
Oracle® NoSQL Database
Administrator's Guide

Release 24.3
E85373-49
November 2024

Oracle NoSQL Database Administrator's Guide, Release 24.3

E85373-49

Copyright © 2011, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Conventions Used in This Book xii

Diversity and Inclusion xii

1 Introduction

Introduction to Oracle NoSQL Database 1-1

2 Install and Upgrade

Installing Oracle NoSQL Database 2-1

Installation Prerequisites 2-1

Installation 2-2

Upgrading an Existing Oracle NoSQL Database Deployment 2-3

General Upgrade Notes 2-4

Preparing to Upgrade 2-5

Steps to Upgrade - Examples 2-5

Upgrading the Xregion Service Agent 2-12

Upgrading the Oracle NoSQL Database Proxy 2-12

Upgrading JDK on your Oracle NoSQL Database deployment 2-12

3 Configure

Configuration Basics 3-1

Installation Configuration Parameters 3-1

Configuring the Firewall 3-4

Configuring security in a data store 3-5

Basics of data store security 3-5

Configuring security using securityconfig tool 3-5

Create users and configure security with remote access 3-6

Configure a single node KVLite 3-7

Configuring a single region data store 3-8

Configuring your data store installation 3-8

Using Plans 3-11

iii

Tracking Plan Progress 3-11

Plan States 3-12

Reviewing Plans 3-12

Plan Ownership 3-13

Pruning Plans 3-13

Start the Administration CLI 3-14

Name your data store 3-15

Create a Zone 3-16

Create an Administration Process on a Specific Storage Node 3-17

Create a Storage Node Pool 3-19

Create the Remainder of your Storage Nodes 3-20

Create and Deploy Replication Nodes 3-20

Smoke Testing the System 3-22

Create a script to configure the data store 3-23

Troubleshooting 3-24

Where to Find Error Information 3-25

Service States 3-26

Useful Commands 3-26

Configure data store - Advanced scenarios 3-27

Create Additional Admin Processes 3-27

Configuring with Multiple Zones 3-29

Adding Secondary Zone to the Existing Topology 3-35

Oracle NoSQL Database Proxy 3-40

About the Oracle NoSQL Database Proxy 3-40

Configuring the Proxy 3-41

Using the Proxy in a non-secure data store 3-48

Using the Proxy in a secure data store 3-52

Configuring Multi-Region Data Stores 3-63

Use Case 1: Set up Multi-Region Environment 3-63

Deploy the data store 3-64

Set Local Region Name 3-65

Configure XRegion Service 3-66

Start XRegion Service 3-72

Create Remote Regions 3-75

Create Multi-Region Tables 3-76

Access and Manipulate Multi-Region Tables 3-81

Stop XRegion Service 3-82

Use Case 2: Expand a Multi-Region Table 3-82

Prerequisites 3-83

Create MR Table in New Region 3-86

Add New Region to Existing Regions 3-88

Access MR Table in New and Existing Regions 3-91

iv

Use Case 3: Contract a Multi-Region Table 3-91

Alter MR Table to Drop Regions 3-91

Use Case 4: Drop a Region 3-92

Prerequisites 3-92

Isolate the Region 3-93

Drop MR Tables in the Isolated Region 3-94

Drop the Isolated Region 3-94

Use Case 5: Backup and Restore a Multi-Region Table 3-96

Troubleshooting multi-region data store setup 3-99

4 Administer

Changing the Store's Topology 4-1

Determining Your Store's Configuration 4-1

Steps for Changing the Store's Topology 4-2

Make the Topology Candidate 4-3

Transforming the Topology Candidate 4-4

View the Topology Candidate 4-8

Validate the Topology Candidate 4-9

Preview the Topology Candidate 4-9

Deploy the Topology Candidate 4-10

Verify the Store's Current Topology 4-11

Deploying an Arbiter Node Enabled Topology 4-13

Backup and Recovery 4-19

Backing Up the Store 4-19

Taking a Snapshot 4-19

Copying a Snapshot 4-21

Deleting a Snapshot 4-21

Managing Snapshots 4-22

Recovering the Store 4-24

Using the Load Program 4-24

Restoring Directly from a Snapshot 4-28

Recovering from Data Corruption 4-29

Detecting Data Corruption 4-29

Data Corruption Recovery Procedure 4-30

Replacing a Failed Disk 4-31

Replacing a Failed Storage Node 4-33

Using a New Storage Node 4-34

Task for an Identical Node 4-36

Repairing a Failed Zone by Replacing Hardware 4-38

Managing your kvstore 4-38

Increasing Storage Node Capacity 4-38

v

Managing Storage Directory Sizes 4-43

Managing Disk Thresholds 4-43

Specifying Storage Directory Sizes 4-44

Specifying Differing Disk Capacities 4-45

Monitoring Disk Usage 4-46

Handling Disk Limit Exception 4-48

Managing Admin Directory Size 4-56

Admin is Working 4-56

Admin is not Working 4-56

Disabling Storage Node Agent Hosted Services 4-57

Verifying the Store 4-58

Erasing Data 4-63

Setting Store Parameters 4-63

Changing Parameters 4-63

Setting Store Wide Policy Parameters 4-64

Admin Parameters 4-65

Changing Admin JVM Memory Parameters 4-65

Storage Node Parameters 4-67

Replication Node Parameters 4-71

Arbiter Node Parameters 4-72

Global Parameters 4-72

Security Parameters 4-73

Admin Restart 4-74

Replication Node Restart 4-76

Removing an Oracle NoSQL Database Deployment 4-76

Modifying Storage Node HA Port Ranges 4-77

Modifying Storage Node Service Port Ranges 4-78

Storage Node Not Deployed 4-78

Storage Node Deployed 4-79

Availability, Failover and Switchover 4-80

Availability and Failover 4-80

Replication Overview 4-81

Loss of a Read-Only Replica Node 4-81

Loss of a Read/Write Master 4-82

Unplanned Network Partitions 4-83

Master is in the Majority Node Partition 4-83

Master is in the Minority Node Partition 4-84

No Majority Node Partition 4-85

Failover and Switchover Operations 4-85

Repairing a Failed Zone 4-86

Performing a Failover 4-86

Performing a Switchover 4-93

vi

Zone Failover 4-99

Durability Summary 4-100

Consistency Summary 4-100

5 Reference

Terminologies used in Oracle NoSQL Database 5-1

Admin CLI Reference 5-2

aggregate 5-4

aggregate table 5-4

await-consistent 5-6

change-policy 5-6

configure 5-7

connect 5-7

connect admin 5-7

connect store 5-8

delete 5-9

delete kv 5-9

delete table 5-9

execute 5-10

exit 5-11

get 5-11

get kv 5-11

get table 5-14

help 5-15

hidden 5-15

history 5-15

load 5-16

logtail 5-18

namespace 5-18

page 5-19

ping 5-19

plan 5-26

plan add-index 5-27

plan add-table 5-28

plan cancel 5-30

plan change-parameters 5-30

plan change-storagedir 5-32

plan change-user 5-34

plan create-user 5-34

plan deploy-admin 5-34

plan deploy-datacenter 5-35

vii

plan deploy-sn 5-36

plan deploy-topology 5-37

plan deploy-zone 5-38

plan deregister-es 5-40

plan drop-user 5-40

plan enable-requests 5-41

plan evolve-table 5-42

plan execute 5-43

plan failover 5-44

plan grant 5-45

plan interrupt 5-45

plan migrate-sn 5-46

plan network-restore 5-46

plan register-es 5-47

plan remove-admin 5-47

plan remove-datacenter 5-48

plan remove-index 5-48

plan remove-sn 5-48

plan remove-table 5-48

plan remove-zone 5-49

plan repair-topology 5-49

plan revoke 5-50

plan start-service 5-50

plan stop-service 5-53

plan verify-data 5-54

plan wait 5-56

pool 5-57

pool clone 5-57

pool create 5-57

pool join 5-58

pool leave 5-58

pool remove 5-58

put 5-58

put kv 5-59

put table 5-60

repair-admin-quorum 5-60

show 5-61

show admins 5-62

show datacenters 5-62

show events 5-62

show faults 5-64

show indexes 5-64

viii

show mrtable-agent-statistics 5-65

show parameters 5-72

show perf 5-72

show plans 5-72

show pools 5-73

show snapshots 5-73

show regions 5-73

show tables 5-73

show topology 5-74

show upgrade-order 5-74

show users 5-75

show versions 5-75

show zones 5-76

snapshot 5-76

snapshot create 5-77

snapshot remove 5-77

table 5-77

table-size 5-77

timer 5-81

topology 5-81

topology change-repfactor 5-82

topology change-zone-arbiters 5-82

topology change-zone-master-affinity 5-82

topology change-zone-type 5-83

topology clone 5-83

topology contract 5-83

topology create 5-83

topology delete 5-85

topology list 5-85

topology preview 5-85

topology rebalance 5-85

topology redistribute 5-86

topology validate 5-86

topology view 5-86

verbose 5-86

verify 5-86

verify configuration 5-87

verify prerequisite 5-87

verify upgrade 5-88

Admin Utility Command Reference 5-88

diagnostics 5-89

generateconfig 5-89

ix

help 5-94

kvlite 5-94

load admin metadata 5-94

load store data 5-95

makebootconfig 5-96

ping 5-102

Ping Command Line Parameters 5-103

Ping Exit Codes 5-104

Ping Report Text Output 5-106

Ping Report JSON Output 5-107

restart 5-109

runadmin 5-110

securityconfig 5-111

start 5-112

status 5-113

stop 5-113

version 5-113

xrstart 5-113

xrstatus 5-114

xrstop 5-114

Initial Capacity Planning 5-115

Shard Capacity 5-116

Application Characteristics 5-116

Shard Storage and Throughput Capacities 5-117

Memory and Network Configuration 5-118

Machine Physical Memory 5-119

Sizing Advice 5-119

Determine JE Cache Size 5-119

Machine Network Throughput 5-121

Estimate total Shards and Machines 5-122

Number of Partitions 5-122

Tuning 5-123

Turn off the swap 5-123

Linux Page Cache Tuning 5-124

OS User Limits 5-125

File Descriptor Limits 5-125

Process and Thread Limits 5-125

Linux Network Configuration Settings 5-125

Server Socket Backlog 5-126

Isolating HA Network Traffic 5-126

Receive Packet Steering 5-127

MTU Size 5-127

x

Check AES Intrinsics Settings 5-128

Viewing Key Distribution Statistics 5-129

Examples: Key Distribution Statistics 5-133

Solid State Drives (SSDs) 5-134

Trim requirements 5-134

Enabling Trim 5-134

Diagnostics Utility 5-135

Setting up the tool 5-135

Packaging Information and Files 5-136

Verifying Storage Node configuration 5-138

xi

Preface

This document describes how to install and configure Oracle NoSQL Database (Oracle NoSQL
Database).

This book is aimed at the systems administrator responsible for managing an Oracle NoSQL
Database installation.

Conventions Used in This Book
The following typographical conventions are used within this manual:

Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME directory."

Note:

Finally, notes of special interest are represented using a note block such as this.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

xii

1
Introduction

The article in this section gives an introduction to Oracle NoSQL Database.

Introduction to Oracle NoSQL Database
Oracle NoSQL Database is a distributed, shared-nothing, non-relational database that provides
large-scale storage and access to key/value, JSON, and tabular data. It can deliver
predictable, low latencies to simple queries at any scale and is designed from the ground up
for high availability.

Oracle NoSQL Database’s shared-nothing architecture allows it to scale horizontally to meet
exceptionally high throughput demands while delivering predictable low latencies. Oracle
NoSQL Database requires minimal administration and contains many self-healing features
that enable it to remain always-on during failures- hardware failures, network partition failures,
or even entire data center disasters.

Oracle NoSQL Database offers highly flexible deployment and various methods to access the
data store from your application. For applications that require an embedded, ultra-low latency,
zero administration database, it can be directly embedded into a Java application. In this
deployment scenario, applications can start and stop the database using APIs. When using the
Java Direct Driver , applications can read and write data to the database. In most scenarios,
Oracle NoSQL is deployed on a cluster of commodity computers connected by a high-speed
network. In this deployment scenario, applications must choose a programming language SDK
to communicate with the Oracle NoSQL Database cluster. Oracle NoSQL Database offers two
types of language SDKS:

1. Direct driver: This type of SDK will connect directly to every Oracle NoSQL node in the
cluster using TPC/IP. Hence, care must be taken to ensure a network route between the
application and every Oracle NoSQL node in the database cluster. Currently, the only
supported programming language for direct drivers is Java .

2. Standard: This type of SDK will connect to the database using the HTTP protocol via the
Oracle NoSQL HTTP proxy. Since standard SDKs use HTTP, you need only ensure a
network route between your application code and the load balancer if using one, or
between the application and the HTTP proxy if not using a load balancer.

Oracle NoSQL Database supports many of the most popular programming languages and
frameworks with idiomatic language APIs and data structures, giving your application language
native access to data stored in NoSQL Database. It currently supports the following
programming languages and frameworks: Javascript (Node.js), Python, Java, Golang,
C#/.NET, and Spring Data. You can also navigate the database as you develop your code with
plugins for one of the following supported integrated development environments: Visual Studio
Code , IntelliJ, or Eclipse .

1-1

2
Install and Upgrade

The articles in this section include steps to install a new Oracle NoSQL Database or upgrade
the software of your Oracle NoSQL Database deployment.

Installing Oracle NoSQL Database
This article describes the process for installing Oracle NoSQL Database. If you already know
the number of Storage Nodes you will use in your data store, follow the subsequent
instructions. If you need help with estimating the resources required for installing the database
and configuring your data store, see Initial Capacity Planning and then follow the subsequent
instructions outlined in this topic. The capacity planning will help you estimate the number of
Storage Nodes you need to use to install the software. You can come up with an estimate
based on your application's requirements and the characteristics of the hardware available to
you. The Oracle NoSQL Database will make the best use of the Storage Nodes you provide.

• Installation Prerequisites

• Installation

Installation Prerequisites
Make sure that you have Java SE 11 or later installed on all of the Storage Nodes that you are
going to use for the Oracle NoSQL Database installation. From your Linux operating system,
run the following command to verify the existing Java version in your Linux machine:

java -version

Note:

Oracle NoSQL Database is compatible with Java SE 11 (64 bit) or later versions. It is
tested and certified against Oracle Java SE 17 (64 bit). It is recommended that you
upgrade your systems to the latest Java releases to take advantage of all bug fixes
and performance improvements. See Release Notes - Overview for more details on
Java requirements.

Linux is the officially supported platform for Oracle NoSQL Database. Running the Oracle
NoSQL Database requires a 64-bit JVM. You do not necessarily need root access on each
Storage Node for the installation process. Be sure that the jps tool is working. Installing the
JDK makes the jps tool available for use by the Storage Node Agent (SNA). The jps tool can
be used to verify the Oracle NoSQL Database processes that are currently running in your
Storage Node.

2-1

If the JDK is installed correctly, the output from invoking jps should list at least one Java
process (the jps process itself). Use this command to verify successful installation of java in
your Linux machine.

% jps

Output:

16216 Jps

Note:

You must run the command listed above as the same OS user who will run the
Oracle NoSQL Database SNA processes.

Finally, make sure that each of the Storage Nodes is running some sort of reliable clock
synchronization. Clock synchronization is necessary for timestamp continuity and synchronized
coordination between storage nodes. Generally, a synchronization delta of less than half a
second is required. Network Time Protocol (ntp) is sufficient for this purpose.

Installation
Before you install Oracle NoSQL Database, decide on the directories to store the various
database package files and to store data. Set the following environment variables with the
appropriate directory path.

• – $KVHOME - This is the directory to store all the Oracle NoSQL Database package files
(libraries, Javadoc, scripts, and so forth). It is recommended that you use the same
directory path for $KVHOME on each of the Storage Nodes in the installation. To make
future software upgrades easier, adopt a convention for $KVHOME that includes the
release number. For example, use a $KVHOME location such as /var/kv/kv-M.N.O,
where M.N.O represent the software release.major.minor numbers.

– $KVROOT - This is the directory to store Oracle NoSQL Database data.

It is recommended that both the $KVHOME and $KVROOT directories are local to the Storage
Node, and not on a Network File System.

Note:

Use different directories for $KVHOME and $KVROOT. An example is shown below.

export $KVHOME=$HOME/nosql/kv-24.1.11
export $KVROOT=$KVHOME/kvroot

Steps to install the Oracle NoSQL Database:

1. Download the Oracle NoSQL Database bundle. You can download either Community
Edition or Enterprise Edition software.

Chapter 2
Installing Oracle NoSQL Database

2-2

• Community Edition: Oracle NoSQL Database Community Edition (CE) software is
licensed pursuant to the Apache 2.0 License (Apache 2.0).

• Enterprise Edition: Oracle NoSQL Database Enterprise Edition (EE) software is
licensed pursuant to the Oracle commercial license.

To understand the difference between editions, see NoSQL Database Option Differences.
If you have more than one Storage Node, copy the downloaded software to each of the
Storage Nodes.

2. Extract the contents of the Oracle NoSQL Database package (kv-M.N.O.zip or kv-
M.N.O.tar.gz) to $KVHOME. If $KVHOME resides on a shared network directory (which is not
recommended) you need to only unpack it once. If $KVHOME is local to each Storage Node,
unpack the package on each Storage Node. Unzipping the package installs the Oracle
NoSQL Database.

unzip kv-ee-24.1.11.zip

3. Set the appropriate values for$KVHOME (where you have unzipped the Oracle NoSQL
Database package) and $KVROOT.
Example:

export $KVHOME=$HOME/nosql/kv-24.1.11
export $KVROOT=$KVHOME/kvroot

4. Verify the software installation using the following command:

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvclient.jar

You should see output that looks like this:

24.1.11 2024-04-05 21:25:44 UTC
Build id: 477e7f102ab4 Edition:Client

where 24.1.11 is the database version number.

The software installation is complete. You can continue to configure your data store.

Upgrading an Existing Oracle NoSQL Database Deployment
This article describes how to upgrade your Oracle NoSQL Database software to a new
release.

Upgrading a data store from an existing release to a new release can be accomplished one
Storage Node at a time. This is because Storage Nodes running a mix of two releases are
permitted to run simultaneously in the same data store. This allows you to strategically
upgrade Storage Nodes in the most efficient manner. Installing new software requires that you
restart each Storage Node.

Rolling Upgrade:

Upgrading a data store while the store remains online and available to clients is called rolling
upgrade. A rolling upgrade is very useful, since downtime is undesirable in any system.

You can perform a rolling upgrade if the data store's replication factor is greater than two. With
a replication factor greater than two, shards can maintain their majorities and continue reading

Chapter 2
Upgrading an Existing Oracle NoSQL Database Deployment

2-3

and writing data on behalf of clients. Meanwhile, you can restart and upgrade software on each
Storage Node, one at a time.

Offline Upgrade:

Upgrading a system after shutting down the data store is called offline upgrade. In this case
your data store is unavailable for the duration of the upgrade. Even if your data store can
support a rolling upgrade, you may sometimes want to perform an offline upgrade, which
involves these steps:

1. Shutting down all nodes.

2. Installing new software on each Storage Node.

3. Restarting each node.

Steps to upgrade an existing database (offline update or rolling update):

• General Upgrade Notes

• Preparing to Upgrade

• Steps to Upgrade - Examples

• Upgrading the XRegion Service Agent

• Upgrading the Oracle NoSQL Database Proxy

• Upgrading JDK on your Oracle NoSQL Database deployment

General Upgrade Notes
The upgrade information given below is generally true for all versions of Oracle NoSQL
Database.

• Installing new software requires that each Storage Node be restarted.

• You do not need to invoke makebootconfig command while upgrading your data store.

• When your data store has more than one Storage Node, you can use the following
command to understand the order of upgrade. For example,

show upgrade-order
s2
s3

• When upgrading the software while the Storage Node is stopped, it is recommended to
move the existing log files under $KVROOT and $KVROOT/<storename>/log to another
directory.

• When upgrading your data store, place the new software version in a new $KVHOME
directory on a Storage Node running the admin service. Here the new $KVHOME directory is
referred to as $NEW_KVHOME. If the $KVHOME and $NEW_KVHOME directories are shared by
multiple Storage Nodes (for example, using NFS), maintain both directories while the
upgrade is in progress. After the upgrade is complete, you no longer need the
original $KVHOME directory. Before removing the original $KVHOME directory you must modify
the start up scripts on each Storage Node (e.g. ~/.bashrc where you have
defined $KVHOME) to modify the value of existing $KVHOME and replace it with the value
of $NEW_KVHOME so that the Storage Node uses the new software.

Chapter 2
Upgrading an Existing Oracle NoSQL Database Deployment

2-4

Preparing to Upgrade
Oracle NoSQL Database supports upgrades from releases for the current year and prior few
calendar years. For example, to upgrade a data store to the 24.x release, the data store must
be running release 20.x or later. See Release Notes for specific information on the latest
version of the software and the minimum older version needed for the upgrade.

Before beginning the upgrade process, create a backup of the store by making a snapshot.
See Taking a Snapshot. During the upgrade process, you should not create any plans until the
admin and managed services in the data store have been upgraded.

Plan to upgrade any application programs that use the Java Direct Driver after upgrading the
service components. You need to re-link the application using the libraries of the new release
of Oracle NoSQL Database.

Steps to Upgrade - Examples
Upgrading a data store from an existing release to a new release can be accomplished one
Storage Node at a time. Different scenarios of upgrade are captured in the examples below.
Each example shows how to upgrade your Oracle NoSQL Database software to a new
release.

Example1: In this example you are upgrading your Oracle NoSQL Database from version
22.1.7 to version 24.1.11. The data store has a capacity 1 and replication factor 1.
Here $KVHOME is /var/kv/kv-22.1.7, $KVROOT is /var/kv/kv-22.1.7/kvroot and $KVHOST is
the hostname of your Storage Node.

• Invoke the runadmin command to start the Admin command line interface (CLI) utility on
the Storage Node. This command starts the kv prompt.

java -jar $KVHOME/lib/kvstore.jar runadmin -host $KVHOST
-port 5000 -security $KVROOT/security/root.login

Use ping command to list the admin service and all managed services of your Storage
Node.

kv→ping

Output:

Pinging components of store mystore based upon topology sequence #154
150 partitions and 1 storage nodes
Time: 2024-04-05 06:13:33 UTC Version: 22.1.7
Shard Status: healthy:1 writable-degraded:0 read-only:0 offline:0 total:1
Admin Status: healthy
Zone [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:1 read-only:0 offline:0
Storage Node [sn1] on localhost:5000
Zone: [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 2024-04-05 06:14:33 UTC
Build id: 1473c1dac49c Edition: Enterprise
 Admin [admin1] Status: RUNNING,MASTER

Chapter 2
Upgrading an Existing Oracle NoSQL Database Deployment

2-5

 Rep Node [rg1-rn1] Status: RUNNING,MASTER
 sequenceNumber:330 haPort:5006 available storage size:1023 MB

• Verify that the Storage node are at or above the prerequisite software version needed to
upgrade to the current version.

kv-> verify prerequisite

Output:

Verify: starting verification of store mystore based upon topology
sequence #154
150 partitions and 1 storage nodes
Time: 2024-04-05 09:27:43 UTC Version: 22.1.7
See localhost:/var/kv/kv-22.1.7/kvroot/mystore/log/mystore_{0..N}.log
for progress messages

Verify prerequisite: Storage Node [sn1] on localhost: 5000
Zone: [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 22.1.7 2024-04-05 16:36:54 UTC Build id:
61b68fb1a3ec
Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 08:55:49 UTC
Verification complete, no violations

• To upgrade your data store, you need to install the latest software in your Storage Node.
See Install and verify your NoSQL Database installation for more details.

• Stop the Oracle NoSQL Database Storage Node Agent and services related to the root
directory of the current Oracle NoSQL Database (22.1.7).

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar stop
-root $KVROOT

• Restart the Storage Node using the updated software release(24.1.11). Here $NEW_KVHOME
is /var/kv/kv-24.1.11 and $KVROOT is /var/kv/kv-22.1.7/kvroot

nohup java -Xmx64m -Xms64m -jar $NEW_KVHOME/lib/kvstore.jar
start -root $KVROOT &

• Invoke the runadmin command to start the Admin command line interface (CLI) utility on
the Storage Node which is now running the updated software release. This command
starts the kv prompt.

java -Xmx64m -Xms64m -jar $NEW_KVHOME/lib/kvstore.jar
runadmin -port 5000 -host $KVHOST
-security $KVROOT/security/root.login

• Verify the store configuration to check if the upgrade is completed successfully.

kv-> verify configuration

Chapter 2
Upgrading an Existing Oracle NoSQL Database Deployment

2-6

Output:

Verify: starting verification of store mystore based upon topology
sequence #154
150 partitions and 1 storage nodes
Time: 2024-04-05 09:33:10 UTC Version: 24.1.11
See localhost:/var/kv/kv-22.1.7/kvroot/mystore/log/mystore_{0..N}.log for
progress messages
Verify: Shard Status: healthy: 1 writable-degraded: 0 read-only: 0
offline: 0 total: 1
Verify: Admin Status: healthy
Verify: Zone [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online: 1 read-only: 0 offline: 0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on localhost: 5000
Zone: [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:25:44 UTC Build id:
477e7f102ab4
Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 09:32:29 UTC
Verify: Admin [admin1]
Status: RUNNING,MASTER serviceStartTime: 2024-04-05 09:32:41 UTC
stateChangeTime: 2024-04-05 09:32:39 UTC
availableStorageSize: 2 GB
Verify: rg1-rn1: Storage directory on rg1-rn1 is running low
[/var/kv/test1 size: 1 GB available: 1023 MB]
Verify: Rep Node [rg1-rn1]
Status: RUNNING,MASTER sequenceNumber: 4,244 haPort: 5006
availableStorageSize: 1023 MB storageType: HD
serviceStartTime: 2024-04-05 09:32:52 UTC
stateChangeTime: 2024-04-05 09:32:56 UTC

Verification complete, 0 violations, 1 note found.
Verification note: [rg1-rn1]
Storage directory on rg1-rn1 is running low [/var/kv/test1
size: 1 GB available: 1023 MB].

Example 2: Error while directly upgrading Oracle NoSQL Database from a very old version to
the current version.

In this example you want to upgrade Oracle NoSQL Database from version 19.5.9 to version
24.1.11. Here $KVHOME is /var/kv/kv-19.5.9 and $KVROOT is /var/kv/kv-19.5.9/kvroot.

The following example shows the error you encounter when you try to upgrade from version
19.5.9 to version 24.1.11.

• To upgrade your data store, you need to install the latest software in your Storage Node.
See Install and verify your NoSQL Database installation for more details.

• Stop the Oracle NoSQL Database Storage Node Agent and services related to the root
directory of the current Oracle NoSQL Database (19.5.9).

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar stop
-root $KVROOT

Chapter 2
Upgrading an Existing Oracle NoSQL Database Deployment

2-7

• Restart the Storage Node using the updated software release(24.1.11).

nohup java -Xmx64m -Xms64m -jar $NEW_KVHOME/lib/kvstore.jar start
-root $KVROOT &

You get an output as shown below, which implies an error has occurred.

[1]+ Exit 1 nohup java -Xmx64m -Xms64m -jar
/var/kv/kv-24.1.11/lib/kvstore.jar start
-root /var/kv/kv-19.5.9/kvroot

Open the nohup.out file to view the error.

vi nohup.out
Failed to start SNA: The previous software version 19.5.9 does not satisfy
the prerequisite for 24.1.11 which requires version 20.1.12 or later.

To avoid this error, you need to upgrade the data store from 19.5.9 to any 20.*.* release
and then upgrade it to 24.1.11.

Example 3: Upgrading a data store with more than one Storage Node.

In this example you are upgrading your Oracle NoSQL Database from version 22.1.7 to
version 24.1.11. The data store has a capacity 1 and replication factor 2. You have two Storage
Nodes in your data store. Here $KVHOME is /var/kv/kv-22.1.7, $KVROOT is /var/kv/
kv-22.1.7/kvroot and $KVHOST is the hostname of your first Storage Node.

• Invoke the runadmin command to start the Admin command line interface (CLI) utility on
the Storage Node which is now running the existing software release(22.1.7). This
command starts the kv prompt.

java -jar $KVHOME/lib/kvstore.jar runadmin -host $KVHOST
-port 5000 -security $KVROOT/security/root.login

• Use ping command to return information about the runtime entities of your data store.

kv→ping

Output:

Pinging components of store mystore based upon topology sequence #156
150 partitions and 2 storage nodes
Time: 2024-04-05 15:21:02 UTC Version: 22.1.7
Shard Status: healthy: 1 writable-degraded: 0 read-only: 0 offline: 0
total: 1
Admin Status: healthy
Zone [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online: 2 read-only: 0 offline: 0 maxDelayMillis: 1
maxCatchupTimeSecs: 0
Storage Node [sn1] on <XX>.com: 5000
Zone: [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 22.1.7 2024-04-05 21:25:44 UTC Build id:

Chapter 2
Upgrading an Existing Oracle NoSQL Database Deployment

2-8

477e7f102ab4
Edition: Enterprise isMasterBalanced: true serviceStartTime: 2024-04-05
10:29:33 UTC
 Admin [admin1] Status: RUNNING,MASTER serviceStartTime:
2024-04-05 10:29:44 UTC
 stateChangeTime: 2024-04-05 10:29:42 UTC availableStorageSize: 2 GB
 Rep Node [rg1-rn1] Status: RUNNING,MASTER sequenceNumber: 4,259
haPort: 5006
 availableStorageSize: 1023 MB storageType: HD
 serviceStartTime: 2024-04-05 10:29:56 UTC
 stateChangeTime: 2024-04-05 13:29:29 UTC
Storage Node [sn2] on <XX>.com: 5000
Zone: [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 22.1.7 2024-04-05 21:25:44 UTC Build id:
477e7f102ab4
Edition: Enterprise isMasterBalanced: true serviceStartTime: 2024-04-05
13:29:18 UTC
 Admin [admin2] Status: RUNNING,REPLICA serviceStartTime:
2024-04-05 13:29:24 UTC
 stateChangeTime: 2024-04-05 13:29:23 UTC availableStorageSize: 2 GB
 Rep Node [rg1-rn2] Status: RUNNING,REPLICA sequenceNumber: 4,259
haPort: 5006
 availableStorageSize: 99 MB storageType: HD
 serviceStartTime: 2024-04-05 13:29:25 UTC
 stateChangeTime: 2024-04-05 13:29:29 UTC delayMillis: 1
 catchupTimeSecs: 0

• Verify that the Storage nodes are at or above the prerequisite software version needed to
upgrade to the current version.

kv-> verify prerequisite

Output:

Verify: starting verification of store mystore based upon topology
sequence #156
150 partitions and 2 storage nodes
Time: 2024-04-05 15:30:45 UTC Version: 22.1.7
See <XX>.com:/var/kv/kv-22.1.7/kvroot/mystore/log/mystore_{0..N}.log for
progress messages
Verify prerequisite: Storage Node [sn1] on <XX>.com: 5000
Zone: [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 22.1.7 2024-04-05 21:25:44 UTC Build id:
477e7f102ab4
Edition: Enterprise isMasterBalanced: true serviceStartTime: 2024-04-05
10:29:33 UTC

Verify prerequisite: Storage Node [sn2] on <XX>.com: 5000
Zone: [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 22.1.7 2024-04-05 21:25:44 UTC Build id:
477e7f102ab4
Edition: Enterprise isMasterBalanced: true

Chapter 2
Upgrading an Existing Oracle NoSQL Database Deployment

2-9

serviceStartTime: 2024-04-05 13:29:18 UTC

Verification complete, no violations.

• To upgrade your data store, you need to install the latest software in all your Storage
Nodes. In your first Storage Nodes (sn1), install the new version of the software. See
Install and verify your NoSQL Database installation for more details.

• Stop the Oracle NoSQL Database Storage Node Agent and services related to the root
directory of the current Oracle NoSQL Database (22.1.7).

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar stop
-root $KVROOT

• Restart the first Storage Node using the updated software release(24.1.11).
Here $NEW_KVHOME is /var/kv/kv-24.1.11 and $KVROOT is /var/kv/kv-22.1.7/kvroot.

nohup java -Xmx64m -Xms64m -jar $NEW_KVHOME/lib/kvstore.jar start
-root $KVROOT &

• Invoke the runadmin command to start the Admin command line interface (CLI) utility on
the Storage Node which is now running the updated software release. This command
starts the kv prompt.

java -Xmx64m -Xms64m -jar $NEW_KVHOME/lib/kvstore.jar
runadmin -port 5000 -host $KVHOST -security
$KVROOT/security/root.login

• Verify the store configuration to check if the upgrade for the first Storage Node (sn1) is
completed successfully.

kv-> verify upgrade

Output:

Verify: starting verification of store mystore based upon topology
sequence #156
150 partitions and 2 storage nodes
Time: 2024-04-05 10:35:44 UTC Version: 24.1.11
See <XX>.com:/var/kv/kv-22.1.7/kvroot/mystore/log/mystore_{0..N}.log for
progress messages
Verify upgrade: Storage Node [sn1] on <XX>.com: 5000
Zone: [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:25:44 UTC Build id:
477e7f102ab4
Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 10:29:33 UTC
Verify: sn2: Node needs to be upgraded from 22.1.7 to version 24.1.11 or
newer
Verify upgrade: Storage Node [sn2] on <XX>.com: 5000
Zone: [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 22.1.7 2024-04-05 16:36:54 UTC Build id:
61b68fb1a3ec

Chapter 2
Upgrading an Existing Oracle NoSQL Database Deployment

2-10

Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 10:18:09 UTC

Verification complete, 0 violations, 1 note found.
Verification note: [sn2]
Node needs to be upgraded from 22.1.7 to version 24.1.11 or newer

• Obtain an ordered list of the Storage Nodes to upgrade. The output below shows that the
Storage Node sn2 needs to be upgraded.

kv-> show upgrade-order

Output:

Calculating upgrade order,target version: 24.1.11,prerequisite: 20.1.12
sn2

• In your second Storage Node (sn2), install the new version of the software. See Install and
verify your NoSQL Database installation for more details.

Note:

The software (kv-24.1.11.zip) has already been copied from Storage Node sn1
to the Storage Node sn2.

• Stop the Oracle NoSQL Database Storage Node Agent and services related to the root
directory of the current Oracle NoSQL Database (22.1.7).

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar stop
-root $KVROOT

• Restart the second Storage Node using the updated software release(24.1.11).
Here $NEW_KVHOME is /var/kv/kv-24.1.11 and $KVROOT is /var/kv/kv-22.1.7/kvroot.

nohup java -Xmx64m -Xms64m -jar $NEW_KVHOME/lib/kvstore.jar start
-root $KVROOT &

• Invoke the runadmin command to start the Admin command line interface (CLI) utility on
the Storage Node which is now running the updated software release. Here$KVHOST is the
host name of the first Storage Node(sn1).

java -Xmx64m -Xms64m -jar $NEW_KVHOME/lib/kvstore.jar
runadmin -port 5000 -host $KVHOST -security
$KVROOT/security/root.login

• Verify the store configuration to check if the upgrade for the second Storage Node (sn2) is
completed successfully.

kv-> verify upgrade

Chapter 2
Upgrading an Existing Oracle NoSQL Database Deployment

2-11

Output:

Verify: starting verification of store mystore based upon topology
sequence #156
150 partitions and 2 storage nodes
Time: 2024-04-05 13:32:24 UTC Version: 24.1.11
See <XX>.com:/var/kv/kv-22.1.7/kvroot/mystore/log/mystore_{0..N}.log for
progress messages
Verify upgrade: Storage Node [sn1] on <XX>.com: 5000
Zone: [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:25:44 UTC Build id:
477e7f102ab4
Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 10:29:33 UTC
Verify upgrade: Storage Node [sn2] on <XX>.com: 5000
Zone: [name=zone1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:25:44 UTC Build id:
477e7f102ab4
Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 13:29:18 UTC

Verification complete, no violations.

• Check if any other Storage Nodes need to be upgraded.

kv-> show upgrade-order

Calculating upgrade order, target version: 24.1.11,
prerequisite: 20.1.12
There are no nodes that need to be upgraded

The output shows the upgrade for all Storage Nodes is complete.

Upgrading the Xregion Service Agent
If you are using XRegion Service Agent, then you should upgrade your data store first before
upgrading the XRegion Service agent. If the agent is upgraded first before the data store is
upgraded, the agent may get blocked when accessing the new system table and wait for the
data store to be upgraded. To configure the XRegion Service agent see, Configure XRegion
Service.

Upgrading the Oracle NoSQL Database Proxy
If you have configured Oracle NoSQL Database Proxy, make sure to upgrade the proxy. A
compatible proxy jar file for a given database server, httpproxy.jar, is included in the database
server bundle's lib directory. See Configuring the Proxy for more details.

Upgrading JDK on your Oracle NoSQL Database deployment
Consider that you have a JDK version, say JDK 11 SE, installed on all the Storage Nodes in
your data store deployment. But after some time, Oracle releases a new version of the JDK,

Chapter 2
Upgrading an Existing Oracle NoSQL Database Deployment

2-12

say JDK 17 SE, that includes security enhancements and bug fixes. Now, you want to upgrade
the existing JDK to a newer version of the JDK.

Additionally, during the upgrade, you want to ensure that the data store remains online and
available to clients.

Consider that your existing Oracle NoSQL Database is deployed on 3 Storage Nodes (SN1,
SN2, and SN3).

To update the JDK on your Oracle NoSQL Database deployment:

1. Based on the OS architecture, download and install the required version of JDK from Java
SE Downloads.

2. Update the $JAVA_HOME and $PATH environment variables to point to the updated JDK
directory.

3. Verify that in the Storage Node, the JDK is now pointing to the new JDK by running the
java -version command and verifying the output.

4. Stop the SNA (Storage Node Agent) process in SN1 by running the following command:

java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar stop -root $kvroot

5. Restart the SNA process in SN1 by running the following command:

nohup java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar start -
root $kvroot &

6. Repeat steps 1 through 5 for each Storage Node. Make sure these steps are run
sequentially on all the Storage Nodes. For example, run steps 1 to 5 on SN1, followed by
SN2, and so on.

Chapter 2
Upgrading an Existing Oracle NoSQL Database Deployment

2-13

https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html

3
Configure

The articles in this section provide steps on how to configure Oracle NoSQL Database.

Configuration Basics
Once you have installed Oracle NoSQL Database on each of the Storage Nodes that you are
using in your data store (see Installing Oracle NoSQL Database), you must configure the data
store. To do this, you use the Administration command line interface (CLI).

• Installation Configuration Parameters

• Configuring the Firewall

Installation Configuration Parameters
Before you configure Oracle NoSQL Database, you should determine the following parameters
for each Storage Node in the data store. Each of these parameters are directives to use with
the makebootconfig utility:

• root

Where the KVROOT directory should reside. The KVROOT directory stores the data of
your data store and security related information. There should be enough disk space on
each Storage Node to hold the data to be stored in your data store. The KVROOT disk
space requirements can be reduced if the storagedir parameter is used to store the data at
a different location outside the KVROOT directory. It is recommended that you make the
KVROOT directory the same local directory path on each Storage Node (but not a shared
or NFS mounted directory).

• port

The TCP/IP port through which the Storage Node connects to the Oracle NoSQL
Database. This port should be free (unused) on each Storage Node. The default port used
in all examples is 5000. This port is sometimes referred to as the registry port.

• harange

The replication nodes and Admin process use the harange (high availability range) ports to
communicate between each other. For each Storage Node in the data store, specify
sequential port numbers, one port for each replication node on the Storage Node, plus an
additional port if the Storage Node hosts an Admin. Specify the port range as
startPort,endPort.

• servicerange

A range of ports that a Storage Node uses to communicate with other administrative
services and its managed services. Some of the managed services are the replication
nodes for every Storage Node. This optional parameter is useful when Storage Node
services must use specific ports for a firewall or other security purposes. By default, the
services use anonymous ports. Specify the port range as startPort,endPort. For more
information, see Storage Node Parameters.

• store-security

3-1

https://docs.oracle.com/en/database/other-databases/nosql-database/22.3/admin/installing-oracle-nosql-database.html

Specifies whether security is in use. While this is an optional parameter, it is strongly
advised that you configure Oracle NoSQL Database with security enabled.

Specifying none indicates that security will not be in use.

Specifying configure indicates that you want to configure a secure data store. The
makebootconfig process will then invoke the securityconfig utility as part of its operation.

Specifying enable indicates security will be in use. However, you will need to either
explicitly configure security by utilizing the security configuration utility(securityconfig), or
copy a previously created security configuration from another system.

Note:

If you do not specify the -store-security parameter, security is configured by
default. To complete a secure installation, you must use the securityconfig
utility to create the security folder before starting up the Storage Node Agents.

• capacity

The total number of replication nodes the Storage Node can support. Capacity is an
optional, but extremely important parameter, representing the number of replication nodes.
If the Storage Node you are configuring has the resources to support more than one
replication node, set the capacity value to the appropriate number. To host a replication
node successfully to handle peak run time demand, you need sufficient disk, cpu, memory,
and network bandwidth .

To have your Storage Node host Arbiter Nodes, set the capacity to 0 . A Storage Node with
capacity 0 will be allocated as Arbiter Nodes whenever required. For more information see
Deploying an Arbiter Node Enabled Topology.

Consider the following configuration settings for Storage Nodes with a capacity greater
than one:

1. It is recommended that you configure each Storage Node with a capacity equal to the
number of available disks on the machine. Such a configuration permits the placement
of each replication node on its own disk, ensuring that replication nodes on the
Storage Node are not competing for I/O resources. The –storagedir parameter lets
you specify the directory location for each replication node disk.

For example:

> java -Xmx64m -Xms64m \
 -jar $KVHOME/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -port 5000 \
 -host node10
 -harange 5010,5025 \
 -capacity 3 \
 -admindir /disk1/ondb/admin01 \
 -admindirsize 5000_MB \
 -storagedir /disk1/ondb/data \
 -storagedir /disk2/ondb/data \
 -storagedir /disk3/ondb/data \
 -storagedirsize 1_tb \
 -rnlogdir /disk1/ondb/rnlog01 \

Chapter 3
Configuration Basics

3-2

 -rnlogdir /disk2/ondb/rnlog02 \
 -rnlogdir /disk3/ondb/rnlog03

where -capacity 3 represents the number of replication nodes on the Storage Node
(node10). The three replication nodes are in the corresponding disks (disk1, disk2,
disk3).

2. Increase the –harange parameter to support additional ports required for the replication
and Admin Nodes.

3. Increase the –servicerange parameter to account for the additional ports required by
the replication nodes.

If no value for capacity is specified, it defaults to 1.

• storage-type

Specifies the type of disk on which the storage directories reside. You can specify storage
type only for a Storage Node and not for replication nodes. You can set one value for this
parameter for a Storage Node. The valid values are HD, SSD, NVME and UNKNOWN.

Note:

The parameters storagedir and storagedirsize are specific to every replication
node, whereas storage-type is specific to a Storage Node.

• admindir

The directory path to contain the environment associated with a Storage Node Admin
process.

It is strongly recommended that the Admin directory path resolves to a separate disk. You
can accomplish this by creating suitable entries in the /etc/fstab directory that attaches
the file system on disk to an appropriate location in the overall directory hierarchy. Placing
the Admin environment on a separate disk ensures that the Admin is not competing for I/O
resources. It also isolates the impact of a disk failure to a single environment.

If you do not specify an explicit directory path for -admindir, the Admin environment files
are located in this directory:

$KVROOT/KVSTORE/<SNID>/<AdminId>/

• admindirsize

The size of the Admin storage directory. This is optional but recommended. For more
information, see Managing Admin Directory Size.

• storagedir

A directory path that will contain the environment associated with a replication node. When
the –capacity parameter is greater than 1, it is recommended that you specify a multiple
set of –storagedir parameter values, one for each replication node that the Storage Node
hosts. Each directory path should resolve to a separate disk. You can accomplish this by
creating suitable entries in the /etc/fstab directory that attaches the file system on disk to
an appropriate location in the overall directory hierarchy. Placing each environment on a
separate disk ensures that the shards are not competing for I/O resources. It also isolates
the impact of a disk failure to a single location.

• storagedirsize

Chapter 3
Configuration Basics

3-3

The size of each storage directory. It is strongly recommended that you specify this
parameter for each replication node. The Oracle NoSQL Database uses the storage
directory size to enforce disk usage, using the –storagedirsize parameter value to
calculate how much data to store on disk before suspending write activity. For more
information, see Managing Storage Directory Sizes.

• rnlogdir

The directory path to contain the log files associated with a replication node. For capacity
values greater than one, specify multiple rnlogdir parameters, one for each replication
node that the Storage Node is hosting.

It is recommended that each rnlogdir path resolves to a separate disk partition on a
replication node. You can accomplish this by creating suitable entries in the /etc/fstab
directory that attaches the file system on a disk to an appropriate location in the overall
directory hierarchy. Placing rnlogdir in a distinct partition on the replication node ensures
that metrics and errors can be reported and retained, even if the partition containing the
data store log files is full. Separating the rnlogdir on a distinct partition also isolates the
impact of losing complete replication node log files from a kvroot disk failure.

If you do not specify a location for rnlogdir, logs are placed under the $KVROOT/
KVSTORE/log directory by default.

• num_cpus

The total number of processors on the machine available to the replication nodes. This is
an optional parameter, used to coordinate the use of processors across replication nodes.
If the value is 0, the system queries the Storage Node to determine the number of
processors on the machine. The default value for num_cpus is 0, and examples in this
document use that value.

• memory_mb

The total number of megabytes of memory available to the replication node. The system
uses the memory_mb value to guide specification of the replication node's heap and cache
sizes. This calculation is more critical if a Storage Node hosts multiple replication nodes,
and must allocate memory between these processes. If the value is 0, the system attempts
to determine the amount of memory on the replication node. The default value for
memory_mb is 0, and examples in this document use that value.

• force

Specifies that the command generates the boot configuration files, even if verifying the
configuration against the system finds any inaccurate parameters. That means you force
the creation of the boot configuration file, even if the value of any of the parameters
discussed above (like port, harange etc) is inaccurate.

See makebootconfig for more details.

Configuring the Firewall
Most of the Storage Nodes, either physical or virtual machines, have built-in firewalls.
Additionally, you may have separate firewalls in-between machines. In a NoSQL topology, the
Storage Nodes need to communicate with one another, so communication must pass through
the firewalls. You need to open the firewall ports used by the communication channels in the
data store. To make sure your network firewall works with your topology, you should set the
ports specified by the -port , -harange, -servicerange, and -admin-web-port parameters of
the makebootconfig command. These four parameters are used to constraint the data store to
a limited set of ports. Setting the ports is usually done for security or data center policy

Chapter 3
Configuration Basics

3-4

reasons. By default the services in your data store use anonymous ports. To specify a range of
ports, you use the format of startPort,endPort.

Configuring security in a data store
• Basics of data store security

• Configuring security using securityconfig tool

• Create users and configure security with remote access

Basics of data store security
Oracle NoSQL Database can be configured securely.

In a secure configuration, network communications between NoSQL clients, utilities, and
NoSQL data store components are encrypted using SSL/TLS, and all processes must
authenticate themselves to the components to which they connect. It is strongly advised that
you configure Oracle NoSQL Database with security enabled.

When you configure the Oracle NoSQL Database, the parameter store-security specifies
whether security is in use. Specifying none indicates that security will not be in use. Specifying
configure indicates that you want to configure security. When you specify configure or do not
specify the store-security parameter, then the makebootconfig process will invoke the
securityconfig utility as part of its operation. Specifying enable indicates security will be in
use. When you specify enable , you will need to either explicitly configure security by utilizing
the security configuration utility(securityconfig), or copy a previously created security
configuration from another system.

Note:

If you do not specify the -store-security parameter, security is configured by
default. To complete a secure installation, you must use the securityconfig utility to
create the security folder before starting up the Storage Node agents.

Configuring security using securityconfig tool
You can run the securityconfig tool before or after the makebootconfig process. This tool
creates the security directory and also creates security related files. The makebootconfig utility
automatically invokes the securityconfig tool in one of the following two scenarios.

• You specify store-security configure in the makebootconfig command explicitly
requesting to configure a secure data store.

• You omit the store-security parameter in the makebootconfig command. A secure data
store is then configured by default.

Invoke the securityconfig tool as shown below:

java -Xmx64m -Xms64m
-jar $KVHOME/lib/kvstore.jar
securityconfig \
config create -root $KVROOT -kspwd (******)
Created files

Chapter 3
Configuring security in a data store

3-5

$KVROOT/security/security.xml
$KVROOT/security/store.keys
$KVROOT/security/store.trust
$KVROOT/security/client.trust
$KVROOT/security/client.security
$KVROOT/security/store.passwd (Generated in CE version)
$KVROOT/security/store.wallet/cwallet.sso (Generated in EE version)
Created

See Configuring Security with Securityconfig in the Security Guide for more details.

If you have more than one Storage Node in your data store, then the security configuration is
configured in the first Storage Node using -store-security configure). The security directory
and all files contained in it should be copied from the first Storage Node to other Storage
Nodes to setup security. Zip all the security related files from the first Storage Node to
security.zip.

cd ;
zip -r $HOME/security.zip $KVROOT/security;
cd -

Copy the security.zip from first Storage Node to other Storage Nodes. In the other Storage
Nodes, you will unzip the security.zip file and use this security information (copied from the
first Storage Node). You then use -store-security enable while configuring the remaining
Storage Nodes.

Create users and configure security with remote access
You need to create users for a secure cluster.

To configure security with remote access, see the following steps:

• Create the first admin user. In this case, user root is defined.

kv->execute 'CREATE USER root IDENTIFIED BY "password" ADMIN'

• Grant the readwrite role to the first admin user:

kv->execute "GRANT readwrite TO USER root"

• Generate a password store for the first admin user. This step creates an root.passwd file
in the $KVROOT/security directory. These are the commands to create root.passwd.

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar securityconfig \
pwdfile create -file $KVROOT/security/root.passwd

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar securityconfig \
pwdfile secret \
-file $KVROOT/security/root.passwd -set -alias root -secret password

Chapter 3
Configuring security in a data store

3-6

• Copy the client.security file to another file named root.login. This client.security
was created by the securityconfig utility earlier.

cp $KVROOT/security/client.security $KVROOT/security/root.login

• Zip all the user security files. This needs to be copied to all Storage Nodes of the data
store.

cd $KVROOT/security;
zip -r root.zip root.* client.trust ;
cd -

• From every Storage Node (other than the first Storage Node in the data store), unzip the
user security files into $KVROOT/security.

unzip -o $KVROOT/security/root.zip -d $KVROOT/security

• You can now access the Admin node running on a Storage Node from another Storage
Node remotely as shown below:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar runadmin \
-port 5000 -host node01 \
-security $KVROOT/security/root.login

Configure a single node KVLite
KVLite is a simplified version of the Oracle NoSQL Database.

KVLite is a single shard data store, that is not replicated. It runs in a single process without
requiring any administrative interface. You configure, start, and stop KVLite using a command
line interface.

KVLite is intended for use by application developers who need to develop and unit test their
Oracle NoSQL Database applications. It can be used as a development platform for
developers to get familiar with Oracle NoSQL APIs, and test different ways of interacting with
these APIs. This is the simplest configuration of a NoSQL database and helps you get started
quickly as it does not need any detailed configuration steps. However it is not intended for
production deployment, or for performance measurements.

Start KVLite in a secure mode as shown below.

java -Xmx64m -Xms64m -jar lib/kvstore.jar kvlite

kvstore is the name of the data store that gets configured and kvroot is the directory where
Oracle NoSQL Database data is placed.

Also, KVLite is secure by default. If you want to run KVLite in unsecure mode, you will have to
explicitly provide parameters to disable security while installing KVLite as shown below.

 java -jar lib/kvstore.jar kvlite -secure-config disable

Chapter 3
Configure a single node KVLite

3-7

Configuring a single region data store
At a high level, configuring your store requires these steps:

• Configuring your data store installation

• Using Plans

• Start the Administration CLI

• Name your data store

• Create a Zone

• Create an Administration Process on a Specific Storage Node

• Create a Storage Node Pool

• Create the Remainder of your Storage Nodes

• Create and Deploy Replication Nodes

• Smoke Testing the System

• Create a script to configure the data store

• Troubleshooting

Configuring your data store installation
Once you determine your data store's configuration information as described in the previous
section (see Installation Configuration Parameters), complete the following tasks to configure
your data store.

1. Create the initial bootconfig configuration file using the makebootconfig command. Do this
on each Storage Node.

Note:

Using the makebootconfig command to create the configuration file is integrated
with the Storage Node on which you run the command. Such integration, checks
and validates all parameters and their values against the Storage Node
environment before generating the boot configuration files. To bypass verifying
any parameters or values for the boot configuration files, use the -force flag
(makebootconfig -force).

Following is an example of using makebootconfig, using a sample set of parameters and
values. For a list of all the makebootconfig parameters, see makebootconfig.

> mkdir -p $KVROOT

> java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar \
makebootconfig -root $KVROOT \
 -port 5000 \
 -host $KVHOST \
 -harange 5010,5020 \

Chapter 3
Configuring a single region data store

3-8

 -capacity 1 \
 -admindir /export/admin \
 -admindirsize 5000_MB \
 -storagedir /export/data1 \
 -storagedirsize 1_tb \
 -rnlogdir /export/rnlogs

Note:

It is strongly recommended that you specify both storagedir and
storagedirsize. If you specify the -storagedir parameter, but not -
storagedirsize, makebootconfig displays a warning.

When the store-security parameter is omitted from the makebootconfig command , a
secure data store is configured by default. The makebootconfig command internally
invokes the securityconfig tool to create the security directory and security related files.
To configure a non secure data store, specify store-security none in the makebootconfig
command. However it is recommended to configure a secure data store in production
environments.

2. Start the Oracle NoSQL Database Storage Node Agent (SNA) on each of the Oracle
NoSQL Database Storage Nodes. The SNA manages the Oracle NoSQL Database
administrative processes on each Storage Node. It also owns and manages the registry
port, which is the main way to communicate with Oracle NoSQL Database on that Storage
Node. Before starting the SNA, on each Storage Node, set the environment variable
MALLOC_ARENA_MAX to 1. Doing this ensures that memory usage is restricted to the
specified heap size. To start the SNA on each Storage Node use the start command as
follows:

nohup java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar start -root $KVROOT &

Note:

If the replication node or the Admin Service crashes, the SNA restarts the
processes.

3. Use the jps -m command to verify that the Oracle NoSQL Database processes are
running :

> jps -m

Output:

2830534 kvstore.jar start -root $KVROOT
2830645 ManagedService -root $KVROOT -secdir $KVROOT/security -class Admin
-service BootstrapAdmin.5000 -config config.xml

Chapter 3
Configuring a single region data store

3-9

4. Using ssh to reach the node, issue a ping command (in security mode) to be sure that the
Oracle NoSQL Database client library can contact the Oracle NoSQL Database Storage
Node Agent.

Note:

If your data store is a non secure one, the -security option in the below
command can be omitted.

ssh node01
java -Xmx64m -Xms64m -jar $KVHOME/lib/kvstore.jar ping -host $KVHOST -port
5000
-security $KVROOT/security/client.security

Login as: Anonymous (Enter any user name here)
Anonymous's password: (Enter any password)

SNA at hostname: node01, registry port: 5000 is not registered.
No further information is available
Can't find store topology:
Could not contact any RepNode at: [node01:5000]

This return informs you, that only the Storage Node process is running on the Storage
Node node01. Once Oracle NoSQL Database is fully configured, you can use the ping
command again to get more details.

If the client library cannot contact the SNA, the ping command displays this message:

Unable to connect to the storage node agent at host <hostname>,
port 5000, which may not be running; nested exception is:

java.rmi.ConnectException: Connection refused to host: <hostname>;
nested exception is:
java.net.ConnectException: Connection refused
Can't find store topology:
Could not contact any RepNode at: [<hostname>:5000]

If the Storage Nodes do not start up, review the adminboot and snaboot logs in the $KVROOT
directory to investigate what occurred and to help identify the problem. When the Storage
Nodes have all started successfully, you can configure the data store.

Note:

For best results, configure your Storage Nodes so that the SNA starts automatically
when the Storage Node boots up. The details of how to do this are beyond the scope
of this document, because they depend on how your operating system is designed.
See your operating system documentation for information about launching an
application automatically at bootup.

Chapter 3
Configuring a single region data store

3-10

Using Plans
You use plans to configure your data store. A plan consists of administrative operations. Plans
can modify the state managed by the Admin service, and issue requests to data store
components such as Storage Nodes and replication nodes. Some plans consist of simple
state-changing operations, while others perform a set of tasks that affect every Storage Node
and replication nodes in the data store. For example, you use a plan to create a zone or
Storage Node, or to reconfigure parameters on a replication node.

You use the plan command, available from the administrative command line interface, to both
create and execute plans, as well as to perform many other tasks. For more about using the
plan command, see CLI Command Reference.

By default, running a plan command executes asynchronously in the background. The
command line prompt returns as soon as the background process begins. You can check the
progress of a running plan using the show plan id command.

You can run a plan command synchronously in two ways:

plan action_to_complete —wait

plan wait -id plan_id

Using either the –wait flag or the plan wait command, causes the command line prompt to
return only after the command completes.

The -wait flag and the plan wait command are useful when executing plans from scripts,
which typically expect each command to finish before processing the next command.

You can also create a plan, but defer its execution using the optional -noexecute flag, as
follows:

plan action –name plan-name -noexecute

Later, you can execute the plan on demand as follows:

plan execute -id id_num

Tracking Plan Progress
There are several ways to track the progress of a plan.

• The show plan -id command provides information about the progress of a running plan.
Use the optional -verbose flag to get more details.

• The CLI verify command gives service status information as the plan is executing and
services start.

Chapter 3
Configuring a single region data store

3-11

Note:

The verify command is of interest for only topology-related plans. If the plan is
modifying parameters, such changes may not be visible using the verify
command.

• The CLI's logtail command lets you follow the store-wide log.

Plan States
Plans can be in any of the following states. A plan can be in only one state at a time. These are
the possible states:

Name Description

APPROVED The plan exists with correct operations, but is not
running.

CANCELED A plan that is manually INTERRUPTED or that
experiences an ERROR can be terminated. Use the
cancel command to terminate a plan.

ERROR If a plan in the RUNNING state encounters a
problem, it transitions to this state and ends
processing without successfully completing.
Storage Nodes and replication nodes can
encounter an error before the plan processes the
error and transitions to an ERROR state.

INTERRUPTED A RUNNING plan transitions to this state after the
interrupt command in the CLI.

INTERRUPT REQUESTED When a running plan receives an interrupt request,
the plan may have to cleanup or reverse previous
steps taken during its execution. If the plan
transitions to this state, it is to make sure that the
data store remains in a consistent state.

RUNNING The plan is currently executing its commands.

SUCCEEDED The plan has completed successfully.

You can use the plan execute command whenever a plan enters the INTERRUPTED, INTERRUPT
REQUESTED or ERROR state. Retrying is appropriate if the underlying problem was transient or
has been rectified. When you retry a Plan, it processes the steps again. Each step is
idempotent, and can be safely repeated.

Reviewing Plans
You can use the CLI show plans command to review the execution history of plans. The
command also lists the plan ID numbers, plan names, and the state of each plan. With the plan
ID, use the show plan -id <plan number> command to see more details about a specific
plan.

The next example shows the output of both the show plans command and then the show plan
-id <plan number> command. The show plan command returns the plan name, the number of

Chapter 3
Configuring a single region data store

3-12

attempts, the start and end date and times, the total number of tasks the plan completed, and
the whether the plan completed successfully.

kv-> show plans

Output:

1 Deploy KVLite SUCCEEDED
2 Deploy Storage Node SUCCEEDED
3 Deploy Admin Service SUCCEEDED
4 Deploy KVStore SUCCEEDED

kv-> show plan -id 3

Output:

Plan Deploy Admin Service (3)
Owner: null
State: SUCCEEDED
Attempt number: 1
Started: 2024-04-05 22:05:31 UTC
Ended: 2024-04-05 22:05:31 UTC
Total tasks: 1
Successful: 1

Plan Ownership
In a secure Oracle NoSQL Database deployment, each plan command is associated with its
creator as the owner. Only the plan owner can see and operate it. If a plan is created in an
earlier version of Oracle NoSQL Database, or in an non secure data store, the owner is null.

Note:

The SYSOPER privilege allows a user to perform cancel, execute, interrupt, and wait
on any plan.

Users with the SYSVIEW privilege can see plans owned by other users, plans with a null owner,
and plans whose owners have been removed from the Oracle NoSQL Database.

For more information about user privileges and on configuring Oracle NoSQL Database
securely, see the Security Guide.

Pruning Plans

The system automatically prunes plans that should be removed. Plans are removed from the
Admin Store if they match both of these conditions:

• Are in a terminal state (SUCCEEDED or CANCELLED)

• Have a Plan ID number that is 1000 less than the most recent Plan ID

Chapter 3
Configuring a single region data store

3-13

For example, if the most recent Plan ID is 2000, the system prunes all plans with ID numbers
1000 or less that are in a terminal state . The system does not remove plans in a non-terminal
state.

While pruning plans occurs automatically, you can detect that pruning has occurred in these
situations:

• Attempting to show a plan with a specific ID that has been pruned.

• Specifying a range of plans that contains one or more removed plans.

Start the Administration CLI
Before running the Admin CLI and continuing further, you must have already completed all of
the configuration steps described in Configuring your data store installation.

The runadmin utility provides the Admin command line interface (CLI). You can use the
runadmin utility for a number of purposes. In this section, you use it to administer the Storage
Nodes in your data store. First, you supply the details of the Storage Node and registry port
that runadmin can use to connect to the data store.

If this is the first Storage Node you are connecting to that data store using the CLI, the Storage
Node is designated as the one on which the master copy of the administration database
resides.

Note:

You cannot change whatever Storage Node you use to initially configure the data
store, such as node01 in this example. Carefully plan the Storage Node to which
runadmin first connects.

In the example below, you use $KVHOST to represent the network name of the Storage Node to
which runadmin connects, and you use 5000 as the registry port.

One of the most important aspects of this Storage Node is that it must run the Storage Node
Agent (SNA). All Storage Nodes should have an SNA running on them at this point. If any do
not, complete the instructions in Installing Oracle NoSQL Database before proceeding further.

To start runadmin to use the Admin command line interface (CLI) for administration purposes,
use these commands:

ssh node01
> java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar runadmin \
-host $KVHOST -port 5000 \
-security $KVROOT/security/client.security

With this runadmin example, you specify a single host and port (-host node01 -port 5000),
permitting one Storage Node host to run an Admin process. The Admin process lets you run
Admin CLI commands. If you want more than one Storage Node to support CLI commands,
use the runadmin utility –helper-hosts flag and list two or more Storage Nodes and ports,
rather than –host <name> –port <value>. For example, the next command starts an Admin

Chapter 3
Configuring a single region data store

3-14

process on three different Storage Nodes, which can then service CLI commands (<host2>,
<host3>, and <host4>):

ssh node01
> java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts <host2>:5000, <host3>:5000, <host4>:5000 \
-security $KVROOT/security/client.security

Note:

You need to complete the steps in Create users and configure security with remote
access , to use therunadmin command to access the Admin node running on a
Storage Node from any another Storage node.

After starting the Admin CLI, you can invoke the help command to describe all of the CLI
commands.

You can collect the configuration steps that this section describes into a file, and then pass the
script to the CLI utility using the -scriptoption. See Create a script to configure the data store
for more information.

Name your data store
When you start the Admin CLI , the kv-> prompt appears. Once you see this, you can name
your data store by using the configure -name command. The only information this command
needs is the name of the data store that you want to configure.

Note that the name of your data store is essentially used to form a path to records kept in the
data store. For this reason, you should avoid using characters in the data store name that
might interfere with its use within a file path. The command line interface does not allow an
invalid data store name. Valid characters are alphanumeric, '-', '_', and '.'.

For example:

kv-> configure -name mystore

Output:

Store configured: mystore

Note:

The data store name must be unique across all instances of NoSQL Database.

Chapter 3
Configuring a single region data store

3-15

Create a Zone
After starting the Admin command line interface (CLI) and naming your data store, you need to
create at least one zone. It is possible, and even desirable, to create more than one zone.
Because zones are complete copies of your data store, using multiple zones improves your
data store's availability. This section describes an installation with a single zone. For more
directions about creating a store deployment with multiple zones, see Configuring with Multiple
Zones.

Note:

Once you add Storage Nodes to a zone, you cannot remove the zone from your data
store.

To create a zone, use the plan deploy-zone with this usage:

plan deploy-zone -name <zone name>
-rf <replication factor>
[-type [primary | secondary]]
[-arbiters | -no-arbiters]
[-json]
[-master-affinity | -no-master-affinity]
[-plan-name <name>] [-wait] [-noexecute] [-force]

where:

• -arbiters
Specifies that you can allocate Arbiter Nodes on the Storage Node in the zone.

• -no-arbiters
Specifies that you cannot allocate Arbiter Nodes on the Storage Node in the zone. You can
specify this flag only on a primary zone.

Note:

Only primary zones can host Arbiter Nodes.

• -rf
A number specifying the Zone Replication Factor. A primary zone can have a Replication
Factor equal to zero.

• -name
Identifies the zone name, as a string.

• -json
Formats the command output in JSON.

Chapter 3
Configuring a single region data store

3-16

Note:

Only primary zones can host Arbiter Nodes.

• –master-affinity
Indicates that this zone is a Master Affinity zone.

• -no-master-affinity
Specifies that this zone is not a Master Affinity zone.

• -type
Specifies the type of zone to create. If you do not specify a –type, the plan utility creates a
Primary zone.

For more information on Primary and Secondary Replication Factors, see Configuring with
Multiple Zones.

When you execute the plan deploy-zone command, the CLI returns the plan number. It also
returns instructions on how to check the plan's status, or to wait for it to complete. For
example:

kv-> plan deploy-zone -name "Boston" -rf 1 -wait

Output:

Executed plan 1, waiting for completion...
Plan 1 ended successfully

You can show the plans and their status using the show plans command.

kv-> show plans

Output:

1 Deploy Zone (1) SUCCEEDED

A zero Replication Factor zone is useful to host only Arbiter Nodes. You would add zero
capacity Storage Nodes to this zone in order to host Arbiter Nodes. For more information see
Deploying an Arbiter Node Enabled Topology.

You can also create Master Affinity Zones, which let you prioritize master nodes in primary
zones. See Master Affinity Zones for details.

Create an Administration Process on a Specific Storage Node
Every data store has an administration database. The Admin CLI is currently connected to the
Storage Node node01. Use the deploy-sn command to deploy the Storage Node node01. You
then use the command deploy-admin to deploy an Administration process on the same
Storage Node node01 to continue configuring this data store.

Chapter 3
Configuring a single region data store

3-17

The deploy-admin command creates an Administration process, with the same type as the
Storage Node (SN) zone — if the zone is primary, the Admin is a primary Admin; if a secondary
zone, so is the Admin.

Secondary Admins support failover. If a primary Admin fails, it converts to an offline secondary
to re-establish quorum using existing Admins. A secondary Admin converts to a primary to take
over for the failed primary. For more information on how quorum is applied, see the Concepts
Guide.

To support failover, ensure that any zones used to continue data store operation after a failure
contain at least one Admin node.

Note:

A deployed Admin must be the same type (PRIMARY or SECONDARY) as its zone. Also,
the number of deployed Admins in a zone should be equal to the Zone Replication
Factor.

The deploy-sn command requires a Zone ID. You can get this ID by using the show topology
command:

kv-> show topology

Output:

store=mystore numPartitions=0 sequence=1
zn: id=zn1 name=Boston repFactor=1 type=PRIMARY
allowArbiters=false masterAffinity=false

The zone ID is zn1 in the output.

When you deploy the Storage Node, provide the zone ID, the node's network name, and its
registry port number. For example:

kv-> plan deploy-sn -zn zn1 -host <hostname> -port 5000 -wait

Output:

Executed plan 2, waiting for completion...
Plan 2 ended successfully

Having deployed the Storage Node, create the Admin process on the Storage Node that you
just deployed, using the deploy-admin command. This command requires the Storage Node ID
(which you can obtain using the show topology command) and an optional plan name.

kv-> plan deploy-admin -sn sn1 -wait

Chapter 3
Configuring a single region data store

3-18

Output:

Executed plan 3, waiting for completion...
Plan 3 ended successfully

Create a Storage Node Pool
Once you have created your Administration process, you can create a Storage Node Pool.
This pool is used to contain all the Storage Nodes in your data store. A Storage Node pool is
used for resource distribution when creating or modifying a data store. You use the pool
create command to create this pool, then you join Storage Nodes to the pool using the pool
join command.

Note that a default pool called AllStorageNodes will be created automatically and all SNs will
be added to it during the topology deployment process. Therefore, the pool commands are
optional if you use the AllStorageNodes pool as the default pool during deployment. You may
have multiple kinds of Storage Nodes in different zones that vary by processor type, speed
and/or disk capacity. So the Storage Node pool lets you define a logical grouping of Storage
Nodes by whatever specification you pick.

Note:

This section is only to demonstrate how to explicitly create a Storage Node pool. Skip
this section if you want to use the default pool AllStorageNodes during the topology
deployment process.

Remember that you already have a Storage Node created. You did that in the previous step
where you used the deploy-sn command to deploy the Storage Node. Therefore, after you add
the pool, you can immediately join that first Storage Node to the pool.

The pool create command only requires you to provide the name of the pool.

The pool join command requires the name of the pool to which you want to join the Storage
Node, and the Storage Node's ID. You can obtain the Storage Node's ID using the show
topology command.

For example:

kv-> pool create -name BostonPool

Output:

Added pool BostonPool

kv-> show topology

Output:

store=mystore numPartitions=0 sequence=2
zn: id=zn1 name=Boston repFactor=1 type=PRIMARY

Chapter 3
Configuring a single region data store

3-19

allowArbiters=false masterAffinity=false
sn=[sn1] zn:[id=zn1 name=Boston] <hostname>:5000 capacity=1 RUNNING

kv-> pool join -name BostonPool -sn sn1

Output:

Added Storage Node(s) [sn1] to pool BostonPool

Create the Remainder of your Storage Nodes
This section is only applicable if you are configuring multiple Storage Nodes. Skip this section if
you are configuring a single Storage Node.

Having created your Storage Node Pool, you can create the remainder of your Storage Nodes.
Every Storage Node hosts various Oracle NoSQL Database admin and managed services in
the data store. Consequently, you must use the deploy-sn command in the same way as you
did in Create an Administration Process on a Specific Storage Nodeto add each new Storage
Node to your data store. As you deploy each Storage Node, join it to your Storage Node Pool
as described in the previous section.

Hint: Storage Node ID numbers increment sequentially with each Storage Node you add. So
you do not have to repetitively look up the IDs with show topology. If the last Storage Node
you created was assigned an ID of 10, then the next Storage Node is automatically assigned
ID 11.

kv-> plan deploy-sn -zn zn1 -host <host2> -port 5000 -wait
Executed plan 4, waiting for completion...
Plan 4 ended successfully
kv-> pool join -name BostonPool -sn sn2
Added Storage Node(s) [sn2] to pool BostonPool
kv-> plan deploy-sn -zn zn1 -host <host3> -port 5000 -wait
Executed plan 5, waiting for completion...
Plan 5 ended successfully
kv-> pool join -name BostonPool -sn sn3
Added Storage Node(s) [sn3] to pool BostonPool
kv->
....

Repeat this process for all new Storage Nodes in your data store.

Create and Deploy Replication Nodes
The final step in your configuration process is to create replication nodes on every Storage
Node in your data store. You do this using the topology create and plan deploy-topology
commands. The topology create command takes the following arguments:

• topology name - A string to identify the topology.

• pool name - A string to identify the pool.

• number of partitions

Chapter 3
Configuring a single region data store

3-20

The initial configuration is based on the number of Storage Nodes specified by the pool. This
number is fixed once the topology is created and it cannot be changed. The command will
automatically create an appropriate number of shards and replication nodes based upon the
Storage Nodes in the pool.

You should make sure the number of partitions you select is more than the largest number of
shards you ever expect your data store to contain, because the total number of partitions is
static and cannot be changed. For simpler use cases, you can use the following formula to
arrive at a very rough estimate for the number of partitions:

(Total number of disks hosted by the Storage Nodes /
 Replication Factor) * 10

To get a more accurate estimate for production use, see Number of Partitions.

The plan deploy-topology command requires a topology name.

Once you issue the following commands, your data store is fully installed and configured:

kv-> topology create -name topo -pool BostonPool -partitions 300

Output:

Created: topo

kv-> plan deploy-topology -name topo -wait

Output:

Executed plan 6, waiting for completion...
Plan 6 ended successfully

Note:

If you have not created an explicit Storage pool , use -pool AllStorageNodes in the
above command.

As a final sanity check, you can confirm that all of the plans succeeded using the show plans
command:

kv-> show plans

Output:

1 Deploy Zone (1) SUCCEEDED
2 Deploy Storage Node (2) SUCCEEDED
3 Deploy Admin Service (3) SUCCEEDED
4 Deploy-RepNodes (4) SUCCEEDED

Chapter 3
Configuring a single region data store

3-21

You can then exit the command line interface.

kv-> exit

Smoke Testing the System
There are several things you can do to ensure that your data store is up and fully functional.
You verify your data store using the verify configuration command in the CLI.

1. The verify configuration command inspects all the components of the data store. It
also checks whether all store services are available. For the available store services, the
command also checks for any version or metadata mismatches. The command requires no
parameters, and runs in verbose mode, by default. For example:

kv-> verify configuration

Output:

Verify: starting verification of store mystore based upon topology
sequence #2
0 partitions and 1 storage nodes
Time: 2024-04-05 10:41:15 UTC Version: 24.1.11
See <hostname>:$KVROOT/mystore/log/mystore_{0..N}.log for progress messages
Verify: Shard Status: healthy: 0 writable-degraded: 0 read-only: 0
offline: 0 total: 0
Verify: Admin Status: healthy
Verify: Zone [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online: 0 read-only: 0 offline: 0
Verify: == checking storage node sn1 ==
Verify: sn1: sn1 has 0 RepNodes and is under its capacity limit of
1
Verify: Storage Node [sn1] on <hostname>: 5000
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:25:44 UTC Build id:
477e7f102ab4
Edition: Enterprise isMasterBalanced: unknown serviceStartTime:
2024-04-05 10:37:28 UTC
Verify: Admin [admin1] Status: RUNNING,MASTER serviceStartTime:
2024-04-05 10:38:21 UTC
stateChangeTime: 2024-04-05 10:38:21 UTC availableStorageSize: 999 MB

Verification complete, 0 violations, 1 note found.
Verification note: [sn1] sn1 has 0 RepNodes and is under its capacity
limit of 1

If the output shows all Storage Nodes and replication nodes as running without any errors,
then the data store is configured well and all Storage Nodes are up and active.

2. Run the ping command as shown below:

kv-> ping

Chapter 3
Configuring a single region data store

3-22

Output:

Pinging components of store mystore based upon topology sequence #2
0 partitions and 1 storage nodes
Time: 2024-04-05 11:36:06 UTC Version: 24.1.11
Shard Status: healthy: 0 writable-degraded: 0 read-only: 0 offline: 0
total: 0
Admin Status: healthy
Zone [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online: 0 read-only: 0 offline: 0
Storage Node [sn1] on <hostname>: 5000
Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:25:44 UTC Build id:
477e7f102ab4
Edition: Enterprise isMasterBalanced: unknown serviceStartTime:
2024-04-05 10:37:28 UTC
Admin [admin1] Status: RUNNING,MASTER serviceStartTime: 2024-04-05
10:38:21 UTC
stateChangeTime: 2024-04-05 10:38:21 UTC availableStorageSize: 999 MB

If the output shows all Storage Nodes and replication nodes as running without any errors,
then the data store is configured well and all Storage Nodes are up and active.

If you run into installation problems or want to start over with a new data store, then on every
Storage node in the data store:

1. Stop the Storage Node using:

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar stop -root $KVROOT

2. Remove the contents of the KVROOT directory:

rm -rf $KVROOT

3. Start over with the steps described in Installation Configuration Parameters.

Create a script to configure the data store

Note:

You must follow the configuration steps as mentioned in Configuring your data store
installation before running the Admin CLI.

You now know how to configure a data store using an interactive command line interface
session. However, you can collect all of the commands used in the prior sections into a script
file, and then run the script in a single batch operation. To do this, use the load command in
the command line interface. For example:

Chapter 3
Configuring a single region data store

3-23

Using the load -file command line option:

ssh node01
> java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar runadmin -port 5000 -host $KVHOST \
-security $KVROOT/security/client.security \
load -file script.txt

Using directly the load -file command. First start runadmin to use the Admin command line
interface (CLI) for administration purposes:

 java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar runadmin -port 5000 -host node01 \
-security $KVROOT/security/client.security

kv-> load -file <path to file>

Using this command you can load the named file and interpret its contents as a script of
commands to be executed.

The file, script.txt, would contain content like the code snippet shown below. Note that the
name of the store in this example is mystore.

Begin Script
configure -name mystore
plan deploy-zone -name "Boston" -rf 3 -wait
plan deploy-sn -zn zn1 -host <hostname> -port 5000 -wait
plan deploy-admin -sn sn1 -wait
pool create -name BostonPool
pool join -name BostonPool -sn sn1
plan deploy-sn -zn zn1 -host <host2> -port 5000 -wait
pool join -name BostonPool -sn sn2
plan deploy-sn -zn zn1 -host <host3> -port 5000 -wait
pool join -name BostonPool -sn sn3
topology create -name topo -pool BostonPool -partitions 300
plan deploy-topology -name topo -wait
exit
End Script ###

Troubleshooting
Typical errors when bringing up a data store are typos and misconfiguration. It is also possible
to run into network port conflicts, especially if the deployment failed and you are starting over.
Processes associated with a data store are reported by jps -m command. Some examples of
them are :

• kvstore.jar start -root $KVROOT (SNA process)

• ManagedService

If you kill the SNA process it should also kill its managed processes.

Chapter 3
Configuring a single region data store

3-24

There are detailed log files available in $KVROOT/storename/log as well as logs of the
bootstrap process in $KVROOT/*.log. The bootstrap logs are most useful in diagnosing initial
startup problems. The logs in storename/log appear once the data store has been configured.
The logs on the Storage Node chosen for the admin process are the most detailed and include
a store-wide consolidated log file: $KVROOT/storename/log/storename_*.log
Each line in the log file is prefixed with the date of the message, its severity, and the name of
the component which issued it. For example:

2024-04-05 14:28:26.982 UTC INFO [admin1]
Initializing Admin for store: mystore

When looking for more context for events at a given time, use the timestamp and component
name to narrow down the section of log to peruse.

Error messages in the logs show up with SEVERE in them so you can grep for that if you are
troubleshooting. SEVERE error messages are also displayed in the CLI's show events
command, and when you use the ping command.

In addition to log files, the log directories may also contain *.perf files, which are performance
files for the replication nodes.

In general, verify configuration is the tool of choice for understanding the state of the data
store. In addition to contacting the data store components, it will cross check each
component's parameters against the Admin database. For example, verify configuration
might report that a replication node's helperHosts parameter was at odds with the Admin. If this
was the case then it might explain why a replication node cannot come up. The Verify
configuration tool also checks on Admins. It also verifies the configuration of Arbiter Nodes
in the topology.

Additionally, in order to catch configuration errors early, you can use the diagnostics tool when
troubleshooting your data store. Also, you can use this tool to package important information
and files to be able to send them to Oracle Support. For more information, see Diagnostics
Utility.

Where to Find Error Information
As your data store operates, you can discover information about any problems that may be
occurring by looking at the plan history and by looking at error logs.

The plan history indicates if any configuration or operational actions you attempted to take
against the store encountered problems. This information is available as the plan executes and
finishes. Errors are reported in the plan history each time an attempt to run the plan fails. The
plan history can be seen using the CLI show plan command.

Other problems may occur asynchronously. You can learn about unexpected failures, service
downtime, and performance issues through the CLI's show events command. Events come
with a time stamp, and the description may contain enough information to diagnose the issue.
In other cases, more context may be needed, and the administrator may want to see what else
happened around that time.

The store-wide log consolidates logging output from all services. Browsing this file might give
you a more complete view of activity during the problem period. It can be viewed using the
CLI's logtail command, or by directly viewing the <storename>_N.log file in the $KVHOME/
<storename>/log directory.

Chapter 3
Configuring a single region data store

3-25

Service States
Oracle NoSQL Database uses four different types of services, all of which should be running
correctly in order for your store to be in a healthy state. The four service types are the Admin,
Storage Nodes, Replication Nodes and Arbiters Nodes. You should have multiple instances of
these services running throughout your store.

Each service has a status that can be viewed using any of the following:

• The show topology command in the Administration CLI.

• Using the ping command.

The status values can be one of the following:

Name Description

ERROR_NO_RESTART The service is in an error state and is not
automatically restarted. Administrative intervention
is required.

ERROR_RESTARTING The service is in an error state. Oracle NoSQL
Database attempts to restart the service.

RUNNING The service is running normally.

STARTING The service is coming up.

STOPPED The service was stopped intentionally and cleanly.

STOPPING The service is stopping. This may take some time
as some services can be involved in time-
consuming activities when they are asked to stop.

SUCCEEDED The plan has completed successfully.

UNREACHABLE The service is not reachable by the Admin. If the
status was seen using a command issued by the
Admin, this state may mask a STOPPED or
ERROR state. If an SN is UNREACHABLE, or an
RN is having problems and its SN is
UNREACHABLE, the first thing to check is the
network connectivity between the Admin and the
SN. However, if the managing SNA is reachable
and the managed Replication Node is not, we can
guess that the network is OK and the problem lies
elsewhere.

WAITING_FOR_DEPLOY The service is waiting for commands or
acknowledgments from other services during its
startup processing. If it is a Storage Node, it is
waiting for the initial deploy-SN command. Other
services should transition out of this phase without
any administrative intervention from the user.

A healthy service begins with STARTING. It may transition to WAITING_FOR_DEPLOY for a short
period before going on to RUNNING.

ERROR_RESTARTING and ERROR_NO_RESTART indicate that there has been a problem that should
be investigated. An UNREACHABLE service may only be in that state temporarily, although if that
state persists, the service may be truly in an ERROR_RESTARTING or ERROR_NO_RESTART state.

Useful Commands
The following commands may be useful to you when troubleshooting your KVStore.

Chapter 3
Configuring a single region data store

3-26

• java -Xmx64m -Xms64m \
-jar kvstore.tmp/kvstore.jar ping -host node01 -port 5000 \
-security USER/security/admin.security

Reports the status of the store running on the specified host and port. This command can
be used against any of the host and port pairs used for Storage Nodes.

Note:

This assumes that you have completed the steps in Create users and configure
security with remote access .

• jps -m
Reports the Java processes running on a machine. If the Oracle NoSQL Database
processes are running, they are reported by this command.

• ps -eaf | grep kv
You can view the list of kvstore processes that are running.

Configure data store - Advanced scenarios
• Create Additional Admin Processes

• Configuring with Multiple Zones

• Adding Secondary Zone to the Existing Topology

Create Additional Admin Processes
If you have deployed more than one Storage Node, you can add additional Admin processes
using the deploy-admin plan. You are responsible for creating the appropriate number of
Admins.

For example, currently you have a single Admin process deployed in your data store. So far,
this has been sufficient to proceed with the data store configuration. However, to increase your
data store's reliability, you should deploy multiple Admin processes, each running on a different
Storage Node. This way, you can continue to administer your data store even if one Storage
Node becomes unreachable and ends its Admin process. Having multiple Admin processes
also means that you can continue to monitor your data store, even if you lose a Storage Node
that is running an Admin process.

Create the Admin process on a Storage Node you just deployed, using the plan deploy-admin
command. This command requires the Storage Node ID, which you can get from the show
topology command:. Below is an example.

kv-> show topology

Output:

store=mystore numPartitions=0 sequence=2
zn: id=zn1 name=Boston repFactor=1 type=PRIMARY allowArbiters=false
masterAffinity=false

Chapter 3
Configure data store - Advanced scenarios

3-27

sn=[sn1] zn:[id=zn1 name=Boston] <hostname>.oraclevcn.com:5000 capacity=1
RUNNING
numShards=0

kv-> plan deploy-admin -sn sn1 -wait

Output:

Executed plan 3, waiting for completion...
Plan 3 ended successfully

Although Admins are not required for normal data operations on the data store, they are
needed to perform various administrative operations, including DDL operations. For example to
create or modify tables, and for security operations involving users and roles. It is very
important that the Admin services remain available.

Consideration for Admin Quorum
The full availability of the Admin service depends on having a quorum of the total Admin
services available at a given time. Having a quorum of Admins operates similarly to the
quorum for replication nodes in a shard. For replication nodes, the replication factor controls
how many replication nodes can fail and still maintain the service. For example, with a
replication factor of 3, the following table describes how failure numbers affect availability:

Failures Availability

0 Full

1 Full

2 Read-only

3 None

The same failure and availability values exist for Admins. It is strongly recommended that you
use the store replication factor to determine how many Admins should exist. This means that
the Admin service has the same availability as the data store does for data operations. It is
recommended that you use 3 Admins (matching the typical replication factor).

As with the store replication factor, when you use an even number of replicas, to maintain
quorum (which is majority of the total number), you need more than half of the total replicas to
be available. That means for a total of 4 replicas you need at least 2 replicas to be available to
maintain quorum. For example, a replication factor of 4 has this behavior with failures and
availability:

Failures Availability

0 Full

1 Full

2 Read-only

3 Read-only

4 None

Chapter 3
Configure data store - Advanced scenarios

3-28

So, with a replication factor of 4, the group can still tolerate only a single failure and maintain
full availability. Moreover, in addition to the higher Replication Factor value having no benefit
during failures, now one more node exists that can fail, and the chance of losing quorum
increases. The replication factor described here are for primary Storage Nodes associated with
primary zones. For data stores with secondary zones, the nodes in the secondary zones are
not included in the quorum.

Available Admins in Zones
Making sure that Admins are available in the right zones is another important consideration. If
a data store has multiple primary zones, the zones were presumably set up to provide better
availability. In this case, the admins should reflect the same arrangement. It is recommended
that each zone has the same number of admins as the zone's replication factor. Unlike
replication nodes, where all nodes in the shard can handle read operations, only the admin
master responds to admin operations (unless there is no master). So, putting admins in a
secondary zone is only useful to support failure recovery.

For example, if a store has primary and secondary zones, and all of the primary zones are lost,
the administrator can use the repair-admin-quorum and plan failover commands to resume
operations by converting the secondary zone to a primary zone. But these operations can
occur only if an Admin node is available. For this reason, stores with secondary zones should
include Admins in the secondary zones.

Configuring with Multiple Zones
To achieve optimal use of all available physical facilities, deploy your data store across multiple
zones. Multiple zones provide fault isolation and availability for your data if a single zone fails.
Each zone has a copy of your complete data store, including a copy of all the shards. With this
configuration, reads are always possible, as long as your data's consistency guarantees can
be met, because at least one replica is located in every zone. Writes can also occur in the
event of a zone loss, as long as the database maintains quorum. See Concepts Guide.

You can specify a different replication factor to each zone. A replication factor is quantified as
one of the following:

Zone Replication Factor
The number of copies, or replicas, maintained in a zone.

Primary Replication Factor
The total number of replicas in all primary zones. This replication factor controls the number of
replicas that participate in elections and acknowledgments. For additional information on how
to identify the Primary Replication Factor and its implications, see Replication Factor.

Secondary Replication Factor
The total number of replicas in all secondary zones. Secondary replicas provide additional
read-only copies of the data.

Store Replication Factor
The total number of replicas across the entire data store.

Zones that are located near each other physically benefit by avoiding bottlenecks from
throughput limitations, and by reducing latency during elections and commits.

Chapter 3
Configure data store - Advanced scenarios

3-29

Note:

There are two types of zones: Primary, and Secondary.

Primary zones contain nodes which can serve as masters or replicas. Zones are
created as primary Zones by default. For good performance, primary zones should
be connected by low latency networks so that they can participate efficiently in
master elections and commit acknowledgments. Primary zones can also become
Master Affinity zones.

Secondary zones contain nodes which can only serve as replicas. Secondary zones
can be used to provide low latency read access to data at a distant location, or to
maintain an extra copy of the data to increase redundancy or increase read capacity.
Because the nodes in secondary zones do not participate in master elections or
commit acknowledgments, secondary zones can be connected to other zones by
higher latency networks, because additional latency will not interfere with those time
critical operations.

Using high throughput and low latency networks to connect primary zones leads to better
results and improved performance. You can use networks with higher latency to connect to
secondary zones so long as the connections provide sufficient throughput to support
replication and sufficient reliability that temporary interruptions do not interfere with network
throughput.

Note:

Because any primary zone can host master nodes, you can reduce write
performance by connecting primary zones through a limited throughput or a high
latency network link.

The following steps walk you through the process of deploying six Storage Nodes across three
primary zones. You can then verify that each shard has a replica in every zone; service can be
continued in the event of a zone failure. You will configure secure data store in all the six
Storage Nodes. In the first Storage Node, security will be configured and the security directory
and all files contained in it will be copied from the first Storage Node to other Storage Nodes to
setup security.

Follow the steps below in the first Storage Node(node01):

• Execute the following command:

java -jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT \
-port 5000 \
-host $KVHOST \
-harange 5010,5020 \
-store-security configure \
-capacity 1 \
-storagedir ${KVDATA}/disk1 \
-storagedirsize 5500-MB \

Chapter 3
Configure data store - Advanced scenarios

3-30

• Start the Storage Node Agent:

java -jar $KVHOME/lib/kvstore.jar start -root $KVROOT &

• Create a zip file of all the security files created:

cd ;
zip -r $HOME/security.zip $KVROOT/security;
cd -

• Copy $HOME/security.zip from this node (node01) to the other five nodes.

Follow these steps in each of the other Storage Nodes (node02, node03, node04, node05,
node06).

• Unzip the security files copied from the first Storage Node (node01).

cd;
unzip -o security.zip -d /;
cd -;

• Execute the following command:

java -jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT \
-port 5000 \
-host $KVHOST \
-harange 5010,5020 \
-store-security enable \
-capacity 1 \
-storagedir ${KVDATA}/disk1 \
-storagedirsize 5500-MB \

• Start the Storage Node Agent:

java -jar $KVHOME/lib/kvstore.jar start -root $KVROOT &

From the first Storage Node (node01) deploy your data store using the following steps:

• Start the Admin CLI. Here $KVHOST is node01.

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar runadmin \
-port 5000 -host $KVHOST
-security $KVROOT/security/client.security

• Name your data store and deploy three primary zones:

configure -name MetroArea;
plan deploy-zone -name "Manhattan" -rf 1 -wait;
plan deploy-zone -name "JerseyCity" -rf 1 -wait;
plan deploy-zone -name "Queens" -rf 1 -wait;

Chapter 3
Configure data store - Advanced scenarios

3-31

• Deploy the first Storage Node with administration process in the Manhattan zone.

plan deploy-sn -znname Manhattan -host node01 -port 5000 -wait;
plan deploy-admin -sn sn1 -wait;

Deploy a second Storage Node in Manhattan zone:

plan deploy-sn -znname Manhattan -host node02 -port 5000 -wait;

• Deploy the first Storage Node with administration process in the JerseyCity zone:.

plan deploy-sn -znname JerseyCity -host node03 -port 5000 -wait;
plan deploy-admin -sn sn3 -wait;

Deploy a second Storage Node in JerseyCity zone:

plan deploy-sn -znname JerseyCity -host node04 -port 5000 -wait;

• Deploy the first Storage Node with administration process in the Queens zone:.

plan deploy-sn -znname Queens -host node05 -port 5000 -wait;
plan deploy-admin -sn sn5 -wait;

Deploy a second Storage Node in Queens zone:

plan deploy-sn -znname JerseyCity -host node06 -port 5000 -wait;

• Create and deploy a topology:

topology create -name Topo1 -pool AllStorageNodes -partitions 300;
plan deploy-topology -name Topo1 -wait;

• Follow the instructions mentioned in Create users and configure security with remote
access to create the access for the users in the multiple zones.

• Check service status with the show topology command:

kv-> show topology

Output:

store=MetroArea numPartitions=100 sequence=117
 zn: id=zn1 name=Manhattan repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false
 zn: id=zn2 name=JerseyCity repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false
 zn: id=zn3 name=Queens repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false

 sn=[sn1] zn:[id=zn1 name=Manhattan] node01:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 No performance info available
 sn=[sn2] zn:[id=zn1 name=Manhattan] node02:5000 capacity=1 RUNNING

Chapter 3
Configure data store - Advanced scenarios

3-32

 [rg2-rn1] RUNNING
 No performance info available
 sn=[sn3] zn:[id=zn2 name=JerseyCity] node03:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 No performance info available
 sn=[sn4] zn:[id=zn2 name=JerseyCity] node04:5000 capacity=1 RUNNING
 [rg2-rn2] RUNNING
 No performance info available
 sn=[sn5] zn:[id=zn3 name=Queens] node05:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 No performance info available
 sn=[sn6] zn:[id=zn3 name=Queens] node06:5000 capacity=1 RUNNING
 [rg2-rn3] RUNNING
 No performance info available

 numShards=2
 shard=[rg1] num partitions=50
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn3
 [rg1-rn3] sn=sn5
 shard=[rg2] num partitions=50
 [rg2-rn1] sn=sn2
 [rg2-rn2] sn=sn4
 [rg2-rn3] sn=sn6

• Verify that each shard has a replica in every zone:

kv-> verify configuration

Output:

Verify: starting verification of store MetroArea
based upon topology sequence #117
100 partitions and 6 storage nodes
Time: 2024-04-05 10:41:15 UTC Version: 24.1.11
See node01:
$KVROOT/MetroArea/log/MetroArea_{0..N}.log
for progress messages
Verify: Shard Status: healthy:2
writable-degraded:0 read-only:0 offline:0 total:2
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0
Verify: Zone [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0
maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0
maxDelayMillis:4 maxCatchupTimeSecs:0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:5000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:41:15 UTC

Chapter 3
Configure data store - Advanced scenarios

3-33

Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn1] Status: RUNNING,MASTER
sequenceNumber:1,261 haPort:5011 available storage size:31 GB
Verify: == checking storage node sn2 ==
Verify: Storage Node [sn2] on node02:5000
Zone: [name=Manhattan id=zn1 type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:41:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn1] Status: RUNNING,MASTER
sequenceNumber:1,236 haPort:5012 available storage size:31 GB
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:5000
Zone: [name=JerseyCity id=zn2 type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:41:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin2] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn2] Status: RUNNING,REPLICA
sequenceNumber:1,261 haPort:5011 available storage size:31 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04:5000
Zone: [name=JerseyCity id=zn2 type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:41:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn2] Status: RUNNING,REPLICA
sequenceNumber:1,236 haPort:5012 available storage size:31 GB
delayMillis:0 catchupTimeSecs:0
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05:5000
Zone: [name=Queens id=zn3 type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:41:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin3] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn3] Status: RUNNING,REPLICA
sequenceNumber:1,261 haPort:5011 available storage size:31 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06:5000
Zone: [name=Queens id=zn3 type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:41:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn3] Status: RUNNING,REPLICA
sequenceNumber:1,236 haPort:5012 available storage size:31 GB
delayMillis:4 catchupTimeSecs:0

Verification complete, no violations.

In the above example there are three zones (zn1 = Manhattan, zn2 = JerseyCity, zn3=Queens)
with six replication nodes (two masters and four replicas) in the data store. This means that
this topology is not only highly available because you have three replicas within each shard,

Chapter 3
Configure data store - Advanced scenarios

3-34

but it is also able to recover from a single zone failure. If any zone fails, the other two zones
are enough to elect the new master, so service continues without any interruption.

Adding Secondary Zone to the Existing Topology
This section shows how to add a secondary zone to an existing topology that was created in
Configuring with Multiple Zones . The following example adds a secondary zone in a different
geographical location, Europe, allowing the users to read the data from the secondary zone
either because it is physically located closer to the client or because the primary zone in the
New York metro area is unavailable due to a disaster. The steps involve creating and starting
two new Storage Nodes with capacity 1, creating a secondary zone, deploying the new
Storage Nodes in the secondary zone, and doing a redistribute of the topology so that a replica
for each shard is placed in the secondary zone.

Follow these steps in both the new Storage Nodes (node07 and node08).

1. Copy the security zipped files from the first node and unzip the files.

unzip -o security.zip -d /;

2. Invoke the makebootconfig utility for the first new Storage Node that will be deployed in
the Frankfurt zone. The security configuration will be enabled while invoking the
makebootconfig utility.

java -jar $KVHOME/lib/kvstore.jar makebootconfig \
-root $KVROOT \
-port 5000 \
-host $KVHOST \
-harange 5010,5020 \
-store-security enable \
-capacity 1 \
-storagedir ${KVDATA}/disk1 \
-storagedirsize 5500-MB

3. Start the Storage Node Agent.

java -jar $KVHOME/lib/kvstore.jar start -root $KVROOT &

To create a secondary zone and deploy the new Storage Nodes, do the following steps:

1. Start the Admin CLI. Here $KVHOST is node01.

java -Xmx64m -Xms64m \
-jar $KVHOME/lib/kvstore.jar runadmin \
-port 5000 -host $KVHOST
-security $KVROOT/security/client.security

2. Create a secondary zone in Frankfurt.

kv-> plan deploy-zone -name Frankfurt -rf 1 -type secondary -wait

Chapter 3
Configure data store - Advanced scenarios

3-35

Output:

Executed plan 14, waiting for completion...
Plan 14 ended successfully

3. Deploy Storage Node sn7 in the Frankfurt zone.

kv-> plan deploy-sn -znname Frankfurt -host node07 -port 5000 -wait

Output:

Executed plan 15, waiting for completion...
Plan 15 ended successfully

4. Deploy the Storage Node sn7 with administration process in the Frankfurt zone.

kv-> plan deploy-admin -sn sn7 -wait

Output:

Executed plan 16, waiting for completion...
Plan 16 ended successfully

5. Deploy Storage Node sn8 in the Frankfurt zone.

kv-> plan deploy-sn -znname Frankfurt -host node08 -port 5000 -wait

Output:

Executed plan 17, waiting for completion...
Plan 17 ended successfully

6. Do redistribute and then deploy the new topology to create one replica for every shard in
the secondary Frankfurt zone.

kv-> topology clone -current -name topo_secondary

Output:

Created topo_secondary

kv-> topology redistribute -name topo_secondary -pool AllStorageNodes

Output:

Redistributed: topo_secondary

kv-> topology preview -name topo_secondary

Chapter 3
Configure data store - Advanced scenarios

3-36

Output:

Topology transformation from current deployed topology to topo_secondary:
Create 2 RN shard rg1 1 new RN : rg1-rn4
 shard rg2 1 new RN : rg2-rn4

kv-> plan deploy-topology -name topo_secondary -wait

Output:

Executed plan 19, waiting for completion...
Plan 19 ended successfully

7. Follow the instructions mentioned in Create users and configure security with remote
access to copy user security files in the new Storage Nodes created.

8. Check service status with the show topology command.

kv-> show topology

Output:

store=MetroArea numPartitions=100 sequence=120
 zn: id=zn1 name=Manhattan repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false
 zn: id=zn2 name=JerseyCity repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false
 zn: id=zn3 name=Queens repFactor=1 type=PRIMARY
 allowArbiters=false masterAffinity=false
 zn: id=zn4 name=Frankfurt repFactor=1 type=SECONDARY
 allowArbiters=false masterAffinity=false

 sn=[sn1] zn:[id=zn1 name=Manhattan] node01:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 single-op avg latency=0.21372496 ms multi-op avg latency=0.0 ms
 sn=[sn2] zn:[id=zn1 name=Manhattan] node02:5000 capacity=1 RUNNING
 [rg2-rn1] RUNNING
 single-op avg latency=0.30840763 ms multi-op avg latency=0.0 ms
 sn=[sn3] zn:[id=zn2 name=JerseyCity] node03:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 No performance info available
 sn=[sn4] zn:[id=zn2 name=JerseyCity] node04:5000 capacity=1 RUNNING
 [rg2-rn2] RUNNING
 No performance info available
 sn=[sn5] zn:[id=zn3 name=Queens] node05:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 No performance info available
 sn=[sn6] zn:[id=zn3 name=Queens] node06:5000 capacity=1 RUNNING
 [rg2-rn3] RUNNING
 No performance info available
 sn=[sn7] zn:[id=zn4 name=Frankfurt] node07:5000 capacity=1 RUNNING
 [rg1-rn4] RUNNING
 No performance info available
 sn=[sn8] zn:[id=zn4 name=Frankfurt] node07:5000 capacity=1 RUNNING

Chapter 3
Configure data store - Advanced scenarios

3-37

 [rg2-rn4] RUNNING
 No performance info available

 numShards=2
 shard=[rg1] num partitions=50
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn3
 [rg1-rn3] sn=sn5
 [rg1-rn4] sn=sn7
 shard=[rg2] num partitions=50
 [rg2-rn1] sn=sn2
 [rg2-rn2] sn=sn4
 [rg2-rn3] sn=sn6
 [rg2-rn4] sn=sn8

9. Verify that the secondary zone has a replica for each shard.

kv-> verify configuration

Output:

Verify: starting verification of store MetroArea
based upon topology sequence #120
100 partitions and 7 storage nodes
Time: 2024-04-05 10:52:15 UTC Version: 24.1.11
See node01:
$KVROOT/Disk1/MetroArea/log/MetroArea_{0..N}.log
for progress messages
Verify: Shard Status: healthy:2
writable-degraded:0 read-only:0 offline:0 total:2
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0
Verify: Zone [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0
maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online:2 read-only:0 offline:0
maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=Frankfurt id=zn4 type=SECONDARY allowArbiters=false
masterAffinity=false] RN Status: online:1 read-only:0 offline:0
maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:5000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:52:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn1] Status: RUNNING,MASTER
sequenceNumber:1,261 haPort:5011 available storage size:31 GB
Verify: == checking storage node sn2 ==
Verify: Storage Node [sn2] on node02:5000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]

Chapter 3
Configure data store - Advanced scenarios

3-38

Status: RUNNING Ver: 24.1.11 2024-04-05 10:52:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn1] Status: RUNNING,MASTER
sequenceNumber:1,236 haPort:5012 available storage size:31 GB
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:5000
Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:52:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin2] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn2] Status: RUNNING,REPLICA
sequenceNumber:1,261 haPort:5011 available storage size:31 GB
delayMillis:0 catchupTimeSecs:0
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04:5000
Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:52:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn2] Status: RUNNING,REPLICA
sequenceNumber:1,236 haPort:5012 available storage size:31 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05:5000
Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:52:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin3] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn3] Status: RUNNING,REPLICA
sequenceNumber:1,261 haPort:5011 available storage size:31 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06:5000
Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:52:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn3] Status: RUNNING,REPLICA
sequenceNumber:1,236 haPort:5012 available storage size:31 GB
delayMillis:0 catchupTimeSecs:0
Verify: == checking storage node sn7 ==
Verify: Storage Node [sn7] on node07:5000
Zone: [name=Frankfurt id=zn4 type=SECONDARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 10:52:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Admin [admin4] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn4] Status: RUNNING,REPLICA
sequenceNumber:1,261 haPort:5011 available storage size:31 GB
delayMillis:1 catchupTimeSecs:0
Verify: == checking storage node sn8 ==
Verify: Storage Node [sn8] on node08:5000
Zone: [name=Frankfurt id=zn4 type=SECONDARY allowArbiters=false
masterAffinity=false]

Chapter 3
Configure data store - Advanced scenarios

3-39

Status: RUNNING Ver: 24.1.11 2024-04-05 10:52:15 UTC
Build id: c8998e4a8aa5 Edition: Enterprise
Verify: Rep Node [rg2-rn4] Status: RUNNING,REPLICA
sequenceNumber:1,238 haPort:5012 available storage size:31 GB
delayMillis:0 catchupTimeSecs:0

Verification complete, no violations.

Oracle NoSQL Database Proxy
Learn how to set up Oracle NoSQL Database Proxy in Oracle NoSQL Database.

Topics:

• About the Oracle NoSQL Database Proxy

• Configuring the Proxy

• Using the Proxy in a non-secure data store

• Using the Proxy in a secure data store

About the Oracle NoSQL Database Proxy
The Oracle NoSQL Database Proxy is a middle-tier component that lets the Oracle NoSQL
Database drivers communicate with the Oracle NoSQL Database data store. The Oracle
NoSQL Database drivers are available in various programming languages that are used in the
client application. Currently, Java, Python, Go, Node.js, C# and Spring Data language drivers
are supported.

The Oracle NoSQL Database Proxy is a server that accepts requests from Oracle NoSQL
Database drivers and processes them using the Oracle NoSQL Database. The Oracle NoSQL
Database drivers can be used to access either the Oracle NoSQL Database Cloud Service or
an on-premises installation via the Oracle NoSQL Database Proxy. Since the drivers and APIs
are identical, applications can be moved between these two options. However, an application
connecting simultaneously to both the on-premises and Oracle NoSQL Database Cloud
Service is not recommended.

For example, you can deploy a local Oracle NoSQL Database data store first for a prototype
project, and move forward to Oracle NoSQL Database Cloud Service for a production project.

Figure 3-1 Oracle NoSQL Database Proxy and Driver

Chapter 3
Oracle NoSQL Database Proxy

3-40

The JAR file for the Oracle NoSQL Database Proxy is included in the Enterprise Edition
distribution and the Community Edition distribution of Oracle NoSQL Database. Users can
download the JAR for the Oracle NoSQL Database Proxy from the Oracle Technology
Network.

Configuring the Proxy
You configure the Oracle NoSQL Database Proxy after deploying a data store.

Obtain the following information from the secure data store deployment:

• data store name. See ping.

• data store helper host:port list. See Obtaining a KVStore Handle in the Java Direct Driver
Developer's Guide.

Here is the general usage to start the proxy:

java -jar lib/httpproxy.jar [-async <default: false>] [-config <>] [-
helperHosts <>] [-hostname <>] [-httpPort <default: 80>] [-httpsPort
<default: 443>] [-idleReadTimeout <default: 0>] [-kvConsistency <default:
NONE_REQUIRED>] [-kvDurability <default: COMMIT_NO_SYNC>] [-kvRequestTimeout
<default: -1>] [-monitorStatsEnabled <default: false>] [-numAcceptThreads
<default: 3>] [-numRequestThreads <default: 32>] [-sslCertificate <>] [-
sslCiphers <>] [-sslPrivateKey <>] [-sslPrivateKeyPass <>] [-sslProtocols
<default: TLSv1.2,TLSv1.1,TLSv1>] [-sslSecurityDir <>] [-storeName <>] [-
storeSecurityFile <>] [-verbose <default: false>]

Proxy Parameters

You can provide the following parameters as the command line arguments to start the proxy.

Parameter Required ? Default Value Description

-async No false Defines whether or not the proxy uses
the asynchronous interfaces of the data
store. This option instructs the proxy to
use asynchronous requests, which can
reduce the number of processing
threads needed.

Chapter 3
Oracle NoSQL Database Proxy

3-41

Parameter Required ? Default Value Description

-config No No Default value Specifies a Java properties file that
contains the proxy configuration options.
Supply the options in the following
format:

property_name=value

For example:

async=true
storeName=mystore
helperHosts=node01:5000
httpPort=8080
monitorStatsEnabled=true

You can pass this configuration file as a
single parameter to the httpproxy.jar
command from the CLI.

Note:

Ensure
that you
include all
the options
marked as
Required
in this
table.

-idleReadTimeout No 30 Specifies the time duration (in seconds)
for the server to terminate the unused
connections.

Chapter 3
Oracle NoSQL Database Proxy

3-42

Parameter Required ? Default Value Description

-kvConsistency No NONE_REQUIRED Configures the default read consistency
used for this session. The Oracle NoSQL
Database Proxy uses this parameter if
the request does not specify a
consistency. The consistency values are
defined in the Consistency class of Java
APIs.

The read operations are serviced either
on a master or a replica node depending
on the configured value. The following
policies are supported:
• ABSOLUTE - The read operation is

serviced on a master node. With
ABSOLUTE consistency, you are
guaranteed to obtain the latest
updated data.

• NONE-REQUIRED - The read
operation can be serviced on a
replica node. Data read from the
replica can be older than data on
the master.

For more details on consistency, see
Consistency Guarantees.

-kvDurability No COMMIT_NO_SYN
C

Configures the default write durability
setting used in this session. The

kvDurability

parameter defines the durability policy to
be used by a master when committing a
transaction. The Oracle NoSQL
Database Proxy uses the
kvDurability parameter if the request
does not specify a durability.
• COMMIT_NO_SYNC - The data is

written to the host's in-memory
cache, but the master node does
not wait for the data to be written to
the file system's data buffers or
subsequent physical storage.

• COMMIT_SYNC - The data is
written to the in-memory cache,
transferred to the file system's data
buffers, and then synchronized to a
stable storage before the write
operation completes normally.

• COMMIT_WRITE_NO_SYNC - The
data is written to the in-memory
cache, and transferred to the file
system's data buffers, but not
necessarily into physical storage.

For more details on durability, see
Durability Guarantees.

Chapter 3
Oracle NoSQL Database Proxy

3-43

Parameter Required ? Default Value Description

-kvRequestTimeout No -1 Configures the default request timeout
used for this session (in milliseconds).

The Oracle NoSQL Database Proxy
adjusts this parameter on a specific
request depending on the timeout
specified in the request.

Default value of -1 configures a timeout
value of 5000.

-
monitorStatsEnable
d

No false Enables statistics collection in the proxy.
If enabled, the statistics are collected in
the log file proxy_metric.log.

-sslCiphers No No Default value Advanced configuration related to SSL.

-sslProtocols No TLSv1.2,TLSv1.1,T
LSv1

Advanced configuration related to SSL.

-sslSecurityDir No No Default value Advanced configuration related to SSL.

-helperHosts Required No Default value Specifies the host name and port pairs
that identify how to contact helper nodes
within the data store. Use an array of
strings to identify multiple helper hosts .
Typically, you will get these host name
and port pairs from the data store's
deployer or administrator.

Example pattern:

hostname1:port1,hostname2:por
t2,...hostnameX:portX

Confirm that the ports in helper host list
are left open by the firewall rules for
connection between the proxy and data
store server.

-storeName Required No Default value Specifies the name of the data store.
you can obtain this name from the data
store deployment process.

-hostname No localhost Specifies the host name of the machine
which is starting up the proxy instance.
By default, the proxy listens on all the
available network interfaces on the host.
Specifying a host name allows the proxy
to listen on a specific interface.

Chapter 3
Oracle NoSQL Database Proxy

3-44

Parameter Required ? Default Value Description

-httpPort No 80 Specifies the HTTP port of the proxy
machine, which the proxy uses to accept
non-secure connections from HTTP
requests. This parameter is mutually
exclusive with the -httpsPort
parameter. Only one of these
parameters can be specified.
Confirm that the port is left open by the
firewall rules for connection between the
proxy and the driver.

Note:

Using port
80 requires
root
privilege.
You can
use port
8080 if you
do not
have root
privilege.

-httpsPort No 443 Specifies the HTTPS port of the proxy
machine, which the proxy uses to accept
secure connections from HTTPS
requests. This parameter is mutually
exclusive with the -httpPort
parameter. Only one of these
parameters can be specified.
Confirm that the port is left open by the
firewall rules for connection between the
proxy and the driver.

Note:

Using port
443
requires
root
privilege.
You can
use port
8443 if you
do not
have root
privilege.

-
numAcceptThreads

No 3 This value determines the thread pool
size for the threads that are used to
handle the incoming connections to the
proxy.

Chapter 3
Oracle NoSQL Database Proxy

3-45

Parameter Required ? Default Value Description

-
numRequestThrea
ds

No 32 Determines the thread pool size for the
threads that are used to handle the
request input/output traffic, after the
connection has been registered by the
"AcceptThread" and handed over to the
"RequestThread".

-verbose No false Displays the proxy start-up information.
Can take either "true" or "false" as
values.

-sslCertificate Required for secure
proxy only.

No Default value Specifies the path to the SSL certificate
file in pem file format. You can either
generate a self-signed certificate using
OpenSSL, or send a request to a public
CA to generate a certificate. See
Generating Certificate and Private Key
for the Oracle NoSQL Database Proxy in
the Security Guide.

Note:

The path to
the SSL
certificate
file can be
an
absolute
path or a
path
relative to
the current
directory
(from
where the
proxy is
started).

Chapter 3
Oracle NoSQL Database Proxy

3-46

Parameter Required ? Default Value Description

-sslPrivateKey Required for secure
proxy only.

No Default value Specifies the path to the SSL private key
file. You can either generate a private
key using OpenSSL, or send a request
to a public CA to generate a private key.
See Generating Certificate and Private
Key for the Oracle NoSQL Database
Proxy in the Security Guide.

Note:

The path to
the SSL
private key
file can be
an
absolute
path or a
path
relative to
the current
directory
(from
where the
proxy is
started).

-sslPrivateKeyPass Required for secure
proxy only.

No Default value Specifies the password for the private
key, if the private key is encrypted. This
parameter is not required if the private
key is not encrypted.

Chapter 3
Oracle NoSQL Database Proxy

3-47

Parameter Required ? Default Value Description

-storeSecurityFile Required for secure
proxy only.

No Default value Specifies the path to the security log in
file which is generated by the client user
of the data store. The client user of the
data store should be a non-admin proxy
user.

Note:

Note: The
path to the
store
security file
can be an
absolute
path or a
path
relative to
the current
directory
(from
where the
proxy is
started).

Note:

The Oracle NoSQL Database Proxy can run in one or multiple dedicated hosts. It can
be hosted inside the nodes of the data store. You can use a load balancer as the
front end, which has a back end set of multiple NoSQL proxies on different hosts.
While configuring a load balancer, you can add an HTTP health check. The Oracle
NoSQL Database Proxy provides the following URI /V2/health for the HTTP health
check. An HTTP request to this URI returns a successful response 200 OK. You can
find an example for configuring HA proxy in the GitHub.

Using the Proxy in a non-secure data store
Starting up the Proxy

Use the following command to start up the proxy for a non-secure data store.

java -jar lib/httpproxy.jar \
-storeName <kvstore_name> \
-helperHosts <kvstore_helper_host> \
[-hostname <proxy_host>] \
[-httpPort <proxy_http_port>]

where,

• kvstore_name is the data store name obtained from the data store deployment. See ping.

Chapter 3
Oracle NoSQL Database Proxy

3-48

https://github.com/oracle/nosql-examples/tree/master/examples-nosql-cluster-deployment

• kvstore_helper_host is the data store's helper host:port list obtained from the data store
deployment. See Obtaining a KVStore Handle in the Java Direct Driver Developer's Guide.

• proxy_host is the hostname of the machine to host the proxy service. This parameter is
optional and defaults to localhost. You can also specify the complete hostname of the
machine running the proxy.

• proxy_http_port is the port on which the proxy is listening for requests. This is an optional
parameter and defaults to 80.

Note:

Using port 80 requires root privilege. You can use port 8080 if you do not have
root privilege.

Connecting an application to the non-secure data store

Oracle NoSQL Database drivers are available in various programming languages that are used
in the client application. Currently, Java, Python, Go, Node.js, C# are supported. Oracle
NoSQL Database Proxy is a server that accepts requests from the client application and
processes them using the Oracle NoSQL Database.

• Java

• Python

• Go

• Node.js

• C#

Java
The Oracle NoSQL Database Java Driver contains the jar files that enable a Java application
to communicate with the proxy.

Install the Java driver in the application's classpath and use the following code to connect to
the proxy.

String endpoint = "http://<proxy_host>:<proxy_http_port>";
StoreAccessTokenProvider atProvider = new StoreAccessTokenProvider();
NoSQLHandleConfig config = new NoSQLHandleConfig(endpoint);

Chapter 3
Oracle NoSQL Database Proxy

3-49

config.setAuthorizationProvider(atProvider);
NoSQLHandle handle = NoSQLHandleFactory.createNoSQLHandle(config);

where,

• proxy_host is the hostname of the machine running the proxy service. This should match
the host you configured earlier.

• proxy_http_port is the port on which the proxy is listening for requests. This should match
the http port you configured earlier.

Python
The on-premises configuration requires a running instance of the Oracle NoSQL database. In
addition a running proxy service is required.

If the data store is not secure, an empty instance of borneo.kv.StoreAccessTokenProvider is
used. For example:

from borneo import NoSQLHandle, NoSQLHandleConfig
from borneo.kv import StoreAccessTokenProvider
endpoint = 'http://<proxy_host>:<proxy_http_port>'
Create the AuthorizationProvider for a not secure store:
ap = StoreAccessTokenProvider()
create a configuration object
config = NoSQLHandleConfig(endpoint).set_authorization_provider(ap)
create a handle from the configuration object
handle = NoSQLHandle(config)

where,

• proxy_host is the hostname of the machine running the proxy service. This should match
the host you configured earlier.

• proxy_http_port is the port on which the proxy is listening for requests. This should match
the http port you configured earlier.

Go
The on-premises configuration requires a running instance of the Oracle NoSQL database. In
addition a running proxy service is required. In this case, the Endpoint config parameter should
point to the NoSQL proxy host and port location.

Use the following code to connect to the proxy.

...cfg:= nosqldb.Config{
 // EDIT: set desired endpoint for the Proxy server accordingly in your
environment.
 Endpoint: "http:<proxy_host>:<proxy_http_port>",
 Mode: "onprem",
}
client, err:=nosqldb.NewClient(cfg)
iferr!=nil {
 fmt.Printf("failed to create a NoSQL client: %v\n", err)
 return
}

Chapter 3
Oracle NoSQL Database Proxy

3-50

deferclient.Close()
// Perform database operations using client APIs.// ...

where,

• proxy_host is the hostname of the machine running the proxy service. This should match
the host you configured earlier.

• proxy_http_port is the port on which the proxy is listening for requests. This should match
the http port you configured earlier.

Node.js
Your application will connect and use a running NoSQL database via the proxy service.

In non-secure mode, the driver communicates with the proxy via the HTTP protocol. The only
information required is the communication endpoint. For on-premise NoSQL Database, the
endpoint specifies the url of the proxy, in the form http://proxy_host:proxy_http_port
Use the following code to connect to the proxy.

const NoSQLClient = require('oracle-nosqldb').NoSQLClient;
const ServiceType = require('oracle-nosqldb').ServiceType;
const client = new NoSQLClient({
 serviceType: ServiceType.KVSTORE,
 endpoint: '<proxy_host>:<proxy_http_port>'
});

where,

• proxy_host is the hostname of the machine running the proxy service. This should match
the host you configured earlier.

• proxy_http_port is the port on which the proxy is listening for requests. This should match
the http port you configured earlier.

You may also choose to store the same configuration in a file. Create file config.json with
following contents:

{
 "serviceType": "KVSTORE",
 "endpoint": "<proxy_host>:<proxy_http_port>",
}

Then you may use this file to create NoSQLClient instance:

const NoSQLClient = require('oracle-nosqldb').NoSQLClient;
const client = new NoSQLClient('</path/to/config.json>');

C#
Your application will connect and use a running NoSQL database via the proxy service.

In non-secure mode, the driver communicates with the proxy via the HTTP protocol. The only
information required is the communication endpoint. For on-premise NoSQL Database, the
endpoint specifies the url of the proxy, in the form http://proxy_host:proxy_http_port

Chapter 3
Oracle NoSQL Database Proxy

3-51

To connect to the proxy in non-secure mode, you need to specify communication endpoint and
the service type as ServiceType.KVStore. You can provide an instance of NoSQLConfig either
directly or in a JSON configuration file.

var client = new NoSQLClient(
 new NoSQLConfig
 {
 ServiceType = ServiceType.KVStore,
 Endpoint = "<proxy_host>:<proxy_http_port>"
 });

where,

• proxy_host is the hostname of the machine running the proxy service. This should match
the host you configured earlier.

• proxy_http_port is the port on which the proxy is listening for requests. This should match
the http port you configured earlier.

You may also choose to provide the same configuration in JSON configuration file. Create file
config.json with following contents:

{
 "ServiceType": "KVStore",
 "Endpoint": "<proxy_host>:<proxy_http_port>"
}

Then you may use this file to create NoSQLClient instance:

var client = new NoSQLClient("</path/to/config.json>");

Using the Proxy in a secure data store
Starting up the Proxy

Configuring and starting the Oracle NoSQL Database Proxy is part of the data store
administration. The proxy can be started on a secure data store using the following steps.

1. Before you start up the proxy, you need to create a user (proxy_user) as the proxy needs
an identity to connect to the secure data store. This proxy user identity (proxy_user) is
never used for actual data operations. It is only needed for the initial connection to the
store.
In SQL shell, the following command will create a bootstrap user for the proxy. See
Developers Guide for getting started with SQL commands.

Create the proxy_user as shown below:

sql-> CREATE USER proxy_user IDENTIFIED BY "<proxyuser_password>"

Chapter 3
Oracle NoSQL Database Proxy

3-52

2. Create a new password file to store the credentials needed to login as the database user
(proxy_user).

java -Xmx64m -Xms64m -jar lib/kvstore.jar securityconfig pwdfile \
create -file $KVROOT/security/login.passwd

java -Xmx64m -Xms64m -jar lib/kvstore.jar securityconfig pwdfile \
secret -file $KVROOT/security/login.passwd -set -alias proxy_user

Note:

The secret value to store (that you enter in the above step) must match the value
of <proxyuser_password> that you have set in the previous step.

3. Create a login file proxy.login for the bootstrap user with the following information in it.

oracle.kv.auth.username=<proxy_user>
oracle.kv.auth.pwdfile.file=login.passwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=client.trust

where,

• login.passwd is the file to store the password value of the proxy_user user.

• client.trust is the certificate trust file obtained from the data store deployment.

4. Self-signed certificates can be used to securely connect to the Oracle NoSQL Database
Proxy. Use the openSSL command to generate the self-signed certificate and private key.
When prompted, provide a secure passphrase of your choice for the certificate file.

openssl req -x509 -days 365 -newkey rsa:4096 -keyout key.pem -out
certificate.pem \
-subj "/C=US/ST=CA/L=San/CN=${HOSTNAME}/emailAddress=xxxx.xxxx@oracle.com"

Convert the private key to PKCS#8 format. When prompted, first enter the passphrase that
you set in the previous step and then provide a secure password of your choice for the
encryption. You will use the encryption password that you set here in the step below while
starting the proxy.

openssl pkcs8 -topk8 -inform PEM -outform PEM -in key.pem \
-out key-pkcs8.pem -v1 PBE-SHA1-3DES

Additionally, a driver.trust file is also required if you are using the Java driver. This
driver.trust file is not required for other language drivers. To generate the driver.trust
file, import the certificate to the Java keystore. When prompted, provide the keystore
password.

keytool -import -alias example -keystore driver.trust -file certificate.pem

Chapter 3
Oracle NoSQL Database Proxy

3-53

5. Use the following command to start up the proxy for a secure data store:

java -jar lib/httpproxy.jar \
-storeName <kvstore_name> \
-helperHosts <kvstore_helper_host> \
[-hostname <proxy_host>] \
[-httpsPort <proxy_https_port>] \
-storeSecurityFile $KVROOT/security/proxy.login \
-sslCertificate certificate.pem \
-sslPrivateKey key-pkcs8.pem \
-sslPrivateKeyPass <privatekey_password> \
[-verbose true]

where,

• kvstore_name is the data store name obtained from the data store deployment. See
ping to obtain information about the runtime entities (Storage Nodes and Replication
Nodes) of the data store..

• kvstore_helper_host is the data store's helper host:port list obtained from the data
store deployment. See Obtaining a KVStore Handle in the Java Direct Driver
Developer's Guide.

• proxy_host is the hostname of the machine running the proxy service. This parameter
is optional and defaults to localhost. You can also specify the complete hostname of
the machine running the proxy.

• proxy_https_port is the port on which the proxy is listening for requests. This is an
optional parameter and defaults to 443.

Note:

Using port 443 requires root privilege. You can use port 8443 if you do not
have root privilege.

• proxy.login is the security login file generated in the earlier step for accessing the
secure kvstore.

• certificate.pem is the certificate file generated in the previous step.

• key-pkcs8.pem is the private key file generated in the previous step.

• privatekey_password is the password for the encrypted key-pkcs8.pem file.

Note:

The proxy start-up only accepts private key file in PKCS#8 format. If your private
key is already in PKCS#8 (start with -----BEGIN ENCRYPTED PRIVATE KEY-----
or -----BEGIN PRIVATE KEY-----), you don't need any additional conversion.
Otherwise, you can use OpenSSL to do the conversion.

Connecting an application to the secure data store

Chapter 3
Oracle NoSQL Database Proxy

3-54

Oracle NoSQL Database drivers are available in various programming languages that are used
in the client application. Currently, Java, Python, Go, Node.js, C# are supported. Oracle
NoSQL Database Proxy is a server that accepts requests from the client application and
processes them using the Oracle NoSQL Database.

Authentication:

Within a secure Oracle NoSQL Database, access to the database is limited to authenticated
users. You need to create a user for your application (appln_user) and pass the credentials of
this user while connecting to your data store through the proxy from your drivers. The user will
be authenticated using the credentials supplied(username/password) in the data store.

In the driver configuration, the application user name and password are provided. When the
handle is created from the secure configuration the driver will send a login request to the proxy.
The proxy uses this identity (appln_user/applnuser_password) to log into the data store,
authenticating the user. This user identity (appln_user) must already exist in the store.

Create the user (appln_user) as shown below for your application to access the secure data
store.

sql-> CREATE USER <appln_user> IDENTIFIED BY "<applnuser_password>"

Authorization:

Oracle NoSQL Database provides role-based authorization which enables the user to assign
kvstore roles to user accounts to define accessible data and allow database administrative
operations for each user account. Users can acquire desired privileges by role-granting. Your
application should be given a role based on the least privilege access, carefully balancing the
needs of the application with security concerns. See Configuring privileges and roles for more
details.

After successful authentication of the application user, every driver request from the handle
created sends the identity (appln_user) which is used by the proxy and data store to authorize
any data operations such as table creation, put, get, query, etc. The data store is the entity that
does the authorization. The authorization is based on the identity and operation, and the data
store uses the roles assigned to the appln_user to make authorization decisions.

Any request from the driver to the data store goes through the following steps:

• The driver sends the request to the proxy and the request contains the authenticated
identity.

• The proxy uses the authenticated identity to send the request to the data store.

• The data store validates the identity and authorizes the identity for the desired operation
(put, get, query, etc) using the privileges set in the data store for that identity.

Chapter 3
Oracle NoSQL Database Proxy

3-55

• Java

• Python

• Go

• Node.js

• C#

Java
The Oracle NoSQL Database Java Driver contains the jar files that enable an application to
communicate with the Oracle NoSQL Database Proxy. You can connect to the proxy using the
following steps.

1. Create an application user (appln_user) to access the data store through the secure proxy
as shown in the above section.

2. For secure access, create an instance of the StoreAccessTokenProvider class with the
parameterized constructor. Provide the reference of StoreAccessTokenProvider class to
the NoSQLHandleConfig class to establish the appropriate connection. Install the Oracle
NoSQL Database Java Driver in the application's classpath and use the following code to
connect to the data store.

String endpoint = "https://<proxy_host>:<proxy_https_port>";
StoreAccessTokenProvider atProvider =
 new
StoreAccessTokenProvider("<appln_user>","<applnuser_password>".toCharArray(
));
NoSQLHandleConfig config = new NoSQLHandleConfig(endpoint);
config.setAuthorizationProvider(atProvider);
NoSQLHandle handle = NoSQLHandleFactory.createNoSQLHandle(config);

where,

• proxy_host is the hostname of the machine running the proxy service. This should
match the proxy host you configured earlier.

• proxy_https_port is the port on which the proxy is listening for requests. This should
match the proxy https port configured earlier.

• appln_user is the user created to connect to the secure store. This should match the
user created in the above section.

• applnuser_password is the password of the appln_user.

3. You can specify the details of the trust store containing the SSL certificate for the proxy in
one of the following two ways.
You can set it as part of your Java code as shown below:

/* the trust store containing SSL cert for the proxy */
System.setProperty("javax.net.ssl.trustStore", trustStore);
if (trustStorePassword != null) {

System.setProperty("javax.net.ssl.trustStorePassword",trustStorePassword);
}

Chapter 3
Oracle NoSQL Database Proxy

3-56

Alternatively, you can start-up the application program and set the driver.trust file's path
to the Java trust store by using the following command. This is required as the proxy is
already set up using the certificate.pem and key-pkcs8.pem files.

java -Djavax.net.ssl.trustStore=driver.trust \
-Djavax.net.ssl.trustStorePassword=<password of driver.trust> \
-cp .:lib/nosqldriver.jar application_program

The driver.trust contains the certificate.pem or rootCA.crt certificate. If the
certificate certificate.pem is in a chain signed by a trusted CA that is listed in
JAVA_HOME/jre/lib/security/cacerts, then you don't need to append Java environment
parameter -Djavax.net.ssl.trustStore in the Java command.

Python
The Oracle NoSQL Database Python driver contains the files that enable an application to
communicate with the Oracle NoSQL Database Proxy. You can connect to a secure data store
using the following steps.

1. Create an application user (appln_user) to access the data store through the secure proxy
as shown in the above section.

2. If running a secure store, a certificate path should be specified through the
REQUESTS_CA_BUNDLE environment variable:

$ export REQUESTS_CA_BUNDLE=
<fully_qualified_path_to_certificate>/certificate.pem:$REQUESTS_CA_BUNDLE

or borneo.NoSQLHandleConfig.set_ssl_ca_certs().

3. Use the following code to connect to the proxy.

from borneo import NoSQLHandle, NoSQLHandleConfig
from borneo.kv import StoreAccessTokenProvider
endpoint = 'https://<proxy_host>:<proxy_https_port>'
Create the AuthorizationProvider for a secure store:
ap = StoreAccessTokenProvider('<appln_user>','<applnuser_password>')
create a configuration object
config = NoSQLHandleConfig(endpoint).set_authorization_provider(ap)
set the certificate path if running a secure store
config.set_ssl_ca_certs(<ca_certs>)
create a handle from the configuration object
handle = NoSQLHandle(config)

where,

• proxy_host is the hostname of the machine running the proxy service. This should
match the proxy host you configured earlier.

• proxy_https_port is the port on which the proxy is listening for requests. This should
match the proxy https port configured earlier.

• appln_user is the user created to connect to the secure store. This should match the
user created in the above section.

• applnuser_password is the password of the appln_user.

Chapter 3
Oracle NoSQL Database Proxy

3-57

Go
The Oracle NoSQL Database Go driver contains the files that enable an application to
communicate with the Oracle NoSQL Database Proxy. You can connect to a secure data store
using the following steps.

1. Create an application user (appln_user) to access the data store through the secure proxy
as shown in the above section.

2. Use the following code to connect to the proxy. To connect an application to a secure
NoSQL database, you need to provide user credentials used to authenticate with the
server. If the Proxy server is configured with a self-signed certificate or a certificate that is
not trusted by the default system CA, you also need to specifiy CertPath and ServerName
for the certificate path and server name used to verify server's certificate.

import (
 "fmt"
 "github.com/oracle/nosql-go-sdk/nosqldb"
 "github.com/oracle/nosql-go-sdk/nosqldb/httputil"
)
...cfg:= nosqldb.Config{
 Endpoint: "https://<proxy_host>:<proxy_https_port>",
 Mode: "onprem",
 Username: "<appln_user>",
 Password: "<applnuser_password>>",
 },
 // Specify the CertPath and ServerName
 // ServerName is used to verify the hostname for self-signed
certificates.
 // This field is set to the "CN" subject value from the certificate
specified by CertPath.
 HTTPConfig: httputil.HTTPConfig{
 CertPath: "<fully_qualified_path_to_cert>",
 ServerName: "<server_name>",
 },
}
client, err:=nosqldb.NewClient(cfg)
iferr!=nil {
 fmt.Printf("failed to create a NoSQL client: %v\n", err)
 return
}
deferclient.Close()
// Perform database operations using client APIs.
// ...

where,

• proxy_host is the hostname of the machine running the proxy service. This should
match the proxy host you configured earlier.

• proxy_https_port is the port on which the proxy is listening for requests. This should
match the proxy https port configured earlier.

• appln_user is the user created to connect to the secure store. This should match the
user created in the above section.

• applnuser_password is the password of the appln_user.

Chapter 3
Oracle NoSQL Database Proxy

3-58

Node.js
The Oracle NoSQL Database Node.js driver contains the files that enable an application to
communicate with the Oracle NoSQL Database Proxy. You can connect to a secure data store
using the following steps.

1. Create an application user (appln_user) to access the data store through the secure proxy
as shown in the above section.

2. In secure mode the proxy requires the SSL Certificate and Private key. The proxy
certificate was created when configuring the proxy as explained here. If the root certificate
authority (CA) for your proxy certificate is not one of the trusted root CAs , the driver needs
the certificate chain file (e.g. certificates.pem) or a root CA certificate file (e.g. rootCA.crt)
in order to connect to the proxy. If you are using self-signed certificate instead, the driver
will need the certificate file (e.g. certificate.pem) for the self-signed certificate in order to
connect.
To provide the certificate or certificate chain to the driver, you have two options , either
specifying in the code or setting as environment variables.

You can specify the certificates through httpOpt property while creating the NoSQL
handle. Inside httpOpt you can use ca property to specify the CA as shown below.

const client = new NoSQLClient({,
 httpOpt: {
 ca: fs.readFileSync(<caCertFile>)
 },.....
});

Note:

If a file path is supplied, the path can be absolute or relative to the current
working directory of the application.

Alternatively, before running your application, set the environment variable
NODE_EXTRA_CA_CERTS as shown below.

export NODE_EXTRA_CA_CERTS="<fully_qualified_path_to_driver.trust>"

where driver.trust is either a certificate chain file (certificates.pem) for your CA, your root
CA's certificate (rootCA.crt) or a self-signed certificate (certificate.pem).

3. To connect to the proxy in secure mode, in addition to communication endpoint, you need
to specify user name and password of the driver user. This information is passed in
Config#auth object under kvstore property and can be specified in one of 3 ways as
described below.
You may choose to specify user name and password directly:

const NoSQLClient = require('oracle-nosqldb').NoSQLClient;
const client = new NoSQLClient({
 endpoint: 'https://<proxy_host>:<proxy_https_port>',
 auth: {
 kvstore: {
 user: '<appln_user>',
 password: '<applnuser_password>'
 }

Chapter 3
Oracle NoSQL Database Proxy

3-59

https://docs.oracle.com/en/java/javase/21/security/transport-layer-security-tls-protocol-overview.html#JSSEC-GUID-2EEF5310-2407-45E2-A3A5-81532D247CD1

 }
});

where,

• proxy_host is the hostname of the machine running the proxy service. This should
match the proxy host you configured earlier.

• proxy_https_port is the port on which the proxy is listening for requests. This should
match the proxy https port configured earlier.

• appln_user is the user created to connect to the secure store. This should match the
user created in the above section.

• applnuser_password is the password of the appln_user.

This option is less secure because the password is stored in plain text in memory.

You may choose to store credentials in a separate file which is protected by file system
permissions, thus making it more secure than previous option, because the credentials will
not be stored in memory, but will be accessed from this file only when login is needed.
Credentials file should have the following format:

{
 "user": "<appln_user>",
 "password": "<applnuser_password>"
}

Then you may reference this credentials file as following:

const NoSQLClient = require('oracle-nosqldb').NoSQLClient;
const client = new NoSQLClient({
 endpoint: 'https://<proxy_host>:<proxy_https_port>',
 auth: {
 kvstore: {
 credentials: '<path/to/credentials.json>'
 }
 }
});

You may also reference credentials.json in the configuration file that is used to create
NoSQLClient instance.

Contents of config.json

{
 "endpoint": "https://<proxy_host>:<proxy_https_port>",
 "auth": {
 "kvstore": {
 "credentials": "<path/to/credentials.json>"
 }
 }
}

const NoSQLClient = require('oracle-nosqldb').NoSQLClient;
const client = new NoSQLClient('</path/to/config.json>');

Chapter 3
Oracle NoSQL Database Proxy

3-60

Note:

If a file path is supplied, the path can be absolute or relative to the current
working directory of the application.

C#
The Oracle NoSQL Database Dotnet driver contains the files that enable an application to
communicate with the Oracle NoSQL Database Proxy. You can connect to a secure data store
using the following steps.

1. Create an application user (appln_user) to access the data store through the secure proxy
as shown in the above section.

2. To connect to the proxy in secure mode, in addition to communication endpoint, you need
to specify the details of the user connecting to the secure data store. This information is
passed in the instance of KVStoreAuthorizationProvider and can be specified in any of
the ways as described below.
You may choose to specify user name and password directly:

var client = new NoSQLClient(
 new NoSQLConfig
 {
 Endpoint = "https://<proxy_host>:<proxy_https_port>",
 AuthorizationProvider = new KVStoreAuthorizationProvider(
 <appln_user, // user name as string
 <applnuser_password>) // password as char[]
 });

where,

• proxy_host is the hostname of the machine running the proxy service. This should
match the proxy host you configured earlier.

• proxy_https_port is the port on which the proxy is listening for requests. This should
match the proxy https port configured earlier.

• appln_user is the user created to connect to the secure store. This should match the
user created in the above section.

• applnuser_password is the password of the appln_user.

This option is less secure because the password is stored in plain text in memory for the
lifetime of NoSQLClient instance. Note that the password is specified as char[] which
allows you to erase it after you are finished using NoSQLClient.

You may choose to store credentials in a separate file which is protected by file system
permissions, thus making it more secure than the previous option, because the credentials
will not be stored in memory, but will be accessed from this file only when the login to the
store is required. Credentials file should have the following format:

{
 "UserName": "<appln_user>",
 "Password": "<applnuser_password>"
}

Then you may use this credentials file as following:

Chapter 3
Oracle NoSQL Database Proxy

3-61

Contents of config.json

var client = new NoSQLClient(
 new NoSQLConfig
 {
 Endpoint: 'https://<proxy_host>:<proxy_https_port>',
 AuthorizationProvider = new KVStoreAuthorizationProvider(
 "<path/to/credentials.json>")
 });

You may also reference credentials.json in the JSON configuration file that is used to
create NoSQLClient instance:

Contents of config.json

{
 "Endpoint": "https://<proxy_host>:<proxy_https_port>",
 "AuthorizationProvider": {
 "AuthorizationType": "KVStore",
 "CredentialsFile": "<path/to/credentials.json>"
 }
}

var client = new NoSQLClient("</path/to/config.json>");

Note:

If a file path is supplied, the path can be absolute or relative to the current
working directory of the application.

Note that in config.json the authorization provider is represented as a JSON object with
the properties for KVStoreAuthorizationProvider and an additional AuthorizationType
property indicating the type of the authorization provider, which is KVStore for the secure
on-premises store.

You need to provide the trusted root certificate to the driver if the certificate chain for your
proxy certificate is not rooted in one of the well known CAs. The provided certificate may
be either your custom CA or self-signed proxy certificate. It must be specified using
TrustedRootCertificateFile property, which sets a file path (absolute or relative to the
current working directory) to a PEM file containing one or more trusted root certificates
(multiple roots are allowed in this file). This property is specified as part of
ConnectionOptions in NoSQLConfig.

var client = new NoSQLClient(
new NoSQLConfig {
 Endpoint: 'https://<proxy_host>:<proxy_https_port>',
 AuthorizationProvider = new KVStoreAuthorizationProvider("<path/to/
credentials.json>"),
 ConnectionOptions: { "TrustedRootCertificateFile": "<path/to/
certificates.pem>" }
});

Chapter 3
Oracle NoSQL Database Proxy

3-62

https://docs.oracle.com/en/java/javase/21/security/transport-layer-security-tls-protocol-overview.html#JSSEC-GUID-2EEF5310-2407-45E2-A3A5-81532D247CD1
https://oracle.github.io/nosql-dotnet-sdk/api/Oracle.NoSQL.SDK.ConnectionOptions.TrustedRootCertificateFile.html#Oracle_NoSQL_SDK_ConnectionOptions_TrustedRootCertificateFile
https://oracle.github.io/nosql-dotnet-sdk/api/Oracle.NoSQL.SDK.NoSQLConfig.ConnectionOptions.html#Oracle_NoSQL_SDK_NoSQLConfig_ConnectionOptions
https://oracle.github.io/nosql-dotnet-sdk/api/Oracle.NoSQL.SDK.NoSQLConfig.html

Configuring Multi-Region Data Stores
Oracle NoSQL Database supports Multi-Region Architecture in which you can create tables in
multiple data stores, and still maintain consistent data across these clusters. Each data store in
a Multi-Region Oracle NoSQL Database setup is called a Region. A Multi-Region Table or MR
Table is a global logical table that is stored and maintained in different regions. MR Tables
maintain consistent data in all the regions. That is, any updates made to an MR Table in one
region automatically applies to the corresponding MR Table in all the other participating
regions. To learn more about Oracle NoSQL Database Multi-Region Architecture and MR
Tables, see Multi-Region Architecture in the Concepts Guide.

Replication in a Multi-Region Table:

All writes to the table, including insert, update, and delete would be replicated. All DDL
operations (Create Table, Alter Table and Drop Table, Create Index, Alter Index and Drop
Index) and operations that change the table metadata like TTL, will not be replicated. For
example, the following actions will not be replicated.

• Index creation in one region

• Altering the definition of an existing index from one region

• Dropping the index from one region

• Changing the schema definition in one region

• Changing the Table's default Table Time to Live (TTL) in one region

You can configure a Multi-Region Oracle NoSQL Database, and create and manipulate the MR
Tables using the Oracle NoSQL Database command-line interface (CLI).The remainder of this
chapter is organized into four use cases to demonstrate the different features of the Multi-
Region Oracle NoSQL Database and MR Tables. The examples provided show you which
commands to use and how. For a complete list of all the commands available in the CLI, see
Admin CLI Reference.

Child MR Tables:

You can create child tables in the Multi-Region architecture. That means an existing Multi-
Region table can have child tables. You can add a child table to a top-level table that is already
a Multi-Region table, and the child table will be automatically Multi-Region enabled . That is an
entire table hierarchy is Multi-Region or none of it is. You can drop a child from a top-level
table, and the child table will be removed from the hierarchy. The child table will also be
removed from the MR Table graph such that it no longer participates in cross region replication.

Use Cases

• Use Case 1: Set up Multi-Region Environment

• Use Case 2: Expand a Multi-Region Table

• Use Case 3: Contract a Multi-Region Table

• Use Case 4: Drop a Region

Use Case 1: Set up Multi-Region Environment
An organization deploys two on-premise data stores, one each at Frankfurt and London. As
per their requirement, they create a few MR Tables in both the regions. The Users table is one
of the many MR Tables created and maintained by this organization. In the next few topics, let

Chapter 3
Configuring Multi-Region Data Stores

3-63

us discuss how to set up the Frankfurt and London regions and how to create and work with an
MR Table called Users in these two regions.

To configure a Multi-Region NoSQL Database, you need to execute the below listed tasks in
each region. For the use case under discussion, you must execute all the below listed steps in
both the participating regions, Frankfurt and London.

1. Deploy the data store

2. Set Local Region Name

3. Configure XRegion Service

4. Start XRegion Service

5. Create Remote Regions

6. Create Multi-Region Tables

7. Access and Manipulate Multi-Region Tables

Deploy the data store
In each region in the Multi-Region NoSQL Database setup, you must deploy its own data store
independently.

Steps:

To deploy the data store:

1. Follow the instructions given in Configuring your data store installation.

2. After deploying the data store of your desired topology, you can check the health of the
data store by executing the ping command from the command line interface.

[~]$ java -jar $KVHOME/lib/kvstore.jar ping -port <port number> -host
<host name>

3. You can also verify the topology of the data store by executing the show topology
command from the kv prompt. See show topology.

kv-> show topology

Example:

For the use case under discussion, you must set up data stores for the two regions proposed.

Connect to the data stores deployed at host1, host2, and host3 from the kv
prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host1:5000,host2:5000,host3:5000

View the topology of the data store
kv-> show topology
store=mrtstore numPartitions=1000 sequence=1008
 zn: id=zn1 name=zn1 repFactor=3 type=PRIMARY allowArbiters=false
masterAffinity=false

 sn=[sn1] zn:[id=zn1 name=zn1] host1:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING

Chapter 3
Configuring Multi-Region Data Stores

3-64

 single-op avg latency=0.8630216 ms multi-op avg
latency=1.7694647 ms
 sn=[sn2] zn:[id=zn1 name=zn1] host2:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=2.0211697 ms
 sn=[sn3] zn:[id=zn1 name=zn1] host3:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=1.8524266 ms

 numShards=1
 shard=[rg1] num partitions=1000
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn2
 [rg1-rn3] sn=sn3

Connect to the data store deployed at host4, host5, and host6 from the kv
prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host4:5000,host5:5000,host6:5000

View the topology of the data store
kv-> show topology
store=mrtstore numPartitions=1000 sequence=1008
 zn: id=zn1 name=zn1 repFactor=3 type=PRIMARY allowArbiters=false
masterAffinity=false

 sn=[sn1] zn:[id=zn1 name=zn1] host4:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 single-op avg latency=0.7519707 ms multi-op avg
latency=2.000658 ms
 sn=[sn2] zn:[id=zn1 name=zn1] host5:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=3.2067895 ms
 sn=[sn3] zn:[id=zn1 name=zn1] host6:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=1.9516457 ms

 numShards=1
 shard=[rg1] num partitions=1000
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn2
 [rg1-rn3] sn=sn3

Set Local Region Name
Learn how to set a name to the local region in a Multi-Region NoSQL Database.

After deploying the data store and before creating the first MR Table in each participating
region, you must set a local region name. You can change the local region name as long as no
MR Tables are created in that region. After creating the first MR Table, the local region name
becomes immutable.

Steps:

To set the local region name:

Chapter 3
Configuring Multi-Region Data Stores

3-65

1. Connect to the sql prompt from the local region, and connect to the local data store.

2. Execute the following command from the sql prompt.

sql-> SET LOCAL REGION <local region name>;

3. Optionally, you can execute the following command to verify that the local region name is
set successfully.

sql-> SHOW REGIONS;

Example:

Set the local region name for the two proposed regions, Frankfurt and London.

Connect to the data store deployed at host1, host2, and host3 from the SQL
shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

-- Set the local region name to 'fra'
sql-> SET LOCAL REGION fra;
Statement completed successfully

-- List the regions
sql-> SHOW REGIONS;
regions
 fra (local, active)

Connect to the data store deployed at host4, host5, and host6 from the SQL
shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

-- Set the local region name to 'lnd'
sql-> SET LOCAL REGION lnd;
Statement completed successfully

-- List the regions
sql-> SHOW REGIONS;
regions
 lnd (local, active)

Configure XRegion Service
Learn how to configure the XRegion Service in a Multi-Region Oracle NoSQL Database

Before creating any MR Table, you must deploy an XRegion Service. In simple terms, this is
also called an agent. The XRegion Service runs independently with the local data store and it
is recommended to deploy it close to the local data store. To know more about agent and agent
groups, see Cross-Region Service in the Concepts Guide.

Chapter 3
Configuring Multi-Region Data Stores

3-66

You can achieve horizontal scalability by dividing the shards across multiple XRegion Service
agents based on the CPU and memory of the host node of the agent and the latency and
throughput requirements of the application. The mapping of data store shards to XRegion
Service agents is determined in a round-robin manner in order to balance the load of agents.

Note:

Each XRegion Service agent will map to at least one shard. If users configure more
agents than the number of shards, the XRegion Service agent would not be able to
start.

Each XRegion Service group consists of a group of independent XRegion Service agents, and
each agent in the group is running on a host node and is responsible to handle one or more
shards of the data store. The agents in XRegion Service Group are completely independent of
each other, that is, each agent does not talk directly to any other agent in the group. Any agent
can be shut down and restarted without impacting other agents. It is recommended that you
add XRegion Service agents on individual hosts that do not contain any Storage Node
configured.

Steps:

To configure the XRegion Service, execute the following tasks in each region:

1. Create a home directory for the XRegion Service.

2. Create a JSON config file in the home directory created in the step 1. The structure of the
json.config file is shown below.

{
 "path" : "<entire path to the home directory for the XRegion Service>",
 "agentGroupSize" : <number of service agents>,
 "agentId" : <agent id using 0-based numbering>,
 "region" : "<local region name>",
 "store" : "<local store name>",
 "helpers" : [
 "<host1>:<port>",
 "<host2>:<port>",
 …
 "<hostn>:<port>"
],
 "security" : "<entire path to the security file of the local store>",
 "regions" : [
 {
 "name" : "<remote region name>",
 "store" : "<remote store name>",
 "security" : "<entire path to the security file of the remote
store>",
 "helpers" : [
 "<host1>:<port>",
 "<host2>:<port>",
 …
 "<hostn>:<port>
]
 },
 {

Chapter 3
Configuring Multi-Region Data Stores

3-67

 "name" : "<remote region name>",
 "store" : "<remote store name>",
 "security" : "<entire path to the security file of the remote
store>",
 "helpers" : [
 "<host1>:<port>",
 "<host2>:<port>",
 …
 "<hostn>:<port>
]
 },
 ...
]
 "durability" : "<durability setting>"
}

Where each attribute in the json.config file is explained below:

path This is the root directory of the XRegion
Service. The agents use this directory to
dump logs, statistics and other auxiliary
files. The directory shall be readable and
writable to the agents.

agentGroupSize and agentId Specifies the number of service agents and
the Agent ID in the agent group. The Agent
ID is specified as numbers starting from 0.
These details are used to form a group of
agents that serve the local region. Forming
a group of agents achieves horizontal
scalability.

security Specifies the security file used by the agent.
This attribute must be defined for the local
store as well as the remote stores.

region Specifies the local region name defined for
the region where you are configuring the
agent.

store Specifies the name of the store in the local
region.

helpers Specifies the list of host and port numbers
used for configuring the local store. These
helper hosts are those you used to create a
KV client. For XRegion Service to connect to
the local and remote regions, each region's
firewall must be configured to open the
registry port and HA ports.

regions After defining the local region, you must
define a list of remote regions. At least one
remote region shall be defined in order to
create an MR Table.

Chapter 3
Configuring Multi-Region Data Stores

3-68

Specifies the region name, store name, and
helper hosts for each remote region you
want to include.

Note:

The remote region names listed
here must be same as the local
region names defined for them.

durability This is an optional parameter. It specifies
the durability setting for Master commit
synchronization. The possible values are:

• COMMIT_NO_SYNC
• COMMIT_SYNC
• COMMIT_WRITE_NO_SYNC
The default durability setting is
COMMIT_NO_SYNC.

3. Grant the following privileges to the XRegion Service Agent:

• CREATE_ANY_TABLE

• Write permission to system table

• Read and Write permission to all the user tables

• DELETE_ANY_TABLE

Note:

Inserting data into a Multi-Region table (using a put operation) requires both
INSERT and DELETE privileges.

— create role for the agent --
CREATE ROLE <Agent Role>

— grant privileges to the role --
GRANT CREATE_ANY_TABLE to <Agent Role>
GRANT WRITE_SYSTEM_TABLE to <Agent Role>
GRANT READ_ANY_TABLE to <Agent Role>
GRANT INSERT_ANY_TABLE to <Agent Role>
GRANT DELETE_ANY_TABLE to <Agent Role>

— grant role to the agent user --
GRANT <Agent Role> to user <Agent User>

Chapter 3
Configuring Multi-Region Data Stores

3-69

Note:

This step is required only for secure data stores. In a non-secure data store
setup, this step can be skipped.

Adding additional XRegion Service Agents

You can achieve horizontal scalability by adding more XRegion Service agents in a group.

To add horizontal scalability to your agents, do the following:

• Identify a host node for the agent. It is recommended that the agent will be the only
process running on that node.

• Download the Oracle NoSQL Database bundle in the host node identified above and
extract the contents of the Oracle NoSQL Database package (kv-M.N.O.zip or kv-
M.N.O.tar.gz) to $KVHOME. Unzipping the package installs the Oracle NoSQL Database.

unzip kv-ee-24.1.11.zip

• Create a home directory for the XRegion Service.

• Create a JSON config file in the home directory created in the above step.

Note:

Steps to create a config file is given above. The agentId starts with 0 and is
incremented by one. For example if "agentGroupSize" : 2, and there is already one
agent and you are adding the second one, then the value of agentId is 1.

Example:

Create a json.config file for each proposed region, Frankfurt and London.

Contents of the configuration file in the host1 in 'fra' Region
{
 "path": "<path to the json config file>",
 "agentGroupSize": 2,
 "agentId": 0,
 "region": "fra",
 "store": "<storename at the fra region>",
 "security": "<path to the security file>",
 "helpers": [
 "host1:5000",
 "host2:5000",
 "host3:5000"
],
 "regions": [
 {
 "name": "lnd",
 "store": "<storename at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",

Chapter 3
Configuring Multi-Region Data Stores

3-70

 "host5:5000",
 "host6:5000"
]
 }
]
}

Contents of the configuration file in the host7 in 'fra' Region.
This host is used only to run an additional XRegion agent
{
 "path": "<path to the json config file>",
 "agentGroupSize": 2,
 "agentId": 1,
 "region": "fra",
 "store": "<storename at the fra region>",
 "security": "<path to the security file>",
 "helpers": [
 "host1:5000",
 "host2:5000",
 "host3:5000"
],
 "regions": [
 {
 "name": "lnd",
 "store": "<storename at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",
 "host5:5000",
 "host6:5000"
]
 }
]
}

Contents of the configuration file in the 'lnd' Region
{
 "path": "<path to the json config file>",
 "agentGroupSize": 2,
 "agentId": 0,
 "region": "lnd",
 "store": "<storename at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",
 "host5:5000",
 "host6:5000"
],
 "regions": [
 {
 "name": "fra",
 "store": "<storename at the fra region>",
 "security": "<path to the security file>",
 "helpers": [

Chapter 3
Configuring Multi-Region Data Stores

3-71

 "host1:5000",
 "host2:5000",
 "host3:5000"
]
 }
]
}

Contents of the configuration file in host 8 in the 'lnd' Region,
This host is used only to run an additional XRegion agent
{
 "path": "<path to the json config file>",
 "agentGroupSize": 2,
 "agentId": 1,
 "region": "lnd",
 "store": "<storename at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",
 "host5:5000",
 "host6:5000"
],
 "regions": [
 {
 "name": "fra",
 "store": "<storename at the fra region>",
 "security": "<path to the security file>",
 "helpers": [
 "host1:5000",
 "host2:5000",
 "host3:5000"
]
 }
]
}

Start XRegion Service
The Xregion service in each region can be started using the xrstart command. The xrstart
command has to be executed for each data store separately. The status of the xrstart
command execution can be viewed by reading the contents of status.<number of
agents>.<agentId>.txt file which contains the process ID of the successfully started agent.
To get more details about xrstart command and its various parameters, see xrstart .

The command xrstart can be used in two ways:

• The command for starting the Xregion service in the foreground is:

java -Xms1G -Xmx1G -jar <path to jar file> xrstart -config <path to config
file>

Chapter 3
Configuring Multi-Region Data Stores

3-72

• The command for starting the Xregion service in the background is:

java -Xms1G -Xmx1G -jar <path to jar file> xrstart -config <path to config
file> -bg

Example:

Start the XRegion Service in both the regions, Frankfurt and London.

There are two XRegion Service agents in both the regions, Frankfurt and London. In Frankfurt
the XRegion agents are in host1 and host7 and in London, the XRegion agents are in host4
and host8. Both the XRegion agents have to be started in each region.

Start the first XRegion Service in host1 in the 'fra' Region
[oracle@host1 xrshome]$ java -Xms256m -Xmx2048m -jar $KVHOME/lib/kvstore.jar
xrstart \
-config <path to the json config file> -bg

[1] 24356

View the status of the xrstart command in host1 in the 'fra' Region
[oracle@host1 xrshome]$ cat status.<number of agents>.<agentId>.txt
Cross-region agent (region=fra,store=mrtstore, helpers=[host1:5000,
host2:5000, host3:5000])
starts up from config file=/home/oracle/xrshome/ json.config at 2024-04-05
08:57:34 UTC

Similarly start the XRegion agent in host 7.

Start the second XRegion Service in host 7 in the 'fra' Region

[oracle@host7 xrshome]$ java -Xms256m -Xmx2048m -jar $KVHOME/lib/kvstore.jar
xrstart \
-config <path to the json config file> -bg

[1] 24489

 # View the status of the xrstart command in host7 in the 'fra' Region
[oracle@host7 xrshome]$ cat status.<number of agents>.<agentId>.txt
Cross-region agent (region=fra,store=mrtstore, helpers=[host1:5000,
host2:5000, host3:5000])
starts up from config file=/home/oracle/xrshome/ json.config at 2024-04-05
08:59:34 UTC

Start the first XRegion Service in host4 in the 'lnd' Region
[oracle@host4 xrshome]$ java -Xms256m -Xmx2048m -jar $KVHOME/lib/kvstore.jar
xrstart \
-config <path to the json config file> -bg

[1] 17587

View the status of the xrstart command in host4 in the 'lnd' Region
[oracle@host4 xrshome]$ cat status.<number of agents>.<agentId>.txt
Cross-region agent (region=lnd,store=mrtstore, helpers=[host4:5000,

Chapter 3
Configuring Multi-Region Data Stores

3-73

host5:5000, host6:5000])
starts up from config file=/home/oracle/xrshome/ json.config at 2024-04-05
08:57:34 UTC

Similarly start the XRegion agent in host8.

Start the second XRegion Service in host8 in the 'lnd' Region

[oracle@host8 xrshome]$ java -Xms256m -Xmx2048m -jar $KVHOME/lib/kvstore.jar
xrstart \
-config <path to the json config file> -bg

[1] 17587

View the status of the xrstart command in the 'lnd' Region
[oracle@host8 xrshome]$ cat status.<number of agents>.<agentId>.txt
Cross-region agent (region=lnd,store=mrtstore, helpers=[host4:5000,
host5:5000, host6:5000])
starts up from config file=/home/oracle/xrshome/ json.config at 2024-04-05
09:09:34 UTC

Status of XRegion Agent

To check the current status of the XRegion Agent, use the command xrstatus. This command
provides information on the status as well as the exit codes indicating whether the agent has
started, is already running, or has stopped, etc, see xrstatus

The below command will check the status of the agent.

java -Xms256m -Xmx2048m -jar $KVHOME/lib/kvstore.jar xrstatus -config <path
to the json config file>

The status can be checked:

• After starting the agent using the xrstart command.

• When the agent is already running, to be sure if there was no failure in the connection.

• After the agent has stopped using the xrstop command.

To view the status of the agent in the form of exit codes, use the command:

echo $?

For example, after starting the agent, check the status of the agent as follows:

Start the agent
bash-4.4$ java -Xms256m -Xmx2048m -jar ./lib/kvstore.jar xrstart -config
<path to the jsonconfig file>

[1] 102148

View the status of the agent
bash-4.4$ java -Xms256m -Xmx2048m -jar ./lib/kvstore.jar xrstatus -config
<path to the json config file>
Agent running

Chapter 3
Configuring Multi-Region Data Stores

3-74

View the exit code
bash-4.4$ echo $?
0

Running the xrstatus command shows the agent's status and using the echo $? command
reveals the exit code corresponding to the agent's status. Look at the table to understand
more.

Here are the exit codes and their descriptions for the agent's status after starting, while
running, and after stopping:

1. Agent status after Starting the agent:

Exit Code Description

0 The agent has started successfully.

1 The agent has failed to start.

2 The agent failed to start with timeout, meaning it
started successfully but did not generate a status
file with the process ID.

3 The agent crashed after starting.

4 The agent is already running and another agent
cannot be started.

2. Agent Status of a running agent:

Exit Code Description

0 The agent is currently running.

1 The agent is currently not running.

2 The agent has crashed after running for a few
seconds.

3. Agent status after stopping the agent:

Exit Code Description

0 The agent has stopped successfully.

1 The agent has failed to stop.

Create Remote Regions
Learn to create remote regions from each region in a Multi-Region NoSQL Database.

Before creating and operating on an MR table, you must define the remote regions. You have
already set the local region name for each region, in an earlier step. In this step, you define all
the remote regions for each region. A remote region is different from the local region where the
command is executed.

Steps:

To create the remote regions:

1. Connect to the sql prompt from the local region, and connect to the local data store.

Chapter 3
Configuring Multi-Region Data Stores

3-75

2. Execute the following command from the sql prompt.

sql-> CREATE REGION <remote region name>;

3. Optionally, you can execute the following command to list the remote regions that are
created successfully.

sql-> SHOW REGIONS;

Example:

Create the remote regions in both the regions, Frankfurt and London.

Connect to the data store deployed in the 'fra' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- Create a remote region 'lnd'
sql-> CREATE REGION lnd;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 fra (local, active)
 lnd (remote, active)

Connect to the data store deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

–- Create a remote region 'fra'
sql-> CREATE REGION fra;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 lnd (local, active)
 fra (remote, active)

Create Multi-Region Tables
You must create an MR Table on each data store in the connected graph, and specify the list of
regions that the table should span. For the use case under discussion, you must create the
users table as an MR Table at both the regions, in any order.

Steps:

To create an MR Table:

Chapter 3
Configuring Multi-Region Data Stores

3-76

1. To create a table definition, use a CREATE TABLE statement. See Create Table in the
Developers Guide.

2. Optionally, you can verify the regions associated with the MR Table by executing the
following command from the kv prompt.

kv-> SHOW TABLE -NAME <table name>

Example:

Create an MR Table called users in both the regions, Frankfurt and London.

Connect to the data store deployed in the 'fra' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

-- Create the users MR Table
sql-> CREATE TABLE users(
 -> id INTEGER,
 -> name STRING,
 -> team STRING,
 -> PRIMARY KEY (id))
 -> IN REGIONS fra,lnd;
Statement completed successfully

Connect to the data store deployed in the 'fra' region from the kv prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

Verify the regions associated with the users MR table
kv-> SHOW TABLE -NAME users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "1": "fra",
 "2": "lnd"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",
 "type": "STRING",
 "nullable": true
 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true

Chapter 3
Configuring Multi-Region Data Stores

3-77

 }
],
 "primaryKey": [
 "id"
],
 "shardKey": [
 "id"
]
}

Connect to the data store deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

-- Create the users MR Table
sql-> CREATE TABLE users(
 -> id INTEGER,
 -> name STRING,
 -> team STRING,
 -> PRIMARY KEY (id))
 -> IN REGIONS lnd,fra;
Statement completed successfully

Connect to the data store deployed in the 'lnd' region from the kv prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

Verify the regions associated with the users MR table
kv-> SHOW TABLE -NAME users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "2": "fra",
 "1": "lnd"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",
 "type": "STRING",
 "nullable": true
 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true
 }

Chapter 3
Configuring Multi-Region Data Stores

3-78

],
 "primaryKey": [
 "id"
],
 "shardKey": [
 "id"
]
}

Create multi-region table with an MR_COUNTER column
You can create a multi-region table containing a column of MR_COUNTER datatype.
MR_COUNTER datatype is used in such situations to take care of conflict resolution that may
arise when the same data is modified across different regions. MR_COUNTER ensures that
though data modifications happen simultaneously in different regions, the data can always be
merged into a consistent state. This merge is performed automatically by the MR_COUNTER
data type without requiring any special conflict resolution code or user intervention. To learn
more about MR_COUNTER datatype, see Using CRDT datatype in a multi-region table section
in the Concepts Guide.

Example:

Create an MR Table called users with a MR_COUNTER datatype in both the regions, Frankfurt
and London.

-- Create the users MR Table
sql-> CREATE TABLE users(
 -> id INTEGER,
 -> name STRING,
 -> team STRING,
 -> count INTEGER AS MR_COUNTER,
 -> PRIMARY KEY (id))
 -> IN REGIONS fra,lnd;
Statement completed successfully

Verify the regions associated with the users MR table
sql-> DESC AS JSON TABLE users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "1": "fra",
 "2": "lnd"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",
 "type": "STRING",
 "nullable": true

Chapter 3
Configuring Multi-Region Data Stores

3-79

 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true
 },
 {
 "name" : "count",
 "type" : "INTEGER",
 "nullable" : false,
 "default" : 0,
 "MRCounter" : true
 }
],
 "primaryKey": [
 "id"
],
 "shardKey": [
 "id"
]
}

Connect to the KVStore deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
 -helper-hosts host4:5000,host5:5000,host6:5000 \
 -store mrtstore
-- Create the users MR Table
sql-> CREATE TABLE users(
 -> id INTEGER,
 -> name STRING,
 -> team STRING,
 -> count INTEGER AS MR_COUNTER,
 -> PRIMARY KEY (id))
 -> IN REGIONS lnd,fra;
Statement completed successfully

Verify the regions associated with the users MR table
sql-> DESC AS JSON TABLE users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "2": "fra",
 "1": "lnd"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",

Chapter 3
Configuring Multi-Region Data Stores

3-80

 "type": "STRING",
 "nullable": true
 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true
 },
 {
 "name" : "count",
 "type" : "INTEGER",
 "nullable" : false,
 "default" : 0,
 "MRCounter" : true
 }
],
 "primaryKey": [
 "id"
],
 "shardKey": [
 "id"
]
}

To know more details about how to create and use an MR_COUNTER datatype, See Using the
MR_COUNTER datatype section in the SQL Reference Guide.

You can use the MR_COUNTER data type in a schema-less JSON field, which means if your
Multi-Region table has a JSON column, you can use MR_COUNTER data type inside the
JSON column. One or more fields in the JSON column can be of MR_COUNTER data type.
The MR_COUNTER data type is a subtype of the INTEGER or LONG or NUMBER data type.

Example:

CREATE TABLE demoJSONMR(name STRING,
 jsonWithCounter JSON(counter as INTEGER MR_COUNTER,
 person.count as LONG MR_COUNTER),
 PRIMARY KEY(name)) IN REGIONS fra,lnd;

Access and Manipulate Multi-Region Tables
After creating the MR Table, you can perform read or write operations on the table using the
existing data access APIs or DML statements. There is no change to any existing data access
APIs or DML statements to work with the MR Tables. See Data Row Management in the SQL
Reference Guide.

Example:

Perform DML operations on the users table in one region, and verify if the changes are
replicated to the other region.

To be executed in the fra region
-- Insert two rows into the users MR Table
sql-> INSERT INTO users(id,name,team) VALUES(1,"Amy","HR");
{"NumRowsInserted":1}

Chapter 3
Configuring Multi-Region Data Stores

3-81

1 row returned
sql-> INSERT INTO users(id,name,team) VALUES(2,"Jack","HR");
{"NumRowsInserted":1}
1 row returned

To be executed in the lnd region
-- Verify if the rows are replicated from the fra region
sql-> SELECT * FROM users;
{"id":1,"name":"Amy","team":"HR"}
{"id":2,"name":"Jack","team":"HR"}

2 rows returned

-- Update the row with id = 2 in the users MR Table
sql-> UPDATE users SET team = "IT" WHERE id = 2;
{"NumRowsUpdated":1}
1 row returned

-- Delete the row with id = 1 from the users MR Table
sql-> DELETE FROM users WHERE id = 1;
{"NumRowsDeleted":1}
1 row returned

To be executed in the fra region
-- Verify if the changes are replicated from the lnd region
sql-> SELECT * FROM users;
{"id":2,"name":"Jack","team":"IT"}
1 row returned

Stop XRegion Service
In a multi-region setup, you can stop any running Xregion service using xrstop command. To
get more details about the xrstop command, see xrstop.

Example:

Stop the XRegion Service in both the regions, Frankfurt and London.

Stopping the XRegion Service in the fra region
[~]$ java -Xmx1024m -Xms256m -jar $KVHOME/lib/kvstore.jar xrstop \
-config <path to the json config file>

Similarly, you must stop the XRegion Service in the other region, lnd.

Use Case 2: Expand a Multi-Region Table
An organization deploys two on-premise data stores, one each at Frankfurt and London. As
per their requirement, they create a few MR Tables in both the regions. The users table is one
of the many MR Tables created and maintained by this organization. Now, they decide to
expand their organization by adding another NoSQL Database in Dublin. After creating Dublin
as the new region, they want to expand the existing MR Tables to the new region. In the next
few topics, you learn how to add the Dublin region to the users table that you already created
in the previous use case.

Chapter 3
Configuring Multi-Region Data Stores

3-82

If you have not created the users MR Table earlier, execute the steps outlined in Use Case 1:
Set up Multi-Region Environment.

Prerequisites

Steps:

Before expanding the users table to the new region, you must have set up the new region by
executing the following tasks:

1. Set up a multi-region NoSQL Database with two regions Frankfurt (fra) and London (lnd).
See Use Case 1: Set up Multi-Region Environment.

2. Deploy a local data store with store name as dubstore in the new region. See Configuring
your data store installation.

3. Set the new region's local region name to dub. See Set Local Region Name.

4. Configure and start the XRegion Service in the dub region. See Configure XRegion Service
and Start XRegion Service.

5. Update the json.config file in the existing regions, that is, Frankfurt (fra) and London
(lnd) to include dub (Dublin) as a remote region.

Note:

You must restart the agent at existing regions to pick up the new region (dub)
from the json.config file.

6. Create two remote regions, fra and lnd in the new region dub. See Create Remote
Regions.

Example:

1. Set the local region name for the new region, Dublin.

Connect to the data store deployed at host7, host8, and host9 from the
SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

-- Set the local region name to 'dub'
sql-> SET LOCAL REGION dub;
Statement completed successfully

-- List the regions
sql-> SHOW REGIONS;
regions
 dub (local, active)

2. Create a json.config file for the new region, Dublin.

Contents of the configuration file in the 'dub' Region
{
 "path": "<entire path to the home directory for the XRegion Service>",

Chapter 3
Configuring Multi-Region Data Stores

3-83

 "agentGroupSize": 1,
 "agentId": 0,
 "region": "dub",
 "store": "<storename at the dub region>",
 "security": "<path to the security file>",
 "helpers": [
 "host7:5000",
 "host8:5000",
 "host9:5000"
],
 "regions": [
 {
 "name": "fra",
 "store": "<store name at the fra region>",
 "security": "<path to the security file>",
 "helpers": [
 "host1:5000",
 "host2:5000",
 "host3:5000"
]
 },
 {
 "name": "lnd",
 "store": "<store name at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",
 "host5:5000",
 "host6:5000"
]
 }
]
}

3. Start the XRegion Service in the new region, Dublin.

Start the XRegion Service in the 'dub' Region
[oracle@host7 xrshome]$ java -Xms256m -Xmx2048m -jar $KVHOME/lib/
kvstore.jar xrstart \
-config <path to the json config file> -bg

[1] 24123

View the status of the xrstart command in the 'dub' Region
[oracle@host7 xrshome]$ cat status.<numbe of agents>.<agentId>.txt
Cross-region agent (region=fra,store=mrtstore, helpers=[host7:5000,
host8:5000, host9:5000])
starts up from config file=/home/oracle/xrshome/ json.config at 2024-04-05
08:57:34 UTC

4. Modify the json.config files in the existing regions (Frankfurt and London) to include
Dublin as a remote region.

Contents of the configuration file in the 'fra' Region
{
 "path": "<path to the json config file>",

Chapter 3
Configuring Multi-Region Data Stores

3-84

 "agentGroupSize": 1,
 "agentId": 0,
 "region": "fra",
 "store": "<storename at the fra region>",
 "security": "<path to the security file>",
 "helpers": [
 "host1:5000",
 "host2:5000",
 "host3:5000"
],
 "regions": [
 {
 "name": "lnd",
 "store": "<storename at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",
 "host5:5000",
 "host6:5000"
]
 },
 {
 "name": "dub",
 "store": "<storename at the dub region>",
 "security": "<path to the security file>",
 "helpers": [
 "host7:5000",
 "host8:5000",
 "host9:5000"
]
 }
]
}

Contents of the configuration file in the 'lnd' Region
{
 "path": "<path to the json config file>",
 "agentGroupSize": 1,
 "agentId": 0,
 "region": "lnd",
 "store": "<storename at the lnd region>",
 "security": "<path to the security file>",
 "helpers": [
 "host4:5000",
 "host5:5000",
 "host6:5000"
],
 "regions": [
 {
 "name": "fra",
 "store": "<storename at the fra region>",
 "security": "<path to the security file>",
 "helpers": [
 "host1:5000",
 "host2:5000",

Chapter 3
Configuring Multi-Region Data Stores

3-85

 "host3:5000"
]
 },
 {
 "name": "dub",
 "store": "<storename at the dub region>",
 "security": "<path to the security file>",
 "helpers": [
 "host7:5000",
 "host8:5000",
 "host9:5000"
]
 }
]
}

5. Create two remote regions, fra and lnd in the new region, Dublin.

Connect to the data store deployed in the 'dub' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

–- Create remote regions 'fra' and 'lnd'
sql-> CREATE REGION fra;
Statement completed successfully
sql-> CREATE REGION lnd;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 dub (local, active)
 fra (remote, active)
 lnd (remote, active)

Create MR Table in New Region

Steps:

As a first step in expanding an MR Table to a new region, you must create the MR Table in the
new region using the CREATE TABLE statement. See Create Multi-Region Tables.

Note:

Creating the MR Table in the new region alone does not ensure replicating the data
from the existing regions. This is because you have not yet linked the new region to
this MR Table from the existing regions.

Chapter 3
Configuring Multi-Region Data Stores

3-86

Example:

Create the users MR Table in the new region, Dublin.

Connect to the data store deployed in the 'dub' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

-- Create the users MR Table
sql-> CREATE TABLE users(
 -> id INTEGER,
 -> name STRING,
 -> team STRING,
 -> PRIMARY KEY (id))
 -> IN REGIONS dub,fra,lnd;
Statement completed successfully

Connect to the data store deployed in the 'dub' region from the kv prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

Verify the regions associated with the users MR table
kv-> SHOW TABLE -NAME users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "1": "dub",
 "2": "fra"
 "3": "lnd"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",
 "type": "STRING",
 "nullable": true
 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true
 }
],
 "primaryKey": [
 "id"
],
 "shardKey": [

Chapter 3
Configuring Multi-Region Data Stores

3-87

 "id"
]
}

Add New Region to Existing Regions
As a next step, you must create the new region as a remote region in the existing regions.
Then, you must associate the new region with the MR Table in the existing regions.

Steps:

Execute the following steps from each existing region:

1. Add the new region as a remote region. See Create Remote Regions.

2. Associate the new region with the existing MR Table using the DDL command shown
below.

ALTER TABLE <table name> ADD REGIONS <region name>;

Example:

1. Add the new region, Dublin as a remote region from the existing regions, Frankfurt and
London.

Connect to the data store deployed in the 'fra' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- Create a remote region 'dub'
sql-> CREATE REGION dub;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 fra (local, active)
 lnd (remote, active)
 dub (remote, active)

Connect to the data store deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

–- Create a remote region 'dub'
sql-> CREATE REGION dub;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

Chapter 3
Configuring Multi-Region Data Stores

3-88

 lnd (local, active)
 fra (remote, active)
 dub (remote, active)

2. In the existing regions, alter the users MR Table to add the new region, Dublin.

Connect to the data store deployed in the 'fra' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- Add the 'dub' region to the users MR Table
sql-> ALTER TABLE users ADD REGIONS dub;
Statement completed successfully

Connect to the data store deployed in the 'fra' region from the kv prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

Verify the regions associated with the users MR table
kv-> SHOW TABLE -NAME users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "1": "fra",
 "2": "lnd"
 "3": "dub"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",
 "type": "STRING",
 "nullable": true
 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true
 }
],
 "primaryKey": [
 "id"
],
 "shardKey": [
 "id"

Chapter 3
Configuring Multi-Region Data Stores

3-89

]
}

Connect to the data store deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

–- Add the 'dub' region to the users MR Table
sql-> ALTER TABLE users ADD REGIONS dub;
Statement completed successfully

Connect to the data store deployed in the 'lnd' region from the kv prompt
[~]$java -jar $KVHOME/lib/kvstore.jar runadmin \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

Verify the regions associated with the users MR table
kv-> SHOW TABLE -NAME users
{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "1": "lnd",
 "2": "fra"
 "3": "dub"
 },
 "fields": [
 {
 "name": "id",
 "type": "INTEGER",
 "nullable": false
 },
 {
 "name": "name",
 "type": "STRING",
 "nullable": true
 },
 {
 "name": "team",
 "type": "STRING",
 "nullable": true
 }
],
 "primaryKey": [
 "id"
],
 "shardKey": [
 "id"
]
}

Chapter 3
Configuring Multi-Region Data Stores

3-90

Access MR Table in New and Existing Regions
After performing the tasks discussed in the previous sections, you can perform read/write
operations on the MR Table from the new region without any disruption. However, the table
may not return the complete data from the existing regions until the initialization completes in
the background. Especially if the MR Table has a huge volume of data in the existing regions, it
may take a while for the new table to see the data from the remote regions.

Similarly, you can continue performing read/write operations on the MR Table from the existing
regions without any disruption. Adding a new region is transparent to the customers accessing
the MR Table from the existing regions. However, the MR Table at the existing regions may
also need initialization to see the writes from the new region. If the table at the new region is
empty or small, the existing regions will quickly sync up with it. To learn how to access the MR
Tables, see Access and Manipulate Multi-Region Tables.

Use Case 3: Contract a Multi-Region Table
An organization deploys three on-premise data stores, one each at Frankfurt, London, and
Dublin. As per their requirement, they created a few MR Tables in all three regions. The users
table is one of the many MR tables created and maintained by this organization. As per some
changes in their business requirements, they decided to remove the users table from the
Dublin region. In the next few topics, you learn how to contract an MR Table, that is, how to
remove an MR Table from specific regions.

If you have not created the users MR table earlier, execute the steps outlined in Use Case 1:
Set up Multi-Region Environment.

If you have not added the Dublin region to the users MR table, execute the steps outlined in
Use Case 2: Expand a Multi-Region Table.

Alter MR Table to Drop Regions
Learn how to contract a Multi-Region table and reduce the regions it spans across.

Steps:

To remove an MR Table from a specific region in a Multi-Region NoSQL Database setup, you
must execute the following steps from all the other participating regions.

1. Execute the following command from the sql prompt.

ALTER TABLE <table name> DROP REGIONS <comma separated list of regions>

2. Optionally, you can execute the following command from the kv prompt to verify that the
region is dropped successfully.

SHOW TABLE -NAME <table name>

Chapter 3
Configuring Multi-Region Data Stores

3-91

Note:

Suppose you drop region A from an MR table created in region B. Then:

• Region B can't see any new writes on this MR table from the region A.

• Region A continues to see the writes on this MR Table from the region B.

If you want to isolate the MR table in the region A from other regions, you must drop
those regions from the MR table created in region A. This is only a recommendation
and not a mandatory step in contracting an MR Table.

Example:

Drop the Dublin region from the users MR table in the other two regions, Frankfurt and
London.

Connect to the data store deployed in the 'fra' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- drop the 'dub' region from the 'users' MR table
sql-> ALTER TABLE users DROP REGIONS dub;
Statement completed successfully

Connect to the data store deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

–- drop the 'dub' region from the 'users' MR table
sql-> ALTER TABLE users DROP REGIONS dub;
Statement completed successfully

Use Case 4: Drop a Region
An organization deploys three on-premise data stores, one each at Frankfurt, London, and
Dublin. As per their requirement, they created a few MR Tables in all three regions. As part of
business down-sizing, they decided to exclude the Dublin region resulting in a two-region
NoSQL Database. In the next few topics, you learn how to drop an existing region from the
NoSQL environment that you had set up in the previous sections.

If you have not set up a Multi-Region NoSQL Database with three regions already, execute the
steps outlined in:

• Use Case 1: Set up Multi-Region Environment

• Use Case 2: Expand a Multi-Region Table

Prerequisites
Learn about the conditions to be satisfied before dropping a region from a Multi-Region NoSQL
Database.

Chapter 3
Configuring Multi-Region Data Stores

3-92

Before removing a region from a Multi-Region NoSQL Database, it is recommended to:

• Stop writing to all the MR Tables linked to that region.

• Ensure that all writes to the MR Tables in that region have replicated to the other regions.
This helps in maintaining consistent data across the different regions.

Note:

As of the current release, there is no provision in Oracle NoSQL Database to make a
table read-only. Hence, you must stop writes to the identified MR Tables at the
application level.

Isolate the Region
Learn how to isolate a region from a Multi-Region NoSQL Database.

When you decide to drop a region, it is a good practice to isolate that region from all the other
participating regions. Isolating a region disconnects it from all the MR Tables in the Multi-
Region NoSQL Database.

Isolating a region ensures that:

• The isolated region cannot see writes from the other regions.

• The other regions cannot see writes from the isolated region.

Note:

Even though it is not mandatory to isolate the region before dropping it from a Multi-
Region NoSQL Database, this is considered a cleaner approach and hence
suggested.

Steps:

Isolating a region from the Multi-Region NoSQL Database environment involves two tasks.
They are:

1. Drop the target region from all the MR Tables in the other regions using the DDL command
shown below.

2. Drop all the other regions from all the MR Tables in the region to be isolated.

See Alter MR Table to Drop Regions.

Example:

1. Drop the Dublin region from the users MR table in the other two regions, Frankfurt and
London.

Connect to the data store deployed in the 'fra' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- drop the 'dub' region from the 'users' MR table

Chapter 3
Configuring Multi-Region Data Stores

3-93

sql-> ALTER TABLE users DROP REGIONS dub;
Statement completed successfully

Connect to the data store deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

–- drop the 'dub' region from the 'users' MR table
sql-> ALTER TABLE users DROP REGIONS dub;
Statement completed successfully

2. Drop the other regions (Frankfurt and London) from the users MR table in the Dublin
region.

Connect to the data store deployed in the 'dub' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

–- drop 'fra' and 'lnd' regions from the 'users' MR table
sql-> ALTER TABLE users DROP REGIONS fra,lnd;
Statement completed successfully

Drop MR Tables in the Isolated Region
After you ensure that the region to be dropped is isolated, you can drop all the MR Tables
created in that region safely. Dropping an MR Table is exactly similar to dropping a local table.

Example:

Drop users MR table from the isolated region, Dublin.

Connect to the data store deployed in the 'dub' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host7:5000,host8:5000,host9:5000 \
-store dubstore

–- drop the 'users' MR table
sql-> DROP TABLE users;
Statement completed successfully

Drop the Isolated Region
Finally, you can drop the isolated region from all the other regions.

Note:

Dropping an isolated region is not mandatory. You can retain the isolated region
without dropping from other regions, for any future use.

Chapter 3
Configuring Multi-Region Data Stores

3-94

Steps:

To drop the isolated region from other regions:

1. Connect to the sql prompt, and connect to the local KVStore.

2. Execute the following DDL command from the SQL prompt.

DROP REGION <region name>;

3. Optionally, you can execute the following command to verify that the isolated region is
dropped successfully.

SHOW REGIONS;

Example:

Drop the Dublin region from the other two regions, Frankfurt and London.

Connect to the data store deployed in the 'fra' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host1:5000,host2:5000,host3:5000 \
-store mrtstore

–- drop the 'dub' region
sql-> DROP REGION dub;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 fra (local, active)
 lnd (remote, active)

Connect to the data store deployed in the 'lnd' region from the SQL shell
[~]$java -jar $KVHOME/lib/sql.jar \
-helper-hosts host4:5000,host5:5000,host6:5000 \
-store mrtstore

–- drop the 'dub' region
sql-> DROP REGION dub;
Statement completed successfully

– List the regions
sql-> SHOW REGIONS;
regions

 lnd (local, active)
 fra (remote, active)

Chapter 3
Configuring Multi-Region Data Stores

3-95

Use Case 5: Backup and Restore a Multi-Region Table
An organization deploys three on-premise data stores, one each at Frankfurt, London, and
Dublin, and they have created MR Tables spanning all three regions. A multi-region table is a
single table that spans multiple regions and is kept in sync all the time.

One day due to an application bug or illegal modifications, the organization suffers table-level
data loss or corruption for an MR table in one region. Since the system keeps the MR table in
sync in all the regions, the corruption or data loss gets replicated that to the other regions as
well. Therefore, the organization wants to restore the MR table in all the regions from the MR
table backup that they have been regularly creating as part of their data safety policy.

In this topic, you learn how to backup and restore an MR Table.

Backup a Multi-Region Table

Creating a backup of MR tables helps you in restoring the table data later in case you suffer
inadvertent application corruption of the data.

To create a backup of an MR table:

1. Using multi-region table statistics, find the most up-to-date region for the table that you
want to backup. Run the following command in the Admin Command Line Interface (CLI):

show mrtable-agent-statistics -agent 0 -json

For more information about MR table statistics, see show mrtable-agent-statistics.

2. In the statistics returned by the show mrtable-agent-statistics command, locate
"returnValue"[]."statistics"."regionStat"[]."laggingMs"."max" attribute and find
the region that has the smallest value for the max attribute in the laggingMS field. That
region contains the most up-to-date data of your MR table.
In the example below, the Frankfurt region has the smallest value for the max attribute in
the laggingMS field, and hence it has the most up-to-date data for the MR table.

kv-> show mrtable-agent-statistics -agent 0 -json

Output:

{
 "operation": "show mrtable-agent-statistics",
 "returnCode": 5000,
 "description": "Operation ends successfully",
 "returnValue": {
 "XRegionService-1_0": {
 "timestamp": 1592901180001,
 "statistics": {
 "agentId": "XRegionService-1_0",
 "beginMs": 1592901120001,
 "dels": 1024,
 "endMs": 1592901180001,
 "incompatibleRows": 100,
 "intervalMs": 60000,
 "localRegion": "slc1",
 "persistStreamBytes": 524288,

Chapter 3
Configuring Multi-Region Data Stores

3-96

 "puts": 2048,
 "regionStat": {
 "fra": {
 "completeWriteOps": 10,
 "laggingMs": {
 "avg": 502,
 "max": 885,
 "min": 26
 },
 "lastMessageMs": 1591594977587,
 "lastModificationMs": 1591594941686,
 "latencyMs": {
 "avg": 20,
 "max": 40,
 "min": 10
 }
 },
 "lnd": {
 "completeWriteOps": 10,
 "laggingMs": {
 "avg": 512,
 "max": 998,
 "min": 31
 },
 "lastMessageMs": 1591594977587,
 "lastModificationMs": 1591594941686,
 "latencyMs": {
 "avg": 20,
 "max": 40,
 "min": 10
 }
 },
 "dub": {
 "completeWriteOps": 20,
 "laggingMs": {
 "avg": 535,
 "max": 1024,
 "min": 45
 },
 "lastMessageMs": 1591594978254,
 "lastModificationMs": 1591594956786,
 "latencyMs": {
 "avg": 30,
 "max": 45,
 "min": 15
 }
 }
 },
 "requests": 12,
 "responses": 12,
 "streamBytes": 1048576,
 "winDels": 1024,
 "winPuts": 2048
 }
 }

Chapter 3
Configuring Multi-Region Data Stores

3-97

 }
}

3. Using the Oracle NoSQL Database Migrator connect to the region identified in Step#2 in
the Source configuration to export the MR tables. And use the appropriate Sink type based
on your requirement to import the MR tables. For more information on the source and sink
see, Using Oracle NoSQL Data Migrator.

Note:

Make sure that you save the backup of the MR table on remote storage, which is
not local to a NoSQL Storage Node in the NoSQL topology.

Restore a Multi-Region Table

You can restore an MR table from an MR table backup in case you suffer data loss or data
corruption and want to revert to the most up-to-date version of the MR table.

Tip:

Oracle recommends that you stop all the write activity to the MR tables that are being
restored.

To restore an MR table from backup:

1. Find the list of regions associated with the MR Table by executing the following command
from the kv prompt.

kv-> SHOW TABLE -NAME <table name>

For example,

kv-> SHOW TABLE -NAME users

Output:

{
 "json_version": 1,
 "type": "table",
 "name": "users",
 "regions": {
 "1": "fra",
 "2": "lnd"
 },

}

2. Using the DROP TABLE statement, drop the MR table in each region with which the MR table
is associated. For more information on how to drop an MR table, see Using TableRequest
API to drop table.

Chapter 3
Configuring Multi-Region Data Stores

3-98

3. Re-create the MR table in every region, specifying the remote regions you want to
associate with the MR table. For more information, see Create Multi-Region Tables.

4. Using the Oracle NoSQL Database Migrator connect to any one region identified in Step#1
in the Sink configuration to restore the MR tables. And use the appropriate Source
configuration type based on the where the MR table backup resides. During the loading of
the backup, the Oracle NoSQL Database synchronizes the table in each remote region.
For more information on see, Using Oracle NoSQL Data Migrator.

Troubleshooting multi-region data store setup
1. Find agent logs for a multi-region setup:

Users can find the logs of an XRegion agent at the path specified in the JSON config file.
The agent logs, like data store logs, contain all diagnostic information from the service
agent. To learn more about the JSON config file used by the XRegion agent, see Configure
XRegion Service.

2. Access the statistics of an XRegion agent
The XRegion agent collects statistics periodically and posts it to a system table in the local
region. You can query the system table for XRegion agent statistics by using the standard
CLI command “SHOW” that returns a JSON string of agent statistics.

show mrtable-agent-statistics
 [-agent <agentID>][-table <tableName>][-json]

The show command with mrtable-agent-statistics option shows the latest statistics as
of the last one minute for the XRegion agent. With no arguments, this command shows the
combined statistics over all regions that the multi-region table spans. You can limit the
statistics to a particular agent by specifying the agent id. If a table name is specified in the
command, the statistics is limited to a particular multi-region table. To understand more
details about using the show command to obtain statistics for a multi-region setup, see
show mrtable-agent-statistics.

3. Display the status of a multi-region table syncing up with remote regions
The statistic lastModificationMs in the show mrtable-agent-statistics command is the
timestamp of the last operation performed in each remote region, in milliseconds. By
comparing the values of this statistic of the local region and the remote region, you can
determine if the remote region has caught up with the local region or still lagging behind.

For example, suppose the time of the last write made to a remote region is T1, while the
statistic lastModificationMs for the local region is T2. If T2 < T1, it means that the multi-
region table has caught up with that remote region for all writes up to T2 and will continue
catching up for all writes made in between T2 and T1. If T2 = T1, that means the multi-
region table has caught up with all writes made at the remote region. However T2 can
never be greater than T1.

MR table agent statistics for a specific agent
kv-> show mrtable-agent-statistics -agent 0 -json

Output:

{
 "operation": "show mrtable-agent-statistics",
 "returnCode": 5000,
 "description": "Operation ends successfully",
 "returnValue": {

Chapter 3
Configuring Multi-Region Data Stores

3-99

 "XRegionService-1_0": {
 "timestamp": 1592901180001,
 "statistics": {
 "agentId": "XRegionService-1_0",
 "beginMs": 1592901120001,
 "dels": 1024,
 "endMs": 1592901180001,
 "incompatibleRows": 100,
 "intervalMs": 60000,
 "localRegion": "slc1",
 "persistStreamBytes": 524288,
 "puts": 2048,
 "regionStat": {
 "lnd": {
 "completeWriteOps": 10,
 "laggingMs": {
 "avg": 512,
 "max": 998,
 "min": 31
 },
 "lastMessageMs": 1591594977587,
 "lastModificationMs": 1591594941686,
 "latencyMs": {
 "avg": 20,
 "max": 40,
 "min": 10
 }
 },
 "dub": {
 "completeWriteOps": 20,
 "laggingMs": {
 "avg": 535,
 "max": 1024,
 "min": 45
 },
 "lastMessageMs": 1591594978254,
 "lastModificationMs": 1591594956786,
 "latencyMs": {
 "avg": 30,
 "max": 45,
 "min": 15
 }
 }
 },
 "requests": 12,
 "responses": 12,
 "streamBytes": 1048576,
 "winDels": 1024,
 "winPuts": 2048
 }
 }
 }
}

4. Troubleshoot problems with XRegion Agent

Chapter 3
Configuring Multi-Region Data Stores

3-100

If the XRegion agent encounters a problem, for example if the network connection is
dropped, you should investigate the reason of the connection failure and come up with a
solution to fix the connection. Meanwhile the XRegion agent would try to re-connect to the
remote region until the remote region is up again. After successfully re-connecting to the
remote region, the XRegion agent will resume from the stream position or the last
checkpoint made, before the connection was dropped. During re-connection, the agent
may dump warning messages in the log to alert users that the connection to a region or a
shard in that region is lost.

5. Troubleshoot when the local region or remote region goes down
The XRegion agent streams changes to the multi-region table from each remote region
and persists them in the local region. Therefore, if the local region is down, the agent will
keep retrying but won’t be able to write any changes. After a period of time, when the
buffer in the XRegion agent is full, the XRegion agent will stop streaming data from the
remote regions and the data flow gets frozen. When the local region is back, the XRegion
agent will just resume the stream and the workflow. No manual intervention to the XRegion
agent is needed here. However you may have to fix the issue with the local region
manually.

Local Region Up

Local
KVStore

Local
KVStore

Local
KVStore

Local
KVStore

Remote
KVStore

Remote
KVStore

Remote
KVStore

Remote
KVStore

Tries to write data
but not able to

Data flow
is frozen

Streaming

Streaming
Continues

Buffers
Data

Buffer
Full

1

2

3

4

If a particular remote region is down, the XRegion agent will just keep retrying till that
remote region is back. This issue is similar to any network connection problem with the
XRegion agent. Until the connection to the remote region is established again, the multi-
region table at the local region won’t be able to see the changes in that remote region. But
changes in the other remote regions are not affected as long as the XRegion agent is able
to maintain the connection to these regions.

Chapter 3
Configuring Multi-Region Data Stores

3-101

Remote Region Up

Local
KVStore

Local
KVStore

Local
KVStore

Local
KVStore

Remote
KVStore

Remote
KVStore

Remote
KVStore

Remote
KVStore

Tries to write data
but not able to

Data flow
is frozen

Streaming

Streaming
Continues

Buffers
Data

Buffer
Full

1

2

3

4

6. Handle schema evolution in a multi-region setup
Schema evolution happens when there is a schema change in any of the remote regions.
Then the schema of a multi-region table at the local region differs from that in the remote
region. In such a situation the XRegion agent will try to solve the difference by converting a
row from the remote region to the schema of local region. For example, if you add a new
column to a multi-region table at a remote region but this new column is not yet added in
the local region. The multi-region table at the local region will not be able to see the new
column in the changes streamed from the remote region, but the local region should still
see the other columns. This would last until you fix the problem by adding the same
column in the local region to end the schema divergence. In a multi-region table, there is
no automatic notification to other regions when a schema changes in one region. The
XRegion agent of local region is able to detect the change when it sees the data from a
remote region with higher table version, and it will refresh its table metadata from the
remote region to get the latest schema.

Chapter 3
Configuring Multi-Region Data Stores

3-102

Time T2

Local Store

Cross Service Agent

Detects a new table version in
remote region and gets new

metadata from remote region

Time T1

Local Store

Cross Service Agent

name

Tim

Joe

Sam

id

1

2

3

add sal

HR

IT

IT

name

Tim

Joe

Sam

id

1

2

3

add sal

HR

IT

IT

Time T2

Remote Store

Cross Service Agent

name dept

Tim

HR

IT

Joe

Sam

id

1

2

3

add sal

1000

500

1000 IT

Time T1

Remote Store

Cross Service Agent

name

Tim

Joe

Sam

id

1

2

3

add sal

HR

IT

IT

Consider the situation when the schema in different regions diverge in a way that the agent
is not able to fix the schema differences by refreshing the local region table metadata from
the remote region. For example, if you add a new column “Foo” with type “STRING” to the
remote region but adds the same column with type “LONG” in the local region, these
changes at the remote region are considered incompatible to the local region, and the
agent cannot fix this difference. These changes from the remote region will not be
persisted locally. Consequently the changes in the remote regions will be discarded and
accounted in the per-table statistic incompatibleRows. See the details about persistence of
remote data in the show mrtable-agent-statistics section.

Chapter 3
Configuring Multi-Region Data Stores

3-103

Time T2

Local Store

Cross Service Agent

Detects a new table version in
remote region and gets new

metadata from remote region

Mismatch in schema. Changes in the remote region will
be discarded and accounted in the per table statistics

name dept

Tim

02

01

Joe

Sam

id

1

2

3

add sal

1000

500

1000 03

Time T1

Local Store

Cross Service Agent

name

Tim

Joe

Sam

id

1

2

3

add sal

1000

500

1000

Time T2

Remote Store

Cross Service Agent

name dept

Tim

HR

IT

Joe

Sam

id

1

2

3

add sal

1000

500

1000 IT

Time T1

Remote Store

Cross Service Agent

name

Tim

Joe

Sam

id

1

2

3

add sal

1000

500

1000

7. Handle difference in software versions between regions
For any particular region, you need to upgrade the data store first and then upgrade the
agent to the same version. If a multi-region table has different versions of software on
different regions, the agent with old version may not be able to process the rows streamed
from regions with a newer version of the software correctly, and some data may be treated
by the old agent as incompatible for operations. For example, if the local region is
upgraded to support TTL (Time to Live) while the remote region has not yet upgraded, the
changes made to the remote region will be persisted to the local region, but without any
expiration information, that means the row will never expire. The same is the case if the
remote region has upgraded to support TTL while the local region has not. Then all
changes to the remote region with TTL will lose their TTL when applied to the local region,
which means these rows will never expire. If this is undesirable, you should upgrade all
regions first before writing the data to the table to ensure every region can process the
data correctly. Any feature will be completely available to a multi-region table only after all
the regions have upgraded to the same version.

Chapter 3
Configuring Multi-Region Data Stores

3-104

4
Administer

The articles in this section include various tasks to administer an Oracle NoSQL Database.

Changing the Store's Topology
Topics:

• Determining Your Store's Configuration

• Steps for Changing the Store's Topology

• Deploying an Arbiter Node Enabled Topology

Determining Your Store's Configuration
A store consists of a number of Storage Nodes. Each Storage Node can host one or more
Replication Nodes, based on its storage capacity. The term topology is used to describe the
distribution of Replication Nodes. A topology is derived from the number and capacity of
available Storage Nodes, the number of partitions in the store, and the replication factors of the
store's zones. Topology layouts are also governed by a set of rules that maximize the
availability of the store.

All topologies must adhere to the following rules:

1. Each Replication Node from the same shard must reside on a different Storage Node. This
rule prevents a single Storage Node failure causing multiple points of failure for a single
shard.

2. The number of Replication Nodes assigned to a Storage Node must be less than or equal
to the capacity of Storage Nodes.

3. A zone must have one or more Replication Nodes from each shard.

4. A valid Arbiter Node distribution is one in which the Arbiter Node is hosted on a Storage
Node that does not contain other members of its shard.

The store’s initial configuration, or topology, is set when you create the store. Over time, it can
be necessary to change the store topology. There are several reasons for such a change:

1. You need to replace or upgrade an existing Storage Node.

2. You need to increase read throughput. This is done by increasing the replication factor and
creating more copies of the store's data which can be used to service read only requests.

3. You need to increase write throughput. Since each shard has a single master node,
distributing the data in the store over a larger number of shards provides the store with
more nodes to execute write operations.

You change the store's configuration by changing the number or capacity of available Storage
Nodes, or the replication factor of a zone. To change from one configuration to another, you
either create a new initial topology, or clone an existing topology and modify it into your target
topology. You then deploy this target topology.

4-1

Note:

Deploying a target topology can be a lengthy operation. Plus, the time required
scales with the amount of data to move. During the deployment, the system updates
the topology at each step. Because of that, the store passes through intermediate
topologies which you did not explicitly create.

This chapter discusses how to make configuration or topological changes to a store. It also
describes how to deploy a topology enabled with Arbiter Nodes.

Note:

Do not make configuration changes while a taking a snapshot, or take a snapshot
when changing the configuration. Before making configuration changes, we
recommend you first create a snapshot as a backup. For additional information on
creating snapshots, see Taking a Snapshot.

Steps for Changing the Store's Topology
When you change your topology, you should go through these steps:

1. Make the Topology Candidate

2. Transforming the Topology Candidate

3. View the Topology Candidate

4. Validate the Topology Candidate

5. Preview the Topology Candidate

6. Deploy the Topology Candidate

7. Verify the Store's Current Topology

Creating a new topology is typically an iterative process, trying different options to see what is
best before deploying changes. After trying options, examine the topology candidate and
decide if it is satisfactory. If not, apply more transformations, or start over with different
parameters. You can view and validate topology candidates to determine if they are
appropriate.

The possible transformations to expand the store include redistributing data, increasing the
replication factor, and rebalancing. These are described in Transforming the Topology
Candidate.

You can also decrease the current topology by removing Storage Nodes. See Contracting a
Topology.

The following sections walk you through the process of changing your store’s configuration
using the Administration CLI.

Chapter 4
Changing the Store's Topology

4-2

Make the Topology Candidate
To create the first topology candidate for an initial deployment, before any Replication Nodes
exist, use the topology create command. The topology create command requires a
topology name, a pool name and the number of partitions as arguments.

Note:

Avoid using the dollar sign ($) character in topology candidate names. The CLI
displays a warning if you try to create or clone topologies whose names contain the
reserved character.

For example:

kv-> topology create -name firstTopo -pool BostonPool
-partitions 300

Output:

Created: firstTopo

Use the plan deploy-topology command to deploy this initial topology candidate without
further transformations.

After your store is initially deployed, you can create candidate topologies with the topology
clone command. The source of a clone can be another topology candidate, or the current,
deployed topology. The topology clone command takes the following arguments:

• -from <from topology>
The name of the source topology candidate.

• -name <to topology>
The name of the clone.

For example:

kv-> topology clone -from topo -name CloneTopo

Output:

Created CloneTopo

This variant of the topology clone command that takes the following arguments:

• -current
Specifies using the current deployed topology as a source, so the argument requires no
name.

• -name <to topology>

Chapter 4
Changing the Store's Topology

4-3

The name of the topology clone.

For example:

kv-> topology clone -current -name ClonedTopo

Output:

Created ClonedTopo

Transforming the Topology Candidate
After you initially deploy your store, you can change it by deploying another topology candidate
that differs from the current topology. This target topology is generated by transforming a
topology candidate to expand the store by using these commands:

• topology redistribute
• rebalance
• change-repfactor
Alternatively, you can contract the target topology candidate using the topology contract
command.
Transformations follow the topology rules described in the previous section.

The topology rebalance, redistribute or change-repfactor commands can only make changes to
the topology candidate if there are additional, or changed, Storage Nodes available. It uses the
new resources to rearrange Replication Nodes and partitions so the topology complies with the
topology rules and the store improves on read or write throughput.

The following are scenarios in how you might expand or contract the store.

Increase Data Distribution
Use the topology redistribute command to increase data distribution to enhance write
throughput. The redistribute command works only if new Storage Nodes are added to make
creating new replication nodes possible for new shards. With new shards, the system
distributes partitions across the new shards, resulting in more Replication Nodes to service
write operations.

The following example demonstrates adding a set of Storage Nodes (node04 — node07) and
redistributing the data to those nodes. Four Storage Nodes are required to meet the zone's
replication factor of four and the new shards require four nodes to satisfy the replication
requirements:

kv-> plan deploy-sn -zn zn1 -host node04 -port 5000 -wait
Executed plan 7, waiting for completion...
Plan 7 ended successfully

kv-> plan deploy-sn -zn zn1 -host node05 -port 5000 -wait
Executed plan 8, waiting for completion...
Plan 8 ended successfully

kv-> plan deploy-sn -zn zn1 -host node06 -port 5000 -wait
Executed plan 9, waiting for completion...
Plan 9 ended successfully

Chapter 4
Changing the Store's Topology

4-4

kv-> plan deploy-sn -zn zn1 -host node07 -port 5000 -wait
Executed plan 10, waiting for completion...
Plan 10 ended successfully

kv-> pool join -name BostonPool -sn sn4
Added Storage Node(s) [sn4] to pool BostonPool
kv-> pool join -name BostonPool -sn sn5
Added Storage Node(s) [sn5] to pool BostonPool
kv-> pool join -name BostonPool -sn sn6
Added Storage Node(s) [sn6] to pool BostonPool
kv-> pool join -name BostonPool -sn sn7
Added Storage Node(s) [sn7] to pool BostonPool

kv-> topology clone -current -name newTopo
Created newTopo

kv-> topology redistribute -name newTopo -pool BostonPool
Redistributed: newTopo

kv-> plan deploy-topology -name newTopo -wait
Executed plan 11, waiting for completion...
Plan 11 ended successfully

The redistribute command incorporates the new Storage Node capacity that you added to the
BostonPool, and creates new shards. The command also migrates partitions to the new
shards. If the number of new shards is less than or equal to the current number of shards, the
topology redistribute command fails.

Note:

Do not execute the topology redistribute command against a store with mixed
shards. A mixed shard store has shards whose Replication Nodes are operating with
different software versions of Oracle NoSQL Database.

The system goes through these steps when it is redistributing a topology candidate:

1. The topology redistribute command creates new Replication Nodes (RNs) for each shard,
assigning the nodes to Storage Nodes according to the topology rules. While creating new
RNs, the topology command might move existing RNs to different Storage Nodes, to best
use available resources while complying with the topology rules.

2. The topology command distributes Partitions evenly among all shards. The partitions in
over populated shards are moved to shards with the least number of partitions.

You cannot specify which partitions the command moves.

Increase Replication Factor
You can use the topology change-repfactor command to increase the replication factor.
Increasing the replication factor creates more copies of the data and improves read throughput
and availability. More Replication Nodes are added to each shard so that it has the requisite
number of nodes. The new Replication Nodes are populated from existing nodes in the shard.

Chapter 4
Changing the Store's Topology

4-5

Since every shard in a zone has the same replication factor, and a large number of shards, this
command may require a significant number of new Storage Nodes to succeed.

For additional information on how to identify your primary replication factor and to understand
the implications of the factor value, see Replication Factor.

The following example increases the replication factor of the store to 4. The administrator
deploys a new Storage Node and adds it to the Storage Node pool. The admin then clones the
existing topology and transforms it to use a new replication factor of 4.

kv-> plan deploy-sn -zn zn1 -host node08 -port 5000 -wait
Executed plan 12, waiting for completion...
Plan 12 ended successfully

kv-> pool join -name BostonPool -sn sn8
Added Storage Node(s) [sn8] to pool BostonPool

kv-> topology clone -current -name repTopo
Created repTopo

kv-> topology change-repfactor -name repTopo -pool BostonPool -rf 4 -zn zn1
Changed replication factor in repTopo

kv-> plan deploy-topology -name repTopo -wait
Executed plan 13, waiting for completion...
Plan 13 ended successfully

The change-repfactor command fails if either of the following occurs:

1. The new replication factor is less than or equal to the current replication factor.

2. The Storage Nodes specified by the storage node pool do not have enough capacity to
host the required new Replication Nodes.

Balance a Non-Compliant Topology
Topologies must obey the rules described in Determining Your Store's Configuration. Changes
to the physical characteristics of the store can cause the current store topology to violate those
rules. For example, after performance tuning, you want to decrease the capacity of a Storage
Node (SN). If that SN is already hosting the maximum permissible number of Replication
Nodes, reducing its capacity will make the store non-compliant with the capacity rules. To
decrease the capacity of an SN before using the topology rebalance command , use the
change-parameters command for the storage node capacity. See plan change-parameters.

You can balance a non-compliant configuration using the topology rebalance command. This
command requires a topology candidate name and a Storage Node pool name.

Before rebalancing your topology, use the topology validate command for any violations to
the topology rules in your repTopo plan:

kv-> topology validate -name repTopo

Output:

Validation for topology candidate "repTopo":
4 warnings.

Chapter 4
Changing the Store's Topology

4-6

sn7 has 0 RepNodes and is under its capacity limit of 1
sn8 has 0 RepNodes and is under its capacity limit of 1
sn5 has 0 RepNodes and is under its capacity limit of 1
sn6 has 0 RepNodes and is under its capacity limit of 1

In this case, there are anticipated warnings, but you do not need improvements to the topology.
However, if improvements are needed, then the topology rebalance command will move or
create Replication Nodes, using the Storage Nodes in the BostonPool pool, to correct any
violations. The command does not create additional shards under any circumstances. See
Shard Capacity.

kv-> topology rebalance -name repTopo -pool BostonPool

Output:

Rebalanced: repTopo

If there are insufficient Storage Nodes, or if an insufficient storage directory size is allocated,
the topology rebalance command may be unable to correct all violations. In that case, the
command makes as much progress as possible, and warns of remaining issues.

Contracting a Topology
You can contract a topology by using the topology contract command. This command
requires a topology candidate name and a Storage Node pool name. This command supports
the removal of Storage Nodes and contracts the topology by relocating Replication Nodes,
deleting shards, and migrating partitions.

Note:

Decreasing the replication factor is not currently supported. Also, Admin relocation is
not supported. If an admin is present on a contracted Storage Node, the contraction
operation will fail.

The following example contracts the topology by removing 3 Storage Nodes (sn2, sn5 and
sn8). First, you clone the pool using the pool clone command and remove the Storage Nodes
from the cloned pool using the pool leave command. Then, the topology is contracted and
deployed using the contracted pool. Finally, the Storage Nodes can be removed using the plan
remove-sn command. This command automatically stops Storage Nodes before removal.

Clone the existing Storage Node pool as to be contractedPool
kv-> pool clone -name contractedPool -from AllStorageNodes
Cloned pool contractedPool
kv-> pool leave -name contractedPool -sn sn2
Removed Storage Node(s) [sn2] from pool contractedPool
kv-> pool leave -name contractedPool -sn sn5
Removed Storage Node(s) [sn5] from pool contractedPool
kv-> pool leave -name contractedPool -sn sn8
Removed Storage Node(s) [sn8] from pool contractedPool

Generate a contracted candidate topology

Chapter 4
Changing the Store's Topology

4-7

kv-> topology clone -current -name contractedTopology
Created contractedTopology
kv-> topology contract -name contractedTopology -pool contractedPool
Contracted: contractedTopology

Deploy the contracted candidate topology as the real topology.
kv-> plan deploy-topology -name contractedTopology -wait
Executed plan 16, waiting for completion...
Plan 16 ended successfully

Remove to-be-deleted SNs
kv-> plan remove-sn -sn sn2 -wait
Executed plan 17, waiting for completion...
Plan 17 ended successfully
kv-> plan remove-sn -sn sn5 -wait
Executed plan 18, waiting for completion...
Plan 18 ended successfully
kv-> plan remove-sn -sn sn8 -wait
Executed plan 19, waiting for completion...
Plan 19 ended successfully

View the Topology Candidate
You can view details of the topology candidate or a deployed topology by using the topology
view command. The command takes a topology name as an argument. With the topology view
command, you can view all at once: the store name, number of partitions, shards, replication
factor, host name and capacity in the specified topology.

For example:

kv-> topology view -name repTopo

Output:

store=mystore numPartitions=300 sequence=315
 zn: id=zn1 name=Boston repFactor=4 type=PRIMARY

 sn=[sn1] zn:[id=zn1 name=Boston] node01:5000 capacity=1
 [rg1-rn1]
 sn=[sn2] zn:[id=zn1 name=Boston] node02:5000 capacity=1
 [rg1-rn2]
 sn=[sn3] zn:[id=zn1 name=Boston] node03:5000 capacity=1
 [rg1-rn3]
 sn=[sn4] zn:[id=zn1 name=Boston] node04:5000 capacity=1
 [rg1-rn4]
 sn=[sn5] zn:[id=zn1 name=Boston] node05:5000 capacity=1
 sn=[sn6] zn:[id=zn1 name=Boston] node06:5000 capacity=1
 sn=[sn7] zn:[id=zn1 name=Boston] node07:5000 capacity=1
 sn=[sn8] zn:[id=zn1 name=Boston] node08:5000 capacity=1

 shard=[rg1] num partitions=300
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn2

Chapter 4
Changing the Store's Topology

4-8

 [rg1-rn3] sn=sn3
 [rg1-rn4] sn=sn4

Validate the Topology Candidate
You can validate the topology candidate or a deployed topology by using the topology
validate command. The topology validate command takes a topology name as an argument.
If no topology is specified, the current topology is validated. Validation makes sure that the
topology candidate obeys the topology rules described in Determining Your Store's
Configuration. Validation generates "violations" and "notes".

Violations are issues that can cause problems and should be investigated.

Notes are informational and highlight configuration oddities that may be potential issues, but
may be expected.

For example:

kv-> topology validate -name repTopo
Validation for topology candidate "repTopo":
4 warnings.
sn7 has 0 RepNodes and is under its capacity limit of 1
sn8 has 0 RepNodes and is under its capacity limit of 1
sn5 has 0 RepNodes and is under its capacity limit of 1
sn6 has 0 RepNodes and is under its capacity limit of 1

Preview the Topology Candidate
You should preview the changes that would be made for the specified topology candidate
relative to a starting topology. You use the topology preview command to do this. This
command takes the following arguments:

• name

A string to identify the topology.

• start <from topology>

If -start topology name is not specified, the current topology is used. This command should
be used before deploying a new topology.

For example:

kv-> topology clone -current -name redTopo
Created redTopo
kv-> topology redistribute -name redTopo -pool BostonPool
Redistributed: redTopo
kv-> topology preview -name redTopo
Topology transformation from current deployed topology to redTopo:
Create 1 shard
Create 4 RNs
Migrate 150 partitions

shard rg2
 4 new RNs: rg2-rn1 rg2-rn2 rg2-rn3 rg2-rn4
 150 partition migrations
kv-> topology validate -name redTopo

Chapter 4
Changing the Store's Topology

4-9

Validation for topology candidate "redTopo":
No problems

Deploy the Topology Candidate
When your topology candidate is satisfactory, use the Admin service to generate and execute a
plan that migrates the store to the new topology.

Deploy the topology candidate with the plan deploy-topology command, which takes a
topology name as an argument.

While the plan is executing, you can monitor the plan's progress. You have several options:

• The plan can be interrupted then retried, or canceled.

• Other, limited plans may be executed while a transformation plan is in progress to deal with
ongoing problems or failures.

By default, the plan deploy-topology command will not deploy a topology candidate if
deployment would introduce new violations of the topology rules. You can override this
behavior using the optional -force plan flag. Do not use the –force plan without consideration.
Introducing a topology rule violation can have many adverse effects.

The next example shows the topology differences before and after plan deployment. The first
show topology output lists four Storage Nodes running in Zone 1, with one shard (rg1) storing
300 partitions. Storage nodes sn5 —sn8 are available.

After deploying the plan, the show topology output lists storage nodes sn5 — sn8 as running.
Another shard exists (rg2), and the partitions are split between the two shards, each with 150
partitions.

kv-> show topology
store=mystore numPartitions=300 sequence=315
 zn: id=zn1 name=Boston repFactor=4 type=PRIMARY

 sn=[sn1] zn=[id=zn1 name=Boston] node01:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 No performance info available
 sn=[sn2] zn=[id=zn1 name=Boston] node02:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 No performance info available
 sn=[sn3] zn=[id=zn1 name=Boston] node03:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 No performance info available
 sn=[sn4] zn=[id=zn1 name=Boston] node04:5000 capacity=1 RUNNING
 [rg1-rn4] RUNNING
 No performance info available
 sn=[sn5] zn=[id=zn1 name=Boston] node05:5000 capacity=1
 sn=[sn6] zn=[id=zn1 name=Boston] node06:5000 capacity=1
 sn=[sn7] zn=[id=zn1 name=Boston] node07:5000 capacity=1
 sn=[sn8] zn=[id=zn1 name=Boston] node08:5000 capacity=1

 shard=[rg1] num partitions=300
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn2
 [rg1-rn3] sn=sn3
 [rg1-rn4] sn=sn4

Chapter 4
Changing the Store's Topology

4-10

kv-> plan deploy-topology -name redTopo -wait
Executed plan 14, waiting for completion...
Plan 14 ended successfully

kv-> show topology
store=mystore numPartitions=300 sequence=470
 zn: id=zn1 name=Boston repFactor=4 type=PRIMARY

 sn=[sn1] zn:[id=zn1 name=Boston] node01:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 No performance info available
 sn=[sn2] zn:[id=zn1 name=Boston] node02:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 No performance info available
 sn=[sn3] zn:[id=zn1 name=Boston] node03:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 No performance info available
 sn=[sn4] zn:[id=zn1 name=Boston] node04:5000 capacity=1 RUNNING
 [rg1-rn4] RUNNING
 No performance info available
 sn=[sn5] zn:[id=zn1 name=Boston] node05:5000 capacity=1 RUNNING
 [rg2-rn1] RUNNING
 No performance info available
 sn=[sn6] zn:[id=zn1 name=Boston] node06:5000 capacity=1 RUNNING
 [rg2-rn2] RUNNING
 No performance info available
 sn=[sn7] zn:[id=zn1 name=Boston] node07:5000 capacity=1 RUNNING
 [rg2-rn3] RUNNING
 No performance info available
 sn=[sn8] zn:[id=zn1 name=Boston] node08:5000 capacity=1 RUNNING
 [rg2-rn4] RUNNING
 No performance info available

 shard=[rg1] num partitions=150
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn2
 [rg1-rn3] sn=sn3
 [rg1-rn4] sn=sn4
 shard=[rg2] num partitions=150
 [rg2-rn1] sn=sn5
 [rg2-rn2] sn=sn6
 [rg2-rn3] sn=sn7
 [rg2-rn4] sn=sn8

Verify the Store's Current Topology
You can verify the store's current topology by using the verify command. The verify command
checks the current, deployed topology to make sure it adheres to the topology rules described
in Determining Your Store's Configuration.

You should examine the new topology and decide if it is satisfactory. If it is not, you can apply
more transformations, or start over with different parameters.

Chapter 4
Changing the Store's Topology

4-11

For example:

kv-> verify configuration

Output:

Verify: starting verification of store mystore based upon
 topology sequence #470
300 partitions and 8 storage nodes
Time: 2024-04-05 06:57:10 UTC Version: 24.1.11
See localhost:KVROOT/mystore/log/mystore_{0..N}.log for progress messages
Verify: Shard Status: healthy:2 writable-degraded:0 read-only:0 offline:0
Verify: Admin Status: healthy
Verify: Zone [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:8 offline:0 maxDelayMillis:0 maxCatchupTimeSecs:0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn1] Status: RUNNING,MASTER ...
Verify: == checking storage node sn2 ==
Verify: Storage Node [sn2] on node02:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg1-rn2] Status: RUNNING,REPLICA ...
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg1-rn3] Status: RUNNING,REPLICA ...
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg1-rn4] Status: RUNNING,REPLICA ...
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn1] Status: RUNNING,MASTER ...
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false

Chapter 4
Changing the Store's Topology

4-12

masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn2] Status: RUNNING,REPLICA ...
Verify: == checking storage node sn7 ==
Verify: Storage Node [sn7] on node07:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn3] Status: RUNNING,REPLICA ...
Verify: == checking storage node sn8 ==
Verify: Storage Node [sn8] on node08:5000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn4] Status: RUNNING,REPLICA ...
Verification complete, no violations.

Deploying an Arbiter Node Enabled Topology
An Arbiter Node is a service that supports write availability when the store replication factor is
two and a single Replication Node becomes unavailable. The role of an Arbiter Node is to
participate in elections and respond to acknowledge requests if one of the two Replication
Nodes in a shard becomes unavailable.

Arbiter Nodes are automatically configured in a topology if the store replication factor is two
and a primary zone is configured to host Arbiter Nodes.

For example, suppose a store consists of a primary zone, "Manhattan" with two Storage Nodes
deployed in the same shard. In this example, an Arbiter Node is deployed in the third Storage
Node (capacity = 0) in order to provide write availability even if one of the two Replication
Nodes in the shard becomes unavailable.

Note:

Durability.ReplicaAckPolicy must be set to SIMPLE_MAJORITY, so that writes can
succeed if a Replication Node becomes unavailable in a shard. For more information
on ReplicaAckPolicy, see this Javadoc page.

1. Create, start, and configure the store. Note that a Storage Node with capacity equal to zero
is deployed, which will host the Arbiter Node.

• Create the store:

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node01 \
-port 8000 \

Chapter 4
Changing the Store's Topology

4-13

-harange 8010,8020 \
-capacity 1

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node02 \
-port 9000 \
-harange 9010,9020 \
-capacity 1

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node03 \
-port 10000 \
-harange 1000,10020 \
-capacity 0 \

• Create and copy the security directories:

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar
securityconfig \
config create -root KVROOT -kspwd password
Created files
KVROOT/security/security.xml
KVROOT/security/store.keys
KVROOT/security/store.trust
KVROOT/security/client.trust
KVROOT/security/client.security
KVROOT/security/store.passwd (Generated in CE version)
KVROOT/security/store.wallet/cwallet.sso (Generated in EE version)

Created
scp -r KVROOT/security node02:KVROOT/
scp -r KVROOT/security node03:KVROOT/

• Start the store by running the following command on each Storage Node:

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar \
start -root KVROOT &

2. Load the following script conf.txt to deploy the zone, admin and Storage Nodes. To host
an Arbiter Node, the zone must be primary and should have the -arbiters flag set.

ssh node01
java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar runadmin \
-port 8000 -host node01 load -file conf.txt \
-security KVROOT/security/client.security

Chapter 4
Changing the Store's Topology

4-14

The file, conf.txt, would then contain content like this:

Begin Script
plan deploy-zone -name "Manhattan" -type primary -arbiters -rf 2 -wait
plan deploy-sn -zn zn1 -host node01 -port 8000 -wait
pool create -name SNs
pool join -name SNs -sn sn1
plan deploy-admin -sn sn1 -port 8001 -wait
plan deploy-sn -zn zn1 -host node02 -port 9000 -wait
pool join -name SNs -sn sn2
plan deploy-sn -zn zn1 -host node03 -port 10000 -wait
pool join -name SNs -sn sn3
End Script ###

3. Create a topology, preview it, and then deploy it:

kv-> topology create -name arbTopo -pool SNs -partitions 300

Output:

Created: arbTopo

kv-> topology preview -name arbTopo

Output:

Topology transformation from current deployed topology to arbTopo:
Create 1 shard
Create 2 RNs
Create 300 partitions
Create 1 AN

shard rg1
 2 new RNs : rg1-rn1 rg1-rn2
 1 new AN : rg1-an1
 300 new partitions

kv-> plan deploy-topology -name arbTopo -wait

Output:

Executed plan 6, waiting for completion...
Plan 6 ended successfully

4. Verify that the Arbiter Node is running.

kv-> verify configuration

Chapter 4
Changing the Store's Topology

4-15

Output:

Verify: starting verification of store mystore
based upon topology sequence #308
300 partitions and 3 storage nodes
Time: 2024-04-05 06:57:10 UTC Version: 24.1.11
See node01:KVROOT/mystore/log/mystore_{0..N}.log
for progress messages
Verify: Shard Status: healthy:1 writable-degraded:0
 read-only:0 offline:0
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
RN Status: online:2 offline:0 maxDelayMillis:6 maxCatchupTimeSecs:0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:8000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
Status: RUNNING
Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn1]
Status: RUNNING,MASTER sequenceNumber:635 haPort:8011 available storage
size:11 GB
Verify: == checking storage node sn2 ==
Verify: Storage Node [sn2] on node02:9000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
Status: RUNNING
Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg1-rn2]
Status: RUNNING,REPLICA
sequenceNumber:635 haPort:9010 available storage size:12 GB delayMillis:6
catchupTimeSecs:0
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:10000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
Status: RUNNING
Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Arb Node [rg1-an1]
Status: RUNNING,REPLICA sequenceNumber:0 haPort:node03:10010
...

5. Now suppose node02 is unreachable. Verify this by using verify configuration:

kv-> verify configuration

Output:

Verify: starting verification of store mystore
based upon topology sequence #308
300 partitions and 3 storage nodes
Time: 2024-04-05 06:57:10 UTC Version: 24.1.11
See node01:KVROOT/mystore/log/mystore_{0..N}.log

Chapter 4
Changing the Store's Topology

4-16

for progress messages
Verify: Shard Status: healthy:0 writable-degraded:1
 read-only:0 offline:0
Verify: Admin Status: healthy
Verify:
 Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
RN Status: online:1 offline:1
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:8000
Zone:
 [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn1]
Status: RUNNING,MASTER sequenceNumber:901 haPort:8011 available storage
size:12 GB
Verify: == checking storage node sn2 ==
Verify: sn2: ping() failed for sn2 : Unable to connect to
the storage node agent at host node02, port 9000, which may not be
running; nested exception is:
 java.rmi.ConnectException: Connection refused to
 host: node02; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Storage Node [sn2] on node02:9000
Zone:
 [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false] UNREACHABLE
Verify: rg1-rn2: ping() failed for rg1-rn2 : Unable to connect
to the storage node agent at host node02, port 9000, which may not
be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused
Verify: Rep Node [rg1-rn2] Status: UNREACHABLE
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:10000
 Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=true
masterAffinity=false]
 Status: RUNNING
Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Arb Node [rg1-an1]
Status: RUNNING,REPLICA sequenceNumber:901 haPort:node03:10010 available
storage size:16 GB delayMillis:? catchupTimeSecs:?
Verification complete, 3 violations, 0 notes found.
Verification violation: [rg1-rn2]
ping() failed for rg1-rn2 : Unable to connect to the storage node
agent at host node02, port 9000, which may not be running;
nested exception is:
 java.rmi.ConnectException: Connection refused to
 host: node02; nested exception is:
 java.net.ConnectException: Connection refused
Verification violation: [sn2] ping() failed for sn2 : Unable to
connect to the storage node agent at host node02, port 9000, which

Chapter 4
Changing the Store's Topology

4-17

may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
nested exception is:
 java.net.ConnectException: Connection refused
...

In this case the Arbiter Node supports write availability so you can still perform write
operations while node02 is repaired or replaced. Once node02 is restored, any written data
will be migrated.

6. Test that you can still write to the store with the help of the Arbiter Node. For example, run
the script file test.kvsql (see below for test.kvsql) using the Oracle NoSQL Database
Shell utility (see below example). To do this, use the load command in the Query Shell:

> java -jar KVHOME/lib/sql.jar -helper-hosts node01:8000 \
-store mystore -security USER/security/admin.security

kvsql-> load -file ./test.kvsql

Output:

Statement completed successfully.
Statement completed successfully.
Loaded 3 rows to users.

Note:

For the Enterprise Edition (EE) installation, make sure the kvstore-ee.jar is added
in the classpath.

The following commands are collected in test.kvsql:

Begin Script
load -file test.ddl
import -table users -file users.json
End Script

Where the file test.ddl would contain content like this:

DROP TABLE IF EXISTS users;
CREATE TABLE users(id INTEGER, firstname STRING, lastname STRING,
age INTEGER, primary key (id));

And the file users.json would contain content like this:

{"id":1,"firstname":"Dean","lastname":"Morrison","age":51}
{"id":2,"firstname":"Idona","lastname":"Roman","age":36}
{"id":3,"firstname":"Bruno","lastname":"Nunez","age":49}

Chapter 4
Changing the Store's Topology

4-18

Backup and Recovery
Topics:

• Backing Up the Store

• Recovering the Store

• Recovering from Data Corruption

• Replacing a Failed Disk

• Replacing a Failed Storage Node

• Repairing a Failed Zone by Replacing Hardware

Backing Up the Store
To make backups of your KVStore, use the CLI snapshot command to copy nodes in the store.
To maintain consistency, no topology changes should be in process when you create a
snapshot. Restoring a snapshot relies on the system configuration having exactly the same
topology that was in effect when you created the snapshot.

When you create a snapshot, it is stored in a subdirectory of the SN. But these snapshots don't
become persistent backups unless they are copied to separate storage. It is your responsibility
to copy each of the snapshots to another location, preferably on a different machine, for data
safety.

Due to the distributed nature and scale of Oracle NoSQL Database, it is unlikely that a single
machine has the resources to contain snapshots for the entire store. This document does not
address where and how you should store your snapshots.

Taking a Snapshot

Note:

To avoid any snapshot from being inconsistent or unusable, do not take snapshots
while any configuration (topological) changes are in process. At the time of the
snapshot, use the ping command and save the output information that identifies
Masters for later use during a load or restore. For more information, see Managing
Snapshots.

To create a snapshot from the Admin CLI, use the snapshot create command:

kv-> snapshot create -name <snapshot name>

A snapshot consists of a set of hard links to data files in the current topology, specifically, all
partition records within the same shard. The snapshot does not include partitions in
independent shards. To minimize any potential inconsistencies, the snapshot utility performs its
operations in parallel as much as possible.

Chapter 4
Backup and Recovery

4-19

To create a snapshot with a name of your choice, use snapshot create –name <name>.

kv-> snapshot create -name Thursday

Output:

Created snapshot named 110915-153514-Thursday on all 3 nodes
Successfully backup configurations on sn1, sn2, sn3

Snapshot Activities

Creating a snapshot of the Oracle NoSQL Database store performs these activities:

• Backs up the data files

• Backs up the configuration and environment files required for restore activities

To complete a full set of snapshot files, the snapshot command attempts to backup the storage
node data files, configuration files, and adds other required files. Following is a description of
the various files and directories the snapshot command creates or copies:

Creates a snapshots directory as a
peer to the env directory. Each
snapshots directory contains one
subdirectory for each snapshot you
create. That subdirectory contains
the *.jdb files.

The snapshot name subdirectory
with a date-time-name prefix has
the name you supply with the –name
parameter. The date-time prefix
consists of a 6-digit, year, month,
day value in YYMMDD format, and
a 6-digit hour, minute, seconds
timestamp as HHMMSS. The date
and time values are separated from
each other with a dash (-), and
include a dash (-) suffix before the
snapshot name.

kvroot/mystore/sn1/rg1-rn1/snapshots/
170417-104506-snapshotName/*.jdb
kvroot/mystore/sn1/rg1-rn1/env/*.jdb
kvroot/mystore/sn1/admin1/snapshots/
170417-104506-snapshotName/*.jdb
kvroot/mystore/sn1/admin1/env/*.jdb

Copies the root config.xml file to
the date-time-name directory. kvroot/config.xml >

kvroot/snapshots/170417-104506-snapshotName/
config.xml

Creates a status file in the date-
time-name subdirectory. The
contents of this file, snapshot.stat,
indicate whether creating a
snapshot was successful. When
you restore to a snapshot, the
procedure first validates the status
file contents, continuing only if the

kvroot/snapshots/170417-104506-snapshotName/
snapshot.stat

Chapter 4
Backup and Recovery

4-20

file contains the string
SNAPSHOT=COMPLETED.

Creates a lock file in the date-time-
name subdirectory. The lock file,
snapshot.lck, is used to avoid
concurrent modifications from
different SN Admins within the
same root directory.

kvroot/snapshots/170417-104506-snapshotName/
snapshot.lck

Creates a subdirectory of the date-
time-name subdirectory, security.
This subdirectory has copies of
security information copied from
kvroot/security.

kvroot/snapshots/170417-104506-snapshotName/
security

Copies the root security policy from
kvroot/security.policy, to the
date-time-name subdirectory.

kvroot/snapshots/170417-104506-snapshotName/
security.policy

Copies the store security policy to
date-time-name subdirectory, into
another subdirectory, mystore.

kvroot/snapshots/170417-104506-snapshotName/
mystore/security.policy

Copies the Storage Node
configuration file, config.xml, from
kvroot/mystore/sn1/config.xml
to a corresponding SN subdirectory
in the date-time-name directory.

kvroot/snapshots/170417-104506-snapshotName/
mystore/sn1/config.xml

Copying a Snapshot
Keeping a snapshot in place for a short time so that it can be used to rollback the store after an
upgrade is a reasonable thing to do. In such a scenario, it might be sufficient to delete the
snapshot without copying it if the upgrade can be verified relatively quickly and the snapshot is
no longer needed.

For ensuring data safety during disk or hardware failures, it is recommended that you convert
these snapshots into persistent backups. Otherwise, if the machine suffers a disk or other
hardware failure, or if store files are deleted or overwritten, the snapshot will be lost along with
the live data for the store maintained on that machine.

To convert the snapshot into a persistent backup, the snapshot needs to be copied to another
location on a different machine. Later, you can use the persistent backup to restore the store
after a disk or hardware failure.

Deleting a Snapshot
To remove an existing snapshot, use snapshot remove <name>.

kv-> snapshot remove -name 110915-153514-Thursday
Removed snapshot 110915-153514-Thursday

Chapter 4
Backup and Recovery

4-21

To remove all snapshots currently stored in the store, use snapshot remove –all.

kv-> snapshot create -name Thursday
Created snapshot named 110915-153700-Thursday on all 3 nodes
kv-> snapshot create -name later
Created snapshot named 110915-153710-later on all 3 nodes
kv-> snapshot remove -all
Removed all snapshots

Managing Snapshots
When you create a snapshot, the utility collects data from every Replication Node in the
system, including Masters and replicas. If the operation does not succeed for any one node in
a shard, the entire snapshot fails.

When you are preparing to take the snapshot, you can use the ping command to identify which
nodes are currently running as the Master. Each shard has a Master, identified by the MASTER
keyword. For example, in the sample output, replication node rg1-rn1, running on Storage
Node sn1, is the current Master:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar ping -port 5000 -host node01 \
-security USER/security/admin/security

Output:

Pinging components of store mystore based upon topology sequence #316
300 partitions and 3 storage nodes
Time: 2024-04-05 06:57:10 UTC Version: 24.1.11
Shard Status: healthy:3 writable-degraded:0 read-only:0 offline:0
Admin Status: healthy
Zone [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:9 offline:0 maxDelayMillis:1 maxCatchupTimeSecs:0
Storage Node [sn1] on node01:5000
 Zone: [name=Boston id=zn1 type=PRIMARY]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:5011 available storage size:14 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg2-rn1] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:5012 available storage size:12 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg3-rn1] Status: RUNNING,MASTER
 sequenceNumber:227 haPort:5013 available storage size:13 GB
Storage Node [sn2] on node02:6000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
 Rep Node [rg1-rn2] Status: RUNNING,MASTER
 sequenceNumber:231 haPort:6010 available storage size:15 GB

Chapter 4
Backup and Recovery

4-22

 Rep Node [rg2-rn2] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:6011 available storage size:18 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg3-rn2] Status: RUNNING,REPLICA
 sequenceNumber:227 haPort:6012 available storage size:12 GB
delayMillis:1 catchupTimeSecs:0
Storage Node [sn3] on node03:7000
 Zone: [name=Boston id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA
 sequenceNumber:231 haPort:7010 available storage size:11 GB
delayMillis:1 catchupTimeSecs:0
 Rep Node [rg2-rn3] Status: RUNNING,MASTER
 sequenceNumber:231 haPort:7011 available storage size:11 GB
 Rep Node [rg3-rn3] Status: RUNNING,REPLICA
 sequenceNumber:227 haPort:7012 available storage size:10 GB
delayMillis:1 catchupTimeSecs:0

You should save the above information and associate it with the respective snapshot, for later
use during a load or restore. If you decide to create an off-store copy of the snapshot, you
should copy the snapshot data for only one of the nodes in each shard. If possible, copy the
snapshot data taken from the node that was serving as the Master at the time the snapshot
was taken.

Note:

Snapshots include the admin database, which may be required if the store needs to
be restored from this snapshot.

Snapshot data for the local Storage Node is stored in a directory inside of the KVROOT directory.
For each Storage Node in the store, you have a directory named:

KVROOT/<store>/<SN>/<resource>/snapshots/<snapshot_name>/files

where:

• <store> is the name of the store.

• <SN> is the name of the Storage Node.

• <resource> is the name of the resource running on the Storage Node. Typically, this is the
name of a replication node.

• <snapshot_name> is the name of the snapshot.

Snapshot data consists of a number of files. For example:

 > ls /var/kvroot/mystore/sn1/rg1-rn1/snapshots/110915-153514-Thursday
00000000.jdb 00000002.jdb 00000004.jdb 00000006.jdb
00000001.jdb 00000003.jdb 00000005.jdb 00000007.jdb

Chapter 4
Backup and Recovery

4-23

Note:

To preserve storage, purge obsolete snapshots on a periodic basis.

Impact of Erasure with snapshots

Snapshot based backups create hard-links to original files. Until these backups are copied to
their target location (complete off-store copy work) and the corresponding hard-links are
removed (performing a snapshot remove command), erasure doesn't process obsolete data in
those files. Erasure ignores files with hard-links to them.

Avoiding Disk Usage Violation

The storage engine does not consider the data consumed by snapshots when it collects
information about disk space usage. Initially, the files in the snapshot are considered to be part
of the live data of the store. Over time, though, as older files are cleaned and deleted, their
presence in the snapshot causes the files to be retained and use the disk space that is not
taken into account by the storage engine. It could cause a disk usage violation, in which case
further writes to the store are disabled. To avoid this problem, users should delete snapshot
files at regular intervals.

Recovering the Store
There are two ways to recover your store from a previously created snapshot:

1. Use a snapshot to create a store with any topology with the Load utility.

2. Restore a snapshot using the exact topology you were using when you created the
snapshot.

This section describes and explains both ways to recover your store.

Note:

If you need to recover due to a hardware problem, such as a failed Storage Node,
that qualifies as a topology change, so you must use the Load utility to recover. For
information about replacing a failed Storage Node, see Replacing a Failed Storage
Node.

Using the Load Program
You can use the oracle.kv.util.Load program to restore a store from a previously created
snapshot. You can run this program directly, or you can access it using kvstore.jar, as shown
in the examples in this section.

Using this tool lets you restore to any topology, not just the topology in effect when you created
the snapshot.

This Load mechanism works by iterating through all records in a snapshot, putting each record
into a target store as it proceeds through the snapshot. Use Load to populate a new, empty
store. Do not use this with an existing store. Load only writes records if they do not already
exist.

Chapter 4
Backup and Recovery

4-24

Note that to recover the store, you must load records from snapshot data captured for each
shard in the store. For best results, you should load records using snapshot data captured from
the replication nodes that were running as Master at the time the snapshot was taken. (If you
have three shards in your store, then there are three Masters at any given time, and so you
need to load data from three sets of snapshot data). To identify the Master, use ping at the time
the snapshot was taken.

You should use snapshot data taken at the same point in time; do not, for example, use
snapshot data for shard 1 that was taken on Monday, and snapshot data for shard 2 that was
taken on Wednesday. Such actions will restore your store to an inconsistent state.

Also, the Load mechanism can only process data at the speed necessary to insert data into a
new store. Because you probably have multiple shards in your store, you should restore your
store from data taken from each shard. To do this, run multiple instances of the Load program
in parallel, having each instance operate on data from different replication nodes.

The program's usage to load admin metadata is:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load \
-store <storeName> -host <hostname> port <port> \
-load-admin \
-source <admin-backup-dir> \
[-force] [-username <user>] \
[-security <security-file-path>]

The program's usage to load store data is:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load [-verbose] \
-store <storeName> -host <hostname> \
-port <port> -source <shard-backup-dir> \
[, <shard-backup-dir>]* \
[-checkpoint <checkpoint-files-directory>] \
[-username <user>] [-security <security-file-path>]

where:

• -load-admin Loads the store metadata from the snapshot to the new store. In this case the
-source directory must point to the environment directory of the admin node from the
snapshot. The store must not be available for use by users at the time of this operation.

Note:

This option should not be used on a store unless that store is being restored from
scratch. If -force is specified in conjunction with -load-admin, any existing
metadata in the store, including tables and security metadata, will be overwritten.
For more information, see Load Program and Metadata.

• -host <hostname> identifies the host name of a node in your store.

• -port <port> identifies the registry port in use by the store's node.

• -security <security-file-path> identifies the security file used to specify properties for
login.

Chapter 4
Backup and Recovery

4-25

• -source <admin-backup-dir> | <shard-backup-dir> [,<shard-backup-dir>]* admin-
backup-dir specifies the admin snapshot directory containing the contents of the admin
metadata that is to be loaded into the store.

Shard-backup-dir specifies the backup directories that represent the contents of
snapshots created using the snapshot commands described at Taking a Snapshot.

• -store <storeName> identifies the name of the store.

• -username <user> identifies the name of the user to login to the secured store.

Any administrative user who wants to restore records into a secure data store needs to have
the required privileges. Before restoring data using the load command, run the following
command to grant the user with the required privileges as shown below.

GRANT writesystable,readwrite TO USER <admin_user>

See Grant Roles and Privileges for more details.

Note:

If the user performing the restore does not have sufficient privilege, the Load program
fails with the below exception.

Load operation failed with exception: oracle.kv.FaultException:
Insufficient access rights granted (24.1.0) on [YYYY-MM-DD HH:MI:SS
UTC]
Fault class name: oracle.kv.UnauthorizedException

For example, if a snapshot exists in /var/backups/snapshots/110915-153828-later, and a
new store named "mystore" on host "host1" using registry port 5000, run the Load program on
the host that has the /var/backups/snapshots directory:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load \
-source /var/backups/snapshots/110915-153514-Thursday -store mystore \
-host host1 -port 5000 -security KVROOT/security/client.security

Note:

Before you load records into the new store, make sure that the store is deployed. For
more information, see Configuring a single region data store.

Load Program and Metadata
You can use the Load program to restore a store with metadata (tables, security) from a
previously created snapshot.

The following steps describe how to load from a snapshot with metadata to a newly created
store:

Chapter 4
Backup and Recovery

4-26

1. Create, start and configure the new store (target). Do not make the store accessible to
applications yet.

• Create the new store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host NewHost -port 8000 \
-harange 8010,8020 \
-capacity 1

• Create security directory:

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar securityconfig \
config create
-root KVROOT -kspwd password
Created files
KVROOT/security/security.xml
KVROOT/security/store.keys
KVROOT/security/store.trust
KVROOT/security/client.trust
KVROOT/security/client.security
KVROOT/security/store.passwd (Generated in CE version)
KVROOT/security/store.wallet/cwallet.sso (Generated in EE version)

Created

• Start the new store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start \
-root KVROOT &

• Configure the new store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-port 8000 -host NewHost \
-security KVROOT/security/client.security
kv-> configure -name NewStore
Store configured: NewStore

Note:

Loading security metadata requires the names of the source store and the target
store to be the same, otherwise the security metadata cannot be used later.

2. Locate the snapshot directories for the source store. There should be one for the admin
nodes plus one for each shard. For example in a 3x3 store there should be 4 snapshot
directories used for the load. The load program must have direct file-based access to each

Chapter 4
Backup and Recovery

4-27

snapshot directory loaded. In this case, the snapshot source directory is in /var/kvroot/
mystore/sn1/admin1/snapshots/110915-153514-Thursday.

3. Load the store metadata using the -load-admin option. Host, port, and store refer to the
target store. In this case the -source directory must point to the environment directory of
the admin node from the snapshot.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load \
-source \
/var/kvroot/mystore/sn1/admin1/snapshots/110915-153514-Thursday \
-store NewStore -host NewHost -port 8000 \
-load-admin \
-security KVROOT/security/client.security

Note:

This command can be run more than once if something goes wrong, as long as
the store is not accessible to applications.

4. Deploy the store. For more information, see Configuring a single region data store.

5. Once the topology is deployed, load the shard data for each shard. To do this, run the Load
program in parallel, with each instance operating on data captured from different
replication nodes. For example, suppose there is a snapshot of OldStore in var/backups/
snapshots/140827-144141-back.

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load \
-source var/backups/snapshots/140827-144141-back -store NewStore \
-host NewHost -port 8000 \
-security KVROOT/security/client.security

Note:

This step may take a long time or might need to be restarted. In order to
significantly reduce retry time, the use of a status file is recommended.

If the previous store has been configured with username and password, the
program will prompt for username and password here.

6. The store is now ready for applications.

Restoring Directly from a Snapshot
You can restore a store directly from a snapshot. This mechanism is faster than using the Load
program. However, you can restore from a snapshot only to the exact same topology as was in
use when the snapshot was taken. This means that all ports and host names or IP addresses
(depending on your configuration) must be exactly the same as when you took the snapshot.

To restore from a snapshot, complete these steps:

Chapter 4
Backup and Recovery

4-28

1. Run this command on each of the Storage Nodes (SNs) to shut down the store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop -root $KVROOT

2. When each SN is stopped, run this command on each SN in the store to restore to the
backup (using –update-config true):

> java -jar KVHOME/lib/kvstore.jar start -root /var/kvroot \
-restore-from-snapshot 170417-104506-mySnapshot -update-config true

3. To restore to the backup, but not override the existing configurations, run this command on
each SN (with –update-config false):

> java -jar KVHOME/lib/kvstore.jar start -root /var/kvroot \
-restore-from-snapshot 170417-104506-mySnapshot -update-config false

The 170417–104506–mySnapshot value represents the directory name of the snapshot to
restore.

Note:

This procedure recovers the store to the time you created the snapshot. If your store
was active after snapshot creation, all modifications made since the last snapshot are
lost.

Recovering from Data Corruption
Oracle NoSQL Database can automatically detect data corruption in the database store. When
it detects data corruption, Oracle NoSQL Database automatically shuts down the associated
Admin or Replication Nodes. Manual administrative action is then required before the nodes
can be brought back online.

Detecting Data Corruption
Oracle NoSQL Database Admin or Replication Node processes will exit when they detect data
corruption. This is caused by a background task which detects data corruption caused by a
disk failure, or similar physical media or I/O subsystem problem. Typically, the corruption is
detected because of a checksum error in a log entry in one of the data (*.jdb) files contained in
an Admin or Replication Node database environment. A data corruption error generates output
in the debug log similar to this:

2024-04-05 16:59:52.265 UTC SEVERE [rg1-rn1] Process exiting
com.sleepycat.je.EnvironmentFailureException: (JE 7.3.2)
rg1-rn1(-1):kvroot/mystore/sn1/rg1-rn1/env
com.sleepycat.je.log.ChecksumException:
Invalid log entry type: 102 lsn=0x0/0x0 bufPosition=5
bufRemaining=4091 LOG_CHECKSUM:
Checksum invalid on read, log is likely invalid. Environment is
invalid and must be closed

Chapter 4
Backup and Recovery

4-29

...
2024-04-05 16:59:52.270 UTC SEVERE [rg1-rn1] Exception creating
service rg1-rn1:
(JE 7.3.2) rg1-rn1(-1):kvroot/mystore/sn1/rg1-rn1/env
com.sleepycat.je.log.ChecksumException:
Invalid log entry type: 102 lsn=0x0/0x0 bufPosition=5
bufRemaining=4091 LOG_CHECKSUM:
Checksum invalid on read, log is likely invalid. Environment is
invalid and must be closed. (12.1.4.3.0): oracle.kv.FaultException:
(JE 7.3.2) rg1-rn1(-1):kvroot/mystore/sn1/rg1-rn1/env
com.sleepycat.je.log.ChecksumException: Invalid log entry type: 102
lsn=0x0/0x0 bufPosition=5 bufRemaining=4091 LOG_CHECKSUM: Checksum
invalid on read, log is likely invalid. Environment is invalid and
must be closed. (12.1.4.3.0)
Fault class name: com.sleepycat.je.EnvironmentFailureException
...
2024-04-05 16:59:52.272 UTC INFO [rg1-rn1] Service status changed
from STARTING to ERROR_NO_RESTART

The EnvironmentFailureException will cause the process to exit. Because the exception was
caused by log corruption, the service status is set to ERROR_NO_RESTART, which means that the
service will not restart automatically.

Data Corruption Recovery Procedure
If an Admin or Replication Node has been stopped due to data corruption, then manual
administration intervention is required in order to restart the Node:

1. Optional: Archive the corrupted environment data files.

If you want to send the corrupted environment to Oracle support for help in identifying the
root cause of the failure, archive the corrupted environment data files. These are usually
located at:

<KVROOT>/<STORE_NAME>/<SNx>/<Adminx>/"

or

<KVROOT>/<STORE_NAME>/<SNx>/<rgx-rnx>"

However, if you used the plan change-storagedir CLI command to change the storage
directory for your Replication Node, then you will find the environment in the location that
you specified to that command.

You can use the show topology CLI command to display your store's topology. As part of
this information, the storage directory for each of your Replication Nodes are identified.

2. Confirm that a non-corrupted version of the data is available.

Before removing the files associated with the corrupted environment, confirm that another
copy of the data is available either on another node or via a previously save snapshot. For
a Replication Node, you must be using a Replication Factor greater than 1 and also have a
properly operating Replication Node in the store in order for the data to reside elsewhere in
the store. If you are using a RF=1, then you must have a previously saved snapshot in
order to continue.

Chapter 4
Backup and Recovery

4-30

If the problem is with an Admin Node, there must be to be another Admin available in the
store that is operating properly.

Use the ping or verify configuration commands to check if the available nodes are running
properly and healthy.

3. Remove all the data files that reside in the corrupted environment.

Once the data files associated with a corrupted environment have been saved elsewhere,
and you have confirmed that another copy of the data is available, delete all the data files
in the enviroment directory. Make sure you only delete the files associated with the Admin
or Replication Node that has failed due to a corrupted environment error.

ls <KVROOT>/mystore/sn1/rg1-rn1/env
00000000.jdb 00000001.jdb 00000002.jdb je.config.csv
je.info.0 je.lck je.stat.csv

rm <KVROOT>/mystore/sn1/rg1-rn1/env/*.jdb

4. Perform recovery using either Network Restore, or from a backup. Be aware the recovery
from a backup will not work to recover an Admin Node.

• Recovery using Network Restore

Network restore can be used to recover from data corruption if the corrupted node
belongs to a replication group that has other replication nodes available. Network
restore is automatic recovery task. After removing all of the database files in the
corrupted environment, you only need to connect to CLI and restart the corrupted
node.

For a Replication Node:

kv-> plan start-service -service rg1-rn1

For an Admin:

kv-> plan start-service -service rg1-rn1

• Recovery from a backup (RNs only)

If the store does not have another member in the Replication Node's shard or if all of
the nodes in the shard have failed due to data corruption, you will need to restore the
node's environment from a previously created snapshot. See Recovering the Store for
details.

Note that to recover an Admin that has failed due to data corruption, you must have a
working Admin somewhere in the store. Snapshots do not capture Admin data.

Replacing a Failed Disk
You can replace a disk that is either in the process of failing, or has already failed. Disk
replacement procedures are necessary to keep the store running. These are the steps required
to replace a failed disk to preserve data availability.

Chapter 4
Backup and Recovery

4-31

The following example deploys a KVStore to a set of three machines, each with 3 disks. Use
the storagedir flag of the makebootconfig command to specify the storage location of the
disks.

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
 -root /opt/ondb/var/kvroot \
 -port 5000 \
 -host node09
 -harange 5010,5020 \
 -num_cpus 0 \
 -memory_mb 0 \
 -capacity 3 \
 -admindir /disk1/ondb/admin -admindirsize 1_gb \
 -storagedir /disk1/ondb/data \
 -storagedir /disk2/ondb/data \
 -storagedir /disk3/ondb/data \
 -rnlogdir /disk1/ondb/rnlog01

With a boot configuration such as the previous example, the directory structure created and
populated on each machine is as follows:

 - Machine 1 (SN1) - - Machine 2 (SN2) - - Machine 3 (SN3) -
/opt/ondb/var/kvroot /opt/ondb/var/kvroot /opt/ondb/var/kvroot
 /security /security /security
 /store-name /store-name /store-name
 /sn1 /sn2 /sn3
 config.xml config.xml config.xml

/disk1/ondb/admin /disk1/ondb/admin /disk1/ondb/admin
 /admin1 /admin2 /admin3
 /env /env /env

/disk1/ondb/data /disk1/ondb/data /disk1/ondb/data
 /rg1-rn1 /rg1-rn2 /rg1-rn3
 /env /env /env

/disk2/ondb/data /disk2/ondb/data /disk2/ondb/data
 /rg2-rn1 /rg2-rn2 /rg2-rn3
 /env /env /env

/disk3/ondb/data /disk3/ondb/data /disk3/ondb/data
 /rg3-rn1 /rg3-rn2 /rg3-rn3
 /env /env /env

/disk1/ondb/rnlog01 /disk1/ondb/rnlog01 /disk1/ondb/rnlog01
 /log /log /log

In this case, configuration information and administrative data is stored in a location that is
separate from all of the replication data. The replication data itself is stored by each distinct
Replication Node service on separate, physical media as well. Storing data in this way
provides failure isolation and will typically make disk replacement less complicated and time
consuming. For information on how to deploy a store, see Configuring a single region data
store.

Chapter 4
Backup and Recovery

4-32

To replace a failed disk:

1. Determine which disk has failed. To do this, you can use standard system monitoring and
management mechanisms. In the previous example, suppose disk2 on Storage Node 3
fails and needs to be replaced.

2. Then given a directory structure, determine which Replication Node service to stop. With
the structure described above, the store writes replicated data to disk2 on Storage Node 3,
so rg2-rn3 must be stopped before replacing the failed disk.

3. Use the plan stop-service command to stop the affected service (rg2-rn3) so that any
attempts by the system to communicate with it are no longer made; resulting in a reduction
in the amount of error output related to a failure you are already aware of.

kv-> plan stop-service -service rg2-rn3

4. Remove the failed disk (disk2) using whatever procedure is dictated by the operating
system, disk manufacturer, and/or hardware platform.

5. Install a new disk using any appropriate procedures.

6. Format the disk to have the same storage directory as before; in this case, /disk2/
ondb/var/kvroot.

7. With the new disk in place, use the plan start-service command to start the rg2-rn3
service.

kv-> plan start-service -service rg2-rn3

Note:

Depending on the amount of data stored on the disk before it failed, recovering
that data can take a considerable amount of time. Also, the system may
encounter unexpected or additional network traffic and load while repopulating
the new disk. If so, such events add even more time to completion.

Replacing a Failed Storage Node
You can replace a failed Storage Node, or one that is in the process of failing. Upgrading a
healthy machine to another one with better specifications is also a common Storage Node
replacement scenario. Generally, you should repair the underlying problem (be it hardware or
software related) before proceeding with this procedure.

There are two ways to replace a failed Storage Node:

• A new, different Storage node

• An identical Storage Node

This section describes both replacement possibilities.

Chapter 4
Backup and Recovery

4-33

Note:

Replacing a Storage Node qualifies as a topology change. This means that if you
want to restore your store from a snapshot taken before the Storage Node was
replaced, you must use the Load program. See Using the Load Program for more
information.

Using a New Storage Node

To replace a failed Storage Node by using a new, different Storage Node (node uses different
host name, IP address, and port as the failed host):

1. If you are replacing hardware, bring it up and make sure it is ready for your production
environment.

2. On the new, replacement node, create a "boot config" configuration file using the
makebootconfig utility with the following commands. Enable the security configuration
option in the new node. Do this on the hardware where your new Storage Node runs.

> mkdir -p KVROOT (if it doesn't already exist)
> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig -root KVROOT \
 -port 5000 \
 -host <hostname> \
 -harange 5010,5020 \
 -capacity 1 \
 -admindir /export/admin1 \
 -admindirsize 3_gb \
 -store-security enable \
 -storagedir /export/data1 \
 -storagedirsize 1_tb \
 -rnlogdir /export/rnlog1

3. Create the security directory under KVROOT in your new node.

> cd KVROOT
> mkdir security

4. Copy the security directory from a healthy node to the failed node:

scp -r <sec dir> node02:KVROOT/security

5. Start the Oracle NoSQL Database software on the new node:

> nohup java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT &

6. Deploy the new Storage Node to the new node. To do this using the CLI:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-port <5000> -host <host> \

Chapter 4
Backup and Recovery

4-34

 -security security/client.security
kv-> plan deploy-sn -zn <id> -host <host> -port <5000> -wait

7. Add the new Storage Node to the Storage Node pool. (You created a Storage Node pool
when you installed the store, and you added all your Storage Nodes to it, but it is otherwise
not used in this version of the product.)

kv-> show pools
AllStorageNodes: sn1, sn2, sn3, sn4 ... sn25, sn26
BostonPool: sn1, sn2, sn3, sn4 ... sn25
kv-> pool join -name BostonPool -sn sn26
AllStorageNodes: sn1, sn2, sn3, sn4 ... sn25, sn26
BostonPool: sn1, sn2, sn3, sn4 ... sn25

8. Make sure the old Storage Node is not running. If the problem is with the hardware, then
turn off the broken machine. You can also stop just the Storage Node software by:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop -root KVROOT &

9. Migrate the services from one Storage Node to another. The syntax for this plan is:

kv-> plan migrate-sn -from <old SN ID> -to <new SN ID> -wait

Assuming that you are migrating from Storage Node 25 to 26, you would use:

kv-> plan migrate-sn -from sn25 -to sn26 -wait

10. The old Storage Node is shown in the topology and is reported as UNREACHABLE. The
source SNA should be removed and its rootdir should be hosed out. Bringing up the old
SNA will also bring up the old Replication Nodes and admins, which are no longer
members of their replication groups. This should be harmless to the rest of the store, but it
produces log error messages that might be misinterpreted as indicating a problem with the
store. Use the plan remove-sn command to remove the old and unused Storage Node in
your deployment.

kv-> plan remove-sn sn sn25 -wait

11. Use the ping command to verify the migration to the new node is complete and all services
are running well.

> java -Xmx64m -Xms64m \
 -jar KVHOME/lib/kvstore.jar ping \
 -port <5000> -host <host> \
 -security security/client.security

Chapter 4
Backup and Recovery

4-35

Note:

Replacing a Storage Node qualifies as a topology change. This means that if you
want to restore your store from a snapshot taken before the Storage Node was
replaced, you must use the Load program. See Using the Load Program for more
information.

Task for an Identical Node

To replace a failed Storage Node with an identical node, i.e. the target node uses the same
host name, internet address, and port as the failed host.

1. Prerequisite information:

a. The hostname and port number (registry port) of the machine in the cluster where the
admin process is running (e.g “host1” and 5000).

b. The ID of the Storage Node to replace (e.g. "sn1").

Note:

The user can use the Admin CLI ping command to get the registry port and
Storage Node Identifier of any failed Storage Node.

c. Before starting the new Storage Node, the Storage Node to be replaced must be taken
down. This can be done administratively or via failure.

Note:

The instructions below assume that the KVROOT in the target host is empty and
has no valid data. When the new Storage Node Agent begins it starts the
services that it hosts, which recovers their data from other hosts. The time taken
for the recovery depends on the size of the shards involved and it happens in the
background.

2. Create the configuration file of the failed host using the generateconfig command. The
generateconfig command can be executed from any active host (machine) in the NoSQL
cluster.

The generateconfig's usage is:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar generateconfig \
-host <hostname> -port <port> -sn <StorageNodeId> -target <zipfile> \
-security <path to security login file>

Parameter Required Description

host Yes The host name of the failed
storage node for which the
config file is generated.

Chapter 4
Backup and Recovery

4-36

Parameter Required Description

port Yes The registry port of the failed
storage node for which the
config file is generated.

sn Yes Identifier of the failed storage
node.

target Yes Full path of the zip file to be
created.

security No The client security configuration
file. This parameter is only
required if your store is secure.
A fully qualified path to a file
containing security information
can be specified.

For more information on generateconfig command, See generateconfig

For example:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar generateconfig -host adminhost \
-port 13230 -sn sn1 -target /tmp/sn1.config.zip \
-security USER/security/admin.security

The command above creates the target "/tmp/sn1.config.zip" . This is a zip file with the
required configuration to re-create the failed Storage Node. The top-level directory in the
newly created zip file (sn1.config.zip) is the store's KVROOT.

Note:

This assumes that you must have followed the steps as mentioned in Create
users and configure security with remote access .

3. Restore the Storage Node configuration on the target host:

a. Copy the zip file "sn1.config.zip" to the target host.

b. Unzip the archive into your target host's KVROOT directory. That is, if KVROOT is /opt/
kvroot, then do the following:

> cd /opt
> unzip <path-to-sn1.config.zip>

Note:

If kvroot already exists under /opt directory , remove all the contents in the
kvroot directory before unzipping the config file.

4. Restart the Storage Node on the target host.

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start -root KVROOT

Chapter 4
Backup and Recovery

4-37

Note:

The hostname, port number and internet address of the target host and the failed
node are the same. So no changes have to be done in the Storage Node pool
and the topology of the store.

Repairing a Failed Zone by Replacing Hardware
If all of the machines belonging to a zone fail, and quorum is maintained, you can replace them
by using new, different Storage Nodes deployed to the same zone.

If a zone fails but quorum is lost, you can perform a failover instead. To do this, see Performing
a Failover.

For example, suppose a store consists of three zones; zn1, deployed to the machines on the
first floor of a physical data center, zn2, deployed to the machines on the second floor, and zn3,
deployed to the third floor. Additionally, suppose that a fire destroyed all of the machines on the
second floor, resulting in the failure of all of the associated Storage Nodes. In this case, you
need to replace the machines in the zn2 zone; which can be accomplished by doing the
following:

1. Replace each individual Storage Node in the failed zone with new, different Storage Nodes
belonging to same zone (zn2), although located in a new physical location. To do this,
follow the instructions in Replacing a Failed Storage Node. Make sure to remove each old
Storage Node after performing the replacement.

2. After replacing and then removing each of the targeted SNs, the zone to which those SNs
belonged should now contain the new SNs.

Managing your kvstore
Topics:

• Increasing Storage Node Capacity

• Managing Storage Directory Sizes

• Managing Admin Directory Size

• Disabling Storage Node Agent Hosted Services

• Verifying the Store

• Erasing Data

• Setting Store Parameters

• Removing an Oracle NoSQL Database Deployment

• Modifying Storage Node HA Port Ranges

• Modifying Storage Node Service Port Ranges

Increasing Storage Node Capacity
You can increase the capacity of a Storage Node by adding additional hard disks. Adding hard
disks to a Storage Node permits the placement of each Replication Node on its own disk,

Chapter 4
Managing your kvstore

4-38

ensuring that the Replication Nodes on the SN are not competing for I/O resources. Specify
the location of the storage directory on the new disk using the storagedir parameter.

Note:

When you specify a storage directory, Oracle strongly recommends you also specify
the storage directory size using the -storagedirsize parameter. See Managing
Storage Directory Sizes for details. The system uses the configured directory sizes to
enforce disk usage. Be sure to specify a storage directory size for every storage node
in the store.

The following example demonstrates deploying a new store and adding two more disks to a
Storage Node, increasing the capacity from 1 to 3:

1. Create, start and configure the new store.

• Create the new store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar makebootconfig \
-root KVROOT \
-host node20 -port 5000 \
-harange 5010,5030 \
-capacity 1 \
-memory_mb 200 \
-storagedir /disk1/ondb/data

• Create and copy the security directory:

java -Xmx64m -Xms64m \
-jar kv/lib/kvstore.jar \
securityconfig config create -root KVROOT -kspwd password
Created files
KVROOT/security/security.xml
KVROOT/security/store.keys
KVROOT/security/store.trust
KVROOT/security/client.trust
KVROOT/security/client.security
KVROOT/security/store.passwd (Generated in CE version)
KVROOT/security/store.wallet/cwallet.sso (Generated in EE version)

Created

• Start the new store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start \
-root KVROOT &

• Configure the new store:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \

Chapter 4
Managing your kvstore

4-39

-port 5000 -host node20 \
-security KVROOT/security/client.security

kv-> configure -name kvstore

Output:

Store configured: kvstore

2. Create a zone. Then create an administration process on a specific host:

kv-> plan deploy-zone -name Houston -rf 1 -wait

Output:

Executed plan 1, waiting for completion...
Plan 1 ended successfully

kv-> plan deploy-sn -znname "Houston" -port 5000 -wait -host node20

Output:

Executed plan 2, waiting for completion...
Plan 2 ended successfully

kv-> plan deploy-admin -sn sn1 -port 5001 -wait

Output:

Executed plan 3, waiting for completion...
Plan 3 ended successfully

3. Create the storage node pool. Then add the storage node to the pool:

kv-> pool create -name AllStorageNodes

kv-> pool join -name AllStorageNodes -sn sn1

4. Create a topology, preview it, and then deploy it:

kv-> topology create -name 1x1 -pool AllStorageNodes -partitions 120

Output:

Created: 1x1

kv-> topology preview -name 1x1

Chapter 4
Managing your kvstore

4-40

Output:

Topology transformation from current deployed topology to 1x1:
Create 1 shard
Create 1 RN
Create 120 partitions

shard rg1
 1 new RN : rg1-rn1
 120 new partitions

kv-> plan deploy-topology -name 1x1 -wait

Output:

Executed plan 4, waiting for completion...
Plan 4 ended successfully

5. Add two more disk drives to the Storage Node, mounted as disk2 and disk3. Add the
storage directories using the plan change-storagedir command. Be sure to add the
Storage Directory size, such as -storagedirsize “1 tb”.

kv-> plan change-storagedir -sn sn1 -storagedir /disk2/ondb/data \
-storagedirsize "1 tb" -add -wait

Output:

Executed plan 5, waiting for completion...
Plan 5 ended successfully

kv-> plan change-storagedir -sn sn1 -storagedir /disk3/ondb/data \
-storagedirsize "1 tb" -add -wait

Output:

Executed plan 6, waiting for completion...
Plan 6 ended successfully

Note:

Because we specified storage directory sizes in the previous example, it is
necessary to provide that information to your other nodes if you have not already
done so. See Managing Storage Directory Sizes for more information.

6. Change the capacity equal to the total number of disks now available on the Storage Node
(3).

kv-> plan change-parameters -service sn1 -wait -params capacity=3

Chapter 4
Managing your kvstore

4-41

Output:

Executed plan 7, waiting for completion...
Plan 7 ended successfully

Note:

You need to perform last two steps on all the Storage Nodes (in your cluster) to
add the disk drives and increase the capacity of each Storage Node. In this case,
it is a single node deployment, so the topology is now ready to be redistributed.

7. Redistribute your topology to expand the cluster in order to use the new capacity (3) of the
Storage Node.

kv-> topology clone -current -name 3x1

Output:

Created 3x1

kv-> topology redistribute -name 3x1 -pool AllStorageNodes

Output:

Redistributed: 3x1

kv-> topology preview -name 3x1

Output:

Topology transformation from current deployed topology to 3x1:
Create 2 shards
Create 2 RNs
Migrate 80 partitions

shard rg2
 1 new RN : rg2-rn1
 40 partition migrations
shard rg3
 1 new RN : rg3-rn1
 40 partition migrations

kv-> plan deploy-topology -name 3x1 -wait

Chapter 4
Managing your kvstore

4-42

Output:

Executed plan 8, waiting for completion...
Plan 8 ended successfully

Managing Storage Directory Sizes
We strongly recommend that you always specify storage directory sizes for each Replication
Node on every Storage Node in the store. Doing so sets disk threshold levels for each
replication node, even when your store has hardware with varying disk capacities. This section
describes this topic, and others.

Managing Disk Thresholds
It is very important to configure each storage directory with a specific amount of available disk
space. The Oracle NoSQL Database uses the configured Storage Directory sizes to enforce
disk space limits. Without configuring how much disk space is available, the store
opportunistically uses all available space, less 5 GB free disk space. The system maintains 5
GB of free space to allow manual recovery if the Storage Node exceeds its configured disk
limit. Be sure to monitor disk usage regularly using the statistics provided, as described in
Monitoring Disk Usage.

Storage Nodes use their available disk space for two purposes:

• To store your data.

• To save reserved files.

Reserved files consist of data that has already been replicated to active replica nodes. The
purpose of storing a copy of this data is to use for Replica Nodes that lose contact with the
Master Node. Losing contact typically occurs because Replica nodes are shut down, or a
network partition event occurs, or because another transient problem occurs. The Storage
Node is primarily designed to consume the amount of disk space you assign it, and to use the
remaining disk space to save the reserved files. Each Storage Node manages its available disk
space, leaving 5 GB free for recovery purposes. Your intervention is typically not required in
this disk management process, unless a storage node exceeds its available disk capacity.

Note:

If a Storage Node (SN) consumes more than what is assigned as storagedirsize,
including leaving 5 GB of space free, the SN automatically attempts to free up disk
space by deleting reserved files (not your data files), until more than 5 GB of space is
available. If the Storage Node is unable to free up enough space, it suspends write
operations to the node. Read operations continue as normal. Write operations
resume automatically once the node obtains sufficient free disk space.

You can limit how much disk space the store consumes on a node by node basis, by explicitly
specifying a storage directory size for each storage node, as described in Specifying Storage
Directory Sizes. Storage nodes can then consume all of their configured disk space as needed,
leaving free the required 5 GB. However, if you do not indicate a storage directory size, the
Storage Node uses disk space until it consumes the disk, except for the required 5 GB for
manual recovery.

Chapter 4
Managing your kvstore

4-43

Consider a storage node with a 200 GB disk. Without configuring a storagedirsize for that disk,
the store keeps consuming up to 195 GB of disk space (leaving only the 5 GB for manual
recovery). If your standard policy requires a minimum 20 GB available space on each disk, you
must configure the storage node with a storagedirsize of 175 GB, leaving 20 GB available, and
5 GB for store recovery.

The most common reason a node's storage directory fills up is because of reserved files. If the
Storage Node exceeds its disk threshold, it continues to delete the reserved files until the
threshold is no longer exceeded.

Specifying Storage Directory Sizes
Use the makebootconfig storagedirsize parameter to specify Storage Node (SN) capacity
when you initially install your store. See Configuring your data store installation and
makebootconfig for details. Additionally, if your SN has the capacity to support more than one
Replication Node, specify a storage directory location and storage directory size for each
Replication Node.

To specify or change storage capacity after you have installed the store, use plan change-
storagedir. When you use plan change-storagedir be sure to specify the -storagedirsize
parameter to indicate how large the new storage directory is.

Note:

If you specify the -storagedir parameter, but not -storagedirsize, makebootconfig
displays a warning. Always specify both parameters for control and tracking.

The value specified for the storagedirsize parameter must be a long, optionally followed by a
unit string. Accepted unit strings are: KB, MB, GB, and TB, corresponding to 1024, 1024^2,
1024^3, 1024^4 respectively. Acceptable strings are case insensitive. Valid delimiters between
the long value and the unit string are " ", "-", or "_". If you specify the delimiter as " ", your value
should be enclosed in double quotes, For example "10 GB". If you have any other delimiter
double quotes is not mandatory. For example 10_GB or 10-GB.

For example:

kv-> verbose
Verbose mode is now on
kv-> show topology
store=mystore numPartitions=300 sequence=308
 zn: id=zn1 name=Manhattan repFactor=3 type=PRIMARY
allowArbiters=false

 sn=[sn1] zn:[id=zn1 name=Manhattan] node1:9000 capacity=1 RUNNING
 [rg1-rn1] RUNNING /storage-dir/sn1 0
 No performance info available
 sn=[sn2] zn:[id=zn1 name=Manhattan] node2:9000 capacity=1 RUNNING
 [rg1-rn2] RUNNING /storage-dir/sn2 0
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn3] zn:[id=zn1 name=Manhattan] node3:9000 capacity=1 RUNNING
 [rg1-rn3] RUNNING /storage-dir/sn3 0
 No performance info available

 shard=[rg1] num partitions=300

Chapter 4
Managing your kvstore

4-44

 [rg1-rn1] sn=sn1 haPort=node1:9010
 [rg1-rn2] sn=sn2 haPort=node2:9010
 [rg1-rn3] sn=sn3 haPort=node3:9010
 partitions=1-300

kv-> plan change-storagedir -sn sn1 -storagedir /storage-dir/sn1 \
-storagedirsize "200 gb" -add -wait
Executed plan 7, waiting for completion...
Plan 7 ended successfully
kv-> plan change-storagedir -sn sn2 -storagedir /storage-dir/sn2 \
-storagedirsize "300 gb" -add -wait
Executed plan 8, waiting for completion...
Plan 8 ended successfully
kv-> plan change-storagedir -sn sn3 -storagedir /storage-dir/sn3 \
-storagedirsize "400 gb" -add -wait
Executed plan 9, waiting for completion...
Plan 9 ended successfully
kv-> show topology
store=mystore numPartitions=300 sequence=308
 zn: id=zn1 name=Manhattan repFactor=3 type=PRIMARY
allowArbiters=false

 sn=[sn1] zn:[id=zn1 name=Manhattan] node1:9000 capacity=1 RUNNING
 [rg1-rn1] RUNNING /storage-dir/sn1 214748364800
 No performance info available
 sn=[sn2] zn:[id=zn1 name=Manhattan] node2:9000 capacity=1 RUNNING
 [rg1-rn2] RUNNING /storage-dir/sn2 322122547200
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn3] zn:[id=zn1 name=Manhattan] node3:9000 capacity=1 RUNNING
 [rg1-rn3] RUNNING /storage-dir/sn3 429496729600
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms

 shard=[rg1] num partitions=300
 [rg1-rn1] sn=sn1 haPort=node1:9010
 [rg1-rn2] sn=sn2 haPort=node2:9010
 [rg1-rn3] sn=sn3 haPort=node3:9010
 partitions=1-300

Note:

If any Storage Node stores its data in the root directory (not recommended), then
instead of plan change-storagedir, set the rootDirSize parameter. For example:

kv-> plan change-parameters -service sn1 -params rootDirSize=200_gb

Specifying Differing Disk Capacities
By default, Oracle NoSQL Database evenly distributes data across all the Storage Nodes in
your store. No check is made in advance. The store expects all of the hardware in your storee
to be homogenous, and so all Storage Nodes would have the same disk capacity.

Chapter 4
Managing your kvstore

4-45

However, more likely, you are running a store in an environment where some Storage Nodes
have more disk capacity than others. In this case, you must specify appropriate disk capacity
for each storage node. Oracle NoSQL Database will then place more data on higher capacity
Storage Nodes. Be aware that specifying greater disk capacity to a storage node can result in
an increased workload. Storage Nodes with more capacity than others could then serve more
read and/or write activity. Be sure to size your storage nodes accordingly to support additional
workload, if any.

Monitoring Disk Usage
If a Storage Node exceeds its disk usage threshold value (storagedirsize - 5GB), then all write
activity for that node is suspended until sufficient disk space is made available. The store
makes disk space available by removing reserved files to satisfy the threshold requirement. No
data files are removed. Read activity continues while reserved data is being removed.

To ensure that your Storage Node can continue to service write requests, monitor the
availableLogSize JMX statistic. This represents the amount of space that can be used by
write operations. This value is not necessarily representative of the amount of disk space
currently in use, since quite a lot of disk space can, and is, used for reserved files, which are
not included in the availableLogSize statistic.

Reserved files are data files that have already been replicated, but which are retained for
replication to nodes that are out of contact with the master node. Because Oracle NoSQL
Database liberally reserves files, all available storage will frequently be consumed by reserved
data. However, reserved data is automatically deleted as necessary by the Storage Node to
continue write operations. For this reason, monitoring the actual disk usage is not meaningful.

If availableLogSize reaches zero, writes are suspended for the Storage Node. Earlier, as
availableLogSize approaches zero, the node has less and less space for reserved data files.
The result is that the store becomes increasingly less resilient in the face of a prolonged but
temporary node outage because there are increasingly fewer historical log files that the store
can use to gracefully bring a node up to date once it is available again.

The following tables lists some other useful statistics about disk usage. These statistics are
stored in the stats file, or you can monitor them using the JMX oracle.kv.repnode.envmetric
type. (Xref)

Statistic Description

availableLogSize Disk space available (in bytes) for write operations. This value is calculated
with consideration fo reserved data files, which are deleted automatically
whenever space is required to perform write operations:

free space + reservedLogSize - protectedLogSize

In general, monitoring disk usage in the file system is not meaningful,
because of the presence of reserved files that can be deleted
automatically.

activeLogSize Bytes used by all active data files: files required for basic operation.

reservedLogSize Bytes used by all reserved data files: files that have been cleaned and can
be deleted if they are not protected.

protectedLogSize Bytes used by all protected data files: the subset of reserved files that are
temporarily protected and cannot be deleted.

ProtectedLogSizeMap A breakdown of protectedLogSize as a map of protecting entity name to
protected size in bytes.

TotalLogSize Total bytes used by data files on disk: activeLogSize + reservedLogSize.

Chapter 4
Managing your kvstore

4-46

The following list from part of some JMX output, shows an example of how you will see each
statistic. All of these statistic names have a Cleaning_ prefix, indicating that they may be in the
log cleaning statistics group (for garbage collection):

.

.

.
"Cleaning_nRepeatIteratorReads": 0,
"Cleaning_nLNsExpired": 0,
"Cleaning_nCleanerRuns": 0,
"Cleaning_nBINDeltasDead": 0,
"Cleaning_nCleanerDisksReads": 0,
"Cleaning_protectedLogSizeMap": "",
"Cleaning_nCleanerDeletions": 0,
"Cleaning_nCleanerEntriesRead": 0,
"Cleaning_availableLogSize": 48942137344,
"Cleaning_nLNsDead": 0,
"Cleaning_nINsObsolete": 0,
"Cleaning_activeLogSize": 112716,
"Cleaning_nINsDead": 0,
"Cleaning_nINsMigrated": 0,
"Cleaning_totalLogSize": 112716,
"Cleaning_nBINDeltasCleaned": 0,
"Cleaning_nLNsObsolete": 0,
"Cleaning_nLNsCleaned": 0,
"Cleaning_nLNQueueHits": 0,
"Cleaning_reservedLogSize": 0,
"Cleaning_protectedLogSize": 0,
"Cleaning_nClusterLNsProcessed": 0,
"Node Compression_processedBins": 0,
.
.
.

You can tell if writes have been suspended for a Storage Node using the ping command from
the CLI. In the following sample output, the Shard Status shows read-only:1. This indicates
that one of the Storage Nodes is in read-only mode. The likeliest reason for that is that it has
exceeded its disk threshold.

kv-> ping

Output:

Pinging components of store istore based upon topology sequence #11
3 partitions and 3 storage nodes
Time: 2024-04-05 06:57:10 UTC Version: 24.1.11
Shard Status: healthy:0 writable-degraded:0 read-only:1 offline:0
Admin Status: healthy
Zone [name=dc1 id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false]
RN Status: online:1 offline:2
Storage Node [sn1] on sn1.example.com:5000 Zone: [name=dc1
id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false] Status: RUNNING
Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Admin [admin1] Status: RUNNING,MASTER

Chapter 4
Managing your kvstore

4-47

Rep Node [rg1-rn1] Status: RUNNING,MASTER (non-authoritative)
sequenceNumber:39,177,477 haPort:5011 available storage size:6 GB
Storage Node [sn2] on sn2.example.com:5000 Zone:
[name=dc1 id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING
Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Rep Node [rg1-rn2] Status: RUNNING,UNKNOWN sequenceNumber:39,176,478
haPort:5010 available storage size:NOT AVAILABLE delayMillis:?
catchupTimeSecs:?
Storage Node [sn3] on sn3.example.com:5000 Zone: [name=dc1
id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false] Status: RUNNING
Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Rep Node [rg1-rn3] Status: RUNNING,UNKNOWN sequenceNumber:39,166,804
haPort:5010 available storage size:NOT AVAILABLE delayMillis:?
catchupTimeSecs:?

For information on JMX monitoring the store, see Java Management Extensions (JMX)
Notifications.

Handling Disk Limit Exception
If a Storage Node exceeds its disk usage threshold value (<storagedirsize> - 5 GB), then
the store suspends all write activities on that node, until sufficient data is removed to satisfy the
threshold requirement. In such a situation, there are two ways to bring the store back to read
and write availability, without deleting user data.

• Increasing storagedirsize on one or more Replication Nodes if there is available disk
space

• Expanding the store by adding a new shard

If there is enough space left on the disk or if the complete disk size is not set as the size of
storagedirsize, you can bring back the write availability (without any additional need of the
hardware) by simply increasing the storage directory size for one or more Replication Nodes.

If there is not enough space left on disk or if the complete disk size is set as the size of the
storage directory, then you should follow the store expansion procedure, where you will need
additional hardware to increase the number of shards by one.

Chapter 4
Managing your kvstore

4-48

Note:

If you are following the store expansion procedure, it is important to check the
performance files to see if the cleaner is working well, by monitoring the
minUtilization statistics. If the minUtilization statistics is less than 30%, it may
mean that the cleaner is not keeping up. In this case it is not possible to perform
store expansion.
Store expansion can only be performed if the minUtilization statistics percentage is
not less than 30%.

For example:

2024-04-05 16:07:12.499 UTC INFO [rg1-rn1] JE: Clean file 0x2b:
predicted min util is below minUtilization, current util min: 39 max:
39,
predicted util min: 39 max: 39, chose file with util min: 30 max: 30
avg: 30

2024-04-05 16:07:04.029 UTC INFO [rg1-rn2] JE: Clean file 0x27:
predicted min util is below minUtilization, current util min: 39 max:
39,
predicted util min: 39 max: 39, chose file with util min: 30 max: 30
avg: 30

2024-04-05 16:05:44.960 UTC INFO [rg1-rn3] JE: Clean file 0x27:
predicted min util is below minUtilization, current util min: 39 max:
39,
predicted util min: 39 max: 39, chose file with util min: 30 max: 30
avg: 30

Increasing Storage Directory Size
To increase the storage directory size in one or more Replication Nodes, open the CLI and
execute the following commands:

1. Disable write operations on the store or on the failed shard.

plan enable-requests -request-type READONLY \
{-shard <shardId[,shardId]*> | -store}

Here, -request-type READONLY is the option which disables write operations on a shard.
You can disable write operations on one or more shards by using the -shard option, or on
the entire store by using the —store option.

Note:

Though Replication Nodes are already in non-write availability mode whenever
they hit an out of disk limit exception, it is important to disable user write
operations explicitly. Disabling the user write operations ensures that the
Replication Nodes are brought back up in the correct manner.

Chapter 4
Managing your kvstore

4-49

2. Execute the PING command to analyze the state of one or more Replication Nodes.

kv-> ping

Usually, when Replication Nodes hit an out of disk limit exception, Replica Replication
Nodes are in the RUNNING, UNKNOWN state, and Master Replication Nodes are in the
RUNNING, MASTER (non-authoritative) state.

3. To display the current, deployed topology, execute the show topology —verbose
command. Make note of the current storage directory size allocated to each Replication
Node.

show topology -verbose [-zn] [-rn] [-an] [-sn] [-store] [-status] [-json]

4. To ensure that other Replication nodes in the store do not hit a disk limit exception while
you increase the storagedirsize, reduce the JE free disk space on all Replication Nodes
to 2 GB or 3 GB. You can use the -all-rns option to reduce the JE free disk space on all
Replication Nodes at once, or the -service -rgx-rgy option to reduce the free disk space
on a specific Replication Node.

kv-> plan change-parameters [-all-rns|-service -rgx-rgy] \
-params "configProperties=je.freeDisk=XXX"

After executing this command with either option, the system will stop the Replication
Nodes, update parameters, and restart Replication Nodes with the JE free disk space
parameter you specify.

5. To increase the storage directory size on one or more Replication Nodes.

kv-> plan change-storagedir -wait -sn snX \
-storagedir <storagedirpath> –add -storagedirsize X_GB

Here snX is the Storage Node whose directory size you want to increase, and X is the new
storage size in GB.

6. After the plan change-parameters command executes successfully, verify the
new storagedirsize value is assigned to one or more Replication Nodes in the store.

show topology -verbose [-zn] [-rn] [-an] [-sn] [-store] [-status] [-json]

7. Lastly, reset the JE free disk space back to 5 GB. Also, enable write operations back on
the store or a specific shard.

kv-> plan change-parameters [-all-rns|-service -rgx-rgy] \
-params "configProperties=je.freeDisk=5368709120"

kv-> plan enable-requests –request-type ALL {-shard <shardId[,shardId]*> |
-store}

The –request-type ALL option re-enables write operations on the store or on a specific
shard.

Chapter 4
Managing your kvstore

4-50

Example

Let us consider a store with 1x3 topology, hitting a disk limit exception. Perform the following
steps to increase the storage directory size of all Replication Nodes in the store from 16 GB to
25 GB.

1. Stop the write operations on the store level:

kv-> plan enable-requests –request-type READONLY –store;

2. Ping the store to analyze the state of one or more Replication Nodes.

kv-> ping

Output:

Pinging components of store istore based upon topology sequence #11
3 partitions and 3 storage nodes
Time: 2024-04-05 06:57:10 UTC Version: 24.1.11
Shard Status: healthy:0 writable-degraded:0 read-only:1 offline:0 total:1
Admin Status: healthy
Zone [name=dc1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:1 offline:2 Storage Node [sn1] on node21:port1
Zone: [name=dc1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id:
a72484b8b33c
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,MASTER (non-authoritative)
 sequenceNumber:27,447,667 haPort:5011 available storage size:12 GB
Storage Node [sn2] on node22:port1
Zone: [name=dc1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id:
a72484b8b33c
 Rep Node [rg1-rn2] Status: RUNNING,UNKNOWN
 sequenceNumber:27,447,667 haPort:5010 available storage size:10 GB
delayMillis:? catchupTimeSecs:?
Storage Node [sn3] on node23:port1
Zone: [name=dc1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id:
a72484b8b33c
 Rep Node [rg1-rn3] Status: RUNNING,UNKNOWN
 sequenceNumber:27,447,667 haPort:5010 available storage size:9 GB
delayMillis:? catchupTimeSecs:?

The example shows that the Replication Nodes are in RUNNING, UNKNOWN state and Master
Replication Node is in RUNNING, MASTER(non-authoritative) state.

3. View the current, deployed topology.

kv-> show topology -verbose

Chapter 4
Managing your kvstore

4-51

Output:

store=istore numPartitions=3 sequence=11
 zn: id=zn1 name=dc1 repFactor=3 type=PRIMARY allowArbiters=false \
 masterAffinity=false

 sn=[sn1] zn:[id=zn1 name=dc1] node21:port1 capacity=1 RUNNING
 [rg1-rn1] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=36.866146 ms multi-op avg
latency=0.0 ms
 [rg1-rn1] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=36.866146 ms multi-op avg
latency=0.0 ms
 sn=[sn2] zn:[id=zn1 name=dc1] node22:port1 capacity=1 RUNNING
 [rg1-rn2] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 [rg1-rn2] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn3] zn:[id=zn1 name=dc1] node23:port1 capacity=1 RUNNING
 [rg1-rn3] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 [rg1-rn3] RUNNING /scratch/kvroot 16 GB
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms

 numShards=1
 shard=[rg1] num partitions=3
 [rg1-rn1] sn=sn1 haPort=node21:port2
 [rg1-rn2] sn=sn2 haPort=node22:port3
 [rg1-rn3] sn=sn3 haPort=node23:port3
 partitions=1-3

You see that 16 GB of disk space is assigned as the storage directory size for each
Replication Node.

4. Reduce the JE free disk space from 5 GB to 2 GB for all Replication Nodes in the store.

kv-> plan change-parameters -all-rns -params \
"configProperties=je.freeDisk=2147483648";
Started plan 70. Use show plan -id 70 to check status.
To wait for completion, use plan wait -id 70

5. For each Replication Node, increase the storage directory size to 25 GB.

kv-> plan change-storagedir -wait -sn sn1 -storagedir /scratch/kvroot \
-add -storagedirsize 25_GB -wait
Executed plan 72, waiting for completion...
Plan 72 ended successfully

kv-> plan change-storagedir -wait -sn sn2 -storagedir /scratch/kvroot \
-add -storagedirsize 25_GB -wait

Chapter 4
Managing your kvstore

4-52

Executed plan 73, waiting for completion...
Plan 73 ended successfully

kv-> plan change-storagedir -wait -sn sn3 -storagedir /scratch/kvroot \
-add -storagedirsize 25_GB -wait
Executed plan 74, waiting for completion...
Plan 74 ended successfully

6. View the topology again to verify that the new value is assigned to storagedirsize.

kv-> show topology -verbose

Output:

store=istore numPartitions=3 sequence=11
 zn: id=zn1 name=dc1 repFactor=3 type=PRIMARY allowArbiters=false \
masterAffinity=false

 sn=[sn1] zn:[id=zn1 name=dc1] node21:port1 capacity=1 RUNNING
 [rg1-rn1] RUNNING /scratch/kvroot 25 GB
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn2] zn:[id=zn1 name=dc1] node22:port1 capacity=1 RUNNING
 [rg1-rn2] RUNNING /scratch/kvroot 25 GB
 single-op avg latency=552.51996 ms multi-op avg
latency=0.0 ms
 sn=[sn3] zn:[id=zn1 name=dc1] node23:port1 capacity=1 RUNNING
 [rg1-rn3] RUNNING /scratch/kvroot 25 GB
 single-op avg latency=14.317171 ms multi-op avg
latency=0.0 ms

 numShards=1
 shard=[rg1] num partitions=3
 [rg1-rn1] sn=sn1 haPort=node21:port2
 [rg1-rn2] sn=sn2 haPort=node22:port3
 [rg1-rn3] sn=sn3 haPort=node23:port3
 partitions=1-3

The example now shows that 25 GB is assigned as the storage directory size for each
Replication Node.

7. Reset the JE free disk space to 5 GB and enable write operations back on the store.

kv-> plan change-parameters [-all-rns|-service -rgx-rgy] \
-params "configProperties=je.freeDisk=5368709120"

Output:

kv-> plan enable-requests –request-type READONLY –store;

Adding a New Shard
Apart from increasing the storage directory size, you can also handle disk limit exceptions by
adding a new shard and expanding your store.

Chapter 4
Managing your kvstore

4-53

The following example demonstrates adding three new Storage Nodes (Storage Nodes 21, 22,
and 23) and deploying the new store to recover from disk limit exception:

1. Disable write operations on the store.

kv-> plan enable-requests -request-type READONLY -store;

Here, -request-type READONLY disables write operations on a store and allows only read
operations.

2. Reduce the JE free disk space to 2 GB on all nodes and increase the
je.cleaner.minUtilization configuration parameter from 40 (the default in a KVStore) to
60.

kv-> plan change-parameters -all-rns \
-params "configProperties=je.cleaner.minUtilization 60; \
je.freeDisk 2147483648";

Executing this command creates more free space for store expansion. Replication Nodes
will be stopped, parameters will be updated, and the Replication Nodes will be restarted
with the new parameters.

3. Create, start, and configure the new nodes for expanding the store.

• Create the new node. Run the makebookconfig utility to configure each Storage Node
in the store:

java -Xmx256m -Xms256m -jar KVHOME/kvstore.jar makebootconfig \
-root sn1/KVROOT \
-store-security none -capacity 1 \
-port port1 -host node21 \
-harange 5010,5020 \
-storagedir /scratch/sn1/u01 –storagedirsize 20-Gb

java -Xmx256m -Xms256m -jar KVHOME/kvstore.jar makebootconfig \
-root sn2/KVROOT \
-store-security none -capacity 1 \
-port port1 -host node22 \
-harange 5010,5020 \
-storagedir /scratch/sn2/u01 –storagedirsize 20-Gb

java -Xmx256m -Xms256m -jar KVHOME/kvstore.jar makebootconfig \
-root sn3/KVROOT \
-store-security none -capacity 1 \
-port port1 -host node23 \
-harange 5010,5020 \
-storagedir /scratch/sn3/u01 –storagedirsize 20-Gb

• Restart the Storage Node Agent (SNA) on each of the Oracle NoSQL Database nodes
using the start utility:

kv-> nohup java -Xmx256m -Xms256m -jar \
KVHOME/lib/kvstore.jar start -root KVROOT &

Chapter 4
Managing your kvstore

4-54

• Configure the new store:

java -Xmx256m -Xms256m -jar KVHOME/lib/kvstore.jar runadmin \
-port port1 -host node21

java -Xmx256m -Xms256m -jar KVHOME/lib/kvstore.jar runadmin \
-port port1 -host node22

java -Xmx256m -Xms256m -jar KVHOME/lib/kvstore.jar runadmin \
-port port1 -host node23

4. Redistribute the store according to its new configuration.

kv-> java -Xmx256m -Xms256m -jar KVHOME/lib/kvstore.jar runadmin \
-port port1 -host host1

kv-> plan deploy-sn -zn zn1 -host node21 -port port1 -wait
Executed plan 7, waiting for completion...
Plan 7 ended successfully
kv-> plan deploy-sn -zn zn1 -host node22 -port port1 -wait
Executed plan 8, waiting for completion...
Plan 8 ended successfully
kv-> plan deploy-sn -zn zn1 -host node23 -port port1 -wait
Executed plan 9, waiting for completion...
Plan 9 ended successfully
Plan 11 ended successfully

kv-> pool join -name ExamplePool -sn sn4
Added Storage Node(s) [sn4] to pool ExamplePool
kv-> pool join -name ExamplePool -sn sn5
Added Storage Node(s) [sn5] to pool ExamplePool
kv-> pool join -name ExamplePool -sn sn6
Added Storage Node(s) [sn6] to pool ExamplePool

kv-> topology clone -current -name newTopo
Created newTopo

kv-> topology redistribute -name newTopo -pool ExamplePool
Redistributed: newTopo

kv-> plan deploy-topology -name newTopo -wait
Executed plan 11, waiting for completion...

5. Restore the Replication Nodes to its original configuration.

plan change-parameters -all-rns \
-params "configProperties=je.cleaner.minUtilization 40; \
je.freeDisk 5368709120";

Chapter 4
Managing your kvstore

4-55

6. Enable write operations back on the store.

kv-> plan enable-requests -request-type ALL -store;

Here, —request-type ALL enables both read and write operations on the store.

Managing Admin Directory Size
You should specify a sufficient directory size for the Admin database when you initially install
your store, using the makebootconfig admindirsize parameter. If you do not specify a value,
the system allocates a default of 3 GB as the size of the Admin directory. See Configuring your
data store installation and makebootconfig for details.

Specify the value for the -admindirsize parameter as a long, optionally followed by a unit
string. Accepted unit strings are: KB, MB, and GB, corresponding to 1024, 1024², and 1024³
respectively. Acceptable strings are case insensitive. Valid delimiters between the long value
and the unit string are " ", "-", or "_". If you specify the delimiter as " ", your value should be
enclosed in double quotes, For example "10 GB". If you have any other delimiter double
quotes is not mandatory. For example 10_GB or 10-GB.

Also, if the admin directory fills up its allotted storage space with reserved files, see Managing
Disk Thresholds for more information.

If the Admin completely uses up its storage space, it will not be able to start. This condition is
unlikely to occur, but in the event that your Admin cannot start, you should check its available
disk space. If the directory is full, then you should increase the available disk space to the
Admin. For the Admin to completely fill its storage space with actual data files, the store would
have to be configured in some unexpected way — such as with an extraordinarily large
number of tables, or have been allotted a very small Admin directory size.

The procedure that you use to change an Admin's allocated disk space differs depending on
whether the Admin is in working condition.

Admin is Working
To increase or decrease the Admin's disk space when the Admin is functional, use the CLI to
execute the following plan:

plan change-parameters -all-admins -params \
"configProperties=je.maxDisk=<size>"

where <size> is the desired storage size in bytes.

Admin is not Working
To increase or decrease the Admin's disk space when the Admin is not functional:

1. Set the value of je.maxDisk to the desired value in config.xml for all Admins manually:

a. For each Storage Node that is hosting an Admin, locate the config.xml file in the
Storage Node's root directory:

<kvroot dir>/<store name>/<SN name>/config.xml

and edit it as follows.

Chapter 4
Managing your kvstore

4-56

b. Locate the admin section of the config.xml file. This is the section that begins with:

<component name="ADMIN-NAME" type="adminParams" validate="true">
 ...
</component>

c. Add the following line to the admin section of each config.xml file:

<propertyname="configProperties" value="je.maxDisk=<size>"
type="STRING"/>

where <size> is the desired storage size in bytes for your Admin.

2. Stop/start these Storage Nodes one by one, using the following commands:

java -Xmx64m -Xms64m \
-jar kvstore.jar stop -root <root dir> \
-config <config file name>

java -Xmx64m -Xms64m \
-jar kvstore.jar start -root <root dir> \
-config <config file name>

3. Wait for the status of these Storage Nodes to change to RUNNING. You can use the ping
command to get the Storage Node status:

java -Xmx64m -Xms64m \
-jar kvstore.jar runadmin -host <host name> -port <port> ping

4. If any Admins are unreachable (you cannot get a response using the ping command), start
them from the CLI using the following command:

kv-> plan start-service -service <ADMIN_NAME> -wait

5. Once all the Admins are running, execute the following command using the CLI:

plan change-parameters -all-admins -params \
"configProperties=je.maxDisk=<size>"

where <size> is the desired storage size in bytes for your Admin. This value should match
the value you provided in the config.xml file.

Disabling Storage Node Agent Hosted Services
To disable all services associated with a stopped SNA use the -disable-services flag. This
helps isolate failed services to avoid hard rollbacks during a failover. Also, in this way, the
configuration can be updated during recovery after a failover. The usage is:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar {start | stop | restart}
[-disable-services] [-verbose]
-root KVROOT [-config <bootstrapFileName>]

Chapter 4
Managing your kvstore

4-57

where:

• start -disable-services
Starts an Oracle NoSQL Database Storage Node Agent with all of its hosted services
disabled. If the SNA is already running, the command will fail.

• stop -disable-services
Stops an Oracle NoSQL Database Storage Node Agent, marking all of its services
disabled so that they will not start when starting up the SNA in the future or until the
services are reenabled.

• restart -disable-services
Restarts an Oracle NoSQL Database Storage Node Agent with all of its hosted services
disabled.

Verifying the Store
Use the Admin CLI verify command to complete these tasks:

• Perform general troubleshooting of the store.

The verify command inspects all store components. It also checks whether all store
services are available. For the available store services, the command also checks for any
version or metadata mismatches.

• Check the status of a long-running plan

Some plans require many steps and may take some time to execute. The administrator
can verify plans to check on the plan progress. For example, you can verify a plan
deploy–sn command while it is running against many Storage Nodes. The verify
command can report at each iteration to confirm that additional nodes have been created
and come online.

For more about managing plans, see Using Plans.

• Get additional information to help diagnose a plan in an ERROR state.

You verify your store using the verify command in the CLI. The command requires no
parameters, and runs in verbose mode, by default. For example:

kv-> verify configuration

Output:

Verify: starting verification of store MetroArea based upon
topology sequence #117
100 partitions and 6 storage nodes
Time: 2024-04-05 06:57:10 UTC Version: 24.1.11
See node01:Data/virtualroot/datacenter1/kvroot/MetroArea/
 log/MetroArea_{0..N}.log for
 progress messages
Verify: Shard Status: healthy:2 writable-degraded:0
 read-only:0 offline:0
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:2 offline: 0 maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false

Chapter 4
Managing your kvstore

4-58

masterAffinity=false]
 RN Status: online:2 offline: 0 maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:2 offline: 0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:5000
 Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn2] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:5011 available storage size:14 GB delayMillis:1
catchupTimeSecs:0
Verify: == checking storage node sn2 ==
Verify: Storage Node [sn2] on node02:6000
 Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn2] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:6010 available storage size:24 GB delayMillis:1
catchupTimeSecs:0
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:7000
 Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin2] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn3] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:7011 available storage size:22 GB delayMillis:1
catchupTimeSecs:0
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04:8000
 Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn3] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:8010 available storage size:24 GB delayMillis:1
catchupTimeSecs:0
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05:9000
 Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin3] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn1] Status: RUNNING,MASTER
 sequenceNumber:127 haPort:9011 available storage size:18 GB
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06:10000
 Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]

Chapter 4
Managing your kvstore

4-59

 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn1] Status: RUNNING,MASTER
 sequenceNumber:127 haPort:10010 available storage size:16 GB

Verification complete, no violations.

Use the optional –silent mode to show only problems or completion.

kv-> verify configuration -silent

Output:

Verify: starting verification of store MetroArea based upon
topology sequence #117
100 partitions and 6 storage nodes
Time: 2024-04-05 06:57:10 UTC Version: 24.1.11
See node01:Data/virtualroot/datacenter1/kvroot/MetroArea/
 log/MetroArea_{0..N}.log for progress messages
Verification complete, no violations.

The verify command clearly reports any problems with the store. For example, if a Storage
Node is unavailable, using –silent mode displays that problem as follows:

kv-> verify configuration -silent

Output:

Verify: starting verification of store MetroArea based upon
topology sequence #117
100 partitions and 6 storage nodes
Time: 2024-04-05 06:57:10 UTC Version: 24.1.11
See node01:Data/virtualroot/datacenter1/kvroot/MetroArea/
 log/MetroArea_{0..N}.log for progress messages
Verification complete, 2 violations, 0 notes found.
Verification violation: [rg2-rn2] ping() failed for rg2-rn2 :
Unable to connect to the storage node agent at host node02, port 6000,
which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused
Verification violation: [sn2] ping() failed for sn2 : Unable to connect
 to the storage node agent at host node02, port 6000,
 which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused

Using the default mode (verbose), verify configuration shows the same problem as follows:

kv-> verify configuration

Chapter 4
Managing your kvstore

4-60

Output:

Verify: starting verification of store MetroArea based upon
topology sequence #117
100 partitions and 6 storage nodes
Time: 2024-04-05 06:57:10 UTC Version: 24.1.11
See node01:Data/virtualroot/datacenter1/kvroot/MetroArea/
 log/MetroArea_{0..N}.log for progress messages
Verify: Shard Status: healthy:1 writable-degraded:1
 read-only:0 offline:0
Verify: Admin Status: healthy
Verify: Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:1 offline: 1 maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:2 offline: 0 maxDelayMillis:1 maxCatchupTimeSecs:0
Verify: Zone [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
 RN Status: online:2 offline: 0
Verify: == checking storage node sn1 ==
Verify: Storage Node [sn1] on node01:5000
 Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin1] Status: RUNNING,MASTER
Verify: Rep Node [rg1-rn2] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:5011 available storage size:18 GB delayMillis:1
catchupTimeSecs:0
Verify: == checking storage node sn2 ==
Verify: sn2: ping() failed for sn2 :
Unable to connect to the storage node agent at host node02, port 6000,
which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused
Verify: Storage Node [sn2] on node02:6000
 Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 UNREACHABLE
Verify: rg2-rn2: ping() failed for rg2-rn2 :
Unable to connect to the storage node agent at host node02, port 6000,
which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused
Verify: Rep Node [rg2-rn2] Status: UNREACHABLE
Verify: == checking storage node sn3 ==
Verify: Storage Node [sn3] on node03:7000
 Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin2] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn3] Status: RUNNING,REPLICA

Chapter 4
Managing your kvstore

4-61

 sequenceNumber:127 haPort:7011 available storage size:12 GB delayMillis:1
catchupTimeSecs:0
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on node04:8000
 Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn3] Status: RUNNING,REPLICA
 sequenceNumber:127 haPort:8010 available storage size:11 GB delayMillis:0
catchupTimeSecs:0
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on node05:9000
 Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Admin [admin3] Status: RUNNING,REPLICA
Verify: Rep Node [rg1-rn1] Status: RUNNING,MASTER
 sequenceNumber:127 haPort:9011 available storage size:14 GB
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on node06:10000
 Zone: [name=Queens id=zn3 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING
 Ver: 24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Verify: Rep Node [rg2-rn1] Status: RUNNING,MASTER
 sequenceNumber:127 haPort:10010 available storage size:16 GB

Verification complete, 2 violations, 0 notes found.
Verification violation: [rg2-rn2] ping() failed for rg2-rn2 :
Unable to connect to the storage node agent at host node02, port 6000,
which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused
Verification violation: [sn2] ping() failed for sn2 :
Unable to connectto the storage node agent at host node02, port 6000,
which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: node02;
 nested exception is:
 java.net.ConnectException: Connection refused

Note:

The verify output is only displayed in the shell after the command is complete. Use
tail, or grep the Oracle NoSQL Database log file to get a sense of how the
verification is progressing. Look for the string Verify. For example:

grep Verify /KVRT1/mystore/log/mystore_0.log

Chapter 4
Managing your kvstore

4-62

Erasing Data
The Oracle NoSQL Database has a built-in erasure feature that can be run in the background
to erase user data after it has become obsolete (i.e. deleted data, expired data, older versions
of updated records). The goal of this background thread is to erase the data with very little
impact on application performance. The background thread takes a best effort approach. If a
replication node is down, no erasure will occur until it comes back up.

Erasure happens over a user defined erasure time period (its cycle) and it is recommended
that the cycle time be long enough for all the erasure work to complete. Any work not
completed will be carried over to the next cycle. Data is erased from the tables and
corresponding indexes. The Replication Node parameters: "enableErasure", and
"erasurePeriod" control the behavior of erasure. For more information on setting these
parameters, see Setting Store Wide Policy Parameters.

Setting Store Parameters
The three Oracle NoSQL Database service types, Admin, Storage Node, and Replication
Node, have configuration parameters. You can modify some parameters after deploying the
service. Use the following Admin CLI command to see the parameter values that you can
change:

show parameters -service <>

You identify an Admin, Storage Node, or Replication service using a valid string. The show
parameters –service command displays service parameters and state for any of the three
services. Use the optional -policy flag to show global policy parameters.

Changing Parameters
All of the CLI commands used for creating parameter-changing plans share a similar syntax:

plan change-parameters -service <id>...

All such commands can have multiple ParameterName=NewValue assignment arguments on the
same command line. If NewValue contains spaces, then the entire assignment argument must
be quoted within double quote marks. For example, to change the Admin parameter
collectorPollPeriod, you would issue the command:

kv-> plan change-parameters -all-admins -params \
 "collectorPollPeriod=20 SECONDS">

If your configProperties for all Replication Nodes is set to:

"configProperties=je.cleaner.minUtilization=40;">

Chapter 4
Managing your kvstore

4-63

And you want to add new settings for configProperties, you would issue the following
command:

kv-> plan change-parameters -all-rns -params \
 "configProperties=je.cleaner.minUtilization=40;\
 je.env.runVerifier=false;">

If for some reason, different Replication Nodes have different configProperties parameter
values, then the change-parameters command will need to be tailored for each Replication
Node.

The following commands are used to change service parameters:

• plan change-parameters -service <shardId-nodeId> -params [assignments]
This command is used to change the parameters of a single Replication Node, which must
be identified using the shard and node numbers. The shardId-nodeId identifier must be
given as a single argument with one embedded hyphen and no spaces. The shardId
identifier is represented by rgX, where X refers to the shard number.

• plan change-parameters -all-rns -params [assignments]
This command is used to change the parameters of all Replication Nodes in a store. No
Replication Node identifier is needed in this case.

• plan change-parameters -service <storageNodeId> -params [assignments]
This command is used to change the parameters of a single Storage Node instance. The
storageNodeId is a simple integer.

• plan change-parameters -all-admins -params [assignments]
This command is used to change Admin parameters. Because each instance of Admin is
part of the same replicated service, all instances of the Admin are changed at the same
time, so no Admin identifier is needed in this command.

If an Admin parameter change requires the restarting of the Admin service, KVAdmin loses
its connection to the server. Under normal circumstances, KVAdmin automatically
reconnects after a brief pause, when the next command is given. At this point the plan is in
the INTERRUPTED state, and must be completed manually by issuing the plan execute
command.

• plan change-parameters -security <id>
This command is used to change security parameters. The parameters are applied
implicitly and uniformly across all SNs, RNs and Admins.

In all cases, you can choose to create a plan and execute it; or to create the plan and execute
it in separate steps by using the -noexecute option of the plan command.

Setting Store Wide Policy Parameters
Most admin, Storage Node, and replication node parameters are assigned to default values
when a store is deployed. It can be inconvenient to adjust them after deployment, so Oracle
NoSQL Database provides a way to set the defaults that are used during deployment. These
defaults are called store-wide Policy parameters.

You can set policy parameters in the CLI by using this command:

change-policy -params [name=value]

Chapter 4
Managing your kvstore

4-64

The parameters to change follow the -params flag and are separated by spaces. Parameter
values with embedded spaces must be separated by spaces. Parameter values with
embedded spaces must be quoted. For example: name = "value with spaces". If the optional
dry-run flag is specified, the new parameters are returned without changing them.

Admin Parameters
You can set the following parameters for the Admin service:

• collectorPollPeriod=<Long TimeUnit>
Sets the Monitor subsystem's delay for polling the various services for status updates. This
value defaults to "20" seconds. Units are supplied as a string in the change-parameters
command, for example: -params collectorPollPeriod="2 MINUTES"

• loggingConfigProps=<String>
Property settings for the Logging subsystem in the Admin process. Its format is
property=value;property=value.... Standard java.util.logging properties can be set by
this parameter.

• eventExpiryAge=<Long TimeUnit>
You can use this parameter to adjust how long the Admin stores critical event history. The
default value is "30 DAYS".

• configProperties=<String>
This is an omnibus string of property settings for the underlying BDB JE subsystem. Its
format is property=value;property=value....

• javaMiscParams=<String> [deprecated]

This parameter should ONLY be used to set flags for which there are no service
parameters.

This parameter is deprecated. You are encouraged not to use it, and instead use the
javaAdminParamsOverride parameter.

• javaAdminParamsOverride=<String>
This is an omnibus string that is added to the command line when the Admin process is
started. This parameter is intended for specifying miscellaneous JVM properties that
cannot be specified using other Admin parameters. If the string is not a valid sequence of
tokens for the JVM command line, the Admin process fails to start.

No default value is provided for this parameter.

Changing Admin JVM Memory Parameters
Admin processes can run out of memory. One of the most likely reasons is that the default
memory setting was insufficient for the Admin services to represent all of the metadata
associated with the store. Metadata includes information about tables, security information
about users and roles, and information about incomplete plans. Stores with large amounts of
metadata may need to increase the memory setting for Admin services if the activity logs show
that Admin services are failing with OutOfMemoryError. This topic describes increasing the
memory setting of the javaAdminParamsOverride.

The system continues to use the old javaMiscParams setting to specify the initial JVM memory
settings for the admin. The system does not use javaAdminParamsOverride since it is reserved
for use if you want to override the default settings.

Chapter 4
Managing your kvstore

4-65

To change the javaAdminParamsOverride requires a comprehensive all or nothing change. You
cannot change individual parameters within the set. To change any setting, declare them all in
the plan change-parameters command, described next.

First determine the basic information about all Admin services using the show admins
command. You get the output as shown below.

show admins

Output:

admin1: Storage Node sn1 storageDir=/home/opc/nosql/kvroot type=PRIMARY
(connected RUNNING,MASTER)
admin2: Storage Node sn2 storageDir=/home/opc/nosql/kvroot type=PRIMARY
(RUNNING,REPLICA)
admin3: Storage Node sn3 storageDir=/home/opc/nosql/kvroot type=PRIMARY
(RUNNING,REPLICA)

Note:

The above output is just an example. Here the replication factor RF=3 for the primary
nodes. Your output will reflect your topology.

To determine the current settings of javaAdminParamsOverride and configProperties, enter
the Admin CLI show parameters -service admin command as follows:

kv-> show parameters -service admin1

Output:

adminId=1
adminLogFileCount=20
adminLogFileLimit=5242880
adminMountPoint=/home/opc/nosql/kvroot
collectEnvStats=true
collectorPollPeriod=20 SECONDS
disabled=false
eventExpiryAge=30 DAYS
hideUserData=true
javaAdminParamsOverride=
loggingConfigProps=com.sleepycat.je.util.FileHandler.level=OFF
maxEvents=10000
storageNodeId=1

In this example, the javaAdminParamsOverride parameters that specify the Admin JVM
memory shows the default value.

javaAdminParamsOverride=

Chapter 4
Managing your kvstore

4-66

Note:

The value may or may not have a default value. The value in your setup could also
be different.

To increase Admin JVM memory when Admins are operational, use the plan change-
parameters command from the Admin CLI, as follows:

kv-> plan change-parameters -wait -all-admins -params \
javaAdminParamsOverride="-Xms2048m -Xmx2048m

Note:

It is recommended that you apply the modification to all of the admins by using the
all-admins option. However, you can modify the admin parameters of every primary
admin individually, but only if you have three or more primary admins. When you
have only two admins, you must use the all-admins parameter; otherwise, the
restart needed during this operation will cause the admins to lose the quorum.

Specifying these new values changes the Java heap size from the default values to 2 GB for
both as shown below.

kv-> show parameters -service admin1

Output:

adminId=1
adminLogFileCount=20
adminLogFileLimit=5242880
adminMountPoint=/home/opc/nosql/kvroot
collectEnvStats=true
collectorPollPeriod=20 SECONDS
disabled=false
eventExpiryAge=30 DAYS
hideUserData=true
javaAdminParamsOverride=-Xms2048m -Xmx2048m
loggingConfigProps=com.sleepycat.je.util.FileHandler.level=OFF
maxEvents=10000
storageNodeId=1

Make sure that you locate the existing javaAdminParamsOverride from the Admin CLI as
shown above, and update the individual entries. The javaAdminParamsOverride setting must
represent all desired flags, not just new ones, so be sure to include any previously existing flag
values that you want to retain.

If the Admin loses quorum, then you must use the Admin CLI repair-admin-quorum command.

Storage Node Parameters
You can set the following Storage Node parameters:

Chapter 4
Managing your kvstore

4-67

• capacity=<Integer>
Sets the number of Replication Nodes that this Storage Node can host. This value informs
decisions about where to place new Replication Nodes. The default value is 1. You can set
the capacity level to greater than 1 if the Storage Node has sufficient disk, CPU, and
memory resources to support multiple Replication Nodes.

Setting the Storage Node capacity to 0 indicates that the Storage Node can be used to
host Arbiter Nodes. The pool of Storage Nodes in a zone configured to host Arbiter Nodes
is used for Arbiter Node allocation. See Deploying an Arbiter Node Enabled Topology.

• jvmOverheadPercent=<Integer>
Sets the percentage of Java heap size, for additional memory used by JVM overhead.
Default value: 25. In standard memory allocation, 85% of the SN's memory is for Java
heap and JVM overhead: 68% for Java heap (rnHeapPercent), 25% (jvmOverheadPercent)
* 68 (rnHeapPercent) = 17% for JVM overhead, and 68% + 17% = 85%.

• memoryMB=<Integer>
Sets the amount of memory (in megabytes) available on this Storage Node. The default
value is 0, which indicates that the amount of memory is unknown. The store determines
the amount of memory automatically as the total amount of RAM available on the machine.

You should not need to change this parameter. If the machine has other applications
running on it, reserve some memory for those applications, and set the memoryMB
parameter value with a memory allowance for application needs. Having other applications
running on a Storage Node is not a recommended configuration.

• mgmtClass=<String>
The name of the class that provides the Management Agent implementation. See
Standardized Monitoring Interfaces. The port cannot be a privileged port number (<1024).

• numCPUs=<Integer>
Sets the number of CPUs known to be available on this Storage Node. Default value: 1.

• rnHeapMaxMB=<Integer>
Sets a hard limit for the maximum size of the Replication Node's Java VM heap. The
default value is 0, which means the VM-specific limit is used. The default is roughly 32 GB,
which represents the largest heap size that can make use of compressed object
references.

Do not set this value to greater than 32 GB. Doing so can adversely impact your
Replication Node's performance.

Settings larger than the maximum size that supports compressed object references will
maintain the default limit unless the size is large enough that the heap can reference a
larger number of objects given the increased memory requirements for uncompressed
object references. Using larger heap sizes is not recommended.

• rnHeapPercent=<Integer>
Sets the percentage of a Storage Node's memory reserved for heap space for all RN
processes that the SN hosts. Default value: 68.

• rootDirPath=<path>
The path to the Storage Node's root directory.

• rootDirSize=<Long Unit_String>
Sets the storage size of the root directory. However, no run-time checks are performed to
verify that the actual directory size is greater than or equal to the size you specify. Use this

Chapter 4
Managing your kvstore

4-68

setting for heterogeneous installation environments where some Storage Nodes have
more disk capacity than others. Then, use this parameter only for those Storage Nodes
that store data in the root directory (not recommended).

The value that you specify for this parameter must be a long, followed optionally by a unit
string. Accepted unit strings are: KB, MB, GB, and TB, corresponding to 1024, 1024^2,
1024^3, 1024^4, respectively. Acceptable strings are case insensitive. Valid delimiters
between the long value and the unit string are " ", "-", or "_".

Note:

The rootDirSize parameter is intended for backward compatibility with older
installations that were created without specifying the -storagedir parameter. We
strongly recommend not storing data in your root directory. See Managing
Storage Directory Sizes. However, if you do specify a -rootDirPath parameter,
you must also specify -rootDirSize. If you are trying to change parameter
settings (plan change-parameters), and do not specify both parameters, a
warning is displayed.

Do not use the rootDir parameter if a Storage Nodes uses some other directory (such as
you can specify using plan change-storagedir).

The following store-wide parameter settings apply to statistics files and performance files, as
well as the service debug logs across all Storage Nodes, Replication Nodes, Admins, and
Arbiters. The associated Storage Node Agent must be restarted to reflect any changes in the
settings.

• serviceLogFileCount=<Integer>
Sets the number of log files kept by this Storage Node, and for all the Replication Nodes it
hosts. This default value is 20. Limiting the number of log files controls the amount of disk
space devoted to logging history. If the value is less than 1, then it is converted to 1.

• serviceLogFileLimit=<Integer>
Limits the size of each log file. After reaching this size, the logging subsystem starts a new
log file. This setting applies to the Storage Node and to all Replication Nodes that it hosts.
The default value is 2,000,000 bytes. The limit specifies an approximate maximum amount
of bytes written to any one file. If the value is lesser than or equal to 0, then there is no limit
to the size of the service log files.

• serviceLogFileCompression=<Boolean>
Enables the compression of the log files to store significantly more logging output in the
same amount of disk space. By default, the compression is disabled. You can enable log
file compression by setting the parameter to true.

When you enable compression, the adminLogFileLimit and serviceLogFileLimit
parameters are auto-adjusted to retain larger log files than the specified size. With the
default value of the maximum file count, the actual size limit is approximately five times
larger than the specified limit.

Chapter 4
Managing your kvstore

4-69

Note:

The size of the log files may temporarily exceed the defined limits in certain
cases.

• servicePortRange=<String>
Sets the range of ports used for communication among administrative services running on
a Storage Node and its managed services. This parameter is optional. By default the
services use anonymous ports. The format of the value string is "startPort,endPort."

The range needs to be large enough to accommodate the Storage Node, all the
Replication Nodes (as defined by the capacity parameter), Admin and Arbiter services
hosted on the machine, and JMX, if enabled. The number of ports required also depends
on whether the system is configured for security, which is the default. For a non-secure
system, the Storage Node consumes 1 port (shared with the port assigned separately for
the Registry Service, if it overlaps the service port range), and each Replication Node
consumes 1 port in the range. An Admin, if configured, consumes 1 port. Arbiters consume
1 port each. If JMX is enabled, that consumes 1 additional port. On a secure system, two
additional ports are required for the Storage Node, and two for the Admin. As a general
rule, we recommend that you specify a range significantly larger than the minimum. More
available ports allows for increases in Storage Node capacity, or network problems that
can render ports temporarily unavailable.

The ports that you specify in the servicePortRange should not overlap with the Admin port
or with haPortRange. The service port range can include the registry port, so the registry
and Storage Node share a port.

For deploying a secure Oracle NoSQL Database, use the following formula to estimate the
port range size number, adding an additional port for each Storage Node, Replication Node
or the Admin (if configured):

 3 (Storage Nodes) +
capacity (the number of Replication Nodes) +
Arbiters (the number of Arbiter Nodes) +
3 (if the Storage Node is hosting an admin) +
1 (if the Storage node is running JMX)

For more information on configuring Oracle NoSQL Database securely, see Security
Guide.

For a non-secure system, use the following formula to estimate the port range size
number:

1 (Storage Node) +
capacity (the number of Replication Nodes) +
Arbiters (the number of Arbiter Nodes) +
1 (if the Storage Node is hosting an admin) +
1 (if the Storage Node is running JMX)

For example, if a Storage Node has capacity 1, is hosting an Admin process, and neither
Arbiters nor JMX are in use, the range size must be at least 3. You can increase the range
size beyond this minimum, for safety and Storage Node expansion. Then, if you expand
the Storage Node, you will not need to make changes to this parameter. If capacity is 2, the
range size must be greater than or equal to 4.

Chapter 4
Managing your kvstore

4-70

Replication Node Parameters
The following parameters can be set for Replication Nodes:

• cacheSize=<Long>
Sets the cache size in the underlying BDB JE subsystem. The units are bytes. The size is
limited by the java heap size, which in turn is limited by the amount of memory available on
the machine. You should only ever change this low level parameter under explicit
directions from Oracle support.

• collectEnvStats=<Boolean>
If true, then the underlying BDB JE subsystem dumps statistics into the .stat file. This
information is useful for tuning JE performance. Oracle Support may request these
statistics to aid in tuning or to investigate a problem.

• configProperties=<String>
Contains property settings for the underlying BDB JE subsystem. Its format is
property=value;property=value....

• enableErasure=<Boolean>
If true, then erasure is enabled for the underlying storage system. Erasure periodically
wipes the obsolete data (i.e. delete data, older versions of updated records, expired data)
from the storage layer by zeroing out the corresponding records. Erasure can be enabled
or disabled without restarting the database. Erasure is enabled by default.

Default value is true.

• erasurePeriod=<Long Timeunit>
The duration for one complete erasure pass over the entire data set (the cycle time).
Erasure is throttled based on this value, to minimize its impact on performance. It is
recommended that erasure period be set to less than half of the duration one expects the
obsoleted data to stay around. In other words, we recommend two erasure cycles to
remove the obsoleted data. For example, if we intend to remove all obsolete data in 30
days, then erasure period can be set to 14 days.

Default value is "6 DAYS".

• javaMiscParams=<String> [deprecated]

This parameter should ONLY be used to set flags for which there are no service
parameters.

The javaMiscParams parameter is deprecated. You are encouraged not to use it, and
instead use the javaRnParamsOverride parameter.

• javaRnParamsOverride=<String>
A string that is added to the command line when the Replication Node process is started.
This parameters is intended for specifying miscellaneous JVM properties that cannot be
specified using other RN parameters. If the string is not a valid sequence of tokens for the
JVM command line, the Admin process fails to start.

No default value is provided for this parameter.

It is recommended that to specify the heap sizes for Replication Nodes you use Storage
Node's memoryMB and other JVM parameters. For more information about these
parameters see, Storage Node Parameters.

• latencyCeiling=<Integer>

Chapter 4
Managing your kvstore

4-71

If the Replication Node's average latency exceeds this number of milliseconds, it is
considered an "alertable" event. If JMX monitoring is enabled, the event also causes an
appropriate notification to be sent.

• loggingConfigProps=<String>
Contains property settings for the Logging subsystem. The format of this string is like that
of configProperties, above. Standard java.util.logging properties can be set by this
parameter.

• maxTrackedLatency=<Long TimeUnit>
The highest latency that is included in the calculation of latency percentiles.

• rnCachePercent=<Integer>
The portion of an RN's memory set aside for the JE environment cache.

• rnStatisticsEnabled=<Boolean>
If true, then the Replication Nodes gather key distribution statistics.

• rnStatisticsGatherInterval=<Long TimeUnit>
The time interval at which Replication Nodes should gather distribution statistics.

• rnStatisticsTTL=<Long DaysOrHours>
Specifies the duration for which the key distribution statistics should be retained in the
system tables. The duration specified must be in days or hours. By default, these statistics
are retained for 60 days.

• rnStatisticsIncludeStorageSize=<Boolean>
If true, then the information on storage sizes are included when gathering key distribution
statistics.

• throughputFloor=<Integer>
Similar to latencyCeiling, throughputFloor sets a lower bound on Replication Node
throughput. Lower throughput reports are considered alertable. This value is given in
operations per second.

Arbiter Node Parameters
The following parameters can be set for Arbiter Nodes:

javaAnParamsOverride=<String>
A string that is added to the command line when the Arbiter Node process is started. This
parameters is intended for specifying miscellaneous JVM properties. If the string is not a valid
sequence of tokens for the JVM command line, the Admin process fails to start.

No default value is provided for this parameter.

It is recommended that to specify the heap sizes for Arbiter Nodes you use Storage Node's
memoryMB and other JVM parameters. For more information about these parameters see,
Storage Node Parameters.

Global Parameters
The following store-wide non-security parameters can be implicitly and uniformly set across all
Storage Nodes, Replication Nodes and Admins:

• collectorInterval =<Long TimeUnit>

Chapter 4
Managing your kvstore

4-72

Sets the collection period for latency statistics at each component. This value defaults to
20 seconds. Values like average interval latencies and throughput are averaged over this
period of time.

The following store-wide parameters can be set for the debug log files:

• adminLogFileCount=<Integer>
Sets the number of log files that are kept. This value defaults to 20. It is used to control the
amount of disk space devoted to logging history. If the value is less than 1, then it is
converted to 1.

• adminLogFileLimit=<Integer>
Limits the size of log files. After reaching this limit, the logging subsystem switches to a
new log file. This value defaults to 4,000,000 bytes. The limit specifies an approximate
maximum amount to write (in bytes) to any one file. If the value is lesser than or equal to 0,
then there is no limit to the size of the log files.

Security Parameters
The following store-wide security parameters can be implicitly and uniformly set across all
Storage Nodes, Replication Nodes and Admins:

• accountErrorLockoutThresholdCount=<Integer>
Number of invalid login attempts for a user account from a particular host address over the
tracking period needed to trigger an automatic account lockout for a host. The default
value is 10 attempts.

• accountErrorLockoutThresholdInterval=<Long TimeUnit>
Specifies the time period over which login error counts are tracked for account lockout
monitoring. The default value is 10 minutes.

• accountErrorLockoutTimeout=<Long TimeUnit>
Time duration for which an account will be locked out once a lockout has been triggered.
The default value is 30 minutes.

• loginCacheTimeout=<Long TimeUnit>
Time duration for which KVStore components cache login information locally to avoid the
need to query other servers for login validation on every request. The default value is 5
minutes.

• sessionExtendAllowed=<Boolean>
Indicates whether session extensions should be granted. Default value is true.

• sessionTimeout=<Long TimeUnit>
Specifies the length of time for which a login session is valid, unless extended. The default
value is 24 hours.

The following password security parameters can be set:

Parameter Name Value Range and Type Description

passwordAllowedSpecial Sub set or full set of #$
%&'()*+,-./:; <=>?@[]^_`{|}
(string)~

Lists the allowed special
characters.

Chapter 4
Managing your kvstore

4-73

Parameter Name Value Range and Type Description

passwordComplexityCheck [true|false] (boolean) Whether to enable the password
complexity checking. The default
value is true.

passwordMaxLength 1 - 2048 (integer) The maximum length of a
password. The default value is
256.

passwordMinDigit 0 - 2048 (integer) The minimum required number of
numeric digits. The default value
is 2.

passwordMinLength 1 - 2048 (integer) The Minimum length of a
password. The default value is 9.

passwordMinLower 0 - 2048 (integer) The minimum required number of
lower case letters. The default
value is 2.

passwordMinSpecial 0 - 2048 (integer) The minimum required number of
special characters. The default
value is 2.

passwordMinUpper 0 - 2048 (integer) The minimum required number of
upper case letters. The default
value is 2.

passwordNotStoreName [true|false] (boolean) If true, password should not be
the same as current store name,
nor is it the store name spelled
backwards or with the numbers
1–100 appended. The default
value is true.

passwordNotUserName [true|false] (boolean) If true, password should not be
the same as current user name,
nor is it the user name spelled
backwards or with the numbers
1-100 appended. The default
value is true.

passwordProhibited list of strings separated by
comma (string)

Simple list of words that are not
allowed to be used as a
password. The default reserved
words are:
oracle,password,user,nosql.

passwordRemember 0 - 256 (integer) The maximum number of
passwords to be remembered
that are not allowed to be reused
when setting a new password.
The default value is 3.

For more information on top-level, transport, and password security parameters see the
Security Guide.

Admin Restart
Changes to the following Oracle NoSQL Database parameters will result in a Admin restart by
the Storage Node Agent:

Admin parameters:

• adminHttpPort

Chapter 4
Managing your kvstore

4-74

• adminLogFileCount

• adminLogFileLimit

• configProperties

• javaAdminParamsOverride

• javaMiscParams (deprecated)

• loggingConfigProps

For example:

kv-> plan change-parameters -all-admins
-params adminLogFileCount=10

Output:

Started plan 14. Use show plan -id 14 to check status.
 To wait for completion, use plan wait -id 14

kv-> show plan -id 14

Output:

Plan Change Admin Params (14)
Owner: null
State: INTERRUPTED
Attempt number: 1
Started: 2024-04-05 20:12:06 UTC
Ended: 2024-04-05 20:12:06 UTC
Total tasks: 4
 Successful: 1
 Interrupted: 1
 Not started: 2
Tasks not started
 Task StartAdmin start admin1
 Task WaitForAdminState waits for Admin admin1 to reach RUNNING state

kv-> plan execute -id 14

Output:

Started plan 14. Use show plan -id 14 to check status.
 To wait for completion, use plan wait -id 14

kv-> show plan -id 14

Output:

Plan Change Admin Params (14)
State: SUCCEEDED

Chapter 4
Managing your kvstore

4-75

Attempt number: 1
Started: 2024-04-05 20:20:18 UTC
Ended: 2024-04-05 20:20:18 UTC
Total tasks: 2
 Successful: 2

Note:

When you change a parameter that requires an Admin restart using the plan
change-parameters command, the plan ends in an INTERRUPTED state. To transition it
to a SUCCESSFUL state, re-issue the plan a second time using the plan execute -id
<id> command.

Replication Node Restart

The Storage Node Agent must be restarted to reflect any changes in the setting of the
following parameters.

Storage Node parameters:

• serviceLogFileCount

• serviceLogFileLimit

• serviceLogFileCompression

• servicePortRange

Replication Node parameters:

• configProperties

• javaMiscParams (deprecated)

• javaRnParamsOverride

• loggingConfigProps

Removing an Oracle NoSQL Database Deployment
There are no scripts or tools available to completely remove an Oracle NoSQL Database
installation from your hardware. However, the procedure is simple. On each node (machine)
comprising your store:

1. Shut down the Storage Node:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop -root KVROOT

Note that if an Admin process is running on the machine, this command also stops that
process.

2. Physically remove the entire contents of KVROOT:

> rm -rf KVROOT

Chapter 4
Managing your kvstore

4-76

3. Empty the contents of all the storage directories configured for the KVStore. For example,
if you configured three storage directories using the makebootconfig utility, you must clean
up all the three storage directories.

cd /disk1
rm -rf *

Once you have performed this procedure on every machine comprising your store, you have
completely removed the Oracle NoSQL Database deployment from your hardware.

Modifying Storage Node HA Port Ranges
When you initially configured your installation, you defined a range of ports for the nodes to
use when communicating between themselves. (You did this in Installation Configuration
Parameters.) This range of ports is called the HA port range, where HA is an acronym for High
Availability, and indicates your store’s replication factor.

If you inadvertently used invalid values for the HA Port Range, you cannot deploy a Replication
Node (RN) or a secondary Administration process (Admin) on any Storage Node. You will
discover the problem when you first attempt to deploy a store with a Replication node.
Following are indications that the Replication Node did not come up on the Storage Node:

• The Admin logs include an error that the Replication Node is in the ERROR_RESTARTING
state. After a number of retries, the warning error changes to ERROR_NO_RESTART. You can
find the Replication Node state in the ping command output.

• The plan enters an ERROR state. Using the CLI's show plan <planID> command to get
more history details includes an error message like this:

Attempt 1
 state: ERROR
 start time: 10-03-11 22:06:12
 end time: 10-03-11 22:08:12
 DeployOneRepNode of rg1-rn3 on sn3/farley:5200 [RUNNING]
 failed. Failed to attach to RepNodeService for rg1-rn3,
 see log, /KVRT3/<storename>/log/rg1-rn3*.log, on host
 farley for more information.

• The critical events mechanism, accessible through the Admin CLI show events command,
includes an alert containing the same error information from the plan history.

• The store’s runtime or boot logs for the Storage Node and/or Admin shows a port specific
error message, such as:

[rg1-rn3] Process exiting
java.lang.IllegalArgumentException: Port number 1 is invalid because
the port must be outside the range of "well known" ports

You can address incorrect HA port ranges in a configuration by completing the following steps.
Steps that require you to execute them on the physical node hosting the Oracle NoSQL
Database Storage Node, begin with the directive On the Storage Node. You can execute other
steps from any node that can access the Admin CLI.

1. Using the Admin CLI, cancel the plan deploy-sn or plan deploy-admin command that
includes invalid HA Port Range values.

Chapter 4
Managing your kvstore

4-77

2. On the Storage Node, kill the existing, incorrectly configured StorageNodeAgentImpl
process and all of its Managed Processes. You can distinguish managed processes from
other processes because they have the parameter -root <KVROOT>.

3. On the Storage Node, remove all files from the KVROOT directory.

4. On the Storage Node, recreate the storage node bootstrap configuration file in the
KVROOT directory. For directions, see Installation Configuration Parameters.

5. On the Storage Node, restart the storage node using this Java command:

java -Xmx64m -Xms64m
-jar KVHOME/lib/kvstore.jar restart

6. Using the Admin CLI, you can now create and execute a deploy-sn or deploy-admin plan,
using the same parameters as the initial plan, but with the correct HA range.

Modifying Storage Node Service Port Ranges
This section explains how to modify your Storage Node service port ranges after an initial
configuration and deployment.

When you initially configure your installation, you specify a range of ports that your Storage
Node's Replication Nodes and Admin services use. These ports are collectively called the
service port ranges. Configuring them at installation time was optional. If you did not configure
them, the configuration scripts automatically selected a range of ports for you.

The process of modifying your service port range depends on whether the Storage Node has
already been deployed. You can determine whether a Storage Node has been deployed by
using the Command Line Interface (CLI) to run the show topology command. (See show
topology for details). The show topology command lists the Storage Node, along with the host
and port if it has been deployed.

Storage Node Not Deployed
Use this process to modify your Service Port Ranges if the Storage Node has been configured
but not deployed.

Execute the following steps on the Storage Node host:

1. Kill the existing Storage Node process. You can find the ID of this process by using:

ps -af | grep -e "kvstore.jar.*start.*<KVROOT>"

Kill the process using:

kill <storage node id>

2. Remove all the files from the <KVROOT> directory.

rm -rf <KVROOT>/*

Chapter 4
Managing your kvstore

4-78

3. Recreate the Storage Node bootstrap configuration file with the updated service port
ranges, being sure to specify the -servicerange parameter. For example:

java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar makebootconfig -root <KVROOT> \
-port <port> -host <host> -harange <harange> \
-servicerange <startPort, endPort>

See makebootconfig for details on using this utility.

4. Restart the Storage Node:

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar restart

You can proceed to deploy the Storage Node using the Admin CLI. It will use the newly
specified service port range.

Storage Node Deployed
Use this process to modify your Service Port Ranges if the Storage Node has been deployed.

1. Using the Admin CLI, modify the service port range using the plan change-parameters
command. Specify servicePortRange while you do. For example:

plan change-parameters -service <id> \
-params servicePortRange=<startPort,endPort>

servicePortRange is described in Storage Node Parameters.

2. Restart the Storage Node process and its services. The Replication Nodes and any admin
services for the Storage Node can be stopped in an orderly fashion using the CLI. Use the
show topology command (show topology) to list all the services associated with the
Storage Node.

Stop each of these services using the plan stop-service command. See plan stop-
service for details on this command. Note that when you stop a service, you must use the
services ID, which you can find from the output of the show topology command. Keep
track of these IDs because you will need them when you restart the Storage Node.

Repeat until all services for the Storage Node have been stopped.

3. Kill the existing Storage Node process. You can find the ID of this process by going to the
Storage Node host and issuing:

ps -af | grep -e "kvstore.jar.*start.*<KVROOT>"

Kill the process using:

kill <storage node id>

Chapter 4
Managing your kvstore

4-79

Note:

Avoid killing all Replication Nodes in your store at the same time, as doing so will
result in unexpected errors.

4. Restart the Storage Node by going to the Storage Node host and issuing:

java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar restart

5. Restart the Storage Node services by using plan start-service for each service on the
Storage Node. See plan start-service for details.

6. When the Storage Node is restarted and all its Replication Nodes and any admin services
are running, the services will be using the updated service port range. You can check by
first locating the process ID of the Storage Node services using this command:

ps -af | grep -e "ManageService.*<KVROOT>"

and then check the ports the services are listening to by using this command:

netstat -tlpn | grep <id>

One of the listening ports is the service port and it should be within the new range.

Availability, Failover and Switchover
Topics:

• Availability and Failover

• Replication Overview

• Loss of a Read-Only Replica Node

• Loss of a Read/Write Master

• Unplanned Network Partitions

• Failover and Switchover Operations

• Zone Failover

• Durability Summary

• Consistency Summary

Availability and Failover
Oracle NoSQL Database is a data storage product with enormous scalability and performance
benefits. Additionally, Oracle NoSQL Database offers excellent availability mechanisms. These
mechanisms are designed to provide your applications access to data contained in the store in
the event of localized hardware and network failures.

This document describes the mechanisms Oracle NoSQL Database uses to ensure your data
remains available, along with the various failover algorithms that Oracle NoSQL Database
employs. In addition, this document describes application design patterns you can use to best
make use of Oracle NoSQL Database's availability mechanisms. In some cases, tradeoffs exist

Chapter 4
Availability, Failover and Switchover

4-80

between ensuring data is highly available, and achieving optimal performance. This document
explores these tradeoffs.

The intended audience for this document includes system architects, engineers, and others
who want to understand the concepts and issues surrounding data availability when using
Oracle NoSQL Database. In addition, software engineers responsible for writing code that
interacts with an Oracle NoSQL Database store should also read this document.

We recommend that you read and get familiar with the following contents before continuing.

• Developers Guide

This document introduces terms and concepts you need to know before reading this
document.

• Durability Guarantees in the Java Direct Driver Developer's Guide

This section includes concepts that lead to issues surrounding write availability.

• Consistency Guarantees in the Java Direct Driver Developer's Guide

This section includes concepts that lead to issues surrounding read availability.

Replication Overview
To ensure data durability and availability, Oracle NoSQL Database uses a single-master
replication strategy. Using a single machine to perform write operations, Oracle NoSQL
Database then broadcasts those operations to multiple read-only replicas.

The Concepts Guide describes a shard as a collection of replication nodes, associated with a
single master node and multiple replicas. Your store contains multiple shards, and your data is
spread evenly across all of the shards that your store uses.

When you perform a write operation in your store, Oracle NoSQL Database completes the
write operation on the master node in use by the shard containing your data. The master node
performs this write according to whatever durability guarantees are in place at the time. If you
set a strong durability guarantee, the master requires the participation of some or all of the
replicas in the shard to complete the write operation.

If the master node of the shard becomes unavailable for any reason, the replica nodes in
primary zones hold an election to determine which of the remaining replication nodes should
take over as the master node. The replication node with the most up-to-date data wins the
election.

The election is decided based on a simple majority vote. This means that a majority of the
nodes in the shard in primary zones must be available to participate in the election to select a
new master.

Loss of a Read-Only Replica Node
A common fail over case is losing a replica node due to a problem with the machine upon
which it is running. This loss can be due to something as common as a hard drive failure.

In this case, the only shard that is affected is the one using the replica. By default, the effect on
the shard is reduced read throughput capacity. The shard itself is capable of continuing normal
operations. However, losing a single Replication Node reduces its capacity to service read
requests by whatever read throughput a single host machine offers your store. Whether you
detect this reduction in read throughput capacity depends on how heavy a read load your
shard is experiencing. The shard could have a low enough read load that losing the replica
results in a minor performance reduction.

Chapter 4
Availability, Failover and Switchover

4-81

Such a small performance reduction assumes that a single host machine contains only one
Replication Node. If you configure your store so that multiple Replication Nodes run on a single
host, then the loss of throughput capacity increases accordingly. It is likely that the loss of a
machine running multiple Replication Nodes will affect the throughput capacity of more than
one shard, because it is unlikely that all the Replication Nodes on that machine will belong to
the same shard. Again, whether you notice any performance reduction from the loss of the
Storage Node depends on how heavy a read load the individual affected shards are
experiencing.

In this scenario, with one exception, the shard will continue servicing write requests, and may
be able to do so with no changes to its write throughput capacity. The master itself is not
affected, so it can continue performing writes and replicating them to the remaining replicas in
the shard. There can be reduced write throughput capacity if:

• there is such a heavy read load on the shard that the loss of one replica saturates the
remaining replica(s); and

• the master requires an acknowledgement before finishing a write commit.

In this scenario, write performance capacity can be reduced either because the master is
continually waiting for the replica to acknowledge commits, or because the master itself is
expending resources responding to read requests. In either case, you may see degraded write
throughput, but the level of degradation depends on how heavy the read/write load actually is
on the shard. Again, it is possible that you will never detect any write throughput reduction,
because the write load on the shard is low.

In addition, the loss of a single read-only replica can cause all write operations at that shard to
fail with a DurabilityException exception. This happens if you are using a durability
guarantee that requires acknowledgements from all replicas in the shard in primary zones. In
this case, writes at that shard will fail until either that replica is brought back online, or you
place a less strict durability guarantee into use.

Using durability guarantees that require acknowledgements from all replicas in primary zones
offer you the strongest data durability possible (by making certain that your writes are
replicated to every machine in a shard). At the same time, they have the potential to lose write
capabilities for an entire shard from a single hardware failure. Consequently, be sure to
balance your durability requirements against your availability requirements, and configure your
store and related code accordingly.

Loss of a Read/Write Master
If you lose a host machine containing a shard's master, the shard will be incapable of
responding to write requests, momentarily. The lack of write request response is so brief that it
may not be detected by your client code. Only the shard containing the master is affected by
this outage. All other shards continue to perform as normal.

In this case, the shard's replicas in primary zones will quickly notice the master is missing and
call for an election. Typically this will occur within a few milliseconds after losing the master.

The replica nodes will conduct an election, and the replica in a primary zone with the most up-
to-date set of data will be elected master. To be elected master requires a simple majority vote
from the other machines in the shard hosting nodes in primary zones. Keep in mind that this
simple majority requirement has implications if many machines are lost from your store.

Once a new master is elected, the shard will continue operations, reducing its read throughput
capacity by one machine. As with the loss of a single replica (see the previous section), all
write operations can continue as long as your durability guarantee does not require
acknowledgements from all replicas in primary zones.

Chapter 4
Availability, Failover and Switchover

4-82

Your client code will not notice the missing master if the new master is elected and services the
write request within the timeout value used for the write operation. However, we recommend
that your production code include ways to guard against timeout problems. In the event of a
timeout, your code should include a decision policy about what to do next. For example, your
policy could:

• Retry the write operation immediately,

• Retry the write operation after a defined wait,

• Abandon the write operation entirely.

Unplanned Network Partitions
A shard can be split into two, non-communicating networks. Such an event can occur when a
piece of network hardware, such as a router, fails in some way that divides the shard. The
store’s response to such an event depends on how the network partition divides the shard’s
Replication Nodes as in these three cases:

A single Replication Node is isolated from the rest of the shard. If the Replication Node is a
read-only replica, the shard continues operating as normal, but without the read throughput
capacity caused by the loss of a single machine. See Loss of a Read-Only Replica Node for
more details.

A single Replication Node becomes isolated from the rest of the shard. If the Replication Node
is a master, the shard handles the event in the same way as if it had lost a master. The shard
holds an election to select a new master and then continues operating as normal. See Loss of
a Read/Write Master for further information.

The new network partition divides the shard into two or more groups of machines. In this case,
there will be at least one minority node partition. A minority node partition contains less than a
majority of the Replication Nodes in the shard. There could also be a majority node partition. A
majority node partition has the majority of nodes in the shard —. However, a majority node
partition is not a given, especially if the new network partition creates more than two sets of
Replication Nodes.

How failover is handled in this scenario depends on whether a majority node partition does
exist, and if the master exists in that partition. There are also other issues to consider, such as
the durability and consistency policies that were in use at the time the new network partition
was created.

Master is in the Majority Node Partition
Suppose the shard is divided into two partitions. Partition A contains a simple majority of the
Replication Nodes in primary zones, including the master. Partition B has the remaining nodes.

• Partition A continues to service read and write requests as normal, but with a reduced read
throughput from the loss of however many Replication Nodes are in Partition B. A caveat in
this situation is what durability policy is in use at the time. If Partition A does not have
enough replicas from primary zones to meet the durability policy requirements, it could be
prevented from servicing write requests. If the durability policy requires a simple majority,
or less, of replicas, then the shard will be able to service write requests.

• Partition B continues to service read requests as normal, but with increasingly stale data.
Depending on the consistency guarantee in place, Partition B might cease to service read
requests. If a version-based consistency is in use, then Partition B will probably encounter
ConsistencyException exceptions soon after the network partition occurs, due to its
inability to obtain version tokens from the master. Similarly, if a time-based consistency
policy is in use, then ConsistencyException exceptions will occur as soon as the replica

Chapter 4
Availability, Failover and Switchover

4-83

lags too far behind the master, from which it is no longer receiving write updates. By
default, a consistency guarantee is not required to service read requests. So unless you
explicitly create and use a consistency policy, Partition B can continue to service read
requests through the entire network outage.

Partition B will attempt to elect a new master, but will be unable to do so because it does
not contain the simple majority of Replication Nodes required to hold an election.

Further, if the partition is such that your client code can reach Partition A but not Partition B,
then the shard will continue to service read and write requests as normal, but with a reduced
read capacity.

However, if the partition is such that your client code can read Partition B but not Partition A,
then the shard will be unable to service any write requests. This is because Partition A
contains the master, and Partition B does not include enough Replication Nodes to elect a new
master.

Master is in the Minority Node Partition
Suppose the shard is divided into two partitions. Partition A contains a simple majority of the
Replication Nodes from primary zones, but NOT the master. Partition B has the remaining
nodes, including the master.

Assuming both partitions are network accessible by your client code, then:

• Partition A will notice that it no longer has a master. Because Partition A has at least a
simple majority of the Replication Nodes in primary zones, it will be able to elect a new
master. It will do this quickly, and the shard will continue operations as normal.

Whether Partition A can service write requests is determined by the durability policy in use.
As long as the durability policy requires a simple majority, or less, of replicas, then the
shard is able to service write requests.

• Partition B will continue to operate as normal, believing that it has a valid master. However,
the only way Partition B can service write requests is if the durability policy in use requires
no participation from the shard's replicas. If a majority of nodes in primary zones must
acknowledge the write operation, or if all nodes in primary zones must acknowledge the
write, then the partitions will be unable to service writes because not enough nodes are
available to satisfy the durability policy.

If durability NONE is in use, then for the period of time that it takes to resolve the network
partition, the shard will operate with two masters. When the partition is resolved, the shard
will recognize the problem and correct it. Because Partition A held a valid election, writes
performed there will be kept. Any writes performed in Partition B will be discarded. The old
master in Partition B will be demoted to a simple replica, and the replicas in Partition B will
all be synced with the new master.

Note:

Because of the potential for loss of data in this scenario, Oracle strongly
recommends that you do NOT use durability NONE. The only time you should
use that durability setting is if you want to absolutely maximize write throughput,
and do not care if you lose the data.

Further, if the partition is such that your client code can reach Partition A but not Partition B,
then the shard will continue to service read and write requests as normal, but only after an
election is held, and then with a reduced read capacity.

Chapter 4
Availability, Failover and Switchover

4-84

However, if the partition is such that your client code can read Partition B but not Partition A,
then the shard will be unable to service write requests at all, unless you use the weakest
durability policy available. This is because Partition B does not include enough Replication
Nodes to satisfy anything other than the weakest available durability policy.

No Majority Node Partition
Suppose the shard is divided into multiple partitions, and no partition contains a majority of the
Replication Nodes in the shard. In this case, the shard's partitions can service read requests,
so long as the consistency policy in use for the read supports it. If the read requires tight
consistency with the master, and the master is not available to ensure the consistency can be
met, then the read will fail.

The partition containing the master can service write requests only if you are using the weakest
available durability policy, in which no acknowledgements from replicas are required. If
acknowledgements are required, then there will not be enough replicas to satisfy the durability
policy and no write operations can occur.

Once the network partition is resolved, the shard will elect a new master, synchronize all
replicas with it, and continue operations as normal.

Failover and Switchover Operations
Optimal use of available physical datacenters is achieved by deploying your store across
multiple zones. This provides fault isolation as each zone has a copy of your complete store,
including a copy of all the shards. With this configuration, when a zone fails, write availability is
automatically reestablished as long as quorum is maintained.

Note:

To achieve other levels of fault isolation, best practices for data center design should
be applied. For example, site location, building selection, floor layout, mechanical
design, electrical system design, modularity, etc.

However, if quorum is lost, manual procedures such as failovers can be used instead to
recover from zone failures. For more information on quorum, see Concepts Guide.

A failover is typically performed when the primary zone fails or has become unreachable and
one of the secondary zones is transitioned to take over the primary role. Failover can also be
performed to reduce the quorum to the available primary zones. Failover may or may not result
in data loss.

Switchovers can be used after performing a failover (to restore the original configuration) or for
planned maintenance.

A switchover is typically a role reversal between a primary zone and one of the secondary
zones of the store. A switchover can also be performed to convert one or more zones to
another type for maintenance purposes. Switchover requires quorum and guarantees no data
loss. It is typically done for planned maintenance of the primary system.

In this chapter, we explain how failover and switchover operations are performed.

Chapter 4
Availability, Failover and Switchover

4-85

Note:

Arbiters are not currently supported during failover and switchover operations.

Repairing a Failed Zone
If a zone fails but quorum is maintained, you have the option to repair the failed zone with new
hardware by following the procedure described in Repairing a Failed Zone by Replacing
Hardware.

Another option is to convert the failed zone to a secondary zone. In some cases, this approach
can improve the high availability characteristics of the store by reducing the quorum
requirements.

For example, suppose a store consists of two primary zones: zone 1 with a replication factor of
three and zone 2, with a replication factor of two. Additionally, suppose zone 2 fails. In this
case, quorum is maintained because you would have 3 out of the 5 replicas, but any additional
failure would result in a loss of quorum.

Converting zone 2 to a secondary zone would reduce the primary replication factor to 3,
meaning that each shard could tolerate an additional failure.

You should determine if switching zone types would actually improve availability. If so, then
decide if it is worth doing in the current circumstances.

Need for an Admin node in the secondary zone:

Having admins in a secondary zone is very useful to support failure recovery. For example, if a
store has primary and secondary zones, and all of the primary zones are lost, the administrator
can use the repair-admin-quorum and plan failover commands to resume operations by
converting the secondary zone to a primary zone. But these operations can occur only if an
Admin node is available. For this reason, stores with secondary zones should include Admins
in the secondary zones.

The recommendation is to deploy the same number of admins as the replication factor for the
zone. For example if you have primary and secondary zone with a replication factor of 3, then
each zone should be configured with three admins. If a zone failure occurs and no admins
remain available, the failover procedures cannot be used. To avoid this situation you need to
configure as many admins as the replication factor for the zone.

Performing a Failover
If quorum is maintained, you do not need to do anything because the store is still performing
normally.

In situations where a zone fails but quorum is lost, your only option is to perform a failover.

For example, suppose a store consists of two zones, "Manhattan" and "JerseyCity", each
deployed in its own physical data center.

Chapter 4
Availability, Failover and Switchover

4-86

Note:

This example uses a store with a replication factor of three. In this case, each zone is
also configured with three admins.

Additionally, suppose that the "Manhattan" zone fails, resulting in the failure of all of the
associated Storage Nodes and a loss of quorum. In this case, if the host hardware of
"Manhattan" was irreparably damaged or the problem will take too long to repair you may
choose to initiate a failover.

The following steps walk you through the process of verifying failures, isolating Storage Nodes,
and reducing admin quorum to perform a failover operation. This process allows service to be
continued in the event of a zone failure.

1. Connect to the store. To do this, connect to an admin running in the JerseyCity zone:

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar \
runadmin -host jersey1 -port 6000 \
-security USER/security/admin.security

Note:

This assumes that you must have followed the steps as mentioned in Create
users and configure security with remote access .

2. Use the verify configuration command to confirm the failures. The output confirms the
Storage Node Agents in the Manhattan zone are unavailable.

kv-> verify configuration

Output:

Connected to Admin in read-only mode
Verify: starting verification of store mystore based upon topology
sequence #115
100 partitions and 6 storage nodes
Time: 2024-04-05 07:15:23 UTC Version: 24.1.11
See jersey1:/kvroot/mystore/log/mystore_{0..N}.log for progress messages
Verify: Shard Status: healthy: 0 writable-degraded: 0 read-only: 1
offline: 0 total: 1
Verify: Admin Status: read-only
Verify: Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false] RN Status: online: 0 read-only: 0 offline: 3
Verify: Zone [name=JerseyCity id=zn2 type=SECONDARY allowArbiters=false
masterAffinity=false] RN Status: online: 0 read-only: 3 offline: 0
Verify: == checking storage node sn1 ==
Verify: sn1: ping() failed for sn1 :
Unable to connect to the storage node agent at host nyc1,
port 5000, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:

Chapter 4
Availability, Failover and Switchover

4-87

 java.net.ConnectException: Connection refused
Verify: Storage Node [sn1] on nyc1:5000
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 UNREACHABLE
Verify: admin1: ping() failed for admin1 :
Unable to connect to the storage node agent at host nyc1,
port 5000, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Admin [admin1] Status: UNREACHABLE
Verify: rg1-rn1: ping() failed for rg1-rn1 :
Unable to connect to the storage node agent at host nyc1,
port 5000, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Rep Node [rg1-rn1] Status: UNREACHABLE
Verify: == checking storage node sn2 ==
Verify: sn2: ping() failed for sn2:
Unable to connect to the storage node agent at host nyc1,
port 5100, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Storage Node [sn2] on nyc1:5100
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 UNREACHABLE
Verify: admin2: ping() failed for admin2:
Unable to connect to the storage node agent at host nyc1,
port 5100, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Admin [admin2] Status: UNREACHABLE
Verify: rg1-rn2: ping() failed for rg1-rn2 :
Unable to connect to the storage node agent at host nyc1,
port 5100, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Rep Node [rg1-rn2] Status: UNREACHABLE
Verify: == checking storage node sn3 ==
Verify: sn3: ping() failed for sn3:
Unable to connect to the storage node agent at host nyc1,
port 5200, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Storage Node [sn3] on nyc1:5200
Zone: [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 UNREACHABLE
Verify: admin3: ping() failed for admin3:

Chapter 4
Availability, Failover and Switchover

4-88

Unable to connect to the storage node agent at host nyc1,
port 5200, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Admin [admin3] Status: UNREACHABLE
Verify: rg1-rn3: ping() failed for rg1-rn3 :
Unable to connect to the storage node agent at host nyc1,
port 5200, which may not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:
 nyc1; nested exception is:
 java.net.ConnectException: Connection refused
Verify: Rep Node [rg1-rn3] Status: UNREACHABLE
Verify: == checking storage node sn4 ==
Verify: Storage Node [sn4] on jersey1:6000
Zone: [name=JerseyCity id=zn2 type=SECONDARY allowArbiters=false
masterAffinity=false]
Ver: 24.1.11 2024-04-05 21:24:59 UTC Build id: 78bbc4cb976b Edition:
Enterprise isMasterBalanced: true serviceStartTime: 2024-04-05 07:05:44
UTC
Verify: Admin [admin4]
Status: RUNNING,MASTER (non-authoritative)
Verify: Rep Node [rg1-rn4]
Status: RUNNING,MASTER (non-authoritative) sequenceNumber:217 haPort:6003
available storage size:12 GB
Verify: == checking storage node sn5 ==
Verify: Storage Node [sn5] on jersey1:6100
Zone: [name=JerseyCity id=zn2 type=SECONDARY allowArbiters=false
masterAffinity=false]
Ver: 24.1.11 2024-04-05 21:24:59 UTC Build id: 78bbc4cb976b Edition:
Enterprise isMasterBalanced: true serviceStartTime: 2024-04-05 07:05:44
UTC
Verify: Admin [admin5]
Status: RUNNING,MASTER (non-authoritative)
Verify: Rep Node [rg1-rn5]
Status: RUNNING,MASTER (non-authoritative) sequenceNumber:217 haPort:6003
available storage size:12 GB
Verify: == checking storage node sn6 ==
Verify: Storage Node [sn6] on jersey1:6200
Zone: [name=JerseyCity id=zn2 type=SECONDARY allowArbiters=false
masterAffinity=false]
Ver: 24.1.11 2024-04-05 21:24:59 UTC Build id: 78bbc4cb976b Edition:
Enterprise isMasterBalanced: true serviceStartTime: 2024-04-05 07:05:44
UTC
Verify: Admin [admin6]
Status: RUNNING,MASTER (non-authoritative)
Verify: Rep Node [rg1-rn6]
Status: RUNNING,MASTER (non-authoritative) sequenceNumber:217 haPort:6003
available storage size:12 GB
Verification complete, 9 violations, 0 notes found.
Verification violation: [admin1] ping() failed for admin1 : Unable
to connect to the storage node agent at host nyc1, port 5000 , which may
not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: nyc1;
nested exception is:
 java.net.ConnectException: Connection refused (Connection refused)

Chapter 4
Availability, Failover and Switchover

4-89

Verification violation: [admin2] ping() failed for admin2 : Unable
to connect to the storage node agent at host nyc1, port 5100, which may
not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: nyc1;
nested exception is:
 java.net.ConnectException: Connection refused (Connection refused)
Verification violation: [admin3] ping() failed for admin3 : Unable
to connect to the storage node at host nyc1, port 5200, which may not be
running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: nyc1;
nested exception is:
 java.net.ConnectException: Connection refused (Connection refused)
Verification violation: [rg1-rn1] ping() failed for rg1-rn1 : Unable
to connect to the storage node agent at host nyc1, port 5000, which may
not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: nyc1;
nested exception is:
 java.net.ConnectException: Connection refused (Connection refused)
Verification violation: [rg1-rn2] ping() failed for rg1-rn2 : Unable
to connect to the storage node agent at host nyc1, port 5100, which may
not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: nyc1;
nested exception is:
 java.net.ConnectException: Connection refused (Connection refused)
Verification violation: [rg1-rn3] ping() failed for rg1-rn3 : Unable
to connect to the storage node agent at host nyc1, port 5200, which may
not be running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: nyc1;
nested exception is:
 java.net.ConnectException: Connection refused (Connection refused)
Verification violation: [sn1] ping() failed for sn1 : Unable to connect
to the storage node agent at host nyc1, port 5000, which may not be
running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:nyc1; nested
exception is:
 java.net.ConnectException: Connection refused (Connection refused)
Verification violation: [sn2] ping() failed for sn2 : Unable to connect
to the storage node agent at host nyc1, port 5100, which may not be
running; nested exception is:
 java.rmi.ConnectException: Connection refused to host: nyc1;
nested exception is:
 java.net.ConnectException: Connection refused (Connection refused)
Verification violation: [sn3] ping() failed for sn3 : Unable to connect
to the storage node agent at host nyc1, port 5200, which may not be
running; nested exception is:
 java.rmi.ConnectException: Connection refused to host:nyc1; nested
exception is:
 java.net.ConnectException: Connection refused (Connection refused)

In this case, the Storage Node Agent at host nyc1 is confirmed unavailable.

3. To prevent a hard rollback and data loss, isolate failed nodes (Manhattan) from the rest of
the system. Make sure all failed nodes are prevented from rejoining the store until their
configurations have been updated.

To do this, you can:

Chapter 4
Availability, Failover and Switchover

4-90

• Disconnect the network physically or use a firewall.

• Modify the start-up sequence on failed nodes to prevent SNAs from starting.

4. To make changes to the store, you first need to reduce admin quorum. To do this, use the
repair-admin-quorum command, specifying the available primary zone:

kv-> repair-admin-quorum -znname JerseyCity

Output:

Connected to admin in read-only mode
Repaired admin quorum using admins: [admin4, admin5, admin6]

Now you can perform administrative procedures using the remaining admin service with
the temporarily reduced quorum.

5. Use the plan failover command to update the configuration of the store with the
available zones.

kv-> plan failover -znname \
JerseyCity -type primary \
-znname Manhattan -type offline-secondary -wait

Output:

Executing plan 8, waiting for completion...
Plan 8 ended successfully

The plan failover command fails if it is executed while other plans are still running. You
should cancel or interrupt the plans, before executing this plan.

For example, suppose the topology redistribute is in progress. If you run the plan
failover command, it will fail. For it to succeed, you need to first cancel or interrupt the
topology redistribute command.

To do this, first use the show plans command to learn the plan ID of the topology
redistribute command. In this case, 9. Then, cancel the topology redistribute command
using the plan cancel command:

kv-> plan cancel -id 9

After performing the failover, confirm that the zone type of Manhattan has been changed to
secondary using the ping command.

kv-> ping

Output:

Pinging components of store mystore based upon topology sequence #208
100 partitions and 6 storage nodes
Time: 2024-04-05 07:33:51 UTC Version: 24.1.11
Shard Status: healthy:0 writable-degraded:1 read-only:0 offline:0
Admin Status: writable-degraded

Chapter 4
Availability, Failover and Switchover

4-91

Zone [name=Manhattan id=zn1 type=SECONDARY allowArbiters=false
masterAffinity=false]
RN Status: online:0 offline:3
Zone [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:3 offline:0
Storage Node [sn1] on nyc1:5000
Zone: [name=Manhattan id=zn1 type=SECONDARY allowArbiters=false
masterAffinity=false]
UNREACHABLE
 Admin [admin1] Status: UNREACHABLE
 Rep Node [rg1-rn1] Status: UNREACHABLE
Storage Node [sn2] on nyc1:5100
Zone: [name=Manhattan id=zn1 type=SECONDARY allowArbiters=false
masterAffinity=false]
UNREACHABLE
 Admin [admin2] Status: UNREACHABLE
 Rep Node [rg1-rn2] Status: UNREACHABLE
Storage Node [sn3] on nyc1:5200
Zone: [name=Manhattan id=zn1 type=SECONDARY allowArbiters=false
masterAffinity=false]
UNREACHABLE
 Admin [admin3] Status: UNREACHABLE
 Rep Node [rg1-rn3] Status: UNREACHABLE
Storage Node [sn4] on jersey1:6000
Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING
Ver: 24.1.11 2024-04-05 21:24:59 UTC Build id: 78bbc4cb976b
 Admin [admin4] Status: RUNNING,REPLICA
 Rep Node [rg1-rn4]
Status: RUNNING,REPLICA sequenceNumber:427 haPort:6011 available storage
Storage Node [sn5] on jersey1:6100
Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING
Ver: 24.1.11 2024-04-05 21:24:59 UTC Build id: 78bbc4cb976b
 Admin [admin5] Status: RUNNING,REPLICA
 Rep Node [rg1-rn5]
Status: RUNNING,REPLICA sequenceNumber:427 haPort:6011 available storage
Storage Node [sn6] on jersey1:6200
Zone: [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING
Ver: 24.1.11 2024-04-05 21:24:59 UTC Build id: 78bbc4cb976b
 Admin [admin6] Status: RUNNING,MASTER
 Rep Node [rg1-rn6]
Status: RUNNING,MASTER sequenceNumber:427 haPort:6011 available storage

The failover operation is now complete. Write availability in the store is reestablished using
zone 2 as the only available primary zone. Zone 1 is offline. Any data that was not
propagated from zone 1 prior to the failure will be lost.

Chapter 4
Availability, Failover and Switchover

4-92

Note:

In this case, the store has only a single working copy of its data, so single node
failures in the surviving zone will prevent read and write access, and, if the failure
is a permanent one, may produce permanent data loss.

If the problems that led to the failover have been corrected and the original data from the
previously failed nodes (Manhattan) is still available, you can return the old nodes to service by
performing a switchover. To do this, see the next section.

Performing a Switchover
To continue from the example of the previous section, after performing the failover, you can
return the old nodes to service by performing the following switchover procedure:

1. After the failed zones are repaired, restart all the Storage Nodes of the failed zones without
starting any services (avoids hard rollback):

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar restart -disable-services \
-root nyc1/KVROOT &

Note:

When performing planned maintenance, there is no need to isolate nodes or
disable services prior to bringing nodes back online.

2. Reestablish network connectivity or reenable the standard startup sequence of the
previously failed zones.

3. Repair the topology so that the topology for the newly restarted Storage Nodes can be
updated with changes made by the failover.

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar runadmin \
-host jersey1 -port 5000 \
-security USER/security/admin.security

kv-> plan repair-topology -wait

Output:

Executed plan 10, waiting for completion...
Plan 10 ended successfully

Note:

This assumes that you must have followed the steps as mentioned in Create
users and configure security with remote access .

Chapter 4
Availability, Failover and Switchover

4-93

Note:

This command will also restart services on the previously failed nodes.

Use the verify configuration command to confirm that there are no configuration
problems.

4. Run the ping command. The "maxCatchupTimeSecs" value will be used for the -timeout
flag of the await-consistency command.

Use the timeout flag to specify an estimate of how long the switchover will take. For
example, if the nodes have been offline for a long time it might take many hours for them to
catch up so that they can be converted back to primary nodes.

kv-> ping

Output:

Pinging components of store mystore based upon topology sequence #117
100 partitions and 6 storage nodes
Time: 2024-04-05 07:39:18 UTC Version: 24.1.11
Shard Status: healthy: 1 writable-degraded: 0 read-only: 0 offline: 0
total: 1
Admin Status: healthy
Zone [name=Manhattan id=zn1 type=SECONDARY allowArbiters=false
masterAffinity=false]
RN Status: online: 3 read-only: 0 offline: 0 maxDelayMillis: 3
maxCatchupTimeSecs: 0
Zone [name=JerseyCity id=zn2 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online: 3 read-only: 0 offline: 0 maxDelayMillis: 4
maxCatchupTimeSecs: 0
Storage Node [sn1] on nyc1: 5000 Zone: name=Manhattan id=zn1
type=SECONDARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 07:36:01 UTC
Admin [admin1] Status: RUNNING,REPLICA serviceStartTime: 2024-04-05
07:38:14 UTC
stateChangeTime: 2024-04-05 07:38:14 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn1] Status: RUNNING,REPLICA sequenceNumber: 2,672 haPort:
5111
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:37:14 UTC
stateChangeTime: 2024-04-05 07:37:20 UTC delayMillis: 0 catchupTimeSecs: 0
Storage Node [sn2] on nyc1: 5100 Zone: [name=Manhattan id=zn1
type=SECONDARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 07:36:25 UTC
Admin [admin2] Status: RUNNING,REPLICA serviceStartTime: 2024-04-05
07:38:34 UTC

Chapter 4
Availability, Failover and Switchover

4-94

stateChangeTime: 2024-04-05 07:38:33 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn2] Status: RUNNING,REPLICA sequenceNumber: 2,672 haPort:
5211
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:37:28 UTC
stateChangeTime: 2024-04-05 07:37:33 UTC delayMillis: 0 catchupTimeSecs: 0
Storage Node [sn3] on nyc1: 5200 Zone: [name=Manhattan id=zn1
type=SECONDARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 07:36:35 UTC
Admin [admin3] Status: RUNNING,REPLICA serviceStartTime: 2024-04-05
07:38:56 UTC
stateChangeTime: 2024-04-05 07:38:56 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn3] Status: RUNNING,REPLICA sequenceNumber: 2,672 haPort:
5311
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:37:43 UTC
stateChangeTime: 2024-04-05 07:37:49 UTC delayMillis: 3 catchupTimeSecs: 0
Storage Node [sn4] on jersey1: 6000 Zone: [name=JerseyCity id=zn2
type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 07:05:44 UTC
Admin [admin4] Status: RUNNING,REPLICA serviceStartTime: 2024-04-05
07:36:49 UTC
stateChangeTime: 2024-04-05 07:36:47 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn4] Status: RUNNING,REPLICA sequenceNumber: 2,672 haPort:
5411
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:36:36 UTC
stateChangeTime: 2024-04-05 07:36:59 UTC delayMillis: 4 catchupTimeSecs: 0
Storage Node [sn5] on jersey1: 6100 Zone: [name=JerseyCity id=zn2
type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-059 07:05:54 UTC
Admin [admin5] Status: RUNNING,REPLICA serviceStartTime: 2024-04-05
07:36:49 UTC
stateChangeTime: 2024-04-05 07:36:48 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn5] Status: RUNNING,REPLICA sequenceNumber: 2,672 haPort:
5511
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:36:36 UTC
stateChangeTime: 2024-04-05 07:36:59 UTC delayMillis: 0 catchupTimeSecs: 0
Storage Node [sn6] on jersey1: 6200 Zone: [name=JerseyCity id=zn2
type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 07:06:03 UTC
Admin [admin6] Status: RUNNING,MASTER serviceStartTime: 2024-04-05
07:36:55 UTC

Chapter 4
Availability, Failover and Switchover

4-95

stateChangeTime: 2024-04-05 07:36:46 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn6] Status: RUNNING,MASTER sequenceNumber: 2,672 haPort:
5611
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:36:36 UTC
stateChangeTime: 2024-04-05 07:36:57 UTC

In this case, 1800 seconds (30 minutes) is the value to be used.

5. Use the await-consistency command to specify the wait time (1800 seconds) used for
the secondary zones to catch up with their masters.

The system will only wait five minutes for nodes to catch up when attempting to change a
zone's type. If the nodes do not catch up in that amount of time, the plan will fail.

If the nodes will take more than five minutes to catch up, you should run the await-
consistency command, specifying a longer wait time using the -timeout flag. In this case,
the wait time (1800 seconds) is used:

kv-> await-consistent -timeout 1800 -znname Manhattan
The specified zone is consistent

By default, nodes need to have a delay of no more than 1 second to be considered caught
up. You can change this value by specifying the -replica-delay-threshold flag. You should
do this if network delays prevent the nodes from catching up within 1 second of their
masters.

Note:

If you do not want the switchover to wait for the nodes to catch up, you can use
the -no-replica-delay threshold flag. In that case, nodes will be converted to
primary nodes even if they are behind. You should evaluate whether this risk is
worth taking.

6. Perform the switchover to convert the previously failed zone back to a primary zone , and
the formerly secondary zone back to its earlier state.

kv-> topology clone -current -name newTopo

kv-> topology change-zone-type -name newTopo \
-znname Manhattan -type primary

Output:

Changed zone type of zn1 to PRIMARY in newTopo

kv-> topology change-zone-type -name newTopo \
-znname JerseyCity -type secondary

Chapter 4
Availability, Failover and Switchover

4-96

Output:

Changed zone type of zn2 to SECONDARY in newTop

kv-> plan deploy-topology -name newTopo -wait

Output:

Executed plan 11, waiting for completion...
Plan 11 ended successfully

Confirm the zone type change of the Manhattan zone to PRIMARY by running the ping
command.

kv-> ping

Output:

Pinging components of store mystore based upon topology sequence #117
100 partitions and 6 storage nodes
Time: 2024-04-05 07:39:18 UTC Version: 24.1.11
Shard Status: healthy: 1 writable-degraded: 0 read-only: 0 offline: 0
total: 1
Admin Status: healthy
Zone [name=Manhattan id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online: 3 read-only: 0 offline: 0 maxDelayMillis: 3
maxCatchupTimeSecs: 0
Zone [name=JerseyCity id=zn2 type=SECONDARY allowArbiters=false
masterAffinity=false]
RN Status: online: 3 read-only: 0 offline: 0 maxDelayMillis: 4
maxCatchupTimeSecs: 0
Storage Node [sn1] on nyc1: 5000 Zone: name=Manhattan id=zn1
type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 07:36:01 UTC
Admin [admin1] Status: RUNNING,MASTER serviceStartTime: 2024-04-05
07:38:14 UTC
stateChangeTime: 2024-04-05 07:38:14 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn1] Status: RUNNING,MASTER sequenceNumber: 2,672 haPort:
5111
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:37:14 UTC
stateChangeTime: 2024-04-05 07:37:20 UTC delayMillis: 0 catchupTimeSecs: 0
Storage Node [sn2] on nyc1: 5100 Zone: [name=Manhattan id=zn1
type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 07:36:25 UTC
Admin [admin2] Status: RUNNING,REPLICA serviceStartTime: 2024-04-05

Chapter 4
Availability, Failover and Switchover

4-97

07:38:34 UTC
stateChangeTime: 2024-04-05 07:38:33 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn2] Status: RUNNING,REPLICA sequenceNumber: 2,672 haPort:
5211
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:37:28 UTC
stateChangeTime: 2024-04-05 07:37:33 UTC delayMillis: 0 catchupTimeSecs: 0
Storage Node [sn3] on nyc1: 5200 Zone: [name=Manhattan id=zn1
type=PRIMARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
 serviceStartTime: 2024-04-05 07:36:35 UTC
Admin [admin3] Status: RUNNING,REPLICA serviceStartTime: 2024-04-05
07:38:56 UTC
stateChangeTime: 2024-04-05 07:38:56 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn3 Status: RUNNING,REPLICA sequenceNumber: 2,672
haPort: 5311
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:37:43 UTC
stateChangeTime: 2024-04-05 07:37:49 UTC delayMillis: 3 catchupTimeSecs: 0
Storage Node [sn4] on jersey1: 6000 Zone: [name=JerseyCity id=zn2
type=SECONDARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 07:05:44 UTC
Admin [admin4] Status: RUNNING,REPLICA serviceStartTime: 2024-04-05
07:36:49 UTC
stateChangeTime: 2024-04-05 07:36:47 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn4] Status: RUNNING,REPLICA sequenceNumber: 2,672 haPort:
5411
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:36:36 UTC
stateChangeTime: 2024-04-05 07:36:59 UTC delayMillis: 4 catchupTimeSecs: 0
Storage Node [sn5] on jersey1: 6100 Zone: [name=JerseyCity id=zn2
type=SECONDARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 07:05:54 UTC
Admin [admin5] Status: RUNNING,REPLICA serviceStartTime: 2024-04-05
07:36:49 UTC
stateChangeTime: 2024-04-05 07:36:48 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn5] Status: RUNNING,REPLICA sequenceNumber: 2,672 haPort:
5511
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:36:36 UTC
stateChangeTime: 2024-04-05 07:36:59 UTC delayMillis: 0 catchupTimeSecs: 0
Storage Node [sn6] on jersey1: 6200 Zone: [name=JerseyCity id=zn2
type=SECONDARY
allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 21:24:59 UTC
Build id: 78bbc4cb976b Edition: Enterprise isMasterBalanced: true
serviceStartTime: 2024-04-05 07:06:03 UTC
Admin [admin6] Status: RUNNING,REPLICA serviceStartTime: 2024-04-05

Chapter 4
Availability, Failover and Switchover

4-98

07:36:55 UTC
stateChangeTime: 2024-04-05 07:36:46 UTC availableStorageSize: 2 GB
Rep Node [rg1-rn6] Status: RUNNING,REPLICA sequenceNumber: 2,672 haPort:
5611
availableStorageSize: 273 GB storageType: HD serviceStartTime: 2024-04-05
07:36:36 UTC
stateChangeTime: 2024-04-05 07:36:57 UTC

Zone Failover
Zones allow you to spread your data store across various physical installation locations. The
different locations can be anything from different physical buildings near each other, to different
racks in the same building. The basic goal of spreading your store across locations is to guard
against large-scale infrastructure disruptions, such as power outages or major storm damage,
by placing the nodes in your store physically as far apart as possible.

Oracle NoSQL Database provides support for two kinds of zones. Primary zones contain
nodes which can serve as masters or replicas. Zones are created as primary zones by default.
Secondary zones contain nodes which can serve only as replicas. Secondary zones can be
used to make a copy of the data available at a distant location, or to maintain an extra copy of
the data to increase redundancy or read capacity.

Both types of zones require high throughput network connections to transmit the replication
data required to keep replicas up-to-date. Failing to provide sufficient network capacity will
result in nodes in poorly connected zones falling farther and farther behind. Locations
connected by low throughput network connections are not suitable for use with zones.

For primary zones, in addition to a high throughput network, the network connections with
other primary zones should provide highly reliable and low latency communication. These
capabilities make it possible to perform master elections for quick master failovers, and to
provide acknowledgments to meet write request timeout requirements. Primary zones are not,
therefore, suitable for use with an unreliable or slow wide area network.

For secondary zones, the nodes do not participate in master elections or acknowledgments.
For this reason, the system can tolerate reduced reliability or increased latency for connections
between secondary and primary zones. The network connections still need to provide sufficient
throughput to support replication, and must provide sufficient reliability that temporary
interruptions do not interfere with network throughput.

If you deploy your store across multiple zones, then Oracle NoSQL Database tries to physically
place at least one Replication Node from each shard in each zone. Whether Oracle NoSQL
Database can do this depends on the number of shards in use in your store, the number of
zones, the number of Replication Nodes, and the number of physical machines available in
each zone. Still, Oracle NoSQL Database makes a best-effort to spread Replication Nodes
across available zones. Doing so guards against losing entire shards should the zone become
unavailable for any reason.

All of the failover descriptions covered here apply to zones. Failover works across zones in the
same way as it does if all nodes are contained within a single zone. Zones offer you the ability
for your data to remain available in the event of a large outage. However, read and write
capability for any given shard is still gated by whether the remaining zone(s) constitute a
majority node partition, and the durability and consistency policies in use for your store
activities.

Chapter 4
Availability, Failover and Switchover

4-99

Durability Summary
This document has described how durability guarantees affect a shard's write availability in the
event of hardware or network failures. In summary:

• A durability guarantee that requires no acknowledgements from the shard's replicas gives
you the best chance that the shard can continue servicing write requests in the event of an
outage. However, this durability guarantee can also result in the shard operating with two
masters, which leads to data loss once hardware problems are resolved. This is not a
recommended configuration.

• A durability guarantee requiring a simple majority of primary zone replicas to acknowledge
the write operation guards against two masters accidently operating at one time. However,
it also means that the shard will be incapable of servicing write requests if more than a
majority of the replicas are offline due to a hardware failure.

• A durability guarantee requiring all primary zone replicas to acknowledge the write
operation guards against any possibility of data loss. However, it also means that the shard
will be unable to service write requests if even one of the replicas is unavailable for any
reason.

Consistency Summary
In most cases, replicas can continue to service read requests as long as the underlying
hardware remains functional. In its default configuration, there is nothing that stops a replica
from doing this, even if it is the only node running after some catastrophic failure.

However, is is possible for a replica to stop servicing read requests following a network failure,
if the consistency policy requires either version information, or disallows stale data relative to
the master. Whether this happens depends on how your Replication Nodes are exactly
partitioned as a result of the failure, and how long it takes to establish a new master. The
replica's ability to service read requests is also determined by the consistency policy in use for
each request. If the read requires tight consistency with the master, and the master is not
available to ensure the consistency can be met, then the read will fail.

Chapter 4
Availability, Failover and Switchover

4-100

5
Reference

The articles in this section contains reference information on various command line tools and
utilities.

Terminologies used in Oracle NoSQL Database
Some of the terminologies used in Oracle NoSQL Database

Release: Oracle NoSQL Database is released three times in a year. The release number of
the Oracle NoSQL database follows this pattern release.major.minor where release is the
last 2 characters of the year(For example: 23), major release number denotes the quarter
which is 1,2, or 3 and minor release number is the final patch number of the release. For
example : 23.1.16.

Data Store: Oracle NoSQL Database applications read and write data by performing network
requests against an Oracle NoSQL Database data store. The data store is a collection of
Storage Nodes, each of which hosts one or more replication nodes.

host: The hostname associated with the Storage Node on which the data store is installed. A
hostname is a unique term assigned to a Storage Node on a network. It distinguishes one
Storage Node from another on a specific network.

port: The TCP/IP port through which the Storage Node connects to the Oracle NoSQL
Database. This port must be free on the Storage Node. The default port used is 5000. This port
is referred to as the registry port.

KVROOT: A directory that stores the data of your data store and security related information.
There should be enough disk space on each Storage Node to hold the data of your data store.
It is recommended that you use the same directory path for $KVROOT on each of the Storage
Nodes in the installation.

Storage Node: A Storage Node is a physical (or virtual) machine with its own local storage,
which houses the Replication Node.

Replication Node: Every Storage Node hosts one or more replication nodes(RN) as
determined by its capacity. A Storage Node's capacity serves as a rough measure of the
hardware resources associated with it (memory, CPUs, and disks). , each of which hosts one
or more replication node.

Admin service: An administrative process that runs on a Storage Node and runs various
Admin CLI commands.

Managed service: The replication node process that run on a Storage Node.

Storage Node Agent: . The Storage Node Agent manages all the Replication Nodes running
on the Storage Node (host)

Shard: A shard is a horizontal partition of data in a database. Your data store's replication
nodes are organized into shards. A single shard contains multiple replication nodes.

Majority in a Shard: The number of replication nodes which are available and online in a
shard. This will help in ensuring read and write availability in the shard and to elect master
when one of the nodes fail.

5-1

Master Node and Replica Nodes: There are two types of Replication Nodes, namely, master
and replica. Each shard must contain one master node. The master node performs all
database write activities. Each shard can also contain one or more read-only replicas. The
master node copies all new write activity data to the replicas. The replicas are then used to
service read-only operations.

Quorum: Quorum is the minimum number of primary nodes required in a shard, or in the set of
admin nodes, to permit electing a master to support write operations.

Zone: A zone is a physical location that supports high-capacity network connectivity between
the Storage Nodes deployed within it.

Master Affinity Zones: Master Affinity is a way for you to indicate which primary zones can
host master replication nodes. Master Affinity zones service high demand "write" requests
across shards.

Replication factor: The total number of masters and replicas in a shard are equal to the
replication factor (RF). You can also think of Replication Factor as the number of copies of your
data.

Zone Replication factor: The number of copies, or replicas, maintained in a zone.

Primary Replication factor: The total number of replicas in all primary zones.

Secondary Replication factor: The total number of replicas in all secondary zones.

Store Replication factor:The total number of replicas in all zones across the entire store.

Arbiter Node: An Arbiter Node is a lightweight process that is capable of supporting write
availability when the primary replication factor is two and a single replication node becomes
unavailable or when two replication nodes are unable to communicate to determine which one
of them is the master.

Multi-Region data store: Oracle NoSQL Database supports creating tables in multiple data
stores, and still maintain consistent data across these clusters. If you have replicated data
across data stores, it is called a multi-region data store.

Xregion Service Agent: In a Multi-Region data store, a Cross-Region Service or XRegion
Service is a standalone service running on a separate node. In simple terms, this is also called
an agent. The XRegion Service is deployed when you are connecting the local data store with
a remote data store to create a multi-region table.

Admin CLI Reference
This appendix describes the following commands:

• aggregate

• await-consistent

• change-policy

• configure

• connect

• delete

• execute

• exit

• get

Chapter 5
Admin CLI Reference

5-2

• help

• hidden

• history

• load

• logtail

• namespace

• page

• ping

• plan

• pool

• put

• repair-admin-quorum

• show

• snapshot

• table

• table-size

• timer

• topology

• verbose

• verify

The Command Line Interface (CLI) is run interactively or used to run single commands. The
general usage to start the CLI is:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin \
-host <hostname> -port <port> [single command and arguments]
-security KVROOT/security/client.security

If you want to run a script file, you can use the "load" command on the command line:

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -host <hostname> -port <port> \
-security \
KVROOT/securtiy/client.security \
load -file <path-to-script>

If none of the optional arguments are passed, it starts interactively. If additional arguments are
passed they are interpreted as a single command to run, then return. The interactive prompt
for the CLI is:

"kv-> "

Upon successful completion of the command, the CLI's process exit code is zero. If there is an
error, the exit code will be non-zero.

Chapter 5
Admin CLI Reference

5-3

The CLI comprises a number of commands, some of which have subcommands. Complex
commands are grouped by general function, such as "show" for displaying information or "ddl"
for manipulating schema. All commands accept the following flags:

• -help

Displays online help for the command or subcommand.

• ?

Synonymous with -help. Displays online help for the command or subcommand.

• -verbose

Enables verbose output for the command.

CLI commands have the following general format:

1. All commands are structured like this:

"kv-> command [sub-command] [arguments]

2. All arguments are specified using flags which start with "-"

3. Commands and subcommands are case-insensitive and match on partial strings(prefixes)
if possible. The arguments, however, are case-sensitive.

Inside a CLI script file, you can use # to designate a comment. Also, you can terminate a line
with a backslash \ to continue a command onto the next line.

aggregate
Performs simple data aggregation operations on numeric fields like count, sum, average, keys,
start and end. The aggregate command iterates matching keys or rows in the store so,
depending on the size of the specified key or row, it may take a very long time to complete.

aggregate table is an aggregate subcommand.

aggregate table

aggregate table -name <name>
 [-count] [-sum <field[,field,..]>]
 [-avg <field[,field,..]>]
 [-index <name>]
 [-field <name> -value <value>]*
 [-field <name> [-start <value>] [-end <value>]]
 [-json <string>]

Performs simple data aggregation operations on numeric fields of the table.

where:

• -name
Specifies the table for the operation.

• -count
Returns the count of matching records.

• -sum

Chapter 5
Admin CLI Reference

5-4

Returns the sum of the values of matching fields.

• -avg
Returns the average of the values of matching fields.

• -index
Specifies the name of the index to use. When an index is used, the fields named must
belong to the specified index and the aggregation is performed over rows with matching
index entries.

• -field and -value pairs are used to specify the field values of the primary key to use to
match for the aggregation, or you can use an empty key to match the entire table.

• The -field flat, along with its -start and -end flags, can be used for restricting the range
used to match rows.

• -json
Specifies the fields and values to use for the aggregation as a JSON input string.

See the example below:

Create a table 'user_test' with an index on user_test(age):
kv-> execute 'CREATE TABLE user_test (id INTEGER,
firstName STRING, lastName STRING, age INTEGER, PRIMARY KEY (id))'
Statement completed successfully

kv-> execute 'CREATE INDEX idx1 on user_test (age)'
Statement completed successfully

Insert 3 rows:
kv-> put table -name user_test -json
'{"id":1,"firstName":"joe","lastName":"wang","age":21}'
Operation successful, row inserted.
kv-> put table -name user_test -json
'{"id":2,"firstName":"jack","lastName":"zhao","age":32}'
Operation successful, row inserted.
kv-> put table -name user_test -json
'{"id":3,"firstName":"john","lastName":"gu","age":43}'
Operation successful, row inserted.

Get count(*), sum(age) and avg(age) of rows in table:
kv-> aggregate table -name user_test -count -sum age -avg age
Row count: 3
Sum:
 age(3 values): 96
Average:
 age(3 values): 32.00

Get count(*), sum(age) and avg(age) of rows where
age >= 30, idx1 is utilized to filter the rows:
kv-> aggregate table -name user_test -count -sum age
-avg age -index idx1 -field age -start 30
Row count: 2
Sum:
 age(2 values): 75
Average:
 age(2 values): 37.50

Chapter 5
Admin CLI Reference

5-5

await-consistent

await-consistent -timeout <timeout-secs> [-zn <id> | -znname <name>]...
[-replica-delay-threshold <time-millis>]

Waits for up to the specified number of seconds for the replicas in one or more zones, or in the
entire store, to catch up with the masters in their associated shards. Prints information about
whether consistency was achieved or, if not, details about which nodes failed to become
consistent.

where:

• -timeout
Specifies the number of seconds for the replicas to catch up with the masters in their
associated shards.

• -zn <id>
Specifies the zone name to restrict the zones whose replicas need to satisfy the requested
consistency requirements. If this option is not specified, all replicas must meet the
consistency requirements.

• -znname <name>
Specifies the zone name to restrict the zones whose replicas need to satisfy the requested
consistency requirements. If this option is not specified, all replicas must meet the
consistency requirements.

• -replica-delay-threshold <time-millis>
Specifies the maximum number of milliseconds that a replica may be behind the master
and be considered caught up. The default if 1000 milliseconds (1 second).

When performing a switchover, you can use this command to wait for secondary nodes to
catch up with their masters, and to obtain information about progress towards reaching
consistency.

change-policy

change-policy [-dry-run] -params [name=value]*

Modifies store-wide policy parameters to services you have not yet deployed. You use this
command to change a policy to set new parameters that all new Replication Nodes will use.
These policy parameters are the default set of parameters for the new services. All new
services will use the parameters specified in the policy when they start. Specify the parameters
to change after the -params flag, separating each parameter with a space character.

To specify parameter values that include embedded spaces, use quotation marks (") around
the value, like this:

name="value with spaces"

If you use -dry-run, the command returns the parameters you specify without changing them.

For more information on setting policy parameters, see Setting Store Wide Policy Parameters.

Chapter 5
Admin CLI Reference

5-6

configure

configure -name <storename> -json

Configures a new store. This call must be made before any other administration can be
performed.

Use the -name option to specify the name of the KVStore that you want to configure. The name
is used to form a path to records kept in the store. For this reason, you should avoid using
characters in the store name that might interfere with its use within a file path. The command
line interface does not allow an invalid store name. Valid characters are alphanumeric, '-', '_',
and '.'.

kv-> configure -name mystore -json{
"operation" : "configure",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "storeName" : "mystore"
 }
}

connect
Encapsulates commands that connect to the specified host and registry port to perform
administrative functions or connect to the specified store to perform data access functions.

The current store, if any, will be closed before connecting to another store. If there is a failure
opening the specified KVStore, the following warning is displayed: "Warning: You are no longer
connected to KVStore".

The subcommands are as follows:

• connect admin

• connect store

connect admin

connect admin -host <hostname> -port <registry port>
[-username <user>] [-security <security-file-path>]

Connects to the specified host and registry port to perform administrative functions. An Admin
service must be active on the target host. If the instance is secured, you may need to provide
login credentials.

where:

• -host <hostname>
Identifies the host name of a node in your store.

• -port <registry port>

Chapter 5
Admin CLI Reference

5-7

The TCP/IP port on which Oracle NoSQL Database should be contacted. This port should
be free (unused) on each node. It is sometimes referred to as the registry port.

• -username <user>
Specifies a username to log on as in a secure deployment.

• -security <security-file-path>
In a secured deployment, specifies a path to the security file. If not specified in a secure
store, updating the sn-target-list will fail.

connect store

connect store [-host <hostname>] [-port <port>]
-name <storename> [-timeout <timeout ms>]
[-consistency <NONE_REQUIRED(default)
 | ABSOLUTE| NONE_REQUIRED_NO_MASTER>]
[-durability <COMMIT_SYNC(default)
 | COMMIT_NO_SYNC | COMMIT_WRITE_NO_SYNC>]
[-username <user>] [-security <security-file-path>]

Connects to a KVStore to perform data access functions. If the instance is secured, you may
need to provide login credentials.

Use the timeout, consistency and durability flags to override the default connect configuration.

where:

• -host <hostname>
Identifies the host name of a node in your store.

• -port <port>
The TCP/IP port on which Oracle NoSQL Database should be contacted. This port should
be free (unused) on each node.

• -name <storename>
Identifies the name of the store.

• -timeout <timeout ms>
Specifies the store request timeout in milliseconds.

• -consistency
Specifies the store request consistency. The default value is NONE_REQUIRED.

• -durability
Specifies the store request durability. The default value is COMMIT_SYNC.

• -username <user>
Specifies a username to log on as in a secure deployment.

• -security <security-file-path>
In a secured deployment, specifies a path to the security file.

Chapter 5
Admin CLI Reference

5-8

delete
Encapsulates commands that delete key/value pairs from store or rows from table. The
subcommands are as follows:

• delete kv

• delete table

delete kv

delete kv [-key <key>] [-start prefixString] [-end prefixString] [-all]

Deletes one or more keys. If -all is specified, delete all keys starting at the specified key. If no
key is specified, delete all keys in the store. The -start and -end flags can be used for
restricting the range used for deleting.

For example, to delete all keys in the store starting at root:

kv -> delete kv -all
301 Keys deleted starting at root

delete table

kv-> delete table -name <table_name>
 [-field <name> -value <value>]*
 [-field <name> [-start <value>] [-end <value>]]
 [-ancestor <name>]* [-child <child_name>]*
 [-json <string>] [-delete-all]

Deletes one or multiple rows from the named table.

• -name
Identifies a table name, which can be any of the following:

– table_name – The target table is a top level table created in the default namespace,
sysdefault. The default namespace (sysdefault:) prefix is not required to identify
such tables.

– table_name.child_name – The target table is the child of a parent table. Identify the
child table by preceding it with the parent table_name, followed by a period (.)
separator before child_name.

– namespace_name:table_name – The target table was not created in the default
(sysdefault) namespace. Identify table_name by preceding it with its namespace_name,
followed by a colon (:).

– namespace_name:table_name.child_name – The target table is the child of a parent
table that was created in a namespace. Identify child_name by preceding it with both
namespace_name: and the parent table_name, , followed by a period (.) separator.

• -field and -value
Pairs specify the field values of the primary key or, use an empty key to delete all rows
from the table.

Chapter 5
Admin CLI Reference

5-9

• -field , -start, and -end
Use these flags to restrict the sub-range for deletion associated with the parent key.

• -ancestor and -child
Use to delete rows from a specific ancestor or descendant tables, in addition to the target
table.

• -json
Indicates that the key field values are in JSON format.

• -delete-all
Indicates to delete all rows in a table.

execute

execute <statement> [-json] [-wait]

Oracle NoSQL Database provides a way to run Data Definition Language (DDL) statements
used to form table and index statements. Using the execute command runs each statement
you specify synchronously. You must enclose each DDL statement in single or double quotes.
You must connect to a database store before using the execute command.

Note:

All DDL commands from the Admin CLI, including execute, are deprecated. Use the
SQL for Oracle NoSQL Database Shell to execute this command. For more
information, see Appendix A Introduction to the SQL for Oracle NoSQL Database
Shell.

For example:

kv-> plan execute -id 19 -json -wait
{
 "operation" : "plan deploy-zone -name zn6 -rf 1 -type PRIMARY -no-
arbiters -no-master-affinity",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "id" : 19,
 "name" : "Deploy Zone",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2024-04-05 09:35:31 UTC",
 "interrupted" : null,
 "end" : "2024-04-05 09:35:31 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0,
 "interrupted" : 0,

Chapter 5
Admin CLI Reference

5-10

 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 19 [Deploy Zone] task [DeployDatacenter zone=zn6]",
 "state" : "SUCCEEDED",
 "start" : "2024-04-05 09:35:31 UTC",
 "end" : "2024-04-05 09:35:31 UTC"
 }],
 "running" : [],
 "pending" : []
 },
 "planId" : 19,
 "zoneName" : "zn6",
 "zoneId" : "zn4",
 "type" : "PRIMARY",
 "rf" : 1,
 "allowArbiters" : false,
 "masterAffinity" : false
 }
 }

exit

exit | quit

Exits the interactive command shell.

get
Encapsulates commands that get key/value pairs from store or get rows from table. The
subcommands are as follows:

• get kv

• get table

get kv

get kv [-key <keyString>] [-file <output>] [-all] [-keyonly]
[-valueonly] [-start <prefixString>] [-end <prefixString>]

Perform a simple get operation using the specified key. The obtained value is printed out if it
contains displayable characters, otherwise the bytes array is encoded using Base64 for display
purposes. "[Base64]" is appended to indicate this transformation. The arguments for the get
command are:

• -key <keyString>
Indicates the full or the prefix key path to use. If <keyString> is a full key path, it returns a
single value information. The format of this get command is: get -key <keyString>. If
<keyString> is a prefix key path, it returns multiple key/value pairs. The format of this get
command is: get -key <keyString> -all. Key can be composed of both major and

Chapter 5
Admin CLI Reference

5-11

minor key paths, or a major key path only. The <keyString> format is: "major-key-path/-/
minor-key-path". Additionally, in the case of the prefix key path, a key can be composed of
the prefix part of a major key path.

For example, with some sample keys in the KVStore:

/group/TC/-/user/bob
/group/TC/-/user/john
/group/TC/-/dep/IT
/group/SZ/-/user/steve
/group/SZ/-/user/diana

A get command with a key containing only the prefix part of the major key path results in:

kv -> get kv -key /group -all -keyonly
/group/TC/-/user/bob
/group/TC/-/user/john
/group/TC/-/dep/IT
/group/SZ/-/user/steve
/group/SZ/-/user/diana

A get command with a key containing a major key path results in:

kv -> get kv -key /group/TC -all -keyonly
/group/TC/-/user/bob
/group/TC/-/user/john
/group/TC/-/dep/IT

Get commands with a key containing major and minor key paths results in:

kv -> get kv -key /group/TC/-/user -all -keyonly
/group/TC/-/user/bob
/group/TC/-/user/john
kv -> get kv -key /group/TC/-/user/bob
{
 "name" : "bob.smith",
 "age" : 20,
 "email" : "bob.smith@example.com",
 "phone" : "408 555 5555"
}

• -file <output>
Specifies an output file, which is truncated, replacing all existing content with new content.

In the following example, records from the key /Smith/Bob are written to the file
"data.out".

kv -> get kv -key /Smith/Bob -all -file ./data.out

In the following example, contents of the file "data.out" are replaced with records from
the key /Wong/Bill.

kv -> get kv -key /Wong/Bill -all -file ./data.out

Chapter 5
Admin CLI Reference

5-12

• -all
Specified for iteration starting at the specified key. If the key argument is not specified, the
entire store will be iterated.

• -keyonly
Specified with -all to return only keys.

• -valueonly
Specified with -all to return only values.

• -start <prefixString> and -end <prefixString>
Restricts the range used for iteration. This is particularly helpful when getting a range of
records based on a key component, such as a well-formatted string. Both the -start and -
end arguments are inclusive.

Note:

-start and -end only work on the key component specified by -key
<keyString>. The value of <keyString> should be composed of simple strings
and cannot have multiple key components specified.

For example, a log where its key structure is:

/log/<year>/<month>/-/<day>/<time>

puts all log entries for the same day in the same partition, but splits the days across
shards. The time format is: "hour.minute".

In this way, you can do a get of all log entries in February and March, 2013 by specifying:

kv-> get kv -all -keyonly -key /log/2013 -start 02 -end 03
/log/2013/02/-/01/1.45
/log/2013/02/-/05/3.15
/log/2013/02/-/15/10.15
/log/2013/02/-/20/6.30
/log/2013/02/-/28/8.10
/log/2013/03/-/01/11.13
/log/2013/03/-/15/2.28
/log/2013/03/-/22/4.52
/log/2013/03/-/31/11.55

You can be more specific to the get command by specifying a more complete key path.
For example, to display all log entries from April 1st to April 4th:

kv-> get kv -all -keyonly -key /log/2013/04 -start 01 -end 04
/log/2013/04/-/01/1.03
/log/2013/04/-/01/4.05
/log/2013/04/-/02/7.22
/log/2013/04/-/02/9.40
/log/2013/04/-/03/4.15
/log/2013/04/-/03/6.30

Chapter 5
Admin CLI Reference

5-13

/log/2013/04/-/03/10.25
/log/2013/04/-/04/4.10
/log/2013/04/-/04/8.35

See the subcommand get table

get table

kv-> get table -name <table_name> [-index <name>]
 [-field <name> -value <value>]+
 [-field <name> [-start <value>] [-end <value>]]
 [-ancestor <name>]+ [-child <name>]+
 [-json <string>] [-file <output>] [-keyonly]
 [-pretty] [-report-size]

Identifies a table name, which can be any of the following:

• -name
Identifies any of the following tables:

– table_name – The target table is a top level table created in the default namespace,
sysdefault. The default namespace (sysdefault:) prefix is not required to identify
such tables.

– table_name.child_name – The target table is the child of a parent table. Identify the
child table by preceding it with the parent table_name, followed by a period (.)
separator before child_name.

– namespace_name:table_name – The target table was not created in the default
(sysdefault) namespace. Identify table_name by preceding it with its namespace_name,
followed by a colon (:).

– namespace_name:table_name.child_name – The target table is the child of a parent
table that was created in a namespace. Identify child_name by preceding it with both
namespace_name: and the parent table_name, , followed by a period (.) separator.

-field and -value pairs are used to specify the field values of the primary key or index
key if using an index, specified by -index, or with an empty key to iterate the entire table.

• -field flag, along with its -start and -end flags, can be used to define a value range for
the last field specified.

• -ancestor and -child flags are used to return results from specific ancestor and/or
descendant tables as well as the target table.

• -json indicates that the key field values are in JSON format.

• -file is used to specify an output file, which is truncated.

• -keyonly is used to restrict information to keys only.

• -pretty is used for a nicely formatted JSON string with indentation and carriage returns.

• -report-size is used to show key and data size information for primary keys, data values,
and index keys for matching records. When -report-size is specified no data is
displayed.

Chapter 5
Admin CLI Reference

5-14

help

help [command [sub-command]] [-include-deprecated]

Prints help messages. With no arguments the top-level shell commands are listed. With
additional commands and sub-commands, additional detail is provided.

kv-> help load
Usage: load -file <path to file>
 Load the named file and interpret its contents as a script of
 commands to be executed. If any command in the script fails
 execution will end.

Use -include-deprecated to show deprecated commands.

For example:

kv-> help show -include-deprecated
Encapsulates commands that display the state of the store and its
components.
Usage: show admins |
 datacenters |
 events |
 faults |
 indexes |
 parameters |
 perf |
 plans |
 pools |
 schemas |
 snapshots |
 tables |
 topology |
 upgrade-order |
 users |
 versions |
 zones

hidden

hidden [on|off]

Toggles visibility and setting of parameters that are normally hidden. Use these parameters
only if advised to do so by Oracle Support.

history

history [-last <n>] [-from <n>] [-to <n>]

Chapter 5
Admin CLI Reference

5-15

Displays command history. By default all history is displayed. Optional flags are used to choose
ranges for display.

load

load -file <path to file>

Loads the named file and interpret its contents as a script of commands to be executed. If any
of the commands in the script fail, execution will stop at that point.

For example, users of the Table API can use the load command to define a table and insert
data using a single script. Suppose you have a table defined like this:

create table IF NOT EXISTS Users (
 id integer,
 firstname string,
 lastname string,
 age integer,
 income integer,
 primary key (id)
);

Then sample data for that table can be defined using JSON like this:

{
"id":1,
"firstname":"David",
"lastname":"Morrison",
"age":25,
"income":100000
}
{
"id":2,
"firstname":"John",
"lastname":"Anderson",
"age":35,
"income":100000
}
{
"id":3,
"firstname":"John",
"lastname":"Morgan",
"age":38,
"income":200000
}
{
"id":4,
"firstname":"Peter",
"lastname":"Smith",
"age":38,
"income":80000
}
{
"id":5,

Chapter 5
Admin CLI Reference

5-16

"firstname":"Dana",
"lastname":"Scully",
"age":47,
"income":400000
}

Assume that the sample data is contained in a file called Users.json. Then you can define the
table and load the sample data using a script that looks like this (file name loadTable.txt) :

Begin Script
execute "create table IF NOT EXISTS Users (\
 id integer, \
 firstname string, \
 lastname string, \
 age integer, \
 income integer, \
 primary key (id) \
)"

put table -name Users -file users.json

Then, the script can be run by using the load command:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -host node01 -port 5000 \
-security \
KVROOT/securtiy/client.security \
-store mystore
kv-> load -file ./loadTable.txt
Statement completed successfully
Loaded 5 rows to Users

kv->

If you are using the Key/Value API, first you create schema in the store:

{
 "type": "record",
 "name": "ContactInfo",
 "namespace": "example",
 "fields": [
 {"name": "phone", "type": "string", "default": ""},
 {"name": "email", "type": "string", "default": ""},
 {"name": "city", "type": "string", "default": ""}
]
}

Then you can collect the following commands in the script file load-contacts-5.txt:

Begin Script
put -key /contact/Bob/Walker -value "{\"phone\":\"857-431-9361\", \
\"email\":\"Nunc@Quisque.com\",\"city\":\"Turriff\"}" \
-json example.ContactInfo

Chapter 5
Admin CLI Reference

5-17

put -key /contact/Craig/Cohen -value "{\"phone\":\"657-486-0535\", \
\"email\":\"sagittis@metalcorp.net\",\"city\":\"Hamoir\"}" \
-json example.ContactInfo
put -key /contact/Lacey/Benjamin -value "{\"phone\":\"556-975-3364\", \
\"email\":\"Duis@laceyassociates.ca\",\"city\":\"Wasseiges\"}" \
-json example.ContactInfo
put -key /contact/Preston/Church -value "{\"phone\":\"436-396-9213\", \
\"email\":\"preston@mauris.ca\",\"city\":\"Helmsdale\"}" \
-json example.ContactInfo
put -key /contact/Evan/Houston -value "{\"phone\":\"028-781-1457\", \
\"email\":\"evan@texfoundation.org\",\"city\":\"Geest-G\"}" \
-json example.ContactInfo
exit
End Script

The script can be run by using the load command:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -host node01 -port 5000 \
-security \
KVROOT/securtiy/client.security \
-store mystore
kv-> load -file ./load-contacts-5.txt
Operation successful, record inserted.
Operation successful, record inserted.
Operation successful, record inserted.
Operation successful, record inserted.
Operation successful, record inserted.

For more information on using the load command, see Create a script to configure the data
store.

logtail
Monitors the store-wide log file until interrupted by an "enter" key press.

namespace

namespace [namespace_name]

Sets namespace_name as the default namespace for table operations and queries. For example:

kv-> namespace ns1
Namespace is ns1

Entering the command without namespace_name returns to the default namespace:

kv-> namespace
Namespace is sysdefault

Chapter 5
Admin CLI Reference

5-18

page

page [on|<n>|off]

Turns query output paging on or off. If specified, n is used as the page height.

If n is 0, or "on" is specified, the default page height is used. Setting n to "off" turns paging off.

ping

ping [-json] [-shard <shardId>]

The ping and verify commands return information about the runtime entities of a data store.
The command accesses components and Admin services available from the topology,
returning information about the state of various components.

• -json
Displays output in JSON format.

• –shard <shardId>
Displays a subset of status information about the specific shard ID you supply.

Here is a basic example of calling ping from the Admin CLI:

kv-> ping
Pinging components of store mystore based upon topology sequence #308
300 partitions and 3 storage nodes
Time: 2024-04-05 20:19:27 UTC Version: 24.1.11
Shard Status: healthy:1 writable-degraded:0 read-only:0 offline:0 total:1
Admin Status: healthy
Zone [name=1 id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false]
RN Status: online:3 read-only:0 offline:0
maxDelayMillis:0 maxCatchupTimeSecs:0
Storage Node [sn1] on localhost:13230
Zone: [name=1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 08:17:52 UTC Build id:
12641466031c Edition: Enterprise
Admin [admin1] Status: RUNNING,MASTER
Rep Node [rg1-rn1] Status: RUNNING,MASTER sequenceNumber:633 haPort:13233
available storage size:109 GB
Storage Node [sn2] on localhost:13240
Zone: [name=1 id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 08:17:52 UTC Build id:
12641466031c Edition: Enterprise
Admin [admin2] Status: RUNNING,REPLICA
 Rep Node [rg1-rn2] Status: RUNNING,REPLICA sequenceNumber:633
haPort:13243 available storage size:109 GB delayMillis:0 catchupTimeSecs:0
Storage Node [sn3] on localhost:13250 Zone: [name=1 id=zn1 type=PRIMARY
allowArbiters=false masterAffinity=false] Status: RUNNING Ver: 24.1.11
2024-04-05 08:17:52 UTC Build id: 12641466031c Edition: Enterprise

Chapter 5
Admin CLI Reference

5-19

 Admin [admin3] Status: RUNNING,REPLICA
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA sequenceNumber:633
haPort:13253 available storage size:109 GB delayMillis:0 catchupTimeSecs:0

About Shard and Admin Status
After running a ping command, you should understand what is most useful (or troubling) about
the system health. The most important content is the Shard Status entry. The following ping
output details indicate one shard (total:1) that is healthy (healthy:1). All of the status types
you'd prefer not to see (writable-degraded, read-only, and offline are zero (0), indicating
nothing has one of those states. Everything is good.

Shard Status: healthy:1
writable-degraded:0
read-only:0
offline:0
total:1

What exactly does a healthy shard indicate? A healthy shard is one with all of its RNs running.
Thus, if all shards in the topology are healthy, then all RNs are running, and no failures exist.
Why are RNs so important? Because they are the components that perform read and write
data operations.

Checking the Admin nodes status is also useful. In this simple example, only one Admin shard
exists, so there is a single result: Admin Status: healthy. Other possible states are:
writable-degraded, read-only, or offline.

For both RN shards and admins, these are what each result indicates:

Result Meaning

healthy All nodes are running, and the system is fully operational.

writable-degraded A majority of the nodes are running. All operations are supported,
but a minority of the nodes are offline or don't support writes. If you
are using RF=3, this state is one step closer to being unable to
support all operations. For example, with one node offline, losing
another node means quorum will be lost, and the shard becomes
read-only. Most people use RF=3, so this is typically what writable-
degraded means.

read-only Only a minority of the nodes are running. Read operations are
supported, but write operations are not.

offline No nodes are running, so no operations are supported.

About Zone Status

The next information from ping is about zones:

Zone [name=1 id=zn1
type=PRIMARY
allowArbiters=false
masterAffinity=false]
RN Status: online:3 read-only:0 offline:0
maxDelayMillis:0
maxCatchupTimeSecs:0

Chapter 5
Admin CLI Reference

5-20

For stores with multiple zones, this information provides the status of nodes in different
locations. For example, if a store was deployed using three zones, with the machines for each
zone in a separate building, this information gives a quick summary status for machines in
each building. In this simple example, there is only one zone, so that status information is
similar to that for the entire store. The maxDelayMillis and maxCatchupTimeSecs entries
provide information about data replication to replicas located in the zone. In our example, both
values are zero (0). However, having large numbers for these entries could suggest that there
are hardware problems with the machines in the zone, or problems with the network that
connects that zone to other zones. Such information would be used only for more detailed
debugging.

About Storage Nodes

Next, there is information about the nodes associated with a particular storage node:

Storage Node [sn1] on localhost:13230 Zone:
[name=1 id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 08:17:52 UTC Build id: 12641466031c
Edition: Enterprise
Admin [admin1] Status: RUNNING,MASTER
Rep Node [rg1-rn1] Status: RUNNING,MASTER
sequenceNumber:633 haPort:13233 available storage size:109 GB

The Status: entry for the SN can have several possible values:

Status Description

STARTING The storage node is starting up.

WAITING_FOR_DEPLOY The storage node is running but is waiting to be deployed in
a new store.

RUNNING The storage node is running -- this is the usual state.

STOPPING The storage node is in the process of stopping, but is not yet
in a STOPPED status.

STOPPED The storage node is stopped.

UNREACHABLE The storage node is not reachable, either because the SN
service is down, the host machine is offline, or the machine
is not reachable over the network.

About RNs and Admins on the Storage Node

The next entries provide status information about RNs and any Admin processes that are
running on the storage node. Not all storage nodes have admin nodes. The number of RNs
running on the storage node depends on the SN capacity.

Admin [admin1] Status: RUNNING,MASTER Rep Node [rg1-rn1]
Status: RUNNING,MASTER sequenceNumber:633 haPort:13233 available storage
size:109 GB

The Status: entry for both admin nodes and RNs, can have the following values:

Status Description

STARTING The node is starting up.

Chapter 5
Admin CLI Reference

5-21

Status Description

RUNNING,MASTER The node is up and is the master. The master is in
contact with a majority of nodes in the shard, and
can perform writes requiring acknowledgment. This
is the first of two normal states.

RUNNING,REPLICA The node is up and is a replica. This is the second
of two normal states.

RUNNING,MASTER (non-authoritative) The node is up and is the master, but is not in
contact with a majority of nodes in the shard. A
non-authoritative master can perform only writes
that do not require acknowledgment.

STOPPING The node is stopping.

UNREACHABLE The node could not be contacted over the network.
The node is either stopped, failed, or there is a
problem with the network connection to the
machine.

Additional status values that can be appended to
the status line to provide more information:

readonly requests enabled The node is running in read-only mode because
the plan enable-requests command was run to
set the node into read-only user operations mode.

requests disabled The node is running with all user operation
requests disabled, because the plan enable-
requests command was run to disable all
requests on the node. The plan enable-
requests command disables requests on a per-
shard basis, so it will prevent writes or all
operations on all data in the shard.

While not shown in the initial example, the ping and verify commands can display one of the
following states for RNs and shards. The table describes their effects and outcomes:

Displayed State Effects Outcome

Unknown Masters go down. Represents the read-only state of
the RNs and shards still running.
Currently, we do not support
read-only status for any RN.

Non-Authoritative Master Replica nodes go down. After Replica nodes are down,
remaining RNs and shards are in
read-only mode. Currently, we do
not support read-only status for
any RN.

Out of disk space Masters and replica nodes go
down. Replicas are left in the
RUNNING, UNKNOWN state, and
the masters are in the Non-
Authoritative state.

When masters and replica nodes
go down, any remaining RNs and
shards are in read-only mode.
Currently, we do not support
read-only status for any RN.

Write requests disabled RNs and shard health are in
read-only enabled request state.

RNs and shards are unable to
accept any user requests, and
are marked offline.

Chapter 5
Admin CLI Reference

5-22

Both the ping and verify commands detect these states. Following is the output of a ping
command on a shard (rg2), in a normal state, showing how results are returned:

kv-> ping -shard rg2
Pinging components of store mystore based upon topology sequence #2376
shard rg2 500 partitions and 3 storage nodes Time: 2024-04-05 07:06:46 UTC
Version: 24.1.11
Shard Status: healthy: Admin Status: healthy Zone [name=shardzone id=zn1
type=PRIMARY
allowArbiters=false masterAffinity=false]
RN Status: online:3 offline:0 maxDelayMillis:0 maxCatchupTimeSecs:0
Storage Node [sn10] on nodeA:5000 Zone: [name=shardzone id=zn1
type=PRIMARY
allowArbiters=false masterAffinity=false] Status: RUNNING Ver: 24.1.11
2024-04-05 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn1]
 Status: RUNNING,MASTER sequenceNumber:71,166 haPort:5010
 available storage size:8 GB Storage Node [sn11] on nodeB:5000
 Zone: [name=shardzone id=zn1 type=PRIMARY
 allowArbiters=false masterAffinity=false] Status: RUNNING Ver:
24.1.11 2024-04-05 09:33:45 UTC
 Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn2]
 Status: RUNNING,REPLICA sequenceNumber:71,166 haPort:5011
 available storage size:4 GB delayMillis:0 catchupTimeSecs:0
Storage Node [sn12] on nodeC:5000 Zone: [name=shardzone id=zn1
type=PRIMARY
allowArbiters=false masterAffinity=false] Status: RUNNING Ver: 24.1.11
2024-04-05 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn3]
 Status: RUNNING,REPLICA sequenceNumber:71,166 haPort:5012
 available storage size:6 GB delayMillis:0 catchupTimeSecs:0

Following are examples of return information when different states occur.

• Shard status becomes writable-degraded and is read-only:

kv-> ping
Pinging components of store concurrent plan store based upon topology
sequence #1082
 1000 partitions and 9 storage nodes
Time: 2024-04-05 05:12:36 UTC Version: 24.1.11
 Shard Status: healthy:2 writable-degraded:12 read-only:4 offline:0
total:18
Admin Status: healthy
Zone [name=dc1 id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false]
RN Status: online:30 read-only:24 offline:0 maxDelayMillis:0
maxCatchupTimeSecs:0
Storage Node [sn1] on slcao397:5000
Zone: [name=dc1 id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING
Ver: 24.1.11 2024-04-05 11:36:43 UTC Build id: 6259xxxxxxxx Edition:
Enterprise

Chapter 5
Admin CLI Reference

5-23

• RNs can have the RUNNING,UNKNOWN state for more than one reason, including reaching a
disk limit, or when the RN is down:

Storage Node [sn4] on slcao400:5000 Zone: [name=dc1 id=zn1 type=PRIMARY
allowArbiters=false masterAffinity=false] Status: RUNNING Ver: 24.1.11
2024-04-05 11:36:43 UTC
Build id: 6259xxxxxxxx Edition: Enterprise
 Rep Node [rg7-rn1] Status: RUNNING,UNKNOWN sequenceNumber:173,717,825
haPort:5020
 available storage size:-3 GB delayMillis:? catchupTimeSecs:?
 Rep Node [rg8-rn1] Status: RUNNING,UNKNOWN sequenceNumber:173,555,937
haPort:5021
 available storage size:-3 GB delayMillis:? catchupTimeSecs:?
 Rep Node [rg9-rn1] Status: RUNNING,MASTER sequenceNumber:173,697,007
haPort:5022 available storage size:-3 GB
 Rep Node [rg10-rn1] Status: RUNNING,UNKNOWN
sequenceNumber:173,293,747 haPort:5023
 available storage size:-3 GB delayMillis:? catchupTimeSecs:?
 Rep Node [rg11-rn1] Status: RUNNING,UNKNOWN
sequenceNumber:170,561,758 haPort:5024 available storage size:-3 GB
 delayMillis:? catchupTimeSecs:?
 Rep Node [rg12-rn1] Status: RUNNING,MASTER sequenceNumber:170,410,483
haPort:5025 available storage size:-3 GB

• A running out of disk space error results in the master becoming non-authoritative:

 Storage Node [sn6] on slcao402:5000 Zone: [name=dc1 id=zn1 type=PRIMARY
allowArbiters=false
masterAffinity=false] Status: RUNNING Ver: 24.1.11 2024-04-05 11:36:43 UTC
Build id: 6259xxxxxxxx
Edition: Enterprise
Rep Node [rg7-rn3] Status: RUNNING,MASTER (non-authoritative)
sequenceNumber:173,754,579 haPort:5020 available storage size:45 GB
Rep Node [rg8-rn3] Status: RUNNING,REPLICA sequenceNumber:173,555,937
haPort:5021 available storage size:46 GB
delayMillis:0 catchupTimeSecs:0
Rep Node [rg9-rn3] Status: RUNNING,REPLICA
sequenceNumber:173,697,007 haPort:5022 available storage size:45 GB
delayMillis:0 catchupTimeSecs:0
Rep Node [rg10-rn3] Status: RUNNING,MASTER (non-authoritative)
sequenceNumber:173,293,747 haPort:5023 available storage size:45 GB
Rep Node [rg11-rn3] Status: RUNNING,REPLICA sequenceNumber:170,561,758
haPort:5024 available storage size:45 GB delayMillis:0 catchupTimeSecs:0
Rep Node [rg12-rn3] Status: RUNNING,REPLICA sequenceNumber:170,410,483
haPort:5025
available storage size:46 GB delayMillis:0 catchupTimeSecs:0

Finally, here is a basic example of calling ping -json:

kv-> ping -json
{
 "operation" : "ping",
 "returnCode" : 5000,
 "description" : "No errors found",

Chapter 5
Admin CLI Reference

5-24

 "returnValue" : {
 "topology" : {
 "storeName" : "OurStore",
 "sequenceNumber" : 104,
 "numPartitions" : 100,
 "numStorageNodes" : 1,
 "time" : 1546801860520,
 "version" : "24.1.11"
 },
 "adminStatus" : "healthy",
 "shardStatus" : {
 "healthy" : 1,
 "writable-degraded" : 0,
 "read-only" : 0,
 "offline" : 0,
 "total" : 1
 },
 "zoneStatus" : [{
 "resourceId" : "zn1",
 "name" : "OurZone",
 "type" : "PRIMARY",
 "allowArbiters" : false,
 "masterAffinity" : false,
 "rnSummaryStatus" : {
 "online" : 1,
 "offline" : 0,
 "read-only" : 0,
 "hasReplicas" : false
 }
 }],
 "snStatus" : [{
 "resourceId" : "sn1",
 "hostname" : "OurHost",
 "registryPort" : 5000,
 "zone" : {
 "resourceId" : "zn1",
 "name" : "OurZone",
 "type" : "PRIMARY",
 "allowArbiters" : false,
 "masterAffinity" : false
 },
 "serviceStatus" : "RUNNING",
 "version" : "24.1.11 2024-04-05 09:21:03 UTC Build id: fbfbd1541004
Edition: Enterprise",
 "adminStatus" : {
 "resourceId" : "admin1",
 "status" : "RUNNING",
 "state" : "MASTER",
 "authoritativeMaster" : true
 },
 "rnStatus" : [{
 "resourceId" : "rg1-rn1",
 "status" : "RUNNING",
 "requestsEnabled" : "ALL",
 "state" : "MASTER",
 "authoritativeMaster" : true,

Chapter 5
Admin CLI Reference

5-25

 "sequenceNumber" : 381,
 "haPort" : 5013,
 "availableStorageSize" : "97 GB"
 }],
 "anStatus" : []
 }],
 "exitCode" : 0
 }
}

You can also access the ping utility through Admin utility tools, available in kvtool.jar. For
more information see ping.

plan
Encapsulates operations, or jobs that modify store state. All subcommands with the exception
of interrupt and wait change persistent state. Plans are asynchronous jobs so they return
immediately unless -wait is used. Plan status can be checked using show plans. The optional
arguments for all plans include:

• -wait
Wait for the plan to complete before returning.

• -plan-name
The name for a plan. These are not unique.

• -noexecute
Do not execute the plan. If specified, the plan can be run later using plan execute.

• -force
Used to force plan execution and plan retry.

• -json | -json-v1
Displays the plan output as json or json-v1. The -json flag can be used to output in the
new json format. The -json-v1 flag can be used to output in the json-v1 format. If you
have an existing script that relies on an older version of JSON output, you may want to
consider using -json-v1 flag so that your existing scripts continue to function.

The subcommands are as described below.

• plan add-index

• plan add-table

• plan cancel

• plan change-parameters

• plan change-storagedir

• plan change-user

• plan create-user

• plan deploy-admin

• plan deploy-datacenter

• plan deploy-sn

Chapter 5
Admin CLI Reference

5-26

• plan deploy-topology

• plan deploy-zone

• plan deregister-es

• plan drop-user

• plan enable-requests

• plan evolve-table

• plan execute

• plan failover

• plan grant

• plan interrupt

• plan migrate-sn

• plan network-restore

• plan register-es

• plan remove-admin

• plan remove-datacenter

• plan remove-index

• plan remove-sn

• plan remove-table

• plan remove-zone

• plan repair-topology

• plan revoke

• plan start-service

• plan stop-service

• plan verify-data

• plan wait

plan add-index

plan add-index -name <name> -table <name> [-field <name>]*
 [-desc <description>]
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Adds an index to a table in the store.

where:

• -name
Specifies the name of the index to add to a table.

• -table
Specifies the table name where the index will be added. The table name is a dot-separated
name with the format tableName[.childTableName]*.

Chapter 5
Admin CLI Reference

5-27

• -field
Specifies the field values of the primary key.

plan add-table

plan add-table -name <name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Adds a new table to the store. The table name is a dot-separated name with the format
tableName[.childTableName]*.

Before adding a table, first use the table create command to create the named table. The
following example defines a table (creates a table by name, adds fields and other table
metadata).

Enter into table creation mode
table create -name user -desc "A sample user table"
user->
user-> help
Usage: add-array-field |
add-field |
add-map-field |
add-record-field |
cancel |
exit |
primary-key |
remove-field |
set-description |
shard-key |
show
Now add the fields
user-> help add-field
Usage: add-field -type <type> [-name <field-name>] [-not-required]
[-nullable] [-default <value>] [-max <value>] [-min <value>]
[-max-exclusive] [-min-exclusive] [-desc <description>]
[-size <size>] [-enum-values <value[,value[,...]]
<type>: INTEGER, LONG, DOUBLE, FLOAT, STRING, BOOLEAN, DATE, BINARY, FIX
ED_BINARY, ENUM
Adds a field. Ranges are inclusive with the exception of String,
which will be set to exclusive.
user-> add-field -type Integer -name id
user-> add-field -type String -name firstName
user-> add-field -type String -name lastName
user-> help primary-key
Usage: primary-key -field <field-name> [-field <field-name>]*
Sets primary key.
user-> primary-key -field id
Exit table creation mode
user-> exit
Table User built.

Chapter 5
Admin CLI Reference

5-28

Use table list -create to see the list of tables that can be added. The following example
lists and displays tables that are ready for deployment.

kv-> table list
Tables to be added:
User -- A sample user table
kv-> table list -name user
Add table User:
{
 "type" : "table",
 "name" : "User",
 "id" : "User",
 "description" : "A sample user table",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER"
 }, {
 "name" : "firstName",
 "type" : "STRING"
 }, {
 "name" : "lastName",
 "type" : "STRING"
 }]
}

The following example adds the table to the store.

Add the table to the store.
kv-> help plan add-table
kv-> plan add-table -name user -wait
Executed plan 5, waiting for completion...
Plan 5 ended successfully
kv-> show tables -name user
{
 "type" : "table",
 "name" : "User",
 "id" : "r",
 "description" : "A sample user table",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER"
 }, {
 "name" : "firstName",
 "type" : "STRING"
 }, {
 "name" : "lastName",
 "type" : "STRING"
 }]
 }

Chapter 5
Admin CLI Reference

5-29

For more information and examples on table design, see Table Management in the SQL
Reference Guide.

plan cancel

plan cancel -id <plan id> | -last - json

Cancels a plan that is not running. A running plan must be interrupted before it can be
canceled.

Use show plans to list all plans that have been created along with their corresponding plan IDs
and status.

Use the -last option to reference the most recently created plan.

kv-> plan cancel -id 23 -json
{
"operation" : "plan cancel|interrupt",
"returnCode" : 5000,
"description" : "Plan 23 was canceled",
"returnValue" : null
}

plan change-parameters

plan change-parameters -security | -service <id> |
 -all-rns [-zn <id> | -znname <name>] | -all-ans [-zn <id> |
 -znname <name>] | -all-admins [-zn <id> | -znname <name>]
 [-dry-run] [-plan-name <name>]
 [-json] [-wait] [-noexecute] [-force] -params [name=value]*

Changes parameters for either the specified service, or for all service instances of the same
type that are deployed to the specified zone or all zones. This plan changes the parameters for
all services that are running at the time of plan creation. If more services are added after plan
creation, perhaps via a topology plan, then it is not guaranteed the new services will receive
the new parameters.

The -security flag allows changing store-wide global security parameters, and should never
be used with other flags.

The -service flag allows a single instance to be affected; and should never be used with either
the -zn or -znname flag.

The -all-* flags can be used to change all instances of the service type. The parameters to
change follow the -params flag and are separated by spaces. The parameter values with
embedded spaces must be quoted; for example, name="value with spaces".

One of the -all-* flags can be combined with the -zn or -znname flag to change all instances of
the service type deployed to the specified zone; leaving unchanged, any instances of the
specified type deployed to other zones. If one of the -all-* flags is used without also specifying
the zone, then the desired parameter change will be applied to all instances of the specified
type within the store, regardless of zone.

Chapter 5
Admin CLI Reference

5-30

If -dry-run is specified, the new parameters are returned without changing them. Use the
command show parameters to see what parameters can be modified. For more information,
see show parameters.

For more information on changing parameters in the store, see Setting Store Parameters.

If you want to change the parameter for all Replication Nodes, including the new ones that will
be created in the future, do the following:

• Run a change-policy command to set the parameter values to be used when creating
Replication Nodes in the future.

• Run the command plan change-parameters -all-rns to change the parameter values for
existing Replication Nodes.

Running the commands in the above order will make sure that both new and existing
Replication Nodes will have their parameters changed.

Note:

The plan change-parameters updates the store metadata database even if the
component is not available. The component's configuration will be made consistent
when the KVStore system detects an inconsistency.

kv-> plan change-parameters -service rg1-rn2 -json -wait -params
loggingConfigProps="oracle.kv.level=DEBUG"
{
 "operation" : "Change RepNode Params",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "id" : 20,
 "owner" : "root(id:u1)",
 "name" : "Change RepNode Params",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:31:05 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:31:10 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 4,
 "successful" : 4,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 20 [Change RepNode Params] task [WriteNewParams
rg1-rn2]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:31:05 UTC",

Chapter 5
Admin CLI Reference

5-31

 "end" : "2017-09-28 05:31:06 UTC"
 }, {
 "taskNum" : 2,
 "name" : "Plan 20 [Change RepNode Params] task [StopNode rg1-
rn2]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:31:06 UTC",
 "end" : "2017-09-28 05:31:07 UTC"
 }, {
 "taskNum" : 3,
 "name" : "Plan 20 [Change RepNode Params] task [StartNode]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:31:07 UTC",
 "end" : "2017-09-28 05:31:07 UTC"
 }, {
 "taskNum" : 4,
 "name" : "Plan 20 [Change RepNode Params] task [WaitForNodeState
rg1-rn2 to reach RUNNING]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:31:07 UTC",
 "end" : "2017-09-28 05:31:10 UTC"
 }],
 "running" : [],
 "pending" : []
 }
 }
}

plan change-storagedir

plan change-storagedir -sn <id> -storagedir <path> -add | -remove
 [-storagedirsize <size>] [-plan-name <name>] [-json] [-wait] [-noexecute]
 [-force]

Adds or removes a storage directory on a Storage Node, for storing a Replication Node.

where:

• -sn
Specifies the Storage Node where the storage directory is added or removed.

• -storagedir
Specifies the path to the storage directory on a Storage Node for storing a Replication
Node.

• -add | -remove
Specifies to add (-add) the storage dir.

Specifies to remove (-remove) the storage dir.

• -storagedirsize
Specifies the size of the directory specified in -storagedir. This parameter is optional;
however, it is an error to specify this parameter for some, but not all, storage directories.

Chapter 5
Admin CLI Reference

5-32

Use of this parameter is recommended for heterogeneous installation environments where
some hardware has more storage capacity than other hardware. If this parameter is
specified for all storage directories, then the store's topology will place more data on the
shards that offer more storage space. If this parameter is not used, then data is spread
evenly across all shards.

The value specified for this parameter must be a long, optionally followed by a unit string.
Accepted unit strings are: KB, MB, GB, and TB, corresponding to 1024, 1024^2, 1024^3,
1024^4 respectively. Acceptable strings are case insensitive. Valid delimiters between the
long value and the unit string are " ", "-", or "_".

-storagedirsize 200 MB
-storagedirsize 4_tb
-storagedirsize 5000-Mb

kv-> plan change-storagedir -sn sn2 -storagedir /tmp/kvroot -add -json -
wait
{
"operation" : "Change Storage Node Params",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "id" : 21,
 "owner" : "root(id:u1)",
 "name" : "Change Storage Node Params",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:33:14 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:33:14 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 21 [Change Storage Node Params] task
[WriteNewSNParams sn2]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:33:14 UTC",
 "end" : "2017-09-28 05:33:14 UTC"
 }],
"running" : [],
"pending" : []
 }
 }
}

Chapter 5
Admin CLI Reference

5-33

plan change-user

plan change-user -name <user name>
 [-disable | -enable] [-set-password [-password <new password>]
 [-retain-current-password]] [-clear-retained-password]
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Change a user with the specified name in the store. The -retain-current-password argument
option causes the current password to be remembered during the -set-password operation as
a valid alternate password for configured retention time or until cleared using -clear-retained-
password. If a retained password has already been set for the user, setting password again will
cause an error to be reported.

This command is deprecated. For more information see User Modification in the Security
Guide.

plan create-user

plan create-user -name <user name>
 [-admin] [-disable] [-password <new password>]
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Create a user with the specified name in the store. The -admin argument indicates that the
created user has full administrative privileges.

This command is deprecated. For more information, see User Creation in the Security Guide.

plan deploy-admin

plan deploy-admin -sn <id> [-plan-name <name>]
 [-wait] [-noexecute] [-force]

Deploys an Admin to the specified Storage Node. The admin type (PRIMARY/SECONDARY)
is the same type as the zone the Storage Node is in.

For more information on deploying an admin, see Create an Administration Process on a
Specific Storage Node.

kv-> plan deploy-admin -sn sn1 -json -wait
"operation" : "plan deploy-admin -sn 1",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "id" : 22,
 "owner" : "root(id:u1)",
 "name" : "Deploy Admin Service",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:34:26 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:34:27 UTC",
 "error" : null,

Chapter 5
Admin CLI Reference

5-34

 "executionDetails" : {
 "taskCounts" : {
 "total" : 4,
 "successful" : 4,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 22 [Deploy Admin Service] task [DeployAdmin admin1
on sn1]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:34:26 UTC",
 "end" : "2017-09-28 05:34:27 UTC"
 }, {
 "taskNum" : 2,
 "name" : "Plan 22 [Deploy Admin Service] task [WaitForAdminState
admin1 to reach RUNNING]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:34:27 UTC",
 "end" : "2017-09-28 05:34:27 UTC"
 }, {
 "taskNum" : 3,
 "name" : "Plan 22 [Deploy Admin Service] task
[UpdateAdminHelperHost admin1]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:34:27 UTC",
 "end" : "2017-09-28 05:34:27 UTC"
 }, {
 "taskNum" : 4,
 "name" : "Plan 22 [Deploy Admin Service] task [NewAdminParameters
refresh admin1 parameter state
 without restarting]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:34:27 UTC",
 "end" : "2017-09-28 05:34:27 UTC"
 }],
 "running" : [],
 "pending" : []
 },
 "planId" : 22,
 "resourceId" : "admin1",
 "snId" : "sn1"
 }
}

plan deploy-datacenter
Deprecated. See plan deploy-zone instead.

Chapter 5
Admin CLI Reference

5-35

plan deploy-sn

plan deploy-sn -zn <id> | -znname <name> -host <host> -port <port>
 [-plan-name <name>] [-json] [-wait] [-noexecute] [-force]

Deploys the Storage Node at the specified host and port into the specified zone.

where:

• -sn
Specifies the Storage Node to deploy.

• -zn <id> | -znname <name>
Specifies the Zone where the Storage Node is going to be deployed.

• -host
Specifies the host name where the Storage Node is going to be deployed.

• -port
Specifies the port number of the host.

For more information on deploying your Storage Nodes, see Create the Remainder of your
Storage Nodes.

kv-> plan deploy-sn -zn 1 -json -host localhost -port 10000 -wait
{
"operation" : "plan deploy-sn -zn 1 -host localhost -port 10000",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "id" : 25,
 "owner" : "root(id:u1)",
 "name" : "Deploy Storage Node",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:40:50 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:40:51 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 25 [Deploy Storage Node] task [DeploySN
sn4(localhost:10000)]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:40:50 UTC",

Chapter 5
Admin CLI Reference

5-36

 "end" : "2017-09-28 05:40:51 UTC"
 }],
 "running" : [],
 "pending" : []
 },
 "planId" : 25,
 "resourceId" : "sn4",
 "zoneId" : "zn1",
 "host" : "localhost",
 "port" : 10000
 }
}

plan deploy-topology

plan deploy-topology -name <topology name> [-plan-name <name>]
 [-json] [-wait] [-noexecute] [-force]

Deploys the specified topology to the store. The KVStore size determines how long the
command takes to deploy replication and arbiter nodes to become fully functional shard
members. The plan deploy-topology command does not wait for this command to finish.

After running the plan deploy-topology command, use the verify configuration command
to check the running state of the components in the topology. See Deploy the Topology
Candidate.

kv-> plan deploy-topology -name MyStoreLayout -json -wait
{
"operation" : "plan deploy-topology -name MyStoreLayout",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "id" : 26,
 "owner" : "root(id:u1)",
 "name" : "Deploy Topo",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:25 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:56:26 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 6,
 "successful" : 6,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
"finished" : [{
 "taskNum" : 1,
 "name" : "Plan 26 [Deploy Topo] task [UpdateDatacenterV2 zone=zn1]",
 "state" : "SUCCEEDED",

Chapter 5
Admin CLI Reference

5-37

 "start" : "2017-09-28 05:56:25 UTC",
 "end" : "2017-09-28 05:56:25 UTC"
 }, {
 "taskNum" : 2,
 "name" : "Plan 26 [Deploy Topo] task [UpdateDatacenterV2 zone=zn2]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:25 UTC",
 "end" : "2017-09-28 05:56:25 UTC"
 }, {
 "taskNum" : 3,
 "name" : "Plan 26 [Deploy Topo] task [UpdateDatacenterV2 zone=zn3]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:25 UTC",
 "end" : "2017-09-28 05:56:25 UTC"
 }, {
 "taskNum" : 4,
 "name" : "Plan 26 [Deploy Topo] task [BroadcastTopo]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:25 UTC",
 "end" : "2017-09-28 05:56:26 UTC"
 }, {
 "taskNum" : 5,
 "name" : "Plan 26 [Deploy Topo] task [BroadcastMetadata]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:26 UTC",
 "end" : "2017-09-28 05:56:26 UTC"
 }, {
 "taskNum" : 6,
 "name" : "Plan 26 [Deploy Topo] task [BroadcastTopo]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:56:26 UTC",
 "end" : "2017-09-28 05:56:26 UTC"
 }],
 "running" : [],
 "pending" : []
 },
 "planId" : 26,
 "topoName" : "MyStoreLayout"
 }
}

plan deploy-zone

plan deploy-zone -name <zone name>
 -rf <replication factor>
 [-type [primary | secondary]]
 [-arbiters | -no-arbiters]
 [-json]
 [–master-affinity | –no-master-affinity]
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Deploys the specified zone to the store and creates a primary zone if you do not specify a -
type.

Chapter 5
Admin CLI Reference

5-38

where:

• -name
Specifies the name of the zone to deploy.

• -rf
Specifies the replication factor of the zone.

• -type
Specifies the type of the zone to deploy. It can be a primary or a secondary zone. If -type is
not specified, a primary zone is deployed.

• -json
Formats the command output in JSON.

• -arbiters | -no-arbiters
If you specify -arbiters, you can allocate Arbiter Nodes on the Storage Node in the zone.
You can specify this flag only on a primary zone.

Specifying -no-arbiters precludes allocating Arbiter Nodes on the Storage Node in the
zone.
The default value is -no-arbiters.

• -master—affinity | -no-master-affinity
Specifying -master-affinity indicates that this zone can host a master.

Specifying -no-master-affinity indicates that this zone cannot host a master.
The default value is -no-master-affinity.

For more information on creating a zone, see Create a Zone.

kv-> plan deploy-zone -name zn6 -rf 1 -json -wait
{
 "operation" : "plan deploy-zone -name zn6 -rf 1 -type PRIMARY -no-
arbiters -no-master-affinity",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "id" : 27,
 "owner" : "root(id:u1)",
 "name" : "Deploy Zone",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:57:29 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 05:57:29 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },

Chapter 5
Admin CLI Reference

5-39

 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 27 [Deploy Zone] task [DeployDatacenter zone=zn6]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 05:57:29 UTC",
 "end" : "2017-09-28 05:57:29 UTC"
 }],
 "running" : [],
 "pending" : []
 },
 "planId" : 27,
 "zoneName" : "zn6",
 "zoneId" : "zn4",
 "type" : "PRIMARY",
 "rf" : 1,
 "allowArbiters" : false,
 "masterAffinity" : false
 }
}

plan deregister-es

plan deregister-es

Deregisters the Elasticsearch cluster from the Oracle NoSQL Database store, using the
deregister-es plan command. This is allowed only if all full text indexes are first removed
using the plan remove-index command, see plan remove-index.

For example:

kv-> plan deregister-es
Cannot deregister ES because these text indexes exist:
mytestIndex
JokeIndex

For more information, see Integration with Elastic Search for Full Text Search in the
Integrations Guide.

plan drop-user

plan drop-user -name <user name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Drop a user with the specified name in the store. A logged-in user may not drop itself.

This command is deprecated. For more information, see User Removal in the Security Guide.

Chapter 5
Admin CLI Reference

5-40

plan enable-requests
This command will change the type of user requests supported by a set of shards or the entire
store.

plan enable-requests
 -request-type {all|readonly|none}
 {-shards <shardId[,shardId]*> | -store}
 [-plan-name <name>] [-wait]
 [-noexecute] [-force]
 [-json|-json-v1]

Limit the type of requests enabled for specific shards or the whole store.

The -request-type flag configures the read and write requests. The following request types
can be configured by this command.

• all means the store or shards can process both read and write requests;

• readonly makes the store or shards only respond to read requests;

• none means no read or write requests will be processed by the store or shards.

The -shards flag specifies the list of shards that should be configured, if you want the
configuration to be done on one or more shards. You can get details about the shardid by
executing the show topology command. The rgXX portion in the show topology output denotes
the shardid. See show topology.

The -store flag specifies that the configuration to be done on the entire store.

You should specify either the -shard flag or the -store flag.

Example 5-1 plan enable-requests

For example, If you want to put the shard rg1 in readonly mode, you would specify rg1 as the
shardid and readonly as the request-type.

kv-> plan enable-requests
 -request-type readonly -shards rg1
Started plan 25. Use show plan -id 25 to check status.
 To wait for completion, use plan wait -id 25

Example 5-2 plan enable-requests

For example, If you want to put the whole store in readonly mode and to get the output in json
format, you would specify the store attribute, request-type attribute as readonly and json
attribute.

kv-> plan enable-requests
 -request-type readonly -store -json
{
 "operation" : "plan enable-requests",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "planId" : 26

Chapter 5
Admin CLI Reference

5-41

 }
}

Example 5-3 plan enable-requests

For example, If you want to put the whole store in readonly mode and to get the output in json
v1 format, you would specify the store attribute, request-type attribute as readonly and
json-v1 attribute.

kv-> plan enable-requests
 -request-type readonly -store -json-v1
{
 "operation" : "plan enable-requests",
 "return_code" : 5000,
 "description" : "Operation ends successfully",
 "return_value" : {
 "plan_id" : 27
 }
}

plan evolve-table

plan evolve-table -name <name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Evolves a table in the store. The table name is a dot-separate with the format
tableName[.childTableName]*.

Use the table evolve command to evolve the named table. The following example evolves a
table.

Enter into table evolution mode
kv-> table evolve -name User
kv-> show
{
 "type" : "table",
 "name" : "User",
 "id" : "r",
 "description" : "A sample user table",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER"
 }, {
 "name" : "firstName",
 "type" : "STRING"
 }, {
 "name" : "lastName",
 "type" : "STRING"
 }]
}
Add a field
kv-> add-field -type String -name address

Chapter 5
Admin CLI Reference

5-42

Exit table creation mode
kv-> exit
Table User built.
kv-> plan evolve-table -name User -wait
Executed plan 6, waiting for completion...
Plan 6 ended successfully
kv-> show tables -name User
{
 "type" : "table",
 "name" : "User",
 "id" : "r",
 "description" : "A sample user table",
 "shardKey" : ["id"],
 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER"
 }, {
 "name" : "firstName",
 "type" : "STRING"
 }, {
 "name" : "lastName",
 "type" : "STRING"
 }, {
 "name" : "address",
 "type" : "STRING"
 }]
}

Use table list -evolve to see the list of tables that can be evolved. For more information,
see plan add-table .

plan execute

plan execute -id <id> | -last
 [-plan-name <name>] [-json] [-wait] [-noexecute] [-force]

Executes an existing plan that has not yet been executed. The plan must have been previously
created using the -noexecute flag .

Use the -last option to reference the most recently created plan.

kv-> plan execute -id 19 -json -wait
{
 "operation" : "plan deploy-zone -name zn6 -rf 1 -type PRIMARY -no-
arbiters -no-master-affinity",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "id" : 19,
 "name" : "Deploy Zone",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:35:31 UTC",

Chapter 5
Admin CLI Reference

5-43

 "interrupted" : null,
 "end" : "2017-09-28 09:35:31 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 19 [Deploy Zone] task [DeployDatacenter zone=zn6]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:35:31 UTC",
 "end" : "2017-09-28 09:35:31 UTC"
}],
"running" : [],
"pending" : []
},
"planId" : 19,
"zoneName" : "zn6",
"zoneId" : "zn4",
"type" : "PRIMARY",
"rf" : 1,
"allowArbiters" : false,
"masterAffinity" : false
}
}

plan failover

plan failover { [-zn <zone-id> | -znname <zone-name>]
 -type [primary | offline-secondary] }...
 [-plan-name <name>] [-wait] [-noexecute] [-force]

where:

• -zn <zone-id> | -znname <zone-name>
Specifies a zone either by zone ID or by name.

• -type [primary | offline-secondary]
Specifies the new type for the associated zone.

Changes zone types to failover to either Primary or Secondary zones, whenever a primary
zone failure results in a loss of quorum. Arbiters will not be created or removed from the
topology. This command can introduce violations if a zone that contains Arbiters is specified as
secondary-offline. Use the force flag if arbiter violations are introduced.

Zones whose new type is primary are taking over from failed primary zones to reestablish
quorum. For these zones, a quorum of storage nodes in each shard in the zone must be
available and responding to requests.

Chapter 5
Admin CLI Reference

5-44

Zones whose new type is offline-secondary represent primary zones that are currently offline,
resulting in the current loss of quorum. For these zones, all of the storage nodes in the zones
must currently be unavailable. No zone type changes can be performed if these requirements
are not met when the command starts.

Note:

Arbiter nodes are not currently supported during failover and switchover operations.

To correct any violations after the topology components are repaired, the plan failover
command executes a rebalance command. To successfully deploy the new topology after a
rebalance, the Storage Nodes hosting topology components must be running. If a Storage
Node in a zone that failed over to a Secondary zone that contained an Arbiter, when the SN
restarts, the Arbiter rejoins the shard.

You cannot execute this command when other plans are in progress for the data store. Before
executing this plan, cancel or interrupt any other plans.

plan grant

plan grant [-role <role name>]* -user <user_name>

Allows granting roles to users.

where:

• -role <role name>
Specifies the roles that will be granted. The role names should be the system-defined roles
(except public) listed in the Security Guide.

• -user <user_name>
Specifies the user who the role will be granted from.

This command is deprecated. For more information see Grant Roles or Privileges in the
Security Guide.

plan interrupt

plan interrupt -id <plan id> | -last [-json]

Interrupts a running plan. An interrupted plan can only be re-executed or canceled. Use -last to
reference the most recently created plan.

kv-> plan interrupt -id 20 -json
{
"operation" : "plan cancel|interrupt",
"returnCode" : 5000,
"description" : "Plan 20 was interrupted",
"returnValue" : null
}

Chapter 5
Admin CLI Reference

5-45

plan migrate-sn

plan migrate-sn -from <id> -to <id>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Migrates the services from one Storage Node to another. The old node must not be running.

where:

• -from
Specifies the Storage Node (old) that you are migrating from.

• -to
Specifies the Storage Node (new) that you are migrating to.

For example, assuming that you are migrating from Storage Node 25 to 26, you would use:

kv-> plan migrate-sn -from sn25 -to sn26

Before executing the plan migrate-sn command, you can stop any running old Storage Node
by using -java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar stop -root KVROOT.

plan network-restore

plan network-restore -from <id> -to <id> -retain-logs
 [-plan-name <name>] [-wait] [-noexecute] [-force] [-json|-json-v1]

The plan network-restore command restores a replication node (RN) with updates that the
RN missed after losing networking connectivity. Use this only if the RN cannot be restored
through the automatic procedures described here.

When a replication node becomes disconnected for any reason, it misses updates that occur
while it was not connected. Oracle NoSQL Database uses two ways to update the recovered
RN after it comes back online.

One way occurs within the RN's replication group. When the recovered RN returns, the
replication group's master node streams all missed updates from the time the time the RN
became disconnected, to the time it resumed operations.

Another way to restore a reconnected RN is over a network connection. Performing a network
restore copies a complete set of data log files (*.jdb) from a peer, supplying the recovered RN
with a comprehensive data set. The content contains many intermediate changes that are not
reflected in the current store contents. This is because the data log files (*.jdb), which the
recipient RN ingests, contain all changes, including any intermediate ones.

Do not confuse the data *.jdb log files, which contain data store activities, with the debug log
files (*.log), which are used for debugging purposes.

If neither of the automatic Oracle NoSQL Database RN repopulation attempts succeed, it can
be due to unforeseen circumstances, or a catastrophic situation that destroys data on multiple
hosts. In this case, you can execute plan network-restore manually from the Admin CLI.
However, doing so requires you to specify the RN that will supply the updated data.

Chapter 5
Admin CLI Reference

5-46

You can attempt a network restore using the plan network-restore command from the admin
CLI:

kv-> plan network-restore -help
Usage: plan network-restore -from <id> -to <id> [-retain-logs] \
[-plan-name <name>] [-wait] [-noexecute] [-force] [-json | json-v1]
Network restore a RepNode from another one in their replication group.

where:

• -from flag – Specifies the Replication Node ID from the same replication group (matching
rgX). The -from node must be fully up to date, and able to supply the *.dbd log files to the
destination RN. For example, if the -to recipient RN ID is rg1-rn3, and the ping output
shows that rg1-rn2 is the master, then that ID (rg1-rn2) is a good choice for the -from
value.

• -to flag – Specifies the ID (rgX-rnY) of the recipient RN.

• -retain-logs flag – Retains obsolete log files on the lagging replica. The system renames
the files, rather than deleting them. It is generally unnecessary to use this flag, unless you
suspect that log files are corrupted on the recovering RN.

plan register-es

plan register-es -clustername <name> -host <host>
 -port <transport port> [-force]

Registers the Elasticsearch cluster with the Oracle NoSQL Database store, using the
register-es plan command. It is only necessary to register one node of the cluster, as the
other nodes in the cluster will be found automatically.

where:

• -clustername
Specifies the name of the Elasticsearch cluster.

• -host
Specifies the host name of a node in the cluster.

• -port
Specifies the transport port of a node in the cluster.

For more information, see Integration with Elastic Search for Full Text Searchin the Integrations
Guide.

plan remove-admin

plan remove-admin -admin <id> | -zn <id> | -znname <name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Removes the desired Admin instances; either the single specified instance, or all instances
deployed to the specified zone.

Chapter 5
Admin CLI Reference

5-47

If you use the -admin flag and there are 3 or fewer Admins running in the store, or if you use
the -zn or -znname flag and the removal of all Admins from the specified zone would result in
only one or two Admins in the store, then the desired Admins will be removed only if you
specify the -force flag.

Also, if you use the -admin flag and there is only one Admin in the store, or if you use the -zn
or -znname flag and the removal of all Admins from the specified zone would result in the
removal of all Admins from the store, then the desired Admins will not be removed.

plan remove-datacenter

plan remove-datacenter

This command is deprecated. See plan remove-zone instead.

plan remove-index

plan remove-index -name <name> -table <name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Removes an index from a table.

where:

• -name
Specifies the name of the index to remove.

• -table
Specifies the table name to remove the index from. The table name is a dot-separated
name with the format tableName[.childTableName]*.

plan remove-sn

plan remove-sn -sn <id>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Removes the specified Storage Node from the topology. The Storage Node is automatically
stopped before removal.

This command is useful when removing unused, old Storage Nodes from the store. To do this,
see Replacing a Failed Storage Node.

If the Storage Node is being removed as part of removing a secondary zone then,

• any replication nodes must first be removed using the topology change-replication-
factor and plan deploy-topology commands, and

• any Admin Nodes must first be removed using plan remove-admin command.

plan remove-table

plan remove-table -name <name> [-keep-data]
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Chapter 5
Admin CLI Reference

5-48

Removes a table from the store. The named table must exist and must not have any child
tables. Indexes on the table are automatically removed. By default data stored in this table is
also removed. Table data may be optionally saved by specifying the -keep-data flag.
Depending on the indexes and amount of data stored in the table this may be a long-running
plan.

The following example removes a table.

Remove a table.
kv-> plan remove-table -name User
Started plan 7. Use show plan -id 7 to check status.
To wait for completion, use plan wait -id 7.
kv-> show tables
No table found.

plan remove-zone

plan remove-zone -zn <id> | -znname <name>
 [-plan-name <name>] [-wait] [-noexecute] [-force]

Removes the specified zone from the store.

Before running this command, all Storage Nodes that belong to the specified zone must first be
removed using the plan remove-sn command.

plan repair-topology

plan repair-topology
 [-plan-name <name>] [-wait] [-json] [-noexecute] [-force]

Inspects the store's deployed, current topology for inconsistencies in location metadata that
may have arisen from the interruption or cancellation of previous deploy-topology or migrate-sn
plans. Where possible, inconsistencies are repaired. This operation can take a while,
depending on the size and state of the store.

kv-> plan repair-topology -json -wait
{
"operation" : "Repair Topology",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "id" : 25,
 "name" : "Repair Topology",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:43:06 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 09:43:06 UTC",
 "error" : null,
 "executionDetails" : {
 "taskCounts" : {
 "total" : 1,
 "successful" : 1,

Chapter 5
Admin CLI Reference

5-49

 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 25 [Repair Topology] task [VerifyAndRepair]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:43:06 UTC",
 "end" : "2017-09-28 09:43:06 UTC"
 }],
 "running" : [],
 "pending" : []
 }
 }
}

plan revoke

plan revoke [-role <role name>]* -user <user_name>

Allows revoking roles to users.

where:

• -role <role name>
Specifies the roles that will be revoked. The role names should be the system-defined
roles (except public) listed in the Security Guide.

• -user <user_name>
Specifies the user who the role will be revoked from.

This command is deprecated. For more information see Revoke Roles or Privileges in the
Security Guide.

plan start-service

plan start-service {-service <id> | -all-rns [-zn <id> |
 -znname <name>] | -all-ans [-zn <id> | -znname <name>] |
 -zn <id> | -znname <name> } [-plan-name <name>]
 [-json] [-wait] [-noexecute] [-force]

Starts the specified service(s). The service may be a Replication Node, an Arbiter Node, or
Admin service, as identified by any valid string.

For example, to identify a Replication Node, use -service shardId-nodeId, where shardId-
nodeId must be given as a single argument with one embedded hyphen and no spaces. The
shardId identifier is represented by rgX, where X refers to the shard number.

where:

• -service
Specifies the name of the service to start.

Chapter 5
Admin CLI Reference

5-50

• -all-rns
If specified, starts the services of all Replication Nodes in a store.

• -all-ans
If specified, starts all the Arbiter Nodes in the specified zone.

Chapter 5
Admin CLI Reference

5-51

Note:

This plan cannot be used to start a Storage Node. Further, you cannot restart the
Storage Node's services without first starting the Storage Node itself. To start the
Storage Node, go to the Storage Node host and enter the following command:

nohup java -Xmx64m -Xms64m \
-jar <KVHOME>/lib/kvstore.jar start -root <KVROOT> &

kv-> plan start-service -service rg1-rn3 -json -wait
{
 "operation" : "Start Services",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "id" : 21,
 "name" : "Start Services",
 "isDone" : true,
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:50:54 UTC",
 "interrupted" : null,
 "end" : "2017-09-28 09:50:57 UTC",
 "error" : null,"executionDetails" : {
 "taskCounts" : {
 "total" : 2,
 "successful" : 2,
 "failed" : 0,
 "interrupted" : 0,
 "incomplete" : 0,
 "notStarted" : 0
 },
 "finished" : [{
 "taskNum" : 1,
 "name" : "Plan 21 [Start Services] task [StartNode]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:50:54 UTC",
 "end" : "2017-09-28 09:50:55 UTC"
 }, {
 "taskNum" : 2,
 "name" : "Plan 21 [Start Services] task [WaitForNodeState rg1-rn3
to reach RUNNING]",
 "state" : "SUCCEEDED",
 "start" : "2017-09-28 09:50:55 UTC",
 "end" : "2017-09-28 09:50:57 UTC"
 }],
 "running" : [],
 "pending" : []
 }
 }
}

Chapter 5
Admin CLI Reference

5-52

plan stop-service

plan stop-service {-service <id> |
 -all-rns [-zn <id> | -znname <name>] | -all-ans [-zn <id> |
 -znname <name>] | -zn <id> | -znname <name> }
 [-plan-name <name>] [-json] [-wait] [-noexecute] [-force]

Stops the specified service(s). The service may be a Replication Node, an Arbiter Node, or
Admin service as identified by any valid string.

For example, to identify a Replication Node, use -service shardId-nodeId, where shardId-
nodeId must be a single string with an embedded hyphen (-) and no spaces. The shardId
identifier is represented as rgX, where X represents the shard number.

Other options to specify after -service include:

• -all-rns
Stops the services of all Replication Nodes in a store.

• -all-ans
Stops the services of all Arbiter Nodes in the specified zone.

Use this command to stop any affected services so that any attempts by the system to
communicate with the services are no longer accepted. Stopping communication to one or
more services reduces the amount of error output about a failure you are already aware of.

Whenever you execute the plan stop-service command, the system automatically initiates a
health check. The health check determines if stopping an indicated service will result in losing
quorum. There are no further checks performed, only whether quorum will be lost if you stop
the service. To avoid losing quorum, the plan stop-service fails to execute if the health check
fails, and outputs detailed health check information such as the following:

One of the groups is not healthy enough for the operation:
[rg1] Only 1 primary nodes are running such that a simple
majority cannot be formed which requires 2 primary nodes.
The shard is vulnerable and will not be able to elect a new master.
Nodes not running: [rg1-rn1]. Nodes to stop: {rg1=[rg1-rn2]}
...

If you cannot stop a service because it will result in lost quorum, you should determine what
problem is occurring before trying to stop the service.

If, on the other hand, you understand that stopping a service will result in losing quorum, but
such an event is necessary to make some important change, you can force the plan stop-
service command to execute by appending the -force flag.

Note:

If you forcefully stop the Admin service and Admin quorum is lost, you cannot use the
start-service plan to bring up the Admin services anymore. All plan operations will
also fail thereafter.

Chapter 5
Admin CLI Reference

5-53

The plan stop-service command is also useful during disk replacement process. Use the
command to stop the affected service prior removing the failed disk. For more information, see
Replacing a Failed Disk.

Note:

• This plan cannot be used to stop a Storage Node. To stop a Storage Node, first
stop all services running on it. Then, find the ID of the Storage Node process by
going to the Storage Node host and issuing this command:

ps -af | grep -e "kvstore.jar.*start.*<KVROOT>"

Kill the process using:

kill <storage node id>

• Also, because the plan stop-service -all-rns command always results in
losing quorum, executing plan stop-service with this option skips running a
health check. Further, you do not need to use the -force flag is when using the -
all-rns option.

plan verify-data

plan verify-data
 [-verify-log <enable|disable> [-log-read-delay <milliseconds>]]
 [-verify-btree <enable|disable> [-btree-batch-delay <milliseconds>]
 [-index <enable|disable>] [-datarecord <enable|disable>]]
 [-valid-time <time>]
 [-show-corrupt-files <enable|disable>]
 -service <id> | -all-services [-zn <id> | -znname <name>] |
 -all-rns [-zn <id> | -znname <name>] |
 -all-admins [-zn <id> | -znname <name>]
 [-plan-name <name>] [-wait] [-noexecute] [-force] [-json|-json-v1]

Verifies and controls certain elements (such as log files and indexes), as presented in this
section. Here is a description for each of the verify-data parameters and options:

Option Description

-verify-log Verifies the checksum of each data record in the JE log file of JE.
The Berkeley DB Java Edition (JE) is the data storage engine of
Oracle NoSQL Database.

It is enabled by default.

-log-read-delay Configures the delay time between file reads.

The default value is 100 milliseconds.

Chapter 5
Admin CLI Reference

5-54

Option Description

-verify-btree Verifies that the B-tree of the database in memory contains a
valid reference to each data record on disk. You can combine -
verify-btree with -datarecord and -index.

It is enabled by default.

-btree-batch-delay Configures the delay time, in milliseconds, between batches.

The default delay value is 10 milliseconds.

-datarecord Reads and verifies data records from disk, if the data record is
not in cache. The -datarecord option takes longer than
verifying records only in cache, and results in more read I/O.

It is disabled by default.

-index Verifies indexes. Using the -index option alone verifies only the
reference from the index to the primary table, not the reference
from the primary table to index. To verify both references from
index to primary table, and primary table to index, specify the -
datarecord and -index options.

It is enabled by default.

-valid-time Specifies the amount of time for which an existing verification will
be considered valid and not be rerun. The format is 'number unit'
where the unit can be minutes or seconds. The unit is case
insensitive and can be separated from the number by a space, "-"
or "_".

The default is '10 minutes'.

-show-corrupt-files Specifies whether to show corrupt files, including missing files
and reserved files that are referenced.

It is disabled by default.

-service id Runs verification on the specified service (id)

-all-services [-zn id | -
znname name]

Runs verification on all services, both RNs and Admins, in the
specified zone, or in all zones if none is specified.

| -all-rns [-zn id | -znname
name]

Runs verification on all RNs in the specified zone, or in all zones
if none is specified.

| -all-admins [-zn id | -
znname name]

Runs verification on all Admins in the specified zone, or in all
zones if none is specified.

[-plan-name name] Runs the named plan that you have saved to execute plan
verify-data and its available options.

[-wait] Runs a plan synchronously, so that the command line prompt
returns after the command completes.

[-noexecute] Lets you create a plan but delay its execution. Conversely, use
the plan execute command to run the plan.

[-force] Runs the plan as you enter it on the CLI, without validating the
flags.

[-json|-json-v1] Displays the plan output as json or json-v1.

Executing verify-data
The plan verify-data command is available to verify both primary table and secondary
indexes. The command lets you verify either a checksum of data records, or the B-tree of the
database.

Chapter 5
Admin CLI Reference

5-55

Note:

Since Oracle NoSQL Database uses Oracle Berkeley DB Java Edition (JE) as its
underlying storage engine, verifying data using plan verify-data depends on
several low-level JE features that are neither described here, nor visible. Throughout
this section, terms or concepts related to Oracle Berkeley DB Java Edition (JE) are
indicated by the term Berkeley, indicating their origination. For more information
about Oracle Berkeley DB Java Edition, start here: Oracle Berkeley DB Java Edition.

The plan verify-data has two parts for verifications:

• Log record integrity on disk

• B-tree integrity

To verify the integrity of log records on disk, verify-data accesses and verifies each record's
checksum. Since this procedure includes disk reads, it consumes I/O resources and is
relatively time consuming. To reduce the performance effects of verification, you can configure
a longer delay time between reading each batch of log files. While increasing the delay time
increases operation time overall, it consumes fewer I/O activities. If that choice is preferable for
your requirements, use -btree-batch-delay to increase the delay between log file integrity
checks during peak I/O operations.

When verifying B-tree integrity, the plan verify-data process verifies in-memory integrity. The
basic verification checks only if the LSN (Berkeley) for each data record in primary tables is
valid. You can configure the verification to include data records on disk, as well as secondary
index integrity.

If you do not enable data record verification, the secondary index verification checks only the
reference from secondary index to primary table, but not from primary table to index. Since
basic verification checks only in-memory data structures, it is significantly faster and less
resource intensive than verification involving disk reads.

plan wait

plan wait -id <id> | -last [-seconds <timeout in seconds>] [-json]

Waits indefinitely for the specified plan to complete, unless the optional timeout is specified.

Use the -seconds option to specify the time to wait for the plan to complete.

The -last option references the most recently created plan.

kv-> plan wait -id 26 -json
{
 "operation" : "plan wait",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "planId" : 26,
 "state" : "CANCELED"
 }
}

Chapter 5
Admin CLI Reference

5-56

pool
Encapsulates commands that manipulates Storage Node pools, which are used for resource
allocations. The subcommands are as follows:

• pool clone

• pool create

• pool join

• pool leave

• pool remove

pool clone

pool clone -name <name> -from <source pool name> [-json]

Clone an existing Storage Node pool to a new Storage Node pool to be used for resource
distribution when creating or modifying a store.

For more information on using a cloned Storage Node pool when contracting a topology, see
Contracting a Topology.

kv-> pool clone -name mypool from snpool -json{
"operation" : "pool clone",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "poolName" : "mypool"
 }
}

pool create

pool create -name <name> -json

Creates a new Storage Node pool to be used for resource distribution when creating or
modifying a store.

For more information on creating a Storage Node pool, see Create a Storage Node Pool.

kv-> pool create -name newPool -json{
"operation" : "pool create",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "storeName" : "newPool"
 }
}

Chapter 5
Admin CLI Reference

5-57

pool join

pool join -name <name> [-sn <snX>]* [-json]

Adds Storage Nodes to an existing Storage Node pool.

kv-> pool join -name newPool -sn sn1 -json{
"operation" : "pool join",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "storeName" : "newPool"
 }
}

pool leave

pool leave -name <name> [-sn <snX>]* [-json]

Remove Storage Nodes from an existing Storage Node pool.

kv-> pool leave -name newPool -sn sn1 -json{
"operation" : "pool leave",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "storeName" : "newPool"
 }
}

pool remove

pool remove -name <name>

Removes a Storage Node pool.

kv-> pool remove -name newPool -json{
"operation" : "pool remove",
"returnCode" : 5000,
"description" : "Operation ends successfully",
"returnValue" : {
 "storeName" : "newPool"
 }
}

put
Encapsulates commands that put key/value pairs to the store or put rows to a table. The
subcommands are as follows:

Chapter 5
Admin CLI Reference

5-58

• put kv

• put table

put kv

put kv -key <keyString> -value <valueString> [-file]
 [-hex] [-if-absent] [-if-present]

Put the specified key/value pair into the store. The following arguments apply to the put
command:

• -key<keyString>
Specifies the name of the key to be put into the store. Key can be composed of both major
and minor key paths, or a major key path only. The <keyString> format is: "major-key-
path/-/minor-key-path".

For example, a key containing major and minor key paths:

kv-> put kv -key /Smith/Bob/-/email -value
"{\"id\": 1,\"email\":\"bob.smith@example.com\"}"

For example, a key containing only a major key path:

kv-> put kv -key /Smith/Bob -value"{\"name\":
 \"bob.smith\", \"age\": 20, \"phone\":\"408 555 5555\", \"email\":
 \"bob.smith@example.com\"}"

• -value <valueString>
If -file is not specified, the <valueString> is treated as a raw bytes array.

For example:

kv-> put kv -key /Smith/Bob/-/phonenumber -value "408 555 5555"

Note:

The mapping of the raw arrays to data structures (serialization and
deserialization) is left entirely to the application.

• -file
Indicates that the value is obtained from a file. The file to use is identified by the value
parameter.

For example:

kv-> put kv -key /Smith/Bob -value ./smith-bob-info.txt
 -file

• -hex
Indicates that the value is a BinHex encoded byte value with base64 encoding.

Chapter 5
Admin CLI Reference

5-59

• -if-absent
Indicates that a key/value pair is put only if no value for the given key is present.

• -if-present
Indicates that a key/value pair is put only if a value for the given key is present.

put table

kv-> put table -name table_name [if-absent | -if-present]
 [-json string] [-file file_name] [-exact] [-update]

Puts one or more rows into the named table.

• -name
Specifies a table name, which can identify different types of tables:

– table_name – The table is a top level table created in the default namespace,
sysdefault. The default sysdefault: namespace prefix is not required.

– table_name.child_name – The table is a child table. Always precede a child_name
table with its parent table_name, followed by a period (.) separator.

– namespace_name:table_name – The table was created in the namespace you specify.
Always precede table_name with its namespace_name, followed by a colon (:).

– namespace_name:table_name.child_name – The table is a child table of a parent table
created in a namespace. Specify child_name by preceding it with both
namespace_name: and its parent table_name, , followed by a period (.) separator.

• -if-absent
Indicates to put a row only if the row does not exist.

• -if-present
Indicates to put a row only if the row already exists.

• -json
Indicates that the value is a JSON string.

• -file
Use to load a file of JSON strings.

• -exact
Indicates that the input JSON string or file must contain values for all columns in the table
and cannot contain extraneous fields.

• -update
Can be used to partially update the existing record.

repair-admin-quorum

repair-admin-quorum {-zn <id> | -znname <name> | -admin <id>}...

Restores Admin quorum after it is lost by reducing membership of the admin group to the
admins in the specified zones, or to the specific admins you can list. Use this command when

Chapter 5
Admin CLI Reference

5-60

attempting to recover from a failure that has resulted in losing admin quorum. This command
can result in data loss.

After obtaining a working admin by using the repair-admin-quorum command, call the plan
failover command to failover to the zones that remain available after a failure, and to update
the topology to match the changes made to the admins.

The arguments specify which admins to use as the new set of primary admins, either by
specifying all of the admins in one or more zones, or by identifying specific admins. The
specified set of admins must not be empty, must contain only currently available admins, and
must include all currently available primary admins. It may also include secondary admins, if
desired, to increase the admin replication factor or because no primary admins are available.

Note:

You can repeat this command if a temporary network or component failure results in
the initial command invocation to fail.

show
Encapsulates commands that display the state of the store and its components or schemas.
The subcommands are as follows:

• show admins

• show datacenters

• show events

• show faults

• show indexes

• show mrtable-agent-statistics

• show parameters

• show perf

• show plans

• show pools

• show snapshots

• show regions

• show tables

• show topology

• show upgrade-order

• show users

• show versions

• show zones

Chapter 5
Admin CLI Reference

5-61

show admins

show admins [-json]

Displays basic information about Admin services.

kv-> show admins -json
{
 "operation" : "show admins",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "admins" : [{
 "id" : "admin1",
 "storageNode" : "sn1",
 "type" : "PRIMARY",
 "connected" : true,
 "adminStatus" : "RUNNING",
 "replicationState" : "MASTER",
 "authoritative" : true
 }, {
 "id" : "admin2",
 "storageNode" : "sn2",
 "type" : "PRIMARY",
 "connected" : false,
 "adminStatus" : "RUNNING",
 "replicationState" : "REPLICA",
 "authoritative" : true
 }]
 }
}

show datacenters

show datacenters

Deprecated. See show zones instead.

show events

show events [-id <id>] | [-from <date>] [-to <date>]
 [-type <stat | log | perf>] [-json]

Displays event details or list of store events. The status events indicate changes in service
status.

Log events are noted if they require attention.

Performance events are not usually critical but may merit investigation. Events marked
"SEVERE" should be investigated.

The following date/time formats are accepted. They are interpreted in the local time zone.

Chapter 5
Admin CLI Reference

5-62

• MM-dd-yy HH:mm:ss:SS

• MM-dd-yy HH:mm:ss

• MM-dd-yy HH:mm

• MM-dd-yy

• HH:mm:ss:SS

• HH:mm:ss

• HH:mm

For more information on events, see Events.

kv-> show events -json
{
 "operation" : "show events",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "events" : [{
 "event" : "j84a16s3S STAT 2017-09-28 09:48:12.819 UTC sn1 RUNNING
sev1"
 }, {
 "event" : "j84a17j0S STAT 2017-09-28 09:48:13.788 UTC sn2 RUNNING
sev1"
 }, {
 "event" : "j84a19xoS STAT 2017-09-28 09:48:16.908 UTC sn3 RUNNING
sev1"
 }, {
 "event" : "j84a1cznS STAT 2017-09-28 09:48:20.867 UTC rg1-rn1
RUNNING sev1"
 }, {
 "event" : "j84a1f75S STAT 2017-09-28 09:48:23.729 UTC rg1-rn2
RUNNING sev1"
 }, {
 "event" : "j84a1h7xS STAT 2017-09-28 09:48:26.349 UTC rg1-rn3
RUNNING sev1"
 }, {
 "event" : "j84a3i9rS STAT 2017-09-28 09:50:01.023 UTC rg1-rn3
STOPPED sev1 (reported by sn3)"
 }, {
 "event" : "j84a4oquS STAT 2017-09-28 09:50:56.070 UTC rg1-rn3
RUNNING sev1"
 }, {
 "event" : "j84a5hfeS STAT 2017-09-28 09:51:33.242 UTC rg1-rn3
STOPPED sev1 (reported by sn3)"
 }, {
 "event" : "j84aw53tS STAT 2017-09-28 10:12:16.985 UTC sn3
UNREACHABLE sev2 (reported by
 admin1)"
 }, {
 "event" : "j84b585yL LOG 2017-09-28 10:19:20.854 UTC SEVERE
[admin1] Plan 24 [Remove Admin
 Replica] task [DestroyAdmin admin3] of plan 24 ended in state
ERROR with java.rmi.ConnectException:
 Unable to connect to the storage node agent at host localhost,

Chapter 5
Admin CLI Reference

5-63

port 22000, which may not be running;
 nested exception is: "
 }, {
 "event" : "j84b585zL LOG 2017-09-28 10:19:20.854 UTC SEVERE
[admin1] Plan [null] failed. Attempt 1
 [RUNNING] start=2017-09-28 10:19:20 UTC end=2017-09-28 10:19:20
UTC "
 }]
 }
}

show faults

show faults [-last] [-command <command index>] [-json]

Displays faulting commands. By default all available faulting commands are displayed.
Individual fault details can be displayed using the -last and -command flags.

kv-> show faults -json
{
 "operation" : "show faults",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "faultCommands" : [{
 "faultCommand" : "503 plan remove-admin -admin 3 -json -wait:
class
 oracle.kv.util.shell.ShellException"
 }, {
 "faultCommand" : "526 topology create -name mytopo -pool snpool -
json -partitions 300 -json: class
 java.lang.NullPointerException"
 }]
 }
}

show indexes

show indexes [-table <name>] [-name <name>] [-json]

Displays index metadata. By default the indexes metadata of all tables are listed.

If a specific table is named, its indexes metadata are displayed. If a specific index of the table
is named, its metadata is displayed. For more information, see plan add-index.

Use SHOW INDEX statement to indicate the index type (TEXT, SECONDARY) when you enable
text-searching capability to Oracle NoSQL Database, in-concert with the tables interface.

For example:

kv-> show index
Indexes on table Joke
JokeIndex (category, txt), type: TEXT

Chapter 5
Admin CLI Reference

5-64

For more information, see Integration with Elastic Search for Full Text Search in the
Integrations Guide.

kv-> show indexes -json
{
 "operation" : "show indexes",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "tables" : [{
 "table" : {
 "tableName" : "t1",
 "indexes" : [{
 "name" : "idx1",
 "fields" : ["id1", "id2"],
 "type" : "SECONDARY",
 "description" : null
 }, {
 "name" : "idx2",
 "fields" : ["id2"],
 "type" : "SECONDARY",
 "description" : null
 }]
},
 "childTable" : [{
 "tables" : []
 }]
 }]
 }
}

show mrtable-agent-statistics

show mrtable-agent-statistics [-agent <agentID>][-table <tableName>][-json]

Shows the latest statistics as of the last one minute for multi-region table agents. With no
arguments, this command shows combined statistics over all regions the MR Table spans.

Input Parameters

Optionally, you can enable the following flags with appropriate parameters with this command:

Table 5-1 Input Parameters

Flag Parameter Description

- agent agentID Limits the statistics to the agent
ID specified. You can find the
agent ID from the JSON config
file created while configuring your
agent. See Configure XRegion
Service.

- table tableName Limits the statistics to the MR
Table specified.

Chapter 5
Admin CLI Reference

5-65

Table 5-1 (Cont.) Input Parameters

Flag Parameter Description

- json - Returns the complete statistics in
JSON format. Even though the
statistics are returned in JSON
format by default, specifying this
flag adds additional information in
the output such as operation,
return code, and the return code's
description.

Output Statistics

The statistics reported by the show mrtable-agent-statistics can be categorized as those
used to:

• Monitor streams from other regions

Table 5-2 Output Statistics 1

Statistic Description

completeWriteOps Number of complete write operations per region.

lastMessageMs Timestamp when the agent sees the last
message from a remote region, in milliseconds.

If this statistic information is not available, -1 is
printed as its output value.

lastModificationMs Timestamp of the last operation performed in
each remote region, in milliseconds.

If this statistic information is not available, -1 is
printed as its output value.

laggingMs (avg, max, min) In a multi-region KVStore, each shard in a region
pushes all the operations performed on all its
tables to the agent's queue. The agent replicates
the contents of its queue, in event order, to all
other regions. The lagging statistic represents
the time difference between an event being
pushed into the queue and replicated to the other
regions by the agent. If this value is high, it
indicates that the queue is getting backed up. A
smaller value indicates that the agent is able to
keep up with the number of events coming from
remote regions. The lagging statistics are
reported as average, minimum, and maximum in
milliseconds for each remote region.

If this statistic information is not available, -1 is
printed as its output value.

Chapter 5
Admin CLI Reference

5-66

Table 5-2 (Cont.) Output Statistics 1

Statistic Description

latencyMs (avg, max, min) In MR tables, the latency statistic indicates the
time taken in milliseconds for each operation to
travel from its origin (remote) region to the target
(local) region.
The latency is computed as T2 - T1, where:
– T1 is the timestamp when an operation is

performed in the remote region, and
– T2 is the timestamp when the agent

persisted the replicated operation to the
local region.

For each remote region, the latency statistics are
reported as the average, minimum, and
maximum latency for all the operations from that
region.

If this statistic information is not available, -1 is
printed as its output value.

• Check the persistence of remote data

Table 5-3 Output Statistics 2

Statistic Description

puts Number of write operations received.

dels Number of delete operations received.

streamBytes Total bytes replicated from a remote region.

persistStreamBytes Reports the total number of bytes that are
successfully committed in the local region. This
is different from the total bytes replicated from a
remote region because in case of any conflicts
with operations from other regions, some of the
operations may not persist if they fail the built-in
conflict resolution rule.

winPuts Number of write operations performed
successfully. More specifically, this statistic
excludes the writes that failed to win the conflict
resolution rule, in case of a conflict with writes in
other regions.

winDels Number of delete operations performed
successfully. More specifically, this statistic
excludes the deletes that failed to win the conflict
resolution rule, in case of a conflict with deletes
in other regions.

incompatibleRows Number of operations that did not persist
because of incompatible table schemas. This can
happen when there is a schema mismatch
between the origin region and the region that is
trying to replicate the row to its local data store.

• Monitor the interaction between admin and the agent

Chapter 5
Admin CLI Reference

5-67

Table 5-4 Output Statistics 3

Statistic Description

requests All the DDL commands executed by the user on
an MR table are converted into requests to the
agent by the admin. This statistic reports the
number of requests posted by the admin.

responses Number of requests processed and responded
by the agent.

• Monitor multi-region tables
When you execute the show mrtable-agent-statistics command with the -table flag, it
returns the table level statistics indicating:

1. Persistence of remote data in the local region: This includes the statistics such as
puts, dels, winPuts, winDels, streamBytes, persistStreamBytes, and
incompatibleRows discussed above.

2. Progress of table initialization in each remote region: This is indicated by the
state attribute under the Initialization statistics in the output. The table below
lists the different possible values for state and their meaning.

Table 5-5 Table Initialization States

State Description

NOT_START MR table initialization has not started, or there
is no need to do initialization. For example, if
the agent resumes the stream from an existing
checkpoint successfully, there is no need to re-
initialize the MR table.

IN_PROGRESS MR table initialization is ongoing, that is, the
MR table initialization has started and the data
is being replicated from the remote regions.

COMPLETE MR table initialization is complete and table
transfer is done. The agent is streaming from
the remote region.

ERROR MR table initialization cannot complete
because of an irrecoverable error. You can
view the error severity in the agent log as
WARNING or SEVERE. The agent log can be
found in the directory specified in the JSON
config file. See Configure XRegion Service.

SHUTDOWN MR table initialization cannot complete
because the service is shut down.

3. Persistence of the table data per remote region:

Table 5-6 Output Statistics 4

Statistic Description

transferStartMs Timestamp of the initiation of table
initialization, in milliseconds.

If this statistic information is not available, -1 is
printed as its output value.

Chapter 5
Admin CLI Reference

5-68

Table 5-6 (Cont.) Output Statistics 4

Statistic Description

transferCompleteMs Timestamp of the completion of table
initialization, in milliseconds.

If this statistic information is not available, -1 is
printed as its output value.

elapsedMs The time elapsed from the start of the table
initialization until its completion.

elapsedMs = transferCompleteMs -
transferStartMs

This statistic is reported in milliseconds. Before
the transfer completion, it reports -1 indicating
the unavailability of this statistic.

transferBytes Number of bytes transferred from the remote
(origin or source) region to the local (target)
region.

transferRows Number of rows transferred from the remote
region to the local region successfully.

expireRows Number of rows expired before transferring
from the remote region. Because of their TTL
value, some rows might expire during the
replication. Such rows expire by the time they
reach the agent. This statistic counts such
expired rows.

persistBytes Reports the total number of bytes that are
successfully committed in the local region.
This excludes the rows that are not committed
in the local region because they failed the built-
in conflict resolution rule. In case of row
updates, the entire row is counted for this
statistic.

persistRows Reports the total number of rows that are
successfully committed in the local region.
Similar to the above statistic, the rows that are
not committed in the local region because of
the built-in conflict resolution rule are excluded
for this count.

Example

Below are a few examples of the statistics returned by the show mrtable-agent-statistics
command with different input parameters.

Note:

If any of the statistics information is not available, -1 is reported as the value for that
statistic parameter in the output.

MR table agent statistics for a specific agent
kv-> show mrtable-agent-statistics -agent 0 -json
{
 "operation": "show mrtable-agent-statistics",
 "returnCode": 5000,

Chapter 5
Admin CLI Reference

5-69

 "description": "Operation ends successfully",
 "returnValue": {
 "XRegionService-1_0": {
 "timestamp": 1592901180001,
 "statistics": {
 "agentId": "XRegionService-1_0",
 "beginMs": 1592901120001,
 "dels": 1024,
 "endMs": 1592901180001,
 "incompatibleRows": 100,
 "intervalMs": 60000,
 "localRegion": "slc1",
 "persistStreamBytes": 524288,
 "puts": 2048,
 "regionStat": {
 "lnd": {
 "completeWriteOps": 10,
 "laggingMs": {
 "avg": 512,
 "max": 998,
 "min": 31
 },
 "lastMessageMs": 1591594977587,
 "lastModificationMs": 1591594941686,
 "latencyMs": {
 "avg": 20,
 "max": 40,
 "min": 10
 }
 },
 "dub": {
 "completeWriteOps": 20,
 "laggingMs": {
 "avg": 535,
 "max": 1024,
 "min": 45
 },
 "lastMessageMs": 1591594978254,
 "lastModificationMs": 1591594956786,
 "latencyMs": {
 "avg": 30,
 "max": 45,
 "min": 15
 }
 }
 },
 "requests": 12,
 "responses": 12,
 "streamBytes": 1048576,
 "winDels": 1024,
 "winPuts": 2048
 }
 }

Chapter 5
Admin CLI Reference

5-70

 }
}

MR table agent statistics for a specific MR table
kv-> show mrtable-agent-statistics -table users -json
{
 "operation": "show mrtable-agent-statistics",
 "returnCode": 5000,
 "description": "Operation ends successfully",
 "returnValue": {
 "XRegionService-1_0": {
 "tableID": 12,
 "tableName": "users",
 "timestamp": 1592901300001,
 "statistics": {
 "agentId": "XRegionService-1_0",
 "beginMs": 1592901240001,
 "dels": 1000,
 "endMs": 1592901300001,
 "expiredPuts": 200,
 "incompatibleRows": 100,
 "initialization": {
 "lnd": {
 "elapsedMs": 476,
 "expireRows": 100,
 "persistBytes": 6492160,
 "persistRows": 6340,
 "state": "COMPLETE",
 "transferBytes": 8115200,
 "transferCompleteMs": 1592822625333,
 "transferRows": 7925,
 "transferStartMs": 1592822624857
 },
 "dub": {
 "transferStartMs": 0,
 "transferCompleteMs": 0,
 "elapsedMs": -1,
 "transferRows": 0,
 "persistRows": 0,
 "expireRows": 0,
 "transferBytes": 0,
 "persistBytes": 0,
 "state": "NOT_START"
 }
 },
 "intervalMs": 60000,
 "localRegion": "fra",
 "persistStreamBytes": 104960000,
 "puts": 100000,
 "streamBytes": 115200000,
 "tableId": 12,
 "tableName": "users",
 "winDels": 745,
 "winPuts": 90000
 }

Chapter 5
Admin CLI Reference

5-71

 }
 }
}

show parameters

show parameters -policy | -service <name>

Displays service parameters and state for the specified service. The service may be a
Replication Node, Storage Node, or Admin service, as identified by any valid string, for
example rg1-rn1, sn1, admin2, etc. Use the -policy flag to show global policy parameters. Use
the -security flag to show global security parameters.

show parameters -service sn1

When you enable text-searching capability to Oracle NoSQL Database, in-concert with the
tables interface, the show parameter command also provides information on the Elasticsearch
cluster name and transport port as values for the parameters searchClusterMembers and
searchClusterName.

For more information, see Integration with Elastic Search for Full Text Search in the
Integrations Guide.

show perf

show perf

Displays recent performance information for each Replication Node.

show plans

show plans [-last] [-id <id>] [-from <date>] [-to <date>][-num <howMany>]

Shows details of the specified plan or list all plans that have been created along with their
corresponding plan IDs and status.

• The -last option shows details of the most recently created plan.

• The -id <n> option details the plan with the given id. If -num <n> is also given, list <n>
plans, starting with plan #<id>.

• The -num <n> option sets the number of plans to the list. The default is 10.

• The -from <date> option lists plans after <date>.

• The -to <date> option lists plans before <date>.

Combining -from with -to describes the range between the two dates. Otherwise -num applies.

The following date formats are accepted. They are interpreted in the UTC time zone.

• yyyy-MM-dd HH:mm:ss.SSS

• yyyy-MM-dd HH:mm:ss

• yyyy-MM-dd HH:mm

Chapter 5
Admin CLI Reference

5-72

• yyyy-MM-dd

• MM-dd-yyyy HH:mm:ss.SSS

• MM-dd-yyyy HH:mm:ss

• MM-dd-yyyy HH:mm

• MM-dd-yyyy

• HH:mm:ss.SSS

• HH:mm:ss

• HH:mm

For more information on plan review, see Reviewing Plans.

show pools

show pools

Lists the Storage Node pools.

show snapshots

show snapshots [-sn <id>]

Lists snapshots on the specified Storage Node. If no Storage Node is specified, one is chosen
from the store. You can use this command to view the existing snapshots.

show regions

show regions

Displays the list of all the remote regions included in a Multi-Region Oracle NoSQL Database
setup.

kv-> execute 'show regions'
regions
 DEN

show tables

show tables -name table_name

Displays the table information. Use -original flag to show the original table information if you
are building a table for evolution. The flag is ignored for building table for addition. For more
information, see plan add-table and plan evolve-table

Use show table -name table_name statement to list the full text index. This command
provides the table structure including the indexes that have been created for that table. For
more information, see Creating FTI in the Integrations Guide.

Chapter 5
Admin CLI Reference

5-73

show topology

show topology [-zn] [-rn] [-an] [-sn] [-store] [-status] [-json] [-verbose]

Displays the current, deployed topology. By default it shows the entire topology, including the
number of shards. The first set of optional flags restrict the display to one or more zones,
Replication Nodes, Storage Nodes, Arbiter Nodes, store name, or to specify service status.
Use –json to display the results in JSON format. If you specify -verbose, then additional
information will be displayed, including Replication Node storage directories, storage directory
sizes, log directories, and JE HA ports.

You can also obtain the zone ID to which you can deploy Storage Nodes.

kv-> show topology
store=mystore numPartitions=1000 sequence=2376
 zn: id=zn1 name=myzone repFactor=3 type=PRIMARY allowArbiters=false
masterAffinity=false
 sn=[sn1] zn:[id=zn1 name=myzone] nodeA:5000 capacity=1 RUNNING
 [rg1-rn1] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn2] zn:[id=zn1 name=myzone] nodeB:5000 capacity=1 RUNNING
 [rg1-rn2] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn3] zn:[id=zn1 name=myzone] nodeC:5000 capacity=1 RUNNING
 [rg1-rn3] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn4] zn:[id=zn1 name=myzone] nodeD:5000 capacity=1 RUNNING
 [rg2-rn1] RUNNING
 No performance info available
 sn=[sn5] zn:[id=zn1 name=myzone] nodeE:5000 capacity=1 RUNNING
 [rg2-rn2] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms
 sn=[sn6] zn:[id=zn1 name=myzone] nodeF:5000 capacity=1 RUNNING
 [rg2-rn3] RUNNING
 single-op avg latency=0.0 ms multi-op avg latency=0.0 ms

 numShards=2
 shard=[rg1] num partitions=500
 [rg1-rn1] sn=sn1
 [rg1-rn2] sn=sn2
 [rg1-rn3] sn=sn3
 shard=[rg2] num partitions=500
 [rg2-rn1] sn=sn4
 [rg2-rn2] sn=sn5
 [rg2-rn3] sn=sn6

show upgrade-order

show upgrade-order [-json]

Lists the Storage Nodes which need to be upgraded in an order that prevents disruption to the
store's operation.

Chapter 5
Admin CLI Reference

5-74

This command displays one or more Storage Nodes on a line. Multiple Storage Nodes on a
line are separated by a space. If multiple Storage Nodes appear on a single line, then those
nodes can be safely upgraded at the same time. When multiple nodes are upgraded at the
same time, the upgrade must be completed on all nodes before the nodes next on the list can
be upgraded.

If at some point you lose track of which group of nodes should be upgraded next, you can
always run the show upgrade-order command again.

kv-> show upgrade-order -json
{
 "operation" : "show upgrade-order",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "singleTextResult" : "Calculating upgrade order, target version:
12.2.4.6.0, prerequisite:
 12.1.3.0.5\nUnable to contact sn3 Unable to connect to the storage node
agent at host localhost, port
 22000, which may not be running; nested exception is:
\n\tjava.rmi.ConnectException: Connection refused
 to host: localhost; nested exception is: \n\tjava.net.ConnectException:
Connection refused (Connection
 refused)\nThere are no nodes that need to be upgraded"
 }
}

show users

show users -name <name>

Lists the names of all users, or displays information about a specific user. If no user is
specified, lists the names of all users. If a user is specified using the -name option, then lists
detailed information about the user.

show versions

show versions [-json]

Lists the client and server version information.

For example

kv-> show versions
Client version: 12.1.3.4.0
Server version: 12.1.3.4.0

kv-> show versions -json
{
 "operation" : "show version",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {

Chapter 5
Admin CLI Reference

5-75

 "clientVersion" : "12.2.4.6.0",
 "serverVersion" : "12.2.4.6.0"
 }
}

show zones

show zones [-zn <id>] | -znname <name>] [-json]

Lists the names of all zones, or display information about a specific zone.

Use the -zn or the -znname flag to specify the zone that you want to show additional
information; including the names of all of the Storage Nodes in the specified zone, and whether
that zone is a primary of secondary zone.

kv-> show zones -json
{
 "operation" : "show zone",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "zones" : [{
 "zone" : {
 "id" : "zn1",
 "name" : "1",
 "repfactor" : 1,
 "type" : "PRIMARY",
 "allowArbiters" : false
 }
 }, {
 "zone" : {
 "id" : "zn2",
 "name" : "2",
 "repfactor" : 1,
 "type" : "PRIMARY",
 "allowArbiters" : false
 }
 }, {
 "zone" : {
 "id" : "zn3",
 "name" : "3",
 "repfactor" : 1,
 "type" : "PRIMARY",
 "allowArbiters" : false
 }
 }]
 }
}

snapshot
Encapsulates commands that create and delete snapshots, which are used for backup and
restore. The subcommands are as follows:

Chapter 5
Admin CLI Reference

5-76

• snapshot create

• snapshot remove

snapshot create

snapshot create -name <name>

Creates a new snapshot using the specified name as the prefix.

Use the -name option to specify the name of the snapshot that you want to create.

Snapshots should not be taken while any configuration (topological) changes are being made,
because the snapshot might be inconsistent and not usable.

snapshot remove

snapshot remove -name <name> | -all

Removes the named snapshot. If -all is specified, remove all snapshots.

Use the -name option to specify the name of the snapshot that you want to remove.

If the -all option is specified, remove all snapshots.

To create a backup of your store using a snapshot see Taking a Snapshot.

To recover your store from a previously created snapshot you can use the load utility or restore
directly from a snapshot. For more information, see Using the Load Program or Restoring
Directly from a Snapshot.

table
Deprecated with exception of table-size. See execute instead.

table-size

table-size -name <name> -json <string>
 [-rows <num> [[-primarykey | -index <name>] -keyprefix <size>]]

Calculates key and data sizes for the specified table using the row input, optionally estimating
the NoSQL DB cache size required for a specified number of rows of the same format.
Running this command on multiple sample rows can help determine the necessary cache size
for desired store performance.

• -json specifies a sample row used for the calculation.

• -rows specifies the number of rows to use for the cache size calculation

• Use the -index or -primarykey and -keyprefix to specify the expected commonality of index
keys in terms of number of bytes.

This command mainly does the following:

1. Calculates the key and data size based on the input row in JSON format.

Chapter 5
Admin CLI Reference

5-77

2. Estimates the DB Cache size required for a specified number of rows in the same JSON
format.

The output contains both detailed size info for primary key/index and the total size;
internally it calls JE's DbCacheSize utility to calculate the cache size required for primary
key and indexes with the input parameters:

java -jar $KVHOME/dist/lib/je.jar DbCacheSize
-records <num> -key <size> -data <size> -keyprefix
<size> -outputproperties -replicated <JE properties...>
-duplicates]

where:

• -records <num>: The number of rows specified by -row <num>.

• -key <size>: The size of key get from step 1.

• -data <size>: The size of data get from step1.

• -keyprefix <size>: The expected commonality of keys, specified using -primarykey | -
index <name> -keyprefix <size>

• -duplicates: Used only for table index.

• -<JE properties...>: The JE configuration parameters used in kvstore.

For example:

kv-> execute "create table user (id integer, address string,
zip_code string, primary key(id))"
kv-> execute "create index idx1 on user (zip_code)"

See the following cases:

1. Calculates the key size and data size based on the input row in JSON.

kv-> table-size -name user -json '{"id":1,
"address": "Oracle Building ZPark BeiJing China",
"zip_code":"100000"}'

=== Key and Data Size ===

 Name Number of Bytes
----------------- ---------------
Primary Key 8
Data 47
Index Key of idx1 7

2. Calculates the key/data size and the cache size of the table with 10000 rows.

kv-> table-size -name user -json '{"id":1,
"address": "Oracle Building ZPark BeiJing China",
"zip_code":"100000"}'
-rows 10000
=== Key and Data Size ===

 Name Number of Bytes
----------------- ---------------

Chapter 5
Admin CLI Reference

5-78

Primary Key 8
Data 47
Index Key of idx1 7

=== Environment Cache Overhead ===

16,798,797 minimum bytes

=== Database Cache Sizes ===

Name Number of Bytes Description
----- --------------- ----------------------------------
 1,024,690 Internal nodes only
Table 1,024,690 Internal nodes and record versions
 1,024,690 Internal nodes and leaf nodes
----- --------------- ----------------------------------
 413,728 Internal nodes only
idx1 413,728 Internal nodes and record versions
 413,728 Internal nodes and leaf nodes
----- --------------- ----------------------------------
 1,438,418 Internal nodes only
Total 1,438,418 Internal nodes and record versions
 1,438,418 Internal nodes and leaf nodes

For more information, see the DbCacheSize javadoc.

Chapter 5
Admin CLI Reference

5-79

Note:

The cache size is calculated in the following way:

• Cache size of table

java -jar KVHOME/lib/je.jar DbCacheSize -records
 10000 key 8 -data 47 -outputproperties -replicated
 <JE properties...>

The parameters are:

– Record number: 10000

– Primary key size: 8

– Data size: 47

• Cache size of table

 java -jar KVHOME/lib/je.jar DbCacheSize -records
 10000 -key 7 -data 8 -outputproperties -replicated
 <JE properties...> -duplicates

The parameters are:

– Record number: 10000

– Index key size: 7

– Data size: 8. The primary key size is used here, since the data of
secondary index is the primary key.

– Use -duplicates for index.

• Total size = cache size of table + cache size of idx1.

3. Calculates the cache size with a key prefix size for idx1

kv-> table-size -name user -json
'{"id":1, "address":"Oracle Building ZPark BeiJing China",
"zip_code":"100000"}' -rows 10000 -index idx1 -keyprefix 3

=== Key and Data Size ===

 Name Number of Bytes
----------------- ---------------
Primary Key 8
Data 47
Index Key of idx1 7

=== Environment Cache Overhead ===

16,798,797 minimum bytes

=== Database Cache Sizes ===

Chapter 5
Admin CLI Reference

5-80

Name Number of Bytes Description
----- --------------- ----------------------------------
 1,024,690 Internal nodes only
Table 1,024,690 Internal nodes and record versions
 1,024,690 Internal nodes and leaf nodes
----- --------------- ----------------------------------
 413,691 Internal nodes only
idx1 413,691 Internal nodes and record versions
 413,691 Internal nodes and leaf nodes
----- --------------- ----------------------------------
 1,438,381 Internal nodes only
Total 1,438,381 Internal nodes and record versions
 1,438,381 Internal nodes and leaf nodes

For more information, see the DbCacheSize javadoc.

Note:

A key prefix size is provided for idx1, the idx1's cache size is calculated like this:

java -jar KVHOME/lib/je.jar DbCacheSize -records
10000 -key 7 -data 8 -keyprefix 3 -outputproperties
-replicated <JE properties...> -duplicates

The above examples show that the cache size of idx1 is 413,691 and is smaller
than 413,728 of case 2. For more information about the usage of keyprefix, see
JE DbCacheSize document.

timer

timer [on|off]

Turns the measurement and display of execution time for commands on or off.

topology
Encapsulates commands that manipulate store topologies. Examples are redistribution/
rebalancing of nodes or changing replication factor. Topologies are created and modified using
this command. They are then deployed by using the plan deploy-topology command. For
more information, see plan deploy-topology. The subcommands are as follows:

• topology change-repfactor

• topology change-zone-arbiters

• topology change-zone-type

• topology clone

• topology contract

• topology create

• topology delete

Chapter 5
Admin CLI Reference

5-81

• topology list

• topology preview

• topology rebalance

• topology redistribute

• topology validate

• topology view

topology change-repfactor

topology change-repfactor -name <name> -pool <pool name>
 -zn <id> | -znname <name> -rf <replication factor>

Modifies the topology to change the replication factor of the specified zone to a new value. The
replication factor may be decreased for secondary zones, but decreasing it for primary zones is
not currently supported.

When increasing the replication factor, the command may create Replication Nodes or Arbiter
Nodes and may remove Arbiter Nodes only in the zone specified in the command. If the
change in replication factor increases the total primary replication factor equal to two and the
zone is configured to allow Arbiters, then Arbiters are created in that zone. If the change in
replication factor increases the total primary replication factor from two to a number greater
than two and if the zone contained Arbiters, then the Arbiters are removed from the zone. If
some other zone contained Arbiters, a topology rebalance must be performed to remove the
Arbiters from the topology.

For more information on increasing the replication factor, see Increase Replication Factor.

When decreasing the replication factor for a secondary zone, the command will remove the
replication nodes from the zone.

If you want to remove a secondary zone, then the replication factor for that secondary zone
should be reduced to zero.

After reducing the replication factor to zero, do the following steps to remove the secondary
zone:

1. Remove any admins in the zone using plan remove-admin command

2. Remove the Storage Nodes in the zone using plan remove-sn command

3. Remove the zone using plan remove-zone command

topology change-zone-arbiters

topology change-zone-arbiters -name <name>
 {-zn <id> | -znname <name>} {-arbiter | -no-arbiter}

Modifies the topology to change the Arbiter Node attribute of the specified zone.

topology change-zone-master-affinity

topology change-zone-master-affinity -name <name>
 -zn <{-no-master-affinity | -master-affinity}

Chapter 5
Admin CLI Reference

5-82

Modifies the topology of the existing specified zone to –no-master-affinity, or to –master-
affinity. For example:

topology change-zone-master-affinity -name new-topo -zn zn1 -no-master-
affinity

Use this command after initially deploying a topology (plan deploy-zone).

topology change-zone-type

topology change-zone-type -name <name>
 {-zn <id> | -znname <name>} -type {primary | secondary}

Modifies the topology to change the type of the specified zone to a new type.

If one or more zones have their type changed and the resulting topology is deployed using the
plan deploy-topology command, the following rules apply:

• The plan waits for up to five minutes for secondary nodes that are being converted to
primary nodes to catch up with their masters.

• The plan will fail, and print details about lagging zones and nodes, if a quorum of
secondary nodes in each shard fails to catch up within the required amount of time. This
behavior helps to reduce the time that a newly added primary node cannot become a
master, and so is not able to contribute to availability.

• Because this command can only be performed successfully if quorum can be maintained, it
does not result in data loss.

topology clone

topology clone -from <from topology> -name <to topology>

or

topology clone -current -name <to topology>

Clones an existing topology so as to create a new candidate topology to be used for topology
change operations.

topology contract

topology contract -name <name> -pool <pool name>

Modifies the named topology to contract storage nodes. For more information, see Contracting
a Topology.

topology create

topology create -name <candidate name> -pool <pool name> [-json]
 -partitions <num>

Chapter 5
Admin CLI Reference

5-83

Creates a new topology with the specified number of partitions using the specified storage
pool.

You should avoid using the dollar sign ('$') character in topology candidate names. The CLI
displays a warning when trying to create or clone topologies whose names contain the
reserved character.

If the primary replication factor is equal to two, the topology create command will allocate
Arbiter Nodes on the Storage Nodes in a zone that supports hosting Arbiter Nodes. During
topology deployment, an error is issued if there are not enough Storage Nodes for Arbiter
Node distribution. A valid Arbiter Node distribution is one in which the Arbiter Node is hosted
on a Storage Node that does not contain other members of its Replication Group.

For more information on creating the first topology candidate, see Make the Topology
Candidate.

kv-> topology create -name mytopo -pool snpool -json -partitions 20
{
 "operation" : "topology create",
 "returnCode" : 5000,
 "description" : "Operation ends successfully",
 "returnValue" : {
 "store" : "mystore",
 "numPartitions" : 20,
 "sequence" : 32,
 "zone" : [{
 "id" : "zn1",
 "name" : "1",
 "repfactor" : 1,
 "type" : "PRIMARY"
 }, {
 "id" : "zn2",
 "name" : "2",
 "repfactor" : 1,
 "type" : "PRIMARY"
 }, {
 "id" : "zn3",
 "name" : "3",
 "repfactor" : 1,
 "type" : "PRIMARY"
 }],
 "sns" : [{
 "id" : "sn1",
 "zone_id" : "zn1",
 "host" : "localhost",
 "port" : 20000,
 "capacity" : 1,
 "rns" : ["rg1-rn1"],
 "ans" : []
 }, {
 "id" : "sn2",
 "zone_id" : "zn2",
 "host" : "localhost",
 "port" : 21000,
 "capacity" : 1,
 "rns" : ["rg1-rn2"],
 "ans" : []

Chapter 5
Admin CLI Reference

5-84

 }, {
 "id" : "sn3",
 "zone_id" : "zn3",
 "host" : "localhost",
 "port" : 22000,
 "capacity" : 1,
 "rns" : ["rg1-rn3"],
 "ans" : []
 }],
 "shards" : [{
 "id" : "rg1",
 "numPartitions" : 20,
 "rns" : ["rg1-rn1", "rg1-rn2", "rg1-rn3"],
 "ans" : []
 }],
 "name" : "mytopo"
 }
}

topology delete

topology delete -name <name>

Deletes a topology.

topology list

topology list

Lists existing topologies.

topology preview

topology preview -name <name> [-start <from topology>]

Describes the actions that would be taken to transition from the starting topology to the named,
target topology. If -start is not specified, the current topology is used. This command should be
used before deploying a new topology.

topology rebalance

topology rebalance -name <name> -pool <pool name>
 [-zn <id> | -znname <name>]

Modifies the named topology to create a balanced topology. If the optional -zn flag is used,
only Storage Nodes from the specified zone are used for the operation.

This command may also add, move or remove Arbiter Nodes. Arbiter Nodes are added if the
new topology supports Arbiter Nodes and the old topology does not. Arbiter Nodes are
removed if the old topology supported Arbiter Nodes and the new one does not. Arbiter Nodes

Chapter 5
Admin CLI Reference

5-85

may be moved to a zero Replication Factor datacenter if the Arbiter Nodes are hosted in a non
zero Replication Factor datacenter.

For more information on balancing a non-compliant topology, see Balance a Non-Compliant
Topology.

topology redistribute

topology redistribute -name <name> -pool <pool name>

Modifies the named topology to redistribute resources to more efficiently use those available.

For more information on redistributing resources to enhance write throughput, see Increase
Data Distribution.

topology validate

topology validate [-name <name>]

Validates the specified topology. If no topology is specified, the current topology is validated.
Validation generates violations and notes.

Violations are issues that can cause problems and should be investigated.

Notes are informational and highlight configuration oddities that can be potential issues or may
be expected.

For more information, see Validate the Topology Candidate.

topology view

topology view -name <name>

Displays details of the specified topology. Also displays any available Arbiter Node information.

verbose

verbose [on|off]

Toggles or sets the global verbosity setting. This property can also be set on a per-command
basis using the -verbose flag.

verify
Encapsulates commands to check various store parameters. Specify one of the
subcommands, optionally with -silent or -json:

verify {configuration | prerequisite | upgrade} [-silent] [-json]

• verify configuration

• verify prerequisite

Chapter 5
Admin CLI Reference

5-86

• verify upgrade

Invoking verify without a subcommand or flag, the returns a deprecated message:

kv-> verify
The command:

 verify [-silent]

is deprecated and has been replaced by:

 verify configuration [-silent]

verify configuration

verify configuration [-silent] [-json]

Verifies the store configuration by iterating over components and checking their state against
what the Admin database contains. On a large store, this command can be time consuming.

The -json option specifies that the command display all output in JSON format.

The -silent option suppresses verbose verification messages as verification proceeds. Using
the -silent option displays only the initial startup messages and the final verification
message. This option has no effect when the -json option is specified.

In some situations, the verify configuration command can generate violations and notes.
For example, if:

• The disk reaches a limit exception.

• The available storage size is less than 5 GB.

• The shard has no partitions.

• A replication node or a storage node is not running.

verify prerequisite

verify prerequisite [-silent] [-sn snX]*

Verifies that the storage nodes are at or above the prerequisite software version needed to
upgrade to the current version. This call may take a while on a large store.

As part of the verification process, this command displays the components which do not meet
the prerequisites or cannot be contacted. It also checks for illegal downgrade situations where
the installed software is of a newer minor release than the current version.

When using this command, the current version is the version of the software running the
command line interface.

Use the -sn option to specify those storage nodes that you want to verify. If no storage nodes
are specified, all the nodes in the store are checked.

The -silent option suppresses verbose verification messages that are displayed as the
verification is proceeding. Instead, only the initial startup messages and the final verification
message is displayed.

Chapter 5
Admin CLI Reference

5-87

verify upgrade

verify upgrade [-silent] [-sn snX]*

Verifies the storage nodes (and their managed components) are at or above the current
version. This call may take a while on a large store.

As part of the verification process, this command displays the components which have not yet
been upgraded or cannot be contacted.

When using this command, the current version is the version of the software running the
command line interface.

Use the -sn option to specify those storage nodes that you want to verify. If no storage nodes
are specified, all the nodes in the store are checked.

The -silent option suppresses verbose verification messages that are displayed as the
verification is proceeding. Instead, only the initial startup messages and the final verification
message is displayed.

Admin Utility Command Reference
This appendix describes the following Admin utility commands:

• diagnostics

• generateconfig

• help

• kvlite

• load admin metadata

• makebootconfig

• ping

• restart

• runadmin

• securityconfig

• start

• status

• stop

• version

• xrstart

• xrstatus

• xrstop

Oracle NoSQL Database utility commands are stand-alone utilities that do not require the use
of the Oracle NoSQL Database Command Line Interface. They are available using one of two
jar files. In some cases, kvstore.jar is used. In others, kvtool.jar is required. Both are packaged
with the server libraries.

Chapter 5
Admin Utility Command Reference

5-88

diagnostics
You can troubleshoot your KVStore using the diagnostics tool. You should first run the
diagnostics setup command in order to set up the tool. You can then use the diagnostics
collect command to package important information and files to be able to send them to
Oracle Support. You can use the diagnostics verify command to verify the configuration of
the specified Storage Nodes.

For all details on using the diagnostics tool to troubleshoot your KVStore, see Diagnostics
Utility.

generateconfig

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar generateconfig [-verbose]
-host <hostname> -port <port>
 -sn <StorageNodeId> -target <zipfile>
[-username <user >]
[-security <security-file-path>]
 [-secdir <overriden security directory>]

This command generates configuration files for any Storage Node identifier (value of "sn"
parameter) specified in the command.

Parameter Required Default value Description

host Yes The host name of the
Storage Node for which
the config file is
generated.

Chapter 5
Admin Utility Command Reference

5-89

Parameter Required Default value Description

port Yes The registry port of the
Storage Node for which
the config file is
generated.

N

o

t

e

:

T
h
e
u
s
e
r
c
a
n
u
s
e
t
h
e
A
d
m
i
n
C
L
I
p
i
n
g
c
o
m
m
a
n
d
,
t
o
g
e
t
t

Chapter 5
Admin Utility Command Reference

5-90

Parameter Required Default value Description

h
e
r
e
g
i
s
t
r
y
p
o
r
t
o
f
a
n
y
S
t
o
r
a
g
e
N
o
d
e
.

Chapter 5
Admin Utility Command Reference

5-91

Parameter Required Default value Description

sn Yes Identifier of the Storage
Node.

N

o

t

e

:

T
h
e
u
s
e
r
c
a
n
u
s
e
t
h
e
A
d
m
i
n
C
L
I
p
i
n
g
c
o
m
m
a
n
d
,
t
o
g
e
t
t
h
e

Chapter 5
Admin Utility Command Reference

5-92

Parameter Required Default value Description

S
t
o
r
a
g
e
N
o
d
e
I
d
e
n
t
i
f
i
e
r
o
f
a
n
y
S
t
o
r
a
g
e
N
o
d
e
.

target Yes Full path of the zip file to
be created.

username No The name of the user to
log in to the secured
store. This parameter is
only required if your
store is configured to
require authentication.

security No The client security
configuration file. This
parameter is only
required if your store is
secure. A fully qualified
path to a file containing
security information can
be specified.

Chapter 5
Admin Utility Command Reference

5-93

Parameter Required Default value Description

secdir No security The name of the
directory within the
KVROOT that will hold
the security
configuration.

help

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar help <commandName>

Prints usage info. With no arguments the top-level shell commands are listed. With a command
name, additional detail is provided.

kvlite
KVLite is a simplified version of the Oracle NoSQL Database. It provides a single storage
node, single shard store, that is not replicated. It runs in a single process without requiring any
administrative interface.

Oracle NoSQL Database can be configured securely. In a secure configuration, network
communications between NoSQL clients, utilities, and NoSQL server components are
encrypted using SSL/TLS, and all processes must authenticate themselves to the components
to which they connect.

Start KVLite in secure mode:

KVLite starts in a secure mode by default.

java -Xmx64m -Xms64m -jar lib/kvstore.jar kvlite

Start KVLite in non-secure mode:

Execute the kvstore.jar file using the secure-config disable flag to disable security and start
KVLite in non-secure mode.

java -Xmx64m -Xms64m -jar lib/kvstore.jar kvlite -secure-config disable

To stop KVLite, use Ctrl C (^C) from within the shell where KVLite is running.

To restart the process, simply run the KVLite utility without any command line options and run
the command from the original directory, or specify that directory using the -root flag. Do this
even if you provided non-standard options when you first started KVLite. This is because
KVLite remembers information such as the port value and the store name in between runs.

load admin metadata

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load -store <storeName>
-host <hostname> -port <port> -load-admin

Chapter 5
Admin Utility Command Reference

5-94

-source <admin-backup-dir> [-force]
[-username <user>] [-security <security-file-path>]

Loads the admin metadata from the snapshot to the new store. In this case the -source
directory must point to the environment directory of the admin node from the snapshot. The
store must not be available for use by users at the time of this operation.

where:

• -load-admin Specifies that only admin metadata will be loaded into the store.

Note:

This option should not be used on a store unless that store is being restored from
scratch. If -force is specified in conjunction with -load-admin, any existing
metadata in the store, including tables and security metadata, will be overwritten.
See Using the Load Program for more information.

• -host <hostname> Identifies the host name of a node in your store.

• -port <port> Identifies the registry port in use by the store's Node.

• -security <security-file-path> Identifies the security file used to specify properties for
login.

• -source <admin-backup-dir> The admin snapshot directory containing the contents of the
admin metadata that is to be loaded into the store.

• -store <storeName> Identifies the new store which is the target of the load.

• -username <user> Identifies the name of the user to login to the secured store.

load store data

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar load [-verbose]
-store <storeName> -host <hostname> -port <port>
-source <shard-backup-dir>[, <shard-backup-dir>]*
[-checkpoint <checkpoint-files-directory>]
[-username <user>] [-security <security-file-path>]

Loads data into a store from backup directories. The bulk put API is used by this utility to load
data into the target store. To recreate the complete contents of the store, you must specify one
directory per shard for each shard associated with the store.

The load utility is highly parallelized. To further boost load performance, you can choose to run
multiple concurrent invocations of the load utility on different machines, and assign each
invocation a non-overlapping subset of the shard directories, using the -source argument. The
use of these additional machine resources could significantly decrease overall elapsed load
times.

Chapter 5
Admin Utility Command Reference

5-95

Note:

Creating multiple processes on the same machine is unlikely to be beneficial and
could be detrimental, since the two processes are likely to be contending for the
same CPU and network resources.

where:

• -checkpoint <checkpoint-files-directory> The utility used this directory to checkpoint
its progress on a periodic basis. If the load process is interrupted for some reason, the
progress checkpoint information is used to skip data that had already been loaded when
the load utility is subsequently re-executed with the same arguments. If the -checkpoint
flag is not specified, progress will not be checkpointed and all the data in the partitions that
were already loaded will be reread.

• -host <hostname> Identifies the host name of a node in your store.

• -port <port> Identifies the registry port in use by the store's node.

• -security <security-file-path> Identifies the security file used to specify properties for
login.

• -source <shard-backup-dir>[,<shard-backup-dir>]* These backup directories typically
represent the contents of snapshots created using the snapshot commands described at
Taking a Snapshot.

• -store <storeName> Identifies the name of the store.

• -username <user> Identifies the name of the user to login to the secured store.

makebootconfig

java -Xmx64m -Xms64m
-jar $KVHOME/lib/kvstore.jar makebootconfig [-verbose]
-root <rootDirectory> -host <hostname> -harange <startPort,endPort>
-port <port> [-config <configFile>]
[-store-security <none | configure | enable>]
[-noadmin]
[-admindir <directory path>]
[-admindirsize <directory size>]
[-storagedir <directory path>]
[-storagedirsize <directory size>]
[-rnlogdir <directory path>]
[-capacity <n_rep_nodes>]
[-storage-type <HD | SSD | NVME | UNKNOWN>]
[-num_cpus <ncpus>][-memory_mb <memory_mb>]
[-servicerange <startPort,endPort>]
[-admin-web-port <admin web service port>]
[-hahost <haHostname>]
[-secdir <security dir>] [-pwdmgr {pwdfile | wallet | <class-name>}]
[-kspwd <password>]
[-external-auth {kerberos}]
 [-krb-conf <kerberos configuration>]
 [-kadmin-path <kadmin utility path>]
 [-instance-name <database instance name>]

Chapter 5
Admin Utility Command Reference

5-96

 [-admin-principal <kerberos admin principal name>]
 [-kadmin-keytab <keytab file>]
 [-kadmin-ccache <credential cache file>]
 [-princ-conf-param <param=value>]*
[-security-param <param=value>]*
[-mgmt {jmx|none}]
[-dns-cachettl <time in sec>]
 [-force]

where:

• -capacity <n_rep_nodes> The total number of Replication Nodes a Storage Node can
support. The value defaults to "1".

If capacity is set to 0, then this Storage Node may be used to host Arbiter Nodes.

• storage-type [HD | SSD | NVME | UNKNOWN] Specifies the type of disk on which the
storage directories reside. You can specify storage type only for a Storage Node and not
for replication nodes. You can set one value for this parameter for a Storage Node. The
valid values are HD, SSD, NVME and UNKNOWN.

Note:

The parameters storagedir and storagedirsize are specific to every replication
node, whereas storage-type is specific to a Storage Node.

Storage-type parameter should be used when the data store is unable to determine the
type of storage. If the data store makes an incorrect guess, then it can lead to poor
performance. Here are two possible situations:

– Linux Logical Volumes: The data store may be unable to detect the disk type when
the disk is used as part of a logical volume. This problem may also occur if disks are
mounted using non-standard device names. The storage-type should be specified to
resolve this.

– Network Attached Storage (NAS): If using NAS, the system can't identify the
underlying storage type and it defaults to HD, which can create performance issues. If
the destination disk is known (SSD or NVME), you can improve the performance by
specifying this in the storage-type parameter in the makebootconfig utility.

You can use the ping command from the Admin CLI to see which storage-type the data
store has detected. Here is an example (using a host with a hard drive):

kv-> ping
[...]
 Rep Node [rg1-rn1]
 Status: RUNNING,MASTER sequenceNumber: 51 haPort: 5003
 availableStorageSize: 9 GB
 storageType: HD (default for UNKNOWN)
 serviceStartTime: 2024-04-05 12:55:04 UTC
 stateChangeTime: 2024-04-05 12:55:05 UTC

• -config <configFile> Only specified if more than one Storage Node Agent process will
share the same root directory. This value defaults to config.xml.

Chapter 5
Admin Utility Command Reference

5-97

• -dns-cachettl <time in sec> Specifies the number of seconds that Replication Nodes
should cache host name to IP address mappings. The default value is -1, which means
mappings should be cached indefinitely. A value of 0 means mappings should not be
cached. The value of this flag is used to set the networkaddress.cache.ttl and
networkaddress.cache.negative.ttl security properties.

• -external-auth {kerberos} Specifies Kerberos as an external authentication service. If
no keytab or credential cache has been specified on the command line, an interactive
version of the securityconfig utility will run.

This flag is only permitted when the value of the -store-security flag is specified as
configure or enable.

To remove Kerberos authentication from a running store, set the value of the
userExternalAuth security.xml parameter to NONE.

For more information on Kerberos, see Kerberos Authentication Service in the Security
Guide.

where -external-auth can have the following flags:

– -admin-principal <kerberos admin principal name>
Specifies the principal used to login to the Kerberos admin interface. This is required
while using kadmin keytab or password to connect to the admin interface.

– -kadmin-ccache <credential cache file>
Specifies the complete path name to the Kerberos credentials cache file that should
contain a service ticket for the kadmin/ADMINHOST. ADMINHOST is the fully-qualified
hostname of the admin server or kadmin/admin service.

If not specified, the user is prompted to enter the password for principal while logging
to the Kerberos admin interface. This flag cannot be specified in conjunction with the -
kadmin-keytab flag.

– -kadmin-keytab <keytab file>
Specifies the location of a Kerberos keytab file that stores Kerberos admin user
principals and encrypted keys. The security configuration tool will use the specified
keytab file to login to the Kerberos admin interface.

The default location of the keytab file is specified by the Kerberos configuration file. If
the keytab is not specified there, then the system looks for the file user.home/
krb5.keytab.

You need to specify the -admin-principal flag when using keytab to login to the
Kerberos admin, otherwise the correct admin principal will not be recognized. This flag
cannot be specified in conjunction with the -kadmin-ccache flag.

– -kadmin-path <kadmin utility path>
Indicates the absolute path of the Kerberos kadmin utility. The default value is /usr/
kerberos/sbin/kadmin.

– -krb-conf <kerberos configuration>
Specifies the location of the Kerberos configuration file that contains the default realm
and KDC information. If not specified, the default value is /etc/krb5.conf.

– -princ-conf-param <param=value>*
A repeatable argument that allows configuration defaults to be overridden.

Chapter 5
Admin Utility Command Reference

5-98

Use the krbPrincValidity parameter to specify the expiration date of the Oracle
NoSQL Database Kerberos service principal.

Use the krbPrincPwdExpire parameter to specify the password expiration date of the
Oracle NoSQL Database Kerberos service principal.

Use the krbKeysalt parameter to specify the list of encryption types and salt types to
be used for any new keys created.

• -force Optionally specified to force generating the boot configuration files even if boot
config verification finds any invalid parameters.

• -hahost <haHostname> Can be used to specify a separate network interface for store
replication traffic. This defaults to the hostname specified using the -host flag.

The host name specified here must be resolvable using DNS or the /etc/hosts file on any
machine running client code that wants to connect to the node.

• -harange <startPort,endPort> A range of free ports that the Replication Nodes and
Admins use to communicate among themselves. These ports should be sequential. You
must assign at least as many ports as the specified capacity for this node, plus an
additional port if the node hosts an Admin.

• -host <hostname> Identifies a host name associated with the node on which the command
is run. This hostname identifies the network interface used for communication with this
node.

The host name specified here must be resolvable using DNS or the /etc/hosts file on any
machine running client code that wants to connect to the node.

• -kspwd<password> For script-based configuration you can use this option to allow tools to
specify the keystore password on the command line. If it is not specified, the user is
prompted to enter the password.

• -memory_mb <memory_mb> The total number of megabytes of memory available in the
machine. If the value is 0, the store attempts to determine the amount of memory on the
machine, but the value is only available when the JVM used is the Oracle Hotspot JVM.
The default value is "0".

For best results, do not specify this parameter. Oracle NoSQL Database will determine the
proper value by default. This parameter should be used sparingly, and only for exceptional
situations.

• -num_cpus <ncpus> The total number of processors on the machine available to the
Replication Nodes. If the value is 0, the system attempts to query the Storage Node to
determine the number of processors on the machine. This value defaults to "0".

For best results, do not specify this parameter. Oracle NoSQL Database will determine the
proper value by default. This parameter should be used sparingly, and only for exceptional
situations.

• -port <port> The TCP/IP port on which Oracle NoSQL Database should be contacted.
Sometimes referred to as the registry port. This port must be free on the node on which
this command is run.

• -pwdmgr [pwdfile | wallet]
Indicates the password manager mechanism used to hold passwords that are needed for
access to keystores, and so on.

where -pwdmgr has the following options:

– -pwdmgr pwdfile

Chapter 5
Admin Utility Command Reference

5-99

Indicates that the password store is a read-protected clear-text password file. This is
the only available option for Oracle NoSQL Database CE deployments. You can
specify an alternate implementation.

– -pwdmgr wallet
Specifies Oracle Wallet as the password storage mechanism. This option is only
available in the Oracle NoSQL Database EE version.

• -root <rootDirectory> Identifies where the root directory should reside.

• -secdir <security dir>
Specifies the name of the directory within the KVROOT that will hold the security
configuration. This must be specified as a name relative to the specified secroot. If not
specified, the default value is security.

• -security-param <param=value>*
A repeatable argument that allows configuration defaults to be overridden.

Use the krbServiceName parameter to specify the service name of the Oracle NoSQL
Database Kerberos service principal.

Use the krbServiceKeytab parameter to specify the keytab file name in security directory
of the Oracle NoSQL Database Kerberos service principal.

• -servicerange <startPort,endPort> A range of ports that may be used for
communication among administrative services running on a Storage Node and its
managed services. This parameter is optional and is useful when services on a Storage
Node must use specific ports for firewall or other security reasons. By default the services
use anonymous ports. The format of the value string is "startPort,endPort."

• -admin-web-port <admin web service port> The TCP/IP port on which the admin web
service should be started. If not specified, the default port value is –1. If a positive integer
number is not specified for -admin-web-port, then admin web service does not start up
along with the admin service. See REST API for Administering Oracle NoSQL Database.

• -noadmin Specifies to disable the bootstrap admin service for SNA.

• -admindir <path> Specify a path to the directory to be used to store the environment
associated with an Admin Node. If no directory is specified, Admin Nodes use a directory
under the root directory.

• -admindirsize <directory size> Specify the size of the admin storage directory
identified by -admindir. This parameter is optional. See Managing Admin Directory Size.

The value specified for this parameter must be a long, followed optionally by a unit string.
Accepted unit strings are: KB, MB, and GB, corresponding to 1024, 1024^2, and 1024^3
respectively. Acceptable strings are case insensitive. Valid delimiters between the long
value and the unit string are " ", "-", or "_". If you specify the delimiter as " ", your value
should be enclosed in double quotes.

For example:

-admindirsize "200 MB"
-admindirsize 1_gb
-admindirsize 3000-Mb

• -storagedir <path> Specifies a path to the directory that a Replication Node will use for
storage. If your Storage Node will host more than one (1) replication node, specify this
argument once for each Replication Node, being sure that the number of arguments does
not exceed the Storage Node capacity.

Chapter 5
Admin Utility Command Reference

5-100

If you do not specify a storage directory explicitly, Replication Nodes use a directory under
the root directory. Be sure to match the number of -storagedir arguments to the value of
the capacity argument. For example, if your Storage Node hosts four disks, and you are
using one disk for each replication node, specify a capacity of four, and have four -
storagedir arguments, each with a corresponding -storagedirsize <directory size>
value.

• -storagedirsize <directory size> Specifies the size of the directory identified by each
-storagedir argument. While this parameter is optional, we strongly recommend that you
specify its value, since the system takes the -storagedirsize <directory size> into
consideration when determining store topology. For example, if you have some Storage
Nodes each with smaller disk capacity than other store SNs, the system arranges to store
less data on those SNs by adjusting partition distribution to shards to match the storage
capacity. See Managing Storage Directory Sizes for details.

Further, it is an error to specify the -storagedirsize <directory size> parameter for
some named storage directories, but not all.

Specify the -storagedirsize <directory size> value as a long, optionally followed by a
unit string. The accepted unit strings are: KB, MB, GB, and TB, corresponding to 1024,
1024^2, 1024^3, 1024^4, respectively. Acceptable strings are case insensitive. Valid
delimiter characters between the long value and the unit string are " ", "-", or "_". If you
specify the delimiter as " ", your value should be enclosed in double quotes.

For example:

-storagedirsize "200 MB"
-storagedirsize 4_tb
-storagedirsize 5000-Mb

Note:

If you specify the -storagedir parameter, but not -storagedirsize,
makebootconfig displays a warning. We strongly recommend specifying both
parameters.

• -rnlogdir <path> Specify a path to the directory to be used for storing the Replication
Node log files. This flag may be used more than once in the command to specify multiple
Replication Node log directories, but the number should not exceed the capacity for the
node.

If no directory is specified, by default, the logs are stored under the root directory.

• -store-security [none | configure | enable] Specifies if security will be used or not.
If -store-security none is specified, no security will be in use. If -store-security
configure is specified, security will be used, and the makebootconfig process invokes the
security configuration utility as part processing. If -store-security enable is specified,
security will be used. You will need to configure security either by utilizing the security
configuration utility or by copying a previously created configuration from another system.

Chapter 5
Admin Utility Command Reference

5-101

Note:

The -store-security command is optional. Even if the user does not specify –
store-security, security is enabled by default. The user must run
securityconfig utility to create the security folder before starting up the storage
node agent.

• -mgmt {jmx|none}
Specifies the type of monitoring to be enabled for the Storage Node . This parameter is
optional. The default value is none when monitoring is disabled. Use this parameter to
make Java Management Extensions (JMX) agents available for monitoring.

If you specify jmx, JMX interfaces will be used for monitoring the Storage Node and any
NoSQL components like Replication Nodes, Admin Node and Storage Node Agent hosted
on that Storage Node. JMX agents in Oracle NoSQL Database are read-only interfaces.
These interfaces let you poll a Storage Node for information about the Storage Node and
about any Replication Nodes or Admins that the Storage Node hosts. The information
available from polling includes the service status (RUNNING, STOPPED, UNREACHABLE
etc.), operational parameters, and performance metrics. Also, JMX can be used to monitor
Arbiter Nodes.

JMX agents also deliver event traps and notifications for particular events. For example,
JMX sends notifications for every service status state change, and any performance limits
that the store exceeds. You can get the total number of operation requests using the metric
TotalReq and the metric TotalOps gives the total number of records returned or
processed. See Monitoring for Storage Nodes for the definitions of the events available for
monitoring .

Creates a configuration file used to start a not-yet-deployed Storage Node to be used in an
instance of Oracle NoSQL Database. The file cannot pre-exist. To create the initial "boot
config" file used to configure the installation see Installation Configuration Parameters.

You can change parameters after setting them with the makebootconfig utility. The commands
to use are change-policy —params and plan change-parameters –params. Changing
parameters may require restarting a node. For more information, see CLI Command
Reference.

ping

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar ping [-verbose] [-json] [-shard <shardId>]
-host <hostname> -port <port> or
-helper-hosts <host:port>[,host:port]*>
-username <user>
-security <security-file-path>

Attempts to contact a store to get status of running services. This utility provides both a
concise summary of the health of a store, as well as detailed information about the topology of
the store. It can signal a red/yellow/green status, to let you know whether the store is in full
health, whether the store has experienced some failures but is operational, or whether the
store has critical problems. ping uses the nodes specified by the -helper-hosts or -host/-
port arguments to locate topology metadata describing the store. Using that topology, ping
contacts all the RNs, SNs, Arbiters, and Admin services associated with a store. You can also
indicate a specific shard to return its status information.

Chapter 5
Admin Utility Command Reference

5-102

Specify the -helper-hosts flag as an alternative to the existing -host and -port flags. If
multiple helper hosts are in use, this utility has multiple nodes it can use to make an initial point
of contact with the store, and will have a greater chance of success if some nodes of the store
are unavailable.

Specify –shard <shardId> to return a subset of information.

Ping Command Line Parameters
The ping utility's command line parameters are:

• -host identifies the name of a specific host in the store. Use this option to check whether
the SNA on that particular host can be contacted.

If this parameter is specified, then -port must also be specified. Further, if the -host and -
port parameters are specified, then the -helper-hosts must not be specified.

• -port identifies the listening port for a specific host in the store. Use this parameter only if
you are also using the -host parameter.

• -helper-hosts identifies a comma-separated list of one or more host:port pairs in the
store. Use this parameter to check the health of the entire store.

Using the –helper-hosts parameter precludes specifying the -host and -port flags.

If multiple helper hosts are provided, this utility has multiple nodes it can use to make an
initial point of contact with the store, and thus a greater chance of success if some nodes
of the store are unavailable. For example:

-helper-hosts hst1:5000,hst2:5100, hst3:5100

• -username is the name of the user that you want to ping the store as. This parameter is
required if your store is configured to require authentication. This user should have at least
SYSVIEW access to the store. The built-in dbadmin role is sufficient.

• -security is the client security configuration file. This parameter is required if your store is
configured to require authentication. For information on the parameters contained in this
file, see Configuring SSL in the Java Direct Driver Developer's Guide. For example:

oracle.kv.auth.username=clientUID1
oracle.kv.auth.pwdfile.file=/home/nosql/login.pwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/home/nosql/client.trust

If you are using Kerberos, then this file would look something like this:

oracle.kv.auth.kerberos.keytab = kerberos/mykeytab
oracle.kv.auth.username = krbuser@EXAMPLE.COM
oracle.kv.auth.external.mechanism=kerberos
oracle.kv.auth.kerberos.services=
node01:oraclenosql/node01.example.com@EXAMPLE.COM
oracle.kv.auth.kerberos.mutualAuth=false

• -verbose is optional. It causes the ping utility to provide additional information about the
utility's current actions.

• -json causes the ping utility to write its output in JSON format.

Chapter 5
Admin Utility Command Reference

5-103

• -shard <shardId> is optional and returns a subset of status information about the specific
shard ID you supply. .

For example:

bash-4.1$ java -jar $KVHOME/lib/kvstore.jar ping -host
mynode.mycompany.com
-port 5000 -shard rg2 Pinging components of store mystore based upon
topology
sequence #2376 shard rg2
500 partitions and 3 storage nodes
Time: 2024-04-05 06:57:10 UTC Version: 24.1.11
Shard Status: healthy
Admin Status: healthy
Zone [name=myshardzone id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
RN Status: online:3 offline:0 maxDelayMillis:0 maxCatchupTimeSecs:0
Storage Node [sn10] on nodeA:5000 Zone: [name=myshardzone id=zn1
type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn1] Status: RUNNING,MASTER
sequenceNumber:71,166
haPort:5010 available storage size:12 GB
Storage Node [sn11] on nodeB:5000 Zone: [name=myshardzone id=zn1
type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn2] Status: RUNNING,REPLICA
sequenceNumber:71,166
haPort:5011 available storage size:14 GB delayMillis:0 catchupTimeSecs:0
Storage Node [sn12] on nodeC:5000 Zone: [name=myshardzone id=zn1
type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 09:33:45 UTC
Build id: a72484b8b33c Edition: Enterprise
 Rep Node [rg2-rn3] Status: RUNNING,REPLICA
sequenceNumber:71,166
haPort:5012 available storage size:24 GB delayMillis:0 catchupTimeSecs:0

Ping Exit Codes
The following exit codes can be returned by this utility. Exit codes can be returned both as a
process exit code, and as part of the JSON output.

Name Code Description

EXIT_OK 0 All services in the store could be
located and are in a known, good
state (for example, RUNNING).

Chapter 5
Admin Utility Command Reference

5-104

Name Code Description

EXIT_OPERATIONAL 1 One or more services in the store
could not be reached, or are in an
unknown or not usable state. In
this case the store should support
all data operations across all
shards, as well as all
administrative operations, but
may be in a state of degraded
performance. Some action should
be taken to find and fix the
problem before part of the store
becomes unavailable.

EXIT_NO_ADMIN_QUORUM 2 The Admin Service replication
group does not have quorum or is
not available at all, and it is not
possible to execute administrative
operations which modify store
configuration. The store supports
all normal data operations despite
the loss of admin quorum, but this
state requires immediate
attention to restore full store
capabilities.

EXIT_NO_SHARD_QUORUM 3 One or more of the shards does
not have quorum and either
cannot accept write requests, or
is completely unavailable. This
state requires immediate
attention to restore store
capabilities. The exit code takes
precedence over
EXIT_NO_ADMIN_QUORUM, so if
this exit code is used, it is
possible that the administrative
capabilities are also reduced or
unavailable.

EXIT_USAGE 100 Illegal ping command usage.

EXIT_TOPOLOGY_FAILURE 101 ping was unable to find a
topology in order to operate. This
could be a store problem, a
network problem, or it could be a
usage problem with the
parameters passed to ping. For
example, the specified -host/-
port pair are not part of the
store, or none of the hosts
specified on -helper-hosts can
be contacted.

EXIT_UNEXPECTED 102 The utility has experienced an
unexpected error.

EXIT_STATUS_UNKNOWN 103 The store is operational but some
Replication Nodes are in
unknown state.

Chapter 5
Admin Utility Command Reference

5-105

Note:

Exit codes 1 through 3 may indicate a network connectivity issue that should be
checked first before concluding that any services have a problem.

Ping Report Text Output
By default, the ping utility reports store health in human readable format. For example:

Note:

Extra line breaks have been added so that the command output fits in the available
space.

$ java -Xmx64m -Xms64m -jar <KVHOME>/lib/kvstore.jar ping -host nodeA -port
1310
Pinging components of store mystore based upon topology sequence #108
100 partitions and 3 storage nodes
Time: 2024-04-05 10:37:43 UTC Version: 24.1.11
Shard Status: healthy:1 writable-degraded:0 read-only:0 offline:0 total:1
Admin Status: healthy
Zone [name=MyDC id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false]
RN Status: online:3 read-only:0 offline:0 maxDelayMillis:0
maxCatchupTimeSecs:0
Storage Node [sn1] on nodeA:13100
Zone: [name=MyDC id=zn1 type=PRIMARY allowArbiters=false masterAffinity=false]
Status: RUNNING Ver: 24.1.11 2024-04-05 05:02:01 UTC
Build id: 0ce629097e92 Edition: Enterprise isMasterBalanced:true
 Admin [admin1] Status: RUNNING,MASTER
 Rep Node [rg1-rn1] Status: RUNNING,MASTER
 sequenceNumber:227 haPort:13117 available storage size:16 GB storage
type:HD
Storage Node [sn2] on nodeB:13200
 Zone: [name=MyDC id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING Ver: 24.1.11 2024-04-05 05:02:01 UTC
 Build id: 0ce629097e92
 Admin [admin2] Status: RUNNING,REPLICA
 Rep Node [rg1-rn2] Status: RUNNING,REPLICA
 sequenceNumber:227 haPort:13217 available storage size:14 GB
storage type:HD delayMillis:0
 catchupTimeSecs:0
Storage Node [sn3] on nodeC:13300
 Zone: [name=MyDC id=zn1 type=PRIMARY allowArbiters=false
masterAffinity=false]
 Status: RUNNING Ver: 24.1.11 2024-04-05 05:02:01 UTC
 Build id: 0ce629097e92
 Admin [admin3] Status: RUNNING,REPLICA
 Rep Node [rg1-rn3] Status: RUNNING,REPLICA
 sequenceNumber:227 haPort:13317 available storage size:24 GB

Chapter 5
Admin Utility Command Reference

5-106

storage type:HD delayMillis:0
 catchupTimeSecs:0

Ping Report JSON Output
When the -json command line parameter is specified, this utility provides its report in JSON
formatting.

Note:

Extra line breaks have been introduced to allow this output to fit in the available
space.

bash-3.2$ java -Xmx64m -Xms64m \
-jar dist/lib/kvstore.jar ping -host node01 \
-port 5000 -json
{
 "operation" : "ping",
 "returnCode" : 5000,
 "description" : "No errors found",
 "returnValue" : {
 "topology" : {
 "storeName" : "orcl",
 "sequenceNumber" : 9,
 "numPartitions" : 0,
 "numStorageNodes" : 2,
 "time" : 1539857069504,
 "version" : "24.1.11"
 },
 "adminStatus" : "healthy",
 "shardStatus" : {
 "healthy" : 1,
 "writable-degraded" : 1,
 "read-only" : 0,
 "offline" : 0,
 "total" : 2
 },
 "zoneStatus" : [{
 "resourceId" : "zn1",
 "name" : "Atlanta",
 "type" : "PRIMARY",
 "allowArbiters" : false,
 "masterAffinity" : false,
 "rnSummaryStatus" : {
 "online" : 2,
 "offline" : 0,
 "read-only" : 0,
 "hasReplicas" : false
 }
 }, {
 "resourceId" : "zn2",
 "name" : "Boston",

Chapter 5
Admin Utility Command Reference

5-107

 "type" : "SECONDARY",
 "allowArbiters" : false,
 "masterAffinity" : false,
 "rnSummaryStatus" : {
 "online" : 1,
 "offline" : 0,
 "read-only" : 0,
 "hasReplicas" : true,
 "maxDelayMillis" : 0,
 "maxCatchupTimeSecs" : 0
 }
 }],
 "snStatus" : [{
 "resourceId" : "sn1",
 "hostname" : "node01",
 "registryPort" : 5000,
 "zone" : {
 "resourceId" : "zn1",
 "name" : "Atlanta",
 "type" : "PRIMARY",
 "allowArbiters" : false,
 "masterAffinity" : false
 },
 "serviceStatus" : "RUNNING",
 "version" : "24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Edition: Enterprise",
 "adminStatus" : {
 "resourceId" : "admin1",
 "status" : "RUNNING",
 "state" : "MASTER",
 "authoritativeMaster" : true
 },
 "rnStatus" : [{
 "resourceId" : "rg1-rn1",
 "status" : "RUNNING",
 "requestsEnabled" : "ALL",
 "state" : "MASTER",
 "authoritativeMaster" : true,
 "sequenceNumber" : 23,
 "haPort" : 5002,
 "availableStorageSize" : "3 GB"
 }, {
 "resourceId" : "rg2-rn1",
 "status" : "RUNNING",
 "requestsEnabled" : "ALL",
 "state" : "MASTER",
 "authoritativeMaster" : true,
 "sequenceNumber" : 23,
 "haPort" : 5003,
 "availableStorageSize" : "3 GB"
 }],
 "anStatus" : []
 }, {
 "resourceId" : "sn2",
 "hostname" : "node02",
 "registryPort" : 6000,

Chapter 5
Admin Utility Command Reference

5-108

 "zone" : {
 "resourceId" : "zn2",
 "name" : "Boston",
 "type" : "SECONDARY",
 "allowArbiters" : false,
 "masterAffinity" : false
 },
 "serviceStatus" : "RUNNING",
 "version" : "24.1.11 2024-04-05 09:33:45 UTC Build id: a72484b8b33c
Edition: Enterprise",
 "adminStatus" : {
 "resourceId" : "admin2",
 "status" : "RUNNING",
 "state" : "REPLICA"
 },
 "rnStatus" : [{
 "resourceId" : "rg1-rn2",
 "status" : "RUNNING",
 "requestsEnabled" : "ALL",
 "state" : "REPLICA",
 "sequenceNumber" : 23,
 "haPort" : 6003,
 "availableStorageSize" : "3 GB",
 "networkRestoreUnderway" : false,
 "delayMillis" : 0,
 "catchupTimeSecs" : 0,
 "catchupRateMillisPerMinute" : 0
 }],
 "anStatus" : []
 }],
 "exitCode" : 0
 }
}

restart

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar restart
[-disable-services] [-verbose]
-root <rootDirectory> [-config <bootstrapFileName>]

Note:

Before restarting the SNA, set the environment variable MALLOC_ARENA_MAX to 1.
Setting MALLOC_ARENA_MAX to 1 ensures that the memory usage is restricted to the
specified heap size.

Stops and then starts the Oracle NoSQL Database Storage Node Agent and services related
to the root directory.

To disable all services associated with a stopped SNA use the -disable-services flag. For
more information, see Disabling Storage Node Agent Hosted Services.

Chapter 5
Admin Utility Command Reference

5-109

runadmin

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin
-host <hostname> -port <port> | -helper-hosts <host:port[,host:port]*>
[-store <storeName>]
[-username <user>] [-security <security-file-path>]
[-admin-username <adminUser>]
[-admin-security <admin-security-file-path>]
[-timeout <timeout ms>]
[-consistency <NONE_REQUIRED(default) | ABSOLUTE |
 NONE_REQUIRED_NO_MASTER>]
[-durability <COMMIT_SYNC(default) | COMMIT_NO_SYNC |
 COMMIT_WRITE_NO_SYNC>]
[-dns-cachettl <time in sec>]
[-registry-open-timeout <time in ms>]
[-registry-read-timeout <time in ms>]

The runadmin command starts the Admin command line interface (CLI) utility on the host
Storage Node (SN) of your choice. You use the CLI to perform configuration activities for your
store.

You can start the CLI on a single host, using the following flags. You can specify any storage
node as a single host, including an Admin-only host without any replica nodes:

-host <hostname> –port <port>

To have more than one host support the Admin command line interface, use the –helper-
hosts option with two or more hosts:

-helper-hosts <host:port[,host:port]*>

Note:

The runadmin –admin-host <adminHost> –admin-port <adminPort> options are
deprecated. Entering either option results in an error. If you are using these options in
scripts, replace them with either the –host or –helper-hosts options (and their port
specifications), as noted in the syntax statement.

Use the –timeout, –consistency, and –durability flags to override the connect configuration
settings.

where:

• -timeout
Specifies the store request time-out in milliseconds. There is no default.

• -consistency
Indicates the store request consistency. The default value is NONE_REQUIRED.

• -durability

Chapter 5
Admin Utility Command Reference

5-110

Indicates the store request durability. The default value is COMMIT_SYNC.

securityconfig
A KVStore can be configured securely. In a secure configuration, network communications
between NoSQL clients, utilities, and NoSQL server components are encrypted using SSL/
TLS, and all processes must authenticate themselves to the components to which they
connect. To set up security when configuring a KVStore, you need to create an initial security
configuration. To do this, run securityconfig tool before, after, or as part of the makebootconfig
process. You should not create a security configuration at each node. Instead, you should
distribute the initial security configuration across all the Storage Nodes in your store. If the
stores do not share a common security configuration they will be unable to communicate with
one another.

java -Xmx64m -Xms64m -jar lib/kvstore.jar securityconfig

Various commands used in the securityconfig tool:

• config create
• config add-security
• config verify
• config update
• config merge-trust
• config show
• config remove-security
You invoke the config create command to create the security configuration.

Use the config create command with the -pwdmgr option to specify the mechanism used to
hold password that is needed for accessing the store. In the example below, Oracle Wallet is
used.

security-> config create -pwdmgr wallet -root KVROOT

Enter a password for your store and then reenter it for verification. The configuration tool will
automatically generate some security related files.

For more information on config create command, see Creating the security configuration.

Use the config add-security command to add the security configuration you just created.

security-> config add-security -root KVROOT -secdir security -config
config.xml

You can use the config verify command to verify the consistency and correctness of the
security configuration.

security-> config verify -secdir <security dir>

Chapter 5
Admin Utility Command Reference

5-111

You can use the config update command to update the security parameters of a security
configuration. You can specify a list of security parameters to update.

security-> config update -secdir <security dir> [-param <param=value>]*

You can use the config merge-trust command to merge truststore entries from one security
configuration into another security configuration. This command is helpful when performing
security maintenance, particularly when you need to update the SSL key/certificate. You can
specify a list of parameters which includes the directory that contains the security configuration
that will be updated (secroot) and the directory that contains the security configuration that will
provide new trust information ().

security-> config merge-trust -root <secroot>
[-secdir <security dir>] -source-root <source secroot>
[-source-secdir <source secdir>] [-ctspwd <client.trust password>]

You can use the config show command to print out all security configuration information.

security-> config show -secdir <security dir>

If you want to disable security for some reason in an existing installation, you can use the
config remove-security command.

security-> config remove-security -root <kvroot> [-config >config.xml>]

For more information on configuring security using securityconfig tool, see Configuring Security
with securityconfig.

start

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar start
[-disable-services] [-verbose]
-root <rootDirectory>
[-config <bootstrapFileName>][-restore-from-snapshot]<snapshot-time_snapshot-
dir-name> [-update-config {true | false}]

Starts the Oracle NoSQL Database Storage Node Agent (and if configured, store) in the root
directory.

To disable all services associated with a stopped SNA use the -disable-services flag. For
more information, see Disabling Storage Node Agent Hosted Services.

You can optionally start from an existing snapshot, instead of using –config
<bootstrapFileName>.

To start from a snapshot, use the –restore-from-snapshot option, followed by the snapshot
directory name with its snapshot-time prefix. Specify –update-config true to override the
existing configuration as part of restoring snapshot data.

Chapter 5
Admin Utility Command Reference

5-112

status

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar status
-root <rootDirectory> [-config <bootstrapFileName>]
[-verbose] [-disable-services]

Attempts to connect to a running Oracle NoSQL Database Storage Node Agent and prints out
its status.

For example:

java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar \
status -root KVROOT
SNA Status : RUNNING

stop

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar stop
[-disable-services] [-verbose]
-root <rootDirectory> [-config <bootstrapFileName>]

Stops the Oracle NoSQL Database Storage Node Agent and services related to the root
directory.

To disable all services associated with a stopped SNA use the -disable-services flag. For
more information, see Disabling Storage Node Agent Hosted Services.

version

java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar version

Prints version.

xrstart
In a multi-region setup, you must start the XRegion service in each region using the xrstart
command providing the complete path to the JSON config file. As this service is a long-running
process, it is recommended to invoke it as a background process by appending the -bg at the
end of the command.

Chapter 5
Admin Utility Command Reference

5-113

Note:

The local KVStore must be started before starting the XRegion Service. If the
KVStore in the local region has not started or is not reachable, the XRegion Service
will not start.

java -Xms256m -Xmx2048m -jar $KVHOME/lib/kvstore.jar xrstart \
-config <complete path to the json.config file> -bg

Table 5-7 Parameters used in xrstart command

Parameter Description

-config Specifies the complete path where the
json.config file is placed.

Once you run the xrstart command, a status.<number of agents>.<agentId>.txt is generated
with the process ID of a successfully started agent.

You can view the status of the xrstart command execution by reading the contents of
status.<number of agents>.<agentId>.txt.

cat <complete path to the home directory for the XRegion Service>/
status.<number of agents>.<agentId>.txt

You can even check the detailed logs in the service log, that is available in the XRegion
Service home directory specified in the XRegion Service configuration file (json.config)
earlier.

xrstatus
In a multi-region setup, you can check the status of the agent using the xrstatus command.

java -Xms256m -Xmx2048m -jar $KVHOME/lib/kvstore.jar xrstatus -config <path
to the json config file>

The parameter config specifies the complete path where the json.config file is placed.

xrstop
In a multi-region setup, you can stop any running Xregion service using xrstop command. For
example, you must stop an Xregion Service if you want to relocate the service to another host
machine. Then you must shut it down in the current machine and restart it in the new host
machine.

java -Xmx1024m -Xms256m -jar $KVHOME/lib/kvstore.jar xrstop \
-config <complete path to the json.config file>

The parameter config specifies the complete path where the json.config file is placed.

Chapter 5
Admin Utility Command Reference

5-114

Initial Capacity Planning
To deploy a store, you must specify a replication factor, the desired number of partitions, and
the Storage Nodes on which to deploy the store. The following sections describe how to
calculate these values based on your application's requirements and the characteristics of the
hardware available to host the store.

The resource estimation is a two step process:

1. Determine the storage and I/O throughput capacity of a representative shard, given the
characteristics of the application, the disk configuration on each machine, and the disk
throughput. As part of this step, you should also estimate the amount of physical memory
that each machine requires, and its network throughput capacity.

2. Use the shard level storage and I/O throughput capacities as a basis for extrapolating
throughput from one shard to the required number of shards and machines, given the
storewide application requirements.

Oracle NoSQL Database distribution includes a spreadsheet for you to use in the capacity
planning process. The spreadsheet is located here: <KVHOME>/doc/misc/
InitialCapacityPlanning.xls.

The spreadsheet has two main sections:

• 1. Shard Capacity

• 2. Store Sizing

The two main sections both have some required parameters for you to complete, as well as
parameters with default options.

The next sections in this appendix correspond to named columns in the spreadsheet:

• Column A lists cell names associated with the values in column B.

• Dark purple, bold text labels represent required values for you to provide as input.

• Dark blue, bold text labels indicate default values that you can optionally change. The
supplied default values are adequate for most estimates.

• Column C has descriptions of the value or computation associated with the value in
column B.

• The first three sections cover Shard Capacity: Application Characteristics, Hardware
Characteristics Machine Physical Memory contain required inputs.

The spreadsheet computes all other cells using the following formulas.

• After filling in the required inputs, the StoreMachines cell indicates how many Storage
Nodes should be available in the Storage Node pool.

• The StorePartitions cell indicates how many partitions to specify when creating the store.

The spreadsheet calculations also account for JVM overhead. Keep in mind that these
computations yield estimates. The underlying model used as a basis for the estimation makes
certain simple assumptions. These assumptions are necessary because it is difficult to provide
a simple single underlying model that works well under a wide range of application
requirements. Use these estimates only as an initial starting point, and refine them as
necessary under a simulated or actual load.

Chapter 5
Initial Capacity Planning

5-115

Shard Capacity
To determine the shard capacity, first determine the application and hardware characteristics
described in this section. Having determined these characteristics, enter them into the
accompanying spreadsheet. The spread sheet will then calculate the capacity of a shard on
the basis of the supplied application and hardware characteristics.

Application Characteristics

Replication Factor
In general, a Primary Replication Factor of 3 is adequate for most applications and is a good
starting point, because 3 replicas allow write availability if a single primary zone fails. It can be
refined if performance testing suggests some other number works better for the specific
workload. Do not select a Primary Replication Factor of 2 because doing so means that even a
single failure results in too few sites to elect a new master. This is not the case if you have an
Arbiter Node, as a new master can still be elected if the Replication Factor is two and you lose
a Replication Node. However, if you have multiple failures before both Replication Nodes are
caught up, you may not be able to elect a new master. A Primary Replication Factor of 1 is to
be avoided in general since Oracle NoSQL Database has just a single copy of the data; if the
storage device hosting the data were to fail the data could be lost.

Larger Primary Replication Factor provide two benefits:

1. Increased durability to better withstand disk or machine failures.

2. Increased read request throughput, because there are more nodes per shard available to
service those requests.

However, the increased durability and read throughput has costs associated with it: more
hardware resources to host and serve the additional copies of the data and slower write
performance, because each shard has more nodes to which updates must be replicated.

Note:

Only the Primary Replication Factor affects write availability, but both Primary and
Secondary Replication Factors, and therefore the Store Replication Factor, have an
effect on read availability.

The Primary Replication Factor is defined by the cell RF.

Average Key Size
Use knowledge of the application's key schema and the relative distributions of the various
keys to arrive at an average key length. The length of a key on disk is the number of UTF-8
bytes needed to represent the components of the key, plus the number of components, minus
one.

This value is defined by the cell AvgKeySize.

Average Value Size
Use knowledge of the application to arrive at an average serialized value size. The value size
will vary depending upon the particular serialization format used by the application.

Chapter 5
Initial Capacity Planning

5-116

This value is defined by the cell AvgValueSize.

Read and Write Operation Percentages
Compute a rough estimate of the relative frequency of store level read and write operations on
the basis of the KVS API operations used by the application.

At the most basic level, each KVS get() call results in a store level read operation and each
put() operation results in a store level write operation. Each KVS multi key operation
(KVStore.execute(), multiGet(), or multiDelete()) can result in multiple store level read/write
operations. Again, use application knowledge about the number of keys accessed in these
operations to arrive at an estimate.

Express the estimate as a read percentage, that is, the percentage of the total operations on
the store that are reads. The rest of the operations are assumed to be write operations.

This value is defined by the cell ReadOpsPercent.

Estimate the percentage of read operations that will likely be satisfied from the file system
cache. The percentage depends primarily upon the application's data access pattern and the
size of the file system cache. Sizing Advice contains a discussion of how this cache is used.

This value is defined by the cell ReadCacheHitPercent.

Hardware Characteristics
Determine the following hardware characteristics based on a rough idea of the type of the
machines that will be used to host the store:

• The number of disks per machine that will be used for storing KV pairs. This value is
defined by the cell DisksPerMachine. The number of disks per machine typically
determines the Storage Node Capacity as described in Storage Node Parameters.

• The usable storage capacity of each disk. This value is defined by the cell
DiskCapacityGB.

• The IOPs capacity of each disk. This information is typically available in the disk spec
sheet as the number of sustained random IO operations/sec that can be delivered by the
disk. This value is defined by the cell DiskIopsPerSec.

The following discussion assumes that the system will be configured with one RN per disk.

Shard Storage and Throughput Capacities
There are two types of capacity that are relevant to this discussion: 1) Storage Capacity 2)
Throughput Capacity. The following sections describe how these two measures of capacity are
calculated. The underlying calculations are done automatically by the attached spreadsheet
based upon the application and hardware characteristics supplied earlier.

Shard Storage Capacity
The storage capacity is the maximum number of KV pairs that can be stored in a shard. It is
calculated by dividing the storage actually available for live KV pairs (after accounting for the
storage set aside as a safety margin and cleaner utilization) by the storage (including a rough
estimation of Btree overheads) required by each KV pair.

The KV Storage Capacity is computed by the cell: MaxKVPairsPerShard.

Chapter 5
Initial Capacity Planning

5-117

Shard I/O Throughput capacity
The throughput capacity is a measure of the read and write ops that can be supported by a
single shard. In the calculations below, the logical throughput capacity is derived from the disk
IOPs capacity based upon the percentage of logical operations that actually translate into disk
IOPs after allowing for cache hits. The Machine Physical Memory section contains more detail
about configuring the caches used by Oracle NoSQL Database.

For logical read operations, the shard-wide IOPs is computed as:

(ReadOpsPercent * (1 - ReadCacheHitPercent))

Note that all percentages are expressed as fractions.

For logical write operations, the shard-wide IOPs is computed as:

(((1 - ReadOpsPercent) / WriteOpsBatchSize) * RF)

The writeops calculations are very approximate. Write operations make a much smaller
contribution to the IOPs load than do the read ops due to the sequential writes used by the log
structured storage system. The use of WriteOpsBatchSize is intended to account for the
sequential nature of the writes to the underlying JE log structured storage system. The above
formula does not work well when there are no reads in the workload, that is, under pure insert
or pure update loads. Under pure insert, the writes are limited primarily by acknowledgement
latency which is not modeled by the formula. Under pure update loads, both the
acknowledgement latency and cleaner performance play an important role.

The sum of the above two numbers represents the percentage of logical operations that
actually result in disk operations (the DiskIopsPercent cell). The shard's logical throughput
can then be computed as:

(DiskIopsPerSec * RF)/DiskIopsPercent

and is calculated by the cell OpsPerShardPerSec.

Memory and Network Configuration
Having established the storage and throughput capacities of a shard, the amount of physical
memory and network capacity required by each machine can be determined. Correct
configuration of physical memory and network resources is essential for the proper operation
of the store. If your primary goal is to determine the total size of the store, skip ahead to
Estimate total Shards and Machines but make sure to return to this section later when it is time
to finalize the machine level hardware requirements.

Note:

You can also set the memory size available for each Storage Node in your store,
either through the memory_mb parameter of the makebootconfig utility or through the
memorymb Storage Node parameter. For more information, see Installation
Configuration Parameters and Storage Node Parameters respectively.

Chapter 5
Initial Capacity Planning

5-118

Machine Physical Memory
The shard storage capacity (computed by the cell MaxKVPairsPerShard) and the average key
size (defined by the cell AvgKeySize cell) can be used to estimate the physical memory
requirements of the machine. The physical memory on the machine backs up the caches used
by Oracle NoSQL Database.

Sizing the in-memory cache correctly is essential for meeting store's performance goals. Disk
I/O is an expensive operation from a performance point of view; the more operations that can
be serviced from the cache, the better the store's performance.

Before continuing, it is worth noting that there are two caches that are relevant to this
discussion:

1. The JE cache. The underlying storage engine used by Oracle NoSQL Database is
Berkeley DB Java Edition (JE). JE provides an in-memory cache. For the most part, this is
the cache size that is most important, because it is the one that is simplest to control and
configure.

2. The file system (FS) cache. Modern operating systems attempt to improve their I/O
subsystem performance by providing a cache, or buffer, that is dedicated to disk I/O. By
using the FS cache, read operations can be performed very quickly if the reads can be
satisfied by data that is stored there.

Sizing Advice
JE uses a Btree to organize the data that it stores. Btrees provide a tree-like data organization
structure that allows for rapid information lookup. These structures consist of interior nodes
(INs) and leaf nodes (LNs). INs are used to navigate to data. LNs are where the data is
actually stored in the Btree.

Because of the very large data sets that an Oracle NoSQL Database application is expected to
use, it is unlikely that you can place even a small fraction of the data into JE's in-memory
cache. Therefore, the best strategy is to size the cache such that it is large enough to hold
most, if not all, of the database's INs, and leave the rest of the node's memory available for
system overhead (negligible) and the FS cache.

Both INs and LNs can take advantage of the FS cache. Because INs and LNs do not have
Java object overhead when present in the FS cache (as they would when using the JE cache),
they can make more effective use of the FS cache memory than the JE cache memory.

Of course, in order for the FS cache to be truly effective, the data access patterns should not
be completely random. Some subset of your key-value pairs must be favored over others in
order to achieve a useful cache hit rate. For applications where the access patterns are not
random, the high file system cache hit rates on LNs and INs can increase throughput and
decrease average read latency. Also, larger file system caches, when properly tuned, can help
reduce the number of stalls during sequential writes to the log files, thus decreasing write
latency. Large caches also permit more of the writes to be done asynchronously, thus
improving throughput.

Determine JE Cache Size
To determine an appropriate JE cache size, use the com.sleepycat.je.util.DbCacheSize
utility. This utility requires as input the number of records and the size of the application keys.
You can also optionally provide other information, such as the expected data size. The utility
then provides a short table of information. The number you want is provided in the Cache Size
column, and in the Internal nodes and leaf nodes: MAIN cache row.

Chapter 5
Initial Capacity Planning

5-119

For example, to determine the JE cache size for an environment consisting of 100 million
records, with an average key size of 12 bytes, and an average value size of 1000 bytes, invoke
DbCacheSize as follows:

java -Xmx64m -Xms64m \
-d64 -XX:+UseCompressedOops -jar je.jar DbCacheSize \
-key 12 -data 1000 -records 100000000 -replicated

 === Environment Cache Overhead ===

 2,536,302 minimum bytes

 To account for JE daemon operation, record locks, HA network
 connections, etc, a larger amount is needed in practice.

 === Database Cache Size ===

 Number of Bytes Description
 --------------- -----------
 3,896,520,528 Internal nodes only:
 4,660,565,808 Internal nodes and records version
 110,107,803,216 Internal nodes and leaf nodes

Please make note of the following jvm arguments (they have a special meaning when supplied
to DbCacheSize):

1. The above example command assumes using Java 11 or later. It is recommended to use
Java 17 version. Only 64-bit JVMs are supported by NoSQL DB.

2. The -XX:+UseCompressedOops causes cache sizes to account for CompressedOops
mode, which is used by NoSQL DB by default. This mode uses more efficient 32 bit
pointers in a 64-bit JVM thus permitting better utilization of the JE cache.

3. The -replicated is used to account for memory usage in a JE ReplicatedEnvironment,
which is always used by NoSQL DB.

These arguments when supplied to Database Cache Size serve as an indication that the JE
application will also be supplied these arguments and Database Cache Size adjusts its
calculations appropriately. The arguments are used by Oracle NoSQL Database when starting
up the Replication Nodes which uses these caches.

The output indicates that a cache size of 3.6 GB is sufficient to hold all the internal nodes
representing the Btree in the JE cache. With a JE cache of this size, the IN nodes will be
fetched from the JE cache and the LNs will be fetched from the off-heap cache or the disk.

For more information on using the DbCacheSize utility, see this Javadoc page. Note that in
order to use this utility, you must add the <KVHOME>/lib/je.jar file to your Java classpath.
<KVHOME> represents the directory where you placed the Oracle NoSQL Database package
files.

Having used DbCacheSize to obtain the JE cache size, the heap size can be calculated from it.
To do this, enter the number obtained from DbCacheSize into the cell named DbCacheSizeMB
making sure to convert the units from bytes to MB. The heap size is computed by the cell
RNHeapMB as below:

(DBCacheSizeMB/RNCachePercent)

Chapter 5
Initial Capacity Planning

5-120

where RNCachePercent is the percentage of the heap that is used for the JE cache. The
computed heap size should not exceed 32GB, so that the java VM can use its efficient
CompressedOops format to represent the java objects in memory. Heap sizes with values
exceeding 32GB will appear with a strikethrough in the RNHeapMB cell to emphasize this
requirement. If the heap size exceeds 32GB, try to reduce the size of the keys to reduce the JE
cache size in turn and bring the overall heap size below 32GB.

The heap size is used as the basis for computing the memory required by the machine as
below:

(RNHeapMB * DisksPerMachine)/SNRNHeapPercent

where SNRNHeapPercent is the percentage of the physical memory that is available for use by
the RN's hosted on the machine. The result is available in the cell
MachinePhysicalMemoryMB.

Machine Network Throughput
We need to ensure that the NIC attached to the machine is capable of delivering the
application I/O throughput as calculated earlier in Shard I/O Throughput capacity, because
otherwise it could prove to be a bottleneck.

The number of bytes received by the machine over the network as a result of write operations
initiated by the client is calculated as:

(OpsPerShardPerSec * (1 - ReadOpsPercent) *
 (AvgKeySize + AvgValueSize)) * DisksPerMachine

and is denoted by ReceiveBytesPerSec in the spreadsheet. Note that whether a node is a
master or a replica does not matter for the purposes of this calculation; the inbound write bytes
come from the client for the master and from the masters for the replicas on the machine.

The number of bytes received by the machine as a result of read requests is computed as:

((OpsPerShardPerSec * ReadOpsPercent)/RF) *
 (AvgKeySize + ReadRequestOverheadBytes) * DisksPerMachine

where ReadRequestOverheadBytes is a fixed constant overhead of 100 bytes.

The bytes sent out by the machine over the network as a result of the read operations has two
underlying components:

1. The bytes sent out in direct response to application read requests and can be expressed
as:

((OpsPerShardPerSec * ReadOpsPercent)/RF) *
 (AvgKeySize + AvgValueSize) * DisksPerMachine

2. The bytes sent out as replication traffic by the masters on the machine expressed as:

(OpsPerShardPerSec * (1 - ReadOpsPercent) *
 (AvgKeySize + AvgValueSize) * (RF-1)) * MastersOnMachine

The sum of the above two values represents the total outbound traffic denoted by
SendBytesPerSec in the spreadsheet.

Chapter 5
Initial Capacity Planning

5-121

The total inbound and outbound traffic must be comfortably within the NIC's capacity. The
spreadsheet calculates the kind of network card, GigE or 10GigE, which is required to support
the traffic.

Estimate total Shards and Machines
Having calculated the per shard capacity in terms of storage and throughput, the total number
of shards and partitions can be estimated on the basis of the maximum storage and throughput
required by the store as a whole using a simple extrapolation. The following inputs must be
supplied for this calculation:

1. The maximum number of KV pairs that will stored in the initial store. This value is defined
by the cell MaxKVPairs. This initial maximum value can be increased subsequently by
using the topology transformation commands described in Transforming the Topology
Candidate.

2. The maximum read/write mixed operation throughput expressed as operations/sec for the
entire store. The percentage of read operations in this mix must be the same as that
supplied earlier in the ReadOpsPercent cell. This value is defined by the cell
MaxStorewideOpsPerSec.

The required number of shards is first computed on the basis of storage requirements as
below:

MaxKVPairs/MaxKVPairsPerShard

This value is calculated by the cell StorageBasedShards.

The required number of shards is then computed again based upon IO throughput
requirements as below:

MaxStorewideOpsPerSec/OpsPerShardPerSec

This value is calculated by the cell named OpsBasedShards.

The maximum of the shards computed on the basis of storage and throughput above is
sufficient to satisfy both the total storage and throughput requirements of the application.

The value is calculated by the cell StoreShards. To highlight the basis on which the choice was
made, the smaller of the two values in StorageBasedShards or OpsBasedShards has its value
crossed out.

Having determined the number of required shards, the number of required machines is
calculated as:

MAX(RF, (StoreShards*RF)/DisksPerMachine)

Number of Partitions
Every shard in the store must contain at least one partition, but it is best to configure the store
so that each shard always contains more than one partition. The records in the KVStore are
spread evenly across the KVStore partitions, and as a consequence they are also spread
evenly across shards. The total number of partitions that the store should contain is
determined when the store is initially created. This number is static and cannot be changed
over the store's lifetime, so it is an important initial configuration parameter.

Chapter 5
Initial Capacity Planning

5-122

The number of partitions must be more than the largest number of shards the store will
contain. It is possible to add shards to the store, and when you do, the store is re-balanced by
moving partitions between shards (and with them, the data that they contain). Therefore, the
total number of partitions is actually a permanent limit on the total number of shards your store
is able to contain.

Note that there is some overhead in configuring an excessively large number of partitions. That
said, it does no harm to select a partition value that provides plenty of room for growing the
store. It is not unreasonable to select a partition number that is 10 times the maximum number
of shards.

The number of partitions is calculated by the cell StorePartitions.

StoreShards * 10

Tuning
The default tuning parameters available for the Oracle NoSQL Database software should in
general be acceptable for production systems, and so do not require any tuning. However, the
underlying operating system will have default values for various kernel parameters which
require modification in order to achieve the best possible performance for your store's
installation.

This appendix identifies the kernel parameters and other system tuning that you should
manage when installing a production store. By this, we mean any store whose performance is
considered critical. Evaluation systems installed into a lab environment probably do not need
this level of tuning unless you are using those systems to measure the store's performance.

Note:

Oracle NoSQL Database is most frequently installed on Linux systems, and so that is
what this appendix focuses on.

Turn off the swap
For best performance on a dedicated Oracle NoSQL Database server machine, turn off the
swap on the machine. Oracle NoSQL Database processes are careful in their management of
the memory they use to ensure that they do not exceed the RAM available on the machine.

The performance gains come from two sources:

1. The I/O overhead due to swap is eliminated. This is especially important if the disk
normally used for swap also holds the store's log files used to persist data.

2. Reduces the CPU overhead associated with kswapd.

To turn off the swap, do not mount any swap partitions at boot time. You do this by eliminating
all swap related mount entries from /etc/fstab. These are all the rows with the entry "swap" in
their mount point (column 2) and file system type (column 3) entries.

Chapter 5
Tuning

5-123

You can verify that no swap space is being used by running the free command. Do this after
the /etc/fstab has been modified and the machine has been rebooted:

-bash-4.1$ free -m
 total used free shared buffers cached
Mem: 72695 72493 202 0 289 2390
-/+ buffers/cache: 69813 2882
Swap: 0 0 0

The Swap/total cell in the above table should read 0.

Linux Page Cache Tuning
Tune your page cache to permit the OS to write asynchronously to disk whenever possible.
This allows background writes, which minimize the latency resulting from serial write
operations such as fsync. This also helps with write stalls which occur when the file system
cache is full and needs to be flushed to disk to make room for new writes. We have observed
significant speedups (15-20%) on insert-intensive benchmarks when these parameters are
tuned as described below.

Place the following commands in /etc/sysctl.conf. Run

sysctl -p

to load the new settings so they can take effect without needing to reboot the machine.

Set vm.dirty_background_bytes to 10MB to ensure that
on a 40MB/sec hard disk a fsync never takes more than 250ms and takes
just 125ms on average. The value of vm.dirty_background_bytes
should be increased on faster SSDs or I/O subsytems with higher
throughput. You should increase this setting by the same proportion
as the relative increase in throughput. For example, for a typical SSD
with a throughput of 160MB/sec, vm.dirty_background_bytes should be set
to 40MB so fsync takes ~250ms. In this case, the value was increased by
a factor of 4.
vm.dirty_background_bytes=10485760

IO calls effectively become synchronous(waiting for the underlying
device to complete them). This setting helps minimize the
possibility of a write request stalling in JE while holding the
write log latch.
vm.dirty_ratio=40

Ensures that data does not hang around in memory longer than
necessary. Given JE's append-only style of writing, there is
typically little benefit from having an intermediate dirty page
hanging around, because it is never going to be modified. By
evicting the dirty page earlier, its associated memory is readily
available for reading or writing new pages, should that become
necessary.
vm.dirty_expire_centisecs=1000

Earlier versions of the Linux kernel may not support vm.dirty_background_bytes. On these
older kernels you can use vm.dirty_background_ratio instead. Pick the ratio that gets you

Chapter 5
Tuning

5-124

closest to 10MB. On some systems with a lot of memory this may not be possible due to the
large granularity associated with this configuration knob. A further impediment is that a ratio of
5 is the effective minimum in some kernels.

vm.dirty_background_ratio=5

Use sysctl -a to verify that the parameters described here are set as expected.

OS User Limits
When running a large Oracle NoSQL Database store, the default OS limits may be insufficient.
The following sections list limits that are worth reviewing.

File Descriptor Limits
Use ulimit -n to determine the maximum number of files that can be opened by a user. The
number of open file descriptors may need to be increased if the defaults are too low. It's worth
keeping in mind that each open network connection also consumes a file descriptor. Machines
running clients as well as machines running RNs may need to increase this limit for large
stores with 100s of nodes.

Add entries like the ones below in /etc/security/limits.conf to change the file descriptor
limits:

$username soft nofile 10240
$username hard nofile 10240

where $username is the username under which the Oracle NoSQL Database software runs.

Note that machines hosting multiple replication nodes; that is, machines configured with a
capacity > 1; will need larger limits than what is identified here.

Process and Thread Limits
Use ulimit -u to determine the maximum number of processes (threads are counted as
processes under Linux) that the user is allowed to create. Machines running clients as well as
machines running RNs may need to increase this limit to accommodate large numbers of
concurrent requests.

Add entries like the ones below in /etc/security/limits.conf to change the thread limits:

$username soft nproc 8192
$username hard nproc 8192

where $username is the username under which the Oracle NoSQL Database software runs.

Note that machines hosting multiple replication nodes; that is, machines configured with a
capacity > 1; will need larger limits than what is identified here.

Linux Network Configuration Settings
Before continuing, it is worth checking that the network interface card is configured as
expected during the initial setup of each SN, because it is harder to debug these problems
later when such configuration problems show up under load.

Chapter 5
Tuning

5-125

Use the following command to determine which network interface is being used to access a
particular subnet on each host. This command is particularly useful for machines with multiple
NICs:

$ ip addr ls to 192.168/16
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 state UP qlen 1000
 inet 192.168.1.19/24 brd 192.168.1.255 scope global eth0

Use the following command to get information about the configuration of the NIC:

$ ethtool -i eth2
driver: enic
version: 2.1.1.13
firmware-version: 2.0(2g)
bus-info: 0000:0b:00.0

Use the following command to get information about the NIC hardware:

$ lspci -v | grep "Ethernet controller"
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit
Ethernet Controller (rev 02)

Use the following command to get information about the network speed. Note that this
command requires sudo:

$ sudo ethtool eth0 | grep Speed
 Speed: 1000Mb/s

You may want to consider using 10 gigabit Ethernet, or other fast network implementations, to
improve performance for large clusters.

Server Socket Backlog
The typical default maximum server socket backlog, typically set at 128, is too small for server
style loads. It should be at least 1K for server applications and even a 10K value is not
unreasonable for large stores.

Set the net.core.somaxconn property in sysctl.conf to modify this value.

Isolating HA Network Traffic
If the machine has multiple network interfaces, you can configure Oracle NoSQL Database to
isolate HA replication traffic on one interface, while client request traffic uses another interface.
Use the -hahost parameter of the makebootconfig command to specify the interface to be
used by HA as in the example below:

java -Xmx64m -Xms64m \
-jar kvstore.jar makebootconfig -root /disk1/kvroot \
-host sn10.example.com -port 5000 -harange 5010,5020 \
-admindir /disk2/admin -admindirsize 2 GB
-storagedir /disk2/kv -hahost sn10-ha.example.com

Chapter 5
Tuning

5-126

In this example, all client requests will use the interface associated with sn10.example.com,
while HA traffic will use the interface associated with sn10-ha.example.com.

Receive Packet Steering
When multiple RNs are located on a machine with a single queue network device, enabling
Receive Packet Steering (RPS) can help performance by distributing the CPU load associated
with packet processing (soft interrupt handling) across multiple cores. Multi-queue NICs
provide such support directly and do not need to have RPS enabled.

Note that this tuning advice is particularly appropriate for customers using Oracle Big Data
Appliance.

You can determine whether a NIC is multi-queue by using the following command:

sudo ethtool -S eth0

A multi-queue NIC will have entries like this:

 rx_queue_0_packets: 271623830
 rx_queue_0_bytes: 186279293607
 rx_queue_0_drops: 0
 rx_queue_0_csum_err: 0
 rx_queue_0_alloc_failed: 0
 rx_queue_1_packets: 273350226
 rx_queue_1_bytes: 188068352235
 rx_queue_1_drops: 0
 rx_queue_1_csum_err: 0
 rx_queue_1_alloc_failed: 0
 rx_queue_2_packets: 411500226
 rx_queue_2_bytes: 206830029846
 rx_queue_2_drops: 0
 rx_queue_2_csum_err: 0
 rx_queue_2_alloc_failed: 0
...

For a 32 core Big Data Appliance using Infiniband, use the following configuration to distribute
receive packet processing across all 32 cores:

echo ffffffff > /sys/class/net/eth0/queues/rx-0/rps_cpus

where ffffffff is a bit mask selecting all 32 cores.

For more information on RPS please consult:

1. About the Unbreakable Enterprise Kernel

2. Receive packet steering

MTU Size
When using machines connected to networks running at 1000Mb/s or higher speeds, it is
recommended that you enable jumbo frames on the machines that are hosting the RNs. HA
replication benefits from the use of Jumbo frames such that the feeder (via the HA parameter:

Chapter 5
Tuning

5-127

feederBatchBuffKb) uses a default batch buffer size of 8K, which is well matched to use a
Jumbo frame.

Setting the MTU to 9000 is also helps in improving network performance on KV client
machines with high speed networks, especially if the request or response payloads frequently
exceed the default MTU size of 1500.

To enable jumbo frames, set the MTU to 9000 on each machine. Also, verify that this MTU is
supported on the entire network path between machines hosting the RNs.

For example, to determine the speed of the ens3 interface, use the following command:

ip link show ens3
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP mode
DEFAULT group default qlen 1000
 link/ether 00:00:17:01:2c:b6 brd ff:ff:ff:ff:ff:ff

If required, change the MTU configuration using the ip command:

ip link set ens3 mtu 9000

Check AES Intrinsics Settings
While most modern hardware systems enable AES Intrinsics by default, you can check these
settings yourself to confirm their use.

An Oracle NoSQL Database installation using the SSL/TLS encryption gets better performance
if it can take advantage of hardware acceleration available on the host machine.

Most SSL cipher suites use the AES encryption algorithm, and most modern processors
support hardware acceleration for AES. To confirm that a Java installation is taking advantage
of AES hardware acceleration, check to see if AES intrinsics are enabled. You can get that
information by printing flag values for the Java virtual machine from your terminal using the -
XXPrintFlagsFinal flag, as follows. Then, search for the two boolean flags UseAES, and
UseAESIntrinsics. In this example, results show that AES intrinsics are enabled.

java -XX:+PrintFlagsFinal -version | grep 'AES\|Intrinsics'
bool UseAES = true {product} {default}
bool UseSSE42Intrinsics = true {ARCH product} {default}
java version "10.0.2" 2018-07-17
Java(TM) SE Runtime Environment 18.3 (build 10.0.2+13)
Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10.0.2+13, mixed mode)

Setting AES Intrinsics

For best performance, enable AES intrinsics on all machines that support them. If not enabled
when you run the check just described, you must specify -XX:+UseAES and -
XX:+UseAESIntrinsics for every JVM command line that uses SSL, using these flags:

java -XX:+UseAES -XX:+UseAESIntrinsics [...]

You can add these two flags to the JVM options for RNs by setting the configProperties
parameter. See Replication Node Parameters .

Chapter 5
Tuning

5-128

Client applications that make calls to the NoSQL API, should specify these system properties
on the Java command line for the application.

Viewing Key Distribution Statistics
As you might already know, Oracle NoSQL Database stores the data by distributing the rows
across all the partitions by hashing each row’s shard key. Based on the activity in your store's
tables, Oracle NoSQL Database collects the key distribution data into internally managed
system tables. As needed, you can access these statistics by querying these system tables.

As an Oracle NoSQL Database administrator, you may encounter many situations where you
need to view the key distribution statistics. To discuss one such use-case, consider a situation
where you are not able achieve the expected amount of throughput for your Oracle NoSQL
Database in spite of having multiple shards in your cluster. This might happen if the data in
your store is not distributed across the shards evenly. In order to confirm if this is the reason
behind low throughput, you need a mechanism to understand how the data is distributed
across the Oracle NoSQL Database cluster. The Key Distribution Statistics provided by the
Oracle NoSQL Database can help you understand the data distribution across multiple
partitions and shards in your store.

The two system tables into which the Oracle NoSQL Database collects the key distribution
statistics are:

• SYS$TableStatsPartition
• SYS$TableStatsIndex
Oracle NoSQL Database manages and maintains these system tables internally. When you
enable security on your store, these system tables are read-only. Regardless of security, the
schema for system tables is immutable. The name of system tables is defined with the prefix
SYS$. You are not allowed to create any other table name using this reserved prefix.

SYS$TableStatsPartition
This table stores the table key statistics at the partition level. It contains a row for each partition
for every table. For example, if you created a store with 100 partitions, this table contains 100
rows for every table in your store. The statistics stored per partition for each table in your store
are:

1. The number of rows stored

2. The average size of keys in bytes

3. The size in bytes consumed by the rows

The structure of the SYS$TableStatsPartition table is as below:

Column Data Type Description

tableName string Name of the table whose Key
Distribution Statistics are being
stored.

partitionId integer Partition ID

shardId integer Shard ID

count long Number of rows stored.

avgKeySize integer The average size of keys in bytes.

tableSize long The size in bytes consumed by
the rows.

Chapter 5
Tuning

5-129

Column Data Type Description

tableSizeWithTombstones long The table storage in bytes
including tombstones.

Note:

The tombstone is a small piece of storage when a row in a multi-region table is
deleted. This per-row storage overhead is used to keep some metadata of the
deleted row, which will be used in conflict resolution when another row is replicated
from remote regions. The tombstone will expire in 7 days after it is created and the
storage will be released. For tables without tombstones (For example, non-multi-
region tables, system tables, etc,) the metric tableSizeWithTombstones would be the
same as the metric tableSize in the system table. The difference between the two
metrics is the total storage size of tombstones in the table.

SYS$TableStatsIndex
This table stores the index key statistics at the shard level. This table contains a row for each
shard for every index. You do not have direct control over the number of shards created in your
store, but you can always view the store topology to know how many shards are created in
your store. For more information, see show topology.

The statistics stored per shard for each table in your store are:

1. The number of index rows

2. The average size of the index keys in bytes

3. The size in bytes consumed by the index rows

The structure of SYS$TableStatsIndex system table is as below:

Column Data Type Description

tableName string Name of the table whose Key
Distribution Statistics are being
stored.

indexName string Name of the index

shardId integer Shard ID

count long Number of index rows stored.

avgKeySize integer Average size of index keys in
bytes.

indexSize long The size in bytes consumed by
the index rows.

Gathering the Key Distribution Statistics
The gathering of the key distribution statistics into the system tables is determined by two
parameters:

• rnStatisticsEnabled:

Chapter 5
Tuning

5-130

In Oracle NoSQL Database, the Key Distribution Statistics are enabled by default for all
newly created stores. You can disable the capturing of these statistics by executing the
following command from Admin Command Line Interface (CLI):

plan change-parameters -wait -all-rns -params "rnStatisticsEnabled=false"

• rnStatisticsGatherInterval:
In Oracle NoSQL Database, the default time interval between two consecutive updates on
SYS$TableStatsPartition and SYS$TableStatsIndex is 24 hours. You can change the
time interval between the capture of these statistics by modifying the
rnStatisticsGatherInterval parameter. The time unit specified must be in days, hours,
or minutes.

For example, to instruct Oracle NoSQL Database to collect the Key Distribution Statistics
after every minute, execute the following command from Admin Command Line Interface
(CLI):

plan change-parameters -wait -all-rns -params
"rnStatisticsGatherInterval=1 min"

Note:

Enabling the Key Distribution Statistics does not immediately trigger the collection of
statistics. Oracle NoSQL Database initiates the statistics collection at a time based
on the collection interval defined by the rnStatisticsGatherInterval parameter.

rnStatisticsGatherInterval
Reading the Key Distribution Statistics
You can query the system tables to get key distribution data or review the gathering process.

In order to get a complete set of statistics for a given table, you must aggregate the per-
partition values stored for that table in the SYS$TableStatsPartition system table.

For example, to get the total number of rows in a table named myTable, you must sum the
values in the count column for all the rows in the SYS$TableStatsPartition table where
tableName = myTable.

Example Query:

sql-> select * from SYS$TableStatsPartition where tableName = 'myTable';

Result:

{"tableName":"myTable","partitionId":8,"shardId":3,"count":0,"avgKeySize":0,"t
ableSize":0}
{"tableName":"myTable","partitionId":9,"shardId":4,"count":0,"avgKeySize":0,"t
ableSize":0}
{"tableName":"myTable","partitionId":1,"shardId":1,"count":0,"avgKeySize":0,"t
ableSize":0}
{"tableName":"myTable","partitionId":4,"shardId":2,"count":0,"avgKeySize":0,"t
ableSize":0}
{"tableName":"myTable","partitionId":7,"shardId":3,"count":50,"avgKeySize":15,
"tableSize":103}

Chapter 5
Tuning

5-131

{"tableName":"myTable","partitionId":10,"shardId":4,"count":50,"avgKeySize":15
,"tableSize":103}
{"tableName":"myTable","partitionId":5,"shardId":2,"count":0,"avgKeySize":0,"t
ableSize":0}
{"tableName":"myTable","partitionId":6,"shardId":2,"count":0,"avgKeySize":0,"t
ableSize":0}
{"tableName":"myTable","partitionId":2,"shardId":1,"count":0,"avgKeySize":0,"t
ableSize":0}
{"tableName":"myTable","partitionId":3,"shardId":1,"count":0,"avgKeySize":0,"t
ableSize":0}

In the above result, observe that there are 50 keys each in "partitionId":7,"shardId":3 and
"partitionId":10,"shardId":4 whereas all the other partitions and shards are empty. This
shows that the key data is not distributed evenly across all the partitions and shards.

Similarly, you can query the SYS$TableStatsIndex system table to read the index key
distribution statistics for a given table at the shard level.

For example, to get the total number of index rows in a table named myTable, you must sum
the values in the count column for all the index rows in the SYS$TableStatsIndex table where
tableName = myTable.

Example Query:

sql-> select * from SYS$TableStatsIndex where tableName = 'myTable';

Result:

{"tableName":"myTable","indexName":"idx_shard_key","shardId":3,"count":50,"avg
KeySize":1,"indexSize":75}
{"tableName":"myTable","indexName":"idx_shard_key","shardId":4,"count":50,"avg
KeySize":1,"indexSize":75}
{"tableName":"myTable","indexName":"idx_shard_key","shardId":1,"count":0,"avgK
eySize":0,"indexSize":0}
{"tableName":"myTable","indexName":"idx_shard_key","shardId":2,"count":0,"avgK
eySize":0,"indexSize":0}

As you can see from the above result, there are 50 index keys each in "shardId":3 and
"shardId":4 whereas all the other shards are empty. This shows that the index key data is not
distributed evenly across all the shards.

Retention of the Key Distribution Statistics
After collecting the key distribution statistics, they are retained in the system tables for a fixed
time period. This value is determined by the rnStatisticsTTL parameter. By default, these
statistics are retained for 60 days. However, you can change this value by executing the
change-parameters plan from the Admin CLI. The time unit specified must be in days or hours.

For example, execute the following command from Admin Command Line Interface (CLI) to
retain the Key Data Statistics in the system tables for 90 days:

plan change-parameters -wait -all-rns -params "rnStatisticsTTL=90 days"

Few points to note are:

Chapter 5
Tuning

5-132

• Any changes that you make to the rnStatisticsTTL parameter will not be applied to the
existing rows in the SYS$TableStatsPartition and SYS$TableStatsIndex tables. They
will take effect only after the next gathering scan.

• If you disable the collection of Key Distribution Statistics, all the rows present in the system
tables will expire after the current Time to Live (TTL) period.

• If you drop any tables or indexes in your store, their statistics rows present in the system
tables will also expire after the TTL period.

• Even if you change the rnStatisticsTTL to a value less than
rnStatisticsGatherInterval, all the existing statistics rows will only expire as the TTL
value defined during the last scan.

• rnStatisticsTTL can be set to 0 days. However, this is not recommended as it disables
automatic removal of the statistics rows.

Examples: Key Distribution Statistics
Key distribution statistics can also be used to provide estimates of other information about
tables that may prove useful.

Example 5-4 Key Distribution Statistics

To estimate the number of elements in each table, perform the following query:

SELECT tableName,
 sum(count) AS count
FROM SYS$TableStatsPartition
WHERE NOT contains (tableName, "$")
GROUP BY tableName

The clause WHERE NOT CONTAINS (tableName, "$") filters out system tables by only including
tables whose names do not contain the "$" character.

The clause GROUP BY tableName is what causes the sums to be computed over all of the
partition entries for the same table.

Example 5-5 Key Distribution Statistics

To estimate the average key size for each table, perform the following query:

SELECT tableName,
 CASE WHEN sum(count) = 0
 THEN 0
 ELSE sum(avgKeySize*count)/sum(count)
 END AS avgKeySize
FROM SYS$TableStatsPartition
WHERE NOT contains(tableName, "$")
GROUP BY tableName

The case clause skips entries whose count is zero, and otherwise weights each entry by the
element count, dividing the result by the total count.

Chapter 5
Tuning

5-133

Example 5-6 Key Distribution Statistics

To estimate the number of elements in each index, perform the following query:

SELECT tableName,
 indexName,
 sum(count) AS count
FROM SYS$TableStatsIndex
WHERE NOT contains(tableName, "$")
GROUP BY tableName, indexName

Example 5-7 Size of the tables

The clause WHERE NOT CONTAINS (tableName, "$") filters out system tables by only
including tables whose names do not contain the "$" character.

SELECT tableName,TableSize,
tableSizeWithTombstones FROM SYS$TableStatsPartition
WHERE NOT contains(tableName,"$");

For tables without tombstones (For example, non-multi-region tables, system tables, etc,), the
metric tableSizeWithTombstones would be the same as the metric tableSize in the system
table. The difference between the two metrics is the total storage size of tombstones in the
table.

Example 5-8 Determine the size before a table export

You want to export a gigantic table to another place (another disk, kvstore, etc.), You can use
tableSize to determine the size of the data. You can determine the size of live data without
tombstone for that table since export does not copy tombstones.

SELECT tableName,TableSize FROM SYS$TableStatsPartition
WHERE NOT contains(tableName,"$");

Solid State Drives (SSDs)
If you are planning on using Solid State Drives (SSDs) for your Oracle NoSQL Database
deployment, a special consideration should be taken. Because of how SSDs work, I/O latency
can become an issue with SSDs over time. Correct configuration and use of trim can help
minimize these latency issues.

Trim requirements
In general, for TRIM to be effective, the following requirements must be met:

• The SSD itself must support trim.

• Linux-kernel 2.6.33 or later.

• Filesystem ext4 (ext3 does not support trim).

Enabling Trim
The trim support must be explicitly enabled for the ext4 file system. You should mount the file
system with trim enabled.

Chapter 5
Solid State Drives (SSDs)

5-134

Diagnostics Utility
In order to catch configuration errors early, you can use this tool when troubleshooting your
KVStore. Also, you can use this tool to package important information and files to send them to
Oracle Support, for example.

The usage for the utility is:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar diagnostics {setup | collect} [args]

Setting up the tool
You should first run the diagnostics setup command in order to setup the tool. This
command generates the configuration file sn-target-list with the Storage Node target list,
which contains the IP/hostname, registry ports, and root directory of SNAs in the remote
machines.

The usage of this command is:

diagnostics setup {-add |
-list |
-delete |
-clear} [args]

where:

• -add

Adds the specified information of each SNA to the sn-target-list. The usage is:

setup -add -store <store name>
-sn <SN name>
-host <host>
-rootdir <kvroot directory>
[-sshusername <SSH username>]
[-configdir <directory of configuration>]

In the sn-target-list, the SNA information has the following format:

<store name>|<sn name>|<SSH username@host>|<root directory>

For example:

mystore|sn3|lroot@localhost|/scratch/tests/kvroot

Chapter 5
Diagnostics Utility

5-135

Note:

You can also create and edit the sn-target-list manually in your preferred text
editor to add or delete any SNA information.

• -list

Lists and tests the SNAs information of the sn-target-list. The usage is:

setup -list [-configdir <configuration file directory>]
 [-sshusername <SSH username>]

This command checks if:

– The host name is reachable or not.

– The root directory exists or not.

• -delete

Specified to delete the information of the specified SNA from the sn-target-list.

The usage of this command is:

diagnostics setup -delete
[-store <store name>]
[-sn <SN name>]
[-host <host>]
[-rootdir kvroot directory>]
[-sshusername <SSH username>]
[-configdir <configuration file directory>]

• -clear

Specified to clear all the SNA information in the sn-target-list.

The usage of this command is:

diagnostics setup -clear [-configdir <configuration file directory>]

• -configdir

Optionally specified to change the default directory where the sn-target-list file is
saved. If the flag is not specified, the default directory is the working directory.

Packaging Information and Files
After completing the diagnostics setup, you can use the diagnostics collect tool to
package important information and files to be able to send them to Oracle Support, for
example.

The usage of this command is:

diagnostics collect -logfiles
[-host <host name of a SN in topology>]
[-port <registry port of a SN in topology>]
[-sshusername <SSH username>]

Chapter 5
Diagnostics Utility

5-136

[-username <store username>]
[-security <security-file-path>]
[-configdir <location of Storage Node target file>]
[-savedir <destination directory for log files>]
[-nocompress]

where:

• -logfiles

Specified to gather log files of KVStore and pack them up into a compressed file. These
files can be a part of the KVROOT directory or the rnlogdir directory, depending on what
was specified when running the makebootconfig file.

Note:

In old servers, je.[info, config, stat] files will still be a part of the
environment directory.

Available disk space in all the hosting machines and the client machine is required. If
available disk space is not enough, an error message is prompted. Log files are helpful to
analyze some sophisticated issues.

• -host

Specifies the host of a Storage Node. If specified, it detects a running topology in order to
update the sn-target-list without having to run diagnostics setup first. It needs to be
specified with -port.

• -port

Specifies the host of a Storage Node. If specified, it detects a running topology in order to
update the sn-target-list without having to run diagnostics setup first. It needs to be
specified with -host.

• -sshusername

Specifies a SSH username to log on as in a Storage Node.

• -username

Specifies a username to log on as in a secure deployment.

• -security

In a secured deployment, specifies a path to the security file. If not specified in a secure
store, updating the sn-target-list will fail.

• -configdir

Specifies the directory which contains the sn-target-list. If the flag is not specified, the
default directory is the working directory.

• -savedir

Optionally used to specify the path of the directory to contain all the log files. If the flag is
not specified, the default directory is the working directory.

• -nocompress

Chapter 5
Diagnostics Utility

5-137

Specifies that log files should be copied directly instead of being compressed. If the log
files size is large, copying can take a while. You should use -nocompress if the remote
servers do not have an unzip tool or if compress mode encounters errors.

Verifying Storage Node configuration
You can use the diagnostics verify tool to verify the configuration of the specified Storage
Nodes. You can also check if the configuration of each Storage Node is consistent with other
members of the cluster.

The usage of this command is:

diagnostics verify { -checkLocal | -checkMulti }
[-host <host name of a SN in topology>]
[-port <registry port of a SN in topology>]
[-sshusername <SSH username>]
[-username <store username>]
[-security <security-file-path>]
[-configdir <location of Storage Node target file>]

where:

• -checkLocal

If specified, verifies the configuration of the specified Storage Nodes.

• -checkMulti

If specified, verifies that the configuration of each Storage Node is consistent with other
members of the cluster.

• -host

Specifies the host of a Storage Node. If specified, it detects a running topology in order to
update the sn-target-list without having to run diagnostics setup first. It needs to be
specified with -port.

• -port

Specifies the host of a Storage Node. If specified, it detects a running topology in order to
update the sn-target-list without having to run diagnostics setup first. It needs to be
specified with -host.

• -sshusername

Specifies a SSH username to log on as in a Storage Node.

• -username

Specifies a username to log on as in a secure deployment.

• -security

In a secured deployment, specifies a path to the security file. If not specified in a secure
store, updating the sn-target-list will fail.

• -configdir

Specifies the directory which contains the sn-target-list. If the flag is not specified, the
default directory is the working directory.

Chapter 5
Diagnostics Utility

5-138

	Contents
	Preface
	Conventions Used in This Book
	Diversity and Inclusion

	1 Introduction
	Introduction to Oracle NoSQL Database

	2 Install and Upgrade
	Installing Oracle NoSQL Database
	Installation Prerequisites
	Installation

	Upgrading an Existing Oracle NoSQL Database Deployment
	General Upgrade Notes
	Preparing to Upgrade
	Steps to Upgrade - Examples
	Upgrading the Xregion Service Agent
	Upgrading the Oracle NoSQL Database Proxy
	Upgrading JDK on your Oracle NoSQL Database deployment

	3 Configure
	Configuration Basics
	Installation Configuration Parameters
	Configuring the Firewall

	Configuring security in a data store
	Basics of data store security
	Configuring security using securityconfig tool
	Create users and configure security with remote access

	Configure a single node KVLite
	Configuring a single region data store
	Configuring your data store installation
	Using Plans
	Tracking Plan Progress
	Plan States
	Reviewing Plans
	Plan Ownership
	Pruning Plans

	Start the Administration CLI
	Name your data store
	Create a Zone
	Create an Administration Process on a Specific Storage Node
	Create a Storage Node Pool
	Create the Remainder of your Storage Nodes
	Create and Deploy Replication Nodes
	Smoke Testing the System
	Create a script to configure the data store
	Troubleshooting
	Where to Find Error Information
	Service States
	Useful Commands

	Configure data store - Advanced scenarios
	Create Additional Admin Processes
	Configuring with Multiple Zones
	Adding Secondary Zone to the Existing Topology

	Oracle NoSQL Database Proxy
	About the Oracle NoSQL Database Proxy
	Configuring the Proxy
	Using the Proxy in a non-secure data store
	Using the Proxy in a secure data store

	Configuring Multi-Region Data Stores
	Use Case 1: Set up Multi-Region Environment
	Deploy the data store
	Set Local Region Name
	Configure XRegion Service
	Start XRegion Service
	Create Remote Regions
	Create Multi-Region Tables
	Create multi-region table with an MR_COUNTER column

	Access and Manipulate Multi-Region Tables
	Stop XRegion Service

	Use Case 2: Expand a Multi-Region Table
	Prerequisites
	Create MR Table in New Region
	Add New Region to Existing Regions
	Access MR Table in New and Existing Regions

	Use Case 3: Contract a Multi-Region Table
	Alter MR Table to Drop Regions

	Use Case 4: Drop a Region
	Prerequisites
	Isolate the Region
	Drop MR Tables in the Isolated Region
	Drop the Isolated Region

	Use Case 5: Backup and Restore a Multi-Region Table
	Troubleshooting multi-region data store setup

	4 Administer
	Changing the Store's Topology
	Determining Your Store's Configuration
	Steps for Changing the Store's Topology
	Make the Topology Candidate
	Transforming the Topology Candidate
	Increase Data Distribution
	Increase Replication Factor
	Balance a Non-Compliant Topology
	Contracting a Topology

	View the Topology Candidate
	Validate the Topology Candidate
	Preview the Topology Candidate
	Deploy the Topology Candidate
	Verify the Store's Current Topology

	Deploying an Arbiter Node Enabled Topology

	Backup and Recovery
	Backing Up the Store
	Taking a Snapshot
	Copying a Snapshot
	Deleting a Snapshot
	Managing Snapshots

	Recovering the Store
	Using the Load Program
	Load Program and Metadata

	Restoring Directly from a Snapshot

	Recovering from Data Corruption
	Detecting Data Corruption
	Data Corruption Recovery Procedure

	Replacing a Failed Disk
	Replacing a Failed Storage Node
	Using a New Storage Node
	Task for an Identical Node

	Repairing a Failed Zone by Replacing Hardware

	Managing your kvstore
	Increasing Storage Node Capacity
	Managing Storage Directory Sizes
	Managing Disk Thresholds
	Specifying Storage Directory Sizes
	Specifying Differing Disk Capacities
	Monitoring Disk Usage
	Handling Disk Limit Exception
	Increasing Storage Directory Size
	Adding a New Shard

	Managing Admin Directory Size
	Admin is Working
	Admin is not Working

	Disabling Storage Node Agent Hosted Services
	Verifying the Store
	Erasing Data
	Setting Store Parameters
	Changing Parameters
	Setting Store Wide Policy Parameters
	Admin Parameters
	Changing Admin JVM Memory Parameters
	Storage Node Parameters
	Replication Node Parameters
	Arbiter Node Parameters
	Global Parameters
	Security Parameters
	Admin Restart
	Replication Node Restart

	Removing an Oracle NoSQL Database Deployment
	Modifying Storage Node HA Port Ranges
	Modifying Storage Node Service Port Ranges
	Storage Node Not Deployed
	Storage Node Deployed

	Availability, Failover and Switchover
	Availability and Failover
	Replication Overview
	Loss of a Read-Only Replica Node
	Loss of a Read/Write Master
	Unplanned Network Partitions
	Master is in the Majority Node Partition
	Master is in the Minority Node Partition
	No Majority Node Partition

	Failover and Switchover Operations
	Repairing a Failed Zone
	Performing a Failover
	Performing a Switchover

	Zone Failover
	Durability Summary
	Consistency Summary

	5 Reference
	Terminologies used in Oracle NoSQL Database
	Admin CLI Reference
	aggregate
	aggregate table

	await-consistent
	change-policy
	configure
	connect
	connect admin
	connect store

	delete
	delete kv
	delete table

	execute
	exit
	get
	get kv
	get table

	help
	hidden
	history
	load
	logtail
	namespace
	page
	ping
	plan
	plan add-index
	plan add-table
	plan cancel
	plan change-parameters
	plan change-storagedir
	plan change-user
	plan create-user
	plan deploy-admin
	plan deploy-datacenter
	plan deploy-sn
	plan deploy-topology
	plan deploy-zone
	plan deregister-es
	plan drop-user
	plan enable-requests
	plan evolve-table
	plan execute
	plan failover
	plan grant
	plan interrupt
	plan migrate-sn
	plan network-restore
	plan register-es
	plan remove-admin
	plan remove-datacenter
	plan remove-index
	plan remove-sn
	plan remove-table
	plan remove-zone
	plan repair-topology
	plan revoke
	plan start-service
	plan stop-service
	plan verify-data
	Executing verify-data

	plan wait

	pool
	pool clone
	pool create
	pool join
	pool leave
	pool remove

	put
	put kv
	put table

	repair-admin-quorum
	show
	show admins
	show datacenters
	show events
	show faults
	show indexes
	show mrtable-agent-statistics
	show parameters
	show perf
	show plans
	show pools
	show snapshots
	show regions
	show tables
	show topology
	show upgrade-order
	show users
	show versions
	show zones

	snapshot
	snapshot create
	snapshot remove

	table
	table-size
	timer
	topology
	topology change-repfactor
	topology change-zone-arbiters
	topology change-zone-master-affinity
	topology change-zone-type
	topology clone
	topology contract
	topology create
	topology delete
	topology list
	topology preview
	topology rebalance
	topology redistribute
	topology validate
	topology view

	verbose
	verify
	verify configuration
	verify prerequisite
	verify upgrade

	Admin Utility Command Reference
	diagnostics
	generateconfig
	help
	kvlite
	load admin metadata
	load store data
	makebootconfig
	ping
	Ping Command Line Parameters
	Ping Exit Codes
	Ping Report Text Output
	Ping Report JSON Output

	restart
	runadmin
	securityconfig
	start
	status
	stop
	version
	xrstart
	xrstatus
	xrstop

	Initial Capacity Planning
	Shard Capacity
	Application Characteristics
	Replication Factor
	Average Key Size
	Average Value Size
	Read and Write Operation Percentages
	Hardware Characteristics

	Shard Storage and Throughput Capacities
	Shard Storage Capacity
	Shard I/O Throughput capacity

	Memory and Network Configuration
	Machine Physical Memory
	Sizing Advice
	Determine JE Cache Size
	Machine Network Throughput

	Estimate total Shards and Machines
	Number of Partitions

	Tuning
	Turn off the swap
	Linux Page Cache Tuning
	OS User Limits
	File Descriptor Limits
	Process and Thread Limits

	Linux Network Configuration Settings
	Server Socket Backlog
	Isolating HA Network Traffic
	Receive Packet Steering
	MTU Size

	Check AES Intrinsics Settings
	Viewing Key Distribution Statistics
	Examples: Key Distribution Statistics

	Solid State Drives (SSDs)
	Trim requirements
	Enabling Trim

	Diagnostics Utility
	Setting up the tool
	Packaging Information and Files
	Verifying Storage Node configuration

