
Oracle® NoSQL Database
Utilities Guide

Release 25.1
G12045-05
May 2025



Oracle NoSQL Database Utilities Guide, Release 25.1

G12045-05

Copyright © 2024, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

1   Using Oracle NoSQL Database Migrator

Overview 1-1

Terminology used with Oracle NoSQL Database Migrator 1-2

Workflow for Oracle NoSQL Database Migrator 1-4

Sources and Sinks 1-17

Supported Sources and Sinks 1-17

Source and Sink Security 1-18

Parameters 1-19

Source Configuration Templates 1-25

JSON File Source 1-25

JSON File in OCI Object Storage Bucket 1-27

MongoDB-Formatted JSON File 1-29

MongoDB-Formatted JSON File in OCI Object Storage bucket 1-31

DynamoDB-Formatted JSON File stored in AWS S3 1-34

DynamoDB-Formatted JSON File 1-37

Oracle NoSQL Database 1-38

Oracle NoSQL Database Cloud Service 1-41

CSV File Source 1-45

CSV file in OCI Object Storage Bucket 1-47

Sink Configuration Templates 1-51

JSON File Sink 1-52

Parquet File 1-54

JSON File in OCI Object Storage Bucket 1-56

Parquet File in OCI Object Storage Bucket 1-58

Oracle NoSQL Database 1-61

Oracle NoSQL Database Cloud Service 1-67

Transformation Configuration Templates 1-75

ignoreFields 1-76

includeFields 1-77

renameFields 1-77

aggregateFields 1-78

Mapping of DynamoDB table to Oracle NoSQL table 1-79

Oracle NoSQL to Parquet Data Type Mapping 1-80

iii



Mapping of DynamoDB types to Oracle NoSQL types 1-81

Use Case Demonstrations 1-82

Migrate from Oracle NoSQL Database Cloud Service to a JSON file 1-82

Migrate from Oracle NoSQL Database On-Premise to Oracle NoSQL Database Cloud
Service 1-87

Migrate from JSON file source to Oracle NoSQL Database Cloud Service 1-89

Migrate from MongoDB JSON file to an Oracle NoSQL Database Cloud Service 1-93

Migrate from DynamoDB JSON file to Oracle NoSQL Database 1-95

Migrate from DynamoDB JSON file in AWS S3 to an Oracle NoSQL Database Cloud
Service 1-100

Migrate from CSV file to Oracle NoSQL Database 1-105

Migrate from Oracle NoSQL Database to OCI Object Storage Using Session Token
Authentication 1-109

Troubleshooting the Oracle NoSQL Database Migrator 1-113

Index

iv



List of Figures

1-1 Oracle NoSQL Database Cloud Service Console Tables 1-92

1-2 Oracle NoSQL Database Cloud Service Console Table Data 1-92

v



List of Tables

1-1 Migrating TTL metadata 1-8

1-2 Supported Log Levels for NoSQL Database Migrator 1-16

1-3 Transformations 1-76

1-4 Mapping DynamoDB type to Oracle NoSQL type 1-81

1-5 Migration Failure Causes 1-113

vi



1
Using Oracle NoSQL Database Migrator

Learn about Oracle NoSQL Database Migrator and how to use it for data migration.

Oracle NoSQL Database Migrator is a tool that enables you to migrate Oracle NoSQL tables
from one data source to another. This tool can operate on tables in Oracle NoSQL Database
Cloud Service and Oracle NoSQL Database on-premises and AWS S3. The Migrator tool
supports several different data formats and physical media types. Supported data formats are
JSON, Parquet, MongoDB-formatted JSON, DynamoDB-formatted JSON, and CSV files.
Supported physical media types are files, OCI Object Storage, Oracle NoSQL Database on-
premises, Oracle NoSQL Database Cloud Service, and AWS S3.

Topics:

• Overview

• Workflow for Oracle NoSQL Database Migrator

• Supported Sources and Sinks

• Use Case Demonstrations

• Troubleshooting the Oracle NoSQL Database Migrator

Overview
Oracle NoSQL Database Migrator lets you move Oracle NoSQL tables from one data source to
another, such as Oracle NoSQL Database on-premises or cloud or even a simple JSON file.

There can be many situations that require you to migrate NoSQL tables from or to an Oracle
NoSQL Database. For instance, a team of developers enhancing a NoSQL Database
application may want to test their updated code in the local Oracle NoSQL Database Cloud
Service (NDCS) instance using cloudsim. To verify all the possible test cases, they must set up
the test data similar to the actual data. To do this, they must copy the NoSQL tables from the
production environment to their local NDCS instance, the cloudsim environment. In another
situation, NoSQL developers may need to move their application data from on-premise to the
cloud and vice-versa, either for development or testing.

In all such cases and many more, you can use Oracle NoSQL Database Migrator to move your
NoSQL tables from one data source to another, such as Oracle NoSQL Database on-premise
or cloud or even a simple JSON file. You can also copy NoSQL tables from a MongoDB-
formatted JSON input file, DynamoDB-formatted JSON input file (either stored in AWS S3
source or from files), or a CSV file into your NoSQL Database on-premises or cloud.

As depicted in the following figure, the NoSQL Database Migrator utility acts as a connector or
pipe between the data source and the target (referred to as the sink). In essence, this utility
exports data from the selected source and imports that data into the sink. This tool is table-
oriented, that is, you can move the data only at the table level. A single migration task operates
on a single table and supports migration of table data from source to sink in various data
formats.

Oracle NoSQL Database Migrator is designed such that it can support additional sources and
sinks in the future. For a list of sources and sinks supported by Oracle NoSQL Database
Migrator as of the current release, see Supported Sources and Sinks.

1-1



Migration Pipe
Source Sink

NoSQL
Table Data

NoSQL
Table Data

Transformations

Terminology used with Oracle NoSQL Database Migrator
Learn about the different terms used in the above diagram, in detail.

• Source: An entity from where the NoSQL tables are exported for migration. Some
examples of sources are Oracle NoSQL Database on-premise or cloud, JSON file,
MongoDB-formatted JSON file, DynamoDB-formatted JSON file, and CSV files.

• Sink: An entity that imports the NoSQL tables from NoSQL Database Migrator. Some
examples for sinks are Oracle NoSQL Database on-premise or cloud and JSON file.

The NoSQL Database Migrator tool supports different types of sources and sinks (that is
physical media or repositories of data) and data formats (that is how the data is represented in
the source or sink). Supported data formats are JSON, Parquet, MongoDB-formatted JSON,
DynamoDB-formatted JSON, and CSV files. Supported source and sink types are files, OCI
Object Storage, Oracle NoSQL Database on-premise, and Oracle NoSQL Database Cloud
Service.

• Migration Pipe: The data from a source will be transferred to the sink by NoSQL
Database Migrator. This can be visualized as a Migration Pipe.

• Transformations: You can add rules to modify the NoSQL table data in the migration pipe.
These rules are called Transformations. Oracle NoSQL Database Migrator allows data
transformations at the top-level fields or columns only. It does not let you transform the
data in the nested fields. Some examples of permitted transformations are:

– Drop or ignore one or more columns,

– Rename one or more columns, or

– Aggregate several columns into a single field, typically a JSON field.

• Configuration File : A configuration file is where you define all the parameters required for
the migration activity in a JSON format. Later, you pass this configuration file as a single
parameter to the runMigrator command from the CLI. A typical configuration file format
looks like as shown below.

{
 "source": {
   "type" : <source type>,
   //source-configuration for type. See  Source Configuration Templates .
 },
 "sink": {
   "type" : <sink type>,
   //sink-configuration for type. See  Sink Configuration Templates .
 },
 "transforms" : {
   //transforms configuration. See  Transformation Configuration 
Templates .
 },
 "migratorVersion" : "<migrator version>",

Chapter 1
Overview

1-2



 "abortOnError" : <true|false>
}

Group Parameters Mandatory (Y/N) Purpose Supported
Values

source type Y Represents the
source from which
to migrate the
data. The source
provides data and
metadata (if any)
for migration.

To know the type
value for each
source, see 
Supported
Sources and
Sinks.

source source-
configuration for
type

Y Defines the
configuration for
the source. These
configuration
parameters are
specific to the type
of source selected
above.

See Source
Configuration
Templates . for the
complete list of
configuration
parameters for
each source type.

sink type Y Represents the
sink to which to
migrate the data.
The sink is the
target or
destination for the
migration.

To know the type
value for each
source, see 
Supported
Sources and
Sinks.

sink sink-configuration
for type

Y Defines the
configuration for
the sink. These
configuration
parameters are
specific to the type
of sink selected
above.

See Sink
Configuration
Templates for the
complete list of
configuration
parameters for
each sink type.

transforms transforms
configuration

N Defines the
transformations to
be applied to the
data in the
migration pipe.

See 
Transformation
Configuration
Templates for the
complete list of
transformations
supported by the
NoSQL Data
Migrator.

- migratorVersio
n

N Version of the
NoSQL Data
Migrator

-

Chapter 1
Overview

1-3



Group Parameters Mandatory (Y/N) Purpose Supported
Values

- abortOnError N Specifies whether
to stop the
migration activity
in case of any
error or not.

The default value
is true indicating
that the migration
stops whenever it
encounters a
migration error.

If you set this
value to false, the
migration
continues even in
case of failed
records or other
migration errors.
The failed records
and migration
errors will be
logged as
WARNINGs on the
CLI terminal.

true, false

Note:

As JSON file is case-sensitive, all the parameters defined in the configuration file
are case-sensitive unless specified otherwise.

Workflow for Oracle NoSQL Database Migrator
Learn about the various steps involved in using the Oracle NoSQL Database Migrator utility for
migrating your NoSQL data.

The high level flow of tasks involved in using NoSQL Database Migrator is depicted in the
below figure.

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-4



BEGIN

Download the NoSQL 
Migrator Utility

Identify Source & Sink for 
Migration

OR

OR

Generate the 
Configuration JSON File 

using runMigrator

Create a 
Configuration JSON

File Manually

Proceed to Migration 
with the Generated 

Configuration JSON File

Save the Configuration 
JSON File for a Future 

Migration

Run runMigrator by 
passing the Configuration 
JSON File as a Parameter

END

You can reuse the 
Config JSON File 
multiple times.

You can reuse the 
Config JSON File 
multiple times.

You can reuse the 
Config JSON File 
multiple times.

Download the NoSQL Data Migrator Utility

The Oracle NoSQL Database Migrator utility is available for download from the Oracle NoSQL
Downloads page. Once you download and unzip it on your machine, you can access the
runMigrator command from the command line interface.

Note:

Oracle NoSQL Database Migrator utility requires Java 11 or higher versions to run.

Identify the Source and Sink

Before using the migrator, you must identify the data source and sink. For instance, if you want
to migrate a NoSQL table from Oracle NoSQL Database on-premise to a JSON formatted file,
your source will be Oracle NoSQL Database and sink will be JSON file. Ensure that the
identified source and sink are supported by the Oracle NoSQL Database Migrator by referring

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-5



to Supported Sources and Sinks. This is also an appropriate phase to decide the schema for
your NoSQL table in the target or sink, and create them.

• Identify Sink Table Schema: If the sink is Oracle NoSQL Database on-premise or cloud,
you must identify the schema for the sink table and ensure that the source data matches
with the target schema. If required, use transformations to map the source data to the sink
table.

– Default Schema: NoSQL Database Migrator provides an option to create a table with
the default schema without the need to predefine the schema for the table. This is
useful primarily when loading JSON source files into Oracle NoSQL Database.
If the source is a MongoDB-formatted JSON file, the default schema for the table will
be as follows:

CREATE TABLE IF NOT EXISTS <tablename>(ID STRING, DOCUMENT JSON,PRIMARY 
KEY(SHARD(ID))

Where:

— tablename = value provided for the table attribute in the configuration.

— ID = _id value from each document of the mongoDB exported JSON source file.

— DOCUMENT = For each document in the mongoDB exported file, the contents
excluding the _id field are aggregated into the DOCUMENT column.

If the source is a DynamoDB-formatted JSON file, the default schema for the table will
be as follows:

CREATE TABLE IF NOT EXISTS <TABLE_NAME>(DDBPartitionKey_name 
DDBPartitionKey_type, 
[DDBSortKey_name DDBSortKey_type],DOCUMENT JSON,
PRIMARY KEY(SHARD(DDBPartitionKey_name),[DDBSortKey_name]))

Where:

— TABLE_NAME = value provided for the sink table in the configuration

— DDBPartitionKey_name = value provided for the partition key in the configuration

— DDBPartitionKey_type = value provided for the data type of the partition key in the
configuration

— DDBSortKey_name = value provided for the sort key in the configuration if any

— DDBSortKey_type = value provided for the data type of the sort key in the
configuration if any

— DOCUMENT = All attributes except the partition and sort key of a Dynamo DB table
item aggregated into a NoSQL JSON column

If the source format is a CSV file, a default schema is not supported for the target
table. You can create a schema file with a table definition containing the same number
of columns and data types as the source CSV file. For more details on the Schema file
creation, see Providing Table Schema.

For all the other sources, the default schema will be as follows:

CREATE TABLE IF NOT EXISTS <tablename> (ID LONG GENERATED ALWAYS AS 
IDENTITY, DOCUMENT JSON, PRIMARY KEY(ID))

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-6



Where:

— tablename = value provided for the table attribute in the configuration.

— ID = An auto-generated LONG value.

— DOCUMENT = The JSON record provided by the source is aggregated into the
DOCUMENT column.

Note:

If the _id value is not provided as a string in the MongoDB-formatted JSON
file, NoSQL Database Migrator converts it into a string before inserting it into
the default schema.

• Providing Table Schema: NoSQL Database Migrator allows the source to provide
schema definitions for the table data using schemaInfo attribute. The schemaInfo
attribute is available in all the data sources that do not have an implicit schema already
defined. Sink data stores can choose any one of the following options.

– Use the default schema defined by the NoSQL Database Migrator.

– Use the source-provided schema.

– Override the source-provided schema by defining its own schema. For example, if you
want to transform the data from the source schema to another schema, you need to
override the source-provided schema and use the transformation capability of the
NoSQL Database Migrator tool.

 

 
The table schema file, for example, mytable_schema.ddl can include table DDL
statements. The NoSQL Database Migrator tool executes this table schema file before
starting the migration. The migrator tool supports no more than one DDL statement per line
in the schema file. For example,

CREATE TABLE IF NOT EXISTS(id INTEGER, name STRING, age INTEGER, PRIMARY 
KEY(SHARD(ID)))

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-7



Note:

Migration will fail if the table is present at the sink and the DDL in the schemaPath
is different than the table.

• Create Sink Table: Once you identify the sink table schema, create the sink table either
through the Admin CLI or using the schemaInfo attribute of the sink configuration file. See 
Sink Configuration Templates .

Note:

If the source is a CSV file, create a file with the DDL commands for the schema
of the target table. Provide the file path in schemaInfo.schemaPath parameter
of the sink configuration file.

Migrating TTL Metadata for Table Rows

Time to Live (TTL) is a mechanism that allows you to automatically expire table rows. TTL is
expressed as the amount of time, data is allowed to live in the store. Data that has reached its
expiration timeout value can no longer be retrieved, and will not appear in any store statistics.

You can choose to include the TTL metadata for table rows along with the actual data when
performing migration of Oracle NoSQL Database tables. The NoSQL Database Migrator
provides configuration parameters to support the export and import of table row TTL metadata
for the following source types:

Table 1-1    Migrating TTL metadata

Source types Source configuration
parameter

Sink configuration parameter

Oracle NoSQL Database includeTTL includeTTL
Oracle NoSQL Database Cloud
Service

includeTTL includeTTL

DynamoDB-Formatted JSON File ttlAttributeName includeTTL
DynamoDB-Formatted JSON File
stored in AWS S3

ttlAttributeName includeTTL

Exporting TTL metadata in Oracle NoSQL Database and Oracle NoSQL Database Cloud
Service

NoSQL Database Migrator provides the includeTTL configuration parameter to support the
export of table row's TTL metadata.

When a table is exported, the TTL data is exported for the table rows that have a valid
expiration time. If a row does not expire, then the _metadata JSON object is not included
explicitly in the exported data because its expiration value is always 0. The NoSQL Database
Migrator exports the expiration time for each row as the number of milliseconds since the UNIX
epoch (Jan 1st, 1970). For example,

//Row 1
{
    "id" : 1,
    "name" : "xyz",

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-8



    "age" : 45,
    "_metadata" : {
        "expiration" : 1629709200000   //Row Expiration time in milliseconds
    }
}

//Row 2
{
    "id" : 2,
    "name" : "abc",
    "age" : 52,
    "_metadata" : {
        "expiration" : 1629709400000   //Row Expiration time in milliseconds
    }
}

//Row 3 No Metadata for below row as it will not expire
{
    "id" : 3,
    "name" : "def",
    "age" : 15
}

Importing TTL metadata

You can optionally import TTL metadata using the includeTTL configuration parameter in the
sink configuration template.

The default reference time of import operation is the current time in milliseconds, obtained from 
System.currentTimeMillis(), of the machine where the NoSQL Database Migrator tool is
running. However, you can also set a custom reference time using the ttlRelativeDate
configuration parameter if you want to extend the expiration time and import rows that would
otherwise expire immediately. The extension is calculated as follows and added to the
expiration time.

Extended time = expiration time - reference time

The import operation handles the following use cases when migrating table rows containing
TTL metadata. These use cases are applicable only when the includeTTL configuration
parameter is set to true.

• Use-case 1: No TTL metadata information is present in the importing table row.
If the row you want to import does not contain TTL information, then the NoSQL Database
Migrator sets the TTL=0 for the row.

• Use-case 2: TTL value of the source table row is expired relative to the reference time
when the table row gets imported.
The expired table row is ignored and not written into the store.

• Use-case 3: TTL value of the source table row is not expired relative to the reference time
when the table row gets imported.
The table row gets imported with a TTL value. However, the imported TTL value may not
match the original exported TTL value because of the integer hour and day window
constraints in the TimeToLive class. For example,

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-9



Consider an exported table row:

{
  "id" : 8,
  "name" : "xyz",
  "_metadata" : {
  "expiration" : 1734566400000 //Thursday, December 19, 2024 12:00:00 AM 
in UTC
  }
}

The reference time while importing is 1734480000000, which is Wednesday, December
18, 2024 12:00:00 AM.

Imported table row

{
  "id" : 8,
  "name" : "xyz",
  "_metadata" : {
    "ttl" :  1734739200000 //Saturday, December 21, 2024 12:00:00 AM
  }
}

Importing TTL Metadata in DynamoDB-Formatted JSON File and DynamoDB-Formatted
JSON File stored in AWS S3

NoSQL Database Migrator provides an additional configuration parameter,
ttlAttributeName to support the import of TTL metadata from the DynamoDB-formatted
JSON file items.

DynamoDB exported JSON files include a specific attribute in each item to store the TTL
expiration timestamp. To optionally import the TTL values from DynamoDB exported JSON
files, you must supply the specific attribute's name as a value to the ttlAttributeName
configuration parameter in the DynamoDB-Formatted JSON File or DynamoDB-Formatted
JSON File stored in AWS S3 source configuration files. Also, you must set the includeTTL
configuration parameter in the sink configuration template. The valid sinks are Oracle NoSQL
Database and Oracle NoSQL Database Cloud Service. NoSQL Database Migrator stores TTL
information in the _metadata JSON object for the imported item.

The import operation manages the following use cases when migrating table items of the
DynamoDB exported JSON files:

• Use case 1: The ttlAttributeName configuration parameter value is set to the TTL
attribute name specified in the DynamoDB exported JSON file.

NoSQL Database Migrator imports the expiration time for this item as the number of
milliseconds since the UNIX epoch (Jan 1st, 1970).

For example, consider an item in the DynamoDB exported JSON file:

{
    "Item": {
        "DeptId": {
            "N": "1"
        },
        "DeptName": {
            "S": "Engineering"

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-10



        },
        "ttl": {
            "N": "1734616800"
        }
    }
}

Here, the attribute ttl specifies the time-to-live value for the item. If you set the
ttlAttributeName configuration parameter as ttl in the DynamoDB-formatted JSON
file or DynamoDB-formatted JSON file stored in AWS S3 source configuration file, NoSQL
Database Migrator imports the expiration time for the item as follows:

{
  "DeptId": 1,
  "document": {
      "DeptName": "Engineering"
    }  
  "_metadata": {
    "expiration": 1734616800000
  }
}

Note:

You can supply the ttlRelativeDate configuration parameter in the sink
configuration template as the reference time for calculating the expiration time.

• Use case 2: The ttlAttributeName configuration parameter value is set, however, the
value does not exist as an attribute in the item of the DynamoDB exported JSON file.
NoSQL Database Migrator does not import the TTL metadata information for the given
item.

• Use case 3: The ttlAttributeName configuration parameter value does not match the
attribute name in the item of DynamoDB exported JSON file.
NoSQL Database Migrator handles the import in one of the following ways based on the
sink configuration:

– Copies the attribute as a normal field if configured to import using the default schema.

– Skips the attribute if configured to import using a user-defined schema.

Importing data to a sink with an IDENTITY column

You can import the data from a valid source to a sink table (On-premises/Cloud Services) with
an IDENTITY column. You create the IDENTITY column as either GENERATED ALWAYS AS
IDENTITY or GENERATED BY DEFAULT AS IDENTITY. For more information on table
creation with an IDENTITY column, see Creating Tables With an IDENTITY Column in the SQL
Reference Guide.

Before importing the data, make sure that the Oracle NoSQL Database table at the sink is
empty if it exists. If there is pre-existing data in the sink table, migration can lead to issues such
as overwriting existing data in the sink table or skipping source data during the import.

Sink table with IDENTITY column as GENERATED ALWAYS AS IDENTITY

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-11



Consider a sink table with the IDENTITY column created as GENERATED ALWAYS AS
IDENTITY. The data import is dependent on whether or not the source supplies the values to
the IDENTITY column and ignoreFields transformation parameter in the configuration file.

For example, you want to import data from a JSON file source to the Oracle NoSQL Database
table as the sink. The schema of the sink table is:

CREATE TABLE IF NOT EXISTS migrateID(ID INTEGER GENERATED ALWAYS AS IDENTITY, 
name STRING, course STRING, PRIMARY KEY
      (ID))

The Migrator utility handles the data migration as described in the following cases:

Source condition User action Migration outcome

CASE 1: Source data does not supply a
value for the IDENTITY field of the sink
table.

Example: JSON source file
sample_noID.json

{"name":"John", 
"course":"Computer Science"}
{"name":"Jane", 
"course":"BioTechnology"}
{"name":"Tony", 
"course":"Electronics"}

Create/generate
the configuration
file.

Data migration is successful. IDENTITY
column values are auto-generated.
Migrated data in Oracle NoSQL
Database sink table migrateID:

{"ID":1001,"name":"Jane","cou
rse":"BioTechnology"}
{"ID":1003,"name":"John","cou
rse":"Computer Science"}
{"ID":1002,"name":"Tony","cou
rse":"Electronics"}

CASE 2: Source data supplies values for
the IDENTITY field of the sink table.

Example: JSON source file
sampleID.json

{"ID":1, "name":"John", 
"course":"Computer Science"}
{"ID":2, "name":"Jane", 
"course":"BioTechnology"}
{"ID":3, "name":"Tony", 
"course":"Electronics"}

Create/generate
the configuration
file. You provide an
ignoreFields
transformation for
the ID column in
the sink
configuration
template.

"transforms" :
{ "ignoreFields
" : ["ID"] }

Data migration is successful. The
supplied ID values are skipped and the
IDENTITY column values are auto-
generated.

Migrated data in Oracle NoSQL
Database sink table migrateID:

{"ID":2003,"name":"John","cou
rse":"Computer Science"}
{"ID":2002,"name":"Tony","cou
rse":"Electronics"}
{"ID":2001,"name":"Jane","cou
rse":"BioTechnology"}

You create/
generate the
configuration file
without the
ignoreFields
transformation for
the IDENTITY
column.

Data migration fails with the following
error message:

"Cannot set value for a
generated always identity
column".

For more details on the transformation configuration parameters, see the topic Transformation
Configuration Templates.

Sink table with IDENTITY column as GENERATED BY DEFAULT AS IDENTITY

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-12



Consider a sink table with the IDENTITY column created as GENERATED BY DEFAULT AS
IDENTITY. The data import is dependent on whether or not the source supplies the values to
the IDENTITY column and ignoreFields transformation parameter.

For example, you want to import data from a JSON file source to the Oracle NoSQL Database
table as the sink. The schema of the sink table is:

CREATE TABLE IF NOT EXISTS migrateID(ID INTEGER GENERATED BY DEFAULT AS 
IDENTITY, name STRING, course STRING, PRIMARY KEY
      (ID))

The Migrator utility handles the data migration as described in the following cases:

Source condition User action Migration outcome

CASE 1: Source data does not supply a
value for the IDENTITY field of the sink
table.

Example: JSON source file
sample_noID.json

{"name":"John", 
"course":"Computer Science"}
{"name":"Jane", 
"course":"BioTechnology"}
{"name":"Tony", 
"course":"Electronics"}

Create/generate
the configuration
file.

Data migration is successful. IDENTITY
column values are auto-generated.
Migrated data in Oracle NoSQL
Database sink table migrateID:

{"ID":1,"name":"John","course
":"Computer Science"}
{"ID":2,"name":"Jane","course
":"BioTechnology"}
{"ID":3,"name":"Tony","course
":"Electronics"}

CASE 2: Source data supplies values for
the IDENTITY field of the sink table and
it is a Primary Key field.

Example: JSON source file
sampleID.json

{"ID":1, "name":"John", 
"course":"Computer Science"}
{"ID":2, "name":"Jane", 
"course":"BioTechnology"}
{"ID":3, "name":"Tony", 
"course":"Electronics"}

Create/generate
the configuration
file. You provide an
ignoreFields
transformation for
the ID column in
the sink
configuration
template
(Recommended).

"transforms" :
{ "ignoreFields
" : ["ID"] }

Data migration is successful. The
supplied ID values are skipped and the
IDENTITY column values are auto-
generated.

Migrated data in Oracle NoSQL
Database sink table migrateID:

{"ID":1002,"name":"John","cou
rse":"Computer Science"}
{"ID":1001,"name":"Jane","cou
rse":"BioTechnology"}
{"ID":1003,"name":"Tony","cou
rse":"Electronics"}

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-13



Source condition User action Migration outcome

You create/
generate the
configuration file
without the
ignoreFields
transformation for
the IDENTITY
column.

Data migration is successful. The
supplied ID values from the source are
copied into the ID column in the sink
table.

When you try to insert an additional row
to the table without supplying an ID
value, the sequence generator tries to
auto-generate the ID value. The
sequence generator's starting value is 1.
As a result, the generated ID value can
potentially duplicate one of the existing
ID values in the sink table. Since this is a
violation of the primary key constraint,
an error is returned and the row does not
get inserted.

See Sequence Generator for additional
information.

To avoid the primary key constraint
violation, the sequence generator must
start the sequence with a value that
does not conflict with existing ID values
in the sink table. To use the START
WITH attribute to make this modification,
see the example below:

Example: Migrated data in Oracle
NoSQL Database sink table migrateID:

{"ID":1,"name":"John","course
":"Computer Science"}
{"ID":2,"name":"Jane","course
":"BioTechnology"}
{"ID":3,"name":"Tony","course
":"Electronics"}

To find the appropriate value for the
sequence generator to insert in the ID
column, fetch the maximum value of the
ID field using the following query:

SELECT max(ID) FROM migrateID

Output:

{"Column_1":3}

The maximum value of the ID column in
the sink table is 3. You want the
sequence generator to start generating
the ID values beyond 3 to avoid
duplication. You update the sequence

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-14



Source condition User action Migration outcome

generator's START WITH attribute to 4
using the following statement:

ALTER Table migrateID 
(MODIFY ID GENERATED BY 
DEFAULT AS IDENTITY (START 
WITH 4))

This will start the sequence at 4.

Now when you insert rows to the sink
table without supplying the ID values, the
sequence generator auto-generates the
ID values from 4 onwards averting the
duplication of the IDs.

For more details on the transformation configuration parameters, see the topic Transformation
Configuration Templates.

Run the runMigrator command

The runMigrator executable file is available in the extracted NoSQL Database Migrator files.
You must install Java 11 or higher version and bash on your system to successfully run the
runMigrator command.

You can run the runMigrator command in two ways:

1. By creating the configuration file using the runtime options of the runMigrator command
as shown below.

[~]$ ./runMigrator
configuration file is not provided. Do you want to generate configuration? 
(y/n)                                                                      
        
 
[n]: y
...
...

• When you invoke the runMigrator utility, it provides a series of runtime options and
creates the configuration file based on your choices for each option.

• After the utility creates the configuration file, you have a choice to either proceed with
the migration activity in the same run or save the configuration file for a future
migration.

• Irrespective of your decision to proceed or defer the migration activity with the
generated configuration file, the file will be available for edits or customization to meet
your future requirements. You can use the customized configuration file for migration
later.

2. By passing a manually created configuration file (in the JSON format) as a runtime
parameter using the -c or --config option. You must create the configuration file manually

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-15



before running the runMigrator command with the -c or --config option. For any help
with the source and sink configuration parameters, see Sources and Sinks.

[~]$ ./runMigrator -c </path/to/the/configuration/json/file>

Logging Migrator Progress

NoSQL Database Migrator tool provides options, which enables trace, debugging, and
progress messages to be printed to standard output or to a file. This option can be useful in
tracking the progress of migration operation, particularly for very large tables or data sets.

• Log Levels
To control the logging behavior through the NoSQL Database Migrator tool, pass the --log-
level or -l run time parameter to the runMigrator command. You can specify the amount
of log information to write by passing the appropriate log level value.

$./runMigrator --log-level <loglevel>

Example:

$./runMigrator --log-level debug

Table 1-2    Supported Log Levels for NoSQL Database Migrator

Log Level Description

warning Prints errors and warnings.

info (default) Prints the progress status of data migration such
as validating source, validating sink, creating
tables, and count of number of data records
migrated.

debug Prints additional debug information.

all Prints everything. This level turns on all levels of
logging.

• Log File:
You can specify the name of the log file using --log-file or -f parameter. If --log-
file is passed as run time parameter to the runMigrator command, the NoSQL
Database Migrator writes all the log messages to the file else to the standard output.

$./runMigrator --log-file <log file name>

Example:

$./runMigrator --log-file nosql_migrator.log

Chapter 1
Workflow for Oracle NoSQL Database Migrator

1-16



Sources and Sinks
Learn about the different sources and sinks supported by the Oracle NoSQL Database
Migrator utility and their configuration templates.

Topics:

• Supported Sources and Sinks

• Source and Sink Security

• Parameters

• Source Configuration Templates

• Sink Configuration Templates

• Transformation Configuration Templates

• Mapping of DynamoDB table to Oracle NoSQL table

• Oracle NoSQL to Parquet Data Type Mapping

• Mapping of DynamoDB types to Oracle NoSQL types

Supported Sources and Sinks
This topic provides the list of the sources and sinks supported by the Oracle NoSQL Database
Migrator.

You can use any combination of a valid source and sink from this table for the migration
activity. However, you must ensure that at least one of the ends, that is, source or sink must be
an Oracle NoSQL product. You can not use the NoSQL Database Migrator to move the NoSQL
table data from one file to another.

Type
(value)

Format
(value)

Valid Source Valid Sink

Oracle NoSQL Database
(nosqldb)

NA Y Y

Oracle NoSQL Database
Cloud Service
(nosqldb_cloud)

NA Y Y

File system
(file)

JSON
(json)

Y Y

MongoDB JSON
(mongodb_json)

Y N

DynamoDB JSON
(dynamodb_json)

Y N

Chapter 1
Sources and Sinks

1-17



Type
(value)

Format
(value)

Valid Source Valid Sink

Parquet(parquet)
N Y

CSV
(csv)

Y N

OCI Object Storage
(object_storage_oci)

JSON
(json)

Y Y

MongoDB JSON
(mongodb_json)

Y N

Parquet(parquet)
N Y

CSV
(csv)

Y N

AWS S3
DynamoDB JSON
(dynamodb_json)

Y N

Note:

Many configuration parameters are common across the source and sink
configuration. For ease of reference, the description for such parameters is repeated
for each source and sink in the documentation sections, which explain configuration
file formats for various types of sources and sinks. In all the cases, the syntax and
semantics of the parameters with the same name are identical.

Source and Sink Security
Some of the source and sink types have optional or mandatory security information for
authentication purposes.

All sources and sinks that use services in the Oracle Cloud Infrastructure (OCI) can use certain
parameters for providing optional security information. This information can be provided using
an OCI configuration file or Instance Principal.

Oracle NoSQL Database sources and sinks require mandatory security information if the
installation is secure and uses an Oracle Wallet-based authentication. This information can be
provided by adding a jar file to the <MIGRATOR_HOME>/lib directory.

Wallet-based Authentication

If an Oracle NoSQL Database installation uses Oracle Wallet-based authentication, you must
include additional jar files that are a part of the EE installation. For more information, see 
Oracle Wallet.

Chapter 1
Sources and Sinks

1-18



Without the jar files, you will get the following error message:

Could not find kvstore-ee.jar and kvstore-ee-<version>.jar in lib
directory. Copy kvstore-ee.jar and kvstore-ee-<version>.jar to lib
directory
To prevent the exception shown above, you must copy kvstore-ee.jar and kvstore-ee-
<version>.jar files from your EE server package to the <MIGRATOR_HOME>/lib directory.
<MIGRATOR_HOME> is the nosql-migrator-M.N.O/ directory created by extracting the
Oracle NoSQL Database Migrator package and M.N.O represent the software
release.major.minor numbers. For example, nosql-migrator-1.1.0/lib.

Note:

The wallet-based authentication is supported ONLY in the Enterprise Edition (EE) of
Oracle NoSQL Database.

Authenticating with Instance Principals

Instance principals is an IAM service feature that enables instances to be authorized actors (or
principals) that can perform actions on service resources. Each compute instance has its own
identity, and it authenticates using the certificates added to it.

Oracle NoSQL Database Migrator provides an option to connect to a NoSQL cloud and OCI
Object Storage sources and sinks using instance principal authentication. It is only supported
when the NoSQL Database Migrator tool is used within an OCI compute instance, for example,
the NoSQL Database Migrator tool running in a VM hosted on OCI. To enable this feature use
the useInstancePrincipal attribute of the NoSQL cloud source and sink configuration file. For
more information on configuration parameters for different types of sources and sinks, see 
Source Configuration Templates and Sink Configuration Templates .

For more information on instance principals, see Calling Services from an Instance.

Parameters
The NoSQL Database Migrator requires a configuration file where you define all the
parameters to perform the migration activity. A few parameters are common across several
sources and sinks. This topic provides a list of these common parameters. For the list of other
parameters that are unique to individual sources or sinks, see the corresponding configuration
template sections.

Common Configuration Parameters

The following are the common configuration parameters. See the individual configuration
template sections for examples.

bucket

• Purpose: Specifies the name of the OCI Object Storage bucket, which contains the
source/sink objects.

Ensure that the required bucket already exists in the OCI Object Storage instance and has
read/write permissions.

• Data Type: string

• Mandatory (Y/N): Y

Chapter 1
Sources and Sinks

1-19



chunkSize

• Purpose: Specifies the maximum size of a chunk of table data to be stored at the sink.
The value is in MB. During migration, a table is split into chunkSize chunks and each
chunk is written as a separate file to the sink. A new file is created when the source data
that is being migrated exceeds the chunkSize value.

If not specified, defaults to 32MB. The valid value is an integer between 1 to 1024.

• Data Type: integer

• Mandatory (Y/N): N

credentials

• Purpose: Specifies the absolute path to a file containing OCI credentials. The NoSQL
Database Migrator uses this file to connect to the OCI service such as Oracle NoSQL
Database Cloud Service, OCI Object Storage, and so on.

The default value is $HOME/.oci/config
See Example Configuration for an example of the credentials file.

Note:

You can select only one of the authentication options. Therefore, specify only one
of these parameters - credentials, useInstancePrincipal, 
useDelegationToken, useSessionToken, or useOKEWorkloadIdentity in the
configuration template.

• Data Type: string

• Mandatory (Y/N): N

credentialsProfile

• Purpose: Specifies the name of the configuration profile to be used to connect to the OCI
service such as Oracle NoSQL Database Cloud Service, OCI Object Storage, and so on.
User account credentials are referred to as a profile.

If you do not specify this value, the NoSQL Database Migrator uses the DEFAULT profile.

Note:

This parameter is valid only if the credentials parameter is specified.

• Data Type: string

• Mandatory (Y/N): N

endpoint

• Purpose: Specifies one of the following:

– The Service endpoint URL or the Region ID for the OCI Object Storage service.
For the list of OCI Object Storage service endpoints, see Object Storage Endpoints.

– The Service endpoint URL or the Region ID for the Oracle NoSQL Database Cloud
Service.

Chapter 1
Sources and Sinks

1-20



You can either specify the complete URL or the Region ID alone. For the list of data
regions supported for Oracle NoSQL Database Cloud Service, see Data Regions and
Associated Service URLs in the Oracle NoSQL Database Cloud Service document.

• Data Type: string

• Mandatory (Y/N): Y

format

• Purpose: Specifies the source/sink format.

• Data Type: string

• Mandatory (Y/N): Y

namespace

• Purpose: Specifies the namespace of the OCI Object Storage service. This is an optional
parameter. If you don't specify this parameter, the Migrator utility uses the namespace
assigned to the tenancy.

For example, the namespace parameter is helpful when you want to use an OCI OS from a
tenancy that is different from yours. In such cases, the OCI OS tenancy’s namespace is
different from your tenancy's namespace. During migration, the Migrator utility defaults to
your tenancy's namespace unless specified otherwise. Therefore, to direct the Migrator
utility to pick OCI OS tenancy's namespace, you must specify OCI OS tenancy's name in
the namespace parameter.

• Data Type: string

• Mandatory (Y/N): N

prefix

• Purpose: The prefix acts as a logical container or directory for storing data in the OCI
Object Storage bucket.

– Source configuration template: If the prefix parameter in specified, all the objects
from the directory named in the prefix parameter are migrated. Else, all the objects
present in the bucket are migrated.

– Sink configuration template: If the prefix parameter is specified, a directory with the
given prefix is created in the bucket and the objects are migrated into this directory.
Else, the table name from the source is used as the prefix. If any object with the same
name already exists in the bucket, it is overwritten.

For more information about prefixes, see Object Naming Using Prefixes and Hierarchies.

• Data Type: string

• Mandatory (Y/N): N

requestTimeoutMs

• Purpose: Specifies the time to wait for each read/write operation from/to the store to
complete. This is provided in milliseconds. The default value is 5000. The value can be any
positive integer.

• Data Type: integer

• Mandatory (Y/N): N

Chapter 1
Sources and Sinks

1-21



security

• Purpose: Specifies the absolute path to the security login file that contains your store
credentials if your store is a secure store. For more information about the security login file,
see Configuring Security with Remote Access in the Administrator's Guide.

You can use either password file based authentication or wallet based authentication.
However, the wallet based authentication is supported only in the Enterprise Edition (EE)
of Oracle NoSQL Database. For more information on wallet-based authentication, see 
Source and Sink Security.

The Community Edition(CE) edition supports password file based authentication only.

• Data Type: string

• Mandatory (Y/N): Y, for a secure store

type

• Purpose: Identifies the source/sink type.

• Data Type: string

• Mandatory (Y/N): Y

useDelegationToken

• Purpose: Specifies whether or not the NoSQL Database Migrator tool uses a delegation
token authentication to connect to the OCI services. You must use the delegation token
authentication to run the Migrator utility from the Cloud Shell. The delegation token is
automatically created for the user when the Cloud Shell is invoked.

The default value is false.

• Data Type: boolean

• Mandatory (Y/N): N

Chapter 1
Sources and Sinks

1-22



Note:

– The authentication with delegation token is supported only when the NoSQL
Database Migrator tool is running from a Cloud Shell.

– You can select only one of the authentication options. Therefore, specify only
one of these parameters - credentials, useInstancePrincipal,
useDelegationToken, useSessionToken, or useOKEWorkloadIdentity in
the configuration template.

– The Cloud Shell supports migration only between the following sources and
sinks:

Type Valid source Valid sink

Oracle NoSQL
Database Cloud Service

(nosqldb_cloud)

Y Y

File (JSON file in the
home directory)

Y Y

OCI Object Storage
(JSON file)

(object_storage_oci
)

Y Y

OCI Object Storage
(Parquet file)

(object_storage_oci
)

N Y

useInstancePrincipal

• Purpose: Specifies whether or not the NoSQL Database Migrator tool uses instance
principal authentication to connect to the OCI service such as Oracle NoSQL Database
Cloud Service, OCI Object Storage, and so on. For more information on Instance Principal
authentication method, see Source and Sink Security.

The default value is false.

Note:

– The authentication with Instance Principals is supported only when the
NoSQL Database Migrator tool is running within an OCI compute instance,
for example, the NoSQL Database Migrator tool running in a VM hosted on
OCI.

– You can select only one of the authentication options. Therefore, specify only
one of these parameters - credentials, useInstancePrincipal, 
useDelegationToken, useSessionToken, or useOKEWorkloadIdentity in the
configuration template.

• Data Type: boolean

• Mandatory (Y/N): N

Chapter 1
Sources and Sinks

1-23



useOKEWorkloadIdentity

• Purpose: Specifies whether or not the NoSQL Database Migrator tool uses Workload
Identity Authentication (WIA) to access OCI Object Storage and Oracle NoSQL Database
Cloud Service from an Oracle Kubernetes Engine (OKE) pod.
The default value is false.

• Data Type: boolean

• Mandatory (Y/N): N

For a sample use case, see Migrate from OCI Object Storage to Oracle NoSQL Database
Cloud Service Using OKE Authentication.

Note:

You can select only one of the authentication options. Therefore, specify only one of
these parameters - credentials, useInstancePrincipal, useDelegationToken, 
useSessionToken, or useOKEWorkloadIdentity in the configuration template.

useSessionToken

• Purpose: Specifies whether or not the NoSQL Database Migrator tool uses a session
token authentication to connect to OCI services such as OCI Object Storage (OCI OS) and
Oracle NoSQL Database Cloud Service. The default value is false.

• Data Type: boolean

• Mandatory (Y/N): N

To use the session token-based authentication, you must generate a session token using OCI
Command Line Interface (CLI) commands.. For a sample use case, see Migrate from Oracle
NoSQL Database to OCI Object Storage Using Session Token Authentication.

Note:

• While using session token authentication, you must specify the path to the OCI
config file in the credentials parameter and the profile used while generating
the session token in the credentialsProfile parameter. If you don't set the
credentials parameter in configuration template, the Migrator utility looks for
the credentials file in the path $HOME/.oci . If you don't set the
credentialsProfile parameter in configuration template, the Migrator utility
uses the default profile name (DEFAULT) from the OCI config file.

If the Migrator utility is unable to find the credentials file, the migration fails with
an error message conveying the non-existence of the OCI credential file.

• You can select only one of the authentication options. Therefore, specify only one
of these parameters - credentials, useInstancePrincipal, useDelegationToken,
useSessionToken, or useOKEWorkloadIdentity in the configuration template.

Chapter 1
Sources and Sinks

1-24



Source Configuration Templates
Learn about the source configuration file formats for each valid source and the purpose of each
configuration parameter.

For the configuration file template, see Configuration File in Terminology used with Oracle
NoSQL Database Migrator.

For details on valid sink formats for each of the source, see Sink Configuration Templates.

Topics

The following topics describe the source configuration templates referred by Oracle NoSQL
Database Migrator to copy the data from the given source to a valid sink.

• JSON File Source
Specified file or directory containing the JSON data.

• JSON File in OCI Object Storage Bucket
Specified JSON file in the OCI Object Storage bucket.

• MongoDB-Formatted JSON File
Specified file or directory containing the MongoDB formatted JSON data.

• MongoDB-Formatted JSON File in OCI Object Storage bucket
Specified MongoDB exported JSON file stored in the OCI Object Storage bucket.

• DynamoDB-Formatted JSON File stored in AWS S3
Specified DynamoDB exported JSON file stored in the AWS S3 storage.

• DynamoDB-Formatted JSON File
Specified DynamoDB exported JSON file from a file system.

• Oracle NoSQL Database
Specified table in Oracle NoSQL Database.

• Oracle NoSQL Database Cloud Service
Specified table in Oracle NoSQL Database Cloud Service.

• CSV File Source
Specified file or directory containing the CSV data.

• CSV file in OCI Object Storage Bucket
Specified CSV file in the OCI Object Storage bucket.

JSON File Source
The configuration file format for JSON file as a source of NoSQL Database Migrator is shown
below.

You can migrate a JSON source file by specifying the file path or a directory in the source
configuration template.

A sample JSON source file is as follows:

{"id":6,"val_json":{"array":
["q","r","s"],"date":"2023-02-04T02:38:57.520Z","nestarray":[[1,2,3],
[10,20,30]],"nested":{"arrayofobjects":
[{"datefield":"2023-02-04T02:38:57.520Z","numfield":30,"strfield":"foo54"},
{"datefield":"2023-02-04T02:38:57.520Z","numfield":56,"strfield":"bar23"}],"ne
stNum":10,"nestString":"bar"},"num":1,"string":"foo"}}

Chapter 1
Sources and Sinks

1-25



{"id":3,"val_json":{"array":
["g","h","i"],"date":"2023-02-02T02:38:57.520Z","nestarray":[[1,2,3],
[10,20,30]],"nested":{"arrayofobjects":
[{"datefield":"2023-02-04T02:38:57.520Z","numfield":28,"strfield":"foo3"},
{"datefield":"2023-02-04T02:38:57.520Z","numfield":38,"strfield":"bar"}],"nest
Num":10,"nestString":"bar"},"num":1,"string":"foo"}}

Source Configuration Template

"source": {
  "type": "file",
  "format": "json",
  "dataPath": "<path/to/JSON/[file|dir]>",
  "schemaInfo": {
    "schemaPath": "<path/to/schema/file>"
  }
},

Source Parameters

Common Configuration Parameters

• type
Use "type" : "file"

• format
Use "format" : "json"

Unique Configuration Parameters

• dataPath

• schemaInfo

• schemaInfo.schemaPath

dataPath

• Purpose: Specifies the absolute path to a file or directory containing the JSON data for
migration.

You must ensure that this data matches with the NoSQL table schema defined at the sink.
If you specify a directory, the NoSQL Database Migrator identifies all the files with
the .json extension in that directory for the migration. Sub-directories are not supported.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

– Specifying a JSON file

"dataPath" : "/home/user/sample.json"
– Specifying a directory

"dataPath" : "/home/user"

Chapter 1
Sources and Sinks

1-26



schemaInfo

• Purpose: Specifies the schema of the source data being migrated. This schema is passed
to the NoSQL sink.

• Data Type: Object

• Mandatory (Y/N): N

schemaInfo.schemaPath

• Purpose: Specifies the absolute path to the schema definition file containing DDL
statements for the NoSQL table being migrated.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

"schemaInfo": {
  "schemaPath": "<path to the schema file>"
}

JSON File in OCI Object Storage Bucket
The configuration file format for JSON file in OCI Object Storage bucket as a source of NoSQL
Database Migrator is shown below.

You can migrate a JSON file in the OCI Object Storage bucket by specifying the name of the
bucket in the source configuration template.

A sample JSON source file in the OCI Object Storage bucket is as follows:

{"id":6,"val_json":{"array":
["q","r","s"],"date":"2023-02-04T02:38:57.520Z","nestarray":[[1,2,3],
[10,20,30]],"nested":{"arrayofobjects":
[{"datefield":"2023-02-04T02:38:57.520Z","numfield":30,"strfield":"foo54"},
{"datefield":"2023-02-04T02:38:57.520Z","numfield":56,"strfield":"bar23"}],"ne
stNum":10,"nestString":"bar"},"num":1,"string":"foo"}}
{"id":3,"val_json":{"array":
["g","h","i"],"date":"2023-02-04T02:38:57.520Z","nestarray":[[1,2,3],
[10,20,30]],"nested":{"arrayofobjects":
[{"datefield":"2023-02-04T02:38:57.520Z","numfield":28,"strfield":"foo3"},
{"datefield":"2023-02-04T02:38:57.520Z","numfield":38,"strfield":"bar"}],"nest
Num":10,"nestString":"bar"},"num":1,"string":"foo"}}

Note:

The valid sink types for OCI Object Storage source type are nosqldb and
nosqldb_cloud.

Chapter 1
Sources and Sinks

1-27



Source Configuration Template

"source" : {
  "type" : "object_storage_oci",
  "format" : "json",
  "endpoint" : "<OCI Object Storage service endpoint URL or region ID>",
  "namespace" : "<OCI Object Storage namespace>",
  "bucket" : "<bucket name>",
  "prefix" : "<object prefix>",
  "schemaInfo" : {
     "schemaObject" : "<object name>"
  },
  "credentials" : "</path/to/oci/config/file>",
  "credentialsProfile" : "<profile name in oci config file>",
  "useInstancePrincipal" : <true|false>,
  "useDelegationToken" : <true|false>,
  "useSessionToken" : <true|false>,  
  "useOKEWorkloadIdentity" : <true|false>
}

Source Parameters

Common Configuration Parameters

• type
Use "type" : "object_storage_oci"

• format
Use "format" : "json"

• endpoint
Example:

– Region ID: "endpoint" : "us-ashburn-1"
– URL format: "endpoint" : "https://objectstorage.us-

ashburn-1.oraclecloud.com"
• namespace

Example: "namespace" : "my-namespace"
• bucket

Example: "bucket" : "my-bucket"
• prefix

Example:

1. "prefix" : "my_table/Data/000000.json" (migrates only 000000.json)

2. "prefix" : "my_table/Data" (migrates all the objects with prefix my_table/Data)

• credentials
Example:

1. "credentials" : "/home/user/.oci/config"
2. "credentials" : "/home/user/security/config"

• credentialsProfile
Example:

Chapter 1
Sources and Sinks

1-28



1. "credentialsProfile" : "DEFAULT"
2. "credentialsProfile" : "ADMIN_USER"

• useInstancePrincipal
Example: "useInstancePrincipal" : true

• useDelegationToken
Example: "useDelegationToken" : true

Note:

The authentication with delegation token is supported only when the NoSQL
Database Migrator is running from a Cloud Shell.

• useOKEWorkloadIdentity
Example: "useOKEWorkloadIdentity" : true

• useSessionToken
Example: "useSessionToken" : true

Unique Configuration Parameters

• schemaInfo

• schemaInfo.schemaObject

schemaInfo

• Purpose: Specifies the schema of the source data being migrated. This schema is passed
to the NoSQL sink.

• Data Type: Object

• Mandatory (Y/N): N

schemaInfo.schemaObject

• Purpose: Specifies the name of the object in the bucket where NoSQL table schema
definitions for the data being migrated are stored.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

"schemaInfo": {
  "schemaObject": "mytable/Schema/schema.ddl"
},

MongoDB-Formatted JSON File
The configuration file format for MongoDB-formatted JSON File as a source of NoSQL
Database Migrator is shown below.

You can migrate a MongoDB exported JSON data by specifying the file or directory in the
source configuration template.

MongoDB supports two types of extensions to the JSON format of files, Canonical mode and
Relaxed mode. You can supply the MongoDB-formatted JSON file that is generated using the

Chapter 1
Sources and Sinks

1-29



mongoexport tool in either Canonical or Relaxed mode. Both the modes are supported by the
NoSQL Database Migrator for migration.

For more information on the MongoDB Extended JSON (v2) file, See mongoexport_formats.

For more information on the generation of MongoDB-formatted JSON file, see mongoexport for
more information.

A sample MongoDB-formatted Relaxed mode JSON file is as follows:

{"_id":0,"name":"Aimee Zank","scores":
[{"score":1.463179736705023,"type":"exam"},
{"score":11.78273309957772,"type":"quiz"},
{"score":35.8740349954354,"type":"homework"}]}
{"_id":1,"name":"Aurelia Menendez","scores":
[{"score":60.06045071030959,"type":"exam"},
{"score":52.79790691903873,"type":"quiz"},
{"score":71.76133439165544,"type":"homework"}]}
{"_id":2,"name":"Corliss Zuk","scores":
[{"score":67.03077096065002,"type":"exam"},
{"score":6.301851677835235,"type":"quiz"},
{"score":66.28344683278382,"type":"homework"}]}
{"_id":3,"name":"Bao Ziglar","scores":
[{"score":71.64343899778332,"type":"exam"},
{"score":24.80221293650313,"type":"quiz"},
{"score":42.26147058804812,"type":"homework"}]}
{"_id":4,"name":"Zachary Langlais","scores":
[{"score":78.68385091304332,"type":"exam"},
{"score":90.2963101368042,"type":"quiz"},
{"score":34.41620148042529,"type":"homework"}]}

Source Configuration Template

"source": {
  "type": "file",
  "format": "mongodb_json",
  "dataPath": "</path/to/json/[file|dir]>",
  "schemaInfo": {
    "schemaPath": "</path/to/schema/file>"
  }
}

Source Parameters

Common Configuration Parameters

• type
Use "type" : "file"

• format
Use "format" : "mongodb_json"

Unique Configuration Parameters

• dataPath

• schemaInfo

• schemaInfo.schemaPath

Chapter 1
Sources and Sinks

1-30



dataPath

• Purpose: Specifies the absolute path to a file or directory containing the MongoDB
exported JSON data for migration.

You can supply the MongoDB-formatted JSON file that is generated using the
mongoexport tool.

If you specify a directory, the NoSQL Database Migrator identifies all the files with
the .json extension in that directory for the migration. Sub-directories are not supported.
You must ensure that this data matches with the NoSQL table schema defined at the sink.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

– Specifying a MongoDB formatted JSON file

"dataPath" : "/home/user/sample.json"
– Specifying a directory

"dataPath" : "/home/user"

schemaInfo

• Purpose: Specifies the schema of the source data being migrated. This schema is passed
to the valid sink.

• Data Type: Object

• Mandatory (Y/N): N

schemaInfo.schemaPath

• Purpose: Specifies the absolute path to the schema definition file containing DDL
statements for the NoSQL table being migrated.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

"schemaInfo" : {
  "schemaPath" : "/home/user/mytable/Schema/schema.ddl"
}

MongoDB-Formatted JSON File in OCI Object Storage bucket
The configuration file format for MongoDB-Formatted JSON file in OCI Object Storage bucket
as a source of NoSQL Database Migrator is shown below.

You can migrate the MongoDB exported JSON data in the OCI Object Storage bucket by
specifying the name of the bucket in the source configuration template.

Extract the data from MongoDB using the mongoexport utility and upload it to the OCI Object
Storage bucket. See mongoexport for more information. MongoDB supports two types of
extensions to the JSON format of files, Canonical mode and Relaxed mode. Both formats are
supported in the OCI Object Storage bucket.

Chapter 1
Sources and Sinks

1-31



A sample MongoDB-formatted Relaxed mode JSON File is as follows:

{"_id":0,"name":"Aimee Zank","scores":
[{"score":1.463179736705023,"type":"exam"},
{"score":11.78273309957772,"type":"quiz"},
{"score":35.8740349954354,"type":"homework"}]}
{"_id":1,"name":"Aurelia Menendez","scores":
[{"score":60.06045071030959,"type":"exam"},
{"score":52.79790691903873,"type":"quiz"},
{"score":71.76133439165544,"type":"homework"}]}
{"_id":2,"name":"Corliss Zuk","scores":
[{"score":67.03077096065002,"type":"exam"},
{"score":6.301851677835235,"type":"quiz"},
{"score":66.28344683278382,"type":"homework"}]}
{"_id":3,"name":"Bao Ziglar","scores":
[{"score":71.64343899778332,"type":"exam"},
{"score":24.80221293650313,"type":"quiz"},
{"score":42.26147058804812,"type":"homework"}]}
{"_id":4,"name":"Zachary Langlais","scores":
[{"score":78.68385091304332,"type":"exam"},
{"score":90.2963101368042,"type":"quiz"},
{"score":34.41620148042529,"type":"homework"}]}

Note:

The valid sink types for OCI Object Storage source type are nosqldb and
nosqldb_cloud.

Source Configuration Template

"source" : {
  "type" : "object_storage_oci",
  "format" : "mongodb_json",
  "endpoint" : "<OCI Object Storage service endpoint URL or region ID>",
  "namespace" : "<OCI Object Storage namespace>",
  "bucket" : "<bucket name>",
  "prefix" : "<object prefix>",
  "schemaInfo" : {
     "schemaObject" : "<object name>"
  },
  "credentials" : "</path/to/oci/config/file>",
  "credentialsProfile" : "<profile name in oci config file>",
  "useInstancePrincipal" : <true|false>,
  "useDelegationToken" : <true|false>,
  "useSessionToken" : <true|false>,
  "useOKEWorkloadIdentity" : <true|false>
}

Source Parameters

Common Configuration Parameters

• type

Chapter 1
Sources and Sinks

1-32



Use "type" : "object_storage_oci"
• format

Use "format" : "mongodb_json"
• endpoint

Example:

– Region ID: "endpoint" : "us-ashburn-1"
– URL format: "endpoint" : "https://objectstorage.us-

ashburn-1.oraclecloud.com"
• namespace

Example: "namespace" : "my-namespace"
• bucket

Example: "bucket" : "my-bucket"
• prefix

Example:

1. "prefix" : "mongo_export/Data/table.json" (migrates only table.json)

2. "prefix" : "mongo_export/Data" (migrates all the objects with prefix mongo_export/
Data)

Note:

If you do not provide any value, all the objects present in the bucket are
migrated.

• credentials
Example:

1. "credentials" : "/home/user/.oci/config"
2. "credentials" : "/home/user/security/config"

• credentialsProfile
Example:

1. "credentialsProfile" : "DEFAULT"
2. "credentialsProfile" : "ADMIN_USER"

• useInstancePrincipal
Example: "useInstancePrincipal" : true

• useDelegationToken
Example: "useDelegationToken" : true

Note:

The authentication with delegation token is supported only when the NoSQL
Database Migrator is running from a Cloud Shell.

• useOKEWorkloadIdentity
Example: "useOKEWorkloadIdentity" : true

• useSessionToken

Chapter 1
Sources and Sinks

1-33



Example: "useSessionToken" : true
Unique Configuration Parameters

• schemaInfo

• schemaInfo.schemaObject

schemaInfo

• Purpose: Specifies the schema of the source data being migrated. This schema is passed
to the NoSQL sink.

• Data Type: Object

• Mandatory (Y/N): N

schemaInfo.schemaObject

• Purpose: Specifies the name of the object in the bucket where NoSQL table schema
definitions for the data being migrated are stored.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

"schemaInfo": {
  "schemaObject": "mytable/Schema/schema.ddl"
}

DynamoDB-Formatted JSON File stored in AWS S3
The configuration file format for DynamoDB-formatted JSON File in AWS S3 as a source of
NoSQL Database Migrator is shown below.

You can migrate a file containing the DynamoDB exported JSON data from the AWS S3
storage by specifying the path in the source configuration template.

A sample DynamoDB-formatted JSON File is as follows:

{"Item":{"Id":{"N":"101"},"Phones":{"L":[{"L":[{"S":"555-222"},
{"S":"123-567"}]}]},"PremierCustomer":{"BOOL":false},"Address":{"M":{"Zip":
{"N":"570004"},"Street":{"S":"21 main"},"DoorNum":{"N":"201"},"City":
{"S":"London"}}},"FirstName":{"S":"Fred"},"FavNumbers":{"NS":
["10"]},"LastName":{"S":"Smith"},"FavColors":{"SS":["Red","Green"]},"Age":
{"N":"22"},"ttl": {"N": "1734616800"}}}
{"Item":{"Id":{"N":"102"},"Phones":{"L":[{"L":
[{"S":"222-222"}]}]},"PremierCustomer":{"BOOL":false},"Address":{"M":{"Zip":
{"N":"560014"},"Street":{"S":"32 main"},"DoorNum":{"N":"1024"},"City":
{"S":"Wales"}}},"FirstName":{"S":"John"},"FavNumbers":{"NS":
["10"]},"LastName":{"S":"White"},"FavColors":{"SS":["Blue"]},"Age":
{"N":"48"},"ttl": {"N": "1734616800"}}}

You must export the DynamoDB table to AWS S3 storage as specified in Exporting DynamoDB
table data to Amazon S3.

The valid sink types for DynamoDB-formatted JSON stored in AWS S3 are nosqldb and
nosqldb_cloud.

Chapter 1
Sources and Sinks

1-34

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.html


Source Configuration Template

"source" : {
  "type" : "aws_s3",
  "format" : "dynamodb_json",
  "ttlAttributeName" : <DynamoDB exported TTL attribute name>,
  "s3URL" : "<S3 object url>",
  "credentials" : "</path/to/aws/credentials/file>",
  "credentialsProfile" : <"profile name in aws credentials file">
}

Source Parameters

Common Configuration Parameters

• type
Use "type" : "aws_s3"

• format
Use "format" : "dynamodb_json"

Note:

If the value of the type parameter is aws_s3, then the format must be
dynamodb_json.

Unique Configuration Parameters

• s3URL

• credentials

• credentialsProfile

• ttlAttributeName

s3URL

• Purpose: Specifies the URL of an exported DynamoDB table stored in AWS S3. You can
obtain this URL from the AWS S3 console. The valid URL format is https://<bucket-
name>.<s3_endpoint>/<prefix>. The NoSQL Database Migrator will look for json.gz files
in the prefix during import.

Note:

You must export DynamoDB table as specified in Exporting DynamoDB table
data to Amazon S3.

• Data Type: string

• Mandatory (Y/N): Y

• Example: https://my-bucket.s3.ap-south-1.amazonaws.com/AWSDynamoDB/
01649660790057-14f642be

Chapter 1
Sources and Sinks

1-35

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.html


credentials

• Purpose: Specifies the absolute path to a file containing the AWS credentials. If not
specified, it defaults to $HOME/.aws/credentials. For more details on the credentials file,
see Configuration and credential file settings .

• Data Type: string

• Mandatory (Y/N): N

• Example:
"credentials" : "/home/user/.aws/credentials"
"credentials" : "/home/user/security/credentials

Note:

The NoSQL Database Migrator does not log any of the credentials information.
You must properly protect the credentials file from unauthorized access.

credentialsProfile

• Purpose: Name of the profile in the AWS credentials file to be used to connect to AWS S3.
User account credentials are referred to as a profile. If you do not specify this value,
NoSQL Database Migrator uses the default profile. For more details on the credentials
file, see Configuration and credential file settings .

• Data Type: string

• Mandatory (Y/N): N

• Example:
"credentialsProfile" : "default"
"credentialsProfile" : "test"

ttlAttributeName

• Purpose: Specifies the name of TTL attribute present in the exported DynamoDB table
data. You include this parameter only if the DynamoDB table data has a TTL attribute and
you want to set the TTL value on imported data while importing to NoSQL Database.

Note:

To import with the TTL metadata, you must set the includeTTL configuration
parameter to true in the sink configuration template (nosqldb and
nosqldb_cloud).

• Data Type: string

• Mandatory (Y/N): N

• Example: "ttlAttributeName" : "ttl"

Chapter 1
Sources and Sinks

1-36

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html


DynamoDB-Formatted JSON File
The configuration file format for DynamoDB-formatted JSON File as a source of NoSQL
Database Migrator is shown below.

You can migrate a file or directory containing the DynamoDB exported JSON data from a file
system by specifying the path in the source configuration template.

A sample DynamoDB-formatted JSON File is as follows:

{"Item":{"Id":{"N":"101"},"Phones":{"L":[{"L":[{"S":"555-222"},
{"S":"123-567"}]}]},"PremierCustomer":{"BOOL":false},"Address":{"M":{"Zip":
{"N":"570004"},"Street":{"S":"21 main"},"DoorNum":{"N":"201"},"City":
{"S":"London"}}},"FirstName":{"S":"Fred"},"FavNumbers":{"NS":
["10"]},"LastName":{"S":"Smith"},"FavColors":{"SS":["Red","Green"]},"Age":
{"N":"22"},"ttl": {"N": "1734616800"}}}
{"Item":{"Id":{"N":"102"},"Phones":{"L":[{"L":
[{"S":"222-222"}]}]},"PremierCustomer":{"BOOL":false},"Address":{"M":{"Zip":
{"N":"560014"},"Street":{"S":"32 main"},"DoorNum":{"N":"1024"},"City":
{"S":"Wales"}}},"FirstName":{"S":"John"},"FavNumbers":{"NS":
["10"]},"LastName":{"S":"White"},"FavColors":{"SS":["Blue"]},"Age":
{"N":"48"},"ttl": {"N": "1734616800"}}}

You must copy the exported DynamoDB table data from AWS S3 storage to a local mounted
file system.

The valid sink types for DynamoDB JSON file are nosqldb and nosqldb_cloud.

Source Configuration Template

"source" : {
  "type" : "file",
  "format" : "dynamodb_json",
  "ttlAttributeName" : <DynamoDB exported TTL attribute name>,
  "dataPath" : "<path/to/[file|dir]/containing/exported/DDB/tabledata>"   
}

Source Parameters

Common Configuration Parameters

• type
Use "type" : "file"

• format
Use "format" : "dynamodb_json"

Unique Configuration Parameter

• dataPath

• ttlAttributeName

dataPath

• Purpose: Specifies the absolute path to a file or directory containing the exported
DynamoDB table data. You must copy exported DynamoDB table data from AWS S3 to a

Chapter 1
Sources and Sinks

1-37



local mounted file system. You must ensure that this data matches with the NoSQL table
schema defined at the sink. If you specify a directory, the NoSQL Database Migrator
identifies all the files with the .json.gz extension in that directory and the data sub-
directory.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

– Specifying a file

"dataPath" : "/home/user/AWSDynamoDB/01639372501551-bb4dd8c3/data/
zclclwucjy6v5mkefvckxzhfvq.json.gz"

– Specifying a directory

"dataPath" : "/home/user/AWSDynamoDB/01639372501551-bb4dd8c3"

ttlAttributeName

• Purpose: Specifies the name of TTL attribute present in the exported DynamoDB table
data. You include this parameter only if the DynamoDB table data has a TTL attribute and
you want to set the TTL value on imported data while importing to NoSQL Database.

Note:

To import with the TTL metadata, you must set the includeTTL configuration
parameter to true in the sink configuration template (nosqldb and
nosqldb_cloud).

• Data Type: string

• Mandatory (Y/N): N

• Example: "ttlAttributeName" : "ttl"

Oracle NoSQL Database
The configuration file format for Oracle NoSQL Database as a source of NoSQL Database
Migrator is shown below.

You can migrate a table from Oracle NoSQL Database by specifying the table name in the
source configuration template.

A sample Oracle NoSQL Database table is as follows:

{"id":20,"firstName":"Jane","lastName":"Smith","otherNames":
[{"first":"Jane","last":"teacher"}],"age":25,"income":55000,"address":
{"city":"San Jose","number":201,"phones":
[{"area":608,"kind":"work","number":6538955},
{"area":931,"kind":"home","number":9533341},
{"area":931,"kind":"mobile","number":9533382}],"state":"CA","street":"Atlantic
 Ave","zip":95005},"connections":[40,75,63],"expenses":null}
{"id":10,"firstName":"John","lastName":"Smith","otherNames":
[{"first":"Johny","last":"chef"}],"age":22,"income":45000,"address":

Chapter 1
Sources and Sinks

1-38



{"city":"Santa Cruz","number":101,"phones":
[{"area":408,"kind":"work","number":4538955},
{"area":831,"kind":"home","number":7533341},
{"area":831,"kind":"mobile","number":7533382}],"state":"CA","street":"Pacific 
Ave","zip":95008},"connections":[30,55,43],"expenses":null}
{"id":30,"firstName":"Adam","lastName":"Smith","otherNames":
[{"first":"Adam","last":"handyman"}],"age":45,"income":75000,"address":
{"city":"Houston","number":301,"phones":
[{"area":618,"kind":"work","number":6618955},
{"area":951,"kind":"home","number":9613341},
{"area":981,"kind":"mobile","number":9613382}],"state":"TX","street":"Indian 
Ave","zip":95075},"connections":[60,45,73],"expenses":null}

Source Configuration Template

"source" : {
  "type": "nosqldb",
  "storeName" : "<store name>",
  "helperHosts" : ["hostname1:port1","hostname2:port2,..."],
  "table" : "<fully qualified table name>", 
  "includeTTL": <true|false>,    
  "security" : "</path/to/store/security/file>",
  "requestTimeoutMs" : 5000
}

Source Parameters

Common Configuration Parameter

• type
Use "type" : "nosqldb"

• security
Example:

"security" : "/home/user/client.credentials"
Example security file content for password file based authentication:

oracle.kv.password.noPrompt=true
oracle.kv.auth.username=admin
oracle.kv.auth.pwdfile.file=/home/nosql/login.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/home/nosql/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Example security file content for wallet based authentication:

oracle.kv.password.noPrompt=true
oracle.kv.auth.username=admin
oracle.kv.auth.wallet.dir=/home/nosql/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/home/nosql/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Chapter 1
Sources and Sinks

1-39



• requestTimeoutMs
Example: "requestTimeoutMs" : 5000

Unique Configuration Parameters

• storeName

• helperHosts

• table

• includeTTL

storeName

• Purpose: Name of the Oracle NoSQL Database store.

• Data Type: string

• Mandatory (Y/N): Y

• Example: "storeName" : "kvstore"

helperHosts

• Purpose: A list of host and registry port pairs in the hostname:port format. Delimit each
item in the list using a comma. You must specify at least one helper host.

• Data Type: array of strings

• Mandatory (Y/N): Y

• Example: "helperHosts" : ["localhost:5000","localhost:6000"]

table

• Purpose: Fully qualified table name from which to migrate the data.

Format: [namespace_name:]<table_name>
If the table is in the DEFAULT namespace, you can omit the namespace_name. The table
must exist in the store.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

– With the DEFAULT namespace "table" :"mytable"
– With a non-default namespace "table" : "mynamespace:mytable"
– To specify a child table "table" : "mytable.child"

includeTTL

• Purpose: Specifies whether or not to include TTL metadata for table rows when exporting
Oracle NoSQL Database tables. If set to true, the TTL data for rows also gets included in
the data provided by the source. TTL is present in the _metadata JSON object associated
with each row. The expiration time for each row gets exported as the number of
milliseconds since the UNIX epoch (Jan 1st, 1970).

If you do not specify this parameter, it defaults to false.

Only the rows having a positive expiration value for TTL get included as part of the
exported rows. If a row does not expire, which means TTL=0, then its TTL metadata is not

Chapter 1
Sources and Sinks

1-40



included explicitly. For example, if ROW1 expires at 2021-10-19 00:00:00 and ROW2 does
not expire, the exported data looks like as follows:

//ROW1
{
  "id" : 1,
  "name" : "abc",
  "_metadata" : {
    "expiration" : 1634601600000
  }
}

//ROW2
{
  "id" : 2,
  "name" : "xyz"
}

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "includeTTL" : true

Oracle NoSQL Database Cloud Service
The configuration file format for Oracle NoSQL Database Cloud Service as a source of NoSQL
Database Migrator is shown below.

You can migrate a table from Oracle NoSQL Database Cloud Service by specifying the name
or OCID of the compartment in which the table resides in the source configuration template.

A sample Oracle NoSQL Database Cloud Service table is as follows:

{"id":20,"firstName":"Jane","lastName":"Smith","otherNames":
[{"first":"Jane","last":"teacher"}],"age":25,"income":55000,"address":
{"city":"San Jose","number":201,"phones":
[{"area":608,"kind":"work","number":6538955},
{"area":931,"kind":"home","number":9533341},
{"area":931,"kind":"mobile","number":9533382}],"state":"CA","street":"Atlantic
 Ave","zip":95005},"connections":[40,75,63],"expenses":null}
{"id":10,"firstName":"John","lastName":"Smith","otherNames":
[{"first":"Johny","last":"chef"}],"age":22,"income":45000,"address":
{"city":"Santa Cruz","number":101,"phones":
[{"area":408,"kind":"work","number":4538955},
{"area":831,"kind":"home","number":7533341},
{"area":831,"kind":"mobile","number":7533382}],"state":"CA","street":"Pacific 
Ave","zip":95008},"connections":[30,55,43],"expenses":null}
{"id":30,"firstName":"Adam","lastName":"Smith","otherNames":
[{"first":"Adam","last":"handyman"}],"age":45,"income":75000,"address":
{"city":"Houston","number":301,"phones":
[{"area":618,"kind":"work","number":6618955},
{"area":951,"kind":"home","number":9613341},
{"area":981,"kind":"mobile","number":9613382}],"state":"TX","street":"Indian 
Ave","zip":95075},"connections":[60,45,73],"expenses":null}

Chapter 1
Sources and Sinks

1-41



Source Configuration Template

"source" : {
  "type" : "nosqldb_cloud",
  "endpoint" : "<Oracle NoSQL Cloud Service endpoint URL or region ID>",
  "table" : "<table name>",
  "compartment" : "<OCI compartment name or id>",
  "credentials" : "<path/to/oci/credential/file>",
  "credentialsProfile" : "<profile name in oci config file>",
  "useInstancePrincipal" : <true|false>,
  "useDelegationToken" : <true|false>,
  "useSessionToken" : <true|false>,
  "useOKEWorkloadIdentity" : <true|false>,
  "readUnitsPercent" : <table readunits percent>,
  "includeTTL": <true|false>,
  "requestTimeoutMs" : <timeout in milli seconds>
}

Source Parameters

Common Configuration Parameters

• type
Use "type" : "nosqldb_cloud"

• endpoint
Example:

– Region ID: "endpoint" : "us-ashburn-1"
– URL format: "endpoint" : "https://objectstorage.us-

ashburn-1.oraclecloud.com"
• credentials

Example:

1. "credentials" : "/home/user/.oci/config"
2. "credentials" : "/home/user/security/config"

• credentialsProfile
Example:

1. "credentialsProfile" : "DEFAULT"
2. "credentialsProfile" : "ADMIN_USER"

• useInstancePrincipal
Example: "useInstancePrincipal" : true

• useDelegationToken
Example: "useDelegationToken" : true

Note:

The authentication with delegation token is supported only when the NoSQL
Database Migrator is running from a Cloud Shell.

• useOKEWorkloadIdentity

Chapter 1
Sources and Sinks

1-42



Example: "useOKEWorkloadIdentity" : true
• useSessionToken

Example: "useSessionToken" : true
• requestTimeoutMs

Example: "requestTimeoutMs" : 5000
Unique Configuration Parameters

• table

• compartment

• readUnitsPercent

• includeTTL

table

• Purpose: Name of the table from which to migrate the data.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

– To specify a table "table" : "myTable"
– To specify a child table "table" : "mytable.child"

compartment

• Purpose: Specifies the name or OCID of the compartment in which the table resides.

If you do not provide any value, it defaults to the root compartment.

You can find your compartment's OCID from the Compartment Explorer window under
Governance in the OCI Cloud Console.

• Data Type: string

• Mandatory (Y/N): Y, if the table is not in the root compartment of the tenancy OR when the
useInstancePrincipal parameter is set to true.

Note:

If the useInstancePrincipal parameter is set to true, the compartment must
specify the compartment OCID and not the name.

• Example:

– Compartment name

"compartment" : "mycompartment"
– Compartment name qualified with its parent compartment

"compartment" : "parent.childcompartment"
– No value provided. Defaults to the root compartment.

"compartment": ""
– Compartment OCID

Chapter 1
Sources and Sinks

1-43



"compartment" : "ocid1.tenancy.oc1...4ksd"

readUnitsPercent

• Purpose: Percentage of table read units to be used while migrating the NoSQL table.

The default value is 90. The valid range is any integer between 1 to 100. The amount of
time required to migrate data is directly proportional to this attribute. It is better to increase
the read throughput of the table for the migration activity. You can reduce the read
throughput after the migration process completes.

To learn the daily limits on throughput changes, see Cloud Limits in the Oracle NoSQL
Database Cloud Service document.

See Troubleshooting the Oracle NoSQL Database Migrator to learn how to use this
attribute to improve the data migration speed.

• Data Type: integer

• Mandatory (Y/N): N

• Example: "readUnitsPercent" : 90

includeTTL

• Purpose: Specifies whether or not to include TTL metadata for table rows when exporting
Oracle NoSQL Database tables. If set to true, the TTL data for rows also gets included in
the data provided by the source. TTL is present in the _metadata JSON object associated
with each row. The expiration time for each row gets exported as the number of
milliseconds since the UNIX epoch (Jan 1st, 1970).

If you do not specify this parameter, it defaults to false.

Only the rows having a positive expiration value for TTL get included as part of the
exported rows. If a row does not expire, which means TTL=0, then its TTL metadata is not
included explicitly. For example, if ROW1 expires at 2021-10-19 00:00:00 and ROW2 does
not expire, the exported data looks like as follows:

//ROW1
{
  "id" : 1,
  "name" : "abc",
  "_metadata" : {
    "expiration" : 1634601600000
  }
}

//ROW2
{
  "id" : 2,
  "name" : "xyz"
}

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "includeTTL" : true

Chapter 1
Sources and Sinks

1-44



CSV File Source
The configuration file format for the CSV file as a source of NoSQL Database Migrator is
shown below. The CSV file must conform to the RFC4180 format.

You can migrate a CSV file or a directory containing the CSV data by specifying the file name
or directory in the source configuration template.

A sample CSV file is as follows:

1,"Computer Science","San Francisco","2500"
2,"Bio-Technology","Los Angeles","1200"
3,"Journalism","Las Vegas","1500"
4,"Telecommunication","San Francisco","2500"

Source Configuration Template

"source" : {
  "type" : "file",
  "format" : "csv",
  "dataPath": "</path/to/a/csv/[file|dir]>",
  "hasHeader" : <true | false>,
  "columns" : ["column1", "column2", ....],
  "csvOptions": {
    "encoding": "<character set encoding>",
    "trim": "<true | false>"
 }
}

Source Parameters

Common Configuration Parameters

• type
Use "type" : "file"

• format
Use "format" : "csv"

Unique Configuration Parameters

• dataPath

• hasHeader

• columns

• csvOptions

• csvOptions.encoding

• csvOptions.trim

datapath

• Purpose: Specifies the absolute path to a file or directory containing the CSV data for
migration. If you specify a directory, NoSQL Database Migrator imports all the files with
the .csv or .CSV extension in that directory. All the CSV files are copied into a single table,
but not in any particular order.

Chapter 1
Sources and Sinks

1-45



CSV files must conform to the RFC4180 standard. You must ensure that the data in each
CSV file matches with the NoSQL Database table schema defined in the sink table. Sub-
directories are not supported.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

– Specifying a CSV file

"dataPath" : "/home/user/sample.csv"
– Specifying a directory

"dataPath" : "/home/user"

Note:

The CSV files must contain only scalar values. Importing CSV files containing
complex types such as MAP, RECORD, ARRAY, and JSON is not supported. The
NoSQL Database Migrator tool does not check for the correctness of the data in the
input CSV file. The NoSQL Database Migrator tool supports the importing of CSV
data that conforms to the RFC4180 format. CSV files containing data that does not
conform to the RFC4180 standard may not get copied correctly or may result in an
error. If the input data is corrupted, the NoSQL Database Migrator tool will not parse
the CSV records. If any errors are encountered during migration, the NoSQL
Database Migrator tool logs the information about the failed input records for
debugging and informative purposes. For more details, see Logging Migrator
Progress in Using Oracle NoSQL Data Migrator.

hasHeader

• Purpose: Specifies if the CSV file has a header or not. If this is set to true, the first line is
ignored. If it is set to false, the first line is considered a CSV record. The default value is
false.

• Data Type: Boolean

• Mandatory (Y/N): N

• Example: "hasHeader" : "false"

columns

• Purpose: Specifies the list of NoSQL Database table column names. The order of the
column names indicates the mapping of the CSV file fields with corresponding NoSQL
Database table columns. If the order of the input CSV file columns does not match the
existing or newly created NoSQL Database table columns, you can map the ordering using
this parameter. Also, when importing into a table that has an Identity Column, you can skip
the Identity column name in the columns parameter.

Chapter 1
Sources and Sinks

1-46



Note:

– If the NoSQL Database table has additional columns that are not available in
the CSV file, the values of the missing columns are updated with the default
value as defined in the NoSQL Database table. If a default value is not
provided, a Null value is inserted during migration. For more information on
default values, see Data Type Definitions section in the SQL Reference
Guide.

– If the CSV file has additional columns that are not defined in the NoSQL
Database table, the additional column information is ignored.

– If any value in the CSV record is empty, it is set to the default value of the
corresponding columns in the NoSQL Database table. If a default value is not
provided, a Null value is inserted during migration.

• Data Type: Array of Strings

• Mandatory (Y/N): N

• Example: "columns" : ["table_column_1", "table_column_2"]

csvOptions

• Purpose: Specifies the formatting options for a CSV file. Provide the character set
encoding format of the CSV file and choose whether or not to trim the blank spaces.

• Data Type: Object

• Mandatory (Y/N): N

csvOptions.encoding

• Purpose: Specifies the character set to decode the CSV file. The default value is UTF-8.
The supported character sets are US-ASCII, ISO-8859-1, UTF-8, and UTF-16.

• Data Type: String

• Mandatory (Y/N): N

• Example: "encoding" : "UTF-8"

csvOptions.trim

• Purpose: Specifies if the leading and trailing blanks of a CSV field value must be trimmed.
The default value is false.

• Data Type: Boolean

• Mandatory (Y/N): N

• Example: "trim" : "true"

CSV file in OCI Object Storage Bucket
The configuration file format for the CSV file in OCI Object Storage bucket as a source of
NoSQL Database Migrator is shown below. The CSV file must conform to the RFC4180 format.

You can migrate a CSV file in the OCI Object Storage bucket by specifying the name of the
bucket in the source configuration template.

Chapter 1
Sources and Sinks

1-47



A sample CSV file in the OCI Object Storage bucket is as follows:

1,"Computer Science","San Francisco","2500"
2,"Bio-Technology","Los Angeles","1200"
3,"Journalism","Las Vegas","1500"
4,"Telecommunication","San Francisco","2500"

Note:

The valid sink types for OCI Object Storage source type are nosqldb and
nosqldb_cloud.

Source Configuration Template

"source" : {
  "type" : "object_storage_oci",
  "format" : "csv",
  "endpoint" : "<OCI Object Storage service endpoint URL or region ID>",
  "namespace" : "<OCI Object Storage namespace>",
  "bucket" : "<bucket name>",
  "prefix" : "<object prefix>",
  "credentials" : "</path/to/oci/config/file>",
  "credentialsProfile" : "<profile name in oci config file>",
  "useInstancePrincipal" : <true|false>,
  "useDelegationToken" : <true|false>,
  "useSessionToken" : <true|false>,
  "useOKEWorkloadIdentity" : <true|false>,
   "hasHeader" : <true | false>,
   "columns" : ["column1", "column2", ....],
   "csvOptions" : {         
     "encoding" : "<character set encoding>",
     "trim" : <true | false>
   }
 }

Source Parameters

Common Configuration Parameters

• type
Use "type" : "object_storage_oci"

• format
Use "format" : "csv"

• endpoint
Example:

– Region ID: "endpoint" : "us-ashburn-1"
– URL format: "endpoint" : "https://objectstorage.us-

ashburn-1.oraclecloud.com"
• namespace

Example: "namespace" : "my-namespace"

Chapter 1
Sources and Sinks

1-48



• bucket
Example: "bucket" : "my-bucket"

Note:

– The NoSQL Database Migrator imports all the files with the .csv or .CSV
extension object-wise and copies them into a single table in the same order.

– The CSV files must contain only scalar values. Importing CSV files
containing complex types such as MAP, RECORD, ARRAY, and JSON is not
supported. The NoSQL Database Migrator tool does not check for the
correctness of the data in the input CSV file. The NoSQL Database Migrator
tool supports the importing of CSV data that conforms to the RFC4180 format.
CSV files containing data that does not conform to the RFC4180 standard may
not get copied correctly or may result in an error. If the input data is
corrupted, the NoSQL Database Migrator tool will not parse the CSV records.
If any errors are encountered during migration, the NoSQL Database
Migrator tool logs the information about the failed input records for debugging
and informative purposes. For more details, see Logging Migrator Progress
in Using Oracle NoSQL Data Migrator.

• prefix
Example:

1. "prefix" : "my_table/Data/000000.csv" (migrates only 000000.csv)

2. "prefix" : "my_table/Data" (migrates all the objects with prefix my_table/Data)

• credentials
Example:

1. "credentials" : "/home/user/.oci/config"
2. "credentials" : "/home/user/security/config"

• credentialsProfile
Example:

1. "credentialsProfile" : "DEFAULT"
2. "credentialsProfile" : "ADMIN_USER"

• useInstancePrincipal
Example: "useInstancePrincipal" : true

• useDelegationToken
Example: "useDelegationToken" : true

Note:

The authentication with delegation token is supported only when the NoSQL
Database Migrator is running from a Cloud Shell.

• useOKEWorkloadIdentity
Example: "useOKEWorkloadIdentity" : true

• useSessionToken
Example: "useSessionToken" : true

Chapter 1
Sources and Sinks

1-49



Unique Configuration Parameters

• hasHeader

• columns

• csvOptions

• csvOptions.encoding

• csvOptions.trim

hasHeader

• Purpose: Specifies if the CSV file has a header or not. If this is set to true, the first line is
ignored. If it is set to false, the first line is considered a CSV record. The default value is
false.

• Data Type: Boolean

• Mandatory (Y/N): N

• Example: "hasHeader" : "false"

columns

• Purpose: Specifies the list of NoSQL Database table column names. The order of the
column names indicates the mapping of the CSV file fields with corresponding NoSQL
Database table columns. If the order of the input CSV file columns does not match the
existing or newly created NoSQL Database table columns, you can map the ordering using
this parameter. Also, when importing into a table that has an Identity Column, you can skip
the Identity column name in the columns parameter.

Note:

– If the NoSQL Database table has additional columns that are not available in
the CSV file, the values of the missing columns are updated with the default
value as defined in the NoSQL Database table. If a default value is not
provided, a Null value is inserted during migration. For more information on
default values, see Data Type Definitions section in the SQL Reference
Guide.

– If the CSV file has additional columns that are not defined in the NoSQL
Database table, the additional column information is ignored.

– If any value in the CSV record is empty, it is set to the default value of the
corresponding columns in the NoSQL Database table. If a default value is not
provided, a Null value is inserted during migration.

• Data Type: Array of Strings

• Mandatory (Y/N): N

• Example: "columns" : ["table_column_1", "table_column_2"]

csvOptions

• Purpose: Specifies the formatting options for a CSV file. Provide the character set
encoding format of the CSV file and choose whether or not to trim the blank spaces.

• Data Type: Object

Chapter 1
Sources and Sinks

1-50



• Mandatory (Y/N): N

csvOptions.encoding

• Purpose: Specifies the character set to decode the CSV file. The default value is UTF-8.
The supported character sets are US-ASCII, ISO-8859-1, UTF-8, and UTF-16.

• Data Type: String

• Mandatory (Y/N): N

• Example: "encoding" : "UTF-8"

csvOptions.trim

• Purpose: Specifies if the leading and trailing blanks of a CSV field value must be trimmed.
The default value is false.

• Data Type: Boolean

• Mandatory (Y/N): N

• Example: "trim" : "true"

Sink Configuration Templates
Learn about the sink configuration file formats for each valid sink and the purpose of each
configuration parameter.

For the configuration file template, see Configuration File in Terminology used with Oracle
NoSQL Database Migrator.
For details on valid source formats for each of the sinks, see Source Configuration Templates.

Topics

The following topics describe the sink configuration templates referred by Oracle NoSQL
Database Migrator to copy the data from a valid source to the given sink.

• JSON File Sink
Specified JSON file.

• Parquet File
Parquet file in the specified directory.

• JSON File in OCI Object Storage Bucket
JSON file in the specified OCI Object Storage bucket.

• Parquet File in OCI Object Storage Bucket
Parquet file in the specified OCI Object Storage bucket.

• Oracle NoSQL Database
Specified table in Oracle NoSQL Database.

• Oracle NoSQL Database Cloud Service
Specified table in Oracle NoSQL Database Cloud Service.

Chapter 1
Sources and Sinks

1-51



JSON File Sink
The configuration file format for JSON File as a sink of NoSQL Database Migrator is shown
below.

Sink Configuration Template

"sink" : {
  "type" : "file",
  "format" : "json",
  "dataPath": "</path/to/a/directory>",
  "schemaPath" : "<path/to/a/file>",
  "pretty" : <true|false>,
  "useMultiFiles" : <true|false>,
  "chunkSize" : <size in MB>
}

Sink Parameters

Common Configuration Parameters

• type
Use "type" : "file"

• format
Use "format" : "json"

• chunkSize
Example: "chunkSize" : 40

Note:

This parameter is applicable ONLY when the useMultiFiles parameter is set
to true.

Unique Configuration Parameters

• dataPath

• schemaPath

• pretty

• useMultiFiles

dataPath

• Purpose: Specifies the path to a directory where NoSQL Database Migrator copies the
source data in the JSON format.

NoSQL Database Migrator creates JSON files in the specified directory. If the files exist,
NoSQL Database Migrator overwrites their content with source data.

Ensure that the directory already exists and has read and write permissions.

• Data Type: string

• Mandatory (Y/N): Y

Chapter 1
Sources and Sinks

1-52



• Example: "dataPath" : "/home/user/data"
After successful migration, the directory specified in the dataPath parameter will include
exported files as shown in the following sample:

|--<Table_name>_1_5.json
|--<Table_name>_6_10.json
...

schemaPath

• Purpose: Specifies the absolute path to a file to write table schema information provided
by the source.

If this value is not defined, the source schema information will not be migrated to the sink.
If this value is specified, the migrator utility writes the schema of the source table into the
file specified here.

The schema information is written as one DDL command per line in this file. If the file does
not exist in the specified data path, NoSQL Database Migrator creates it. If it exists
already, NoSQL Database Migrator will overwrite its contents with the source data. You
must ensure that the parent directory in the data path is valid for the specified file.

• Data Type: string

• Mandatory (Y/N): N

• Example: "schemaPath" : "/home/user/schema_file"

pretty

• Purpose: Specifies whether or not to beautify the JSON output to increase readability.

If not specified, it defaults to false.

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "pretty" : true

useMultiFiles

• Purpose: Specifies whether or not to further split the exported files (created under the
directory specified in the dataPath parameter) into multiple sub-files of a specific size
while migrating NoSQL Database table data to a directory.

NoSQL Database Migrator splits the NoSQL Database table data into multiple files while
exporting data. If useMultiFiles parameter is set to true, each exported file is further
split into sub-files of size specified in the chunkSize parameter.
The useMultiFiles parameter defaults to false.

Example: After successful migration, the directory specified in the dataPath parameter
will include exported files as shown in the following sample:

|--<Table_name>_1_5_0.json
|--<Table_name>_1_5_1.json
|--<Table_name>_6_10_0.json
|--<Table_name>_6_10_1.json
|--<Table_name>_6_10_2.json
...

Chapter 1
Sources and Sinks

1-53



• Data Type: boolean

• Mandatory (Y/N): N

• Example: "useMultiFiles" : true

Parquet File
The configuration file format for Parquet File as a sink of NoSQL Database Migrator is shown
below.

Sink Configuration Template

"sink" : {
  "type" : "file",
  "format" : "parquet",
  "dataPath": "</path/to/a/dir>",
  "chunkSize" : <size in MB>,
  "compression": "<SNAPPY|GZIP|NONE>",
  "parquetOptions": {
    "useLogicalJson": <true|false>,
    "useLogicalEnum": <true|false>,
    "useLogicalUUID": <true|false>,     
    "truncateDoubleSpecials": <true|false>
  }
}

Sink Parameters

Common Configuration Parameters

• type
Use "type" : "file"

• format
Use "format" : "parquet"

• chunkSize
Example: "chunkSize" : 40

Unique Configuration Parameters

• dataPath

• compression

• parquetOptions

• parquetOptions.useLogicalJson

• parquetOptions.useLogicalEnum

• parquetOptions.useLogicalUUID

• parquetOptions.truncateDoubleSpecials

dataPath

• Purpose: Specifies the path to a directory for storing the migrated NoSQL table data.
Ensure that the directory already exists and has read and write permissions.

• Data Type: string

Chapter 1
Sources and Sinks

1-54



• Mandatory (Y/N): Y

• Example: "dataPath" : "/home/user/migrator/my_table"

compression

• Purpose: Specifies the compression type to use to compress the Parquet data. Valid
values are SNAPPY, GZIP, and NONE.

If not specified, it defaults to SNAPPY.

• Data Type: string

• Mandatory (Y/N): N

• Example: "compression" : "GZIP"

parquetOptions

• Purpose: Specifies the options to select Parquet logical types for NoSQL ENUM, JSON,
and UUID columns.

If you do not specify this parameter, the NoSQL Database Migrator writes the data of
ENUM, JSON, and UUID columns as String.

• Data Type: object

• Mandatory (Y/N): N

parquetOptions.useLogicalJson

• Purpose: Specifies whether or not to write NoSQL JSON column data as Parquet logical
JSON type. For more information, see Parquet Logical Type Definitions.

If not specified or set to false, NoSQL Database Migrator writes the NoSQL JSON column
data as String.

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "useLogicalJson" : true

parquetOptions.useLogicalEnum

• Purpose: Specifies whether or not to write NoSQL ENUM column data as Parquet logical
ENUM type. For more information, see Parquet Logical Type Definitions.

If not specified or set to false, NoSQL Database Migrator writes the NoSQL ENUM column
data as String.

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "useLogicalEnum" : true

parquetOptions.useLogicalUUID

• Purpose: Specifies whether or not to write NoSQL UUID column data as Parquet logical
UUID type. For more information, see Parquet Logical Type Definitions.

If not specified or set to false, NoSQL Database Migrator writes the NoSQL UUID column
data as String.

• Data Type: boolean

Chapter 1
Sources and Sinks

1-55

https://github.com/apache/parquet-format/blob/master/LogicalTypes.md
https://github.com/apache/parquet-format/blob/master/LogicalTypes.md
https://github.com/apache/parquet-format/blob/master/LogicalTypes.md


• Mandatory (Y/N): N

• Example: "useLogicalUUID" : true

parquetOptions.truncateDoubleSpecials

• Purpose: Specifies whether or not to truncate the double +Infinity, -Infinity, and NaN
values.

By default, it is set to false. If set to true,

– Positive_Infinity is truncated to Double.MAX_VALUE.

– NEGATIVE_INFINITY is truncated to -Double.MAX_VALUE.

– NaN is truncated to 9.9999999999999990E307.

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "truncateDoubleSpecials" : true

JSON File in OCI Object Storage Bucket
The configuration file format for JSON file in OCI Object Storage bucket as a sink of NoSQL
Database Migrator is shown below.

Note:

The valid source types for OCI Object Storage as the sink are nosqldb and
nosqldb_cloud.

Sink Configuration Template

"sink" : {
  "type" : "object_storage_oci",
  "format" : "json",
  "endpoint" : "<OCI Object Storage service endpoint URL or region ID>",
  "namespace" : "<OCI Object Storage namespace>",
  "bucket" : "<bucket name>",
  "prefix" : "<object prefix>",
  "chunkSize" : <size in MB>,
  "pretty" : <true|false>,
  "credentials" : "</path/to/oci/config/file>",
  "credentialsProfile" : "<profile name in oci config file>",
  "useInstancePrincipal" : <true|false>,  
  "useDelegationToken" : <true|false>,
  "useSessionToken" : <true|false>,
  "useOKEWorkloadIdentity" : <true|false>
}

Sink Parameters

Common Configuration Parameters

• type
Use "type" : "object_storage_oci"

Chapter 1
Sources and Sinks

1-56



• format
Use "format" : "json"

• endpoint
Example:

– Region ID: "endpoint" : "us-ashburn-1"
– URL format: "endpoint" : "https://objectstorage.us-

ashburn-1.oraclecloud.com"
• namespace

Example: "namespace" : "my-namespace"
• bucket

Example: "bucket" : "my-bucket"
• prefix

Schema is migrated to the <prefix>/Schema/schema.ddl file and source data is
migrated to the <prefix>/Data/<chunk>.json files, where chunk=000000.json,
000001.json, and so forth.

Example:

1. "prefix" : "my_export"
2. "prefix" : "my_export/2021-04-05/"

• chunkSize
Example: "chunkSize" : 40

• credentials
Example:

1. "credentials" : "/home/user/.oci/config"
2. "credentials" : "/home/user/security/config"

• credentialsProfile
Example:

1. "credentialsProfile" : "DEFAULT"
2. "credentialsProfile" : "ADMIN_USER"

• useInstancePrincipal
Example: "useInstancePrincipal" : true

• useDelegationToken
Example: "useDelegationToken" : true

Note:

The authentication with delegation token is supported only when the NoSQL
Database Migrator is running from a Cloud Shell.

• useOKEWorkloadIdentity
Example: "useOKEWorkloadIdentity" : true

• useSessionToken
Example: "useSessionToken" : true

Unique Configuration Parameter

Chapter 1
Sources and Sinks

1-57



pretty

• Purpose: Specifies whether or not to beautify the JSON output to increase readability.

If not specified, it defaults to false.

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "pretty" : true

Parquet File in OCI Object Storage Bucket
The configuration file format for Parquet file in OCI Object Storage bucket as a sink of NoSQL
Database Migrator is shown below.

Note:

The valid source types for OCI Object Storage source type are nosqldb and
nosqldb_cloud.

Sink Configuration Template

"sink" : {
  "type" : "object_storage_oci",
  "format" : "parquet",
  "endpoint" : "<OCI Object Storage service endpoint URL or region ID>",
  "namespace" : "<OCI Object Storage namespace>",
  "bucket" : "<bucket name>",
  "prefix" : "<object prefix>",
  "chunkSize" : <size in MB>,
  "compression": "<SNAPPY|GZIP|NONE>",
  "parquetOptions": {
    "useLogicalJson": <true|false>,
    "useLogicalEnum": <true|false>,
    "useLogicalUUID": <true|false>,
    "truncateDoubleSpecials": <true|false>
  },
  "credentials" : "</path/to/oci/config/file>",
  "credentialsProfile" : "<profile name in oci config file>",
  "useInstancePrincipal" : <true|false>,
  "useDelegationToken" : <true|false>,
  "useSessionToken" : <true|false>,
  "useOKEWorkloadIdentity" : <true|false>
}

Sink Parameters

Common Configuration Parameters

• type
Use "type" : "object_storage_oci"

• format

Chapter 1
Sources and Sinks

1-58



Use "format" : "parquet"
• endpoint

Example:

– Region ID: "endpoint" : "us-ashburn-1"
– URL format: "endpoint" : "https://objectstorage.us-

ashburn-1.oraclecloud.com"
• namespace

Example: "namespace" : "my-namespace"
• bucket

Example: "bucket" : "my-bucket"
• prefix

Source data is migrated to the <prefix>/Data/<chunk>.parquet files, where
chunk=000000.parquet, 000001.parquet, and so forth.

Example:

1. "prefix" : "my_export"
2. "prefix" : "my_export/2021-04-05/"

• chunkSize
Example: "chunkSize" : 40

• credentials
Example:

1. "credentials" : "/home/user/.oci/config"
2. "credentials" : "/home/user/security/config"

• credentialsProfile
Example:

1. "credentialsProfile" : "DEFAULT"
2. "credentialsProfile" : "ADMIN_USER"

• useInstancePrincipal
Example: "useInstancePrincipal" : true

• useDelegationToken
Example: "useDelegationToken" : true

Note:

The authentication with delegation token is supported only when the NoSQL
Database Migrator is running from a Cloud Shell.

• useOKEWorkloadIdentity
Example: "useOKEWorkloadIdentity" : true

• useSessionToken
Example: "useSessionToken" : true

Unique Configuration Parameter

• compression

• parquetOptions

Chapter 1
Sources and Sinks

1-59



• parquetOptions.useLogicalJson

• parquetOptions.useLogicalEnum

• parquetOptions.useLogicalUUID

• parquetOptions.truncateDoubleSpecials

compression

• Purpose: Specifies the compression type to use to compress the Parquet data. Valid
values are SNAPPY, GZIP, and NONE.

If not specified, it defaults to SNAPPY.

• Data Type: string

• Mandatory (Y/N): N

• Example: "compression" : "GZIP"

parquetOptions

• Purpose: Specifies the options to select Parquet logical types for NoSQL ENUM, JSON,
and UUID columns.

If you do not specify this parameter, the NoSQL Database Migrator writes the data of
ENUM, JSON, and UUID columns as String.

• Data Type: object

• Mandatory (Y/N): N

parquetOptions.useLogicalJson

• Purpose: Specifies whether or not to write NoSQL JSON column data as Parquet logical
JSON type. For more information, see Parquet Logical Type Definitions.

If not specified or set to false, NoSQL Database Migrator writes the NoSQL JSON column
data as String.

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "useLogicalJson" : true

parquetOptions.useLogicalEnum

• Purpose: Specifies whether or not to write NoSQL ENUM column data as Parquet logical
ENUM type. For more information, see Parquet Logical Type Definitions.

If not specified or set to false, NoSQL Database Migrator writes the NoSQL ENUM column
data as String.

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "useLogicalEnum" : true

parquetOptions.useLogicalUUID

• Purpose: Specifies whether or not to write NoSQL UUID column data as Parquet logical
UUID type. For more information, see Parquet Logical Type Definitions.

Chapter 1
Sources and Sinks

1-60

https://github.com/apache/parquet-format/blob/master/LogicalTypes.md
https://github.com/apache/parquet-format/blob/master/LogicalTypes.md
https://github.com/apache/parquet-format/blob/master/LogicalTypes.md


If not specified or set to false, NoSQL Database Migrator writes the NoSQL UUID column
data as String.

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "useLogicalUUID" : true

parquetOptions.truncateDoubleSpecials

• Purpose: Specifies whether or not to truncate the double +Infinity, -Infinity, and NaN
values.

By default, it is set to false. If set to true,

– Positive_Infinity is truncated to Double.MAX_VALUE.

– NEGATIVE_INFINITY is truncated to -Double.MAX_VALUE.

– NaN is truncated to 9.9999999999999990E307.

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "truncateDoubleSpecials" : true

Oracle NoSQL Database
The configuration file format for Oracle NoSQL Database as a sink of NoSQL Database
Migrator is shown below.

Sink Configuration Template

"sink" : {
  "type": "nosqldb",
  "storeName" : "<store name>",
  "helperHosts" : ["hostname1:port1","hostname2:port2,..."],
  "security" : "</path/to/store/credentials/file>",
  "table" : "<fully qualified table name>",
  "includeTTL": <true|false>,
  "ttlRelativeDate": "<date-to-use in UTC>",
  "schemaInfo" : {
    "schemaPath" : "</path/to/a/schema/file>",
    "defaultSchema" : <true|false>,
    "useSourceSchema" : <true|false>,
    "DDBPartitionKey" : <"name:type">,
    "DDBSortKey" : "<name:type>"
  },
  "overwrite" : <true|false>,
  "requestTimeoutMs" : <timeout in milli seconds>
}

Sink Parameters

Common Configuration Parameter

• type
Use "type" : "nosqldb"

Chapter 1
Sources and Sinks

1-61



• security
Example:

"security" : "/home/user/client.credentials"
Example security file content for password file based authentication:

oracle.kv.password.noPrompt=true
oracle.kv.auth.username=admin
oracle.kv.auth.pwdfile.file=/home/nosql/login.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/home/nosql/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

Example security file content for wallet based authentication:

oracle.kv.password.noPrompt=true
oracle.kv.auth.username=admin
oracle.kv.auth.wallet.dir=/home/nosql/login.wallet
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/home/nosql/client.trust
oracle.kv.ssl.protocols=TLSv1.2
oracle.kv.ssl.hostnameVerifier=dnmatch(CN\=NoSQL)

• requestTimeoutMs
Example: "requestTimeoutMs" : 5000

Unique Configuration Parameter

• storeName

• helperHosts

• table

• includeTTL

• ttlRelativeDate

• schemaInfo

• schemaInfo.schemaPath

• schemaInfo.defaultSchema

• schemaInfo.useSourceSchema

• schemaInfo.DDBPartitionKey

• schemaInfo.DDBSortKey

• overwrite

storeName

• Purpose: Name of the Oracle NoSQL Database store.

• Data Type: string

• Mandatory (Y/N): Y

• Example: "storeName" : "kvstore"

Chapter 1
Sources and Sinks

1-62



helperHosts

• Purpose: A list of host and registry port pairs in the hostname:port format. Delimit each
item in the list using a comma. You must specify at least one helper host.

• Data Type: array of strings

• Mandatory (Y/N): Y

• Example: "helperHosts" : ["localhost:5000","localhost:6000"]

table

• Purpose: Specifies the table name to store the migrated data.

Format: [namespace_name:]<table_name>
If the table is in the DEFAULT namespace, you can omit the namespace_name. The table
must exist in the store during the migration, and its schema must match with the source
data.

If the table is not available in the sink, you can use the schemaInfo parameter to instruct
the NoSQL Database Migrator to create the table in the sink.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

– With the DEFAULT namespace "table" :"mytable"
– With a non-default namespace "table" : "mynamespace:mytable"
– To specify a child table "table" : "mytable.child"

Note:

You can migrate the child tables from a valid data source to Oracle NoSQL
Database. The NoSQL Database Migrator copies only a single table in each
execution. Ensure that the parent table is migrated before the child table.

includeTTL

• Purpose: Specifies whether or not to include TTL metadata for table rows provided by the
source when importing Oracle NoSQL Database tables.

If you do not specify this parameter, it defaults to false. In that case, the NoSQL Database
Migrator does not include TTL metadata for table rows provided by the source when
importing Oracle NoSQL Database tables.

If set to true, the NoSQL Database Migrator tool performs the following checks on the TTL
metadata when importing a table row:

– If you import a row that does not have _metadata definition, the NoSQL Database
Migrator tool sets the TTL to 0, which means the row never expires.

– If you import a row that has _metadata definition, the NoSQL Database Migrator tool
compares the TTL value against a Reference Time when a row gets imported. If the
row has already expired relative to the Reference Time, then it is skipped. If the row
has not expired, then it is imported along with the TTL value. By default, the Reference
Time of import operation is the current time in milliseconds, obtained from 

Chapter 1
Sources and Sinks

1-63



System.currentTimeMillis(), of the machine where the NoSQL Database Migrator tool
is running. But you can also set a custom Reference Time using the ttlRelativeDate
configuration parameter if you want to extend the expiration time and import rows that
would otherwise expire immediately.
The formula to calculate the expiration time of a row is as follows:

expiration = (TTL value of source row in milliseconds - Reference Time 
in milliseconds)
if (expiration <= 0) then it indicates that row has expired.

Note:

Since Oracle NoSQL TTL boundaries are in hours and days, in some cases,
the TTL of the imported row might get adjusted to the nearest hour or day.
For example, consider a row that has expiration value of 1629709200000
(2021-08-23 09:00:00) and Reference Time value is 1629707962582
(2021-08-23 08:39:22). Here, even though the row is not expired relative to
the Reference Time when this data gets imported, the new TTL for the row is
1629712800000 (2021-08-23 10:00:00).

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "includeTTL" : true

ttlRelativeDate

• Purpose: Specify a UTC date in the YYYY-MM-DD hh:mm:ss format used to set the TTL
expiry of table rows during importing into the Oracle NoSQL Database.

If a table row in the data you are exporting has expired, you can set the
ttlRelativeDate parameter to a date before the expiration time of the table row in the
exported data.

If you do not specify this parameter, it defaults to the current time in milliseconds, obtained
from System.currentTimeMillis(), of the machine where the NoSQL Database Migrator tool
is running.

• Data Type: date

• Mandatory (Y/N): N

• Example: "ttlRelativeDate" : "2021-01-03 04:31:17"
Let us consider a scenario where table rows expire after seven days from 1-Jan-2021.
After exporting this table, on 7-Jan-2021, you run into an issue with your table and decide
to import the data. The table rows are going to expire in one day (data expiration date
minus the default value of ttlRelativedate configuration parameter, which is the
current date). But if you want to extend the expiration date of table rows to five days
instead of one day, use the ttlRelativeDate parameter and choose an earlier date.
Therefore, in this scenario if you want to extend expiration time of the table rows by five
days, set the value of ttlRelativeDate configuration parameters to 3-Jan-2021, which
is used as Reference Time when table rows get imported.

schemainfo

• Purpose: Specifies the schema for the data being migrated. If this is not specified, the
NoSQL Database Migrator assumes that the table already exists in the sink's store.

Chapter 1
Sources and Sinks

1-64



• Data Type: Object

• Mandatory (Y/N): N

schemaInfo.schemaPath

• Purpose: Specifies the absolute path to a file containing DDL statements for the NoSQL
table.

The NoSQL Database Migrator executes the DDL commands listed in this file before
migrating the data.

The NoSQL Database Migrator does not support more than one DDL statement per line in
the schemaPath file.

• Data Type: string

• Mandatory (Y/N): N

Note:

defaultSchema and schemaPath are mutually exclusive.

• Example: "schemaPath" : "/home/user/schema_file"

schemaInfo.defaultSchema

• Purpose: Setting this parameter to true instructs the NoSQL Database Migrator to create a
table with default schema. The default schema is defined by the migrator itself. For more
information about default schema definitions, see Default Schema in Using Oracle NoSQL
Data Migrator.

• Data Type: boolean

• Mandatory (Y/N): N

Note:

defaultSchema and schemaPath are mutually exclusive.

schemaInfo.useSourceSchema

• Purpose: Specifies whether or not the sink uses the table schema definition provided by
the source when migrating NoSQL tables.

• Data Type: boolean

• Mandatory (Y/N): N

Note:

defaultSchema, schemaPath, and useSourceSchema parameters are
mutually exclusive. Specify only one of these parameters.

• Example:

Chapter 1
Sources and Sinks

1-65



– With Default Schema:

"schemaInfo" : {
  "defaultSchema" : true
}

– With a pre-defined schema:

"schemaInfo" : {
 "schemaPath" : "<complete/path/to/the/schema/definition/file>"
}

– With source schema:

"schemaInfo" : {
  "useSourceSchema" : true
}

schemaInfo.DDBPartitionKey

• Purpose: Specifies the DynamoDB partition key and the corresponding Oracle NoSQL
Database type to be used in the sink Oracle NoSQL Database table. This key will be used
as a NoSQL DB table shard key. This is applicable only when defaultSchema is set to true
and the source format is dynamodb_json. See Mapping of DynamoDB types to Oracle
NoSQL types for more details.

• Mandatory (Y/N): Y, if defaultSchema is true and the source is dynamodb_json.

• Example: "DDBPartitionKey" : "PersonID:INTEGER"

Note:

If the partition key contains dash(-) or dot(.), Migrator will replace it with
underscore(_) as NoSQL column name does not support dot and dash.

schemaInfo.DDBSortKey

• Purpose: Specifies the DynamoDB sort key and its corresponding Oracle NoSQL
Database type to be used in the target Oracle NoSQL Database table. If the importing
DynamoDB table does not have a sort key, this attribute must not be set. This key will be
used as a non-shard portion of the primary key in the NoSQL DB table. This is applicable
only when defaultSchema is set to true and the source is dynamodb_json. See Mapping of
DynamoDB types to Oracle NoSQL types for more details.

• Mandatory (Y/N): N

• Example: "DDBSortKey" : "Skey:STRING"

Note:

If the sort key contains dash(-) or dot(.), Migrator will replace it with
underscore(_) as NoSQL column name does not support dot and dash.

Chapter 1
Sources and Sinks

1-66



overwrite

• Purpose: Indicates the behavior of NoSQL Database Migrator when the record being
migrated from the source is already present in the sink.

If the value is set to false, when migrating tables the NoSQL Database Migrator skips
those records for which the same primary key already exists in the sink.

If the value is set to true, when migrating tables the NoSQL Database Migrator overwrites
those records for which the same primary key already exists in the sink.

If not specified, it defaults to true.

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "overwrite" : false

Oracle NoSQL Database Cloud Service
The configuration file format for Oracle NoSQL Database Cloud Service as a sink of NoSQL
Database Migrator is shown below.

Sink Configuration Template

"sink" : {
  "type" : "nosqldb_cloud",
  "endpoint" : "<Oracle NoSQL Cloud Service Endpoint>",
  "table" : "<table name>",
  "compartment" : "<OCI compartment name or id>",
  "includeTTL": <true|false>,
  "ttlRelativeDate" : "<date-to-use in UTC>",  
  "schemaInfo" : {
    "schemaPath" : "</path/to/a/schema/file>",
    "defaultSchema" : <true|false>,
    "useSourceSchema" : <true|false>,
    "DDBPartitionKey" : <"name:type">,
    "DDBSortKey" : "<name:type>",
    "onDemandThroughput" : <true|false>,
    "readUnits" : <table read units>,
    "writeUnits" : <table write units>,
    "storageSize" : <storage size in GB>
   },
  "credentials" : "</path/to/oci/credential/file>",
  "credentialsProfile" : "<profile name in oci config file>",
  "useInstancePrincipal" : <true|false>,
  "useDelegationToken" : <true|false>,
  "useSessionToken" : <true|false>,
  "useOKEWorkloadIdentity" : <true|false>,
  "writeUnitsPercent" : <table writeunits percent>,
  "requestTimeoutMs" : <timeout in milli seconds>,
  "overwrite" : <true|false>
}

Sink Parameters

Common Configuration Parameters

Chapter 1
Sources and Sinks

1-67



• type
Use "type" : "nosqldb_cloud"

• endpoint
Example:

– Region ID: "endpoint" : "us-ashburn-1"
– URL format: "endpoint" : "https://objectstorage.us-

ashburn-1.oraclecloud.com"
• credentials

Example:

1. "credentials" : "/home/user/.oci/config"
2. "credentials" : "/home/user/security/config"

• credentialsProfile
Example:

1. "credentialsProfile" : "DEFAULT"
2. "credentialsProfile" : "ADMIN_USER"

• useInstancePrincipal
Example: "useInstancePrincipal" : true

• useDelegationToken
Example: "useDelegationToken" : true

Note:

The authentication with delegation token is supported only when the NoSQL
Database Migrator is running from a Cloud Shell.

• useOKEWorkloadIdentity
Example: "useOKEWorkloadIdentity" : true

• useSessionToken
Example: "useSessionToken" : true

• requestTimeoutMs
Example: "requestTimeoutMs" : 5000

Unique Configuration Parameter

• table

• compartment

• includeTTL

• ttlRelativeDate

• schemaInfo

• schemaInfo.schemaPath

• schemaInfo.defaultSchema

• schemaInfo.useSourceSchema

• schemaInfo.DDBPartitionKey

• schemaInfo.DDBSortKey

Chapter 1
Sources and Sinks

1-68



• schemaInfo.onDemandThroughput

• schemaInfo.readUnits

• schemaInfo.writeUnits

• schemaInfo.storageSize

• writeUnitsPercent

• overwrite

table

• Purpose: Specifies the table name to store the migrated data.

You must ensure that this table exists in your Oracle NoSQL Database Cloud Service.
Otherwise, you have to use the schemaInfo object in the sink configuration to instruct the
NoSQL Database Migrator to create the table.

The schema of this table must match the source data.

• Data Type: string

• Mandatory (Y/N): Y

• Example:

– To specify a table "table" : "mytable"
– To specify a child table "table" : "mytable.child"

Note:

You can migrate the child tables from a valid data source to Oracle NoSQL
Database Cloud Service. The NoSQL Database Migrator copies only a single
table in each execution. Ensure that the parent table is migrated before the
child table.

compartment

• Purpose: Specifies the name or OCID of the compartment in which the table resides.

If you do not provide any value, it defaults to the root compartment.

You can find your compartment's OCID from the Compartment Explorer window under
Governance in the OCI Cloud Console.

• Data Type: string

• Mandatory (Y/N): Y, if the table is not in the root compartment of the tenancy OR when the
useInstancePrincipal parameter is set to true.

Note:

If the useInstancePrincipal parameter is set to true, the compartment must
specify the compartment OCID and not the name.

• Example:

– Compartment name

Chapter 1
Sources and Sinks

1-69



"compartment" : "mycompartment"
– Compartment name qualified with its parent compartment

"compartment" : "parent.childcompartment"
– No value provided. Defaults to the root compartment.

"compartment": ""
– Compartment OCID

"compartment" : "ocid1.tenancy.oc1...4ksd"

includeTTL

• Purpose: Specifies whether or not to include TTL metadata for table rows provided by the
source when importing Oracle NoSQL Database tables.

If you do not specify this parameter, it defaults to false. In that case, the NoSQL Database
Migrator does not include TTL metadata for table rows provided by the source when
importing Oracle NoSQL Database tables.

If set to true, the NoSQL Database Migrator tool performs the following checks on the TTL
metadata when importing a table row:

– If you import a row that does not have _metadata definition, the NoSQL Database
Migrator tool sets the TTL to 0, which means the row never expires.

– If you import a row that has _metadata definition, the NoSQL Database Migrator tool
compares the TTL value against a Reference Time when a row gets imported. If the
row has already expired relative to the Reference Time, then it is skipped. If the row
has not expired, then it is imported along with the TTL value. By default, the Reference
Time of import operation is the current time in milliseconds, obtained from 
System.currentTimeMillis(), of the machine where the NoSQL Database Migrator tool
is running. But you can also set a custom Reference Time using the ttlRelativeDate
configuration parameter if you want to extend the expiration time and import rows that
would otherwise expire immediately.
The formula to calculate the expiration time of a row is as follows:

expiration = (TTL value of source row in milliseconds - Reference Time 
in milliseconds)
if (expiration <= 0) then it indicates that row has expired.

Note:

Since Oracle NoSQL TTL boundaries are in hours and days, in some cases,
the TTL of the imported row might get adjusted to the nearest hour or day.
For example, consider a row that has expiration value of 1629709200000
(2021-08-23 09:00:00) and Reference Time value is 1629707962582
(2021-08-23 08:39:22). Here, even though the row is not expired relative to
the Reference Time when this data gets imported, the new TTL for the row is
1629712800000 (2021-08-23 10:00:00).

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "includeTTL" : true

Chapter 1
Sources and Sinks

1-70



ttlRelativeDate

• Purpose: Specify a UTC date in the YYYY-MM-DD hh:mm:ss format used to set the TTL
expiry of table rows during importing into the Oracle NoSQL Database.

If a table row in the data you are exporting has expired, you can set the
ttlRelativeDate parameter to a date before the expiration time of the table row in the
exported data.

If you do not specify this parameter, it defaults to the current time in milliseconds, obtained
from System.currentTimeMillis(), of the machine where the NoSQL Database Migrator tool
is running.

• Data Type: date

• Mandatory (Y/N): N

• Example: "ttlRelativeDate" : "2021-01-03 04:31:17"
Let us consider a scenario where table rows expire after seven days from 1-Jan-2021.
After exporting this table, on 7-Jan-2021, you run into an issue with your table and decide
to import the data. The table rows are going to expire in one day (data expiration date
minus the default value of ttlRelativedate configuration parameter, which is the
current date). But if you want to extend the expiration date of table rows to five days
instead of one day, use the ttlRelativeDate parameter and choose an earlier date.
Therefore, in this scenario if you want to extend expiration time of the table rows by five
days, set the value of ttlRelativeDate configuration parameters to 3-Jan-2021, which
is used as Reference Time when table rows get imported.

schemaInfo

• Purpose: Specifies the schema for the data being migrated.

If you do not specify this parameter, the NoSQL Database Migrator assumes that the table
already exists in your Oracle NoSQL Database Cloud Service.

If this parameter is not specified and the table does not exist in the sink, the migration fails.

• Data Type: Object

• Mandatory (Y/N): N

schemaInfo.schemaPath

• Purpose: Specifies the absolute path to a file containing DDL statements for the NoSQL
table.

The NoSQL Database Migrator executes the DDL commands listed in this file before
migrating the data.

The NoSQL Database Migrator does not support more than one DDL statement per line in
the schemaPath file.

• Data Type: string

• Mandatory (Y/N): N

Note:

defaultSchema and schemaPath are mutually exclusive.

• Example: "schemaPath" : "/home/user/schema_file"

Chapter 1
Sources and Sinks

1-71



schemaInfo.defaultSchema

• Purpose: Setting this parameter to Yes instructs the NoSQL Database Migrator to create a
table with default schema. The default schema is defined by the migrator itself. For more
information about default schema definitions, see Default Schema in Using Oracle NoSQL
Data Migrator.

• Data Type: boolean

• Mandatory (Y/N): N

Note:

defaultSchema and schemaPath are mutually exclusive.

schemaInfo.useSourceSchema

• Purpose: Specifies whether or not the sink uses the table schema definition provided by
the source when migrating NoSQL tables.

• Data Type: boolean

• Mandatory (Y/N): N

Note:

defaultSchema, schemaPath, and useSourceSchema parameters are
mutually exclusive. Specify only one of these parameters.

• Example:

– With Default Schema:

"schemaInfo": {
  "defaultSchema": true,
  "readUnits": 100,
  "writeUnits": 60,
  "storageSize": 1
}

– With a pre-defined schema:

"schemaInfo": {
  "schemaPath": "<complete/path/to/the/schema/definition/file>",
  "readUnits": 100,
  "writeUnits": 100,
  "storageSize": 1
}

– With source schema:

"schemaInfo": {
  "useSourceSchema": true,
  "readUnits": 100,
  "writeUnits": 60,

Chapter 1
Sources and Sinks

1-72



  "storageSize": 1
}

schemaInfo.DDBPartitionKey

• Purpose: Specifies the DynamoDB partition key and the corresponding Oracle NoSQL
Database type to be used in the sink Oracle NoSQL Database table. This key will be used
as a NoSQL DB table shard key. This is applicable only when defaultSchema is set to true
and the source format is dynamodb_json. See Mapping of DynamoDB types to Oracle
NoSQL types for more details.

• Mandatory (Y/N): Y, if defaultSchema is true and the source is dynamodb_json.

• Example: "DDBPartitionKey" : "PersonID:INTEGER"

Note:

If the partition key contains dash(-) or dot(.), Migrator will replace it with
underscore(_) as NoSQL column name does not support dot and dash.

schemaInfo.DDBSortKey

• Purpose: Specifies the DynamoDB sort key and its corresponding Oracle NoSQL
Database type to be used in the target Oracle NoSQL Database table. If the importing
DynamoDB table does not have a sort key, this attribute must not be set. This key will be
used as a non-shard portion of the primary key in the NoSQL DB table. This is applicable
only when defaultSchema is set to true and the source is dynamodb_json. See Mapping of
DynamoDB types to Oracle NoSQL types for more details.

• Mandatory (Y/N): N

• Example: "DDBSortKey" : "Skey:STRING"

Note:

If the sort key contains dash(-) or dot(.), Migrator will replace it with
underscore(_) as NoSQL column name does not support dot and dash.

schemaInfo.onDemandThroughput

• Purpose: Specifies to create the table with on-demand read and write throughput. If this
parameter is not set, the table is created with provisioned capacity.
The default value is false.

Note:

This parameter is not applicable for child tables as they share the throughput of
the top-level parent table.

• Data Type: Boolean

• Mandatory (Y/N): N

• Example: "onDemandThroughput" : "true"

Chapter 1
Sources and Sinks

1-73



schemaInfo.readUnits

• Purpose: Specifies the read throughput of the new table.

Note:

– This parameter is not applicable for tables provisioned with on-demand
capacity.

– This parameter is not applicable for child tables as they share the read
throughput of the top-level parent table.

• Data Type: integer

• Mandatory (Y/N): Y, if the table is not a child table or if
schemaInfo.onDemandThroughput parameter is set to false, else N.

• Example: "readUnits" : 100

schemaInfo.writeUnits

• Purpose: Specifies the write throughput of the new table.

Note:

– This parameter is not applicable for tables provisioned with on-demand
capacity.

– This parameter is not applicable for child tables as they share the write
throughput of the top-level parent table.

• Data Type: integer

• Mandatory (Y/N): Y, if the table is not a child table or if
schemaInfo.onDemandThroughput parameter is set to false, else N.

• Example: "writeUnits" : 100

schemaInfo.storageSize

• Purpose: Specifies the storage size of the new table in GB.

Note:

This parameter is not applicable for child tables as they share the storage size of
the top-level parent table.

• Data Type: integer

• Mandatory (Y/N): Y, if the table is not a child table, else N.

• Example:

Chapter 1
Sources and Sinks

1-74



– With schemaPath

"schemaInfo" : { 
  "schemaPath" : "</path/to/a/schema/file>",
  "readUnits" : 500,
  "writeUnits" : 1000,
  "storageSize" : 5 }

– With defaultSchema

"schemaInfo" : {
  "defaultSchema" :Yes,
  "readUnits" : 500,   
  "writeUnits" : 1000,   
  "storageSize" : 5  
}

writeUnitsPercent

• Purpose: Specifies the Percentage of table write units to be used during the migration
activity. The amount of time required to migrate data is directly proportional to this attribute.

The default value is 90. The valid range is any integer between 1 to 100.

See Troubleshooting the Oracle NoSQL Database Migrator to learn how to use this
attribute to improve the data migration speed.

• Data Type: integer

• Mandatory (Y/N): N

• Example: "writeUnitsPercent" : 90

overwrite

• Purpose: Indicates the behavior of NoSQL Database Migrator when the record being
migrated from the source is already present in the sink.

If the value is set to false, when migrating tables the NoSQL Database Migrator skips
those records for which the same primary key already exists in the sink.

If the value is set to true, when migrating tables the NoSQL Database Migrator overwrites
those records for which the same primary key already exists in the sink.

If not specified, it defaults to true.

• Data Type: boolean

• Mandatory (Y/N): N

• Example: "overwrite" : false

Transformation Configuration Templates
This topic explains the configuration parameters for the different transformations supported by
the Oracle NoSQL Database Migrator. For the complete configuration file template, see
Configuration File in Terminology used with Oracle NoSQL Database Migrator.

Oracle NoSQL Database Migrator lets you modify the data, that is, add data transformations as
part of the migration activity. You can define multiple transformations in a single migration. In
such a case, the order of transformations is vital because the source data undergoes each

Chapter 1
Sources and Sinks

1-75



transformation in the given order. The output of one transformation becomes the input to the
next one in the migrator pipeline.

The different transformations supported by the NoSQL Data Migrator are:

Table 1-3    Transformations

Transformation Config Attribute You can use this transformation to ...

ignoreFields Ignore the identified columns from the source row
before writing to the sink.

includeFields Include the identified columns from the source row
before writing to the sink.

renameFields Rename the identified columns from the source
row before writing to the sink.

aggregateFields Aggregate multiple columns from the source into a
single column in the sink. As part of this
transformation, you can also identify the columns
that you want to exclude in the aggregation. Those
fields will be skipped from the aggregated column.

You can find the configuration template for each supported transformation below.

ignoreFields
The configuration file format for the ignoreFields transformation is shown below.

Transformation Configuration Template

"transforms" : {
  "ignoreFields" : ["<field1>","<field2>",...]
}

Transformation Parameter

ignoreFields

• Purpose: An array of the column names to be ignored from the source records.

Note:

You can supply only top-level fields. Transformations can not be applied on the
data in the nested fields.

• Data Type: array of strings

• Mandatory (Y/N): Y

• Example: To ignore the columns named "name" and "address" from the source record:

"ignoreFields" : ["name","address"]

Chapter 1
Sources and Sinks

1-76



includeFields
The configuration file format for the includeFields transformation is shown below.

Transformation Configuration Template

"transforms" : {
  "includeFields" : ["<field1>","<field2>",...]
}

Transformation Parameter

includeFields

• Purpose: An array of the column names to be included from the source records. It only
includes the fields specified in the array, the rest of the fields are ignored.

Note:

The NoSQL Database Migrator tool throws an error if you specify an empty array.
Additionally, you can specify only the top-level fields. The NoSQL Database
Migrator tool does not apply transformations to the data in the nested fields.

• Data Type: array of strings

• Mandatory (Y/N): Y

• Example: To include the columns named "age" and "gender" from the source record:

"includeFields" : ["age","gender"]

renameFields
The configuration file format for the renameFields transformation is shown below.

Transformation Configuration Template

"transforms" : {
  "renameFields" : {
    "<old_name>" : "<new_name>",
    "<old_name>" : "<new_name>,"
    .....
  }
}

Transformation Parameter

renameFields

• Purpose: Key-Value pairs of the old and new names of the columns to be renamed.

Chapter 1
Sources and Sinks

1-77



Note:

You can supply only top-level fields. Transformations can not be applied on the
data in the nested fields.

• Data Type: JSON object

• Mandatory (Y/N): Y

• Example: To rename the column named "residence" to "address" and the column named
"_id" to "id":

"renameFields" : { "residence" : "address", "_id" : "id" }

aggregateFields
The configuration file format for the aggregateFields transformation is shown below.

Transformation Configuration Template

"transforms" : {
  "aggregateFields" : {
    "fieldName" : "name of the new aggregate field",
    "skipFields" : ["<field1>","<field2">,...]
  }
}

Transformation Parameter

aggregateFields

• Purpose: Name of the aggregated field in the sink.

• Data Type: string

• Mandatory (Y/N): Y

• Example: If the given record is:

{
  "id" : 100,
  "name" : "john",
  "address" : "USA",
  "age" : 20
}

If the aggregate transformation is:

"aggregateFields" : {
  "fieldName" : "document",
  "skipFields" : ["id"]
}

Chapter 1
Sources and Sinks

1-78



The aggregated column in the sink looks like:

{
  "id": 100,
  "document": {
    "name": "john",
    "address": "USA",
    "age": 20
  }
}

Mapping of DynamoDB table to Oracle NoSQL table
In DynamoDB, a table is a collection of items, and each item is a collection of attributes. Each
item in the table has a unique identifier, or a primary key. Other than the primary key, the table
is schema-less. Each item can have its own distinct attributes.

DynamoDB supports two different kinds of primary keys:

• Partition key – A simple primary key, composed of one attribute known as the partition
key. DynamoDB uses the partition key's value as input to an internal hash function. The
output from the hash function determines the partition in which the item will be stored.

• Partition key and sort key – As a composite primary key, this type of key is composed of
two attributes. The first attribute is the partition key, and the second attribute is the sort
key. DynamoDB uses the partition key value as input to an internal hash function. The
output from the hash function determines the partition in which the item will be stored. All
items with the same partition key value are stored together, in sorted order by sort key
value.

In contrast, Oracle NoSQL tables support flexible data models with both schema and schema-
less design.

There are two different ways of modelling a DynamoDB table:

1. Modeling DynamoDB table as a JSON document(Recommended): In this modeling,
you map all the attributes of the Dynamo DB tables into a JSON column of the NoSQL
table except partition key and sort key. You will model partition key and sort key as the
Primary Key columns of the NoSQL table. You will use AggregateFields transform in order
to aggregate non-primary key data into a JSON column.

Note:

The Migrator provides a user-friendly configuration defaultSchema to
automatically create a schema-less DDL table which also aggregates attributes
into a JSON column.

2. Modeling DynamoDB table as fixed columns in NoSQL table: In this modeling, for
each attribute of the DynamoDB table, you will create a column in the NoSQL table as
specified in the Mapping of DynamoDB types to Oracle NoSQL types. You will model
partition key and sort key attributes as Primary key(s). This should be used only when you
are certain that importing DynamoDB table schema is fixed and each item has values for
the most of the attributes. If DynamoDB items do not have common attributes, this can
result in lot of NoSQL columns with empty values.

Chapter 1
Sources and Sinks

1-79



Note:

We highly recommend using schema-less tables when migrating data from
DynamoDB to Oracle NoSQL Database due to the nature of DynamoDB tables
being schema-less. This is especially for large tables where the content of each
record may not be uniform across the table.

Oracle NoSQL to Parquet Data Type Mapping
Describes the mapping of Oracle NoSQL data types to Parquet data types.

NoSQL Type Parquet Type

BOOLEAN BOOLEAN

INTEGER INT32

LONG INT64

FLOAT DOUBLE

DOUBLE DOUBLE

BINARY BINARY

FIXED_BINARY BINARY

STRING BINARY(STRING)

ENUM BINARY(STRING)
or

BINARY(ENUM), if the logical ENUM is configured

UUID BINARY(STRING)
or

FIXED_BINARY(16), if the logical UUID is
configured

TIMESTAMP(p) INT64(TIMESTAMP(p))

NUMBER DOUBLE

field_name ARRAY(T)
group field_name(LIST) {
  repeated group list {
      required T element
  }
}

field_name MAP(T)
group field_name (MAP) {
    repeated group key_value 
(MAP_KEY_VALUE) {
       required binary key (STRING);
        required T value;
    }
}

Chapter 1
Sources and Sinks

1-80



NoSQL Type Parquet Type

field_name RECORD(K� T� N�, K�� T� N�, ....)
where:

K = Key name

T = Type

N = Nullable or not

group field_name {
    ni == true ? optional Ti ki : 
required Ti ki   
}

JSON BINARY(STRING)
or

BINARY(JSON), if logical JSON is configured

Note:

When the NoSQL Number type is converted to Parquet Double type, there may be
some loss of precision in case the value cannot be represented in Double. If the
number is too big to represent as Double, it is converted to
Double.NEGATIVE_INFINITY or Double.POSITIVE_INFINITY.

Mapping of DynamoDB types to Oracle NoSQL types
The table below shows the mapping of DynamoDB types to Oracle NoSQL types.

Table 1-4    Mapping DynamoDB type to Oracle NoSQL type

# DynamoDB type JSON type for NoSQL
JSON column

Oracle NoSQL type

1 String (S) JSON String STRING

2 Number Type (N) JSON Number INTEGER/LONG/
FLOAT/DOUBLE/
NUMBER

3 Boolean (BOOL) JSON Boolean BOOLEAN

4 Binary type (B) - Byte
buffer

BASE-64 encoded
JSON String

BINARY

5 NULL JSON null NULL

6 String Set (SS) JSON Array of Strings ARRAY(STRING)

7 Number Set (NS) JSON Array of Numbers ARRAY(INTEGER/
LONG/FLOAT/DOUBLE/
NUMBER)

8 Binary Set (BS) JSON Array of Base-64
encoded Strings

ARRAY(BINARY)

9 LIST (L) Array of JSON ARRAY(JSON)

10 MAP (M) JSON Object JSON

11 PARTITION KEY NA PRIMARY KEY and
SHARD KEY

12 SORT KEY NA PRIMARY KEY

13 Attribute names with
dash and dot

JSON field names with a
underscore

Column names with
underscore

Chapter 1
Sources and Sinks

1-81



Few additional points to consider while mapping DynamoDB types to Oracle NoSQL types:

• DynamoDB Supports only one data type for Numbers and can have up to 38 digits of
precision,on contrast Oracle NoSQL supports many types to choose from based on the
range and precision of the data.You can select the appropriate Number type that fits the
range of your input data. If you are not sure of the nature of the data, NoSQL NUMBER
type can be used.

• DynamoDB Supports only one data type for Numbers and can have up to 38 digits of
precision,on contrast Oracle NoSQL supports many types to choose from based on the
range and precision of the data.You can select the appropriate Number type that fits the
range of your input data. If you are not sure of the nature of the data, NoSQL NUMBER
type can be used.

• Partition key in DynamoDB has a limit of 2048 bytes but Oracle NoSQL Cloud Service has
a limit of 64 bytes for the Primary key/Shard key.

• Sort key in DynamoDB has a limit of 1024 bytes but Oracle NoSQL Cloud Service has a
limit of 64 bytes for the Primary key.

• Attribute names in DynamoDB can be 64KB long but Oracle NoSQL Cloud service column
names have a limit of 64 characters.

Use Case Demonstrations
Learn how to perform data migration using the Oracle NoSQL Database Migrator for specific
use cases. You can find detailed systematic instructions with code examples to perform
migration in each of the use cases listed below.

Topics:

• Migrate from Oracle NoSQL Database Cloud Service to a JSON file

• Migrate from Oracle NoSQL Database On-Premise to Oracle NoSQL Database Cloud
Service

• Migrate from JSON file source to Oracle NoSQL Database Cloud Service

• Migrate from MongoDB JSON file to an Oracle NoSQL Database Cloud Service

• Migrate from DynamoDB JSON file in AWS S3 to an Oracle NoSQL Database Cloud
Service

• Migrate from DynamoDB JSON file to Oracle NoSQL Database

• Migrate from CSV file to Oracle NoSQL Database

Migrate from Oracle NoSQL Database Cloud Service to a JSON file
This example shows how to use the Oracle NoSQL Database Migrator to copy data and the
schema definition of a NoSQL table from Oracle NoSQL Database Cloud Service (NDCS) to a
JSON file.

Use Case

An organization decides to train a model using the Oracle NoSQL Database Cloud Service
(NDCS) data to predict future behaviors and provide personalized recommendations. They can
take a periodic copy of the NDCS tables' data to a JSON file and apply it to the analytic engine
to analyze and train the model. Doing this helps them separate the analytical queries from the
low-latency critical paths.

Chapter 1
Use Case Demonstrations

1-82



Example

For the demonstration, let us look at how to migrate the data and schema definition of a
NoSQL table called myTable from NDCS to a JSON file.

Prerequisites

• Identify the source and sink for the migration.

– Source: Oracle NoSQL Database Cloud Service

– Sink: JSON file

• Identify your OCI cloud credentials and capture them in the OCI config file. Save the config
file in /home/.oci/config. See Acquiring Credentials.

[DEFAULT]
tenancy=ocid1.tenancy.oc1....
user=ocid1.user.oc1....
fingerprint= 43:d1:....
key_file=</fully/qualified/path/to/the/private/key/>
pass_phrase=<passphrase>

• Identify the region endpoint and compartment name for your Oracle NoSQL Database
Cloud Service.

– endpoint: us-phoenix-1
– compartment: developers

Procedure
To migrate the data and schema definition of myTable from Oracle NoSQL Database Cloud
Service to a JSON file:

1. Open the command prompt and navigate to the directory where you extracted the NoSQL
Database Migrator utility.

2. To generate the configuration file using the NoSQL Database Migrator, run the
runMigrator command without any runtime parameters.

[~/nosqlMigrator]$./runMigrator

3. As you did not provide the configuration file as a runtime parameter, the utility prompts if
you want to generate the configuration now. Type y.

Configuration file is not provided. Do you want to generate
configuration? (y/n) [n]: y

Generating a configuration file interactively.

4. Based on the prompts from the utility, choose your options for the Source configuration.

Enter a location for your config [./migrator-config.json]: /home/<user>/
nosqlMigrator/NDCS2JSON
Select the source: 
1) nosqldb
2) nosqldb_cloud
3) file

Chapter 1
Use Case Demonstrations

1-83



4) object_storage_oci
5) aws_s3
#? 2

Configuration for source type=nosqldb_cloud
Enter endpoint URL or region ID of the Oracle NoSQL Database Cloud: us-
phoenix-1
Select the authentication type: 
1) credentials_file
2) instance_principal
3) delegation_token
#? 1
Enter path to the file containing OCI credentials [/home/<user>/.oci/
config]:
Enter the profile name in OCI credentials file [DEFAULT]: 
Enter the compartment name or id of the table []: developers
Enter table name: myTable
Include TTL data? If you select 'yes' TTL of rows will also 
be included in the exported data.(y/n) [n]: 
Enter percentage of table read units to be used for migration operation. 
(1-100) [90]:
Enter store operation timeout in milliseconds. (1-30000) [5000]:

5. Based on the prompts from the utility, choose your options for the Sink configuration.

Select the sink:
1) nosqldb
2) nosqldb_cloud
3) file
#? 3
Configuration for sink type=file
Enter path to a directory to store JSON data: /home/<user>/nosqlMigrator
would you like to export data to multiple files for each source?(y/n) [y]: 
n
Would you like to store JSON in pretty format? (y/n) [n]: y
Would you like to migrate the table schema also? (y/n) [y]: y
Enter path to a file to store table schema: /home/<user>/nosqlMigrator/
myTableSchema

6. Based on the prompts from the utility, choose your options for the source data
transformations. The default value is n.

Would you like to add transformations to source data? (y/n) [n]:

7. Enter your choice to determine whether to proceed with the migration in case any record
fails to migrate.

Would you like to continue migration in case of any record/row is failed 
to migrate?: (y/n) [n]:

8. The utility displays the generated configuration on the screen.

generated configuration is:
{
  "source": {

Chapter 1
Use Case Demonstrations

1-84



    "type": "nosqldb_cloud",
    "endpoint": "us-phoenix-1",
    "table": "myTable",
    "compartment": "developers",
    "credentials": "/home/<user>/.oci/config",
    "credentialsProfile": "DEFAULT",
    "readUnitsPercent": 90,
    "requestTimeoutMs": 5000
  },
  "sink": {
    "type": "file",
    "format": "json",
    "useMultiFiles" : false,
    "schemaPath": "/home/<user>/nosqlMigrator/myTableSchema",
    "pretty": true,
    "dataPath": "/home/<user>/nosqlMigrator"
  },
  "abortOnError": true,
  "migratorVersion": "1.6.5"
}

9. Finally, the utility prompts for your choice to decide whether to proceed with the migration
with the generated configuration file or not. The default option is y.

Note:

If you select n, you can use the generated configuration file to run the migration
using the ./runMigrator -c or the ./runMigrator --config option.

would you like to run the migration with above configuration?
If you select no, you can use the generated configuration file to run the 
migration using
./runMigrator --config /home/<user>/nosqlMigrator/NDCS2JSON
(y/n) [y]:

10. The NoSQL Database Migrator migrates your data and schema from NDCS to the JSON
file.

Records provided by source=10,Records written to sink=10,Records 
failed=0,Records skipped=0.
Elapsed time: 0min 1sec 277ms
Migration completed.

Validation
To validate the migration, you can navigate to the specified sink directory and view the schema
and data.

-- Exported myTable Data. JSON files are created in the supplied data path
 
[~/nosqlMigrator]$cat myTable_1_5.json
{
  "id" : 10,
  "document" : {

Chapter 1
Use Case Demonstrations

1-85



    "course" : "Computer Science",
    "name" : "Neena",
    "studentid" : 105
  }
}
{
  "id" : 3,
  "document" : {
  "course" : "Computer Science",
    "name" : "John",
    "studentid" : 107
  }
}
{
  "id" : 4,
  "document" : {
    "course" : "Computer Science",
    "name" : "Ruby",
    "studentid" : 100
  }
}
{
  "id" : 6,
  "document" : {
    "course" : "Bio-Technology",
    "name" : "Rekha",
    "studentid" : 104
  }
}
{
  "id" : 7,
  "document" : {
    "course" : "Computer Science",
    "name" : "Ruby",
    "studentid" : 100
  }
}
{
  "id" : 5,
  "document" : {
    "course" : "Journalism",
    "name" : "Rani",
    "studentid" : 106
  }
}
{
  "id" : 8,
  "document" : {
    "course" : "Computer Science",
    "name" : "Tom",
    "studentid" : 103
  }
}
{
  "id" : 9,
  "document" : {

Chapter 1
Use Case Demonstrations

1-86



    "course" : "Computer Science",
    "name" : "Peter",
    "studentid" : 109
  }
}
{
  "id" : 1,
  "document" : {
    "course" : "Journalism",
    "name" : "Tracy",
    "studentid" : 110
  }
}
{
  "id" : 2,
  "document" : {
    "course" : "Bio-Technology",
    "name" : "Raja",
    "studentid" : 108
  }
}

-- Exported myTable Schema
 
[~/nosqlMigrator]$cat myTableSchema
CREATE TABLE IF NOT EXISTS myTable (id INTEGER, document JSON, PRIMARY 
KEY(SHARD(id)))

Migrate from Oracle NoSQL Database On-Premise to Oracle NoSQL
Database Cloud Service

This example shows how to use the Oracle NoSQL Database Migrator to copy data and the
schema definition of a NoSQL table from Oracle NoSQL Database to Oracle NoSQL Database
Cloud Service (NDCS).

Use Case

As a developer, you are exploring options to avoid the overhead of managing the resources,
clusters, and garbage collection for your existing NoSQL Database KVStore workloads. As a
solution, you decide to migrate your existing on-premise KVStore workloads to Oracle NoSQL
Database Cloud Service because NDCS manages them automatically.

Example

For the demonstration, let us look at how to migrate the data and schema definition of a
NoSQL table called myTable from the NoSQL Database KVStore to NDCS. We will also use
this use case to show how to run the runMigrator utility by passing a precreated configuration
file.

Prerequisites

• Identify the source and sink for the migration.

– Source: Oracle NoSQL Database

– Sink: Oracle NoSQL Database Cloud Service

Chapter 1
Use Case Demonstrations

1-87



• Identify your OCI cloud credentials and capture them in the OCI config file. Save the config
file in /home/.oci/config. See Acquiring Credentials in Using Oracle NoSQL Database
Cloud Service.

[DEFAULT]
tenancy=ocid1.tenancy.oc1....
user=ocid1.user.oc1....
fingerprint= 43:d1:....
key_file=</fully/qualified/path/to/the/private/key/>
pass_phrase=<passphrase>

• Identify the region endpoint and compartment name for your Oracle NoSQL Database
Cloud Service.

– endpoint: us-phoenix-1
– compartment: developers

• Identify the following details for the on-premise KVStore:

– storeName: kvstore
– helperHosts: <hostname>:5000
– table: myTable

Procedure
To migrate the data and schema definition of myTable from NoSQL Database KVStore to
NDCS:

1. Prepare the configuration file (in JSON format) with the identified Source and Sink details.
See Source Configuration Templates and Sink Configuration Templates.

{
  "source" : {
    "type" : "nosqldb",
    "storeName" : "kvstore",
    "helperHosts" : ["<hostname>:5000"],
    "table" : "myTable",
    "requestTimeoutMs" : 5000
  },
  "sink" : {
    "type" : "nosqldb_cloud",
    "endpoint" : "us-phoenix-1",
    "table" : "myTable",
    "compartment" : "developers",
    "schemaInfo" : {
      "schemaPath" : "<complete/path/to/the/JSON/file/with/DDL/
commands/for/the/schema/definition>",
      "readUnits" : 100,
      "writeUnits" : 100,
      "storageSize" : 1
    },
    "credentials" : "<complete/path/to/oci/config/file>",
    "credentialsProfile" : "DEFAULT",
    "writeUnitsPercent" : 90,
    "requestTimeoutMs" : 5000
  },
  "abortOnError" : true,

Chapter 1
Use Case Demonstrations

1-88



  "migratorVersion" : "1.0.0"
}

2. Open the command prompt and navigate to the directory where you extracted the NoSQL
Database Migrator utility.

3. Run the runMigrator command by passing the configuration file using the --config or -c
option.

[~/nosqlMigrator/nosql-migrator-1.0.0]$./runMigrator --config <complete/
path/to/the/JSON/config/file>

4. The utility proceeds with the data migration, as shown below.

Records provided by source=10, Records written to sink=10, Records 
failed=0.
Elapsed time: 0min 10sec 426ms
Migration completed.

Validation
To validate the migration, you can login to your NDCS console and verify that myTable is
created with the source data.

Migrate from JSON file source to Oracle NoSQL Database Cloud Service
This example shows the usage of Oracle NoSQL Database Migrator to copy data from a JSON
file source to Oracle NoSQL Database Cloud Service.

After evaluating multiple options, an organization finalizes Oracle NoSQL Database Cloud
Service as its NoSQL Database platform. As its source contents are in JSON file format, they
are looking for a way to migrate them to Oracle NoSQL Database Cloud Service.

In this example, you will learn to migrate the data from a JSON file called SampleData.json.
You run the runMigrator utility by passing a pre-created configuration file. If the configuration
file is not provided as a run time parameter, the runMigrator utility prompts you to generate
the configuration through an interactive procedure.

Prerequisites

• Identify the source and sink for the migration.

– Source: JSON source file.
SampleData.json is the source file. It contains multiple JSON documents with one
document per line, delimited by a new line character.

{"id":6,"val_json":{"array":
["q","r","s"],"date":"2023-02-04T02:38:57.520Z","nestarray":[[1,2,3],
[10,20,30]],"nested":{"arrayofobjects":
[{"datefield":"2023-03-04T02:38:57.520Z","numfield":30,"strfield":"foo54
"},
{"datefield":"2023-02-04T02:38:57.520Z","numfield":56,"strfield":"bar23"
}],"nestNum":10,"nestString":"bar"},"num":1,"string":"foo"}}
{"id":3,"val_json":{"array":
["g","h","i"],"date":"2023-02-02T02:38:57.520Z","nestarray":[[1,2,3],
[10,20,30]],"nested":{"arrayofobjects":
[{"datefield":"2023-02-02T02:38:57.520Z","numfield":28,"strfield":"foo3"
},

Chapter 1
Use Case Demonstrations

1-89



{"datefield":"2023-02-02T02:38:57.520Z","numfield":38,"strfield":"bar"}]
,"nestNum":10,"nestString":"bar"},"num":1,"string":"foo"}}
{"id":7,"val_json":{"array":
["a","b","c"],"date":"2023-02-20T02:38:57.520Z","nestarray":[[1,2,3],
[10,20,30]],"nested":{"arrayofobjects":
[{"datefield":"2023-01-20T02:38:57.520Z","numfield":28,"strfield":"foo"}
,
{"datefield":"2023-01-22T02:38:57.520Z","numfield":38,"strfield":"bar"}]
,"nestNum":10,"nestString":"bar"},"num":1,"string":"foo"}}
{"id":4,"val_json":{"array":
["j","k","l"],"date":"2023-02-03T02:38:57.520Z","nestarray":[[1,2,3],
[10,20,30]],"nested":{"arrayofobjects":
[{"datefield":"2023-02-03T02:38:57.520Z","numfield":28,"strfield":"foo"}
,
{"datefield":"2023-02-03T02:38:57.520Z","numfield":38,"strfield":"bar"}]
,"nestNum":10,"nestString":"bar"},"num":1,"string":"foo"}}

– Sink: Oracle NoSQL Database Cloud Service.

• Identify your OCI cloud credentials and capture them in the configuration file. Save the
config file in /home/user/.oci/config. For more details, see Acquiring Credentials in
Using Oracle NoSQL Database Cloud Service.

[DEFAULT]
tenancy=ocid1.tenancy.oc1....
user=ocid1.user.oc1....
fingerprint= 43:d1:....
region=us-ashburn-1
key_file=</fully/qualified/path/to/the/private/key/>
pass_phrase=<passphrase>

• Identify the region endpoint and compartment name for your Oracle NoSQL Database
Cloud Service.

– endpoint: us-ashburn-1
– compartment: Training-NoSQL

• Identify the following details for the JSON source file:

– schemaPath: <absolute path to the schema definition file containing DDL
statements for the NoSQL table at the sink>.

In this example, the DDL file is schema_json.ddl.

create table Migrate_JSON (id INTEGER, val_json JSON, PRIMARY
    KEY(id));

The Oracle NoSQL Database Migrator provides an option to create a table with the
default schema if the schemaPath is not provided. For more details, see Identify the
Source and Sink topic in the Workflow for Oracle NoSQL Database Migrator.

– Datapath: <absolute path to a file or directory containing the JSON data
for migration>.

Procedure
To migrate the JSON source file from SampleData.json to Oracle NoSQL Database Cloud
Service, perform the following:

Chapter 1
Use Case Demonstrations

1-90



1. Prepare the configuration file (in JSON format) with the identified source and sink details.
See Source Configuration Templates and Sink Configuration Templates .

{
  "source" : {
    "type" : "file",
    "format" : "json",
    "schemaInfo" : {
      "schemaPath" : "[~/nosql-migrator-1.5.0]/schema_json.ddl"
    },
    "dataPath" : "[~/nosql-migrator-1.5.0]/SampleData.json"
  },
  "sink" : {
    "type" : "nosqldb_cloud",
    "endpoint" : "us-ashburn-1",
    "table" : "Migrate_JSON",
    "compartment" : "Training-NoSQL",
    "includeTTL" : false,
    "schemaInfo" : {
      "readUnits" : 100,
      "writeUnits" : 60,
      "storageSize" : 1,
      "useSourceSchema" : true
    },
    "credentials" : "/home/user/.oci/config",
    "credentialsProfile" : "DEFAULT",
    "writeUnitsPercent" : 90,
    "overwrite" : true,
    "requestTimeoutMs" : 5000
  },
  "abortOnError" : true,
  "migratorVersion" : "1.5.0"
}

2. Open the command prompt and navigate to the directory where you extracted the Oracle
NoSQL Database Migrator utility.

3. Run the runMigrator command by passing the configuration file using the --config or -c
option.

[~/nosql-migrator-1.5.0]$./runMigrator --config <complete/path/to/the/
config/file>

4. The utility proceeds with the data migration, as shown below. The Migrate_JSON table is
created at the sink with the schema provided in the schemaPath.

creating source from given configuration:
source creation completed
creating sink from given configuration:
sink creation completed
creating migrator pipeline
migration started
[cloud sink] : start loading DDLs
[cloud sink] : executing DDL: create table Migrate_JSON (id INTEGER, 
val_json JSON, PRIMARY KEY(id)),limits: [100, 60, 1]
[cloud sink] : completed loading DDLs

Chapter 1
Use Case Demonstrations

1-91



[cloud sink] : start loading records
[json file source] : start parsing JSON records from file: SampleData.json
[INFO] migration completed.
Records provided by source=4, Records written to sink=4, Records failed=0, 
Records skipped=0.
Elapsed time: 0min 5sec 778ms
Migration completed.

Validation
To validate the migration, you can log in to your Oracle NoSQL Database Cloud Service
console and verify that the Migrate_JSON table is created with the source data. For the
procedure to access the console, see Accessing the Service from the Infrastructure Console
article in the Oracle NoSQL Database Cloud Service document.

Figure 1-1    Oracle NoSQL Database Cloud Service Console Tables

Figure 1-2    Oracle NoSQL Database Cloud Service Console Table Data

Chapter 1
Use Case Demonstrations

1-92



Migrate from MongoDB JSON file to an Oracle NoSQL Database Cloud
Service

This example shows how to use the Oracle NoSQL Database Migrator to copy Mongo-DB
Formatted Data to the Oracle NoSQL Database (NDCS).

Use Case

After evaluating multiple options, an organization finalizes Oracle NoSQL Database as its
NoSQL Database platform. As its NoSQL tables and data are in MongoDB, they are looking for
a way to migrate those tables and data to Oracle NDCS.

You can copy a file or directory containing the MongoDB exported JSON data for migration by
specifying the file or directory in the source configuration template.

A sample MongoDB-formatted JSON File is as follows:

{"_id":0,"name":"Aimee Zank","scores":
[{"score":1.463179736705023,"type":"exam"},
{"score":11.78273309957772,"type":"quiz"},
{"score":35.8740349954354,"type":"homework"}]}
{"_id":1,"name":"Aurelia Menendez","scores":
[{"score":60.06045071030959,"type":"exam"},
{"score":52.79790691903873,"type":"quiz"},
{"score":71.76133439165544,"type":"homework"}]}
{"_id":2,"name":"Corliss Zuk","scores":
[{"score":67.03077096065002,"type":"exam"},
{"score":6.301851677835235,"type":"quiz"},
{"score":66.28344683278382,"type":"homework"}]}
{"_id":3,"name":"Bao Ziglar","scores":
[{"score":71.64343899778332,"type":"exam"},
{"score":24.80221293650313,"type":"quiz"},
{"score":42.26147058804812,"type":"homework"}]}
{"_id":4,"name":"Zachary Langlais","scores":
[{"score":78.68385091304332,"type":"exam"},
{"score":90.2963101368042,"type":"quiz"},
{"score":34.41620148042529,"type":"homework"}]}

MongoDB supports two types of extensions to the JSON format of files, Canonical mode and
Relaxed mode. You can supply the MongoDB-formatted JSON file that is generated using the
mongoexport tool in either Canonical or Relaxed mode. Both the modes are supported by the
NoSQL Database Migrator for migration.

For more information on the MongoDB Extended JSON (v2) file, See mongoexport_formats.

For more information on the generation of MongoDB-formatted JSON file, See mongoexport.

Example

For the demonstration, let us look at how to migrate a MongoDB-formatted JSON file to NDCS.
We will use a manually created configuration file for this example.

Prerequisites

• Identify the source and sink for the migration.

– Source: MongoDB-Formatted JSON File

Chapter 1
Use Case Demonstrations

1-93



– Sink: Oracle NoSQL Database

• Extract the data from Mongo DB using the mongoexport utility. See mongoexport for more
information.

• Create a NoSQL table in the sink with a table schema that matches the data in the Mongo-
DB-formatted JSON file. As an alternative, you can instruct the NoSQL Database Migrator
to create a table with the default schema structure by setting the defaultSchema attribute
to true.

Note:

For a MongoDB-Formatted JSON source, the default schema for the table will be
as:

CREATE TABLE IF NOT EXISTS <tablename>(ID STRING, DOCUMENT 
JSON,PRIMARY KEY(SHARD(ID))

Where:

– tablename = value of the table config.

– ID = _id value from the mongoDB exported JSON source file.

– DOCUMENT = The entire contents of the mongoDB exported JSON source file
is aggregated into the DOCUMENT column excluding the _id field.

• Identify your OCI cloud credentials and capture them in the OCI config file. Save the config
file in /home/.oci/config.See Acquiring Credentials in Using Oracle NoSQL Database
Cloud Service.

[DEFAULT]
tenancy=ocid1.tenancy.oc1....
user=ocid1.user.oc1....
fingerprint= 43:d1:....
key_file=</fully/qualified/path/to/the/private/key/>
pass_phrase=<passphrase>

• Identify the region endpoint and compartment name for your Oracle NoSQL Database.

– endpoint: us-phoenix-1
– compartment: developers

Procedure
To migrate the MongoDB-formatted JSON data to the Oracle NoSQL Database:

1. Prepare the configuration file (in JSON format) with the identified Source and Sink details.
See Source Configuration Templates and Sink Configuration Templates .

{
  "source" : {
    "type" : "file",
    "format" : "mongodb_json",
    "dataPath" : "<complete/path/to/the/MongoDB/Formatted/JSON/file>"
  },
  "sink" : {

Chapter 1
Use Case Demonstrations

1-94



    "type" : "nosqldb_cloud",
    "endpoint" : "us-phoenix-1",
    "table" : "mongoImport",
    "compartment" : "developers",
    "schemaInfo" : {
      "defaultSchema" : true,
      "readUnits" : 100,
      "writeUnits" : 60,
      "storageSize" : 1
    },
    "credentials" : "<complete/path/to/the/oci/config/file>",
    "credentialsProfile" : "DEFAULT",
    "writeUnitsPercent" : 90,
    "requestTimeoutMs" : 5000
  },
  "abortOnError" : true,
  "migratorVersion" : "1.0.0"
}

2. Open the command prompt and navigate to the directory where you extracted the NoSQL
Database Migrator utility.

3. Run the runMigrator command by passing the configuration file using the --config or -c
option.

[~/nosqlMigrator/nosql-migrator-1.0.0]$./runMigrator --config <complete/
path/to/the/JSON/config/file>

4. The utility proceeds with the data migration, as shown below.

Records provided by source=29,353, Records written to sink=29,353, Records 
failed=0.
Elapsed time: 9min 9sec 630ms
Migration completed.

Validation
To validate the migration, you can login to your NDCS console and verify that myTable is
created with the source data.

Migrate from DynamoDB JSON file to Oracle NoSQL Database
This example shows how to use Oracle NoSQL Database Migrator to copy DynamoDB JSON
file to NoSQL Database.

Use Case:

After evaluating multiple options, an organization finalizes Oracle NoSQL Database over
DynamoDB database. The organization wants to migrate their tables and data from
DynamoDB to Oracle NoSQL Database (on-premises).

See Mapping of DynamoDB table to Oracle NoSQL table for more details.

You can migrate a file or directory containing the DynamoDB exported JSON data from a file
system by specifying the path in the source configuration template.

Chapter 1
Use Case Demonstrations

1-95



A sample DynamoDB-formatted JSON File is as follows:

{"Item":{"Id":{"N":"101"},"Phones":{"L":[{"L":[{"S":"555-222"},
{"S":"123-567"}]}]},"PremierCustomer":{"BOOL":false},"Address":{"M":{"Zip":
{"N":"570004"},"Street":{"S":"21 main"},"DoorNum":{"N":"201"},"City":
{"S":"London"}}},"FirstName":{"S":"Fred"},"FavNumbers":{"NS":
["10"]},"LastName":{"S":"Smith"},"FavColors":{"SS":["Red","Green"]},"Age":
{"N":"22"},"ttl": {"N": "1734616800"}}}
{"Item":{"Id":{"N":"102"},"Phones":{"L":[{"L":
[{"S":"222-222"}]}]},"PremierCustomer":{"BOOL":false},"Address":{"M":{"Zip":
{"N":"560014"},"Street":{"S":"32 main"},"DoorNum":{"N":"1024"},"City":
{"S":"Wales"}}},"FirstName":{"S":"John"},"FavNumbers":{"NS":
["10"]},"LastName":{"S":"White"},"FavColors":{"SS":["Blue"]},"Age":
{"N":"48"},"ttl": {"N": "1734616800"}}}

You copy the exported DynamoDB table data from AWS S3 storage to a local mounted file
system.

Example:

For this demonstration, you will learn how to migrate a DynamoDB JSON file to Oracle NoSQL
Database (on-premises). You will use a manually created configuration file for this example.

Prerequisites

• Identify the source and sink for the migration.

– Source: DynamoDB JSON File

– Sink: Oracle NoSQL Database (on-premises)

• In order to import DynamoDB table data to Oracle NoSQL Database, you must first export
the DynamoDB table to S3. See the steps provided in Exporting DynamoDB table data to
Amazon S3 to export your table. While exporting, you select the format as DynamoDB
JSON. The exported data contains DynamoDB table data in multiple gzip files as shown
below.

/ 01639372501551-bb4dd8c3 
|-- 01639372501551-bb4dd8c3 ==> exported data prefix
|----data
|------sxz3hjr3re2dzn2ymgd2gi4iku.json.gz  ==>table data
|----manifest-files.json
|----manifest-files.md5
|----manifest-summary.json
|----manifest-summary.md5
|----_started

• You must download the files from AWS S3. The structure of the files after the download will
be as shown below.

download-dir/01639372501551-bb4dd8c3     
|----data    
|------sxz3hjr3re2dzn2ymgd2gi4iku.json.gz  ==>table data   
|----manifest-files.json   
|----manifest-files.md5   
|----manifest-summary.json   

Chapter 1
Use Case Demonstrations

1-96

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.html


|----manifest-summary.md5   
|----_started

Procedure

To migrate the DynamoDB JSON data to the Oracle NoSQL Database:

1. Prepare the configuration file (in JSON format) with the identified source and sink details.
For details, see Source Configuration Templates and Sink Configuration Templates.

Note:

If your DynamoDB exported JSON table items contain TTL attribute, to optionally
import the TTL values, specify the attribute in the ttlAttributeName
configuration parameter of the source configuration template and set the
includeTTL configuration parameter to true in the sink configuration template.

You can choose one of the following two options.

• Option 1: Importing DynamoDB table as a JSON document using default schema
config.
Here, you set the defaultSchema configuration parameter to true. Therefore, the
NoSQL Database Migrator creates the default schema at the sink. You must specify
the DDBPartitionKey and the corresponding NoSQL column type. Otherwise, an error
is displayed.

For details on the default schema for a DynamoDB exported JSON source, see
Identify the Source and Sink topic in Workflow for Oracle NoSQL Database Migrator.

{
  "source" : {
    "type" : "file",
    "format" : "dynamodb_json",
    "ttlAttributeName" : "ttl",
    "dataPath" : "<complete/path/to/the/DynamoDB/Formatted/JSON/file>"
  },
  "sink" : {
    "type" : "nosqldb",
    "storeName" : "kvstore",
    "helperHosts" : ["<hostname>:5000"],
    "table" : "sampledynDBImp",
    "includeTTL" : true,
    "schemaInfo" : {
      "DDBPartitionKey" : "Id:INTEGER",
      "defaultSchema" : true
    },
    "overwrite" : true,
    "requestTimeoutMs" : 5000
  },
  "abortOnError" : true,
  "migratorVersion" : "1.6.5"
}

Chapter 1
Use Case Demonstrations

1-97



The following default schema is used in this example:

CREATE TABLE IF NOT EXISTS sampledynDBImp (Id INTEGER, document JSON, 
PRIMARY KEY(SHARD(Id)))

• Option 2: Importing DynamoDB table as fixed columns using a user-supplied schema
file.
Here, you set the defaultSchema configuration parameter to false. Therefore, you
specify the file containing the sink table's DDL statement in the schemaPath
parameter. See Mapping of DynamoDB types to Oracle NoSQL types for more details.

The following user-defined schema is used in this example:

CREATE TABLE IF NOT EXISTS sampledynDBImp (Id INTEGER, document JSON, 
PRIMARY KEY(SHARD(Id)))

NoSQL Database Migrator uses the schema file to create the table at the sink as part
of the migration. As long as the primary key data is provided, the input JSON record
will be inserted. Otherwise, an error is displayed.

Note:

– If the Dynamo DB table has a data type that is not supported in NoSQL
Database, the migration fails.

– If the input data does not contain a value for a particular column (other
than the primary key) then the column default value will be used. The
default value must be a part of the column definition while creating the
table. For example id INTEGER not null default 0. If the column does
not have a default definition, SQL NULL is inserted if values are not
provided for the column.

– If you are modeling DynamoDB table as a JSON document, ensure that
you use AggregateFields transform in order to aggregate non-primary
key data into a JSON column. For details, see aggregateFields.

{
  "source" : {
    "type" : "file",
    "format" : "dynamodb_json",
    "ttlAttributeName" : "ttl",
    "dataPath" : "<complete/path/to/the/DynamoDB/Formatted/JSON/file>"
  },
  "sink" : {
    "type" : "nosqldb",
    "storeName" : "kvstore",
    "helperHosts" : ["<hostname>:5000"],
    "table" : "sampledynDBImp",
    "includeTTL" : true,
    "schemaInfo" : {
      "schemaPath" : "<full path of the schema file with the DDL 
statement>"
    },

Chapter 1
Use Case Demonstrations

1-98



    "overwrite" : true,
    "requestTimeoutMs" : 5000
  },
  "transforms": {
    "aggregateFields" : {
      "fieldName" : "document",
      "skipFields" : ["Id"]
    }
  },
  "abortOnError" : true,
  "migratorVersion" : "1.6.5"
}

2. Open the command prompt and navigate to the directory where you extracted the NoSQL
Database Migrator utility.

3. Run the runMigrator command by passing separate configuration files for options 1 and 2.
Use the --config or -c option.

./runMigrator --config <complete/path/to/the/JSON/config/file>

4. The utility proceeds with the data migration as illustrated in the following sample:

[INFO] creating source from given configuration:
[INFO] source creation completed
[INFO] creating sink from given configuration:
[INFO] sink creation completed
[INFO] creating migrator pipeline
[INFO] [nosqldb sink] : start loading DDLs
[INFO] [nosqldb sink] : executing DDL: CREATE TABLE IF NOT EXISTS 
sampledynDBImp (Id INTEGER, document JSON, PRIMARY KEY(SHARD(Id)))
[INFO] [nosqldb sink] : completed loading DDLs
[INFO] migration started
[INFO] Start writing data to OnDB Sink
[INFO] executing for source:DynamoSample
[INFO] [DDB file source] : start parsing JSON records from file: 
DynamoSample.json.gz
[INFO] Writing data to OnDB Sink completed.
[INFO] migration completed.
Records provided by source=2, Records written to sink=2, Records 
failed=0,Records skipped=0.
Elapsed time: 0min 0sec 45ms
Migration completed.

Validation

Start the SQL prompt in your data store.

 java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Verify that the new table is created with the source data:

SELECT * FROM sampledynDBImp

Output

Chapter 1
Use Case Demonstrations

1-99



Notice that the TTL information is included in the _metadata JSON object for each imported
item.

{"Id":102,"document":{"Address":{"City":"Wales","DoorNum":1024,"Street":"32 
main","Zip":560014},"Age":48,"FavColors":["Blue"],"FavNumbers":
[10],"FirstName":"John","LastName":"White","Phones":
[["222-222"]],"PremierCustomer":false,"_metadata":
{"expiration":1734616196000}}}
{"Id":101,"document":{"Address":{"City":"London","DoorNum":201,"Street":"21 
main","Zip":570004},"Age":22,"FavColors":["Red","Green"],"FavNumbers":
[10],"FirstName":"Fred","LastName":"Smith","Phones":
[["555-222","123-567"]],"PremierCustomer":false,"_metadata":
{"expiration":1734616196000}}}

Migrate from DynamoDB JSON file in AWS S3 to an Oracle NoSQL
Database Cloud Service

This example shows how to use the Oracle NoSQL Database Migrator to copy DynamoDB
JSON file stored in an AWS S3 store to the Oracle NoSQL Database Cloud Service (NDCS).

Use Case:

After evaluating multiple options, an organization finalizes Oracle NoSQL Database Cloud
Service over DynamoDB database. The organization wants to migrate their tables and data
from DynamoDB to Oracle NoSQL Database Cloud Service.

See Mapping of DynamoDB table to Oracle NoSQL table for more details.

You can migrate a file containing the DynamoDB exported JSON data from the AWS S3
storage by specifying the path in the source configuration template.

A sample DynamoDB-formatted JSON File is as follows:

{"Item":{"Id":{"N":"101"},"Phones":{"L":[{"L":[{"S":"555-222"},
{"S":"123-567"}]}]},"PremierCustomer":{"BOOL":false},"Address":{"M":{"Zip":
{"N":"570004"},"Street":{"S":"21 main"},"DoorNum":{"N":"201"},"City":
{"S":"London"}}},"FirstName":{"S":"Fred"},"FavNumbers":{"NS":
["10"]},"LastName":{"S":"Smith"},"FavColors":{"SS":["Red","Green"]},"Age":
{"N":"22"}}}
{"Item":{"Id":{"N":"102"},"Phones":{"L":[{"L":
[{"S":"222-222"}]}]},"PremierCustomer":{"BOOL":false},"Address":{"M":{"Zip":
{"N":"560014"},"Street":{"S":"32 main"},"DoorNum":{"N":"1024"},"City":
{"S":"Wales"}}},"FirstName":{"S":"John"},"FavNumbers":{"NS":
["10"]},"LastName":{"S":"White"},"FavColors":{"SS":["Blue"]},"Age":
{"N":"48"}}}

You export the DynamoDB table to AWS S3 storage as specified in Exporting DynamoDB table
data to Amazon S3.

Example:

For this demonstration, you will learn how to migrate a DynamoDB JSON file in an AWS S3
source to NDCS. You will use a manually created configuration file for this example.

Chapter 1
Use Case Demonstrations

1-100

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.html


Prerequisites

• Identify the source and sink for the migration.

– Source: DynamoDB JSON File in AWS S3

– Sink: Oracle NoSQL Database Cloud Service

• Identify the table in AWS DynamoDB that needs to be migrated to NDCS. Login to your
AWS console using your credentials. Go to DynamoDB. Under Tables, choose the table
to be migrated.

• Create an object bucket and export the table to S3. From your AWS console, go to S3.
Under buckets, create a new object bucket. Go back to DynamoDB and click Exports to
S3. Provide the source table and the destination S3 bucket and click Export.
Refer to steps provided in Exporting DynamoDB table data to Amazon S3 to export your
table. While exporting, you select the format as DynamoDB JSON. The exported data
contains DynamoDB table data in multiple gzip files as shown below.

/ 01639372501551-bb4dd8c3 
|-- 01639372501551-bb4dd8c3 ==> exported data prefix
|----data
|------sxz3hjr3re2dzn2ymgd2gi4iku.json.gz  ==>table data
|----manifest-files.json
|----manifest-files.md5
|----manifest-summary.json
|----manifest-summary.md5
|----_started

• You need aws credentials (including access key ID and secret access key) and config files
(credentials and optionally config) to access AWS S3 from the migrator. See Set and view
configuration settings for more details on the configuration files. See Creating a key pair for
more details on creating access keys.

• Identify your OCI cloud credentials and capture them in the OCI config file. Save the config
file in a directory .oci under your home directory (~/.oci/config). See Acquiring
Credentials for more details.

[DEFAULT]              
tenancy=ocid1.tenancy.oc1....         
user=ocid1.user.oc1....         
fingerprint= 43:d1:....         
key_file=</fully/qualified/path/to/the/private/key/>              
pass_phrase=<passphrase>

• Identify the region endpoint and compartment name for your Oracle NoSQL Database. For
example,

– endpoint: us-phoenix-1

– compartment: developers

Procedure

To migrate the DynamoDB JSON data to the Oracle NoSQL Database:

1. Prepare the configuration file (in JSON format) with the identified source and sink details.
For details, see Source Configuration Templates and Sink Configuration Templates.

Chapter 1
Use Case Demonstrations

1-101

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataExport.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-methods
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-methods
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-creds-create


Note:

If the items in your DynamoDB JSON File in AWS S3 contain TTL attribute, to
optionally import the TTL values, specify the attribute in the
ttlAttributeName configuration parameter of the source configuration
template and set the includeTTL configuration parameter to true in the sink
configuration template. For more details, see Migrating TTL Metadata for Table
Rows.

You can choose one of the following two options.

• Option 1: Importing DynamoDB table as a JSON document using default schema
config.
Here, the defaultSchema is TRUE and so the migrator creates the default schema at
the sink. You need to specify the DDBPartitionKey and the corresponding NoSQL
column type. Otherwise, an error is thrown.

{
 "source" : {
   "type" : "aws_s3",
   "format" : "dynamodb_json",
   "s3URL" : "<https://<bucket-name>.<s3_endpoint>/export_path>",
   "credentials" : "</path/to/aws/credentials/file>",
   "credentialsProfile" : <"profile name in aws credentials file">
 },
 "sink" : {
   "type" : "nosqldb_cloud",
   "endpoint" : "<region_name>",
   "table" : "<table_name>",
   "compartment" : "<compartment_name>",
   "schemaInfo" : {
      "defaultSchema" : true,
      "readUnits" : 100,
      "writeUnits" : 60,
      "DDBPartitionKey" : "<PrimaryKey:Datatype>",
      "storageSize" : 1
   },
   "credentials" : "<complete/path/to/the/oci/config/file>",
   "credentialsProfile" : "DEFAULT",
   "writeUnitsPercent" : 90,
   "requestTimeoutMs" : 5000
 },
 "abortOnError" : true,
 "migratorVersion" : "1.6.5"
}

For a DynamoDB JSON source, the default schema for the table will be as shown
below:

CREATE TABLE IF NOT EXISTS <TABLE_NAME>(DDBPartitionKey_name 
DDBPartitionKey_type, 
[DDBSortKey_name DDBSortKey_type], DOCUMENT JSON, 
PRIMARY KEY(SHARD(DDBPartitionKey_name),[DDBSortKey_name]))

Chapter 1
Use Case Demonstrations

1-102



Where

TABLE_NAME = value provided for the sink 'table' in the configuration

DDBPartitionKey_name = value provided for the partition key in the configuration

DDBPartitionKey_type = value provided for the data type of the partition key in the
configuration

DDBSortKey_name = value provided for the sort key in the configuration if any

DDBSortKey_type = value provided for the data type of the sort key in the
configuration if any

DOCUMENT = All attributes except the partition and sort key of a Dynamo DB table
item aggregated into a NoSQL JSON column

• Option 2: Importing DynamoDB table as fixed columns using a user-supplied schema
file.
Here, the defaultSchema is FALSE and you specify the schemaPath as a file
containing your DDL statement. For details, see Mapping of DynamoDB types to
Oracle NoSQL types for more details.

Note:

If the Dynamo DB table has a data type that is not supported in NoSQL, the
migration fails.

A sample schema file is shown below.

CREATE TABLE IF NOT EXISTS sampledynDBImp (AccountId INTEGER,document 
JSON, 
PRIMARY KEY(SHARD(AccountId)));

The schema file is used to create the table at the sink as part of the migration. As long
as the primary key data is provided, the input JSON record will be inserted, otherwise
it throws an error.

Note:

– If the input data does not contain a value for a particular column(other
than the primary key) then the column default value will be used. The
default value should be part of the column definition while creating the
table. For example id INTEGER not null default 0. If the column does
not have a default definition then SQL NULL is inserted if no values are
provided for the column.

– If you are modeling DynamoDB table as a JSON document, ensure that
you use AggregateFields transform in order to aggregate non-primary
key data into a JSON column. For details, see aggregateFields.

{
 "source" : {
   "type" : "aws_s3",

Chapter 1
Use Case Demonstrations

1-103



   "format" : "dynamodb_json",
   "s3URL" : "<https://<bucket-name>.<s3_endpoint>/export_path>",
   "credentials" : "</path/to/aws/credentials/file>",
   "credentialsProfile" : <"profile name in aws credentials file">
 },
 "sink" : {
   "type" : "nosqldb_cloud",
   "endpoint" : "<region_name>",
   "table" : "<table_name>",
   "compartment" : "<compartment_name>",
   "schemaInfo" : {
      "defaultSchema" : false,
      "readUnits" : 100,
      "writeUnits" : 60,
      "schemaPath" : "<full path of the schema file with the DDL 
statement>",
      "storageSize" : 1
   },
   "credentials" : "<complete/path/to/the/oci/config/file>",
   "credentialsProfile" : "DEFAULT",
   "writeUnitsPercent" : 90,
   "requestTimeoutMs" : 5000
 },
  "transforms": {
    "aggregateFields" : {
      "fieldName" : "document",
      "skipFields" : ["AccountId"]
    }
  },
 "abortOnError" : true,
 "migratorVersion" : "1.6.5"
}

2. Open the command prompt and navigate to the directory where you extracted the NoSQL
Database Migrator utility.

3. Run the runMigrator command by passing the configuration file using the --config or -c
option.

[~/nosqlMigrator]$./runMigrator 
--config <complete/path/to/the/JSON/config/file>

4. The utility proceeds with the data migration, as shown below.

Records provided by source=7..,
Records written to sink=7,
Records failed=0,
Records skipped=0.
Elapsed time: 0 min 2sec 50ms
Migration completed.

Validation

You can log in to your NDCS console and verify that the new table is created with the source
data.

Chapter 1
Use Case Demonstrations

1-104



Migrate from CSV file to Oracle NoSQL Database
This example shows the usage of Oracle NoSQL Database Migrator to copy data from a CSV
file to Oracle NoSQL Database.

Example

After evaluating multiple options, an organization finalizes Oracle NoSQL Database as its
NoSQL Database platform. As its source contents are in CSV file format, they are looking for a
way to migrate them to Oracle NoSQL Database.

In this example, you will learn to migrate the data from a CSV file called course.csv, which
contains information about various courses offered by a university. You generate the
configuration file from the runMigrator utility.

You can also prepare the configuration file with the identified source and sink details. See 
Sources and Sinks.

Prerequisites

• Identify the source and sink for the migration.

– Source: CSV file
In this example, the source file is course.csv

cat [~/nosql-migrator-1.5.0]/course.csv
1,"Computer Science", "San Francisco", "2500"
2,"Bio-Technology", "Los Angeles", "1200"
3,"Journalism", "Las Vegas", "1500"
4,"Telecommunication", "San Francisco", "2500"

– Sink: Oracle NoSQL Database

• The CSV file must conform to the RFC4180 format.

• Create a file containing the DDL commands for the schema of the target table, course. The
table definition must match the CSV data file concerning the number of columns and their
types.
In this example, the DDL file is mytable_schema.ddl

cat [~/nosql-migrator-1.5.0]/mytable_schema.ddl
create table course (id INTEGER, name STRING, location STRING, fees 
INTEGER, PRIMARY KEY(id));

Procedure
To migrate the CSV file data from course.csv to Oracle NoSQL Database Service, perform the
following steps:

1. Open the command prompt and navigate to the directory where you extracted the Oracle
NoSQL Database Migrator utility.

2. To generate the configuration file using Oracle NoSQL Database Migrator, execute the
runMigrator command without any runtime parameters.

[~/nosql-migrator-1.5.0]$./runMigrator

Chapter 1
Use Case Demonstrations

1-105



3. As you did not provide the configuration file as a runtime parameter, the utility prompts if
you want to generate the configuration now. Type y.

You can choose a location for the configuration file or retain the default location by
pressing the Enter key.

Configuration file is not provided. Do you want to generate
configuration? (y/n) [n]: y
Generating a configuration file interactively.

Enter a location for your config [./migrator-config.json]: 
./migrator-config.json already exist. Do you want to overwrite?(y/n) [n]: y

4. Based on the prompts from the utility, choose your options for the Source configuration.

Select the source: 
1) nosqldb
2) nosqldb_cloud
3) file
4) object_storage_oci
5) aws_s3
#? 3

Configuration for source type=file
Select the source file format: 
1) json
2) mongodb_json
3) dynamodb_json
4) csv
#? 4

5. Provide the path to the source CSV file. Further, based on the prompts from the utility, you
can choose to reorder the column names, select the encoding method, and trim the tailing
spaces from the target table.

Enter path to a file or directory containing csv data: [~/nosql-
migrator-1.5.0]/course.csv
Does the CSV file contain a headerLine? (y/n) [n]: n
Do you want to reorder the column names of NoSQL table with respect to
CSV file columns? (y/n) [n]: n
Provide the CSV file encoding. The supported encodings are:
UTF-8,UTF-16,US-ASCII,ISO-8859-1. [UTF-8]: 
Do you want to trim the tailing spaces? (y/n) [n]: n

6. Based on the prompts from the utility, choose your options for the Sink configuration.

Select the sink:
1) nosqldb
2) nosqldb_cloud
#? 1
Configuration for sink type=nosqldb
Enter store name of the Oracle NoSQL Database: mystore

Chapter 1
Use Case Demonstrations

1-106



Enter comma separated list of host:port of Oracle NoSQL Database: 
<hostname>:5000

7. Based on the prompts from the utility, provide the name of the target table.

Enter fully qualified table name: course

8. Enter your choice to set the TTL value. The default value is n.

Include TTL data? If you select 'yes' TTL value provided by the
source will be set on imported rows. (y/n) [n]: n

9. Based on the prompts from the utility, specify whether or not the target table must be
created through the Oracle NoSQL Database Migrator tool. If the table is already created,
it is suggested to provide n. If the table is not created, the utility will request the path for the
file containing the DDL commands for the schema of the target table.

Would you like to create table as part of migration process?
Use this option if you want to create table through the migration tool.
If you select yes, you will be asked to provide a file that contains
table DDL or to use schema provided by the source or default schema.
(y/n) [n]: y
Enter path to a file containing table DDL: [~/nosql-migrator-1.5.0]/
mytable_schema.ddl
Is the store secured? (y/n) [y]: n
would you like to overwrite records which are already present?
If you select 'no' records with same primary key will be skipped [y/n] 
[y]: y
Enter store operation timeout in milliseconds. [5000]:
Would you like to add transformations to source data? (y/n) [n]: n

10. Enter your choice to determine whether to proceed with the migration in case any record
fails to migrate.

Would you like to continue migration if any data fails to be migrated? 
(y/n) [n]: n

11. The utility displays the generated configuration on the screen.

Generated configuration is:
{
  "source" : {
    "type" : "file",
    "format" : "csv",
    "dataPath" : "[~/nosql-migrator-1.5.0]/course.csv",
    "hasHeader" : false,
    "csvOptions" : {
      "encoding" : "UTF-8",
      "trim" : false
    }

Chapter 1
Use Case Demonstrations

1-107



  },
  "sink" : {
    "type" : "nosqldb",
    "storeName" : "mystore",
    "helperHosts" : ["<hostname>:5000"],
    "table" : "migrated_table",
    "query" : "",
    "includeTTL" : false,
    "schemaInfo" : {
      "schemaPath" : "[~/nosql-migrator-1.5.0]/mytable_schema.ddl"
    },
    "overwrite" : true,
    "requestTimeoutMs" : 5000
  },
  "abortOnError" : true,
  "migratorVersion" : "1.5.0"
}

12. Finally, the utility prompts you to specify whether or not to proceed with the migration using
the generated configuration file. The default option is y.

Note: If you select n, you can use the generated configuration file to perform the migration.
Specify the ./runMigrator -c or the ./runMigrator --config option.

Would you like to run the migration with above configuration?
If you select no, you can use the generated configuration file to
run the migration using:
./runMigrator --config ./migrator-config.json
(y/n) [y]: y

13. The NoSQL Database Migrator copies your data from the CSV file to Oracle NoSQL
Database.

creating source from given configuration:
source creation completed
creating sink from given configuration:
sink creation completed
creating migrator pipeline
migration started
[nosqldb sink] : start loading DDLs
[nosqldb sink] : executing DDL: create table course (id INTEGER, name 
STRING, location STRING, fees INTEGER, PRIMARY KEY(id))
[nosqldb sink] : completed loading DDLs
[nosqldb sink] : start loading records
[csv file source] : start parsing CSV records from file: course.csv
migration completed. Records provided by source=4, Records written to 
sink=4, Records failed=0,Records skipped=0.
Elapsed time: 0min 0sec 559ms
Migration completed.

Validation

Chapter 1
Use Case Demonstrations

1-108



Start the SQL prompt in your KVStore.

 java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Verify that the new table is created with the source data:

sql-> select * from course;
{"id":4,"name":"Telecommunication","location":"San Francisco","fees":2500}
{"id":1,"name":"Computer Science","location":"San Francisco","fees":2500}
{"id":2,"name":"Bio-Technology","location":"Los Angeles","fees":1200}
{"id":3,"name":"Journalism","location":"Las Vegas","fees":1500}
 
4 rows returned

Migrate from Oracle NoSQL Database to OCI Object Storage Using Session
Token Authentication

This example shows how to use Oracle NoSQL Database Migrator with session token
authentication to copy data from Oracle NoSQL Database table to a JSON file in an OCI
Object Storage bucket.

Use case
As a developer, you are exploring an option to back up Oracle NoSQL Database table data to
OCI Object Storage (OCI OS). You want to use session token-based authentication.

In this demonstration, you will use the OCI Command Line Interface commands (CLI) to create
a session token. You will manually create a Migrator configuration file and perform data
migration.

Prerequisites

• Identify the source and sink for the migration.

– Source: users table in Oracle NoSQL Database.

– Sink: JSON file in the OCI OS bucket
Identify the region endpoint, namespace, bucket, and prefix for OCI OS. For the list of
OCI OS service endpoints, see Object Storage Endpoints.

* endpoint: us-ashburn-1
* bucket: Migrate_oci
* prefix: userSession
* namespace: idhkv1iewjzj

The namespace name for a bucket is the same as it's tenancy's namespace and is
autogenerated when your tenancy is created. You can get the namespace name
as follows:

* From the Oracle NoSQL Database Cloud Service console, navigate to
Storage > Buckets.

* Select you Compartment from the List Scope and select the bucket. The
Bucket Details page displays the name in Namespace parameter.

If you do not provide an OCI OS namespace name, the Migrator utility uses the
default namespace of the tenancy.

Chapter 1
Use Case Demonstrations

1-109



Note:

Ensure that you have the privileges to write objects in the OCI OS bucket.
For more details on setting the policies, see Write to Object Storage.

• Generate a session token by following these steps:

– Install and configure OCI CLI. See Quickstart.

– Use one of the following OCI CLI commands to generate a session token. For more
details on the available options, see Token-based Authentication for the CLI.

#Create a session token using OCI CLI from a web browser:
oci session authenticate --region <region_name> --profile-name 
<profile_name>

#Example:
oci session authenticate --region us-ashburn-1 --profile-name 
SESSIONPROFILE

or

#Create a session token using OCI CLI without a web browser:
oci session authenticate --no-browser --region <region_name> --profile-
name <profile_name>

#Example:
oci session authenticate --no-browser --region us-ashburn-1 --profile-
name SESSIONPROFILE

In the command above,

region_name: Specifies the region endpoint for your OCI OS. For a list of data regions
supported in Oracle NoSQL Database Cloud Service, see Data Regions and
Associated Service URLs.

profile_name: Specifies the profile, which the OCI CLI command uses to generate a
session token.

The OCI CLI command creates an entry in the OCI config file at $HOME/.oci/
config path as shown in the following sample:

[SESSIONPROFILE]
fingerprint=f1:e9:b7:e6:25:ff:fe:05:71:be:e8:aa:cc:3d:0d:23
key_file=$HOME/.oci/sessions/SESSIONPROFILE/oci_api_key.pem
tenancy=ocid1.tenancy.oc1..aaaaa ... d6zjq
region=us-ashburn-1
security_token_file=$HOME/.oci/sessions/SESSIONPROFILE/token

The security_token_file points to the path of the session token that you generated
using the OCI CLI command above.

Chapter 1
Use Case Demonstrations

1-110



Note:

* If the profile already exists in the OCI config file, the OCI CLI command
overwrites the profile with session-token related configuration while
generating the session token.

* Specify the following in your sink configuration template:

* The path to the OCI config file in the credentials parameter.

* The profile used while generating the session token in the
credentialsProfile parameter.

"credentials" : "$HOME/.oci/config"
"credentialsProfile" : "SESSIONPROFILE"

The Migrator utility automatically fetches the details of the session token
generated using the parameters above. If you don't specify the
credentials parameter, the Migrator utility looks for the credentials file
in the path $HOME/.oci . If you don't specify the
credentialsProfile parameter, the Migrator utility uses the default
profile name (DEFAULT) from the OCI config file.

* The session token is valid for 60 minutes. To extend the session
duration, you can refresh the session. For details, see Refreshing a
Token.

Procedure
To migrate from Oracle NoSQL Database table to a JSON file in the OCI OS bucket:

1. Prepare the configuration file (in JSON format) with Oracle NoSQL Database source and
JSON file in the OCI OS bucket sink. For templates, see Source Configuration Templates
and Sink Configuration Templates.

To use the session token authentication to access OCI OS bucket, set the
useSessionToken parameter to true in the sink configuration template. Correspondingly,
specify the config path in the credentials parameter and the profile name in the
credentialsProfile parameter.

{
  "source" : {
    "type" : "nosqldb",
    "storeName" : "kvstore",
    "helperHosts" : ["<hostname>:<port>"],
    "table" : "users",
    "includeTTL" : true,
    "requestTimeoutMs" : 5000
  },
  "sink" : {
    "type" : "object_storage_oci",
    "format" : "json",
    "endpoint" : "us-ashburn-1",
    "namespace" : "idhkv1iewjzj",
    "bucket" : "Migrate_oci",
    "prefix" : "userSession",

Chapter 1
Use Case Demonstrations

1-111



    "chunkSize" : 32,
    "compression" : "",
    "useSessionToken" : true,
    "credentials" : "$/home/.oci/config",
    "credentialsProfile" : "SESSIONPROFILE"
  },
  "abortOnError" : true,
  "migratorVersion" : "<latest>"
}

2. Open the command prompt and navigate to the directory where you extracted the NoSQL
Database Migrator utility.

3. Run the runMigrator command by passing configuration file option. Use the --config or
-c option to pass the configuration file as follows:

./runMigrator --config ./migrator-config.json

4. The Migrator utility proceeds with data migration. A sample output is shown below.

With useSessionToken parameter to true, the Migrator utility automatically authenticates
using the session token. The Migrator utility copies your data from users table to a JSON
file in the OCI OS bucket named Migrate_oci. Check the logs for successful data backup.

[INFO] creating source from given configuration:
[INFO] source creation completed
[INFO] creating sink from given configuration:
[INFO] sink creation completed
[INFO] creating migrator pipeline
[INFO] [OCI OS sink] : writing table schema to userSession/Schema/
schema.ddl
[INFO] migration started
[INFO] Migration success for source users_6_10. read=2,written=2,failed=0
[INFO] Migration success for source users_1_5. read=3,written=3,failed=0
[INFO] Migration is successful for all the sources.
[INFO] migration completed.
Records provided by source=5, Records written to sink=5, Records 
failed=0,Records skipped=0.
Elapsed time: 0min 0sec 982ms
Migration completed.

Note:

Depending on the chunkSize parameter in the sink configuration template, the
Migrator utility splits the source data into several JSON files in the same
directory. In this example, the Migrator utility copies data to users_1_5_0.json
and users_6_10_0.json files in Migrate_oci/userSession/Data directory.

The source table schema is copied to schema.ddl file in Migrate_oci/
userSession/Schema directory.

Verification
To verify your data backup, log in to the Oracle NoSQL Database Cloud Service console.
Navigate through the menus, Storage > Object Storage & Archive Storage > Buckets.

Chapter 1
Use Case Demonstrations

1-112



Access the files from the userSession directory in the Migrate_oci bucket. For the procedure
to access the console, see Accessing the Service from the Infrastructure Console

Troubleshooting the Oracle NoSQL Database Migrator
Learn about the general challenges that you may face while using the , and how to resolve
them.

Migration has failed. How can I resolve this?

A failure of the data migration can be because of multiple underlying reasons. The important
causes are listed below:

Table 1-5    Migration Failure Causes

Error Message Meaning Resolution

Failed to connect to
Oracle NoSQL Database

The migrator could not establish a
connection with the NoSQL
Database.

• Check if the values of the
storeName and
helperHosts attributes in
the configuration JSON file
are valid and that the hosts
are reachable.

• For a secured store, verify if
the security file is valid with
correct user name and
password values.

Failed to connect to
Oracle NoSQL Database
Cloud Service

The migrator could not establish a
connection with the Oracle
NoSQL Database Cloud Service.

• Verify if the endpoint URL or
region name specified in the
configuration JSON file is
correct.

• Check if the OCI credentials
file is available in the path
specified in the configuration
JSON file.

• Ensure that the OCI
credentials provided in the
OCI credentials are valid.

Chapter 1
Troubleshooting the Oracle NoSQL Database Migrator

1-113



Table 1-5    (Cont.) Migration Failure Causes

Error Message Meaning Resolution

Table not found The table identified for the
migration could not be located by
the NoSQL Database Migrator.

For the Source:
• Verify if the table is present

in the source database.
• Ensure that the table is

qualified with its namespace
in the configuration JSON
file, if the table is created in a
non-default namespace.

• Verify if you have the
required read/write
authorization to access the
table.

• If the source is Oracle
NoSQL Database Cloud
Service, verify if the valid
compartment name is
specified in the configuration
JSON file, and ensure that
you have the required
authorization to access the
table.

For the Sink:
• Verify if the table is present

in the Sink. If it does not
exist, you must either create
the table manually or use the
schemaInfo config to create
it through the migration.

DDL Execution failed The DDL commands provided in
the input schema definition file is
invalid.

• Check the syntax of the DDL
commands in the
schemaPath file.

• Ensure that there is only one
DDL statement per line in the
schemaPath file.

failed to write record to
the sink table with
java.lang.IllegalArgumentE
xception

The input record is not matching
with the table schema of the sink.

• Check if the data types and
column names specified in
the target sink table are
matching with sink table
schema.

• If you applied any
transformation, check if the
transformed records are
matching with the sink table
schema.

Request timeout The source or sink's operation did
not complete within the expected
time.

• Verify the network
connection.

• Check if the NoSQL
Database is up and running.

• Try to increase
requestTimeout value in
the configuration JSON file.

Chapter 1
Troubleshooting the Oracle NoSQL Database Migrator

1-114



What should I consider before restarting a failed migration?

When a data migration task fails, the sink will be at an intermediate state containing the
imported data until the point of failure. You can identify the error and failure details from the
logs and restart the migration after diagnosing and correcting the error. A restarted migration
starts over, processing all data from the beginning. There is no way to checkpoint and restart
the migration from the point of failure. Therefore, NoSQL Database Migrator overwrites any
record that was migrated to the sink already.

Migration is too slow. How can I speed it up?

The time taken for the data migration depends on multiple factors such as volume of data
being migrated, network speed, current load on the database. In case of a cloud service, the
speed of migration also depends on the read throughput and the write throughput provisioned.
So, to improve the migration speed, you can:

• Try to reduce the current workload on your Oracle NoSQL Database while migrating the
data.

• Ensure that the machine that is running the migration, source, and sink all are located in
the same data center and the network latencies are minimal.

• In case of Oracle NoSQL Database Cloud Service, provision high read/write throughput
and verify if the storage allocated for table is sufficient or not. If the NoSQL Database
Migrator is not creating the table, you can increase the write throughput. If the migrator is
creating the table, consider specifying a higher value for the schemaInfo.writeUnits
parameter in the sink configuration. Once the data migration completes, you can lower this
value. Be aware of daily limits on throughput changes. see Cloud Limits and Sink
Configuration Templates .

I have a long running migration involving huge datasets. How can I track the progress of
the migration?

You can enable additional logging to track the progress of a long-running migration. To control
the logging behavior of Oracle NoSQL Database Migrator, you must set the desired level of
logging in the logging.properties file. This file is provided with the NoSQL Database Migrator
package and available in the directory where the Oracle NoSQL Database Migrator was
unpacked. The different levels of logging are OFF, SEVERE, WARNING, INFO, FINE, and ALL in
the order of increasing verbosity. Setting the log level to OFF turns off all the logging
information, whereas setting the log level to ALL provides the full log information. The default
log level is WARNING. All the logging output is configured to go to the console by default. You
can see comments in the logging.properties file to know about each log level.

Chapter 1
Troubleshooting the Oracle NoSQL Database Migrator

1-115



Glossary

Glossary-1



Index

Index-1


	Contents
	List of Figures
	List of Tables
	1 Using Oracle NoSQL Database Migrator
	Overview
	Terminology used with Oracle NoSQL Database Migrator

	Workflow for Oracle NoSQL Database Migrator
	Sources and Sinks
	Supported Sources and Sinks
	Source and Sink Security
	Parameters
	Source Configuration Templates
	JSON File Source
	JSON File in OCI Object Storage Bucket
	MongoDB-Formatted JSON File
	MongoDB-Formatted JSON File in OCI Object Storage bucket
	DynamoDB-Formatted JSON File stored in AWS S3
	DynamoDB-Formatted JSON File
	Oracle NoSQL Database
	Oracle NoSQL Database Cloud Service
	CSV File Source
	CSV file in OCI Object Storage Bucket

	Sink Configuration Templates
	JSON File Sink
	Parquet File
	JSON File in OCI Object Storage Bucket
	Parquet File in OCI Object Storage Bucket
	Oracle NoSQL Database
	Oracle NoSQL Database Cloud Service

	Transformation Configuration Templates
	ignoreFields
	includeFields
	renameFields
	aggregateFields

	Mapping of DynamoDB table to Oracle NoSQL table
	Oracle NoSQL to Parquet Data Type Mapping
	Mapping of DynamoDB types to Oracle NoSQL types

	Use Case Demonstrations
	Migrate from Oracle NoSQL Database Cloud Service to a JSON file
	Migrate from Oracle NoSQL Database On-Premise to Oracle NoSQL Database Cloud Service
	Migrate from JSON file source to Oracle NoSQL Database Cloud Service
	Migrate from MongoDB JSON file to an Oracle NoSQL Database Cloud Service
	Migrate from DynamoDB JSON file to Oracle NoSQL Database
	Migrate from DynamoDB JSON file in AWS S3 to an Oracle NoSQL Database Cloud Service
	Migrate from CSV file to Oracle NoSQL Database
	Migrate from Oracle NoSQL Database to OCI Object Storage Using Session Token Authentication

	Troubleshooting the Oracle NoSQL Database Migrator

	Glossary
	Index

