
Oracle® NoSQL Database
Monitoring the data store

Release 24.4
G12047-02
December 2024

Oracle NoSQL Database Monitoring the data store, Release 24.4

G12047-02

Copyright © 2024, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Monitoring the Store

Events 1-1

Log File Compression 1-3

Software Monitoring 1-4

System Log File Monitoring 1-4

Java Management Extensions (JMX) Monitoring 1-5

Monitoring for Storage Nodes (SN) 1-5

Metrics for Storage Nodes 1-6

Java Management Extensions (JMX) Notifications 1-7

Monitoring for Replication Nodes (RN) 1-22

Metrics for Replication Node 1-22

Monitoring for Arbiter Nodes 1-26

Metrics for Arbiter Nodes 1-26

Monitoring for Administration (Admin) Nodes 1-28

Metrics for Admin Nodes 1-28

Hardware Monitoring 1-30

Monitoring for Hardware Faults 1-30

The Network 1-30

Persistent Storage 1-31

Servers 1-42

Detecting and Correlating Server Failures to NoSQL Log Events 1-42

Resolving Server Failures 1-43

Terminology Review 1-43

Assumptions 1-45

Replacement Procedure 1: Replace SN with Identical SN 1-46

Replacement Procedure 2: New SN Takes Over Duties of Removed SN 1-48

Examples 1-51

Setup 1-52

Example 1: Replace a Failed SN with an Identical SN 1-56

Example 2: New SN Takes Over Duties of Existing SN 1-61

2 Standardized Monitoring Interfaces

Java Management Extensions (JMX) 2-1

iii

Displaying the Oracle NoSQL Database MBeans 2-1

Enabling JMX Monitoring 2-2

In the Bootfile 2-2

By Changing Storage Node Parameters 2-3

3 Using ELK to Monitor Oracle NoSQL Database

Enabling the Collector Service 3-2

Setting Up Elasticsearch 3-2

Setting Up Kibana 3-2

Setting Up Logstash 3-3

Setting Up Filebeat on Each Storage Node 3-3

Configure security for the Elastic Stack 3-3

Using Kibana for Analyzing Oracle NoSQL Database 3-4

Creating Index Patterns 3-6

Analyzing the Data 3-7

Index

iv

1
Monitoring the Store

You can obtain Information about the performance and availability of your store from both
server side and client side perspectives:

• Your Oracle NoSQL Database applications can obtain performance statistics using the
oracle.kv.KVStore.getStats() class. This provides a client side view of the complete
round trip performance for Oracle NoSQL Database operations.

• Oracle NoSQL Database automatically captures Replication Node performance statistics
into a log file that you can into into spreadsheet software for analysis. The store tracks,
logs, and writes statistics at a user specified interval to a CSV file. The file is je.stat.csv,
located in the Environment directory. Logging occurs per-Environment when the
Environment is opened in read/write mode.

Configuration parameters control the size and number of rotating log files to use (similar to
java logging, see java.util.logging.FileHandler). For a rotating set of files, as each file
reaches a given size limit, it is closed, rotated out, and a new file is opened. Successively
older files are named with an incrementing numeric suffix to the file name. The name
format is je.stat[version].csv.

• The Oracle NoSQL Database administrative service collects and aggregates status
information, alerts, and performance statistics components that the store generates. This
provides a detailed view of the behavior and performance of the Oracle NoSQL Database
server.

• Each Oracle NoSQL Database Storage Node maintains detailed logs of trace information
from the services that the node supports. The administrative service presents an
aggregated, store-wide view of these component logs. Logs are available on each Storage
Node if the administrative service is not available, or if it is more convenient to examine
individual Storage Node logs. Additionally, you can compress these log files to store more
logging output in the same disk space.

• Oracle NoSQL Database supports the optional Java Management Extensions (JMX)
agents for monitoring. The JMX interfaces allow you to poll the Storage Nodes for
information about the storage node and any replication nodes that it hosts. For more
information on JMX monitoring, see Standardized Monitoring Interfaces . For information
on using JMX securely, see Guidelines for using JMX securely in the Security Guide.

You can monitor the status of the store by verifying it from within the CLI. See Verifying the
Store. You can also use the CLI to examine events.

Events
Events are special messages that inform you of the state of your system. As events are
generated, they are routed through the monitoring system so that you can see them. There are
four types of events that the store reports:

1. State Change events are issued when a service starts up or shuts down.

2. Performance events report statistics about the performance of various services.

1-1

3. Log events are records produced by the various system components to provide trace
information about debugging. These records are produced by the standard
java.util.logging package.

4. Plan Change events record the progress of plans as they execute, are interrupted, fail or
are canceled.

Note:

• Some events are considered critical. These events are recorded in the
administration service's database, and can be retrieved and viewed using the
CLI.

• You can compress the log event records that are produced by the standard
java.util.logging package. For more information, see Log File Compression.

You cannot view Plan Change events directly through Oracle NoSQL Database's
administrative interfaces. However, State Change events, Performance events, and Log events
are recorded using the EventRecorder facility, which is internal to the Admin. Only events
considered critical are recorded, and the criteria for being designated as such varies with the
event type. These are the events considered critical:

• All state changes.

• Log events classified as SEVERE.

• Any performance events reported as below a certain threshold.

You can view all of these critical events using the Admin CLI show events and show event
commands.

Use the CLI show events command with no arguments to see all of the unexpired events in the
database. Use the -from and -to arguments to limit the range of events that display. Use the -
type or -id arguments to filter events by type or id, respectively.

For example, this is part of the output from a show events command:

kv-> show events

Output:

idarpdfbS STAT 2024-04-05 22:18:39.287 UTC sn1 RUNNING sev1
idarpeg0S STAT 2024-04-05 22:18:40.608 UTC sn2 RUNNING sev1
idarphmuS STAT 2024-04-05 22:18:44.742 UTC rg1-rn1 RUNNING sev1
idarpjLLS STAT 2024-04-05 22:18:47.289 UTC rg1-rn2 RUNNING sev1
idartfcuS STAT 2024-04-05 22:21:48.414 UTC rg1-rn2 UNREACHABLE sev2
 (reported by admin1)

This result shows four service state change events (sev1) and one log event (UNREACHABLE),
classified as sev2. Tags at the beginning of each line are individual event record identifiers. To
see detailed information for a particular event, use the show event command, which takes an
event record identifier, such as idartfcuS as its argument:

kv-> show event -id idartfcuS

Chapter 1
Events

1-2

Output:

idartfcuS STAT 2024-04-05 22:21:48.414 UTC rg1-rn2 UNREACHABLE sev2
 (reported by admin1)

Using this method of event identifiers, you can see a complete stack trace.

Events are removed from the system if the total number of events is greater than a set
maximum number, or if the Event is older than a set period. The default maximum number of
events is 10,000, while the default time period is 30 days.

Both Sev1 and Sev2 flags are associated with specific service state change events. Sev1 flags
report the current state. Sev2 flags report errors during attempted state changes, as follows:

Sev1 Flags Sev2 Flags

STARTING ERROR_RESTARTING
WAITING_FOR_DEPLOY ERROR_NO_RESTART
RUNNING UNREACHABLE
STOPPING
STOPPED

Log File Compression
You can compress the log files by setting the serviceLogFileCompression Storage Node
parameter. This helps to store significantly more logging output in the same amount of disk
space. As a result, the logs can be retained for a longer period, rendering their availability for
debugging purposes. The log files are compressed with the standard gzip algorithm. By
default, the compression of log files stores approximately five times more data as compared
with uncompressed files.

When you enable the log file compression, restart the associated Storage Node Agent for the
new setting to take effect on the new files and compress the existing files. The size of log files
may temporarily exceed the defined limits in certain cases. The rotated copies of the store-
combined debug logs, statistics files, and performance files are compressed. Additionally, the
service debug log files across all Storage Nodes, Replication Nodes, Admins, and Arbiters are
compressed.

The compressed rotated log files are renamed with a .gz suffix and the file name is modified to
use the creation time instead of the standard log rotation number.

For example:

Precompressed log file Post compressed log file

rg1-rn1_1.log rg1-rn1_20220720-201902.log.gz

Here, the standard rotated log file rg1-rn1_1.log is renamed to rg1-
rn1_20220720-201902.log.gz after compression. The date part of the log file implies that the
file was created on 2022-07-20 20:19:02 UTC.

If multiple rotated log files are created in the same second, a unique suffix is added to the date
portion of the file name.

For example: rg1-rn1_20220720-201902-1.log.gz.

Chapter 1
Log File Compression

1-3

Note:

• To avoid the usage of extra disk space in the standard log directory, you can use
the gzcat command to view the contents without uncompressing the zipped files.
Use the zgrep command to search the compressed log files. You can also
uncompress the files into another directory. Manually uncompressed files are not
deleted automatically.

• The Bootstrap debug log files, GC log files, JE debug log files, and JE statistics
files are not compressed.

Software Monitoring
Being a distributed system, the Oracle NoSQL Database is composed of several software
components and each expose unique metrics that can be monitored, interpreted, and utilized
to understand the general health, performance, and operational capability of the Oracle NoSQL
Database cluster.

This section focuses on best practices for monitoring the Oracle NoSQL software components.
While there are several software dependencies for the Oracle NoSQL Database itself (for
example, Java virtual machine, operating system, NTP), this section focuses solely on the
NoSQL components.

There are four basic mechanisms for monitoring the health of the Oracle NoSQL Database:

• System Log File Monitoring – Oracle NoSQL Database uses the java.util.logging package
to write all trace, information, and error messages to the log files for each component of
the store. These files can be parsed using the typical log file probing mechanism supported
by the leading system management solutions.

• Application Monitoring – A good proxy for the “health” of the Oracle NoSQL Database rests
with application level metrics. Metrics like average and 90th percentile response times,
average and 90th percentile throughput, as well average number of timeout exceptions
encountered from NoSQL API calls are all potential indicators that something may be
wrong with a component in the NoSQL cluster. In fact, sampling these metrics and looking
for deviations from mean values can be the best way to know that something may be
wrong with your environment.

• Oracle Enterprise Manager (OEM) – The integration of Oracle NoSQL Database with OEM
primarily takes the form of an EM plug-in. The plug-in allows monitoring store components,
their availability, performance metrics, and operational parameters through Enterprise
Manager. For more information on OEM, see About IntelliJ Plugin .

The following sections discuss details of each of these monitoring techniques (except OEM)
and illustrate how each of them can be utilized to detect failures in Oracle NoSQL Database
components.

System Log File Monitoring
The Oracle NoSQL Database is composed of the following components, and each component
produces log files that can be monitored:

• Replication Nodes (RN) – Service read and write requests from API calls. Replication
Nodes for a particular shard are laid out on different Storage Nodes (physical servers) by

Chapter 1
Software Monitoring

1-4

the topology manager, so the log files for the nodes in each shard are spread across
multiple machines.

• Storage Node Agents (SNA) – Manage the Replication Nodes that are running on each
Storage Node (SN). The Storage Node Agent maintains its own log regarding the state of
each replication node it is managing. You can think of the Storage Node Agent log as a
high level log of the Replication Node activity on a particular Storage Node.

• Administration (Admin) Nodes – Administrative Nodes handle the execution of commands
from the administrative command line interface. Long running plans are also staged from
the administrative nodes. Administrative Nodes also maintain a consolidated log of all the
other logs in the Oracle NoSQL cluster.

All of the above mentioned log files can be found in the following directory structure KVROOT/
kvstore/log on the machine where the component is running. It is possible to compress these
log files to accommodate more files in the given disk space. For more details, see Log File
Compression.

The following steps can be used to find the machines that are running the components of the
cluster:

1. java -Xmx64m -Xms64m -jar kvstore.jar ping -host <any machine in the cluster>
-port <the port number used to initialize the KVStore>

2. Each Storage Node (snXX) is listed in the output of the ping command, along with a list of
Replication nodes (rgXX-rnXX) running on the host listed in the ping output. XX denotes
the unique number assigned to that component by NoSQL Database. For Replication
Nodes, rg denotes the shard number and stands for replication group, while rn denotes the
Replication Node number within that shard.

3. Administration (Admin) Nodes – Identifying the nodes in the cluster that are running
administrative services is a bit more challenging. To identify these nodes, a script would
run ps axww on every host in the cluster and grep for kvstore.jar and -class Admin.

The Oracle NoSQL Database maintains a single consolidated log of every node in the cluster,
and this can be found on any of the nodes running an administrative service. While this is a
convenient and easy single place to monitor for errors, it is not 100% guaranteed. The single
consolidated view is aggregated by getting log messages over the network, and transient
network failures, packet loss, and high network utilization can cause this consolidated log to
either be out of date, or have missing entries. Therefore, we recommend monitoring each host
in the cluster as well as monitoring each type of log file on each host in the cluster.

Generally speaking, any log message with a level of SEVERE should be considered a
potentially critical event and worthy of generating a systems management notification. The
sections in the later part of this document illustrate how to correlate specific SEVERE
exceptions with hardware component failure.

Java Management Extensions (JMX) Monitoring
Oracle NoSQL Database is also monitored through JMX based system management tools. For
more information on JMX, see Standardized Monitoring Interfaces .

Monitoring for Storage Nodes (SN)
A Storage Node is a physical (or virtual) machine with its own local storage, which houses the
Replication Node. For more information, see Architecture in the Concepts Guide.

See the following sections:

• Metrics for Storage Nodes

Chapter 1
Software Monitoring

1-5

• Java Management Extensions (JMX) Notifications

Metrics for Storage Nodes
• snServiceStatus – The current status of the Storage Node Agent running on the host. The

Storage Node Agent manages all the Replication Nodes running on the Storage Node
(host). The textual representation along with the enumeration ID are shown below:

– starting (1) – The Storage Node Agent is booting up.

– waitingForDeploy (2) – The Storage Node Agent is waiting for the initial deploy-SN
command to be run.

– running(3) – The Storage Node Agent is running.

– stopping(4) – The Storage Node Agent is in the process of shutting down. It may be in
the process of shutting down Replication Nodes that it manages.

– stopped(5) – An intentional clean shutdown.

– errorRestarting(6) – Although this state exists in the category, it is typically never seen
for storage node agents.

– errorNoRestart(7) – Although this state exists in the category, it is typically never seen
for storage node agents.

– unreachable(8) – The Storage Node Agent is unreachable by the admin service.

Note:

If a Storage Node is UNREACHABLE, or a Replication Node is having
problems and its Storage Node is UNREACHABLE, first check the network
connectivity between the Admin and the Storage Node. If the managing
Storage Node Agent is reachable, but the managed Replication Node is not,
the problem most likely lies somewhere other than the network.

– expectedRestarting(9) – This state is rare for Storage Node Agents.

• snHostName – The name of the host where the Storage Node agent has been deployed.

• snRegistryPort – The TCP/IP port on which Oracle NoSQL Database should be contacted.

• snHAHostName – If the HA host name has been configured through the boot parameters
then this is returned, otherwise the name of the host running the Storage Node agent is
returned. This value represents the network interface name that the replication subsystem
uses for internode communication. The HA host name is specified using the -hahost flag
to the makebootconfig command, and it corresponds to the haHostname Storage Node
parameter, in the Setting Store Parameters. If users encounter a problem indicating that
the HA host name has been specified incorrectly, first check that they have used the
correct value in the call to the makebootconfig command. The user can change the value
later by modifying the haHostname parameter. For more information, see makebootconfig.

• snHaPortRange – The range of ports that replication nodes use to communicate among
themselves.

• snStoreName – The name of the KVStore that this storage node agent is servicing.

• snRootDirPath – The fully qualified path to the root of the directory structure where the
Oracle NoSQL Database installation files exist.

Chapter 1
Software Monitoring

1-6

• snLogFileCount – A logging config parameter that represents the maximum number of log
files that are retained by the Storage Node Agent.

• snLogFileLimit – A logging config parameter that represents the maximum size of a single
log file in bytes.

• snCapacity – The current capacity of the Storage Node. This parameter essentially
describes the number of persistent storage devices on the Storage Node and is typically
set at store initialization time, but can be modified by the administrator if the hardware
configuration is changed after the store is initialized.

• snMountPoints – A list of one or more fully qualified paths to the data files that reside on
this storage node.

• snMemory – The current memory configuration for this Storage Node in megabytes. This
parameter is typically set at store initialization time, but can be modified by the
administrator if the hardware configuration is changed after the store is initialized.

• snCPUs – The current number of CPUs configured for this Storage Node. This parameter
is typically set at store initialization time. The administrator can modify the number if the
hardware configuration changes after the store is initialized.

• snCollectorInterval – The interval that all nodes are using for aggregate statistics.

Java Management Extensions (JMX) Notifications
Mbean Object Name: Oracle NoSQL Database:type=StorageNode

• New operation performance metrics are available as follows:

– Type: oracle.kv.repnode.opmetric
– User Data: Contains a full listing of performance metrics for a given RN. The statistics

are a string in JSON form, and are obtained via Notification.getUserData().

These metrics contain statistics of each type of API operation. And each operation
statistics is calculated by interval and cumulative statistics. Interval statistics cover a
single measurement period, cumulative statistics cover the duration of this repNode's
uptime. Statistics follows the following naming convention:

[Operation]_[Interval|Cumulative]_[Metric]

[Operation] has following user operations: Gets, Puts, PutIfAbsent, PutIfPresent,
PutIfVersion, Deletes, DeleteIfVersion, MultiGets, MultiGetKeys, MultiGetIterator,
MultiGetKeysIterator, StoreIterator, StoreKeysIterator, MultiDeletes, Executes,
IndexIterator, IndexKeysIterator, QuerySinglePartition, QueryMultiPartition,
QueryMultiShard, BulkPut, BulkGet, BulkGetKeys, BulkGetTable, BulkGetTableKeys

AllSingleKeyOperations are Gets, Puts, PutIfAbsent, PutIfPresent, PutIfVersion, Deletes,
DeleteIfVersion

AllMultiKeyOperations are MultiGetKeys, MultiGetIterator, MultiGetKeysIterator,
StoreIterator, StoreKeysIterator, MultiDeletes, Executes, IndexIterator, IndexKeysIterator,
QuerySinglePartition, QueryMultiPartition, QueryMultiShard, BulkPut, BulkGet,
BulkGetKeys, BulkGetTable, BulkGetTableKeys

Read operations are Gets, MultiGets, MultiGetKeys, MultiGetIterator, MultiGetKeysIterator,
StoreIterator, StoreKeysIterator, IndexIterator, IndexKeysIterator, QuerySinglePartition,
QueryMultiPartition, QueryMultiShard, BulkGet, BulkGetKeys, BulkGetTable,
BulkGetTableKeys

Chapter 1
Software Monitoring

1-7

Write operation are Puts, PutIfAbsent, PutIfPresent, PutIfVersion, Deletes, DeleteIfVersion,
MultiDeletes, Executes, BulkPut

[Metric] has the following types:

– TotalReq: The total number of operation requests.

– TotalOps: The total number of records returned or processed. Single operation
requests only apply to one record, but the multi, iterate, query, bulk or execute
operation requests will work on multiple records.

– PerSec: Operation throughput per second, that is [TotalOps] / [Interval]

– Min: minimum latency

– Max: maximum latency

– Avg: average latency

– 95th: The maximum value within the bottom 95% of latency values.

– 99th: The maximum value within the bottom 99% of latency values.

The average latency tells users how long to expect calls to take when considering a large
number of calls. The 95th and 99th percentile latency numbers provide information about
how much call times vary in cases where calls took longer than the average amount of
time to complete. 95% of calls completed within the time specified by the 95th percentile
number; 5% of calls took at least that long to complete. 99% of calls completed within the
time specified by the 99th percentile number; 1% of calls took at least that long to
complete.

For example, consider the following latency values:

– Avg: 1 ms

– 95th: 3 ms

– 99th: 10 ms

If these were the measurements for 1000 calls to the store, then the average means that,
overall, the 1000 calls took a total of 1000 ms (1000 x 1 ms), with a mix of call times, some
less than 1 ms and some greater. The 95% and 99% values give some sense of how the
call times varied over the set of calls. A 95% value of 3 ms means that, out of 1000 calls,
950 (95% of 1000) took less than 3 ms, and 50 (5% of 1000) took 3 ms or longer. A 99%
value of 10 ms means that, out of 1000 calls, 990 (99% of 1000) took less than 10 ms, and
10 (1% of 1000) took 10 ms or longer.

The MultiGets_Interval_TotalOps stats tells how many records were read through
MultiGets operations in the last interval. MultiGets_Cumulative_TotalOps stats tells how
many records were read through MultiGets operations in the whole Replication Node
lifetime.

A sample operation performance metrics:

{
 "resource": "rg1-rn1",
 "shard": "rg1",
 "reportTime": 1481031260001,
 "AllSingleKeyOperations_Interval_TotalOps": 154571,
 "AllSingleKeyOperations_Interval_TotalReq": 154571,
 "AllSingleKeyOperations_Interval_PerSec": 7728,
 "AllSingleKeyOperations_Interval_Min": 0,
 "AllSingleKeyOperations_Interval_Max": 72,
 "AllSingleKeyOperations_Interval_Avg": 0.09015835076570511,

Chapter 1
Software Monitoring

1-8

 "AllSingleKeyOperations_Interval_95th": 0,
 "AllSingleKeyOperations_Interval_99th": 0,
 "AllSingleKeyOperations_Cumulative_TotalOps": 27916089,
 "AllSingleKeyOperations_Cumulative_TotalReq": 27916089,
 "AllSingleKeyOperations_Cumulative_PerSec": 854,
 "AllSingleKeyOperations_Cumulative_Min": 0,
 "AllSingleKeyOperations_Cumulative_Max": 5124,
 "AllSingleKeyOperations_Cumulative_Avg": 0.1090782955288887,
 "AllSingleKeyOperations_Cumulative_95th": 0,
 "AllSingleKeyOperations_Cumulative_99th": 0,
 "AllMultiKeyOperations_Interval_TotalOps": 6002,
 "AllMultiKeyOperations_Interval_TotalReq": 6002,
 "AllMultiKeyOperations_Interval_PerSec": 300,
 "AllMultiKeyOperations_Interval_Min": 0,
 "AllMultiKeyOperations_Interval_Max": 29,
 "AllMultiKeyOperations_Interval_Avg": 0.14758114516735077,
 "AllMultiKeyOperations_Interval_95th": 0,
 "AllMultiKeyOperations_Interval_99th": 1,
 "AllMultiKeyOperations_Cumulative_TotalOps": 1105133,
 "AllMultiKeyOperations_Cumulative_TotalReq": 1105133,
 "AllMultiKeyOperations_Cumulative_PerSec": 33,
 "AllMultiKeyOperations_Cumulative_Min": 0,
 "AllMultiKeyOperations_Cumulative_Max": 956,
 "AllMultiKeyOperations_Cumulative_Avg": 0.16301529109477997,
 "AllMultiKeyOperations_Cumulative_95th": 0,
 "AllMultiKeyOperations_Cumulative_99th": 1,
 "Gets_Interval_TotalOps": 154571,
 "Gets_Interval_TotalReq": 154571,
 "Gets_Interval_PerSec": 7728,
 "Gets_Interval_Min": 0,
 "Gets_Interval_Max": 72,
 "Gets_Interval_Avg": 0.08909573405981064,
 "Gets_Interval_95th": 0,
 "Gets_Interval_99th": 0,
 "Gets_Cumulative_TotalOps": 27916089,
 "Gets_Cumulative_TotalReq": 27916089,
 "Gets_Cumulative_PerSec": 854,
 "Gets_Cumulative_Min": 0,
 "Gets_Cumulative_Max": 5124,
 "Gets_Cumulative_Avg": 0.10803056508302689,
 "Gets_Cumulative_95th": 0,
 "Gets_Cumulative_99th": 0,
 "Puts_Interval_TotalOps": 0,
 "Puts_Interval_TotalReq": 0,
 "Puts_Interval_PerSec": 0,
 "Puts_Interval_Min": 0,
 "Puts_Interval_Max": 0,
 "Puts_Interval_Avg": 0,
 "Puts_Interval_95th": 0,
 "Puts_Interval_99th": 0,
 "PutIfAbsent_Interval_TotalOps": 0,
 "PutIfAbsent_Interval_TotalReq": 0,
 "PutIfAbsent_Interval_PerSec": 0,
 "PutIfAbsent_Interval_Min": 0,
 "PutIfAbsent_Interval_Max": 0,
 "PutIfAbsent_Interval_Avg": 0,

Chapter 1
Software Monitoring

1-9

 "PutIfAbsent_Interval_95th": 0,
 "PutIfAbsent_Interval_99th": 0,
 "PutIfPresent_Interval_TotalOps": 0,
 "PutIfPresent_Interval_TotalReq": 0,
 "PutIfPresent_Interval_PerSec": 0,
 "PutIfPresent_Interval_Min": 0,
 "PutIfPresent_Interval_Max": 0,
 "PutIfPresent_Interval_Avg": 0,
 "PutIfPresent_Interval_95th": 0,
 "PutIfPresent_Interval_99th": 0,
 "PutIfVersion_Interval_TotalOps": 0,
 "PutIfVersion_Interval_TotalReq": 0,
 "PutIfVersion_Interval_PerSec": 0,
 "PutIfVersion_Interval_Min": 0,
 "PutIfVersion_Interval_Max": 0,
 "PutIfVersion_Interval_Avg": 0,
 "PutIfVersion_Interval_95th": 0,
 "PutIfVersion_Interval_99th": 0,
 "Puts_Cumulative_TotalOps": 0,
 "Puts_Cumulative_TotalReq": 0,
 "Puts_Cumulative_PerSec": 0,
 "Puts_Cumulative_Min": 0,
 "Puts_Cumulative_Max": 0,
 "Puts_Cumulative_Avg": 0,
 "Puts_Cumulative_95th": 0,
 "Puts_Cumulative_99th": 0,
 "PutIfAbsent_Cumulative_TotalOps": 0,
 "PutIfAbsent_Cumulative_TotalReq": 0,
 "PutIfAbsent_Cumulative_PerSec": 0,
 "PutIfAbsent_Cumulative_Min": 0,
 "PutIfAbsent_Cumulative_Max": 0,
 "PutIfAbsent_Cumulative_Avg": 0,
 "PutIfAbsent_Cumulative_95th": 0,
 "PutIfAbsent_Cumulative_99th": 0,
 "PutIfPresent_Cumulative_TotalOps": 0,
 "PutIfPresent_Cumulative_TotalReq": 0,
 "PutIfPresent_Cumulative_PerSec": 0,
 "PutIfPresent_Cumulative_Min": 0,
 "PutIfPresent_Cumulative_Max": 0,
 "PutIfPresent_Cumulative_Avg": 0,
 "PutIfPresent_Cumulative_95th": 0,
 "PutIfPresent_Cumulative_99th": 0,
 "PutIfVersion_Cumulative_TotalOps": 0,
 "PutIfVersion_Cumulative_TotalReq": 0,
 "PutIfVersion_Cumulative_PerSec": 0,
 "PutIfVersion_Cumulative_Min": 0,
 "PutIfVersion_Cumulative_Max": 0,
 "PutIfVersion_Cumulative_Avg": 0,
 "PutIfVersion_Cumulative_95th": 0,
 "PutIfVersion_Cumulative_99th": 0,
 "Deletes_Interval_TotalOps": 0,
 "Deletes_Interval_TotalReq": 0,
 "Deletes_Interval_PerSec": 0,
 "Deletes_Interval_Min": 0,
 "Deletes_Interval_Max": 0,
 "Deletes_Interval_Avg": 0,

Chapter 1
Software Monitoring

1-10

 "Deletes_Interval_95th": 0,
 "Deletes_Interval_99th": 0,
 "DeleteIfVersion_Interval_TotalOps": 0,
 "DeleteIfVersion_Interval_TotalReq": 0,
 "DeleteIfVersion_Interval_PerSec": 0,
 "DeleteIfVersion_Interval_Min": 0,
 "DeleteIfVersion_Interval_Max": 0,
 "DeleteIfVersion_Interval_Avg": 0,
 "DeleteIfVersion_Interval_95th": 0,
 "DeleteIfVersion_Interval_99th": 0,
 "Deletes_Cumulative_TotalOps": 0,
 "Deletes_Cumulative_TotalReq": 0,
 "Deletes_Cumulative_PerSec": 0,
 "Deletes_Cumulative_Min": 0,
 "Deletes_Cumulative_Max": 0,
 "Deletes_Cumulative_Avg": 0,
 "Deletes_Cumulative_95th": 0,
 "Deletes_Cumulative_99th": 0,
 "DeleteIfVersion_Cumulative_TotalOps": 0,
 "DeleteIfVersion_Cumulative_TotalReq": 0,
 "DeleteIfVersion_Cumulative_PerSec": 0,
 "DeleteIfVersion_Cumulative_Min": 0,
 "DeleteIfVersion_Cumulative_Max": 0,
 "DeleteIfVersion_Cumulative_Avg": 0,
 "DeleteIfVersion_Cumulative_95th": 0,
 "DeleteIfVersion_Cumulative_99th": 0,
 "MultiGets_Interval_TotalOps": 0,
 "MultiGets_Interval_TotalReq": 0,
 "MultiGets_Interval_PerSec": 0,
 "MultiGets_Interval_Min": 0,
 "MultiGets_Interval_Max": 0,
 "MultiGets_Interval_Avg": 0,
 "MultiGets_Interval_95th": 0,
 "MultiGets_Interval_99th": 0,
 "MultiGetKeys_Interval_TotalOps": 0,
 "MultiGetKeys_Interval_TotalReq": 0,
 "MultiGetKeys_Interval_PerSec": 0,
 "MultiGetKeys_Interval_Min": 0,
 "MultiGetKeys_Interval_Max": 0,
 "MultiGetKeys_Interval_Avg": 0,
 "MultiGetKeys_Interval_95th": 0,
 "MultiGetKeys_Interval_99th": 0,
 "MultiGetIterator_Interval_TotalOps": 0,
 "MultiGetIterator_Interval_TotalReq": 0,
 "MultiGetIterator_Interval_PerSec": 0,
 "MultiGetIterator_Interval_Min": 0,
 "MultiGetIterator_Interval_Max": 0,
 "MultiGetIterator_Interval_Avg": 0,
 "MultiGetIterator_Interval_95th": 0,
 "MultiGetIterator_Interval_99th": 0,
 "MultiGetKeysIterator_Interval_TotalOps": 0,
 "MultiGetKeysIterator_Interval_TotalReq": 0,
 "MultiGetKeysIterator_Interval_PerSec": 0,
 "MultiGetKeysIterator_Interval_Min": 0,
 "MultiGetKeysIterator_Interval_Max": 0,
 "MultiGetKeysIterator_Interval_Avg": 0,

Chapter 1
Software Monitoring

1-11

 "MultiGetKeysIterator_Interval_95th": 0,
 "MultiGetKeysIterator_Interval_99th": 0,
 "MultiGets_Cumulative_TotalOps": 0,
 "MultiGets_Cumulative_TotalReq": 0,
 "MultiGets_Cumulative_PerSec": 0,
 "MultiGets_Cumulative_Min": 0,
 "MultiGets_Cumulative_Max": 0,
 "MultiGets_Cumulative_Avg": 0,
 "MultiGets_Cumulative_95th": 0,
 "MultiGets_Cumulative_99th": 0,
 "MultiGetKeys_Cumulative_TotalOps": 0,
 "MultiGetKeys_Cumulative_TotalReq": 0,
 "MultiGetKeys_Cumulative_PerSec": 0,
 "MultiGetKeys_Cumulative_Min": 0,
 "MultiGetKeys_Cumulative_Max": 0,
 "MultiGetKeys_Cumulative_Avg": 0,
 "MultiGetKeys_Cumulative_95th": 0,
 "MultiGetKeys_Cumulative_99th": 0,
 "MultiGetIterator_Cumulative_TotalOps": 0,
 "MultiGetIterator_Cumulative_TotalReq": 0,
 "MultiGetIterator_Cumulative_PerSec": 0,
 "MultiGetIterator_Cumulative_Min": 0,
 "MultiGetIterator_Cumulative_Max": 0,
 "MultiGetIterator_Cumulative_Avg": 0,
 "MultiGetIterator_Cumulative_95th": 0,
 "MultiGetIterator_Cumulative_99th": 0,
 "MultiGetKeysIterator_Cumulative_TotalOps": 0,
 "MultiGetKeysIterator_Cumulative_TotalReq": 0,
 "MultiGetKeysIterator_Cumulative_PerSec": 0,
 "MultiGetKeysIterator_Cumulative_Min": 0,
 "MultiGetKeysIterator_Cumulative_Max": 0,
 "MultiGetKeysIterator_Cumulative_Avg": 0,
 "MultiGetKeysIterator_Cumulative_95th": 0,
 "MultiGetKeysIterator_Cumulative_99th": 0,
 "StoreIterator_Interval_TotalOps": 0,
 "StoreIterator_Interval_TotalReq": 0,
 "StoreIterator_Interval_PerSec": 0,
 "StoreIterator_Interval_Min": 0,
 "StoreIterator_Interval_Max": 0,
 "StoreIterator_Interval_Avg": 0,
 "StoreIterator_Interval_95th": 0,
 "StoreIterator_Interval_99th": 0,
 "StoreKeysIterator_Interval_TotalOps": 0,
 "StoreKeysIterator_Interval_TotalReq": 0,
 "StoreKeysIterator_Interval_PerSec": 0,
 "StoreKeysIterator_Interval_Min": 0,
 "StoreKeysIterator_Interval_Max": 0,
 "StoreKeysIterator_Interval_Avg": 0,
 "StoreKeysIterator_Interval_95th": 0,
 "StoreKeysIterator_Interval_99th": 0,
 "StoreIterator_Cumulative_TotalOps": 0,
 "StoreIterator_Cumulative_TotalReq": 0,
 "StoreIterator_Cumulative_PerSec": 0,
 "StoreIterator_Cumulative_Min": 0,
 "StoreIterator_Cumulative_Max": 0,
 "StoreIterator_Cumulative_Avg": 0,

Chapter 1
Software Monitoring

1-12

 "StoreIterator_Cumulative_95th": 0,
 "StoreIterator_Cumulative_99th": 0,
 "StoreKeysIterator_Cumulative_TotalOps": 0,
 "StoreKeysIterator_Cumulative_TotalReq": 0,
 "StoreKeysIterator_Cumulative_PerSec": 0,
 "StoreKeysIterator_Cumulative_Min": 0,
 "StoreKeysIterator_Cumulative_Max": 0,
 "StoreKeysIterator_Cumulative_Avg": 0,
 "StoreKeysIterator_Cumulative_95th": 0,
 "StoreKeysIterator_Cumulative_99th": 0,
 "MultiDeletes_Interval_TotalOps": 0,
 "MultiDeletes_Interval_TotalReq": 0,
 "MultiDeletes_Interval_PerSec": 0,
 "MultiDeletes_Interval_Min": 0,
 "MultiDeletes_Interval_Max": 0,
 "MultiDeletes_Interval_Avg": 0,
 "MultiDeletes_Interval_95th": 0,
 "MultiDeletes_Interval_99th": 0,
 "MultiDeletes_Cumulative_TotalOps": 0,
 "MultiDeletes_Cumulative_TotalReq": 0,
 "MultiDeletes_Cumulative_PerSec": 0,
 "MultiDeletes_Cumulative_Min": 0,
 "MultiDeletes_Cumulative_Max": 0,
 "MultiDeletes_Cumulative_Avg": 0,
 "MultiDeletes_Cumulative_95th": 0,
 "MultiDeletes_Cumulative_99th": 0,
 "Executes_Interval_TotalOps": 0,
 "Executes_Interval_TotalReq": 0,
 "Executes_Interval_PerSec": 0,
 "Executes_Interval_Min": 0,
 "Executes_Interval_Max": 0,
 "Executes_Interval_Avg": 0,
 "Executes_Interval_95th": 0,
 "Executes_Interval_99th": 0,
 "Executes_Cumulative_TotalOps": 0,
 "Executes_Cumulative_TotalReq": 0,
 "Executes_Cumulative_PerSec": 0,
 "Executes_Cumulative_Min": 0,
 "Executes_Cumulative_Max": 0,
 "Executes_Cumulative_Avg": 0,
 "Executes_Cumulative_95th": 0,
 "Executes_Cumulative_99th": 0,
 "NOPs_Interval_TotalOps": 0,
 "NOPs_Interval_TotalReq": 0,
 "NOPs_Interval_PerSec": 0,
 "NOPs_Interval_Min": 0,
 "NOPs_Interval_Max": 0,
 "NOPs_Interval_Avg": 0,
 "NOPs_Interval_95th": 0,
 "NOPs_Interval_99th": 0,
 "NOPs_Cumulative_TotalOps": 0,
 "NOPs_Cumulative_TotalReq": 0,
 "NOPs_Cumulative_PerSec": 0,
 "NOPs_Cumulative_Min": 0,
 "NOPs_Cumulative_Max": 0,
 "NOPs_Cumulative_Avg": 0,

Chapter 1
Software Monitoring

1-13

 "NOPs_Cumulative_95th": 0,
 "NOPs_Cumulative_99th": 0,
 "IndexIterator_Interval_TotalOps": 6002,
 "IndexIterator_Interval_TotalReq": 6002,
 "IndexIterator_Interval_PerSec": 300,
 "IndexIterator_Interval_Min": 0,
 "IndexIterator_Interval_Max": 29,
 "IndexIterator_Interval_Avg": 0.14662425220012665,
 "IndexIterator_Interval_95th": 0,
 "IndexIterator_Interval_99th": 1,
 "IndexKeysIterator_Interval_TotalOps": 0,
 "IndexKeysIterator_Interval_TotalReq": 0,
 "IndexKeysIterator_Interval_PerSec": 0,
 "IndexKeysIterator_Interval_Min": 0,
 "IndexKeysIterator_Interval_Max": 0,
 "IndexKeysIterator_Interval_Avg": 0,
 "IndexKeysIterator_Interval_95th": 0,
 "IndexKeysIterator_Interval_99th": 0,
 "IndexIterator_Cumulative_TotalOps": 1105133,
 "IndexIterator_Cumulative_TotalReq": 1105133,
 "IndexIterator_Cumulative_PerSec": 33,
 "IndexIterator_Cumulative_Min": 0,
 "IndexIterator_Cumulative_Max": 956,
 "IndexIterator_Cumulative_Avg": 0.1620502769947052,
 "IndexIterator_Cumulative_95th": 0,
 "IndexIterator_Cumulative_99th": 1,
 "IndexKeysIterator_Cumulative_TotalOps": 0,
 "IndexKeysIterator_Cumulative_TotalReq": 0,
 "IndexKeysIterator_Cumulative_PerSec": 0,
 "IndexKeysIterator_Cumulative_Min": 0,
 "IndexKeysIterator_Cumulative_Max": 0,
 "IndexKeysIterator_Cumulative_Avg": 0,
 "IndexKeysIterator_Cumulative_95th": 0,
 "IndexKeysIterator_Cumulative_99th": 0,
 "QuerySinglePartition_Interval_TotalOps": 0,
 "QuerySinglePartition_Interval_TotalReq": 0,
 "QuerySinglePartition_Interval_PerSec": 0,
 "QuerySinglePartition_Interval_Min": 0,
 "QuerySinglePartition_Interval_Max": 0,
 "QuerySinglePartition_Interval_Avg": 0,
 "QuerySinglePartition_Interval_95th": 0,
 "QuerySinglePartition_Interval_99th": 0,
 "QueryMultiPartition_Interval_TotalOps": 0,
 "QueryMultiPartition_Interval_TotalReq": 0,
 "QueryMultiPartition_Interval_PerSec": 0,
 "QueryMultiPartition_Interval_Min": 0,
 "QueryMultiPartition_Interval_Max": 0,
 "QueryMultiPartition_Interval_Avg": 0,
 "QueryMultiPartition_Interval_95th": 0,
 "QueryMultiPartition_Interval_99th": 0,
 "QueryMultiShard_Interval_TotalOps": 0,
 "QueryMultiShard_Interval_TotalReq": 0,
 "QueryMultiShard_Interval_PerSec": 0,
 "QueryMultiShard_Interval_Min": 0,
 "QueryMultiShard_Interval_Max": 0,
 "QueryMultiShard_Interval_Avg": 0,

Chapter 1
Software Monitoring

1-14

 "QueryMultiShard_Interval_95th": 0,
 "QueryMultiShard_Interval_99th": 0,
 "QuerySinglePartition_Cumulative_TotalOps": 0,
 "QuerySinglePartition_Cumulative_TotalReq": 0,
 "QuerySinglePartition_Cumulative_PerSec": 0,
 "QuerySinglePartition_Cumulative_Min": 0,
 "QuerySinglePartition_Cumulative_Max": 0,
 "QuerySinglePartition_Cumulative_Avg": 0,
 "QuerySinglePartition_Cumulative_95th": 0,
 "QuerySinglePartition_Cumulative_99th": 0,
 "QueryMultiPartition_Cumulative_TotalOps": 0,
 "QueryMultiPartition_Cumulative_TotalReq": 0,
 "QueryMultiPartition_Cumulative_PerSec": 0,
 "QueryMultiPartition_Cumulative_Min": 0,
 "QueryMultiPartition_Cumulative_Max": 0,
 "QueryMultiPartition_Cumulative_Avg": 0,
 "QueryMultiPartition_Cumulative_95th": 0,
 "QueryMultiPartition_Cumulative_99th": 0,
 "QueryMultiShard_Cumulative_TotalOps": 0,
 "QueryMultiShard_Cumulative_TotalReq": 0,
 "QueryMultiShard_Cumulative_PerSec": 0,
 "QueryMultiShard_Cumulative_Min": 0,
 "QueryMultiShard_Cumulative_Max": 0,
 "QueryMultiShard_Cumulative_Avg": 0,
 "QueryMultiShard_Cumulative_95th": 0,
 "QueryMultiShard_Cumulative_99th": 0,
 "BulkPut_Interval_TotalOps": 0,
 "BulkPut_Interval_TotalReq": 0,
 "BulkPut_Interval_PerSec": 0,
 "BulkPut_Interval_Min": 0,
 "BulkPut_Interval_Max": 0,
 "BulkPut_Interval_Avg": 0,
 "BulkPut_Interval_95th": 0,
 "BulkPut_Interval_99th": 0,
 "BulkPut_Cumulative_TotalOps": 0,
 "BulkPut_Cumulative_TotalReq": 0,
 "BulkPut_Cumulative_PerSec": 0,
 "BulkPut_Cumulative_Min": 0,
 "BulkPut_Cumulative_Max": 0,
 "BulkPut_Cumulative_Avg": 0,
 "BulkPut_Cumulative_95th": 0,
 "BulkPut_Cumulative_99th": 0,
 "BulkGet_Interval_TotalOps": 0,
 "BulkGet_Interval_TotalReq": 0,
 "BulkGet_Interval_PerSec": 0,
 "BulkGet_Interval_Min": 0,
 "BulkGet_Interval_Max": 0,
 "BulkGet_Interval_Avg": 0,
 "BulkGet_Interval_95th": 0,
 "BulkGet_Interval_99th": 0,
 "BulkGetKeys_Interval_TotalOps": 0,
 "BulkGetKeys_Interval_TotalReq": 0,
 "BulkGetKeys_Interval_PerSec": 0,
 "BulkGetKeys_Interval_Min": 0,
 "BulkGetKeys_Interval_Max": 0,
 "BulkGetKeys_Interval_Avg": 0,

Chapter 1
Software Monitoring

1-15

 "BulkGetKeys_Interval_95th": 0,
 "BulkGetKeys_Interval_99th": 0,
 "BulkGetTable_Interval_TotalOps": 0,
 "BulkGetTable_Interval_TotalReq": 0,
 "BulkGetTable_Interval_PerSec": 0,
 "BulkGetTable_Interval_Min": 0,
 "BulkGetTable_Interval_Max": 0,
 "BulkGetTable_Interval_Avg": 0,
 "BulkGetTable_Interval_95th": 0,
 "BulkGetTable_Interval_99th": 0,
 "BulkGetTableKeys_Interval_TotalOps": 0,
 "BulkGetTableKeys_Interval_TotalReq": 0,
 "BulkGetTableKeys_Interval_PerSec": 0,
 "BulkGetTableKeys_Interval_Min": 0,
 "BulkGetTableKeys_Interval_Max": 0,
 "BulkGetTableKeys_Interval_Avg": 0,
 "BulkGetTableKeys_Interval_95th": 0,
 "BulkGetTableKeys_Interval_99th": 0,
 "BulkGet_Cumulative_TotalOps": 0,
 "BulkGet_Cumulative_TotalReq": 0,
 "BulkGet_Cumulative_PerSec": 0,
 "BulkGet_Cumulative_Min": 0,
 "BulkGet_Cumulative_Max": 0,
 "BulkGet_Cumulative_Avg": 0,
 "BulkGet_Cumulative_95th": 0,
 "BulkGet_Cumulative_99th": 0,
 "BulkGetKeys_Cumulative_TotalOps": 0,
 "BulkGetKeys_Cumulative_TotalReq": 0,
 "BulkGetKeys_Cumulative_PerSec": 0,
 "BulkGetKeys_Cumulative_Min": 0,
 "BulkGetKeys_Cumulative_Max": 0,
 "BulkGetKeys_Cumulative_Avg": 0,
 "BulkGetKeys_Cumulative_95th": 0,
 "BulkGetKeys_Cumulative_99th": 0,
 "BulkGetTable_Cumulative_TotalOps": 0,
 "BulkGetTable_Cumulative_TotalReq": 0,
 "BulkGetTable_Cumulative_PerSec": 0,
 "BulkGetTable_Cumulative_Min": 0,
 "BulkGetTable_Cumulative_Max": 0,
 "BulkGetTable_Cumulative_Avg": 0,
 "BulkGetTable_Cumulative_95th": 0,
 "BulkGetTable_Cumulative_99th": 0,
 "BulkGetTableKeys_Cumulative_TotalOps": 0,
 "BulkGetTableKeys_Cumulative_TotalReq": 0,
 "BulkGetTableKeys_Cumulative_PerSec": 0,
 "BulkGetTableKeys_Cumulative_Min": 0,
 "BulkGetTableKeys_Cumulative_Max": 0,
 "BulkGetTableKeys_Cumulative_Avg": 0,
 "BulkGetTableKeys_Cumulative_95th": 0,
 "BulkGetTableKeys_Cumulative_99th": 0
}

• New detailed statistics of single environment and replicated environment are available as
follows:

– Type: oracle.kv.repnode.envmetric

Chapter 1
Software Monitoring

1-16

– User Data: contains a full listing of detailed statistics for a given RN. The statistics are
a string in JSON form, and are obtained through Notification.getUserData(). See the
javadoc for EnvironmentStats and ReplicatedEnvironmentStats for more information
about the meaning of the statistics.

An example stat is: getReplicaVLSNLagMap() – Returns a map from replica node
name to the lag, in VLSNs, between the replication state of the replica and the master,
if known. Returns an empty map if this node is not the master.

A sample statistics of single environment and replicated environment:

{
 "resource": "rg1-rn1",
 "shard": "rg1",
 "reportTime": 1498021100001,
 "FeederManager_nMaxReplicaLag": -1,
 "FeederManager_replicaLastCommitTimestampMap":
 "rg1-rn2=1498021098996;rg1-rn3=1498021096989",
 "FeederManager_nFeedersShutdown": 0,
 "FeederManager_nFeedersCreated": 2,
 "FeederManager_nMaxReplicaLagName": "rg1-rn2",
 "FeederManager_replicaVLSNLagMap": "rg1-rn2=0;rg1-rn3=2",
 "FeederManager_replicaVLSNRateMap": "rg1-rn2=472;rg1-rn3=472",
 "FeederManager_replicaDelayMap": "rg1-rn2=0;rg1-rn3=2007",
 "FeederManager_replicaLastCommitVLSNMap": "rg1-rn2=836;rg1-rn3=834",
 "FeederTxns_txnsAcked": 77,
 "FeederTxns_lastCommitVLSN": 848,
 "FeederTxns_totalTxnMS": 228,
 "FeederTxns_lastCommitTimestamp": 1498021099030,
 "FeederTxns_vlsnRate": 439,
 "FeederTxns_txnsNotAcked": 0,
 "FeederTxns_ackWaitMS": 115,
 "Replay_nAborts": 0,
 "Replay_nGroupCommits": 0,
 "Replay_nNameLNs": 0,
 "Replay_nElapsedTxnTime": 0,
 "Replay_nMessageQueueOverflows": 0,
 "Replay_nGroupCommitMaxExceeded": 0,
 "Replay_nCommitSyncs": 0,
 "Replay_nCommitNoSyncs": 0,
 "Replay_maxCommitProcessingNanos": 0,
 "Replay_nGroupCommitTxns": 0,
 "Replay_nCommitWriteNoSyncs": 0,
 "Replay_minCommitProcessingNanos": 0,
 "Replay_nCommitAcks": 0,
 "Replay_nLNs": 0,
 "Replay_nCommits": 0,
 "Replay_latestCommitLagMs": 0,
 "Replay_totalCommitLagMs": 0,
 "Replay_totalCommitProcessingNanos": 0,
 "Replay_nGroupCommitTimeouts": 0,
 "ConsistencyTracker_nVLSNConsistencyWaitMS": 0,
 "ConsistencyTracker_nLagConsistencyWaits": 0,
 "ConsistencyTracker_nLagConsistencyWaitMS": 0,
 "ConsistencyTracker_nVLSNConsistencyWaits": 0,
 "BinaryProtocol_nMaxGroupedAcks": 0,
 "BinaryProtocol_messagesWrittenPerSecond": 19646,

Chapter 1
Software Monitoring

1-17

 "BinaryProtocol_nEntriesOldVersion": 0,
 "BinaryProtocol_bytesReadPerSecond": 0,
 "BinaryProtocol_bytesWrittenPerSecond": 1057385,
 "BinaryProtocol_nMessagesWritten": 344,
 "BinaryProtocol_nGroupAckMessages": 0,
 "BinaryProtocol_nMessagesRead": 0,
 "BinaryProtocol_nReadNanos": 0,
 "BinaryProtocol_nMessageBatches": 24,
 "BinaryProtocol_nAckMessages": 0,
 "BinaryProtocol_nWriteNanos": 17509221,
 "BinaryProtocol_nBytesRead": 0,
 "BinaryProtocol_nGroupedAcks": 0,
 "BinaryProtocol_nMessagesBatched": 48,
 "BinaryProtocol_messagesReadPerSecond": 0,
 "BinaryProtocol_nBytesWritten": 18514,
 "VLSNIndex_nHeadBucketsDeleted": 0,
 "VLSNIndex_nBucketsCreated": 0,
 "VLSNIndex_nMisses": 0,
 "VLSNIndex_nTailBucketsDeleted": 0,
 "VLSNIndex_nHits": 19,
 "I/O_nRepeatFaultReads": 0,
 "I/O_nRandomReads": 0,
 "I/O_nLogIntervalExceeded": 0,
 "I/O_nTempBufferWrites": 0,
 "I/O_nWriteQueueOverflowFailures": 0,
 "I/O_nGroupCommitWaits": 0,
 "I/O_nGroupCommitRequests": 0,
 "I/O_nWritesFromWriteQueue": 0,
 "I/O_nSequentialWrites": 4,
 "I/O_nGrpCommitTimeouts": 0,
 "I/O_nFileOpens": 0,
 "I/O_nRandomWrites": 0,
 "I/O_bufferBytes": 4404016,
 "I/O_nSequentialReadBytes": 0,
 "I/O_endOfLog": 135573,
 "I/O_nSequentialWriteBytes": 16693,
 "I/O_nFSyncTime": 114,
 "I/O_nSequentialReads": 0,
 "I/O_nLogFSyncs": 1,
 "I/O_nNoFreeBuffer": 0,
 "I/O_nFSyncs": 0,
 "I/O_nCacheMiss": 0,
 "I/O_nWriteQueueOverflow": 0,
 "I/O_nRandomWriteBytes": 0,
 "I/O_nReadsFromWriteQueue": 0,
 "I/O_nBytesReadFromWriteQueue": 0,
 "I/O_nBytesWrittenFromWriteQueue": 0,
 "I/O_nNotResident": 21,
 "I/O_nFSyncRequests": 0,
 "I/O_nRandomReadBytes": 0,
 "I/O_nOpenFiles": 1,
 "I/O_nLogBuffers": 16,
 "I/O_nLogMaxGroupCommitThreshold": 0,
 "I/O_nFSyncMaxTime": 114,
 "Cache_nBytesEvictedCACHEMODE": 0,
 "Cache_nINSparseTarget": 85,

Chapter 1
Software Monitoring

1-18

 "Cache_nINNoTarget": 81,
 "Cache_dataAdminBytes": 48800,
 "Cache_nBINsFetchMiss": 0,
 "Cache_nNodesEvicted": 0,
 "Cache_cacheTotalBytes": 5125248,
 "Cache_nSharedCacheEnvironments": 0,
 "Cache_nEvictionRuns": 0,
 "Cache_lruMixedSize": 90,
 "Cache_nLNsEvicted": 0,
 "Cache_nBINsFetch": 92,
 "Cache_nNodesMovedToDirtyLRU": 0,
 "Cache_nLNsFetch": 1761,
 "Cache_nBytesEvictedDAEMON": 0,
 "Cache_nDirtyNodesEvicted": 0,
 "Cache_nUpperINsFetchMiss": 0,
 "Cache_nCachedBINs": 90,
 "Cache_nNodesMutated": 0,
 "Cache_nNodesStripped": 0,
 "Cache_dataBytes": 686704,
 "Cache_nFullBINsMiss": 0,
 "Cache_nBINsFetchMissRatio": 0,
 "Cache_nRootNodesEvicted": 0,
 "Cache_nCachedBINDeltas": 0,
 "Cache_nBytesEvictedMANUAL": 0,
 "Cache_nNodesSkipped": 0,
 "Cache_nUpperINsFetch": 0,
 "Cache_nBinDeltaBlindOps": 0,
 "Cache_nBytesEvictedCRITICAL": 0,
 "Cache_lruDirtySize": 0,
 "Cache_nLNsFetchMiss": 21,
 "Cache_adminBytes": 589,
 "Cache_nBINDeltasFetchMiss": 0,
 "Cache_nThreadUnavailable": 0,
 "Cache_nCachedUpperINs": 84,
 "Cache_sharedCacheTotalBytes": 0,
 "Cache_nNodesPutBack": 0,
 "Cache_nBytesEvictedEVICTORTHREAD": 0,
 "Cache_DOSBytes": 0,
 "Cache_lockBytes": 33936,
 "Cache_nNodesTargeted": 0,
 "Cache_nINCompactKey": 7,
 "OffHeap_offHeapCriticalNodesTargeted": 0,
 "OffHeap_offHeapDirtyNodesEvicted": 0,
 "OffHeap_offHeapNodesSkipped": 4,
 "OffHeap_offHeapLNsEvicted": 44,
 "OffHeap_offHeapAllocOverflow": 0,
 "OffHeap_offHeapCachedLNs": 0,
 "OffHeap_offHeapNodesStripped": 44,
 "OffHeap_offHeapLruSize": 0,
 "OffHeap_offHeapLNsStored": 44,
 "OffHeap_offHeapLNsLoaded": 22,
 "OffHeap_offHeapTotalBytes": 0,
 "OffHeap_offHeapTotalBlocks": 0,
 "OffHeap_offHeapNodesEvicted": 0,
 "OffHeap_offHeapCachedBINDeltas": 0,
 "OffHeap_offHeapNodesMutated": 0,

Chapter 1
Software Monitoring

1-19

 "OffHeap_offHeapNodesTargeted": 48,
 "OffHeap_offHeapCachedBINs": 0,
 "OffHeap_offHeapAllocFailure": 0,
 "OffHeap_offHeapBINsLoaded": 0,
 "OffHeap_offHeapThreadUnavailable": 63,
 "OffHeap_offHeapBINsStored": 0,
 "Cleaning_nBINDeltasMigrated": 0,
 "Cleaning_minUtilization": 68,
 "Cleaning_nLNsMigrated": 0,
 "Cleaning_nINsCleaned": 0,
 "Cleaning_nPendingLNsProcessed": 0,
 "Cleaning_nToBeCleanedLNsProcessed": 0,
 "Cleaning_nLNsLocked": 0,
 "Cleaning_nRevisalRuns": 0,
 "Cleaning_nPendingLNsLocked": 0,
 "Cleaning_nTwoPassRuns": 0,
 "Cleaning_nBINDeltasObsolete": 0,
 "Cleaning_maxUtilization": 68,
 "Cleaning_nLNsMarked": 0,
 "Cleaning_pendingLNQueueSize": 0,
 "Cleaning_nMarkLNsProcessed": 0,
 "Cleaning_nRepeatIteratorReads": 0,
 "Cleaning_nLNsExpired": 0,
 "Cleaning_nCleanerRuns": 0,
 "Cleaning_nBINDeltasDead": 0,
 "Cleaning_nCleanerDisksReads": 0,
 "Cleaning_protectedLogSizeMap": "",
 "Cleaning_nCleanerDeletions": 0,
 "Cleaning_nCleanerEntriesRead": 0,
 "Cleaning_availableLogSize": 48942137344,
 "Cleaning_nLNsDead": 0,
 "Cleaning_nINsObsolete": 0,
 "Cleaning_activeLogSize": 112716,
 "Cleaning_nINsDead": 0,
 "Cleaning_nINsMigrated": 0,
 "Cleaning_totalLogSize": 112716,
 "Cleaning_nBINDeltasCleaned": 0,
 "Cleaning_nLNsObsolete": 0,
 "Cleaning_nLNsCleaned": 0,
 "Cleaning_nLNQueueHits": 0,
 "Cleaning_reservedLogSize": 0,
 "Cleaning_protectedLogSize": 0,
 "Cleaning_nClusterLNsProcessed": 0,
 "Node Compression_processedBins": 0,
 "Node Compression_splitBins": 0,
 "Node Compression_dbClosedBins": 0,
 "Node Compression_cursorsBins": 0,
 "Node Compression_nonEmptyBins": 0,
 "Node Compression_inCompQueueSize": 0,
 "Checkpoints_lastCheckpointInterval": 670,
 "Checkpoints_nDeltaINFlush": 0,
 "Checkpoints_lastCheckpointStart": 670,
 "Checkpoints_lastCheckpointEnd": 1342,
 "Checkpoints_nFullBINFlush": 0,
 "Checkpoints_lastCheckpointId": 1,
 "Checkpoints_nFullINFlush": 0,

Chapter 1
Software Monitoring

1-20

 "Checkpoints_nCheckpoints": 0,
 "Environment_nBinDeltaInsert": 0,
 "Environment_nBinDeltaUpdate": 0,
 "Environment_nBinDeltaGet": 0,
 "Environment_btreeRelatchesRequired": 0,
 "Environment_nBinDeltaDelete": 0,
 "Environment_environmentCreationTime": 1498021055255,
 "Locks_nWaiters": 0,
 "Locks_nRequests": 142,
 "Locks_nLatchAcquiresSelfOwned": 0,
 "Locks_nWriteLocks": 0,
 "Locks_nTotalLocks": 303,
 "Locks_nReadLocks": 303,
 "Locks_nLatchAcquiresNoWaitSuccessful": 0,
 "Locks_nOwners": 303,
 "Locks_nLatchAcquiresWithContention": 0,
 "Locks_nLatchAcquireNoWaitUnsuccessful": 0,
 "Locks_nLatchReleases": 0,
 "Locks_nLatchAcquiresNoWaiters": 0,
 "Locks_nWaits": 0,
 "Op_secSearchFail": 0,
 "Op_priDelete": 0,
 "Op_priSearchFail": 14,
 "Op_secPosition": 0,
 "Op_priInsertFail": 0,
 "Op_priDeleteFail": 0,
 "Op_secSearch": 0,
 "Op_priSearch": 54,
 "Op_priPosition": 2,
 "Op_secDelete": 0,
 "Op_secUpdate": 0,
 "Op_secInsert": 0,
 "Op_priUpdate": 11,
 "Op_priInsert": 66
}

• Announce a change in this RepNode's replication state.

– Type: oracle.kv.repnode.replicationstate
– User Data: RN replication state change event. The event is a string in JSON form, and

is obtained via Notification.getUserData().

For example:

{"resource":"rg1-rn3","shard":"rg1","reportTime":1476980297641,
"replication_state":"MASTER"}

• Announce a change in this RepNode's service status.

– Type: oracle.kv.repnode.status
– User Data: RN service status change event. The event is a string in JSON form, and is

obtained via Notification.getUserData().

Chapter 1
Software Monitoring

1-21

For example:

{"resource":"rg3-rn3","shard":"rg3","reportTime":1476981010202,
"service_status":"ERROR_RESTARTING"}

• Announce a plan state change.

– Type: oracle.kv.plan.status
– User Data: Plan status change event. The event is a string in JSON form, and is

obtained via Notification.getUserData().

For example:

{"planId":7,"planName":"Change Global Params
(7)","reportTime":1477272558763,"state":"SUCCEEDED","attemptNumber":1,
"message":"Plan finished."}

Monitoring for Replication Nodes (RN)
Each Storage Node hosts one or more Replication Nodes which stores the data in key-value
pairs. For more information, see Replication Nodes and Shards in the Concepts Guide.

See the following section:

• Metrics for Replication Node

Metrics for Replication Node
• repNodeServiceStatus – The current status of the Replication Node. They are as follows:

– starting (1) – The storage node agent is booting up.

– waitingForDeploy (2) – The Replication Node is waiting to be registered with the
Storage Node Agent.

– running(3) – The replication node is running.

– stopping(4) – The replication node is in the process of shutting down.

– stopped(5) – An intentional clean shutdown.

– errorRestarting(6) – The Replication Node is restarting after encountering an error.

– errorNoRestart(7) – Service is in an error state, will not restart automatically, and the
service requires Administrative intervention. The user can search for SEVERE entries
in both the log file for the Replication Node and the log file of the SNA controlling the
failed service. The service's log in Monitoring for RN section is RN log:

<kvroot>/<storename>/log/rg*-rn*_*.log

where, <kvroot> and <storename> are user inputs and * represents the number of the
log. For example: rg3-rn2_0.log is the latest log, rg3-rn2_1.log is previous log.

Note that the kvroot and storename will be different for every installation. Similarly, to
find the log file for SNA, use:

<kvroot>/<storename>/log/sn*_*.log

Chapter 1
Software Monitoring

1-22

Examples of SN logs can be: sn1_0.log, sn1_1.log.
You can search SEVERE keyword in these log files, and then read the searched
messages to fix the errors, or you may require help from Oracle NoSQL Database
support. The action to take depends on the nature of the failure and can vary from
stopping and restarting the service explicitly (easy) to the need to replace the service
instance entirely (not easy and slow). The issues can be any of the following:

* Resource issue – Some type of necessary resource for example, disk space,
memory, or network is not available.

* Configuration problem – Some configuration-related issues which needs a fix.

* Software bug – Bugs in the code which needs Oracle NoSQL Database support.

* On disk corruption – Something in persistent storage has been corrupted.

Note that the corruption situations are difficult to handle, but this is rare and require
help from Oracle NoSQL Database support.

– unreachable(8) – The Replication Node is unreachable by the admin service.

Note:

If a Storage Node is UNREACHABLE, or a Replication Node is having
problems and its Storage Node is UNREACHABLE, the first thing to check is
the network connectivity between the Admin and the Storage Node.
However, if the managing Storage Node Agent is reachable and the
managed Replication Node is not, we can guess that the network is OK and
the problem lies elsewhere.

– expectedRestarting(9) – The Replication Node is executing an expected restart as
some plan CLI commands causes a component to restart. This is an expected restart,
that is different from errorRestarting(6) (which is a restart after encountering an error).

The following metrics can be monitored to get a sense for the performance of each Replication
Node in the cluster. There are two flavors of metric granularity:

• Interval – By default, each node in the cluster will sample performance data every 20
seconds and aggregate the metrics to this interval. This interval may be changed using the
admin plan change-parameters - global and supplying the collectorInterval parameter with
a new value (see Changing Parameters).

• Cumulative – Metrics that have been collected and aggregated since the node has started.

The metrics are further broken down into measurements for operations over single keys versus
operations over multiple keys.

Note:

All timestamp metrics are in UTC, therefore appropriate conversion to a time zone
relevant to where the store is deployed is necessary.

• repNodeIntervalStart – The start timestamp of when this sample of single key operation
measurements were collected.

• repNodeIntervalEnd –The start timestamp of when this sample of single key operation
measurements were collected.

Chapter 1
Software Monitoring

1-23

• repNodeIntervalTotalOps – Total number of single key operations (get, put, delete)
processed by the Replication Node in the interval being measured.

• repNodeIntervalThroughput – Number of single key operations (get, put, delete) per
second completed during the interval being measured.

• repNodeIntervalLatMin – The minimum latency sample of single key operations (get, put,
delete) during the interval being measured.

• repNodeIntervalLatMax – The maximum latency sample of single key operations (get, put,
delete) during the interval being measured.

• repNodeIntervalLatAvg – The average latency sample of single key operations (get, put,
delete) during the interval being measured (returned as a float).

• repNodeIntervalPct95 – The 95th percentile of the latency sample of single key operations
(get, put, delete) during the interval being measured.

• repNodeIntervalPct99 – The 95th percentile of the latency sample of single key operations
(get, put, delete) during the interval being measured.

• repNodeCumulativeStart – The start timestamp of when the replication started collecting
cumulative performance metrics (all the below metrics that are cumulative).

• repNodeCumulativeEnd – The end timestamp of when the replication ended collecting
cumulative performance metrics (all the below metrics that are cumulative).

• repNodeCumulativeTotalOps – The total number of single key operations that have been
processed by the Replication Node.

• repNodeCumulativeThroughput – The sustained operations per second of single key
operations measured by this node since it has started.

• repNodeCumulativeLatMin – The minimum latency of single key operations measured by
this node since it has started.

• repNodeCumulativeLatMax – The maximum latency of single key operations measured by
this node since it has started.

• repNodeCumulativeLatAvg – The average latency of single key operations measured by
this node since it has started (returned as a float).

• repNodeCumulativePct95 – The 95th percentile of the latency of single key operations
(get, put, delete) since it has started.

• repNodeCumulativePct99 – The 99th percentile of the latency of single key operations
(get, put, delete) since it has started.

• repNodeMultiIntervalStart – The start timestamp of when this sample of multiple key
operation measurements were collected.

• repNodeMultiIntervalEnd – The end timestamp of when this sample of multiple key
operation measurements were collected.

• repNodeMultiIntervalTotalOps – Total number of multiple key operations (execute)
processed by the replication node in the interval being measured.

• repNodeMultiIntervalThroughput – Number of multiple key operations (execute) per
second completed during the interval being measured.

• repNodeMultiIntervalLatMin – The minimum latency sample of multiple key operations
(execute) during the interval being measured.

• repNodeMultiIntervalLatMax – The maximum latency sample of multiple key operations
(execute) during the interval being measured.

Chapter 1
Software Monitoring

1-24

• repNodeMultiIntervalLatAvg – The average latency sample of multiple key operations
(execute) during the interval being measured (returned as a float).

• repNodeMultiIntervalPct95 – The 95th percentile of the latency sample of multiple key
operations (execute) during the interval being measured.

• repNodeMultiIntervalPct99 – The 95th percentile of the latency sample of multiple key
operations (execute) during the interval being measured.

• repNodeMultiIntervalTotalRequests – The total number of multiple key operations
(execute) during the interval being measured.

• repNodeMultiCumulativeStart – The start timestamp of when the Replication Node started
collecting cumulative multiple key performance metrics (all the below metrics that are
cumulative).

• repNodeMultiCumulativeEnd – The end timestamp of when the Replication Node started
collecting cumulative multiple key performance metrics (all the below metrics that are
cumulative).

• repNodeMultiCumulativeTotalOps – The total number of single multiple operations that
have been processed by the Replication Node since it has started.

• repNodeMultiCumulativeThroughput – The sustained operations per second of multiple
key operations measured by this node since it has started.

• repNodeMultiCumulativeLatMin – The minimum latency of multiple key operations
(execute) measured by this node since it has started.

• repNodeMultiCumulativeLatMax – The maximum latency of multiple key operations
(execute) measured by this node since it has started.

• repNodeMultiCumulativeLatAvg – The average latency of multiple key operations
(execute) measured by this node since it has started (returned as a float).

• repNodeMultiCumulativePct95 – The 95th percentile of the latency of multiple key
operations (execute) since it has started.

• repNodeMultiCumulativePct99 – The 99th percentile of the latency of multiple key
operations (execute) since it has started.

• repNodeMultiCumulativeTotalRequests – The total number of multiple key operations
measured by this node since it has started.

• repNodeCommitLag – The average commit lag (in milliseconds) for a given Replication
Node's update operations during a given time interval.

• repNodeCacheSize – The size in bytes of the replication node's cache of B-tree nodes,
which is calculated using the DBCacheSize utility.

• repNodeConfigProperties – The set of configuration name/value pairs that the Replication
Node is currently running with. Each parameter is a constant which has a string value. The
string value is used to set the parameter in KVSTORE. For example, the parameter
CHECKPOINTER_BYTES_INTERVAL has je.checkpointer.bytesInterval string value in the
javadoc (see, here). The document also details on the data type, minimum, maximum time,
etc.

• repNodeCollectEnvStats – True or false depending on whether the Replication Node is
currently collecting performance statistics.

• repNodeStatsInterval – The interval (in seconds) that the Replication Node is utilizing for
aggregate statistics.

• repNodeMaxTrackedLatency – The maximum number of milliseconds for which latency
statistics will be tracked. For example, if this parameter is set to 1000, then any operation

Chapter 1
Software Monitoring

1-25

at the repnode that exhibits a latency of 1000 or greater milliseconds is not put into the
array of metric samples for subsequent reporting.

• repNodeJavaMiscParams – The value of the -Xms, -Xmx, and -XX:ParallelGCThreads= as
encountered when the Java VM running this Replication Node was booted.

• repNodeLoggingConfigProps – The value of the loggingConfigProps parameter as
encountered when the Java VM running this Replication Node was booted.

• repNodeHeapMB – The size of the Java heap for this Replication Node, in MB.

• repNodeMountPoint – The path to the file system mount point where this Replication
Node's files are stored.

• repNodeMountPointSize – The size of the file system mount point where this Replication
Node's files are stored.

• repNodeHeapSize – The current value of –Xmx for this Replication Node.

• repNodeLatencyCeiling – The upper bound (in milliseconds) at which latency samples may
be gathered at this Replication Node before an alert is generated. For example, if this is
set to 3, then any latency sample above 3 generates an alert.

• repNodeCommitLagThreshold – If the average commit lag (in milliseconds) for a given
Replication Node during a given time interval exceeds the value returned by this method,
an alert is generated.

• repNodeReplicationState – The replication state of the node.

• repNodeThroughputFloor – The lower bound (in operations per second) at which
throughput samples may be gathered at this Replication Node before an alert is generated.
For example, if this is set to 300,000, then any throughput calculation at this Replication
Node that is lower than 300,000 operations per seconds generates an alert.

Monitoring for Arbiter Nodes
An Arbiter Node is a lightweight process that participates in electing a new master when the
old master becomes unavailable. For more information, see Arbiter Nodes in the Concepts
Guide.

See the following section:

• Metrics for Arbiter Nodes

Metrics for Arbiter Nodes
• arbNodeServiceStatus – The current status of the Arbiter Node. They are as follows:

– starting (1) – The Storage Node Agent is booting up.

– waitingForDeploy (2) – The Arbiter Node is waiting to be registered with the Storage
Node Agent.

– running(3) – The Arbiter Node is running.

– stopping(4) – The Arbiter Node is in the process of shutting down.

– stopped(5) – An intentional clean shutdown.

– errorRestarting(6) – The Arbiter Node is restarting after encountering an error.

– errorNoRestart(7) – Service is in an error state and will not be automatically restarted.
Administrative intervention is required. The user can search for SEVERE entries in

Chapter 1
Software Monitoring

1-26

both the service's log file and the log file of the SNA controlling the failed service. The
service's log in Monitoring for Arbiter section is Arbiter log:

<kvroot>/<storename>/log/rg*_an1_*.log

where, <kvroot> and <storename> are user inputs and * represents the number of the
log.

Note that the kvroot and storename will be different for every installation. Similarly, to
find the log file for SNA, use:

<kvroot>/<storename>/log/sn*_*.log

Examples of SN logs can be: sn1_0.log, sn1_1.log.

You can search SEVERE keyword in these log files, and then read the searched
messages to fix the errors, or you may require help from Oracle NoSQL Database
support. The action to take depends on the nature of the failure and can vary from
stopping and restarting the service explicitly (easy) to the need to replace the service
instance entirely (not easy and slow). The issues can be any of the following:

* Resource issue – Some type of necessary resource for example, disk space,
memory, or network is not available.

* Configuration problem – Some configuration-related issues which needs a fix.

* Software bug – Bugs in the code which needs Oracle NoSQL Database support.

* On disk corruption – Something in persistent storage has been corrupted.

Note that the corruption situations are difficult to handle, but this is rare and require
help from Oracle NoSQL Database support.

– unreachable(8) – The Arbiter Node is unreachable by the admin service.

Note:

If a Storage Node is UNREACHABLE, or an Admin Node is having problems
and its Storage Node is UNREACHABLE, the first thing to check is the
network connectivity between the Admin and the Storage Node. However, if
the managing Storage Node Agent is reachable and the managed Arbiter
Node is not, we can guess that the network is OK and the problem lies
elsewhere.

– expectedRestarting(9) – The Arbiter Node is executing an expected restart as some
plan CLI commands causes a component to restart. This is an expected restart, that is
different from errorRestarting(6) (which is a restart after encountering an error).

Note:

All timestamp metrics are in UTC, therefore appropriate conversion to a time
zone relevant to where the store is deployed is necessary.

• arbNodeConfigProperties – The set of configuration name/value pairs that the Arbiter Node
is currently running with. This is analogous to the Replication Node.

Chapter 1
Software Monitoring

1-27

• arbNodeJavaMiscParams – The value of the -Xms, -Xmx, and -XX:ParallelGCThreads= as
encountered when the Java VM running this Arbiter Node was booted.

• arbNodeLoggingConfigProps – The value of the loggingConfigProps parameter as
encountered when the Java VM running this Arbiter Node was booted.

• arbNodeCollectEnvStats – True or false depending on whether the Arbiter Node is
currently collecting performance statistics.

• arbNodeStatsInterval – The interval (in seconds) that the Arbiter Node is utilizing for
aggregate statistics.

• arbNodeHeapMB – The size of the Java heap for this Arbiter Node, in MB.

• arbNodeAcks – The number of transactions acked.

• arbNodeMaster – The current master.

• arbNodeState – The replication state of the node. An Arbiter has an associated replication
state (analogous to the replication node state). The state diagram is UNKNOWN <->
REPLICA -> DETACHED.

• arbNodeVLSN – The current acked VLSN. Arbiters track the VLSN/DTVLSN of the
transaction commit that the Arbiter acknowledges. This is the highest VLSN value that the
Arbiter acknowledged.

• arbNodeReplayQueueOverflow – The current replayQueueOverflow value. The
arbNodeReplayQueueOverflow statistic is incremented when the Arbiter is not able to
process acknowledgement requests fast enough to prevent the thread reading from the
network to wait for free space in the queue. The
RepParms.REPLICA_MESSAGE_QUEUE_SIZE is used to specify the maximum number
of entries that the queue can hold. The default is 1000 entries. A high
arbNodeReplayQueueOverflow value may indicate that the queue size is too small or that
the Arbiter is not able to process requests as fast as the system load requires.

Monitoring for Administration (Admin) Nodes
The Administrative (Admin) Node is a process running in the Storage Node, that is used to
configure, deploy, monitor, and change store components. The Administrative Node handles
the execution of commands from the Administrative Command Line Interface (CLI). For more
information, see Administration in the Concepts Guide.

See the following section:

• Metrics for Admin Nodes

Metrics for Admin Nodes
The following metrics are accessible through JMX for monitoring Administrative Nodes in the
Oracle NoSQL Database cluster.

• adminId – The unique ID for the Admin Node.

• adminServiceStatus – The status of the administrative service. It can be one of the follows:

– unreachable(0) – The Admin Node is unreachable. This can be due to a network error
or the Admin Node maybe down.

– starting (1) – The Admin Node agent is booting up.

– waitingForDeploy (2) – Indicates a bootstrap admin that has not been configured, that
is, it has not been given a store name. Configuring the admin triggers the creation of

Chapter 1
Software Monitoring

1-28

the Admin database, and changes its status from "WAITING_FOR_DEPLOY" to
"RUNNING".

– running(3) – The Admin Node is running.

– stopping(4) – The Admin Node in the process of shutting down.

– stopped(5) – An intentional clean shutdown of the Admin Node.

– errorRestarting(6) – The Storage Node tried to start the admin several times without
success and gave up.

– errorNoRestart(7) – Service is in an error state and will not be automatically restarted.
Administrative intervention is required. The user can start looking for SEVERE entries
in both the service's log file and the log file of the SNA controlling the failed service.
The service's log in Monitoring for Admin section is Admin log:

<kvroot>/<storename>/log/admin*_*.log

where, <kvroot> and <storename> are user inputs and * represents the number of the
log.

Note that the kvroot and storename will be different for every installation. Similarly, to
find the log file for SNA, use:

<kvroot>/<storename>/log/sn*_*.log

Examples of SN logs can be: sn1_0.log, sn1_1.log.
You can search SEVERE keyword in these log files, and then read the searched
messages to fix the errors, or you may require help from Oracle NoSQL Database
support. The action to take depends on the nature of the failure and can vary from
stopping and restarting the service explicitly (easy) to the need to replace the service
instance entirely (not easy and slow). The issues can be any of the following:

* Resource issue – Some type of necessary resource for example, disk space,
memory, or network is not available.

* Configuration problem – Some configuration-related issues which needs a fix.

* Software bug – Bugs in the code which needs Oracle NoSQL Database support.

* On disk corruption – Something in persistent storage has been corrupted.

In the rare case that you discover disk corruption, you must get help from Oracle
NoSQL Database support.

– expectedRestarting(9) – The Admin Node is executing an expected restart as some
plan CLI commands causes a component to restart. This is an expected restart, that is
different from errorRestarting(6) (which is a restart after encountering an error).

• adminLogFileCount – A logging config parameter that represents the maximum number of
log files that are retained by the Admin Node. Users can change the value of this
parameter, and also the adminLogFileLimit parameter, if they want to reduce the amount
of disk space used by debug log files. Note that reducing the amount of debug log data
saved may make it harder to debug problems if debug information is deleted before the
problem is noticed. For more information on adminLogFileCount, see Admin Parameters
and Admin Restart.

• adminLogFileLimit – A logging config parameter that represents the maximum size of a
single log file in bytes. For more information on adminLogFileLimit, see Admin
Parameters and Admin Restart.

Chapter 1
Software Monitoring

1-29

• adminPollPeriod – The frequency by which the Admin polls agents (Replication Node and
Storage Node Agent) for statistics. This polling receives service status changes,
performance metrics, and log messages. This period is reported in units of milliseconds.

• adminEventExpiryAge – Tells how long critical events are saved in the admin database.
This value is reported in units of hours.

• adminIsMaster – A Boolean value which indicates whether or not this Admin Node is the
master node for the admin group.

Hardware Monitoring
While software component monitoring is central to insuring that high availability service levels
are met, hardware monitoring, fault isolation, and ultimately the replacement of a failed
component and how to recover from that failure are equally important. The following sections
cover guidelines on what to monitor and how to detect potential hardware failures. It also
discusses the replacement procedures of replacing failed hardware components and how to
bring the Oracle NoSQL Database components (that were utilizing the components that were
replaced) back online.

Monitoring for Hardware Faults
There are several different hardware scenarios/failures that are considered when monitoring
the environment for Oracle NoSQL Database. The sections below cover the monitoring of
network, disk, and machine failures as well as the correlation of these failures with log events
in the Oracle NoSQL Database. Finally, it discusses how to recover from these failure
scenarios.

The Network
Monitoring packet loss, round trip average latencies, and network utilization provides a glimpse
into critical network activity that can affect the performance as well as the ongoing functioning
of the Oracle NoSQL Database. There are two critical types of network activity in the Oracle
NoSQL Database. The client driver will utilize Java RMI over TCP/IP to communicate between
the machine running the application, and the machines running the nodes of the NoSQL
Database cluster. Secondly, each node in the cluster must be able to communicate with each
other. Replication Nodes will utilize Java RMI over TCP/IP and will also utilize streams based
communication over TCP/IP. Administrative nodes and Storage Node agents will only utilize
RMI over TCP/IP. The key issue in insuring an operational store that is able to maintain
predictable latencies and throughput is to monitor the health of the network through which all of
these nodes communicate.

The following tools are recommended for monitoring the health of the network interfaces that
the Oracle NoSQL Database relies on:

• Sar, ping, iptraf – These operating system tools display critical network statistics such as
of packets lost, round trip latency, and network utilization. It is recommended to use ping
in a scripted fashion to monitor round trip latency as well as packet loss and use either sar
or iptraf in a scripted fashion to monitor network utilization. A good rule of thumb is to
raise an alert if network utilization goes above 80%.

• Oracle NoSQL Ping command – The ping command attempts to contact each node of the
cluster. Directions on how to run and script this command can be found here: CLI
Command Reference.

Chapter 1
Hardware Monitoring

1-30

Correlating Network Failure to NoSQL Log Events
Network failures that affect the runtime operation of NoSQL Database is ultimately logged as
instances of Java runtime exceptions. Using log file monitoring, the following exception strings
are added to a list of regular expressions that are recognized as critical events. Correlating the
timestamps of these events with the timestamps of whatever network monitoring tool is being
utilized.

Note:

While searching the log file for any of the exceptions stated below, the log level must
also be checked such that only log levels of SEVERE is considered. These
exceptions are logged at a level of INFO which indicates no errors will be
encountered by the application.

• UnknownHostException – A DNS lookup of a node in the NoSQL Database failed due to
either a misconfigured NoSQL Database or a DNS error. Encountering this error after a
NoSQL cluster has been operational for some time indicates a network failure between the
application and the DNS server.

• ConnectException – The client driver cannot open a connection to the NoSQL Database
node. Either the node is not listening on the port being contacted or the port is blocked by
a firewall.

• ConnectIOException – Indicates a possible handshake error between the client and the
server or an I/O error from the network layer.

• MarshalException – Indicates a possible I/O error from the network layer.

• UnmarshalException – Indicates a possible I/O error from the network layer.

• NoSuchObjectException – Indicates a possible I/O error from the network layer.

• RemoteException – Indicates a possible I/O error from the network layer.

Recovering from Network Failure
In general, the NoSQL Database will retry and recover from network failures and no
intervention at the database level is necessary. It is possible that a degraded level of service is
encountered due to the network failure; however, the failure of network partitions will not cause
the NoSQL Database to fail.

Persistent Storage
One of the most common failure scenarios you can expect to encounter while managing a
deployed Oracle NoSQL Database instance (sometimes referred to as KVStore) is a disk that
fails and needs to be replaced; where the disk is typically a hard disk drive (HDD), or a solid
state drive (SSD). Because HDDs employ many moving parts that are continuously in action
when the store performs numerous writes and reads, moving huge numbers of bytes on and off
the disk, parts of the disk can easily wear out and fail. With respect to SSDs, although the
absence of moving parts makes SSDs a bit less failure prone than HDDs, when placed under
very heavy load, SSDs will also generally fail with regularity. As a matter of fact, when such
stores scale to a very large number of nodes (machines), a point can be reached where disk
failure is virtually guaranteed; much more than other hardware components making up a node.

Chapter 1
Hardware Monitoring

1-31

For example, disks associated with such systems generally fail much more frequently than the
system's mother board, memory chips, or even the network interface cards (NICs).

Since disk failures are so common, a well-defined procedure is provided for replacing a failed
disk while the store continues to run; providing data availability.

Detecting and Correlating Persistent Storage Failures to NoSQL Log Events
There are many vendor specific tools for detecting the failure of persistent storage devices. It is
beyond the scope of this book to recommend any vendor specific mechanism. There are
however, some general things that can be done to identify a failed persistent storage device;

Note:

Using log file monitoring, the following exception string is to a list of regular
expressions that should be recognized as critical events. Correlating the timestamps
of these events with the timestamps of whatever storage device monitoring tool is
being utilized. When searching the log file for any of the exception stated below, the
log level must also be checked such that only log levels of SEVERE is considered.

• I/O errors in /var/log/messages – Monitoring /var/log/messages for I/O errors indicate
that something is wrong with the device and it may be failing.

• Smartctl – If available, the smartctl tool detects a failure with a persistent storage device
and displays the serial number of the specific device that is failing.

• EnvironmentFailureException – The storage layer of NoSQL Database (Berkeley DB
Java Edition) converts Java IOExceptions detected from the storage device into an
EnvironmentFailureException and this exception is written to the log file.

Resolving Storage Device Failures
The sections below describe that procedure for two common machine configurations.

In order to understand how a failed disk can be replaced while the KVStore is running, review
what and where data is stored by the KVStore; which is dependent on each machine's disk
configuration, as well as how the store's capacity and storage directory location is configured.
Suppose a KVStore is distributed among 3 machines – or Storage Nodes (SNs) — and is
configured with replication factor (RF) equal to 3, each SN's capacity equal to 2, KVROOT
equal to /opt/ondb/var/kvroot, and store name equal to "store-name". Since the capacity or
each SN is 2, each machine will host 2 Replication Nodes (RNs). That is, each SN will execute
2 Java VMs and each run a software service (an RN service) responsible for storing and
retrieving a replicated instance of the key/value data maintained by the store.

Suppose in one deployment, the machines themselves (the SNs) are each configured with 3
disks; whereas in another deployment, the SNs each have only a single disk on which to write
and read data. Although the second (single disk) scenario is fine for experimentation and "tire
kicking", that configuration is strongly discouraged for production environments, where it is
likely to have disk failure and replacement. In particular, one rule deployers are encouraged to
follow in production environments is that multiple RN services should never be configured to
write data to the same disk. That said, there may be some uncommon circumstances in which
a deployer may choose to violate this rule. For example, in addition to being extremely reliable
(for example, a RAID device), the disk may be a device with such high performance and large
capacity that a single RN service would never be able to make use of the disk without
exceeding the recommended 32GB heap limit. Thus, unless the environment consists of disks

Chapter 1
Hardware Monitoring

1-32

that satisfy such uncommon criteria, deployers always prefer environments that allow them to
configure each RN service with its own disk; separate from all configuration and administration
information, as well as the data stored by any other RN services running on the system.

As explained below, to configure a KVStore use multiple disks on each SN, the storagedir
parameter must be employed to exploit the separate media that is available. In addition to
encouraging deployers to use the storagedir parameter in the multi-disk scenario, this note is
also biased toward the use of that parameter when discussing the single disk scenario; even
though the use of that parameter in the single disk case provides no substantial benefit over
using the default location (other than the ability to develop common deployment scripts). To
understand this, first compare the implications of using the default storage location with a non-
default location specified with the storagedir parameter.

Thus, suppose the KVStore is deployed – in either the multi-disk scenario or the single disk
scenario – using the default location; that is, the storagedir parameter is left unspecified. This
means that data will be stored in either scenario under the KVROOT; which is /opt/ondb/var/
kvroot in the examples below. For either scenario, a directory structure like the following is
created and populated:

 - Machine 1 (SN1) - - Machine 2 (SN2) - - Machine 3 (SN3) -
/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /store-name /store-name /store-name
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env

 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env

 /rg2-rn1 /rg2-rn2 /rg2-rn3
 /env /env /env

Compare this with the structure that is created when a KVStore is deployed to the multi-disk
machines; where each machine's 3 disks are named /opt, /disk1, and/disk2. Assume that the
makebootconfig utility (described in Chapter 2 of the Oracle NoSQL Database Administrator's
Guide, section, "Installation Configuration") is used to create an initial boot config with
parameters such as the following:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -port 5000 \
 -host <host-ip>
 -harange 5010,5020 \
 -num_cpus 0 \
 -memory_mb 0 \
 -capacity 2 \
 -admindir /opt/ondb/var/admin \
 -storagedir /disk1/ondb/data \
 -storagedir /disk2/ondb/data \
 -rnlogdir /disk1/ondb/rnlog \
 -storagedir /disk2/ondb/rnlog

Chapter 1
Hardware Monitoring

1-33

With a boot config such as that shown above, the directory structure that is created and
populated on each machine would then be:

 - Machine 1 (SN1) - - Machine 2 (SN2) - - Machine 3 (SN3) -
/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /store-name /store-name /store-name
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env

/disk1/ondb/data /disk1/ondb/data /disk1/ondb/data
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env

/disk2/ondb/data /disk2/ondb/data /disk2/ondb/data
 /rg2-rn1 /rg2-rn2 /rg2-rn3
 /env /env /env

In this case, the configuration information and administrative data is stored in a location that is
separate from all of the replication data. Furthermore, the replication data itself is stored by
each distinct RN service on separate, physical media as well. That is, the data stored by a
given member of each replication group (or shard) is stored on a disk that separate from the
disks employed by the other members of the group.

Note:

Storing the data in these different locations as described above, provides for failure
isolation and will typically make disk replacement less complicated and less time
consuming. That is, by using a larger number of smaller disks, it is possible to
recover much more quickly from a single disk failure because of the reduced amount
of time it will take to repopulate the smaller disk. This is why both this note and
Chapter 2 of the Oracle NoSQL Database Administrator's Guide, section, "Installation
Configuration" strongly encourage configurations like that shown above;
configurations that exploit separate physical media or disk partitions.

Even when a machine has only a single disk, nothing prevents the deployer from using the
storagedir parameter in a manner similar to the multi-disk case; storing the configuration and
administrative data under a parent directory that is different than the parent(s) under which the
replicated data is stored. Since this non-default strategy may allow to create deployment
scripts that can be more easily shared between single disk and multi-disk systems, some may
prefer this strategy over using the default location (KVROOT); or may simply view it as a good
habit to follow. Employing this non-default strategy is simply a matter of taste, and provides no
additional benefit other than uniformity with the multi-disk case.

Hence, such a strategy applied to a single disk system will not necessarily make disk
replacement less complicated; because, if that single disk fails and needs to be replaced, not
only is all the data written by the RN(s) unavailable, but the configuration (and admin) data is
also unavailable. As a result, since the configuration information is needed during the (RN)
recovery process after the disk has been replaced, that data must be restored from a
previously captured backup; which can make the disk replacement process much more

Chapter 1
Hardware Monitoring

1-34

complicated. This is why multi-disk systems are generally preferred in production
environments; where, because of sheer use, the data disks are far more likely to fail than the
disk holding only the configuration and other system data.

Procedure for Replacing a Failed Persistent Storage Device
Suppose a KVStore has been deployed to a set of machines, each with 3 disks, using the
'storagedir' parameter as described above. Suppose that disk2 on SN3 fails and needs to be
replaced. In this case, the administrator would do the following:

1. Execute the KVStore administrative command line interface (CLI), connecting via one of
the healthy admin services.

2. From the CLI, execute the following command:

kv-> plan stop-service-service rg2-rn3

This stops the service so that attempts by the system to communicate with that particular
service are no longer necessary; resulting in a reduction in the amount of error output
related to a failure the administrator is already aware of.

3. Remove disk2, using whatever procedure is dictated by the OS, the disk manufacture,
and/or the hardware platform.

4. Install a new disk using the appropriate procedures.

5. Format the new disk to have the same storage directory as before; that is, /disk2/
ondb/var/kvroot

6. From the CLI, execute the following commands; where the verify configuration
command simply verifies that the desired RN is now up and running:

kv-> plan start-service -service rg2-rn3 -wait
kv-> verify configuration

7. Verify that the recovered RN data file(s) have the expected content; that is, /disk2/
ondb/var/kvroot/rg2-rn3/env/*.jdb

In step 2, the RN service with id equal to 3, belonging to the replication group with id2, is
stopped (rg2-rn3). To determine which specific RN service to stop when using the procedure
outlined above, the administrator combines knowledge of which disk has failed on which
machine with knowledge about the directory structure created during deployment of the
KVStore. For this particular case, the administrator has first used standard system monitoring
and management mechanisms to determine that disk2 has failed on the machine
corresponding to the SN with id equal to 3 and needs to be replaced. Then, given the directory
structure shown previously, the administrator knows that – for this deployment – the store
writes replicated data to disk2 on the SN3 machine using files located under, /disk2b/data/
rg2-rn3/en. As a result, the administrator determined that the RN service with name equal to
rg2-rn3 must be stopped before replacing the failed disk.

In step 6, if the RN service that was previously stopped has successfully restarted when the
verify configuration command is executed, and although the command's output indicates
that the service is up and healthy, it is not necessary that the restarted RN has completely
repopulated the new disk with that RN's data. This is because, it could take a considerable
amount of time for the disk to recover all its data; depending on the amount of data that
previously resided on the disk before failure. The system may encounter additional network
traffic and load while the new disk is being repopulated.

Chapter 1
Hardware Monitoring

1-35

Finally, it should be noted that step 7 is just a sanity check, and therefore optional. That is, if
the RN service is successfully restarted and the verify configuration command reports RN
as healthy, the results of that command is viewed as sufficient evidence for declaring the disk
replacement a success. As indicated above, even if some data is not yet available on the new
disk, that data will continue to be available via the other members of the recovering RN's
replication group (shard), and will eventually be replicated to, and available from, the new disk
as expected.

Example
Below, an example is presented that allows you to gain some practical experience with the disk
replacement steps presented above. This example is intended to simulate the multi-disk
scenario using a single machine with a single disk. Thus, no disks will actually fail or be
physically replaced. But you should still feel how the data is automatically recovered when a
disk is replaced.

For simplicity, assume that the KVStore is installed under /opt/ondb/kv; that is, KVHOME=/opt/
ondb/kv, and that KVROOT=/opt/ondb/var/kvroot; that is, if you have not done so already,
create the directory:

> mkdir -p /opt/ondb/var/kvroot

To simulate the data disks, create the following directories:

> mkdir -p /tmp/sn1/disk1/ondb/data
> mkdir -p /tmp/sn1/disk2/ondb/data

> mkdir -p /tmp/sn2/disk1/ondb/data
> mkdir -p /tmp/sn2/disk2/ondb/data

> mkdir -p /tmp/sn3/disk1/ondb/data
> mkdir -p /tmp/sn3/disk2/ondb/data

Next, open 3 windows; Win_A, Win_B, and Win_C, which will represent the 3 machines (SNs).
In each window, execute the makebootconfig command, creating a different, but similar, boot
config for each SN that will be configured.

On Win_A

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config1.xml \
 -port 13230 \
 -harange 13232,13235 \
 -memory_mb 100 \
 -capacity 2 \
 -admindir /opt/ondb/var/admin \
 -storagedir /tmp/sn1/disk1/ondb/data \
 -storagedir /tmp/sn1/disk2/ondb/data

Chapter 1
Hardware Monitoring

1-36

On Win_B

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config2.xml \
 -port 13240 \
 -harange 13242,13245 \
 -memory_mb 100 \
 -capacity 2 \
 -admindir /opt/ondb/var/admin \
 -storagedir /tmp/sn2/disk1/ondb/data \
 -storagedir /tmp/sn2/disk2/ondb/data

On Win_C

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config3.xml \
 -port 13250 \
 -harange 13252,13255 \
 -memory_mb 100 \
 -capacity 2 \
 -admindir /opt/ondb/var/admin \
 -storagedir /tmp/sn3/disk1/ondb/data \
 -storagedir /tmp/sn3/disk2/ondb/data

This will produce 3 configuration files:

/opt/ondb/var/kvroot
 /config1.xml
 /config2.xml
 /config3.xml

Using the different configurations just generated, start a corresponding instance of the KVStore
Storage Node Agent (SNA) from each window.

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1. Setting
MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the specified
heap size.

On Win_A

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot -config config1.xml &

Chapter 1
Hardware Monitoring

1-37

On Win_B

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot -config config2.xml &

On Win_C

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot -config config3.xml &

Finally, from any window (Win_A, Win_B, Win_C, or a new window), use the KVStore
administrative CLI to configure and deploy the store.

To start the administrative CLI, execute the following command:

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host <host-ip> -port 13230

To configure and deploy the store, type the following commands from the administrative CLI
prompt (remembering to substitute the actual IP address or hostname for the string <host-ip>):

configure -name store-name
plan deploy-zone -name Zone1 -rf 3 -wait
plan deploy-sn -zn 1 -host <host-ip> -port 13230 -wait
plan deploy-admin -sn 1 -port 13231 -wait
pool create -name snpool
pool join -name snpool -sn sn1
plan deploy-sn -zn 1 -host <host-ip> -port 13240 -wait
plan deploy-admin -sn 2 -port 13241 -wait
pool join -name snpool -sn sn2
plan deploy-sn -zn 1 -host <host-ip> -port 13250 -wait
plan deploy-admin -sn 3 -port 13251 -wait
pool join -name snpool -sn sn3
change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"
change-policy -params cacheSize=10000000
topology create -name store-layout -pool snpool -partitions 100
plan deploy-topology -name store-layout -plan-name RepNode-Deploy -wait

Note:

The CLI command prompt (kv->) was excluded from the list of commands above to
facilitate cutting and pasting the commands into a CLI load script.

Chapter 1
Hardware Monitoring

1-38

When the above commands complete (use show plans), the store is up and running and ready
for data to be written to it. Before proceeding, verify that a directory like that shown above for
the multi-disk scenario has been laid out. That is:

 - Win_A - - Win_B - - Win_C -

/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /example-store /example-store /example-store
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env
/tmp/sn1/disk1/ondb/data /tmp/sn2/disk1/ondb/data /tmp/sn3/disk1/ondb/data
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env
 00000000.jdb 00000000.jdb 00000000.jdb

When a key/value pair is written to the store, it is stored in each of the (rf=3) files named,
00000000.jdb that belong to a given replication group (shard); for example, when a single key/
value pair is written to the store, that pair would be stored in either these files:

/tmp/sn1/disk2/ondb/data/rg2-rn1/env/00000000.jdb
/tmp/sn2/disk2/ondb/data/rg2-rn2/env/00000000.jdb
/tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb

Or in these files:

/tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
/tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
/tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb

At this point, each file should contain no key/value pairs. Data can be written to the store in the
most convenient way. But a utility that is quite handy for doing this is the KVStore client shell
utility; which is a process that connects to the desired store and then presents a command line
interface that takes interactive commands for putting and getting key/value pairs. To start the
KVStore shell, type the following from a window:

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar runadmin\
 -host <host-ip> -port 13230 -store store-name

kv-> get -all
 0 Record returned.

kv-> put -key /FIRST_KEY -value "HELLO WORLD"
 Put OK, inserted.

kv-> get -all
 /FIRST_KEY
 HELLO WORLD

Chapter 1
Hardware Monitoring

1-39

A quick way to determine which files the key/value pair was stored in is to simply grep for the
string "HELLO WORLD"; which should work with binary files on most linux systems. Using the
grep command in this way is practical for examples that consist of only a small amount of
data.

> grep "HELLO WORLD" /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
> grep "HELLO WORLD" /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb

> grep "HELLO WORLD" /tmp/sn1/disk2/ondb/data/rg2-rn1/env/00000000.jdb
 Binary file /tmp/sn1/disk2/ondb/data/rg2-rn1/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn2/disk2/ondb/data/rg2-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk2/ondb/data/rg2-rn2/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb matches

In the example above, the key/value pair that was written to the store was stored by each RN
belonging to the second shard; that is, each RN is a member of the replication group with id
equal to 2 (rg2-rn1, rg2-rn2, and rg2-rn3).

Note:

With which shard a particular key is associated depends on the key's value
(specifically, the hash of the key's value) as well as the number of shards maintained
by the store. It is also worth noting that although this example shows log files with the
name 00000000.jdb, those files are only the first of possibly many such log files
containing data written by the corresponding RN service.

As the current log file reaches its maximum capacity, a new file is created to receive all new
data written. That new file's name is derived from the previous file by incrementing the prefix of
the previous file. For example, you might see files with names such as, "..., 00000997.jdb,
00000998.jdb, 00000999.jdb, 00001000.jdb,00001001.jdb, ...".

After the data has been written to the store, a failed disk can be simulated, and the disk
replacement process can be performed. To simulate a failed disk, pick one of the storage
directories where the key/value pair was written and, from a command window, delete the
storage directory. For example:

> rm -rf /tmp/sn3/disk2

At this point, if the log file for SN3 is examined, you should see repeated exceptions being
logged. That is:

> tail /opt/ondb/var/kvroot/store-name/log/sn3_0.log

rg2-rn3: ProcessMonitor: java.lang.IllegalStateException: Error occurred
accessing statistic log file
 /tmp/sn3/disk2/ondb/data/rg2-rn3/env/je.stat.csv.
.......

Chapter 1
Hardware Monitoring

1-40

But if the client shell is used to retrieve the previously stored key/value pair, the store is still
operational, and the data that was written is still available. That is:

kvshell-> get -all
 /FIRST_KEY
 HELLO WORLD

The disk replacement process can now be performed. From the command window in which the
KVStore administrative CLI is running, execute the following (step 2 from above):

kv-> plan stop-service -service rg2-rn3
 Executed plan 9, waiting for completion...
 Plan 9 ended successfully

kv-> verify configuration

 Rep Node [rg2-rn3] Status: UNREACHABLE

If you attempt to restart the RN service that was just stopped, the attempt would not succeed.
This can be seen via the contents of SN3's log file/opt/ondb/var/kvroot/store-name/log/
sn3_0.log. The contents of that file indicate repeated attempts to restart the service, but due to
the missing directory – that is, because of the "failed" disk – each attempt to start the service
fails, until the process reaches an ERROR state; for example:

kv-> show plans
 1 Deploy Zone (1) SUCCEEDED

 9 Stop RepNodes (9) SUCCEEDED
 10 Start RepNodes (10) ERROR

Now, the disk should be "replaced". To simulate disk replacement, we must create the original
parent directory of rg2-rn3; which is intended to be analogous to installing and formatting the
replacement disk:

> mkdir -p /tmp/sn3/disk2/ondb/data

From the administrative CLI, attempt to restart the RN service should succeed since the disk
has been "replaced".

kv-> plan start-service -service rg2-rn3 -wait
 Executed plan 11, waiting for completion...
 Plan 11 ended successfully

kv-> verify configuration

 Rep Node [rg2-rn3] Status: RUNNING,REPLICA at sequence
 number 327 haPort:13254

To verify that the data has been recovered as expected, grep for "HELLO WORLD" again.

> grep "HELLO WORLD" /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk2/ondb/data/rg2-rn3/env/00000000.jdb matches

Chapter 1
Hardware Monitoring

1-41

To see why the disk replacement process outlined above might be more complicated for the
default – and by extension, the single disk – case than it is for the multi-disk case, try running
the example above using default storage directories; that is, remove the storagedir parameters
from the invocation of the makebootconfig command above. This will result in a directory
structure such as:

/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files
 /store-name /store-name /store-name
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /rg2-rn1 /rg2-rn2 /rg2-rn3

In a similar example, to simulate a failed disk in this case, you would delete the directory /opt/
ondb/var/kvroot/sn3; which is the parent of the /admin3 database, the /rg1-rn3 database,
and the /rg2-rn3 database.

It is important to note that the directory also contains the configuration for SN3. Since SN3's
configuration information is contained under the same parent – which is analogous to that
information stored on the same disk – as the replication node databases; when the "failed" disk
is "replaced" as it was in the previous example, the step where the RN service(s) are restarted
will fail because SN3's configuration is no longer available. While the replicated data can be
automatically recovered from the other nodes in the system when a disk is replaced, the SN's
configuration information cannot. That data must be manually restored from a previously
backed up copy. This extends to the non-default, single disk case in which different storagedir
parameters are used to separate the KVROOT location from the location of each RN database.
In that case, even though the replicated data is stored in separate locations, that data is still
stored on the same physical disk. Therefore, if that disk fails, the configuration information is
still not available on restart, unless it has been manually reinstalled on the replacement disk.

Servers
Although not as common as a failed disk, it is not unusual for an administrator to need to
replace one of the machines hosting services making up a given KVStore deployment (an SN).
There are two common scenarios where a whole machine replacement may occur. The first is
when one or more hardware components fail and it is more convenient or cost effective to
simply replace the whole machine than it is to replace the failed components. The second is
when a working, healthy machine is to be upgraded to a machine that is bigger and robust; for
example, a machine with larger disks and better performance characteristics. The procedures
presented in this section are intended to describe the steps for preparing a new machine to
replace an existing machine, and the steps for retiring the existing machine.

Detecting and Correlating Server Failures to NoSQL Log Events
In a distributed such as Oracle NoSQL Database, it is generally difficult to distinguish between
network outages and machine failure. The HA components of the NoSQL Database detects
when a replication node is unreachable and logs this as an event in the admin log - however
grepping for this log event produces false positives. Therefore it is recommended to utilize a
systems monitoring package like JMX to detect machine/server failure.

Chapter 1
Hardware Monitoring

1-42

Note:

If the log files are compressed, you can search the compressed log files using the
zgrep command.

Resolving Server Failures
Two replacement procedures are presented below. Both procedures essentially achieve the
same results, and both will result in one or more network restore processes being performed
(see below).

The first procedure presented replaces the old machine with a machine that – to all interested
parties – looks exactly like the original machine. That is, the new machine has the same
hostname, IP address, port, and SN id. Compare this with the second procedure; where the old
machine is removed from the store's topology and replaced with a machine that appears to be
a different machine - different hostname, IP address, SN id – but the behavior is identical to the
behavior of the replaced machine. That is, the new machine runs the same services, and
manages the exact same data, as the original machine; it just happens to have a different
network and SN identity. Thus, the first case can be viewed as a replacement of only the
hardware; that is, from the point of view of the store, the original SN was temporarily taken
down and then restarted. The new hardware is not reflected in the store's topology. In the other
case, the original SN is removed, and a different SN takes over the original's duties. Although
the store's content and behavior hasn't changed, the change in hardware is reflected in the
store's new topology.

When determining which procedure to use when replacing a Storage Node, the decision is left
to the discretion of the store administrator. Some administrators prefer to always use only one
of the procedures, never the other. And some administrators establish a policy that is based on
some preferred criteria. For example, you might imagine a policy where the first procedure is
employed whenever SN replacement must be performed because the hardware has failed;
whereas the second procedure is employed whenever healthy hardware is to be upgraded with
newer/better hardware. In the first case, the failed SN is down and unavailable during the
replacement process. In the second case, the machine to be replaced can remain up and
available while the new machine is being prepared for migration; after which the old machine
can be shut down and removed from the topology.

Terminology Review
It may be useful to review some of the terminology introduced in the Oracle NoSQL Database
Getting Started Guide as well as the Oracle NoSQL Database Administrator's Guide. Recall
from those documents that the physical machine on which the processes of the KVStore run is
referred to as a Storage Node, or SN; where a typical KVStore deployment generally consists
of a number of machines – that is, a number of SNs – that execute the processes and software
services provided by the Oracle NoSQL Database KVStore. Recall also that when the KVStore
software is initially started on a given SN machine, a process referred to as the "Storage Node
Agent" (or the SNA) is started. Then, once the SNA is started, the KVStore administrative CLI
is used to configure the store and deploy a "topology"; which results in the SNA executing and
managing the lifecycle of one or more "services" referred to as "replication nodes" (or RN
services). Finally, in addition to starting and managing RN services, the SNA also optionally
(depending on the configuration) starts and manages another service type referred to as the
"admin" service.

Because of the 1-to-1 correspondence between the machines making up a given KVStore
deployment and the SNA process initially started on each machine when installing and

Chapter 1
Hardware Monitoring

1-43

deploying a store, the terms "Storage Node", "SN", or "SNx" (where x is a positive integer) are
often used interchangeably in the Oracle NoSQL Database documents – including this note –
when referring to either the machine on which the SNA is running, or the SNA process itself.
Which concept is intended should be clear from the context in which the term is used in a given
discussion. For example, when the terms SN3 or sn3 are used below as part of a discussion
about hardware issues such as machine failure and recovery, that term refers to the physical
host machine running an SNA process that has been assigned the id value 3 and is identified
in the store's topology with the string "sn3". In other contexts, for example when the behavior of
the store's software is being discussed, the term SN3 and/or sn3 would refer to the actual SNA
process running on the associated machine.

Although not directly pertinent to the discussion below, the following terms are presented not
only for completeness, but also because it may be useful to understand their implications when
trying to determine which SN replacement procedure to employ.

First, recall from the Oracle NoSQL Database documents that the RN service(s) that are
started and managed by each SNA are represented in the store's topology by their service
identification number (a positive integer), in conjunction with the identification number of the
replication group – or "shard" – in which the service is a member. For example, a given store's
topology may reference a particular RN service with the string, "rg3-rn2"; which represents the
RN service having id equal to 2 that is a member of the replication group (that is, the shard)
with id 3. The capacity then, of a given SN machine that is operating as part of a given
KVStore cluster is the number of RN services that will be started and managed by the SNA
process deployed to that SN host. Thus, if the capacity of a given SN is 1, only a single RN
service will be started and managed by that SN. On the other hand, if the capacity is 3 (for
example), then 3 RN services will be started and managed by that SN, and each RN will
typically belong to a different replication group (share).

With respect to the SN host machines and resident SNA processes that are deployed to a
given KVStore, two concepts to understand are the concept of a "zone", and the concept of a
"pool" of Storage Nodes. Both concepts correspond to mechanisms that are used to organize
the SNs of the store into groups. As a result, the distinction between the two concepts is
presented below.

When configuring a KVStore for deployment, it is a requirement that at least one "zone" be
deployed to the store before deploying any Storage Nodes. Then, when deploying each SNA
process, in addition to specifying the desired host, one of the previously deployed zones must
also be specified; which, with respect to the store's topology, will "contain" that SNA, as well as
the services managed by that SNA. Thus, the KVStore deployment process produces a a store
consisting of one or more zones, where a distinct set of storage nodes belongs to (is a member
of) one – and only one – of those zones.

In contrast to a zone, rather than being "deployed" to the store, one or more Storage Node
"pools" can be (optionally) "created" within the store. Once such a "pool" is created, any
deployed Storage Node can then be configured to "join" that pool, as well as any other pool
that has been created. This means that, unlike zones, where the store consists of one or more
zones containing disjoint sets of the deployed SNs, the store can also consist of one or more
"pools", where there is no restriction on which, or how many, pools a given SN joins. Every
store is automatically configured with a default pool named, "AllStorageNodes"; which all
deployed Storage Nodes join. The creation of any additional pools is optional, and left to the
discretion of the deployer; as is the decision about which pools a given Storage Node joins.

Besides the differences described above, there are additional conceptual differences to
understand when using zones and pools to group sets of Storage Nodes. Although zones can
be used to represent logical groupings of a store's nodes, crossing physical boundaries,
deployers generally map them to real, physical locations. For example, although there is
nothing to prevent the deployment of multiple SNA processes to a single machine, where each
SNA is deployed to a different zone, more likely than not, a single SNA will be deployed to a

Chapter 1
Hardware Monitoring

1-44

single machine, and the store's zones along with the SN machines within each zone will
generally be defined to correspond to physical locations that provide some form of fault
isolation. For example, each zone may be defined to correspond to a separate floor of a
building; or to separate buildings, a few miles apart (or even across the country).

Compare how zones are used with how pools are generally used. A single pool may represent
all of the Storage Nodes across all zones; where the default pool is one such pool. On the
other hand, multiple pools may be specified; in some cases with no relation between the pools
and zones, and in other cases with each pool corresponding to a zone and containing only the
nodes belonging to that zone. Although there may be reasons to map a set of Storage Node
pools directly to the store's zones, this is not the primary intent of pools. Whereas the intent of
zones is to enable better fault isolation and geographic availability via physical location of the
storage nodes, the primary purpose of a pool is to provide a convenient mechanism for
referring to a group of storage nodes when applying a given administrative operation. That is,
the administrative store operations that take a pool argument can be called once to apply the
desired operation to all Storage Nodes belonging to the specified pool, avoiding the need to
execute the operation multiple times; once for each Storage Node.

Associated with zones, another term to understand is "replication factor" (or "rf"). Whenever a
zone is deployed to a KVStore, the "replication factor" of that zone must be specified; which
represents the number of copies (or "replicas") of each key/value pair to write and maintain on
the nodes of the associated zone. Note that whereas "capacity" is a per/SN concept that
specifies the number of RN services to manage on a given machine, the "replication factor" is
a concept whose scope is per/zone, and is used to determine the number of RN services that
belong to each shard (or "replication group") created and managed within the associated zone.

Finally, a "network restore" is a process whereby the store automatically recovers all data
previously written by a given RN service; retrieving replicas of the data from one or more RN
services running on different SNs and then transferring that data (across the network) to the
RN whose database is being restored. It is important to understand the implications this
process may have on system performance; as the process can be quite time consuming, and
can add significant network traffic and load while the data store of the restored RN is being
repopulated. Additionally, with respect to SN replacement, these implications can be magnified
when the capacity of the SN to be replaced is greater than 1; as this will result in multiple
network restorations being performed.

Assumptions
When presenting the two procedures below, for simplicity, assume that a KVStore is initially
deployed to 3 machines, resulting in a cluster of 3 Storage Nodes; sn1, sn2, sn3 on hosts with
names, host-sn1, host-sn2, and host-sn3 respectively. Assume that:

• Each machine has a disk named /opt and a disk named /disk1; where each SN will store
its configuration and admin database under /opt/ondb/var/kvroot, but will store the data
that is written on the other, separate disk under /disk1/ondb/data.

• The KVStore is installed on each machine under /opt/ondb/kv; that is,KVHOME=/opt/
ondb/kv.

• The KVStore is deployed with KVROOT=/opt/ondb/var/kvroot.

• The KVStore is named "example-store".

• One zone – named "Zone1" and configured with rf=3 – is deployed to the store.

• Each SN is configured with capacity=1.

• After deploying each SN to the zone named "Zone1", each SN joins the pool named
"snpool".

Chapter 1
Hardware Monitoring

1-45

• In addition to the SNA and RN services, an admin service is also deployed to each
machine; that is, admin1 is deployed to host-sn1 , admin2 is deployed to host-sn2, and
admin3 is deployed to host-sn3, each listening on port 13230.

Using specific values such as those reflected in the Assumptions described above enables to
follow the steps of each procedure. Using this administrators can generalize and extend those
steps to their own particular deployment scenario, substituting the values specific to the given
environment where necessary.

Replacement Procedure 1: Replace SN with Identical SN
The procedure presented in this section describes how to replace the desired SN with a
machine having an identical network and SN identity. A number of requirements must be
satisfied before executing this procedure; which are:

• An admin service must be running and accessible somewhere in the system.

• The id of the SN to be replaced must be known.

• The SN to be replaced must be taken down – either administratively or via failure – before
starting the new SN.

An admin service is necessary so that the current configuration of the SN to be replaced can
be retrieved from the admin service's database and packaged for installation on the new SN.
Thus, before proceeding, the administrator must know the location (hostname or IP address) of
the admin service, along with the port on which that service is listening for requests.
Additionally, since this process requires the id of the SN to be replaced, the administrator must
also know that value before initiating the procedure below; for example, something like, sn1,
sn2, sn3, etc.

Finally, if the SN to be replaced has failed, and is down, the last requirement above is
automatically satisfied. On the other hand, if the SN to be replaced is up, then at some point
before starting the new SN, the old SN must be down so that that SN and the replacement SN
do not conflict.

With respect to the requirement related to the admin service, if the system is running multiple
instances of the admin, it is not important which instance is used in the steps below; just that
the admin is currently running and accessible. This means that if the SN to be replaced is not
only up but is also running an admin service, then that admin service can be used to retrieve
and package that SN's current configuration. But if that SN has failed or is down or
inaccessible for some reason, then any admin service on that SN is also down and/or
inaccessible - which means an admin service running on one of the other SNs in the system
must be used in the procedure below. This is why the Oracle NoSQL Database documents
strongly encourage administrators to deploy multiple admin services; where the number
deployed should make quorum loss less likely.

For example, it is obvious that if only 1 admin service was specified when deploying the store,
and that service was deployed to the SN to be replaced, and that SN has failed or is otherwise
inaccessible, then the loss of that single admin service makes it very difficult to replace the
failed SN using the procedure presented here. Even if multiple admins are deployed – for
example, 2 admins – and the failure of the SN causes just one of those admins to also fail and
thus lose quorum, even though a working admin remains, it will still require additional work to
recover quorum so that the admin service can perform the necessary duties to replace the
failed SN.

Suppose a KVStore has been deployed as described in the section Assumptions. Also,
suppose that the sn2 machine (whose hostname is, "host-sn2") has failed in some way and
needs to be replaced. If the administrator wishes to replace the failed SN with an identical but
healthy machine, then the administrator would do the following:

Chapter 1
Hardware Monitoring

1-46

1. If, for some reason, host-sn2 is running, shut it down.

2. Log into host-sn1 (or host-sn3).

3. From the command line, execute the generateconfig utility to produce a ZIP file named
"sn2-config.zip" that contains the current configuration of the failed SN (sn2):

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar generateconfig \
 -host host-sn1 -port 13230 \
 -sn sn2 -target /tmp/sn2-config

which creates and populates the file, /tmp/sn2-config.zip.

4. Install and provision a new machine with the same network configuration as the machine to
be replaced; specifically, the same hostname and IP address.

5. Install the KVStore software on the new machine under KVHOME=/opt/ondb/kv.

6. If the directory KVROOT=/opt/ondb/var/kvroot exists, then make sure it's empty;
otherwise, create it:

> rm -rf /opt/ondb/var/kvroot
> mkdir -p /opt/ondb/var/kvroot

7. Copy the ZIP file from host-sn1 to the new host-sn.

> scp /tmp/sn2-config.zip host-sn2:/tmp

8. On the new host-sn2, install the contents of the ZIP file just copied.

> unzip /tmp/sn2-config.zip -d /opt/ondb/var/kvroot

9. Restart the sn2 Storage Node on the new host-sn2 machine, using the old sn2
configuration that was just installed:

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to
the specified heap size.

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config.xml&

which, after starting the SNA, RN, and admin services, will initiate a (possibly time-
consuming) network restore, to repopulate the data stores managed by this new sn2.

Chapter 1
Hardware Monitoring

1-47

Replacement Procedure 2: New SN Takes Over Duties of Removed SN
The procedure presented in this section describes how to deploy a new SN, having a network
and SN identity different than all current SNs in the store, that will effectively replace one of the
current SNs by taking over that SN's duties and data. Unlike the previous procedure, the only
prerequisite that must be satisfied when executing this second procedure is the existence of a
working quorum of admin service(s). Also, whereas in the previous procedure the SN to be
replaced must be down prior to powering up the replacement SN (because the two SNs share
an identity), in this case, the SN to be replaced can remain up and running until the migration
step of the process; where the replacement SN finally takes over the duties of the SN being
replaced. Thus, although the SN to be replaced can be down throughout the whole procedure
if desired, that SN can also be left up so that it can continue to service requests while the
replacement SN is being prepared.

Suppose a KVStore has been deployed as described in the section Assumptions. Also,
suppose that the sn2 machine is currently up, but needs to be upgraded to a new machine with
more memory, larger disks, and better overall performance characteristics. The administrator
would then do the following:

1. From a machine with the Oracle NoSQL Database software installed that has network
access to one of the machines running an admin service for the deployed KVStore, start
the administrative CLI; connecting it to that admin service. The machine on which the CLI
is run can be any of the machines making up the store – even the machine to be replaced
– or a separate client machine. For example, if the administrative CLI is started on the sn1
Storage Node, and one wishes to connect that CLI to the admin service running on that
same sn1 host, the following would be typed from a command prompt on the host named,
host-sn1:

> java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host host-sn1 -port 13230

2. From the administrative CLI just started, execute the show pools command to determine
the Storage Node pool the new Storage Node will need to join after deployment; for
example,

kv-> show pools

which, given the initial assumptions, should produce output that looks like the following:

AllStorageNodes: sn1 sn2 sn3
snpool: sn1 sn2 sn3

where, from this output, one should note that the name of the pool the new Storage Node
should join below is "snpool"; and the pool named "AllStorageNodes" is the pool that all
Storage Nodes join by default when deployed.

3. From the administrative CLI just started, execute the show topology command to
determine the zone to use when deploying the new Storage Node; for example,

kv-> show topology

Chapter 1
Hardware Monitoring

1-48

which, should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 RUNNING
 [rg1-rn2] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

where, from this output, one should then note that the id of the zone to use when deploying
the new Storage Node is "1".

4. Install and provision a new machine with a network configuration that is different than each
of the machines currently known to the deployed KVStore. For example, provision the new
machine with a hostname such as, host-sn4, and an IP address unique to the store's
members.

5. Install the KVStore software on the new machine under KVHOME=/opt/ondb/kv.

6. Create the new Storage Node's KVROOT directory; for example:

> mkdir -p /opt/ondb/var/kvroot

7. Create the new Storage Node's data directory on a separate disk than KVROOT; for
example:

> mkdir -p /disk1/ondb/data

Note:

The path used for the data directory of the replacement SN must be identical to
the path used by the SN to be replaced.

8. From the command prompt of the new host-sn4 machine, use the makebootconfig utility
(described in Chapter 2 of the Oracle NoSQL Database Administrator's Guide, section,
"Installation Configuration") to create an initial configuration for the new Storage Node that
is consistent with the Assumptions specified above; for example:

> java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -port 13230 \
 -host host-sn4
 -harange 13232,13235 \
 -num_cpus 0 \
 -memory_mb 0 \
 -capacity 1 \
 -admindir /opt/ondb/var/admin \

Chapter 1
Hardware Monitoring

1-49

 -admindirsize 3_gb \
 -storagedir /disk1/ondb/data \
 -rnlogdir /disk1/ondb/rnlog

which produces the file named config.xml, under KVROOT=/opt/ondb/var/kvroot.

9. Using the configuration just created, start the KVStore software (the SNA and its managed
services) on the new host-sn4 machine; for example,

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to
the specified heap size.

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config.xml &

10. Using the information associated with the sn2 Storage Node (the SN to replace) that was
gathered from the show topology and show pools commands above, use the
administrative CLI to deploy the new Storage Node and join the desired pool; that is,

kv-> plan deploy-sn -znname Zone1 -host host-sn4 -port 13230 -wait
kv-> pool join -name snpool -sn sn4

For an SN to join a pool, the SN must have been successfully deployed and the id of the
deployed SN must be specified in the pool join command; for example, "sn4" above. But
upon examination of the plan deploy-sn, command you can see that the id to assign to
the SN being deployed is not specified. This is because it is the KVStore itself – not the
administrator – that determines the id to assign to a newly deployed SN. Thus, given that it
was assumed that only 3 Storage Nodes were initially deployed in the example used to
demonstrate this procedure, when deploying the next Storage Node, the system will
increment by 1 the integer component of the id assigned to the most recently deployed SN
– "sn3" or 3 in this case – and use the result to construct the id to assign to the next SN
that is deployed. Hence, "sn4" was assumed to be the id to specify to the pool join
command above. But if you want to ascertain the assigned id, then before joining the pool,
execute the show topology command which will display the id that was constructed and
assigned to the newly deployed SN.

11. Since the old SN must not be running when the migrate operation is performed (see the
next step), if the SN to be replaced is still running at this point, programmatically shut it
down, and then power off and disconnect the associated machine. This step can be
performed at any point prior to performing the next step. Thus, to shut down the SN to be
replaced, type the following from the command prompt of the machine hosting that SN:

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar stop \
 -root /opt/ondb/var/kvroot

Chapter 1
Hardware Monitoring

1-50

On completion, the associated machine can then be powered down and disconnected if
desired.

12. After the new Storage Node has been deployed, joined the desired pool, and the SN to be
replaced is no longer running, use the administrative CLI to migrate that old SN to the new
SN. This means, in this case, that the SNA, and RN associated with sn4 will take over the
duties previously performed in the store by the corresponding services associated with
sn2; and the data previously stored by sn2 will be moved – via the network – to the storage
directory for sn4. To perform this step then, execute the following command from the CLI:

kv-> plan migrate-sn -from sn2 -to sn4 [-wait]

The -wait argument is optional in the command above. If -wait is used, then the
command will not return until the full migration has completed; which, depending on the
amount of data being migrated, can take a long time. If -wait is not specified, then the
show plan -id <migration-plan-id> command is used to track the progress of the
migration; allowing other administrative tasks to be performed during the migration.

13. After the migration process completes, remove the old SN from the store's topology. You
can do this by executing the plan remove-sn command from the administrative CLI. For
example,

kv-> plan remove-sn -sn sn2 -wait

At this point, the store should have a structure similar to its original structure; except that
the data that was originally stored by sn2 on the host named host-sn2 via that node's rg1-
rn2 service, is now stored on host-sn4 by the sn4 Storage Node (via the migrated service
named rg1-rn2 that sn4 now manages).

Examples
In this section, two examples are presented that should allow you to gain some practical
experience with the SN replacement procedures presented above. Each example uses the
same initial configuration, and is intended to simulate a 3-node KVStore cluster using a single
machine with a single disk. Although no machines will actually fail or be physically replaced,
you should still get a feel for how the cluster and the data stored by a given SN is automatically
recovered when that Storage Node is replaced using one of the procedures described above.

Assume that a KVStore is deployed in a manner similar to the section Assumptions
Specifically, assume that a KVStore is initially deployed using 3 Storage Nodes - named sn1,
sn2, and sn3 – on a single host with IP address represented by the string, <host-ip> where the
host's actual IP address (or hostname) is substituted for <host-ip> when running either
example. Additionally, since your development system will typically not contain a disk named /
disk1 (as specified in the Assumptions section), rather than provisioning such a disk, assume
instead that the data written to the store will be stored under /tmp/sn1/disk1, /tmp/sn2/
disk1, and /tmp/sn3/disk1 respectively. Finally, since each Storage Node runs on the same
host, assume each Storage Node is configured with different ports for the services and admins
run by those nodes; otherwise, all other assumptions are as stated above in the Assumptions
section.

Chapter 1
Hardware Monitoring

1-51

Setup
As indicated above, the initial configuration and setup is the same for each example presented
below. Thus, if not done so already, first create the KVROOT directory; that is,

> mkdir -p /opt/ondb/var/kvroot

Then, to simulate the data disk, create the following directories:

> mkdir -p /tmp/sn1/disk1/ondb/data
> mkdir -p /tmp/sn2/disk1/ondb/data
> mkdir -p /tmp/sn3/disk1/ondb/data

Next, open 3 windows; Win_A, Win_B, and Win_C, which will represent the 3 machines
running each Storage Node. In each window, execute the makebootconfig command
(remembering to substitute the actual IP address or hostname for the string <host-ip>) to
create a different, but similar, boot config for each SN that will be configured.

On Win_A

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config1.xml \
 -port 13230 \
 -harange 13232,13235 \
 -memory_mb 100 \
 -capacity 1 \
 -admindir /opt/ondb/var/admin \
 -admindirsize 2000-Mb \
 -storagedir /tmp/sn1/disk1/ondb/data \
 -rnlogdir /tmp/sn1/disk1/ondb/rnlog

On Win_B

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config2.xml \
 -port 13240 \
 -harange 13242,13245 \
 -memory_mb 100 \
 -capacity 1 \
 -admindir /opt/ondb/var/admin \
 -admindirsize 2000-Mb \
 -storagedir /tmp/sn1/disk2/ondb/data \
 -rnlogdir /tmp/sn1/disk2/ondb/rnlog

Chapter 1
Hardware Monitoring

1-52

On Win_C

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config3.xml \
 -port 13250 \
 -harange 13252,13255 \
 -memory_mb 100 \
 -capacity 1 \
 -admindir /opt/ondb/var/admin \
 -admindirsize 2000-Mb \
 -storagedir /tmp/sn1/disk3/ondb/data \
 -rnlogdir /tmp/sn1/disk3/ondb/rnlog

This will produce 3 configuration files:

/opt/ondb/var/kvroot
 /config1.xml
 /config2.xml
 /config3.xml

Next, using the different configurations just generated, from each window, start a
corresponding instance of the KVStore Storage Node agent (SNA); which, based on the
specific configurations generated, will start and manage an admin service and an RN service.

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1. Setting
MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the specified
heap size.

Win_A

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config1.xml &

Win_B

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config2.xml &

Chapter 1
Hardware Monitoring

1-53

Win_C

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config3.xml &

Finally, from any window (Win_A, Win_B, Win_C, or a new window), start the KVStore
administrative CLI and use it to configure and deploy the store. For example, to start an
administrative CLI connected to the admin service that was started above using the
configuration employed in Win_A, you would execute the following command:

> java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host <host-ip> -port 13230

To configure and deploy the store, type the following commands from the administrative CLI
prompt (remembering to substitute the actual IP address or hostname for the string <host-ip>):

configure -name example-store
plan deploy-zone -name Zone1 -rf 3 -wait
plan deploy-sn -znname Zone1 -host <host-ip> -port 13230 -wait
plan deploy-admin -sn 1 -port 13231 -wait
pool create -name snpool
pool join -name snpool -sn sn1
plan deploy-sn -znname Zone1 -host <host-ip> -port 13240 -wait
plan deploy-admin -sn 2 -port 13241 -wait
pool join -name snpool -sn sn2
plan deploy-sn -znname Zone1 -host <host-ip> -port 13250 -wait
plan deploy-admin -sn 3 -port 13251 -wait
pool join -name snpool -sn sn3
change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"
change-policy -params cacheSize=10000000
topology create -name store-layout -pool snpool -partitions 300
plan deploy-topology -name store-layout -plan-name RepNode-Deploy -wait

Note:

The CLI command prompt (kv->) was excluded from the list of commands above to
facilitate cutting and pasting the commands into a CLI load script.

When the commands above complete (use show plans to verify each plan's completion), the
store is up and running and ready for data to be written to it. Before proceeding though, verify
that directories like those shown below have been created and populated:

 - Win_A - - Win_B - - Win_C -

 /opt/ondb/var/ /opt/ondb/var/ /opt/ondb/var/
 admin admin admin
/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 log files log files log files

Chapter 1
Hardware Monitoring

1-54

 /example-store /example-store /example-store
 /log /log /log
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml
 /admin1 /admin2 /admin3
 /env /env /env

/tmp/sn1/disk1/ondb/data /tmp/sn2/disk1/ondb/data /tmp/sn3/disk1/ondb/data
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env
 00000000.jdb 00000000.jdb 00000000.jdb

Because rf=3 for the deployed store, and capacity=1 for each SN in that store, when a key/
value pair is initially written to the store, the pair is stored by each of the replication nodes –
rn1, rn2, and rn3 – in their corresponding data file named "00000000.jdb"; where each
replication node is a member of the replication group – or shard – named rg1; that is, the key/
value pair is stored in:

/tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
/tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
/tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb

At this point in the setup, each file should contain no key/value pairs. Data can be written to the
store in a way most convenient. But a utility that is quite handy for doing this is the KVStore
client shell utility; which is a process that connects to the desired store and then presents a
command line interface that takes interactive commands for putting and getting key/value
pairs. To start the KVStore client shell, type the following from a command window
(remembering to substitute the actual IP address or hostname for the string <host-ip>):

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar runadmin\
 -host <host-ip> -port 13230 -store example-store

kv-> get -all
 0 Record returned.

kv-> put -key /FIRST_KEY -value "HELLO WORLD"
 Put OK, inserted.

kv-> get -all
 /FIRST_KEY
 HELLO WORLD

Although simplistic and not very programmatic, a quick way to verify that the key/value pair
was stored by each RN service is to simply grep for the string "HELLO WORLD" in each of the
data files; which should work with binary files on most linux systems. Using the "grep"
command in this way is practical for examples that consist of only a small amount of data.

> grep "HELLO WORLD" /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb
 Binary file /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches
> grep "HELLO WORLD" /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb matches

Chapter 1
Hardware Monitoring

1-55

Based on the output above, the key/value pair that was written to the store was stored by each
RN service belonging to the shard rg1; that is, each RN service that is a member of the
replication group with id equal to 1 (rg1-rn1, rg1-rn2, and rg1-rn3). With which shard a
particular key is associated depends on the key's value (specifically, the hash of the key's
value) as well as the number of shards maintained by the store (1 in this case). It is also worth
noting that although this example shows log files with the name 00000000.jdb, those files are
only the first of possibly many such log files containing data written by the corresponding RN
service. Over time, as the current log file reaches its maximum capacity, a new file will be
created to receive all new data being written. That new file has a name derived from the
previous file by incrementing the prefix of the previous file. For example, you might see files
with names such as, "..., 00000997.jdb, 00000998.jdb, 00000999.jdb, 00001000.jdb,
00001001.jdb, ...".

Now that data has been written to the store, a failed storage node can be simulated, and an
example of the first SN replacement procedure can be performed.

Example 1: Replace a Failed SN with an Identical SN
To simulate a failed Storage Node, pick one of the Storage Nodes started above,
programmatically stop it's associated processes, and delete all files and directories associated
with that process. For example, suppose sn2 is the "failed" Storage Node. But before stopping
the sn2 Storage Node, you might first (optionally) identify the processes that are running as
part of the deployed store; that is:

> jps -m
408 kvstore.jar start -root /opt/ondb/var/kvroot -config config1.xml
833 ManagedService -root /opt/ondb/var/kvroot -class Admin -service
BootstrapAdmin.13230 -config config1.xml
1300 ManagedService -root /opt/ondb/var/kvroot/example-store/sn1 -store
example-store -class RepNode -service rg1-rn1
....
563 kvstore.jar start -root /opt/ondb/var/kvroot -config config2.xml
1121 ManagedService -root /opt/ondb/var/kvroot/example-store/sn2
-store example-store -class Admin -service admin2
1362 ManagedService -root /opt/ondb/var/kvroot/example-store/sn2
-store example-store -class RepNode -service rg1-rn2
....
718 kvstore.jar start -root /opt/ondb/var/kvroot -config config3.xml
1232 ManagedService -root /opt/ondb/var/kvroot/example-store/sn3 -store
example-store -class Admin -service admin3
1431 ManagedService -root /opt/ondb/var/kvroot/example-store/sn3 -store
example-store -class RepNode -service rg1-rn3
....

The output above was manually re-ordered for readability. In reality, each process listed may
appear in a random order. But it should be noted that each SN from the example deployment
corresponds to 3 processes:

• The SNA process, which is characterized by the string "kvstore.jar start", and identified by
the corresponding configuration file; for example, config1.xml for sn1, config2.xml for
sn2, and config3.xml for sn3.

• An admin service is characterized by the string -class Admin , and either a string of the
form -service BootstrapAdmin.<port> or a string of the form -service admin<id> (see
the explanation below).

Chapter 1
Hardware Monitoring

1-56

• An RN service characterized by the string -class RepNode along with a string of the form
-service rg1-rn<id>; where "<id>" is 1, 2, etc. and maps to the SN hosting the given RN
service, and where for a given SN, if the capacity of that SN is N>1, then for that SN,
there will be N processes listed that reference a different RepNode service.

Note:

With respect to the line in the process list above that references the string -service
BootstrapAdmin.<port>, some explanation may be useful. When an SNA starts up
and the -admin argument is specified in the configuration, the SNA will initially start
what is referred to as a bootstrap admin. Because this example specified the -admin
argument in the configuration of all 3 Storage Nodes, each SNA in the example starts
a corresponding bootstrap admin. The fact that the process list above contains only
one entry referencing a BootstrapAdmin is explained below.

Recall that Oracle NoSQL Database requires the deployment of at least 1 admin service. If
more than 1 such admin is deployed, the admin that is deployed first takes on a special role
within the KVStore. In this example, any of the 3 bootstrap admins that were started by the
corresponding Storage Node Agent can be that first deployed admin service. After configuring
the store and deploying the zone, the deployer must choose one of the Storage Nodes that
was started and use the plan deploy-sn command to deploy that Storage Node to the desired
zone within the store. After deploying that first Storage Node, the admin service corresponding
to that Storage Node must then be deployed, using the plan deploy-admin command.

Until that first admin service is deployed, no other storage nodes or admins can be deployed.
When that first admin service is deployed to the machine running the first SN (sn1 in this case),
the bootstrap admin running on that machine continues running, and takes on the role of the
very first admin service in the store. This is why the BootstrapAdmin.<port> process
continues to appear in the process list; whereas, as explained below, the processes associated
with the other Storage Nodes are identified by admin2 and admin3 rather than
BootstrapAdmin.<port>. It is only after this first admin is deployed that the other Storage
Nodes (and admins) can be deployed.

Upon deployment of any of the other Storage Nodes, the BootstrapAdmin process associated
with each such Storage Node is shut down and removed from the RMI registry. This is because
there is no longer a need for the bootstrap admin on these additional Storage Nodes. The
existence of a bootstrap admin is an indication that the associated Storage Node Agent can
host the first admin if desired. But once the first Storage Node is deployed and its
corresponding bootstrap admin takes on the role of the first admin, the other Storage Nodes
can no longer host that first admin; and so, upon deployment of each additional Storage Node,
the corresponding BootstrapAdmin process is stopped. Additionally, if that first process
referencing the BootstrapAdmin is stopped and restarted at some point after the store has
been deployed, then the new process will be identified in the process list with the string -class
Admin, just like the other admin processes.

Finally, recall that although a store can be deployed with only 1 admin service, it is strongly
recommended that multiple admin services be run for greater availability; where the number of
admins deployed should be large enough that quorum loss is unlikely in the event of failure of
an SN. Thus, as this example demonstrates, after each additional Storage Node is deployed
(and the corresponding bootstrap admin is stopped), a new admin service should then be
deployed that will coordinate with the first admin service to replicate the administrative
information that is persisted. Hence, the admin service associated with sn1 in the process list

Chapter 1
Hardware Monitoring

1-57

above is identified as a BootstrapAdmin (the first admin service), and the other admin services
are identified as simply admin2 and admin3.

Thus, to simulate a "failed" Storage Node, sn2 should be stopped; which is accomplished by
typing the following at the command prompt:

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar stop \
 -root /opt/ondb/var/kvroot \
 -config config2.xml

Optionally, use the jps command to examine the processes that remain; that is,

> jps -m

408 kvstore.jar start -root /opt/ondb/var/kvroot
-config config1.xml
833 ManagedService -root /opt/ondb/var/kvroot
-class Admin -service BootstrapAdmin.13230 -config config1.xml
1300 ManagedService -root /opt/ondb/var/kvroot/
example-store/sn1 -store example-store -class RepNode -service rg1-rn1
....
718 kvstore.jar start -root /opt/ondb/var/
kvroot -config config3.xml
1232 ManagedService -root /opt/ondb/var/kvroot/example-store/
sn3 -store example-store -class Admin -service admin3
1431 ManagedService -root /opt/ondb/var/kvroot/example-store/
sn3 -store example-store -class RepNode -service rg1-rn3
....

where the processes previously associated with sn2 are no longer running. Next, since the sn2
processes have stopped, the associated files can be deleted as follows:

> rm -rf /tmp/sn2/disk1/ondb/data/rg1-rn2
> rm -rf /opt/ondb/var/kvroot/example-store/sn2

> rm -f /opt/ondb/var/kvroot/config2.xml
> rm -f /opt/ondb/var/kvroot/config2.xml.log
> rm -f /opt/ondb/var/kvroot/snaboot_0.log.1*

> rm -r /opt/ondb/var/kvroot/example-store/log/admin2*
> rm -r /opt/ondb/var/kvroot/example-store/log/rg1-rn2*
> rm -r /opt/ondb/var/kvroot/example-store/log/sn2*
> rm -r /opt/ondb/var/kvroot/example-store/log/config.rg1-rn2
> rm -r /opt/ondb/var/kvroot/example-store/log/example-store_0.*.1*

where the files above that contain a suffix component of "1" (for example, snaboot_0.log.1 and
example-store_0.log.1, example-store_0.perf.1,example-store_0.stat.1, etc.) are associated
with the sn2 Storage Node.

Executing the above commands should then simulate a catastrophic failure of the "machine" to
which sn2 was deployed; where the configuration and data associated with sn2 is now
completely unavailable, and is only recoverable via the deployment of a "new" – and in this

Chapter 1
Hardware Monitoring

1-58

example, identical – sn2 Storage Node. To verify this, execute the show topology command
from the administrative CLI previously started; that is,

kv-> show topology

which should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] <host-ip> capacity=1 UNREACHABLE
 [rg1-rn2] UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn3] RUNNING

where the actual IP address or hostname appears instead of the string <host-ip>, and observe
that sn2 is now UNREACHABLE.

At this point, the first 2 steps of the SN replacement procedure have been executed. That is,
because the sn2 processes have been stopped and their associated files deleted, from the
point of view of the store's other nodes, the corresponding "machine" is inaccessible and so
has been effectively "shut down" (step 1). Additionally, because a single machine is being used
in this simulation, we are already logged in to the sn1 (and sn3) host (step 2). Thus, step 3 of
the procedure can now be performed. That is, to retrieve the sn2 configuration from one of the
store's remaining healthy nodes, execute the following command using the port for one of
those remaining nodes (and remembering to substitute the actual IP address or hostname for
the string <host-ip>):

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar generateconfig \
 -host <host-ip> -port 13230 \
 -sn sn2 -target /tmp/sn2-config

Verify that the command above produced the expected zip file:

> ls -al /tmp/sn2-config.zip
-rw-rw-r-- 1 <group> <owner> 2651 2024-04-05 12:53 /tmp/sn2-config.zip

where the contents of /tmp/sn2-config.zip should look something like:

> unzip -t /tmp/sn2-config.zip

Archive: /tmp/sn2-config.zip
testing: kvroot/config.xml OK
testing: kvroot/example-store/sn2/config.xml OK
testing: kvroot/example-store/security.policy OK
testing: kvroot/security.policy OK
No errors detected in compressed data of /tmp/sn2-config.zip

Chapter 1
Hardware Monitoring

1-59

Next, because this example is being run on a single machine, steps 4, 5, 6, and 7 of the SN
replacement procedure have already been performed. Thus, the next step to perform is to
install the contents of the ZIP file just generated; that is,

> unzip /tmp/sn2-config.zip -d /opt/ondb/var

which will overwrite kvroot/security.policy and kvroot/example-store/security.policy
with identical versions of that file.

When the store was originally deployed, the names of the top-level configuration files were not
identical; that is, config1.xml for sn1, config2.xml for the originally deployed sn2, and
config3.xml for sn3. This was necessary because, for convenience, all three SNs were
deployed using the same KVROOT; which would have resulted in conflict among sn1, sn2, and
sn3, had identical names been used for those files. With this in mind, it should then be
observed that the generateconfig command executed above produces a top-level
configuration file for the new sn2 that has the default name (config.xml), rather than
config2.xml. Because both names – config2.xml and config.xml – are unique relative to the
names of the configuration files for the store's other nodes, either name can be used in the
next step of the procedure (see below). But to be consistent with the way sn2 was originally
deployed, the original file name will also be used when deploying the replacement. Thus,
before proceeding with the next step of the procedure, the name of the kvroot/config.xml file
is changed to kvroot/config2.xml; that is,

> mv /opt/ondb/var/kvroot/config.xml /opt/ondb/var/kvroot/config2.xml

Finally, the last step of the first SN replacement procedure can be performed. That is, a "new"
but identical sn2 is started using the old sn2 configuration:

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1. Setting
MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the specified
heap size.

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config2.xml &

Verification
To verify that sn2 has been successfully replaced, first execute the show topology command
from the administrative CLI; that is,

kv-> show topology

which should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

Chapter 1
Hardware Monitoring

1-60

 sn=[sn1] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn2] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn3] RUNNING

where the actual IP address or hostname appears instead of the string <host-ip>, and observe
that sn2 is again RUNNING.

In addition to executing the show topology command, you can also verify that the previously
removed sn2 directory structure has been recreated and repopulated; that is, directories and
files like the following should again exist:

/opt/ondb/var/kvroot

 config2.xml*

 /example-store
 /log

 admin2*
 rg1-rn2*
 sn2*
 config.rg1-rn2

 /sn2
 config.xml
 /admin2
 /env

/tmp/sn2/disk1/ondb/data
 /rg1-rn2
 /env
 00000000.jdb

And finally, verify that the data stored previously by the original sn2 has been recovered; that
is,

> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches

Example 2: New SN Takes Over Duties of Existing SN
In this example, the second replacement procedure described above will be employed to
replace/upgrade an existing, healthy storage node (sn2 in this case) with a new Storage Node
that will take over the duties of the old Storage Node. As indicated previously, the assumptions
and setup for this example are identical to the first example's assumptions and setup. Thus,
after setting up this example as previously specified, start an administrative CLI connected to

Chapter 1
Hardware Monitoring

1-61

the admin service associated with the sn1 Storage Node; that is, substituting the actual IP
address or hostname for the string <host-ip>, execute the following command:

> java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar runadmin \
 -host <host-ip> -port 13230

Then, from the administrative CLI just started, execute the show pools and show topology
commands; that is,

kv-> show pools
kv-> show topology

which should, respectively, produce output that looks something like:

AllStorageNodes: sn1 sn2 sn3
snpool: sn1 sn2 sn3

and

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn: [id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 RUNNING
 [rg1-rn2] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

Note:

At this point, the pool to join is named "snpool", and the id of the zone to deploy to is
"1".

Next, recall that in a production environment, where the old and new SNs run on separate
physical machines, the old SN would typically remain up – servicing requests – until the last
step of the procedure. In this example though, the old and new SNs run on a single machine,
where the appearance of separate machines and file systems is simulated. Because of this,
the next step to perform in this example is to programmatically shut down the sn2 Storage
Node by executing the following command:

> java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar stop \
 -root /opt/ondb/var/kvroot \
 -config config2.xml

Chapter 1
Hardware Monitoring

1-62

After stopping the sn2 Storage Node, you might (optionally) execute the show topology
command and observe that the sn2 Storage Node is no longer RUNNING; rather, it is
UNREACHABLE, but will continue to be referenced in the topology until the node is explicitly
removed from the topology (see below). For example, from the administrative CLI, execute the
following command:

kv-> show topology

which should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 UNREACHABLE
 [rg1-rn2] UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

At this point, preparation of the new, replacement sn4 storage node can begin; where steps 4,
5, and 6 of the procedure have already been completed, since a single machine hosts both the
old and new SN in this example.

With respect to the next step (7), recall that when employing this procedure, step 7 requires
that the path of the replacement SN's data directory must be identical to the path used by the
SN to be replaced. But in this example, the same disk and file system is used for the location
of the data stored by each SN. Therefore, the storage directory that would be created for the
new sn4 Storage Node in step 7 already exists and has been populated by the old sn2 Storage
Node. Thus, to perform step 7 in this example's simulated environment, as well as to support
verification (see below), after shutting down sn2 above, the storage directory used by that node
should be renamed; which makes room for the storage directory that needs to be provisioned
in step 7 for sn4. That is, type the following at the command line:

> mv /tmp/sn2 /tmp/sn2_old

Note:

The renaming step above is performed only for this example, and would never be
performed in a production environment.

Next, provision the storage directory that sn4 will use; where the path specified must be
identical to the original path of the storage directory used by sn2. That is,

> mkdir -p /tmp/sn2/disk1/ondb/data

Chapter 1
Hardware Monitoring

1-63

The next step to perform when preparing the replacement SN is to generate a boot
configuration for the new Storage Node by executing the makebootconfig command
(remember to substitute the actual IP address or hostname for the string <host-ip>):

java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -host <host-ip> \
 -config config4.xml \
 -port 13260 \
 -harange 13262,13265 \
 -memory_mb 100 \
 -capacity 1 \
 -admindir /opt/ondb/var/admin \
 -admindirsize 2000 MB \
 -storagedir /tmp/sn2/disk1/ondb/data \
 -rnlogdir /tmp/sn2/disk1/ondb/rnlog

which will produce a configuration file for the new Storage Node; /opt/ondb/var/kvroot/
config4.xml.

After creating the configuration above, use that new configuration to start a new instance of the
KVStore Storage Node Agent (SNA), along with its managed services; that is,

Note:

Before starting the SNA, set the environment variable MALLOC_ARENA_MAX to 1. Setting
MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the specified
heap size.

> nohup java -Xmx64m -Xms64m \
 -jar /opt/ondb/kv/lib/kvstore.jar start \
 -root /opt/ondb/var/kvroot \
 -config config4.xml &

After executing the command above, use the administrative CLI to deploy a new Storage Node
by executing the following command (with the actual IP address or hostname substituted for
the string <host-ip>):

kv-> plan deploy-sn -znname Zone1 -host <host-ip> -port 13260 -wait

As explained previously, because "sn3" was the id assigned (by the store) to the most recently
deployed storage node, the next Storage Node that is deployed – that is, the storage node
deployed by the command above – will be given "sn4" as its assigned id. After deploying the
sn4 Storage Node above, you might then (optionally) execute the show pools command from
the administrative CLI and observe that the new Storage Node has joined the default pool
named "AllStorageNodes"; for example:

kv-> show pools

Chapter 1
Hardware Monitoring

1-64

which should produce output that looks like the following:

AllStorageNodes: sn1 sn2 sn3 sn4
snpool: sn1 sn2 sn3

where upon deployment, although sn4 has joined the pool named "AllStorageNodes", it has
not yet joined the pool named "snpool".

Next, after successfully deploying the sn4 Storage Node, use the CLI to join the pool named
"snpool"; that is:

kv-> pool join -name snpool -sn sn4

After deploying the new Storage Node and joining the pool named "snpool", using the
administrative CLI, you might (optionally) execute the show topology command followed by
the show pools command; and then observe that the new Storage Node has been deployed to
the store and has joined the pool named "snpool"; for example,

kv-> show topology
kv-> show pools

which, given the initial assumptions, should produce output that looks like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 UNREACHABLE
 [rg1-rn2] UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

 sn=[sn4] zn:[id=1 name=Zone1] host-sn4 capacity=1 RUNNING

and

AllStorageNodes: sn1 sn2 sn3 sn4
snpool: sn1 sn2 sn3 sn4

The output above shows that the sn4 Storage Node has been successfully deployed (is
RUNNING) and is now a member of the pool named "snpool". But it does not yet include an
RN service corresponding to sn4. Such a service will not appear in the store's topology until
sn2 is migrated to sn4 (see below).

At this point, after the sn4 Storage Node is deployed and has joined the pool named "snpool",
and the old sn2 Storage Node has been stopped, sn4 is ready to take over the duties of sn2.
This is accomplished by migrating the sn2 services and data to sn4 by executing the following

Chapter 1
Hardware Monitoring

1-65

command from the administrative CLI (remembering to substitute the actual IP address or
hostname for the string<host-ip>):

kv-> plan migrate-sn -from sn2 -to sn4 -wait

After migrating sn2 to sn4 you might (optionally) execute the show topology command again
and observe that the rg1-rn2 service has moved from sn2 to sn4 and is now RUNNING; that is,

kv-> show topology

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] host-sn1 capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn2] zn:[id=1 name=Zone1] host-sn2 capacity=1 UNREACHABLE

 sn=[sn3] zn:[id=1 name=Zone1] host-sn3 capacity=1 RUNNING
 [rg1-rn3] RUNNING

 sn=[sn4] zn:[id=1 name=Zone1] host-sn4 capacity=1 RUNNING
 [rg1-rn2] RUNNING

Finally, after the migration process is complete, remove the old sn2 Storage Node from the
store's topology; which can be accomplished by executing the plan remove-sn command from
the administrative CLI in the following way:

kv-> plan remove-sn -sn sn2 -wait

Verification
To verify that sn2 has been successfully replaced/upgraded by sn4, first execute the show
topology command from the previously started administrative CLI; that is,

kv-> show topology

The output is like the following:

store=example-store numPartitions=300 sequence=308
 zn: id=1 name=Zone1 repFactor=3

 sn=[sn1] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn1] RUNNING

 sn=[sn3] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn3] RUNNING

 sn=[sn4] zn:[id=1 name=Zone1] <host-ip> capacity=1 RUNNING
 [rg1-rn2] RUNNING

Chapter 1
Hardware Monitoring

1-66

Here the actual IP address or hostname appears instead of the string <host-ip>, and only sn4
appears in the output rather than sn2.

In addition to executing the show topology command, you can also verify that the expected
sn4 directory structure is created and populated; that is, directories and files like the following
should exist:

/opt/ondb/var/kvroot

 config4.xml

 /example-store
 /log

 sn4*

 /sn4
 config.xml
 /admin2
 /env

/tmp/sn2/disk1/ondb/data
 /rg1-rn2
 /env
 00000000.jdb

You can also verify that the data stored previously by sn2 has been migrated to sn4; that is:

> grep "HELLO WORLD" /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches

Note:

Although sn2 was stopped and removed from the topology, the data files created and
populated by sn2 in this example were not deleted. They were moved under
the /tmp/sn2_old directory. Thus, the old sn2 storage directory and data files can still
be accessed. That is:

/tmp/sn2_old/disk1/ondb/data
 /rg1-rn2
 /env
 00000000.jdb

And the original key/value pair should still exist in the old sn2 data file; that is,

> grep "HELLO WORLD" \
 /tmp/sn2_old/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file
 /tmp/sn2_old/disk1/ondb/data/rg1-rn2/env/00000000.jdb
 matches

Chapter 1
Hardware Monitoring

1-67

Finally, the last verification step that can be performed is intended to show that the new sn4
Storage Node has taken over the duties of the old sn2 Storage Node. This step consists of
writing a new key/value pair to the store and then verifying that the new pair has been written
to the data files of sn1, sn3, and sn4, as was originally done with sn1, sn3, and sn2 prior to
replacing sn2. To perform this step, you can use the KVStore client shell utility in the same way
as described in Setup , when the first key/value pair was initially inserted. That is, you can
execute the following (remembering to substitute the actual IP address or hostname for the
<host-ip> string):

> java -Xmx64m -Xms64m \
-jar /opt/ondb/kv/lib/kvstore.jar runadmin\
 -host <host-ip> -port 13230 -store example-store

kv-> get -all
 /FIRST_KEY
 HELLO WORLD

kv-> put -key /SECOND_KEY -value "HELLO WORLD 2"
 Put OK, inserted.

kv-> get -all
 /SECOND_KEY
 HELLO WORLD 2
 /FIRST_KEY
 HELLO WORLD

After performing the insertion, use the "grep" command to verify that the new key/value pair
was written by sn1, sn3, and sn4; and of course, the old sn2 data file still only contains the first
key/value pair. That is,

> grep "HELLO WORLD 2" /tmp/sn1/dsk1/ondb/data/rg1-rn1/env/00000000.jdb
 Binary file /tmp/sn1/disk1/ondb/data/rg1-rn1/env/00000000.jdb matches
> grep "HELLO WORLD 2" /tmp/sn2/dsk1/ondb/data/rg1-rn2/env/00000000.jdb
 Binary file /tmp/sn2/disk1/ondb/data/rg1-rn2/env/00000000.jdb matches
> grep "HELLO WORLD 2" /tmp/sn3/dsk1/ondb/data/rg1-rn3/env/00000000.jdb
 Binary file /tmp/sn3/disk1/ondb/data/rg1-rn3/env/00000000.jdb matches
> grep "HELLO WORLD 2"
 /tmp/sn2_old/dsk1/ondb/data/rg1-rn2/env/00000000.jdb

Chapter 1
Hardware Monitoring

1-68

2
Standardized Monitoring Interfaces

In addition to the native monitoring provided by the Admin CLI, Oracle NoSQL Database allows
Java Management Extensions (JMX) agents to be optionally available for monitoring. These
agents provide interfaces on each storage node that allow management clients to poll them for
information about the status, performance metrics, and operational parameters of the storage
node and its managed services, including replication nodes, and admin instances. You can
also use JMX to monitor Arbiter Nodes.

Both of these management agents can also be configured to push notifications about status
changes of any services, and for violations of preset performance limits.

You can enable the JMX interface in either the Community Edition or the Enterprise Edition.

The JMX service exposes MBeans for the three types of components. These MBeans are the
java interfaces StorageNodeMBean, RepNodeMBean, and AdminMBean in the package
oracle.kv.impl.mgmt.jmx. For more information about the status reported for each component,
see the javadoc for these interfaces.

Note:

For information on using JMX securely, see Guidelines for using JMX securely in the
Security Guide.

Java Management Extensions (JMX)
JMX agents in Oracle NoSQL Database are read-only interfaces. These interfaces let you poll
Storage Nodes for information about the storage node and about any replication nodes or
Admins that the Storage Node hosts. The information available from polling includes the
service status (RUNNING, STOPPED, and so on), operational parameters, and performance
metrics.

JMX agents also deliver event traps and notifications for particular events. For example, JMX
sends notifications for every service status state change, and any performance limits that the
store exceeds.

Displaying the Oracle NoSQL Database MBeans
You can view the Oracle NoSQL Database JMX MBeans in a monitoring tool such as
JConsole. In the JConsole, use the Remote Process option and connect using hostname and
registry port for each Storage Node that you would like to view.

Note:

You should not choose Local Process option to connect to Oracle NoSQL database.

2-1

For example, in the following case, in the JConsole New Connection window, you should
choose the Remote Process option and specify localhost:5000 to connect to Oracle NoSQL
Database.

Enabling JMX Monitoring
You can enable monitoring on a per-storage node basis in two different ways:

• In the boot configuration file.

• Change the mgmtClass parameter.

In the Bootfile
You can specify that you want to enable JMX in the boot configuration file for the Storage
Node.

Note:

When you specify -mgmt jmx, a storage node's JMX agent uses the RMI registry at
the same port number as it uses for all other RMI services that the Storage Node
manages.

Chapter 2
Java Management Extensions (JMX)

2-2

By Changing Storage Node Parameters
You can enable JMX after you deploy a store by changing the storage node parameter
mgmtClass.

The mgmtClass parameter value may be one of the following class names:

• To enable JMX:

oracle.kv.impl.mgmt.jmx.JmxAgent

• To disable JMX:

oracle.kv.impl.mgmt.NoOpAgent

Chapter 2
Java Management Extensions (JMX)

2-3

3
Using ELK to Monitor Oracle NoSQL
Database

“ELK” is the acronym for three open source projects: Elasticsearch, Logstash, and Kibana.

Elasticsearch is a search and analytics engine. Logstash is a server-side data processing
pipeline that ingests data from multiple sources simultaneously, transforms it, and then send it
to a “stash” like Elasticsearch. Kibana lets users visualize data with charts and graphs in
Elasticsearch. The ELK stack can be used to monitor Oracle NoSQL Database.

Note:

For a Storage Node Agent (SNA) to be discovered and monitored, it must be
configured for JMX. JMX is not enabled by default. You can tell whether JMX is
enabled on a deployed SNA issuing the show parameters command and checking
the reported value of the mgmtClass parameter. If the value is not
oracle.kv.impl.mgmt.jmx.JmxAgent, then you need to issue the change-
parameters plan command to enable JMX.

For example:

plan change-parameters -service sn1 -wait \
-params mgmtClass=oracle.kv.impl.mgmt.jmx.JmxAgent

For more information, see Standardized Monitoring Interfaces .

You can integrate Oracle NoSQL metrics and log information with an existent ELK
configuration. It is recommended to install ELK components in dedicated servers. Do not use
Oracle NoSQL nodes. For more information, see Elastic Stack and Product documentation. If
you do not have an existent ELK setup, follow the instructions provided but always refer to
elastic documentation for details. Configuration files provided must be edited if you decide to
use a secure ELK deployment, according to your setup and your security requirements.

Filebeat and metricbeat help you monitor your servers and the services they host by collecting
metrics, especially from the NoSQL services. Filebeat is the component that sends the files
generated by the Collector Service in each Storage Node (SN) to ELK for analysis and
monitoring. Filebeat component must be deployed in all NoSQL nodes of your cluster.

You’ll learn how to:

• install and configure Filebeat on each NoSQL cluster you want to monitor

• specify the metrics you want to collect

• send the metrics to Logstash and then to Elasticsearch

• visualize the metrics data in Kibana

• change the configuration files if you decide to use a secure ELK deployment

3-1

Enabling the Collector Service
Follow the steps below to enable collector service in Oracle NoSQL Database:

1. Set the collectorEnabled parameter across the store to true.

plan change-parameter -global -wait -params collectorEnabled=true

2. Set an appropriate value for collectorInterval. Low interval value collects more details
and requires more storage. High interval value comparatively collects lesser details and
requires lesser storage.

plan change-parameter -global -wait -params collectorInterval="30 s"

3. Provide an appropriate storage size for collectorStoragePerComponent. The data
collected by each component (each SN and RN) is stored in a buffer. This buffer size can
be changed by setting this parameter.

plan change-parameter -global -wait -params
collectorStoragePerComponent="50 MB"

Setting Up Elasticsearch
Follow the steps below to setup Elasticsearch:

1. Download and decompress Elasticsearch 8.7.0.

2. Modify the $ELASTICSEARCH/config/elasticsearch.yml file as per your configuration.

For example: Set values for path.data and path.logs to store data and logs in the
specified location.

3. Startup Elasticsearch.

$ cd $ELASTICSEARCH
$ sudo sysctl -q -w vm.max_map_count=262144;
$ nohup bin/elasticsearch &

For more information, see Elasticsearch Reference guide.

Setting Up Kibana
Follow the steps below to setup Kibana:

1. Download and decompress Kibana 8.7.0.

2. Modify the $KIBANA/config/kibana.yml file as per your configuration.

For example: If Elasticsearch is not deployed on the same machine as Kibana, add line
elasticsearch.url:”<your_es_hostname>:9200”. This sets Kibana to connect to the
Elasticsearch address specified instead of 127.0.0.1:9200.

Chapter 3
Enabling the Collector Service

3-2

3. Startup Kibana.

$ cd $KIBANA
$ nohup bin/kibana &

For more information, see Kibana Reference guide.

Setting Up Logstash
Follow the steps below to setup Logstash:

1. Download and decompress Logstash 8.7.0.

2. Place the logstash.config file in the same directory where Logstash is decompressed.
Modify the logstash.config file as per your configuration.

For example: If Elasticsearch is not deployed on the same machine as Logstash, change
the Elasticsearch hosts from localhost:9200 to <your_es_hostname>:9200.

3. Place the templates (kvevents.template, kvpingstats.template,
kvrnenvstats.template, kvrnjvmstats.template, kvrnopstats.template) in the same
directory where Logstash is decompressed. Modify the templates as per your
configuration.

4. Switch to the $LOGSTASH directory . Verify that the directory contains the Logstash setup
files, configuration file, and all the templates. Then, startup Logstash.

$ cd $LOGSTASH
$ bin/logstash -f logstash.config &

For more information, see Logstash Reference guide.

Setting Up Filebeat on Each Storage Node
Follow the steps below to setup Filebeat on each storage node:

1. Download and decompress Filebeat 8.7.0.

2. Replace the existing filebeat.yml with filebeat.yml. Edit the file and replace all
occurrences of /path/of/kvroot with the actual KVROOT path of this SN. Also, replace
LOGSTASH_HOST with the actual IP of Logstash.

3. Startup Filebeat.

$ cd $FILEBEAT
$./filebeat &

4. Repeat the above steps in all the storage nodes of the cluster.

For more information, see Filebeat Reference guide.

Configure security for the Elastic Stack
Security needs vary depending on whether you’re developing a test environment or securing
all communications in a production environment. The following scenarios provide different
options for configuring the Elastic Stack.

Chapter 3
Setting Up Logstash

3-3

Minimal security (Elasticsearch Development)

You can use this to set up Elasticsearch on your test environment. This configuration prevents
unauthorized access to your cluster by setting up passwords for the built-in users. You also
configure password authentication for Kibana. This minimal security scenario is not sufficient
for production mode clusters. If your cluster has multiple nodes, you must enable minimal
security and then configure Transport Layer Security (TLS) between nodes.

Basic security (Elasticsearch Production)

This scenario builds on the minimal security requirements by adding transport Layer Security
(TLS) for communication between nodes. This additional layer requires that nodes verify
security certificates, which prevents unauthorized nodes from joining your Elasticsearch
cluster.

Basic security plus secured HTTPS traffic (Elastic Stack)

This scenario builds on the one for basic security and secures all HTTP traffic with TLS. In
addition to configuring TLS on the transport interface of your Elasticsearch cluster, you
configure TLS on the HTTP interface for both Elasticsearch and Kibana. If you need mutual
(bidirectional) TLS on the HTTP layer, then you’ll need to configure mutual authenticated
encryption. You then configure Kibana and Beats to communicate with Elasticsearch using TLS
so that all communications are encrypted. This level of security is strong, and ensures that any
communications in and out of your cluster are secure. For more information, see Configuring
Stack Security.

In this case, you must modify the logstash.config as per your configuration. You need provide
the user/password and the TLS certificate to do the connection. For example:

 elasticsearch {
 manage_template => true
 template => "kvrnjvmstats.template"
 template_name => "kvrnjvmstats"
 template_overwrite => true
 index => "kvrnjvmstats-%{+YYYY.MM.dd}"
 hosts => "elk-node1:9200"
 user => "logstash_internal"
 password => "thepwd"
 cacert => '/etc/logstash/config/certs/ca.crt'
}

Using Kibana for Analyzing Oracle NoSQL Database
You will learn how to visualize and monitor NoSQL metrics using Kibana. Kibana requires an
index pattern to access the Elasticsearch data that you want to explore. An index pattern
selects the data to use and allows you to define the properties of the fields.

Using the import and export actions, you can move objects between different Kibana instances.
This action is useful when you have multiple environments for development and production.
Import and export also work well when you have a large number of objects to update and want
to batch process them. The Saved Objects UI helps you to keep track of and manage your
saved objects. These objects store data for later use, including dashboards, visualizations,
maps, index patterns, Canvas workpads, and more.

In order to improve the task of creating dashboards, visualizations, index patterns, you can use
this json file that you can import in your Kibana configuration. This is very handy to import this

Chapter 3
Using Kibana for Analyzing Oracle NoSQL Database

3-4

json file so that you can have access to the dashboards, visualizations, index patterns that has
been provided.

The save objects are classified into 4 types using tags.

1. NoSQLVisualization

2. NoSQLExample

3. NoSQLDebug

4. NoSQLQuickValidation

Chapter 3
Using Kibana for Analyzing Oracle NoSQL Database

3-5

Creating Index Patterns
By using the command import, you automatically configure index patterns.

1. kvrnjvmstats-*
2. kvrnenvstats-*
3. kvpingstats-*
4. kvrnopstats-*
5. kvevents-*

Note:

This index may not exist if the store is brand new as no events have occurred.

Chapter 3
Using Kibana for Analyzing Oracle NoSQL Database

3-6

Analyzing the Data
By using the command import, you create standard visualizations that can be explored using
dashboards.

The Oracle NoSQL Main Dashboard shows you the important information about the health of
the cluster.

Chapter 3
Using Kibana for Analyzing Oracle NoSQL Database

3-7

The Oracle NoSQL API Performance Dashboard and Oracle NoSQL Query Performance
Dashboard shows you summarized information about the performance of the NoSQL cluster.
You provide information about throughput and average latency for the following important API
calls.

1. NoSQL AllSingleOps/AllMultiOps shows throughput and average latency.

2. NoSQL QuerySinglePartition/NoSQL QueryMultiShard/NoSQL QueryMultiPartition shows
detailed information on SQL query performance.

• QuerySinglePartition, operations using primary key indexes

• QueryMultiShard, operations using secondary indexes

• QueryMultiPartition, operations doing full scans

3. PutOps/ GetOps shows detailed information on CRUD API calls.

Chapter 3
Using Kibana for Analyzing Oracle NoSQL Database

3-8

Oracle NoSQL exposes hundreds of metrics that could be valuable when debugging. In order
to visualize this information, visualizations are provided in the NoSQLDebug category.You can
use these visualization and also create more customized visualizations when necessary. These
metrics contain statistics of each type of API operation. And each operation statistics is
calculated by interval and cumulative statistics.

By providing standard Kibana Visualization, you can add this information to your Standard
Application Performance Kibana dashboards. It allows you to do a correlation between the

Chapter 3
Using Kibana for Analyzing Oracle NoSQL Database

3-9

application activity, the NoSQL performance and other OS statistics collected (e.g CPU metrics
collected using Metricbeat).

The Oracle NoSQL + Jmeter Performance Dashboard is a good example of the applications
dashboards allowing these kind of correlations. The dashboard is used to show how to do the
correlation between Application Performance statistics (provided by JMeter) and NoSQL
standard performance metrics.

Chapter 3
Using Kibana for Analyzing Oracle NoSQL Database

3-10

Glossary

Glossary-1

Index

Index-1

	Contents
	1 Monitoring the Store
	Events
	Log File Compression
	Software Monitoring
	System Log File Monitoring
	Java Management Extensions (JMX) Monitoring

	Monitoring for Storage Nodes (SN)
	Metrics for Storage Nodes
	Java Management Extensions (JMX) Notifications

	Monitoring for Replication Nodes (RN)
	Metrics for Replication Node

	Monitoring for Arbiter Nodes
	Metrics for Arbiter Nodes

	Monitoring for Administration (Admin) Nodes
	Metrics for Admin Nodes

	Hardware Monitoring
	Monitoring for Hardware Faults
	The Network
	Correlating Network Failure to NoSQL Log Events
	Recovering from Network Failure

	Persistent Storage
	Detecting and Correlating Persistent Storage Failures to NoSQL Log Events
	Resolving Storage Device Failures
	Procedure for Replacing a Failed Persistent Storage Device
	Example

	Servers
	Detecting and Correlating Server Failures to NoSQL Log Events
	Resolving Server Failures
	Terminology Review
	Assumptions
	Replacement Procedure 1: Replace SN with Identical SN
	Replacement Procedure 2: New SN Takes Over Duties of Removed SN
	Examples
	Setup
	Example 1: Replace a Failed SN with an Identical SN
	Verification

	Example 2: New SN Takes Over Duties of Existing SN
	Verification

	2 Standardized Monitoring Interfaces
	Java Management Extensions (JMX)
	Displaying the Oracle NoSQL Database MBeans
	Enabling JMX Monitoring
	In the Bootfile
	By Changing Storage Node Parameters

	3 Using ELK to Monitor Oracle NoSQL Database
	Enabling the Collector Service
	Setting Up Elasticsearch
	Setting Up Kibana
	Setting Up Logstash
	Setting Up Filebeat on Each Storage Node
	Configure security for the Elastic Stack
	Using Kibana for Analyzing Oracle NoSQL Database
	Creating Index Patterns
	Analyzing the Data

	Glossary
	Index

