefix/insert/delccprefix/delcc/spare1
/spare2>,] [srfimsi XXXXX] [, timeout <0..3600>])

Create Network Entity Response

The return codes listed in Table 3-11 indicate the result of the Create network entity
request. See PDBI Message Error Codesfor the recommended actions to help resolve
the error related return codes.

Table 3-11 Create Network Entity Response Return Codes

Return
Code

Text Description Data Section Contents

0 SUCCESS Everything worked. NONE

1005 WRITE_UNAVAIL Another client already has a
write transaction open.

IP address information
of client that already
has the write
transaction.

data (id
<connection id>,
ip <ip addr>,
port <port num>)

1006 NO_WRITE_PERMISSIO
N

PDBI client making request
does not have write access
permissions.

NONE

1009 NO_ACTIVE_TXN There is no currently active
transaction for this connection.

NONE

1011 WRITE_IN_READ_TXN The command was sent on a
read only transaction.

NONE

Chapter 3
Messages

3-56

Table 3-11 (Cont.) Create Network Entity Response Return Codes

Return
Code

Text Description Data Section Contents

1012 INVALID_VALUE One of the fields specified had
an invalid value.

Offending field is
returned in data section:
data (param <field
label>)

1015 ITEM_EXISTS The network entity already
exists.

1029 TXN_TOO_BIG This request would cause
current transaction to be larger
than the limit.

NONE

1035 MAX_NE_LIMIT Could not add new Network
Entity to the database. Adding
a new Network Entity would
exceed the max allowed
Network Entities.

NONE

Update Network Entity
The upd_entitycommand modifies an entity object (such as an SP) and its corresponding
global title translation.

Spare point codes, indicated by an optional s- prefix, are supported for Network Entities with
a pctype of intl and natl.

Update Network Entity Request

Parameters :

id
Global title address for this network entity.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

type
Type of network entity being updated.

Values:
SP – Signal Point
RN – Routing Number. (G-Flex only customers do not use RNs. Used for A-Port and
IS41 GSM Migration features.)
VMS – Voicemail Server. (Used for V-Flex customers.)
GRN – Generic Routing Number

pctype
(Optional) Specifies the type of the point code. If the pctype of an existing NE is changed,
then the pc parameter must also be specified.
Values:

intl - ITU international point code in the form zone-area-id (z-aaa-i).

Chapter 3
Messages

3-57

natl - ITU national point code in the form of ITU number (nnnnn).
nl24 - ITU national 24-bit point code in the form of msa-ssa-sp (mmm-sss-ppp).
ansi - ANSI point code in the form of network-cluster-member (nnn-ccc-mmm).
none - No point code specified. (Only valid for RNs, VMSs, and GRNs.)

pc
(Optional) Point code value. The valid values depend on the pctype parameter. If no
pctype parameter is specified, the pctype of the existing instance is used.

Values:
For pctype of intl the format is zone-area-id [(s-)z-aaa-i].
s - Optional spare point code indicator
z= 0 – 7
aaa= 0 – 255
i= 0 – 7
Note: The value 0-0-0 is not valid.
For pctype of natl the format is number [(s-)nnnnn].
s - Optional spare point code indicator
nnnnn= 1 – 16383
For pctype of ansi, the format is network-cluster-member (nnn-ccc-mmm).
nnn= 1 – 255
ccc= 1 – 255 (if network = 1 – 5)
= 0 – 255 (if network = 6 – 255)
mmm= 0 – 255
For pctype of none, the pc parameter is not allowed.

gc
(Optional) Group code. This optional parameter is part of the point code value for ITU
Duplicate Point Code Support feature.

Values:
aa – zz

ri
(Optional) Routing indicator. This parameter indicates whether a subsequent global
title translation is required.

Values:
GT = Global Title. Indicates that a subsequent translation is required.
SSN = Subsystem Number. Indicates that no further translation is required.

ssn
(Optional) Subsystem number. This parameter identifies the subsystem address that
is to receive the message.

Values:
0, 2 – 255
none

ccgt
(Optional) Cancel called global title.

Values:
yes or no

Chapter 3
Messages

3-58

ntt
(Optional) New translation type. This parameter identifies the type of global title translation to
replace the received global title.

Values:
0 – 255
none

nnai
(Optional) New nature of address.

Values:
0 – 127
none

nnp
(Optional) New numbering plan.

Values:
0 – 15
none

da
(Optional) Digit action. The parameter specifies what changes, if any, to apply to the Called
Party GTA.

Values:
none – No change to the Called Party GTA (default)
replace –Replace Called Party GTA with the entity id
prefix – Prefix Called Party GTA with the entity id
insert – Insert entity id after country code (CC + Entity Id + NDC + SC)
delccprefix – Delete country code, then prepend the entity id.
delcc – Delete country code.
spare1 – No change to GTA. Digit action value of 6 passed to EAGLE.
spare2 – No change to GTA. Digit action value of 7 passed to EAGLE.

srfimsi
(Optional) The IMSI returned by a SRF indicating the Subscription Network of the subscriber.
This parameter is used only with the G-Port features and only on RNs.

Values:
5 to 15 hex digits expressed using ASCII characters.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are
processed in the order that their requests were received. This option is only allowed if the
client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 – 3600 seconds

Rules :

1. Parameter id must already exist.

Chapter 3
Messages

3-59

2. If the pctype is none, none of the optional parameters can be specified.

3. If ri is GT, ccgt must be no.

4. If ccgt is yes, the parameters ntt, nnai, nnp, and da cannot be set.

5. Parameter gc can be specified only when pctype = natl.

6. If the pctype is changed to none, all of the other parameters are cleared out,
including the srfimsi.

Request syntax :

upd_entity([iid XXXXX,] id XXXXX, type <SP/RN>, [pctype
<intl/natl/ansi/none>,] [pc <pc value>,] [gc <gc value>,]
[ri <GT/SSN>,] [ssn <0/2..255/none>,] [ccgt <yes/no>,]
[ntt <0..255/none>,] [nnai <0..127/none>,] [nnp <0..15/none>,]
[da <none/replace/prefix/insert/delccprefix/delcc/spare1
/spare2>,] [srfimsi XXXXX,] [timeout <0..3600>])

Update Network Entity Response

The return codes listed in Table 3-12 indicate the result of the Update Network Entity
request. See PDBI Message Error Codes for the recommended actions to help resolve
the error related return codes.

Table 3-12 Update Network Entity Response Return Codes

Return
Code Text Description Data Section

Contents

0 SUCCESS Everything worked. NONE

1012 INVALID_VALUE One of the fields specified had
an invalid value.

Offending field is
returned in data
section:

data (param <field
label>)

1011 WRITE_IN_READ_TXN The command was sent on a
read only transaction.

NONE

1013 NOT_FOUND The requested SP was not
found.

NONE

1029 TXN_TOO_BIG This request would cause
current transaction to be larger
than the limit.

NONE

1009 NO_ACTIVE_TXN There is no currently active
transaction for this connection.

NONE

1017 NO_UPDATES Database already contains the
data in this request. No update
necessary.

NONE

1006 NO_WRITE_PERMISSION PDBI client making request
does not have write access
permissions.

NONE

Chapter 3
Messages

3-60

Table 3-12 (Cont.) Update Network Entity Response Return Codes

Return
Code Text Description Data Section

Contents

1005 WRITE_UNAVAIL Another client already has a
write transaction open.

IP address information
of client that already
has the write
transaction.

data (id
<connection
id>, ip <ip
addr>, port
<port num>)

Delete Network Entity
The dlt_entitycommand deletes an entity object and its corresponding global title
translation.

Delete Network Entity Request

This command fails if the entity does not exist or the entity is referenced by a subscription.

Parameters :

id
Global title address for this network entity.
Values:
1 to 15 hexadecimal digits expressed using ASCII characters

type
Type of network entity being deleted.

Values:
SP – Signal Point
RN – Routing Number (only available with G-Port, INP, A-Port, and IS41 GSM Migration
features)
VMS – Voicemail Server. (Used for V-Flex customers.)
GRN – Generic Routing Number

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are
processed in the order that their requests were received. This option is only allowed if the
client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 – 3600 seconds

Chapter 3
Messages

3-61

Request syntax :

dlt_entity([iid XXXXX,] id XXXXX, type <SP/RN/VMS/GRN>
[, timeout <0..3600>])

Delete Network Entity Response

The return codes listed in Table 3-13 indicates the result of the Delete Network Entity
request. See PDBI Message Error Codes for the recommended actions to help resolve
the error related return codes.

Table 3-13 Delete Network Entity Response Return Codes

Return
Code

Text Description Data Section
Contents

0 SUCCESS Everything worked. NONE

1012 INVALID_VALUE One of the fields specified had
an invalid value.

Offending field is
returned in data
section: data (param
<field label>)

1011 WRITE_IN_READ_TXN The command was sent on a
read only transaction.

NONE

1022 CONTAINS_SUBS The NE to be deleted still
contains subscription data.

The counts for each
type of subscription
data on the NE are
returned.

data
(counts([imsi
#####,] [dn
#####,]
[dnblock
#####,]))

1013 NOT_FOUND The requested SP was not
found.

NONE

1029 TXN_TOO_BIG The request would cause the
current transaction t be larger
than the limit.

NONE

1009 NO_ACTIVE_TXN There is no currently active
transaction for this connection.

NONE

Retrieve Network Entity
This command retrieves one or all of the network entities. The specific usage
variations follow. Although all of the usage variations are called rtrv_entity, the
existence of certain parameters change what is meant.

Retrieve the Information for a Specific NE
Parameters :

Chapter 3
Messages

3-62

id
Global title address for this network entity.
Values:
1 to 15 hexadecimal digits expressed using ASCII characters

type
Type of network entity to be retrieved.

Values:
SP – Signal Point
RN – Routing Number (only available with G-Port, INP, A-Port, and IS41 GSM Migration
features)
VMS – Voicemail Server. (Used for V-Flex customers.)
GRN – Generic Routing Number

Request syntax :

rtrv_entity([iid XXXXX,] id XXXXX, type <SP/RN/VMS/GRN>)

Retrieve the Information for a Range of NEs
Parameters :

id
Global title address for this network entity.
Values:
1 to 15 hexadecimal digits expressed using ASCII characters

bid
Global title address for the first network entity in the range.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

eid
Global title address for the last network entity in the range.

Values:
1 to 15 hexadecimal digits expressed using ASCII characters.

type
(Optional) Type of network entity being deleted.

Values:
SP – Signal Point
RN – Routing Number (only available with G-Port, INP, A-Port, and IS-41 GSM
Migration features)
VMS – Voicemail Server. (Used for V-Flex customers.)
GRN – Generic Routing Number

data
(Optional) Lets the requester specify the type of output data to be returned. See the
response section for additional information.

Chapter 3
Messages

3-63

Values:
all – Return all known data for each instance (default)
neonly – Return just the ID/type for each instance
count – Return only a instance count of all instances matching the query.

num
(Optional) Limits the number of entities to be returned. If the num parameter is
omitted, all entities in the range are returned.

Values:
1 – 150000

Request syntax :

rtrv_entity([iid XXXXX,] bid XXXXX, eid XXXXX, [type <SP/RN/VMS/GRN>,]
[[data ,all/neonly/count>], num <1..1000>])

Retrieve the Information for All NEs
Parameters :

num
(Optional) Limits the number of entities to be returned. If the num parameter is
omitted, all entities are returned.

Values:
1 – 150000

Request syntax :

rtrv_entity([iid XXXXX,] [num <1..150000>])

Retrieve Network Entity Responses
The data section for the responses of all rtrv_entity request types depends on the
data parameter type specified in the request. If the data value is all, the data section
contains a list of all instances that matched the request. It contains a segment
parameter similar to the one in rtrv_sub for large range retrievals, followed by a list
of network entities (news). With the exception of pctype, parameters whose values
are none are not present in the response.

data (segment #####, nes((id XXXXX, type <SP/RN>, pctype
<intl/natl/ansi/none>, [pc <point code>,] [gc <group code>,]
ri <GT/SSN>, [ssn <0,2..225>,] ccgt <yes/no>, [ntt <0..255>,]
[nna <0..127>,] [nnp <0..15>,]
[da <replace/prefix/insert/delcc/delccprefix/spare1/spare2>,]
[srfimsi XXXXX,] counts([imsi ###,] [dn ###,] [dnblock ###])),
(...))

Chapter 3
Messages

3-64

As with the responses for retrieving subscriptions, the response can be broken up into
multiple responses due to size constraints. Intermediate responses have the return code
PARTIAL_SUCCESS.

If the data value is count, the data section contains only the number of instances that
matched the query.

data (counts(ne ###))

The return codes listed in Table 3-14 indicate the result of the Retrieve Network Entity
request. See PDBI Message Error Codes for the recommended actions to help resolve the
error related return codes.

Table 3-14 Retrieve Network Entity Response Return Codes

Return
Code

Text Description Data Section Contents

0 SUCCESS The request succeeded and
this is the last (or only)
response.

See data description
above.

1005 WRITE_UNAVAIL Another client already has a
write transaction open.

IP address information of
client that already has the
write transaction.

data (id
<connection id>,
ip <ip addr>,
port <port num>)

1006 NO_WRITE_PERMISSION PDBI client making request
does not have write access
permissions.

NONE

1009 NO_ACTIVE_TXN There is no currently active
transaction for this
connection.

NONE

1012 INVALID_VALUE One of the fields specified had
an invalid value.

Offending field is returned
in data section: data
(param <field label>)

1013 NOT_FOUND The requested id was not
found.

NONE

1016 PARTIAL_SUCCESS The request has succeeded,
but this is only one response
in many.

See data description
above.

Switchover
The switchover command causes the two PDBAs to switch Active/Standby status. By
default, the command works like a toggle switch. The PDBA receiving the request changes its
status from Active to Standby or from Standby to Active and informs the other PDBA to do
the opposite.The side parameter in the request specifies the desired status for the receiving
PDBA. If this parameter is used, the receiving PDBA attempts to set itself to the requested
status and tells the mate PDBA to set itself to the opposite status. If the two PDBAs are
already in the desired states, no action is taken.

Chapter 3
Messages

3-65

Because the goal of the switchover command is to change the Active/Standby status
of the PDBA, and because write transactions can be done only on the Active PDBA, it
is a requirement that no write transactions be active for a switchover to be performed.
It is also a requirement that all asynchronous replication be completed before the
switchover is permitted.

The switchover command has a timeout parameter (similar to the begin_txn
command) to allow the command to wait for any existing write transactions to
complete. If the switchover command is being sent to the standby side and the
active side has a write transaction that was left open, sending the switchover
command with the force parameter set to yes overrides the open write transaction; it
also allows the switchover to occur. While this behavior is permitted, it is extremely
dangerous to steal the write transaction from an active client.

If the write transaction is truly hung for whatever reason, it is much safer to stop and
restart the PDBA that has the write transaction hung. If the switchover command
is being sent to the active side while another client has the write transaction open,
the switchover is unsuccessful with WRITE_UNAVAIL, even if the force option is
used. The force option is also ignored if the databases are not yet synchronized.

By default, if a PDBA application receives a switchover request but the PDBA is
unable to communicate with its mate PDBA, the request fails. An optional force
parameter can be used to cause the receiving PDBA to ignore the fact that it cannot
communicate with its mate and perform the switchover anyway. This option can be
useful if communication between the two PDBAs has been broken, but the PDBA that
was previously Standby needs to become Active.

Use the switchover command very carefully. It is possible to use this command in
such a way that causes the two PDBs to be out of synch. When the PDBAs are
successfully communicating, changing the Active/Standby status of either PDBA
causes the other PDBA to change as well. However, if the two PDBAs are unable to
communicate, then a switchover command received by one of them fails because it
cannot inform the mate that a switchover is taking place. This failure ensures that both
PDBAs do not think that they are the Active PDBA.

If the force parameter is used and both PDBAs become Active, it is the client’s
responsibility to ensure that they are not both written to.

If updates are sent to both PDBs while they are not communicating with each other,
the databases can become irreversibly out of synch. When the PDBAs see each other
again, they detect the synchronization problem and force both PDBAs to be in Standby
mode. Any attempt to switchover either PDBA to be active fails with the
DB_MAINT_REQD return code until the problem is corrected. At that point, one PDB
would have to be recreated from the other PDB, and the RTDB processes connected
to the PDBA with the recreated PDB must reload (causing the cards on the EAGLEs
also to reload).The PDBA that receives the switchover request attempts to change the
state of the remote PDBA first and then change its own state. In the unlikely event that
one of the PDBAs terminates during the handling of the switchover request, it is
theoretically possible for the two PDBAs to be set to the same state. If this were to
happen, the PDBAs automatically fix the situation when the software is restarted.This
command can be issued only by client that have WRITE permission. It cannot be
issued from inside a transaction, nor can any other PDBI clients (on either PDBA)
have thewrite transaction open.

Chapter 3
Messages

3-66

Switchover Request

Parameters :

side
(Optional) Specifies whether the receiving side is to be set to: Active or Standby. Without this
parameter, the switchover command works like a toggle switch.

Values:
active – Set receiving side to Active.
standby – Set receiving side to Standby.

timeout
(Optional) Specifies how long to wait for an existing write transaction to complete.

Values:
0 (return immediately if not available; default)
1 –3600 seconds

force
(Optional) Forces the switch on the receiving side. This is useful when the two PDBA
processes are unable to communicate (due to network problems or remote PDBA down) and
you need to make the local PDBA Active anyway. By default, the local PDBA rejects a
switchover request if it cannot communicate with the remote PDBA.

Values:
yes and no (default)

Request syntax :

switchover([iid XXXXX,] [side <active/standby>],
[timeout <0-3600>], [force <yes/no>])

Switchover Response

The return codes listed in Table 3-15 indicate the result of the Switchover request. See PDBI
Message Error Codes for the recommended actions to help resolve the error related return
codes.

Table 3-15 Switchover Response Return Codes

Return
Code

Text Description Data Section Contents

0 SUCCESS Switchover worked. NONE

1012 INVALID_VALUE One of the fields specified had an
invalid value.

Offending field is
returned in data section:
data (param <field
label>)

1007 NO_MATE The PDBA could not negotiate a
switchover with its mate. The
switchover was denied.

NONE

Chapter 3
Messages

3-67

Table 3-15 (Cont.) Switchover Response Return Codes

Return
Code

Text Description Data Section Contents

1005 WRITE_UNAVAIL There is another connection on
this PDBA with the write
transaction open.

The IP address
information of the client
that already has the
write transaction.

data (id
<connection id>,
ip <ip addr>,
port <port num>)

1006 NO_WRITE_PERMISSION The connection requesting the
switchover does not have WRITE
permission.

NONE

1010 ACTIVE_TXN The command was issued from
within a transaction.

NONE

1026 MATE_BUSY The mate PDBA currently has a
write transaction open.

NONE

1030 DB_MAINT_REQD Replication is unable to get the two
databases in synch. Call Oracle.

NONE

1036 REPLICATING Asynchronous replication is still in
progress.

The number of levels
remaining to replicate.
data (levels <num>)

1043 BAD_SWITCH_IN_ABP The PDBA status is controlled by
the PDBA Proxy feature and
cannot be changed manually. Call
Oracle for more information.

NONE

PDBA Status Query
The status command queries status information from the PDBA. This command is
not required to be framed inside a transaction. However, a connection must first be
opened.

If the status request is made from within a transaction, the Number Prefix fields
contain the values configured when the transaction started. Changes to the Number
Prefixes from the user interface do not affect currently existing transactions.

If the status request is made from outside a transaction, the Number Prefixes contain
the actual currently configured values. In either case, if there is no configured Number
Prefixes in the user interface, the dnprefix and imsiprefix parameters are
omitted to ensure backward compatibility.

Instance counts are shown as optional because certain entities/subscription types may
not exist in the PDBA. For example, for clients that provision only NEs and DNs and
no IMSIs (that is, G-Port), the IMSI counts are not returned.

PDBA Status Query Request

Parameters : None

Chapter 3
Messages

3-68

Request syntax :

status([iid XXXXX])

PDBA Status Query Response

The data section of a successful PDBA Status Query contains the following information:

• PDBA version number

• Active/Standby status

• Mate connectivity – Whether or not this PDBA is connected to its mate PDBA.

• DN prefix – The default number prefix that is currently configured for DNs and DN Blocks,
if any.

• IMSI prefix – The default number prefix that is currently configured for IMSI, if any.

• DB Level

• Birthdate – UNIX time_t value for time that the PDB was originally created.

• Instance counts

– IMSI

– DN

– DN block

– NE

– ReplLog

data (version 1.0, side <active/standby>, mate
<present/absent>, dblevel #####, [dnprefix ####,]
[imsiprefix ####,] birthdate ##########, counts
([imsi #####,] [dn #####,] [dnblock #####,] [ne #####],)
[repllog #####])

The return code listed in Table 3-16 indicates the result of the PDBA Status Query request.

Table 3-16 PDBA Status Query Response Return Code

Return
Code

Text Description Data Section Contents

0 SUCCESS Status query successful. See description above.

Dump Connections
The dump_conn command requests the PDBA to dump connection information for
debugging. This command is not required to be framed inside a transaction. However, a
connection must first be opened.

Chapter 3
Messages

3-69

Dump Connections Request

Parameters :

type
Which type of connection to display information for.

Values:
PDBI – PDBI Clients
RTDB – RTDB Clients
MAINT – Maintenance Clients
MATE – PDBA Mate
all – PDBI, RTDB, MAINT, and MATE (default)

Request syntax :

dump_conn(iid XXXXX, [type <PDBI/RTDB/MAINT/MATE/all>])

Dump Connections Responses

The data section of a successful Dump Connections request contains the following
syntax. The optional access parameter is returned only for PDBI connections.

data(connections((type <PDBI/RTDB/MAINT/MATE>, [id <connId>,]
ip <IP Addr>, port ####, [access <read/write>]), . . .
(type <PDBI/RTDB/MAINT/MATE>, [id <connId>,] ip <IP Addr>,
port ####, [access <read/write>])))

The return code listed in Table 3-17 indicates the result of the Dump Connections
request. See PDBI Message Error Codes for the recommended actions to help resolve
the error related return codes.

Table 3-17 Dump Connections Response Return Code

Return
Code

Text Description Data Section Contents

0 SUCCESS Connection list returned. See above.

1012 INVALID_VAL
UE

One of the fields specified
had an invalid value.

Offending field is returned in data
section:

data (param <field label>)

Create IMEI Data
This command creates either a single IMEI with its appropriate list type or a block of
IMEIs with the associated list type. This command is also used to add additional IMSIs
to a particular IMEI.

Chapter 3
Messages

3-70

Create a Single Entry IMEI
This command is used to create a new IMEI. Using the optional force parameter changes the
default behavior to overwrite any existing entry with the new data.

The ent_eir command defines the request message for a single entry IMEI.

Parameters :

imei
A single IMEI.

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14 digits of
the IMEI are stored and displayed on retrieval.

svn
(Optional) Software Version Number.

Values:
A 2-digit number 0-9 (default = 0).

allow
(Optional) Select list type of Allow.

Values:
yes or no (default = no).

gray
(Optional) Select list type of Gray.

Values:
yes or no (default = no).

block
(Optional) Select list type of block.

Values:
yes or no (default = no).

imsi
The IMSI(s) to be associated with an IMEI.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters. Up to 8 IMSIs can be
provisioned for an IMEI.

force
(Optional) Indicates whether the client wants existing instances to be overwritten.

Values:
yes or no (default = no)

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are

Chapter 3
Messages

3-71

processed in the order that their requests were received. This option is only allowed if
the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 – 3600 seconds

Rules

1. Each imei provisioned must reside on at least one list type (allow, gray, or block)
and can also reside on any combination of 1, 2, or 3 lists concurrently.

2. If the imei includes the optional 15th character (the check digit), the check digit is
provided by the Customers Client Software and must match the EPAPs (via
calculated algorithm). The check digit is not stored; it is only used to verify the
imei.

3. A individual imei supercedes an imei block range.

4. Total command length must not exceed 247 characters.

Note:

Entering commands that exceed this length will result in the
PDBI_CMD_LENGTH_EXCEEDED error (value 1045). In order to avoid
this, remove unnecessary characters (including white space and
parameters that are specified as the default value). If necessary,
consider performing this provisioning in two steps by using an enter
command followed by an update command.

Request syntax:

ent_eir([iid XXXXX] imei XXXXX, [svn 0..99,] [allow yes/no,]
[grey yes/no,] [block yes/no,] [imsi XXXXX, ..., imsi XXXXX]
[force yes/no,] [timeout <0..3600>])

Create a Block Entry of IMEIs
The ent_eir command defines the request message for a block entry of IMEIs.

Parameters :

bimei
The beginning IMEI in a block.

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14
digits of the IMEI are stored and displayed on retrieval.

eimei
The ending IMEI in a block.

Chapter 3
Messages

3-72

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14 digits of
the IMEI are stored and displayed on retrieval.

allow
(Optional) Select list type of Allow.

Values:
yes or no (default = no).

gray
(Optional) Select list type of Gray.

Values:
yes or no (default = no).

block
(Optional) Select list type of block.

Values:
yes or no (default = no).

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are
processed in the order that their requests were received. This option is only allowed if the
client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules

1. Each imei provisioned must reside on at least one list type (allow, gray, or block) and
can also reside on any combination of 1, 2, or 3 lists concurrently.

2. If the imei includes the optional 15th character (the check digit), the check digit is
provided by the Customers Client Software and must match the EPAPs (via calculated
algorithm). The check digit is not stored; it is only used to verify the imei. The check digit
is run on both the bimei and eimei when applicable.

3. The svn is not provisionable on an imei block entry.

Request syntax:

ent_eir([[iid XXXXX] bimei XXXXX, eimei XXXXX, [allow yes/no,]
[grey yes/no,] [allow yes/no] [timeout <0..3600>])

Create a New IMSI and Associate it with an Existing IMEI
The ent_eir command defines the request message to create a new IMSI and associate it
with an existing IMEI. This is the EIR specific IMSI, not the G-Port/G-Flex IMSI.

Parameters :

Chapter 3
Messages

3-73

imei
A single IMEI.

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14
digits of the IMEI are stored and displayed on retrieval.

imsi
The IMSI(s) to be associated with an IMEI.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters. Up to 8 IMSIs can
be provisioned for an IMEI.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism
are processed in the order that their requests were received. This option is only
allowed if the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 – 3600 seconds

Rules:

1. If the imei includes the optional 15th character (the check digit), the check digit is
provided by the Customers Client Software and must match the EPAPs (via a
calculated by algorithm). The check digit is not stored; it is only used to verify the
imei.

2. Total command length must not exceed 247 characters.

Note:

Entering commands that exceed this length will result in the
PDBI_CMD_LENGTH_EXCEEDED error (value 1045). In order to avoid
this, remove unnecessary characters (including white space and
parameters that are specified as the default value). If necessary,
consider performing this provisioning in two steps by using an enter
command followed by an update command.

Request syntax:

ent_eir([iid XXXXX] imei XXXXX, [imsi XXXXX, …, imsi XXXXX]
[timeout <0..3600>])

Create IMEI Data Responses
The return codes in Table 3-18 may result from the Create IMEI request. See PDBI
Message Error Codes for the recommended actions to help resolve the error related
return codes.

Chapter 3
Messages

3-74

Table 3-18 Create IMEI Response Return Codes

Return
Code

Text Description Data Section Contents

0 SUCCESS Everything worked. NONE

1005 WRITE_UNAVAIL Another client already
has a write transaction
open.

IP address information of
client that already has the
write transaction.

data (id
<connection id>, ip
<ip addr>, port
<port num>)

1006 NO_WRITE_PERMISSION The PDBI client making
request does not have
write access permissions.

NONE

1009 NO_ACTIVE_TXN There was no currently
active transaction for this
connection.

NONE

1011 WRITE_IN_READ_TXN The create command
was sent on a read only
transaction.

NONE

1012 INVALID_VALUE One of the fields
specified had an invalid
value.

The offending field is
returned in the data section:

data (param <field
label>)

1014 CONFLICT_FOUND An entry was found
already in database
matching an element of
this request. If force
yes parameter is used,
this error is not returned.
Rather, existing instances
are overwritten.

The offending existing
element is returned.

data (imei XXXXX)

1017 NO_UPDATES The database already
contains data in request.
No update was
necessary.

NONE

1029 TXN_TOO_BIG This request would cause
current transaction to be
larger than limit.

NONE

1037 CHECK_ DIGIT_ ERROR The check digit
provisioned did not match
the calculated check digit.

imei, bimei, or eimei

data (param imei xxxxx)

1039 IMEI_IMSI_LIMIT Would cause more than 8
IMSIs to be provisioned
on an IMEI.

NONE

1040 MAX_IMEI_LIMIT Exceeded the maximum
number of individual
IMEIs.

NONE

1041 MAX_IMEI_BLK_LIMIT Exceeded the maximum
number of IMEI blocks.

NONE

Chapter 3
Messages

3-75

Table 3-18 (Cont.) Create IMEI Response Return Codes

Return
Code

Text Description Data Section Contents

1058 IMSI_FULL Could not add new IMSI
to the database. Adding
new IMSI would exceed
the supported SMxG card
size. The other supported
subscriptions are allowed
if space is available on
the corresponding SMxG
card.

NONE

1059 IMEI_FULL Could not add new IMEI
to the database. Adding
new IMEI would exceed
the supported SMxG card
size. The other supported
subscriptions are allowed
if space is available on
the corresponding SMxG
card.

NONE

1062 IMSI_ENT_NOT_ALLOWED Could not add new IMSI
to the database. The
RTDB is either down or
incoherent. Adding new
IMSI requires creation of
new IMSI table which
may lead to over-
allocation.

NONE

1063 IMEI_ENT_NOT_ALLOWED Could not add new IMEI
to the database. The
RTDB is either down or
incoherent. Adding new
IMEI requires creation of
new IMEI table which
may lead to over-
allocation.

NONE

Update IMEI Data
This command allows the list types for an IMEI or SVN to be changed.

Update a Single Entry IMEI
This command is used to update an existing single entry IMEI.

The upd_eir command defines the request message to update a single entry IMEI.

Parameters :

imei
A single IMEI.

Chapter 3
Messages

3-76

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14 digits of
the IMEI are stored and displayed on retrieval.

svn
(Optional) Software Version Number.

Values:
A 2-digit number 0-9 (default is not changed).

allow
(Optional) Select list type of Allow.

Values:
yes or no (default is not changed).

gray
(Optional) Select list type of Gray.

Values:
yes or no (default is not changed).

block
(Optional) Select list type of block.

Values:
yes or no (default is not changed).

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are
processed in the order that their requests were received. This option is only allowed if the
client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

imsi (optional)

Rules

1. The resulting imei must have at least 1 list type (allow, gray or block) turned on.

2. If the imei includes the optional 15th character (the check digit), the check digit is
provided by the Customers Client Software and must match the EPAPs (via calculated
algorithm). The check digit is not stored; it is only used to verify the imei.

3. Limit imsi to 400 per imei.

Request syntax:

upd_eir([iid XXXXX,] imei xxxxx, [svn 0..99,]
[allow yes/no,] [gray yes/no,] [block yes/no,]
imsi xxxxx, …, imsi xxxxx,] [timeout <0..3600>])

Chapter 3
Messages

3-77

Update a Block Entry of IMEIs
The upd_eir command defines the request message to update a block entry of
IMEIs.

Parameters :

bimei
The beginning IMEI in a block.

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14
digits of the IMEI are stored and displayed on retrieval.

eimei
The ending IMEI in a block.

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14
digits of the IMEI are stored and displayed on retrieval.

allow
(Optional) Select list type of Allow.

Values:
yes or no (default is not changed).

gray
(Optional) Select list type of Gray.

Values:
yes or no (default is not changed).

block
(Optional) Select list type of block.

Values:
yes or no (default is not changed).

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism
are processed in the order that their requests were received. This option is only
allowed if the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default) 1 - 3600 seconds

Rules

1. The resulting imei must have at least 1 list type (allow, gray or block) turned on.

2. If the imei includes the optional 15th character (the check digit), the check digit is
provided by the Customers Client Software and must match the EPAPs (via
calculated algorithm). The check digit is not stored; it is only used to verify the
imei.

Chapter 3
Messages

3-78

Request syntax:

upd_eir([iid XXXXX] bimei XXXXX, eimei XXXXX, [allow
yes/no,][grey yes/no,] [block yes/no,] [timeout <0..3600>]))

Update IMEI Data Responses
The return codes in Table 3-19 may result from the Update IMEI request. See PDBI Message
Error Codes for the recommended actions to help resolve the error related return codes.

Table 3-19 Update IMEI Response Return Codes

Return
Code

Text Description Data Section Contents

0 SUCCESS Everything worked. NONE

1012 INVALID_VALUE One of the fields specified
had an invalid value.

The offending field is
returned in the data
section:

data (param <field
label>)

1042 NO_LIST_FOR_IMEI A minimum of 1 list type
must be provisioned for
the resulting IMEI.

NONE

1037 CHECK_ DIGIT_ ERROR The check digit
provisioned did not match
the calculated check digit.

imei, bimei, or eimei

data (param imei xxxxx)

1013 NOT_FOUND The requested IMEI or
IMEI block was not found.

NONE

1011 WRITE_IN_READ_TXN The update command
was sent on a read only
transaction.

NONE

1029 TXN_TOO_BIG This request would cause
current transaction to be
larger than limit.

NONE

1017 NO_UPDATES The database already
contains the data in the
request. No update was
necessary.

NONE

1009 NO_ACTIVE_TXN There was no currently
active transaction for this
connection.

NONE

1006 NO_WRITE_PERMISSION The PDBI client making
request does not have
write access permissions.

NONE

Chapter 3
Messages

3-79

Table 3-19 (Cont.) Update IMEI Response Return Codes

Return
Code

Text Description Data Section Contents

1005 WRITE_UNAVAIL Another client already has
a write transaction open.

IP address information of
client that already has the
write transaction.

data (id
<connection id>,
ip <ip addr>, port
<port num>)

Delete IMEI Data
This command is used to delete an individual IMEI or a IMEI block. This command is
also used to delete an IMSI from the associated IMEI.

Delete a Single Entry IMEI
This command is used to delete a single entry IMEI and all associated IMSIs.

The dlt_eir command defines the request message to delete a single entry IMEI.

Parameters :

imei
A single IMEI.

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14
digits of the IMEI are stored and displayed on retrieval.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism
are processed in the order that their requests were received. This option is only
allowed if the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules

1. If the imei includes the optional 15th character (the check digit), the check digit is
provided by the Customers Client Software and must match the EPAPs (via
calculated algorithm). The check digit is not stored; it is only used to verify the
imei.

Request syntax:

dlt_eir([iid XXXXX] imei XXXXX)

Chapter 3
Messages

3-80

Delete a Block of IMEIs
The dlt_eir command defines the request message to delete an IMEI block.

Parameters :

bimei
The beginning IMEI in a block.

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14 digits of
the IMEI are stored and displayed on retrieval.

eimei
The ending IMEI in a block.

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14 digits of
the IMEI are stored and displayed on retrieval.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism are
processed in the order that their requests were received. This option is only allowed if the
client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Rules

1. If the imei includes the optional 15th character (the check digit), the check digit is
provided by the Customers Client Software and must match the EPAPs (via calculated
algorithm). The check digit is not stored; it is only used to verify the imei.

Request syntax:

dlt_eir([iid XXXXX,] bimei XXXXX, eimei XXXXX)

Delete IMSI(s) from the Associated IMEI
This command is used to delete the IMSI from the specified IMEI. This is the EIR specific
IMSI, not the G-Port/G-FlexIMSI.

The dlt_eir command is used to delete the IMSI from the associated IMEI.

Parameters :

imei
A single IMEI.

Chapter 3
Messages

3-81

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14
digits of the IMEI are stored and displayed on retrieval.

imsi
The IMSI(s) to be associated with an IMEI.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters. Up to 8 IMSIs can
be provisioned for an IMEI.
all - used to remove all IMSIs associated withan IMEI.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism
are processed in the order that their requests were received. This option is only
allowed if the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Request syntax:

dlt_eir([iid xxxxx,]imei XXXXX, imsi XXXXX[,….,imsi XXXXX])

Delete the IMSI from all IMEIs
This command is used to delete the IMSI from all IMEIs. This is the EIR specific IMSI,
not the G-Port/G-FlexIMSI.

The dlt_eir command is used to delete the IMSI from all IMEIs.

Parameters :

imsi
The IMSI(s) reference to be deleted from the IMEI.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters. Up to 8 IMSIs can
be provisioned for an IMEI.

timeout
(Optional) Specify the number of seconds to wait for the write transaction if another
connection already has it. Clients waiting for the write transaction with this mechanism
are processed in the order that their requests were received. This option is only
allowed if the client used the txnmode single option on its connect request.

Values:
0 (return immediately if not available; default)
1 - 3600 seconds

Chapter 3
Messages

3-82

Request syntax:

dlt_eir([iid XXXXX,]imsi XXXXX)

Delete IMEI Data Responses
The return codes in Table 3-20 may result from the Delete IMEI request. See PDBI Message
Error Codes for the recommended actions to help resolve the error related return codes.

Table 3-20 Update IMEI Response Return Codes

Return
Code

Text Description Data Section Contents

0 SUCCESS Everything worked. NONE

1012 INVALID_VALUE One of the fields specified had an
invalid value.

The offending field is
returned in the data
section:

data (param
<field label>)

1037 CHECK _DIGIT _ERROR The check digit provisioned did not
match the calculated check digit.

imei, bimei, or eimei

data (param imei xxxxx)

1013 NOT_FOUND The requested IMEI or IMEI block
was not found.

NONE

1038 IMSI_NOT_FOUND IMSI not found on specified IMEI. NONE

1011 WRITE_IN_READ_TXN The delete command was sent on
a read only transaction.

NONE

1029 TXN_TOO_BIG This request would cause current
transaction to be larger than limit.

NONE

1017 NO_UPDATES The database already contains the
data in the request. No update was
necessary.

NONE

1009 NO_ACTIVE_TXN There was no currently active
transaction for this connection.

NONE

1006 NO_WRITE_PERMISSION The PDBI client making request
does not have write access
permissions.

NONE

1005 WRITE_UNAVAIL Another client already has a write
transaction open.

IP address information of
client that already has
the write transaction.

data (id
<connection id>,
ip <ip addr>,
port <port num>)

Retrieve IMEI Data
This command displays the provisioned IMEI data.

Chapter 3
Messages

3-83

Retrieve All the Data Associated with a Single IMEI Entry
This command is used to retrieve the IMEI data specified. If the IMEI specified is not
found in the individual entry table but resides in an IMEI block, then that IMEI block will
be displayed.

The rtrv_eir command defines the request message to retrieve all the data
associated with a single IMEI entry.

Parameters :

imei
A single IMEI.

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14
digits of the IMEI are stored and displayed on retrieval.

Rules

1. If the imei includes the optional 15th character (the check digit), the check digit is
provided by the Customers Client Software and must match the EPAPs (via
calculated algorithm). The check digit is not stored; it is only used to verify the
imei.

Request syntax:

rtrv_eir([iid XXXXX,] imei XXXXX)

Retrieve IMEI Data: Retrieve a Range of IMEIs
This command is used to retrieve either a range of individual IMEI(s) or IMEI blocks.

Parameters :

bimei
The beginning IMEI in a block.

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14
digits of the IMEI are stored and displayed on retrieval.

eimei
The ending IMEI in a block.

Values:
14 or 15 hexadecimal digits expressed using ASCII characters. Only the first 14
digits of the IMEI are stored and displayed on retrieval.

type
(Optional) IMEI blocks or single IMEI.

Chapter 3
Messages

3-84

Values:
block - Searches the IMEI Block table. Only reports IMEI Blocks, regardless of whether
any provisioned Single IMEIs fall within the specified number range.
single (default) - Searches the Single IMEI table. Only IMEIs provisioned as Single
IMEIs are returned, regardless of whether the IMEI number falls within the number range
of a provisioned IMEI block.

allow
(Optional) Filters request to retrieve the IMEIs found on the Allow list.

Values:
yes or no (default = no filter).

gray
(Optional) Filters request to retrieve the IMEIs found on the Gray list.

Values:
yes or no (default = no filter).

block
(Optional) Filters request to retrieve the IMEIs found on the block list.

Values:
yes or no (default = no filter).

imsi
(Optional) Filters request to retrieve the IMEIs on the specified IMSI.

Values:
5 to 15 hexadecimal digits expressed using ASCII characters (default= none). Only valid
when type is single.

data
(Optional) Specifies type of output data.

Values:
all (default) - Returns all known data for each instance.
count - Return a single instance count of all instances matching the query.

num
(Optional) Limits number of entities returned. If omitted, all entities are returned.

Values:
0 - 40000000

Rules

1. If the imei includes the optional 15th character (the check digit), the check digit is
provided by the Customers Client Software and must match the EPAPs (via calculated
algorithm). The check digit is not stored; it is only used to verify the imei.

Request syntax:

rtrv_eir([iid XXXXX,] bimei XXXXX, eimei XXXXX, [type
<block/single>,] [allow <yes/no>,] [gray <yes/no>,] [block
<yes/no>,] [imsi XXXXX] [data <all/count>] [num 0..40000000])

Chapter 3
Messages

3-85

Retrieve IMEI Data Responses
The syntax of the data section of responses to a successful Retrieve IMEI request
depends on the type of records being returned. Both single IMEI and range IMEIs data
is supported. Each type of data being returned has a different syntax.

• Response syntax for an IMEI single query:

data (segment XXXXX,
imeis (imei(id XXXXX, svn ##, allow yes/no, gray yes/no, block
yes/no, [imsis (xxxxx, xxxxx....)),
. . .
(. . .)))

• Response syntax for an IMEI block query:

data (segment XXXXX,
meiblock (imeiblock (bimei xxxxx, eimei xxxxx, allow yes/no, gray
yes/no, block yes/no,),
. . .
(. . .)))

• Response syntax for an IMEI count query:

data (counts (imei #####)
data (counts (imeiblock #####)

The return codes listed in Table 3-21 indicate the result of the Retrieve IMEI request.
See PDBI Message Error Codes for the recommended actions to help resolve the
error related return codes.

Table 3-21 Retrieve IMEI Response Return Codes

Return
Code Text Description Data Section

Contents

0 SUCCESS Everything worked. NONE

1011 NOT_FOUND IMEI (block) not found. NONE

1012 INVALID_VALUE One of the fields specified had an
invalid value.

Offending field is
returned in data
section:

data (param <field
label>)

1016 PARTIAL_SUCCES
S

The request has succeeded, but this is
only one of many responses.

Depends on the
request type, etc.

1029 NO_ACTIVE_TXN There is no currently active transaction
for this connection.

NONE

Chapter 3
Messages

3-86

Table 3-21 (Cont.) Retrieve IMEI Response Return Codes

Return
Code Text Description Data Section

Contents

1037 CHECK_ DIGIT
_ERROR

The check digit provisioned did not
match the calculated check digit.

imei, bieme or eimei

data (param imei
xxxxx)

1038 IMSI_NOT_FOUND The IMSI requested as part of the filter
does not exist .

NONE

Request Service Module Card Report
This command is used to retrieve the Service Module card Report in a synchronous manner.
This command is not required to be sent from inside a transaction.

Retrieve the Service Module Card Report Request

There are two parameters that adjust what percent or level to run the report for. The two
parameters are mutually exclusive. If neither is specified, then the report will be run with the
default percent value for the connection. The caller can also specify whether or not they want
the Service Module card exception list.

The rtrv_dsmrpt command defines the request message to retrieve the Service Module card
report data.

Parameters :

percent
(Optional) The percent to use for this one report. Cannot be specified with level.

Values:
1 – 100

level
(Optional) Specific database level to use for this one report. Cannot be specified with
percent.

Values:
1 – 4294967295

data
(Optional) Lets the requester specify whether or not they want to the see list of Service
Module cards that were not at the main database level mentioned in the report.

Values:
status (default) - Return the list of Service Module cards.
none – Do not return the list of Service Module cards.

Request syntax:

rtrv_dsmrpt([iid XXXXX,] [percent ###], [level #####], [data
<none/except>])

Chapter 3
Messages

3-87

Request Service Module Card Report Response

The data section of a successful Service Module card report request contains the
following information:

Parameters :

segment
This parameter contains the message segment number.
Values: ≥ 1 – Incrementing integer starting from 1.

level
The database level that the report is referring to. The Service Module cards that
satisfy the report have levels equal to or greater than this value.
Values: 0 – 4294967295

percent
The percentage of known Service Module cards that meet or exceed the level
specified.
Values: 0 – 100

numdsms
The total number of known Service Module cards in the customer's network.
Values: 0 – ####

dsms
List of Service Module cards that did not have a database level equal to or larger than
main message's level. Each Service Module card contains the following information.

clli
Identifier for the Service Module card's EAGLE node. Values: String up to 11
characters long

cardloc
Location identifier for the Service Module card in the EAGLE node. Values: Four
digit number

status
The database status of the Service Module card.
Values: loading - The card is currently loading the database.
resync - The card is loaded, but catching up to current provisioning stream.
coherent - The database is loaded and receiving normal provisioning
incoherent - Internal error on Service Module card (write failed to database)
inconsistent - Data mismatch between EPAP RTDB and Service Module card
RTDB.
corrupt - Internal error on Service Module card checksum failure).
level - The database level for this card.
Values: 0 – 4294967295
loadperc - The percent of the database that has been loaded during initial
booting of the card. This field is only meaningful when the status is loading, so it
will only appear then.
Values: 0 – 100

rsp([iid XXXX,] rc 0, data (segment ###, level ####, percent <0..100>,
numdsms ####,

Chapter 3
Messages

3-88

 dsms (
 dsm (clli AAAA, cardloc ####, status <values below>, level #### [,
loadperc <0..100>]),
 . . .
 dsm (. . .)))

The return codes listed in Table 3-22 indicate the result of the Retrieve Service Module card
report request. See PDBI Message Error Codes for the recommended actions to help resolve
the error related return codes.

Table 3-22 Retrieve Service Module Card Report Response Return Codes

Return
Code Text Description Data Section

Contents

0 SUCCESS Everything worked. See above.

1012 INVALID_VALUE One of the fields specified had an invalid
value.

Offending field is
returned in data
section:

data (param <field
label>)

1016 PARTIAL_SUCCESS The request has succeeded, but this is
only one of many responses.

Depends on the
request type, etc.

Retrieve Service Module Card Report
There are two parameters that adjust what percent or level to run the report for. The two
parameters are mutually exclusive. If neither is specified, then the report will be run with the
default percent value for the connection. The caller can also specify whether or not they want
the Service Module card exception list.

The rtrv_dsmrpt command defines the request message to retrieve the Service Module card
report data.

Parameters :

percent
(Optional) The percent to use for this one report. Cannot be specified with level.

Values:
1 – 100

level
(Optional) Specific database level to use for this one report. Cannot be specified with
percent.

Values:
1 – 4294967295

data
(Optional) Lets the requester specify whether or not they want to the see list of Service
Module cards that were not at the main database level mentioned in the report.

Chapter 3
Messages

3-89

Values:
status (default) - Return the list of Service Module cards.
none – Do not return the list of Service Module cards.

Request syntax:

rtrv_dsmrpt([iid XXXXX,] [percent ###], [level #####], [data
<none/except>])

Retrieve Service Module Card Report: Response

The data section of a successful Service Module card report request contains the
following information:

Parameters :

segment
This parameter contains the message segment number.
Values: ≥ 1 – Incrementing integer starting from 1.

level
The database level that the report is referring to. The Service Module cards that
satisfy the report have levels equal to or greater than this value.
Values: 0 – 4294967295

percent
The percentage of known Service Module cards that meet or exceed the level
specified.
Values: 0 – 100

numdsms
The total number of known Service Module cards in the customer's network.
Values: 0 – ####

dsms
List of Service Module cards that did not have a database level equal to or larger than
main message's level. Each Service Module card contains the following information.

clli
Identifier for the Service Module card's EAGLE node. Values: String up to 11
characters long

cardloc
Location identifier for the Service Module card in the EAGLE node. Values: Four
digit number

status
The database status of the Service Module card.
Values: loading - The card is currently loading the database.
resync - The card is loaded, but catching up to current provisioning stream.
coherent - The database is loaded and receiving normal provisioning
incoherent - Internal error on Service Module card (write failed to database)
inconsistent - Data mismatch between EPAP RTDB and Service Module card
RTDB.

Chapter 3
Messages

3-90

corrupt - Internal error on Service Module card checksum failure).
level - The database level for this card.
Values: 0 – 4294967295
loadperc - The percent of the database that has been loaded during initial booting of the
card. This field is only meaningful when the status is loading, so it will only appear then.
Values: 0 – 100

rsp([iid XXXX,] rc 0, data (segment ###, level ####, percent <0..100>,
numdsms ####,
 dsms (
 dsm (clli AAAA, cardloc ####, status <values below>, level #### [,
loadperc <0..100>]),
 . . .
 dsm (. . .)))

The return codes listed in Table 3-23 indicate the result of the Retrieve Service Module card
report request. See PDBI Message Error Codes for the recommended actions to help resolve
the error related return codes.

Table 3-23 Retrieve Service Module Card Report Response Return Codes

Return
Code Text Description Data Section

Contents

0 SUCCESS Everything worked. See above.

1012 INVALID_VALUE One of the fields specified had an invalid
value.

Offending field is
returned in data
section:

data (param <field
label>)

1016 PARTIAL_SUCCESS The request has succeeded, but this is
only one of many responses.

Depends on the
request type, etc.

Retrieve a List of the Service Module Cards
This command is used to retrieve all or a subset of the Service Module cards known to the
PDBA. It does not need to be sent from inside a transaction. This request is different that the
Service Module card Report in that it does not attempt to determine any percent complete at
a given level. It simply returns all of the Service Module cards that meet the filter criteria.

The rtrv_dsmlist command defines the request message to retrieve the Service Module
card data.

Parameters :

clli
(Optional) Retrieve only the Service Module cards on the specified EAGLE node.

Values:
1 - 11 alphanumeric characters, hyphen, or underscore.

cardloc
(Optional) Retrieve only the Service Module cards that are in the specified card location.

Chapter 3
Messages

3-91

Values:
Four digit number.

status
(Optional) Retrieve only the Service Module cards that have the specified database
status.

Values:
loading - The card is currently loading the database.
resync - The card is loaded, but catching up to current provisioning stream.
coherent - The database is loaded and receiving normal provisioning
incoherent - Internal error on Service Module card (i.e. write failed to database)
inconsistent - Data mismatch between EPAP RTDB and Service Module card
RTDB.
corrupt - Internal error on Service Module card (checksum failure)

data
(Optional) Debugging option. Lets the requester specify whether they want to the see
all available information the PDBA has about cards.

Values:
status – Return the standard list of data for each card (default)
all – Return additional debug information

Request syntax:

rtrv_dsmlist([iid XXXXX,] [clli XXXX], [cardloc ####], [status
<value list above>])

Retrieve a List of the Service Module cards Response

The data section of a successful PDBA Status Query request contains the following
information:

Parameters :

segment
This parameter contains the message segment number.
Values: ≥ 1 - Incrementing integer starting from 1.

dsms
List of Service Module cards that did not have a database level equal to or larger than
main message's level. Each Service Module card contains the following information.

clli
Identifier for the Service Module card's EAGLE node. Values: String up to 11
characters long

cardloc
Location identifier for the Service Module card in the EAGLE node. Values: four-
digit number

status
The database status of the Service Module card.

Chapter 3
Messages

3-92

Values: loading - The card is currently loading the database.
resync - The card is loaded, but catching up to current provisioning stream.
coherent - The database is loaded and receiving normal provisioning
incoherent - Internal error on Service Module card (write failed to database)
inconsistent - Data mismatch between EPAP RTDB and Service Module card RTDB.
corrupt - Internal error on Service Module card checksum failure).
level - The database level for this card.
Values: 0 – 4294967295
loadperc - The percent of the database that has been loaded during initial booting of the
card. This field is only meaningful when the status is loading, so it will only appear then.
Values: 0 – 100

rsp([iid XXXX,] rc 0, data (segment ###, level ####, percent <0..100>,
numdsms ####,
 dsms (
 dsm (clli AAAA, cardloc ####, status <values below>, level #### [,
loadperc <0..100>]),
 . . .
 dsm (. . .)))

The return codes listed in Table 3-24 indicate the result of the Retrieve Service Module card
list report request. See PDBI Message Error Codes for the recommended actions to help
resolve the error related return codes.

Table 3-24 Retrieve Service Module Card List Response Return Codes

Return
Code Text Description Data Section

Contents

0 SUCCESS Everything worked. See above.

1012 INVALID_VALUE One of the fields specified had an invalid
value.

Offending field is
returned in data
section:

data (param <field
label>)

1013 NOT_FOUND There were no Service Module cards
found. If one or more filters were specified,
then there were no cards that matched the
filter

NONE

1016 PARTIAL_SUCCESS The request has succeeded, but this is
only one of many responses.

Depends on the
request type, etc.

Chapter 3
Messages

3-93

4
PDBI Sample Sessions

This chapter contains example flow scenarios for the PDBI request/response messages.

Introduction
This chapter contains sample usages of the PDBI. The message exchanges are shown in
Table 4-1 to Table 4-16. All scenarios assume that a TCP/IP connection has already been
established between the client and the PDBA.

The first column in the tables shows the direction the message is going.

• Messages going from the client to the PDBA (requests) are indicated by →.

• Messages going from the PDBA to the client (responses) are indicated by ←.

The strings displayed in the Message column are the actual ASCII that would flow over the
socket.

Network Entity Creation
This example connects to the PDBA and creates the Network Entities that are needed for all
subsequent examples.

Table 4-1 Network Entity Creation Example

Message Description

→ connect (iid 1, version 1.0) A PDBI connection has been
established to the Active PDBA.← rsp (iid 1, rc 0, data (connectId 1, side active))

→ begin_txn(iid 2, type write)
A write transaction has been opened.

← rsp (iid 2, rc 0)

→ ent_entity (iid 3, id 9195550000, type SP, pctype ansi,
pc 123-456-789, ri GT, ntt 222, ccgt no) The SP Network Entity for SP

9195550000 has been created.
← rsp (iid 3, rc 0)

→ ent_entity (iid 4, id 9195555555, type SP, pctype intl,
pc 1-234-5, ri SSN, ssn 32, ccgt no) The SP Network Entity for SP

9195555555 has been created.
← rsp (iid 4, rc 0)

→ ent_entity (iid 5, id 9195556666, type SP, pctype natl,
pc 12345, ri GT, ccgt no) The SP Network Entity for SP

9195556666 has been created.
← rsp (iid 5, rc 0)

→ end_txn (iid 6) The write transaction has been ended.
The updates have been written to the
PDB and will be sent to the EAGLE.

← rsp (iid 6, rc 0, data (dblevel 1))

→ disconnect (iid 7) The client is done and has
disconnected.← rsp (iid 7, rc 0)

4-1

Simple Subscription Data Creation
This example shows a normal connection with the creation of a few different kinds of
subscriptions.

Table 4-2 Simple Subscription Data Creation Example

Message Description

→ connect (iid 1, version 1.0) A PDBI connection has been
established.← rsp (iid 1, rc 0, data (connectId 1, side active))

→ begin_txn (iid 2, type write) A write transaction has been
opened.← rsp (iid 2, rc 0)

→ ent_sub (iid 3, imsi 9195551000, dn 9195551212, dn
9195551213, sp 9195550000)

A multi-DN subscription has
been created for IMSI
919551000. The DNs
associated with the IMSI are
9195551212 and 9195551213.
The subscription is on SP
9195550000.

← rsp (iid 3, rc 0)

→ ent_sub (iid 4, imsi 9195551000, sp 9195551216) A new DN has been created for
an existing IMSI. The DNs
associated with the IMSI are
9195551212, 9195551213, and
9195551216. The subscription
remains on SP 9195550000.

← rsp (iid 4, rc 0)

→ ent_sub (iid 5, imsi 9195552000, sp 9195550000) A IMSI-only subscription has
been created. The IMSI is
9195552000. The subscription
is on SP 9195550000.

← rsp (iid 5, rc 0)

→ ent_sub (iid 6, imsi 9195552001, sp 9195550000) Another IMSI-only subscription
has been created. The IMSI is
9195552001. The subscription
is on SP 9195550000. This
IMSI will be used in a later
example.

← rsp (iid 6, rc 0)

→ ent_sub (iid 7, dn 9195551500, dn 9195551501, dn
9195551502, dn 9195551503, sp 9195555555)

Four separate single DN
subscriptions were created. All
four DNs are on SP
9195555555.

← rsp (iid 7, rc 0)

→ end_txn (iid 8) The write transaction has been
ended. The updates have been
written to the PDB and will be
sent to the EAGLE.

← rsp (iid 8, rc 0, data (dblevel 1))

→ disconnect (iid 9) The client is done and has
disconnected.← rsp (iid 9 rc 0)

Update Subscription Data
This example shows how to:

Chapter 4
Simple Subscription Data Creation

4-2

• Add new DNs to an existing IMSI

• Move all of the records for a multi-DN IMSI to a new SP

• Move anone or more existing stand-alone DN to a new SP, and

• Move existing DN to an existing IMSI.

Table 4-3 Update Subscription Data Example

Message Description

→ connect (iid 1, version 1.0) A PDBI connection has been
established to the Active PDBA.← rsp (iid 1, rc 0, data (connectId 3, side active))

→ begin_txn (iid 2, type write) A write transaction has been
opened.← rsp (iid 2, rc 0)

→ ent_sub (iid 3, imsi 9195551000, dn 9195551214, dn
9195551215, sp 9195550000)

Two new DNs are being added to
the existing IMSI 9195551000.
The IMSI already had two DNs
(9195551212 and 9195551213)
from the previous creation
example scenario, giving it a total
of four DNs.

← rsp (iid 3, rc 0)

→ upd_sub (iid 4, imsi 9195551000, sp 9195556666) This command moves the
specified IMSI and its four DNs to
the SP 9195556666.

← rsp (iid 4, rc 0)

→ upd_sub (iid 5, dn 9195551502, dn 9195551503, sp
9195550000)

This command moves the two
specified single DN to SP
9195550000.← rsp (iid 5, rc 0)

→ upd_sub (iid 6, dn 9195551501, imsi 9195552001) This command moves the
specified standalone DN to be
associated with the specified
IMSI. The DN will now get its SP
from the IMSI.

← rsp (iid 6, rc 0)

→ end_txn (iid 7) The write transaction has ended.
The updates will be written to the
database.

← rsp (iid 7, rc 0, data (dblevel 2))

→ disconnect (iid 8) The client is done and has
disconnected.← rsp (iid 8, rc 0)

This example shows how the upd_sub command works with respect to the V-Flex feature.
The following actions are shown in the example:

• Create new DN with a VMS

• Create new DN on SP/RN

• Move an existing DN to a new SP/RN

– This illustrates how update works to replace SP/RN when SP/RN association already
existed.

• Add a VMS association to an existing DN

– This illustrates how update works to add a 2nd NE association when an association
already existed.

• Remove an NE association to make room for a 2nd NE association

Chapter 4
Update Subscription Data

4-3

Note:

All VMSs, GRNs, & SPs in the following example are assumed to be
provisioned prior to this example.

Table 4-4 Update Subscription Data Example 2

Message Description

→ connect (iid 1, version 1.0) A PDBI connection has been
established to the Active
PDBA.

← rsp (iid 1, rc 0, data (connectId 3, side active))

→ begin_txn (iid 2, type write) A write transaction has been
opened.← rsp (iid 2, rc 0)

→ ent_sub(iid 3, dn 9195551600, vms 9195553000) Creating a new standalone DN
9195551600 on VMS
9195553000.

← rsp (iid 3, rc 0)

→ ent_sub(iid 4, dn 9195551611, sp 9195551100) One new standalone DN
9195551611 created on SP
9195551100 .

← rsp (iid 4, rc 0)

→ upd_sub(iid 5, dn 9195551611, sp 9195556666) This command moves the
specified standalone DN to SP
9195556666.

← rsp (iid 5, rc 0)

→ upd_sub(iid 6, dn 9195551600, sp 9195556666) This command adds the
second NE association to DN
9195551600. DN 9195551600
is now on VMS 9195553000
(V-Flex) and SP 9195551100
(G-Flex).

← rsp (iid 6, rc 0)

→ upd_sub(iid 7, dn 9195551600, grn 9196660000) This command attempts to add
a new NE association, but is
rejected because it is not clear
which NE (there are 2
associated with this DN) to be
replaced.

← rsp (iid 7, rc 1044)

→ upd_sub(iid 8, dn 9195551600, vms none, grn
9196660000)

This command specifies that
the GRN should replace VMS
9195553000. DN 9195551600
is now on GRN 9196660000
(NE Query Only option) and
SP 9195551100 (G-Flex).

← rsp (iid 8, rc 0)

→ end_txn (iid 9) The write transaction has
ended. The updates will be
written to the database.

← rsp (iid 9, rc 0, data (dblevel 2))

→ disconnect (iid 10) The client is done and has
disconnected.← rsp (iid 10`, rc 0)

This example shows how the upd_sub command works with respect to G-Flex and V-
Flex feature interoperability. The following actions are shown in the example:

• Create new multi-DN IMSI on SP

• Move DN from IMSI and make it a standalone DN on a VMS

Chapter 4
Update Subscription Data

4-4

• Move DN from IMSI and make it a standalone DN on a VMS and the same SP as before

• Move multi-DN IMSI to a new SP

• Move the standalone DNs that were on the original subscription onto the new SP

• Update DN with ASD

• Remove ASD from a DN

Note:

All VMSs, GRNs, & SPs in the following example are assumed to be provisioned
prior to this example

Table 4-5 Update Subscription Data Example 3

Message Description

→ connect (iid 1, version 1.0) A PDBI connection has been
established to the Active PDBA.← rsp (iid 1, rc 0, data (connectId 3, side active))

→ begin_txn (iid 2, type write) A write transaction has been
opened.← rsp (iid 2, rc 0)

→ ent_sub(iid 3, imsi 9195555000, dn 9195551310, dn
9195551311, dn 9195551312, dn 9195551313, dn
9195551314, sp 9195551100)

The IMSI created with 5 DNs. The
subscription is on SP
9195551100.

← rsp (iid 3, rc 0)

→ upd_sub(iid 4, dn 9195551310, vms 9195551400) The DN 9195551310 has been
moved from IMSI 9195555000 to
VMS 9195551400. It is no longer
associated with SP 9195551100
and will not be routed by G-Flex.

← rsp (iid 4, rc 0)

→ upd_sub(iid 5, dn 9195551311, vms 9195551400, sp
9195551200)

The DN 9195551311 has been
moved from IMSI 9195551000
and made into a standalone DN.
The standalone DN 9195551311
is now on VMS 9195551400 and
SP 9195551200. G-Flex routing
for this DN will not be any
different than before this update.

← rsp (iid 5, rc 0)

→ upd_sub(iid 6, imsi 9195555000, sp 9195556666) This command moves the
specified IMSI at its 3 remaining
DNs to the SP 9195556666.

← rsp (iid 6, rc 0)

→ upd_sub(iid 7, dn 9195551310, sp 9195556666) The DN was incorrectly moved off
of the IMSI and no longer being
routed by G-Flex. This update will
correct the error in provisioning
by putting the DN on the SP that
the rest of the original
subscription is on. DN
9195551310 was already on VMS
and it is now on SP 9195556666.
DN is now being routed by G-Flex
like the rest of the original
subscription.

← rsp (iid 7, rc 0)

Chapter 4
Update Subscription Data

4-5

Table 4-5 (Cont.) Update Subscription Data Example 3

Message Description

→ upd_sub(iid 8, dn 9195551311, sp 9195556666) The standalone DN is no longer
on this IMSI must be moved in a
separate update command to the
SP 9195556666. DN 9195551311
was already on the VMS and was
just moved from the old SP to the
new SP. DN 9195551311 is now
on VMS 9195551400 and SP
9195556666.

← rsp (iid 8, rc 0)

→ upd_sub(iid 80, dn 9195551311, asd 001F247A). This DN now has additional
subscriber data, 001F247A.← rsp (iid 80, rc 0)

→ upd_sub(iid 81, dn 9195551311, asd none) This DN now has no additional
subscriber data.← rsp (iid 81, rc 0)

→ end_txn (iid 9) The write transaction has ended.
The updates will be written to the
database.

← rsp (iid 9, rc 0, data (dblevel 2))

→ disconnect (iid 10) The client is done and has
disconnected.← rsp (iid 10, rc 0)

Simple Queries
This example shows a read transaction that queries the data populated in a previous
example.

Table 4-6 Simple Queries Example

Message Description

→ connect (iid 1, version 1.0) A PDBI connection has been
established to the Active PDBA.← rsp (iid 1, rc 0, data (connectId 4, side active))

→ begin_txn (iid 2, type read)
A read transaction has been opened.

← rsp (iid 2, rc 0)

→ rtrv_sub (iid 3, bimsi 9195550000, eimsi
9195559999)

A query for all IMSIs within the range
from 9195550000 to 9195559999 was
sent. This query does not contain the
data parameter; the default value of all
is used. This means that the list of DNs
associated with IMSI should be present
in the response. The response that
comes back has just the three IMSIs
that were created and updated in the
previous examples.

← rsp (iid 3, rc 0, data (imsis ((imsi 9195551000,
dns(9195551212, 9195551213, 9195551214,
9195551215), sp 9195556666), (imsi
9195552000, sp 9195550000), (imsi
9195552001, dns(9195551501), sp
9195550000))))

→ rtrv_sub (iid 4, bimsi 9195550000, eimsi
9195559999, data neonly)

This query is almost the same as the
one above. This difference is that this
one specifies the value neonly for the
data parameter. That means that the list

Chapter 4
Simple Queries

4-6

Table 4-6 (Cont.) Simple Queries Example

Message Description

← rsp (iid 4, rc 0, data (imsis ((imsi 9195551000,
sp 9195556666), (imsi 9195552000, sp
9195550000), (imsi 9195552001, sp
9195550000))))

of DNs will be omitted from the IMSI
information.

→ rtrv_sub (iid 5, bimsi 9195550000, eimsi
9195559999, sp 9195550000, data neonly)

This query is almost the same as the
two above. In addition to specifying the
neonly value, this one also provides an
sp parameter to filter for only IMSIs on
the specified SP.

← rsp (iid 5, rc 0, data (imsis ((imsi 9195552000,
sp 9195550000), (imsi 9195552001, sp
9195550000))))

→ rtrv_sub (iid 6, bdn 9195550000, edn
9195559999)

A query for all DNs within the range
from 9195550000 to 9195559999 was
sent. The query does not contain the
data parameter, so the default value of
all is used. This means that the IMSI
value for each DN (if not a stand-alone
DN) will be present in the response. The
response that comes back has just the
eight DNs that were created and
updated in the previous examples.

← rsp (iid 6, rc 0, data (dns ((dn 9195551212,
imsi 9195551000, sp 9195556666), (dn
9195551213, imsi 9195551000, sp
9195556666), (dn 9195551214, imsi
9195551000, sp 9195556666), (dn
9195551215, imsi 9195551000, sp
9195556666), (dn 9195551216, imsi
9195551000, sp 9195556666), (dn
9195551500, sp 9195555555), (dn
9195551501, imsi 9195552001, sp
9195550000), (dn 9195551502, sp
9195550000), (dn 9195551503, sp
9195550000))))

→ rtrv_sub(iid 7, bdn 9195550000, edn
9195559999, sp 9195556666, data neonly)

This query is almost the same as the
one above. The differences are that it
specifies both the neonly value and it
provides an sp parameter to filter only
for DNs on the specified SP.

← rsp (iid 7, rc 0, data (dns ((dn 9195551212, sp
9195556666), (dn 9195551213, sp
9195556666), (dn 9195551214, sp
9195556666), (dn 9195551215, sp
9195556666), (dn 9195551215, sp
9195556666))))

→ end_txn(iid 8)
The read transaction has been ended.

← rsp (iid 8, rc 0)

→ disconnect(iid 8) The client is done and has
disconnected.← rsp (iid 8, rc 0)

Multiple Response Query
This example shows a retrieve command that results in multiple responses coming back. This
would happen when there are so many subscriptions matching the query that a single
response would be too big to handle. The single response is broken into many smaller
responses. The real response size limit is 4KB, but for the purposes of this example it is
much smaller.

Chapter 4
Multiple Response Query

4-7

Table 4-7 Multiple Response Query Example

Message Description

→ connect(iid 1, version 1.0) A PDBI connection has been
established to the Active
PDBA.

← rsp (iid 1, rc 0, data (connectId 5, side active))

→ begin_txn(iid 2, type read) A read transaction has been
opened.← rsp (iid 2, rc 0)

→ rtrv_sub(iid 3, bdn 9195550000, edn 9195559999)

A query for all single DNs
within the range from
919550000 to 9195559999
was sent. For this example,
the result information will
come back in three separate
responses.

←

←

←

rsp (iid 3, rc 1016, data (segment 1, dns (dn 9195551212,
imsi 9195551000 sp 9195556666), (dn 9195551213, imsi
9195551000, sp 9195556666), (dn 9195551214, imsi
9195551000, sp 9195556666))))

rsp (iid 3, rc 1016, data (dns (segment 2, dns ((dn
9195551215, imsi 9195551000, sp 9195556666), (dn
9195551500, sp 9195555555), (dn 9195551501, imsi
9195552001, (dn 9195551216, imsi 9195551000, sp
9195556666), sp 9195550000))))

rsp (iid 3, rc 0, data (dns ((segment 3, dns ((dn
9195551501, imsi 9195552001, sp 9195550000)) (dn
9195551502, sp 9195550000), (dn 9195551503, sp
9195550000))))

→ end_txn(iid 4) The read transaction has
been ended.← rsp (iid 4, rc 0)

→ disconnect(iid 5) The client is done and has
disconnected.← rsp (iid 5, rc 0)

Abort Transaction
This example shows a write transaction that receives an error on one of its update
requests and then aborts the transaction.

Table 4-8 Abort Transaction Example

Message Description

→ connect(iid 1, version 1.0) A PDBI connection has been
established to the Active
PDBA.

← rsp (iid 1, rc 0, data (connectId 6, side active))

→ begin_txn(iid 2, type write) A write transaction has been
opened.← rsp (iid 2, rc 0)

→ ent_sub(iid 3, dn 9195557000, sp 9195556666)
The DN has been created.

← rsp (iid 3, rc 0)

→ ent_sub(iid 4, dn 9195558000, sp 9195550000)
Another DN has been created.

← rsp (iid 4, rc 0)

→ ent_sub(iid 5, dn 9195551213, sp 919555555) The request to create a stand-
alone DN 9195551213 failed
because the DN already exists.

← rsp (iid 5, rc 1014, data (dn 9195551213))

Chapter 4
Abort Transaction

4-8

Table 4-8 (Cont.) Abort Transaction Example

Message Description

→ abort_txn(iid 6) The client decided to abort the
transaction because the
previous update failed. This will
cause the two DNs created in
iid 3 and iid 4 to be rolled
back. No data is updated. Note
that the client did not have to
abort the transaction here. The
transaction could have just
been ended normally, and the
first two DNs would have been
created successfully.

← rsp (iid 6, rc 0)

→ disconnect(iid 7) The client is done and has
disconnected.← rsp (iid 7, rc 0)

Update Request In Read Transaction
This example shows a client opening areadtransaction and then trying to send a command to
modify data.

Table 4-9 Update Request in Read Transaction Example

Message Description

→ connect(iid 1, version 1.0) A PDBI connection has been established to
the Active PDBA.← rsp (iid 1, rc 0, data (connectId 7, side active))

→ begin_txn(iid 2, type read)
A read transaction has been opened.

← rsp (iid 2, rc 0)

→ rtrv_sub(iid 3, dn 9195551500) A query for DN 9195551500 was sent. A
response comes back verifying that the DN
exists and showing what SP it is on.

← rsp (iid 3, rc 0, data (dns ((dn 9195551500, sp
9195555555))))

→ upd_sub(iid 4, dn 9195551500, sp 9195556666) The client now tries to move the DN block that
was returned in the previous Retrieve request
to SP 9195556666. The Update request fails
because the client currently has a read
transaction open instead of a write
transaction.

← rsp (iid 4, rc 1011)

→ end_txn(iid 5)
The read transaction has been ended.

← rsp (iid 5, rc 0)

→ disconnect(iid 6)
The client is done and has disconnected.

← rsp (iid 6, rc 0)

Write Transaction In Standby Connection
This example shows the error scenario of a client trying to open awrite transaction in a
connection to the Standby PDBA.

Chapter 4
Update Request In Read Transaction

4-9

Table 4-10 Write Transaction in Standby Connection Example

Message Description

→ connect(iid 1, version 1.0) A PDBI connection has been
established to the Standby PDBA.← rsp (iid 1, rc 0, data (connectId 8, side standby))

→ begin_txn(iid 2, type write) The client has attempted to open a
write transaction on the Standby
PDBA. An error is returned. There
is no need to end the transaction
because it was never successfully
started.

← rsp (iid 2, rc 1006)

→ disconnect(iid 3) The client is done and has
disconnected.← rsp (iid 3, rc 0)

Simple Subscription Data Creation with Single Txnmode
This example shows a connection using thetxnmode single connect option with the
creation of a few different kinds of subscriptions.

Table 4-11 Simple Subscription Data Creation with Single Txnmode Example

Message Description

→ connect(iid 1, version 1.0, txnmode single)

A PDBI connection has been established.← rsp (iid 1, rc 0, data (connectId 1, side
active))

→ ent_sub(iid 2, imsi 9195551000, dn
9195551212,

dn 9195551213, sp 9195550000, timeout 10)

A multi-dn subscription has been created
for IMSI 919551000. The DNs associated
with the IMSI are 9195551212 and
9195551213. The subscription is on SP
9195550000.← rsp (iid 2, rc 0, data (dblevel 1))

→ ent_sub(iid 3, imsi 9195552000, sp
9195550000)

A IMSI only subscription has been
created. The IMSI is 9195552000. The
subscription is on SP 9195550000.← rsp (iid 3, rc 0, data (dblevel 2))

→ ent_sub(iid 4, imsi 9195552001, sp
9195550000)

A IMSI only subscription has been
created. The IMSI is 9195552001. The
subscription is on SP 9195550000. This is
exactly the same type of command as the
previous item. It is being done so that the
IMSI can be used in a later example.

← rsp (iid 4, rc 0, data (dblevel 3))

→ ent_sub(iid 5, dn 9195551500, dn
9195551501,

dn 9195551502, dn 9195551503,

sp 9195555555)

Four separate single DN subscriptions
were created. All four DNs are on SP
9195555555.

← rsp (iid 5, rc 0, data (dblevel 4))

→ disconnect(iid 6)
The client is done and has disconnected.

← rsp (iid 6, rc 0)

Chapter 4
Simple Subscription Data Creation with Single Txnmode

4-10

Single IMEI Data
This example shows a normal connection with the creation, update and deletion of a few
different kinds of IMEIs.

Table 4-12 Single IMEI Data Example

Message Description

→ connect(iid 1, version 1.0) A PDBI connection has been
established to the Active PDBA.← rsp (iid 1, rc 0, data (connectId 1, side active))

→ begin_txn(iid 2, type write) A write transaction has been
opened.← rsp (iid 2, rc 0)

→ ent_eir(iid 3, imei 12345678901234,
allow yes, gray yes, imsi 9199301234,
imsi 9199302266)

A single IMEI is created on both
the allow and gray lists with 2
IMSIs associated with it. SVN is
0.← rsp (iid 3, rc 0)

→ upd_eir(iid 4, imei 12345678901234,
allow no, block yes)

The lists associated with the IMEI
is now changed to be Block and
Gray. The allow list is now turned
off.

← rsp (iid 4, rc 0)

→ dlt_eir(iid 5, imei 12345678901234, imsi
9199302266) The specified IMSI is no longer

associated with the IMEI.
← rsp (iid 5, rc 0)
→ dlt_eir(iid 6, imei 12345678901234) The IMEI and it’s associated IMSI

are removed.← rsp (iid 6, rc 0)
→ end_txn(iid 7) The write transaction has ended.

The updates will be written to the
database.

← rsp (iid 7, rc 0, data (dblevel 1))

→ disconnect(iid 8) The client is done and has
disconnected.← rsp (iid 8, rc 0)

IMEI Block Data
This example shows a normal connection with the creation, update and deletion of a few
different kinds of IMEI blocks.

Table 4-13 IMEI Block Data Example

Message Description

→ connect(iid 1, version 1.0) A PDBI connection has been
established to the Active PDBA.← rsp (iid 1, rc 0, data (connectId 1, side active))

→ begin_txn(iid 2, type write) A write transaction has been
opened.← rsp (iid 2, rc 0)

→ ent_eir(iid 3, bimei 12345678901000,
eimei 12345678901999, block yes)

An IMEI Block is created with the
block list.

Chapter 4
Single IMEI Data

4-11

Table 4-13 (Cont.) IMEI Block Data Example

Message Description

← rsp (iid 3, rc 0)
→ upd_eir(iid 4, bimei 12345678901000,

eimei 12345678901999, gray yes)
The lists associated with the IMEI
block are now changed to be
block and Gray. Note: the block
list was turned on in the previous
step

← rsp (iid 4, rc 0)

→ dlt_eir(iid 5, bimei 12345678901000,
eimei 12345678901999) The IMEI block is removed.

← rsp (iid 5, rc 0)
→ end_txn(iid 6) The write transaction has been

ended. The updates have been
written to the PDB and will be
sent to the EAGLE.

← rsp (iid 6, rc 0, data (dblevel 1))

→ disconnect(iid 7) The client is done and has
disconnected.← rsp (iid 7, rc 0)

Asynchronous Service Module Card Report
This example shows a connection that has asked to receive the Service Module card
Report every 10 seconds with a report complete percent of 90.

Table 4-14 Asynchronous Service Module Card Report Example

Message Description

→ connect(version 1.0, dsmrpt yes, dsmrptfreq 10,
dsmrptperc 90)

A PDBI connection has been
established. The connection
has asked for Service Module
card Reports every 10 second
with a report complete percent
of 90.

← rsp (rc 0, data (connectId 1, side active))

→ No requests sent. 10 seconds
later, a report comes out. One
Service Module card is not up
with the others because it is
loading. Another card is
excluded because it is corrupt.

← dsmrpt (rc 0, data (segment 1, level 2912, percent 90,
numdsms 20, dsms (dsm (clli atlanta, cardloc 1405,
status loading, level 0, loadperc 98), dsm (clli lakemary,
cardloc 2104, status corrupt, level 2652))))

→
10 seconds later, another
report comes out. Now, the
loading card is finished, but the
corrupt card is still corrupt.

← dsmrpt (rc 0, data (segment 1, level
2917, percent 95, numdsms 20, dsms
(dsm (clli lakemary, cardloc 2104,
status corrupt, level 2652))))

→ disconnect(iid 7) The client is done and has
disconnected.

Chapter 4
Asynchronous Service Module Card Report

4-12

Synchronous Service Module Card Report
This example shows a connection that uses the rtrv_dsmrpt request to receive the Service
Module card Report.

Table 4-15 Synchronous Service Module Card Report Example

Message Description

→ connect(version 1.0) A normal PDBI connection has
been established. At this point, it
has not expressed any desire to
get a Service Module card
Report.

← rsp (rc 0, data (connectId 1, side active))

→ rtrv_dsmrpt(percent 90) The connection requests a
Service Module card Report with
a specific percent complete value
of 90. The level 2912 is returned
because only two Service Module
cards out of the known 20 have
not reached that level.

← rsp (rc 0, data (segment 1, level 2912, percent 90, numdsms
20, dsms (dsm (clli atlanta, cardloc 1405, status coherent,
level 2910), dsm (clli lakemary, cardloc 2104, status corrupt,
level 2652))))

→ rtrv_dsmrpt(percent 95) The connection requests the
Service Module card Report
again, this time with a more
stringent percent complete value
of 95. This time, a smaller level of
2910 is returned in order to
satisfy the higher percent value.

← rsp (rc 0, data (segment 1, level 2910,
percent 95, numdsms 20, dsms (dsm (clli
lakemary, cardloc 2104, status corrupt,
level 2652))))

→ disconnect(iid 7) The client is done and has
disconnected.

Service Module Card List
This example shows a connection requesting to see the list of Service Module cards. There
are only five cards in this example to make the responses smaller.

Table 4-16 Service Module Card List Example

Message Description

→ connect(version 1.0) A normal PDBI connection has
been established.← rsp (rc 0, data (connectId 1, side active))

→ rtrv_dsmlist()

The connection requests to see
the Service Module card list. No
filter is used, so all Service
Module cards should be returned.

← rsp (rc 0, data (dsms (dsm (clli atlanta, cardloc 1405, status
coherent, level 2910), dsm (clli atlanta, cardloc 1407, status
coherent, level 2918), dsm (clli lakemary, cardloc 2104,
status corrupt, level 2652), dsm (clli lakemary, cardloc 2106,
status coherent, level 2920), dsm (clli lakemary, cardloc
2108, status coherent, level 2920))))

→ rtrv_dsmlist(clli atlanta) The connection requests the
Service Module card list with a

Chapter 4
Synchronous Service Module Card Report

4-13

Table 4-16 (Cont.) Service Module Card List Example

Message Description

← rsp (rc 0, data (dsms (dsm (clli
atlanta, cardloc 1405, status coherent,
level 2910), dsm (clli atlanta, cardloc
1407, status coherent, level 2918))))

filter for CLLIs with the value of
"atlanta".

→ rtrv_dsmlist(clli atlanta, cardloc 1407) The connection requests the
Service Module card list with a
filter for CLLIs with the value of
"atlanta" and a cardloc of 1407.

← rsp (rc 0, data (dsms (dsm (clli
atlanta, cardloc 1407, status coherent,
level 2918))))

→ rtrv_dsmlist(status corrupt) The connection requests to see
the Service Module card list with
a status filter of corrupt. Only
corrupt cards should be returned.

← rsp (rc 0, data (dsms (dsm (clli
lakemary, cardloc 2104, status corrupt,
level 2652))))

→ rtrv_dsmlist(status loading) The connection requests to see
the Service Module card list with
a status filter of loading. Since
there aren't any cards currently
loading, NOT_FOUND is
returned.

← rsp (rc 1013)

→ disconnect(iid 7) The client is done and has
disconnected.

Chapter 4
Service Module Card List

4-14

A
PDBI Message Error Codes

This chapter lists the PDBI error codes and text.

PDBI Message Error Codes
Table A-1 lists the error codes, associated text generated by the PDBI, and recommended
actions.

Table A-1 PDBI Message Error Codes

Error Code Text Recommended Action

0 PDBI_SUCCESS =0 No action necessary. This indicates a
successful response from the PDBA.

1001 PDBI_INTERNAL_ERROR = 1001 Contact Oracle.

1002 PDBI_NOT_CONNECTED Establish an active connection before re-
issuing this command.

1003 PDBI_ALREADY_CONNECTED No action necessary. This is a redundant
connection attempt.

1004 PDBI_PARSE_FAILED Refer to the data section of the return
message to determine the cause of the
parse failure.

1005 PDBI_WRITE_UNAVAIL Wait for write transaction to close before re-
attempting this command.

1006 PDBI_NO_WRITE_PERMISSION No action is necessary unless the IP
address of this PDBI client should have
WRITE access permissions. If that is the
case, add WRITE permissions for the IP
address of the PDBI client.

1007 PDBI_NO_MATE Contact Oracle. This indicates that the
Active PDB has lost contact with Standby.

1008 PDBI_STANDBY_SIDE Connect to the Active PDBA for write
operations.

1009 PDBI_NO_ACTIVE_TXN Open a write transaction before retrying this
command

1010 PDBI_ACTIVE_TXN Wait for the transaction to complete before
re-attempting the switchover.

1011 PDBI_WRITE_IN_READ_TXN Reattempt this command after the read
transaction is terminated and a write
transaction is opened.

1012 PDBI_INVALID_VALUE Re-enter the command using the correct
value in the offending field returned in the
data section.

A-1

Table A-1 (Cont.) PDBI Message Error Codes

Error Code Text Recommended Action

1013 PDBI_NOT_FOUND This error is dependent on the contents of
the database. No action is required, unless
it is known that the item in question should
be in the database. If this is the case,
contact Oracle.

1014 PDBI_CONFLICT_FOUND Using the force parameter can override this
check and eliminate the return of this error
code for certain commands.

1015 PDBI_ITEM_EXISTS No action necessary. The PDB already has
the requested entry in the database.

1016 PDBI_PARTIAL_SUCCESS No action necessary. This error indicates
that more messages are to follow.
PDBI_SUCCESS will be returned to
indicate the last message has been sent.

1017 PDBI_NO_UPDATES No action necessary. The PDB already has
the requested entry in the database.

1019 PDBI_BAD_ARGS There is a problem with the syntax of the
command. Refer to the data section of the
response message to determine what
problem was encountered.

1020 PDBI_TOO_MANY_CONNECTIONS One of the PDBI connections needs to be
terminated before this client can gain a
connection.

1021 PDBI_NE_NOT_FOUND No action required unless it is known that
the NE in question is/should be in the
database. If that is the case, please contact
Oracle.

1022 PDBI_CONTAINS_SUBS To delete the NE in question, all
subscription data must be removed from
the NE.

1023 PDBI_UNKNOWN_VERSION Use the correct version on the connect
message.

1025 PDBI_UNIMPLEMENTED Contact Oracle.

1026 PDBI_MATE_BUSY Retry command checking to see if mate
releases write transaction.

1027 PDBI_IMSI_DN_LIMIT EPAP only supports assigning a maximum
of 8 DNs to a single IMSI

1028 PDBI_BAD_IMPORT_CMD Wrong command is written in the import
file. Remove unsupported commands and
try again.

1029 PDBI_TXN_TOO_BIG Reduce the transaction size.

1030 PDBI_DB_MAINT_REQD Contact Oracle

1031 PDBI_DB_EXCEPTION The client program should retry the
transaction. If the error persists, contact
Oracle.

1032 PDBI_MAX_IMSI_LIMIT Contact Oracle. Database capacity for
IMSIs has been reached.

Appendix A
PDBI Message Error Codes

A-2

Table A-1 (Cont.) PDBI Message Error Codes

Error Code Text Recommended Action

1033 PDBI_MAX_DN_LIMIT Contact Oracle. Database capacity for DNs
has been reached..

1034 PDBI_MAX_DNBLK_LIMIT Contact Oracle. Database capacity for DN
BLOCKs has been reached.

1035 PDBI_MAX_NE_LIMIT Contact Oracle. Database capacity for NEs
has been reached.

1036 PDBI_REPLICATING Do not attempt the switchover until the
replication is complete.

1037 PDBI_CHECK_DIGIT_ERROR The check digit must provided by the
Customers Client Software does not match
the EPAPs (via calculated algorithm).

1038 PDBI_IMSI_NOT_FOUND No action necessary.

1039 PDBI_IMEI_IMSI_LIMIT Limit has been reached. EPAP only
supports assigning a maximum of 8 IMSIs
to a single IMEI.

1040 PDBI_MAX_IMEI_LIMIT Contact Oracle. Database capacity for
IMEIs has been reached.

1041 PDBI_MAX_IMEI_BLK_LIMIT Contact Oracle. Database capacity for IMEI
BLKs has been reached.

1042 PDBI_NO_LIST_FOR_IMEI Provision at least one list type for IMEI
object. Each IMEI object must have a list
type attached.

1043 PDBI_BAD_SWITCH_IN_APB The PDBA status is controlled by the PDBA
Proxy feature and cannot be changed
manually. Call Oracle for more information.

1044 PDBI_SUB_NE_LIMIT Limit has been reached. DN or DN Block
can have a maximum of 2 NE associations.

1045 PDBI_CMD_LENGTH_EXCEEDED Command length exceeded 247 characters.
Remove unnecessary characters (including
white space and parameters that are
specified as the default value) or perform
provisioning in two steps by using an enter
command followed by an update command.

1046 PDBI_MAX_ASD_LIMIT Contact Oracle. Database capacity for ASD
records has been reached.

1047 PDBI_DN_NOT_FOUND The DN specified by nsdn does not exist.

1048 PDBI_MAX_ASSOCIATIONS This request contains too many
associations for a DN or DN Block. The
error is raised when TIF Number
Substitution is combined with other
associations and distinct from
SUB_NE_LIMIT.

1049 PDBI_UNRESOLVED_DEPENDENCY The record already refers to another record
through TIF Number Substitution. The
NSDN must be updated to none before a
new association can be formed.

1050 PDBI_INCOMPATIBLE_ST The specified ST value conflicts with the ST
value of NSDN.

1051 PDBI_INCOMPATIBLE_ROP The GRN ROP value conflicts with the GMT
value for the specified ASD.

Appendix A
PDBI Message Error Codes

A-3

Table A-1 (Cont.) PDBI Message Error Codes

Error Code Text Recommended Action

1052 PDBI_DNB_SAME_PROPERTIES The new DN Block requested by the
operator is a subset of an existing block
with same properties.

1053 PDBI_MULTI_DNB_CONFLICT The new DN Block could not be added to
the database as multiple conflicting DN
Blocks were found within given bdn-edn.

1054 PDBI_DNB_SPLIT_NOT_ALLOWED The new DN Block tries to split an existing
DN Block that is not allowed to be split or a
new individual DN is entered within an
existing DN Block that is not allowed to be
split.

1055 PDBI_DNB_PARENT_PROPERTY
_MISMATCH

Fragments of a master range have differing
attributes. No automated resolution is
possible to coalesce these records to
satisfy a delete command.

1056 PDBI_DNB_DLT_NOT_ALLOWED Fragments of a master range cannot be
deleted while subranges are present.

1057 PDBI_TXN_TIMEOUT Retry command checking to see if the write
transaction does not timeout. Contact
Oracle.

1058 PDBI_IMSI_FULL Cannot add new IMSI to the database.
Adding new IMSI would exceed the
supported SMxG card size. Contact Oracle.

1059 PDBI_IMEI_FULL Cannot add new IMEI to the database.
Adding new IMEI would exceed the
supported SMxG card size. Contact Oracle.

1060 PDBI_DN_FULL Cannot add new DN to the database.
Adding new DN would exceed the
supported SMxG card size. Contact Oracle.

1061 PDBI_ASD_FULL Cannot add new ASD to the database.
Adding new ASD would exceed the
supported SMxG card size. Contact Oracle.

1062 PDBI_IMSI_ENT_NOT_ALLOWED The RTDB is either down or incoherent.
Contact Oracle.

1063 PDBI_IMEI_ENT_NOT_ALLOWED The RTDB is either down or incoherent.
Contact Oracle.

Appendix A
PDBI Message Error Codes

A-4

B
TIF Number Substitution Relationships

This chapter includes information to support the TIF Number Substitution feature (TIF NS).

TIF Number Substitution Relationships
The TIF Number Substitution (TIF NS) feature enables subscriber DN records to associate
with DNs and DN Blocks for TIF Number Substitution. All DNs and DN Blocks used for TIF
NS shall be provisioned as public or private.

Two types of substitutions are supported:

1. Public has Private Number: A DN or DN Block substitutes to (points to) a DN that is
Private. The originating DN or DN Block is Public.

2. Private has Public Number: A DN or DN Block substitutes to (points to) a DN that is
Public. The originating DN or DN Block is Private.

Two types of cardinality are supported:

1. 1-way Substitution: A DN or DN Block points to a DN. An arbitrary number of DNs and
DN Blocks can point to the same DN. The pointed to DN points to nobody.

2. Subscriber Pair: Two DNs may be linked in a pair. A DN in a TIF NS pair can only point to
the DN pointing to it (other DN in pair). No other DNs or DN Blocks may point to either
DN in such a pair.

This table shows the combination of associations that are supported and prohibited to
subscriber records. The left-most column lists the subscriber record type, and the right
columns list its supported and prohibited associations.

Table B-1 Supported and Prohibited Subscriber Associations

Type Associations

NSDN ASD SP RN VMS GRN

DN,

DN Block

None None Any One

DN,

DN Block

None None Any Two Unique NE Types (Except SP + RN)

DN,

DN Block

Supported None Any One

DN,

DN Block

None Supported Any One

DN,

DN Block

Prohibited Supported Any Two Unique NE Types (Except SP + RN)

DN,

DN Block

Supported Supported Any One

B-1

Table B-1 (Cont.) Supported and Prohibited Subscriber Associations

Type Associations

NSDN ASD SP RN VMS GRN

MSISDN None None From IMSI Prohibited

MSISDN Supported None From IMSI Prohibited

MSISDN None Supported From IMSI Prohibited

MSISDN Supported Supported From IMSI Prohibited

This is a list of rules for TIF NS:

1. An arbitrary number of DN and DN Blocks can number substitute to the same DN.
This DN, called the NSDN, cannot substitute to anybody. The only exception is
called a subscriber pair.

2. Subscriber pair: Two DNs that number substitute to each other. Nobody else can
number substitute to either DN in this pair.

3. DN Blocks can number substitute to a DN. However, nobody can number
substitute to a DN Block.

4. The default subscriber type is public. If subscriber type st has never been explicitly
set on a record, the record is public.

5. Only DN and DN Blocks with the public subscriber type can be linked to a private
DN through TIF NS. Likewise, only private DN and DN Blocks can linked to a
public DN.

6. Subscriber type is set when the NSDN is defined and TIF NS is created. It cannot
be changed while the TIF NS relationship persists.

7. There are two ways a DN or DN Block can be removed from TIF NS.

• Directly, if it has an NSDN. It may be updated with ‘nsdn none’. This is to be
performed on each DN in the case of a subscriber pair.

• Indirectly, if it does not have an NSDN. All the DN and DN Blocks that
substitute to it have been updated with ‘nsdn none’.

8. A DN cannot be deleted while other records refer to it by TIF NS.

9. A DN or DN Block with NSDN is limited to having one NE (sp, rn, vms, grn).

10. A DN or DN Block with two NE (sp, rn, vms, grn) and ASD, cannot have NSDN.
They cannot substitute to another number.

Appendix B
TIF Number Substitution Relationships

B-2

C
TIF Linkset Based Blocklist Feature

This chapter includes information to support the TIF Linkset Based blocklist feature.

The TIF Linkset Based Blocklist functionality enables a misused user to still make legitimate
calls in case it is blocked on a particular linkset. The blocklisted information for each number
includes the blocklisted SetID. Therefore, all the messages arriving on EAGLE are screened
with the following combination:

• The blocklisted SetID referred in incoming linkset

• The blocklisted SetID configured in RTDB

This functionality enables a misused user to still make legitimate calls in case it is blocked on
a particular linkset.

The following table provides a summary of the Service Action used specifically for TIF Linkset
Based Blocklist:

Table C-1 Summary of TIF Linkset Based Blocklist Service Actions

Service Action Description Function Precedence

TIFLSBL CgPN Service Action Indicates that a Release
should be generated if
the blocklisted SetID
(CgPNBLSet)
configured with the
incoming linkset
matches with the
blocklisted SetID
configured against the
DN in the RTDB

90

Configuration Options Used

No specific configuration options are used.

Action Performed

Indicates that a Release should be generated if:

• The blocklisted SetID (CgPNBLSet) configured with the incoming linkset matches with
the blocklisted SetID configured against the DN in the RTDB.

• No Number Substitution CgPN Service Action is configured after TIFLSBL.

Terminating Action

Yes

C-1

D
DN Block Self Healing

This appendix includes information about the DN Block Self Healing feature.

DN Block Self Healing
The DN Block Self Healing feature allows the EPAP database to self heal when a command
is executed to create a new DN Block that conflicts with one of the existing DN Blocks. In
addition to this primary function, the feature also allows the defragmentation of the DN Blocks
– split a DN Block into child DN Blocks upon addition of conflicting DN Blocks and back into
their parent DN Block upon deletion of particular child DN Blocks.

This feature supports single DN Block conflict in the EPAP database.

1. The DN Block Self Healing feature enables EPAP users to add new DN Blocks that
conflict with an existing DN Block in the EPAP database. The following changes occur
when the self healing EPAP database encounters this conflict:

• Pre-existing/conflicting DN Block is automatically deleted from the EPAP database.

• New DN Blocks are created successfully with new attributes.

• Old DN Block are split to create more DN Blocks for the range not covered by new
DN block.

2. Upon deletion of the new DN Block, the DN Block Self Healing feature returns a range of
numbers to the original DN Block, which was split as a result of addition of new DN Block.
This splitting action is described in the previous item.

Error Codes for DN Block Self Healing

These error codes are associated with the DN Block Self Healing feature.

• PDBI_MULTI_DNB_CONFLICT - More than one conflicting DN Block was found in the
EPAP dtabase.

• PDBI_DNB_SAME_PROPERTIES - A DN Block with the same properties exists in the
database and is a superset of the requested DN Block. Splitting eligibility of a DN Block is
not considered a property for this error.

• PDBI_DNB_SPLIT_NOT_ALLOWED - The user is attempting to split an existing DN
Block that was specified at the time of its creation or update as ineligible for splitting.

• PDBI_DNB_DLT_NOT_ALLOWED - The user is attempting to delete a fragment of a
master range while its subranges are present.

• PDBI_DNB_PARENT_PROPERTY_MISMATCH - The user is attempting to delete
fragments of a master range which have differing attributes. Splitting eligibility of a DN
Block is not considered a property for this error.

Rules for DN Block Self Healing

The list of rules for the DN Block Self Healing feature are as follows:

D-1

• When the new DN Block is a subset of an already existing DN Block with different
properties, the old DN Block is split into either 2 or 3 new DN Blocks.

• An error is returned when the new DN Block has bdn and edn the same as an
existing DN Block.

• An error is returned when the new DN Block has single DN address.

• An error is returned when the resulting DN Block has single DN address.

• An error is returned when more than one conflicting DN Block exists in the EPAP
database.

• When the new DN Block is a subset of an existing block with same properties, the
creation of new DN Block is not allowed.

• When the new DN Block conflicts with an existing block and is not its subset, the
creation of new DN Block is not allowed.

• An error is returned when the user tries to insert a DN Block that conflicts with a
DN Block that has itsa split option set to no.

• An error is returned when the user tries to insert a DN that conflicts with a DN
Block that has its split option set to no.

• When a DN Block that was created as a result of splitting an existing DN Block is
deleted, the complete DN Block that existed before the split is returned to the
EPAP database.

Support for DN Block Self Healing

Table D-1 illustrates whether the DN Block Self Healing is supported (Yes) or
prohibited (No) and the corresponding error that is returned.

Table D-1 Support for DN Block Self Healing

Step Performed Supported? Error Returned

New DN Block is added which is a subset of
existing DN Block and with different properties

Yes No error

New DN Block has bdn and edn same as
existing block

No PDBI_ITEM_EXISTS

New DN Block has single DN address No PDBI_BAD_ARGS

Resulting DN Block has single DN address No PDBI_BAD_ARGS

New DN Block is added which conflicts with
more than one DN Block.

No PDBI_MULTI_DNB_CONF
LICT

New DN Block is a subset of an already
existing DN Block with same properties

No PDBI_DNB_SAME_PROP
ERTIES

New DN Block conflicts with the existing DN
Block and is not its subset

No PDBI_CONFLICT_FOUND

New DN Block conflicts with the existing DN
Block with its split option set as false

No PDBI_DNB_SPLIT_NOT_
ALLOWED

New DN conflicts with the existing DN Block
with its split option set as false

No PDBI_DNB_SPLIT_NOT_
ALLOWED

Appendix D
DN Block Self Healing

D-2

	Contents
	My Oracle Support
	Acronyms
	What's New in This Guide
	1 Introduction
	Overview

	2 Functional Description
	General Description
	System Architecture
	Provisioning Database Interface Description
	Socket Based Connection
	String-Based Messages
	Security
	Remote Port Forwarding
	How to Configure the CPA for Connecting to the PDBA

	Transaction-Oriented API
	Batch-Oriented/Bulk Load
	Command Atomicity
	Provisioning Ranges of Subscriber Numbers
	Transparency of Redundant Systems
	Logs
	Crash Recovery
	Request IDs
	Multiple Session Connectivity
	Request Queue Management
	Interface Configuration and Installation

	File Formats
	Debug Log
	Import/Export Files
	Import File
	Export File
	PDBI Format
	Raw Delimited ASCII Format

	3 PDBI Request/Response Messages
	Overview
	Messages
	Connect
	Disconnect
	Begin Transaction
	End Transaction
	Abort Transaction
	Create Subscription
	Subscription Containing a Single IMSI with No DNs
	Subscription Containing an IMSI and One to Eight DNs
	One or More DNs on the Same NE with no IMSI
	Subscription Porting a Block of DNs
	Create Subscription Responses

	Update Subscription
	Modify the SP for a Specific IMSI
	Modify the Subscription Data of a Single DN
	Move an existing DN to an Existing IMSI
	Modify the Subscription Information for a DN Block
	Update Subscription Responses

	Delete Subscription
	Delete an IMSI
	Delete a Single DN
	Delete a DN block
	Delete Subscription Responses

	Retrieve Subscription Data
	Retrieve Subscription Information About a Specific DN
	Retrieve Subscription Information for a Range of DNs
	Retrieve Subscription Information About a Specific IMSI
	Retrieve Subscription Information for a Range of IMSIs
	Retrieve Subscription Data Responses

	Create Network Entity
	Update Network Entity
	Delete Network Entity
	Retrieve Network Entity
	Retrieve the Information for a Specific NE
	Retrieve the Information for a Range of NEs
	Retrieve the Information for All NEs
	Retrieve Network Entity Responses

	Switchover
	PDBA Status Query
	Dump Connections
	Create IMEI Data
	Create a Single Entry IMEI
	Create a Block Entry of IMEIs
	Create a New IMSI and Associate it with an Existing IMEI
	Create IMEI Data Responses

	Update IMEI Data
	Update a Single Entry IMEI
	Update a Block Entry of IMEIs
	Update IMEI Data Responses

	Delete IMEI Data
	Delete a Single Entry IMEI
	Delete a Block of IMEIs
	Delete IMSI(s) from the Associated IMEI
	Delete the IMSI from all IMEIs
	Delete IMEI Data Responses

	Retrieve IMEI Data
	Retrieve All the Data Associated with a Single IMEI Entry
	Retrieve IMEI Data: Retrieve a Range of IMEIs
	Retrieve IMEI Data Responses

	Request Service Module Card Report
	Retrieve Service Module Card Report
	Retrieve a List of the Service Module Cards

	4 PDBI Sample Sessions
	Introduction
	Network Entity Creation
	Simple Subscription Data Creation
	Update Subscription Data
	Simple Queries
	Multiple Response Query
	Abort Transaction
	Update Request In Read Transaction
	Write Transaction In Standby Connection
	Simple Subscription Data Creation with Single Txnmode
	Single IMEI Data
	IMEI Block Data
	Asynchronous Service Module Card Report
	Synchronous Service Module Card Report
	Service Module Card List

	A PDBI Message Error Codes
	PDBI Message Error Codes

	B TIF Number Substitution Relationships
	TIF Number Substitution Relationships

	C TIF Linkset Based Blocklist Feature
	D DN Block Self Healing
	DN Block Self Healing

