
Oracle® NoSQL Database
Integrations Guide

Release 24.4
F30919-16
December 2024

Oracle NoSQL Database Integrations Guide, Release 24.4

F30919-16

Copyright © 2020, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Introduction

Part I Integration with Apache Hadoop MapReduce

2 Introduction to Integration with Apache Hadoop MapReduce

Prerequisites 2-1

A Brief Primer on Apache Hadoop 2-2

3 The CountTableRows Example

Compile, Build, and Run the CountTableRows Example 3-1

Building CountTableRows When the Store is Non-Secure 3-2

Building CountTableRows When the Store is Secure 3-3

Running CountTableRows When the Store is Non-Secure 3-4

Running CountTableRows When the Store is Secure and a Password File is Used 3-5

Running CountTableRows When the Store is Secure and an Oracle Wallet is Used 3-6

CountTableRows MapReduce Job Results 3-7

4 Appendix

Deploying a Non-Secure Store 4-1

Generate Configuration Files For Each Storage Node (SN) 4-1

Launch a Storage Node Agent (SNA) On Each Host Making Up the Store 4-2

Configure and Deploy the Non-secure Store 4-2

Deploying a Secure Store 4-3

Generate Configuration Files For Each Storage Node (SN) 4-4

Launch a Storage Node Agent (SNA) On Each Host Making Up the Store 4-6

Configure and Deploy the Secure Store 4-6

Provision the Secure Store’s Administrative User (root) 4-7

Create Non-Administrative User 4-8

Provision the Secure Store's Non-Administrative User (example-user) 4-9

CountTableRows Support Programs 4-11

iii

Schema for the vehicleTable Example 4-12

Create and Populate vehicleTable with Example Data 4-12

Run LoadVehicleTable when the Store is Non-Secure 4-13

Run LoadVehicleTable When the Store is Secure 4-13

Summary 4-14

Model For Building & Packaging Secure Clients 4-15

Programming Model For MapReduce with Oracle NoSQL Database Security 4-15

Communicating Security Credentials to the Server Side Splits 4-16

Communicating Security Credentials to the TableInputFormat 4-17

Best Practices: MapReduce Application Packaging for Oracle NoSQL Security 4-17

Application Packaging for the Non-Secure Case 4-18

Application Packaging and Execution for the Secure Case 4-19

Secure Versus Non-Secure Command Lines 4-23

Summary 4-23

Part II Integration with Elastic Search for Full Text Search

5 About Full Text Search

About Full Text Search 5-1

Prerequisite to Full Text Search 5-2

6 Intergrating Elasticsearch with Oracle NoSQL Database

Registering Elasticsearch with Oracle NoSQL Database 6-1

Deregistering Elasticsearch from an Oracle NoSQL Store 6-3

7 Managing Full Text Index

Creating a Full Text Index 7-1

Mapping a Full Text Index Field to an Elasticsearch Field 7-5

Handling TIMESTAMP Data Type 7-7

Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type 7-7

Full Text Search of Indexed TIMESTAMP Scalar 7-11

Handling JSON Data Type 7-14

Review: Secondary Indexes on JSON Document Content 7-14

Creating Text Indexes on JSON Document Content 7-18

Full Text Search of Indexed JSON Documents 7-20

Deleting a Full Text Index 7-22

iv

8 Security in Full Text Search

Elasticsearch and Secure Oracle NoSQL Database 8-1

9 Appendix

Sample: Array of JSON Documents 9-1

The LoadJsonExample Program Source 9-3

Secure Elasticsearch using Sheild 9-24

Deploying and Configuring a Secure Oracle NoSQL Store 9-31

Install the Full Text Search Public Certificate in Elasticsearch 9-39

Running the Examples in Secure Mode 9-40

v

1
Introduction

Oracle NoSQL Database can be integrated with Apache Hadoop and products in the Oracle
stack. The following parts describe more about integration.

Topics

• Part I: Integration with Apache Hadoop MapReduce

• Part II: Integration with Elastic Search for Full Text Search

1-1

Part I
Integration with Apache Hadoop MapReduce

Topics

• Introduction to Integration with Apache Hadoop MapReduce

• The CountTableRows Example

• Appendix

2
Introduction to Integration with Apache
Hadoop MapReduce

This section introduces the integration of Oracle NoSQL Database with Apache Hadoop
MapReduce. The information presented in this document describes how MapReduce jobs can
be written and run to process data in an Oracle NoSQL Database table. Besides describing the
core interfaces and classes involved in this process, this document also walks through an
example that demonstrates how to use the Table API, Hadoop integration classes with
MapReduce.

The language drivers provide the interfaces and classes that allow MapReduce jobs to be
written that retrieve and process table data written to an Oracle NoSQL Database store via the
Table API. See Developing for Oracle NoSQL Database in the Java Direct Driver Developer's
Guide.

Prerequisites
To minimize the number of non-literal text and tokens that need to be replaced when running
the examples that are presented, this document assumes that Apache Hadoop and Oracle
NoSQL Database are installed on a Big Data Appliance running Big Data SQL 4.0. Specifically,
this document assumes that Apache Hadoop is installed under the directory /opt/cloudera/
parcels/CDH, and that Oracle NoSQL Database is installed under /opt/oracle/kv-ee. Thus, if
you happen to be using commodity hardware rather than a Big Data Appliance, then you may
need to substitute various directory paths presented in this document with values specific to
the Apache Hadoop and Oracle NoSQL Database installations on your particular system.

Whether you are using a Big Data Appliance or commodity hardware, in order to work with the
examples presented in this document, you will need to install the separate distribution
containing the Oracle NoSQL Database Examples. Although you are free to install the example
package in any location on your system, for simplicity, this document assumes the example
code is installed under the directory /opt/oracle/nosql/apps/kv/examples .

Note:

The host names and ports provided below are for demonstration purpose only. You
can provide the value as per the requirement.

Before attempting to execute the example that demonstrates the concepts presented in this
document, you should first satisfy the following prerequisites:

• Become familiar with Apache Hadoop and the MapReduce programming model.
Specifically, become familiar with how to write and deploy a MapReduce job.

• Deploy a Hadoop cluster with 3 DataNodes running on machines with sample host names,
dn-host-1, dn-host-2, and dn-host-3.

• Become familiar with Oracle NoSQL Database and then install, start, and configure an
Oracle NoSQL Database that is network reachable from the nodes of the Hadoop cluster.

2-1

The KVHOME of the store that you start should be configured as the directory /opt/
oracle/kv-ee.

• Deploy a store to 3 machines (real or virtual) with sample host names, kv-host-1, kv-
host-2, and kv-host-3. The store's name should be set to the value example-store, and
the store's KVROOT should be set to the directories /u01/nosql/sn1/kvroot on kv-
host-1, /u02/nosql/sn2/kvroot on kv-host-2, and /u03/nosql/sn3/kvroot on kv-
host-3. Finally, an Oracle NoSQL Database admin service, listening on port 5000, should
be deployed to each host making up the store.

• Become familiar with the Oracle NoSQL Database Security model and be able to configure
the deployed store for secure access (optional). See Introducing Oracle NoSQL Database
Security in the Security Guide.

• If the deployed store is configured for secure access, start the Oracle NoSQL Database
Administrative CLI and securely connect to the store's admin service. See Start the
Administration CLI in the Administrator's Guide. Using the CLI, create a user in the store
named example-user along with the appropriate security artifacts (login file, trust file, and
either password file or Oracle Wallet [Enterprise Edition only]).

• Obtain and install the separate distribution containing the Oracle NoSQL Database
Examples. Although you are free to install that package in any location on your system, for
simplicity this document assumes the example code is installed under the directory /opt/
oracle/nosql/apps/kv/examples.

• Be able to compile and execute a Java program and package it and any associated
resources in a JAR file.

• Install the Hadoop JAR files required to compile the example program so that they are
available for inclusion in the example program's classpath (see below).

Using specific values for items such as the KVHOME and KVROOT environment variables, as well
as the store name, host names, admin port, and example code location described above
should allow you to more easily understand and use the example commands presented in this
document. Combined with the information contained in the Concepts Guide, along with the
Administrator's Guide and Security Guide, you should then be able to generalize and extend
these examples to your particular development scenario; substituting the values specific to the
given environment where necessary.

Detailed instructions for deploying a non-secure store are provided in the Deploying a Non-
Secure Store appendix of this document. Similarly, the Deploying a Secure Store appendix
provides instructions for deploying a store configured for security.

A Brief Primer on Apache Hadoop
Apache Hadoop can be thought of as consisting of two primary components:

• The Hadoop Distributed File System (referred to as, HDFS).

• The MapReduce programming model; which includes a Map Phase consisting of a
mapping step and a shuffle-and-sort step that together perform filtering and sorting,
followed by a Reduce Phase that performs a summary operation on the mapped and
sorted results from the Map Phase.

The various Hadoop distributions that are available (for example, Cloudera) provide an
infrastructure for orchestrating the processing performed in a MapReduce job. This includes
marshaling the distributed servers that execute job tasks in parallel, the management of all
communication and data transfers between each part of the system, and mechanisms for
providing redundancy and fault tolerance.

Chapter 2
A Brief Primer on Apache Hadoop

2-2

The Hadoop infrastructure also provides several interactive tools such as a command line
interface (the Hadoop CLI) that provide access to the data stored in HDFS. But the typical way
application developers read, write, and process data stored in HDFS is via MapReduce jobs;
which are programs that adhere to the Hadoop MapReduce programming model. For more
detailed information on Hadoop HDFS and MapReduce, see the Hadoop MapReduce tutorial.

As indicated earlier, with the introduction of the Oracle NoSQL Table API, Oracle NoSQL
Database provides a set of interfaces and classes that satisfy the Hadoop MapReduce
programming model to allow one to write MapReduce jobs that can be run to process data
written to a table created in an Oracle NoSQL Database store. These classes are located in
the oracle.kv.hadoop.table package, and consist of the following types:

• A subclass of the Hadoop class, org.apache.hadoop.mapreduce.InputFormat, which
specifies how the associated MapReduce job uses a Hadoop RecordReader to read its
input data and splits the input data into logical sections, each referred to as an InputSplit.

• A subclass of the Hadoop class, org.apache.hadoop.mapreduce.OutputFormat, which
specifies how the associated MapReduce job uses a Hadoop RecordWriter to write its
output data.

• A subclass of the Hadoop class, org.apache.hadoop.mapreduce.RecordReader, which
specifies how the mapped keys and values are located and retrieved during MapReduce
processing.

• A subclass of the Hadoop class, org.apache.hadoop.mapreduce.InputSplit, which
represents the data to be processed by an individual MapReduce Mapper; where there is
one Mapper per InputSplit.

For the complete list of classes, see Apache Hadoop API.

As described in the following sections, it is through the specific implementation of the
InputFormat class provided by Oracle NoSQL Database that the Hadoop MapReduce
infrastructure obtains access to a given store and the data written to the store.

Chapter 2
A Brief Primer on Apache Hadoop

2-3

3
The CountTableRows Example

Assuming you installed the separate example distribution under the directory /opt/oracle/
nosql/apps/kv/examples, the hadoop.table example package would contain the following
source files under the /opt/oracle/nosql/apps/kv/examples/hadoop/table/ directory:

• CountTableRows.java
• LoadVehicleTable.java
• KVSecurityCreation.java
• KVSecurityUtil.java
To run the MapReduce job launched by the CountTableRows example Java program, an Oracle
NoSQL Database store (secure or non-secure) must first be deployed, and a table must be
created and populated with data. Thus, before executing CountTableRows, either use the steps
outlined in the Deploying a Non-Secure Store appendix to deploy a non-secure store, or use
the Deploying a Secure Store appendix to deploy a store configured for security.

Once a store has been deployed, you should execute the standalone Java program
LoadVehicleTable provided in the example package to create and populate a table with the
name and schema expected by CountTableRows. Once the table is created and populated with
example data, CountTableRows can then be executed to run a MapReduce job that counts the
number of rows of data in the table.

In addition to the LoadVehicleTable program, the example package also contains the classes
KVSecurityCreation and KVSecurityUtil, which are provided to support running
CountTableRows against a secure store.

The standalone Java program KVSecurityCreation is provided as a convenience, and can be
run to create (or delete) a password file or Oracle Wallet along with associated client side and
server side login files that CountTableRows will need to interact with a secure store.

The KVSecurityUtil class provides convenient utility methods that CountTableRows uses to
create and process the various security artifacts needed when accessing the store securely.

The CountTableRows Support Programs appendix explains how to compile and execute the
LoadVehicleTable program to create and populate the required example table in the store that
you deploy. That appendix also explains how to compile and execute the KVSecurityCreation
program to create or delete any security credentials that may be needed by CountTableRows.

The following sections explain how to compile, build (JAR), and execute the CountTableRows
MapReduce job on the Hadoop cluster that was deployed for this example.

Compile, Build, and Run the CountTableRows Example
After you have run the LoadVehicleTable program to create and populate the example
vehicleTable (see the CountTableRows Support Programs appendix), but before you execute
the example MapReduce job, you must first compile the CountTableRows program and
package the compiled artifacts for deployment to the Hadoop infrastructure.

3-1

To compile the CountTableRows program, several Hadoop JAR files must be installed and
available in your build environment for inclusion in the program classpath. Those JAR files are:

• commons-logging-<version>.jar
• hadoop-common-<version>.jar
• hadoop-mapreduce-client-core-<version>.jar
• hadoop-annotations-<version>.jar
• hadoop-yarn-api-<version>.jar
The <version> token used above represents the particular version number of the
corresponding JAR file contained in the Hadoop distribution installed in your build environment.

For example, suppose that the 3.0.0 version of Hadoop, packaged by Cloudera version 6.3.0
(cdh6.3.0), was installed on your system via parcels; where a parcel is a binary distribution
format that Cloudera provides as an alternative to rpm/deb packages. Additionally, suppose
that the classes from that version of Hadoop use the 1.1.3 version of commons-logging. Given
these assumptions, to compile the CountTableRows program, you would then type the following
at the command line:

cd /opt/oracle/nosql/apps/kv
javac -classpath \
 /opt/cloudera/parcels/CDH/jars/commons-logging-1.1.3.jar: \
 /opt/cloudera/parcels/CDH/jars/
 hadoop-common-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \
 hadoop-mapreduce-client-core-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \
 hadoop-annotations-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \
 hadoop-yarn-api-3.0.0-cdh6.3.0.jar: \
 /opt/oracle/kv-ee/lib/kvclient.jar:examples \
 examples/hadoop/table/CountTableRows.java

This produces the following files:

/opt/oracle/nosql/apps/kv/examples/hadoop/table/
 CountTableRows.class
 CountTableRows$Map.class
 CountTableRows$Reduce.class

If your specific environment has a different, compatible Hadoop distribution installed, then
simply replace the paths and version references in the example command line above with the
appropriate values for your particular Hadoop installation.

Building CountTableRows When the Store is Non-Secure
If you will be running CountTableRows against a non-secure store, then the class files shown in
the compilation step presented in the previous section should be placed in a JAR file so that
the program can be deployed to the example Hadoop cluster. For example, to create a JAR file

Chapter 3
Compile, Build, and Run the CountTableRows Example

3-2

containing the class files needed to run CountTableRows against data in a non-secure store like
that deployed in the Deploying a Non-Secure Store appendix, do the following:

cd /opt/oracle/nosql/apps/kv/examples
jar cvf CountTableRows.jar hadoop/table/CountTableRows*.class

This produces a JAR file named CountTableRows.jar, having the following content, located in
the directory /opt/oracle/nosql/apps/kv/examples:

META-INF/
META-INF/MANIFEST.MF
hadoop/table/CountTableRows.class
hadoop/table/CountTableRows$Map.class
hadoop/table/CountTableRows$Reduce.class

Building CountTableRows When the Store is Secure
This section explains how to compile all of the Java classes that should be included in the
build. If you will be running CountTableRows against a secure store like that deployed in the
Deploying a Secure Store appendix, in addition to including the CountTableRows program, the
build also needs to include security credential files as well as the KVSecurityCreation
program and KVSecurityUtil class used to perform various security related functions when
executing CountTableRows.

To compile the KVSecurityCreation and KVSecurityUtil classes needed to run the secure
version of CountTableRows, type the following at the command line:

cd /opt/oracle/nosql/apps/kv

javac -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:examples \
 examples/hadoop/table/KVSecurityCreation.java

javac -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:examples \
 examples/hadoop/table/KVSecurityUtil.java

Once KVSecurityCreation and KVSecurityUtil have been compiled, CountTableRows itself
can be compiled in the same way as that shown in the previous section; that is,

javac -classpath \
 /opt/cloudera/parcels/CDH/jars/commons-logging-1.1.3.jar: \
 /opt/cloudera/parcels/CDH/jars/
 hadoop-common-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \
 hadoop-mapreduce-client-core-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \
 hadoop-annotations-3.0.0-cdh6.3.0.jar: \
 /opt/cloudera/parcels/CDH/jars/ \
 hadoop-yarn-api-3.0.0-cdh6.3.0.jar: \
 /opt/oracle/kv-ee/lib/kvclient.jar:examples \
 examples/hadoop/table/CountTableRows.java

Chapter 3
Compile, Build, and Run the CountTableRows Example

3-3

The command lines above will produce the following class files:

/opt/oracle/nosql/apps/kv/examples/hadoop/table/
 CountTableRows.class
 CountTableRows$Map.class
 CountTableRows$Reduce.class
 KVSecurityUtil.class
 KVSecurityCreation.class

Unlike the non-secure case, the build artifacts needed to deploy CountTableRows in a secure
environment include more than just a single JAR file containing the generated class files. For
the secure case, it is necessary to package some artifacts for deployment to the client side of
the application that communicates with the store, whereas other artifacts will need to be
packaged for deployment to the server side of the application.

Although there are different ways to achieve this "separation of concerns" when deploying a
given application, the Model For Building & Packaging Secure Clients appendix of this
document presents one particular model you can use to package and deploy the artifacts for
applications that will interact with a secure store. With this in mind, the sections in this
document related to executing CountTableRows against a secure store each assume that the
application has been built and packaged according to the instructions presented in the Model
For Building & Packaging Secure Clients appendix.

Running CountTableRows When the Store is Non-Secure
If you will be running CountTableRows against a non-secure store such as that deployed in the
Deploying a Non-Secure Store appendix, and you have compiled and built CountTableRows in
the manner presented in the previous section, the MapReduce job initiated by the
CountTableRows example program can be deployed by typing the following at the command
line of the Hadoop cluster's access node:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/oracle/kv-ee/lib/kvclient.jar

cd /opt/oracle/nosqlapps/kv

hadoop jar examples/CountTableRows.jar \
 hadoop.table.CountTableRows \
 -libjars \
 /opt/oracle/kv-ee/lib/kvclient.jar,\
 /opt/oracle/kv-ee/lib/kvstore-ee.jar \
 /opt/oracle/kv-ee/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/lib/jackson-annotations.jar,\
 example-store \
 kv-host-1:5000 \
 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/<000N>

The Hadoop command interpreter's -libjars argument is used to include the third party
libraries kvclient.jar, kvstore-ee.jar, jackson-core.jar, jackson-databind.jar, and
jackson-annotations.jar in the classpath of each MapReduce task executing on the cluster's
DataNodes. This is necessary so that those tasks can access classes such as,

Chapter 3
Compile, Build, and Run the CountTableRows Example

3-4

TableInputSplit and TableRecordReader, as well as various support classes that are not
available on the Hadoop platform.

The value example-store specifies the name of the store you deployed and the value kv-
host-1:5000 specifies the hostname and port to use when connecting to that store. The value
vehicleTable specifies the name of the table whose rows will be counted by the MapReduce
job. And the last argument, containing the path string, specifies where in the Hadoop HDFS
filesystem the final value for the number of rows in the vehicleTable should be written.

Note:

The example-user component of the path value input to the last argument
corresponds to a directory under the HDFS top-level directory with base path /user,
which typically corresponds to the user who has initiated the MapReduce job. This
directory is usually created in HDFS by the Hadoop cluster administrator. Additionally,
the <000N> token at the end of the path represents a string such as 0000, 0001,
0002, etc. Although any string can be used for this token, using a different number for
"N" on each execution of the job makes it easier to keep track of results when you
run the job multiple times.

Running CountTableRows When the Store is Secure and a Password File is Used
If you will be running CountTableRows against a secure store such as that deployed in the
Deploying a Secure Store appendix, and you have compiled, built, and packaged
CountTableRows and all the necessary artifacts in the manner described in the Model For
Building & Packaging Secure Clients appendix, then CountTableRows can be run against the
secure store by typing the following at the command line of the Hadoop cluster's access node:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/oracle/kv-ee/lib/kvclient.jar:\
 /opt/oracle/nosql/apps/examples/CountTableRows-pwdServer.jar

cd /opt/oracle/nosqlapps/kv

hadoop jar examples/CountTableRows-pwdClient.jar \
 hadoop.table.CountTableRows \
 -libjars /opt/oracle/kv-ee/lib/kvclient.jar,\
 /opt/oracle/kv-ee/lib/sklogger.jar,\
 /opt/oracle/kv-ee/lib/commonutil.jar,\
 /opt/oracle/kv-ee/lib/failureaccess.jar,\
 /opt/oracle/kv-ee/lib/antlr4-runtime-nosql-shaded.jar,\
 /opt/oracle/kv-ee/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/lib/jackson-annotations.jar,\
 /opt/oracle/nosql/apps/examples/CountTableRows-pwdServer.jar \
 example-store \
 kv-host-1:5000 \
 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/<000N> \
 example-user-client-pwdfile.login \
 example-user-server.login

Chapter 3
Compile, Build, and Run the CountTableRows Example

3-5

The following items in the command lines above are the client side artifacts of
CountTableRows,

examples/CountTableRows-pwdClient.jar

example-user-client-pwdfile.login

whereas the following items are the server side artifacts.

/opt/oracle/nosql/apps/examples/CountTableRows-pwdServer.jar

example-user-server.login

Rather than using an Oracle Wallet, the mechanism used for storing the user's password is a
password file, which is contained in the CountTableRows-pwdServer.jar artifact.

Running CountTableRows When the Store is Secure and an Oracle Wallet is Used
If you will be running CountTableRows against a secure store and you are using an Oracle
Wallet rather than a password file to store the user's password, then the CountTableRows
MapReduce job can be run by typing the following at the access node's command line:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/oracle/kv-ee/lib/kvclient.jar:\
 /opt/oracle/nosql/apps/examples/CountTableRows-walletServer.jar

cd /opt/oracle/nosqlapps/kv

hadoop jar examples/CountTableRows-walletClient.jar \
 hadoop.table.CountTableRows \
 -libjars \
 /opt/oracle/kv-ee/lib/kvclient.jar,\
 /opt/oracle/kv-ee/lib/sklogger.jar,\
 /opt/oracle/kv-ee/lib/commonutil.jar \
 /opt/oracle/kv-ee/lib/failureaccess.jar,\
 /opt/oracle/kv-ee/lib/antlr4-runtime-nosql-shaded.jar,\
 /opt/oracle/kv-ee/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/lib/jackson-annotations.jar,\
 /opt/oracle/nosql/apps/examples/CountTableRows-walletServer.jar \
 example-store \
 kv-host-1:5000 \
 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/<000N> \
 example-user-client-wallet.login \
 example-user-server.login

Whether storing the user's password in a password file or an Oracle Wallet (available in only
the Enterprise Edition of Oracle NoSQL Database), notice that an additional JAR file artifact
(CountTableRows-pwdServer.jar or CountTableRows-walletServer.jar) is specified for both
the HADOOP_CLASSPATH environment variable and the Hadoop -libjars parameter. For a
detailed explanation of the use and purpose of those server side JAR files, as well as a

Chapter 3
Compile, Build, and Run the CountTableRows Example

3-6

description of the client side JAR file and the two additional arguments at the end of the
command line, refer to the Model For Building & Packaging Secure Clients appendix.

CountTableRows MapReduce Job Results
Whether running against a secure or non-secure store, as the job runs, assuming no errors,
the output from the job will look like the following:

...
INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1344))
 - Running job: job_1409172332346_0024
INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1372))
 - map 0% reduce 0% INFO [main] mapreduce.Job
 (Job.java:monitorAndPrintJob(1372))
 - map 26% reduce 0%
INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1372))
 - map 56% reduce 0%
INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1372))
 - map 100% reduce 0% INFO [main] mapreduce.Job
 (Job.java:monitorAndPrintJob(1383))
 - Job job_1409172332346_0024 completed successfully
INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1390))
 - Counters: 49
 File System Counters
 FILE: Number of bytes read=2771
 FILE: Number of bytes written=644463
 FILE: Number of read operations=0
 FILE: Number of large read operations=0
 FILE: Number of write operations=0
 HDFS: Number of bytes read=2660
 HDFS: Number of bytes written=32
 HDFS: Number of read operations=15
 HDFS: Number of large read operations=0
 HDFS: Number of write operations=2
 Job Counters
 Launched map tasks=6
 Launched reduce tasks=1
 Rack-local map tasks=6
 Total time spent by all maps in occupied slots (ms)=136868
 Total time spent by all reduces in occupied slots (ms)=2103
 Total time spent by all map tasks (ms)=136868
 Total time spent by all reduce tasks (ms)=2103
 Total vcore-seconds taken by all map tasks=136868
 Total vcore-seconds taken by all reduce tasks=2103
 Total megabyte-seconds taken by all map tasks=140152832
 Total megabyte-seconds taken by all reduce tasks=2153472
 Map-Reduce Framework
 Map input records=79
 Map output bytes=2607
 Map output materialized bytes=2801
 Input split bytes=2660
 Combine input records=0
 Combine output records=0
 Reduce input groups=1
 Reduce shuffle bytes=2801

Chapter 3
CountTableRows MapReduce Job Results

3-7

 Reduce input records=79
 Reduce output records=1
 Spilled Records=158
 Shuffled Maps =6
 Failed Shuffles=0
 Merged Map outputs=6
 GC time elapsed (ms)=549
 CPU time spent (ms)=9460
 Physical memory (bytes) snapshot=1888358400
 Virtual memory (bytes) snapshot=6424895488
 Total committed heap usage (bytes)=1409286144
 Shuffle Errors
 BAD_ID=0
 CONNECTION=0
 IO_ERROR=0
 WRONG_LENGTH=0
 WRONG_MAP=0
 WRONG_REDUCE=0
 File Input Format Counters
 Bytes Read=0
 File Output Format Counters
 Bytes Written=32

To see the results of the job and to verify that the program counted the correct number of rows
in the table, use the Hadoop CLI to display the contents of the MapReduce results file located
in HDFS. To do this, type the following at the command line of the Hadoop cluster's access
node:

hadoop fs -cat \
 /user/example-user/CountTableRows/vehicleTable/<000N>/part-r-00000

where the <000N> token should be replaced with the value you used when the job was run.
Assuming the table was populated with 79 rows, if the job was successful, then the output
should look like the following:

/type/make/model/class 79

where /type/make/model/class are the names of the fields making up the PrimaryKey of the
vehicleTable, and 79 is the number of rows in the table.

Chapter 3
CountTableRows MapReduce Job Results

3-8

4
Appendix

Topics

• Deploying a Non-Secure Store

• Deploying a Secure Store

• CountTableRows Support Programs

• Model For Building & Packaging Secure Clients

Deploying a Non-Secure Store
The Concepts Guide, as well as the Administrator's Guide, each presents several different
ways to deploy and configure an Oracle NoSQL Database store that does not require secure
access. For convenience, this appendix describes one particular set of steps you can take to
deploy and configure such a store. Whether you prefer the technique presented here or one of
the techniques presented in the concepts manual and administrator's guide, a non-secure
store must be deployed and configured to run the example presented in this document in a
non-secure environment. For each of the steps presented below, assume the following:

• The Oracle NoSQL Database distribution is installed under the directory /opt/oracle/kv-
ee.

• A store named example-store is deployed to three hosts.

• The hosts are named, kv-host-1, kv-host-2, and kv-host-3, respectively.

• An admin service, listening on port 5000, is deployed on each of the three hosts.

• The contents of the shards managed by the store will be located under the storage
directory /u01/nosql/sn1/data for host kv-host-1, /u02/nosql/sn2/data for host kv-
host-2, and /u03/nosql/sn3/data for host kv-host-3.

Given the above assumptions, you can follow the steps below to deploy a non-secure store,
where each item from the given assumptions should be replaced with its comparable value
specific to your particular environment.

Generate Configuration Files For Each Storage Node (SN)
Login to each host kv-host-1, kv-host-2, kv-host-3, and, from each respective command
line, type commands like those shown.

On kv-host-1:
java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 makebootconfig \
 -root /u01/nosql/sn1/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-1 \
 -harange 5002,5007 \
 -num_cpus 0 \

4-1

 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u01/nosql/sn1/data \
 -storagedirsize 10000000 \
 -store-security none

On kv-host-2:
java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 makebootconfig \
 -root /u02/nosql/sn2/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-2 \
 -harange 5002,5007 \
 -num_cpus 0 \
 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u02/nosql/sn2/data \
 -storagedirsize 10000000 \
 -store-security none

On kv-host-3:
java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 makebootconfig \
 -root /u03/nosql/sn3/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-3 \
 -harange 5002,5007 \
 -num_cpus 0 \
 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u03/nosql/sn3/data \
 -storagedirsize 10000000 \
 -store-security none

Launch a Storage Node Agent (SNA) On Each Host Making Up the Store
From each host’s command line, type a command like the following:

nohup java -jar /opt/oracle/kv-ee/lib/kvstore.jar start \
 -root /u0<n>/nosql/sn<n>/kvroot -config config.xml &

where the token <n> corresponds to the integer associated with the given host from which the
above command is executed.

Configure and Deploy the Non-secure Store
From the command line of any host that has network connectivity to the nodes making up the
store type the following command to enter the store’s administrative command line interface
(Admin CLI), connected to the boot storage node agent (the boot SNA).

Chapter 4
Deploying a Non-Secure Store

4-2

Note:

The node from which you execute the command only requires network connectivity
and an Oracle NoSQL Database installation. Thus, although you can execute the
command from a separate node that satisfies that requirement, you can also execute
that command from any of the nodes making up the store (kv-host-1, kv-host-2, or
kv-host-3); as those hosts, by default, satisfy the requirements for launching the
Admin CLI.

java -jar /opt/oracle/kv-ee/lib/kvstore.jar runadmin \
 -helper-hosts kv-host-1:5000,kv-host-2:5000,kv-host-3:5000

Once the Admin CLI has been launched, you can deploy the store in one of two ways. First,
you can enter the following commands, in succession, at the Admin CLI’s command prompt.

configure -name example-store
plan deploy-zone -name zn1 -rf 3 -wait

plan deploy-sn -znname zn1 -host kv-host-1 -port 5000 -wait
plan deploy-admin -sn 1 -wait
pool create -name snpool
pool join -name snpool -sn sn1

plan deploy-sn -znname zn1 -host kv-host-2 -port 5000 -wait
plan deploy-admin -sn 2 -wait
pool join -name snpool -sn sn2

plan deploy-sn -znname zn1 -host kv-host-3 -port 5000 -wait
plan deploy-admin -sn 3 -wait
pool join -name snpool -sn sn3

change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"

topology create -name store-layout -pool snpool -partitions 120
topology preview -name store-layout
plan deploy-topology -name store-layout -plan-name deploy-plan -wait

Rather than submitting each of the above commands as separate entries to the Admin CLI’s
command prompt, you may find it more convenient to instead copy each of those commands to
a text file and then specify the single load command on the CLI’s command prompt; for
example,

load -file <path-to-command-file>

Deploying a Secure Store
The Security Guide presents several different ways to deploy and configure an Oracle NoSQL
Database store for secure access. For convenience, this section describes one particular set of
steps you can take to deploy and configure such a store. Whether you prefer the technique
presented here or one of the other techniques presented in the Security Guide, a secure store

Chapter 4
Deploying a Secure Store

4-3

must be deployed and configured in order to run the secure form of the example presented in
this document. For each of the steps presented below, in addition to the assumptions made in
the non-secure case, also assume the following:

• For convenience, the password manager the store uses to store and retrieve passwords
needed for access to keystores and truststores is a password file rather than an Oracle
Wallet, which is available in only the Enterprise Edition of Oracle NoSQL Database.

• For simplicity, all passwords are set to the value No_Sql_00.

• The name of the user that accesses the store is example-user.

Given the above assumptions, you can follow the steps below to deploy a secure store, where
each item from the given assumptions should be replaced with its comparable value specific to
your particular environment.

Generate Configuration Files For Each Storage Node (SN)
On kv-host-1, execute the following command and enter the appropriate responses when
prompted:

java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 makebootconfig \
 -root /u01/nosql/sn1/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-1 \
 -harange 5002,5007 \
 -num_cpus 0 \
 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u01/nosql/sn1/data \
 -storagedirsize 10000000 \
 -store-security configure \
 -pwdmgr pwdfile \
 -kspwd No_Sql_00

Enter a password for the Java KeyStore: No_Sql_00<RETURN>
Re-enter the KeyStore password for verification: No_Sql_00<RETURN>

Created files
 /u01/nosql/sn1/kvroot/security/store.trust
 /u01/nosql/sn1/kvroot/security/store.keys
 /u01/nosql/sn1/kvroot/security/store.passwd
 /u01/nosql/sn1/kvroot/security/client.trust
 /u01/nosql/sn1/kvroot/security/security.xml
 /u01/nosql/sn1/kvroot/security/client.security

Specifying the value configure for the -store-security parameter in the above command
generates the security artifacts (files) needed for the store’s nodes, as well as clients of the
store, to communicate securely. Each of the artifacts must be installed on the store’s remaining
nodes, whereas only the client.trust artifact should be installed on any client nodes that will
be accessing the store.

Chapter 4
Deploying a Secure Store

4-4

To install all of the artifacts listed above on each of the store’s remaining nodes, login to each
node, create the appropriate KVROOT directory, and use a utility such as scp to copy the security
directory from kv-host-1 to the given node’s KVROOT directory. That is,

On kv-host-2:
mkdir -p /u02/nosql/sn2/kvroot
cd /u02/nosql/sn2/kvroot
scp -r <username>@kv-host-1:/u01/nosql/sn1/kvroot/security .

On kv-host-3:
mkdir -p /u03/nosql/sn3/kvroot
cd /u03/nosql/sn3/kvroot
scp -r <username>@kv-host-1:/u01/nosql/sn1/kvroot/security .

To install the client.trust file on the client node, login to the client node and simply copy the
desired file from kv-host-1 node. That is,

On client-host:
scp <username>@kv-host-1:\
 /u01/nosql/sn1/kvroot/security/client.trust /tmp

Once the security artifacts generated on kv-host-1 have been installed on each of the store's
remaining nodes, the configuration files for the Storage Nodes that will be deployed to those
remaining nodes can be generated. This is accomplished by executing the following
commands on the respective node:

On kv-host-2:
java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 makebootconfig \
 -root /u02/nosql/sn2/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-1 \
 -harange 5002,5007 \
 -num_cpus 0 \
 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u02/nosql/sn2/data \
 -storagedirsize 10000000 \
 -store-security enable \
 -pwdmgr pwdfile \
 -kspwd No_Sql_00

On kv-host-3:
java -jar /opt/oracle/kv-ee/lib/kvstore.jar makebootconfig \
 -root /u03/nosql/sn3/kvroot \
 -config config.xml \
 -port 5000 \
 -host kv-host-1 \
 -harange 5002,5007 \
 -num_cpus 0 \
 -memory_mb 200 \
 -capacity 1 \
 -storagedir /u03/nosql/sn3/data \

Chapter 4
Deploying a Secure Store

4-5

 -storagedirsize 10000000 \
 -store-security enable \
 -pwdmgr pwdfile \
 -kspwd No_Sql_00

For both commands above, notice that the value specified for the -store-security parameter
is enable rather than configure, which was specified when generating the configuration on
kv-host-1.

Launch a Storage Node Agent (SNA) On Each Host Making Up the Store
From each host’s command line, type a command like the following:

nohup java -jar /opt/oracle/kv-ee/lib/kvstore.jar start \
 -root /u0<n>/nosql/sn<n>/kvroot -config config.xml &

where the token <n> corresponds to the integer associated with the given host from which the
above command is executed.

Configure and Deploy the Secure Store
From the command line of the host kv-host-1 launch the Admin CLI, connected to the boot
SNA.

java -jar /opt/oracle/kv-ee/lib/kvstore.jar runadmin \
 -helper-hosts kv-host-1:5000,kv-host-2:5000,kv-host-3:5000 \
 -security /u01/nosql/sn1/kvroot/security/client.security

Next, from the Admin CLI’s command prompt, deploy the store by either entering each
command shown below in succession or by using the load -file <file> command to load
those same commands from a file.

configure -name example-store
plan deploy-zone -name zn1 -rf 3 -wait

plan deploy-sn -znname zn1 -host kv-host-1 -port 5000 -wait
plan deploy-admin -sn 1 -wait
pool create -name snpool
pool join -name snpool -sn sn1

plan deploy-sn -znname zn1 -host kv-host-2 -port 5000 -wait
plan deploy-admin -sn 2 -wait
pool join -name snpool -sn sn2

plan deploy-sn -znname zn1 -host kv-host-3 -port 5000 -wait
plan deploy-admin -sn 3 -wait
pool join -name snpool -sn sn3

change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"

topology create -name store-layout -pool snpool -partitions 120
topology preview -name store-layout
plan deploy-topology -name store-layout -plan-name deploy-plan -wait

Chapter 4
Deploying a Secure Store

4-6

execute "CREATE USER root IDENTIFIED BY 'No_Sql_00' ADMIN";

Note:

The only difference between the set of store deployment commands presented in the
Configure and Deploy the Non-secure Store appendix for a non-secure store and the
commands above is the last command. Once the store is deployed, that last
command will create a store user named root with administrative privileges and
password equal to the value No_Sql_00.

When a secure store is deployed, before the store can be used, an initial user must be created
and then provisioned with the necessary security credentials that grant that user privileges that
allow it to administer the store. Once that user is created and provisioned, it can then be used
to create other users of the store. In a typical production scenario, tables are generally created
and populated with data by users with only user-level privileges rather than administrative
privileges.

The last command above then simply creates that initial user that will be used to create a
second user for executing the secure version of the example program presented in this
document. But before that root user can create other users of the store, it must first be
provisioned, as explained in the next section.

Provision the Secure Store’s Administrative User (root)
As described in the previous section, the last step of the secure store deployment process
simply creates the store's administrative user but does not provision it. But in order to
administer the store, that new user must be provisioned with credentials that grant
administrative privileges for the store. To provision the root user created in the previous
section, login to the store's kv-host-1 node, execute the commands shown, and enter the
appropriate responses when prompted:

java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 securityconfig pwdfile create \
 -file /u01/nosql/sn1/kvroot/security/root.passwd

Created

java -jar /opt/oracle/kv-ee/lib/kvstore.jar \
 securityconfig pwdfile secret \
 -file /u01/nosql/sn1/kvroot/security/root.passwd \
 -set -alias root

Enter the secret value to store: No_Sql_00<RETURN>
Re-enter the secret value for verification: No_Sql_00<RETURN>

Secret created
OK

cp /u01/nosql/sn1/kvroot/security/client.security \
 /u01/nosql/sn1/kvroot/security/root.login

Chapter 4
Deploying a Secure Store

4-7

echo oracle.kv.auth.username=root >> \
 /u01/nosql/sn1/kvroot/security/root.login
echo oracle.kv.auth.pwdfile.file=\
 /u01/nosql/sn1/kvroot/security/root.passwd >> \
 /u01/nosql/sn1/kvroot/security/root.login

The client.security properties file is one of the security artifacts that was generated in the
Generate Configuration Files For Each Storage Node (SN) appendix. The contents of that file
are copied to the file named root.login. The root.login file created here is used when
clients wishing to connect to the secure store must authenticate as the user named root. For
the purposes of this document, this authentication process will be referred to as logging in to
the secure store. As a result, the properties file used in that authentication process is referred
to as a login file, or login properties file.

For convenience, the system properties oracle.kv.auth.username and
oracle.kv.auth.pwdfile.file are inserted into the root.login file. This will allow the client
to connect to the secure store as the root user without having to specify the value of those
properties on the command line.

Create Non-Administrative User
To create a user that will be provisioned with non-administrative privileges, from the store’s kv-
host-1 node, login to the Admin CLI as the newly created root user.

java -jar /opt/oracle/kv-ee/lib/kvstore.jar runadmin \
 -host kv-host-1 \
 -port 5000 \
 -security /u01/nosql/sn1/kvroot/security/root.login

Then create a custom role with the name readwritemodifytables (for example) that consists
of the privileges a user would need to create and populate a table in the store. After creating
the desired role, create a user named example-user and grant the readwritemodifytables
role to that user. To accomplish this, either enter each command shown below in succession or
copy each command to a text file and execute the CLI’s load command, specifying the file you
created ('load -file <file>').

execute 'CREATE ROLE readwritemodifytables'
execute 'GRANT SYSDBA TO readwritemodifytables'
execute 'GRANT READ_ANY TO readwritemodifytables'
execute 'GRANT WRITE_ANY TO readwritemodifytables'
execute 'CREATE USER example-user IDENTIFIED BY "No_Sql_00"'
execute 'GRANT readwritemodifytables TO USER example-user'

Note:

The name of the user created above is not required to be the same as the OS user
name under which the example is executed. The name above and its associated
credentials are registered with the secure store for the purpose of authenticating to
the store. Thus, the name of the user that is created here can be any value you wish
to use.

Chapter 4
Deploying a Secure Store

4-8

Provision the Secure Store's Non-Administrative User (example-user)
Once the user named example-user and its role have been created, use the
KVSecurityCreation convenience program to generate the public and private credentials
needed by that user to connect to the secure store. To do this, first compile
KVSecurityCreation by executing the following command from the store's kv-host-1 node:

cd /opt/oracle/nosql/apps/kv
javac -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:examples \
 examples/hadoop/table/KVSecurityCreation.java

This will produce the following class files on the kv-host-1 node:

/opt/oracle/nosql/apps/kv/examples/hadoop/table/
 KVSecurityUtil.class
 KVSecurityCreation.class

Once KVSecurityCreation has been compiled, it can then be executed to generate the
desired security artifacts for the non-administrative user. If you want to store the password in a
clear text password file, then type the following at the command line and enter the appropriate
response when prompted:

cd /opt/oracle/nosql/apps/kv
java -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\
 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 hadoop.table.KVSecurityCreation \
 -pwdfile example-user.passwd \
 -set -alias example-user

INFO: removed file [/tmp/example-user.passwd]
INFO: removed file [/tmp/example-user-client-pwdfile.login]
created login properties file [/tmp/example-user-client-pwdfile.login]
created login properties file [/tmp/example-user-server.login]
created credentials store [/tmp/example-user.passwd]

Enter the secret value to store: No_Sql_00<RETURN>
Re-enter the secret value for verification: No_Sql_00<RETURN>

Secret created
OK

Alternatively, if you are using an Oracle Wallet (available only in the Enterprise Edition) to store
the user's password, then type the following and again, enter the appropriate response when
prompted:

cd /opt/oracle/nosql/apps/kv
java -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\

Chapter 4
Deploying a Secure Store

4-9

 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 hadoop.table.KVSecurityCreation \
 -wallet example-user-wallet.dir \
 -set -alias example-user

INFO: removed file [/tmp/example-user-wallet.dir/cwallet.sso]
INFO: removed directory [/tmp/example-user-wallet.dir]
INFO: removed file [/tmp/example-user-client-wallet.login]
created login properties file [/tmp/example-user-client-wallet.login]
created login properties file [/tmp/example-user-server.login]
created credentials store [/tmp/example-user-wallet.dir]

Enter the secret value to store: No_Sql_00<RETURN>
Re-enter the secret value for verification: No_Sql_00<RETURN>

Secret created
OK

Compare the artifacts generated when a password file is specified with the artifacts generated
when a wallet is specified. When a password file is specified, you should see the following
files:

/tmp
 example-user-client-pwdfile.login
 example-user-server.login
 example-user.passwd

Whereas when wallet storage is specified, you should see:

/tmp
 example-user-client-wallet.login
 example-user-server.login
 /example-user-wallet.dir
 cwallet.sso

Note:

As this is an example for demonstration purposes, the credential files generated by
KVSecurityCreation are placed in the system's /tmp directory. For your applications,
you may want to place the credential files you generate in a more permanent location
that is password protected.

Chapter 4
Deploying a Secure Store

4-10

Note:

For both the password or wallet cases two login properties files are generated; one
for client side connections, and one for server side connections. The only difference
between the client side login file and the server side login file is that the client side
login file specifies the username (the alias) along with the location of the user's
password. For the login properties file associated with the use of a password file, the
property oracle.kv.auth.pwdfile is used to specify the location of the file in which
the user’s password is stored; whereas the property oracle.kv.auth.wallet.dir
would be used if the password is stored in an Oracle Wallet. Although optional, the
reason for using two login files is to avoid passing private security information to the
server side, as explained in more detail in the Model For Building & Packaging
Secure Clients appendix. Additionally, observe that the server side login file
(example-user-server.login) is identical for both cases. This is because whether a
password file or an Oracle Wallet is used to store the password, both use the same
publicly visible communication transport information.

At this point, the store has been deployed, configured for secure access, and provisioned with
the necessary users and credentials required for table creation and population. To demonstrate
running a MapReduce job against table data contained in a secure store, the example
presented in this document can now be executed by a user whose password is stored either in
a clear text password file or an Oracle Wallet (Enterprise Edition only).

Note:

A final, important point is that the storage mechanism used for the example
application's user password (password file or Oracle Wallet) does not depend on the
password storage mechanism used by the store. That is, although this appendix (for
convenience) deployed a secure store using a password file rather than a wallet, the
fact that the store placed the passwords it manages in a password file does not
prevent the developer/deployer of a client of that store from storing the client's user
password in an Oracle Wallet, or vice versa. You should therefore view the use of an
Oracle Wallet or a password file by any client application as simply a "safe" place (for
some value of "safe") where the user password can be stored and accessed by only
the user who owns the wallet or password file. This means that the choice of
password storage mechanism is at the discretion of the application developer/
deployer, no matter what mechanism is used by the store itself.

CountTableRows Support Programs
Oracle NoSQL Database provides a separate distribution in Oracle Technology Network
consisting of example programs and utility classes that you can use to explore various aspects
of interacting with an Oracle NoSQL Database system. With respect to exploring the
integration of Oracle NoSQL Database with MapReduce, in addition to providing the
CountTableRows example program presented in this document, the Oracle NoSQL Database
examples also provide the LoadTableVehicle program that you can use to create and populate
an example table in the store you deploy.

The sections below describe the LoadVehicleTable program; including the schema employed
when creating the table, as well as how to compile and execute the program.

Chapter 4
CountTableRows Support Programs

4-11

Schema for the vehicleTable Example
To execute the CountTableRows MapReduce job, a table named vehicleTable having the
schema shown in the table below must be created in the Oracle NoSQL Database store
deployed for this example. The data types specified in the schema shown below are defined by
the Oracle NoSQL Database Table API (see oracle.kv.table.FieldDef.Type) .

Table 4-1 Schema for vehicleTable

Field Name Field Type Primary Key Shard Key

type FieldDef.Type.STRING Y Y

make FieldDef.Type.STRING Y Y

model FieldDef.Type.STRING Y Y

class FieldDef.Type.STRING Y

color FieldDef.Type.STRING

price FieldDef.Type.DOUBLE

count FieldDef.Type.INTEGER

dealerid FieldDef.Type.NUMBER

delivered FieldDef.Type.TIMESTAMP

The example vehicleTable consists of rows representing a particular vehicle a dealer might
have in stock for purchase. Each such row contains fields specifying the "type" of vehicle (for
example, car, truck, SUV, etc.), the "make" of the vehicle (Ford, GM, Chrysler, etc.), the
"model" (Explorer, Camaro, Lebaron, etc.), the vehicle "class" (4WheelDrive, FrontWheelDrive,
etc.), the "color" and "price" of the vehicle, the number of vehicles currently in stock (the
"count") having those characteristics, a number that uniquely identifies the dealership selling
those vehicles (the "dealerid"), and finally, the date and time those vehicles were "delivered" to
the dealership.

Although you can enter individual commands in the store's admin CLI to create a table with the
above schema, the preferred approach is to employ the Table Data Definition Language (DDL)
to create the desired table. One way to accomplish this is to follow the instructions presented in
the next sections to compile and execute the LoadVehicleTable program, which will populate
the desired table after using the DDL to create it.

Create and Populate vehicleTable with Example Data
Assuming an Oracle NoSQL Database store (secure or non-secure) has been deployed with
KVHOME equal to /opt/oracle/kv-ee, the LoadVehicleTable program that is supplied as a
convenience with the CountTableRows example can be executed to create and populate the
table named vehicleTable. Before executing LoadVehicleTable though, that program must
first be compiled. To do this, assuming you have installed the example distribution under the
base directory /opt/oracle/nosql/apps/kv/examples, type the following from your client
node’s OS command line:

cd /opt/oracle/nosql/apps/kv
javac -classpath \
 /opt/oracle/kv-ee/lib/kvclient.jar:examples \
 examples/hadoop/table/LoadVehicleTable.java

Chapter 4
CountTableRows Support Programs

4-12

This should produce the file:

/opt/oracle/nosql/apps/kv/examples/hadoop/table/LoadVehicleTable.class

Run LoadVehicleTable when the Store is Non-Secure
To execute LoadVehicleTable to create and populate the table named vehicleTable with
example data in a store configured for non-secure access, type the following at the command
line of the client node, which must have network connectivity with a node running the admin
service of the non-secure store you deployed (for example, kv-host-1 itself):

cd /opt/oracle/nosql/apps/kv
java -classpath \
 /opt/oracle/kv-ee/lib/kvstore.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\
 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 hadoop.table.LoadVehicleTable -store example-store \
 -host kv-host-1 -port 5000 -nops 79 [-delete]

The following parameters are required: -store, -host, -port, and -nops, whereas the -delete
parameter is optional.

In the example command line above, the argument -nops 79 requests that 79 rows be written
to the vehicleTable. If more or less than that number of rows is desired, then the value of the
-nops parameter should be changed.

If LoadVehicleTable is executed a second time and the optional -delete parameter is
specified, then all rows added by any previous executions of LoadVehicleTable are deleted
from the table prior to adding the requested new rows. Otherwise, all pre-existing rows are left
in place, and the number of rows in the table will be increased by the requested -nops number
of new rows.

Note:

Because of the way LoadVehicleTable generates records, it is possible that a given
record has already been added to the table, either during a previous call to
LoadVehicleTable, or during the current call. As a result, it is not uncommon for the
number of unique rows added to be less than the number requested. Because of this,
when processing has completed, LoadVehicleTable will display the number of
unique rows that are actually added to the table, along with the total number of rows
currently in the table (from previous runs).

Run LoadVehicleTable When the Store is Secure
To execute LoadVehicleTable against the secure store that you deployed and provisioned with
a non-administrative user according to the steps presented in the Deploying a Secure Store
appendix, an additional parameter must be added to the command line above. In this case,
type the following on the command line:

scp <username>@kv-host-<n>:\
 /u01/nosql/sn1/kvroot/security/client.trust /tmp

Chapter 4
CountTableRows Support Programs

4-13

cd /opt/oracle/nosql/apps/kv

java -classpath \
 /opt/oracle/kv-ee/lib/kvclient.jar:\
 /opt/oracle/kv-ee/lib/sklogger.jar:\
 /opt/oracle/kv-ee/lib/commonutil.jar:examples \
 hadoop.table.LoadVehicleTable -store example-store \
 -host kv-host-1 -port 5000 -nops 79 \
 -security /tmp/example-user-client-pwdfile.login \
 [-delete]

The client.trust file generated when the secure store was deployed must be installed in
the /tmp directory of the client node from which LoadVehicleTable is executed. If the client
node is different than any of the store nodes (kv-host-1, kv-host-2, kv-host-3), then the
installation of client.trust is accomplished by performing a remote copy; using the
appropriate username and the number 1 in place of the <n> token. On the other hand, if
LoadVehicleTable is run from one of the nodes making up the store itself, then a local copy
operation can be used for the installation.

The additional -security parameter in the command above specifies the location of the login
properties file (associated with a password file in this case rather than an Oracle Wallet) for the
given user or alias. All other parameters are the same as for the non-secure case.

To understand the -security parameter, recall from the Deploying a Secure Store appendix
that a non-administrative user named example-user was created, and a number of credential
files based on a password file (rather than an Oracle Wallet) were generated for that user and
placed under the /tmp system directory. As a result, you should see the following files under
the /tmp directory of the client node:

/tmp
 client.trust
 example-user-client-pwdfile.login
 example-user-server.login
 example-user.passwd

For this example, the user credential files must be co-located, where it doesn't matter which
directory they are located in, as long as they all reside in the same directory accessible by the
user. It is for this reason that the shared trust file (client.trust) is copied into /tmp above.
Co-locating client.trust and example-user.passwd with the login file (example-user-
client-pwdfile.login) allows relative paths to be used for the values of the system
properties oracle.kv.ssl.trustStore and oracle.kv.auth.pwdfile.file that are specified
in the login file (or oracle.kv.auth.wallet.dir if an Oracle Wallet is used to store the user
password). If those files are not co-located with the login file, then absolute paths must be used
for those properties.

Summary
At this point, the vehicleTable created in the Oracle NoSQL Database store you deployed
whether non-secure or secure should be populated with the desired example data. And the
MapReduce job initiated by CountTableRows can be run to count the number of rows in that
table.

Chapter 4
CountTableRows Support Programs

4-14

Model For Building & Packaging Secure Clients
With respect to running a MapReduce job against data contained in a secure store, a
particularly important issue to address is related to the communication of user credentials to
the tasks run on each of the DataNodes on which the Hadoop infrastructure executes the job.
Recall from above that when using the MapReduce programming model defined by Apache
Hadoop the tasks executed by a MapReduce job each act as a client of the store. Thus, if the
store is configured for secure access, in order to retrieve the desired data from the store, each
task must have access to the credentials of the user associated with that data. The typical
mechanism for providing the necessary credentials to a client of a secure store is to manually
install the credentials on the client's local file system; for example, by employing a utility such
as scp.

Although the manual mechanism is practical for most clients of a secure store, it is extremely
impractical for a MapReduce job. This is because a MapReduce job consists of multiple tasks
running in parallel, in separate address spaces, each with a separate file system that is
generally not under the control of the user. Assuming then, that write access is granted by the
Hadoop administrator (a problem in and of itself), this means that manual installation of the
client credentials for every possible user known to the given secure store would need to occur
on the file system of each of the many nodes in the Hadoop cluster; something that may be
very difficult to achieve.

To address this issue, a model will be presented that developers and deployers can employ to
facilitate the communication of each user's credentials to a given MapReduce job from the
client side of the job; that is, from the address space controlled by the job's client process,
owned by the user.

This model will consist of two primary components: a programming model for executing
MapReduce jobs that retrieve and process data contained in tables located in a secure store;
and a set of "best practices" for building, packaging, and deploying those jobs. Although there
is nothing preventing a user from manually installing the necessary security credentials on all
nodes in a given cluster, doing so is not only impractical, but may result in various security
vulnerabilities. Combining this programming model with the deployment best practices that are
presented here should help developers and deployers not only avoid the need to manually pre-
install credentials on the DataNodes of the Hadoop cluster, but should also prevent the sort of
security vulnerabilities that can occur with manual installation.

Programming Model For MapReduce with Oracle NoSQL Database Security
Recall that when executing a MapReduce job, the client application uses mechanisms
provided by the Hadoop infrastructure to initiate the job from a node (referred to as the Hadoop
cluster's access node) that has network access to the node running the Hadoop cluster's
ResourceManager. If the job will be run against a secure store, then prior to initiating the job,
the client must initialize the job's TableInputFormat with the following three pieces of
information:

• The name of the file that specifies the transport properties the client will use when
connecting to the store; which, for the purposes of this document, will be referred to as the
login properties file (or login file).

• The PasswordCredentials containing the username and password the client will present to
the store during authentication.

• The name of the file containing the public keys and/or certificates needed for
authentication; which, for the purposes of this document, will be referred to as, the client
trust file (or trust file).

Chapter 4
Model For Building & Packaging Secure Clients

4-15

To perform this initialization of the MapReduce client application, CountTableRows in this case,
invokes the setKVSecurity method defined in TableInputFormat. Once this initialization has
been performed and the job has been initiated, the job uses that TableInputFormat to create
and assign a TableInputSplit (a split) to each of the Mapper tasks that will run on one of the
DataNodes in the cluster. The TableInputFormat needs the information initialized by the
setKVSecurity method for two reasons:

• To connect to the secure store from the access node and retrieve the information needed
to create the splits.

• To initialize each split with that same security information, so that each such split can
connect to the secure store from its DataNode host and retrieve the particular table data
the split will process.

In addition to requiring that the MapReduce application use the mechanism just described to
initialize and configure the job's TableInputFormat (and thus, its splits) with the information
listed above, the model also requires that the public and private security credentials referenced
by that information be communicated to the TableInputFormat, as well as the splits, securely.
How this is achieved depends on whether that information is being communicated to the
TableInputFormat on the client side of the application, or to the splits on the server side.

Communicating Security Credentials to the Server Side Splits
To facilitate communication of the user's security credentials to the splits distributed to each of
the DataNodes of the cluster, the model presented here separates public security information
from the private information (the username and password), and then stores the private
information as part of each split's internal state, rather than on the local file system of each
associated DataNode; which may be vulnerable or difficult/impossible to secure. For
communication of the public contents of the login and trust files to each such split, the model
supports an (optional) mechanism that allows the application to communicate that information
as Java resources that each split retrieves from the classpath of the split's Java VM. This
avoids the need to manually transfer the contents of those files to each DataNode's local file
system, and also avoids the potential security vulnerabilities that can result from manual
installation on those nodes. Note that when an application wishes to employ this mechanism, it
will typically include the necessary information in a JAR file that is specified to the MapReduce
job via the Hadoop command line directive -libjars.

The intent of the mechanism just described is to allow applications to exploit the Hadoop
infrastructure to automatically distribute the public login and trust information to each split
belonging to the job via a JAR file added to the classpath on each remote DataNode. But it is
important to note that although this mechanism is used to distribute the application's public
credentials, it must not be used to distribute any of the private information related to
authentication; specifically, the username and password. This is important because a JAR file
that is distributed to the DataNodes in the manner described may be cached on the associated
DataNode's local file system; which might expose a vulnerability. As a result, private
authentication information is only communicated as part of each split's internal state.

The separation of public and private credentials supported by this model not only prevents
caching the private credentials on each DataNode, but also facilitates the ability to guarantee
the confidentiality of that information, via whatever external third party secure communication
mechanism the current Hadoop implementation happens to employ. This capability is also
important to support the execution of Hive queries against a secure store.

Chapter 4
Model For Building & Packaging Secure Clients

4-16

Communicating Security Credentials to the TableInputFormat
With respect to the job's TableInputFormat, the programming model supports different options
for communicating the user's security information. This is because the TableInputFormat
operates only on the access node, on the client side of the job; which means that there is only
one file system that needs to be secured. Additionally, unlike the splits, the TableInputFormat
is not sent on the wire. Thus, as long as only the user is granted read privileges, both the
public and private security information can be installed on the access node's file system
without fear of compromise. For this case, the application would typically use system
properties on the command line to specify the fully-qualified paths to the login, trust, and
password files (or Oracle Wallet); which the TableInputFormat would then read from the local
file system, retrieving the necessary public and private security information.

A second option for communicating the user's security credentials to the TableInputFormat is
to include the public and private information as resources in the client side classpath of the
Java VM in which the TableInputFormat runs. This is the option employed by the example
presented in this document, and is similar to what was described above for the splits. This
option demonstrates how an application's build model can be exploited to simplify not only the
applications's command line, but also the deployment of secure MapReduce jobs in general.
As was the case with the splits, applications will typically communicate the necessary security
information as Java resources by including that information in a JAR file. But rather than using
the Hadoop command line directive -libjars to specify the JAR file to the server side of the
MapReduce job, in this case, because the TableInputFormat operates on only the client side
access node, the JAR file would simply be added to the HADOOP_CLASSPATH environment
variable.

Best Practices: MapReduce Application Packaging for Oracle NoSQL
Security

To help users achieve the sort of separation of public and private security information
described in previous sections, a set of (optional) best practices related to packaging the client
application and its necessary artifacts is presented in this section, and are employed by the
example featured in this document. Although the use of these packaging practices is optional,
you are encouraged to employ them when working with any MapReduce jobs of your own that
will interact with a secure store.

Rather than manually installing the necessary security artifacts (login file, trust file, password
file or Oracle Wallet) on each DataNode in the cluster, user's should instead install those
artifacts only on the cluster's single access node; the node from which the client application is
executed. The client application can then retrieve each artifact from the local environment,
repackage the necessary information, and then employ mechanisms provided by the Hadoop
infrastructure to transfer that information to the appropriate components of the MapReduce job
that will be executed.

For example, as described in the previous section, your client application can be designed to
retrieve the username and location of the password from the command line, a configuration
file, or a resource in the client classpath; where the location of the user's password is a locally
installed password file or Oracle Wallet that can only be read by the user. After retrieving the
username from the command line and the password from the specified location, the client uses
that information to create the user's PasswordCredentials, which are transferred to each
MapReduce task via the splits that are created by the job's TableInputFormat. Using this
model, the user's PasswordCredentials, are never written to the file systems of the cluster's
DataNodes. They are only held in each task's memory. As a result, the integrity and
confidentiality of those credentials only need to be provided when on the wire, which can be

Chapter 4
Model For Building & Packaging Secure Clients

4-17

achieved by using whatever external third party secure communication mechanism the current
Hadoop implementation happens to employ.

With respect to the transfer of the public login and trust artifacts, the client application can
exploit the mechanisms provided by the Hadoop infrastructure to automatically transfer
classpath (JAR) artifacts to the job's tasks. As demonstrated by the CountTableRows example
presented in the body of this document, the client application's build process can be designed
to separate the application's class files from its public security artifacts. Specifically, the
application's class files and optionally, the public and private credentials, can be placed in a
local JAR file on the access node for inclusion in the classpath of the client itself; while only the
public login properties and client trust information are placed in a separate JAR file that can be
added to the hadoop command line specification of -libjars for inclusion in the classpath of
each MapReduce task.

Application Packaging for the Non-Secure Case
To understand how the packaging model discussed here can be employed when executing an
application against a secure store, it may be helpful to first review how the CountTableRows
example is executed against a non-secure store. Recall from the previous sections, for the
non-secure case, the following command was executed to produce a JAR file containing only
the class files needed by CountTableRows.

cd /opt/oracle/nosql/apps/kv/examples
jar cvf CountTableRows.jar hadoop/table/CountTableRows*.class

which produced the file CountTableRows.jar, whose contents look like:

META-INF/
META-INF/MANIFEST.MF
hadoop/table/CountTableRows.class
hadoop/table/CountTableRows$Map.class
hadoop/table/CountTableRows$Reduce.class

and the following commands were then be used to execute the CountTableRows example
MapReduce job against a non-secure store:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/ondb/kv/lib/kvclient.jar

cd /opt/ondb/kv
hadoop jar examples/non_secure_CountTableRows.jar \
 hadoop.table.CountTableRows \
 -libjars \
 /opt/oracle/kv-ee/lib/kvclient.jar,\
 /opt/oracle/kv-ee/lib/sklogger.jar,\
 /opt/oracle/kv-ee/lib/commonutil.jar,\
 /opt/oracle/kv-ee/lib/failureaccess.jar,\
 /opt/oracle/kv-ee/lib/antlr4-runtime-nosql-shaded.jar,\
 /opt/oracle/kv-ee/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/lib/jackson-annotations.jar \
 example-store \
 kv-host-1:5000 \

Chapter 4
Model For Building & Packaging Secure Clients

4-18

 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/0001

Observe that there are three classpaths that must be set when a MapReduce job is executed.
First, the jar specification to the Hadoop command interpreter makes the class files of the main
program (CountTableRows in this case) accessible to the hadoop launcher mechanism, so that
the program can be loaded and executed. Next, the HADOOP_CLASSPATH environment variable
must be set to include any third party libraries that the program or the Hadoop framework,
running on the local access node, may need to load. For the example above, only
kvclient.jar is added to HADOOP_CLASSPATH, so that the Hadoop framework's job initiation
mechanism on the access node can access TableInputFormat and its related classes.
Compare this with the specification of the -libjars argument which is the third classpath that
must be specified. As described below, the -libjars argument must include not only
kvclient.jar, but also a number of other third party libraries that may not be available in the
remote Hadoop environment.

The Hadoop command interpreter's -libjars argument is used to specify the classpath
needed by each MapReduce task executing on the Hadoop cluster's DataNodes. The -
libjars argument must include all of the libraries needed to run the desired application that
are not already available via the Hadoop platform. For the case above, kvclient.jar,
sklogger.jar, commonutil.jar, failureaccess.jar, antlr4-runtime-nosql-shaded.jar,
jackson-core.jar, jackson-databind.jar, and jackson-annotations.jar are each specified
via the -libjars argument so that each MapReduce task can access classes such as,
TableInputSplit and TableRecordReader, as well as the logging related classes and JSON
utility classes provided by Oracle NoSQL Database and other support classes that are not
generally provided by the Hadoop platform.

Application Packaging and Execution for the Secure Case
Compare the non-secure case described in the previous section with what would be done to
run the CountTableRows MapReduce job against a secure store. For the secure case, two JAR
files are built; one for the classpath on the client side, and one for the classpaths of the
DataNodes on the server side. The first JAR file will be added to the client side classpath and
includes not only the class files for the application but also the public and private credentials
the client will need to interact with the secure store. Including the public and private credentials
in the client side JAR file avoids the inconvenience of having to specify that information on the
command line.

The second JAR file will be added to the DataNode classpaths on the server side via the -
libjars argument, and will include only the user's public credentials.

As described in the Deploying a Secure Store appendix, the user's password can be stored in
either a clear text password file or an Oracle Wallet. As a result, how the first JAR is generated
is dependent on whether a password file or an Oracle Wallet is used.

Application Packaging for the Secure Case Using a Password File
If you wish to execute CountTableRows using a password file instead of an Oracle Wallet, and if
you have used KVSecurityCreation to generate the user's security artifacts in the manner
presented in the Deploying a Secure Store appendix, then both the client side and server side
JAR files for the CountTableRows example application are generated by typing the following on
the command line:

cd /opt/oracle/nosql/apps/kv/examples
jar cvf CountTableRows-pwdClient.jar \

Chapter 4
Model For Building & Packaging Secure Clients

4-19

 hadoop/table/CountTableRows*.class \
 hadoop/table/KVSecurityUtil*.class

cd /tmp
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdClient.jar \
 client.trust
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdClient.jar \
 example-user-client-pwdfile.login
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdClient.jar \
 example-user.passwd

jar cvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdServer.jar /
 client.trust
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdServer.jar \
 example-user-server.login

The first four commands above produce the client side JAR file named CountTableRows-
pwdClient.jar, where the contents of that JAR look like:

META-INF/
META-INF/MANIFEST.MF
hadoop/table/CountTableRows.class
hadoop/table/CountTableRows$Map.class
hadoop/table/CountTableRows$Reduce.class
hadoop/table/KVSecurityUtil.class
client.trust
example-user-client-pwdfile.login
example-user.passwd

The following files in the above code correspond to security artifacts that should remain private
to the client.

example-user-client-pwdfile.login
example-user.passwd

The last two commands above produce the server side JAR file named CountTableRows-
pwdServer.jar, with contents that look like:

META-INF/
META-INF/MANIFEST.MF
client.trust
example-user-server.login

The last two files from the above list correspond to the client's security artifacts that can be
shared publicly.

Chapter 4
Model For Building & Packaging Secure Clients

4-20

Application Execution for the Secure Case Using a Password File
If you wish to execute the CountTableRows MapReduce job against a secure store where a
password file rather than an Oracle Wallet is used to store the client application's password,
then after packaging the application for password file based execution as described in the
previous section, you would then type the following on the command line:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/oracle/kv-ee/kv/lib/kvclient.jar:\
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-pwdServer.jar

cd /opt/oracle/nosql/apps/kv

hadoop jar examples/CountTableRows-pwdClient.jar \
 hadoop.table.CountTableRows \
 -libjars \
 /opt/oracle/kv-ee/kv/lib/kvclient.jar,\
 /opt/oracle/kv-ee/kv/lib/sklogger.jar,\
 /opt/oracle/kv-ee/kv/lib/commonutil.jar,\
 /opt/oracle/kv-ee/kv/lib/failureaccess.jar,\
 /opt/oracle/kv-ee/kv/lib/antlr4-runtime-nosql-shaded.jar,\
 /opt/oracle/kv-ee/kv/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/kv/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/kv/lib/jackson-annotations.jar,\
 /opt/oracle/nosql/apps/examples/CountTableRows-pwdServer.jar \
 example-store \
 kv-host-1:5000 \
 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/0001 \
 example-user-client-pwdfile.login \
 example-user-server.login

Application Packaging for the Secure Case Using an Oracle Wallet
Rather than using a file in which to store the client’s password, you may choose to use an
Oracle Wallet to store the password in obfuscated form. When an Oracle Wallet will be used
and the KVSecurityCreation convenience program was used to generate the wallet based
artifacts for CountTableRows in the manner presented in the Deploying a Secure Store
appendix, then both the client side and server side JAR files for the wallet based
CountTableRows example application are generated by typing the following on the command
line:

cd /opt/oracle/nosql/apps/kv/examples
jar cvf CountTableRows-walletClient.jar \
 hadoop/table/CountTableRows*.class \
 hadoop/table/KVSecurityUtil*.class

cd /tmp
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-walletClient.jar \
 client.trust
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-walletClient.jar \
 example-user-client-walletfile.login

Chapter 4
Model For Building & Packaging Secure Clients

4-21

jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-walletClient.jar \
 example-user-wallet.dir

jar cvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-walletServer.jar /
 client.trust
jar uvf \
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-walletServer.jar \
 example-user-server.login

The first four commands above produce the client side JAR file named CountTableRows-
walletClient.jar, where the contents of that JAR look like:

META-INF/
META-INF/MANIFEST.MF
hadoop/table/CountTableRows.class
hadoop/table/CountTableRows$Map.class
hadoop/table/CountTableRows$Reduce.class
hadoop/table/KVSecurityUtil.class
client.trust
example-user-client-wallet.login
example-user-wallet.dir/
example-user-wallet.dir/cwallet.sso

Similarly, the last two commands produce the server side JAR file named CountTableRows-
walletServer.jar, with contents:

META-INF/
META-INF/MANIFEST.MF
client.trust
example-user-server.login

Application Execution for the Secure Case Using an Oracle Wallet
If you wish to execute the CountTableRows MapReduce job against a secure store using an
Oracle Wallet to store the client application's password, then after packaging the application for
wallet based execution as described in the previous section, you would type the following on
the command line:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:\
 /opt/oracle/kv-ee/kv/lib/kvclient.jar:\
 /opt/oracle/nosql/apps/kv/examples/CountTableRows-walletServer.jar

cd /opt/oracle/nosql/apps/kv

hadoop jar examples/CountTableRows-walletClient.jar \
 hadoop.table.CountTableRows \
 -libjars \
 /opt/oracle/kv-ee/kv/lib/kvclient.jar,\
 /opt/oracle/kv-ee/kv/lib/sklogger.jar,\
 /opt/oracle/kv-ee/kv/lib/commonutil.jar,\
 /opt/oracle/kv-ee/kv/lib/failureaccess.jar,\
 /opt/oracle/kv-ee/kv/lib/antlr4-runtime-nosql-shaded.jar,\

Chapter 4
Model For Building & Packaging Secure Clients

4-22

 /opt/oracle/kv-ee/kv/lib/jackson-core.jar,\
 /opt/oracle/kv-ee/kv/lib/jackson-databind.jar,\
 /opt/oracle/kv-ee/kv/lib/jackson-annotations.jar,\
 /opt/oracle/nosql/apps/examples/CountTableRows-walletServer.jar \
 example-store \
 kv-host-1:5000 \
 vehicleTable \
 /user/example-user/CountTableRows/vehicleTable/0001 \
 example-user-client-walletfile.login \
 example-user-server.login

Secure Versus Non-Secure Command Lines
When examining how the application is executed using either a wallet based or a password file
based password storage mechanism, you should first notice that, unlike the non-secure case,
the HADOOP_CLASSPATH and -libjars argument have both been augmented with the JAR file
that contains only the public credentials for login and trust; that is, either CountTableRows-
pwdServer.jar or CountTableRows-walletServer.jar. Because those JAR files contain only
public information, they can be safely transmitted to the server side remote address spaces.

Compare this with the value to which the application's local classpath is set, via the jar
directive. Rather than including the application's server based JAR file, the local classpath
instead is set to include the application's client based JAR file; either CountTableRows-
pwdClient.jar or CountTableRows-walletClient.jar. The application's client based JAR file
includes both the application's public and private credentials. Those JAR files contain security
artifacts which should remain private to the application's address space; that is, the client side
of the application. As a result, those JAR files must never be included in the HADOOP_CLASSPATH
or -libjars specifications. They should be included only in the client's local classpath.

Finally, the only other difference between the command lines for secure execution and non-
secure execution, is the two additional arguments at the end of the argument list for the secure
case; specifically, example-user-server.login and either example-user-client-
pwdfile.login or example-user-client-wallet.login.

The values of those arguments specify, respectively, the names of the client side and server
side login files, whose contents will be retrieved as resources from the corresponding JAR file.

Observe that when you package and execute your MapReduce application in a manner like
that shown here, there is no need to specify the username or password file (or wallet) on the
command line; as that information is included as part of the client side JAR file. Additionally,
the server side JAR file that is transferred from the Hadoop cluster’s access node to the job's
DataNodes does not include that private information. This is important because that transferred
JAR file will be cached in the file system of each of those DataNodes.

Summary
As the sections above demonstrate, the programming model for MapReduce and Oracle
NoSQL Database Security supports (even encourages) the best practices presented in this
section for building, packaging, and deploying any given MapReduce job that employs the
Oracle NoSQL Database Table API to retrieve and process data in a given Oracle NoSQL
Database store, either secure or non-secure. As a result, simply generating separate JAR files
a set of JAR files for the secure case, and one for the non-secure case allows deployers to
conveniently run the job with or without security.

Chapter 4
Model For Building & Packaging Secure Clients

4-23

Note:

This model for separating public and private user credentials will also play an
important role when executing Hive queries against table data in a secure store.

Chapter 4
Model For Building & Packaging Secure Clients

4-24

Part II
Integration with Elastic Search for Full Text
Search

Topics

• About Full Text Search

• Intergrating Elasticsearch with Oracle NoSQL Database

• Managing Full Text Index

• Security in Full Text Search

5
About Full Text Search

Topics

• About Full Text Search

• Prerequisite to Full Text Search

About Full Text Search
Full Text Search provides the capability to identify natural-language documents that satisfy a
query, and optionally to sort them by relevance to the query.

Full Text Search will find all documents containing given query terms and return them in order
of their similarity to the query. Notions of query and similarity are very flexible and depend on
the specific application. The simplest search considers query as a set of words and similarity
as the frequency of query words in the document.

In concert with the table interface, Oracle NoSQL Database integrates with the Elasticsearch
third-party open-source search engine to enable Full Text Search capability against data stored
in an Oracle NoSQL Database table. See Elasticsearch.

Full Text Search is an important aspect of any big data or database system. Users expect that
when they input text into a box and click search, they will get the relevant search results they
are looking for. Thus, besides providing high performance Full Text Search of data stored in
Oracle NoSQL tables, the mechanism described in this document also allows users to explore
a collection of information by applying multiple Elastisearch filters.

The feature described here provides a mechanism for marking fields from an Oracle NoSQL
Database table schema as being text searchable. This so-called Oracle NoSQL Text Indexing
mechanism allows one to create Elastisearch indexes on the data stored in Oracle NoSQL
Database tables. It does this by causing the data in the indexed fields to automatically be
stored in a corresponding index created in a given Elastisearch cluster. Once the data is stored
(indexed) in Elastisearch, one can then use any native Elastisearch API to search and retrieve
the data that matches the specified search criteria. References contained in the documents
returned by Elasticsearch can then be used to retrieve the original Oracle NoSQL Database
records that correspond to the indexed data.

Note:

So that the maintenance of indexes does not affect the performance of an Oracle
NoSQL Database store, the text indexes that are used for Full Text Search will not be
maintained locally by Oracle NoSQL Database components. Rather, they will instead
be maintained by a remote Elasticsearch service hosted on other nodes.

5-1

Prerequisite to Full Text Search
In order to employ the Full Text Search feature, you need a running Oracle NoSQL Database
store, and an Elasticsearch cluster. The Elasticsearch cluster must be reachable over a
network from the Oracle NoSQL Database store. For performance reasons, when running in a
production environment, the nodes making up the Oracle NoSQL Database, as well as the
nodes of the Elasticsearch cluster should be separate hosts in a distributed environment,
communicating over a network.

Currently, the Full Text Search feature of Oracle NoSQL Database will work with Elasticsearch
version 2 (example: 2.4.6), but not versions greater than or equal to version 5. The following
references can help you download, install, and start a version of Elasticsearch compatible with
Oracle NoSQL Database:

• https://www.elastic.co/downloads/past-releases/elasticsearch-2-4-6

• https://www.elastic.co/guide/en/elasticsearch/reference/2.4/index.html

Once your Elasticsearch cluster is running, it should consist of one or more nodes. Some or all
of the nodes will have services listening on two ports:

• The HTTP port, which is used for REST requests (default 9200).

• The Elasticsearch transport port, used for communication between Elasticsearch nodes
(default 9300).

Note:

As explained in the sections below, you must know the HTTP port and the host name
of at least one node in the Elasticsearch cluster. You also must know the name of the
cluster itself, which by default is elasticsearch. This information must be provided
to the Oracle NoSQL Database store so that it can find and connect to the
Elasticsearch cluster.

Chapter 5
Prerequisite to Full Text Search

5-2

https://www.elastic.co/downloads/past-releases/elasticsearch-2-4-6
https://www.elastic.co/guide/en/elasticsearch/reference/2.4/index.html

6
Intergrating Elasticsearch with Oracle NoSQL
Database

Topics

• Registering Elasticsearch with Oracle NoSQL Database

• Deregistering Elasticsearch from an Oracle NoSQL Store

Registering Elasticsearch with Oracle NoSQL Database
Before you can use Oracle NoSQL Database to create a Text Index in an Elasticsearch cluster,
you must register the desired cluster with the Oracle NoSQL Database store, using the plan
command named register-es. It is via the register-es plan that you provide the name of
the Elasticsearch cluster, the name of one of the hosts in that cluster, and the HTTP port on
which that host is listening for connection requests. Specifically, the register-es plan
command takes the following form:

plan register-es
 –clustername <name>
 -host <host|ip>
 -port <http port>
 -secure <true|false>
 [-wait]
 [-force]

For example, if your Elasticsearch cluster is named elasticsearch (the default) and
includes a node running on your local host, listening on the default HTTP port (9200), then you
would execute the following command from the Oracle NoSQL Database administrative
command line interface (Admin CLI):

kv-> plan register-es
 –clustername elasticsearch
 –host 127.0.0.1
 –port 9200
 –secure false
 -wait

Executed plan 22, waiting for completion...
Plan 22 ended successfully

6-1

Note:

When the register-es plan is executed, if the Elasticsearch cluster specified in the
command already contains indexes created under a registration between a previous
NoSQL store instance and the current Elasticsearch cluster, then the plan will fail and
display an error message. Such indexes are referred to as stale indexes, and the
plan fails in the face of such stale indexes because the indexes currently maintained
in the Elasticsearch cluster's state are associated with the store that previously
created them under the original registration. Although those existing indexes are part
of the Elasticsearch cluster's state, they are not part of the state of the new store
instance. Allowing the new store instance to create a new registration through which
new indexes can be created in the cluster can produce inconsistencies and possible
conflicts between the state maintained by the store and the state maintained by
Elasticsearch; resulting in potential error conditions.

To avoid such error conditions, when the new store instance receives a request for a
new registration with the Elasticsearch cluster, and that cluster contains indexes
associated with a registration created by a previous store instance, the request is
rejected; unless the force flag is specified. If the force flag is specified in the
register-es command, then the store will request that Elasticsearch first remove
all of its stale indexes; and only after those indexes have been successfully removed,
will the registration be created between the new store instance and the Elasticsearch
cluster.

During the registration process the store's Admin Service (or simply, the Admin)
verifies the existence of (as well as a network path to) the Elasticsearch node
specified in the register-es command arguments, and then acquires from that
node a complete list of connection information for all the nodes making up that
Elasticsearch cluster. This information is stored in the Admin's state, as well as
distributed to all the nodes
of the Oracle NoSQL Database store. If the Elasticsearch cluster's population of
nodes changes significantly (due to node or network failure, cluster reconfiguration,
and so on), the register-es command can be repeated to update the Oracle
NoSQL Database's list of Elasticsearch node connections.

After successfully executing the register-es plan, you can verify that the Oracle NoSQL
Database store is indeed registered with the desired Elasticsearch cluster by executing the
show parameters command from the Admin CLI in the following way:

show parameters –service <storage node id>

The show parameters command displays a list of properties for the specified storage node
that, if the registration was successful, will include the name of the Elasticsearch cluster, along
with the host names and/or IP addresses of the nodes making up that cluster. When you
execute the show parameters command, the value of the properties named
searchClustername and searchClusterMembers will provide that information for you.
For example,

kv-> show parameters -service sn1

capacity=1
haHostname=localhost
haPortRange=5005,5007

Chapter 6
Registering Elasticsearch with Oracle NoSQL Database

6-2

hostname=localhost
memoryMB=0
mgmtClass=oracle.kv.impl.mgmt.NoOpAgent
mgmtPollPort=0

mgmtTrapPort=0

numCPUs=8

registryPort=5000

rnHeapMaxMB=0

rnHeapPercent=85

rootDirPath=./kvroot
searchClusterMembers=127.0.0.1:9200
searchClusterName=elasticsearch
serviceLogFileCount=20
serviceLogFileLimit=2000000
storageNodeId=1

systemPercent=10

Deregistering Elasticsearch from an Oracle NoSQL Store
Oracle NoSQL Database implements 'one store, one Elasticsearch cluster' policy. That is, a
given store cannot be simultaneously registered with more than one Elasticsearch cluster. This
policy is expressed through the registration model. See Registering Elasticsearch with Oracle
NoSQL Database. Thus, if your store is currently registered with one Elasticsearch cluster, but
you wish to register with a second cluster, then you must first deactivate – or deregister – the
current registration. This is accomplished by executing the following deregister-es plan.

plan deregister-es [-wait]

Note:

Because of the one store, one cluster policy, the deregister-es command takes
no arguments.

The store cannot deactivate a registration unless all indexes created under that registration
have first been deleted from the Elasticsearch cluster. This can be accomplished by executing
the DROP INDEX command on each of the Full Text Indexes created by the store and located
in the Elasticsearch cluster with which the store is registered. That is, from the Admin CLI, a
command with the following form should be executed for each index:

execute 'DROP INDEX [IF EXISTS] <index> ON <table>';

Since the Elasticsearch cluster is created, maintained, and administered separate from the
Oracle NoSQL Database store, that cluster may contain indexes that were created outside of
the store's control, using the Elasticsearch API. These sort of indexes are not known to the

Chapter 6
Deregistering Elasticsearch from an Oracle NoSQL Store

6-3

store (are not in the store's state), and do not need to be deleted from the cluster in order to
deactivate the store's registration with the cluster. Only the indexes that were created in the
Elasticsearch cluster via the Oracle NoSQL CREATE FULLTEXT INDEX command must be
deleted for the deregister-es command to succeed.

If the deregister-es command fails because the cluster still contains Full Text Indexes
created by the store, the output for the command will display the names of the indexes that
must be dropped. For example,

kv-> plan deregister-es –wait
Cannot deregister ES because these text indexes exist:

mytestIndex
JokeIndex

kv-> execute 'DROP INDEX mytestIndex ON myTable';
Plan 16 completed successfully

kv-> execute 'DROP INDEX JokeIndex ON myTable';
Plan 17 completed successfully

kv-> plan deregister-es –wait
Plan 18 completed successfully

The show parameters command can then be executed again, and its output examined, to
determine if the store is indeed no longer registered with the Elasticsearch cluster.

Note:

There are two index types that can exist in Oracle NoSQL Database: a regular or
Secondary Index, and a Text Index (for Full Text Search). With respect to index
creation or deletion, although separate statements are needed for index creation (to
distinguish the type of index to create), the same DROP INDEX statement is used to
remove either type of index. When applied to a text index, a DROP INDEX command
like those shown above not only stops the population of the index from the
associated Oracle NoSQL Database table, but also removes the mapping and all
related documents from Elasticsearch.

Chapter 6
Deregistering Elasticsearch from an Oracle NoSQL Store

6-4

7
Managing Full Text Index

Topics

• Creating a Full Text Index

• Mapping a Full Text Index Field to an Elasticsearch Field

• Handling TIMESTAMP Data Type

– Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type

– Full Text Search of Indexed TIMESTAMP Scalar

• Handling JSON Data Type

– Review: Secondary Indexes on JSON Document Content

– Creating Text Indexes on JSON Document Content

– Full Text Search of Indexed JSON Documents

• Deleting a Full Text Index

Creating a Full Text Index
Review the concepts of Oracle NoSQL Database tables and indexes for better understanding
of this section. See Indexes in the SQL Reference Guide. That chapter describes the main
type of index you can create on the fields of a given Oracle NoSQL Database table.

This section introduces a second type of index that can be created on a given table. This
second index category – separate from the Secondary Indexes described in the SQL
Reference Guide – is referred to as a Full Text Index or, simply, a Text Index on the associated
table.

As with any index, a Text Index as defined here, allows one to search for rows of an Oracle
NoSQL Database table having fields that share some common value or characteristic. The
difference between the two types of indexes is that an Oracle NoSQL Database Secondary
Index is created, maintained and queried all within the Oracle NoSQL Database store; using
the Oracle NoSQL Database Table API. On the other hand, the creation of a Text Index is only
initiated via the Table API. Although the store maintains information about the Text Indexes that
are created, such indexes are actually created, maintained, and queried in the Elasticsearch
cluster with which the store is registered (using the Elasticsearch API).

It is important to understand that when the first type of index is created, data from the indexed
fields of the associated table are written to the store itself; whereas when a Text Index is
created, that data is streamed to the Elasticsearch cluster with which the store is registered,
which stores (indexes) the data so that the Elasticsearch API can be used to execute full text
searches against that data. Whenever new data is written to, or existing data is deleted from
the table, the corresponding Text Index located in the cluster is updated accordingly.

7-1

To index one or more fields of an Oracle NoSQL table for Full Text Search in Elasticsearch,
you can use the store's Admin CLI to execute a command with the following format:

execute 'CREATE FULLTEXT INDEX
 [IF NOT EXISTS]
 <index> ON <table>
 (<field> {<mapping-spec>},<field> {<mapping-spec>}, ...)
 [ES_SHARDS=<n>]
 [ES_REPLICAS=<n>]
 [OVERRIDE]
 [COMMENT "<comment>"]';

Each argument, flag, and directive is described as follows, where any item encapsulated by
square brackets [...] is optional, and the items encapsulated by curly braces {...} are
required only when the field's value is a JSON document, but is optional otherwise:

• index - The name of the Text Index to create.

• table - The name of the table containing the fields to index.

• field - A comma-separated list of each field to index, encapsulated by open parentheses.

• Each field to index can optionally be associated with a mapping specification that specifies
how Elasticsearch should handle the corresponding field. For example, whether
Elasticsearch should treat the field's value as a text, number, date type, and so on; as well
as what analyzer should be employed when indexing a text value. As explained in the
sections below, the mapping specification for a given field must be expressed in valid
JSON format.

• If the command above is executed and a Text Index with the specified name already exists,
then unless the optional directive IF NOT EXISTS is specified, or the optional directive
OVERRIDE is specified, the command will fail, displaying an error message. Specifying IF
NOT EXISTS when the named index already exists will result in a no-op. If OVERRIDE is
specified for an existing index, then the existing index will be deleted from Elasticsearch
and a new index will be created with the same name.

• If the optional ES_SHARDS argument is specified, along with a corresponding integer
value, then the setting for the number of primary shards Elasticsearch will use for the new
index will be changed to the given value. Note that the default value for this setting is 5,
and this setting cannot be changed after the index has been created.

• If the optional ES_REPLICAS argument is specified, along with a corresponding integer
value, then the setting for the number of copies of the indexed value each primary shard
should have will be changed to the given value. Note that the default value for this setting
is 1, and this setting can be changed on a live index at any time.

For more information on how the value of the ES_SHARDS and ES_REPLICAS properties are
used, refer to the Elasticsearch settings named number_of_shards and
number_of_replicas described in the Elasticsearch documentation. See Elasticsearch
Index Settings.

When CREATE FULLTEXT INDEX executes successfully, the Text Index name provided in the
command (along with metadata associated with that name) is stored and maintained in the
Oracle NoSQL store. Additionally, a corresponding text searchable index – the index that is
actually queried – is also created in the Elasticsearch cluster with which the store is registered.
Whereas the name associated with the index in Oracle NoSQL is the simple index name

Chapter 7
Creating a Full Text Index

7-2

specified in the CREATE FULLTEXT INDEX command, the name of the corresponding index
in Elasticsearch takes the following dot-separated form:

ondb.<store>.<table>.<index>

Each of the coordinates of the Elasticsearch index name will always be lowercase; even if their
counterpart in Oracle NoSQL was specified as mixed or upper case. The first coordinate (or
prefix) of the name will always be ondb; which distinguishes the indexes in Elasticsearch that
were created by the Oracle NoSQL CREATE FULLTEXT INDEX command from other indexes
created externally, via the Elasticsearch API. The store coordinate of the Elasticsearch index
name is the name of the Oracle NoSQL Database store that asked Elasticsearch to create the
index. And the table and index coordinates are the values specified for the corresponding
arguments in CREATE FULLTEXT INDEX; that is, the name of the Oracle NoSQL table from
which the values to index are taken, and the name of the Oracle NoSQL Text Index the store
should maintain. Using the coordinates of any such index name in Elasticsearch, one should
always be able to determine the origin of the data stored in the index.

Once you have executed the CREATE FULLTEXT INDEX command described above, you can
verify that the Text Index has been successfully created in Oracle NoSQL by executing the
show indexes command from the Admin CLI; for example,

kv-> show indexes –table mytestTable

Indexes on table mytestTable mytestIndex (...), type: TEXT

You can also verify that the corresponding full text searchable index has been created in
Elasticsearch. To do this you can execute a curl command from the command line of a host
with network connectivity to one of the nodes in the Elasticsearch cluster; for example,

curl –X GET 'http://esHost:9200/_cat/indices'

yellow open ondb.kvstore._checkpoint ...
yellow open ondb.kvstore.mytesttable.mytestindex ...

Notice the entry that references the ondb.kvstore._checkpoint index. This index will be
automatically created upon the creation of the first Oracle NoSQL Text Index. Unless it is
manually deleted from the Elasticsearch cluster, it will always appear in the output of the
indices command. This so-called _checkpoint index contains internal information written by
Oracle NoSQL to support recovery operations when Oracle NoSQL is restarted. In general,
this index should never be removed or modified.

Chapter 7
Creating a Full Text Index

7-3

Note:

Throughout this document, the curl utility program is used to demonstrate how to
issue and display the results of HTTP requests to the Elasticsearch cluster. The
curl program is supported on most operating systems (linux, Mac OS X, Microsoft
Windows, and so on). It is used here because it is easy to install and can be run from
the command line. Other options you can explore for sending queries to
Elasticsearch are:

• The elasticsearch-head tool; which is a web front end for browsing, querying, and
interacting with an Elasticsearch cluster. See elasticsearch-head.

• The Elasticsearch Java API; which can be used to query Elasticsearch from
within program control. See Elasticsearch Java API.

In addition to executing show indexes from the Oracle NoSQL Admin CLI, you can also
execute the show table command; which, in addition to the table structure, will also list all
indexes (both secondary and text) created for that table. For example,

kv-> show table –table mytestTable

{
 "json_version" : 1,
 "type" : "table",
 "name" : "mytestTable",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [
 {
 "name" : "id",

 "type" : "INTEGER",

 "nullable" : false,

 "default" : null

},
 {

 "name" : "category",

 "type" : "STRING",

 "nullable" : true,

 "default" : null

 },
 {

 "name" : "txt",

 "type" : "STRING",

Chapter 7
Creating a Full Text Index

7-4

 "nullable" : true,

 "default" : null

 }],

 "indexes" : [
 {

"name" : "mytestIndex",
 "table" : "mytestTable",
 "type" " "text",
 "fields" : ["category", "txt"],
 "annotations" : {
 "category" : "{\"type\" : \"string"\",
 \"analyzer\" : \"standard\"}",
 "txt" : "{\"type\" : \"string\",
 \"analyzer\" : \"english\"}"
 }
 }]
}

Note:

You cannot evolve a Text Index created in Elasticsearch via the CREATE FULLTEXT
INDEX mechanism. If you want to change the index definition, for example, add more
columns to the index, you must first delete the existing index using the DROP INDEX
command and then use CREATE FULLTEXT INDEX to create a new Text Index
satisfying the desired definition.

Mapping a Full Text Index Field to an Elasticsearch Field
Unlike the command used to create a secondary index on data stored in an Oracle NoSQL
table, the CREATE FULLTEXT INDEX command allows you to specify finer control over how
Elasticsearch treats the fields to be indexed. For each field that you want Elasticsearch to
handle in a non-default fashion, you can specify how you want Elasticsearch to treat that field's
values by including a mapping specification with each such field when executing the CREATE
FULLTEXT INDEX command.

If no mapping specification is provided for a given field, and if that field contains any indexable
Oracle NoSQL data type – except JSON data – then Oracle NoSQL will use that data type to
determine the appropriate type with which to map the field's values to the Elasticsearch type
system. This means that for fields containing non-JSON data, the mapping specification can be
used to enforce and/or override the data type Elasticsearch should use when indexing the
field's contents.

For example, if a field of a given table contains values stored as the Oracle NoSQL Database
string type, then the default mapping supplied to Elasticsearch will declare that values from
that field should be indexed as the Elasticsearch string type. But if you want Elasticsearch to

Chapter 7
Mapping a Full Text Index Field to an Elasticsearch Field

7-5

treat the values of that field as the Elasticsearch integer type, then you would provide a
mapping specification for the field including an explicit type declaration; that is,

{"type":"integer"}

But care must be taken when mapping incompatible data types. For the example just
described, Elasticsearch will encounter errors if any of the string values being indexed
contain non-numeric characters. See Elasticsearch Mapping.

For the case where the field to be indexed has values that are JSON documents, a mapping
specification must always be provided in the CREATE FULLTEXT INDEX command; otherwise
an error will occur. A mapping specification is necessary for such fields because, as explained
later, it is not the document itself that is indexed, but a subset of the document's fields. When a
JSON document is stored in an Oracle NoSQL Database table, Oracle NoSQL knows only that
a value of type JSON was stored. It does not know the type intended for any of the fields
(attributes) within the document. Thus, for each of the document's fields that will be indexed,
the user must provide a corresponding mapping specification that specifies the type that
Elasticsearch should use when indexing the field's value.

In addition to specifying the data type of a given field's content, the mapping specification can
also be used to further refine how Elasticsearch processes the data being indexed. This is
accomplished by including an additional set of parameters in the mapping specification. For
example, suppose you want Elasticsearch to apply an analyzer different than the default
analyzer when indexing a field with content of type string. In this case, you would specify a
mapping specification of the form:

{"type":"string", "analyzer":"<analyzer-name>"}

To see the mapping generated by Oracle NoSQL Database for a given index created in
Elasticsearch, you can execute a command like the following from the command line of a host
with network connectivity to one of the nodes in the Elasticsearch cluster (example: esHost):

curl –X GET 'http://esHost:9200/ondb.<store>.<table>.<index>/_mapping?pretty'

For details on the sort of additional mapping parameters you can supply to Elasticsearch via
the mapping specification, see Elasticsearch Mapping Parameters.

As a concrete example, suppose you have a table named jokeTbl in a store named
kvstore, where the table consists of a field named category with values representing the
categories under which jokes can fall, along with a field named txt that contains a string
consisting of a joke that falls under the associated category. Suppose that when indexing the
values stored under the category field, you want to index each word that makes up the
category; but when indexing each joke, you want the word stems (or word roots) to be stored
rather than the whole words. For example, if a joke contains the word "solipsistic", the stem of
the word - "solipsist" – would actually be indexed (stored) rather than the whole word.

Since the Elasticsearch "standard" analyzer breaks up text into whole words, and the "english"
analyzer stems words into their root form, you would use the "standard" analyzer for the
category field and the "english" analyzer for the txt field (assuming the jokes are written in

Chapter 7
Mapping a Full Text Index Field to an Elasticsearch Field

7-6

English rather than some other language). Specifically, to create the Text Index, you would
execute a command like the following from the Admin CLI:

kv-> execute 'CREATE FULLTEXT INDEX jokeIndx ON jokeTbl (
 category{"type":"string","analyzer":"standard"},
 txt{"type":"string","analyzer":"english"})';

Once the Text Index is created, you can then query the index by executing a curl command
from the command line of a host with network connectivity to one of the nodes in the
Elasticsearch cluster. For example,

curl –X GET 'http://<esHost>:9200/ondb.kvstore.jokeTbl.jokeIndx/_search?
pretty'

To see the mapping generated by Oracle NoSQL Database for the jokeIndx in the example
above, you can execute a curl command like the following:

curl –X GET 'http://<esHost>:9200/ondb.kvstore.jokeTbl.jokeIndx/_mapping?
pretty'

Note:

Text indexed fields can include non-scalar types (such as map and array), which are
specified in the same way, and with the same limitations, as those for Oracle NoSQL
Secondary Indexes.

Handling TIMESTAMP Data Type
Topics

• Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type

• Full Text Search of Indexed TIMESTAMP Scalar

Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type
When a value representing a date and time is written to a field of an Oracle NoSQL table, the
value is stored in the table as an instance of java.sql.Timestamp; which corresponds to
the Oracle NoSQL timestamp enum type. See Atomic Data Types in the SQL Reference Guide.

When creating a table, the keyword timestamp is then used to specify such a field in the table.
Along with the timestamp keyword, an integer parameter representing the precision to
apply when storing the value must also be specified, employing a declaration with the following
form:

TIMESTAMP(<precision>)

The value input for precision must be one of ten possible integer values, from 0 to 9. In
general, the timestamp data type defined by Oracle NoSQL Database allows finer-grained time
precisions to be stored in a table; up to nanosecond granularity. A value of 0 input for

Chapter 7
Handling TIMESTAMP Data Type

7-7

precision specifies the least precise representation of a timestamp value; which
corresponds to a format of, yyyy-MM-dd'T'HH:mm:ss, with 0 decimal places in the value's
seconds component. A value of 9 specifies the finest granularity - or most precise -
representation, which includes an instant during the given day that is accurate to the
nanosecond. timestamp values with nanosecond precision correspond to a format of yyyy-
MM-dd'T'HH:mm:ss.SSSSSSSSS, with 9 decimal places in the seconds component. All other
precisions (1–8) represent a day and time granularity falling somewhere between the least
precise (0 decimal places) and the most precise (9 decimal places).

As another concrete example, suppose you wish to create a table named tsTable consisting
of an id field containing the table's Primary Key, and a field named ts that will contain values
representing a date and a time-of-day in which the seconds component is represented with 6
decimal point accuracy (example: date = 1998-10-26, time-of-day =
08:33:59.735978). To create such a table, one can execute the following command from the
Admin CLI:

kv-> execute 'CREATE TABLE tsTable (id INTEGER, ts TIMESTAMP(6), PRIMARY KEY
(id))';

Suppose then that you wish to store the following values in the ts field:

tsVal[0] = 1996-12-31T23:01:43.987654321
tsVal[1] = 2005-03-20T14:10:25.258
tsVal[2] = 1998-10-26T08:33:59.735978
tsVal[3] = 2001-09-15T23:01:43.55566677
tsVal[4] = 2002-04-06T17:07:38.7653459

To store those values, you could execute code like the following:

final KVStore store = KVStoreFactory.getStore
 (new KVStoreConfig(<storeName>, <host> + ":" + <port>));
final TableAPI tableAPI = store.getTableAPI();
final Tabletable = tableAPI.getTable("tsTable");
for (int i = 0; i < 5; i++) {
 final Row row = table.createRow();
 row.put(id, i);
 row.put(ts, TimestampUtils.parseString(tsVal[i]));
 tableAPI.putIfAbsent(row, null, null);
}

Because the ts field of the table was created with precision 6, each value will be stored with 6
decimal places in the seconds component of the value. Specifically, if the value being stored
contains more than 6 decimal places, then Oracle NoSQL will store the value with the decimal
part of the seconds component rounded to 6 decimal places. For example, tsVal[4] from the
list above will be stored as, 2002-04-06T17:07:38.765346.

Similarly, if the value being stored contains fewer than 6 decimal places, then Oracle NoSQL
will pad the decimal part of the seconds component with zeros. For example, tsVal[1] from
the list above will be stored as, 2005-03-20T14:10:25.258000.

When creating a Text Index on a table's field containing timestamp values, it is important to
understand how the Oracle NoSQL Database Table API handles fields such as those
described above. It is important because Elasticsearch stores values representing date and

Chapter 7
Handling TIMESTAMP Data Type

7-8

time using the Elasticsearch date type; which does not map directly to the
java.sql.Timestamp type stored by Oracle NoSQL Database.

When indexing a timestamp field for Full Text Search, the Elasticsearch date type must be
specified in the CREATE FULLTEXT INDEX command; otherwise Elasticsearch will handle the
field's values as a string type. For example, the simplest way to index (for full text search) the
ts field from the tsTable in the example above, would be to execute the following command:

kv-> execute 'CREATE FULLTEXT INDEX tsIndex ON tsTable (ts{"type":"date"})';

In this case, a default mapping specification will be generated that will tell Elasticsearch to
handle the broadest range of date type formats when handling the values being indexed.

When indexing values that represent date and time in Elasticsearch, whenever you specify the
date type for those values, you can also specify a format to which each indexed value must
adhere; where an error will occur if a given value does not satisfy the specified format. See
Elasticsearch Date. In a fashion similar to how one specifies an "analyzer" for a "string" value,
the Elasticsearch API defines a format parameter that can be used to specify – via the
mapping specification – the format Elasticsearch should expect when indexing a given value of
type date. Specifically,

<fieldname>{"type":"date","format":"<format>"}

where the value input for the format token can be an explicit format such as, yyyy-MM-
dd'T'HH:mm:ss, or can be a combination one or more of the Elasticsearch pre-defined
values (macros). See Elasticsearch Built In Formats.

Using the Elasticsearch API (not Oracle NoSQL), a typical Elasticsearch mapping specification
for a date type might then specify an explicit format along with one or more values from the set
of Elasticsearch built in formats; for example,

{"type":"date","format":"yyyy-MM-dd'T'HH:mm:ss.SSS||yyyy-MM-dd||epoch_millis"}

A format like that shown tells Elasticsearch to expect values in a form such as,
1997-11-17T08:33:59.735, or 1997-11-17, or even as a number of milliseconds since
the epoch. If a value has any other format, an error will occur and Elasticsearch will not index
(store) the value.

Rather than employing an explicit format such as that shown in the example above, you can
also specify formats using some combination of only the macros from the table; for example,

{"type":"date","format":"strict_date_optional_time||epoch_millis"}

This tells Elasticsearch that although acceptable date values must include the date
(strict_date=yyyy-MM-dd), Elasticsearch should accept any values with or without a time
component (optional_time). Additionally, if the value represents the number of milliseconds
since the epoch, then such values should also be accepted by Elasticsearch.

With respect to using the CREATE FULLTEXT INDEX command to index a timestamp value
for Full Text Search, although it is possible to specify the Elasticsearch format parameter for
a date field in a way similar to the Elasticsearch API examples shown above, it may not be
very practical. First, the number of valid combinations of macros from the set of Elasticsearch
built in formats is very large, and may pose a significant burden for users.

Chapter 7
Handling TIMESTAMP Data Type

7-9

Next, unlike other mapping parameters defined by Elasticsearch (for example the "analyzer"
parameter for "string" types), if the user specifies a valid format for an Elasticsearch date field,
but one or more of the values to be indexed do not satisfy that format, then an error will occur
(in Elasticsearch) and those values will not be indexed. For example, if the user specifies a
"french" analyzer for a string field but the value is actually in English, although unexpected
search output may result, no error will occur. On the other hand, if the user specifies a format
of yyyy-MM-dd'T'HH:mm:ss.SSS for a date field, but the value(s) being indexed contains
more than 3 decimal places in the seconds component, although the index will be created,
format errors will occur and the non-conformant values will not be indexed;.

To provide a more convenient mechanism for specifying the format for date values, as well as
to minimize the opportunity for the sort of format errors just described, a special
"name":"value" parameter is defined for the CREATE FULLTEXT INDEX command. When
indexing Oracle NoSQL timestamp values as date values in Elasticsearch, rather than using
the Elasticsearch format parameter (and its valid values), the specially defined precision
parameter should be used instead. Although the precision parameter is optional, when it is
included with a "type":"date" specification in the CREATE FULLTEXT INDEX command,
the value of that parameter can be either millis or nanos. Specifically, when the CREATE
FULLTEXT INDEX command is used to index NoSQL timestamp values as date values in
Elasticsearch, one of the following parameter mappings must be specified in that command:

• {"type":"date"}
• {"type":"date","precision":"millis"}
• {"type":"date","precision":"nanos"}
Note that the default precision (that is, no precision), as well as the nanos
precision, both map - and index - the broadest range of timestamp formats as valid date
types in Elasticsearch without error; whereas the millis precision indexes only
timestamp values defined with precision 3 or less. As a result, the precision you use should be
based on the following criteria:

• If you know for sure that all values from the table field to be indexed have only precision 3
(milliseconds) or less, and you want to index the values using 3 decimal places in all
cases, then specify millis precision.

• If the field you wish to index consists of timestamp values of varying precisions and you
want to index only those values with precision 3 or less, then specify millis
precision; so that values with greater than milliseconds precision will not be indexed.

• In all other cases, use either nanos precision or the default precision.

In summary, the special precision parameter not only minimizes the number of possible
values the user can specify for the date type, it also reduces the occurrence of format errors by
providing a way to map such values to the broadest range of possible formats; as well as allow
the user to enforce milliseconds precision in the index.

Chapter 7
Handling TIMESTAMP Data Type

7-10

Note:

As described above, a precision of nanos specified for a date type is currently
identical to specifying no precision, which translates to the default date format.
Although this may seem redundant, the nanos option is defined for two reasons.
First, it is intended to be symmetric with the millis option; so that if a user knows
the timestamp field being indexed consists of values with greater than millisecond
precision, the user can simply specify nanos and the right thing will be done when
constructing the mapping specification that will be registered with Elasticsearch.

The second reason for defining the nanos option is related to the fact that
Elasticsearch currently supports formats with precisions no greater than milliseconds.
(Notice that the Elasticsearch built in formats include macros associated with nothing
finer than millis). If a version of Elasticsearch is released in the future that
supports formats including nanoseconds precision, then a fairly straightforward
change can be made in Oracle NoSQL Database to map the current nanos option to
the new format defined by Elasticsearch; requiring no change in the public api, and
no change to user applications.

Full Text Search of Indexed TIMESTAMP Scalar
Suppose you start a store named kvstore and create the tsTable with the same timestamp
values as those presented previously, where each such value was stored in the table with
precision 6. After registering the store with your Elasticsearch cluster (running on a host named
eshost), a Text Index named tsIndex on the table's ts field is created by executing the
following command from the Admin CLI:

kv-> execute 'CREATE FULLTEXT INDEX tsIndex ON tsTable (ts{"type":"date"})';

Executing queries such as the following can then be used to perform a Full Text Search on the
data that was indexed:

List all values, sorted in ascending order

curl –X GET 'http://eshost:9200/ondb.kvstore.tstable.tsindex/_search?pretty'
 '-d {"sort":[{"ts":"asc"}]}'

{
 "took" : 4,
 "timed_out" : false,
 "_shards" : {
 "total" : 3,
 "successful" : 3,
 "failed" : 0
 },
 "hits" : {
 "total" : 5,
 "max_score" : null,

 "hits" : [{
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",

Chapter 7
Handling TIMESTAMP Data Type

7-11

 "_id" : "/w/0000",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"0"},
 "ts":"1996-12-31T23:01:43.987654"},

 "sort" : [852073303123]

}, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0002",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"2"},
 "ts":"1998-10-26T08:33:59.735978"},

 "sort" : [909435821111]

}, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0003",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"3"},
 "ts":"2001-09-15T23:01:43.555667"},

 "sort" : [995911599555]

 }, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0004",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"4"},
 "ts":"2002-04-06T17:07:38.765346"},

 "sort" : [1024765658765]

}, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0001",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"1"},
 "ts":"2005-03-20T14:10:25.258000"},

 "sort" : [1091264176173]

 }]
 }
}

Chapter 7
Handling TIMESTAMP Data Type

7-12

Perform an exact match to find a specific date and time

curl –X GET 'http://eshost:9200/ondb.kvstore.tstable.tsindex/_search?pretty'
 '-d {"query":{"term":{"ts":"2005-03-20T14:10:25.258000"}}}'

{

 "hits" : {
 "total" : 1,
 "max_score" : null,

 "hits" : [{
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0001",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"1"},
 "ts":" 2005-03-20T14:10:25.258000},

 }]
 }
}

Find dates that fall within a specific range of dates and times

curl –X GET 'http://eshost:9200/ondb.kvstore.tstable.tsindex/_search?pretty'
 '-d {"query":{"range":{"ts":{"gte":"
1998-10-26T08:33:59.735978","lt":" 2002-04-06T17:07:38.9"}}}}'

{

 "hits" : {
 "total" : 3,
 "max_score" : null,

 "hits" : [{
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0004",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"4"},
 "ts":"2002-04-06T17:07:38.765346},

}, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0002",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"2"},
 "ts":"1998-10-26T08:33:59.735978"},

Chapter 7
Handling TIMESTAMP Data Type

7-13

 "sort" : [909435821111]

}, {
 "_index" : "ondb.kvstore.tstable.ts",
 "_type" : "text_index_mapping",
 "_id" : "/w/0003",
 "_score" : null,

 "_source":{"_pkey":{"_table":"tstable","id":"3"},
 "ts":"2001-09-15T23:01:43.555667"}

 }]
 }
}

Handling JSON Data Type
Topics

• Review: Secondary Indexes on JSON Document Content

• Creating Text Indexes on JSON Document Content

• Full Text Search of Indexed JSON Documents

Review: Secondary Indexes on JSON Document Content
How to index, for Full Text Search, content from JSON documents stored in an Oracle NoSQL
Database table is presented in the next section. But to help you better understand the material
in that section, you should first review the material in Indexing JSON in the SQL Reference
Guide. It describes how to store values in a field of a NoSQL table when those values consist
of strings in valid JSON format; that is, when those values are JSON documents.

When reviewing those materials, it is important to not confuse creating a Secondary Index on
JSON content with creating a Text Index. Creating a Text Index on a field containing JSON
documents is presented in the next section of this document.

When JSON is stored in an Oracle NoSQL Database table, the data can be any valid JSON,
stored as a string; referred to as a JSON document. Each such document stored in a field (or
column) of a NoSQL table consists of elements that are referred to as either the fields or the
attributes of the document. Thus, when discussing the elements of a given JSON document in
the sections below, the term field and the term attribute can be used interchangeably; where
the context should distinguish the field (or column) of an Oracle NoSQL table from the field (or
attribute) of a JSON document stored in the table.

Although you can create a Secondary Index on the attributes of a JSON document stored in a
given table, there are numerous restrictions on such indexes; restrictions which may make a
Text Index more attractive. First, when creating a Secondary Index, you can only index the
scalar attributes of the document. That is, the attributes cannot be nested JSON objects.
Additionally, only integer, long, double, number, string, and boolean are supported Oracle
NoSQL data types for JSON Secondary Indexes. Finally, you cannot perform Full Text Search
on such an index.

For example, consider the following JSON document whose content specifies information
related to a given member of the United States senate. For each senator (both current and
former), a JSON document like that shown here is created and the Oracle NoSQL Table API
can be used to store each such document in a column of a given table. Note that throughout

Chapter 7
Handling JSON Data Type

7-14

this section and the following section, the example JSON document shown here will be
referenced numerous times to demonstrate how such a JSON document can be indexed; in
either a Secondary Index or a Text Index.

{
 "description": "Senior Senator for Ohio",
 "party": "Democrat",
 "congress_numbers": [223,224,225],
 "state": "OH",
 "startdate": "2010-01—03T05:04:09.456",
 "enddate": "2020-11-12T03:01:02.567812359",
 "seniority": 37,
 "current": true,
 "duties": {
 "committee": ["Ways and Means","Judiciary","Steering"],
 "caucus": ["Automotive","Human Rights","SteelIndustry"]
 },
 "personal": {
 "firstname":"Sherrod",
 "lastname":"Brown",
 "birthday":"1952-11-09",
 "social_media": {
 "website":"https://www.brown.senate.gov",
 "rss_url":"http://www.brown.senate.gov/rss/feeds",
 "twittered":"SenSherrodBrown"
 },
 "address": {
 "home": {
 "number":"9115-ext",
 "street":"Vaughan",
 "apt":null,
 "city":"Columbus",
 "state":"OH",
 "zipcode":43221,
 "phone": "614-742-8331"
 },
 "work": {
 "number":"Hart Senate Office Building",
 "street":"Second Street NE",
 "apt":713,
 "city":"Washington",
 "state":"DC",
 "zipcode":20001
 "phone": "202-553-5132"
 }
 },
 "cspanid": 57884
 },
 "contrib": 2571354.93
}

The example JSON document above consists of a variety of JSON attributes of different types.
Some attributes are scalar fields in "name":"value" form, whereas others are either nested
objects, or arrays of scalar values. An attribute that is a nested object is a structure,
encapsulated by curly braces {...}, that contains a set of valid JSON field types; scalars,

Chapter 7
Handling JSON Data Type

7-15

arrays of scalars, and/or JSON objects (named or unnamed). An array type is an ordered,
comma-separated list of elements, encapsulated by square brackets [...], where each
element must be the same scalar type; string, date, or numerical type (integer, double,
number, and so on).

The value of a scalar field nested within an object is dereferenced using JSON path notation.
For example, the scalar field containing each senator's date of birth is nested in the object
named personal. Each senator's birthday can then be specified in a search query using the
JSON path, jsonFieldName.personal.birthday; where the value of the jsonFieldName
component is the name specified for the column of the table in which each JSON document is
written. Similarly, a search on each senator's home city can be expressed using the path,
jsonFieldName.personal.address.home.city.

Note that in Elasticsearch, array fields are handled in a way that may be unexpected. When
querying arrays in Elasticsearch, you cannot refer to the "first element", the "last element", the
"element at index 3", etc. Arrays are handled as a "bag of values of the same type". For the
example document above, if you wanted to search the committees on which each senator
serves, you would not construct your query using a path like,
jsonFieldName.duties.committee[0]. Such a path is not allowed. Instead, you would specify the
path to the array itself, along with the values you wish to search for that may be elements of
the array; for example, "jsonFieldName.duties.committee":"Judiciary Steering".

As discussed previously, each attribute in a JSON document has a type; where the type is
implied by the structure of the attribute, or the value associated with the attribute. An attribute
in a JSON document whose content is encapsulated by curly braces implies that the attribute
is a JSON object type. With respect to scalar fields, the implied data type of the value
associated with such a field is dependent on the value of the field itself. This is true whether
the index is a Secondary Index or a Text Index. For example, the scalar attributes named
description and seniority from the JSON document shown above will be handled as
string and integer types respectively.

Compare this with a value such as that specified for the JSON document's contrib attribute
(2571354.93). Such a scalar value will be handled as a NoSQL double data type when
creating a Secondary Index; and as either an Elasticsearch float or double type when
creating a Text Index for Full Text Search in an Elasticsearch cluster. Similarly, for attributes
that contain information representing date and time (example the startdate, enddate, and
birthday attributes), the value of such fields can only be handled as an Oracle NoSQL
string type when creating a Secondary Index, but may be handled as either an Elasticsearch
string or date type when creating a Text Index.

Finally, although an attribute containing a comma-separated list of scalars encapsulated by
square brackets implies a JSON array type, the data type of the array's elements (that is, the
array's type) is implied by the values of the elements in the same way as was previously
described for scalar attributes.

Suppose then that you wish to create a table named jsonTable consisting of an id field
containing the table's Primary Key, and a field named jsonField that will contain values
consisting of JSON documents like the example document presented previously. To create
such a table, and examine its resulting structure, one would execute a command like the
following from the Admin CLI:

kv-> execute 'CREATE TABLE jsonTable
 (id INTEGER, jsonField JSON, PRIMARY KEY (id))';

kv-> execute 'DESCRIBE AS JSON TABLE jsonTable';
{
 "json_version" " 1,

Chapter 7
Handling JSON Data Type

7-16

 "type" : "table",
 "name" : "jsonTable",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER",
 "nullable" : false,
 "default" : null
 }, {
 "name": "jsonField",
 "type" : "JSON",
 "nullable" : true,
 "default" : null
 }]
}

To populate the table with JSON documents like the example document presented above, you
could execute code like the following:

final KVStore store = KVStoreFactory.getStore
 (new KVStoreConfig(<storeName>, <host> + ":" + <port>));
final tableAPI = store.getTableAPI();
final table = tableAPI.getTable("tsTable");
final List<String> listOfJsonDocs = {...};
for (int i = 0; i < listOfJsonDocs.size(); i++) {
 final Row row = table.createRow();
 row.put(id, i);
 row.putJson("jsonField", listOfJsonDocs.get(i));
 tableAPI.putIfAbsent(row, null, null);
}

After populating the table with the necessary JSON documents (using the method
row.putJson from the Table API), a Secondary Index on selected attributes of each
document stored in the table's jsonField field can be created by executing a command like:

kv-> execute 'CREATE INDEX jsonSecIndex ON jsonTable
 (jsonField.party AS STRING,
 jsonField.current AS BOOLEAN,
 jsonField.contrib AS DOUBLE,
 jsonField.seniority AS INTEGER)';

In this case, queries can be performed based on various combinations of each senator's party
affiliation, seniority, total amount of money contributed to the senator's campaign, and whether
or not the senator is a currently sitting senator. For example, to find all current democratic
senators with contributions totaling between 1 million and 20 million dollars, a command like
the following could be executed from the Admin CLI:

kv-> GET TABLE –name jsonTable
 –index jsonSecIndex
 -field jsonField.party –value "Democrat"
 -field jsonField.current –value true
 -field jsonField.contrib –start 1000000.00 –end 20000000

Chapter 7
Handling JSON Data Type

7-17

Creating Text Indexes on JSON Document Content
Using the example presented previously, this section describes how to create a Text Index on
the contents of a JSON document stored in a NoSQL table, and then perform various Full Text
Search queries on the resulting index in Elasticsearch.

Unlike Oracle NoSQL Database Secondary Indexes, where the type of each value stored in a
field of a given table is inferred from the table schema, for Text Indexes, the type of each
attribute to be indexed cannot be inferred from the schema; and thus, must be specified in the
CREATE FULLTEXT INDEX command. Although the table's schema tells Oracle NoSQL that
the values in a given field (column) of a table is a JSON document, it tells Oracle NoSQL
nothing about the internal structure of the document itself, other than each element is JSON
formatted content. Since Oracle NoSQL knows neither the attributes within the JSON
document to be indexed, nor the data types that should be used when indexing those
attributes, that information must be explicitly given to Oracle NoSQL via the CREATE
FULLTEXT INDEX command.

Thus, to create a Text Index on a column containing JSON documents, in addition to specifying
the attributes to index, in JSON path notation, you must also always provide a mapping
specification. This tells Oracle NoSQL the attributes within the document to index, as well as
the data type to tell Elasticsearch to use when indexing each such attribute.

For example, in the previous section a Secondary Index was created and queried to find all
current democratic senators with contributions totaling between 1 million and 20 million dollars.
But suppose you want to refine that search, to find all current democratic senators with
contributions totaling between 1 million and 20 millions dollars, who also serve on either the
Judiciary or Appropriations committee (or both). For such a search, a Text Index should be
created instead of a Secondary Index; not only because the committee information is
contained in a nested array of strings, but also so that a Full Text Search can be performed.

To do this, first create the desired Text Index by executing the following command from the
Admin CLI:

kv-> execute 'CREATE FULLTEXT INDEX jsonTxtIndex ON
 jsonTable (
 jsonField.current{"type":"boolean"},
 jsonField.party{"type":"string","analyzer":"standard"},
 jsonField.duties.committe{"type":"string"},
 jsonField.contrib{"type":"double"})';

Rather than creating a Secondary Index on the ts column of the table named jsonTable, like
you did in the previous section's example, the command above instead creates a Text Index
consisting of specific attributes of the documents stored in that column. Although the previous
example index allowed you to find all current democratic senators with contributions totaling
between 1 million and 20 million dollars, the Text Index created above allows the search to be
refined. With the Text Index, you can search for all current democratic senators with
contributions totaling between 1 million and 20 millions dollars, who also serve on either the
Judiciary or Appropriations committee, or both.

After creating the Text Index using the command above, you can then query Elasticsearch for
the documents that satisfy the desired search criteria by executing a curl command from a

Chapter 7
Handling JSON Data Type

7-18

node that has network access to the Elasticsearch cluster with which the Oracle NoSQL store
is registered. For example, from the node named esHost,

curl –X GET
'http://esHost:9200/ondb.kvstore.jsontable.jsontxtindex/_search?pretty'
'-d {query":{"bool":{
"must":{"match":{"jsonField.party":"Democrat"}},
"must":{"match":"jsonField.current":"true"}},
"must":{"range":{"jsonField.contrib":{
 "gte":"1000000.00","lte":20000000.00"}}},
"must":"match":{"jsonField.duties.committe":
 "Judiciary Apropriations"}}}}}'

As previously explained, ondb.kvstore.jsontable.jsontxtindex in the query above is
the name of the index that Oracle NoSQL creates in Elasticsearch; where kvstore is the
name of the Oracle NoSQL store, jsontable corresponds to the table (jsonTable) in that
store that contains the JSON documents being indexed, and jsontxtindex corresponds to
the Text Index metadata maintained by the store.

The output produced by the Elasticsearch query above (with some re-formatting for readability)
should look something like:

{

 "hits" : {
 "total" : 31,
 "max_score" : 1.4695805,

 "hits" : [{
 "_index" : "ondb.kvstore.jsontable.jsontindex",
 "_type" : "text_index_mapping",
 "_id" : "/w/0001",
 "_score" : 1.4695805,

 "_source":{"_pkey":{"_table":"jsontable","id":"1"},
 "jsonField":"{"description":
 "Senior Senator for Ohio"},
 "jsonField"{"current":"true"},
 "jsonField":{"congress_numbers":[223,224,225]},
 "jsonField":{"party":"Democrat"},
 "jsonField":{"seniority":37},
 "jsonFeld":{"personal":{"birthday":1952-11-09"}},
 "jsonField":{"personal":{"lastname":"Brown"}},
 "jsonField":{"contrib":257134.93},
 "jsonField":{"duties":{"committee":["Ways and
 Means","Judiciary","Democratic Steering"]}},
 "jsonField":{"duties":{"caucus":["Congressional
 Automotive","Human Rights","Steel Industry"]}},
 "jsonField":{"personal":{"address":{"home":{
 "state":"OH"}}}},
 "jsonField":{":"personal":{"address":{"home":{
 "city":"Columbus"}}}}}
 }],

Chapter 7
Handling JSON Data Type

7-19

 }
}

It is important to understand that unlike the query against the Secondary Index presented in
the previous section, this query is executed against the Elasticsearch cluster rather than the
Oracle NoSQL store. Additionally, the Text Index created here allows one to perform a Full Text
Search on the values in the nested array jsonField.duties.committee; something that
cannot be done with Secondary Indexes.

Full Text Search of Indexed JSON Documents
This section presents the steps to execute a simple but complete example, without security.
Although in a production setting, both the Oracle NoSQL Database and the Elasticsearch
cluster should generally be run on separate nodes, for simplicity, these steps are executed on
a single node. Additionally, if you already have an Elasticsearch version 2 cluster running in
your environment, then feel free to use that cluster in place of the Elasticsearch single-node
cluster used below. Note finally, that you may have to change some of the tokens (directory
locations, version numbers, etc.) to suit your particular environment.

1. Download, install, and run Elasticsearch, version 2.

Download the tar file https://download.elastic.co/elasticsearch/release/org/elasticsearch/
distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz and place it under the
directory /opt/es.

cd /opt/es
tar xzvf elasticsearch-2.4.6.tar.gz
ln –s elasticsearch-2.4.6 elasticsearch
export JAVA_HOME=/usr/lib/jvm/java8
/opt/es/elasticsearch/bin/elasticsearch
 -Dnetwork.host=localhost
 --cluster.name kv-es-cluster
 --node.name localhost

Note:

Elasticsearch version 2 requires Java 8. Thus, you should install Java 8 and set
the JAVA_HOME environment to point to the Java 8's home directory.

2. Use KVLite to deploy an Oracle NoSQL Database store named kvstore.

Assuming that you have installed Oracle NoSQL Database under the directory /opt/
ondb, and that you have write permission for your system's /tmp directory, execute the
following command from a command line:

java –jar /opt/ondb/kv/lib/kvstore.jar kvlite
 –root /tmp/kvroot
 –host localhost
 –port 5000
 –store kvstore
 –secure-config disable

3. Start the Oracle NoSQL Database Admin CLI.

Chapter 7
Handling JSON Data Type

7-20

https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz
https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz

From a separate command window, execute the command:

java –jar /opt/ondb/kv/lib/kvstore.jar runadmin
 –host localhost
 –port 5000
 –store kvstore

4. Install a file containing the JSON documents to load.

Under a directory such as ~/examples/es/docs, create a file named senator-
info.json and populate it with one or more JSON documents like those shown in the
example file presented in Sample: Array of JSON Documents. Be sure to format the file
you create with the same format shown in Sample: Array of JSON Documents.

5. Compile and execute the LoadJsonExample program (or similar).

Under a directory such as ~/examples/es/src, create the sub-directory es/table, and
then create a file named LoadJsonExample.java under the directory ~/
examples/es/src/es/table. After creating the file ~/examples/es/src/es/
table/LoadJsonExample.java, add the source code presented in The
LoadJsonExample Program Source (or source with similar functionality).

Once the LoadJsonExample.java program is created, execute the following from a
separate command window:

cd ~/examples/es/src

javac –classpath /opt/ondb/kv/lib/kvstore.jar:src
 examples/es/table/LoadJsonExample.java

java –classpath /opt/ondb/kv/lib/kvstore.jar:src
 es.table.LoadJsonExample
 –store kvstore
 –host localhost
 –port 5000
 –file ~/examples/es/docs/senator-info.json
 -table exampleJsonTable

Note:

The source code for the LoadJsonExample program that is presented in The
LoadJsonExample Program Source is only intended to provide a convenient
mechanism for loading non-trivial JSON content into an Oracle NoSQL table. You
should feel free to write your own program to provide similar functionality.

6. Create a Text Index on the JSON data loaded into the NoSQL table.

After verifying that the table has been successfully created and populated with the desired
table data, execute the following from the Admin CLI:

kv-> plan register-es
 –clustername kv-es-cluster
 –host localhost
 –port 9200
 –secure false
 -wait

Chapter 7
Handling JSON Data Type

7-21

kv-> execute 'CREATE FULLTEXT INDEX jsonTxtIndex ON exampleJsonTable (
 jsonField.current{"type":"boolean"},
 jsonField.party{"type":"string","analyzer":"standard"},
 jsonField.duties.committe{"type":"string"},
 jsonField.contrib{"type":"double"})';

7. Execute Full Text Search queries against data indexed in Elasticsearch.

To first verify that the desired index has been created in Elasticsearch as expected,
execute the following from a command line:

curl –X GET 'http://localhost:9200/_cat/indices'

yellow open ondb.kvstore._checkpoint ...
yellow open ondb.kvstore.examplejsontable.jsontxtindex ...

Note that Elasticsearch reports the status of each index is yellow. This occurs here
because the Elasticsearch cluster was deployed as a single-node cluster.

To examine the mapping that Oracle NoSQL constructs for Elasticsearch, execute:

curl –X GET 'http://localhost:9200/
ondb.kvstore.examplejsontable.jsontxtindex/_mapping?pretty'

To display all documents from the exampleJsonTable that were indexed in
Elasticsearch, execute:

curl –X GET 'http://localhost:9200/
ondb.kvstore.examplejsontable.jsontxtindex/_search?pretty'

Finally, to find all current democratic senators with contributions totaling between 5 million
and 15 million dollars, who are members of either the "Progressive" caucus or the "Human
Rights" caucus, execute the following command:

curl –X GET
 'http://localhost:9200/ondb.kvstore.examplejsontable.jsontxtindex/
_search?pretty'
 '-d {query":{"bool":{
 "must":{"match":{"jsonField.party":"Democrat"}},
 "must":{"match":"jsonField.current":"true"}},
 "must":{"range":{"jsonField.contrib":
{"gte":"5000000.00","lte":15000000.00"}}},
 "must":"match":{"jsonField.duties.caucus":"Progressive Human
Rights"}}}}}'

Deleting a Full Text Index
To delete a Full Text Index created on an Oracle NoSQL table, you can use the NoSQL store's
Admin CLI to execute a command with the following format:

execute 'DROP INDEX [IF EXISTS] <index> ON <table>';

Chapter 7
Deleting a Full Text Index

7-22

Each argument, flag, and directive is described as follows, where any item encapsulated by
square brackets [...] is optional:

• index - The name of the Text Index to delete.

• table - The name of the table containing the indexed fields.

If the command above is executed and a Text Index with the specified name does not exist,
then the command will fail, displaying an error message. Specifying IF EXISTS when the
named index does not exist will result in a no-op.

Note:

The command above, when applied to a Full Text Index, will not only remove all
metadata related to the index from the associated Oracle NoSQL store's state, but
will also remove the corresponding data indexed in Elasticsearch.

Chapter 7
Deleting a Full Text Index

7-23

8
Security in Full Text Search

Topics

• Elasticsearch and Secure Oracle NoSQL Database

Elasticsearch and Secure Oracle NoSQL Database
Up to this point, all information and examples presented in the previous sections discussed
how data stored in an Oracle NoSQL Database table is indexed in Elasticsearch when the
communication between Oracle NoSQL Database and Elasticsearch is not secure. This
section discusses how that data can be sent to the Elasticsearch cluster over a secure
communication channel.

As described previously, data sent to Elasticsearch for indexing is sent by a process running on
the master replication node of the Oracle NoSQL store's replication group (or shard). When the
system is not configured for security, the replication node communicates with Elasticsearch
over HTTP. For the replication node to send the data to Elasticsearch over a secure
communication channel, the NoSQL store must be configured to run securely. See Introducing
Oracle NoSQL Database Security in the Security Guide. When configured for secure
communication, the replication node will send the data to Elasticsearch, in encrypted form,
over HTTPS. This means that Elastisticsearch must be configured to perform the necessary
authentication and decryption before indexing the data received from a secure Oracle NoSQL
store.

Elasticsearch version 2 does not provide a fully integrated, out-of-the-box option for
communicating with clients over a secure channel in the manner just described. For secure
communication with Elasticsearch, some users choose to run their Elasticsearch deployment
"behind" (or "wrapped" within) a secure web server. Others choose to employ one of the
commercially available plugins that support TLS (SSL) for this purpose. Oracle NoSQL
Database has chosen to support the latter model.

In order to communicate securely with the Elasticsearch cluster, Oracle NoSQL Database
recommends that the Shield proprietary plugin be used to provide a port to which clients of the
Elasticsearch cluster can connect and communicate securely over HTTPS.

Note:

Although the Shield plugin has been used when testing secure communication
between the current Oracle NoSQL Database implementation and Elasticsearch
version 2, there is nothing in the NoSQL implementation that should prevent the use
of other such Elasticsearch security plugins; as long as the plugin supports HTTPS,
and can be configured to support the Oracle NoSQL Database authentication
scheme.

Compared to the non-secure case presented previously, there are additional steps you must
take when working with the secure case. For the secure case, the Oracle NoSQL store will be
populated using the secure mode of the same example program, and the indexed data will be

8-1

queried using similar queries, as that presented for the non-secure case. The only difference is
that the Oracle NoSQL store and the Elasticsearch cluster will each be deployed to
communicate securely, and the queries will specify the necessary keys and certificates
required by the Elasticsearch cluster.

Deploying a secure Oracle NoSQL store and Elasticsearch cluster and configuring them to
communicate securely with each other requires many more steps than the non-secure case.
Appendices Secure Elasticsearch using Sheild, Deploying and Configuring a Secure Oracle
NoSQL Store, and Install the Full Text Search Public Certificate in Elasticsearch provide
detailed descriptions of all the steps necessary to deploy such a system. And once you have
successfully deployed a secure Oracle NoSQL store and a secure Elasticsearch cluster, and
you have installed the necessary artifacts (certificates) for the store and cluster to
communicate, there are only minor differences between the commands and queries presented
previously for the non-secure case and their counterparts in the secure case.

One of the first differences to note is that when executing the LoadJsonExample program to
populate the NoSQL store with data to index in Elasticsearch, you must specify the security
parameter with the absolute path to the file containing the login properties required by Oracle
NoSQL Database Security (see Deploying and Configuring a Secure Oracle NoSQL Store for
details). For example,

java –classpath /opt/ondb/kv/lib/kvstore.jar:src es.table.LoadJsonExample
 –store kvstore
 –host localhost
 –port 5000
 –file ~/examples/es/docs/senator-info.json
 -table exampleJsonTable
 -security /tmp/FTS-client.login

Next, when executing the register-es command to register the NoSQL store with the
secure Elasticsearch cluster, you must specify true for that command's secure parameter. For
example,

kv-> plan register-es
 –clustername escluster
 –host eshost1
 –port 29100
 –secure true
 -wait

Finally, when querying the data indexed by the secure Elasticsearch cluster, the curl
command must include the OpenSSL public certificate and private key required by the cluster
for authentication of the request. See Secure Elasticsearch using Sheild. For example,

curl –k -E /tmp/elasticsearch-eshost1.pem
 --key /tmp/elasticsearch-eshost1.pkey
 –X GET 'http://eshost1:29100/ondb.kvstore.jsontable.jsontxtindex/
_search?pretty'
 '-d {query":{"bool":{
 "must":{"match":{"jsonField.party":"Democrat"}},
 "must":{"match":"jsonField.current":"true"}},
 "must":{"range":{"jsonField.contrib":
{"gte":"1000000.00","lte":20000000.00"}}},

Chapter 8
Elasticsearch and Secure Oracle NoSQL Database

8-2

 "must":"match":{"jsonField.duties.committe":"Judiciary
Apropriations"}}}}}'

With respect to secure Full Text Search and the example commands presented in this
document, it is assumed you have followed the directions presented in Secure Elasticsearch
using Sheild, Deploying and Configuring a Secure Oracle NoSQL Store, and Install the Full
Text Search Public Certificate in Elasticsearch appendices; which, for clarity and convenience,
organize the steps to configure and deploy a secure Elasticsearch and Oracle NoSQL system
into separate, self-contained sections.

Secure Elasticsearch using Sheild presents the steps required to configure Elasticsearch for
security. These steps must be taken whether the Elasticsearch cluster will be communicating
with a secure Oracle NoSQL store or some other service or client unrelated to Oracle NoSQL.

Deploying and Configuring a Secure Oracle NoSQL Store describes how to deploy a secure
Oracle NoSQL store and then configure it to communicate securely with the Elasticsearch
cluster described in Secure Elasticsearch using Sheild.

The final steps required to complete the deployment of the secure Oracle NoSQL and
Elasticsearch system are presented in Install the Full Text Search Public Certificate in
Elasticsearch. Those steps will complete the security configuration of the Elasticsearch cluster
from Secure Elasticsearch using Sheild, and are required for the nodes of the cluster to
communicate with the secure Oracle NoSQL store from Deploying and Configuring a Secure
Oracle NoSQL Store. The steps presented in Install the Full Text Search Public Certificate in
Elasticsearch should be executed only after executing the steps in Secure Elasticsearch using
Sheild and Deploying and Configuring a Secure Oracle NoSQL Store.

After completing the steps presented in Secure Elasticsearch using Sheild, Deploying and
Configuring a Secure Oracle NoSQL Store and Install the Full Text Search Public Certificate in
Elasticsearch appendices, you should then be able to run the example program
LoadJsonExample to populate a table in the secure Oracle NoSQL store deployed in
Deploying and Configuring a Secure Oracle NoSQL Store, index data from that table in the
secure Elasticsearch cluster from Secure Elasticsearch using Sheild and Install the Full Text
Search Public Certificate in Elasticsearch, and finally run secure queries against the indexed
data. For convenience, the secure versions of example commands you can execute are
presented in Running the Examples in Secure Mode.

Note:

Unlike the non-secure example presented previously, instead of using KVLite to
deploy an Oracle NoSQL store on a single node, Secure Elasticsearch using Sheild,
Deploying and Configuring a Secure Oracle NoSQL Store, Install the Full Text Search
Public Certificate in Elasticsearch, and Running the Examples in Secure Mode
appendices show how to work with a secure Oracle NoSQL store and Elasticsearch
cluster where both consist of three nodes rather than a single node. This is done to
present a more realistic example, to demonstrate what one might typically encounter
in production.

Chapter 8
Elasticsearch and Secure Oracle NoSQL Database

8-3

9
Appendix

Topics

• Sample: Array of JSON Documents

• The LoadJsonExample Program Source

• Secure Elasticsearch using Sheild

• Deploying and Configuring a Secure Oracle NoSQL Store

• Install the Full Text Search Public Certificate in Elasticsearch

• Running the Examples in Secure Mode

Sample: Array of JSON Documents
The following sample file is in the format and content that is required by the
LoadJsonExample program.

{
 "meta": {
 "limit": 2,
 "total_count": 2
 },
 "objects": [
 {
 "description": "Senior Senator for Ohio",
 "party": "Democrat",
 "congress_numbers": [223,224,225],
 "state": "OH",
 "startdate": "2010-01—03T05:04:09.456",
 "enddate": "2020-11-12T03:01:02.567812359",
 "seniority": 37,
 "current": true,
 "duties": {
 "committee": ["Ways and
 Means","Judiciary","Steering"],
 "caucus": ["Automotive",
 "Human Rights","SteelIndustry"]
 },
 "personal": {
 "firstname":"Sherrod",
 "lastname":"Brown",
 "birthday":"1952-11-09",
 "social_media": {
 "website":"https://www.brown.senate.gov",
 "rss_url":"http://www.brown.senate.gov/rss/feeds",
 "twittered":"SenSherrodBrown"
 },
 "address": {

9-1

 "home": {
 "number":"9115-ext",
 "street":"Vaughan",
 "apt":null,
 "city":"Columbus",
 "state":"OH",
 "zipcode":43221,
 "phone": "614-742-8331"
 },
 "work": {
 "number":"Hart Senate Office Building",
 "street":"Second Street NE",
 "apt":713,
 "city":"Washington",
 "state":"DC",
 "zipcode":20001
 "phone": "202-553-5132"
 }
 },
 "cspanid": 57884
 },
 "contrib": 2571354.93
 },
 {
 "description": "Junior Senator for Wisconsin",
 "party": "Indpendent",
 "congress_numbers": [113,114,115],
 "state": "WI",
 "startdate": "2013-01—03T03:02:01.123",
 "enddate": "2017-01-03T01:02:03.123456789",
 "seniority": 29,
 "current": true,
 "duties": {
 "committee": ["Intelligence","Judiciary",
 "Appropriations"],
 "caucus": ["Congressional Progressive","Afterschool"]
 },
 "personal": {
 "firstname":"Tammy",
 "lastname":"Baldwin",
 "birthday":"1962-02-11",
 "social_media": {
 "website":"https://www.baldwin.senate.gov",
 "rss_url":"http://www.baldwin.senate.gov/rss/feeds",
 "twittered":"SenBaldwin"
 },
 "address": {
 "home": {
 "number":"23315",
 "street":"Wallbury Court",
 "apt":"17",
 "city":"Madison",
 "state":"WI",
 "zipcode":53779,
 "phone": "608-742-8331"
 },

Chapter 9
Sample: Array of JSON Documents

9-2

 "work": {
 "number":"Hart Senate Office Building",
 "street":"Second Street NE",
 "apt":355,
 "city":"Washington",
 "state":"DC",
 "zipcode":20001
 "phone": "202-224-2315"
 }
 },
 "cspanid": 57884
 },
 "contrib": 2571354.93
 }]
}

Note:

The meta object at the beginning of the file is required. The meta object has the
limit and total_count equal to the number of JSON object elements in the
objects array. Programs that read and load each JSON document will use the
contents of that object to determine the total number of JSON documents contained
in the file; specifically, the limit and the total_count attributes of the meta
object. If you add additional documents to this example file, then update the values of
the meta object accordingly.

The LoadJsonExample Program Source
The following LoadJsonExample java program creates and populates an Oracle NoSQL
Database table with rows whose elements are JSON documents read from a text file.

package es.table;

import java.nio.file.Path;
import java.nio.file.Files;
import java.nio.file.FileSystems;

import java.io.FileNotFoundException;
import java.io.IOException;

import java.util.List;
import java.util.ArrayList;

import oracle.kv.FaultException;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;
import oracle.kv.StatementResult;

import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;

Chapter 9
The LoadJsonExample Program Source

9-3

import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;

import com.fasterxml.jackson.core.JsonParser;
import com.fasterxml.jackson.core.JsonToken;

import oracle.kv.impl.tif.esclient.jsonContent.ESJsonUtil;

/**
 * Class that creates an example table in a given Oracle NoSQL Database store
and
 * then uses the Oracle NoSQL Database Table API to populate the table with
 * sample records consisting of JSON documents retrieved from a file. The
 * table that is created consists of only two Oracle NoSQL Database data
types: an
 * INTEGER type and a JSON type.
 *
 * The file from which the desired JSON documents are retrieved must be of
 * form:
 * <pre>
 {
 "meta": {
 "limit": n,
 "offset": 0,
 "total_count": n
 },
 "objects": [
 {
 JSON DOCUMENT 1
 },
 {
 JSON DOCUMENT 2
 },

 {
 JSON DOCUMENT n
 },
]
 }
 * </pre>
 */
public final class LoadJsonExample {

 final boolean debugWithNoStore = false;
 final boolean debugAll = false;
 final boolean debugTopLevelJsonArrayObject = false;
 final boolean debugAddDoc = false;
 final boolean debugJsonToStringTop = false;
 final boolean debugJsonToStringArray = false;
 final boolean debugDocByDoc = false;

 private final KVStore store;
 private final TableAPI tableAPI;
 private final Table table;

 private Path jsonPath;

Chapter 9
The LoadJsonExample Program Source

9-4

 private boolean deleteExisting = false;

 private static final String TABLE_NAME_DEFAULT = "jsonTable";
 private static final String ID_FIELD_NAME = "id";
 private static final String JSON_FIELD_NAME = "jsonField";

 public static void main(final String[] args) {
 try {
 final LoadJsonExample loadData = new LoadJsonExample(args);
 loadData.run();
 } catch (FaultException e) {
 e.printStackTrace();
 System.out.println("Please make sure a store is running.");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Parses command line args and opens the KVStore.
 */
 private LoadJsonExample(final String[] argv) {

 String storeName = "";
 String hostName = "";
 String hostPort = "";

 final int nArgs = argv.length;
 int argc = 0;
 String tableName = null;

 if (nArgs == 0) {
 usage(null);
 }

 while (argc < nArgs) {
 final String thisArg = argv[argc++];

 if ("-store".equals(thisArg)) {
 if (argc < nArgs) {
 storeName = argv[argc++];
 } else {
 usage("-store requires an argument");
 }
 } else if ("-host".equals(thisArg)) {
 if (argc < nArgs) {
 hostName = argv[argc++];
 } else {
 usage("-host requires an argument");
 }
 } else if ("-port".equals(thisArg)) {
 if (argc < nArgs) {
 hostPort = argv[argc++];
 } else {
 usage("-port requires an argument");

Chapter 9
The LoadJsonExample Program Source

9-5

 }
 } else if ("-file".equals(thisArg)) {
 if (argc < nArgs) {
 jsonPath = FileSystems.getDefault().getPath(argv[argc++]);
 } else {
 usage("-file requires an argument");
 }
 } else if ("-table".equals(thisArg)) {
 if (argc < nArgs) {
 tableName = argv[argc++];
 }
 } else if ("-security".equals(thisArg)) {
 if (argc < nArgs) {
 System.setProperty(
 KVSecurityConstants.SECURITY_FILE_PROPERTY,
 argv[argc++]);
 } else {
 usage(“-security requires an argument”);
 }

 } else if ("-delete".equals(thisArg)) {
 deleteExisting = true;
 } else {
 usage("Unknown argument: " + thisArg);
 }
 }

 if (storeName == null) {
 usage("Missing argument: -store <store-name>");
 }

 if (hostName == null) {
 usage("Missing argument: -host <host>");
 }

 if (hostPort == null) {
 usage("Missing argument: -port <port>");
 }

 if (jsonPath == null) {
 usage("Missing argument: -file <path-to-file>");
 }

 /* When the table name is not specified, construct the name of
 * the table from the file name, minus the suffix. That is strip
 * off the path and the suffix and use file name's 'base' as
 * the name of the table.
 */
 if (tableName == null) {
 final Path flnmElement = jsonPath.getFileName();
 if (flnmElement == null) {
 tableName = TABLE_NAME_DEFAULT;
 } else {
 final String tmpTblName = flnmElement.toString();
 final String suffixDelim = ".";
 if (tmpTblName.contains(suffixDelim)) {

Chapter 9
The LoadJsonExample Program Source

9-6

 final int suffixIndx = tmpTblName.indexOf(suffixDelim);
 if (suffixIndx > 0) {
 tableName = tmpTblName.substring(0, suffixIndx);
 } else {
 tableName = tmpTblName;
 }
 } else {
 tableName = tmpTblName;
 }
 }
 }

 System.out.println("\n--");
 System.out.println("Table to create and load = " + tableName);
 System.out.println("--\n");

 if (debugWithNoStore) {
 store = null;
 tableAPI = null;
 table = null;
 } else {
 store = KVStoreFactory.getStore
 (new KVStoreConfig(storeName, hostName + ":" + hostPort));

 tableAPI = store.getTableAPI();
 createTable(tableName);
 table = tableAPI.getTable(tableName);
 if (table == null) {
 final String msg =
 "Store does not contain table [name=" + tableName + "]";
 throw new RuntimeException(msg);
 }
 }
 }

 private void usage(final String message) {
 if (message != null) {
 System.out.println("\n" + message + "\n");
 }

 System.out.println("usage: " + getClass().getName());
 System.out.println
 ("\t-store <instance name>\n" +
 "\t-host <host name>\n" +
 "\t-port <port number>\n" +
 "\t[-file <path to file with json objects to add to table> |\n" +
 "\t[-table <name of table to create and load>]\n" +
 "\t-delete (default: false) [delete all existing data first]\n");
 System.exit(1);
 }

 private void run() throws FileNotFoundException, IOException {
 if (deleteExisting) {
 deleteExistingData();
 }
 doLoad(jsonPath);

Chapter 9
The LoadJsonExample Program Source

9-7

 }

 private void createTable(final String tableName) {

 final String statement =
 "CREATE TABLE IF NOT EXISTS " + tableName +
 " (" +
 ID_FIELD_NAME + " INTEGER," +
 JSON_FIELD_NAME + " JSON," +
 "PRIMARY KEY (" + ID_FIELD_NAME + "))";

 try {
 final StatementResult result = store.executeSync(statement);
 if (result.isSuccessful()) {
 System.out.println("table created [" + tableName + "]");
 } else if (result.isCancelled()) {
 System.out.println("table creation CANCELLED [" +
 tableName + "]");
 } else {
 if (result.isDone()) {
 System.out.println("table creation FAILED:\n\t" +
 statement);
 System.out.println("ERROR:\n\t" +
 result.getErrorMessage());
 } else {
 System.out.println("table creation IN PROGRESS:\n\t" +
 statement);
 System.out.println("STATUS:\n\t" + result.getInfo());
 }
 }
 } catch (IllegalArgumentException e) {
 System.out.println("Invalid statement:");
 e.printStackTrace();
 } catch (FaultException e) {
 System.out.println("Failure on statement execution:");
 e.printStackTrace();
 }
 }

 private void doLoad(final Path filePath)
 throws FileNotFoundException, IOException {

 try {
 loadJsonDocs(filePath);
 } finally {
 if (store != null) {
 store.close();
 }
 }
 }

 private void loadJsonDocs(final Path filePath)
 throws FileNotFoundException, IOException {

 try {
 final byte[] jsonBytes = Files.readAllBytes(filePath);

Chapter 9
The LoadJsonExample Program Source

9-8

 final int nDocsToAdd = getIntFieldValue(
 "meta", "total_count", ESJsonUtil.createParser(jsonBytes));

 if (debugAll || debugTopLevelJsonArrayObject) {

 System.out.println("BEGIN Top Level Array Object: 'objects'");

 final String objectsJsonStr =
 getTopLevelJsonArrayObject(
 "objects", ESJsonUtil.createParser(jsonBytes));

 System.out.println(objectsJsonStr);
 System.out.println("END Top Level Array Object: 'objects'");
 System.out.println("\nBEGIN Top Level Array Object: 'meta'");

 final String metaJsonStr =
 getTopLevelJsonArrayObject(
 "meta", ESJsonUtil.createParser(jsonBytes));

 System.out.println(metaJsonStr);
 System.out.println("END Top Level Array Object: 'meta'");

 } /* endif (debugAll || debugTopLevelJsonArrayObject) */

 final String[] jsonArray =
 getJsonArrayElements(
 "objects", ESJsonUtil.createParser(jsonBytes),
nDocsToAdd);

 for (int i = 0; i < nDocsToAdd; i++) {

 if (debugAll || debugAddDoc) {
 System.out.println("Adding JSON Row[" + i +
 "] to table:\n" + jsonArray[i]);
 }
 addDoc(i, jsonArray[i]);
 }
 } catch (FileNotFoundException e) {
 System.out.println("File not found [" +
 filePath.getFileName() + "]: " + e);
 throw e;
 } catch (IOException e) {
 System.out.println("IOException [file=" +
 filePath.getFileName() + "]: " + e);
 throw e;
 }
 }

 private void addDoc(final Integer id, final String jsonDoc) {

 final Row row = table.createRow();

 row.put(ID_FIELD_NAME, id);
 row.putJson(JSON_FIELD_NAME, jsonDoc);

 tableAPI.putIfAbsent(row, null, null);

Chapter 9
The LoadJsonExample Program Source

9-9

 }

 private void deleteExistingData() {

 /* Get an iterator over all the primary keys in the table. */
 final TableIterator<PrimaryKey> itr =
 tableAPI.tableKeysIterator(table.createPrimaryKey(), null, null);

 /* Delete each row from the table. */
 long cnt = 0;
 while (itr.hasNext()) {
 tableAPI.delete(itr.next(), null, null);
 cnt++;
 }
 itr.close();
 System.out.println(cnt + " records deleted");
 }

 /*
 * Convenience method for displaying output when debugging.
 */
 private void displayRow(Table tbl) {
 final TableIterator<Row> itr =
 tableAPI.tableIterator(tbl.createPrimaryKey(), null, null);
 while (itr.hasNext()) {
 System.out.println(itr.next());
 }
 itr.close();
 }

 /*
 * Supporting methods for parsing the various attributes in the given
file.
 */

 private String[] getJsonArrayElements(final String arrayName,
 final JsonParser parser,
 final int nElements)
 throws IOException {

 final List<String> arrayList = new ArrayList<String>();

 JsonToken token = parser.nextToken();
 while (token != null) {
 final String curFieldName = parser.getCurrentName();

 if (!arrayName.equals(curFieldName)) {
 token = parser.nextToken();
 continue;
 }
 break;
 }

 if (debugAll || debugDocByDoc) {
 System.out.println(

Chapter 9
The LoadJsonExample Program Source

9-10

 "getJsonArrayElements loop: curToken = " + token +
 ", curFieldName = " + parser.getCurrentName());
 }

 token = parser.nextToken();

 if (debugAll || debugDocByDoc) {
 System.out.println(
 "getJsonArrayElements loop: nextToken = " + token +
 ", nextFieldName = " + parser.getCurrentName());
 }

 if (token == null) {
 System.out.println("getJsonArrayElements loop: " +
 "*** WARNING - null first token from parser");

 return arrayList.toArray(new String[nElements]);
 }

 if (token != JsonToken.START_ARRAY) {
 System.out.println("getJsonArrayElements loop: *** WARNING - " +
 "first token from parser != " + "START_ARRAY [" + token +
"]");

 return arrayList.toArray(new String[nElements]);
 }

 for (int i = 0; i < nElements; i++) {
 final StringBuilder strBldr = new StringBuilder();
 if (i > 0) {
 strBldr.append("{\n");
 }
 final String arrayElement =
 jsonToString(arrayName, null, parser, strBldr, false);
 arrayList.add(arrayElement);

 if (debugAll || debugDocByDoc) {
 System.out.println(
 "getJsonArrayElements loop: arrayElement[" + i + "] =\n" +
 arrayElement);
 }

 }/* end loop */

 return arrayList.toArray(new String[nElements]);
 }

 private String getTopLevelJsonArrayObject(
 final String fieldName,
 final JsonParser parser) throws IOException {

 final StringBuilder strBldr = new StringBuilder();
 JsonToken token = parser.nextToken();
 while (token != null) {
 final String curFieldName = parser.getCurrentName();

Chapter 9
The LoadJsonExample Program Source

9-11

 if (!fieldName.equals(curFieldName)) {
 token = parser.nextToken();
 continue;
 }
 break;
 }
 final String jsonStr =
 jsonToString(fieldName, null, parser, strBldr, false);
 return strBldr.toString();
 }

 private String jsonToString(final String stopField,
 final JsonToken prevToken,
 final JsonParser parser,
 final StringBuilder strBldr,
 final boolean fromObjectArray)
 throws IOException {

 JsonToken token = parser.nextToken();

 if (token == null) {

 if (debugAll || debugJsonToStringTop) {
 System.out.println("TOP of jsonToString: prevToken = " +
 prevToken + ", curToken = " + token +
 ", RETURNING because input token == null");
 }
 return strBldr.toString();
 }

 final String curFieldName = parser.getCurrentName();

 if (debugAll || debugJsonToStringTop) {

 System.out.println("\nTOP of jsonToString");
 System.out.println("prevToken = " + prevToken +
 ", curToken = " + token +
 ", curFieldName = " + curFieldName +
 ", stopField = " + stopField + ", isScalar = "
+
 token.isScalarValue() + ", fromObjectArray = "
+
 fromObjectArray);
 }

 if (prevToken != null) {

 if (prevToken == JsonToken.END_ARRAY ||
 prevToken == JsonToken.END_OBJECT) {

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** TOP of jsonToString: prevToken != null [" +
 prevToken + "] && " + "[END_ARRAY || END_OBJECT]");
 }

Chapter 9
The LoadJsonExample Program Source

9-12

 if (stopField != null && stopField.equals(curFieldName)) {

 if (token == JsonToken.END_ARRAY) {

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** STOP-BY-FIELD_NAME [END_ARRAY]: " +
 "prevToken = " + prevToken + ", curToken = " +
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " ... RETURN string, do not recurse, " +
 "do not terminate outer array with ']' ..." +
 " RETURN STR =\n" + strBldr.toString());
 }
 return strBldr.toString();
 }

 if (token == JsonToken.END_OBJECT) {

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** STOP-BY-FIELD_NAME [END_OBJECT]: " +
 "prevToken = " + prevToken + ", curToken = " +
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " ... RETURN string, do not recurse, " +
 "but DO terminate outer array with '}' ..." +
 " RETURN STR =\n" + strBldr.toString());
 }
 strBldr.append("\n}");
 return strBldr.toString();
 }
 } /* endif (STOP-BY-FIELD) */

 if (prevToken == JsonToken.END_OBJECT &&
 token == JsonToken.START_OBJECT &&
 curFieldName == null) {

 if (fromObjectArray) {
 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** END_OBJECT && START_OBJECT && " +
 "curFieldName=null && is OBJECT_ARRAY: " +
 "prevToken = " + prevToken + ", curToken = " +
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 ", fromObjectArray = " + fromObjectArray +
 " ... add ',{' and RECURSE");
 }
 strBldr.append(",\n{\n");
 return jsonToString(
 stopField, token, parser, strBldr, fromObjectArray);
 }

 if (debugAll || debugJsonToStringTop) {
 System.out.println(

Chapter 9
The LoadJsonExample Program Source

9-13

 "*** END_OBJECT && START_OBJECT && " +
 "curFieldName=null && not OBJECT_ARRAY: " +
 "prevToken = " + prevToken + ", curToken = " +
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 ", fromObjectArray = " + fromObjectArray +
 " ... simply return string, do not recurse");
 }
 return strBldr.toString();

 } else if (prevToken == JsonToken.END_OBJECT &&
 token == JsonToken.END_ARRAY &&
 curFieldName != null) {

 if (fromObjectArray) {

 strBldr.append("\n]\n");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** END_OBJECT && END_ARRAY && " +
 "curFieldName != null && is OBJECT_ARRAY: " +
 "prevToken = " + prevToken + ", curToken = " +
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " terminate OBJECT_ARRAY with ']' ... " +
 "do NOT RECURSE ... RETURN subString =\n" +
 strBldr.toString());
 }

 } else { /* NOT fromObjectArray */

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** END_OBJECT && END_ARRAY && " +
 "curFieldName != null && NOT OBJECT_ARRAY: " +
 "prevToken = " + prevToken + ", curToken = " +
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " do NOT terminate OBJECT_ARRAY ... " +
 "do NOT RECURSE ... RETURN subString =\n" +
 strBldr.toString());
 }

 } /* endif (fromObjectArray) */

 return strBldr.toString();

 } else if (prevToken == JsonToken.END_OBJECT &&
 token == JsonToken.END_OBJECT &&
 (curFieldName != null || fromObjectArray)) {

 strBldr.append("}\n");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(

Chapter 9
The LoadJsonExample Program Source

9-14

 "*** END_OBJECT && END_ARRAY && " +
 "curFieldName != null OR is OBJECT_ARRAY: " +
 "prevToken = " + prevToken + ", curToken = " +
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +
 " terminate object in OBJECT_ARRAY with '}' and "
+
 "RECURSE ...");
 }
 return jsonToString(
 stopField, token, parser, strBldr, fromObjectArray);

 } else if (prevToken == JsonToken.END_ARRAY &&
 token == JsonToken.END_OBJECT &&
 curFieldName != null) {

 strBldr.append("}\n");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** END_ARRAY then END_OBJECT && " +
 "curFieldName != null: " +
 "prevToken = " + prevToken + ", curToken = " +
 token + ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +
 " terminate object with '}' and RECURSE ...");
 }
 return jsonToString(
 stopField, token, parser, strBldr, fromObjectArray);

 } else { /* DEFAULT: all other cases */

 strBldr.append(",\n");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** ELSE BLOCK *** prevToken = " + prevToken +
 ", curToken = " + token + ", curFieldName = " +
 curFieldName + ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +
 " add COMMA and RECURSE ...\n" +
 strBldr.toString());
 }
 return jsonToString(
 stopField, token, parser, strBldr, fromObjectArray);

 } /* endif (prevToken, inputToken, curFieldName */

 } /* endif (prevToken == END_ARRAY || END_OBJECT) */

 if (prevToken.isScalarValue()) {

 if (token != JsonToken.END_ARRAY &&
 token != JsonToken.END_OBJECT) {

Chapter 9
The LoadJsonExample Program Source

9-15

 strBldr.append(",\n");
 return jsonToString(
 stopField, token, parser, strBldr, fromObjectArray);
 }

 if (stopField != null && stopField.equals(curFieldName)) {

 if (token == JsonToken.END_ARRAY) {

 strBldr.append("\n]");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** prev SCALAR && STOP-BY-FIELD_NAME " +
 "[END_ARRAY]: prevToken = " + prevToken +
 ", curToken = " + token + ", curFieldName = "
+
 curFieldName + ", stopField = " + stopField +
 " ... terminate with ']' and RETURN string");
 }
 return strBldr.toString();
 }

 if (token == JsonToken.END_OBJECT) {

 strBldr.append("\n}");

 if (debugAll || debugJsonToStringTop) {
 System.out.println(
 "*** prev SCALAR && STOP-BY-FIELD_NAME " +
 "[END_ARRAY]: prevToken = " + prevToken +
 ", curToken = " + token + ", curFieldName = "
+
 curFieldName + ", stopField = " + stopField +
 " ... terminate with '}' and RETURN string");
 }
 return strBldr.toString();
 }

 } /* endif (prevToken isScalar && STOP-BY-FIELD) */

 } /* endif (prevToken isScalar) */

 } /* endif (prevToken != null) */

 /* Done with prevToken, process current input token next */

 if (token.isScalarValue()) { /* current token is SCALAR */

 strBldr.append("\"" + curFieldName + "\": " +
objectValue(parser));
 return jsonToString(
 stopField, token, parser, strBldr, fromObjectArray);
 }

Chapter 9
The LoadJsonExample Program Source

9-16

 if (JsonToken.START_OBJECT == token) { /* input token is OBJECT */

 if (curFieldName != null) {
 strBldr.append("\"" + curFieldName + "\": {\n");
 } else {
 strBldr.append("{\n");
 }
 return jsonToString(
 stopField, token, parser, strBldr, fromObjectArray);

 } else if (JsonToken.START_ARRAY == token) { /* input Token is ARRAY
*/

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- START_ARRAY --- prevToken = " + prevToken +
 ", curToken = " + token + ", curFieldName = " +
 curFieldName + ", stopField = " + stopField +
 ", isScalar = " + token.isScalarValue() +
 ", fromObjectArray = " + fromObjectArray +
 " ... get NEXT TOKEN");
 }

 token = parser.nextToken();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- START_ARRAY --- nextToken = " + token +
 ", curFieldName = " + curFieldName + ", stopField = " +
 stopField + ", isScalar = " + token.isScalarValue() +
 ", fromObjectArray = " + fromObjectArray);
 }

 if (token == null) {
 System.out.println(
 "*** WARNING: null next token after START_ARRAY. " +
 "Invalid json document?");
 return strBldr.toString();
 }

 /* START_ARRAY then START_OBJECT: Handle ARRAY OF OBJECTS */

 if (JsonToken.START_OBJECT == token) {

 if (debugAll || debugJsonToStringArray) {
 System.out.println("--- START_ARRAY then START_OBJECT: " +
 "Handle ARRAY_OF_OBJECTS ---");
 }

 final StringBuilder tmpBldr = new StringBuilder();
 final String curArrayName = curFieldName;

 if (curArrayName != null) {
 if (!curArrayName.equals(stopField)) {
 tmpBldr.append("\"" + curFieldName + "\": [\n");
 }

Chapter 9
The LoadJsonExample Program Source

9-17

 }
 tmpBldr.append("{\n");

 while (token != null && JsonToken.END_ARRAY != token) {

 /*
 * When at the top of this loop, we know we're handling an
 * array of objects. We know that we're done with that
 * array of objects (has already been terminated with ']')
 * and so should terminate the object containing the
 * array (with '}') if the following conditions are met:
 *
 * 1. The previous token is a FIELD_NAME.
 * 2. The current field name corresponding to the current
 * token is the same as the name of the current array.
 * 3. The current token is END_OBJECT (meaning we're at
 * the end of the object containing the array).
 */
 if (JsonToken.FIELD_NAME == prevToken &&
 JsonToken.END_OBJECT == token &&
 curFieldName != null &&
 curFieldName.equals(curArrayName)) {

 tmpBldr.append("}\n");

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "array element END_OBJECT - " +
 "terminate with '}' - prevToken = " +
 prevToken + ", curToken = " + token +
 ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +
 " ... loop to continue or end of DOC");
 }

 String nextFieldName = curFieldName;
 while(token != null) {

 token = parser.nextToken();
 nextFieldName = parser.getCurrentName();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "array termination inner loop - " +
 "nextToken = " + token +
 ", nextFieldName = " + nextFieldName);
 }

 if (token.isScalarValue()) {

 tmpBldr.append(",\n");
 tmpBldr.append("\"" + nextFieldName +

Chapter 9
The LoadJsonExample Program Source

9-18

 "\": " + objectValue(parser));
 break;
 }

 if (JsonToken.START_OBJECT == token) {

 tmpBldr.append(",\n");
 if (nextFieldName != null) {
 tmpBldr.append("\"" + nextFieldName +
 "\": { kkkk\n");
 } else {
 tmpBldr.append("{ kkkk\n");
 }
 break;
 }

 if (JsonToken.START_ARRAY == token) {

 tmpBldr.append(",\n");
 if (nextFieldName != null) {
 tmpBldr.append("\"" + nextFieldName +
 "\": [kkkk\n");
 } else {
 tmpBldr.append("[kkkk\n");
 }
 break;
 }

 if ((nextFieldName != null &&
 nextFieldName.equals(stopField)) ||
 (nextFieldName == null &&
 JsonToken.END_OBJECT == token)) {

 final String finalRetStr =
 strBldr.append(tmpBldr.toString()).toString();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "DONE - RETURN FINAL STRING =\n" +
 finalRetStr);
 }
 return finalRetStr;
 }

 } /* end loop */

 /* More tokens to process. Recurse. */

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "curToken = " + token + ", curFieldName = " +
 nextFieldName + ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +

Chapter 9
The LoadJsonExample Program Source

9-19

 "- more tokens to process ... RECURSE");
 }
 jsonToString(stopField, token, parser, tmpBldr,
false);

 } else { /* Not end of outer object containing objArray */

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "prevToken = " + prevToken + ", curToken = " +
 token + ", curFieldName = " +
 curFieldName + ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +
 "- NOT END OF ARRAY ... RECURSE");
 }
 jsonToString(stopField, token, parser, tmpBldr, true);

 } /* endif (FIELD_NAME then END_OBJECT && array name) */

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- TOP ARRAY_OF_OBJECTS LOOP: " +
 "EXIT jsonToString() - prevToken = " +
 prevToken + ", curToken = " + token +
 ", curFieldName = " + curFieldName +
 ", stopField = " + stopField +
 " , fromObjectArray = " + fromObjectArray +
 " ... loop to continue or end of DOC");
 }

 if (JsonToken.FIELD_NAME == prevToken &&
 JsonToken.FIELD_NAME == token &&
 curFieldName != null) {

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then FIELD_NAME - " +
 "curToken = " + token +
 ", curFieldName = " + curFieldName +
 " ... get NEXT TOKEN");
 }

 token = parser.nextToken();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then FIELD_NAME - " +
 "nextToken = " + token + ", nextFieldName = "
+
 parser.getCurrentName());
 }

Chapter 9
The LoadJsonExample Program Source

9-20

 if (JsonToken.END_OBJECT == token) {

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then FIELD_NAME - " +
 "nextToken = END_OBJECT ... BREAK " +
 "out of loop ... subString =\n" +
 tmpBldr.toString());
 }
 break;

 } else { /* nextToken NOT END_OBJECT */

 final String finalRetStr = strBldr.append(
 tmpBldr.toString()).toString();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then FIELD_NAME - " +
 "nextToken = " + token +
 "(NOT END_OBJECT) ... DONE - " +
 "RETURN FINAL STRING = \n" + finalRetStr);
 }
 return finalRetStr;

 } /* endif (nextToken END_OBJECT or NOT) */

 } else if (JsonToken.FIELD_NAME == prevToken &&
 JsonToken.START_OBJECT == token &&
 curFieldName != null) {

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then START_OBJECT - " +
 "curToken = " + token + ", curFieldName = " +
 parser.getCurrentName());
 }

 token = parser.nextToken();
 final String nextFieldName = parser.getCurrentName();

 if (JsonToken.FIELD_NAME == token &&
 nextFieldName != null) {
 tmpBldr.append(",\n");

 } else if (JsonToken.END_OBJECT == token &&
 nextFieldName != null) {
 tmpBldr.append("}\n");
 }

 if (debugAll || debugJsonToStringArray) {
 System.out.println(

Chapter 9
The LoadJsonExample Program Source

9-21

 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "FIELD_NAME then START_OBJECT - " +
 "nextToken = " + token + ", nextFieldName = " +
 nextFieldName + " ... current subString =\n" +
 tmpBldr.toString());
 }

 } else {

 token = parser.nextToken();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "*** ELSE *** nextToken = " + token +
 ", nextFieldName = " +
 parser.getCurrentName() +
 " ... current subString =\n" +
 tmpBldr.toString());
 }

 }/* endif FIELD_NAME && FIELD_NAME && fieldName != null */

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- IN ARRAY_OF_OBJECTS LOOP: " +
 "END OF LOOP - CONTINUE TO TOP OF LOOP");
 }

 } /* end ARRAY_OF_OBJECTS loop */

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- OUT ARRAY_OF_OBJECTS LOOP: " +
 "current subString = \n" + tmpBldr.toString());
 }

 final String tmpStr = tmpBldr.toString();
 final String retStr = strBldr.append(tmpStr).toString();

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- OUT ARRAY_OF_OBJECTS LOOP: " +
 "ENTER jsonToString() - BEGIN FINAL RETURN
string ...");
 }

 final String finalRetStr =
 jsonToString(stopField, token, parser, strBldr, false);

 if (debugAll || debugJsonToStringArray) {
 System.out.println(
 "--- OUT ARRAY_OF_OBJECTS LOOP: EXIT " +
 "jsonToString() - RETURN FINAL RETURN string = \n" +
 finalRetStr);
 }

Chapter 9
The LoadJsonExample Program Source

9-22

 return finalRetStr;

 } /* endif START_OBJECT after START_ARRAY & ARRAY OF OBJECTS */

 /* -- START_ARRAY then NOT START_OBJECT: ARRAY OF SCALARS -- */

 if (debugAll || debugJsonToStringArray) {
 System.out.println("--- START_ARRAY then SCALAR: " +
 "Enter ARRAY_OF_SCALARS loop ---");
 }

 strBldr.append("\"" + curFieldName + "\": [\n");
 while (token != null && JsonToken.END_ARRAY != token) {
 strBldr.append(objectValue(parser));
 token = parser.nextToken();
 if (JsonToken.END_ARRAY == token) {
 strBldr.append("\n]");
 } else {
 strBldr.append(",\n");
 }
 }/* end loop: ARRAY_OF_SCALARS */

 return jsonToString(stopField, token, parser, strBldr, false);

 } else if(JsonToken.END_OBJECT == token) {

 strBldr.append("\n}");
 return jsonToString(
 stopField, token, parser, strBldr, fromObjectArray);

 } else { /* DEFAULT: all other values of current input token */

 return jsonToString(
 stopField, token, parser, strBldr, fromObjectArray);

 } /* endif (START_OBJECT else START_ARRAY else END_OBJECT) */
 }

 private Object objectValue(JsonParser parser) throws IOException {
 final JsonToken currentToken = parser.getCurrentToken();
 if (currentToken == JsonToken.VALUE_STRING) {
 return "\"" + parser.getText() + "\"";
 } else if (currentToken == JsonToken.VALUE_NUMBER_INT ||
 currentToken == JsonToken.VALUE_NUMBER_FLOAT) {
 return parser.getNumberValue();
 } else if (currentToken == JsonToken.VALUE_TRUE) {
 return Boolean.TRUE;
 } else if (currentToken == JsonToken.VALUE_FALSE) {
 return Boolean.FALSE;
 } else if (currentToken == JsonToken.VALUE_NULL) {
 return null;
 } else {
 return "\"" + parser.getText() + "\"";
 }
 }

Chapter 9
The LoadJsonExample Program Source

9-23

 private int getIntFieldValue(final String objectName,
 final String fieldName,
 final JsonParser parser) throws IOException {
 int nObjects = 0;
 JsonToken token = parser.nextToken();
 while (token != null) {
 String curFieldName = parser.getCurrentName();
 if (objectName.equals(curFieldName)) {
 token = parser.nextToken();
 while (token != null) {
 curFieldName = parser.getCurrentName();
 if (fieldName.equals(curFieldName)) {
 token = parser.nextToken();
 if (token != JsonToken.VALUE_NUMBER_INT) {
 System.out.println("getIntFieldValue: WARNING - "
+
 "for object " + objectName + ", value of " +
 "field " + fieldName + " is NOT an integer ["
+
 parser.getText() + "]");
 return nObjects;
 }
 nObjects = parser.getNumberValue().intValue();
 return nObjects;
 }
 token = parser.nextToken();
 }
 }
 token = parser.nextToken();
 }
 System.out.println("getIntFieldValue: WARNING - could not find " +
 "field in given object [object=" + objectName +
 ", field=" + fieldName + "]");
 return nObjects;
 }
}

Secure Elasticsearch using Sheild
The following are the steps to take to configure an Elasticsearch cluster to run securely. The
descriptions provided in each sub-section below are based on the following list of assumptions
and requirements:

Assumptions about the Secure Elasticsearch Cluster

• The 2.4.6 version of the Elasticsearch distribution is installed under the
directory /opt/es/elasticsearch.

• The 2.4.6 version of the Shield adapter (and license) is installed in the Elasticsearch
configuration (see below).

• There are three nodes hosting the Elasticsearch cluster, named eshost1, eshost2, and
eshost3 respectively, each having network connectivity with the other nodes of the
Elasticsearch cluster, as well as the nodes of the Oracle NoSQL store.

Chapter 9
Secure Elasticsearch using Sheild

9-24

• The value used when specifying the node.name property for each node of the
Elasticsearch cluster is the hostname of the corresponding Elasticsearch node.

• The cluster that is deployed is named escluster (cluster.name).

• The port used for node-to-node communication within the cluster itself is 29000
(transport.tcp.port).

• The port used by clients of the cluster when communicating over HTTPS with any node in
the cluster (for example, to send Full Text Search queries), is 29100 (http.port).

• For simplicity, all passwords are set to No_Sql_00.

• The nodes of the Elasticsearch cluster each generate a public/private keypair with an alias
that is unique relative to the aliases of the keypairs generated by the other nodes in the
cluster. This is a requirement because the public certificate from each Elasticsearch node
will be installed in the truststore of the other nodes of the cluster, as well as the truststore
of each node in the Oracle NoSQL store. This is necessary not only for secure
communication between the Oracle NoSQL store and the Elasticsearch cluster, but also for
secure communication between the nodes of the cluster itself. To achieve the required
alias uniqueness, each alias will include the hostname of the Elasticsearch node that
generates the keypair.

• Although the alias of the keypair generated by each node must be unique, all of those
keypairs share the same Distinguished Name (DN); with Common Name (CN) equal to
esuser.

Note:

The Shield security plugin used by Elasticsearch employs Public Key Infrastructure
(PKI) for user authentication. As a result, when a node in the NoSQL store attempts
to communicate with an Elasticserch node, the Elasticsearch node presents a
certificate to the store node, which the store node must trust in order for the
communication to succeed. There are two options for establishing PKI certificate
trust:

• Self-signed public certificates

• Public certificates signed by a Certificate Authority (CA)

The secure Elasticsearch cluster presented here uses self-signed certificates. As
described above, using this option, each node in the Elasticsearch cluster must
provide its own certificate with unique alias; and each such certificate must be
installed in the truststore of any service (example: the Oracle NoSQL store) or client
that wishes to communicate with the Elasticsearch cluster.

Although obtaining and installing a single CA-signed certificate is less cumbersome
than installing a self-signed certificate from each of the Elasticsearch nodes, the use
of self-signed certificates can be more instructive with respect to PKI concepts. Once
you understand how to work with self-signed certificates, changing your deployment
to employ the CA-signed option should be straightforward.

Install Elasticsearch and the Shield Plugin

You can find the 2.4.6 version of Elasticsearch, Shield, and the Shield license at the following
URLs:

Chapter 9
Secure Elasticsearch using Sheild

9-25

• https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/
elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz

• https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/shield/2.4.6/
shield-2.4.6.zip

• https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/license/2.4.6/
license-2.4.6.zip

On each Elasticsearch node (eshost1, eshost2, and eshost3), create the
directory /opt/es, download elasticsearch-2.4.6.tar.gz to that directory, and install
the Elasticsearch software. For example, on each host do the following:

mkdir –p /opt/es/install-xfer/certs

Use curl, wget or your browser to download elasticsearch-2.4.6.tar.gz to /opt/es,
then

cd /opt/es
tar xzvf elasticsearch-2.4.6.tar.gz
ln –s elasticsearch-2.4.6 elasticsearch

Download the Shield distribution and its corresponding license to a temporary directory on
each node (example: /tmp). Do not place those zip files under the /opt/es/
elasticsearch home directory; otherwise installation errors can occur. Once you have
downloaded the Shield distributions and its corresponding license, install Shield by doing the
following:

export JAVA_HOME=/opt/java/java17 [if necessary]

cd /opt/es
bin/plugin install –v file:///tmp/elasticsearch-shield-license-2.4.6.zip
bin/plugin install –v file:///tmp/elasticsearch-shield-2.4.6.zip

Note:

Java 11 or later version is required to install the Shield plugin, as well as to deploy
the Elasticsearch cluster itself. Thus, if the default version of Java on your
Elasticsearch nodes is less than Java 11, then you should install Java 11 or later
version on each node. It is recommended to use Java 17 and set the JAVA_HOME
environment variable to point to that installation before installing the Shield plugin or
deploying the cluster.

Also, when you initially install Shield, a 30 day trial license is installed that allows
access to all Shield features. Although the 30 day trial license should suffice to run
this example, you can purchase a subscription at the end of the trial period if you
want to keep using the full functionality of Shield; otherwise, you can use Shield in a
degraded mode after expiration, where the monitoring feature is disabled.

Chapter 9
Secure Elasticsearch using Sheild

9-26

https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz
https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/tar/elasticsearch/2.4.6/elasticsearch-2.4.6.tar.gz
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/shield/2.4.6/shield-2.4.6.zip
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/shield/2.4.6/shield-2.4.6.zip
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/license/2.4.6/license-2.4.6.zip
https://download.elastic.co/elasticsearch/release/org/elasticsearch/plugin/license/2.4.6/license-2.4.6.zip

Create and Install a Public/Private Keypair in the Elasticsearch Keystore

On each Elasticsearch node, generate a public/private keypair that clients of Elasticsearch can
use to execute secure queries on the data indexed in the cluster. For example, on eshost1
execute:

keytool –genkeypair
 –alias elasticsearch-eshost1
 –keystore /opt/es/elasticsearch/config/shield/elasticsearch.keys
 -keyalg RSA
 –keysize 2048
 –validity 1712
 –storepass No_Sql_00
 –keypass No_Sql_00
 -dname CN=esuser,OU=es.org,L=es.city,S=es.state,C=US
 -ext san=dns:localhost,dns:eshost1,dns:eshost2,dns:eshost3,
 dns:kvhost1,dns:kvhost2,dns:kvhost3

This command will generate a keypair with alias elasticsearch-eshost1. It will place the
keypair in that node's keystore (elasticsearch.keys) if the keystore already exists;
otherwise it will create the keystore before generating the keypair.

Export the Public Certificate and Install it in the Truststore

On each Elasticsearch node, export the public certificate from the keypair generated above.
Store the resulting certificate file in a directory outside of the Shield config directory; for
example, /opt/es/install-xfer/certs. This will facilitate distribution of the certificate to
the other nodes in the cluster as well as clients of Elasticsearch (example: the Oracle NoSql
store). For example, on eshost1 execute:

keytool –export
 –alias elasticsearch-eshost1
 –keystore /opt/es/elasticsearch/config/shield/elasticsearch.keys
 -storepass No_Sql_00
 -file /opt/es/install-xfer/certs/elasticsearch-eshost1.crt

This command will retrieve the public certificate with the given alias from the keystore and
place it in the certificate file (elasticsearch-eshost1.crt) located in the separate transfer
directory (install-xfer/certs).

Once the certificate file is available, import (install) the public certificate into the node's
truststore. For example, on eshost1 execute:

keytool –importcert
 –alias elasticsearch-eshost1
 -file /opt/es/install-xfer/certs/elasticsearch-eshost1.crt
 –keystore /opt/es/elasticsearch/config/shield/elasticsearch.trust
 -storepass No_Sql_00
 -keypass No_Sql_00
 –noprompt

If the node's truststore already exists, this command will install the public certificate from the
specified file into that truststore (elasticsearch.trust); otherwise the truststore is created
prior to importing the certificate.

Chapter 9
Secure Elasticsearch using Sheild

9-27

Convert the Public/Private Keys to OpenSSL Format (pem/key)

On each Elasticsearch node, retrieve the previously generated public/private keypair from the
node's keystore as a PKCS12 file. For example, on eshost1:

keytool –importkeystore
 -srckeystore /opt/es/install-xfer/certs/elasticsearch.keys
 –srcalias elasticsearch-eshost1
 -srcstorepass No_Sql_00
 –dstkeystore /opt/es/install-xfer/certs/elasticsearch-eshost1.p12
 -deststoretype PKCS12
 -deststorepass No_Sql_00
 -destkeypass No_Sql_00

Next, retrieve the public certificate – in PEM format – from the PKCS12 file that was just
retrieved. For example:

openssl pkcs12
 -in /opt/es/install-xfer/certs/elasticsearch-eshost1.p12
 -passin pass:No_Sql_00
 –out /opt/es/install-xfer/certs/elasticsearch-eshost1.pem
 -nokeys

Finally, retrieve the private key file from that PKCS12 file. For example:

openssl pkcs12
 -in /opt/es/install-xfer/certs/elasticsearch-eshost1.p12
 -passin pass:No_Sql_00
 –out /opt/es/install-xfer/certs/elasticsearch-eshost1.pkey
 -nocerts

The commands above produce two files, elasticsearch-eshost1.pem and
elasticsearch-eshost1.pkey that can be installed on clients of Elasticsearch and used
to execute secure queries against data indexed by the cluster. In the initial stages of cluster
configuration, these files can be used to verify that Elasticsearch security has been configured
correctly.

Modify the Elasticsearch and Shield Configuration Files

To complete the configuration of Elasticsearch to run securely using the Shield plugin, the
following YAML configuration files must be modified on each Elasticsearch node:

• /opt/es/elasticsearch/config/elasticsearch.yml
• /opt/es/elasticsearch/config/shield/role_mapping.yml
On each Elasticsearch node, edit the files listed above and make the following modifications.

1. Add the following lines to elasticsearch.yml

shield:
 enabled: true
 authc:
 realms:
 pki1:

Chapter 9
Secure Elasticsearch using Sheild

9-28

 type: pki
 enabled: true
 order: 0
 transport:
 ssl: true
 ssl.client.auth: required
 http:
 ssl: true
 ssl.client.auth: required
 ssl:
 keystore:"current": true,
 path: /opt/es/elasticsearch/config/shield/elasticsearch.keys
 password: No Sql_00
 key_password: No_Sql_00
 truststore:
 path: /opt/es/elasticsearch/config/shield/elasticsearch.trust
 password: No Sql_00

2. Add the following three lines to role_mapping.yml

admin:
 - "CN=esuser,OU=es.org.unit,O=es.org,L=es.city,ST=es.state,C=US"
 -
"CN=FTS,OU=nosql.org.unit,O=nosql.org,L=nosql.city,ST=nosql.state,C=US"

Without these additions to the Elasticsearch and Shield configurations, any attempt by you or
the Oracle NoSQL store to communicate with the secure Elasticsearch cluster will encounter
errors related to either authentication or TLS/SSL failures.

At this point, there is still more to do to configure the Elasticsearch cluster for secure
communication with an Oracle NoSQL store. But before that can be done, you must first
configure and deploy the store itself. If you are confident that your current Elasticsearch
security configuration is correct, then you can go directly to Deploying and Configuring a
Secure Oracle NoSQL Store to deploy the secure Oracle NoSQL store and configure it for
secure communication with the Elasticsearch cluster. But if you prefer to verify that what you
have done so far is correct, then execute the steps presented in the next sub-section.

[Optional] Verify Elasticsearch Security is Configured Correctly

Before moving on to deploying and configuring a secure Oracle NoSQL store, you may wish to
verify that queries can indeed be successfully (and securely) executed against the
Elasticsearch cluster with its current configuration. To do this, you must first install each
Elasticsearch node's PEM formatted public certificate and private key on any client from which
a query will be sent to Elasticsearch.

For example, suppose your client node is named clhost1. And suppose you copy the public/
private PEM files from each Elasticsearch node to the /tmp directory of clhost1. That is, on
clhost1,

scp <username>@eshost1:/opt/es/install-xfer/certs/elasticsearch-
eshost1.pem /tmp
scp <username>@eshost1:/opt/es/install-xfer/certs/elasticsearch-
eshost1.pkey /tmp

scp <username>@eshost2:/opt/es/install-xfer/certs/elasticsearch-
eshost2.pem /tmp

Chapter 9
Secure Elasticsearch using Sheild

9-29

scp <username>@eshost2:/opt/es/install-xfer/certs/elasticsearch-
eshost2.pkey /tmp

scp <username>@eshost3:/opt/es/install-xfer/certs/elasticsearch-
eshost3.pem /tmp
scp <username>@eshost3:/opt/es/install-xfer/certs/elasticsearch-
eshost3.pkey /tmp

ls /tmp

 elasticsearch-eshost1.pem
 elasticsearch-eshost1.pkey

 elasticsearch-eshost2.pem
 elasticsearch-eshost2.pkey

 elasticsearch-eshost3.pem
 elasticsearch-eshost3.pkey

Next, deploy the secure Elasticsearch cluster by logging in to each Elasticsearch node and
executing the following commands:

On eshost1

cd /scratch/es
export JAVA_HOME=/opt/java/java17 [if necessary]

./elasticsearch/bin/elasticsearch
 --cluster.name escluster
 --node.name eshost1
 --transport.tcp.port 29000
 --http.port 29100
 --discovery.zen.ping.unicast.hosts
eshost1:29000,eshost2:29000,eshost3:29000

On eshost2

cd /scratch/es
export JAVA_HOME=/opt/java/java17 [if necessary]

./elasticsearch/bin/elasticsearch
 --cluster.name escluster
 --node.name eshost2
 --transport.tcp.port 29000
 --http.port 29100
 --discovery.zen.ping.unicast.hosts
eshost1:29000,eshost2:29000,eshost3:29000

On eshost3

cd /scratch/es
export JAVA_HOME=/opt/java/java17 [if necessary]

./elasticsearch/bin/elasticsearch

Chapter 9
Secure Elasticsearch using Sheild

9-30

 --cluster.name escluster
 --node.name eshost3
 --transport.tcp.port 29000
 --http.port 29100
 --discovery.zen.ping.unicast.hosts
eshost1:29000,eshost2:29000,eshost3:29000

Once the Elasticsearch cluster has been deployed, you can send queries from the client node
to any of the nodes making up the Elasticsearch cluster. For example,

curl –k –E /tmp/elasticsearch-eshost1.pem
 –-key /tmp/elasticsearch-eshost1.pkey
 -X GET 'https://eshost1:29100/_cat/nodes'

curl –k –E /tmp/elasticsearch-eshost2.pem
 –-key /tmp/elasticsearch-eshost2.pkey
 -X PUT 'https://eshost2:29100/indices'

curl –k –E /tmp/elasticsearch-eshost3.pem
 –-key /tmp/elasticsearch-eshost3.pkey
 -X GET 'https://eshost3:29100/_cat/indices'

Be sure to use the public certificate and private key corresponding to the node to which you
send the query.

After verifying that the Elasticsearch cluster is configured correctly and can execute secure
queries, shutdown/kill [crtl-c] the Elasticsearch process on each node.

At this point, we are ready to deploy a secure Oracle NoSQL store and configure it for
communication with the secure Elasticsearch cluster from this section. See Deploying and
Configuring a Secure Oracle NoSQL Store.

Deploying and Configuring a Secure Oracle NoSQL Store
There are a number of different methods to deploy and configure an Oracle NoSQL store for
secure access. This section presents one particular set of steps you can take to deploy and
configure such a store. For other methods, see Security Configuration in the Security Guide.

Additionally, since the store that is deployed must communicate with the secure Elasticsearch
cluster from Secure Elasticsearch using Sheild, this section also shows how to generate and
install the private keys and public certificates needed by the store and cluster for secure
communication.

Whether you prefer the method presented here or one of the other methods presented in the
Security Guide, the following assumptions and requirements apply when configuring an Oracle
NoSQL store for secure deployment and communication with a secure Elasticsearch cluster:

Assumptions about the Secure Oracle NoSQL Store

• The Oracle NoSQL Database distribution is installed under the directory /opt/ondb/kv.

• There are three nodes hosting the store, named kvhost1, kvhost2, and kvhost3
respectively.

• The store is deployed with a replication factor (rf) of 3, and is named mystore.

• An admin service, listening on port 5000, is deployed on each of the store's nodes.

Chapter 9
Deploying and Configuring a Secure Oracle NoSQL Store

9-31

• The range of ports used to support high availability (harange) consists of port 5002
through 5007.

• One storage node (SN) per store host will be deployed (capacity 1), with default values for
the number of cpu's and memory (num_cpus 0 and memory_mb 0).

• The contents of the shards (replication groups) managed by the store are located under
the storage directory /disk1/shard on each node of the store; where the size specified
for each storage directory is 1GB (1,000,000,000 bytes).

• For convenience, the password manager the store uses to store and retrieve passwords
for access to the store's keystore and truststore is a password file (available in all editions
of Oracle NoSQL Database), rather than the Oracle Wallet (available in only the Enterprise
Edition).

• For simplicity, all passwords are set to No_Sql_00.

• The name of the alias used in the public/private keypair generated by the store and
provided to Elasticsearch for secure communication with the store, is FTS. Note that this is
a requirement, as communication with a secure store will fail if Elasticsearch responds to a
request from the store by presenting a certificate with an alias different than FTS.

• A user with administrative privileges is provisioned in the store's access control list. The
name given to this user is FTS; the same as the alias of the keypair the store generates for
Elasticsearch. Although the user name is not required to be the same as the alias, it is
given that value for consistency, and to avoid confusion.

Provision the Store Boot Node for Secure Deployment and Elasticsearch
Communication

All of the commands presented in this sub-section are executed on only the first (boot) node of
the store (example: kvhost1). Using the assumptions previously listed, when provisioning the
boot node of a store that will be deployed with security, the first command to execute is:

On kvhost1

export JAVA_HOME=/opt/java/java17 [if necessary]

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig
 -root /opt/ondb/kvroot
 -config config.xml
 -port 5000
 -host kvhost1
 -harange 5002,5007
 -capacity 1
 -num_cpus 0
 -memory_mb 0
 -storagedir /disk1/shard
 -storagedirsize 1000000000
 -store-security configure
 -pwdmgr pwdfile
 -kspwd No_Sql_00

The command above creates the security directory /opt/ondb/kvroot/security on the
store's boot node kvhost1, and populates it with security artifacts such as the store's keystore
(store.keys) and trustore (store.trust). For convenience, it also creates artifacts that
can be distributed to clients for secure access to the store (client.trust and

Chapter 9
Deploying and Configuring a Secure Oracle NoSQL Store

9-32

client.security). After executing the command above, you should see the following files
in the security directory:

ls /opt/ondb/kvroot/security
 store.trust
 client.trust
 client.security
 security.xml
 store.keys
 store.passwd

Athough the command above is necessary to deploy a secure store, it is not sufficient for
secure communication with the Elasticsearch cluster from Secure Elasticsearch using Sheild.
To facilitate secure communication with Elasticsearch, a public/private keypair with the alias
FTS must be generated and installed in the store's keystore. For example,

On kvhost1

keytool -genkeypair
 -alias FTS
 -keystore /opt/ondb/kvroot/security/store.keys
 -keyalg RSA
 -keysize 2048
 -validity 1712
 -storepass No_Sql_00
 -keypass No_Sql_00
 -dname CN=FTS,OU=nosql.org,L=nosql.city,S=nosql.state,C=US
 -ext san=dns:localhost,dns:eshost1,dns:eshost2,dns:eshost3,
 dns:kvhost1,dns:kvhost2,dns:kvhost3

After generating the keypair above, the public certificate from that keypair must be exported
from the keystore. In order for any node of the Elasticsearch cluster to securely communicate
with the NoSQL store, the Elasticsearch node must send this certificate to the store. Thus, the
certificate produced by the following export command will ultimately be installed on each node
of the Elasticsearch cluster. See Install the Full Text Search Public Certificate in Elasticsearch.
On kvhost1,

keytool -export
 -alias FTS
 -keystore /opt/ondb/kvroot/security/store.keys
 -storepass No_Sql_00
 -file /opt/ondb/kvroot/security/FTS.crt

Whereas the FTS public certificate created by this command must be presented to the Oracle
NoSQL store by each Elasticsearch node when the node attempts to communicate with the
store, the store must also present the Elasticsearch node's public certificate. This is because
the model for secure communication between Elasticsearch and Oracle NoSQL requires
mutual authentication. As a result, the public certificates created on each of the Elasticsearch
nodes in Secure Elasticsearch using Sheild must be retrieved and installed in the store's
truststore. For example,

scp <username>@eshost1:/opt/es/install-xfer/certs/elasticsearch-
eshost1.crt /opt/ondb/kvroot/security
scp <username>@eshost2:/opt/es/install-xfer/certs/elasticsearch-

Chapter 9
Deploying and Configuring a Secure Oracle NoSQL Store

9-33

eshost2.crt /opt/ondb/kvroot/security
scp <username>@eshost3:/opt/es/install-xfer/certs/elasticsearch-
eshost3.crt /opt/ondb/kvroot/security

keytool -importcert
 -alias elasticsearch-eshost1
 -file /opt/ondb/kvroot/security/elasticsearch-eshost1.crt
 -keystore /opt/ondb/kvroot/security/store.trust
 -storepass No_Sql_00
 -keypass No_Sql_00
 -noprompt

keytool -importcert
 -alias elasticsearch-eshost2
 -file /opt/ondb/kvroot/security/elasticsearch-eshost2.crt
 -keystore /opt/ondb/kvroot/security/store.trust
 -storepass No_Sql_00
 -keypass No_Sql_00
 -noprompt

keytool -importcert
 -alias elasticsearch-eshost3
 -file /opt/ondb/kvroot/security/elasticsearch-eshost3.crt
 -keystore /opt/ondb/kvroot/security/store.trust
 -storepass No_Sql_00
 -keypass No_Sql_00
 -noprompt

At this point, the store's boot node is configured for secure deployment, and its security
directory has been provisioned with the necessary security artifacts for communication with the
Elasticsearch cluster from Secure Elasticsearch using Sheild.

The final step in the provisioning process is to install the same security artifacts created on the
boot node in each of the remaining nodes of the store. This is accomplished by simply copying
the boot node's security directory to each of those other nodes. For example, if the boot node
is kvhost1, then you would do something like the following from that node:

scp -r /opt/ondb/kvroot/security <username>@kvhost2:/opt/ondb/kvroot
scp -r /opt/ondb/kvroot/security <username>@kvhost3:/opt/ondb/kvroot

Configure the Store's Remaining non-Boot Nodes for Security

Once the store's boot node is configured for security and the security directory of all of the
nodes in the store have been fully provisioned as described in the previous sub-section, the
remaining (non-boot) nodes of the store must also be configured for security. This is
accomplished by using Java 11 or later to execute, respectively, the following commands on
each of the remaining nodes.

On kvhost2

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig
 -root /opt/ondb/kvroot
 -config config.xml
 -port 5000
 -host kvhost2
 -harange 5002,5007

Chapter 9
Deploying and Configuring a Secure Oracle NoSQL Store

9-34

 -capacity 1
 -num_cpus 0
 -memory_mb 0
 -storagedir /disk1/shard
 -storagedirsize 1000000000
 -store-security enable
 -pwdmgr pwdfile

On kvhost3

java -jar /opt/ondb/kv/lib/kvstore.jar makebootconfig
 -root /opt/ondb/kvroot
 -config config.xml
 -port 5000
 -host kvhost3
 -harange 5002,5007
 -capacity 1
 -num_cpus 0
 -memory_mb 0
 -storagedir /disk1/shard
 -storagedirsize 1000000000
 -store-security enable
 -pwdmgr pwdfile

At this point, the store is configured and fully provisioned for secure deployment. The following
sub-sections describe how this is accomplished.

Start Each Node of the NoSQL Store

Using Java 11 or later, execute the following command on each node of the store.

On kvhost1, kvhost2, and kvhost3

java -jar /opt/ondb/kv/lib/kvstore.jar start
 -root /opt/ondb/kvroot
 -config config.xml

Deploy the Secure NoSQL Store

To deploy an Oracle NoSQL store based on the assumptions listed previously, first create a
text file containing the following Oracle NoSQL administrative commands that can be executed
as a script from the Oracle NoSQL Admin CLI.

configure -name mystore
plan deploy-zone -name zn1 -rf 3 -wait

plan deploy-sn -znname zn1 -host kvhost1 -port 5000 -wait
plan deploy-admin -sn 1 -wait
pool create -name snpool
pool join -name snpool -sn sn1

plan deploy-sn -znname zn1 -host kvhost2 -port 5000 -wait
plan deploy-admin -sn 2 -wait
pool join -name snpool -sn sn2

Chapter 9
Deploying and Configuring a Secure Oracle NoSQL Store

9-35

plan deploy-sn -znname zn1 -host kvhost3 -port 5000 -wait
plan deploy-admin -sn 3 -wait
pool join -name snpool -sn sn3

change-policy -params "loggingConfigProps=oracle.kv.level=INFO;"

topology create -name snlayout -pool snpool -partitions 300
plan deploy-topology -name snlayout -plan sndeploy -wait

execute "CREATE USER root IDENTIFIED BY 'No_Sql_00' ADMIN";

Note that a user named root with ADMIN privileges will be created when the store is deployed.
That user will be used to add other users to the store's access control list (ACL); for example,
the user named FTS described previously.

Once you have created the command file above, start the Admin CLI and deploy the store by
loading that file. For example, suppose the commands are stored in the file, /tmp/deploy-
secure-store.cmds. You would then deploy the store by doing the following:

On kvhost1

java -jar /opt/ondb/kv/lib/kvstore.jar runadmin
 -host kvhost1
 -port 5000
 -security /opt/ondb/kvroot/security/client.security

 Logged in admin as anonymous
 Connected to Admin in read-only mode

kv-> load -file /tmp/deploy-secure-store.cmds

 Connected to Admin in read-only mode
 Store configured: mystore

 Created: snlayout
 Executed plan 13, waiting for completion...
 Plan 13 ended successfully
 Statement completed successfully

kv-> exit

Note:

The clocks on kvhost1, kvhost2, and kvhost3 must by synchronized (by default,
within a 2 second delta), otherwise store deployment will fail. To determine whether a
failed deployment was caused by unsynchronized clocks, check the admin logs on
the affected node /opt/ondb/kvroot/mystore/log/adminN_0.log.

Provision the root User

To provison the user named root that was created during store deployment, do the following:

Chapter 9
Deploying and Configuring a Secure Oracle NoSQL Store

9-36

On kvhost1

java -jar /opt/ondb/kv/lib/kvstore.jar securityconfig pwdfile create
 -file /opt/ondb/kvroot/security/root.passwd

java -jar /opt/ondb/kv/lib/kvstore.jar securityconfig pwdfile secret
 -file /opt/ondb/kvroot/security/root.passwd -set -alias root

 Enter the secret value to store: No_Sql_00
 Re-enter the secret value for verification: No_Sql_00

Create a properties file that you can use to access (login to) the Admin CLI as the root user
just created. This file should contain the same entries as the default client.security file
generated when the store was initially provisioned for security, along with entries that specify
the username and password file specific to the root user. For example,

cp /opt/ondb/kvroot/security/client.security /opt/ondb/kvroot/security/
root.login

echo oracle.kv.auth.username=root >> /opt/ondb/kvroot/security/root.login
echo oracle.kv.auth.pwdfile.file=
/opt/ondb/kvroot/security/root.passwd >> /opt/ondb/kvroot/security/root.login

Create and Provision the FTS User For Indexing Data in Secure Elasticsearch

In a production system, you would not typically use the root user to create and populate tables
and Secondary Indexes in the Oracle NoSQL store or Text Indexes in the Elasticsearch cluster.
Instead, you would generally use the root user to create other client users of the store whose
roles are specific to a particular task; for example, indexing data in Elasticsearch.

For this example, a user named FTS is created and granted the privileges needed to create
and populate a table, as well as index the table's data in Elasticsearch. To do this, you need to
first create an Admin CLI command file that contains entries such as:

execute 'CREATE ROLE ftsadmin'
execute 'GRANT SYSDBA TO ftsadmin'
execute 'GRANT READ_ANY TO ftsadmin'
execute 'GRANT WRITE_ANY TO ftsadmin'
execute 'CREATE USER FTS IDENTIFIED BY "No_Sql_00"'
execute 'GRANT ftsadmin TO USER FTS'
execute 'GRANT SYSADMIN TO USER FTS'

Then, assuming /tmp/create-user-FTS.cmds is the path to that command file, you create
the user by logging into the Admin CLI as the root user and then loading the command file.
For example,

On kvhost1

java -jar /opt/ondb/kv/lib/kvcli.jar runadmin
 -host kvhost1
 -port 5000
 -store mystore
 -security /opt/ondb/kvroot/security/root.login

 Logged in admin as root

Chapter 9
Deploying and Configuring a Secure Oracle NoSQL Store

9-37

kv-> load -file /tmp/create-user-FTS.cmds

 Statement completed successfully
 Statement completed successfully

kv-> exit

To complete the provisioning of the FTS user just created, you should create a password file for
that user and install it in a directory (for example, /tmp) on the client node you will be using to
load and index data. For completeness (and convenience), in a fashion similar to what was
done for the root user, you should also create a properties file that can be used to login to the
Admin CLI as the user FTS. For example,

On kvhost1

java -jar /opt/ondb/kv/lib/kvstore.jar
 securityconfig pwdfile create
 -file /tmp/FTS.passwd

java -jar /opt/ondb/kv/lib/kvstore.jar
 securityconfig pwdfile secret
 -file /tmp/FTS.passwd
 -set
 -alias FTS

 Enter the secret value to store: No_Sql_00
 Re-enter the secret value for verification: No_Sql_00

cp /opt/ondb/kvroot/security/client.security /tmp/FTS-client.login

echo oracle.kv.auth.username=FTS >> /opt/ondb/kvroot/security/FTS-client.login
echo oracle.kv.auth.pwdfile.file=/tmp/FTS.passwd >> /tmp/FTS-client.login

cp /opt/ondb/kvroot/security/client.trust /tmp

Once the three artifacts above (FTS-client.login, FTS.passwd, and client.trust)
have been created and installed in the /tmp directory on kvhost1, you can install them on
any client. For example,

scp /tmp/FTS-client.login <username>@clhost1:/tmp
scp /tmp/FTS.passwd <username>@clhost1:/tmp
scp /tmp/client.trust <username>@clhost1:/tmp

At this point the store is fully deployed and ready to interact with the Elasticsearch cluster.

The only thing left to do before running the example is to install the Oracle NoSQL store's
public certificate (alias=FTS) in the truststore on each Elasticsearch node. See Install the Full
Text Search Public Certificate in Elasticsearch.

Chapter 9
Deploying and Configuring a Secure Oracle NoSQL Store

9-38

Install the Full Text Search Public Certificate in Elasticsearch
The final set of steps that must be executed to complete the deployment of the system
consisting of a secure Oracle NoSQL store and a secure Elasticsearch cluster is to retrieve the
Oracle NoSQL store’s public certificate with alias FTS, and install that certificate in the
truststore of each Elasticsearch node. For example,

On eshost1, eshost2, and eshost3,

scp <username>@kvhost1:/opt/ondb/kvroot/security/FTS.crt /opt/es/install-xfer/
certs
keytool –importcert
 –alias FTS
 -file /opt/es/install-xfer/certs/FTS.crt
 –keystore /opt/es/elasticsearch/config/shield/elasticsearch.trust
 -storepass No_Sql_00
 –keypass No_Sql_00
 –noprompt

Once the store’s FTS public certificate is installed on each Elasticsearch node, you can deploy
the Elasticsearch cluster; which should now be able to communicate with the secure Oracle
NoSQL store deployed in Deploying and Configuring a Secure Oracle NoSQL Store. For
example, using Java 11 or greater,

On eshost1

cd /scratch/es

./elasticsearch/bin/elasticsearch
 --cluster.name escluster
 --node.name eshost1
 --transport.tcp.port 29000
 --http.port 29100
 --discovery.zen.ping.unicast.hosts eshost1:29000,eshost2:29000,eshost3:29000

On eshost2

cd /scratch/es

./elasticsearch/bin/elasticsearch
 --cluster.name escluster
 --node.name eshost2
 --transport.tcp.port 29000
 --http.port 29100
 --discovery.zen.ping.unicast.hosts eshost1:29000,eshost2:29000,eshost3:29000

On eshost3

cd /scratch/es

./elasticsearch/bin/elasticsearch
 --cluster.name escluster

Chapter 9
Install the Full Text Search Public Certificate in Elasticsearch

9-39

 --node.name eshost3
 --transport.tcp.port 29000
 --http.port 29100
 --discovery.zen.ping.unicast.hosts eshost1:29000,eshost2:29000,eshost3:29000

At this point you should now be able to do the following:

1. Execute the example program in secure mode to populate the store with JSON data.

2. Run the Admin CLI as the user named FTS to both register the store with the Elasticsearch
cluster and create a Text Index on the data in the store.

3. Use curl to send secure queries to Elasticsearch to perform Full Text Search on the
indexed data. See Running the Examples in Secure Mode.

Running the Examples in Secure Mode
Assuming you have deployed a secure Oracle NoSQL store and Elasticsearch cluster by
executing the steps presented in Secure Elasticsearch using Sheild, Deploying and
Configuring a Secure Oracle NoSQL Store, and Install the Full Text Search Public Certificate in
Elasticsearch appendices, you can now execute the commands presented in this section to:

• Create and Populate a Table in the Secure Oracle NoSQL Store

• Register the Store with the Secure Elasticsearch Cluster and Create a Full Text Index

• Execute Secure Full Text Search Queries On Elasticsearch Indexed Data

Create and Populate a Table in the Secure Oracle NoSQL Store

Execute the program LoadJsonExample in secure mode. For example,

java –classpath /opt/ondb/kv/lib/kvstore.jar:src es.table.LoadJsonExample
 –store mystore
 –host kvhost1
 –port 5000
 –file ~/examples/es/docs/senator-info.json
 -table exampleJsonTable
 -security /tmp/FTS-client.login

Register the Store with the Secure Elasticsearch Cluster and Create a Full Text Index

From a client node configured for secure access to the Oracle NoSQL store, start an Admin
CLI for the store. For example, from the host named clhost1, start the CLI as the user named
FTS created and provisioned as described in Deploying and Configuring a Secure Oracle
NoSQL Store,

On clhost1

java -jar /opt/ondb/kv/lib/kvcli.jar runadmin
 –host kvhost1
 -port 5000
 –store mystore
 –security /tmp/FTS-client.login

 Logged in admin as FTS

kv-> plan register-es

Chapter 9
Running the Examples in Secure Mode

9-40

 –clustername escluster
 –host eshost1
 –port 29100
 –secure true
 -wait

 Executed plan 25, waiting for completion...
 Plan 25 ended successfully

kv-> execute 'CREATE FULLTEXT INDEX jsonTxtIndex ON
 exampleJsonTable (
 jsonField.current{"type":"boolean"},
 jsonField.party{"type":"string","analyzer":"standard"},
 jsonField.duties.committe{"type":"string"},
 jsonField.contrib{"type":"double"})';

 Statement completed successfully

kv-> exit

Execute Secure Full Text Search Queries On Elasticsearch Indexed Data

From a client node configured for secure access to the Elasticsearch cluster such as the
clhost1 node presented in Secure Elasticsearch using Sheild, execute queries like the
following:

On clhost1

curl –k -E /tmp/elasticsearch-eshost1.pem
 --key /tmp/elasticsearch-eshost1.pkey
 –X GET 'http://eshost1:29100/_cat/indices'

curl –k -E /tmp/elasticsearch-eshost2.pem
 --key /tmp/elasticsearch-eshost2.pkey
 –X GET 'http://eshost2:29100/
ondb.kvstore.examplejsontable.jsontxtindex/_mapping?pretty'

curl –k -E /tmp/elasticsearch-eshost3.pem
 --key /tmp/elasticsearch-eshost3.pkey
 –X GET 'http://eshost3:29100/
ondb.kvstore.examplejsontable.jsontxtindex/_search?pretty'

curl –k -E /tmp/elasticsearch-eshost1.pem
 --key /tmp/elasticsearch-eshost1.pkey
 –X GET 'http://eshost1:29100/
ondb.mystore.examplejsontable.jsontxtindex/_search?pretty'
 '-d {query":{"bool":{
 "must":{"match":{"jsonCol.party":"Democrat"}},
 "must":{"match":"jsonCol.current":"true"}},
 "must":{"range":{"jsonField.contrib":
{"gte":"1000000.00","lte":20000000.00"}}},
 "must":"match":{"jsonField.duties.committe":"Judiciary
Apropriations"}}}}}'

Chapter 9
Running the Examples in Secure Mode

9-41

Note:

The queries above can be sent to any of the nodes in the Elasticsearch cluster
(eshost1, eshost2, or eshost3). Just be sure to specify the public certificate and
private key corresponding to the particular node to which you send the query.

Chapter 9
Running the Examples in Secure Mode

9-42

	Contents
	1 Introduction
	Part I Integration with Apache Hadoop MapReduce
	2 Introduction to Integration with Apache Hadoop MapReduce
	Prerequisites
	A Brief Primer on Apache Hadoop

	3 The CountTableRows Example
	Compile, Build, and Run the CountTableRows Example
	Building CountTableRows When the Store is Non-Secure
	Building CountTableRows When the Store is Secure
	Running CountTableRows When the Store is Non-Secure
	Running CountTableRows When the Store is Secure and a Password File is Used
	Running CountTableRows When the Store is Secure and an Oracle Wallet is Used

	CountTableRows MapReduce Job Results

	4 Appendix
	Deploying a Non-Secure Store
	Generate Configuration Files For Each Storage Node (SN)
	Launch a Storage Node Agent (SNA) On Each Host Making Up the Store
	Configure and Deploy the Non-secure Store

	Deploying a Secure Store
	Generate Configuration Files For Each Storage Node (SN)
	Launch a Storage Node Agent (SNA) On Each Host Making Up the Store
	Configure and Deploy the Secure Store
	Provision the Secure Store’s Administrative User (root)
	Create Non-Administrative User
	Provision the Secure Store's Non-Administrative User (example-user)

	CountTableRows Support Programs
	Schema for the vehicleTable Example
	Create and Populate vehicleTable with Example Data
	Run LoadVehicleTable when the Store is Non-Secure
	Run LoadVehicleTable When the Store is Secure
	Summary

	Model For Building & Packaging Secure Clients
	Programming Model For MapReduce with Oracle NoSQL Database Security
	Communicating Security Credentials to the Server Side Splits
	Communicating Security Credentials to the TableInputFormat
	Best Practices: MapReduce Application Packaging for Oracle NoSQL Security
	Application Packaging for the Non-Secure Case
	Application Packaging and Execution for the Secure Case
	Application Packaging for the Secure Case Using a Password File
	Application Execution for the Secure Case Using a Password File
	Application Packaging for the Secure Case Using an Oracle Wallet
	Application Execution for the Secure Case Using an Oracle Wallet

	Secure Versus Non-Secure Command Lines

	Summary

	Part II Integration with Elastic Search for Full Text Search
	5 About Full Text Search
	About Full Text Search
	Prerequisite to Full Text Search

	6 Intergrating Elasticsearch with Oracle NoSQL Database
	Registering Elasticsearch with Oracle NoSQL Database
	Deregistering Elasticsearch from an Oracle NoSQL Store

	7 Managing Full Text Index
	Creating a Full Text Index
	Mapping a Full Text Index Field to an Elasticsearch Field
	Handling TIMESTAMP Data Type
	Mapping Oracle NoSQL TIMESTAMP to Elasticsearch date Type
	Full Text Search of Indexed TIMESTAMP Scalar

	Handling JSON Data Type
	Review: Secondary Indexes on JSON Document Content
	Creating Text Indexes on JSON Document Content
	Full Text Search of Indexed JSON Documents

	Deleting a Full Text Index

	8 Security in Full Text Search
	Elasticsearch and Secure Oracle NoSQL Database

	9 Appendix
	Sample: Array of JSON Documents
	The LoadJsonExample Program Source
	Secure Elasticsearch using Sheild
	Deploying and Configuring a Secure Oracle NoSQL Store
	Install the Full Text Search Public Certificate in Elasticsearch
	Running the Examples in Secure Mode

