
Oracle® Tuxedo
Using Oracle Tuxedo Advanced Performance
Pack

Release 22c
F79942-02

Oracle Tuxedo Using Oracle Tuxedo Advanced Performance Pack, Release 22c

F79942-02

Copyright © 1996, 2024, Oracle and/or its affiliates.

Primary Author: Preeti Gandhe

Contributing Authors: Tulika Das

Contributors: Maggie Li

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

 Preface

About this Guide vii

Documentation Accessibility vii

1 Introduction to Using Oracle Tuxedo Advanced Performance Pack

1.1 Overview 1-1

1.1.1 About Oracle Tuxedo Advanced Performance Pack 1-1

1.1.2 Features in Oracle Tuxedo Advanced Performance Pack 1-1

1.1.2.1 Self-Tuning Lock Mechanism 1-2

1.1.2.2 Shared Memory Interprocess Communication 1-2

1.1.2.3 Tightly Coupled Transactions Spanning Domains 1-3

1.1.2.4 Concurrent Global Transaction Table Lock 1-3

1.1.2.5 Partial One Phase Read-Only Optimization for RAC 1-3

1.1.2.6 Single Group Multiple Branches (SGMB) 1-3

1.1.2.7 Common XID 1-4

1.1.2.8 XA Transaction Affinity 1-4

1.1.2.9 Failover/Failback across Database Instances 1-5

1.1.2.10 Load Balancing across RAC Instances 1-5

2 Oracle Tuxedo Advanced Performance Pack Configuration

2.1 Self-Tuning Lock Mechanism 2-2

2.2 Shared Memory Interprocess Communication 2-3

2.3 Tightly Coupled Transactions Spanning Domains 2-3

2.4 Concurrent Global Transaction Table Lock 2-4

2.5 Partial One Phase Read-Only Optimization for RAC 2-4

2.6 Single Group Multiple Branches (SGMB) 2-4

2.7 Common XID 2-5

2.8 XA Transaction Affinity 2-6

2.9 Failover/Failback across Database Instances 2-6

2.10 Load Balancing across RAC Instances 2-6

iii

2.11 FAN Integration 2-6

3 Best Practices to Optimize Performance

3.1 Self-Tuning Lock Mechanism 3-1

3.1.1 Scenarios Recommended 3-1

3.1.2 Setting the Number of Lock Spins 3-1

3.2 Shared Memory Interprocess Communication 3-2

3.2.1 Scenarios Recommended 3-2

3.2.2 Adjust SHMQMAXMEM 3-2

3.2.3 Memory Usage 3-2

3.2.4 Programming with SHMQ 3-3

3.2.5 Exceptions 3-3

3.3 Partial One Phase Read-Only Optimization for RAC 3-4

3.4 Single Group Multiple Branches (SGMB) 3-5

3.4.1 Scenarios Recommended 3-5

3.4.2 Limitations 3-6

3.5 Common XID 3-6

3.5.1 Scenarios Recommended 3-7

3.5.1.1 Scenario A 3-7

3.5.1.2 Scenario B 3-7

3.5.1.3 Scenario C 3-8

3.5.1.4 Scenario D 3-9

3.5.2 Limitations 3-9

3.6 XA Transaction Affinity 3-10

3.6.1 Scenarios Recommended 3-10

3.6.2 Limitations 3-11

3.7 Failover/Failback across Database Instances 3-11

3.7.1 Recommendation for Configuration on Oracle Database 3-12

3.7.2 Recommendation for Non-XA Server 3-12

3.7.3 Limitations 3-13

3.8 Load Balancing across RAC Instances 3-13

3.8.1 Recommendation for Configuration on Oracle Database 3-13

3.8.2 Recommendation for Non-XA Server 3-14

3.8.3 Limitations 3-14

4 Software Requirement

iv

List of Figures

3-1 XA Transaction Affinity Enablement 3-11

v

List of Tables

1-1 Features in Oracle Tuxedo Advanced Performance Pack 1-1

vi

Preface

This document describes about how to configure various features of Oracle Tuxedo
Advanced Performance Pack.

• About this Guide

• Documentation Accessibility

About this Guide
This document introduces all features in Oracle Tuxedo Advanced Performance Pack. With
this document, you can learn about how to configure these features and run it with your
existing application.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction to Using Oracle Tuxedo
Advanced Performance Pack

This chapter contains the following topics:

• Overview

1.1 Overview
This section contains the following topics.

• About Oracle Tuxedo Advanced Performance Pack

• Features in Oracle Tuxedo Advanced Performance Pack

1.1.1 About Oracle Tuxedo Advanced Performance Pack
Oracle Tuxedo Advanced Performance Pack is a product option introduced in Tuxedo 12c
Release 2 (12.1.3). With this pack, Oracle Tuxedo applications can achieve significantly
better application performance and improve application availability, especially when running
with Oracle Database/RAC. Features in this pack can be run on all Oracle Tuxedo supported
platforms:

• IBM AIX (64-bit) on IBM PowerPC

• HP-UX (64-bit) on Itanium

• Oracle Solaris (64-bit) on SPARC

• Linux x86-64

• Microsoft Windows 64-bit

1.1.2 Features in Oracle Tuxedo Advanced Performance Pack
Oracle Tuxedo Advanced Performance Pack provides the following features:

Table 1-1 Features in Oracle Tuxedo Advanced Performance Pack

Features Can be used with Oracle
RAC only?

Self-Tuning Lock Mechanism No

Shared Memory Interprocess Communication No

Tightly Coupled Transactions Spanning Domains No

Concurrent Global Transaction Table Lock No

Partial One Phase Read-Only Optimization for RAC Yes

Single Group Multiple Branches (SGMB) Yes

Common XID Yes

1-1

Table 1-1 (Cont.) Features in Oracle Tuxedo Advanced Performance Pack

Features Can be used with Oracle
RAC only?

XA Transaction Affinity Yes

Failover/Failback across Database Instances Yes

Load Balancing across RAC Instances Yes

• Self-Tuning Lock Mechanism

• Shared Memory Interprocess Communication

• Tightly Coupled Transactions Spanning Domains

• Concurrent Global Transaction Table Lock

• Partial One Phase Read-Only Optimization for RAC

• Single Group Multiple Branches (SGMB)

• Common XID

• XA Transaction Affinity

• Failover/Failback across Database Instances

• Load Balancing across RAC Instances

1.1.2.1 Self-Tuning Lock Mechanism
This feature can adjust the value of SPINCOUNT dynamically for the best use of CPU
cycle.

The Tuxedo bulletin board (BB) is one or more shared memory segments in which all
the application configuration and dynamic processing information are held at run time.
For some Tuxedo system operations (such as service name lookups and
transactions), the BB must be locked for exclusive access: that is, it must be
accessible by only one process. If a process or thread finds that the BB is locked by
another process or thread, it retries, or spins on the lock for SPINCOUNT number of
times (user level method via spin) before giving up and going to sleep on a waiting
queue (system level method via system semaphore). Because sleeping is a costly
operation, it is efficient to do some amount of spinning before sleeping.

Because the value of the SPINCOUNT parameter is application- and system-dependent,
the administrator had to tune the SPINCOUT to be a proper value manually by observing
the application throughput under different values of SPINCOUNT.

Self-Tuning Lock Mechanism takes the job of tuning automatically. It is designed to
figure out a proper value of SPINCOUNT so that most requests to lock BB are completed
by spinning instead of sleeping on a waiting queue.

For more information about configuration, see Introduction to Using Oracle Tuxedo
Advanced Performance Pack.

1.1.2.2 Shared Memory Interprocess Communication
Starting with release 12.1.3, Oracle Tuxedo offers the option to significantly enhance
performance of Tuxedo applications with use of shared memory queues instead of IPC

Chapter 1
Overview

1-2

Message Queues for inter process communication on the same Tuxedo node. With the use of
shared memory queues, the sender and receiver processes can exchange pre-allocated
messages in shared memory, thus eliminating the need to copy messages several times
before message reaches its intended target and resulting in much better throughput and
lower latency.

For more information about configuration, see Introduction to Using Oracle Tuxedo Advanced
Performance Pack.

1.1.2.3 Tightly Coupled Transactions Spanning Domains
Because of different global transaction identifiers (GTRIDs) are used in different domains, the
transaction crossing domain are loosely coupled even if the branches of the transaction are
running on the same database. This feature enables transactions to be performed in remote
domains using the same GTRID. The same GTRID allows branches on the remote domain to
share locks, enabling tight coupling. The branches will be tightly coupled if they are running
on the same database (if the database allows).

For more information about configuration, see Introduction to Using Oracle Tuxedo Advanced
Performance Pack.

1.1.2.4 Concurrent Global Transaction Table Lock
Oracle Tuxedo manages global transactions by maintaining a table of active global
transactions and their participants in the Oracle Tuxedo bulletin board called the Global
Transaction Table or GTT. As this table is accessed by multiple concurrent processes it must
be protected with a semaphore. In the normal Oracle Tuxedo case, the bulletin board lock is
used to serialize access to this table. However, under heavy transaction load, the contention
for this lock can become substantial resulting in an artificial performance bottleneck.

The bottleneck is eliminated by having a separate lock for each GTT entry.

For more information about configuration, see Introduction to Using Oracle Tuxedo Advanced
Performance Pack.

1.1.2.5 Partial One Phase Read-Only Optimization for RAC
This feature takes advantage of the read-only optimization of RAC for XA. Given two phase
commit scenario, Tuxedo reserves one transaction branch and prepares all other branches
concurrently. If all other transaction branches are read-only, Tuxedo does one-phase commit
on the reserved branch directly without sending the prepare request and writing TLOG;
otherwise, Tuxedo does two-phase commit on the reserved branch.

Transactions either within or across domains are supported, including global transaction
across Tuxedo domain and WLS via WTC (in WLS 12.1.1 - Contact Oracle Support for a
patch, or higher release of WLS).

For more information about configuration, see Introduction to Using Oracle Tuxedo Advanced
Performance Pack.

1.1.2.6 Single Group Multiple Branches (SGMB)
In previous releases, servers in the same group use the same transaction branch in a global
transaction; if these servers connect to different instances on the same RAC, the transaction
branch may fail and an XA error, XAER_AFFINITY, will be reported, meaning one branch
cannot go through different instances. For this reason, Tuxedo groups can only use singleton

Chapter 1
Overview

1-3

RAC services. A DTP service (if the DTP option, -x in srvctl, is specified) or a service
offered by only one instance could be a singleton RAC service.

In this release, this feature eliminates the need to use singleton RAC service when
multiple servers in a server group participate in the same global transaction. If servers
in the same server group and same global transaction happen to connect to different
RAC instances, a different transaction branch is used. Thus, such applications can
balance the load across the available RAC instances.

For more information about configuration, see Introduction to Using Oracle Tuxedo
Advanced Performance Pack.

Note:

The transaction still fails if more than 16 instances are involved in a single
group.

1.1.2.7 Common XID
For global transactions, each participating group has its own transaction branch, and a
distinguished transaction branch identifier (XID) identifies each branch. If a global
transaction involves multiple groups, Tuxedo adopts two-phase commit on each
branch, taking the first participating group as the coordinator.

With the common XID (transaction branch identifier) feature in Oracle Tuxedo
Advanced Performance Pack, Tuxedo shares the XID of the coordinator group with all
other groups within the same global transaction. If a transaction involves multiple RAC
databases or resource managers, then separate branches will be utilized to manage
the involved resources. This ensures efficient and effective management of the
transaction across multiple systems. This is as opposed to each group having its own
XID and thus requiring two-phase commit in earlier releases if multiple groups are
participating.

Common XID eliminates the need to XA commit operations for groups that connect to
the same Oracle RAC instance through the same service by using the coordinator
branch directly.

In the cases where all groups in a global transaction use the coordinator branch
directly, one-phase commit protocol (instead of two-phase commit protocol) is used,
and thus avoids writing TLOG.

For more information about configuration, see Introduction to Using Oracle Tuxedo
Advanced Performance Pack.

1.1.2.8 XA Transaction Affinity
XA Transaction Affinity provides the ability to route all Oracle Database requests within
one global transaction to the same Oracle RAC instance when possible; no matter if
the requests come from an Oracle Tuxedo application server or Oracle WebLogic
Server. This feature does not require the creation of another transaction branch, which
results in a reduced amount of processing for transaction commitments.

For more information about configuration, see Introduction to Using Oracle Tuxedo
Advanced Performance Pack.

Chapter 1
Overview

1-4

1.1.2.9 Failover/Failback across Database Instances
Fast Application Notification (FAN) is a facility provided by Oracle Database to allow
database clients to know about changes in the state of the database. These notifications let
an application respond proactively to events such as a planned outage of a RAC node or an
imbalance in database load. Tuxedo Advanced Performance Pack provides support for FAN
notifications by a system server TMFAN that can monitor Oracle RAC instance and notify
Tuxedo application server to establish a new Database connection in case of Database
instance up or down.

For more information about configuration, see Introduction to Using Oracle Tuxedo Advanced
Performance Pack.

1.1.2.10 Load Balancing across RAC Instances
Based on FAN notification, Tuxedo TMFAN server can receive load balancing advisories that
include the load information of each RAC instance. If the change in advised load exceeds the
threshold specified in the TMFAN then Tuxedo attempts to balance the connections to the
database to match the load information, connecting more servers to the less loaded
instance(s).

For more information about configuration, see Introduction to Using Oracle Tuxedo Advanced
Performance Pack.

Chapter 1
Overview

1-5

2
Oracle Tuxedo Advanced Performance Pack
Configuration

This section describes how to configure various features of Oracle Tuxedo Advanced
Performance Pack.

All of the features in this product are enabled if the OPTIONS parameter in RESOURES in
UBBCONFIG is set to XPP. On Oracle Exalogic and Oracle SPARC SuperCluster platforms, the
OPTIONS parameter must be set to EECS.

Some features require further configuration. Such configuration for each feature is described
below. Each of these features can be individually disabled if needed. How to disable features
individually is describe in the following sections:

• Self-Tuning Lock Mechanism

• Shared Memory Interprocess Communication

• Tightly Coupled Transactions Spanning Domains

• Concurrent Global Transaction Table Lock

• Partial One-Phase Read-Only Optimization for RAC

• Single Group Multiple Branches (SGMB)

• Common XID

• XA Transaction Affinity

• Failover/Failback across Database Instances

• Load Balancing across RAC Instances

• FAN Integration

• Self-Tuning Lock Mechanism

• Shared Memory Interprocess Communication

• Tightly Coupled Transactions Spanning Domains

• Concurrent Global Transaction Table Lock

• Partial One Phase Read-Only Optimization for RAC

• Single Group Multiple Branches (SGMB)

• Common XID

• XA Transaction Affinity

• Failover/Failback across Database Instances

• Load Balancing across RAC Instances

• FAN Integration

2-1

2.1 Self-Tuning Lock Mechanism
Two other optional attributes are supported in UBBCONFIG *MACHINES section.

SPINTUNING_FACTOR
The option SPINTUNING_FACTOR controls the tuning target. The default value is 100
which is good enough in most scenarios. It can be changed from 1 to 10000 if
necessary. A value of 100 indicates that SPINCOUNT will stop tuning as long as less
than 1 in 100 attempts to lock result in system level method to get the BB lock and
there is sufficient idle CPU. If the number of lock attempts resulting in system level
method is higher than 1 and there is sufficient idle CPU time, SPINCOUNT will be
increased.

SPINTUNING_MINIDLECPU: Specifies the CPU idle time.
The negative impact of the user level method is the extra cost of the CPU. Too many
reties of user level method will cost many CPU time. This option is used to limit the
CPU used by the user level method. The Self-Tuning Lock Mechanism will not
increase the SPINCOUNT when the limitation of SPINTUNING_MINIDLECPU is reached
even if the tuning target is not met. On the contrary, the SPINCOUNT will be decreased
when the limitation of SPINTUNING_MINIDLECPU is broken no matter the tuning target is
met or not. For example, given the value of 20, the Self-Tuning Lock Mechanism will
control the idle CPU time not less than %20 during the adjustment. The default value
is 20.

Note:

• If not specified, the default values for these attributes are used.

• The Self-Tuning Lock Mechanism may adjust the SPINCOUNT at each
scan unit but may need to adjust by several times to achieve the target.

For more information, see UBBCONFIG(5) and UBBCONFIG(5) Additional
Information, Example 2 Self-Tuning Lock Mechanism Configuration, in File Formats,
Data Descriptions, MIBs, and System Processes Reference.

You can also set the configuration via TM_MIB. For more information, see TM_MIB(5) in
File Formats, Data Descriptions, MIBs, and System Processes Reference.

The following listing shows a UBBCONFIG file example of enabling Self-Tuning Lock
Mechanism.

Listing UBBCONFIG File Example of Enabling Self-Tuning Lock Mechanism

*RESOURCES

OPTIONS XPP
...

You can disable this feature by specifying the option NO_SPINTUNING in the UBBCONFIG
file.

Chapter 2
Self-Tuning Lock Mechanism

2-2

https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp3539984
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp3539984
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp3539984

The following listing shows a UBBCONFIG file example of disabling Self-Tuning Lock
Mechanism.

Listing UBBCONFIG File Example of Disabling Self-Tuning Lock Mechanism

*RESOURCES
OPTIONS XPP,NO_SPINTUNING
...

2.2 Shared Memory Interprocess Communication
Another optional attribute is provided in *RESOURCES section.

SHMQMAXMEM numeric_value
Specifies the maximum shared memory size (Megabyte) used for message buffers.

For UNIX platforms and Windows platforms, the numeric_value range is from 1 to 2000
inclusive. For all other platforms, the numeric_value range is from 1 to 96000 inclusive. If
SHMQMAXMEM is not specified, a recommended minimum value will be used, which is good
enough for almost all of the scenarios.

Run tmloadcf -c to get recommended minimum value. For more information, refer to
tmloadcf(1) in Section 1 - Oracle Tuxedo Command Reference.

The following listing shows a UBBCONFIG file example of enabling Shared Memory
Interprocess Communication.

Listing UBBCONFIG File Example of Enabling Shared Memory Interprocess
Communication

*RESOURCES
OPTIONS XPP
...

You can disable this feature by specifying the option NO_SHMQ in the UBBCONFIG file.

The following listing shows a UBBCONFIG file example of disabling Shared Memory
Interprocess Communication.

Listing UBBCONFIG File Example of Disabling Shared Memory Interprocess
Communication

*RESOURCES
OPTIONS XPP,NO_SHMQ
...

2.3 Tightly Coupled Transactions Spanning Domains
The Oracle Tuxedo Advanced Performance Pack includes this feature by default and cannot
be disabled.

Chapter 2
Shared Memory Interprocess Communication

2-3

https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rfcm/rfcmd.html#wp1330826

2.4 Concurrent Global Transaction Table Lock
The Oracle Tuxedo Advanced Performance Pack includes this feature by default and
cannot be disabled.

Listing Configuration Example of Enabling Concurrent Global Transaction Table
Lock by Default

*RESOURCES
OPTIONS XPP

2.5 Partial One Phase Read-Only Optimization for RAC
The following listing shows a UBBCONFIG file example of enabling Partial One Phase
Read-Only Optimization for RAC.

Listing UBBCONFIG File Example of Enabling Partial One Phase Read-Only
Optimization for RAC

*RESOURCES
OPTIONS XPP
...

You can disable this feature by specifying the option NO_RDONLY1PC in the UBBCONFIG
file.

The following listing shows a UBBCONFIG file example of disabling Partial One Phase
Read-Only Optimization for RAC.

Listing UBBCONFIG File Example of Disabling Partial One Phase Read-Only
Optimization for RAC

*RESOURCES
OPTIONS XPP,NO_RDONLY1PC
...

You can also get/change the configuration via TM_MIB. For more information, see
TM_MIB(5) in Section 5 - File Formats, Data Descriptions, MIBs, and System
Processes Reference.

2.6 Single Group Multiple Branches (SGMB)
The following listing shows a UBBCONFIG file example of enabling SGMB.

Listing Configuration Example of Enabling SGMB by Default

*RESOURCES
OPTIONS XPP

Chapter 2
Concurrent Global Transaction Table Lock

2-4

https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508

You can disable this feature by specifying the option SINGLETON of RMOPTIONS in the
UBBCONFIG file.

RMOPTIONS {[...|SINGLETON],*}

Note:

This option indicates all RAC services being used in the domain are singleton.

The following listing shows a UBBCONFIG file example of disabling SGMB.

Listing Configuration Example of Disabling SGMB Explicitly

*RESOURCES
OPTIONS XPP
RMOPTIONS SINGLETON

You can also set this flag when Tuxedo application is inactive through T_DOMAIN class in
TM_MIB. For more information, see TM_MIB(5) in Section 5 - File Formats, Data Descriptions,
MIBs, and System Processes Reference.

2.7 Common XID
The following listing shows a UBBCONFIG file example of enabling Common XID.

Listing Configuration Example of Enabling Common XID by Default

*RESOURCES
OPTIONS XPP

You can disable this feature by specifying the option NO_COMMONXID of RMOPTIONS in the
UBBCONFIG file.

RMOPTIONS {[...|NO_COMMONXID],*}

The following listing shows a UBBCONFIG file example of disabling Common XID.

Listing Configuration Example of Disabling Common XID Explicitly

*RESOURCES
OPTIONS XPP
RMOPTIONS NO_COMMONXID

You can also set this flag when Tuxedo application is inactive through T_DOMAIN class in
TM_MIB. For more information, see TM_MIB(5) in Section 5 - File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Chapter 2
Common XID

2-5

https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508

2.8 XA Transaction Affinity
The following listing shows a UBBCONFIG file example of enabling XA Transaction
Affinity.

Listing Configuration Example of Enabling XA Transaction Affinity by Default

*RESOURCES
OPTIONS XPP

You can disable this feature by specifying the option NO_XAAFFINITY of RMOPTIONS in
the UBBCONFIG file.

RMOPTIONS {[...|NO_XAAFFINITY],*}

The following listing shows a UBBCONFIG file example of disabling XA Transaction
Affinity.

Listing Configuration Example of Disabling XA Transaction Affinity Explicitly

*RESOURCES
OPTIONS XPP
RMOPTIONS NO_XAAFFINITY

You can also set this flag when Tuxedo application is inactive through T_DOMAIN class
in TM_MIB. For more information, see TM_MIB(5) in Section 5 - File Formats, Data
Descriptions, MIBs, and System Processes Reference.

2.9 Failover/Failback across Database Instances
This feature is implemented using FAN technology. See FAN Integration to enable this
technology.

2.10 Load Balancing across RAC Instances
This feature is implemented using FAN technology. See FAN Integration to enable this
technology.

2.11 FAN Integration
The following listing shows a UBBCONFIG file example of enabling FAN Integration.

Listing Configuration Example of Enabling FAN by Default

*RESOURCES
OPTIONS XPP

Chapter 2
XA Transaction Affinity

2-6

https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508

You can disable this feature by specifying the option NO_FAN of RMOPTIONS in the UBBCONFIG
file.

RMOPTIONS {[...|NO_FAN],*}

The following listing shows a UBBCONFIG file example of disabling FAN Integration.

Listing Configuration Example of Disabling FAN Explicitly

*RESOURCES
OPTIONS XPP
RMOPTIONS NO_FAN

You can also set this flag when Tuxedo application is inactive through T_DOMAIN class in
TM_MIB. For more information, see TM_MIB(5) in Section 5 - File Formats, Data Descriptions,
MIBs, and System Processes Reference.

TMFAN must be configured for Tuxedo to support FAN, specify Tuxedo system server TMFAN in
SERVERS section. For more information, see TMFAN(5) in Section 5 - File Formats, Data
Descriptions, MIBs, and System Processes Reference.

To support Oracle TAF (Transparent Application Failover) for Tuxedo XA server, threads=t
must be included in OPENINFO in UBBCONFIG *GROUPS section.

Chapter 2
FAN Integration

2-7

https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508

3
Best Practices to Optimize Performance

This section contains the following topics:

• Self-Tuning Lock Mechanism

• Shared Memory Interprocess Communication

• Partial One Phase Read-Only Optimization for RAC

• Single Group Multiple Branches (SGMB)

• Common XID

• XA Transaction Affinity

• Failover/Failback across Database Instances

• Load Balancing across RAC Instances

3.1 Self-Tuning Lock Mechanism
• Scenarios Recommended

• Setting the Number of Lock Spins

3.1.1 Scenarios Recommended
A proper SPINCOUNT indicates a server can hold the BB lock via user level method at most
time. It can significantly improve the performance in the scenarios where BB lock conflict is
heavy. The typical scenario is the transactional application using Tuxedo XA mechanism. So
it is recommended to enable this feature on the Oracle Exalogic by default in a Tuxedo
application unless the CPU is not enough.

3.1.2 Setting the Number of Lock Spins
A process or thread locks the bulletin board through user level method or system level
method. Because system level method is a costly operation, it is efficient to set a proper
number of lock spins so that most lock attempts are achieved through user level method.

A process on a uniprocessor system should not spin. A SPINCOUNT value of 1 is appropriate
for uniprocessors. On multiprocessors, the value of the SPINCOUNT parameter is application-
and system-dependent. Self-Tuning Lock Mechanism can figure out the proper SPINCOUNT
automatically.

See Also:

• Oracle Tuxedo Advanced Performance Pack Configuration

3-1

3.2 Shared Memory Interprocess Communication
• Scenarios Recommended

• Adjust SHMQMAXMEM

• Memory Usage

• Programming with SHMQ

• Exceptions

3.2.1 Scenarios Recommended
SHMQ helps you to gain higher performance in the native Tuxedo application by
reducing unnecessary message copy. It can be considered to enable this feature when
one or more cases are met in the following list:

• big request/reply message

• simple/little service
If the service routine itself does not spend too much time, the performance should
be improved with this feature by reducing the message copy.

• IPC resource
Not only more shared memory, but also extra semaphores are necessary if this
features enabled. It is recommended to check the minimum IPC resources via
tmloacf -c before using this feature.

3.2.2 Adjust SHMQMAXMEM
The default value is good enough for almost all scenarios. But, you require adjust the
value of SHMQMAXMEM in UBBCONFIG if the message size is greater than 32 Kbytes, the
detail is as follow:

• SHMQMAXMEM = (Recommend_value * Message_size) / 32

• Recommend_value: The value returned by tmloadcf -c
• Message_size: The buffer size for one message (Kbytes)

3.2.3 Memory Usage
Given a specific shared memory used by the SHMQ, the Tuxedo would divide it into
several parts for different sized buffers. In general, the bigger the buffer size is, the
less the total entries for this kind of buffer are. If some sized buffer is too much, the
Tuxedo will convert to use local memory although the whole shared memory for SHMQ
is not full.

In this release, there are two new MIB fields, TA_SHMQSTAT and TA_MSG_SHMQNUM, which
are used to get the detailed information about shared memory usage. For more details
about TA_SHMQSTAT and TA_MSG_SHMQNUM, see TM_MIB(5) in Section 5 - File Formats,
Data Descriptions, MIBs, and System Processes Reference.

Chapter 3
Shared Memory Interprocess Communication

3-2

https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/rf5/rf5.html#wp1803508

3.2.4 Programming with SHMQ
It is a new flag of TPNOCOPY in tpcall() for using SHMQ message. A typical Tuxedo user
case of zero-copy messaging:

1. Client gets request SHMMSG buffer by tpalloc()
2. Client sends the request to server's request SHMQ by tpcall(), and waits for reply

3. Server receives the request from its request SHMQ, processes the request

4. Server use the same SHMMSG buffer for reply

5. Server sends the reply to client's reply SHMQ by tpreturn()
6. Client receives the reply from its reply SHMQ

Zero-copy messaging is an ideal circumstance, with the pre-condition that sender and
receiver cannot access the shared buffer at the same time. In the real world, to guarantee
safe memory access, sender needs to do one copy and send the copy instead of original
SHMMSG. However, to gain advanced performance, new flag TPNOCOPY is provided for tpcall()
to avoid the copy cost. If application chooses to use this flag, it must take the responsibility to
make sure no access to the SHMMSG buffer after tpcall() fails, except for tpfree().

When TPNOCOPY is set for tpcall() flags and the send buffer is SHMMSG buffer, no safe
copy will be done during message sending. After tpcall() succeeds, sender application has
full access of the send buffer as normal. But if tpcall() fails in any circumstance, sender
application cannot access the send buffer any more. In this case the recommended action is
tpfree() the buffer, and this is the only safe operation on the buffer.

TPNOCOPY cannot be set for tpacall(), or tpacall() will fail with tperrno set to TPEINVAL.

3.2.5 Exceptions
In general, the tuxedo native request/reply messages will be transferred using shared
memory queue (SHMQ) if the feature is available. But the IPC queue is used instead in the
following cases:

• Encoded Tuxedo message

• Stateful CORBA object

• Tuxedo message associated with digital signature and encryption
For example, tpseal() or tpsign() marks the Tuxedo message for encryption or digital
signature.

• Tuxedo messages out from a server specified with BUFTYPECONV
• Tuxedo FML32 typed message with any field typed pointer

• Tuxedo FML32 typed message with any field typed embedded FML32

See Also:

• Oracle Tuxedo Advanced Performance Pack Configuration

Chapter 3
Shared Memory Interprocess Communication

3-3

3.3 Partial One Phase Read-Only Optimization for RAC
In general, Tuxedo will only perform a one-phase commit if only one Tuxedo group is
participating in a global transaction. If more than one group is involved, Tuxedo will
perform a two-phase commit. Two-phase commit indicates the Tuxedo sends a
prepare request to each branch of the global transaction followed by a commit request
to all non-read-only branches if all prepare requests are successful. When using RAC,
if there is more than one RAC instance involved in the transaction, all prepare
requests except the last will return read-only. Tuxedo uses this knowledge to try and
improve the performance of the transaction by waiting to prepare one branch until all
other RAC branches have been prepared. If all other branches have returned read-
only, Tuxedo will then send a one-phase commit to the remaining branch. This saves a
prepare call and the need to write a TLOG entry. While this may slightly increase the
response time of the transaction, it will reduce the load and likely increase the
throughput.

See Also:

For more information, Partial One Phase Read-Only Optimization for RAC.

If the Tuxedo application is using a RAC Database, the customer can take advantage
of this feature when the application involves multiple groups. In addition, the branches
must be tightly coupled for Oracle Database which is a default property of the
OPENINFO.

The typical scenario is that the participated groups connect to different RAC instances
or use different database service. A typical UBB configuration is as below.

Listing UBB Configuration

*RESROUCE
MODEL SHM
OPTIONS XPP
...

* MACHINES
"mach1" LMID=L1
...

*GROUPS
GRP1 LMID=L1 GRPNO=10 TMSNAME="TMSORA1"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux1+ACC=P/
scott/tiger +SesTM=120"
GRP2 LMID=L1 GRPNO=20 TMSNAME="TMSORA2"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux2+ACC=P/
scott/tiger +SesTM=120"

*SERVERS
server1 SRVGRP=GRP1 SRVID=10 MIN=2
server2 SRVGRP=GRP2 SRVID=10 MIN=2
...

Chapter 3
Partial One Phase Read-Only Optimization for RAC

3-4

Tuxedo GRP1 and GRP2 use different net services to connect to the same Oracle RAC
database, with each net service using a different database service offered by a separate RAC
instance. Tuxedo server1 and server2 offer different Tuxedo services. A transactional
business requires services from svc 1 and svc2. Therefore, it involves servers 1 and 2.

Enabling Read-only Optimization saves requests by ignoring TLOG writing. Perform a one-
phase commit to efficiently commit the remaining branch.

Enabling the Common XID feature is recommended if the participating groups are connected
to the same Oracle RAC instance and RAC database. This feature ensures that the global
transaction is committed in a single phase. Common XID feature improves performance by
ignoring prepare requests and TLOG writing, better than Read-only Optimization.

If read-only optimization is not used in the transactional business, do not enable it to avoid
unfavorably impacting response time. In a typical scenario, it is common to use multiple
resource managers simultaneously.

See Also:

• Oracle Tuxedo Advanced Performance Pack Configuration

3.4 Single Group Multiple Branches (SGMB)
• Scenarios Recommended

• Limitations

3.4.1 Scenarios Recommended
If a Tuxedo application is running on the Oracle RAC, you may want to take advantage of
non-singleton database service, such as load balance, service failover, and so on. Tuxedo
groups can use RAC non-singleton service by enabling this feature. Given that the business
may involve multiple groups, it is better to also enable Common XID and XA Transaction
Affinity to achieve good performance.

A typical UBB configuration is as follows.

Listing UBB Configuration

*RESROUCES
MODEL SHM
OPTIONS XPP
...

*MACHINES
"mach1" LMID=L1
...

*GROUPS
GRP1 LMID=L1 GRPNO=10 TMSNAME="TMSORA1"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux3+ACC=
P/scott/tiger +SesTM=120"

Chapter 3
Single Group Multiple Branches (SGMB)

3-5

GRP2 LMID=L1 GRPNO=20 TMSNAME="TMSORA2"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux3+ACC=
P/scott/tiger +SesTM=120"

*SERVERS
server1 SRVGRP=GRP1 SRVID=10 MIN=4
server2 SRVGRP=GRP2 SRVID=10 MIN=4
...

GRP1 and GRP2 use the same net service orcl.tux3 to connect the resource manager;
orcl.tux3 is configured to database service tux3, which both RAC instance1 and
instance2 support. Server1 offers Tuxedo service svc1 and server2 offers Tuxedo
service svc2. The transactional business A calls svc1 and then svc2, and so involves
both server1 and server2. Because orcl.tux3 is non-singleton database service,
server1 copies associate with either instance1 or instance2, so do server2 copies.

SGMB can ensure business working well and ensure that business A transactions are
distributed evenly on instance1 and instanc2.

Given that both Common XID and XA Transaction Affinity are enabled, all business A
transactions become one-phase commit.

3.4.2 Limitations
• Groups with multiple resource managers are not supported.

• A transaction fails if more than 16 instances are involved in a single group.

• Partial One Phase Read-Only Optimization for RAC does not work in a transaction
if the preferred reserved group is a multi-branch group. If GWTDOMAIN is not the
coordinator, the preferred reserved group is the coordinator group; otherwise, the
preferred reserved group is the participated group coming next in the coordinator
domain.

• Multi-threaded servers do not provide instance information via MIB; however,
SGMB still performs well on server-dispatched threads.

See Also:

• Oracle Tuxedo Advanced Performance Pack Configuration

3.5 Common XID
Common XID shares the coordinator's instance information and branch (common XID)
to all participated groups. The servers in a participated group will reuse the common
XID if they have the same instance information as the coordinator does. This feature
brings significant performance improvement when a global transaction involves
multiple groups, especially when all participated groups associate with the same
database instance through the same database service.

• Scenarios Recommended

Chapter 3
Common XID

3-6

• Limitations

3.5.1 Scenarios Recommended
• Scenario A

• Scenario B

• Scenario C

• Scenario D

3.5.1.1 Scenario A
Only one Oracle Database instance is used in a Tuxedo application. A typical UBB
configuration is as follows.

Listing 18 UBB Configuration

*RESROUCES
MODEL SHM
OPTIONS XPP
...

*MACHINES
"mach1" LMID=L1
...

*GROUPS
GRP1 LMID=L1 GRPNO=10 TMSNAME="TMSORA1"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux1+ACC=
P/scott/tiger +SesTM=120"
GRP2 LMID=L1 GRPNO=20 TMSNAME="TMSORA2"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux1+ACC=
P/scott/tiger +SesTM=120"

*SERVERS
server1 SRVGRP=GRP1 SRVID=10 MIN=2
server2 SRVGRP=GRP2 SRVID=10 MIN=2
...

In the above configuration, GRP1 and GRP2 use the same net service (orcl.tux1, which is
configured to an Oracle Database) to connect resource manager. Server1 offers Tuxedo
service svc1 and server2 offers Tuxedo service svc2. The transactional business A calls
svc1 followed by svc2 so it will involve server1 and server2. When Common XID is enabled,
all transactions of business A become one-phase commit.

3.5.1.2 Scenario B
All participated groups associate with the same database instance via the same database
service when Tuxedo application is running on Oracle RAC.

The typical UBB sample is the same as the Listing UBB Configuration (refer to this listing as
described in Scenario A), while the net service orcl.tux1 is configured to Oracle RAC

Chapter 3
Common XID

3-7

instance1 through database service tux1. When Common XID is enabled, all
transactions of business A become one-phase commit.

3.5.1.3 Scenario C
Redundant servers or groups are configured when they are running on different Oracle
RAC instances. Given this scenario, the XA Transaction Affinity feature should be
enabled too. It helps the business involves the servers/groups that associate same
database instance via same database service with the coordinator.

Listing 19 UBB Configuration

*RESROUCES
MODEL SHM
OPTIONS XPP
...

*MACHINES
"mach1" LMID=L1
...

*GROUPS
GRP1 LMID=L1 GRPNO=10 TMSNAME="TMSORA1"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux1+ACC=
P/scott/tiger +SesTM=120"
GRP2 LMID=L1 GRPNO=20 TMSNAME="TMSORA2"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux1+ACC=
P/scott/tiger +SesTM=120"
GRP3 LMID=L1 GRPNO=30 TMSNAME="TMSORA3"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux2+ACC=
P/scott/tiger +SesTM=120"

*SERVERS
server1 SRVGRP=GRP1 SRVID=10 MIN=2
server2 SRVGRP=GRP2 SRVID=10 MIN=2
server3 SRVGRP=GRP3 SRVID=10 MIN=2
...

GRP1 and GRP2 use the same net service orcl.tux1 to connect the resource manager;
orcl.tux1 is configured to database service tux1, which RAC instance1 supports.
GRP3 uses net service orcl.tux2 to connect the resource manager; orcl.tux2 is
configured to database service tux2, which RAC instance2 supports. Server1 offers
Tuxedo service svc1; both server2 and server3 offer Tuxedo service svc2. The
transactional business A calls svc1 and then svc2.

In general, business A may involve server1 and server2, or server1 and server3,
because of Tuxedo load balance. When Common XID is enabled, the transactions that
involve server1 and server2 become one-phase commit; when XA Transaction
Affinity feature is enabled, business A always involves server1 and server2 so that all
transactions of the business A would be one-phase commit.

Chapter 3
Common XID

3-8

3.5.1.4 Scenario D
Part of participated groups associate with the same instances through the same database
service with the coordinator. In this scenario, it is better to enable both common XID and
Read-Only Optimization features.

A typical UBB configuration is as follows.

Listing 20 UBB Configuration

*RESROUCES
MODEL SHM
OPTIONS XPP
...

*MACHINES
"mach1" LMID=L1
...

*GROUPS
GRP1 LMID=L1 GRPNO=10 TMSNAME="TMSORA1"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux1+ACC=
P/scott/tiger +SesTM=120"

GRP2 LMID=L1 GRPNO=20 TMSNAME="TMSORA2"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux1+ACC=
P/scott/tiger +SesTM=120"

GRP3 LMID=L1 GRPNO=30 TMSNAME="TMSORA3"
 OPENINFO="Oracle_XA:ORACLE_XA+SqlNet=orcl.tux2+ACC=
P/scott/tiger +SesTM=120"

*SERVERS
server1 SRVGRP=GRP1 SRVID=10 MIN=2
server2 SRVGRP=GRP2 SRVID=10 MIN=2
server3 SRVGRP=GRP3 SRVID=10 MIN=2
...

GRP1 and GRP2 use the same net service orcl.tux1 to connect the resource manager;
orcl.tux1 is configured to database service tux1, which RAC instance1 supports. GRP3 uses
net service orcl.tux2 to connect the resource manager; orcl.tux2 is configured to database
service tux2, which RAC instance2 supports. Server1 offers Tuxedo service svc1; server2
offers Tuxedo service svc2; server3 offers Tuxedo service svc3. The transactional business
B calls svc1, then svc2, and then svc3.

The business B involves server1/GRP1, server2/GRP2, and server3/GRP3. When common
XID is enabled, the prepare request to GRP2 is saved. Given that Read-Only Optimization is
enabled as well, the prepare request to GRP1 is saved as well and one-phase commit is done
on GRP1, avoiding TLOG writing.

3.5.2 Limitations
• Groups with multiple resource managers are not supported.

Chapter 3
Common XID

3-9

• Multi-threaded servers do not provide instance information via MIB; however,
common XID still performs well on server-dispatched threads.

• In two-phase commit scenarios, GWTDOMAIN is always involved to do prepare
and/or commit

See Also:

• For detailed information about configuration, see Oracle Tuxedo
Advanced Performance Pack Configuration.

• For more information about how to set up this feature with Oracle
Database, see Using Tuxedo with Oracle Real Application Clusters
(RAC) in Oracle Tuxedo Setting Up an Oracle Tuxedo Application.

3.6 XA Transaction Affinity
• Scenarios Recommended

• Limitations

3.6.1 Scenarios Recommended
It is recommended to enable this feature when Tuxedo server has multiple instances
running on different Oracle RAC instances via the same Oracle Database service.

In the event that XA Transaction Affinity is enabled, there is no need to utilize the rule
of Oracle RAC routing specified by the environment variable TUXRACGROUPS, and this
rule will be disabled.

The following picture illustrates the changes that will be made when XA Transaction
Affinity is enabled.

Chapter 3
XA Transaction Affinity

3-10

https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/ads/adorac.html
https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/ads/adorac.html

Figure 3-1 XA Transaction Affinity Enablement

Tuxedo Tuxedo

Oracle

RAC

Server

Oracle

RAC

Server

Client Client

Server Server

Notification
Service

Notification
Service

RAC1 RAC1RAC2 RAC2

Server
Instance1

Server
Instance1

Server
Instance2

Server
Instance2

Server
Instance3

Server
Instance3

Server
Instance4

Server
Instance4

Transaction1 Transaction1Transaction2 Transaction2

request1 request1request2 request1request1 request2request2 request2

Enable
XA Affinity

3.6.2 Limitations
• Groups with multiple resource managers are not supported.

• The max number of affinity context (database name+instance name+service name) in
one transaction is 16.

• XA Transaction Affinity does not support multi-server single queue, multi-threaded server,
or cross-domain services.

See Also:

• Oracle Tuxedo Advanced Performance Pack Configuration

3.7 Failover/Failback across Database Instances
• Recommendation for Configuration on Oracle Database

• Recommendation for Non-XA Server

• Limitations

Chapter 3
Failover/Failback across Database Instances

3-11

3.7.1 Recommendation for Configuration on Oracle Database
To benefit from Oracle FAN (Fast Application Notification), it is recommended to
enable this feature anytime when Tuxedo works with Oracle RAC.

Besides UBBCONFIG, set Oracle Database properly for the following configurations:

• ONS (Oracle Notification System)
This feature depends on ONS (Oracle Notification System) to access FAN events.
ONS daemon must be enabled on Oracle Database server side and client side if
Tuxedo is taken as a native ONS client. It is recommended that Tuxedo works in
remote mode.

The ONS daemon configuration file is located in $ORACLE_HOME/opmn/conf/
ons.config. This file tells the ONS daemon how to behave. Configuration
information within ons.config is defined in simple name and value pairs.
After configuring ONS, you can start it with onsctl command. Make sure that ONS
daemon is running all the time.

Note:

On Oracle Database client side, if the Oracle version is lower than
12.1.0.1.0, ONS daemon must be enabled.

• TAF (Transparent Application Failover)
TAF is recommended when Oracle Tuxedo non-XA server works with Oracle RAC
Fast Application Notification (FAN).

TAF (Transparent Application Failover) is an Oracle Database client-side feature
that allows clients to reconnect surviving database instances automatically in the
event of database instance failure.

– If TAF is configured, Oracle client will be responsible for re-establishing the
new connection from Oracle Tuxedo to Oracle Database server.

– If TAF is not configured, Oracle Tuxedo non-XA server will not do the re-
establishment and so this feature will not work.

3.7.2 Recommendation for Non-XA Server
To monitor FAN event for the instance associated with the specific non-XA application
server, $TUXDIR/lib/tuxociucb.so.1.0 should be deployed in $ORACLE_HOME/lib,
and the name of this binary must be specified in ORA_OCI_UCBPKG environment
variable.

To support TAF, follow the rules as below:

• For OCI application, create OCI environment in OCI_THREADED mode.

• For Pro*C application, run pre-compilation with threads=yes and use EXEC SQL
ENABLE THREADS before creating the first executable embedded SQL statement.

-L option in servopts must be used for a non-XA server to indicate that the server will
connect to the Oracle Database. Since the ECID is enabled when -L is specified, a

Chapter 3
Failover/Failback across Database Instances

3-12

new option -F is introduced into servopts to close ECID. The usage is -F noECID. The
example is below.

Listing Example for -L Option

*SERVERS
server1
SRVGRP=GRP1 SRVID=1 ClOPT="-L libclntsh.so -F noECID"

3.7.3 Limitations
• Groups with multiple resource managers are not supported.

• If the customized server is going to use OCI to connect to Oracle Database, OCI_NO_UCB
should not be set at OCI initialization time.

See Also:

• For detailed information about configuration, see Oracle Tuxedo Advanced
Performance Pack Configuration.

• For more information about how to set up this feature with Oracle Database,
see Using Tuxedo with Oracle Real Application Clusters (RAC) in Oracle
Tuxedo Setting Up an Oracle Tuxedo Application.

3.8 Load Balancing across RAC Instances
• Recommendation for Configuration on Oracle Database

• Recommendation for Non-XA Server

• Limitations

3.8.1 Recommendation for Configuration on Oracle Database
To benefit from Oracle FAN (Fast Application Notification), it is recommended to enable this
feature anytime when Tuxedo works with Oracle RAC.

Configure UBBCONFIG and Oracle Database the same as Failover/Failback across Database
Instances, and set LBA (Load Balance Advisory) as follows.

• LBA (Load Balance Advisory)
Based on Oracle Database load balance advisory, Tuxedo can distribute service request
across Tuxedo application server that is connected to the same Oracle Database service.
To enable LBA and publication of FAN load balancing events, the service-level goal for
runtime connection load balancing must be specified in Oracle Database service
definition. You can use -B option to specify the goal via srvctl when creating or
modifying the service.

Chapter 3
Load Balancing across RAC Instances

3-13

https://docs.oracle.com/cd/E35855_01/tuxedo/docs12c/ads/adorac.html

3.8.2 Recommendation for Non-XA Server
See Recommendation for Non-XA Server for the recommendation.

3.8.3 Limitations
• Groups with multiple resource managers are not supported.

• If the customized server is going to use OCI to connect to Oracle Database,
OCI_NO_UCB should not be set at OCI initialization time.

• Load balance based on Oracle RAC LBA does not support multi-server single
queue, multi-threaded server, or cross-domain services.

See Also:

• For detailed information about configuration, see Oracle Tuxedo
Advanced Performance Pack Configuration.

• For more information about how to set up this feature with Oracle
Database, see Configuring Level 1: Basic Application High Availability in
Oracle® Database High Availability Overview and Best Practices.

Chapter 3
Load Balancing across RAC Instances

3-14

https://docs.oracle.com/en/database/oracle/oracle-database/19/haovw/configuring-level-1-basic-application-high-availability.html#GUID-063EE4A0-C783-46A7-9BEB-31051CE31F1A

4
Software Requirement

Ensure to meet the following software requirements for using features in the Oracle Tuxedo
Advanced Performance Pack:

Oracle Tuxedo
Oracle Tuxedo 22c Release 1 (22.1.0.0.0) Rolling Patch 001 or later is required.

Oracle Database
For "Failover/Failback across Database Instances" and "Load Balancing across RAC
Instances" features, Oracle Database 12.1.0.2 Patch for bug 21462577 or later client is
required.

For every other feature, Oracle Database 11.2.0.2.0 or later is required.

4-1

	Contents
	List of Figures
	List of Tables
	Preface
	About this Guide
	Documentation Accessibility

	1 Introduction to Using Oracle Tuxedo Advanced Performance Pack
	1.1 Overview
	1.1.1 About Oracle Tuxedo Advanced Performance Pack
	1.1.2 Features in Oracle Tuxedo Advanced Performance Pack
	1.1.2.1 Self-Tuning Lock Mechanism
	1.1.2.2 Shared Memory Interprocess Communication
	1.1.2.3 Tightly Coupled Transactions Spanning Domains
	1.1.2.4 Concurrent Global Transaction Table Lock
	1.1.2.5 Partial One Phase Read-Only Optimization for RAC
	1.1.2.6 Single Group Multiple Branches (SGMB)
	1.1.2.7 Common XID
	1.1.2.8 XA Transaction Affinity
	1.1.2.9 Failover/Failback across Database Instances
	1.1.2.10 Load Balancing across RAC Instances

	2 Oracle Tuxedo Advanced Performance Pack Configuration
	2.1 Self-Tuning Lock Mechanism
	2.2 Shared Memory Interprocess Communication
	2.3 Tightly Coupled Transactions Spanning Domains
	2.4 Concurrent Global Transaction Table Lock
	2.5 Partial One Phase Read-Only Optimization for RAC
	2.6 Single Group Multiple Branches (SGMB)
	2.7 Common XID
	2.8 XA Transaction Affinity
	2.9 Failover/Failback across Database Instances
	2.10 Load Balancing across RAC Instances
	2.11 FAN Integration

	3 Best Practices to Optimize Performance
	3.1 Self-Tuning Lock Mechanism
	3.1.1 Scenarios Recommended
	3.1.2 Setting the Number of Lock Spins

	3.2 Shared Memory Interprocess Communication
	3.2.1 Scenarios Recommended
	3.2.2 Adjust SHMQMAXMEM
	3.2.3 Memory Usage
	3.2.4 Programming with SHMQ
	3.2.5 Exceptions

	3.3 Partial One Phase Read-Only Optimization for RAC
	3.4 Single Group Multiple Branches (SGMB)
	3.4.1 Scenarios Recommended
	3.4.2 Limitations

	3.5 Common XID
	3.5.1 Scenarios Recommended
	3.5.1.1 Scenario A
	3.5.1.2 Scenario B
	3.5.1.3 Scenario C
	3.5.1.4 Scenario D

	3.5.2 Limitations

	3.6 XA Transaction Affinity
	3.6.1 Scenarios Recommended
	3.6.2 Limitations

	3.7 Failover/Failback across Database Instances
	3.7.1 Recommendation for Configuration on Oracle Database
	3.7.2 Recommendation for Non-XA Server
	3.7.3 Limitations

	3.8 Load Balancing across RAC Instances
	3.8.1 Recommendation for Configuration on Oracle Database
	3.8.2 Recommendation for Non-XA Server
	3.8.3 Limitations

	4 Software Requirement

