
Oracle® Enterprise Manager
Extensibility Programmer's Guide

24ai Release 1 (24.1)
F97215-01
December 2024

Oracle Enterprise Manager Extensibility Programmer's Guide, 24ai Release 1 (24.1)

F97215-01

Copyright © 2014, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Related Documents vii

Conventions vii

1 Introduction to Extending Enterprise Manager

Overview of the Oracle Enterprise Manager Platform 1-1

Oracle Management Service 1-2

Management Repository 1-2

Management Agent 1-2

Interfaces to Enterprise Manager 1-3

About the Oracle Management Service 1-3

Enterprise Manager Console 1-4

About the Oracle Management Agent 1-4

About the Oracle Management Repository 1-4

About Metadata Plug-ins 1-5

2 Getting Started With Enterprise Manager Plug-ins

What is a Plug-in? 2-1

What's New in Enterprise Manager Plug-ins? 2-2

About the Extensibility Development Kit (EDK) 2-2

Contents of the EDK 2-3

Installing the Extensibility Development Kit (EDK) 2-4

Plug-in Development Lifecycle 2-5

Designing Your Plug-in Metadata 2-6

Plug-in Contents and Packaging 2-6

Plug-in Metadata 2-7

Metadata Services 2-7

Plug-in Packaging Structure 2-7

Releasing a Plug-in 2-8

Deploying a Plug-in 2-9

iii

Automated Deployment During Discovery 2-9

Plug-in Upgrade 2-9

Undeploying Plug-ins 2-9

Deprecating a Plug-in 2-9

3 About Managed Targets

Introduction to Managed Targets 3-1

About the Target Model 3-1

Manageable Entity (ME) 3-2

Managed Target 3-3

Target Identity 3-3

Lifecycle Status 3-3

Groups 3-3

Systems 3-4

System State 3-4

Composite Targets 3-4

System Targets 3-5

Services 3-5

Management Capabilities Supported 3-5

4 About Enterprise Configuration Management

Introduction to Enterprise Configuration Management 4-1

About Configurations 4-2

Viewing and Searching Configurations 4-2

Comparing Configurations 4-3

Saving Configurations 4-4

About Associations and Topology 4-4

5 Using Derived Associations

Introduction 5-1

Understanding Enterprise Manager Association Concepts 5-1

Using Association Derivation 5-2

Using Association Derivation Rules Management 5-2

About Oracle-defined Association Types 5-2

Overview of Plug-in Developer Responsibilities 5-3

Maintaining Performance 5-3

About Overlapping Associations 5-4

Understanding Overlap Between Associations Derived by Rules 5-4

Frequently Asked Questions 5-4

iv

Which Tables Can I Reference in a Rule Query? 5-5

Are There Guidelines for When to Use Target Properties? 5-5

What is the Relationship Between Discovered and Derived Associations? 5-5

6 Using the Jobs Framework

Introduction to the Jobs Framework 6-1

Understanding Jobs 6-1

Defining Job Types 6-2

7 Using the Reporting Framework

Introduction to the Reporting Framework 7-1

Information Publisher 7-1

Developing Enterprise Manager Information Publisher Reports 7-1

8 About the Management User Interface

Introduction to the MPCUI Framework 8-1

Creating a Custom User Interface 8-1

User Interface Components 8-2

Pages, Layout, and Navigation 8-2

Packaged Regions 8-3

Charts and Tables 8-4

Other Components and Look and Feel 8-4

About MPCUI 8-4

Overview 8-4

About the UI Framework 8-5

MPCUI Services 8-5

MPCUI and the Extensibility Developer Kit 8-6

9 Understanding Discovery

Introduction to Automatic Discovery 9-1

Key Benefits of Adding Automatic Discovery 9-1

Automatic Discovery Overview 9-1

10

Understanding Compliance Standards

About the Compliance Management Solution 10-1

Overview of Compliance Management 10-1

About Compliance Framework 10-2

About Compliance Standards 10-2

v

About Compliance Standard Rules 10-2

Some Considerations for Creating Compliance Standards 10-3

About Compliance Evaluation 10-3

11

Understanding Software Library

Introduction to Software Library Framework 11-1

Key Features of Software Library Framework 11-1

Software Library Extensibility Concepts 11-1

Defining Metadata to Extend Software Library 11-3

Creating and Managing Software Library Entities 11-3

Enterprise Manager Console 11-4

Enterprise Manager Command Line Interface (EMCLI) 11-4

Using Software Library Entities 11-4

vi

Preface

This document provides a brief overview of the Enterprise Manager product and its
architecture and then describes each of the subsystems that provide interfaces for extending
the product features for a new or customized target type.

Each section provides an overview of the particular subsystem and describes the features it
exposes to Enterprise Manager end-users, and the ways in which plug-in developers may
leverage the provided interfaces to support those features for new target types being added to
Enterprise Manager.

This document is not a reference guide and as such does not include details of these
interfaces including API details. Refer to Oracle Enterprise Manager Extensibility Reference
Guide and individual API Documentation for those details.

Audience
This document is intended for developers that want to extend Oracle Enterprise Manager to
support the ability to manage custom target types or extend the manageability of out-of-box
target types.This document assumes basic knowledge of Enterprise Manager and its core
features and concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documents
For more information about Oracle Enterprise Manager, see the Oracle Enterprise Manager
Online Documentation set: https://docs.oracle.com/en/enterprise-manager/index.html.

Conventions
The following text conventions are used in this document:

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/enterprise-manager/index.html

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii

1
Introduction to Extending Enterprise Manager

Oracle Enterprise Manager is Oracle's suite of management products for managing various
Oracle and non-Oracle technologies. The name Enterprise Manager actually refers not to a
single product, but to a portfolio of products. At the top level of the product portfolio, Oracle
Enterprise Manager is made up of a set of consoles for managing various technologies
including Oracle Database, Oracle Fusion Middleware and Oracle Fusion Applications.

This chapter contains the following sections:

• Overview of the Oracle Enterprise Manager Platform

• About the Oracle Management Service

• About the Oracle Management Agent

• About the Oracle Management Repository

• About Metadata Plug-ins

Overview of the Oracle Enterprise Manager Platform
The foundation of Enterprise Manager is a lightweight, multi-tiered, extensible platform for
building management tools. The framework is built on the Fusion Middleware platform. The
three main components of the platform are:

• Oracle Management Service

• Management Repository

• Management Agent

1-1

Oracle Management Service
The Oracle Management Service (OMS) provides the services used to coordinate the storage
of management information and the automation of management activities for all entities
managed in the network. It also includes facilities for serving the web-based user interface,
which is the Enterprise Manager console.

Management Repository
The Management Repository is the Oracle Database that stores all important management
information for the entities managed by Enterprise Manager. The Oracle Management Service
(OMS) uses the Management Repository to store and retrieve key information, such as
monitoring data.

Management Agent
The Management Agent is the lightweight process that acts as a proxy for Enterprise Manager
on the various hosts in the network where entities that Enterprise Manager manages are

Chapter 1
Overview of the Oracle Enterprise Manager Platform

1-2

located. It communicates with the OMS to collect and deliver monitoring information and to
coordinate management activities executed against the management entities.

Interfaces to Enterprise Manager
The following tools and applications are available to access Enterprise Manager:

• Enterprise Manager Console

The Enterprise Manager Console provides the user interface that presents management
content to the user for monitoring, administration, or enterprise configuration.

For more information, see Enterprise Manager Console.

• EM CLI

The Enterprise Manager Command Line Interface (EM CLI) enables you to access
Enterprise Manager functionality from text-based consoles (shells and command windows)
for a variety of operating systems.

For more information, see the Oracle Enterprise Manager Command Line Interface.

• Management Repository Views

The Management Repository views provide access to target, metric, and monitoring
information stored in the Management Repository.

For more information, see Using Management Repository Views in Oracle Enterprise
Manager Management Repository Views Reference.

• Cloud Web Service APIs

The Cloud APIs can be used to integrate Enterprise Manager with custom-built or 3rd party
self service consoles and service desks.

For more information, see Using the Cloud APIs in Oracle Enterprise Manager Cloud
Administration Guide.

About the Oracle Management Service
The Oracle Management Service (OMS) tier is a Java EE (Enterprise Edition web applications
that can be divided into several major components:

• A management console for performing management and administrative functions

• A Management Repository where information collected by the Management Agents from
managed targets is consolidated

• Management administration and maintenance services

The management service tier can be further distributed in high-end environments for
performance. For example, you can install the Management Repository on a separate host
from the host running the Management Service. The framework can also be collapsed into the
managed target tier to support a stand-alone deployment configuration (Management
Repository, Management Service, and Management Agent residing on a single host).

In a typical configuration, the Oracle Management Service (OMS) resides on a separate host
from the managed targets. The infrastructure tiers can be collapsed onto a single host for small
deployments for enterprises where central management is not required.

The OMS tier of the management infrastructure includes the management consoles that are
used for management operations such as monitoring, administration, configuration, central
policy setting, and security.

Chapter 1
About the Oracle Management Service

1-3

Enterprise Manager Console
The Enterprise Manager Console provides the user interface that presents management
content to the user for monitoring, administration, or enterprise configuration.

The Enterprise Manager Console uses the Enterprise Manager Services to display
management content to the user. Administrators, managers, or developers can see views of
the management information that is abstracted to best satisfy their requirements. Interface
customization controls what information is displayed as well as the operations that may be
performed by a particular user. For example, administration functions such as database
shutdown and start-up might not be available to an upper level manager, yet the manager
could view the availability status of the server.

About the Oracle Management Agent
The Oracle Management Agent identifies targets, collects data about those targets, and
detects problems in your environment (such as high CPU usage). A typical management
framework deployment has one Management Agent on each host that is part of the enterprise.

The Management Agent is responsible for the managed targets that are running on that host. A
target, or more specifically, a target instance, can be defined as any entity that can be
monitored within an enterprise. This entity can be an application running on a server, the
server itself, the network, or any of its constituent parts.

To store and process the information collected by the Management Agent, and to instruct the
Management Agent to perform administrative tasks, the Management Agent relies on the part
of Enterprise Manager that provides the core functionality of the framework, that is, the Oracle
Management Service.

The Management Agent coordinates management activities on a host. In a typical
configuration, one Management Agent will be running on the host. It performs management
tasks for any targets on the host system. The Management Agent is responsible for:

• Executing management tasks

• Gathering and transferring metric data

• Detecting alert thresholds (warning and critical)

About the Oracle Management Repository
The Oracle Management Repository (Management Repository) is the storage location where
all the information collected by the Management Agent gets stored. The Management
Repository consists of schema definitions, database jobs, and stored procedures running
inside an Oracle database. The information in the Management Repository includes:

• Configuration information about the managed targets

• Historical metric data and alert information

• Client and web server response time information

• Managed target availability information

• Product and patch inventory information

The information stored in the Management Repository is useful for tasks such as end-to-end
reporting and problem diagnosis, as well as service level agreement and availability reporting.

Chapter 1
About the Oracle Management Agent

1-4

Information stored in the Management Repository can be shared between any number of
administrators accessing Central Consoles that point to the central Management Repository.

The Management Repository is the comprehensive source for all management information for
targets that are managed through the OMS. The Management Repository is designed as an
open schema. This allows users of Oracle's management infrastructure to customize how the
information in the repository is used when the default capabilities are not sufficient to satisfy
their business requirements.

If you are using Enterprise Manager's partner Extensibility Development Kit (EDK), then you
cannot modify the Management Repository directly. You can access information available from
the repository's public views in a number of areas, including report formation, association
derivation, compliance rule evaluation, and the display of management information in a
customized UI built with the plug-in. For more information, see the relevant sections of this
guide.

About Metadata Plug-ins
A metadata plug-in (plug-in) extends the ability of Enterprise Manager to manage and monitor
a specific type of target. The plug-in instructs the Management Agent on how to collect metric
data for the target, and instructs Oracle Management Service (OMS) on what to do with the
collected data.

A plug-in consists of a set of metadata files that serve specific functions at different tiers within
the Enterprise Manager framework. For example, the target type metadata file is an integral
part of defining a new target type. The EDK requires the target type metadata file, in addition to
a default collection file, to create a new plug-in within the plug-in archive.

When you introduce a new target type to Enterprise Manager, the management features
included in Enterprise Manager are automatically supported for the new targets by default. This
includes core management features such as:

• Metric Collection and Alerts

• Availability and Blackouts

• Groups and Systems

• Default System Reports

• Other Common Console Features

You can also choose to enable additional management features for your target types by using
application programming interfaces (APIs) supported by the EDK. These features include:

• Automated Discovery

• Target-to-Target Associations

• Configuration Management

• Custom Target Credentials

• Automation (or Jobs)

• Custom Reports

• Compliance Rules and Standards

• Custom User Interface for Management

Each of these management features requires additional metadata files, and possibly the
creation of scripts, that must be packaged with the plug-in.

Chapter 1
About Metadata Plug-ins

1-5

2
Getting Started With Enterprise Manager Plug-
ins

This chapter provides an introduction to Enterprise Manager metadata plug-ins and the
Extensibility Development Kit (EDK).

This chapter contains the following sections:

• What is a Plug-in?

• What's New in Enterprise Manager Plug-ins?

• About the Extensibility Development Kit (EDK)

• Installing the Extensibility Development Kit (EDK)

• Plug-in Development Lifecycle

• Plug-in Contents and Packaging

• Releasing a Plug-in

• Deploying a Plug-in

What is a Plug-in?
A plug-in is a group of files (such as target definition files, collection scripts to collect metrics
from targets, and any custom UI components to customize user interfaces) that has been
added to a plug-in archive using the Enterprise Manager Extensibility Development Kit (EDK).
The plug-in files must be added to an archive before they become a plug-in officially. A plug-in
archive file (*.opar) associates the files together as an official plug-in.

Each plug-in defines a new type or types of target that can be monitored by Enterprise
Manager. A target, or more specifically, a target instance, can be defined as any entity that can
be monitored within an enterprise. This entity can be an application running on a server, the
server itself, the network, or any of its constituent parts.

Enterprise Manager makes managing target instances simple by enabling you to add new
target instances to the management framework from the Enterprise Manager console. Then
you can take advantage of Enterprise Manager's monitoring and administrative features.

A plug-in consists of several types of files that serve specific functions at different tiers within
the Enterprise Manager framework. For example, the target type metadata file is an integral
part of defining a new target type. The EDK requires the target type metadata file, in addition to
a default collection file, to create a new plug-in within the plug-in archive.

To create a new plug-in, you must have the following (minimum requirement):

• Plug-in metadata

• Target-type metadata

• Default collection metadata

When you use plug-ins to define custom target types for monitoring by Enterprise Manager,
you can centralize all of your management information in the console.

2-1

When you introduce a new target type to Enterprise Manager, the management features
included in Enterprise Manager are automatically supported for the new targets by default. This
includes core management features such as:

• Metric Collection and Alerts

• Availability and Blackouts

• Groups and Systems

• Default System Reports

• Other Common Console Features

You can also choose to enable additional management features for your target types by using
application programming interfaces (APIs) supported by the EDK. These features include:

• Automated Discovery

• Target-to-Target Associations

• Configuration Management

• Custom Target Credentials

• Automation (or Jobs)

• Custom Reports

• Compliance Rules and Standards

• Custom User Interface for Management

Each of these management features requires additional metadata files, and possibly the
creation of scripts, that must be packaged with the plug-in.

What's New in Enterprise Manager Plug-ins?
This section describes the new features of Enterprise Manager plug-ins:

• Plug-in Deprecation and Obsolescence

This release provides an EDK to support the development of custom plug-ins for managing
target types not supported out of the box.

About the Extensibility Development Kit (EDK)
A key component of the Enterprise Manager architecture is the Extensibility framework. To
enable Oracle partners to extend the Enterprise Manager platform, an Extensibility
Development Kit (EDK) is provided with the product.

The EDK is a collection of tools, utilities, and documentation, including:

• Enterprise Manager Extensibility documentation: Provides general guidelines for
programming Enterprise Manager plug-ins

• Reference Implementation: Provides a reference code implementation, code snippets, and
so on for various Enterprise Manager features

• Build time tools to verify EDK conformance: A tool that you can use to validate and report
any violations, with respect to Enterprise Manager Extensibility guidelines

• Packaging Tool: A tool to package the plug-in components tool (empdk)

Chapter 2
What's New in Enterprise Manager Plug-ins?

2-2

• Verification Tool: A tool to validate plug-in code components and to report violations (if
any).

The EDK includes a command line utility called empdk. Use this utility to package or validate a
plug-in archive. For information about the empdk commands and their options, see the Oracle
Enterprise Manager Extensibility Programmer's Reference.

After you download the EDK, unpackage it on your local system, and change your current
directory to the location where you unpacked the EDK. The EDK contains reference
documentation and guides to help you with plug-in development as well as the API reference
you might need to integrate while developing plug-ins.

For information about downloading the EDK, see Installing the Extensibility Development Kit
(EDK).

Contents of the EDK
The EDK archive contains the following directories:

• \bin

Contains the empdk utility, which you use to:

– Validate the structure of your plug-in

– Package your plug-in

• \doc

Contains the Oracle Enterprise Manager Extensibility Programmer's Guide and
Programmer's Reference, as well as the EDK API Reference documentation, including
documentation on Management Views. Review overview.html for links to the
documentation provided.

You can also access the EDK API Reference documentation directly through its index
page (sdk_api_ref.html).

• \lib

Contains internal libraries used by the EDK.

• \oui

Contains internal libraries used by the EDK.

• \samples

Contains a complete reference implementation of a plug-in, packaged as
demo_hostsample.zip. The sample metadata files included should be used as examples of
the files referenced throughout the EDK documentation.

View the README packaged with the archive for instructions on building, deploying, and
using the sample plug-in.

Other utilities referenced in this documentation, including EM CLI and EMCTL, are installed
with Enterprise Manager and are typically deployed to the Oracle Management Service (OMS)
host.

Chapter 2
About the Extensibility Development Kit (EDK)

2-3

Installing the Extensibility Development Kit (EDK)

Note:

Before installing the EDK, you must have the following:

• Latest version of the EDK ZIP archive from the Self Update console. (To access
the Self Update console, from the Enterprise Manager console, select Setup,
then Extensibility, and then Self Update.)

• Java version 1.7.0_51 or later

• Local system running Solaris, Linux, HP-UX, AIX, or Windows with New
Technology File System (NTFS)

To install the EDK:

1. Download the EDK ZIP archive to your local system using one of the following options:

• Using the Enterprise Manager console

a. Log in to Enterprise Manager.

b. From the Setup menu, select Extensibility, then select Development Kit.

The Extensibility Development Kit (EDK) page appears.

c. Under Installing the EDK, select Download the Extensibility Development Kit to
your workstation.

d. Save 13.1.0.0.0_edk_partner.zip to your local system.

• Using the Enterprise Manager Command Line Utility (EM CLI), open a command
prompt and run the following command:

emcli get_ext_dev_kit

This command downloads the EDK ZIP archive to the same directory from where you
ran the command and does not require any parameters.

Note:

For information about setting up EM CLI, see the Oracle Enterprise Manager
Extensibility Reference Guide.

2. Set your JAVA_HOME environment variable and ensure that it is part of your PATH. For
example:

setenv JAVA_HOME /usr/local/packages/j2sdk1.7.0_51

setenv PATH $JAVA_HOME/bin:$PATH
3. Unpackage the downloaded EDK ZIP archive to a directory on your local system. For

example:

Unzip 13.1.0.0.0_edk_partner.zip

Chapter 2
Installing the Extensibility Development Kit (EDK)

2-4

This command creates the following directories under the directory (release_edk_partner)
where you unpackaged the EDK ZIP archive:

release_edk_partner
 |
 bin
 doc
 lib
 oui
 samples
 README

For more information about the directory contents, see Contents of the EDK.

Plug-in Development Lifecycle
Developing a plug-in involves:

1. Designing the set of entities to be included in the plug-in

2. Defining the metadata that describes them to Enterprise Manager

3. Packaging and delivering the plug-in so that users can deploy and use it in Enterprise
Manager installations

The image below depicts the lifecycle of a plug-in.

The plug-in lifecycle represents the transition of a plug-in through the following stages:

• Design/Develop: Designs and develops the plug-in

• Package: Packages and releases the plug-in

• Publish: Publishes the plug-in at the Oracle Enterprise Manager Store

Chapter 2
Plug-in Development Lifecycle

2-5

• Download: Enterprise Manager downloads plug-ins from Oracle Enterprise Manager Store

• Deploy: Deploys the plug-in to Oracle Management Service (OMS) and Management
Agents

• Upgrade: Upgrades the plug-in to a later version (download and deploy)

• Undeploy: Removes the plug-in completely from OMS

Designing Your Plug-in Metadata
The first step in developing your plug-in is to design the contents of your plug-in. At the highest
level, this includes deciding what set of target types will be included in the plug-in (a plug-in
may include management metadata for one or more target types) and defining what set of
management capabilities you want to support for each target type. (The complete available list
is included in Plug-in Contents and Packaging).

Before creating plug-in files, you must define which parameters of the target type are required
to monitor and manage your new component accurately. This involves:

• Identifying performance and configuration metrics that should be collected.

• Determining how often each metric should be collected. Oracle recommends that the
collection frequency for any metric should not be less than once every five minutes.

• Based on customer-specific operational practices, specifying default warnings and/or
critical thresholds. Whenever a threshold is crossed, Enterprise Manager raises an
incident, informing administrators of potential problems.

These metrics and collection settings are the required components of every plug-in. Additional
capabilities such as job definitions, custom User Interface, and so on, are optional. Each
feature to be included in the plug-in requires additional thought and design to determine what
aspects of the target should be manageable for those features.

Some of the key features to consider when designing your plug-in include the following:

• Administrative features that are necessary to manage the target, such as administrative
tasks or larger, and more complex jobs that may require automation support (for example,
scheduling)

• Configuration data to be used for managing the target including associations between the
target and other targets in network

• Reports and customized user interfaces to be provided for end-users to manage the
targets

This is not a complete list and the information for integrating with each subsystem is
summarized in this guide and provided in detail in the Oracle Enterprise Manager Extensibility
Reference Guide.

Plug-in Contents and Packaging
The plug-in contents and packaging section includes the following topics:

• Plug-in Metadata

• Metadata Services

• Plug-in Packaging Structure

Chapter 2
Plug-in Contents and Packaging

2-6

Plug-in Metadata
Each plug-in includes the plug-in metadata, which is defined in XML files that represent all the
information about a plug-in.

Plug-in metadata is used during plug-in deployment. It contains properties that identify the
plug-in, such as name and version, and declares the set of target types that will be added to
Enterprise Manager.

Metadata Services
Most of the Enterprise Manager features exposed to you through the Enterprise Manager EDK
require the construction of metadata files (in XML). These metadata files define the items that
are integrated for that target type for the particular subsystem. For example, a plug-in might
contain a metadata XML file that defines the job types that are available for that target type.
After deployment, the jobs will be available to be submitted or executed for any instance of that
target type.

Target type metadata consists of the metrics you want to expose and the methods used to
retrieve and compute those metrics. The target type metadata file tells the Oracle Management
Agent what data to retrieve and how to obtain that data for this particular target type.

In addition to the metrics to be collected for the target type, the target type metadata includes
the target properties and credentials information. The target properties are the key set of
properties that help to define the target. These properties are typically static though Enterprise
Manager does support the ability to define dynamic instance properties that are evaluated by
the Management Agent. For information about defining dynamic instance properties, refer to
the Oracle Enterprise Manager Extensibility Reference Guide.

The plug-in includes a default collections file, which defines the frequency at which metrics and
configuration data will be collected

The Enterprise Manager Extensibility Framework provides the support for packaging these
metadata files in the EDK as well as for deploying these files to the appropriate subsystem
within Enterprise Manager. This may include deploying information to the Management Server,
or to the Management Agent, or both in some cases. For more information about packaging
metadata files in the EDK, see Plug-in Packaging Structure.

In certain instances, the metadata includes references to other components packaged with the
plug-in. For example, a job type definition might include a step that executes a Perl script
against one of the targets to perform an administrative task. In this case, the job type definition
is declared in the metadata and included in the Management Server part of the plug-in while
the script is included in the Management Agent part of the plug-in.

For a complete list of all metadata services available and the detailed documentation
describing the use of each service, see the Oracle Enterprise Manager Extensibility Reference
Guide.

Plug-in Packaging Structure
The final step in developing a plug-in is to package it into a plug-in archive. This step takes a
staging directory (plugin_stage) as input where the files that comprise the plug-in are located.
Example 2-1 summarizes the directory structure and the location for the files.

For information about the contents of the plug-in directory, see the Oracle Enterprise Manager
Extensibility Reference Guide.

Chapter 2
Plug-in Contents and Packaging

2-7

Example 2-1 Plug-in Directory Structure

plugin_stage/
 |
 plugin.xml
 agent/
 |
 plugin_registry.xml
 default_collection/
 |
 target_type.xml
 metadata/
 |
 target_type.xml
 scripts/
 |
 scripts
 oms/
 |
 metadata/
 |
 default_collection/
 |
 target_type.xml
 derivedAssoc/
 |
 derivedAssoc_rule.xml
 discovery/
 |
 discovery.xml
 gccompliance/
 |

compliance_rule.xml
 jobTypes/
 |
 job_type.xml
 mpcui/
 |
 mpcui.xml
 reports/
 |
 report.xml
 snapshotlive/
 |
 target-type_ecmdef.xml
 targetType/
 |
 target_type.xml
 discovery/
 |
 discovery scripts

Releasing a Plug-in
After you have packaged the plug-in, you can distribute the plug-in archive (OPAR) file to the
Enterprise Manager administrators that require support for the target types included in that
plug-in. In this mode, Oracle does not certify the quality or safety of the plug-in for use in a

Chapter 2
Releasing a Plug-in

2-8

production environment and appropriate evaluation in a test environment is strongly
encouraged before deploying a plug-in that is not certified by Oracle.

To make the plug-in available for deployment, the Enterprise Manager administrator must
import the plug-in archive into the Enterprise Manager installation. After this is complete, the
plug-in will be available to be deployed in the same way as any other plug-in downloaded from
Oracle. For information the plug-in import command, see the Oracle Enterprise Manager
Extensibility Reference Guide.

Deploying a Plug-in
After a plug-in has been imported into Enterprise Manager, the Enterprise Manager
administrator must explicitly deploy the plug-in to the Management server and to the
appropriate Management Agents.

Plug-in deployment can be accomplished through the Enterprise Manager command line
facility (EM CLI) or by selecting Extensibility from the Setup menu in the Enterprise Manager
console. For information about the use of these options, see the Oracle Enterprise Manager
Extensibility Reference Guide.

Automated Deployment During Discovery
If a plug-in includes support for automated discovery, Enterprise Manager deploys the plug-in
to the appropriate Management Agent automatically as targets are discovered and marked as
manageable targets (promoted) in Enterprise Manager. To enable automated discovery, you
must include the appropriate discovery metadata in the plug-in.

For plug-ins that do not include support for the automated discovery of targets, the Enterprise
Manager administrator must add targets to the Enterprise Manager console manually,
specifying the Management Agents where the targets are located. In this case, the Enterprise
Manager administrator must deploy the plug-in to those Management Agents before manually
adding the target.

Plug-in Upgrade
As new versions of a plug-in are released, the Enterprise Manager administrator can import the
new plug-in by using the self-update feature of Enterprise Manager to download the new
version from the Oracle Store, or by importing the new plug-in archive if it is a private
distribution.

At this point, the new plug-in version is available in Enterprise Manager but not deployed to
any of the Management Servers or Agents. The Enterprise Manager administrator must
explicitly deploy the new plug-in version using the same process for deployment described in
Deploying a Plug-in.

Undeploying Plug-ins
If a plug-in is not in use anymore, you can remove it from Enterprise Manager. Undeploying a
plug-in removes all elements of the plug-in from the Management Server and from the
Management Agents where the plug-in was deployed previously.

Deprecating a Plug-in
Due to various business and technical reasons, sometimes released plug-ins must declare
end-of-life and support for these plug-ins discontinues going forward.

Chapter 2
Deploying a Plug-in

2-9

When you deprecate a plug-in, you are announcing the end of life of the plug-in in advance
and support will discontinue from the next major Enterprise Manager platform release. When
support discontinues in the next major release, the plug-in becomes obsolete.

For example, if you deprecate a plug-in in Release 13.1.0.0, then the deprecated plug-in will
have the same level of support in Release 13.1.0.1. It will not become obsolete until the next
major release, such as Release 14.1. For information about deprecating plug-ins, see the
"Deprecating a Plug-in" section in the Enterprise Manager Extensibility Programmer's
Reference.

Note:

You cannot make a plug-in obsolete directly. You must mark it as deprecated in an
earlier patchset release.

Chapter 2
Deprecating a Plug-in

2-10

3
About Managed Targets

This chapter provides information about managed targets and contains the following sections:

• Introduction to Managed Targets

• About the Target Model

Introduction to Managed Targets
Each plug-in defines a new type of target that can be monitored by Enterprise Manager. A
target, or more specifically, a target instance, can be defined as any entity that can be
monitored within an enterprise. Managed targets are the entities that Enterprise Manager can
monitor and manage. Examples of targets include hosts, databases, application servers,
applications, and listeners. As your environment changes, you can add and remove targets
from Enterprise Manager as required.

Many of the commonly-used managed targets have been defined as part of the base
Enterprise Manager product. They are preconfigured for management automatically when a
management-ready product is installed. Oracle applications, Oracle databases and
applications servers, and many of the operating systems that run Oracle products are all
classified as management-ready targets.

Even though a target is predefined - for instance, monitoring levels, thresholds, and notification
rules - you can still customize Enterprise Manager as required to meet business requirements.
That is, you can perform value-added instrumentation to access more of the rich management
functionality of Enterprise Manager than is provided with the standard target configuration.

Managed targets include:

• Applications that require management

• Separately configurable or controllable subsystems of an application

• Management components of the underlying application hardware topology

About the Target Model
The target model consists of many different types of entities, all of which are modeled as
targets to derive the benefit of the security provided by the security infrastructure for targets.
For example, systems, services, and groups are all modeled as targets. The line of distinction
between the various entities has become blurred over time and has been subsumed into the
overall notion of target. So a target could mean different things to different plug-in developers.

To bring distinction and clarity into what kind of entity is actually being modeled, Enterprise
Manager employs the concept of high level classes called manageable entity (ME) classes into
which each of the entities falls. Each of the classes has a well-defined definition and
capabilities. By looking into definitions, you should be able to tell which class the entity being
modeled falls under.

For example, today redundancy groups are commonly mistaken for groups, whereas
redundancy groups are systems. By following the definition of group and system, it should be
clear under which class it falls.

3-1

Manageable Entity (ME)
In the Enterprise Manager context, a manageable entity is an entity that Enterprise Manager is
capable of managing. This implies that the entity is exposed in some form to end users in the
Enterprise Manager application, and has well-defined attributes and semantics.

There are several classes of manageable entities in Enterprise Manager. Each manageable
entity class has the following characteristics:

• Definition: Specifies the rules and inherent attributes of the entity class

• Representation: Deals with how entities of that class are represented in the Enterprise
Manager data model and exposed to end users

• Enterprise Manager Capabilities: Features and capabilities that Enterprise Manager
provides to entities of that class

All manageable entities have the following common capabilities in Enterprise Manager. The
capabilities listed under each ME are in addition to the common capabilities.

• They are protected by Enterprise Manager security model.

• They can all participate in relationships (associations) with other MEs. There are some
restrictions that are noted alongside the class.

• They have unique identification

• Properties (name-value pairs) can be attached to the ME

A manageable entity in Enterprise Manager falls into one of the following classes only.
Additional classes can be added in future releases. If an entity does not fall into any of the
classes, then it is not a manageable entity or it is a new class of ME that requires support.

• Managed Targets

• Services

• Systems

• Groups

• Target components

A manageable entity can be in multiple states, as outlined below.

• Managed state or Not-Yet Managed (NYM) state

Initially when a target is discovered, it is loaded into the Management Repository as an
NYM entity. In this state, the entity can have associations but is not managed by a
Management Agent yet. The user can go to the discovery results page and assign them to
a Management Agent along with required credentials. The entity then goes to managed
state. It is possible also to manually initiate target discovery from the Enterprise Manager
UI and retrieve or provide all necessary properties of a target and save it as a managed
target directly. Automatic discovery is one use case where NYM targets come to existence.

• Existence only state

A discovered entity that Oracle does not support will have an existence only state. It is
similar to an NYM entity except that it cannot be managed by Oracle.

When the plug-in developer registers this target type, they must add the is_existence
type property to the target type metadata file. For more information about type properties
and the target type metadata file, see the Creating Target Metadata Files from Extensibility

Chapter 3
About the Target Model

3-2

Programmer's Reference on the Extensibility page of the Oracle Enterprise Manager
Online Documentation set.

Note:

Plug-in developers using the EDK can define new target types that are managed
within Enterprise Manager, but this is limited to Managed Targets and Target
Components.The ability to define new install home, service, system, or group types is
not supported as part of the EDK.

The definition and capabilities of each of the classes are explained in the following
sections.

Managed Target
A managed target is a manageable entity in Enterprise Manager that satisfies all the following
conditions inherently (and is worth modeling). These are native to the entity and not derived
from being represented in Enterprise Manager.

• Availability (Up/Down Status).

• Configuration attributes that can be collected

• Performance attributes that can be measured such as response time

Hosts, databases, listeners, and so on, are examples of managed targets.

The target type can be registered using target metadata XML described in Target Identity.

Target Identity
In this release of Enterprise Manager, you can rename a target to a new name without loss of
history. You should not store an Enterprise Manager target name with any external data
associated with the target that might be used later to locate the target in Enterprise Manager.

Lifecycle Status
The lifecycle status property is set by the end user to one of the following values:

• Development

• Test

• Release

• Production

For example, this property can be used in the priority processing of events. You do not have to
do anything to make use of this property.

Groups
A group is a collection of manageable entities that allows end users to manage many MEs as a
single logical unit. There are no required associations between members of the group – thus,
members of a group may or may not have inherent relationships among themselves and with
the group containing them. The group will have a contains association with its members.

Chapter 3
About the Target Model

3-3

Users decide membership in the group (direct addition or by criteria), so do not make any
assumption on the composition of the group at design time.

Groups can be assembled by end users in an ad-hoc manner or by specifying specific
business criteria (for example, by Line of Business, test versus production, target version, and
so on).

There are two different types of groups from privilege perspective:

• Normal group

Only view privilege on the group is propagated to the members.

• Privilege Propagating group

Any privilege on the group is propagated to the members.

Systems
A system is a collection of inherently related manageable entities, which together provide one
or more business functions or services.

The members of a system have well-defined relationships. These relationships are specified by
associations.

The main difference between a system and a group is that a system is a collection of inherently
related entities while groups are created mainly to manage many entities as one. Systems
cannot contain groups; however, groups can contain systems.

System State
A system is fully formed if all of its underlying targets and the required associations have been
discovered. If any of the required target and associations has not been discovered, then the
system is partly formed. If the system cannot be created due to underlying logic problems, then
the system is broken.

System operations are possible only on fully formed systems. System operations can be done
on partially formed systems. It is your decision to support operations on partly-formed systems.

Availability will be computed for fully formed systems only. Charts and topology can be viewed
for partly formed or broken systems. Root Cause Analysis (RCA) and other diagnostic utilities
can work reliably on fully formed systems only.

Composite Targets
A composite target is a target that is composed of a number of related targets that are
managed as a group. The related targets are often referred to as children or members of the
composite target. As part of your plug-in, you will define the different target types that describe
the composite target itself as well as its children target types

The composite target is a natural group of targets, the semantics of which are described in the
plug-in itself. Enterprise Manager does not assign any additional semantics to the composite
target other than the ability to represent the relationships between the composite and its
children visually, either in the target navigator or in the topology view of the composite target.
Any other semantics are assumed to be enforced with the plug-in code, either as an
aggregation of data into composite metrics, associations between members, or operations
(tasks or jobs) that span the composite children.

Chapter 3
About the Target Model

3-4

One typical composite example is that of a redundancy group. In this situation, a series of
related targets form a group that is managed as a single composite entity. Each member of the
group can also be managed separately as well as part of the group (composite) itself. The
specific semantics of how the group operates, such as how failover occurs, how monitoring
information is aggregated, and so on, are part of the logic defined within the plug-in. Enterprise
Manager does not attempt to infer additional semantics from the composite definition, but it can
display the set of members of the composite together and provide services of managing the
associations between the members and other targets, associations between the members and
the composite target itself and for retrieving membership or association details about the
composite target or its members.

System Targets
In addition to composite targets, this release of the EDK adds support for the definition of a
system target type as part of a metadata plug-in. While a composite target allows you to define
a set of related targets that should be managed as a group, a system target type includes
support for additional semantics provided by Enterprise Manager.

System targets are the basis for defining monitored services, which are the components of
applications that run on the IT infrastructure. The IT infrastructure is modeled as a series of
systems on which the services run. As such, Enterprise Manager supports the ability to view
and monitor a system, and perform operations such as Root Cause Analysis of service failures
for services that run on the system.

Services
A service models the access point of a business function offered by a target or system. A
service can be associated with zero or one system. A service can use beacons or system
components to compute availability and performance data.

For example, the e-mail service in the Beehive Application System uses a beacon transaction,
which uses the SMTP protocol to check e-mail availability. Alternatively, service availability for
a end user system can be defined by defining the key components of the system on which the
service depends and then specifying the condition ALL key components up or ANY key
component up.

A remote web service is an example of a service not associated with a system that Enterprise
Manager manages. Enterprise Manager can still monitor the service using a beacon
transaction to checks its availability and performance even though the underlying system is an
infrastructure that is not known to or otherwise managed by Enterprise Manager.

This allows Enterprise Manager users to include remote services in the topology of their
applications and to include the monitoring of those services as part of the application
monitoring solution.

Management Capabilities Supported
The following table represents the type of capabilities that are supported for each of the
various entity types that Enterprise Manager supports. Members only means that the operation
is on the members of the ME and not on the ME itself. For example, Jobs can be run against
members of the group but not on the group itself even though the job is submitted against the
group.

Chapter 3
About the Target Model

3-5

Capability Target NYM Group Systems
(Discovered)

Systems (user defined) Service

Availability (up/down status) Y N N Y (optional) N Y

Performance Metrics (collected and
rollup)

Y N Rollup
only

Y Rollup only Y

Configuration Collections (save/compare
operations)

Y N N Y Members only Y

Compliance Rules and Standards Y N Y Y Y Y

Can participate in associations Y Y Restricte
d to
contains
with
members

Y User-defined only Y

Assoc Derivation Y N N Y N Y

Jobs Y N Members
only

Y Members only Y

Events Y N Members
only

Y Members only Y

Patching, Provisioning Y N Members
only

Y Members only Y

Blackouts Y N Members
only

Y Members only Y

Templates Y N Members
only

Y Members only Y

Automatic Discovery (entity can be
discovered or constructed automatically
by Enterprise Manager)

Y Y N Y N Y

Privileges Y Y Y Y Y Y

Privilege Propagation (propagate
privileges to members)

N N Y
(optional)

Y (optional) Y (View only) N

Metric Extensions Y N N Y N Y

Chapter 3
About the Target Model

3-6

4
About Enterprise Configuration Management

This chapter provides an overview of Enterprise Configuration Management and the Enterprise
Configuration Management framework.

This chapter contains the following sections:

• Introduction to Enterprise Configuration Management

• About Configurations

• About Associations and Topology

Introduction to Enterprise Configuration Management
Enterprise Configuration Management enables you to collect configuration information from a
target, which is characterized as large and rarely changing collections of information with non-
trivial structure. Such collections are collected rarely compared to regular (performance)
metrics.

Configuration data should only be affected by administrators explicitly performing some change
to a system, such as installing a patch or reconfiguring the target in some way. Configuration
data must not change except due to some change initiated by a running system without explicit
action from an administrator. Configuration data is collected at most once a day and should
normally produce the exact same data as the previous collection.

Examples of configuration data include the maximum number of processes configured on a
system and the maximum amount of available disk space. Examples of nonconfiguration data
include the current number of processes on a system or the current amount of used and free
disk space.

Enterprise Configuration Management provides a number of features, including:

• Infrequent (by default, daily) collection of a relatively large set of related configuration data

• On-demand refresh and scheduled refresh (through a job) of the configuration information

• Comparison of configurations to discover how they differ across targets. Users can
customize comparisons through comparison templates.

• Saves configurations in the Management Repository as saved snapshots for later viewing,
comparison, and any other operations related to configurations.

• Exports configurations into files and imports such files back into Enterprise Manager as
saved snapshots. This can be used to archive configuration snapshots in third-party
systems and to transfer them from one repository to another (for example, to transfer
configuration snapshots to Oracle Support).

• Historical change tracking. When new configurations are inserted into the Management
Repository, a comparison with an older configuration for the same target reveals what has
changed in the configuration information. These changes are stored as part of the history
of configuration information. End-users can view and search this history, as well as sign up
to be notified when certain changes occur.

• Powerful search across all the configuration information in the enterprise or across a
subset of targets (for example, within a group).

4-1

• Triggering association (relationship) collections to related targets.

• Provides the basis for compliance rules and standards, which are implemented on
Enterprise Configuration Management data.

About Configurations
Enterprise Configuration Management collects configurations as a collection of configuration
snapshots. A configuration snapshot is a large collection of information that changes
infrequently relative to performance metrics. Each configuration snapshot is associated with an
Enterprise Manager target. For example, an Oracle Home configuration snapshot is associated
with an Oracle Home target.

Each snapshot type is associated with a given target type. For example, configuration
snapshots of type oracle_home_config are associated with targets of type oracle_home.

Note:

Target types can have more than one associated snapshot type. For example,
oracle_home can have other snapshot types associated with it, collecting other
configuration information that is not collected by oracle_home_config already.

A target configuration consists of a number of collected configuration snapshots. Typically,
snapshot collections occur automatically when a Management Agent starts up as a scheduled
event. Because of the size of these collections and the infrequent change rate, every 24 hours
is a reasonable schedule cycle. Enterprise Configuration Management has an on-demand
refresh feature that you can trigger whenever you want a new configuration, regardless of the
schedule.

When a configuration is inserted into the Management Repository, it replaces the previous
configuration for the given target. Enterprise Configuration Management compares the two
configurations for any differences and records the differences as the configuration history for
the target. While the exact time of change is not known exactly, the timestamp falls within the
schedule cycle (24 hours) or the on-demand refresh. You can browse the historical information
related to your configurations as well as the current information.

Viewing and Searching Configurations
Through the Enterprise Manager UI, you can view collected configurations and perform various
operations on the configurations. Because all configurations are recorded in the same
Management Repository, you can perform configuration searches across all targets or a subset
of targets. For example, find all the hosts across the enterprise with four CPUs and a minimum
of 1GB of RAM.

To access the search capability, from the All Targets page, right-click the required target,
select Configuration, then select Search. The Configuration Search Library page for the
selected target appears, similar to Figure 4-1. For information about configuration searches,
see the Enterprise Manager online help.

Chapter 4
About Configurations

4-2

Figure 4-1 Configuration Search Library Page

Comparing Configurations
You can compare configurations for differences. For example, you can compare two hosts that
have the same configuration to identify any problems on one of the hosts.

You can also compare one target's configuration, considered as the gold standard, against a
number of other targets for configuration drift. Because operations such as this involve large
volumes of data, you have the option of scheduling these comparisons during off-peak hours.

You can use comparison templates to customize comparisons also. A comparison template
enables you to establish certain constants to take into account when comparing configurations
of the given target type. For example, ignore items that are guaranteed to be different to
reduce the information or to eliminate false positives. You can save these customized
comparisons and share the templates among users and groups.

To compare configurations, from the All Targets page, right-click the required target, select
Configuration, then select Compare. The Comparison Wizard appears, similar to Figure 4-2.

For information about setting up a comparison, see the Enterprise Manager online help.

Chapter 4
About Configurations

4-3

Figure 4-2 Compare Configurations Page

Saving Configurations
Even though a configuration overwrites the previous one during collection, you have the option
to save a configuration in the Management Repository for archiving.

Note:

The term saved snapshot refers to the saved configuration of a whole target and can
include a number of configuration snapshots that are saved for that target and saved
associations.

Also you can export a configuration to a file, which later can be imported back in to the same
Management Repository or a different Management repository as a saved snapshot.

To save the latest configuration, from the Targets page, right-click the required target, select
Configuration, then select Save. Provide a description of the configuration, then click Submit
Job.

For information about working with saved configurations, see the Enterprise Manager online
help.

About Associations and Topology
The Enterprise Configuration Management framework provides common mechanisms and
conventions for representing relationships between targets and other IT-managed entities.
These relationships, or associations, can refer to targets and also to finer-grained entities
known as target components, such as an application's web service or a J2EE container's data
source.

Associations can be kept up to date based on collected configuration data. As a plug-in
developer, you can specify logic to derive associations from the configuration data. For more
information about associations, see Using Derived Associations.

Chapter 4
About Associations and Topology

4-4

The Enterprise Manager topology viewer provides a graphical representation of how managed
entities relate to other entities in the enterprise. Using the viewer, users can view the current
associations.

Chapter 4
About Associations and Topology

4-5

5
Using Derived Associations

Effective management of IT infrastructure requires knowledge of the relationships between IT
entities. Best practices such as those described by ITIL (Information Technology Infrastructure
Library) rely on capturing and using such relationships. Enterprise Manager extends the kinds
of relationships being supported and adds a declarative mechanism by which these
relationships can be maintained. It also determines the membership of entities in a system
based on relationships. Based on accurate relationships, various Enterprise Manager
applications and components can support customer uses such as:

• Dependency analysis.

For example, understanding the impact (to applications and infrastructure) of shutting
down a host.

• Topology viewer.

• Change management.

For example, tracking the source of cloned databases such as from test to production
instances.

• End-to-end performance analysis, in which inter-dependencies between application
components must be known in order to analyze and isolate issues.

• Change tracking of relationships, such as changes in the way VM resources are allocated.

This chapter covers the following:

• Introduction

• Understanding Enterprise Manager Association Concepts

• Using Association Derivation Rules Management

• About Overlapping Associations

• Frequently Asked Questions

Introduction
In Enterprise Manager, the concept of a relationship is internally referred to as an association.
An association (association instance) represents a relationship between two managed entities
and specifies three values, source, destination, and association type. For example, in
“database1 exposed_by listener1", database1 is the source, listener1 is the destination,
and “exposed_by" is the association type.

As a plug-in developer, you are responsible for defining those association types that apply to
your managed entity types and for verifying that the correct associations (association
instances) are present.

Understanding Enterprise Manager Association Concepts
This section describes association derivation rules, which provide a concise declarative means
of defining association types. Association derivation (so called because the existence of

5-1

associations is derived from collected data) provides a mechanism by which developers can
cause association instances to be created and removed based on data collected from a target.

The association derivation mechanism allows you to keep the association consistent with the
collected configuration data and to determine associations centrally based on all known data
(instead of being done by agent logic, which has access to less data).

Using Association Derivation
To use association derivation:

1. Specify the logic to run after the collection of target configuration.

The logic derives a set of association instances in the form of triples that specify the source
managed entity globally unique identifier (GUID), association type, and destination
managed entity GUID. For instance, the association derivation logic for targets of type
oracle_listener could return triples that represent associations between the listener and
each database for which it listens.

2. Create and run a SELECT statement that contains the logic used to derive the triples.

Each returned row contains association type, source, and destination columns and
represents an association that should exist.

3. Register the derivation logic against an Enterprise Configuration Management snapshot
type.

After every snapshot collection, the registered logic is invoked. Input to the logic is the
GUID of the target for which the data was collected.

When the association derivation logic for snapshot S of target T is executed, the derived
associations replace the previously derived associations for snapshot S of target T. For
example, if associations A1 and A2 were collected yesterday and only A1 is collected today,
then A2 is effectively deleted.

Using Association Derivation Rules Management
Association framework enhancements include the treatment of associations as configuration
data. Enterprise Configuration Management features such as change tracking and saved
snapshots now apply to associations as well as to traditional configuration data. Associations
can now specify source and destination target components, as well as target GUIDs.

About Oracle-defined Association Types
Enterprise Manager provides a common set of association types that meets the needs of most
plug-in developers. As a plug-in developer, you are encouraged to become familiar with these
association types and use them if applicable. Oracle recommends that you update the Table of
Integrators and Documents with links to the documents describing your association types and
your usage of all association types (allowed_pairs).

The image below shows the core association type hierarchy.

Chapter 5
Using Association Derivation Rules Management

5-2

Overview of Plug-in Developer Responsibilities
As a plug-in developer, you are responsible for the following steps with regard to derived
associations:

1. Identify all associations that need to be represented for any managed entities (MEs) that
you own.

This generally includes any containment or dependency associations between an ME you
own and any other MEs. For each kind of association identified, you may need to
coordinate with the owner of the related ME type to determine who should be responsible
for assuring that association instances of that type are kept up to date. Some associations
(in particular, hosted_by and managed_by) are automatically maintained by Enterprise
Manager, so association derivation rules should not be used for these.

2. Understand the set of out-of-box association types that are shipped with Enterprise
Manager and ensure the use of the most appropriate type.

For more information, see About Oracle-defined Association Types.

3. Provide a query that returns the correct associations and performs acceptably.

If required configuration data is not collected, you must also add such collections to assure
acceptable performance. Your rules must identify the configuration tables on which the rule
query depends so that the evaluation is triggered when required.

4. Ensure that association derivation rules are used to (declaratively) describe the
associations that are to exist based on configuration data that resides in the Management
Repository.

Rules are triggered by configuration collections (where target property changes are also
treated as a configuration collection).

Maintaining Performance
Because the evaluation of derivation rules might be frequent, any poor performance of the rule
queries can be problematic. Rule authors must ensure that any needed indexes are present
and that they test query performance based on the specific queries that are generated for each
trigger.

Chapter 5
Using Association Derivation Rules Management

5-3

In particular, testing of the rule query must be done for each trigger because each trigger
causes the execution of a different query. Note how rule query return values are bound to a
given target GUID depending on your triggers.

You must have indexes that will make use of these bindings. Furthermore, queries must be
written in such a way that they would not prevent the push of bindings from outside into your
queries.

About Overlapping Associations
It is possible for more than one rule to derive the same association, although Oracle
recommends that you avoid creating such overlapping rules. This section describes what
happens when an association is derived by multiple rules and includes suggestions on when to
avoid this and how.

Understanding Overlap Between Associations Derived by Rules
When more than one rule derives the same association, that association continues to exist
until each rule no longer derives it. Sometimes, this is what you want. For example, suppose
each of two application target types has knowledge of both the Oracle WebLogic Server on
which it runs and the database it accesses. Based on that knowledge, each has a way to
derive an association between the Oracle WebLogic Server and the database. If either rule
derives the association, that association is real and should exist. Only when both rules no
longer derive the association can you be sure that the association no longer exists.

The "exists when any rule derives it" semantics might not be what you intend. Consider two
rules that could be defined for the installed_on association between the database and Oracle
home. Both access the same data, but one is triggered by a property change to the Oracle
home and the other by a change to the database. As soon as either rule determines the
relationship is gone, then the association should be deleted. In such a case, use a single rule
with two triggers.

Suppose you did not take care to write only one rule in such cases. You might think that this
mistake is not serious because the association will be deleted soon. But this is not so, and the
bogus association might exist indefinitely. If in the previous example, the association was
derived using two rules, then the database is upgraded and its OracleHome property gets
changed. The association with the old Oracle home should be removed, but this will not
happen until the other rule is fired. However, nothing about the Oracle Home target has
changed, so its rule is not triggered and the association remains. Indeed, it is often the case
that only one target is changed and the other remains unchanged for a long period of time. As
a general rule, associations based on data from a specific set of tables should be derived using
a single rule with multiple triggers.

Unless there are different reasons for asserting an association exists, only use one rule. In
such cases, the associations returned by derivation rules should be disjoint. Another way to
state this is that for those associations, the set of all rows returned by all rule queries must
specify no duplications. An association is identified by source, destination, and association
type. This means that the combination of these three values should be unique.

Frequently Asked Questions
This section addresses three of the most frequently asked questions:

1. Which Tables Can I Reference in a Rule Query?

2. Are There Guidelines for When to Use Target Properties?

Chapter 5
About Overlapping Associations

5-4

3. What is the Relationship Between Discovered and Derived Associations?

Which Tables Can I Reference in a Rule Query?
In most cases, your query and triggers will reference configuration (Enterprise Configuration
Management) tables using the CM$ views. If you refer to other tables and if that data might
change independently of Enterprise Configuration Management table changes, then the
associations might not be updated when required. If you have a use case in which a non
Enterprise Configuration Management table is referenced where changes to that table must
trigger rule evaluation, contact your Oracle representative.

Another consideration is the component in which the table is located. If the table your rule
references is not part of the Enterprise Manager EDK, your plug-in must account for the
dependency on that table's plug-in. For example, you must ensure that any object you
reference already exists in the Management Repository using a plug-in dependency
mechanism.

Are There Guidelines for When to Use Target Properties?
Target properties are being treated as configuration data and there is an Enterprise
Configuration Management snapshot table that is populated for each target type. Some care
should be taken in using data from this table:

• Many target properties are set at discovery time and never modified.

• Querying name/value pair data can be awkward and take longer than queries on other
tables where the data is more structured.

– If the data is available from both the target properties table and an Enterprise
Configuration Management snapshot table, you should use the latter.

– If you need to add collection of configuration data, you should do so in an Enterprise
Configuration Management table, not as a new row in the target properties table.

In general, the use of target properties should be avoided and data should be collected and
modelled using standard ECM mechanisms.

However, a rule might need to refer to target properties if, for example, the target has no
Enterprise Configuration Management collections that can be added. If an association to such
a target is to be created, there must be some way to identify it (for example, the rule must refer
to its target properties).

If you must use target properties, then reference MGMT_TARGET_PROPERTIES in your rule query.
You can also reference MGMT$TARGET_PROPERTIES in the rule query if the view already performs
the join you need to do.

What is the Relationship Between Discovered and Derived Associations?
This is another example of overlapping associations (for more information, see About
Overlapping Associations). For example, you might have discovery logic that discovers an
association between targets T1 and T2, plus a rule that derives the same association. Oracle
recommends that you do not write two sets of logic to create the same association. In this case
it is suggested that:

• If a derivation rule is needed because the association might change, then write the
derivation rule.

• If the association that is discovered will not change until the source or destination is
removed, then discovering the association is fine and might be more efficient.

Chapter 5
Frequently Asked Questions

5-5

If you do write two sets of logic to create the same association (discovery logic and derivation
rule), then the discovered association will remain and the derivation logic will also assert the
existence of that association. If the rule evaluation later determines that the association should
no longer exist, the rule's assertion will be removed, but the association will continue to exist
unless you manually delete the discovered association.

Chapter 5
Frequently Asked Questions

5-6

6
Using the Jobs Framework

This chapter includes the following topics:

• Introduction to the Jobs Framework

• Understanding Jobs

Introduction to the Jobs Framework
Enterprise Manager includes a job framework for managing the automation of administrative
tasks performed against targets or groups of targets. The automation framework is tightly
integrated with other Enterprise Manager subsystems such as targets, credentials, events, and
so on, so the customer can monitor as well as manage their targets from the single console.

You can support automation requirements for target types defined in your plug-in by using the
interfaces provided by the job framework. You can define job types as part of your plug-in,
providing the automated support of critical administrative capabilities.

Enterprise Manager administrators can then schedule, execute, and monitor those jobs, in
order to manage the targets supported by the plug-in. These jobs may be used to enforce
management best practices, respond to alerts as corrective actions, and to otherwise automate
the management of the enterprise in general.Enterprise Manager includes a job console that
allows administrators to submit and monitor the execution of jobs.

Understanding Jobs
A job is the unit of work to be run by the job system. An administrator creates a job and
specifies a schedule for when the job should run, such as patch system B at midnight
Sunday. The Management Server schedules and runs jobs.

A job is based on a job type definition that defines the steps included in the job as well as the
parameters required as input to run the job and the credentials necessary to access the targets
accessed by the job. When a job is submitted, the values for parameters and credentials are
supplied by the submitter.

A job execution is a collection of inter-related job steps. Steps can be grouped into step-sets.
Steps within a step-set can run serially (one after another) or in parallel (simultaneously), but
not both. Steps (and step-sets) can also be run depending on the success or failure of the
other steps. For more information about these concepts, see the Enterprise Manager
Programmer's Reference.

The steps in a job can process commands, scripts, and so on, on the Management Agent.
Enterprise Manager provides several common commands that can be included in job type
definitions that you create. These include such commands as remote operation (allows script
execution), and file transfer commands including put and get.

The commands associated with each step are typically run on a remote node through the
Management Agent. The coordination and overall status of a job is maintained by the
Management Server and stored in the Management Repository.

6-1

A job may have one or more target lists. However, some jobs do not have targets and for these
jobs the target list is empty or null. The target list is a set of targets that are required for one
execution of the job. It is up to the job type to interpret the target list. For example, the
OSCommand job type runs the specified command with the specified parameters in parallel
against all the targets in the list. A job that clones schema in a database might interpret its
target list a little differently. It might, for instance, consider the first target to be the source
database from which to clone. It might consider the second argument to be a target database
where it should populate the cloned schema. Note that a job can be submitted with multiple
target lists, each one resulting in a separate execution.

Finally, every job must have a schedule. A schedule specifies when the job will run. The job
system provides extensive scheduling capabilities including the ability to submit a job for
immediate execution or to submit a job to run repeatedly according to any number of different
scheduling options.

Defining Job Types
A job type is a specific job category, which carries out a well-defined unit of work. A job type is
uniquely identified by a name. For example, AppPatch could be a job type that applies a patch
to an Oracle applications installation. OSCommand could be a job type that runs a remote
command, and so on.

A job type can be defined by an XML document that specifies the steps in the job, the work
(command) that each step performs, and the relationships between the steps. Job types are
included in a plug-in by using the jobType metadata service.

In addition to the job type definition, it is necessary to package any scripts referenced by the
job type with the plug-in, as part of the Management Agent deployment.

For information about the definition and packaging of jobs, see the Enterprise Manager
Programmer's Reference.

Chapter 6
Understanding Jobs

6-2

7
Using the Reporting Framework

This chapter includes the following sections:

• Introduction to the Reporting Framework

• Information Publisher

• Developing Enterprise Manager Information Publisher Reports

Introduction to the Reporting Framework
The powerful reporting framework of Enterprise Manager makes information about your
managed environment available to audiences across your enterprise. Reports are used
strategically to present a view of enterprise monitoring information for business intelligence
purposes, and they can also serve an administrative role by showing activity, resource
utilization, and configuration of managed targets. IT managers can use reports to show
availability of sets of managed systems. Executives can view reports on availability of
applications (such as corporate e-mail) over a period of time. Enterprise Manager ships with
over 100 reports addressing these various needs; additionally you can create your own
customized reports.

Information Publisher
You can develop new reports using Enterprise Manager Information Publisher (IP) reporting
framework based on your product requirements.

Enterprise Manager Information Publisher reports have the following advantages:

• Reports that looks like Enterprise Manager console pages (no tight control over layout).

• Tightly coupled with Enterprise Manager Oracle Management Services (OMS) and
repository.

• Integrated Dashboards.

Developing Enterprise Manager Information Publisher Reports
Enterprise Manager Information Publisher reports are defined in XML and packaged with the
plug-in. These report definitions specify the layout and content of the report. You can use
Enterprise Manager Information Publisher PL/SQL APIs to develop new report definitions.

7-1

8
About the Management User Interface

You can extend Enterprise Manager to support the management of new domains through the
introduction of discovery, monitoring, and automation. While the Enterprise Manager
framework provides a powerful set of features related to these management capabilities, most
plug-in developers want to expose management capabilities in a way that is appropriate to
their domain. The Metadata Plug-in Custom User Interface (MPCUI) features of Enterprise
Manager provide you with this capability.

This chapter contains the following sections:

• Introduction to the MPCUI Framework

• Creating a Custom User Interface

• MPCUI Services

• MPCUI and the Extensibility Developer Kit

Introduction to the MPCUI Framework
The MPCUI framework supports controlled access to Enterprise Manager services through
supported APIs. These APIs enable you to add user interfaces safely to Enterprise Manager as
part of your plug-in, independent of the upgrade of Enterprise Manager to support other
capabilities.

MPCUI provides a progressive set of options for building UIs depending on your requirements.
MPCUI provides templates and reusable components that enables you to build custom UIs
with a minimal amount of effort, both in terms of learning the framework for developing the UI
and for certifying it. If you require more control over your UI, MPCUI provides the building
blocks for constructing a customized management user experience, while providing the
flexibility to construct that UI in a way most appropriate to the domain.

Note:

It is not necessary to include MPCUI as part of your plug-in. If you create a plug-in
and do not provide custom UIs, your target still appears in Enterprise Manager and
the default UI is shown.

Creating a Custom User Interface
MPCUI implementations are included with the plug-in as part of the Management Service
section of the plug-in (for example, under the oms/metadata directory). MPCUI includes this
option for implementing the user interface:

• HTML/JS based

This approach provides the ability to specify the user interface as a collection of HTML and
JavaScript (JS) files. Consistent with the previous, Flex-based, release of MPCUI, multiple

8-1

page support, dialog definition, charts, tables, and so on continue to be supported but now
in HTML and JS.

User Interface Components
The user interface includes the following:

• Pages, Layout, and Navigation

• Packaged Regions

• Charts and Tables

• Other Components and Look and Feel

Pages, Layout, and Navigation
Using MPCUI, you can construct a user interface that is composed of multiple pages, dialogs,
and trains (wizards). Define navigation between these pages as part of the MPCUI
implementation as well as navigation to other Enterprise Manager pages or external URLs.

The MPCUI framework enables you to select pages that should be registered with the
Enterprise Manager menu subsystem. This permits menu items to appear in the target menu
allowing you to navigate to pages defined in the MPCUI implementation.

The MPCUI framework provides a simple means of laying out components on pages defined in
the UI using a grid style layout. The framework includes a region component that provides a
content container within the page and supports the expansion and collapse of that content. The
image below shows a region that contains summary information.

Chapter 8
Creating a Custom User Interface

8-2

Packaged Regions
The MPCUI framework provides a number of reusable regions packaged with the plug-in
development kit. This enables you to include content commonly shown in target home pages,
such as event information or job summary information.

The image below shows the issues region provided with the MPCUI framework:

You can add the region to a page built in the user interface using a single entry in the page
definition:

 <mp-incident-region height="33%" width="100%"></mp-incident-region>

Chapter 8
Creating a Custom User Interface

8-3

Charts and Tables
MPCUI provides support for including charts and tables in the user interface and simplifies the
ability of selecting data to be shown in those components by specifying the metrics to be
shown or the results of SQL statement execution. Supported chart types include pie, bar, line,
and area charts.

Other Components and Look and Feel
In addition to the high-level components for page definition, regions, and charts, you have
access to the complete set of components support by the JavaScript Extension Toolkit (JET)
and basic HTML, including buttons, labels, text input, and so on.

In all cases, the MPCUI framework styles the components so that they appear with the same
look and feel of all other Enterprise Manager user interfaces, ensuring that your customized UI
appears as a fully integrated part of the Enterprise Manager product.

About MPCUI
MPCUI utilizes the JavaScript Extension Toolkit (JET) to enable the writing of HTML pages
(aided by JS) that run within an Enterprise Manager page (chrome). It provides you with an
experience integrated with the rest of the Enterprise Manager UI, while maintaining separation
between your UI and code and the rest of Enterprise Manager.

While the framework is based on HTML/JS/JET and web services, the main goal of the
framework is to simplify the process for building management UIs. To do this, the framework
removes the underlying technologies as much as possible. It provides packaged components
and services that can be combined to produce a management UI appropriate to your domain
without requiring you to become an HTML/JS/JET, web services, or UI framework expert.

Overview
The MPCUI framework exposes a series of web services that you use to retrieve monitoring
data (including target associations, properties, metrics, and configuration data) and automation
services to perform synchronous tasks and asynchronous jobs.

The UI that you construct is packaged with the plug-in and deployed to Enterprise Manager
along with other integration objects such as metric definitions, job definitions, and discovery
and monitoring scripts.

The MPCUI objects in the plug-in are stored in the Management Repository. At run time, they
are retrieved by Enterprise Manager framework code which renders a wrapper page including
the Enterprise Manager chrome. The MPCUI runs within a frame in the page. This provides a

Chapter 8
About MPCUI

8-4

sand-boxed environment that protects the rest of Enterprise Manager from any problems
relating to the custom UI of a single plug-in.

The management UI has access to Enterprise Manager services, such as repository data, job
subsystem, Agent services, and so on through the MPCUI services layer. The MPCUI services
layer is composed of web services provided with the Enterprise Manager framework.

About the UI Framework
MPCUI includes a number of UI components that you can use to build a management UI
including pages, trains, regions, charts, tables, and packaged components. Many of these
components also leverage Enterprise Manager services to provide simplified access to and
display of management information.

For example, the chart and table components enable you to specify metrics or packaged SQL
queries within the component tags, providing a simple means of including monitoring data in
the UI.

The MPCUI framework includes a number of different component layers of which you can take
advantage. The framework includes the support for ensuring that the style of the management
UI is consistent with Enterprise Manager style guidelines without requiring any additional effort.

To simplify the structure of an MPCUI-based application and make it fit more naturally into the
Enterprise Manager framework, MPCUI includes the notion of a page. The management UI
can include one or more pages to navigate to and from using constructs provided by the
MPCUI framework. You can also integrate the page or pages into the Enterprise Manager
menu system.

Construct the management UI specific to your domain using the appropriate UI elements
included in the MPCUI framework and access Enterprise Manager services through the
MPCUI services client library.

MPCUI Services
When constructing the user interface using MPCUI, you have access to a number of services
supplied with the framework, enabling you to access Enterprise Manager data and perform
operations. These services include:

• Target Properties

Supports the retrieval of target instance properties, including version, category, and other
dynamic instance properties

• Target Associations

Supports the retrieval of targets associated with the current target, related hosts, members,
and so on

• Metric Data

Supports the retrieval of metric data including current (real-time) values from the
Management Agent or historical data stored in the Management Repository

• SQL Results

Supports the processing of SQL statements packaged with the plug-in and the retrieval of
the results of those statements

• Jobs and Remote Operation

Chapter 8
MPCUI Services

8-5

Supports the scheduling of jobs or the immediate processing of remote operations
(Management Agent scripts) to perform administrative capabilities

MPCUI and the Extensibility Developer Kit
The Extensibility Development Kit (EDK) includes the elements necessary to develop MPCUI
including the libraries and scripts to build the MPCUI.

Chapter 8
MPCUI and the Extensibility Developer Kit

8-6

9
Understanding Discovery

Automatic Discovery is part of Configuration Management in Enterprise Manager. It forms the
foundation for configuration management and Enterprise Manager by identifying IT
components and allowing you to manage these components using Enterprise Manager.

This chapter contains the following sections:

• Introduction to Automatic Discovery

• Automatic Discovery Overview

Introduction to Automatic Discovery
Adding a target to Enterprise Manager through discovery involves two steps:

1. Discovering potential targets on hosts that are managed by Enterprise Manager.

2. Promoting targets to be managed by Enterprise Manager by assigning the target to a
Management Agent.

Users can enable automatic discovery of potential targets on a host managed by Enterprise
Manager.

To enable auto discovery, Management Agent-side discovery scripts are packaged with the
plug-in. When auto discovery is configured on a host, the discovery part of the plug-in
(discovery scripts) is deployed on the host.

After auto discovery is configured to run on the managed host, discovery takes place
periodically and sends potential targets to the Management repository.

Users can view the targets from the discovery results UI and then take various actions such as
promoting the target to be managed by Enterprise Manager.

Key Benefits of Adding Automatic Discovery
The following are the key benefits of adding automatic discovery:

• Easier to add targets to Enterprise Manager. Otherwise, the user must manually add each
target to Enterprise Manager individually. This is a cumbersome and time-consuming task.

• Easier to manage multiple objects on a single host. Otherwise, the user must manually add
each object on the host as a target and then repeat the process on all other hosts.

Automatic Discovery Overview
This section provides an overview of the components of automatic discovery:

• Plug-in

The plug-in contains the components required to discover and promote targets of a
particular target type. The plug-in includes discovery metadata to register with the
discovery framework, discovery scripts, and monitoring scripts.

9-1

Note:

Only the discovery part of the plug-in (discovery scripts and any content required
to run discovery) is deployed when scheduling discovery.

The complete plug-in (monitoring and discovery) is deployed only when the
discovered target is promoted or when a target is manually added.

• Discovery module

The discovery module defines a set of target types to discover on the hosts to which the
plug-in is deployed.

Specify discovery modules in the discovery metadata XML file. For information about the
discovery metadata XML file, see the Enterprise Manager Programmer's Reference.

• Discovery metadata

Discovery metadata enables you to register automatic discovery with the discovery
framework. The Extensibility Development Kit (EDK) provides a discovery XML schema
definition (XSD) for registering automatic discovery. For information about defining
discovery metadata and a description of the elements, see the Enterprise Manager
Programmer's Reference.

• Discovery Content

Discovery content includes all the Perl scripts and JAR files that are required to discover
targets of a particular type.

• Discovery parameters

A discovery parameter passes input entered from the UI to the discovery script. These
discovery parameters are available as environment variables in the discovery script
running at the Management Agent. The discovery script uses this information when
performing discovery.

Define discovery parameters in the discovery metadata XML file. For information about the
discovery metadata XML file, see the Enterprise Manager Programmer's Reference.

• Discovery schedule

For plug-ins that are deployed already when Management Agents are installed or deployed
to new hosts, and if discovery does not require any user inputs, then discovery is
configured automatically and runs every 24 hours.

Chapter 9
Automatic Discovery Overview

9-2

10
Understanding Compliance Standards

The Oracle Enterprise Manager Compliance Management solution provides the capability to
define, customize, and manage Compliance Frameworks and Compliance Standards. It also
provides the tools to evaluate targets and systems for compliance with business best practices
in terms of configuration, security, storage, and so on.

This chapter contains the following sections:

• About the Compliance Management Solution

• Overview of Compliance Management

For a detailed explanation of compliance, refer to the Managing Compliance chapter in the
Oracle Enterprise Manager Lifecycle Management Administrator's Guide.

About the Compliance Management Solution
The Oracle Enterprise Manager Compliance Management solution:

• Determines if targets and systems have valid configuration settings automatically.

• Determines if targets and systems are exposed to configuration-related vulnerabilities
automatically.

• Advises on how to change configuration to bring targets and systems into compliance with
respect to best practices.

• Provides real-time monitoring of a target's files, processes, users, Windows registry
entries, and more to let Enterprise Manager users know where a configuration change is
taking place in their environment.

• Determines if real-time detected configuration changes are authorized by open change
management requests. It creates violations when an action is determined to be
unauthorized.

• Provides Oracle provided compliance standards to map to Compliance Standard rules.
This mapping enables you to visualize how noncompliant settings and actions will affect
any compliance framework that an organization follows.

• Provides a compliance-focused view of the IT configuration and change that is suitable for
Line of Business owners, IT managers, and compliance managers to refer to regularly,
enabling them to check on their organization's compliance coverage.

Overview of Compliance Management
The following sections provide an overview of the features of compliance management:

• About Compliance Framework

• About Compliance Standards

• About Compliance Standard Rules

• Some Considerations for Creating Compliance Standards

10-1

• About Compliance Evaluation

About Compliance Framework
A compliance framework is an industry-specified best practices guideline that deals with the
underlying IT infrastructure, applications, business services and processes, and how they are
organized, managed, and monitored. Compliance frameworks are hierarchical to allow for
direct representation of these industry frameworks.

For information about defining a compliance framework and examples of compliance
frameworks, see the Oracle Enterprise Manager Extensibility Programmer's Reference.

About Compliance Standards
A compliance framework maps to a set of compliance standards that perform a collection of
checks following broadly accepted best practices to ensure that IT infrastructure, applications,
business services and processes are organized, configured, managed, and monitored
correctly. A compliance standard evaluation can provide information related to platform
compatibility, known issues affecting other customers with similar configurations, security
vulnerabilities, patch recommendations, and more. Customers can run an evaluation of
compliance standards in order to learn about how they can bring their systems into compliance
with recommended best practices and improve the stability and security of their systems.

A compliance standard is Enterprise Manager's representation of a compliance control that
must be tested against a set of IT infrastructure to determine if the control is being followed. A
compliance control is a description of the test that an IT organization would perform to ensure
a policy, process, or procedure is being followed in a compliant manner. Compliance standards
can be mapped to compliance frameworks so that violations can result in a compliance score
impact on the compliance framework.

For information about defining compliance standards and examples of compliance standards,
see the Oracle Enterprise Manager Extensibility Programmer's Reference.

About Compliance Standard Rules
Oracle Enterprise Manager 24.1 has five types of rules:

• Repository Rule

Performs a check against any metric collection data in the Enterprise Manager repository

• Real-time Monitoring Rule

Monitors actions to files, processes, and more. Also captures user login and logout
activities

• WebLogic Server (WLS) Signature Rule

Checks a WebLogic target for support best practice configurations.

• Agent-side Rule

Detects configuration problems on the Management Agent. This enables the
implementation of the Security Technical Implementation Guide (STIG) security
specifications.

• Manual Rule

There are checks that must be performed but cannot be automated. For example, a
common security check is "to ensure secure access to the data center". These types of
checks can be accounted for in a compliance framework.

Chapter 10
Overview of Compliance Management

10-2

Compliance standard rules specify the actual check that is going to happen. These rules are
mapped to one or more compliance standards.

For information about defining compliance standard rules and examples of compliance
standard rules, see the Oracle Enterprise Manager Extensibility Programmer's Reference.

Some Considerations for Creating Compliance Standards
A compliance standard refers to one or more compliance standard rules. When creating a
compliance standard, the standard should be granular enough so that it can map appropriately
to one or more related compliance frameworks. For example, consider this compliance
framework structure that exists in the Oracle Generic Compliance Framework:

• Change and Configuration Management (compliance framework subgroup)

– Database Change (compliance framework subgroup)

* Configuration Best Practices for Oracle Database (compliance standard)

* Configuration Best Practices for Oracle RAC Database (compliance standard)

* Configuration Best Practices for Oracle Pluggable Database (compliance
standard)

Many compliance standards will exist that should be mapped to this part of the Compliance
Framework structure, each with their own rules to address this specific requirement. One
may check that configuration settings are set properly. Another may be used to check in
real-time if anyone changes a configuration setting.

In this example, the "Database Change compliance framework subgroup" can relate to
many different types of targets. Oracle Database, Oracle RAC Database, and Oracle
Pluggable Database all have their own types of configurations that all need to be secured.
Any Standards created to monitor these target-specific configurations would map to the
same "Database Changes subgroup".

If compliance standards are structured in a granular way so that they can map to existing
and future compliance frameworks, then violations in a rule can be rolled up to impact the
score of the compliance framework properly.

About Compliance Evaluation
Compliance standards are evaluated on targets. Evaluation results of the compliance
framework, compliance standards and target levels are available to the end user from the
Enterprise Manager UI.

Compliance evaluation is a process of validating requirements and regulations imposed by a
compliance standard against a target. To measure this, the compliance standard rules perform
single health or real-time monitor checks that are grouped into compliance standards, which
together are one test of compliance. Then these compliance standards are grouped into
respective compliance frameworks so that the results of the test can be associated with the
relevant areas of the customer's framework.

Compliance evaluation generates a score for a target, that is how much the target is compliant
with the standard. A 100% Compliance Score means that the target follows all requirements
and regulations imposed by the compliance standard.

Because Target Compliance must be monitored regularly, you must associate a compliance
standard with targets. Evaluation is performed automatically for any associated targets when
their state refreshes.

Chapter 10
Overview of Compliance Management

10-3

11
Understanding Software Library

This chapter contains the following sections:

• Introduction to Software Library Framework

• Key Features of Software Library Framework

• Software Library Extensibility Concepts

• Defining Metadata to Extend Software Library

• Creating and Managing Software Library Entities

• Using Software Library Entities

Introduction to Software Library Framework
Oracle Software Library (Software Library) is one of the core features offered by Enterprise
Manager. Technically, it is a repository that stores certified software entities such as Software
Patches, Virtual Appliance Images, Reference Gold Images, Application Software and their
associated directive scripts. Software Library enables you to select any of the Oracle-supplied
entities and customize them, or create a custom entity of your own. Once defined, you can
reference these reusable entities from a Deployment Procedure to automate the operations
like: patching, provisioning, and so on.

Key Features of Software Library Framework
Software Library framework supports:

• Defining and registering metadata that is used by plug-in integrators to extend a Software
Library to include extensions, and Out-of-box entities. For more information, see Defining
Metadata to Extend Software Library.

• Creating, managing, and accessing Software Library entities using various interfaces like:
Software Library console, EM CLI, Action Script API, and so on which leverage the custom
extensions registered. For more information, see Creating and Managing Software Library
Entities.

• Using the Software Library entities in various flows like: staging through Software Library
console, job step execution, in a deployment procedure, and so on. For more information,
see Using Software Library Entities.

Software Library Extensibility Concepts
This section gives a high level overview about the various attributes used in the Software
Library extensibility framework:

• Types and Subtypes

All entities in Software Library belong to a type or a subtype. Normally, a type and subtype
together define certain common features of the entities in terms of common and
searchable metadata/configuration properties, their default values, file association

11-1

requirements, and so on. Typically, Software Library framework defines and maintains the
following types of artifacts:

– Directive: Entities of this type represent scripts or executables.

– Component: Entities of this type typically represent an installable software bundle. A
subtype of the component type called Generic Component is also available by default
with Enterprise Manager.

All the other entity types that are appear in Software Library console, for example:
Virtualization, Bare Metal Provisioning, and so on are basically extensions to the Software
Library. These custom types and subtypes are part of plug-ins that ship by default with
Enterprise Manager, and appear in the Software Library console once the EM is
configured. The Software Library framework is being extended to Oracle partners so that
they can use it efficiently to define and register their own custom types and subtypes.

Note:

If your have entities other than Directives, then you are recommended to create
your own custom type and one or more subtypes.

• Folders

A folder is a container of entities. A folder either contains other child folders or entities in it.
Software Library allows you to organize the different user-defined or plugin-defined entities
into logical folders for efficient management. Folders can be referred by their URN in
Software Library.

• Entities

Entities are the primary artifacts stored in Software Library. An entity always has a folder
associated. Similar entities may be grouped under a logical folder, and are further
categorized by the type or subtype they are assigned. In general, it is a good practice to
organize related entities into folders of their own.

An entity can optionally have the following:

– Attributes: Attributes are defined by the type/subtype definition. Usually, they contain
simple string data types and must be defined in the metadata. Note that they are
applicable to all the revisions of an entity.

– Properties: Properties are used for specifying environment specific values. These are
applicable only to specific revisions of an entity.

– Attachments: Attachments are files that are related to the entity and are to be stored
with the entity. Attachments may be any document or file that describes the entity or its
associated script/software/configuration to its consumers. For example, Readme file.
Attachments do not typically participate in patching/provisioning flows, and are not
staged or copied to the targets.

– Notes: Notes are comments that can be added to an entity. These are applicable to all
revisions of an entity.

– Associated Files: Associated files can either be uploaded to a Software Library or be
stored and referenced from an external location. Once associated, the files can be
retrieved during provisioning, and staged to the desired destination target by Software
Library. These are applicable only to particular revisions of an entity.

You can specify one of the following maturity status: Untested, Beta or Production for every
entity revision. An entity revision can be in one of these states: Incomplete, Active or

Chapter 11
Software Library Extensibility Concepts

11-2

Ready. The state of an entity revision is computed based on the state of its associated files
and related metadata.

• Entity Revisions

An entity can have one or more revisions. When the entity is created, its revision in
Software Library is set to 0.1, following which, with each update the entity is revised by 0.1.
Every entity revision is identified by a unique internal identifier, referred to as the revision's
Uniform Resource Name (URN). Using the URN, you can identify entities even outside
Software Library framework, for example, in jobs, deployment procedures, and so on. The
URN is used to refer to an entity revision while attempting to use or create or modify it
using interfaces like EM CLI, Jobtype, and so on.

• External ID

When a plug-in integrator defines entities in Software Library metadata XML, an identifier
called the External ID needs to be specified for the entity. This identifier is used to track
changes to an entity definition, while releasing a plug-in, in comparison with a previous
release of the plug-in. When the plug-in is upgraded, the External ID of the latest revision
is compared to the previous one, and only if the Ids do not match, the updated entity from
the XML is re-applied. Therefore, revision is specific to Software Library updates of the
entity, while the External ID helps to track the changes to the entity definition in metadata.

Defining Metadata to Extend Software Library
Plug-in integrators can define Software Library metadata like: types, subtypes, entities, folders,
and register them using the Metadata Registration Service (MRS). The steps required to create
and edit the entity through UI, default values, attributes can be described in the type/subtype
metadata. The name, description, properties and files can be described in the entity metadata.
During plug-in installation, the metadata is registered with Software Library, and the defined
types, subtypes, folders, and entities get created accordingly.

Once registered, the custom types, subtypes, folders, and entities can be accessed using the
Software Library interfaces like Enterprise Manager UI or EMCLI. The registered folders and
entities are Oracle Owned, and can be viewed, to use them, you can use the Create Like
feature of Software Library that enables you to customize the default entities to suit your
requirements. In addition to this, you can create new entities through UI or EMCLI for the
custom type or subtype registered. The UI flows for the entities of the custom type/subtype are
defined by the UI specification in the metadata.

When the plug-in is uninstalled, the types, subtypes, folders, entities are removed. Entities of
the custom type/subtype created using UI or EMCLI are also removed during the un-
deployment of the plug-in.

Creating and Managing Software Library Entities
There are many interfaces to create and manager Software Library entities:

• Enterprise Manager Console

• Enterprise Manager Command Line Interface (EMCLI)

Chapter 11
Defining Metadata to Extend Software Library

11-3

Note:

An entity once created and saved in the Software Library using one of the following
interfaces: Software Library console, EM CLI, Action Script API, and so on, can be
accessed at a later point using any of the other interfaces.

Enterprise Manager Console
To use Software Library Console, from Enterprise menu, select Provisioning and Patching,
and then click Software Library. The Software Library console is single GUI enabled page that
facilitates managing the complete lifecycle of the entities (create, manage, delete) efficiently.
Using the Software Library features, you can perform a host of tasks such as: create folders,
create entities, edit entities, delete entities, manage maturity status, add notes and
attachments, manage privileges, and so on. Once the plug-in is defined and registered, from
the Software Library console, you can choose the plug-in integrator defined types and
subtypes when creating the entities. This in turn allows, creating entities that closely model the
required artifact. You can also customize the default Oracle-owned entities using the Create
Like option. For more information about using the Enterprise Manager to perform these
operations, see Oracle Enterprise Manager Administration.

Enterprise Manager Command Line Interface (EMCLI)
You may choose to use a command line interface called EM CLI to automate the creation and
management of entities. For more information about the Software Library verbs and their
usage, see Oracle Enterprise Manager Lifecycle Management Administrator's Guide.

Using Software Library Entities
The user defined entities and the default entities from the Software Library can be used to
complete various processing flows.

Note:

For information about how plug-in UI uses the Software Library search service, see
Oracle Enterprise Manager Extensibility Programmer's Reference.

• Using Entities in Jobs

Plug-in integrators who create and register custom job types can nest the Software Library
job types SwlibStageEntities and SwlibUploadFiles within their job type definition to
create custom flows.

For more information on how to create custom job types, refer to the section in EDK for
Adding job types

• Using entities in Deployment Procedures

You can either create your own deployment procedure using the PAF framework, (User
Defined Deployment Procedures), or customize the default Oracle-owned deployment
procedure to suit your requirement. Lets assume that to do so, you need to include a
Component step or Directive step to search for the component/directive, and include them

Chapter 11
Using Software Library Entities

11-4

in the procedure. When these steps in procedure are executed, the staging of the chosen
entity is performed.

For more information about creating UDDP, and Customize Oracle Owned Procedures,
see Oracle Enterprise Manager Lifecycle Management Administrator's Guide

• Staging through Software Library Console UI

To test and verify the usage before including them in other flows, you can select the
required entity and stage the same through Software Library Console UI.

• Using Action Script API

Entity details can be searched and retrieved through Action Script web service API. Once
retrieved, the details can be displayed in a custom manner like FLEX UI.

Chapter 11
Using Software Library Entities

11-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Extending Enterprise Manager
	Overview of the Oracle Enterprise Manager Platform
	Oracle Management Service
	Management Repository
	Management Agent
	Interfaces to Enterprise Manager

	About the Oracle Management Service
	Enterprise Manager Console

	About the Oracle Management Agent
	About the Oracle Management Repository
	About Metadata Plug-ins

	2 Getting Started With Enterprise Manager Plug-ins
	What is a Plug-in?
	What's New in Enterprise Manager Plug-ins?
	About the Extensibility Development Kit (EDK)
	Contents of the EDK

	Installing the Extensibility Development Kit (EDK)
	Plug-in Development Lifecycle
	Designing Your Plug-in Metadata

	Plug-in Contents and Packaging
	Plug-in Metadata
	Metadata Services
	Plug-in Packaging Structure

	Releasing a Plug-in
	Deploying a Plug-in
	Automated Deployment During Discovery
	Plug-in Upgrade
	Undeploying Plug-ins

	Deprecating a Plug-in

	3 About Managed Targets
	Introduction to Managed Targets
	About the Target Model
	Manageable Entity (ME)
	Managed Target
	Target Identity
	Lifecycle Status

	Groups
	Systems
	System State

	Composite Targets
	System Targets
	Services
	Management Capabilities Supported

	4 About Enterprise Configuration Management
	Introduction to Enterprise Configuration Management
	About Configurations
	Viewing and Searching Configurations
	Comparing Configurations
	Saving Configurations

	About Associations and Topology

	5 Using Derived Associations
	Introduction
	Understanding Enterprise Manager Association Concepts
	Using Association Derivation

	Using Association Derivation Rules Management
	About Oracle-defined Association Types
	Overview of Plug-in Developer Responsibilities
	Maintaining Performance

	About Overlapping Associations
	Understanding Overlap Between Associations Derived by Rules

	Frequently Asked Questions
	Which Tables Can I Reference in a Rule Query?
	Are There Guidelines for When to Use Target Properties?
	What is the Relationship Between Discovered and Derived Associations?

	6 Using the Jobs Framework
	Introduction to the Jobs Framework
	Understanding Jobs
	Defining Job Types

	7 Using the Reporting Framework
	Introduction to the Reporting Framework
	Information Publisher
	Developing Enterprise Manager Information Publisher Reports

	8 About the Management User Interface
	Introduction to the MPCUI Framework
	Creating a Custom User Interface
	User Interface Components
	Pages, Layout, and Navigation
	Packaged Regions
	Charts and Tables
	Other Components and Look and Feel

	About MPCUI
	Overview
	About the UI Framework

	MPCUI Services
	MPCUI and the Extensibility Developer Kit

	9 Understanding Discovery
	Introduction to Automatic Discovery
	Key Benefits of Adding Automatic Discovery

	Automatic Discovery Overview

	10 Understanding Compliance Standards
	About the Compliance Management Solution
	Overview of Compliance Management
	About Compliance Framework
	About Compliance Standards
	About Compliance Standard Rules
	Some Considerations for Creating Compliance Standards
	About Compliance Evaluation

	11 Understanding Software Library
	Introduction to Software Library Framework
	Key Features of Software Library Framework
	Software Library Extensibility Concepts
	Defining Metadata to Extend Software Library
	Creating and Managing Software Library Entities
	Enterprise Manager Console
	Enterprise Manager Command Line Interface (EMCLI)

	Using Software Library Entities

