
Oracle® Tuxedo
Using Security in ATMI Application

Release 22c (22.1.0.0.0)
F74257-04
November 2024

Oracle Tuxedo Using Security in ATMI Application, Release 22c (22.1.0.0.0)

F74257-04

Copyright © 1996, 2024, Oracle and/or its affiliates.

Primary Authors: Preeti Gandhe, Tulika Das

Contributors: Maggie Li

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

1 Overview

1.1 What Security Means 1-1

1.2 Security Plug-ins 1-2

1.3 ATMI Security Capabilities 1-3

1.4 Operating System (OS) Security 1-5

1.5 Authentication 1-6

1.5.1 Authentication Plug-in Architecture 1-6

1.5.2 Understanding Delegated Trust Authentication 1-6

1.5.3 Establishing a Session 1-7

1.5.4 Getting Authorization and Auditing Tokens 1-8

1.5.5 Replacing Client Tokens with Server Tokens 1-9

1.5.6 Implementing Custom Authentication 1-10

1.6 Authorization 1-10

1.6.1 Authorization Plug-in Architecture 1-10

1.6.2 How the Authorization Plug-in Works 1-12

1.6.2.1 Default Authorization 1-12

1.6.2.2 Custom Authorization 1-13

1.6.3 Implementing Custom Authorization 1-14

1.7 Auditing 1-14

1.7.1 Auditing Plug-in Architecture 1-14

1.7.2 How the Auditing Plug-in Works 1-15

1.7.2.1 Default Auditing 1-16

1.7.2.2 Custom Auditing 1-16

1.7.3 Implementing Custom Auditing 1-17

1.8 Link-Level Encryption 1-17

1.8.1 How LLE Works 1-18

1.8.2 Encryption Key Size Negotiation 1-18

1.8.2.1 Determining Min-Max Values 1-18

1.8.2.2 Finding a Common Key Size 1-19

1.8.3 Backward Compatibility of LLE 1-19

1.8.3.1 Interoperating with Release 6.5 Oracle Tuxedo Software 1-19

1.8.3.2 Interoperating with Pre-Release 6.5 Oracle Tuxedo Software 1-20

1.8.4 WSL/WSH Connection Timeout During Initialization 1-20

iii

1.9 TLS Encryption 1-21

1.9.1 How the TLS Protocol Works 1-22

1.9.2 Requirements for Using the TLS Protocol 1-22

1.9.3 TLS Version Negotiation and Configuration 1-22

1.9.4 Encryption Key Size Negotiation 1-23

1.9.4.1 Determining Min-Max Values 1-23

1.9.4.2 Finding a Common Key Size 1-24

1.9.5 Backward Compatibility of TLS 1-24

1.9.6 WSL/WSH Connection Timeout During Initialization 1-25

1.9.7 Supported Cipher Suites 1-25

1.9.8 TLS Installation 1-26

1.10 Public Key Security 1-26

1.10.1 PKCS-7 Compliant 1-26

1.10.2 Supported Algorithms for Public Key Security 1-27

1.10.2.1 Public Key Algorithms 1-27

1.10.2.2 Digital Signature Algorithms 1-27

1.10.2.3 Symmetric Key Algorithms 1-27

1.10.2.4 Message Digest Algorithms 1-28

1.11 Message-based Digital Signature 1-29

1.11.1 Digital Certificates 1-30

1.11.2 Certification Authority 1-30

1.11.3 Certificate Repositories 1-31

1.11.4 Public-Key Infrastructure 1-31

1.12 Message-based Encryption 1-32

1.13 Public Key Implementation 1-34

1.13.1 Public Key Initialization 1-34

1.13.2 Key Management 1-34

1.13.3 Certificate Lookup 1-35

1.13.4 Certificate Parsing 1-35

1.13.5 Certificate Validation 1-35

1.13.6 Proof Material Mapping 1-35

1.13.7 Implementing Custom Public Key Security 1-35

1.13.8 Default Public Key Implementation 1-35

1.14 Default Authentication and Authorization 1-36

1.14.1 Client Naming 1-38

1.14.1.1 User-Client Names 1-38

1.14.1.2 Application Key 1-39

1.14.2 User, Group, and ACL Files 1-40

1.14.3 Optional and Mandatory ACLs 1-41

1.15 Security Interoperability 1-43

1.15.1 Interoperating with Pre-Release 7.1 Software 1-44

1.15.2 Interoperability for Link-Level Encryption 1-44

iv

1.15.3 Interoperability for TLS Encryption 1-45

1.15.4 Interoperability for Public Key Security 1-45

1.16 Security Compatibility 1-46

1.16.1 Mixing Default/Custom Authentication and Authorization 1-47

1.16.2 Mixing Default/Custom Authentication and Auditing 1-47

1.16.3 Compatibility Issues for Public Key Security 1-47

1.16.3.1 Compatibility/Interaction with Data-dependent Routing 1-48

1.16.3.2 Compatibility/Interaction with Threads 1-48

1.16.3.3 Compatibility/Interaction with the EventBroker 1-48

1.16.3.4 Compatibility/Interaction with /Q 1-49

1.16.3.5 Compatibility/Interaction with Transactions 1-50

1.16.3.6 Compatibility/Interaction with Domain Gateways 1-50

1.16.3.7 Compatibility/Interaction with Other Vendors’ Gateways 1-52

1.17 Denial-of-Service (DoS) Defense 1-53

1.17.1 Limited/Restricted Connection Numbers 1-53

1.17.2 Setting Up Connection Limitations/Restrictions 1-53

1.17.2.1 UBBCONFIG File 1-54

1.17.2.2 Messages 1-55

1.17.3 Message Sanity Check 1-56

1.17.4 Message Authentication Code (MAC) Usage 1-56

1.17.4.1 Performance Impact 1-57

1.17.5 Setting up Message Authentication Code (MAC) Usage 1-57

1.17.5.1 DMCONFIG File Configuration 1-57

1.17.5.2 MIB Configuration 1-58

1.18 Password Pair Protection 1-60

2 Administering Security

2.1 What Administering Security Means 2-1

2.2 Security Administration Tasks 2-4

2.3 Setting the Oracle Tuxedo Registry 2-4

2.3.1 Purpose of the Oracle Tuxedo Registry 2-4

2.3.2 Registering Plug-ins 2-5

2.4 Configuring an ATMI Application for Security 2-5

2.4.1 Editing the Configuration File 2-6

2.4.2 Changing the TM_MIB 2-6

2.5 Setting Up the Administration Environment 2-6

2.5.1 Administering Operating System (OS) Security 2-7

2.5.1.1 Recommended Practices for OS Security 2-7

2.6 Administering Authentication 2-8

2.7 Specifying Principal Names 2-9

2.7.1 How System Processes Acquire Credentials 2-10

v

2.7.2 Why System Processes Need Credentials 2-11

2.7.3 Example UBBCONFIG Entries for Principal Names 2-12

2.8 Mandating Interoperability Policy 2-13

2.8.1 Establishing an Identity for an Older Client 2-16

2.8.1.1 How the WSH Establishes an Identity for an Older Client 2-16

2.8.1.2 How the Domain Gateway Establishes an Identity for an Older Client 2-16

2.8.1.3 How the Server Establishes an Identity for an Older Client 2-17

2.8.2 Summarizing How the CLOPT -t Option Works 2-17

2.8.3 Example UBBCONFIG Entries for Interoperability 2-18

2.9 Establishing a Link Between Domains 2-19

2.9.1 Example DMCONFIG Entries for Establishing a Link 2-22

2.10 Setting ACL Policy 2-23

2.10.1 Impersonating the Remote Domain Gateway 2-26

2.10.2 Example DMCONFIG Entries for ACL Policy 2-26

2.11 Setting Credential Policy 2-27

2.12 Administering Authorization 2-30

2.13 Administering Link-Level Encryption 2-31

2.13.1 Understanding LLE min and max Values 2-31

2.13.2 How to Configure LLE on Workstation Client Links 2-31

2.13.3 How to Configure LLE on Bridge Links 2-32

2.13.4 How to Configure LLE on tlisten Links 2-33

2.13.5 How to Configure LLE on Domain Gateway Links 2-33

2.14 Administering TLS Encryption 2-35

2.14.1 Understanding TLS min and max Values 2-35

2.14.2 How to Configure TLS on Workstation Client Links 2-36

2.14.3 How to Configure TLS on Bridge Links 2-37

2.14.4 How to Configure TLS on tlisten Links 2-37

2.14.5 How to Configure TLS on Domain Gateway Links 2-38

2.14.6 Development Process for the TLS Protocol 2-38

2.14.7 Creating an Oracle Wallet 2-40

2.14.7.1 Creating an Oracle Wallet with orapki 2-40

2.14.7.2 Creating an Oracle Wallet with openssl 2-41

2.14.8 Runtime Creation of an Oracle Wallet 2-42

2.14.9 Use of the TUXCREATEWALLET Environment Variable 2-43

2.14.10 Debugging TLS Connection Problems 2-43

2.14.10.1 Enabling NZ Tracing 2-43

2.14.10.2 Connection Establishment Log Message 2-44

2.14.10.3 Displaying the Contents of an Oracle Wallet 2-44

2.14.10.4 Obtaining NZ Error Code Information 2-44

2.15 Administering Public Key Security 2-45

2.15.1 Recommended Practices for Public Key Security 2-45

2.15.2 Assigning Public-Private Key Pairs 2-45

vi

2.15.3 Setting Digital Signature Policy 2-46

2.15.3.1 Setting a Postdated Limit for Signature Timestamps 2-46

2.15.3.2 Setting a Predated Limit for Signature Timestamps 2-47

2.15.3.3 Enforcing the Signature Policy for Incoming Messages 2-47

2.15.3.4 How the EventBroker Signature Policy Is Enforced 2-49

2.15.3.5 How the /Q Signature Policy Is Enforced 2-49

2.15.3.6 How the Remote Client Signature Policy Is Enforced 2-49

2.15.4 Setting Encryption Policy 2-49

2.15.4.1 Enforcing the Encryption Policy for Incoming Messages 2-50

2.15.4.2 How the EventBroker Encryption Policy Is Enforced 2-51

2.15.4.3 How the /Q Encryption Policy Is Enforced 2-52

2.15.4.4 How the Remote Client Encryption Policy Is Enforced 2-52

2.15.5 Initializing Decryption Keys Through the Plug-ins 2-52

2.15.5.1 Example UBBCONFIG Entries for Principal Names and Decryption Keys 2-54

2.15.6 Failure Reporting and Auditing 2-55

2.15.6.1 Digital Signature Error Handling 2-55

2.15.6.2 Encryption Error Handling 2-55

2.16 Administering Default Authentication and Authorization 2-56

2.16.1 Designating a Security Level 2-56

2.16.1.1 Establishing Security by Editing the Configuration File 2-56

2.16.1.2 Establishing Security by Changing the TM_MIB 2-56

2.16.2 Configuring the Authentication Server 2-57

2.17 How to Enable Application Password Security 2-58

2.18 How to Enable User-Level Authentication Security 2-59

2.18.1 Setting Up the UBBCONFIG File 2-59

2.18.2 Setting Up the User and Group Files 2-60

2.18.2.1 Converting System Security Data Files to Oracle Tuxedo User and Group
Files 2-61

2.18.2.2 Adding, Modifying, or Deleting Users and Groups 2-61

2.19 Enabling Access Control Security 2-62

2.19.1 How to Enable Optional ACL Security 2-63

2.19.1.1 Setting Up the UBBCONFIG File 2-64

2.19.1.2 Setting Up the ACL File 2-64

2.19.2 How to Enable Mandatory ACL Security 2-65

2.19.2.1 Setting Up the UBBCONFIG File 2-66

2.19.2.2 Setting Up the ACL File 2-66

2.19.3 How to Enable Generic LDAP Based Security 2-66

2.19.3.1 Setting Up the UBBCONFIG File 2-67

2.19.3.2 Setting Up the XAUTHSVR Server Configuration File 2-67

2.19.3.3 Setting Up the LDAP Repository 2-68

2.19.3.4 Setting Up the Authorization Cache 2-69

2.19.4 How to Enable Security Service for OES 2-70

vii

2.20 Using the Kerberos Authentication Plug-in 2-71

2.21 Kerberos Plug-In 2-71

2.21.1 Kerberos Supported Platforms 2-71

2.21.2 Kerberos Plug-in Features 2-72

2.22 Kerberos Plug-In Pre-configuration 2-72

2.23 Kerberos Plug-In Configuration 2-72

2.23.1 Configure the Kerberos Plug-in 2-72

2.23.1.1 Restore Default Plug-in 2-73

2.23.2 Configure KAUTHSVR 2-74

2.23.3 Configure Tuxedo Native Client 2-75

2.23.4 Limitations 2-75

2.24 Using the Cert-C PKI Encryption Plug-in 2-76

2.25 Cert-C PKI Encryption Plug-In 2-76

2.26 Cert-C PKI Encryption Plug-In Pre-configuration 2-76

2.27 Cert-C PKI Encryption Plug-In Configuration 2-77

2.27.1 Configure Certificate Lookup 2-77

2.27.1.1 OpenLDAP for X.509 Certificate Lookup 2-78

2.27.2 Configure Key Management 2-79

2.27.2.1 decPassword 2-79

2.27.2.2 privateKeyDir 2-79

2.27.3 Configure Certificate Parsing 2-79

2.27.4 Configure Certificate Validation 2-80

2.27.4.1 caCertificateFile 2-80

2.27.4.2 crlFile 2-80

2.27.5 Sample Registry Command File 2-80

2.27.6 Limitations 2-82

3 Programming Security

3.1 What Programming Security Means 3-1

3.2 Programming an ATMI Application with Security 3-2

3.3 Setting Up the Programming Environment 3-3

3.4 Writing Security Code So Client Programs Can Join the ATMI Application 3-3

3.5 Getting Security Data 3-4

3.6 Joining the ATMI Application 3-6

3.6.1 Transferring the Client Security Data 3-9

3.6.2 Calling a Service Request Before Joining the ATMI Application 3-11

3.7 Writing Security Code to Protect Data Integrity and Privacy 3-12

3.7.1 ATMI Interface for Public Key Security 3-12

3.7.2 Recommended Uses of Public Key Security 3-18

3.8 Sending and Receiving Signed Messages 3-19

3.8.1 Writing Code to Send Signed Messages 3-19

viii

3.8.1.1 Step 1: Opening a Key Handle for Digital Signature 3-21

3.8.1.2 Step 2 (Optional): Getting Key Handle Information 3-22

3.8.1.3 Step 3 (Optional): Changing Key Handle Information 3-23

3.8.1.4 Step 4: Allocating a Buffer and Putting a Message in the Buffer 3-23

3.8.1.5 Step 5: Marking the Buffer for Digital Signature 3-23

3.8.1.6 Step 6: Sending the Message 3-24

3.8.1.7 Step 7: Closing the Signer’s Key Handle 3-24

3.8.1.8 How the System Generates a Digital Signature 3-25

3.8.2 How a Signed Message Is Received 3-26

3.8.2.1 Verifying Digital Signatures 3-27

3.8.2.2 Verifying and Transmitting an Input Buffer’s Signatures 3-27

3.8.2.3 Replacing an Output Buffer’s Signatures 3-27

3.9 Sending and Receiving Encrypted Messages 3-28

3.9.1 Writing Code to Send Encrypted Messages 3-29

3.9.1.1 Step 1: Opening a Key Handle for Encryption 3-30

3.9.1.2 Step 2 (Optional): Getting Key Handle Information 3-31

3.9.1.3 Step 3 (Optional): Changing Key Handle Information 3-32

3.9.1.4 Step 4: Allocating a Buffer and Putting a Message in the Buffer 3-32

3.9.1.5 Step 5: Marking the Buffer for Encryption 3-32

3.9.1.6 Step 6: Sending the Message 3-33

3.9.1.7 Step 7: Closing the Encryption Key Handle 3-34

3.9.1.8 How the System Encrypts a Message Buffer 3-34

3.9.2 Writing Code to Receive Encrypted Messages 3-36

3.9.2.1 Step 1: Opening a Key Handle for Decryption 3-36

3.9.2.2 Step 2 (Optional): Getting Key Handle Information 3-37

3.9.2.3 Step 3 (Optional): Changing Key Handle Information 3-38

3.9.2.4 Step 4: Closing the Decryption Key Handle 3-38

3.9.2.5 How the System Decrypts a Message Buffer 3-39

3.10 Examining Digital Signature and Encryption Information 3-41

3.10.1 What Happens When an Originating Process Calls tpenvelope 3-42

3.10.2 What Happens When a Receiving Process Calls tpenvelope 3-42

3.10.3 Understanding the Composite Signature Status 3-44

3.10.4 Example Code for tpenvelope 3-45

3.11 Externalizing Typed Message Buffers 3-46

3.11.1 How to Create an Externalized Representation 3-46

3.11.2 How to Convert an Externalized Representation 3-47

3.11.3 Example Code for tpexport and tpimport 3-47

4 Quick Reference for TLS Support

4.1 Overview 4-1

4.2 Supported Tuxedo Components 4-1

ix

4.3 TLS Version Configuration 4-2

4.4 Supported Cipher Suites 4-3

4.5 Upgrade from Previous Versions to TLS 1.3 4-4

4.6 Interoperability 4-4

5 Implementing Single Point Security Administration

5.1 What Single Point Security Administration Means 5-1

5.1.1 Single Point Security Administration Tasks 5-2

5.2 Setting up LAUTHSVR as the Authentication Server 5-2

5.2.1 LAUTHSVR Command Line Interface 5-3

5.2.2 Setting Up the LAUTHSVR Configuration File 5-4

5.2.2.1 Syntax Requirements for LAUTHSVR Configuration File 5-4

5.2.2.2 LAUTHSVR Configuration File Keywords 5-4

5.2.2.3 Example LAUTHSVR Configuration File 5-7

5.2.3 Example UBBCONFIG Using LAUTHSVR 5-7

5.2.4 Using Multiple Network Addresses for High Availability 5-8

5.2.4.1 Example LAUTHSVR Configuration of Multiple Network Addresses 5-9

5.2.5 Configuring the Database Search Order 5-9

5.2.5.1 Example LAUTHSVR Configuration for Database Search Order 5-9

5.2.6 Using tpmigldap to Migrate User Information to WebLogic Server 5-10

5.2.6.1 Assigning New Passwords for the tpusr File 5-10

5.2.6.2 tpmigldap Command Line Options 5-10

5.2.7 Adding New Tuxedo User Information 5-11

5.2.7.1 Adding New User Information in tpusr or tpgrp 5-12

5.2.7.2 Adding New User Information Using the WebLogic Administration Console 5-12

5.3 Setting up GAUTHSVR as the Authentication Server 5-15

5.3.1 GAUTHSVR Command Line Interface 5-16

5.3.2 Setting Up the GAUTHSVR Configuration File 5-16

5.3.2.1 Syntax Requirements for GAUTHSVR Configuration File 5-17

5.3.2.2 GAUTHSVR Configuration File Keywords 5-17

5.3.2.3 Example GAUTHSVR Configuration File 5-22

5.3.3 Example UBBCONFIG Using GAUTHSVR 5-23

5.3.4 Using tpmigldif to Migrate User Information 5-23

5.3.4.1 Using tpmigldif Command Line Options 5-23

5.3.4.2 tpusr and tpgrp File Format 5-24

5.3.4.3 Creating a Migration Template 5-24

5.3.5 Supported LDAP Server Template Example 5-25

5.4 Setting up OAUTHSVR as the Authentication Server 5-26

5.4.1 Setting Up the OAUTHSVR Configuration File 5-26

5.4.1.1 Syntax Requirements for OAUTHSVR Configuration File 5-27

5.4.1.2 OAUTHSVR Configuration File Keywords 5-27

x

5.4.1.3 OAM Access Client Configuration (OAM_CONFIG_DIR) 5-28

5.4.1.4 Examples 5-29

5.4.2 /T DOMAIN Support 5-31

5.4.3 Oracle SALT Support 5-32

5.4.4 WTC Support 5-32

5.4.5 Oracle JCA Support 5-32

6 Integrating Audit with Oracle Platform Security Services (OPSS)

6.1 Overview 6-1

6.2 Components and Deployment 6-1

6.2.1 Audit Flow 6-2

6.3 Configurations 6-2

6.3.1 Register OPSS Audit Plug-In to Oracle Tuxedo Registry 6-3

6.3.1.1 Register OPSS Audit Plug-In to Oracle Tuxedo Registry 6-3

6.3.1.2 Unregister OPSS Audit Plug-In from Oracle Tuxedo Registry 6-3

6.3.2 Configure Oracle Tuxedo Auditing Framework 6-4

6.3.3 Configure Oracle Tuxedo OPSS Audit Module 6-4

6.3.3.1 Configure Oracle Tuxedo Java Server (TMJAVASVR) 6-4

6.3.3.2 Configure Oracle Tuxedo OPSS Audit Module 6-5

6.3.4 Configure OPSS Configuration Files 6-7

6.3.4.1 jps-config.xml 6-7

6.3.4.2 java.policy 6-8

6.3.4.3 component_events.xml (static) and audit-store.xml (dynamic) 6-10

6.3.4.4 system-jazn-data.xml 6-14

6.3.5 Configure OPSS Audit Bus-Stop 6-14

6.4 Administration 6-14

6.4.1 Change Audit Policy 6-14

Index

xi

List of Figures

1-1 Oracle Tuxedo ATMI Plug-in Security Architecture 1-3

1-2 ATMI Delegated Trust Authentication Model 1-7

1-3 Control Flow in the ATMI Environment 1-8

1-4 Server Permission Upgrade Example 1-9

1-5 Authorization Plug-in Architecture 1-11

1-6 Auditing Plug-in Architecture 1-15

1-7 How the TLS Protocol Works in a Tuxedo Application 1-22

1-8 ATMI PKCS-7 End-to-End Digital Signing 1-29

1-9 PKI Process Flow 1-31

1-10 ATMI PKCS-7 End-to-End Encryption 1-33

1-11 Default User, Group, and ACL Files 1-41

1-12 Inter-Domain Interoperability 1-43

1-13 Intra-Domain Interoperability 1-44

1-14 Enforcing Intra-Domain Interoperability Rules for Public Key Security 1-46

1-15 Communication Between ATMI Applications 1-50

2-1 Administering ATMI Security 2-3

2-2 Mutual Authentication in the Delegated Trust Authentication Model 2-8

2-3 Acquiring Credentials and Tokens During Application Booting 2-11

2-4 WSH Operating with Older Workstation Client 2-13

2-5 Older WSH Operating with Workstation Client 2-14

2-6 Server Interoperating with Older ATMI Application 2-14

2-7 Server Interoperating with Older Oracle Tuxedo Systems 2-15

2-8 Obtaining Authorization and Auditing Tokens for an Older Client 2-16

2-9 Establishing a Link Between Domains Using Default Authentication 2-21

2-10 Establishing a Local ACL Policy 2-24

2-11 Establishing a Global ACL Policy 2-25

2-12 Establishing a One-way Local and One-way Global ACL Policy 2-25

2-13 Configuration for Using the TLS Protocol in a Tuxedo Application 2-40

2-14 How a Decryption Key Is Initialized Example 2-53

2-15 tpusr Sample Entry 2-60

2-16 tpgrp Sample Entry 2-60

2-17 tpacl Sample Entry 2-64

3-1 Programming Oracle Tuxedo Security 3-2

3-2 Transferring Data from the TPINIT Buffer for a Workstation Client 3-10

3-3 Procedure for Sending Signed Messages 3-20

3-4 SignedData Content Type 3-26

xii

3-5 Procedure for Sending Encrypted Messages 3-29

3-6 EnvelopedData Content Type 3-35

3-7 Forwarding a Signed and Encrypted Message Example 3-40

5-1 WebLogic Administration Console Select Users 5-13

5-2 WebLogic Administration Console Create Users 5-14

6-1 Oracle Tuxedo Audit Flow with OPSS 6-2

xiii

List of Tables

1-1 ATMI Security Capabilities 1-4

1-2 Authorization Composite Responses 1-11

1-3 Interprocess Negotiation Results 1-19

1-4 Negotiation Results When Interoperating with Release 6.5 Oracle Tuxedo Software 1-19

1-5 Negotiation Results When Interoperating with Pre-Release 6.5 Oracle Tuxedo Software 1-20

1-6 Default TLS Version and Related Parameter 1-23

1-7 Interprocess Negotiation Results (112,112) to (112,256) 1-24

1-8 Interprocess Negotiation Results (128,128) to (256,256) 1-24

1-9 SSL/TLS Cipher Suites Supported by the ATMI Security Environment 1-25

1-10 Security Levels for Default Authentication and Authorization 1-36

1-11 Security-Related Fields in TPINIT Buffer/ TPINFDEF-REC Record 1-38

1-12 Application Key Assignments 1-39

1-13 Interoperability Rules for Public Key Security 1-45

1-14 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes 1-51

1-15 DMCONFIG File Keywords 1-57

1-16 DM_MIB(5): T_DM_TDOMAIN Class Definition Attribute Table 1-58

2-1 Functionality of WSH, Domain Gateway, and Server Processes When Interoperability Is and

Is Not Allowed 2-17

2-2 Administration Steps for the TLS Protocol 2-39

2-3 XAUTHSVR Configuration File Keywords 2-68

2-4 orcljaznpermission Class Attributes 2-69

3-1 Fields in TPINIT Buffer/ TPINFDEF-REC Record 3-8

3-2 Functions in ATMI Interface for Public Key Security 3-14

3-3 COBOL Routines in ATMI Interface for Public Key Security 3-17

3-4 Composite Signature Status 3-44

4-1 Supported Tuxedo Components 4-1

4-2 TLS Version Configurations 4-2

5-1 LAUTHSVR Configuration File Keywords 5-5

5-2 tpmigldap Command Line Options 5-11

5-3 Basic GAUTHSVR Configuration File Keywords 5-17

5-4 Advanced GAUTHSVR Configuration File Keywords 5-18

5-5 LDAP Schema Configuration File Keywords 5-20

5-6 tpmigldif Command Line Options 5-23

5-7 Supported LDAP Server Template Example 5-25

5-8 OAUTHSVR Configuration File Keywords 5-27

xiv

1
Overview

The following sections describe the various security capabilities available with the Oracle
Tuxedo system for ATMI applications:

Note:

The Oracle Tuxedo product includes environments that allow you to build both
Application-to-Transaction Monitor Interfaces (ATMI) and CORBA applications. This
topic explains how to implement security in an ATMI application. For information
about implementing security in a CORBA application, see Using Security in CORBA
Applications.

• What Security Means

• Security Plug-ins

• ATMI Security Capabilities

• Operating System (OS) Security

• Authentication

• Authorization

• Auditing

• Link-Level Encryption

• TLS Encryption

• Public Key Security

• Message-based Digital Signature

• Message-based Encryption

• Public Key Implementation

• Default Authentication and Authorization

• Security Interoperability

• Security Compatibility

• Denial-of-Service (DoS) Defense

• Password Pair Protection

1.1 What Security Means
Security refers to techniques for ensuring that data stored in a computer or passed between
computers is not compromised. Most security measures involve passwords and data
encryption, where a password is a secret word or phrase that gives a user access to a
particular program or system, and data encryption is the translation of data into a form that is
unintelligible without a deciphering mechanism.

1-1

Distributed applications such as those used for electronic commerce (e-commerce) offer many
access points for malicious people to intercept data, disrupt operations, or generate fraudulent
input; the more distributed a business becomes, the more vulnerable it is to attack. Thus, the
distributed computing software, or middleware, upon which such applications are built must
provide security.

The Oracle Tuxedo product provides several security capabilities for ATMI applications, most
of which can be customized for your particular needs.

See Also:

• Security Plug-ins

• ATMI Security Capabilities

• Security Administration Tasks

• What Programming Security Means

1.2 Security Plug-ins
As shown in the following figure, all but one of the security capabilities available with the ATMI
environment of the Oracle Tuxedo product are implemented through a plug-in interface, which
allows Oracle Tuxedo customers to independently define and dynamically add their own
security plug-ins. A security plug-in is a code module that implements a particular security
capability.

Chapter 1
Security Plug-ins

1-2

Figure 1-1 Oracle Tuxedo ATMI Plug-in Security Architecture

Oracle Tuxedo Security

TLS encryption (Link-level encryption)

Authentication Authorization Auditing Encryption Public key
security

Security plug-ins

Default
authentication

(Custom)

Default
authorization

(Custom)

Default
auditing
(Custom)

Default public
key security

(Custom)

Plug-in interface

The specifications for the security plug-in interface are not generally available, but are
available to third-party security vendors. Third-party security vendors can enter into a special
agreement with Oracle Systems to develop security plug-ins for Oracle Tuxedo. Oracle Tuxedo
customers who want to customize a security capability must contact one of these vendors. For
example, an Oracle Tuxedo customer who wants a custom implementation of public key
security must contact a third-party security vendor who can provide the appropriate plug-ins.
For more information about security plug-ins, including installation and configuration
procedures, see your Oracle account executive.

See Also:

• ATMI Security Capabilities

1.3 ATMI Security Capabilities
The Oracle Tuxedo system can enforce security in a number of ways, which includes using the
security features of the host operating system to control access to files, directories, and system

Chapter 1
ATMI Security Capabilities

1-3

resources. In the following table describes the security capabilities available with the ATMI
environment of the Oracle Tuxedo product.

Table 1-1 ATMI Security Capabilities

Security Capability Description Plug-in Interface Default Implementation

Operating system
security

Controls access to
files, directories, and
system resources.

N/A N/A

Authentication Proves the stated
identity of users or
system processes;
safely remembers and
transports identity
information; and makes
identity information
available when
needed.

Implemented as a
single interface

The default authorization plug-in provides
security at three levels: no authentication,
application password, and user-level
authentication. This plug-in works the same way
the Oracle Tuxedo implementation of
authentication has worked since it was first
made available with the Oracle Tuxedo system.

Authorization Controls access to
resources based on
identity or other
information.

Implemented as a
single interface

The default authorization plug-in provides
security at two levels: optional access control
lists and mandatory access control lists. This
plug-in works the same way the Oracle Tuxedo
implementation of authorization has worked
since it was first made available with the Oracle
Tuxedo system.

Auditing Safely collects, stores,
and distributes
information about
operating requests and
their outcomes.

Implemented as a
single interface

Default auditing security is implemented by the
Oracle Tuxedo EventBroker and user log
(ULOG) features.

Link-level encryption Uses symmetric key
encryption to establish
data privacy for
messages moving over
the network links that
connect the machines
in an ATMI application.

N/A RC4 symmetric key encryption.

TLS Encryption Uses the industry-
standard TLS protocol
to establish data
privacy for messages
moving over the
network links that
connect the machines
in an ATMI application.
(TLS is the successor
standard to the SSL
protocol.)

N/A Oracle NZ Security Layer

Public key security Uses public key (or
asymmetric key)
encryption to establish
end-to-end digital
signing and data
privacy between ATMI
application clients and
servers. Complies with
the PKCS-7 standard.

Implemented as six
interfaces

Default public key security supports the following
algorithms:
• RSA public key algorithm
• RSA and DSA digital signature algorithms
• DES-CBC, two-key triple-DES, and RC2

symmetric key algorithms
• MD5 and SHA-1 message digest algorithms

Chapter 1
ATMI Security Capabilities

1-4

See Also:

• Operating system security

• Authentication

• Authorization

• Auditing

• Link-level encryption

• TLS Encryption

• Public key security

1.4 Operating System (OS) Security
On host operating systems with underlying security features, such as file permissions, the
operating-system level of security is the first line of defense. An application administrator can
use file permissions to grant or deny access privileges to specific users or groups of users.

Most ATMI applications are managed by an application administrator who configures the
application, starts it, and monitors the running application dynamically, making changes as
necessary. Because the ATMI application is started and run by the administrator, server
programs are run with the administrator’s permissions and are therefore considered secure or
“trusted.” This working method is supported by the login mechanism and the read and write
permissions on the files, directories, and system resources provided by the underlying
operating system.

Client programs are run directly by users with the users’ own permissions. In addition, users
running native clients (that is, clients running on the same machine on which the server
program is running) have access to the UBBCONFIG configuration file and interprocess
communication (IPC) mechanisms such as the bulletin board (a reserved piece of shared
memory in which parameters governing the ATMI application and statistics about the
application are stored).

For ATMI applications running on platforms that support greater security, a more secure
approach is to limit access to the files and IPC mechanisms to the application administrator
and to have “trusted” client programs run with the permissions of the administrator (using the
setuid command on a UNIX host machine or the equivalent command on another platform).
For the most secure operating system security, allow only Workstation clients to access the
application; client programs should not be allowed to run on the same machines on which
application server and administrative programs run.

Chapter 1
Operating System (OS) Security

1-5

See Also:

• Security Administration Tasks

• Administering Operating System (OS) Security

• “About the Configuration File” and “Creating the Configuration File” in Setting Up
an Oracle Tuxedo Application

• UBBCONFIG(5) in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference

1.5 Authentication
Authentication allows communicating processes to mutually prove identification. The
authentication plug-in interface in the ATMI environment of the Oracle Tuxedo product can
accommodate various security-provider authentication plug-ins using various authentication
technologies, including shared-secret password, one-time password, challenge-response, and
Kerberos. The interface closely follows the generic security service (GSS) application
programming interface (API) where applicable; the GSSAPI is a published standard of the
Internet Engineering Task Force. The authentication plug-in interface is designed to make
integration of third-party vendor security products with the Oracle Tuxedo system as easy as
possible, assuming the security products have been written to the GSSAPI.

• Authentication Plug-in Architecture

• Understanding Delegated Trust Authentication

• Establishing a Session

• Getting Authorization and Auditing Tokens

• Replacing Client Tokens with Server Tokens

• Implementing Custom Authentication

1.5.1 Authentication Plug-in Architecture
The underlying plug-in interface for authentication security is implemented as a single plug-in.
The plug-in may be the default authentication plug-in or a custom authentication plug-in.

1.5.2 Understanding Delegated Trust Authentication
Direct end-to-end mutual authentication in a distributed enterprise middleware environment
such as the Oracle Tuxedo system can be prohibitively expensive, especially when
accomplished with security mechanisms optimized for long-duration connections. It is not
efficient for clients to establish direct network connections with each server process, nor is it
practical to exchange and verify multiple authentication messages as part of processing each
service request. Instead, the ATMI applications use a delegated trust authentication model, as
shown in the following figure:

Chapter 1
Authentication

1-6

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3370051

Figure 1-2 ATMI Delegated Trust Authentication Model

A Workstation client authenticates to a trusted system gateway process, the workstation
handler (WSH), at initialization time. A native client authenticates within itself, as explained
later in this discussion. After a successful authentication, the authentication software assigns a
security token to the client. A token is an opaque data structure suitable for transfer between
processes. The WSH safely stores the token for the authenticated Workstation client, or the
authenticated native client safely stores the token for itself.

As a client request flows through a trusted gateway, the gateway attaches the client’s security
token to the request. The security token travels with the client’s request message, and is
delivered to the destination server process(es) for authorization checking and auditing
purposes.

In this model, the gateway trusts that the authentication software will verify the identity of the
client and generate an appropriate token. Servers, in turn, trust that the gateway process will
attach the correct security token. Servers also trust that any other servers involved in the
processing of a client request will safely deliver the token.

1.5.3 Establishing a Session
The following figure illustrates the control flow inside the ATMI environment of the Oracle
Tuxedo system while a session is being established between a Workstation client and the
WSH. The Workstation client and WSH are attempting to establish a long-term mutually
authenticated connection by exchanging messages.

Chapter 1
Authentication

1-7

Figure 1-3 Control Flow in the ATMI Environment

The initiator process (may be thought of as a middleware client process) creates a session
context by repeatedly calling the Oracle Tuxedo “initiate security context” function until a return
code indicates success or failure. A session context associates identity information with an
authenticated user.

When a Workstation client calls tpinit(3c) for C or TPINITIALIZE(3cbl) for COBOL to join an
ATMI application, the Oracle Tuxedo system begins its response by first calling the internal
“acquire credentials” function to obtain a session credential handle, and then calling the
internal “initiate security context” function to obtain a session context. Each invocation of the
“initiate security context” function takes an input session token (when one is available) and
returns an output session token. A session token carries a protocol for verifying a user’s
identity. The initiator process passes the output session token to the session’s target process
(WSH), where it is exchanged for another input token. The exchange of tokens continues until
both processes have completed mutual authentication.

A security-provider authentication plug-in defines the content of the session context and
session token for its security implementation, so ATMI authentication must treat the session
context and session token as opaque objects. The number of tokens passed back and forth is
not defined, and may vary based on the architecture of the authentication system.

For a native client initiating a session, the initiator process and the target process are the
same; the process may be thought of as a middleware client process. The middleware client
process calls the security provider’s authentication plug-in to authenticate the native client.

1.5.4 Getting Authorization and Auditing Tokens
After a successful authentication, the trusted gateway calls two Oracle Tuxedo internal
functions that retrieve an authorization token and an auditing token for the client, which the
gateway stores for safekeeping. Together, these tokens represent the user identity of a security
context. The term security token refers collectively to the authorization and auditing tokens.

When default authentication is used, the authorization token carries two pieces of information:

• Principal name—the name of an authenticated user.

• Application key—a 32-bit value that uniquely identifies the client initiating the request
message. See Application Key for more detail.

Chapter 1
Authentication

1-8

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1022852
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1000457

In addition, when default authentication is used, the auditing token carries the same two pieces
of information: principal name and application key.

Like the session token, the authentication and auditing tokens are opaque; their contents are
determined by the security provider. The authorization token can be used for performing
authorization (permission) checks. The auditing token can be used for recording audit
information. In some ATMI applications, it is useful to keep separate user identities for
authorization and auditing.

1.5.5 Replacing Client Tokens with Server Tokens
As shown in the following figure, there are situations where a client service request forwarded
by a server takes on the identity of the server. The server replaces the client tokens attached to
the request with its own tokens and then forwards the service request to the destination
service.

Figure 1-4 Server Permission Upgrade Example

Note:

See Specifying Principal Names for an understanding of how servers acquire their
own authorization and auditing tokens and why they need them.

The feature demonstrated in the preceding figure is known as server permission upgrade,
which operates in the following manner: whenever a server calls a dot service (a system-
supplied service having a beginning period in its name—such as .TMIB), the service request
takes on the identity of the server and thus acquires the access permissions of the server. A
server’s access permissions are those of the application (system) administrator. Thus, certain
requests that would be denied if the client called the dot service directly would be allowed if the
client sent the requests to a server, and the server forwarded the requests to the dot service.
For more information about dot services, see the TMIB service description on the MIB(5)

Chapter 1
Authentication

1-9

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1495410

reference page in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference.

1.5.6 Implementing Custom Authentication
You can provide authentication for your ATMI application by using the default plug-in or a
custom plug-in. You choose a plug-in by configuring the Oracle Tuxedo registry, a tool that
controls all security plug-ins.

If you want to use the default authentication plug-in, you do not need to configure the registry.
If you want to use a custom authentication plug-in, however, you must configure the registry for
your plug-in before you can install it. For more detail about the registry, see Setting the Oracle
Tuxedo Registry.

See Also:

• Default Authentication and Authorization

• Security Administration Tasks

• Administering Authentication

• Programming an ATMI Application with Security

• Writing Security Code So Client Programs Can Join the ATMI Application

1.6 Authorization
Authorization allows administrators to control access to ATMI applications. Specifically, an
administrator can use authorization to allow or disallow principals (authenticated users) to use
resources or facilities in an ATMI application.

• Authorization Plug-in Architecture

• How the Authorization Plug-in Works

• Implementing Custom Authorization

1.6.1 Authorization Plug-in Architecture
A fanout is an umbrella plug-in to which individual plug-in implementations are connected. As
shown in the following figure, the authorization plug-in interface is implemented as a fanout.

Chapter 1
Authorization

1-10

Figure 1-5 Authorization Plug-in Architecture

The default authorization implementation consists of a fanout plug-in and a default
authorization plug-in. A custom implementation consists of the fanout plug-in, the default
authorization plug-in, and one or more custom authorization plug-ins.

In a fanout plug-in model, a caller sends a request to the fanout plug-in. The fanout plug-in
passes the request to each of the subordinate plug-ins, and receives a response from each.
Finally, the fanout plug-in forms a composite response from the individual responses, and
sends the composite response to the caller.

The purpose of an authorization request is to determine whether a client operation should be
allowed or whether the results of an operation should be kept unchanged. Each authorization
plug-in returns one of three responses: permit, deny, or abstain. The abstain response gives
writers of authorization plug-ins a graceful way to handle situations that are not accommodated
by the original plug-in, such as names of operations that are added to the system after the
plug-in is installed.

The authorization fanout plug-in forms a composite response as described in the following
table. For default authorization, the composite response is determined solely by the default
authorization plug-in.

Table 1-2 Authorization Composite Responses

If Plug-ins Return . . . The Composite Response Is . . .

All permit or a combination of permit and abstain permit
At least one deny deny
All abstain deny If the SECURITY parameter in the ATMI application’s

UBBCONFIG file is set to MANDATORY_ACL permit If the
SECURITY parameter is not set in the ATMI application’s
UBBCONFIG file or is set to any value other than
MANDATORY_ACL

As an example of custom authorization, consider a banking application in which a user is
identified as a member of the Customer group, and the following conditions are in effect:

• The default authorization plug-in allows any user in the Customer group to withdraw money
from a particular account.

• A custom authorization plug-in allows any user in the Customer group to withdraw money
from a particular account but only on Monday through Friday between 9:00 A.M. and 5:00
P.M.

Chapter 1
Authorization

1-11

• A second custom authorization plug-in allows any user in the Customer group to withdraw
money from a particular account but only if the amount being withdrawn is less
than $10,000.

So, if a user in the Customer group attempts to withdraw $500.00 on Monday at 10 A.M., the
operation is allowed. If the same user attempts the same withdrawal on Saturday morning, the
operation is not allowed.

Many other custom authorization scenarios are possible. Feel free to improvise; define the
conditions that best serve the needs of your business.

1.6.2 How the Authorization Plug-in Works
Authorization decisions are based partly on user identity, which is stored in an authorization
token. Because authorization tokens are generated by the authentication security plug-in,
providers of authentication and authorization plug-ins need to ensure that these plug-ins work
together.

An Oracle Tuxedo system process or server (such as /Q server TMQUEUE(5) or EventBroker
server TMUSREVT(5)) calls the authorization plug-in when it receives a client request. In
response, the authorization plug-in performs a pre-operation check and returns whether the
operation should be allowed.

• If allowed, the system carries out the client request.

• If not allowed, the system does not carry out the client request.

If the client operation is allowed, the Oracle Tuxedo system process or server may call the
authorization plug-in after the client operation completes. In response, the authorization plug-in
performs a post-operation check and returns whether the results of the operation are
acceptable.

• If acceptable, the system accepts the operation results.

• If not unacceptable, the system either modifies the operation results or rolls back
(reverses) the operation.

These calls are system-level calls, not application-level calls. An ATMI application cannot call
the authorization plug-in.

The authorization process is somewhat different for (1) users of the default authorization plug-
in provided by the Oracle Tuxedo system and (2) users of one or more custom authorization
plug-ins. The default plug-in does not support post-operation checks. If the default
authorization plug-in receives a post-operation check request, it returns immediately and does
nothing.

The custom plug-ins support both pre-operation and post-operation checks.

• Default Authorization

• Custom Authorization

1.6.2.1 Default Authorization
When default authorization is called by an ATMI process to perform a pre-operation check in
response to a client request, the authorization plug-in performs the following tasks.

1. Gets information from the client’s authorization token by calling the authentication plug-in.
Because the authorization token is created by the authentication plug-in, the authorization
plug-in has no record of the token’s content. This information is necessary for the
authorization process.

Chapter 1
Authorization

1-12

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1010730
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1010998

2. Performs a pre-operation check.
The authorization plug-in determines whether that operation should be allowed by
examining the client’s authorization token, the access control list (ACL), and the configured
security level (optional or mandatory ACL) of the ATMI application.

3. Issues a decision about whether the operation will be performed.
The authorization fanout plug-in receives a decision (permit or deny) from the default
authorization plug-in and operates on its behalf.

• If the decision is to permit the client operation, the fanout plug-in returns permit to the
calling process. The system carries out the client request.

• If the decision is to deny the operation, the fanout plug-in returns deny to the calling
process. The system does not carry out the client request.

1.6.2.2 Custom Authorization
Users of one or more custom authorization plug-ins may take advantage of additional
functionality offered by the ATMI environment of the Oracle Tuxedo product. Specifically, the
custom plug-ins may perform an additional check after an operation occurs.

When custom authorization is called by an ATMI process to perform a pre-operation check in
response to a client request, the authorization plug-in performs the following tasks.

1. Gets information from the client’s authorization token by calling the authentication plug-in.

2. Performs a pre-operation check.
The authorization plug-in determines whether the operation should be allowed by
examining the operation, the client’s authorization token, and associated data. “Associated
data” may include user data and the security level of the ATMI application.

If necessary, in order to satisfy authorization requirements, the authorization plug-in may
modify the user data before the operation is performed.

3. Issues a decision about whether the operation will be performed.
The authorization fanout plug-in makes the ultimate decision by checking the individual
responses (permit, deny, abstain) of its subordinate plug-ins.

• If the fanout plug-in allows the client operation, it returns permit to the calling process.
The system carries out the client request.

• If the fanout plug-in does not allow the operation, it returns deny to the calling process.
The system does not carry out the client request.

If the client operation is allowed, custom authorization may be called by the ATMI process to
perform a post-operation check after the client operation completes. If so, the authorization
plug-in performs the following tasks.

1. Gets information from the client’s authorization token by calling the authentication plug-in.

2. Performs a post-operation check.
The authorization plug-in determines whether the operation results are acceptable by
examining the operation, the client’s authorization token, and associated data. “Associated
data” may include user data and the security level of the ATMI application.

3. Issues a decision about whether the operation results are acceptable.
The authorization fanout plug-in makes the ultimate decision by checking the individual
responses (permit, deny, abstain) of its subordinate plug-ins.

• If the fanout plug-in decides that the operation results are acceptable, it returns permit
to the calling process. The system accepts the operation results.

Chapter 1
Authorization

1-13

• If the fanout plug-in does not allow the operation, it returns deny to the calling process.
The system either modifies the operation results or rolls back (reverses) the operation.

A post-operation check is useful for label-based security models. For example, suppose that a
user is authorized to access CONFIDENTIAL documents but performs an operation that
retrieves a TOP SECRET document. (Often, a document’s classification label is not easily
determined until after the document has been retrieved.) In this case, the post-operation check
is an efficient means to either deny the operation or modify the output data by expunging any
restricted information.

1.6.3 Implementing Custom Authorization
You can provide authorization for your ATMI application by using the default plug-in or adding
one or more custom plug-ins. You choose a plug-in by configuring the Oracle Tuxedo registry,
a tool that controls all security plug-ins.

If you want to use the default authorization plug-in, you do not need to configure the registry. If
you want to add one or more custom authorization plug-ins, however, you must configure the
registry for your additional plug-ins before you can install them. For more detail about the
registry, see Setting the Oracle Tuxedo Registry.

See Also:

• Default Authentication and Authorization

• Security Administration Tasks

• Administering Authorization

• Programming an ATMI Application with Security

1.7 Auditing
Auditing provides a means to collect, store, and distribute information about operating requests
and their outcomes. Audit-trail records may be used to determine which principals performed,
or attempted to perform, actions that violated the security levels of an ATMI application. They
may also be used to determine which operations were attempted, which ones failed, and which
ones successfully completed.

How auditing is done (that is, how information is collected, processed, protected, and
distributed) depends on the auditing plug-in.

• Auditing Plug-in Architecture

• How the Auditing Plug-in Works

• Implementing Custom Auditing

1.7.1 Auditing Plug-in Architecture
A fanout is an umbrella plug-in to which individual plug-in implementations are connected. As
shown in the following figure, the auditing plug-in interface is implemented as a fanout.

Chapter 1
Auditing

1-14

Figure 1-6 Auditing Plug-in Architecture

The default auditing implementation consists of a fanout plug-in and a default auditing plug-in.
A custom implementation consists of the fanout plug-in, the default auditing plug-in, and one or
more custom auditing plug-ins.

In a fanout plug-in model, a caller sends a request to the fanout plug-in. The fanout plug-in
passes the request to each of the subordinate plug-ins, and receives a response from each.
Finally, the fanout plug-in forms a composite response from the individual responses, and
sends the composite response to the caller.

The purpose of an auditing request is to record an event. Each auditing plug-in returns one of
two responses: success (the audit succeeded—logged the event) or failure (the audit failed—
did not log the event). The auditing fanout plug-in forms a composite response in the following
manner: if all responses are success, the composite response is success; otherwise, the
composite response is failure.

For default auditing, the composite response is determined solely by the default auditing plug-
in. For custom auditing, the composite response is determined by the fanout plug-in after
collecting the responses of the subordinate plug-ins. For more insight into how fanouts work,
see Authorization Plug-in Architecture.

1.7.2 How the Auditing Plug-in Works
Auditing decisions are based partly on user identity, which is stored in an auditing token.
Because auditing tokens are generated by the authentication security plug-in, providers of
authentication and auditing plug-ins need to ensure that these plug-ins work together.

An ATMI system process or server (such as /Q server TMQUEUE(5) or EventBroker server
TMUSREVT(5)) calls the auditing plug-in when it receives a client request. Because it is called
before an operation begins, the auditing plug-in can audit operation attempts and store data if
that data will be needed later for a post-operation audit. In response, the auditing plug-in
performs a pre-operation audit and returns whether the audit succeeded.

The ATMI system process or server may call the auditing plug-in after the client operation is
performed. In response, the auditing plug-in performs a post-operation audit and returns
whether the audit succeeded.

In addition, an ATMI system process or server may call the auditing plug-in when a potential
security violation occurs. (Suspicion of a security violation arises when a pre-operation or post-
operation authorization check fails, or when an attack on security is detected.) In response, the
auditing performs a post-operation audit and returns whether the audit succeeded.

Chapter 1
Auditing

1-15

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1010730
https://docs.oracle.com/cd/E13203_01/tuxedo/tux80/atmi/rf531.htm#1010998

These calls are system-level calls, not application-level calls. An ATMI application cannot call
the auditing plug-in.

The auditing process is somewhat different for (1) users of the default auditing plug-in provided
by the Oracle Tuxedo system and (2) users of one or more custom auditing plug-ins. The
default plug-in does not support pre-operation audits. If the default auditing plug-in receives a
pre-operation audit request, it returns immediately and does nothing.

The custom plug-ins support both pre-operation and post-operation audits.

• Default Auditing

• Custom Auditing

1.7.2.1 Default Auditing
The default auditing implementation consists of the Oracle Tuxedo EventBroker component
and userlog (ULOG). These utilities report only security violations; they do not report which
operations were attempted, which ones failed, and which ones successfully completed.

When default auditing is called by an ATMI process to perform a post-operation audit when a
security violation is suspected, the auditing plug-in performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication plug-in.
Because the auditing token is created by the authentication plug-in, the auditing plug-in
has no record of the token’s content. This information is necessary for the auditing
process.

2. Performs a post-operation audit.
The auditing plug-in examines the client’s auditing token and the security violation
delivered in the post-operation audit request.

3. Issues a decision about whether the post-operation audit succeeded.
The auditing fanout plug-in receives a decision (success or failure) from the default
auditing plug-in and operates on its behalf.

• If the decision is success, the post-operation audit succeeded. The auditing fanout
plug-in returns success to the calling process and logs the security violation.

• If the decision is failure, the post-operation audit failed. The auditing fanout returns
failure to the calling process.

1.7.2.2 Custom Auditing
Users of one or more custom auditing plug-ins may take advantage of additional functionality
offered by the ATMI environment of the Oracle Tuxedo product. Specifically, the custom plug-
ins may perform an additional audit before an operation occurs.

When custom auditing is called by an ATMI process to perform a pre-operation audit in
response to a client request, the auditing plug-in performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication plug-in.

2. Performs a pre-operation audit.
The auditing plug-in examines the client’s auditing token and may store user data if that
data will be needed later for a post-operation audit.

3. Issues a decision about whether the pre-operation audit succeeded.
The auditing fanout plug-in makes the ultimate decision by checking the individual
responses (success or failure) from its subordinate plug-ins.

Chapter 1
Auditing

1-16

• If the composite decision is success, the pre-operation audit succeeded. The auditing
fanout plug-in returns success to the calling process and logs the client’s attempt to
perform the operation.

• If the composite decision is failure, the pre-operation audit failed. The auditing fanout
returns failure to the calling process.

Custom auditing may be called by the ATMI process to perform a post-operation audit after the
client operation is performed. If so, the auditing plug-in performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication plug-in.

2. Performs a post-operation audit.
The auditing plug-in examines the client’s auditing token, the completion status delivered in
the post-operation audit request, and any data stored during the pre-operation audit.

3. Issues a decision about whether the post-operation audit succeeded.
The auditing fanout plug-in decides if the post-operation audit succeeded or failed by
checking the individual responses (success or failure) from its subordinate plug-ins.

• If the composite decision is success, the post-operation audit succeeded. The auditing
fanout plug-in returns success to the calling process and logs the completion status of
the operation.

• If the composite decision is failure, the post-operation audit failed. The auditing fanout
returns failure to the calling process.

An operation is considered successful if it passes both pre- and post-operation audits, and the
operation itself is successful. Some companies collect and store both pre- and post-operation
auditing data, even though such data can occupy a lot of disk space.

1.7.3 Implementing Custom Auditing
You can provide auditing for your ATMI application by using the default plug-in or adding one or
more custom plug-ins. You choose a plug-in by configuring the Oracle Tuxedo registry, a tool
that controls all security plug-ins.

If you want to use the default auditing plug-in, you do not need to configure the registry. If you
want to add one or more custom auditing plug-ins, however, you must configure the registry for
your additional plug-ins before you can install them.

Now Oracle Tuxedo supports Oracle Platform Security Services (OPSS) plug-in.

1.8 Link-Level Encryption
Link-level encryption (LLE) establishes data privacy for messages moving over the network
links that connect the machines in an ATMI application. It employs the symmetric key
encryption technique (specifically, RC4), which uses the same key for encryption and
decryption.

When LLE is being used, the Oracle Tuxedo system encrypts data before sending it over a
network link and decrypts it as it comes off the link. The system repeats this encryption/
decryption process at every link through which the data passes. For this reason, LLE is
referred to as a point-to-point facility.

LLE can be used on the following types of ATMI application links:

• Workstation client to workstation handler (WSH)

• Bridge-to-Bridge

Chapter 1
Link-Level Encryption

1-17

• Administrative utility (such as tmboot or tmshutdown) to tlisten
• Domain gateway to domain gateway

There are three levels of LLE security:

• 0-bit (no encryption)

• 56-bit (International)

• 128-bit (United States and Canada)

The International LLE version allows 0-bit and 56-bit encryption. The United States and
Canada LLE version allows 0, 56, and 128-bit encryption.

• How LLE Works

• Encryption Key Size Negotiation

• Backward Compatibility of LLE

• WSL/WSH Connection Timeout During Initialization

1.8.1 How LLE Works
LLE control parameters and underlying communication protocols are different for various link
types, but the setup is basically the same in all cases:

• An initiator process begins the communication session.

• A target process receives the initial connection.

• Both processes are aware of the link-level encryption feature, and have two configuration
parameters.

The first configuration parameter is the minimum encryption level that a process will accept. It
is expressed as a key length: 0, 56, or 128 bits.

The second configuration parameter is the maximum encryption level a process can support. It
also is expressed as a key length: 0, 56, or 128 bits.

For convenience, the two parameters are denoted as (min, max) in the discussion that follows.
For example, the values “(56, 128)” for a process mean that the process accepts at least 56-bit
encryption but can support up to 128-bit encryption.

1.8.2 Encryption Key Size Negotiation
When two processes at the opposite ends of a network link need to communicate, they must
first agree on the size of the key to be used for encryption. This agreement is resolved through
a two-step process of negotiation.

1. Each process identifies its own min-max values.

2. Together, the two processes find the largest key size supported by both.

• Determining Min-Max Values

• Finding a Common Key Size

1.8.2.1 Determining Min-Max Values
A Tuxedo process will process the MINENCRYTPBITS and MAXENCRYPTBITS using the following
steps.

Chapter 1
Link-Level Encryption

1-18

• If the configured min-max values accommodate the default min-max values, then the local
software assigns those values as the min-max values for the process.

• If one of the min-max values is not configured, then the default value will be used for the
missing value. For instance (0, max-value-configured) or (min-value-configured, 128) will
be used.

• If there are no min-max values specified in the configurations for a particular link type, then
the local software assigns 0 as the minimum value and assigns the highest bit-encryption
rate possible for the default min-max values as the maximum value, that is, (0, 128) for the
LLE.

1.8.2.2 Finding a Common Key Size
After the min-max values are determined for the two processes, the negotiation of key size
begins. The negotiation process need not be encrypted or hidden. Once a key size is agreed
upon, it remains in effect for the lifetime of the network connection.

The following table describes which key size, if any, is agreed upon by two processes when all
possible combinations of min-max values are negotiated. The header row holds the min-max
values for one process; the far left column holds the min-max values for the other.

Table 1-3 Interprocess Negotiation Results

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 56) 0 56 56 56 56 ERROR

(0, 128) 0 56 128 56 128 128

(56, 56) ERROR 56 56 56 56 ERROR

(56, 128) ERROR 56 128 56 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128

1.8.3 Backward Compatibility of LLE
The ATMI environment of the Oracle Tuxedo product offers some backward compatibility for
LLE.

• Interoperating with Release 6.5 Oracle Tuxedo Software

• Interoperating with Pre-Release 6.5 Oracle Tuxedo Software

1.8.3.1 Interoperating with Release 6.5 Oracle Tuxedo Software
In the following table describes which key size, if any, is agreed upon by two ATMI applications
when one of them is running under release 6.5 and the other under release 7.1 or later. The
header row holds the min-max values for the process running under release 7.1 or later; the far
left column holds the min-max values for the process running under release 6.5.

Table 1-4 Negotiation Results When Interoperating with Release 6.5 Oracle Tuxedo Software

(0,0) (0,56) (0,128) (56,56) (56,128) (128,128)

0 0 ERROR ERROR ERROR

40 40 ERROR ERROR ERROR

40 128 ERROR 128 128

Chapter 1
Link-Level Encryption

1-19

Table 1-4 (Cont.) Negotiation Results When Interoperating with Release 6.5 Oracle Tuxedo Software

(0,0) (0,56) (0,128) (56,56) (56,128) (128,128)

ERROR 40 40 ERROR ERROR ERROR

ERROR 40 128 ERROR 128 128

ERROR ERROR 128 ERROR 128 128

If your current Oracle Tuxedo installation is configured for (0, 56), (0, 128), (56,56), or (56,
128), and you want to interoperate with a release 6.5 ATMI application that is configured for a
maximum LLE level of 40 bits, then any negotiation results in an automatic upgrade to 56.

The negotiation result in this case is the same as the negotiation result for two sites running
release 6.5 and configured for a maximum LLE level of 40 bits. In both scenarios, the
negotiation results in an automatic upgrade to 56.

1.8.3.2 Interoperating with Pre-Release 6.5 Oracle Tuxedo Software
In the following table describes which key size, if any, is agreed upon by two ATMI applications
when one of them is running under pre-release 6.5 and the other under release 7.1 or later.
The header row holds the min-max values for the process running under release 7.1 or later;
the far left column holds the min-max values for the process running under pre-release 6.5.

Table 1-5 Negotiation Results When Interoperating with Pre-Release 6.5 Oracle Tuxedo Software

(0,0) (0,56) (0,128) (56,56) (56,128) (128,128)

(0,0) 0 0 0 ERROR ERROR ERROR

(0,40) 0 56 56 56 56 ERROR

(0,128) 0 56 128 56 128 128

(40,40) ERROR 56 56 56 56 ERROR

(40,128) ERROR 56 128 56 128 128

(128,128) ERROR ERROR 128 ERROR 128 128

If your current Oracle Tuxedo installation is configured for (0, 56) or (0, 128), and you want to
interoperate with a pre-release 6.5 ATMI applications that is configured for a maximum LLE
level of 40 bits, then the result of any negotiation is 40.

If your current Oracle Tuxedo installation is configured for (56, 56), (56, 128), or (128, 128),
then your system cannot interoperate with a pre-release 6.5 ATMI application that is configured
for a maximum LLE level of 40 bits. Attempts to negotiate a common key size fail.

1.8.4 WSL/WSH Connection Timeout During Initialization
The length of time a Workstation client can take for initialization is limited. By default, this
interval is 30 seconds in an ATMI application not using LLE, and 60 seconds in an ATMI
application using LLE. The 60-second interval includes the time needed to negotiate an
encrypted link. This time limit can be changed when LLE is configured by changing the value of
the MAXINITTIME parameter for the workstation listener (WSL) server in the UBBCONFIG file, or
the value of the TA_MAXINITTIME attribute in the T_WSL class of the WS_MIB(5) .

Chapter 1
Link-Level Encryption

1-20

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1533648

See Also:

• Security Administration Tasks

• Administering Link-Level Encryption

• “Distributing ATMI Applications Across a Network” and “Creating the
Configuration File for a Distributed ATMI Application” in Setting Up an Oracle
Tuxedo Application

1.9 TLS Encryption
The Oracle Tuxedo product provides the industry-standard TLS protocol to establish secure
communications between client and server applications. When using the TLS protocol,
principals use digital certificates to prove their identity to a peer.

Note:

The actual network protocol used is TLS, which is the successor to the TLS protocol,
however, this document follows common usage and refer to this protocol as TLS
Encryption.

Like LLE, the TLS protocol can be used with password authentication to provide confidentiality
and integrity to communication between the client application and the Oracle Tuxedo domain.
When using the TLS protocol with password authentication, you are prompted for the
password of the Listener/Handler (IIOP, Workstation, or JOLT) defined by the
SEC_PRINCIPAL_NAME parameter when you enter the tmloadcf command.

TLS is used to secure ATMI application links in the following methods:

• Client to server handler (IIOP, Workstation, or JOLT)

• Bridge-to-Bridge

• Administrative utility (such as tmboot or tmshutdown) to tlisten
• Domain gateway to domain gateway

Available TLS ciphers include 256-bit, 128-bit, and 56-bit ciphers, as described later in this
chapter.

• How the TLS Protocol Works

• Requirements for Using the TLS Protocol

• TLS Version Negotiation and Configuration

• Encryption Key Size Negotiation

• Backward Compatibility of TLS

• WSL/WSH Connection Timeout During Initialization

• Supported Cipher Suites

• TLS Installation

Chapter 1
TLS Encryption

1-21

1.9.1 How the TLS Protocol Works
The TLS protocol works in the following manner:

1. The Target Process presents its digital certificate to the initiating application.

2. The initiating application compares the digital certificate of the Target Process against its
list of trusted certificate authorities.

3. If the initiating application validates the digital certificate of the Target Process, the
application and the Target Process establish an TLS connection.

The initiating application can then use either password or certificate authentication to
authenticate itself to the Oracle Tuxedo domain.

The following figure illustrates how the TLS protocol works.

Figure 1-7 How the TLS Protocol Works in a Tuxedo Application

Initiating
process

Target
process

Certificate for target process

Certificate for initiating process
(if mutual authentication is used)

TLS Protocol

1.9.2 Requirements for Using the TLS Protocol
The implementation of the TLS protocol is flexible enough to fit into most public key
infrastructures. Tuxedo offers two different methods to store TLS security credentials:

• The Oracle Wallet is a new feature of Tuxedo 12c. An Oracle Wallet stores the private key,
certificate chain, and trusted certificates for a process within a single PKCS12 file, which
can be created using either Oracle tools or tools from other security vendors.

• The plugin framework used in previous release of Tuxedo can also be used to store
security credentials. The default implementation of the plug-in frame work in the Oracle
Tuxedo product requires that digital certificates are stored in an LDAP-enabled directory.
You can choose any LDAP-enabled directory service. You also need to choose the
certificate authority from which to obtain digital certificates and private keys used in a
Tuxedo application. You must have an LDAP-enabled directory service and a certificate
authority in place before using the TLS protocol in a Tuxedo application.

1.9.3 TLS Version Negotiation and Configuration
Tuxedo 12.2.2 supports TLS 1.2, 1.1, and 1.0, while some Tuxedo earlier releases support just
TLS 1.0. When a secure network connection is established between the TLS server and client,
the TLS version to be used is negotiated. When acting as an TLS server, Tuxedo components
always accept TLS1.2/1.1/1.0 initiating request. When acting as an TLS client, Tuxedo 12.2.2
components conform to following rules:

Chapter 1
TLS Encryption

1-22

• WSC has self-adaption capability, which means it can connect to a Tuxedo 12.2.2 listener
using TLS 1.2, and can connect to the old release listener using TLS 1.0 automatically.

• GWTDOMAIN, COBRA client, and GWWS outbound HTTPS use TLS 1.2 by default. You
need to change their TLS version to TLS 1.0 when connecting to a Tuxedo 12.1.3 GA or
earlier release.

• When GWTDOMAIN is acting as both TLS client and TLS server, only the TLS version
specified for TLS client side takes effect.

• If a Tuxedo 12.2.2 master machine connects to an earlier release slave machine in an MP
model, you must start tlisten on the master machine before running the tmboot command.

Table 1-6 Default TLS Version and Related Parameter

When an TLS client is... The default TLS version used is... You can change the TLS Version
using...

GWTDOMAIN TLS 1.2 The TLS version parameter in
DMCONFIG. For more information, see
File Formats, Data Descriptions, MIBs,
and System Processes Reference.

WSC Self-adaptive The environment variable WSNADDR
CORBA client (Tobj_Bootstrap) TLS 1.2 The Tobj_Bootstrap constructor

naddress parameter or the environment
variable TOBJADDR. For more
information, seeFile Formats, Data
Descriptions, MIBs, and System
Processes Reference .

GWWS outbound TLS 1.2 The new attribute <TLSversion> for End
Point of outbound in SALT Deployment
File. For more information, see
Configuring a SALT Application.

1.9.4 Encryption Key Size Negotiation
When two processes at the opposite ends of a network link need to communicate, they must
first agree on the size of the key to be used for encryption. This agreement is resolved through
a two-step process of negotiation.

1. Each process identifies its own min-max values.

2. Together, the two processes find the largest key size supported by both.

• Determining Min-Max Values

• Finding a Common Key Size

1.9.4.1 Determining Min-Max Values
A Tuxedo process will process the MINENCRYTPBITS and MAXENCRYPTBITS using the following
steps:

• If the configured min-max values accommodate the default min-max values, then the local
software assigns those values as the min-max values for the process.

• If one of the min-max values is not configured, then the default value will be used for the
missing value. For instance (0, max-value-configured) or (min-value-configured, 128) will
be used.

Chapter 1
TLS Encryption

1-23

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html
https://docs.oracle.com/cd/E72452_01/salt/docs1222/config/config.html

• If there are no min-max values specified in the configurations for a particular link type, then
the local software assigns 0 as the minimum value and assigns 128 as the maximum
value.

• The minimum encryption key size is 112. If min-max value is configured with 40 or 56, then
112 will be used by default.

• The configuration information about encryption strength is processed independent of type
of link level security.

• For /WS client, the default MAXENCRYPTBITS is 256; it will be adjusted according to the
actual link level security configured.

1.9.4.2 Finding a Common Key Size
After the min-max values are determined for the two processes, the negotiation of key size
begins. The negotiation process need not be encrypted or hidden. Once a key size is agreed
upon, it remains in effect for the lifetime of the network connection.

The following table describes which key size, if any, is agreed upon by two processes when all
possible combinations of min-max values are negotiated. The header row holds the min-max
values for one process; the far left column holds the min-max values for the other.

Table 1-7 Interprocess Negotiation Results (112,112) to (112,256)

(112,112) (112,128) (112,256)

(112,112) 112 112 112

(112,128) 112 128 128

(112,256) 112 128 256

(128,128) ERROR 128 128

(128,256) ERROR 128 256

(256,256) ERROR ERROR 256

Table 1-8 Interprocess Negotiation Results (128,128) to (256,256)

(128,128) (128,256) (256,256)

(112,112) ERROR ERROR ERROR

(112,128) 128 128 ERROR

(112,256) 128 256 256

(128,128) 128 128 ERROR

(128,256) 128 256 256

(256,256) ERROR 256 256

1.9.5 Backward Compatibility of TLS
In order to use TLS between two Tuxedo processes, both processes must be running Tuxedo
10.0 or later (except when using the CORBA TLS capabilities described in "Using Security in
CORBA Applications." It is possible to specify both non-TLS and TLS ports for WSL and JSL
processes and to specify TLS or LLE connectivity for individual entries in the *DM_TDOMAIN
section of a DMCONFIG file. In this way, it is possible to gradually migrate a workstation or
domain application to use TLS as individual workstation clients and Tuxedo domains are
upgraded to Tuxedo 10.

Chapter 1
TLS Encryption

1-24

See Also:

• It is not possible to use TLS between BRIDGE and tlisten processes in an MP
mode application until all machines in the Tuxedo domain are upgraded to
Tuxedo 10.0 or later.

• Zero bit TLS ciphers (which do not actually encrypt application data) were
allowed prior to Tuxedo 12.1.1, but are disallowed by the Oracle NZ Security
Layer used in Tuxedo 12.1.1 and later.

1.9.6 WSL/WSH Connection Timeout During Initialization
The length of time a Workstation client can take for initialization is limited. By default, this
interval is 60. The 60-second interval includes the time needed to negotiate an encrypted link.
This time limit can be changed when WSL is configured by changing the value of the
MAXINITTIME parameter for the workstation listener (WSL) server in the UBBCONFIG file, or the
value of the TA_MAXINITTIME attribute in the T_WSL class of the WS_MIB(5).

1.9.7 Supported Cipher Suites
A cipher suite is a TLS encryption method that includes the key exchange algorithm, the
symmetric encryption algorithm, and the secure hash algorithm used to protect the integrity of
the communication. For example, the cipher suite RSA_WITH_RC4_128_MD5 uses RSA for key
exchange, RC4 with a 128-bit key for bulk encryption, and MD5 for message digest. The ATMI
security environment supports the cipher suites described in the following table.

Table 1-9 SSL/TLS Cipher Suites Supported by the ATMI Security Environment

Cipher Suite Key Exchange Type Symmetric Key Strength

TLS_RSA_WITH_AES_256_CBC_SHA RSA 256

TLS_RSA_WITH_AES_128_CBC_SHA RSA 128

SSL_RSA_WITH_RC4_128_SHA RSA 128

SSL_RSA_WITH_RC4_128_MD5 RSA 128

SSL_RSA_WITH_3DES_EDE_CBC_S
HA
SSL_DH_anon_WITH_3DES_EDE_CB
C_SHA

RSA 112

SSL_RSA_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_DES_CBS_SHA

RSA 56

SSL_RSA_EXPORT_WITH_RC4_40_
MD5
SSL_RSA_EXPORT_WITH_DES40_D
BC_SHA
SSL_DH_anon_EXPORT_WITH_DES4
0_CBC_SHA
SSL_DH_anon_EXPORT_WITH_RC4_
40_MD5

RSA 40

Chapter 1
TLS Encryption

1-25

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1533648

1.9.8 TLS Installation
TLS is delivered as a standard feature of the Tuxedo system. If an application will not be using
the Oracle Wallet to store security credentials and will be using LDAP to obtain certificates,
then the administrator should have the name of their LDAP server, the LDAP port number, and
the LDAP filter file location available at installation time (The default LDAP filter file location
of $TUXDIR/udataobj/security/bea_ldap_filter.dat should be fine for most applications.)

This information can be changed after installation using the epifregedtcommand.

See Also:

• Security Administration Tasks

• Administering TLS Encryption

• “Distributing ATMI Applications Across a Network” and “Creating the
Configuration File for a Distributed ATMI Application” in Setting Up an Oracle
Tuxedo Application

• Using Security in CORBA Applications

1.10 Public Key Security
Public key security provides two capabilities that make end-to-end digital signing and data
encryption possible:

• Message-based digital signature

• Message-based encryption

Message-based digital signature allows the recipient (or recipients) of a message to identify
and authenticate both the sender and the sent message. Digital signature provides solid proof
of the originator and content of a message; a sender cannot falsely repudiate responsibility for
a message to which that sender’s digital signature is attached. Thus, for example, Bob cannot
issue a request for a withdrawal from his bank account and later claim that someone else
issued that request.

In addition, message-based encryption protects the confidentiality of messages by ensuring
that only designated recipients can decrypt and read them.

• PKCS-7 Compliant

• Supported Algorithms for Public Key Security

1.10.1 PKCS-7 Compliant
Informal but recognized industry standards for public key software have been issued by a
group of leading communications companies, led by RSA Laboratories. These standards are
called Public-Key Cryptography Standards, or PKCS. The public key software in the ATMI
environment of the Oracle Tuxedo software complies with the PKCS-7 standard.

PKCS-7 is a hybrid cryptosystem architecture. A symmetric key algorithm with a random
session key is used to encrypt a message, and a public key algorithm is used to encrypt the

Chapter 1
Public Key Security

1-26

random session key. A random number generator creates a new session key for each
communication, which makes it difficult for a would-be attacker to reuse previous
communications.

1.10.2 Supported Algorithms for Public Key Security
All the algorithms on which public key security is based are well known and commercially
available. To select the algorithms that will best serve your ATMI application, consider the
following factors: speed, degree of security, and licensing restrictions (for example, the United
States government restricts the algorithms that it allows to be exported to other countries).

• Public Key Algorithms

• Digital Signature Algorithms

• Symmetric Key Algorithms

• Message Digest Algorithms

1.10.2.1 Public Key Algorithms
The public key security in the ATMI environment of the Oracle Tuxedo product supports any
public key algorithms supported by the underlying plug-ins, including RSA, ElGamal, and
Rabin. (RSA stands for Rivest, Shamir, and Adelman, the inventors of the RSA algorithm.) All
these algorithms can be used for digital signatures and encryption.

Public key (or asymmetric key) algorithms such as RSA are implemented through a pair of
different but mathematically related keys:

• A public key (which is distributed widely) for verifying a digital signature or transforming
data into a seemingly unintelligible form.

• A private key (which is always kept secret) for creating a digital signature or returning the
data to its original form.

1.10.2.2 Digital Signature Algorithms
The public key security in the ATMI environment of the Oracle Tuxedo product supports any
digital signature algorithms supported by the underlying plug-ins, including RSA, ElGamal,
Rabin, and Digital Signature Algorithm (DSA). With the exception of DSA, all these algorithms
can be used for digital signatures and encryption. DSA can be used for digital signatures but
not for encryption.

Digital signature algorithms are simply public key algorithms used to provide digital signatures.
DSA is also a public key algorithm (implemented through public-private key pairs), but it can
only be used to provide digital signatures, not encryption.

1.10.2.3 Symmetric Key Algorithms
Public key security supports the following three symmetric key algorithms:

• DES-CBC (Data Encryption Standard for Cipher Block Chaining)
DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It provides
56-bit keys (8 parity bits are stripped from the full 64-bit key) and is exportable outside the
United States.

• Two-key triple-DES (Data Encryption Standard)

Chapter 1
Public Key Security

1-27

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt (EDE) mode.
Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit key) and is not exportable
outside the United States.

For some time it has been common practice to protect and transport a key for DES
encryption with triple-DES, which means that the input data (in this case the single-DES
key) is encrypted, decrypted, and then encrypted again (an encrypt-decrypt-encrypt
process). The same key is used for the two encryption operations.

• RC2 (Rivest’s Cipher 2)
RC2 is a variable key-size block cipher with a key size range of 40 to 128 bits. It is faster
than DES and is exportable with a key size of 40 bits. A 56-bit key size is allowed for
foreign subsidiaries and overseas offices of United States companies. In the United States,
RC2 can be used with keys of virtually unlimited length, although the ATMI public key
security restricts the key length to 128 bits.

Oracle Tuxedo customers cannot expand or modify this list of algorithms.

In symmetric key algorithms, the same key is used to encrypt and decrypt a message. The
public key encryption system uses symmetric key encryption to encrypt a message sent
between two communicating entities. Symmetric key encryption operates at least 1000 times
faster than public key cryptography.

A block cipher is a type of symmetric key algorithm that transforms a fixed-length block of
plaintext (unencrypted text) data into a block of ciphertext (encrypted text) data of the same
length. This transformation takes place in accordance with the value of a randomly generated
session key. The fixed length is called the block size.

1.10.2.4 Message Digest Algorithms
Public key security supports any message digest algorithms supported by the underlying plug-
ins, including MD5, SHA-1 (Secure Hash Algorithm 1), and many others. Both MD5 and SHA-1
are well known, one-way hash algorithms. A one-way hash algorithm takes a message and
converts it into a fixed string of digits, which is referred to as a message digest or hash value.

MD5 is a high-speed, 128-bit hash; it is intended for use with 32-bit machines. SHA-1 offers
more security by using a 160-bit hash, but is slower than MD5.

See Also:

• Message-based Digital Signature

• Message-based Encryption

• Public Key Implementation

• Security Administration Tasks

• Administering Public Key Security

• Programming an ATMI Application with Security

• Writing Security Code to Protect Data Integrity and Privacy

Chapter 1
Public Key Security

1-28

1.11 Message-based Digital Signature
Message-based digital signatures enhance ATMI security by allowing a message originator to
prove its identity, and by binding that proof to a specific message buffer. Mutually authenticated
and tamper-proof communication is considered essential for ATMI applications that transport
data over the Internet, either between companies or between a company and the general
public. It also is critical for ATMI applications deployed over insecure internal networks.

The scope of protection for a message-based digital signature is end-to-end: a message buffer
is protected from the time it leaves the originating process until the time it is received at the
destination process. It is protected at all intermediate transit points, including temporary
message queues, disk-based queues, and system processes, and during transmission over
inter-server network links.

The following figure illustrates how end-to-end message-based digital signature works.

Figure 1-8 ATMI PKCS-7 End-to-End Digital Signing

Message-based digital signature involves generating a digital signature by computing a
message digest on the message, and then encrypting the message digest with the sender’s
private key. The recipient verifies the signature by decrypting the encrypted message digest
with the signer’s public key, and then comparing the recovered message digest to an
independently computed message digest. The signer’s public key either is contained in a
digital certificate included in the signer information, or is referenced by an issuer-distinguished
name and issuer-specific serial number that uniquely identify the certificate for the public key.

Chapter 1
Message-based Digital Signature

1-29

• Digital Certificates

• Certification Authority

• Certificate Repositories

• Public-Key Infrastructure

1.11.1 Digital Certificates
Digital certificates are electronic files used to uniquely identify individuals and resources over
networks such as the Internet. A digital certificate securely binds the identity of an individual or
resource, as verified by a trusted third party known as a Certification Authority, to a particular
public key. Because no two public keys are ever identical, a public key can be used to identify
its owner.

Digital certificates allow verification of the claim that a specific public key does in fact belong to
a specific subscriber. A recipient of a certificate can use the public key listed in the certificate to
verify that the digital signature was created with the corresponding private key. If such
verification is successful, this chain of reasoning provides assurance that the corresponding
private key is held by the subscriber named in the certificate, and that the digital signature was
created by that particular subscriber.

A certificate typically includes a variety of information, such as:

• The name of the subscriber (holder, owner) and other identification information required to
uniquely identify the subscriber, such as the URL of the Web server using the certificate, or
an individual’s e-mail address.

• The subscriber’s public key.

• The name of the Certification Authority that issued the certificate.

• A serial number.

• The validity period (or lifetime) of the certificate (defined by a start date and an end date).

The most widely accepted format for certificates is defined by the ITU-T X.509 international
standard. Thus, certificates can be read or written by any ATMI application complying with
X.509. The public key security in the ATMI environment of the Oracle Tuxedo product
recognizes certificates that comply with X.509 version 3, or X.509v3.

1.11.2 Certification Authority
Certificates are issued by a Certification Authority, or CA. Any trusted third-party organization
or company that is willing to vouch for the identities of those to whom it issues certificates and
public keys can be a CA. When it creates a certificate, the CA signs the certificate with its
private key, to obtain a digital signature. The CA then returns the certificate with the signature
to the subscriber; these two parts—the certificate and the CA’s signature—together form a
valid certificate.

The subscriber and others can verify the issuing CA’s digital signature by using the CA’s public
key. The CA makes its public key readily available by publicizing that key or by providing a
certificate from a higher-level CA attesting to the validity of the lower-level CA’s public key. The
second solution gives rise to hierarchies of CAs.

The recipient of an encrypted message can develop trust in the CA’s private key recursively, if
the recipient has a certificate containing the CA’s public key signed by a superior CA whom the
recipient already trusts. In this sense, a certificate is a stepping stone in digital trust. Ultimately,
it is necessary to trust only the public keys of a small number of top-level CAs. Through a chain
of certificates, trust in a large number of users’ signatures can be established.

Chapter 1
Message-based Digital Signature

1-30

Thus, digital signatures establish the identities of communicating entities, but a signature can
be trusted only to the extent that the public key for verifying the signature can be trusted.

Note:

The Oracle Tuxedo public key plug-in interface enables the customers to choose a
CA of their choice.

1.11.3 Certificate Repositories
To facilitate the use of a public key in verification, a digital certificate may be published in a
repository or made accessible in another manner. Repositories are databases of certificates
and other information available for retrieval and use in verifying digital signatures. Retrieval can
be accomplished automatically by having the verification program request certificates from the
repository as required.

1.11.4 Public-Key Infrastructure
The Public-Key Infrastructure (PKI) consists of protocols, services, and standards supporting
applications of public key cryptography. Because the technology is still relatively new, the term
PKI is somewhat loosely defined: sometimes “PKI” simply refers to a trust hierarchy based on
public key certificates; in other contexts, it embraces digital signature and encryption services
provided to end-user applications as well.

There is no single standard public key infrastructure today, though efforts are underway to
define one. It is not yet clear whether a standard will be established or multiple independent
PKIs evolves with varying degrees of interoperability. In this sense, the state of PKI technology
today can be viewed as similar to local and wide-area network technology in the 1980s, before
there was widespread connectivity via the Internet.

The following services are likely to be found in a PKI:

• Key registration: for issuing a new certificate for a public key

• Certificate revocation: for canceling a previously issued certificate

• Key selection: for obtaining a party’s public key

• Trust evaluation: for determining whether a certificate is valid and which operations it
authorizes

The following figure illustrates the PKI process flow.

Figure 1-9 PKI Process Flow

Chapter 1
Message-based Digital Signature

1-31

1. Subscriber applies to Certification Authority (CA) for digital certificate.

2. CA verifies identity of subscriber and issues digital certificate.

3. CA publishes certificate to repository.

4. Subscriber digitally signs electronic message with private key to ensure sender
authenticity, message integrity, and non-repudiation, and then sends message to recipient.

5. Recipient receives message, verifies digital signature with subscriber’s public key, and
goes to repository to check status and validity of subscriber’s certificate.

6. Repository returns results of status check on subscriber’s certificate to recipient.

Note:

Oracle Tuxedo enables you to utilize a PKI security solution based on PKI software
from their vendor of choice through Oracle Tuxedo's public key plug-in interface.

See Also:

• Public Key Implementation

• Security Administration Tasks

• Administering Public Key Security

• Programming an ATMI Application with Security

• Writing Security Code to Protect Data Integrity and Privacy

1.12 Message-based Encryption
Message-based encryption keeps data private, which is essential for ATMI applications that
transport data over the Internet, whether between companies or between a company and its
customers. Data privacy is also critical for ATMI applications deployed over insecure internal
networks.

Message-based encryption also helps ensure message integrity, because it is more difficult for
an attacker to modify a message when the content is obscured.

The scope of protection provided by message-based encryption is end-to-end; a message
buffer is protected from the time it leaves the originating process until the time it is received at
the destination process. It is protected at all intermediate transit points, including temporary
message queues, disk-based queues, and system processes, and during transmission over
interserver network links.

The following figure illustrates how end-to-end message-based encryption works.

Chapter 1
Message-based Encryption

1-32

Figure 1-10 ATMI PKCS-7 End-to-End Encryption

The message is encrypted by a symmetric key algorithm and a session key. Then, the session
key is encrypted by the recipient’s public key. Next, the recipient decrypts the encrypted
session key with the recipient’s private key. Finally, the recipient decrypts the encrypted
message with the session key to obtain the message content.

Note:

The following figure does not depict two other steps in this process: (1) the data is
compressed immediately before it is encrypted; and (2) the data is uncompressed
immediately after it is decrypted.

Because the unit of encryption is an ATMI message buffer, message-based encryption is
compatible with all existing ATMI programming interfaces and communication paradigms. The
encryption process is always the same, whether it is being performed on messages shipped
between two processes in a single machine, or on messages sent between two machines
through a network.

Chapter 1
Message-based Encryption

1-33

See Also:

• Public Key Implementation

• Security Administration Tasks

• Administering Public Key Security

• Programming an ATMI Application with Security

• Writing Security Code to Protect Data Integrity and Privacy

1.13 Public Key Implementation
The underlying plug-in interface for public key security consists of six component interfaces,
each of which requires one or more plug-ins. By instantiating these interfaces with your
preferred plug-ins, you can bring custom message-based digital signature and message-based
encryption to your ATMI application.

The six component interfaces are:

• Public key initialization

• Key management

• Certificate lookup

• Certificate parsing

• Certificate validation

• Proof material mapping

• Public Key Initialization

• Key Management

• Certificate Lookup

• Certificate Parsing

• Certificate Validation

• Proof Material Mapping

• Implementing Custom Public Key Security

• Default Public Key Implementation

1.13.1 Public Key Initialization
The public key initialization interface allows public key software to open public and private
keys. For example, gateway processes may need to have access to a specific private key in
order to decrypt messages before routing them. This interface is implemented as a fanout.

1.13.2 Key Management
The key management interface allows public key software to manage and use public and
private keys. Note that message digests and session keys are encrypted and decrypted using
this interface, but no bulk data encryption is performed using public key cryptography. Bulk
data encryption is performed using symmetric key cryptography.

Chapter 1
Public Key Implementation

1-34

1.13.3 Certificate Lookup
The certificate lookup interface allows public key software to retrieve X.509v3 certificates for a
given principal. Principals are authenticated users. The certificate database may be stored
using any appropriate tool, such as Lightweight Directory Access Protocol (LDAP), Microsoft
Active Directory, Netware Directory Service (NDS), or local files.

1.13.4 Certificate Parsing
The certificate parsing interface allows public key software to associate a simple principal
name with an X.509v3 certificate. The parser analyzes a certificate to generate a principal
name to be associated with the certificate.

1.13.5 Certificate Validation
The certificate validation interface allows public key software to validate an X.509v3 certificate
in accordance with specific business logic. This interface is implemented as a fanout, which
allows Oracle Tuxedo customers to use their own business rules to determine the validity of a
certificate.

1.13.6 Proof Material Mapping
The proof material mapping interface allows public key software to access the proof materials
needed to open keys, provide authorization tokens, and provide auditing tokens.

1.13.7 Implementing Custom Public Key Security
You can provide public key security for your ATMI application by using custom plug-ins. You
choose a plug-in by configuring the Oracle Tuxedo registry, a tool that controls all security
plug-ins.

If you want to use custom public key plug-ins, you must configure the registry for your public
key plug-ins before you can install them. For more detail about the registry, see Setting the
Oracle Tuxedo Registry.

1.13.8 Default Public Key Implementation
The default public key implementation supports the following algorithms:

• Public key algorithms: RSA

• Digital signature algorithms: RSA and DSA

• Symmetric key algorithms:

– DES-CBC

– Two-key triple-DES

– RC2

• Message digest algorithms:

– MD5

– SHA-1

Chapter 1
Public Key Implementation

1-35

See Also:

• Public Key Implementation

• Security Administration Tasks

• Administering Public Key Security

• Programming an ATMI Application with Security

• Writing Security Code to Protect Data Integrity and Privacy

1.14 Default Authentication and Authorization
The default authentication and authorization plug-ins provided by the ATMI environment of the
Oracle Tuxedo product work in the same manner that implementations of authentication and
authorization have worked since they were first made available with the Oracle Tuxedo system.

An application administrator can use the default authentication and authorization plug-ins to
configure an ATMI application with one of five levels of security. The five levels include:

• No authentication

• Application password security

• User-level authentication

• Optional access control list (ACL) security

• Mandatory ACL security

At the lowest level, no authentication is provided. At the highest level, an access control
checking feature determines which users can execute a service, post an event, or enqueue (or
dequeue) a message on an application queue. The security levels are briefly described in the
following table:

Table 1-10 Security Levels for Default Authentication and Authorization

Security Level Description

No authentication Clients do not have to be verified before joining the ATMI
application. When joining an ATMI application at this security
level, a user has access to all application resources.

Application password The application administrator defines a single password for
the entire ATMI application, and clients must provide the
password to join the application. When successfully joining
an ATMI application at this security level, a user has access
to all application resources.

User-level authentication In addition to the application password, each client must
provide a valid username and user-specific data, such as a
password, to join the ATMI application. When successfully
joining an ATMI application at this security level, a user has
access to all application resources.

Chapter 1
Default Authentication and Authorization

1-36

Table 1-10 (Cont.) Security Levels for Default Authentication and Authorization

Security Level Description

Optional ACL security Clients must provide the application password, a username,
and user-specific data such as a password. For a user who
successfully joins an ATMI application at this security level,
access to application resources is restricted in the following
way. The ACL database contains a list of application
resources and, for each resource, a list of users with
permission to use it. A user who is not included in the list for
a particular resource is not allowed to access that resource,
regardless of whether optional ACL or mandatory ACL
security is being used. If there is no entry in the ACL
database for a resource and the security level for the ATMI
application is set to optional ACL security, all users are
permitted to access the resource.

Mandatory ACL security Clients must provide the application password, a username,
and user-specific data such as a password. For a user who
successfully joins an ATMI application at this security level,
access to application resources is restricted in the following
way. The ACL database contains a list of application
resources and, for each resource, a list of users with
permission to use it. A user who is not included in the list for
a particular resource is not allowed to access that resource,
regardless of whether optional ACL or mandatory ACL
security is being used. If there is no entry in the ACL
database for a resource and the security level for the ATMI
application is set to mandatory ACL security, users are not
permitted to access the resource.

Note:

The term client is synonymous with client process, meaning a specific instance of a
client program in execution. An ATMI client program can exist in active memory in
any number of individual instances.

An application administrator can designate a security level by setting the SECURITY parameter
in the UBBCONFIG configuration file to the appropriate value.

For This Security Level Set SECURITY Parameter to . . .

No authentication NONE

Application password security APP_PW

User-level authentication USER_AUTH

Optional ACL security ACL

Mandatory ACL security MANDATORY_ACL

The default is NONE. If SECURITY is set to USER_AUTH, ACL, or MANDATORY_ACL, then the
application administrator must configure a system-supplied authentication server named
AUTHSVR. AUTHSVR performs per-user authentication.

An application developer can replace AUTHSVR with an authentication server that has logic
specific to the ATMI application. For example, a company may want to develop a custom
authentication server so that it can use the popular Kerberos mechanism for authentication.

Chapter 1
Default Authentication and Authorization

1-37

• Client Naming

• User, Group, and ACL Files

• Optional and Mandatory ACLs

1.14.1 Client Naming
Upon joining an ATMI application, a client process has two names: a combined user-client
name and a unique client identifier known as an application key.

• The user-client name consists of a username and a client name and is used for security,
administration, and communications.

• The application key is a 32-bit value that is called on behalf of the client and used by the
access control checking feature.

Two client names are reserved for special semantics: tpsysadm and tpsysop. tpsysadm is
treated as the application administrator, and tpsysop is treated as the application operator.

• User-Client Names

• Application Key

1.14.1.1 User-Client Names
When an authenticated client joins an ATMI application, it passes a username and client name
to tpinit(3c) in a TPINIT buffer if the application is written in C, or to TPINITIALIZE(3cbl) in a
TPINFDEF-REC record if the application is written in COBOL. The username and client name, as
well as other security-related fields in the TPINIT buffer/ TPINFDEF-REC record, are described in
the following table:

Table 1-11 Security-Related Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT TPINFDEF-REC Description

usrname USRNAME A user name consisting of a string of up
to 30 characters. Required for security
level USER_AUTH, ACL, or
MANDATORY_ACL. The username
represents the caller.

cltname CLTNAME A client name consisting of a string of
up to 30 characters. Required for
security level USER_AUTH, ACL, or
MANDATORY_ACL. The client name
represents the client program.

passwd PASSWD Application password. Required for
security level APP_PW, USER_AUTH, ACL,
or MANDATORY_ACL. tpinit() or
TPINITIALIZE() validates this
password by comparing it to the
configured application password stored
in the TUXCONFIG file.*

datalen DATALEN Length of the user-specific data** that
follows.

Chapter 1
Default Authentication and Authorization

1-38

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1022852
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1000457

Table 1-11 (Cont.) Security-Related Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT TPINFDEF-REC Description

data N/A User-specific data.** Required for
security level USER_AUTH, ACL, or
MANDATORY_ACL. tpinit() or
TPINITIALIZE() forwards the user-
specific data to the authentication
server for validation. The authentication
server is AUTHSVR.

*The binary equivalent of the UBBCONFIG file. **Usually a user password.

For an authenticated security level (USER_AUTH, ACL, or MANDATORY_ACL), the
username, client name, and user-specific data are transferred to AUTHSVR without
interpretation by the Oracle Tuxedo system. The only manipulation of this information is its
encryption when transmitted over the network from a Workstation client.

1.14.1.2 Application Key
Every time a client joins an ATMI application, it is assigned a 32-bit application key by the
Oracle Tuxedo system. The client cannot reset the key other than by terminating its association
and joining the ATMI application as a different user.

The assigned application key is the client’s security credential. The client provides its
application key with every service invocation as part of the TPSVCINFO structure in the
appkey field. (See tpservice(3c) in the Oracle Tuxedo ATMI C Function Reference for more
information about TPSVCINFO.)

The following table illustrates how the application key is set for various security levels and
clients. All application key assignments are hardcoded except the last item in the table.

Table 1-12 Application Key Assignments

At This Security Level Messages of This Type Are Assigned the Following
Application Key

Any security level Messages from native ATMI clients that
must be run by the administrator (like
tmadmin(1))

0x80000000 (Application key of the
administrator)

NONE or APP_PW Messages from native ATMI clients that
call tpinit()/ TPINITIALIZE() with
a client name of tpsysadm and are run
by the administrator

0x80000000 (Application key of the
administrator)

Messages from native ATMI clients that
call tpinit()/ TPINITIALIZE() with
a client name of tpsysop and are run
by the administrator

0xC0000000 (Application key of the
operator)

Messages from any ATMI client other
than tpsysadm or tpsysop

-1

USER_AUTH, ACL, or MANDATORY_ACL Messages from native ATMI clients that
call tpinit()/ TPINITIALIZE() with
a client name of tpsysadm and are run
by the administrator and bypass
authentication

0x80000000 (Application key of the
administrator)

Chapter 1
Default Authentication and Authorization

1-39

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1044944
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1971834
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1971834

Table 1-12 (Cont.) Application Key Assignments

At This Security Level Messages of This Type Are Assigned the Following
Application Key

Messages from authenticated ATMI
clients that call tpinit()/
TPINITIALIZE() with a client name of
tpsysadm

0x80000000 (Application key of the
administrator)

Messages from authenticated ATMI
clients that call tpinit()/
TPINITIALIZE() with a client name of
tpsysop

0xC0000000 (Application key of the
operator)

Messages from authenticated ATMI
clients that call tpinit()/
TPINITIALIZE() with a client name
other than tpsysadm or tpsysop

Application key =user identifier
(UID) in the lower 17 bits and group
identifier (GID) in the next higher 14
bits; remaining upper bit is 0. AUTHSVR
returns this application key value

In addition, any message that originates from tpsvrinit(3c) or tpsvrdone(3c) in a C program
(TPSVRINIT(3cbl) or TPSVRDONE(3cbl) in COBOL) is assigned the application key of the
administrator: 0x80000000. The application key of the client is assigned to messages that pass
through a server but originate at a client; an exception to this rule is described in Replacing
Client Tokens with Server Tokens.

A user identifier (UID) is an integer, between 0 and 128K, that is used by the application to
refer to a particular user. A group identifier (GID) is an integer, between 0 and 16K, that is used
by the application to refer to an application group.

1.14.2 User, Group, and ACL Files
To use access control, an application administrator must maintain lists of (1) users, (2) groups,
and (3) and mappings of groups to application entities (such as services, events, and
application queues). The third type of list, a mapping of groups to application entities, is known
as the access control list (ACL).

When a client tries to access an application resource, such as a service, the system checks
the client’s application key and thus identifies the group to which the user belongs. Next, the
system checks the ACL for the target resource and determines whether the client’s group has
access permission. The application administrator, application operator, and processes or
service requests running with the privileges of the application administrator or operator are not
subject to ACL permission checking.

The user, group, and ACL files are located in the application_root directory, where application
_root is the first pathname defined for the APPDIR variable. The following figure illustrates these
files and specifies the administrative commands available for controlling each list.

Chapter 1
Default Authentication and Authorization

1-40

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1023306
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1023279
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1268536
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1001902

Figure 1-11 Default User, Group, and ACL Files

Note:

For an ATMI application running on the Compaq VMS operating system, the names
of the user, group, and ACL files have .dat extensions: tpusr.dat, tpgrp.dat, and
tpacl.dat.

The files are colon-delimited, flat text files that can be read and written only by the application
administrator—the owner of the TUXCONFIG file referenced by the TUXCONFIG variable. The
format of the files is irrelevant, since the files are fully administered with a set of dedicated
commands. Only the application administrator is allowed to use these commands.

An application administrator can use the tpaclcvt(1) command to convert security data files to
the format needed by the ACL checking feature. For example, on a UNIX host machine, an
administrator can use tpaclcvt to convert the /etc/password file and store the converted
version in the tpusr file. The same administrator can use tpaclcvt to convert the /etc/group
file and store the converted version in the tpgrp file.

The AUTHSVR server uses the user information stored in the tpusr file to authenticate users who
want to join the ATMI application.

When extensible security administration is enabled with the default XAUTHSVR implemented,
user, group, and ACL definition are placed in the LDAP repository rather than in a plain text.
These information must follow the LDAP schemas. For information about LDAP schemas, refer
to How to Enable The Extended Security in Administering Security.

The XAUTHSVR server uses the user, group, and permission information in the LDAP repository
to authenticate users who want to join the ATMI application or access Tuxedo resources.

1.14.3 Optional and Mandatory ACLs
The ACL and MANDATORY_ACL security levels constitute the default authorization implementation
for the ATMI environment in the Oracle Tuxedo product.

Chapter 1
Default Authentication and Authorization

1-41

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1001579

When the security level is ACL, if there is no entry in the tpacl file or LDAP
Orcljaznpermission class associated with the target application entity, the client is permitted
to access the entity. This security level enables an administrator to configure access for only
those resources that need more security. That is, there is no need to add entries to the tpacl
file for services, events, or application queues that are open to everyone.

When the security level is MANDATORY_ACL, if there is no entry in the tpacl file or LDAP
Orcljaznpermission class associated with the target application entity, the client is not
permitted to access the entity. For this reason, this level is called mandatory. There must be an
entry in the tpacl file or LDAP Orcljaznpermission class for each and every application entity
that the client needs to access.

For both the ACL and MANDATORY_ACL security levels, if an entry for an application entity exists
in the tpacl file or LDAP Orcljaznpermission class and the client attempts to access that
entity, the user associated with that client must be a member of a group that is allowed to
access that entity; otherwise, permission is denied.

For some ATMI applications, it may be necessary to use both system-level and application-
level authorization. An entry in the tpacl file can be used to control which users can access a
service, and application logic can control data-dependent access, for example, which users
can handle transactions for more than a million dollars.

Note that there is no ACL permission checking for administrative services, events, and
application queues with names that begin with a dot (.). For example, any client can subscribe
to administrative events such as .SysMachineBroadcast, .SysNetworkConfig,
and .SysServerCleaning. In addition, there is no ACL permission checking for the application
administrator, application operator, or processes or service requests running with the privileges
of the application administrator or operator.

See Also:

• What Administering Security Means

• Security Administration Tasks

• Administering Authentication

• Administering Authorization

• What Programming Security Means

• Programming an ATMI Application with Security

• Writing Security Code So Client Programs Can Join the ATMI Application

• “About the Configuration File” and “Creating the Configuration File” in Setting Up
an Oracle Tuxedo Application

• UBBCONFIG(5) in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference

• AUTHSVR(5) in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference

Chapter 1
Default Authentication and Authorization

1-42

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3370051
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3595387

1.15 Security Interoperability
Application developers and administrators must be aware of certain security issues when
configuring ATMI applications to interoperate with Oracle Tuxedo pre-release 7.1 (6.5 or
earlier) software.

Interoperability, as defined in this discussion, is the ability of the current release of Oracle
Tuxedo software to communicate over a network with a previous release of Oracle Tuxedo
software. Specifically, inter-domain interoperability and intra-domain interoperability have the
following meanings:

• Inter-domain interoperability
Involves one ATMI application running Oracle Tuxedo release 7.1 or later software, and
another ATMI application running Oracle Tuxedo pre-release 7.1 software.

Figure 1-12 Inter-Domain Interoperability

• Intra-domain interoperability
Involves one machine in a multiple-machine ATMI application running Oracle Tuxedo
release 7.1 or later software, and another machine in the same application running Oracle
Tuxedo pre-release 7.1 software.

Chapter 1
Security Interoperability

1-43

Figure 1-13 Intra-Domain Interoperability

• Interoperating with Pre-Release 7.1 Software

• Interoperability for Link-Level Encryption

• Interoperability for TLS Encryption

• Interoperability for Public Key Security

1.15.1 Interoperating with Pre-Release 7.1 Software
Interoperating with Oracle Tuxedo pre-release 7.1 software is allowed or disallowed at the
authentication security level. Authentication, as implemented by Oracle Tuxedo release 7.1 or
later software, allows communicating processes to mutually prove their identities.

By default, interoperability with a machine running Oracle Tuxedo pre-release 7.1 software is
not allowed. To change the default, an application administrator can use the CLOPT -t option to
allow workstation handlers (WSHs), domain gateways (GWTDOMAINs), and servers in the release
7.1 or later ATMI application to interoperate with Oracle Tuxedo pre-release 7.1 software.
Mandating Interoperability Policy provides instructions for using the CLOPT -t option as well as
the security ramifications for authentication and authorization when using CLOPT -t.

1.15.2 Interoperability for Link-Level Encryption
Whenever a network link is established between machines running Oracle Tuxedo software,
link-level encryption may be used to encrypt data before sending it over the network link, and
decrypt it as it comes off the link. Of course, link-level encryption is possible only if LLE is
installed on both the sending and receiving machines.

LLE interoperability with Oracle Tuxedo pre-release 7.1 software is described in Backward
Compatibility of LLE.

Chapter 1
Security Interoperability

1-44

1.15.3 Interoperability for TLS Encryption
TLS encryption can be used over network links between machines running Oracle Tuxedo
software only if both machines are running Tuxedo 10.0 or later. LLE encryption can be used
over network links to machines running earlier releases of Tuxedo.

Note:

The only exception to the TLS encryption interoperability rules is that the CORBA
related TLS capabilities described in “Using Security in CORBA Applications” can be
used when interoperating with Tuxedo 8.0 and above, and when interoperating with
the former WLE product.

1.15.4 Interoperability for Public Key Security
The following interoperability rules for public key security shown in the following table apply to
a machine running release 7.1 or later Oracle Tuxedo software that is configured to
interoperate with a machine running Oracle Tuxedo pre-release 7.1 software. To clarify the
rules, each rule has an accompanying example scenario involving a Workstation client running
Oracle Tuxedo pre-release 7.1 software.

Table 1-13 Interoperability Rules for Public Key Security

Interoperability Rule Example Comments

Encrypted outgoing message buffers
destined for a machine running Oracle
Tuxedo pre-release 7.1 software are not
transmitted to the machine.

Encrypted outgoing message buffers
destined for a pre-release 7.1
Workstation client are not transmitted to
the Workstation client.

“Encrypted” refers to public key
message-based encryption, not link-
level encryption.

Incoming message buffers from a
machine running an Oracle Tuxedo pre-
release 7.1 software are not accepted if
routed to a process requiring
encryption.

Incoming message buffers from a pre-
release 7.1 Workstation client do not
have encryption envelopes attached,
and are not accepted if routed to a
process requiring encryption.

See Setting Encryption Policy for a
description of the
ENCRYPTION_REQUIRED configuration
parameter.

For outgoing message buffers destined
for the machine running Oracle Tuxedo
pre-release 7.1 software, any digital
signatures are verified and then
removed before the message buffers
are transmitted to the older machine.

Digital signatures are verified and then
removed from outgoing message
buffers destined for a pre-release 7.1
Workstation client.

It is assumed that the outgoing
message buffer is digitally signed but
not encrypted. If the outgoing message
buffer is digitally signed and encrypted,
the message is not decrypted, the
digital signatures are not verified, and
the message is not transmitted to the
older machine.

Incoming message buffers from a
machine running Oracle Tuxedo pre-
release 7.1 software are not accepted if
routed to a process requiring digital
signatures.

Incoming message buffers from a pre-
release 7.1 Workstation client do not
have digital signatures attached, and
are not accepted if routed to a process
requiring digital signatures.

See Setting Digital Signature Policy for
a description of the
SIGNATURE_REQUIRED configuration
parameter.

For inter-domain interoperability, release 7.1 or later domain gateway (GWTDOMAIN) processes
enforce the interoperability rules for public key security.

For intra-domain interoperability, release 7.1 or later native clients, workstation handlers
(WSHs), or server processes communicating with the local bridge process enforce the
interoperability rules for public key security, as shown in

Chapter 1
Security Interoperability

1-45

A bridge process operates only as a conduit; it does not decrypt message buffer content or
verify digital signatures.

Figure 1-14 Enforcing Intra-Domain Interoperability Rules for Public Key Security

Note:

Typically, a release 7.1 or later WSH does not verify digital signatures. But when
routing a digitally signed message buffer to a process running Oracle Tuxedo pre-
release 7.1 software, the WSH verifies any digital signatures before removing them.

See Also:

• Security Compatibility

• Mandating Interoperability Policy

• Setting Digital Signature Policy

• Setting Encryption Policy

1.16 Security Compatibility
For an ATMI application running Oracle Tuxedo release 7.1 or later software, it is possible to
have any combination of default or custom authentication, authorization, auditing, and public
key security. In addition, any combination of these four security capabilities is compatible with
link-level encryption.

• Mixing Default/Custom Authentication and Authorization

Chapter 1
Security Compatibility

1-46

• Mixing Default/Custom Authentication and Auditing

• Compatibility Issues for Public Key Security

1.16.1 Mixing Default/Custom Authentication and Authorization
It is possible to have default authentication and custom authorization, or custom authentication
and default authorization, as long as the application developer is aware of the following
restriction: the authorization security token must carry at a minimum (1) an authenticated
username, or principal name, and (2) an application key value as defined in Application Key.

Authorization decisions are based partly on user identity, which is stored in an authorization
token. Because authorization tokens are generated by the authentication security plug-in,
providers of authentication and authorization plug-ins need to ensure that these plug-ins work
together. (See Authentication and Authorization for more detail.)

1.16.2 Mixing Default/Custom Authentication and Auditing
It is possible to have default authentication and custom auditing, or custom authentication and
default auditing, as long as the application developer is aware of the following restriction: the
auditing security token must carry at a minimum (1) an authenticated username, or principal
name, and (2) an application key value as defined in Application Key.

Auditing decisions are based partly on user identity, which is stored in an auditing token.
Because auditing tokens are generated by the authentication security plug-in, providers of
authentication and auditing plug-ins need to ensure that these plug-ins work together. (See
Authentication and Auditing for more detail.)

1.16.3 Compatibility Issues for Public Key Security
Public key security is compatible with all features and processes supported by Oracle Tuxedo
release 7.1 or later software except the compression feature. Encrypted message buffers
cannot be compressed using the compression feature. But, because the public key software
compresses the message content just before it encrypts the message buffer, any size savings
are still achieved.

This topic describes the compatibility/interaction of public key security with the following ATMI
features and processes:

• Data-dependent routing

• Threads

• EventBroker

• /Q

• Transactions

• Domain gateways (GWTDOMAINs)

• Other vendors’ gateways

• Compatibility/Interaction with Data-dependent Routing

• Compatibility/Interaction with Threads

• Compatibility/Interaction with the EventBroker

• Compatibility/Interaction with /Q

• Compatibility/Interaction with Transactions

Chapter 1
Security Compatibility

1-47

• Compatibility/Interaction with Domain Gateways

• Compatibility/Interaction with Other Vendors’ Gateways

1.16.3.1 Compatibility/Interaction with Data-dependent Routing
Central to the data-dependent routing feature is the ability of a process to examine the content
of incoming message buffers. If an incoming message buffer is encrypted, a process
configured for data-dependent routing must have opened a recipient’s private key so that the
public key software can use that key to decrypt the message buffer. For data-dependent
routing, the public key software does not verify digital signatures.

If a decryption key is not available, the routing operation fails. The system generates an
ERROR userlog(3c) message to report the failure.

If a decryption key is available, the process makes a routing decision based on a decrypted
copy of the encrypted message buffer. The chain of events is as follows:

1. The public key software makes a copy of the encrypted message buffer and uses the
decryption key to decrypt the buffer.

2. The process reads the resulting plaintext (unencrypted text) message content to make the
routing decision.

3. The public key software overwrites the plaintext message content with zero values to
preserve privacy.

The system then transmits the original encrypted message buffer in accordance with the
routing decision.

1.16.3.2 Compatibility/Interaction with Threads
Public-private keys are represented and manipulated via handles. A handle has data
associated with it that is used by the public key application programming interface (API) to
locate or access the item named by the handle. A process opens a key handle for digital
signature generation, message encryption, or message decryption.

A key handle is a process resource; it is not bound to any specific thread or context. Any
communication necessary to open a key is performed within the thread’s currently active
context. Thereafter, the key is available to any context in the process, whether or not the
context is associated with the same ATMI application.

A key’s internal data structures are thread safe. As such, a key may be accessed concurrently
by multiple threads.

1.16.3.3 Compatibility/Interaction with the EventBroker
In general, a TMUSREVT(5) system server handles encrypted message buffers without
decrypting them, that is, both digital signatures and encryption envelopes remain intact as
messages flow through the Oracle Tuxedo EventBroker component. However, the following
cases require that the EventBroker component decrypt posted message buffers:

• To evaluate subscription filter expressions based on message content.
If the EventBroker does not have access to a suitable decryption key, the subscription’s
filter expression is assumed to be false, and the subscription is not considered a match.

• To perform subscription notification actions that require access to message content:
userlog(3c) processing or system command execution.

Chapter 1
Security Compatibility

1-48

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1010998
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646

If the EventBroker does not have access to a suitable decryption key, the subscription’s
notification action fails, and the system generates an ERROR userlog(3c) message to
report the failure.

• To perform subscription notification actions that, based on system configurations, need to
access message content for data-dependent routing.
If the EventBroker does not have access to a suitable decryption key, the subscription’s
notification action fails, and the system generates an ERROR userlog(3c) message to
report the failure.

For a transactional subscription, the system also marks the transaction as rollback-only.

• To comply with an administrative system policy requiring encryption (as explained in
Setting Encryption Policy).
If the EventBroker does not have access to a suitable decryption key, the tppost(3c)
operation fails, and the system generates an ERROR userlog(3c) message to report the
failure.

• To verify that a posted encrypted message has a valid digital signature attached, if required
to do so by an administrative system policy requiring digital signatures (as explained in
Setting Digital Signature Policy).
If the EventBroker does not have access to a suitable decryption key, the tppost(3c)
operation fails, and the system generates an ERROR userlog(3c) message to report the
failure.

1.16.3.4 Compatibility/Interaction with /Q
In general, a TMQUEUE(5) or TMQFORWARD(5) system server handles encrypted message
buffers without decrypting them, that is, both signatures and encryption envelopes remain
intact as messages flow through the Oracle Tuxedo /Q component. However, the following
cases require that the /Q component decrypt enqueued message buffers:

• To perform TMQFORWARD operations that, based on system configurations, need to access
message content for data-dependent routing.
If TMQFORWARD does not have access to a suitable decryption key, the forward operation
fails. The system returns the message to the queue and generates an ERROR userlog(3c)
message to report the failure

After a number of periodic retry attempts, TMQFORWARD might place the unreadable
message on an error queue.

After a number of periodic retry attempts, TMQFORWARD might place the unreadable
message on an error queue.

• To comply with an administrative system policy requiring encryption (as explained in
Setting Encryption Policy).
If the /Q component does not have access to a suitable decryption key, the tpdequeue(3c)
operation fails, and the system generates an ERROR userlog(3c) message to report the
failure.

• To verify that an enqueued encrypted message has a valid signature attached, if required
to do so by an administrative system policy requiring digital signatures (as explained in
Setting Digital Signature Policy).
If the /Q component does not have access to a suitable decryption key, the tpdequeue(3c)
operation fails, and the system generates an ERROR userlog(3c) message to report the
failure.

A non-transactional tpdequeue(3c) operation has the side effect of destroying an encrypted
queued message if the invoking process does not hold a valid decryption key.

Chapter 1
Security Compatibility

1-49

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1044210
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1044210
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1010730
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1026459
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1041783
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1041783
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1041783

If a message with an invalid signature is placed in a queue (or if the message is corrupted or
tampered with while on the queue), any attempt to dequeue it fails. A non-transactional
tpdequeue(3c) operation has the side effect of destroying such a message. A transactional
tpdequeue(3c) operation causes transaction rollback, and all future transactional attempts to
dequeue the message will continue to fail.

1.16.3.5 Compatibility/Interaction with Transactions
Public key security operations—opening and closing keys, requesting a digital signature, or
requesting encryption—are not transactional, and are not undone by transaction rollback.
However, transactions might rollback due to failure conditions associated with the following
public key operations:

• If a transactional request or reply message cannot be decrypted, its associated transaction
is rolled back.

• If a transactional request or reply message is discarded because of an invalid or missing
digital signature, its associated transaction is rolled back.

• If a transactional request or reply message is rejected because it violates an administrative
system policy requiring encryption or digital signatures, its associated transaction is rolled
back.

1.16.3.6 Compatibility/Interaction with Domain Gateways
Domain gateway (GWTDOMAIN) processes connecting two ATMI applications running Oracle
Tuxedo release 7.1 or later software preserve digital signatures and encryption envelopes. In
addition, the domain gateway processes verify digital signatures and enforce administrative
system policies regarding digital signatures and encryption.

The following figure illustrates understanding how domain gateway processes interact with
local and remote ATMI applications.

Figure 1-15 Communication Between ATMI Applications

Chapter 1
Security Compatibility

1-50

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1041783
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1041783

The following table describes how release 7.1 or later domain gateway processes handle
digitally signed and encrypted message buffers.

Table 1-14 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

Inbound message—originating from a
remote process and received over a
network connection

Has encryption envelope and may
or may not have digital signature

The domain gateway process accepts the
message and forwards it in encrypted form.
If the data-dependent routing feature
applies and the domain gateway process
does not have a suitable decryption key, the
gateway process rejects the message. (See
Compatibility/Interaction with Data-
dependent Routing for clarification.)

Inbound message Does not have encryption envelope
or digital signature

If the domain gateway process is running
within a domain, machine, or group
requiring encryption, the gateway process
rejects the message. If a service advertised
by the domain gateway requires encryption,
the gateway process rejects the message.
(See Setting Encryption Policy for
clarification). If the domain gateway does
not require encryption, the gateway process
accepts and forwards the message.

Inbound message Has digital signature but is not
encrypted

The domain gateway process verifies the
digital signature and forwards the message
with digital signature attached.

Inbound message Does not have digital signature and
is not encrypted

If the domain gateway process is running
within a domain, machine, or group
requiring digital signatures, the gateway
process rejects the message. If a service
advertised by the domain gateway requires
digital signatures, the gateway process
rejects the message. (See Setting Digital
Signature Policy for clarification.) If the
domain gateway does not require digital
signatures, the gateway process accepts
and forwards the message.

Outbound message—originating from a
local process and transmitted over a
network connection

Has encryption envelope and may
or may not have digital signature

The domain gateway process accepts the
message and forwards it in encrypted form
over the network. If the data-dependent
routing feature applies and the domain
gateway process does not have a suitable
decryption key, the gateway process rejects
the message. (See Compatibility/Interaction
with Data-dependent Routing for
clarification.) If the encrypted message is
destined for a process running Oracle
Tuxedo pre-release 7.1 (6.5 or earlier)
software, the domain gateway process
rejects the message. (See Interoperating
with Pre-Release 7.1 Software and
Interoperability for Public Key Security for
clarification.)

Chapter 1
Security Compatibility

1-51

Table 1-14 (Cont.) Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

Outbound message Does not have encryption envelope
or digital signature

If the domain gateway process is running
within a domain, machine, or group
requiring encryption, the gateway process
rejects the message. If a service advertised
by the domain gateway requires encryption,
the gateway process rejects the message.
(See Setting Encryption Policy for
clarification.) If the domain gateway does
not require encryption, the gateway process
accepts the message and forwards it over
the network.

Outbound message Has digital signature but is not
encrypted

The domain gateway process verifies the
digital signature and forwards the message
with digital signature attached over the
network. If the message is destined for a
process running Oracle Tuxedo pre-release
7.1 software and assuming interoperability
with Oracle Tuxedo pre-release 7.1
software is allowed, the domain gateway
process verifies and then removes the
digital signature before forwarding the
message over the network. (See
Interoperating with Pre-Release 7.1
Software and Interoperability for Public Key
Security for clarification.)

Outbound message Outbound message If the domain gateway process is running
within a domain, machine, or group
requiring digital signatures, the gateway
process rejects the message. If a service
advertised by the domain gateway requires
digital signatures, the gateway process
rejects the message. (See Setting Digital
Signature Policy for clarification.) If the
domain gateway does not require digital
signatures, the gateway process accepts
the message and forwards it over the
network.

1.16.3.7 Compatibility/Interaction with Other Vendors’ Gateways
A domain gateway (GWTDOMAIN) process connecting a release 7.1 or later ATMI application to
another vendor’s gateway process operates on outbound message buffers as follows:

1. Decrypts encrypted messages.

2. Verifies digital signatures (if any) and then removes digital signatures.

3. Transmits messages in plaintext format over the network to the vendor’s gateway process.

In addition, the domain gateway process enforces the administrative system policies regarding
encryption and digital signatures for the ATMI application. As an example, if encryption and/or
digital signatures are required at the domain level for the ATMI application, the local domain
gateway process rejects any message coming from the other vendor’s gateway process.

Chapter 1
Security Compatibility

1-52

See Also:

• Security Interoperability

• Mandating Interoperability Policy

• Setting Digital Signature Policy

• Setting Encryption Policy

1.17 Denial-of-Service (DoS) Defense
With more distributed multi-domain Tuxedo applications extending their reach to public
networks and less secure environments, the Tuxedo domain gateway is required to better
defend against potential threats. These environments may contain insecure networks and
untrusted participants, who can initiate or propagate malicious attacks such as Denial-of-
Service (DoS) attacks.

The Tuxedo TDomain gateway (GWTDOMAIN) uses the following features to defend against
DoS attacks.

Limited/Restricted Connection Numbers

Message Sanity Check

Message Authentication Code (MAC) Usage

• Limited/Restricted Connection Numbers

• Setting Up Connection Limitations/Restrictions

• Message Sanity Check

• Message Authentication Code (MAC) Usage

• Setting up Message Authentication Code (MAC) Usage

1.17.1 Limited/Restricted Connection Numbers
GWTDOMAIN is a daemon server that waits on a well-known TCP port to accept incoming
connection requests. This opens the vulnerability to connection flood attack, a type of DoS
attack where the attacker continuously tries to establish many connections with GWTDOMAIN
at the same time using particular tools (for example, a port scanning program). This causes the
domain gateway to waste computing power (time, memory, and so on) to accept the
connection requests and allocate resources for each connection.

By limiting the number of connections, GWTDOMAIN can avoid this problem. For more
GWTDOMAIN information, see GWTDOMAIN(5).

1.17.2 Setting Up Connection Limitations/Restrictions
The Limited/Restricted Connection Numbers feature requires modification of the *SERVERS
section in the UBBCONFIG file.

• UBBCONFIG File

• Messages

Chapter 1
Denial-of-Service (DoS) Defense

1-53

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1149066

1.17.2.1 UBBCONFIG File
The CLOPT used to specify the parameter for GWTDOMAIN is "-x" using the following syntax:
-x limit [:{[duration][: period]}]. A colon (:) is used to separate each option.

Note:

The colon (:) can only be used between two options. For example, configurations
like ":duration" or "limit::" are invalid.

The default value(s) for the duration and period options are used if they are not specified.

Please be aware that the timing is not exact for performance reason. There may be a one-
second difference.

If the number of current active connections plus the number of closed connections in a
specified previous period is greater than the limit, GWTDOMAIN is suspended for a duration
specified in seconds.

Note:

The number of current active connections includes both active incoming connections
and active outgoing connections. The number of closed connections in a previous
period includes both closed incoming connections and closed outgoing connections.
However, when GWTDOMAIN is suspended, none of the closed connections are
counted.

limit, duration, and period are defined as follows:

limit
The maximum number of connections. The minimum limit value is 0, and the maximum
value is 2,147,483,647.

When the limit is reached (or exceeded) and there is an incoming request, GWTDOMAIN is
suspended for the given duration. At the same time, the current incoming request which
triggers the suspending is not accepted. Polling is resumed after duration has elapsed.

Setting the limit to 0 prohibits the domain gateway from accepting any incoming connection
requests. In other words, this is an "OUTGOING_ONLY" connection policy.

duration
The duration in seconds to suspend polling for incoming connection when limit is reached.
The default value is (SCANUNIT * SANITYSCAN) seconds. The minimum duration value is
5, and the maximum value is 65,535.

period
The time interval (in seconds) proceeding GWTDOMAIN check point to count the closed
connections in the past. When not specified, the default value is the same as duration. The
minimum period value is 0, and the maximum value is 65,535.

Chapter 1
Denial-of-Service (DoS) Defense

1-54

If period is specified as 0, the number of closed connections in a prior period will always be 0,
limit only counts active connections.

• Examples

1.17.2.1.1 Examples
The following example depicts an example where the GWTDOMAIN limit is set to 512
concurrent socket connections. When the 512 limit is reached and there is an incoming
request, GWTDOMAIN will stop polling and accepting new incoming connection requests for a
duration of 300 seconds (or, 5 minutes). Since period is specified as 0, only the active
connections are counted.

Listing 1‑1 UBBCONFIG File Example 1

 # UBBCONFIG
 ...
 *SERVERS
 GWTDOMAIN SRVGRP=GWGRP1 SRVID=2 CLOPT= “-A -- -x
 512:300:0”

The following example depicts an example where the GWTDOMAIN limit is set to 200
concurrent socket connections. When the 200 limit is reached, (for example:

• there are100 outgoing connections

• 50 incoming connections,

• in the passed 60 seconds 50 connections were closed (including outgoing connections and
incoming connection

• a current incoming connection is requested

and since the duration value is not specified, GWTDOMAIN will stop polling and accepting
new incoming connection requests for the duration default value SCANUNIT * SANITYSCAN
seconds.

Note:

The current incoming connection that triggered the suspension is also not accepted,
and is closed at the end of the suspended duration.

Listing 1‑2 UBBCONFIG File Example 2

 # UBBCONFIG
 ...
 *SERVERS
 GWTDOMAIN SRVGRP=GWGRP1 SRVID=2 CLOPT= “-A -- -x
 200::60”

1.17.2.2 Messages
The following conditions will post messages to USERLOG:

Chapter 1
Denial-of-Service (DoS) Defense

1-55

• A new connection request arrives that reaches the preset number of connections limit:

<LIBGW_CAT 5359> "WARN: The number of connections for
 <ldom-name> exceeds limit <%d>, start to suspend for
 <%d> seconds"

• GWTDOMAIN resumes checking for new incoming connection request:

<LIBGW_CAT 5360> "INFO: Resume accepting connection
 request"

Note:

These two messages can be controlled using the "throttle message" mechanism
to avoid the potential of flooding the USERLOG.

• If limit is specified as 0, when GWTDOMAIN starts up:

<LIBGW_CAT 5361> "INFO: The connection limit for
 <ldom-name> is set to 0. No incoming connection request will
 be accepted."

1.17.3 Message Sanity Check
The sanity check of message is strengthened with this feature, to protect GWTDOMAIN from
crash when under attack. This feature is deployed automatically after installed, no
configuration work needed.

1.17.4 Message Authentication Code (MAC) Usage
By associating the message authentication code (MAC) with messages, a Tuxedo domain
gateway can validate and authenticate them. With MAC, the domain gateway can defend
against various types of DoS attacks (for example, message tampering, message forging, and
message replay attack).

This feature can only take effect when LLE and/or domain SECURITY is configured. MAC
works after connection is established. When a MAC message from a remote domain gateway
fails validation and authentication, the corresponding connection is dropped. All pending
messages are also dropped, and all on-going service requests fail.

GWTDOMAIN determines whether MAC is turned on for the session during the session
negotiation phase. MAC can only be enabled when either LLE and/or SECURITY is supported
and activated for the session.

Note:

SSL does not support MAC usage.

It is not necessary to turn on the SECURITY feature to enable MAC; however, it is
recommended since SECURITY can be used to defend against the “man-in-the-middle” attack.

Chapter 1
Denial-of-Service (DoS) Defense

1-56

• Performance Impact

1.17.4.1 Performance Impact
When MAC is turned on, it may cause degradation on the throughput and response time for
requests across domains.

1.17.5 Setting up Message Authentication Code (MAC) Usage
There are two options that you configure the MAC feature. You can use DMCONFIG file
configuration, or MIB configuration.

• DMCONFIG File Configuration

• MIB Configuration

1.17.5.1 DMCONFIG File Configuration
This feature can be configured in DM_TDOMAIN section of DMCONFIG file with two new
keywords, MAC and MACLEVEL. MAC is used to toggle the MAC feature for a session;
MACLEVEL is used to specify the MAC level.

Note:

A large number MACLEVEL means the stronger algorithm from cryptographic point
of view, but will introduce more performance degradation.

Table 1-15 DMCONFIG File Keywords

Keyword Option Definition

MAC OFF Turn off feature. This is the default
value.

ON Turn on feature. The established
session MAC support depends on the
negotiation result between the two
domain gateways.

MANDATORY Turn on feature. The session cannot be
setup if:
• the remote domain does not

support or disable the MAC feature,
or

• neither LLE nor domain SECURITY
is available.

MACLEVEL 0 Only protects the message header with
MAC. This is the default value

1 Protects the entire message with MAC
using MD5-based algorithm

2 Protects the entire message with MAC
using SHA1-based algorithm.

3 Protects the entire message with MAC,
using SHA256-based algorithm.

The following example depicts an example DMCONFIG configuration.

Chapter 1
Denial-of-Service (DoS) Defense

1-57

Listing 1‑3 DMCONFIG File Configuration

DMCONFIG
...
*DM_TDOMAIN
“RDOM” NWADDR=”//RHOST:RPORT”
 MAC=”ON”
 MACLEVEL=1

1.17.5.2 MIB Configuration
Dynamic setting of MAC via MIB does not have any impact on existing domain sessions. It only
takes effect for new connections.

Two new attributes are added to support MIB interface in the T_DM_TDOMAIN class definition
attribute table: TA_DMMAC and TA_DMMACLEVEL.

Table 1-16 DM_MIB(5): T_DM_TDOMAIN Class Definition Attribute Table

Attribute Type Permissions Values Default

TA_DMMAC string rw------- string “{OFF|ON|
MANDATORY}”

“OFF”

TA_DMMACLEVEL string rw------- string "{0|1|2|3}" “0”

TA_DMMAC="{OFF|ON|MANDATORY}"

Relevant to remote domain access points only. Specifies whether to activate MAC feature
when connecting to the remote domain. Supported values are "OFF", "ON", "MANDATORY".

"OFF"
Specifies the connection to a domain gateway does not use the MAC feature.

"ON"
Specifies the connection to a domain gateway that uses the MAC feature.

"MANDATORY"
Specifies the connection to a domain gateway must use the MAC feature, otherwise a
successful connection cannot be established.

TA_DMMACLEVEL="{0|1|2|3}"

Relevant to remote domain access points only. Specifies the manner when protecting the
whole message with MAC. "0" specifies that only the message header is protected by MAC.
"1", "2", and "3" specify that the entire message is protected by MAC via an algorithm based on
MD5, SHA1 and SHA256.

The following listings depicts examples of how to retrieve and update MAC attributes using
ud32 respectively.

Listing Sample Retrieve MAC Attribute Script

SRVCNM .TMIB
 TA_OPERATION GET

Chapter 1
Denial-of-Service (DoS) Defense

1-58

 TA_CLASS T_DM_TDOMAIN
 TA_DMACCESSPOINT RDOM
 TA_DMNWADDR //host:port

Listing Sample Update MAC Attribute Script

SRVCNM .TMIB
 TA_OPERATION SET
 TA_CLASS T_DM_TDOMAIN
 TA_DMACCESSPOINT RDOM
 TA_DMNWADDR //host:port
 TA_DMLACCESSPOINT LDOM
 TA_DMMAC MANDATORY
 TA_DMMACLEVEL 2

• MAC Negotiation

• Messages

• ERROR Messages

1.17.5.2.1 MAC Negotiation
Suppose there are two domains: DOM1 and DOM2. When DOM1 (initiator) establishes a
session with DOM2 (acceptor), the MAC negotiation result is (1) MAC = ON; and (2)
MACLEVEL = 2.

The first column from each table contains the configuration parameter for DOM2 in the
DM_TDOMAIN section of the DOM1 DMCONFIG file. The header row holds the configuration
parameter for DOM1 in the DM_TDOMAIN section of the DOM2 DMCONFIG file

An "ERROR" result in Table 4 means that the connection cannot be established. When MAC
negotiation result is ON, the MACLEVEL for the entire message is determined as shown in
Table 5.

When MAC is turned on, the MACLEVEL in use is set to the higher number, or max (m1,m2)
for safety purpose. It must be supported by both endpoints (that is, not greater than min
(Max1,Max2)). In short, the negotiated MACLEVEL must satisfy following relationship: max(m
1 , m 2)<=negotiated MACLEVEL<=min(Max 1 , Max 2), otherwise the connection is closed
with one ERROR message logged in USERLOG.

1.17.5.2.2 Messages
The following messages are posted to the USERLOG:

INFO Messages

The following INFO messages are printed after agreement about MAC is made to denote MAC
feature for one session

• MAC is not supported for the session:

<LIBGWT 1686> "INFO: MAC is not supported for session(<ldom-name>, <rdom-
name>"

Chapter 1
Denial-of-Service (DoS) Defense

1-59

Note:

This message is printed only in the domain with MAC set to "ON".

• MAC is turned on for the session:

<LIBGWT 1687> "INFO: MAC is turned on for session(<ldom-name>, <rdom-
name>) and effective MACLEVEL is <%d>"

1.17.5.2.3 ERROR Messages
The following error messages appear during session negotiation and MAC validation phase.
The connection is dropped when these messages are printed:

• MAC is mandatory, but MAC is not supported for the session when negotiation:

<LIBGWT 1681> "ERROR: MAC is MANDATORY but remote domain <rdom-name> does
not support this feature"

• MAC is mandatory but neither LLE nor SECURITY is supported when negotiation:

<LIBGWT 1682> "ERROR: MAC is MANDATORY but neither LLE nor SECURITY is
supported for connection of (<ldom-name>,<rdom-name>)"

• MAC is mandatory in the remote domain but MAC is not supported in local domain:

<LIBGWT 1683> "ERROR: MAC is MANDATORY in remote domain <rdom-name> but
not supported in local domain <ldom-name>"

• MAC negotiation fails to make an agreement on MACLEVEL:

<LIBGWT 1684> "ERROR: MAC failed to make an agreement on MACLEVEL
(<ldom_name> is <%d>..<%d>,<rdom-name> is <%d>..<%d>)"

Note:

The four corresponding parameters for "%d" placeholder in this message are m1,
Max1, m2, and Max2.

• MAC fails validation and authentication:

<LIBGWT 1685> "ERROR: Message from <rdom-name> has invalid MAC"

1.18 Password Pair Protection
Password pair protection is deployed automatically after installation; configuration is not
required. It improves the GWTDOMAIN security mechanism and removes the previous security
restriction that did not allow dual password pairs with the same remote password.

Password pair protection is functional only when supported by both local and remote domains.
If it is not supported by both local and remote domains, it does not affect existing behavior.

Chapter 1
Password Pair Protection

1-60

2
Administering Security

The following sections explain how to set security policies for an Oracle Tuxedo ATMI
application:

• What Administering Security Means

• Security Administration Tasks

• Setting the Oracle Tuxedo Registry

• Configuring an ATMI Application for Security

• Setting Up the Administration Environment

• Administering Authentication

• Specifying Principal Names

• Mandating Interoperability Policy

• Establishing a Link Between Domains

• Setting ACL Policy

• Setting Credential Policy

• Administering Authorization

• Administering Link-Level Encryption

• Administering TLS Encryption

• Administering Public Key Security

• Administering Default Authentication and Authorization

• How to Enable Application Password Security

• How to Enable User-Level Authentication Security

• Enabling Access Control Security

• Using the Kerberos Authentication Plug-in

• Kerberos Plug-In

• Kerberos Plug-In Pre-configuration

• Kerberos Plug-In Configuration

• Using the Cert-C PKI Encryption Plug-in

• Cert-C PKI Encryption Plug-In

• Cert-C PKI Encryption Plug-In Pre-configuration

• Cert-C PKI Encryption Plug-In Configuration

2.1 What Administering Security Means
Administering security for an ATMI application involves setting and enforcing security policies
for the components of the application, including its clients, server machines, and gateway links.

2-1

The application administrator sets the security policies for the ATMI application, and the Oracle
Tuxedo system upon which the ATMI application is built enforces those policies.

The Oracle Tuxedo system offers the following ATMI security capabilities:

• Authentication

• Authorization

• Auditing

• Link-level encryption

• TLS Encryption

• Public key security

All but one of the security capabilities can be configured by the application administrator. The
exception is auditing, which cannot be configured, as shown in the following figure.

Chapter 2
What Administering Security Means

2-2

Figure 2-1 Administering ATMI Security

Security plug-ins

Default
authentication

(Custom)

Default
authorization

(Custom)

Default
auditing
(Custom)

Default public
key security

(Custom)

Plug-in interface

ATMI application administration

ATMI security

Management information base (MIB)

Oracle tuxedo library

TLS encryption (Link-level encryption)

Commands API GUI

Public key
security

Authentication Authorization Encryption

Chapter 2
What Administering Security Means

2-3

See Also:

• Security Administration Tasks

• What Security Means

• What Programming Security Means

2.2 Security Administration Tasks
Security administration consists of the following tasks:

• Setting the Oracle Tuxedo Registry

• Configuring an ATMI Application for Security

• Setting Up the Administration Environment

• Administering Operating System (OS) Security

• Administering Authentication

• Administering Authorization

• Administering Link-Level Encryption

• Administering SSL Encryption

• Administering Public Key Security

• Administering Default Authentication and Authorization

2.3 Setting the Oracle Tuxedo Registry
The application administrator needs to know about the Oracle Tuxedo registry if the ATMI
application is to be configured with one or more custom security capabilities. On the other
hand, if the ATMI application is to be configured only with default security, the Oracle Tuxedo
registry does not need to be changed.

The Oracle Tuxedo registry is a disk-based repository for storing information related to plug-in
modules. Initially, this registry holds registration information about the default security plug-ins.

• Purpose of the Oracle Tuxedo Registry

• Registering Plug-ins

2.3.1 Purpose of the Oracle Tuxedo Registry
Most Oracle middleware products use a common transaction processing (TP) infrastructure
that consists of a set of core services, such as security. The TP infrastructure is available to
ATMI applications through well defined interfaces. These interfaces allow application
administrators to change the default behavior of the TP infrastructure by loading and linking
their own service code modules, referred to as plug-in modules or simply plug-ins.

The first step in loading a plug-in is to register the plug-in with the host operating system.
Registering a plug-in adds an entry for the plug-in to the Oracle Tuxedo registry, which is a set
of binary files that stores information about active plug-ins. There is one registry per Oracle
Tuxedo installation.

Chapter 2
Security Administration Tasks

2-4

• On a UNIX host machine, the Oracle Tuxedo registry is in the $TUXDIR/udataobj directory.

• On a Windows 2003 host machine, the Oracle Tuxedo registry is in the %TUXDIR%
\udataobj directory.

Every Workstation client and server machine in an ATMI application must use the same set of
plug-in modules.

2.3.2 Registering Plug-ins
The administrator of an ATMI application in which custom plug-ins will be used is responsible
for registering those plug-ins and performing other registry related tasks. An administer can
register plug-ins in the Oracle Tuxedo registry only from the local machine. That is, an
administrator cannot register plug-ins while logged on to the host machine from a remote
location.

Three commands are available for administering plug-ins:

• epifreg —for registering a plug-in

• epifunreg —for unregistered a plug-in

• epifregedt—for editing registry information

Instructions for using these commands are available in Developing Security Services for ATMI
and CORBA Environments. (This document contains the specifications for the security plug-in
interface, and describes the plug-in framework feature that makes the dynamic loading and
linking of security plug-in modules possible.) Also, when installing custom plug-ins, the
supplying third-party security vendor should provide instructions for using these commands to
set up the Oracle Tuxedo registry to access the custom plug-ins.

For more information about security plug-ins, including installation and configuration
procedures, see your Oracle account executive.

See Also:

• Configuring an ATMI Application for Security

2.4 Configuring an ATMI Application for Security
An application administrator configures security for the ATMI application on the MASTER
machine when the application is inactive. The underlying Oracle Tuxedo system propagates
the configuration information to the other machines in the ATMI application when the
application is booted.

As the administrator, you can configure security for your ATMI application by:

• Editing the configuration file (UBBCONFIG)

• Changing theTM_MIB
The set of security parameters involved depends upon the security capability (authentication,
authorization, link-level encryption, or public key) and whether you are using the default or
custom security software.

• Editing the Configuration File

Chapter 2
Configuring an ATMI Application for Security

2-5

• Changing the TM_MIB

2.4.1 Editing the Configuration File
You can edit the UBBCONFIG configuration file to set security policies for an ATMI application.
The UBBCONFIG configuration file may have any filename, as long as the content of the file
conforms to the format described on the UBBCONFIG(5) reference page in the Oracle Tuxedo
File Formats, Data Descriptions, MIBs, and System Processes Reference.

For more details about UBBCONFIG and its binary equivalent, TUXCONFIG, see About the
Configuration File and Creating the Configuration File in Setting Up an Oracle Tuxedo
Application.

2.4.2 Changing the TM_MIB
The TM_MIB defines a set of classes through which the fundamental aspects of an ATMI
application may be configured and managed. Separate classes are designated for machines,
servers, networks, and so on. You should use the reference page TM_MIB(5) in combination
with the generic Management Information Base (MIB) reference page MIB(5) to format
administrative requests and interpret administrative replies. The MIB reference pages are
defined in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System Processes
Reference.

Other component MIBs, including the ACL_MIB, DM_MIB, and WS_MIB, also play a role in
managing security for an ATMI application. The reference page ACL_MIB(5) defines the
ACL_MIB, the reference page DM_MIB(5) defines the DM_MIB, and the reference page
WS_MIB(5) defines the WS_MIB.

For more information about Oracle Tuxedo MIBs, start with MIB(5) in the Oracle Tuxedo File
Formats, Data Descriptions, MIBs, and System Processes Reference. Also, see Introducing
Oracle Tuxedo ATMI.

See Also:

• Setting Up the Administration Environment

2.5 Setting Up the Administration Environment
The application administrator defines certain environment variables for an ATMI application as
part of configuring the application. The values defined for the variables are absolute
pathnames that reference Oracle Tuxedo executables and data libraries.

Being able to find such files is essential to the job of administering an ATMI application. For
example, all commands needed to manage application security are located in $TUXDIR/bin on
a UNIX host machine, and in %TUXDIR%\bin on a Windows 2003 host machine.

For details on setting up the administration environment, see Administering an Oracle Tuxedo
Application at Run Time.

Chapter 2
Setting Up the Administration Environment

2-6

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3370051
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ads/adconf.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ads/adconf.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/ads/adfig.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1803508
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1495410
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#998207
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1383533
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1533648
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1495410

Note:

• Administering Operating System (OS) Security

• Administering Authentication

• Administering Authorization

• Administering Link-Level Encryption

• Administering SSL Encryption

• Administering Public Key Security

• Administering Default Authentication and Authorization

• Administering Operating System (OS) Security

2.5.1 Administering Operating System (OS) Security
In addition to the security features in the ATMI environment of the Oracle Tuxedo product, the
application administrator needs to take full advantage of the security features of the host
operating system to control access to files, directories, and system resources.

Most ATMI applications are managed by an application administrator who configures and boots
the application, monitors the running application, and makes changes to it dynamically, as
necessary. Because the ATMI application is started and run by the administrator, server
programs are run with the administrator’s permissions and are therefore considered secure or
“trusted.” This working method is supported by the login mechanism and the read and write
permissions on the files, directories, and system resources provided by the underlying
operating system.

Clients, on the other hand, are not started by the administrator. Instead, they are run directly by
users with their own permissions. As a result, clients are not trusted.

In addition, users running native clients (that is, clients running on the same machine on which
the server is running) have access to the configuration file and interprocess communication
(IPC) mechanisms such as the bulletin board (in shared memory). Users running native clients
always have such access, even when additional ATMI security is configured.

• Recommended Practices for OS Security

2.5.1.1 Recommended Practices for OS Security
As the administrator, you can improve operating system security by observing the following
general rules:

• Limit access to files and IPC resources to the application administrator.

• Have “trusted” client programs run only with the permissions of the administrator (using a
setuid utility).

• For maximum security on your operating system, allow only Workstation clients to access
the application; client programs should not be allowed to run on the same machines on
which application servers and administrative programs run.

• Combine all of these practices with ATMI security so that the application can identify any
client making a request.

Chapter 2
Setting Up the Administration Environment

2-7

See Also:

• Operating System (OS) Security

• Security Administration Tasks

2.6 Administering Authentication
Authentication allows communicating processes to prove their identities. It is the foundation for
most other security capabilities.

Except for the configuration instructions identified in this topic, the procedures for administering
authentication depend upon the underlying authentication system of the application. For
procedures to administer a custom authentication system, see the documentation for that
system. For procedures to administer the default authentication system, see Administering
Default Authentication and Authorization.

The following figure demonstrates the use of the delegated trust authentication model by
applications running Oracle Tuxedo release 7.1 or later software. Workstation handlers
(WSHs) and domain gateways (GWTDOMAINs) are known as trusted system gateway processes
in the delegated trust authentication model, which is described in Understanding Delegated
Trust Authentication.

Figure 2-2 Mutual Authentication in the Delegated Trust Authentication Model

Note:

Mutual authentication is not used for a native client, which authenticates with itself.

The following topics provide the instructions needed to set up the configuration shown in the
preceding figure. All of the topics involve authentication and the authentication plug-in.

Chapter 2
Administering Authentication

2-8

• Specifying principal names

• Mandating interoperability policy

• Establishing a link between domains

• Setting ACL policy

• Setting credential policy

See Also:

• Authentication

• Default Authentication and Authorization

• Administering Default Authentication and Authorization

• Security Administration Tasks

• Security Interoperability

• Security Compatibility

• Oracle Tuxedo Domains (Multiple-Domain) Servers in Introducing Oracle Tuxedo
ATMI

2.7 Specifying Principal Names
As the administrator, you use the following configuration parameters to specify principal names
for the workstation handler (WSH), domain gateway (GWTDOMAIN), and server processes
running in your ATMI application built with release 7.1 or later of the Oracle Tuxedo software.

Parameter Name Description Setting

SEC_PRINCIPAL_NAME in
UBBCONFIG
(TA_SEC_PRINCIPAL_NAME in
TM_MIB)

During application booting, each
WSH, domain gateway, and
server process in the ATMI
application calls the
authentication plug-in to acquire
security credentials for the
security principal name specified
inSEC_PRINCIPAL_NAME.*

1 - 511 characters. If not
specified at any level in the
configuration hierarchy, the
security principal name defaults
to theDOMAINID string specified
in the UBBCONFIG file.

CONNECTION_PRINCIPAL_NAME
for local domain access point in
DMCONFIG
(TA_DMCONNPRINCIPALNAME for
LACCESSPOINT in DM_MIB)

During application booting, each
domain gateway process in the
ATMI application calls the
authentication plug-in a second
time to acquire security
credentials for the connection
principal name specified in
CONNECTION_PRINCIPAL_NAME.
*

1 - 511 characters. If not
specified, the connection
principal name defaults to
theACCESSPOINTID** string for
the local domain access point
specified in the DMCONFIG file.

*The topics that follow explain how the system processes acquire credentials and why they require
them. **. The ACCESSPOINTID parameter is also known as DOMAINID.

SEC_PRINCIPAL_NAME is specified any of the following four levels in the configuration hierarchy:

• RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB

Chapter 2
Specifying Principal Names

2-9

• MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB
• GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB
• SERVERS section in UBBCONFIG or T_SERVER class in TM_MIB
A security principal name at a particular configuration level can be overridden at a lower level.
For example, suppose you configure terri as the principal name for machine mach1, and john
as the principal name for server serv1 running on mach1. The processes on mach1 behave as
follows:

• All WSH, domain gateway, and server processes on mach1 except serv1 processes use
terri as a principal name.

• All serv1 processes use john as a principal name.

Note:

Security principal information must be specified for all machines in a networked
application (MP mode) configuration. If a boot failure occurs, examine the ULOG files
on both sides of the connection where the failure occurred for more information about
the cause of the failure.

• How System Processes Acquire Credentials

• Why System Processes Need Credentials

• Example UBBCONFIG Entries for Principal Names

2.7.1 How System Processes Acquire Credentials
During application booting, each WSH, domain gateway, and server process in the ATMI
application includes its security principal name as an argument when calling the authentication
plug-in:

1. to acquire security credentials

2. get authorization and auditing tokens for itself

The following figure illustrates the procedure.

Chapter 2
Specifying Principal Names

2-10

Figure 2-3 Acquiring Credentials and Tokens During Application Booting

Each domain gateway process in the application calls the authentication plug-in a second time
to acquire credentials and tokens for its assigned connection principal name.

2.7.2 Why System Processes Need Credentials
A WSH needs credentials so that it can authenticate Workstation clients that want to join the
application, and to get authorization and auditing tokens for the authenticated Workstation
clients. A WSH needs its own authorization and auditing tokens when handling requests from
pre-release 7.1 clients (clients running Oracle Tuxedo release 6.5 or earlier software) so that it
can call the authentication plug-in to establish identities for the older clients. This behavior is
described in Mandating Interoperability Policy .

A domain gateway needs one set of credentials so that it can authenticate remote domain
gateways for the purpose of establishing links between ATMI applications, as described in
Establishing a Link Between Domains. (No authorization or auditing tokens are assigned to
authenticated remote domain gateways.) A domain gateway acquires these credentials for the
principal name specified in the CONNECTION_PRINCIPAL_NAME parameter.

Chapter 2
Specifying Principal Names

2-11

A domain gateway needs a second set of credentials so that it can handle requests from pre-
release 7.1 clients, which involves calling the authentication plug-in to establish identities for
the older clients. This behavior is described in Mandating Interoperability Policy . It also needs
these credentials to establish identities when enforcing the local access control list (ACL)
policy, as described in Setting ACL Policy. A domain gateway acquires these credentials for
the principal name specified in the SEC_PRINCIPAL_NAME parameter.

A system or application server needs its own authorization and auditing tokens when handling
requests from pre-release 7.1 clients so that it can call the authentication plug-in to establish
identities for the older clients. This behavior is described in Mandating Interoperability Policy .

A server also needs its own tokens when performing a server permission upgrade, which
occurs when the authorization and auditing tokens of the server are assigned to messages that
pass through the server but originate at a client. The service upgrade capability is described in
Replacing Client Tokens with Server Tokens.

Note:

An application server cannot call the authentication plug-in itself. It is the underlying
system code that calls the authentication plug-in for the application server.

2.7.3 Example UBBCONFIG Entries for Principal Names
The following example pertains to specifying security principal names in the UBBCONFIG file
using the SEC_PRINCIPAL_NAME parameter. For an example of specifying connection principal
names in the DMCONFIG file using the CONNECTION_PRINCIPAL_NAME parameter, see Example
DMCONFIG Entries for Establishing a Link.

*RESOURCES
 SEC_PRINCIPAL_NAME "Tommy"
 .
 .
 .
*SERVERS
"TMQUEUE" SRVGRP="QUEGROUP" SRVID=1
CLOPT="-t -s secsdb:TMQUEUE"
SEC_PRINCIPAL_NAME="TOUPPER"

Note:

• Mandating Interoperability Policy

• Establishing a Link Between Domains

• Setting ACL Policy

• Security Administration Tasks

Chapter 2
Specifying Principal Names

2-12

2.8 Mandating Interoperability Policy
As the administrator, you use the CLOPT -t option in the UBBCONFIG file to allow WSH, domain
gateway (GWTDOMAIN), and server processes in your ATMI application to interoperate with
machines running Oracle Tuxedo pre-release 7.1 (6.5 or earlier) software. In addition, you use
the WSINTOPPRE71 environment variable to allow Workstation clients to interoperate with
machines running Oracle Tuxedo pre-release 7.1 software. The following four figures show
what interoperability means for these processes.

Figure 2-4 WSH Operating with Older Workstation Client

In the preceding figure, the WSH authenticates with the Workstation client using an older (pre-
release 7.1) authentication protocol, calls the internal impersonate user function to get
authorization and auditing tokens for the client, and attaches the tokens to the client request. If
the CLOPT -t option is not specified for the workstation listener (WSL) that controls the WSH,
no communication is possible between the newer WSH and the older Workstation client.

Note:

The impersonate user function involves calling the authentication plug-in to establish
an identity for the older client. See Establishing an Identity for an Older Client for
details.

Chapter 2
Mandating Interoperability Policy

2-13

Figure 2-5 Older WSH Operating with Workstation Client

In the preceding figure, the WSH authenticates with the Workstation client using an older (pre-
release 7.1) authentication protocol; the client request does not receive authorization and
auditing tokens. If the WSINTOPPRE71 environment variable is not set at the Workstation client or
is set to N, no communication is possible between the older WSH and the newer Workstation
client.

Figure 2-6 Server Interoperating with Older ATMI Application

In the preceding figure, the local domain gateway (GWTDOMAIN) in application 1 authenticates
with the remote domain gateway in application 2 using an older (pre-release 7.1)

Chapter 2
Mandating Interoperability Policy

2-14

authentication protocol. Upon receiving a request from a remote client, the local domain
gateway calls the internal impersonate user function to get authorization and auditing tokens
for the remote client and then attaches the tokens to the client request. For any outbound client
request (client request originating in application 1 and destined for application 2), the local
domain gateway strips the tokens from the request before sending the request along with the
client’s application key to the older application. (See Application Key for a description of the
application key.)

If the CLOPT -t option is not specified for the domain gateway, no communication is possible
between the newer ATMI application and the older ATMI application.

Figure 2-7 Server Interoperating with Older Oracle Tuxedo Systems

In the preceding figure, the destination server on machine 1 calls the internal impersonate user
function to get authorization and auditing tokens for the remote client on machine 2, attaches
the tokens to the client request, and then performs the request assuming the client passes any
authorization checks. If the CLOPT -t option is not specified for the server, no communication is
possible between the newer server and the older client.

Note:

Also, in the preceding figure, if the WSH on machine 1 receives a client request
destined for a server on machine 2, the WSH strips the tokens from the request
before sending the request along with the client’s application key to the older system.
Similarly, if the native client on machine 1 sends a request to a server on machine 2,
the native client strips the tokens from the request before sending the request along
with the client’s application key to the older system. See Application Key for a
description of the application key.

• Establishing an Identity for an Older Client

• Summarizing How the CLOPT -t Option Works

Chapter 2
Mandating Interoperability Policy

2-15

• Example UBBCONFIG Entries for Interoperability

2.8.1 Establishing an Identity for an Older Client
For a WSH, domain gateway (GWTDOMAIN), or server process to establish an identity for an
older client, the process calls the internal impersonate user function to obtain authorization and
auditing tokens for the older client. The following figure demonstrates the procedure.

Figure 2-8 Obtaining Authorization and Auditing Tokens for an Older Client

• How the WSH Establishes an Identity for an Older Client

• How the Domain Gateway Establishes an Identity for an Older Client

• How the Server Establishes an Identity for an Older Client

2.8.1.1 How the WSH Establishes an Identity for an Older Client
When the CLOPT -t option is specified, the WSH establishes an identity for an older client
using the usrname field of the TPINIT buffer for C, or the USRNAME field of the TPINFDEF-REC
record for COBOL. (The WSH receives a TPINIT buffer/ TPINFDEF-REC record from a client
when the client attempts to join the application, as described in Joining the ATMI Application.)
The WSH includes the user name as the principal name when calling the impersonate user
function.

For default authentication plug-ins, the impersonate user function finds the user name and its
associated application key (user identifier, group identifier combination) in the local tpusr file,
and then includes the user name and application key in both the authorization and auditing
tokens created for the older client. The tpusr file is briefly described in Setting Up the User and
Group Files.

2.8.1.2 How the Domain Gateway Establishes an Identity for an Older Client
When the CLOPT -t option is specified, the domain gateway establishes an identity for an older
client using the LOCAL_PRINCIPAL_NAME string configured for the remote domain access point.

Chapter 2
Mandating Interoperability Policy

2-16

(The domain gateway searches the DM_REMOTE section of the local BDMCONFIG file—the binary
equivalent of the DMCONFIG(5) file—to find the LOCAL_PRINCIPAL_NAME string for the remote
domain access point. If not specified, the identity defaults to the ACCESSPOINTID string for the
remote domain access point.) The domain gateway uses the LOCAL_PRINCIPAL_NAME string as
the principal name when calling the impersonate user function.

For default authentication plug-ins, the impersonate user function finds the
LOCAL_PRINCIPAL_NAME string and its associated application key in the local tpusr file, and
then includes that string (identity) and application key in both the authorization and auditing
tokens created for the older client.

2.8.1.3 How the Server Establishes an Identity for an Older Client
When the CLOPT -t option is specified, the server establishes an identity for an older client
using the client’s assigned application key. (The client request received by the server contains
the client’s assigned application key.) The server finds the application key and its associated
name in the local tpusr file, and then includes the name as the principal name when calling the
impersonate user function.

For default authentication plug-ins, the impersonate user function finds the name and its
associated application key in the local tpusr file, and then includes the name and application
key in both the authorization and auditing tokens created for the older client.

2.8.2 Summarizing How the CLOPT -t Option Works
The following table summarizes the functionality of WSH, domain gateway, and server
processes when interoperability is and is not allowed using the CLOPT -t option.

Table 2-1 Functionality of WSH, Domain Gateway, and Server Processes When Interoperability Is and Is
Not Allowed

Process Interoperability Allowed (CLOPT -t) Interoperability Not Allowed

Workstation Handler (WSH) If the WSH receives a request from a
pre-release 7.1 Workstation client to
join the application, the WSH
authenticates the client using a pre-
release 7.1 authentication protocol and
calls the impersonate user function to
get authorization and auditing tokens for
the client based on the user name given
in the request. When the WSH receives
a service request from the
authenticated Workstation client, it
attaches the tokens to the client request
and forwards the request to the
destination server.

If the WSH receives a request from a
pre-release 7.1 Workstation client to
join the application, the WSH rejects the
request. No communication is possible
between the newer WSH and the older
Workstation client.

Chapter 2
Mandating Interoperability Policy

2-17

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1023246

Table 2-1 (Cont.) Functionality of WSH, Domain Gateway, and Server Processes When Interoperability
Is and Is Not Allowed

Process Interoperability Allowed (CLOPT -t) Interoperability Not Allowed

Domain gateway (GWTDOMAIN) When the domain gateway sets up a
connection to a pre-release 7.1 remote
domain gateway, it authenticates the
remote domain gateway using a pre-
release 7.1 authentication protocol and
then sets up the network connection.
When the domain gateway receives a
client request from the older domain,
the domain gateway calls the
impersonate user function to get
authorization and auditing tokens for the
client based on the
LOCAL_PRINCIPAL_NAME (defaults to
ACCESSPOINTID) identity configured for
the remote domain access point,
attaches the tokens to the client
request, and then forwards the request
to the destination server. The client has
the same access permissions as the
LOCAL_PRINCIPAL_NAME identity. For
any outbound client request, the domain
gateway strips the tokens from the
request before sending the request
along with the client’s application key to
the older domain.

The domain gateway does not set up a
connection to a pre-release 7.1 remote
domain gateway. No communication is
possible between the newer and older
domains.

System or application server If the server receives a request from a
remote client running Oracle Tuxedo
pre-release 7.1 software, the server
calls the impersonate user function to
get authorization and auditing tokens for
the client based on the client’s assigned
application key, and then performs the
client request assuming the client
passes any authorization checks.

If the server receives a request from a
remote client running Oracle Tuxedo
pre-release 7.1 software, the server
rejects the client request. No
communication is possible between the
newer server and the older client.

2.8.3 Example UBBCONFIG Entries for Interoperability
In the following example, all WSHs controlled by the workstation listener (WSL) are configured
for interoperability.

*SERVERS
 WSL SRVGRP="group_name" SRVID=server_number ...
 CLOPT="-A -t ... "

Chapter 2
Mandating Interoperability Policy

2-18

Note:

• Specifying Principal Names

• Establishing a Link Between Domains

• Setting ACL Policy

• Security Administration Tasks

• Security Interoperability

• Setting Up Security in a Domains Configuration and Setting Up Connections in a
Domains Configuration in Using the Oracle Tuxedo Domains Component

2.9 Establishing a Link Between Domains
When a domain gateway (GWTDOMAIN) attempts to establish a network link with another domain
gateway, the following major events occur.

1. The initiator domain gateway and the target domain gateway exchange TLS or link-level
encryption (LLE) min-max values to be used to set up TLS or LLE on the link between the
gateways. If TLS is being used, the initiator and target domain gateways also authenticate
each other through the use of TLS certificates. LLE is described in Link-Level Encryption.
TLS is described in TLS Encryption.

2. The initiator and target domain gateways authenticate one another through the exchange
of security tokens assuming that both gateways are running Oracle Tuxedo release 7.1 or
later software.
If one or both of the domain gateways are running Oracle Tuxedo pre-release 7.1 software,
the gateway processes use an older (pre-release 7.1) authentication protocol when setting
up the connection.

As the administrator, you use the following configuration parameter to establish a link between
domain gateways running Oracle Tuxedo release 7.1 or later software.

Parameter Name Description Setting

CONNECTION_PRINCIPAL_NAME in
DMCONFIG (TA_DM
CONNPRINCIPALNAME in DM_MIB)

When this parameter appears in the
DM_LOCAL section* of the DMCONFIG file,
its value becomes the principal name of
the local domain access point when
setting up a connection with a remote
domain access point. For default
authentication plug-ins, if a value is
assigned to
CONNECTION_PRINCIPAL_NAME for the
local domain access point, it must be
the same as the value assigned to the
ACCESSPOINTID parameter* for the
local domain access point. If these
values do not match, the local domain
gateway process will not boot, and the
system will generate the following
userlog(3c) message: ERROR: Unable
to acquire credentials.

1-511 characters. If not specified, the
principal name defaults to the
ACCESSPOINTID string for the local
domain access point.

Chapter 2
Establishing a Link Between Domains

2-19

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646

Parameter Name Description Setting

When this parameter appears in the
DM_REMOTE section* of the DMCONFIG
file for a particular remote domain
access point, its value becomes the
principal name of the remote domain
access point when setting up a
connection with the local domain access
point. For default authentication plug-
ins, if a value is assigned to
CONNECTION_PRINCIPAL_NAME for a
remote domain access point, it must be
the same as the value assigned to the
ACCESSPOINTID parameter* for the
remote domain access point. If these
values do not match, any attempt to set
up a connection between the local
domain gateway and the remote domain
gateway fails, and the system generates
the following userlog(3c) message:
ERROR: Unable to initialize
administration key for domain
domain_name.

1-511 characters. If not specified, the
principal name defaults to the
ACCESSPOINTID string for the remote
domain access point.

*The DM_LOCAL section is also known as DM_LOCAL_DOMAINS; the DM_REMOTE section is also known as
DM_REMOTE_DOMAINS; and the ACCESSPOINTID parameter is also known as DOMAINID.

Chapter 2
Establishing a Link Between Domains

2-20

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646

Figure 2-9 Establishing a Link Between Domains Using Default Authentication

Note:

The “Credentials” shown in the preceding figure were acquired by each domain
gateway process at application booting using the CONNECTION_PRINCIPAL_NAME
identity configured for the local domain access point.

In the preceding figure, notice that the information exchanged between the initiator and target
domain gateways involves the CONNECTION_PRINCIPAL_NAME strings configured for the domain
gateways, as specified in the BDMCONFIG files. Each authentication plug-in uses the password
assigned to the remote domain access point (as defined in the DM_PASSWORDS section of the
BDMCONFIG file) to encrypt the string before transmitting it over the network, and uses the
password assigned to the local domain access point (as defined in the DM_PASSWORDS section of
the BDMCONFIG file) to decrypt the received string. The encryption algorithm used is 56-bit DES,
where DES is an acronym for the Data Encryption Standard.

Chapter 2
Establishing a Link Between Domains

2-21

For the encryption/decryption operation to succeed, the assigned password for the remote
domain access point in the local BDMCONFIG file must be the same as the assigned password
for the local domain access point in the remote BDMCONFIG file. (Similarly, if the domain security
level is set to APP_PW, the application passwords in the respective TUXCONFIG files must be
identical for the encryption/decryption operation to succeed.) For the authentication process to
succeed, the received string must match the CONNECTION_PRINCIPAL_NAME string configured for
the sender.

When the domain gateways pass the security checks, the link is established, and the gateways
can forward service requests and receive replies over the established link.

• Example DMCONFIG Entries for Establishing a Link

2.9.1 Example DMCONFIG Entries for Establishing a Link
In the following example, the configurations shown in the local DMCONFIG file are used when
establishing a connection through the local domain access point c01 and the remote domain
access point b01.

*DM_LOCAL
 # <local domain access point name> <gateway group
 name> <domain type>
 # <domain id> [<connection principal name>]
 [<security>]...
 c01 GWGRP=bankg1
 TYPE=TDOMAIN
 ACCESSPOINTID="BA.CENTRAL01"
 CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"
 SECURITY=DM_PW
 .
 .
 .
 *DM_REMOTE
 # <remote domain access point name> <domain type>
 <domain id>
 # [<connection principal name>]...
 b01 TYPE=TDOMAIN
 ACCESSPOINTID="BA.BANK01"
 CONNECTION_PRINCIPAL_NAME="BA.BANK01"

Note:

• Specifying Principal Names

• Mandating Interoperability Policy

• Setting ACL Policy

• Security Administration Tasks

• Setting Up Security in a Domains Configuration in Using the Oracle Tuxedo
Domains Component

Chapter 2
Establishing a Link Between Domains

2-22

2.10 Setting ACL Policy
As the administrator, you use the following configuration parameters to set and control the
access control list (ACL) policy between ATMI applications running Oracle Tuxedo release 7.1
or later software.

Parameter Name Description Setting

ACL_POLICY in DMCONFIG
(TA_DMACLPOLICY in DM_MIB)

May appear in the DM_REMOTE
section of the DMCONFIG file for
each remote domain access
point. Its value for a particular
remote domain access point
determines whether or not the
local domain gateway modifies
the credential (identity) of service
requests received from the
remote domain.

LOCAL or GLOBAL. Default is
LOCAL. LOCAL means replace
credential of any service request
received from remote domain,
and GLOBAL means pass
service requests with no change.

LOCAL_PRINCIPAL_NAME in
DMCONFIG
(TA_DMLOCALPRINCIPALNAME in
DM_MIB)

May appear in the DM_REMOTE
section of the DMCONFIG file for
each remote domain access
point. If the ACL_POLICY
parameter is set (or defaulted) to
LOCAL for a particular remote
domain access point, the local
domain gateway replaces the
credential of any service request
received from the remote domain
with the principal name specified
in the
LOCAL_PRINCIPAL_NAME
parameter for this remote domain
access point.

1-511 characters. If not specified,
the principal name defaults to the
ACCESSPOINTID string for the
remote domain access point.

The following three figures illustrates how the ACL_POLICY configuration affects the operation of
local domain gateway (GWTDOMAIN) processes.

Chapter 2
Setting ACL Policy

2-23

Figure 2-10 Establishing a Local ACL Policy

In the preceding figure, each domain gateway (GWTDOMAIN) modifies inbound client requests
(requests originating from the remote application and received over the network connection) so
that they take on the LOCAL_PRINCIPAL_NAME identity configured for the remote domain access
point and thus have the same access permissions as that identity. Each domain gateway
passes outbound client requests without change.

In this configuration, each ATMI application has an ACL database containing entries only for
users in its own domain. One such user is the LOCAL_PRINCIPAL_NAME identity configured for
the remote domain access point.

Note:

The preceding description also applies to ATMI applications running Oracle Tuxedo
pre-release 7.1 software except that the system uses the ACCESSPOINTID identity
configured for the remote domain access point. Essentially, the local ACL policy is
hardcoded in Oracle Tuxedo release 6.5 or earlier software.

Chapter 2
Setting ACL Policy

2-24

Figure 2-11 Establishing a Global ACL Policy

In the preceding figure, each domain gateway (GWTDOMAIN) passes inbound and outbound
client requests without change. In this configuration, each ATMI application has an ACL
database containing entries for users in its own domain as well as users in the remote domain.

Figure 2-12 Establishing a One-way Local and One-way Global ACL Policy

In the preceding figure, the domain gateway (GWTDOMAIN) in ATMI application 1 modifies
inbound client requests so that they take on the LOCAL_PRINCIPAL_NAME identity configured for
the remote domain access point for ATMI application 2 and thus have the same access
permissions as that identity; the domain gateway passes outbound client requests without
change. The domain gateway (GWTDOMAIN) in ATMI application 2 passes inbound and outbound
client requests without change.

Chapter 2
Setting ACL Policy

2-25

In this configuration, ATMI application has:

1. an ACL database containing entries only for users in its own domain; one such user is the
LOCAL_PRINCIPAL_NAME identity configured for the remote domain access point for
application 2. ATMI application

2. an ACL database containing entries for users in its own domain as well as users in ATMI
application 1.

• Impersonating the Remote Domain Gateway

• Example DMCONFIG Entries for ACL Policy

2.10.1 Impersonating the Remote Domain Gateway
If the domain gateway receives a client request from a remote domain for which the
ACL_POLICY parameter is set (or defaulted) to LOCAL in the local DMCONFIG file, the domain
gateway performs the following tasks:

1. Calls the internal impersonate user function to get authorization and auditing tokens for the
client based on the LOCAL_PRINCIPAL_NAME identity configured for the remote domain
access point.

2. Uses these tokens to overwrite the tokens already attached to the client request.

3. Forwards the request to the destination server.

For more detail on the impersonate user function, see Establishing an Identity for an Older
Client.

2.10.2 Example DMCONFIG Entries for ACL Policy
In the following example, the connection through the remote domain access point b01 is
configured for global ACL in the local DMCONFIG file, meaning that the domain gateway process
for domain access point c01 passes client requests from and to domain access point b01
without change. For global ACL, the LOCAL_PRINCIPAL_NAME entry for domain access point b01
is ignored.

*DM_LOCAL
 # <local domain access point name> <gateway group
 name>
 # <domain type> <domain id> [<connection principal
 name>]
 # [<security>]...
 c01 GWGRP=bankg1
 TYPE=TDOMAIN
 ACCESSPOINTID="BA.CENTRAL01"
 CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"
 SECURITY=DM_PW
 .
 .
 .
 *DM_REMOTE
 # <remote domain access name> <domain type> <domain
 id>
 # [<ACL policy>] [<connection principal name>]
 # [<local principal name>]...
 b01 TYPE=TDOMAIN

Chapter 2
Setting ACL Policy

2-26

 ACCESSPOINTID="BA.BANK01"
 ACL_POLICY=GLOBAL
 CONNECTION_PRINCIPAL_NAME="BA.BANK01"
 LOCAL_PRINCIPAL_NAME="BA.BANK01.BOB"

Note:

• Specifying Principal Names

• Mandating Interoperability Policy

• Establishing a Link Between Domains

• Security Administration Tasks

2.11 Setting Credential Policy
As the administrator, you use the following configuration parameter to set and control the
credential policy between ATMI applications running Oracle Tuxedo release 8.0 or later
software.

Chapter 2
Setting Credential Policy

2-27

Parameter Name Description Setting

CREDENTIAL_POLICY in
DMCONFIG
(TA_DMCREDENTIALPOLICY in
DM_MIB)

May appear in the DM_REMOTE
section of the DMCONFIG file for
each remote domain access
point. Its value for a particular
remote domain access point
determines whether or not the
local domain gateway removes
the credential (identity) from a
local service request destined for
this remote domain access point.

No

te:

The
CR
ED
EN
TIA
L_P
OLI
CY
par
am
eter
con
trol
s
whe
ther
or
not
the
loca
l
do
mai
n
gat
ewa
y
rem
ove
s
the
cre
den
tial
fro
m a
loca
l
ser
vice
req

LOCAL or GLOBAL. Default is
LOCAL. LOCAL means remove
the credential from a local
service request destined for this
remote domain access point, and
GLOBAL means do not remove
the credential from a local
service request destined for this
remote domain access point.

Chapter 2
Setting Credential Policy

2-28

Parameter Name Description Setting

ues
t
bef
ore
sen
din
g
the
req
ues
t to
a
rem
ote
do
mai
n.
The
AC
L_P
OLI
CY
par
am
eter
con
trol
s
whe
ther
or
not
the
loca
l
do
mai
n
gat
ewa
y
repl
ace
s
the
cre
den
tial
of a
ser
vice
req
ues
t
rec
eive

Chapter 2
Setting Credential Policy

2-29

Parameter Name Description Setting

d
fro
m a
rem
ote
do
mai
n
with
the
prin
cipa
l
na
me
spe
cifie
d in
the
LO
CA
L_P
RIN
CIP
AL_
NA
ME
par
am
eter
.

2.12 Administering Authorization
Authorization enforces limitations on user access to resources or facilities within an ATMI
application in accordance with application-specific rules. Only when users are authenticated to
join an ATMI application does authorization go into effect.

The procedures for administering authorization depend upon the underlying authorization
system of the ATMI application. For procedures to administer a custom authorization system,
see the documentation for that system. For procedures to administer the default authorization
system, see Administering Default Authentication and Authorization.

Chapter 2
Administering Authorization

2-30

Note:

• Authorization

• Default Authentication and Authorization

• Administering Default Authentication and Authorization

• Security Administration Tasks

• Security Compatibility

2.13 Administering Link-Level Encryption
Link-level encryption establishes data privacy for messages moving over the network links that
connect the machines in an ATMI application. There are three levels of link-level encryption
(LLE) security: 0-bit (no encryption), 56-bit, and 128-bit.

LLE applies to the following types of ATMI links:

• Workstation client to workstation handler (WSH)

• Bridge-to-Bridge

• Administrative utility (such as tmboot) to tlisten
• Domain gateway to domain gateway

• Understanding LLE min and max Values

• How to Configure LLE on Workstation Client Links

• How to Configure LLE on Bridge Links

• How to Configure LLE on tlisten Links

• How to Configure LLE on Domain Gateway Links

2.13.1 Understanding LLE min and max Values
Before you can configure LLE for your ATMI application, you need to be familiar with the LLE
notation: (min, max). The defaults for these parameters are:

• For min: 0

• For max: Number of bits that indicates the highest level of encryption possible for the
installed LLE version

For example, the default min and max values for LLE when the license file specifies
STRENGTH=128 are (0, 128). If you want to change the defaults, you can do so by assigning
new values to min and max in the UBBCONFIG file for your application.

For more information, see How LLE Works and Encryption Key Size Negotiation.

2.13.2 How to Configure LLE on Workstation Client Links
If Workstation clients are included in an application, the administrator must configure one or
more workstation listeners (WSLs) to listen for connection requests from Workstation clients.
Each WSL uses one or more associated workstation handlers (WSHs) to handle the
Workstation client workload. Each WSH can manage multiple Workstation clients by

Chapter 2
Administering Link-Level Encryption

2-31

multiplexing all requests and replies with a particular Workstation client over a single
connection.

As the administrator, you enable Workstation client access to the ATMI application by
specifying a WSL server in the SERVERS section of the application’s UBBCONFIG file. You need to
specify the -z and -Z command-line options for the WSL server if you want to override the
defaults for the LLE min and max parameters. (See Understanding LLE min and max Values
for details.) Of course, link-level encryption is possible only if LLE is installed on both the local
machine and the Workstation client.

Note:

At the Workstation client end of a network connection, you use environment variables
TMMINENCRYPTBITS and TMMAXENCRYPTBITS to override the defaults for the LLE min
and max parameters.

To configure LLE on Workstation client links, follow these steps:

1. Ensure that you are working on the ATMI application MASTER machine and that the
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the SERVERS section:

*SERVERS
 WSL SRVGRP="group_name" SRVID=server_number
 ...
 CLOPT="-A -- -z min -Z max ..."

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses UBBCONFIG
and loads the binary TUXCONFIG file to the location referenced by the TUXCONFIG variable.

In the preceding example, when tmloadcf(1) starts the ATMI application, it passes the "-A -- -z
min -Z max " command-line options to the WSL server. When establishing a network link
between a Workstation client and the WSH, the Workstation client and WSL negotiate the key
size until they agree on the largest key size supported by both.

See WSL(5), WS_MIB(5), and UBBCONFIG(5) in the Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference for additional information.

2.13.3 How to Configure LLE on Bridge Links
The Oracle Tuxedo system architecture optimizes network communications by establishing a
multiplexed channel among the machines in a multiple-machine application. Oracle Tuxedo
messages flow in both directions over this channel, and the message traffic is managed by a
specialized ATMI server known as a Bridge server.

As the administrator, you place an entry in the NETWORK section of the UBBCONFIG file for each
machine in an ATMI application on which a Bridge server resides. You need to specify the
MINENCRYPTBITS and MAXENCRYPTBITS optional run-time parameters for the Bridge server if you
want to override the defaults for the LLE min and max parameters. (See Understanding LLE
min and max Values for details.) Of course, Bridge-to-Bridge link-level encryption is possible
only if LLE is installed on the machines where the Bridge servers reside.

To configure LLE on Bridge links, follow these steps:

Chapter 2
Administering Link-Level Encryption

2-32

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1534543
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1533648
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3370051

1. Ensure that you are working on the ATMI application MASTER machine and that the
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the NETWORK section:

*NETWORK
 LMID NADDR="bridge_network_address" BRIDGE="bridge_device"
 NLSADDR="listen_network_address" MINENCRYPTBITS=min
 MAXENCRYPTBITS=max

LMID is the logical machine where the Bridge server resides; it has direct access to the
network device specified in the BRIDGE parameter.

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses UBBCONFIG
and loads the binary TUXCONFIG file to the location referenced by the TUXCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, the Bridge server reads
the TUXCONFIG file to access various parameters, including MINENCRYPTBITS and
MAXENCRYPTBITS. When establishing a network link with a remote Bridge server, the local and
remote Bridge servers negotiate the key size until they agree on the largest key size supported
by both.

See TM_MIB(5) and UBBCONFIG(5) in the Oracle Tuxedo File Formats, Data Descriptions,
MIBs, and System Processes Reference for additional information.

2.13.4 How to Configure LLE on tlisten Links
tlisten(1) is a network-independent listener process that provides connections between nodes
of a multiple-machine application, on which administrative utilities such as tmboot(1) can run.
The application administrator installs tlisten on all machines defined in the NETWORK section of
the UBBCONFIG file.

To configure LLE on tlisten links, follow the steps given in the previous topic, How to
Configure LLE on Bridge Links. If you so desire, you can start a separate instance of tlisten
on the local machine by entering a command such as:

tlisten -l nlsaddr [-z min -Z
 max]

The nlsaddr value must be the same as that specified for the NLSADDR parameter for this
machine in the NETWORK section of the UBBCONFIG file. See tlisten(1) in the Oracle Tuxedo
Command Reference, and TM_MIB(5) and UBBCONFIG(5) in the Oracle Tuxedo File Formats,
Data Descriptions, MIBs, and System Processes Reference for additional information.

2.13.5 How to Configure LLE on Domain Gateway Links
A domain gateway is a GWTDOMAIN process that relays service requests and service replies
between two or more ATMI applications. It provides interoperability through a specially
designed transaction processing (TP) protocol that flows over network transport protocols such
as TCP/IP.

A domain gateway belongs to a domain gateway group, for which a Domains configuration file
is required. A domain gateway group represents a local domain access point that
communicates with one or more remote domain access points. Like the application
configuration files, UBBCONFIG and TUXCONFIG, a Domains configuration file is created in text

Chapter 2
Administering Link-Level Encryption

2-33

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1032112
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1803508
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3370051
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1887169
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1032112
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1887169
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1803508
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3370051

format and then converted to binary format. The text and binary files are referred to as
DMCONFIG and BDMCONFIG, respectively. The DMCONFIG and BDMCONFIG files, and the environment
variables associated with them, are described on reference page DMCONFIG(5) in Oracle
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference.

As the administrator, you must place an entry in the DM_TDOMAIN section of the DMCONFIG file for
each:

• Local domain access point to accept requests for local services from remote domain
access points

• Remote domain access point accessible by a defined local domain access point

• TDomain session between specific local and remote access points

You need to specify the MINENCRYPTBITS and MAXENCRYPTBITS optional run-time parameters for
each domain access point and TDomain session for which you want to override the defaults for
the LLE min and max parameters. (See Understanding LLE min and max Values for details.)
Of course, domain-to-domain link-level encryption is possible only if LLE is installed on the
machines where the domains reside.

To configure LLE on domain gateway links, follow these steps:

1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI
application is inactive.

2. Open DMCONFIG with a text editor and add the following lines to the DM_TDOMAIN section:

*DM_TDOMAIN
 # Local network addresses
 LDOM NWADDR="local_domain_network_address"
 NWDEVICE="local_domain_device" MINENCRYPTBITS=min
 MAXENCRYPTBITS=max
 .
 .
 .
 # Remote network addresses
 RDOM NWADDR="remote_domain_network_address"
 NWDEVICE="remote_domain_device" MINENCRYPTBITS=min
 MAXENCRYPTBITS=max
 .
 .
 .
 # TDomain network addresses
 RDOM NWADDR="remote_domain_network_address"
 NWDEVICE="remote_domain_device"
CONNECTION_POLICY=ON_START
 LACCESSPOINT="local_domain_access_point_identifier"
FAILOVERSEQ=100
 MINENCRYPTBITS=min MAXENCRYPTBITS=max
LDOM is replaced with a local domain access point identifier, and RDOM is
replaced with a remote domain access point identifier

3. Load the configuration by running dmloadcf(1). The dmloadcf command parses DMCONFIG
and loads the binary BDMCONFIG file to the location referenced by the BDMCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, each domain gateway
reads the BDMCONFIG file to access various parameters, including MINENCRYPTBITS and
MAXENCRYPTBITS, and propagates those parameters to its local and remote domains. When the

Chapter 2
Administering Link-Level Encryption

2-34

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1023246
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1307396
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1032112

local domain is establishing a network link with a remote domain, the two domains negotiate
the key size until they agree on the largest key size supported by both.

See DMCONFIG(5) in Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference for additional information. Also, see Setting Up Security in a Domains
Configuration in Using the Oracle Tuxedo Domains Component.

See Also:

• Link-Level Encryption

• Security Administration Tasks

• Security Interoperability

• Security Compatibility

2.14 Administering TLS Encryption
TLS encryption establishes data privacy for messages moving between the machines in an
ATMI application. The industry-standard TLS 1.0 protocol is used for TLS encryption.
Customers can used 256-bit, 128-bit, and 56-bit TLS ciphers.

• Understanding TLS min and max Values

• How to Configure TLS on Workstation Client Links

• How to Configure TLS on Bridge Links

• How to Configure TLS on tlisten Links

• How to Configure TLS on Domain Gateway Links

• Development Process for the TLS Protocol

• Creating an Oracle Wallet

• Runtime Creation of an Oracle Wallet

• Use of the TUXCREATEWALLET Environment Variable

• Debugging TLS Connection Problems

2.14.1 Understanding TLS min and max Values
Before you can configure TLS for your ATMI application, you need to be familiar with the TLS
notation: (min, max). The defaults for these parameters are:

• For min: 0

• For max: Number of bits that indicates the highest level of encryption possible for the
installed TLS version

If you want to change the defaults, you can do so by assigning new values to min and max in
the UBBCONFIG file for your application. For more information, see How the SSL Protocol Works
and Encryption Key Size Negotiation.

Chapter 2
Administering TLS Encryption

2-35

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1023246

2.14.2 How to Configure TLS on Workstation Client Links
To configure TLS on Workstation client links, follow these steps:

1. Ensure that you are working on the ATMI application MASTER machine and that the
application is inactive.

2. SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and SEC_PRINCIPAL_PASSVAR parameters
must be specified. This may be done in the *RESOURCES, *MACHINES, *GROUPS, or *SERVERS
sections.

Note:

In general, it is recommended to specify these parameters at the highest level
possible to avoid duplicating information in the UBBCONFIG and to avoid multiple
password prompts if running tmloadcf interactively.

3. Open UBBCONFIG with a text editor and add the following lines to the SERVERS sections:

*SERVERS
 WSL SRVGRP="group_name" SRVID=server_number ...
 CLOPT="-A -- -z min -Z max -n <network_address> -S <secure port>
[-a] [-R <renegotiation_interval>] ..."

If the secure port is set to the same port used in the network address then the WSL will
accept only TLS connections; if different ports are used, the same WSL can accept both
non-TLS and TLS connections.

The WSC must set the SEC_PRINCIPAL_LOCATION, SEC_PRINCIPAL_NAME and/or
SEC_PRINCIPAL_PASSWORD environment variables as appropriate.

All workstation clients using TLS must specify the list of trusted certificate(s) used to verify
the credentials presented by the WSH. When using legacy security credentials, the
location is specified via the plugin framework certificate_validation interface and does
not require setting any environment variables. When the Oracle Wallet is used for security
credentials, the trusted certificates are contained in the Oracle Wallet. The
SEC_PRINCIPAL_LOCATION and SEC_PRINCIPAL_NAME environment variables are used to
locate the wallet as described in Runtime Creation of an Oracle Wallet. The
SEC_PRINCIPAL_PASSWORD environment variable is used to open the wallet.

Note:

• It is possible for SEC_PRINCIPAL_NAME to be unset, in which case it will be
interpreted as a 0-length string.

• If legacy security credentials for 1-way TLS are converted to an Oracle Wallet
at runtime and the SEC_PRINCIPAL_PASSWORD environment variable is not set
at the time of creation, then a default password
TrustedCertsOnlyNoPWNeeded is used to create the wallet. Such a wallet can
be subsequently accessed without setting the SEC_PRINCIPAL_PASSWORD
environment variable.

Chapter 2
Administering TLS Encryption

2-36

If the WSL -a (mutual authentication) option is being used then the WSC must also specify
the location of its own certificate and private key. Regardless of whether legacy security
credentials or the Oracle Wallet are being used, the SEC_PRINCIPAL_LOCATION,
SEC_PRINCIPAL_NAME, and SEC_PRINCIPAL_PASSWORD environment variables must be set to
access these credentials.

It is possible for SEC_PRINCIPAL_NAME to be unset, in which case it will be interpreted as a
0-length string.

4. Load the configuration by running tmloadcf(1). The tmloadcf command parses UBBCONFIG
and loads the binary TUXCONFIG file to the location referenced by the TUXCONFIG variable.

2.14.3 How to Configure TLS on Bridge Links
To configure TLS on Bridge links, follow these steps:

1. Ensure that you are working on the ATMI application MASTER machine and that the
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES and
NETWORK sections:

*RESOURCES
 OPTIONS SSL,LAN
 SSL_RENEGOTIATION (optional) [value]
 *NETWORK
 LMID NADDR="bridge_network_address" BRIDGE="bridge_device"
 NLSADDR="listen_network_address"
 MINENCRYPTBITS=min MAXENCRYPTBITS=max

SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and SEC_PRINCIPAL_PASSVAR must be
specified in the *RESOURCES and/or*MACHINES sections.

LMID is the logical machine where the Bridge server resides; it has direct access to the
network device specified in the BRIDGE parameter.

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses UBBCONFIG
and loads the binary TUXCONFIG file to the location referenced by the TUXCONFIG variable.

2.14.4 How to Configure TLS on tlisten Links
To configure TLS on tlisten links, follow the steps given in the previous topic, How to
Configure SSL on Bridge Links. You must enter the following command:

tlisten -l nlsaddr [-z min -Z
 max][-s][-c <sec_principal_location>][-n
 <sec_principal_name>][-p
 <sec_principal_passvar>]

Note:

The -s option specifies an TLS connection instead of an LLE connection.

Chapter 2
Administering TLS Encryption

2-37

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826

The -c, -n, and -p options specify TLS security principal information and must match the values
specified for the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and SEC_PRINCIPAL PASSVAR
in the UBBCONFIG file.

2.14.5 How to Configure TLS on Domain Gateway Links
To configure TLS on domain gateway links, follow these steps:

1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI
application is inactive.

2. Open DMCONFIG with a text editor and add the following lines to the DM_TDOMAIN section:

*DM_TDOMAIN
 # SSL DEFAULT: NWPROTOCOL={SSL|SSL_ONE_WAY}
 SSL_RENEGOTIATION = [value]

 # Local network addresses
 LDOM NWADDR="local_domain_network_address"
 NWDEVICE="local_domain_device" MINENCRYPTBITS=min
 MAXENCRYPTBITS=max

 # Remote network addresses
 RDOM NWADDR="remote_domain_network_address"
 NWDEVICE="remote_domain_device" MINENCRYPTBITS=min
 MAXENCRYPTBITS=max
 .
 .
 .
 # TDomain network addresses
 RDOM NWADDR="remote_domain_network_address"
 NWDEVICE="remote_domain_device"
CONNECTION_POLICY=ON_START
 LACCESSPOINT="local_domain_access_point_identifier"
FAILOVERSEQ=100
 MINENCRYPTBITS=min MAXENCRYPTBITS=max

 LDOM is replaced with a local domain access point identifier, and RDOM is
replaced with a remote domain access point identifier.

3. SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION , and SEC_PRINCIPAL_PASSWORD must
be specified in the UBBCONFIG file.

4. Load the configuration by running dmloadcf(1) . The dmloadcf command parses DMCONFIG
and loads the binary BDMCONFIG file to the location referenced by the BDMCONFIG variable.

2.14.6 Development Process for the TLS Protocol
Using the TLS protocol in a Tuxedo application is primarily an administration process. The
following table describes the administration steps required to set up the infrastructure required
to use the TLS protocol and configure the servers and clients in your application to use TLS.

Chapter 2
Administering TLS Encryption

2-38

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1307396

For a detailed description of the administration steps, see Managing Public Key Security and
Configuring the SSL Protocol in Using Security in CORBA Applications.

Once the administration steps are complete, you can use either password authentication or
certificate authentication in your Tuxedo application. The steps are similar for CORBA
application authentication. For more information, see Writing a CORBA Application That
Implements Security in Using Security in CORBA Applications.

Note:

If you are using the Oracle CORBA C++ ORB as a server application, the ORB can
also be configured to use the TLS protocol. For more information, see Configuring
the SSL Protocol in Using Security in CORBA Applications.

Table 2-2 Administration Steps for the TLS Protocol

Step Description

1 Set up an LAP-enabled directory service. You will be
prompted for the name of the LDAP server during the
installation of the Oracle Tuxedo product.

2 Install the license for the TLS protocol.

3 Obtain a digital certificate and private key for the Oracle
Tuxedo application from a certificate authority.

4 Publish the digital certificates for the Oracle Tuxedo
application and the certificate authority in the LAP-enabled
directory service.

5 Define the SEC_PRINCIPAL_NAME,
SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters for the Tuxedo server
process in the UBBCONFIG file.

6 Change to "Set the UBBCONFIG parameters, DMCONFIG
parameters, WSL CLOPT, JSL CLOPT, or ISL CLOPT so
that TLS is turned on.

7 Define a port for TLS communication in the appropriate
configuration file or server CLOPT.

8 Create a Trusted Certificate Authority file (trust_ca.cer)
that defines the certificate authorities trusted by the Oracle
Tuxedo application.

9 Change to "Use the tmloadcf and/or dmloadcf commands
to load the appropriate configuration file(s).

10 Optionally, create a Peer Rules file (peer_val.rul) for the
Oracle Tuxedo product.

11 Optionally, modify the LDAP Search filter file to reflect the
directory hierarchy in place in your enterprise.

If you use the TLS protocol with password authentication, you need to set the SECURITY
parameter in the UBBCONFIG file to desired level of authentication and if appropriate, configure
the Authentication Server (AUTHSRV). For information about the administration steps for
password authentication, see “Password Authentication” in Using Security in ATMI
Applications..

The following figure illustrates the configuration of a Tuxedo application that uses the TLS
protocol.

Chapter 2
Administering TLS Encryption

2-39

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/security/certs.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/security/config.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/security/writewle.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/security/writewle.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/security/config.html
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/security/config.html

Figure 2-13 Configuration for Using the TLS Protocol in a Tuxedo Application

2.14.7 Creating an Oracle Wallet
An Oracle Wallet can be created in any of the following ways:

• Using the owm graphical tool for those customers who have installed Oracle Database

• Using the orapki command line tool for those customers who have installed Oracle
Database

• Using openssl or another third party tool

• Automatically at execution time by conversion of security credentials used in Tuxedo 11g
or earlier releases.

• Creating an Oracle Wallet with orapki

• Creating an Oracle Wallet with openssl

2.14.7.1 Creating an Oracle Wallet with orapki
For information about how to create an Oracle Wallet using orapki, see the orapki Utility in
Oracle Database Advanced Security Administrator's Guide.

Oracle Tuxedo wallets require a password, so the Auto Login option should not be used.
orapki and owm can be used to generate wallet with a new private key and certificate, but

Chapter 2
Administering TLS Encryption

2-40

current versions of these tools cannot import a previously used private key and certificate into
a wallet. If it is necessary to import a preexisting private key and certificate pair into a wallet,
use runtime conversion, openssl, or another third party tool.

2.14.7.2 Creating an Oracle Wallet with openssl
An example of an openssl command that can be used to create an Oracle Wallet is as follows:

Listing 2‑1 Example of Creating an Oracle Wallet with openssl

openssl pkcs12 \
 -export \
 -chain \
 -inkey private_key_file.pem \
 -in certificate_file.pem \
 -CAfile trusted_certificate_file.pem \
 -out ewallet.p12 \
 -passin Spass:private_key_password \
 -passout pass:wallet_password \

Where,

• -export: indicates that a PKCS 12 file is being created.

• -chain: specifies that an attempt is made to include the entire certificate chain of the user
certificate.

• -inkey: specifies the private key file.

• -in: specifies the file that contains the user certificate and any other certificates in the
certificate chain.

Note:

If the private key and the certificate chain are in the same file, the -inkey and -in
parameters can specify the same file.

• -CAfile: specifies a file containing trusted certificates.

• -out: specifies the output file name, which must be ewallet.p12 for an Oracle Wallet.

• -passin: specifies the password for the private key file.

• -passout: specifies the password for the newly created wallet.

Note:

• If there is any concern about other users executing "ps" while openssl is running,
then the -passin and -passout parameters should be omitted and openssl will
prompt for the passwords.

• When you create an Oracle Wallet with openssl, the "-passin" parameter must
have the same value as the "-passout" parameter, for Oracle Wallet does not
distinguish wallet password from private key password.

Chapter 2
Administering TLS Encryption

2-41

2.14.8 Runtime Creation of an Oracle Wallet
When the SEC_PRINCIPAL_LOCATION configuration parameter or the workstation client
SEC_PRINCIPAL_LOCATION environment variable does not point to an Oracle Wallet, Tuxedo
looks for legacy security credentials and attempts to create an Oracle Wallet as follows:

• As in previous releases, SEC_PRINCIPAL_LOCATION points to the private key file for the
process. A private key file is mandatory for processes that will be on the server side of an
TLS connection or that will be on the client side of the connection when mutual
authentication is used. It is optional for processes that will be on the client side of a one-
way TLS connection. The value of the SEC_PRINCIPAL_PASSVAR configuration file
environment variable (or the workstation client SEC_PRINCIPAL_PASSWORD environment
variable) will be used to decrypt the private key.

• The certificate chain for the process is obtained via the plugin framework passing the value
of SEC_PRINCIPAL_NAME as input (In the default plugin framework implementation this uses
LDAP). A certificate chain is mandatory for processes that will be on the server side of an
TLS connection or that will be on the client side of the connection when mutual
authentication is used. It is optional for processes that will be on the client side of a one-
way TLS connection.

• The trusted certificates for the process are contained in the file specified as the
caCertificateFile parameter of the plugin framework certificate_validation
interface. The default caCertificateFile is $TUXDIR/udataobj/security/certs/
trust_ca.cer. Trusted certificates need to exist for TLS servers and TLS clients.

A PKCS12 wallet file is created using the process' private key (if any) and user certificate (if
any) as well as the other certificates in the chain and the trusted certificates.

During Oracle wallet runtime creation, SEC_PRINCIPAL_LOCATION is used to specify the location
of the newly created wallet; it must be defined as either server's or client's own private key.

For example, if there is a private key file "ISH_tuxqa.pem" in "/home/tuxedo/myapp", you
should define SEC_PRINCIPAL_LOCATION="/home/tuxedo/myapp/ISH_tuxqa.pem". In this way,
the wallet is created at /home/tuxedo/myapp/wallet.ISH_tuxqa.pem/ewallet.p12.

Note:

• If you want to create the wallet manually with the method mentioned in Creating
an Oracle Wallet, you must follow the same rules as above to create your wallet
at a proper directory; otherwise, the wallet cannot be found.

• Exceptionally, when creating the wallet manually, besides defining the
SEC_PRINCIPAL_LOCATION as a private key file, you can also define it as a
directory. In this way, both SEC_PRICIPAL_LOCATION and SEC_PRINCIPAL_NAME will
be used to locate the wallet.

• For example, if you define SEC_PRINCIPAL_LOCATION="/home/tuxedo/myapp" and
SEC_PRINCIPAL_NAME="ISH_tuxqa", you should copy your manually created
wallet to /home/tuxedo/myapp/wallet.ISH_tuxqa/ewallet.p12; otherwise, it
cannot be found.

Chapter 2
Administering TLS Encryption

2-42

2.14.9 Use of the TUXCREATEWALLET Environment Variable
The conversion of legacy security credentials to the Oracle Wallet format is affected by the
TUXCREATEWALLET environment variable, which may have the following settings:

• TUXCREATEWALLET=KEEP or TUXCREATEWALLET=YES or TUXCREATEWALLET unset: If a wallet
does not exist but old-style security credentials do exist then convert the legacy security
credentials to a wallet. This is the default behavior. The directory where the wallet is
created will have 700 permissions and the ewallet.p12 file will have 600 permissions. The
user must have proper permissions to read any existing wallet or to create a wallet. If
ULOG_SSLINFO=y is set then the following message will be logged:

LIBTUX_CAT:6908: INFO: Security credentials for principal
name have been converted to Oracle Wallet wallet_directory

On subsequent process invocations the newly created wallet will be used so that the
legacy security credentials do not need to be recreated.

• TUXCREATEWALLET=TEMP: If a wallet does not exist but old-style security credentials do exist
create a wallet in a temporary directory and then remove the temporary file wallet once it is
open. No LIBTUX_CAT:6908 message will be logged when using this option. The TEMP
option is less efficient but is needed if:

– Old-style security credentials gotten from the plugin framework could change
dynamically, or

– The application does not want to store wallets on a local file system for security
reasons or for any other reason, or

– SEC_PRINCIPAL_LOCATION is located on a read-only file system.

• TUXCREATEWALLET=NO or TUXCREATEWALLET=anyothervalue: If a wallet does not exist report
an error and do not look at old-style security credentials.
The values KEEP or TEMP may be in any case but must be those 4 characters. The
values YES or NO may be in the local language as is true for many other Yes/No
environment variables in Tuxedo.

2.14.10 Debugging TLS Connection Problems
• Enabling NZ Tracing

• Connection Establishment Log Message

• Displaying the Contents of an Oracle Wallet

• Obtaining NZ Error Code Information

2.14.10.1 Enabling NZ Tracing
If the environment variable TUXNZTRACE=8191 is set, Tuxedo will output an TLS trace for the
process to a file named trace-process_id.log. The trace output will contain information sent
across the TLS handshake process as well as encrypted application data. This trace can be
very helpful in determining why a particular certificate chain is not considered valid or why
there is some other error in the TLS handshake process.

Chapter 2
Administering TLS Encryption

2-43

2.14.10.2 Connection Establishment Log Message
If the environment variable ULOG_SSLINFO=yes is set, then Tuxedo will write a message to the
userlog each time a TLS connection is established which includes the name of the negotiated
cipher.

2.14.10.3 Displaying the Contents of an Oracle Wallet
Various tools can be used to display information about an Oracle Wallet, which is a PKCS12
file.

Openssl is available as part of the OS distribution on some operating systems and can be
downloaded and compiled from source on other operating systems.

The following openssl command displays the certificates and private keys in an Oracle Wallet:

openssl pkcs12 -in ewallet.p12

openssl will prompt for a password to be used to open the wallet. (The option -password
pass:password can be used to avoid the prompt but using this option could allow the password
to be seen by another user on the machine who is executing the ps command.)

openssl will also prompt for a password to be used to encrypt the decrypted private key when
displaying it on the terminal. The option -nodes can be used to avoid this prompt and to display
the private key in unencrypted format.

Any of the certificates contained in the output of openss pkcs12 can be copied into another file
and the following command displays the fields in the certificate:

openssl x509 -in certificatefile -text -noout

Users who have Oracle Database software installed can also use the orapki command or the
owm graphical command to display information about a wallet. The orapki command to
display wallet information looks like this:

orapki wallet display -wallet wallet_location

2.14.10.4 Obtaining NZ Error Code Information
Many TLS error messages include an error code number returned by the Oracle NZ security
layer. In some but not all error messages this is followed by a short text description of the NZ
error number. For those error messages where no text description of the NZ error code is
included, this information can be obtained by looking in the file.

$TUXDIR/locale/C/ORACLE.text

Users who have Oracle Database software installed can also use the oerr command to
determine the string associated with a particular error number

Chapter 2
Administering TLS Encryption

2-44

Note:

• SSL Encryption

• Security Administration Tasks

• UBBCONFIG(5) Resources Section

• DM_MIB(5) T_DM_TDOMAINClass

• DMCONFIG(5) DM_TDOMAIN section

• WS_MIB(5) T_WSL Class

• Using Security in CORBA Applications

2.15 Administering Public Key Security
The most effective way to make a distributed ATMI application secure is to combine link-level
encryption with public key encryption. Public key encryption is the framework on which public
key security is built.

Public key security allows you to incorporate message-based digital signatures and message-
based encryption into your ATMI applications. Together, these capabilities provide data integrity
and privacy, which are especially important when an ATMI application interacts with other ATMI
applications or Workstation clients from outside the company.

• Recommended Practices for Public Key Security

• Assigning Public-Private Key Pairs

• Setting Digital Signature Policy

• Setting Encryption Policy

• Initializing Decryption Keys Through the Plug-ins

• Failure Reporting and Auditing

2.15.1 Recommended Practices for Public Key Security
• The ATMI application’s operating environment largely determines the level of security

achieved. For maximum safety, install hardware devices that protect private key
information.

• Establish policies regarding key expiration intervals and key renewal procedures.
Expiration of a Certification Authority’s certificate might have a dramatic impact on system
operation, and should be anticipated so updated user certificates can be issued in
advance.

2.15.2 Assigning Public-Private Key Pairs
Application administrators and developers need to choose a Certification Authority to provide
public-private key pairs and the digital certificates associated with them. Then they must
decide how to assign the key pairs to the ATMI application. There are many options for
assigning key pairs. An administrator can assign one or more of the following:

• One public-private key to an entire ATMI application

Chapter 2
Administering Public Key Security

2-45

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3370051
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1383533
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1023246
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1533648

• A public-private key pair to each machine in an ATMI application

• A public-private key pair to each server in an ATMI application

• A public-private key pair to each service in an ATMI application

• A public-private key pair to each end user

Application administrators and developers are responsible for choosing a method of assigning
key pairs and assigning them. Once key pairs are assigned, however, no more administrative
work is required; the plug-ins for public key security distribute and manage the keys.

2.15.3 Setting Digital Signature Policy
As the administrator, you use the following configuration parameters to set the digital signature
policy for your ATMI application.

Parameter Name Description Setting

SIGNATURE_AHEAD in
UBBCONFIG
(TA_SIGNATURE_AHEAD in
TM_MIB)

Maximum permissible time
difference between (1) the
timestamp value attached to a
digitally signed message buffer
and (2) the time at which the
message buffer is received. If the
signature timestamp is too far
into the future, the receiving
process rejects the message
buffer.

1-2147483647 seconds. Default
is 3600 seconds (one hour).

SIGNATURE_BEHIND in
UBBCONFIG
(TA_SIGNATURE_BEHIND in
TM_MIB)

Maximum permissible time
difference between (1) the time at
which a digitally signed message
buffer is received and (2) the
timestamp value attached to the
message buffer. If the signature
timestamp is too far into the past,
the receiving process rejects the
message buffer.

1-2147483647 seconds. Default
is 604800 seconds (one week).

SIGNATURE_REQUIRED in
UBBCONFIG
(TA_SIGNATURE_REQUIRED in
TM_MIB)

Determines whether a receiving
process will accept only message
buffers that are digitally signed.

Y (yes—digital signature is
required) or N (no—digital
signature is not required). Default
is N.

• Setting a Postdated Limit for Signature Timestamps

• Setting a Predated Limit for Signature Timestamps

• Enforcing the Signature Policy for Incoming Messages

• How the EventBroker Signature Policy Is Enforced

• How the /Q Signature Policy Is Enforced

• How the Remote Client Signature Policy Is Enforced

2.15.3.1 Setting a Postdated Limit for Signature Timestamps
SIGNATURE_AHEAD is specified at the domain-wide level of the configuration hierarchy, meaning
that the value you assign to it applies to all processes running in the ATMI application. Domain-
wide parameters are set in the RESOURCES section in the UBBCONFIG file, and the T_DOMAIN class
in the TM_MIB.

Chapter 2
Administering Public Key Security

2-46

The SIGNATURE_AHEAD parameter establishes the maximum permissible time difference
between (1) the timestamp attached to the incoming message buffer and (2) the current time
shown on the verifying system’s local clock. The minimum value is 1 second; the maximum,
2147483647 seconds. The default is 3600 seconds (one hour).

If the attached timestamp shows a time too far into the future, the signature is considered
invalid. This parameter is useful for rejecting signatures that are postdated, while allowing a
certain amount of leeway for unsynchronized local clocks.

• Example UBBCONFIG Entries for Postdated Limit

2.15.3.1.1 Example UBBCONFIG Entries for Postdated Limit

*RESOURCES
SIGNATURE_AHEAD 2400

2.15.3.2 Setting a Predated Limit for Signature Timestamps
SIGNATURE_BEHIND is specified at the domain-wide level of the configuration hierarchy,
meaning that the value you assign to it applies to all processes running in the ATMI application.
Domain-wide parameters are set in the RESOURCES section in the UBBCONFIG file, and the
T_DOMAIN class in the TM_MIB.

The SIGNATURE_BEHIND parameter establishes the maximum permissible time difference
between (1) the current time shown on the verifying system’s local clock and (2) the timestamp
attached to the incoming message buffer. The minimum value is 1 second; the maximum,
2147483647 seconds. The default is 604800 seconds (one week).

If the attached timestamp shows a time too far into the past, the signature is considered
invalid. This parameter is useful for resisting replay attacks, in which a valid signed buffer is
injected into the system a second time. However, in a system with asynchronous
communication—for example, in a system in which disk-based queues are used—buffers
signed a long time ago may still be considered valid. So, in a system with asynchronous
communication, you may want to increase the SIGNATURE_BEHIND setting.

• Example UBBCONFIG Entries for Predated Limit

2.15.3.2.1 Example UBBCONFIG Entries for Predated Limit

*RESOURCES
 SIGNATURE_BEHIND 300000

2.15.3.3 Enforcing the Signature Policy for Incoming Messages
SIGNATURE_REQUIRED may be specified any of the following four levels in the configuration
hierarchy:

• RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB
• MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB
• GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB
• SERVICES section in UBBCONFIG or T_SERVICE class in TM_MIB

Chapter 2
Administering Public Key Security

2-47

Setting SIGNATURE_REQUIRED to Y (yes) at a particular level means that signatures are required
for all processes running at that level or below. For example, setting SIGNATURE_REQUIRED
to Y for a machine named mach1 means that all processes running on mach1 will accept only
incoming messages that are digitally signed.

• Set at the domain-wide level (RESOURCES section or T_DOMAIN class), this parameter covers
all application services advertised within the domain, including those advertised by
gateway processes. The default is N.

• Set at the machine level (MACHINES section or T_MACHINE class), this parameter covers all
application services advertised on a particular machine, including those advertised by
gateway processes. The default is N.

• Set at the group level (GROUPS section or T_GROUP class), this parameter covers all
application services advertised by a particular group, including those advertised by
gateway processes. The default is N.

• Set at the service level (SERVICES section T_SERVICE class), this parameter covers all
instances of a particular service advertised within the domain, including those advertised
by gateway processes. The default is N.

You may specify both SIGNATURE_REQUIRED=Y and ENCRYPTION_REQUIRED=Y together at the
domain-wide level, machine level, group level, or service level. See Enforcing the Encryption
Policy for Incoming Messages for a description of ENCRYPTION_REQUIRED.

• Qualifier

• Example

2.15.3.3.1 Qualifier
The enforcement policy for SIGNATURE_REQUIRED applies only to application services,
application events, and application enqueue requests. It does not apply to system-generated
service invocations and system event postings.

2.15.3.3.2 Example
To configure SIGNATURE_REQUIRED for a machine named mach1, follow these steps:

1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the MACHINES section:

*MACHINES
 mach1 LMID="machine_logical_name"
 TUXCONFIG="absolute_path_name_to_tuxconfig_file"
 TUXDIR="absolute_path_name_to_BEA_Tuxedo_directory"
 APPDIR="absolute_path_name_to_application_directory"
 SIGNATURE_REQUIRED=Y

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses UBBCONFIG
and loads the binary TUXCONFIG file to the location referenced by the TUXCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, it passes the
SIGNATURE_REQUIRED=Y parameter to the machine named mach1. At that point, all application
services advertised by mach1, including those advertised by gateway processes, are allowed to
accept only messages that include valid digital signatures. If a process controlled by mach1

Chapter 2
Administering Public Key Security

2-48

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1032112

receives a message that does not include a valid digital signature, the system takes the
following actions:

• Generates a userlog(3c) message (severity WARN)

• Discards the buffer as if it were never received by the process

• A NULL (empty) buffer cannot be digitally signed, meaning that the system rejects any
NULL buffer received by a process requiring digital signatures, in the manner stated in the
preceding bullet list.

2.15.3.4 How the EventBroker Signature Policy Is Enforced
When digital signatures are attached to a posted message buffer, these signatures are
preserved and forwarded along with the message buffer to subscribers for the relevant event.

If theTMUSREVT(5) system server is running in a domain, machine, or server group that
requires digital signatures, it rejects any incoming posting without a TPSIGN_OK composite
signature status—see Understanding the Composite Signature Status.

Possible subscription notification actions that the TMUSREVT server might take include invoking
a service or enqueuing a message. If the target service or queue requires a valid digital
signature, but one is not attached to the posted message, the subscription notification action
fails.

System events (events that are posted by the system itself and processed by the TMSYSEVT
server) may be digitally signed. The administrative policies regarding digital signature do not
apply to the TMSYSEVT(5) server.

2.15.3.5 How the /Q Signature Policy Is Enforced
When digital signatures are attached to a queued buffer, the signatures are preserved in the
queue and forwarded to the dequeuing process. Also, if a message is processed by
TMQFORWARD(5) to invoke a service, signatures are preserved.

If the TMQUEUE(5)system server is running in a domain, machine, or server group that
requires digital signatures, it rejects any incoming enqueue request without a TPSIGN_OK
composite signature status—see Understanding the Composite Signature Status. In addition,
the TMQUEUE server requires a digital signature if such a policy is in effect for the service name
associated with the queue space.

2.15.3.6 How the Remote Client Signature Policy Is Enforced
If the workstation handler (WSH) is running in a domain, machine, or server group that requires
digital signatures, it rejects any incoming message buffer containing application data without a
TPSIGN_OK composite signature status—see Understanding the Composite Signature Status.

2.15.4 Setting Encryption Policy
As the administrator, you use the following configuration parameter to set the encryption policy
for your ATMI application.

Chapter 2
Administering Public Key Security

2-49

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1010998
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1010816
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1026459
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1010730

Parameter Name Description Setting

ENCRYPTION_REQUIRED in
UBBCONFIG
(TA_ENCRYPTION_REQUIRED in
TM_MIB)

Determines whether a receiving
process will accept only message
buffers that are encrypted.

Y (yes—encryption is required) or
N (no—encryption is not
required). Default is N.

• Enforcing the Encryption Policy for Incoming Messages

• How the EventBroker Encryption Policy Is Enforced

• How the /Q Encryption Policy Is Enforced

• How the Remote Client Encryption Policy Is Enforced

2.15.4.1 Enforcing the Encryption Policy for Incoming Messages
ENCRYPTION_REQUIRED may be specified at any of the following four levels in the configuration
hierarchy:

• RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB
• MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB
• GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB
• SERVICES section in UBBCONFIG or T_SERVICE class in TM_MIB
Setting ENCRYPTION_REQUIRED to Y (yes) at a particular level means that encryption is required
for all processes running at that level or below. For example, setting ENCRYPTION_REQUIRED to Y
for a machine named mach1 means that all processes running on mach1 will accept only
incoming messages that are encrypted.

• Set at the domain-wide level (RESOURCES section or T_DOMAIN class), this parameter covers
all application services advertised within the domain, including those advertised by
gateway processes. The default is N.

• Set at the machine level (MACHINES section or T_MACHINE class), this parameter covers all
application services advertised on a particular machine, including those advertised by
gateway processes. The default is N.

• Set at the group level (GROUPS section or T_GROUP class), this parameter covers all
application services advertised by a particular group, including those advertised by
gateway processes. The default is N.

• Set at the group level (GROUPS section or T_GROUP class), this parameter covers all
application services advertised by a particular group, including those advertised by
gateway processes. The default is N.

• Set at the service level (SERVICES section T_SERVICE class), this parameter covers all
instances of a particular service advertised within the domain, including those advertised
by gateway processes. The default is N.

You may specify both ENCRYPTION_REQUIRED=Y and SIGNATURE_REQUIRED=Y together at the
domain-wide level, machine level, group level, or service level. See Enforcing the Signature
Policy for Incoming Messages for a description of SIGNATURE_REQUIRED.

• Qualifier

• Example

Chapter 2
Administering Public Key Security

2-50

2.15.4.1.1 Qualifier
The enforcement policy for ENCRYPTION_REQUIRED applies only to application services,
application events, and application enqueue requests. It does not apply to system-generated
service invocations and system event postings.

2.15.4.1.2 Example
To configure ENCRYPTION_REQUIRED for a server group named STDGRP, follow these steps:

1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the GROUPS section:

*GROUPS
 STDGRP LMID="machine_logical_name"
 GRPNO="server_group_number"
 ENCRYPTION_REQUIRED=Y

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses UBBCONFIG
and loads the binary TUXCONFIG file to the location referenced by the TUXCONFIG
variable.

In the preceding example, when tmboot(1) starts the ATMI application, it passes the
ENCRYPTION_REQUIRED=Y parameter to the server group named STDGRP. At that point, all
application services advertised by STDGRP, including those advertised by gateway processes,
are allowed to accept only messages protected by an encryption envelope. If a process
controlled by STDGRP receives an unencrypted message, the system takes the following
actions:

• Generates a userlog(3c)message (severity ERROR)

• Discards the buffer as if it were never received by the process

Note:

A NULL (empty) buffer cannot be encrypted, meaning that the system rejects any
NULL buffer received by a process requiring encryption, in the manner stated in the
preceding bullet list.

2.15.4.2 How the EventBroker Encryption Policy Is Enforced
When a posted message buffer is encrypted, encryption envelopes are preserved and
forwarded, along with the encrypted message content, to subscribers for the relevant event.

If the TMUSREVT(5) system server is running in a domain, machine, or server group that
requires encryption, it rejects any incoming posting message that is not encrypted.

Possible subscription notification actions that the TMUSREVT server might take include invoking
a service or enqueuing a message. If the target service or queue requires encrypted input, but
the posted message is not encrypted, the subscription notification action fails. Also, if the
subscriber does not possess an appropriate decryption key, the event notification action fails.

Chapter 2
Administering Public Key Security

2-51

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1032112
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1010998

System events (events that are posted by the system itself and processed by the TMSYSEVT
server) may be encrypted. The administrative policies regarding encryption do not apply to the
TMSYSEVT(5) server.

2.15.4.3 How the /Q Encryption Policy Is Enforced
When a queued message buffer is encrypted, this status is preserved in the queue, and the
buffer is forwarded, in encrypted form, to the dequeuing process. Also, if a message is
processed by TMQFORWARD(5) to invoke a service, encryption status is preserved.

If the TMQUEUE(5) system server is running in a domain, machine, or server group that
requires encryption, it rejects any incoming enqueue request that is not encrypted. In addition,
the TMQUEUE server requires encryption if such a policy is in effect for the service name
associated with the queue space.

2.15.4.4 How the Remote Client Encryption Policy Is Enforced
If the workstation handler (WSH) is running in a domain, machine, or server group that requires
encryption, it rejects any incoming message buffer containing an unencrypted application data
buffer.

2.15.5 Initializing Decryption Keys Through the Plug-ins
As the administrator, you use the following configuration parameters to specify principal names
and decryption keys for the system processes running in your ATMI application.

Parameter Name Description Setting

SEC_PRINCIPAL_NAME in
UBBCONFIG
(TA_SEC_PRINCIPAL_NAME in
TM_MIB)

The name of the target principal,
which becomes the identity of
one or more system processes.

1-511 characters.

SEC_PRINCIPAL_LOCATION in
UBBCONFIG
(TA_SEC_PRINCIPAL_LOCATION
in TM_MIB)

The location of the file or device
where the decryption (private)
key for the target principal
resides.

0-1023 characters. If not
specified, defaults to a NULL
(zero length) string.

SEC_PRINCIPAL_PASSVAR in
UBBCONFIG
(SEC_PRINCIPAL_PASSVAR in
TM_MIB)

The variable in which the
password for the target principal
is stored.

0-31 characters. If not specified,
defaults to a NULL (zero length)
string.

This trio of configuration parameters can be specified at any of the following four levels in the
configuration hierarchy:

• RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB
• MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB
• GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB
• SERVERS section in UBBCONFIG or T_SERVER class in TM_MIB
A principal name and decryption key at a particular configuration level can be overridden at a
lower level. For example, suppose you configure a principal name and decryption key for
machine mach1, and a principal name and decryption key for a server called serv1 running on
mach1. The processes on mach1 behave as follows:

Chapter 2
Administering Public Key Security

2-52

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1010816
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1026459
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1010730

• All processes on mach1 except serv1 processes use the decryption key assigned to mach1
to decrypt any received message buffer that is encrypted.

• All serv1 processes use the decryption key assigned to serv1 to decrypt any received
message buffer that is encrypted.

Configured decryption keys are automatically opened when an ATMI application is booted. The
following figure illustrates how the process works.

Figure 2-14 How a Decryption Key Is Initialized Example

The following is a detailed description of how the operation shown in the preceding figure is
performed.

1. The administrator defines SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR at a particular level in the ATMI application’s UBBCONFIG file.

Chapter 2
Administering Public Key Security

2-53

2. The administrator loads the configuration by running tmloadcf(1). The tmloadcf command
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

3. When prompted, the administrator enters and then re-enters the password for the target
principal.

4. The administrator enters the tmboot(1) command to boot the ATMI application.

5. During the boot process, the map_proof plug-in reads SEC_PRINCIPAL_NAME,
SEC_PRINCIPAL_LOCATION, and SEC_PRINCIPAL_PASSVAR, analyzes their values, and then
determines whether the calling process has proven its right to access the requested
decryption key. (Having access to a decryption key, or private key, is equivalent to
possessing the principal’s identity.)

6. If the password associated with SEC_PRINCIPAL_PASSVAR matches the assigned password
for the principal specified in SEC_PRINCIPAL_NAME, the map_proof plug-in passes the name,
location, and password of the principal to the PKi_init plug-in.

7. The PKi_init plug-in calls tpkey_open(3c) with the name, location, and password of the
principal as arguments. It returns a decryption key handle for the principal.

Each time you invoke tmloadcf to load the configuration, you are prompted to enter the
password for each of the decryption keys configured with SEC_PRINCIPAL_PASSVAR. If you want
to avoid having to enter each password manually, you can write a script that automatically
enters the passwords. The script must include a definition of each password variable, and it
must end with the following line:

tmloadcf -y ubbconfig_name < /dev/null

No application process has permission to close a decryption key opened during ATMI
application booting. The decryption keys stay open until you run the tmshutdown(1)command
to shut down the ATMI application.

• Example UBBCONFIG Entries for Principal Names and Decryption Keys

2.15.5.1 Example UBBCONFIG Entries for Principal Names and Decryption Keys

*RESOURCES
 SEC_PRINCIPAL_NAME "Tommy"
 SEC_PRINCIPAL_LOCATION "/home/jhn/secsapp/cert/tommy.pvk"
 SEC_PRINCIPAL_PASSVAR "TOMMY_VAR"
 .
 .
 .

*SERVERS
 "TMQUEUE" SRVGRP="QUEGROUP" SRVID=1
 CLOPT="-s secsdb:TMQUEUE"
 SEC_PRINCIPAL_NAME= "TOUPPER"
 SEC_PRINCIPAL_LOCATION="/home/jhn/secsapp/cert/TOUPPER.pvk"
 SEC_PRINCIPAL_PASSVAR= "TOUPPER_VAR"

Chapter 2
Administering Public Key Security

2-54

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1032112
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1513266
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1335246

2.15.6 Failure Reporting and Auditing
This topic explains how the system manages errors found through digital signatures and
message encryption.

• Digital Signature Error Handling

• Encryption Error Handling

2.15.6.1 Digital Signature Error Handling
If message tampering is detected (that is, if the composite signature status is either
TPSIGN_TAMPERED_MESSAGE or TPSIGN_TAMPERED_CERT—see Understanding the Composite
Signature Status), the system takes the following actions:

• Generates a userlog(3c) message (severity ERROR)

• Discards the buffer as if it were never received by the process

If any individual signature associated with an expired certificate, revoked certificate, expired
signature, or postdated signature is detected, the system takes the following actions:

• Generates a userlog(3c) message (severity WARN)

• Discards the buffer as if it were never received by the process unless the buffer’s
composite signature status is TPSIGN_OK or TPSIGN_UNKNOWN

If a process that requires a valid digital signature (based on the SIGNATURE_REQUIRED=Y setting)
receives a message with the composite signature status TPSIGN_UNKNOWN, the system takes the
following actions:

• Generates a userlog(3c) message (severity WARN)

• Discards the buffer as if it were never received by the process

2.15.6.2 Encryption Error Handling
If a process receives an encrypted message but does not possess an open decryption key
matching one of the message’s encryption envelopes, the system takes the following actions:

• Generates a userlog(3c) message (severity ERROR)

• Discards the buffer as if it were never received by the process

If a process that requires encrypted input (based on the ENCRYPTION_REQUIRED=Y setting)
receives an unencrypted message, the system takes the following actions:

• Generates a userlog(3c) message (severity ERROR)

• Discards the buffer as if it were never received by the process

Chapter 2
Administering Public Key Security

2-55

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1049646

Note:

• Public Key Security

• Public Key Implementation

• Security Administration Tasks

• Security Interoperability

• Security Compatibility

2.16 Administering Default Authentication and Authorization
Default authentication and authorization work in the same manner that authentication and
authorization have worked since they were first made available with the Oracle Tuxedo system.

Default authentication provides three levels of security: no authentication (NONE), application
password (APP_PW), and user-level authentication (USER_AUTH). Default authorization provides
two levels of security: optional access control list (ACL) and mandatory access control list
(MANDATORY_ACL). Only when users are authenticated to join an ATMI application does the
access control list become active.

• Designating a Security Level

• Configuring the Authentication Server

2.16.1 Designating a Security Level
As the administrator, you can use one of three ways to designate a security level for an ATMI
application: by editing the UBBCONFIG configuration file, by changing the TM_MIB.

• Establishing Security by Editing the Configuration File

• Establishing Security by Changing the TM_MIB

2.16.1.1 Establishing Security by Editing the Configuration File
In your UBBCONFIG file, set the SECURITY parameter to the appropriate value:

SECURITY {NONE | APP_PW | USER_AUTH | ACL | MANDATORY_ACL}

The default is NONE. If SECURITY is set to USER_AUTH, ACL, or MANDATORY_ACL, then a system-
supplied authentication server named AUTHSVR is invoked to perform per-user authentication.

If you select any value other than NONE, make sure that the value of the APPDIR variable is
unique for each ATMI application running on the MASTER site. Multiple ATMI applications cannot
share the same application directory if security features are being used.

2.16.1.2 Establishing Security by Changing the TM_MIB
To designate a security level through the TM_MIB, you must assign a value to the TA_SECURITY
attribute in the T_DOMAIN class. When an ATMI application is inactive, the administrator can SET

Chapter 2
Administering Default Authentication and Authorization

2-56

the value of TA_SECURITY to any of the values that are valid in UBBCONFIG. To complete this
task, run the administrative interface tpadmcall(3c).

2.16.2 Configuring the Authentication Server
The Oracle Tuxedo server called AUTHSVR provides a single service, AUTHSVC, which performs
authentication. AUTHSVC is advertised by the AUTHSVR server as ..AUTHSVC when the security
level is set to ACL or MANDATORY_ACL.

To add AUTHSVC to an ATMI application, you need to define AUTHSVC as the authentication
service and AUTHSVR as the authentication server in the UBBCONFIG file. For example:

*RESOURCES
 SECURITY USER_AUTH
 AUTHSVC AUTHSVC
 .
 .
 .

*SERVERS
 AUTHSVR SRVGRP= "group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

If you omit the parameter-value entry AUTHSVC AUTHSVC, the system calls AUTHSVC by default.

As another example:

*RESOURCES
 SECURITY ACL
 AUTHSVC ..AUTHSVC
 .
 .
 .

*SERVERS
 AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

If you omit the parameter-value entry AUTHSVC ..AUTHSVC, the system calls ..AUTHSVC by
default.

AUTHSVR may be replaced with an authentication server that implements logic specific to the
ATMI application. For example, a company may want to develop a custom authentication
server so that it can use the popular Kerberos mechanism for authentication.

To add a custom authentication service to an ATMI application, you need to define your
authentication service and server in the UBBCONFIG file. For example:

*RESOURCES
 SECURITY USER_AUTH
 AUTHSVC KERBEROS
 .

Chapter 2
Administering Default Authentication and Authorization

2-57

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1037464

 .
 .

*SERVERS
 KERBEROSSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

Note:

• To use the WebLogic Server as your security database to authenticate Tuxedo
users, you must implement single point security administration using LAUTHSVR as
your authentication server. For information about LAUTHSVR and single point
security administration with WebLogic Server, refer to Implementing Single Point
Security Administration.

• To use the LDAP repository as your security database to authenticate and
authorize Tuxedo users, you must implement extensible security administration
using XAUTHSVR as your authentication and authorization server. For information
about XAUTHSVR and extensible security administration, refer to XAUTHSVR(5) in
File Formats, Data Descriptions, MIBs, and System Processes Reference.

See Also:

• How to Enable Application Password Security

• How to Enable User-Level Authentication Security

• Enabling Access Control Security

• Default Authentication and Authorization

• Security Administration Tasks

• Implementing Single Point Security Administration

• AUTHSVR(5) in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference

2.17 How to Enable Application Password Security
Default authentication offers an application password security level that you invoke by
specifying SECURITY APP_PW in your configuration file. This level requires that every client
provide an application password as part of the process of joining the ATMI application. The
administrator defines a single password for the entire ATMI application and gives the password
only to authorized users.

To enable the APP_PW security level, follow these steps:

1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI
application is inactive.

Chapter 2
How to Enable Application Password Security

2-58

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3595387

2. Set the SECURITY parameter in the RESOURCES section of the UBBCONFIG file to APP_PW.

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses UBBCONFIG
and loads the binary TUXCONFIG file to the location referenced by the TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the ATMI application and remains in effect
until you change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or letter.

Note:

• Default Authentication and Authorization

• Administering Default Authentication and Authorization

• Security Administration Tasks

2.18 How to Enable User-Level Authentication Security
Default authentication offers an user-level authentication security level that you invoke by
specifying SECURITY USER_AUTH in your configuration file. This security level requires that in
addition to the application password, each client must provide a valid username and user-
specific data, such as a password, to join the ATMI application. The per-user password must
match the password associated with the combination user-client name stored in a file named
tpusr. The checking of per-user password against the password and user-client name in tpusr
is carried out by the authentication service AUTHSVC, which is provided by the authentication
server AUTHSVR.

To enable the USER_AUTH security level, follow these steps:

• Set up the UBBCONFIG file.

• Set up the user and group files.

Instructions for these steps are provided in the following two topics.

• Setting Up the UBBCONFIG File

• Setting Up the User and Group Files

2.18.1 Setting Up the UBBCONFIG File
1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI

application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES and
SERVERS sections:

*RESOURCES SECURITY
 USER_AUTH AUTHSVC AUTHSVC
 . .
 . *SERVERS AUTHSVR

Chapter 2
How to Enable User-Level Authentication Security

2-59

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826

 SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
 CLOPT="-A"

CLOPT="-A" causes tmboot(1) to pass only the default command-line options (invoked by
"-A") to AUTHSVR when tmboot starts the ATMI application. By default, AUTHSVR uses the
client user information in a file named tpusr to authenticate clients that want to join the
ATMI application. tpusr resides in the directory referenced by the first pathname defined in
the ATMI application’s APPDIR variable.

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses UBBCONFIG
and loads the binary TUXCONFIG file to the location referenced by the TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the ATMI application and remains in effect
until you change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or letter.

2.18.2 Setting Up the User and Group Files
AUTHSVR and the access control checking feature available with the default authorization
system require a user file named tpusr, which contains a list of client users allowed to join the
ATMI application. tpusr is maintained by the application administrator using the
tpusradd(1),tpusrdel(1), and tpusrmod(1) commands. The AUTHSVR server takes as input the
client user information stored in the tpusr file; it uses this information to authenticate clients
that want to join the ATMI application.

The following display is a sample entry in the tpusr file.

Figure 2-15 tpusr Sample Entry

AUTHSVR and the access control checking feature also require a group file named tpgrp, which
contains a list of groups associated with the client users allowed to join the ATMI application;
tpgrp is maintained by the application administrator using the tpusradd(1), tpgrpdel(1), and
tpgrpmod(1) commands.

AUTHSVC assigns an authenticated client user an application key, which contains a user
identifier and associated group identifier for the USER_AUTH, ACL, or MANDATORY_ACL security
level. (See Application Key for more information about application keys.)

The following display is a sample entry in the tpgrp file.

Figure 2-16 tpgrp Sample Entry

Chapter 2
How to Enable User-Level Authentication Security

2-60

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1032112
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1001683
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1002035
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1002069
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1001683
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1142293
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1001898

As the administrator, you must define lists of users and groups in the tpusr and tpgrp files,
both of which are located in the directory referenced by the first path name defined in the ATMI
application’s APPDIR variable. The files are colon-delimited, flat text files, readable and writable
only by the application’s administrator.

• Converting System Security Data Files to Oracle Tuxedo User and Group Files

• Adding, Modifying, or Deleting Users and Groups

2.18.2.1 Converting System Security Data Files to Oracle Tuxedo User and Group
Files

You may already have files containing lists of users and groups on your host system. You can
use them as the user and group files for your ATMI application, but only after converting them
to the format required by the Oracle Tuxedo system. To convert your files, run the tpaclcvt(1)
command, as shown in the following sample procedure. The sample procedure is written for a
UNIX host machine

1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI
application is inactive.

2. To convert the /etc/password file into the format needed by the Oracle Tuxedo system,
enter the following command.
tpaclcvt -u /etc/password
This command creates the tpusr file and stores the converted data in it. If the tpusr file
already exists, tpaclcvt adds the converted data to the file, but it does not add duplicate
user information to the file.

Note:

For systems on which a shadow password file is used, you are prompted to enter
a password for each user in the file.

3. To convert the /etc/group file into the format needed by the Oracle Tuxedo system, enter
the following command.
tpaclcvt -g /etc/group This command creates the tpgrp file and stores the converted
data in it. If the tpgrp file already exists, tpaclcvt adds the converted data to the file, but it
does not add duplicate group information to the file.

2.18.2.2 Adding, Modifying, or Deleting Users and Groups
The Oracle Tuxedo system requires that you maintain a list of your application users in a file
named tpusr, and a list of groups, in a file named tpgrp. There are two methods of modifying
the entries in these files: by issuing commands or by changing the values of the appropriate
attributes in the ACL_MIB.

• Changing Entries for Users and Groups Through Commands

• Changing Entries for Users and Groups Through the ACL_MIB

2.18.2.2.1 Changing Entries for Users and Groups Through Commands
You can add, modify, or delete entries in the tpusr and tpgrp files at any time by running one
of the following commands.

Chapter 2
How to Enable User-Level Authentication Security

2-61

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1001579

Run . . . To . . . An Entry in This File

tpusradd(1) Add tpusr
tpusrmod(1) Modify

tpusrdel(1) Delete

tpgrpadd(1) Add tpgrp
tpgrpmod(1) Modify

tpgrpdel(1) Delete

To run any of these commands, follow these steps:

1. For an inactive ATMI application, make sure you are working from the application MASTER
machine. For an active ATMI application, you may work from any machine in the
configuration.

2. For specific instructions on running a command, see the entry for that command in Oracle
Tuxedo Command Reference.

2.18.2.2.2 Changing Entries for Users and Groups Through the ACL_MIB
If you prefer not to use the command-line interface, you can add, modify, or delete user entries
in tpusr by changing the appropriate attribute values in the T_ACLPRINCIPAL class in the
ACL_MIB(5) . This method is more efficient than the command-line interface if you want to add
several user entries simultaneously, since tpusradd(1) allows you to add only one user at a
time.

Similarly, you can add, modify, or delete group entries in tpgrp by changing the appropriate
attribute values in the T_ACLGROUP class in the ACL_MIB(5). This method is more efficient than
the command-line interface if you want to add several group entries simultaneously, since
tpgrpadd(1) allows you to add only one group at a time.

Note:

• Default Authentication and Authorization

• Administering Default Authentication and Authorization

• Security Administration Tasks

2.19 Enabling Access Control Security
Default authorization consists of an access control checking feature that determines which
users can execute a service, post an event, or enqueue (or dequeue) a message on an
application queue. There are two levels of access control security: optional access control list
(ACL) and mandatory access control list (MANDATORY_ACL). Only when users are authenticated
to join an ATMI application does the access control list become active.

By using an access control list, an administrator can organize users into groups and associate
the groups with objects that the member users have permission to access. Access control is
done at the group level for the following reasons:

• System administration is simplified. It is easier to give a group of people access to a new
service than it is to give individual users access to the service.

Chapter 2
Enabling Access Control Security

2-62

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#998207
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1001977
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#998207
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1001772

• Performance is improved. Because access permission needs to be checked for each
invocation of an entity, permission should be resolved quickly. Because there are fewer
groups than users, it is quicker to search through a list of privileged groups than it is to
search through a list of privileged users.

The access control checking feature is based on three files that are created and maintained by
the application administrator:

• tpusr contains a list of users

• tpgrp contains a list of groups

• tpacl contains a list of mappings of groups to application entities (such as services) known
as the access control list (ACL)

By parsing the client’s application key, which contains information identifying the client as a
valid user and valid group member, an entity (such as a service, event, or application queue)
can identify the group to which the user belongs; by checking the tpacl file, an entity can
determine whether the client’s group has access permission.

The application administrator, application operator, and processes or service requests running
with the privileges of the application administrator/operator are not subject to ACL permission
checking.

If user-level ACL entries are needed, they may be implemented by creating a group for each
user, and then mapping the group to the appropriate application entities in the tpacl file.

• How to Enable Optional ACL Security

• How to Enable Mandatory ACL Security

• How to Enable Generic LDAP Based Security

• How to Enable Security Service for OES

2.19.1 How to Enable Optional ACL Security
Default authentication offers an optional ACL (ACL) security level that you invoke by specifying
SECURITY ACL in your configuration file. This security level requires that each client provide an
application password, a username, and user-specific data, such as a password, to join the
ATMI application. If there is no entry in the tpacl file associated with the target application
entity, the user is permitted to access the entity.

This security level enables an administrator to configure access for only those resources that
need more security. That is, there is no need to add entries to the tpacl file for services,
events, or application queues that are open to everyone. Of course, if there is an entry in the
tpacl file associated with the target application entity and a user attempts to access that entity,
the user must be a member of a group that is allowed to access that entity; otherwise,
permission is denied.

To enable the ACL security level, follow these steps:

1. Set up the UBBCONFIG file.

2. Set up the ACL file.

Instructions for these steps are provided in the following two topics.

• Setting Up the UBBCONFIG File

• Setting Up the ACL File

Chapter 2
Enabling Access Control Security

2-63

2.19.1.1 Setting Up the UBBCONFIG File
1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI

application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES and
SERVERS sections:

*RESOURCES
 SECURITY ACL
 AUTHSVC
 ..AUTHSVC
 .
 .
 .
 *SERVERS
 AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600
 MAXGEN=2 CLOPT="-A"

CLOPT="-A" causes tmboot(1) to pass only the default command-line options (invoked by "-
A") to AUTHSVR when tmboot starts the ATMI application. By default, AUTHSVR uses the
client user information in a file named tpusr to authenticate clients that want to join the
ATMI application. tpusr resides in the directory referenced by the first pathname defined in
the ATMI application’s APPDIR variable.

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses UBBCONFIG
and loads the binary TUXCONFIG file to the location referenced by the TUXCONFIG variable.

4. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or letter.

2.19.1.2 Setting Up the ACL File
The access control checking feature requires a user file named tpusr, a group file named
tpgrp, and an ACL file named tpacl. The ACL file contains mappings of groups to application
entities. An entity may be a service, event, or application queue.

The following display is a sample entry in the tpacl file.

Figure 2-17 tpacl Sample Entry

As the administrator, you must define the entries in the tpacl file, which is located in the
directory referenced by the first pathname defined in the ATMI application’s APPDIR variable.
The file is a colon-delimited, flat text file, readable and writable only by the application’s
administrator.

There are two methods of modifying the ACL entries in the tpacl file: by issuing commands or
by changing the values of the appropriate attributes in the ACL_MIB.

Chapter 2
Enabling Access Control Security

2-64

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1032112
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826

• Changing ACL Entries Through Commands

• Changing ACL Entries Through the ACL_MIB

2.19.1.2.1 Changing ACL Entries Through Commands
You can add, modify, or delete ACL entries in the tpacl file at any time by running one of the
following commands.

Run . . . To . . .

tpacladd(1) Add an entry

tpaclmod(1) Modify an entry

tpacldel(1) Delete an entry

To run any of these commands, follow these steps:

1. For an inactive ATMI application, make sure you are working from the application MASTER
machine. For an active ATMI application, you may work from any machine in the
configuration.

2. For specific instructions on running a command, see the entry for that command in Oracle
Tuxedo Command Reference.

2.19.1.2.2 Changing ACL Entries Through the ACL_MIB
If you prefer not to use the command-line interface, you can add, modify, or delete ACL entries
in tpacl by changing the appropriate attribute values in the T_ACLPERM class in the
ACL_MIB(5) . This method is more efficient than the command-line interface if you want to add
several ACL entries simultaneously, since tpacladd(1) allows you to add only one ACL entry at
a time.

2.19.2 How to Enable Mandatory ACL Security
Default authentication offers a mandatory ACL security level that you invoke by specifying
SECURITY MANDATORY_ACL in your configuration file. This security level requires that each client
provide an application password, a username, and user-specific data, such as a password, to
join the ATMI application. If there is no entry in the tpacl file associated with the target
application entity, the client is not permitted to access the entity. In other words, an entry must
exist in the tpacl file for every application entity that a client needs to access. For this reason,
this level is called mandatory.

Of course, if there is an entry in the tpacl file associated with the target application entity and
a user attempts to access that entity, the user must be a member of a group that is allowed to
access that entity; otherwise, permission is denied.

To enable the MANDATORY_ACL security level, follow these steps:

1. Set up the UBBCONFIG file.

2. Set up the ACL file.

Instructions for these steps are provided in the following two topics.

• Setting Up the UBBCONFIG File

• Setting Up the ACL File

Chapter 2
Enabling Access Control Security

2-65

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#998207
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1257564

2.19.2.1 Setting Up the UBBCONFIG File
1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI

application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES and
SERVERS sections:

*RESOURCES SECURITY MANDATORY_ACL AUTHSVC
 ..AUTHSVC .
 .
 .
 *SERVERS AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y
GRACE=600
 MAXGEN=2 CLOPT="-A"

CLOPT="-A" causes tmboot(1) to pass only the default command-line options (invoked by "-
A") to AUTHSVR when tmboot starts the ATMI application. By default, AUTHSVR uses the
client user information in a file named tpusr to authenticate clients that want to join the
ATMI application. tpusr resides in the directory referenced by the first pathname defined in
the ATMI application’s APPDIR variable.

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses UBBCONFIG
and loads the binary TUXCONFIG file to the location referenced by the TUXCONFIG variable.

4. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or letter.

2.19.2.2 Setting Up the ACL File

See Also:

Setting Up the ACL File.

Note:

• Default Authentication and Authorization

• Administering Default Authentication and Authorization

• Security Administration Tasks

2.19.3 How to Enable Generic LDAP Based Security
Generic LDAP based security includes the user-level authentication and access control
security.

With this security mechanism, authentication and authorization are performed by invoking
TUXEDO "..ATNSVC" and "..ATZSVC" administrative services. It provides flexibility for Oracle
Tuxedo user to store their security information in independent repository and access these

Chapter 2
Enabling Access Control Security

2-66

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1032112
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1330826

security information from the "..ATNSVC" and "..ATZSVC" services. Oracle Tuxedo supplies a
default implementation of XAUTHSVR server which advertises these two administrative services.
With this implementation, the security information, including Tuxedo user ID, password, and
service access privilege, are stored in LDAP repositories.

Each client must provide a valid user name and user-specific password, to join the ATMI
application. The user password must match the password stored in LDAP repositories. Each
client must be granted with proper privilege before it can access Tuxedo services successfully.

To enable the LDAP based security with default XAUTHSVR implementation, follow these steps:

1. Setting Up the UBBCONFIG File

2. Setting Up the XAUTHSVR Server Configuration File

3. Setting Up the LDAP Repository

4. Setting Up the Authorization Cache

Instructions for these steps are provided in the following topics.

• Setting Up the UBBCONFIG File

• Setting Up the XAUTHSVR Server Configuration File

• Setting Up the LDAP Repository

• Setting Up the Authorization Cache

2.19.3.1 Setting Up the UBBCONFIG File
1. Open UBBCONFIG with a text editor.

2. In the RESOURCES section, do the following:

a. Set the SECURITY parameter to one of these values: USER_AUTH, ACL or
MANDATORY_ACL.

b. Set the OPTIONS parameter to EXT_AA.

c. Do one of the following:

• If the SECURITY parameter is set to ACL or MANDATORY_ACLAUTHSVC, set AUTHSVC
to ..AUTHSVC, which is the service name advertised by the XAUTHSVR server.

• If the SECURITY parameter is set to USER_AUTH, set AUTHSVC to AUTHSVC, which is
the service name advertised by the XAUTHSVR server.

3. Set up XAUTHSVR in the SERVERS section.

* RESOURCES
 SECURITY
 ACL AUTHSVC ..AUTHSVC OPTIONS
 EXT_AA
 *SERVERS
 XAUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y

2.19.3.2 Setting Up the XAUTHSVR Server Configuration File
XAUTHSVR server configuration file is used for XAUTHSVR to locate the LDAP repository. By
default, the configuration file named tpldap.xauth resides in $TUXDIR/udataobj directory. You

Chapter 2
Enabling Access Control Security

2-67

can specify a customized location with "-f" option to XAUTHSVR server. XAUTHSVR server allows
you to store your authentication and authorization information in separate LDAP repositories.
You can specify an ATN configuration file with "-n" option and "-z" option respectively. All these
configuration files share the same format.

The following table describes the XAUTHSVR configuration file keywords.

Table 2-3 XAUTHSVR Configuration File Keywords

Keyword Value Type Usage

FILE_VERSION numeric The configuration file version. The
default is 1. This should remains in 1.

LDAP_VERSION numeric The LDAP protocol version. Valid values
are 2 and 3. The default is 3.

BINDDN string The DN used to bind to an LDAP server.
Usually the DN represents a LDAP
administrator. The default is "
cn=Admin". The tpldapconf command
can be used to create BINDDN.

BASE string LDAP search base. The default is "
ou=people,ou=aa,dc=mydomain",
where mydomain is the root node of the
authentication or authorization security
repository.

PASSWORD string The password for bind DN. This is a
required keyword and the password is
encrypted in clear text. The
tpldapconf command can be used to
create the encrypted password.

LDAP_ADDR string A comma-separated list of LDAP
address containing hostnames and
ports. The syntax is
[//]hostname[:port]. The default
value for port is 7001. If LDAP_ADDR is
not specified, XAUTHSVR regards
localhost:7001 as the location to
contact the LDAP server.

UID_KW string The keyword used in user unique
identification search in the
authentication security repository. The
default value is " uid".

PWD_KW string The keyword used in user password
search in the authentication security
repository. The default value is
"userPassword".

MEMBEROF_KW string The keyword used in group membership
search. The default value is
"memberof". Different LDAP servers use
different key name to identify the user's
group membership. When using OVD
with virtual member plugin enabled, the
keyword is "memberof".

2.19.3.3 Setting Up the LDAP Repository
The security information in the LDAP repository follows below schema:

Chapter 2
Enabling Access Control Security

2-68

• inetOrgPerson: This object class holds the entries that represent people. The definition
follows RFC 4519 & 2798 standard except that the attribute "uid" length is limited to up to
30 characters. Each Oracle Tuxedo user is saved as an entry in this class. The information
including user identification and user password is used for user-level authentication.

• groupOfUniqueNames: This object classes holds the entries that represents a set of
named objects including the information relevant to purpose or maintenance of the set.
The definition follows RFC 4519 standard. This class groups a list of users that can be
granted with certain sort of permissions. Groups can be nested. The permission granted to
a parent group also applies to its child groups.

• Orcljaznpermission: This object class holds the tuxedo permission object consisting of
the attributes shown in the following table. This object consists of two parts. One is the
permission, which describes the resource types, target resource, and actions on the target
resource. The other is the assigned groups or users, which are granted with this
permission.

The following table describes the orcljaznpermission class attributes.

Table 2-4 orcljaznpermission Class Attributes

Attribute Type Constraints Description

Cn String: Single-valued, unique,
required

Permission name

Displayname String: String: Display name

Description String: String: Description

OrclJpsResourceTypeName String: Single valued Type name of the resource to
be protected. To define a
Tuxedo service, this attribute
should be specified to "
SERVICE".

Orcljaznpermissiontarge
t

String: Single valued Name of the resource to be
protected. To define a Tuxedo
service, this attribute should
be specified as the service
name.

Orcljaznpermissionactio
ns

String: Single valued List of the assigned actions,
separated by comma. To
define a Tuxedo service, this
attribute should be specified
to "EXECUTE".

2.19.3.4 Setting Up the Authorization Cache
In order to improve ATZ performance, the new ATZ mechanism introduces a roll-up cache, in
which privileges of specific user identifiers are stored, to every Tuxedo server. To meet various
ATZ requirements, the cache is configurable and flexible at each Tuxedo server level.

Three environment variables control the basic behaviors of the cache. After defining an
ENVFILE parameter for a specific server entry in TUXCONFIG, these environment variables can
be defined for each Tuxedo server entry in the SERVERS section in UBBCONFIG.

TMATZPRIVILEGEMAX
It specifies the maximum number of privileges entries. When the privileges number in the
cache reaches this threshold, the new entry replaces an old one. Remaining time-to-live of
privileges is evaluated for Tuxedo to choose the " most useless" entry in the ATZ cache. If this

Chapter 2
Enabling Access Control Security

2-69

environment variable is set to 0, ATZ cache in Tuxedo server is disabled and all ATZ requests
are dispatched to ATZ service. If this environment variable is not defined explicitly, the default
value is 100. The valid value range is from 0 to 32767. The size of one privilege entry in the
ATZ cache is 50 bytes or so.

TMATZRESOURCEMAX
It specifies the maximum number of resource entries which can be allocated for a specific
Tuxedo Server. When the resource number in the cache reaches this threshold, both the
resource and new privilege are not added into the cache and the subsequent access requests
to the resource are routed to the ATZ server until an available resource slot is found. Tuxedo
keeps a reference number to each resource entry occupied by the cached privileges. When no
privilege occupies the specific resource entry, it will be cleared from the cache.

If this environment variable is not defined explicitly, the value is set to the current number of
advertised services. Meanwhile, the value of TMATZPRIVILEGEMAX must be set bigger than or
equal to the value of TMATZRESOURCEMAX, otherwise TMATZPRIVILEGEMAX will be set to the equal
value of TMATZRESOURCEMAX.The valid value range is from 0 to 32767. The size of one resource
entry in the ATZ cache is 148 bytes or so. If this environment variable is set to 0, the ATZ
cache in Tuxedo server is disabled and all ATZ requests are dispatched to ATZ service.

TMATZEXP
It specifies the maximum lifetime of a specific privilege in minutes. When the lifetime of a
privilege reaches this threshold, the privilege is removed from the cache. If this environment
variable of a Tuxedo server is set to 0, all privileges stored in the Tuxedo server have infinite
lifetime and never expire. If this environment variable is not defined explicitly, the default value
is 10. The valid value range is from 0 to 525600. 525600 indicates the privilege life in cache is
1 year.

The following sample demonstrates how to calculate the total memory size occupied by an
ATZ cache in a specific Tuxedo server. Suppose there is a server accessing 10 /Q message
queues, which correspond to 10 resource entries, and there are 100 potential users invoking
services of this server, so we assume TMATZRESOURCE value is 10 and MAXTMATZPRIVILEGEMAX
value is 1000.

According to the occupied memory size formula: [Max resource entry] * [Resource entry size]
+ [Max privilege entry]*[privilege entry size] the result of above case is:

(10*148 + 1000*50)= 51480 (51 KB)

Note:

• Default Authentication and Authorization

• Administering Default Authentication and Authorization

2.19.4 How to Enable Security Service for OES
1. Install OES server and client (security module).

Note:

Oracle Entitlement Server (OES) client 11.1.2.0 is certified for use.

Chapter 2
Enabling Access Control Security

2-70

2. Configure OES java client to connect OES server.

3. Create an application in OES server; create resource type, resource, and policy to specify
authorization. Note: Users are allowed to authorize different types of resources having the
same name by defining different policies on OES side, each of which authorizes only one
resource type. For example, in order to authorize a service named OES and a /Q queue
named OES, users can define two policies on OES side to authorize them respectively.

4. Configure authorization template file (configure the application name in the configured
OES server and the full path name of jps-config.xml to be precise) to indicate what you
have configured in OES.

5. Configure EAUTHSVR server:

• Run tux.env to set up libjvm.so in your library path.

• Set oes-client.jar in CLASSPATH.

6. Configure authentication server:

Configure EXT_AA in OPTIONS and ..AUTHSVC in UBBCONFIG RESOURCES to authenticate service
you use.

For more information, please refer to Installation Guide for Oracle Identity and Access
Management.

2.20 Using the Kerberos Authentication Plug-in
Kerberos is a network authentication protocol. It is designed to provide strong authentication
for client/server applications by using secret-key cryptography. The Kerberos authentication
protocol provides a mechanism for mutual authentication between a client and a server, or
between one server and another, before opening a network connection between them. The
protocol assumes that initial transactions between clients and servers take place on an open
network where most computers are not physically secure. It also assumes that packets
traveling along the network can be monitored and modified at will.

After using Kerberos to prove the identity of a client and server, their communications can be
encrypted to ensure privacy and data integrity. Refer to the following See Also section for more
information about Kerberos.

The following sections describe the Kerberos authentication plug-in feature included in Tuxedo:

• Kerberos Plug-In

• Kerberos Plug-In Pre-configuration

• Kerberos Plug-In Configuration

2.21 Kerberos Plug-In
Tuxedo provides a general security framework that can be customized. This framework is
further enhanced with the inclusion of a Kerberos plug-in.

• Kerberos Supported Platforms

• Kerberos Plug-in Features

2.21.1 Kerberos Supported Platforms
Currently the Kerberos plug-in supports the following platforms:

Chapter 2
Using the Kerberos Authentication Plug-in

2-71

• Microsoft Kerberos bundled with Windows 2000/2003 server

• Kerberos V systems on HP-UX(PA-RISC) provided by HP

• Kerberos V systems on Solaris 9 (SPARC) provided by Sun Microsystems

2.21.2 Kerberos Plug-in Features
The Kerberos Plug-in is a dynamic library that must be registered into the Tuxedo system, and
a Kerberos authentication server (KAUTHSVR(5)). The Tuxedo implementation of the
Kerberos plug-in supports the following:

• Authentication between Tuxedo native client and server

• Full support of Tuxedo ACL security mechanism

Note:

Authentication between the security protocols of Tuxedo workstation client and
workstation handler, authentication between two domain gateways and CORBA
components are not supported.

2.22 Kerberos Plug-In Pre-configuration
To use Kerberos authentication, you must make sure the following system requirements are
set up properly:

• Supported systems run well with the correct Kerberos settings

• User/service accounts are set correctly

• The Kerberos authentication server key table is created correctly on UNIX

• Kerberos interoperability between UNIX and Windows is set correctly and verified if a
heterogeneous (UNIX/Windows mixed) environment is needed.

2.23 Kerberos Plug-In Configuration
This section provides configuration information to get the Kerberos plug-in set up and running.

1. Configure the Kerberos Plug-in

2. Configure KAUTHSVR

3. Configure Tuxedo Native Client

Each of these steps are explained in more detail in the subsections that follow.

• Configure the Kerberos Plug-in

• Configure KAUTHSVR

• Configure Tuxedo Native Client

• Limitations

2.23.1 Configure the Kerberos Plug-in
You must first register the Kerberos plug-in on UNIX and Windows platforms.

Chapter 2
Kerberos Plug-In Pre-configuration

2-72

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3327197

The Kerberos plug-in must be configured using the EPIF commands epifreg and epifregedt.
These commands will automatically add the plug-in to the Tuxedo registry in UNIX and
Windows. For example:

Listing UNIX Registration

epifreg -r -p krb5/atn -i engine/security/authentication -o SYSTEM -v 1.0 \
 -f $TUXDIR/lib/libkrb5atn.so \
 -e krb5_plugin_entry \
 -u KRB5_CONFIG=/etc/krb5.conf \
 -u KRB5_KDC=/etc/krb5.kdc\
 -u KAUTHSVRPRINC="krbauth@host.yourcomany.com"
 epifregedt -s -k SYSTEM/interfaces/engine/security/authentication \
 -a Selector=native/security/authentication \
 -a native/security/authentication=krb5/atn

Listing Windows Registration

epifreg -r -p krb5/atn -i engine/security/authentication -o SYSTEM -v 1.0
\
 -f %TUXDIR%\bin\libkrb5atn.dll \
 -e krb5_plugin_entry \
 -u KAUTHSVRPRINC="krbauth/host.yourcomany.com@REALM"
 epifregedt -s -k SYSTEM/interfaces/engine/security/authentication \
 -a Selector=native/security/authentication \
 -a native/security/authentication=krb5/atn

Note:

On a Windows platform, the plug-in KRB5_CONFIG and KRB5_KDC parameters are not
required. These parameters are used on a UNIX platform to locate the Kerberos-
related configuration files. KAUTHSVRPRINC specifies the principal name for the
KAUTHSVR server and Tuxedo clients use it as the server principal name.

On UNIX platforms, the GSS format is used. Because Microsoft does not support standard
GSS name representation, the KAUTHSVRPRINC parameter must be given a complete Kerberos
realm name.

The name format is illustrated as follows:

• A UNIX Tuxedo client must use GSS format to access KAUTHSVR.

• A Windows Tuxedo client always uses the complete Kerberos realm name to access
KAUTHSVR.
KAUTHSVRPRINC can also be set as an environment variable.

• Restore Default Plug-in

2.23.1.1 Restore Default Plug-in
The following commands restore the plug-in to its default state.

Chapter 2
Kerberos Plug-In Configuration

2-73

Listing 2‑4 Restore Default Plug-In Settings

epifreg -r -p bea/native/atn
 \-i engine/security/authentication \-v 1.0
 -f libtux.so -e_ep_dl_atnlcl
 epifregedt -s -k SYSTEM/interfaces/engine/security/authentication \
 -a Selector=native/security/authentication \
 -a native/security/authentication=bea/native/atn

Note:

In the above listing, libtux.so is used as an example. You must use the file name
libtux plus your platform specific dynamic library extension.

2.23.2 Configure KAUTHSVR
KAUTHSVR is a Tuxedo server located in TUXDIR/bin directory and must be manually configured
in the UBBCONFIG file. KAUTHSVR authenticates client identity by validating the client security
token. It addresses the Tuxedo ACL mechanism when the security level is set above
"USER_AUTH" in the UBBCONFIG file.

The following are examples of how KAUTHSVR is configured in the UBBCONFIG file for both UNIX
and Windows:

Listing UNIX UBBCONFIG KAUTHSVR Configuration

*RESOURCES
 IPCKEY 66666
 MASTER SITE1
 MODEL MP

 SECURITY MANDATORY_ACL

 *SERVERS
 KAUTHSVR SRVGRP=SECGRP SRVID=100 GRACE=0 MAXGEN=2 CLOPT="-A -- -
k /etc/krbauth.kt -p krbauth@host.yourcomany.com"

Note:

The -k option allows you to provide the KAUTHSVR Kerberos key table file location.

The -p option indicates KAUTHSVR principal name.

KAUTHSVR running on UNIX platforms must use the GSS format.

Listing Windows UBBCONFIG KAUTHSVR Configuration

*RESOURCES
 IPCKEY 66666
 MASTER SITE1
 MODEL MP

Chapter 2
Kerberos Plug-In Configuration

2-74

 SECURITY MANDATORY_ACL

 *SERVERS

 KAUTHSVR SRVGRP=GROUP3 SRVID=100 GRACE=0 MAXGEN=2
 SEC_PRINCIPAL_NAME="kauthsvc" SEC_PRINCIPAL_PASSVAR=test CLOPT="-A
-- -p
 krbauth/host.yourcomany.com@REALM"

Note:

The -p option indicates KAUTHSVR principal name.

Instead of using the -k option, Windows platforms must use the following two arguments:

Instead of using the -k option, Windows platforms must use the following two arguments:

• SEC_PRINCIPAL_NAME represents KAUTHSVR, it does not represent the server principal name
(which is represented by the -p option).

• SEC_PRINCIPAL_PASSVAR is the internal password variable. It is not the true password that
is required when tmloadcf creates the TUXCONFIG file. The tmloadcf password input must
be same as the KAUTHSVR account password in a Windows domain.

KAUTHSVR running on Windows platform must use the complete Kerberos realm name.

2.23.3 Configure Tuxedo Native Client
To use the Tuxedo native client with Kerberos enabled, you must first obtain a valid TGT from
the KDC using kinit or other similar commands.

No programming APIs are required. Also, if USER_AUTH is specified, the Tuxedo user name is
not required in the tpusr file. However, a user name is required for ACL and MANDATORY_ACL
security level.

2.23.4 Limitations
• Kerberos Plug-In only works on systems where the plug-in is installed and registered to

Tuxedo through epif* commands. If the Tuxedo administrator does not register the
libkrb5atn to Tuxedo, the default plug-in still works and the default Tuxedo security
mechanism takes effect. KAUTHSVR supports full function of AUTHSVR in addition to Kerberos
authentication.

• Even if the Kerberos plug-in is configured on a system running WSH, the workstation
clients connected to this system use the Tuxedo default security mechanism. This is
because the protocol between workstation client and WSH is not affected using this
feature.

• Although CORBA native clients can take advantage of Kerberos support, we do not
support CORBA remote clients using Kerberos. ISH will report an error when the Kerberos
plug-in is installed.

Chapter 2
Kerberos Plug-In Configuration

2-75

Note:

Authentication between the security protocols of Tuxedo workstation client and
workstation handler, authentication between two domain gateways and CORBA
components are unsupported.

Note:

• KAUTHSVR(5)

• Kerberos Introduction from MIT (tap://web.mit.edu/kerberos/wow/)

• Microsoft White Papers and Guide for Kerberos (tap://www.microsoft.com/
windows2000/technologies/security/kerberos/default.asp)

• RFC 1510, Kerberos protocol (tap://www.ietf.org/raft/rfc1510.txt)

• RFC 2743, GSSAPI (tap://www.ietf.org/raft/rfc2743.txt)

• RFC 1509, GSSAPI, c-bindings.(http://www.ietf.org/raft/rfc1509.txt)

2.24 Using the Cert-C PKI Encryption Plug-in
The Cert-C based PKI (public key infrastructure) plug-in utilizes the public key encryption
algorithm to provide you with the ability to:

• sign - assign a signature to a Tuxedo typed buffer

• seal - encrypt a Tuxedo typed buffer, and

• envelope - provide access to the user signature and encryption information associated with
the Tuxedo typed buffer

The following sections describe the Cert-C PKI encryption feature included in Tuxedo:

• Cert-C PKI Encryption Plug-In

• Cert-C PKI Encryption Plug-In Pre-configuration

• Cert-C PKI Encryption Plug-In Configuration

2.25 Cert-C PKI Encryption Plug-In
The Tuxedo Cert-C PKI encryption plug-in uses LDAP version 2 or higher as the storage
mechanism for the publicly accessible user certificates. LDAP is a commonly used and
deployed network directory service.

2.26 Cert-C PKI Encryption Plug-In Pre-configuration
To use the Tuxedo Cert-C PKI encryption plug-in, you must ensure to follow the system
requirements:

• Access to a configured LDAP server

• User certificates stored in the LDAP are entered in the following format: cn=user name

Chapter 2
Using the Cert-C PKI Encryption Plug-in

2-76

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3327197
http://web.mit.edu/kerberos/www/

2.27 Cert-C PKI Encryption Plug-In Configuration
To use this plug-in, you must run a command script to configure Tuxedo in order to use this
plug-in as the default PKI plug-in.

The Tuxedo Cert-C plug-in utilizes four interface groups in the Tuxedo Security PIF and is
configured using PIF registry commands. The required interface groups are:

• Configure Certificate Lookup

• Configure Key Management

• Configure Certificate Parsing

• Configure Certificate Validation

In the Tuxedo environment, only user names are available in the plug-in at runtime. In order to
get the proper search information, it assumes that a certificate stored in the LDAP with a
cn=user name entry is a Tuxedo user name.

• Configure Certificate Lookup

• Configure Key Management

• Configure Certificate Parsing

• Configure Certificate Validation

• Sample Registry Command File

• Limitations

2.27.1 Configure Certificate Lookup
This interface group expects a user certificate to be located on an LDAP server and it has
access permission to read these certificates. The certificate lookup interface has four
parameters that must be configured. The parameters are described as follows:

ldapUserCertificate
LDAP server configuration parameter that identifies where the plug-in can obtain user
certificates. The network address for the LDAP host is specified in this parameter as a string
variable. It also contains the TCP LDAP port number. The syntax of this parameter is
LDAP:URL. For example: ldapUserCertificate=ldap://sagamore:389

This example tells the Cert-C plug-in that the LDAP server is located on a machine called
“sagamore”, and it is listening on port 389.

ldapBaseObject
LDAP server configuration parameter that identifies the base DN where the LDAP search
should start. For example: ldapBaseObject="ou=Engineer Test,o=ABC Company,c=US"
This example initiates a search from the directory information tree "ou=Engineer Test, o=ABC
Company, c=US"

ldapFilterAttribute
LDAP server configuration parameter that identifies the search filter used in an LDAP search
when retrieving a certificate by subject name. This parameter is a string variable and follows
the same syntax as ldapBaseDNAttribute. For example: ldapFilterAttribute="cn"

This example tells the Cert-C plug-in to use "cn" as a filter.

Chapter 2
Cert-C PKI Encryption Plug-In Configuration

2-77

ldapBaseDNAttribute
LDAP server configuration parameter that is used in an LDAP search to build the base DN.
This parameter is a string variable consisting of a comma-separated list of DN attributes, such
as c, o. An optional blank space can follow the commas. For example:
ldapBaseDNAttribute="c, o, ou, cn"

This example tells the Cert-C plug-in to use the "c", "o", "ou", "cn" attributes when
constructing the DN for a search.

• OpenLDAP for X.509 Certificate Lookup

2.27.1.1 OpenLDAP for X.509 Certificate Lookup
To enable OpenLDAP for X.509 certificate lookup, execute the command shown in the
following Listing modifies Tuxedo PKI plug-in information:

Listing OpenLDAP Command

epifreg -r -p security/BEA/certificate_lookup -i engine/security/
certificate_lookup -v 1.0 -f 'libplugin.<suffix>' -e _ep_dl_certlookup -u
 userCertificateLdap=ldap:/<ldap_host_name>:<ldap_port>/-u
ldapBaseObject='<your_ldap_base>' -u binaryCertificate='YES'.

Where:

• <suffix> is the proper suffix for the shared library (for example, libplugin.dll for
Windows, and libplugin.so.71 for Solaris).

• ldap_host_name is the name of the host where the LDAP server is running

• ldap_port is the LDAP server port number (for example, userCertificateLdap=ldap:/
cerebrum:389/).

• your_ldap_base is the base of your LDAP DIT (for example,

ldapBaseObject='ou=Accounting,o=ABC
 Company,c=US')

Note:

You may also need to modify the bea_ldap_filter.dat file which is located
in $TUXDIR/udataobj/security.

Listing displays a filter example.

Listing Filter Example

"BEA_person_lookup"
 ".*' " " "(&(objectClass=inetOrgPerson)(cn=%v))" "username"
 "(&(objectClass=inetOrgPerson)(cn=%v*))" "start of
 username"

 "BEA_issuer_lookup"
 ".*" " "
 "(&(objectClass=certificationAuthority)(cn=%v)(sn=%v))" "exact match

Chapter 2
Cert-C PKI Encryption Plug-In Configuration

2-78

on
 sn, cn"

2.27.2 Configure Key Management
The location of the private key is the only configuration parameter that must be specified for
key management interface.

• decPassword

• privateKeyDir

2.27.2.1 decPassword
Optional parameter. It is a string variable that gives the Cert-C PKI encryption plug-in the
password to decrypt the private key wrapped in encrypted private key information format. For
example:

decPassword="abc123"

The plug-in assumes the private key information file follows the "<subject_name>.epk" naming
scheme.

Note:

decPassword and privateKeyDir can be overridden by using the tpkey_open(3c)
identity_proof and location parameters.

2.27.2.2 privateKeyDir
A string variable parameter in file URL format. It indicates the default location of the private
key. For example:

privateKeyDir=file:///c:\home\certs\

This example tells the Cert-C PKI encryption plug-in to look for a private key in the
c:\home\certs directory. The private key can be a binary file that conforms with PKCS #8. It
must have a .pvt or .epk extension.

If the password is given in the "decPassword" path or tpkey_open(...,
identity_proof, ...), then the .epk file will be searched first, if not found then it will try .pvt
file. If the password is not given in the "decPassword" path or tpkey_open(...,
identity_proof, ...), then only .pvt file is searched.

2.27.3 Configure Certificate Parsing
No special configuration parameter is needed to utilize the certificate parsing interface. It is
initialized automatically.

Chapter 2
Cert-C PKI Encryption Plug-In Configuration

2-79

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1513266

Note:

Certificates must be X.509-compatible in DER format.

2.27.4 Configure Certificate Validation
This interface group allows the Cert-C PKI encryption plug-in to examine a certificate and to
determine its validity based on trusted certificate authorities, chains of trust, certificate
revocation list. There are two configuration parameters associated wither certificate validation:

• caCertificateFile

• crlFile

2.27.4.1 caCertificateFile
A string variable configuration parameter in file URL format. It points to a single certificate
whose public key is trusted by the user. The certificate can be self-signed. If the certificate
chain validates this trusted certificate the certificate is deemed a “good” certificate. For
example:

Note:

There is only one certificate validation chain level. That is, all user certificates are
issued directly by the root CA configured in caCertificateFile.

caCertificateFile=file:///c:\home\certs\root.cer

This example indicates that the trusted root certificate is located at directory called
c:\home\certs and is named root.cer.

2.27.4.2 crlFile
A string variable configuration parameter in file URL format. It points to a single CRL that is to be
used to verify the resulting certificate path; in another word, it determines whether the
certificate in question is being revoked by its issuer or not. For example:

crlFile=file:///c:\home\certs\revoke.crl

This example indicates which CRL is used to determine if the certificate has not been revoked
by its issuer.

2.27.5 Sample Registry Command File
The following is a sample command for modifying the Tuxedo registry database on a Windows
platform using the Cert-C PKI encryption plug-in.

Chapter 2
Cert-C PKI Encryption Plug-In Configuration

2-80

Note:

On a UNIX platform, you must:

• use the file name libcertctux plus your platform specific dynamic library
extension instead of certctux.dll used in Windows. For example:

Solaris: libcertctux.so.71
HP-UX: libcertctux.sl

• change the file URL to UNIX format

Listing Sample Command for Modifying Tuxedo Registry Database on Windows

REM **
 REM ** Modify Validation Interface **
 REM **
 epifreg -r -p bea/cert-c/certificate_validation -i engine/security/
certificate_validation -v 1.0 -f certctux.dll -e
 _ep_dl_certc_validate_certificate -u caCertificateFile=file:///
c:\home\certs\root.cer -u crlFile=file:///c:\home\certs\revoke.crl

 epifreg -s -k SYSTEM/impl/bea/valfile -a InterceptionSeq=bea/cert-c/
certification_validation
 epifregedt -s -k SYSTEM/interfaces/engine/security/
certificate_validation -a DefaultImpl=bea/valfile
 REM **
 REM ** Modify Lookup Interface **
 REM **
 epifreg -r -p bea/cert-c/certificate_lookup -i engine/security/
certificate_lookup -v 1.0 -f certctux.dll -e_ep_dl_certc_certificate_lookup -u
 ldapUserCertificate=ldap://sagamore:389 -u
ldapBaseObject="ou=Engineer Test,o=ABC Company,c=US" -u
ldapFilterAttribute="cn" -u ldapBaseDNAttribue="c,o,ou,cn"
 epifregedt -s -k SYSTEM/interfaces/engine/security/
certificate_lookup -a DefaultImpl=bea/cert-c/certificate_lookup
 REM **
 REM ** Modify Key Management Interface **
 REM **
 epifreg -r -p bea/cert-c/key_management -i engine/security/
key_management -v 1.0 -f certctux.dll -e_ep_dl_certc_key_management -u
privateKeyDir=file:///c:\home\certs\
 epifregedt -s -k SYSTEM/interfaces/engine/security/key_management -a
DefaultImpl=bea/cert-c/key_management
 REM **
 REM ** Modify Certificate Parsing Interfaces **
 REM **
 epifreg -r -p bea/cert-c/certificate_parsing -i engine/security/
certificate_parsing -v 1.0 -f certctux.dll -
e_ep_dl_certc_certificate_parsing
 epifregedt -s -k SYSTEM/interfaces/engine/security/
certificate_parsing -a DefaultImpl=bea/cert-c/certificate_parsing

Chapter 2
Cert-C PKI Encryption Plug-In Configuration

2-81

2.27.6 Limitations
• The "cn" attribute of distinguished name is used as key for certificate lookup, so the DN

must contains the "cn=" attribute.

• There are two possible places to put a name in an X.509 v3 KC:

– One is the subject field in the base PKC, often called the Distinguished Name or DN
field.

– The other is the subjectAltName extension. This plug-in does not support
subjectAltName extension.

Note:

Wildcards used in a name are not supported. Empty subject fields are not
allowed.

• The following tpkey_getinfo() attributes cannot retrieve ENCRYPT_ALG, ENCRYPT_BITS,
SIGNATURE_ALG, or SIGNATURE_BITS information using the Cert-C PKI encryption plug-in:

– TPKEY_SIGNATURE: cannot retrieve ENCRYPT_ALG, ENCRYPT_BITS
– TPKEY_ENCRYPT: cannot retrieve SIGNATURE_BITS
– TPKEY_AUTOSIGN: cannot retrieve ENCRYPT_ALG, ENCRYPT_BITS
– TPKEY_AUTOENCRYPT: cannot retrieve SIGNATURE_BITS

Note:

TPKEY_DECRYPT: can retrieve ENCRYPT_ALG, ENCRYPT_BITS, SIGNATURE_ALG, or
SIGNATURE_BITS information

TPKEY_AUTOSIGN|TPKEY_DECRYPT: can retrieve ENCRYPT_ALG, ENCRYPT_BITS,
SIGNATURE_ALG, or SIGNATURE_BITS information

See Also:

tpkey_open(3c)

Chapter 2
Cert-C PKI Encryption Plug-In Configuration

2-82

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1513266

3
Programming Security

The following sections describe how to build security for your Oracle Tuxedo ATMI application
into your code.

• What Programming Security Means

• Programming an ATMI Application with Security

• Setting Up the Programming Environment

• Writing Security Code So Client Programs Can Join the ATMI Application

• Getting Security Data

• Joining the ATMI Application

• Writing Security Code to Protect Data Integrity and Privacy

• Sending and Receiving Signed Messages

• Sending and Receiving Encrypted Messages

• Examining Digital Signature and Encryption Information

• Externalizing Typed Message Buffers

3.1 What Programming Security Means
Programming security is the task of writing security code for Application-to-Transaction Monitor
Interface (ATMI) applications. In addition to the code that expresses the logic of the program,
application programmers use ATMI to link their application code with the Oracle Tuxedo
transaction monitor. The ATMI programming interfaces enable communication among
application clients and servers running under the control of the Oracle Tuxedo transaction
monitor. C and COBOL implementations of the ATMI are available.

The following figure illustrates application programmers have access to the ATMI functions for
authenticating users and controlling user access, and for incorporating public key encryption
techniques into their applications. Also shown is the absence, at the application level, of ATMI
functions for auditing or link-level encryption. Auditing is accessed at the Oracle Tuxedo
system level, and link-level encryption is configured by the application administrator.

3-1

Figure 3-1 Programming Oracle Tuxedo Security

Note:

• Programming an ATMI Application with Security

• What Security Means

• What Administering Security Means

3.2 Programming an ATMI Application with Security
The Oracle Tuxedo system offers various ATMI functions for different security needs.

If You Are Writing Security Code for . . . Then You Use the ATMI Functions Available for . . .

Client programs so that clients can join a ATMI application
and access application services.

Clients joining an ATMI application, which in turn invoke
system-level calls to the authentication and authorization
plug-ins.

Both client and server programs to protect the integrity and
privacy of the data they exchange.

Public key security, which supports end-to-end digital signing
and data encryption.

Chapter 3
Programming an ATMI Application with Security

3-2

Note:

• Setting Up the Programming Environment

3.3 Setting Up the Programming Environment
To be able to write security code, an application programmer needs:

• Access to Oracle Tuxedo libraries and commands

• Read and execute permissions on the directories and files in the Oracle Tuxedo system
directory structure

To obtain access to the required libraries and commands, you must set the TUXCONFIG, TUXDIR,
APPDIR, and other environment variables in your environment. For details, see “How to Set
Your Environment” in Administering an Oracle Tuxedo Application at Run Time.

The application administrator is responsible for setting the permissions on directories and files.
See your administrator to get the permissions you need.

Note:

• Writing Security Code So Client Programs Can Join the ATMI Application

• Writing Security Code to Protect Data Integrity and Privacy

3.4 Writing Security Code So Client Programs Can Join the ATMI
Application

Client programs are responsible for gathering data from outside the application or computer,
bundling the data into messages, and forwarding the messages to servers for processing.
Client programs are made available to users through devices such as automatic teller
machines (ATMs), data entry terminals, and graphics devices.

For default authentication and authorization, application security may be set to one of five
levels. At the lowest level, no authentication is performed. At the highest level, an access
control checking feature determines which users can execute a service, post an event, or
enqueue (or dequeue) a message on an application queue. Setting the security level for an
ATMI application is the responsibility of the application administrator.

An application programmer needs to perform two tasks so that a client program can join an
ATMI application:

• Get the security data for the specific client process

• Pass that data to the Oracle Tuxedo system

The following pseudo-code in the following listing summarizes the operation of a basic client
program. The security-related statements are highlighted in bold.

Chapter 3
Setting Up the Programming Environment

3-3

Listing Pseudo-code for a Client

main()
 {
 call tpchkauth() to check security level of ATMI application
 get usrname, cltname
 prompt for application password
 prompt for per-user password
 allocate a TPINIT buffer
 place initial client identification into TPINIT buffer
 call tpinit() to enroll as a client of the ATMI application
 allocate buffer
 do while true {
 place user input in buffer
 send service request
 receive reply
 pass reply to user }
 leave application }

Most of the statements in the preceding listing are implemented by ATMI functions in either C
or COBOL. The preceding listing shows only the C language implementation.

A client program written in C uses tpinit(3c) to comply with the level of security set for the ATMI
application and to join the application. The argument to tpinit() is a pointer to a TPINIT
buffer. To perform the same tasks in a COBOL application, a client program calls
TPINITIALIZE(3cbl), specifying a pointer to a TPINFDEF-REC record as an argument.

Note:

• Getting Security Data

• Joining the ATMI Application

• “Writing Clients” on page 4‑1 in Programming an Oracle Tuxedo ATMI Application
Using C and Programming an Oracle Tuxedo ATMI Application Using COBOL

• tpinit(3c) in Oracle Tuxedo ATMI C Function Reference

• TPINITIALIZE(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

• Administering Public Key Security

• Administering Authorization

• Default Authentication and Authorization

• Programming an ATMI Application with Security

3.5 Getting Security Data
For general-purpose client programs that are written to work with a variety of applications, the
Oracle Tuxedo system provides an ATMI function that enables a client to determine the level of
security required by the ATMI application that the client is trying to join. This ATMI function,
implemented as tpchkauth(3c) for C and TPCHKAUTH(3cbl) for COBOL, is designed to work
with ATMI applications using default authentication and authorization. The tpchkauth() and

Chapter 3
Getting Security Data

3-4

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1022852
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1000457
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1022852
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1000457
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1040017

TPCHKAUTH() functions can also be used in ATMI applications in which custom authentication
and/or authorization is used. How they are used, however, depends on how the custom
security features are implemented. For the most part, this discussion focuses on default
authentication and authorization.

An application programmer writing in C uses tpchkauth() to check the ATMI application’s
security level before calling tpinit(3c), so that the client program can prompt for the application
password and the user authentication data needed for the tpinit() call; tpchkauth() is called
without arguments.

An application programmer writing in COBOL uses TPCHKAUTH() for the same purpose before
calling TPINITIALIZE(3cbl). The syntax and functionality of TPCHKAUTH(3cbl) and
TPINITIALIZE(3cbl) are the same as those of tpchkauth(3c) and tpinit(3c).

The tpchkauth() function (or TPCHKAUTH() routine) returns one of the following values.

TPNOAUTH
Nothing is required beyond the normal operating system login and file permission security.
TPNOAUTH is returned for security level NONE.

TPSYSAUTH
An application password is required. The client program should prompt the user to provide the
password, and should put it in the password field of the TPINIT buffer for C, or TPINFDEF-REC
record for COBOL. TPSYSAUTH is returned for security level APP_PW.

The application administrator informs users of the application password, and the application
programmer writes client-program code to prompt users for the application password and to
put the user-supplied password, as plain text, in the password field of the TPINIT buffer or
TPINFDEF-REC record. The password should not be displayed on the user’s screen.

Oracle Tuxedo system-supplied client programs, such as ud, wud(1), prompt for an application
password. ud() allows fielded buffers to be read from standard input and sent to a service.

TPAPPAUTH
The application password is required. The client is expected to provide a value to be passed
to the authentication service in the data field of the TPINIT buffer for C, or the TPINFDEF-REC
record for COBOL. TPAPPAUTH is returned for security level USER_AUTH, ACL, or MANDATORY_ACL.

The application programmer writes client-program code to furnish additional information for
the application authentication service, which is provided by the AUTHSVR server for default
authentication and authorization. AUTHSVR is configured by the administrator to validate the
per-user authentication information with client and usernames, indicating whether the client
program is allowed to join the ATMI application.

Chapter 3
Getting Security Data

3-5

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1022852
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1040017
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1022852

See Also:

• Joining the ATMI Application

• Writing Clients in Programming an Oracle Tuxedo ATMI Application Using C and
Programming an Oracle Tuxedo ATMI Application Using COBOL

• tpinit(3c) and tpchkauth(3c) in the Oracle Tuxedo ATMI C Function Reference

• TPINITIALIZE(3cbl) and TPCHKAUTH(3cbl) in the Oracle Tuxedo ATMI COBOL
Function Reference

• Default Authentication and Authorization

• Programming an ATMI Application with Security

3.6 Joining the ATMI Application
In a secure ATMI application, it is necessary to pass security information to the Oracle Tuxedo
system via a TPINIT buffer for C, or a TPINFDEF-REC record for COBOL. The TPINIT buffer is a
special typed buffer used by a client program to pass client identification and authentication
information to the system as the client attempts to join the ATMI application. The TPINFDEF-REC
record serves the same purpose in a COBOL application.

The header file atmi.hdefines TPINIT, and theCOBOL COPY file defines TPINFDEF-REC. Their
structures are as follows:

Chapter 3
Joining the ATMI Application

3-6

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1022852
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1040017

TPINIT Structure TPINFDEF-REC Structure

char char char char
long long long

N

o

t

e

:

M
A
X
T
I
D
E
N
T
m
a
y
c
o
n
t
a
i
n
u
p
t
o
3
0
c
h
a
r
a
c
t
e
r
s
.

usrname[MAXTIDENT+2];
cltname[MAXTIDENT+2];
passwd[MAXTIDENT+2];
grpname[MAXTIDENT+2];
flags; datalen; data;

05 USRNAME 05 CLTNAME
05 PASSWD 05 GRPNAME 05
NOTIFICATION-FLAG 88
TPU-SIG 88 TPU-DIP 88
TPU-IGN 05 ACCESS-FLAG
88 TPSA-FASTPATH 88
TPSA-PROTECTED 05
DATLEN

PIC X(30). PIC X(30).
PIC X(30). PIC X(30).
PIC S9(9) COMP-5. VALUE
1. VALUE 2. VALUE 3.
PIC S9(9) COMP-5. VALUE
1. VALUE 2. PIC S9(9)
COMP-5.

The following table describes the fields in the TPINIT buffer/TPINFDEF-REC record:

Chapter 3
Joining the ATMI Application

3-7

Table 3-1 Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT Fields TPINFDEF-REC Fields Description

usrname USRNAME Username.* A null-terminated string of
up to 30 characters. The username
represents the caller; writers of client
programs might use the same login
names used to log in to the host
operating system.

cltname CLTNAME Client name.* A null-terminated string of
up to 30 characters. The client name
represents the client program; writers of
client programs might use this field to
indicate the job function or role of the
user when executing the client program.

passwd PASSWD Application password.* A null-
terminated string of up to eight
characters. tpinit() or
TPINITIALIZE() validates this
password by comparing it to the
configured application password stored
in the TUXCONFIG file.**

grpname GRPNAME Group name. A null-terminated string of
up to 30 characters. This field is not
related to security. The group name
allows a client to be associated with a
resource manager group that is defined
in the UBBCONFIG file.

flags NOTIFICATION-FLAG TPU-SIG TPU-
DIP TPU-IGN ACCESS-FLAG TPSA-
FASTPATH TPSA-PROTECTED

Notification and access flags. This field
is not related to security. The flag
settings specify the notification
mechanism and system access mode to
be used for the client. Selections
override (with some exceptions) the
values set in the RESOURCES section of
the UBBCONFIG file.

datalen DATALEN Length of the user-specific data*** that
follows.* To get a size value for this field,
writers of client programs written in C
can call TPINITNEED with the number of
bytes of user-specific data expected to
be sent. TPINITNEED is a macro
provided in the atmi.h header file.

data N/A User-specific data*** of no fixed length.*
tpinit() or TPINITIALIZE()
forwards the user-specific data to the
authentication server for validation. For
default authentication, the
authentication server is AUTHSVR.

* This field is required for the USER_AUTH, ACL, and MANDATORY_ACL security levels provided by default authentication and
authorization. ** The binary equivalent of the UBBCONFIG file; created using tmloadcf(1). *** Usually a user password.

The client program calls tpalloc(3c) to allocate a TPINIT buffer. The following sample code in
the following listing prepares to pass eight bytes of application-specific data to tpinit() and
enables the client to join an ATMI application.

Chapter 3
Joining the ATMI Application

3-8

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#2537656

Listing Allocating a TPINIT Buffer and Joining an ATMI Application

 .
 .
 .
 TPINIT *tpinfo;
 .
 .
 .
 if ((tpinfo = (TPINIT *)tpalloc("TPINIT",(char *)NULL,
 TPINITNEED(8))) == (TPINIT*)NULL){
 Error Routine
 }
 .
 .
 .
 tpinit(tpinfo) /* join an ATMI application */
 .
 .
 .

When a Workstation client calls the tpinit() function or the TPINITIALIZE() routine to join an
ATMI application, the following major events occur.

1. The initiator Workstation client and the target workstation listener (WSL) exchange link-
level encryption (LLE) min-max values to be used to set up LLE on the link between the
initiator Workstation client and the target WSH. LLE is described in Link-Level Encryption.

2. The initiator Workstation client and target WSH authenticate one another through the
exchange of security tokens. For default authentication, a successful authentication ends
with the transfer of client security data from the TPINIT buffer or TPINFDEF-REC record to
the target WSH.

3. After a successful authentication, the initiator Workstation client sends another buffer to the
target WSH containing the values of the usrname, cltname, and flags fields, to ensure that
the target WSH receives this information for the authenticated Workstation client.

When a native client calls the tpinit() function or the TPINITIALIZE() routine to join an ATMI
application, only authentication occurs. In essence, the native client authenticates with itself.

• Transferring the Client Security Data

• Calling a Service Request Before Joining the ATMI Application

3.6.1 Transferring the Client Security Data
The following listing demonstrates the transfer of data from the TPINIT buffer for a Workstation
client. This figure illustrates the process of transferring data from the TPINFDEF-REC record.

Chapter 3
Joining the ATMI Application

3-9

Figure 3-2 Transferring Data from the TPINIT Buffer for a Workstation Client

Note:

The authorization procedure shown in the preceding figure is essentially the same for
a native client attempting to join an ATMI application except that no network link or
WSH is involved. A native client authenticates with itself.

In the preceding diagram, notice that the information sent to the Oracle Tuxedo system differs
between default and custom authentication. For default authentication, the values of the
cltname, grpname, and flags fields are delivered to the default authentication plug-in at the
Workstation client by a means other than through the plug-in interface. However, for custom
authentication, writers of client programs can include these values as well as any other values
they so choose in the variable length data field.

For a Workstation client and assuming default authentication, the authentication plug-in at the
Workstation client uses the passwd/ PASSWD field to encrypt the information when transmitting

Chapter 3
Joining the ATMI Application

3-10

the information over the network. The encryption algorithm used is 56-bit DES, where DES is
an acronym for the Data Encryption Standard. The authentication plug-in at the target WSH
uses the application password stored in the TUXCONFIG file to decrypt the information. For a
native client, the system simply compares the passwd/ PASSWD field with the application
password stored in the TUXCONFIG file.

Note:

At the Workstation client, the passwd/ PASSWD field is delivered to the
authentication plug-in by a means other than through the authentication plug-in
interface. At the WSH, the application password in the TUXCONFIG file is delivered to
the authentication plug-in through the authentication plug-in interface during
application booting.

After a successful authentication of a Workstation client, the tpinit() function ends with the
sending of another buffer to the WSH containing the values of the usrname, cltname, and
flags fields, to ensure that the WSH receives this information for the authenticated
Workstation client. Similarly, the TPINITIALIZE() routine ends with the sending of another
buffer containing the same information. A custom authentication plug-in might not send this
information to the WSH during the authentication procedure, and the WSH needs this
information for reporting purposes, that is, during an invocation of the tmadmin(1)
printclient (pclt) command.

When a Workstation or native client passes the security check, it may initiate service requests
and receive replies.

3.6.2 Calling a Service Request Before Joining the ATMI Application
If a client calls a service request (or any ATMI function) before invoking tpinit() or
TPINITIALIZE() and assuming the SECURITY configuration for the target ATMI application is
not set or is set to NONE, the Oracle Tuxedo system automatically invokes tpinit()/
TPINITIALIZE() with a NULL parameter. This behavior has the following consequences:

• The TPINIT/ TPINFDEF-REC feature cannot be used.

• Default values are used for client naming, unsolicited notification type, and system access
mode.

• The client cannot be associated with a resource manager group.

• An application password cannot be specified.

If a client calls a service request (or any ATMI function) before invoking tpinit() or
TPINITIALIZE() and assuming the SECURITY configuration for the target ATMI application is set
to APP_PW, USER_AUTH, ACL, or MANDATORY_ACL, the Oracle Tuxedo system rejects the service
request.

Chapter 3
Joining the ATMI Application

3-11

See Also:

• “Writing Clients” in Programming an Oracle Tuxedo ATMI Application Using C
and Programming an Oracle Tuxedo ATMI Application Using COBOL

• tpinit(3c)and tpalloc(3c) in the Oracle Tuxedo ATMI C Function Reference

• TPINITIALIZE(3cbl) in the Oracle Tuxedo ATMI COBOL Function Reference

• Default Authentication and Authorization

• Programming an ATMI Application with Security

3.7 Writing Security Code to Protect Data Integrity and Privacy
Public key security comprises end-to-end digital signing and data encryption. Both features are
supported by Oracle Tuxedo ATMI functions. ATMI applications protected by public key
security are much safer for use across the Internet than programs in which this type of security
is not used.

The capabilities that make end-to-end digital signing and data encryption possible are
message-based digital signature and message-based encryption. Both capabilities are built
upon the PKCS-7 standard, which is one of a set of Public-Key Cryptography Standards
(PKCS) developed by RSA Laboratories in cooperation with several other leading
communications companies.

Message-based digital signature ensures data integrity and non-repudiation by having the
sending party bind proof of its identity to a specific message buffer. Message-based encryption
protects the confidentiality of messages; only parties for whom messages are intended can
decrypt and read them.

Because the unit of digital signing and encryption is an ATMI message buffer, both capabilities
are compatible with existing ATMI programming interfaces and communication paradigms. It is
possible for a message buffer to be both signed and encrypted. There is no required
relationship between the number of digital signatures and the number of encryption envelopes
associated with a message buffer.

Note:

Each encryption envelope identifies a recipient of the message, and contains
information needed by the recipient to decrypt the message.

• ATMI Interface for Public Key Security

• Recommended Uses of Public Key Security

3.7.1 ATMI Interface for Public Key Security
The ATMI interface for public key security is a compact set of functions used to:

• Open and close key resources

• View and change key optional parameters

• Sign and seal (encrypt) message buffers

Chapter 3
Writing Security Code to Protect Data Integrity and Privacy

3-12

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1022852
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#2537656

• Access the digital signature and encryption information associated with a message buffer

• Convert a typed message buffer into an exportable, machine-independent string
representation, which includes the generation of any digital signatures or encryption
envelopes associated with the buffer

The ATMI interfaces for public key security are available in both C and COBOL
implementations. The ATMI COBOL language binding, however, does not support message
buffers; thus, explicit signature, encryption, and query operations on individual buffers cannot
be used in a COBOL application. However, key management interfaces do have a COBOL
language binding, which enables signature generation in the AUTOSIGN mode and encryption-
envelope generation in the AUTOENCRYPT mode. All operations related to automatic signature
verification or automatic decryption apply to COBOL client and server processes.

Note:

The COBOL TPKEYDEF record is used to manage public-private keys for performing
message-based digital signature and encryption operations. See “COBOL Language
ATMI Return Codes and Other Definitions” in the introduction part of the Oracle
Tuxedo ATMI COBOL Function Reference for a description of the TPKEYDEF record.

The following tables summarize the ATMI interfaces for public key security. Each function is
also documented in the Oracle Tuxedo ATMI C Function Reference and the Oracle Tuxedo
ATMI COBOL Function Reference.

Chapter 3
Writing Security Code to Protect Data Integrity and Privacy

3-13

Table 3-2 Functions in ATMI Interface for Public Key Security

Use This Function To...

tpkey_open(3c) Open a key handle for digital signature generation, message
encryption, or message decryption. Keys are represented
and manipulated via handles. A handle has data associated
with it that is used by the ATMI application to locate or
access the item named by the handle. A key may play one or
more of the following roles:
• Signature Generation The key identifies the calling

process as being authorized to generate a digital
signature under the principal’s identity. (A principal may
be a person or a process.) Calling tpkey_open() with
the principal’s name and either the TPKEY_SIGNATURE
or TPKEY_AUTOSIGN flag returns a handle to the
principal’s private key and digital certificate.

• Signature Verification The key represents the principal
associated with a digital signature. Signature verification
does not require a call to tpkey_open(); the verifying
process uses the public key specified in the digital
certificate accompanying the digitally signed message to
verify the signature.

• Encryption The key represents the intended principal of
an encrypted message. Calling tpkey_open() with the
principal’s name and either the TPKEY_ENCRYPT or
TPKEY_AUTOENCRYPT flag returns a handle to the
principal’s public key via the principal’s digital certificate.

• Decryption The key identifies the calling process as
being authorized to decrypt a private message for the
intended principal. Calling tpkey_open() with the
principal’s name and the TPKEY_DECRYPT flag returns a
handle to the principal’s private key and digital
certificate.

Chapter 3
Writing Security Code to Protect Data Integrity and Privacy

3-14

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1513266

Table 3-2 (Cont.) Functions in ATMI Interface for Public Key Security

Use This Function To...

tpkey_getinfo(3c) Get information associated with a key handle. Some
information is specific to a cryptographic service provider, but
the following set of attributes is supported by all providers:
• PRINCIPAL The name of the principal associated with

the specified key (key handle). A principal may be a
person or a process, depending on how an application
developer sets up public key security. Any principal
specified in an ATMI application’s UBBCONFIG file
using the SEC_PRINCIPAL_NAME parameter become
the identity of one or more system processes. (See
“Specifying Principal Names” on page 2‑11 and
“Initializing Decryption Keys Through the Plug-ins” on
page 2‑56 for more detail.)

• PKENCRYPT_ALG An ASN.1 Distinguished Encoding
Rules (DER) object identifier of the public key algorithm
used by the key for public key encryption. See the
tpkey_getinfo(3c) reference page for details.

• PKENCRYPT_BITS The key length of the public key
algorithm (RSA modulus size). The value must be within
the range of 512 to 2048 bits, inclusive.

• SIGNATURE_ALG An ASN.1 DER object identifier of the
digital signature algorithm used by the key for digital
signature. See the tpkey_getinfo(3c) reference page for
details.

• SIGNATURE_BITS The key length of the digital signature
algorithm (RSA modulus size). The value must be within
the range of 512 to 2048 bits, inclusive.

• ENCRYPT_ALG An ASN.1 DER object identifier of the
symmetric key algorithm used by the key for bulk data
encryption. See the tpkey_getinfo(3c) reference page for
details.

• ENCRYPT_BITS The key length of the symmetric key
algorithm. The value must be within the range of 40 to
128 bits, inclusive.

• DIGEST_ALG An ASN.1 DER object identifier of the
message digest algorithm used by the key for digital
signature. See the tpkey_getinfo(3c) reference page for
details.

• PROVIDER The name of the cryptographic service
provider.

• VERSION The version number of the cryptographic
service provider’s software.

tpkey_setinfo(3c) Set optional attribute parameters associated with a key
handle. A core set of key handle attributes is identified in the
preceding description of tpkey_getinfo(). Other
attributes, specific to a certain cryptographic service
provider, may also be available.

tpkey_close(3c) Close a previously opened key handle. A key handle may be
opened explicitly using tpkey_open(), or implicitly
(automatically) using tpenvelope().

tpsign(3c) Mark a typed message buffer for digital signature. The public
key software generates the digital signature just before the
message is sent.

Chapter 3
Writing Security Code to Protect Data Integrity and Privacy

3-15

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492

Table 3-2 (Cont.) Functions in ATMI Interface for Public Key Security

Use This Function To...

tpseal(3c) Mark a typed message buffer for encryption. The public key
software encrypts the message just before the message is
sent.

tpenvelope(3c) Access the digital signature and encryption information
associated with a typed message buffer. tpenvelope()
returns status information about the digital signatures and
encryption envelopes attached to a particular message
buffer. It also returns the key handle associated with each
digital signature or encryption envelope. The key handle for a
digital signature identifies the signer, and the key handle for
an encryption envelope identifies the recipient of the
message.

tpexport(3c) Convert a typed message buffer into an exportable,
machine-independent (externalized) string representation.
tpexport()generates any digital signatures or encryption
envelopes associated with a typed message buffer just
before it converts that buffer into an externalized string
representation. An externalized string representation can be
transmitted between processes, machines, or domains
through any communication mechanism. It can be archived
on permanent storage.

tpimport(3c) Convert an externalized string representation back into a
typed message buffer. During the conversion, tpimport()
decrypts the message, if necessary, and verifies any
associated digital signatures.

Chapter 3
Writing Security Code to Protect Data Integrity and Privacy

3-16

Table 3-3 COBOL Routines in ATMI Interface for Public Key Security

Use This Routine . . . To . . .

TPKEYOPEN(3cbl) Open a key handle for digital signature generation, message
encryption, or message decryption. Keys are represented
and manipulated via handles. A handle has data associated
with it that is used by the ATMI application to locate or
access the item named by the handle. A key may play one or
more of the following roles:
• Signature Generation The key identifies the calling

process as being authorized to generate a digital
signature under the principal’s identity. (A principal can
be a person or a process.) Calling TPKEYOPEN()with the
principal’s name and the TPKEY-SIGNATUREand
TPKEY-AUTOSIGN settings returns a handle to the
principal’s public key and enables signature generation
in AUTOSIGN mode. The public key software generates
and attaches the digital signature to the message just
before the message is sent.

• Signature Verification The key represents the principal
associated with a digital signature. Signature verification
does not require a call to TPKEYOPEN(); the verifying
process uses the public key specified in the digital
certificate accompanying the digitally signed message to
verify the signature.

• Encryption The key represents the intended principal of
an encrypted message. Calling TPKEYOPEN()with the
principal’s name and the TPKEY-ENCRYPT and TPKEY-
AUTOENCRYPT settings returns a handle to the principal’s
public key (via the principal’s digital certificate) and
enables encryption in AUTOENCRYPT mode. The public
key software encrypts the message and attaches an
encryption envelope to the message; the encryption
envelope enables the receiving process to decrypt the
message.

• Decryption The key identifies the calling process as
being authorized to decrypt a private message for the
intended principal. Calling TPKEYOPEN() with the
principal’s name and the TPKEY-DECRYPTsetting returns
a handle to the principal’s private key and digital
certificate.

Chapter 3
Writing Security Code to Protect Data Integrity and Privacy

3-17

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492

Table 3-3 (Cont.) COBOL Routines in ATMI Interface for Public Key Security

Use This Routine . . . To . . .

TPKEYGETINFO(3cbl) Get information associated with a key handle. Some
information is specific to a cryptographic service provider, but
the following set of attributes is supported by all providers:
• PRINCIPAL The name of the principal associated with

the specified key (key handle). A principal may be a
person or a process, depending on how an ATMI
application developer sets up public key security. Any
principal specified in an ATMI application’s UBBCONFIG
file using the SEC_PRINCIPAL_NAME parameter
become the identity of one or more system processes.
(See “Specifying Principal Names” on page 2‑11 and
“Initializing Decryption Keys Through the Plug-ins” on
page 2‑56 for more detail.)

• PKENCRYPT_ALG An ASN.1 Distinguished Encoding
Rules (DER) object identifier of the public key algorithm
used by the key for public key encryption. See the
TPKEYGETINFO(3cbl) reference page for details.

• PKENCRYPT_BITS The key length of the public key
algorithm (RSA modulus size). The value must be within
the range of 512 to 2048 bits, inclusive.

• SIGNATURE_ALG An ASN.1 DER object identifier of the
digital signature algorithm used by the key for digital
signature. See the TPKEYGETINFO(3cbl) reference
page for details.

• SIGNATURE_BITS The key length of the digital signature
algorithm (RSA modulus size). The value must be within
the range of 512 to 2048 bits, inclusive.

• ENCRYPT_ALG An ASN.1 DER object identifier of the
symmetric key algorithm used by the key for bulk data
encryption. See the TPKEYGETINFO(3cbl) reference
page for details.

• ENCRYPT_BITS The key length of the symmetric key
algorithm. The value must be within the range of 40 to
128 bits, inclusive.

• DIGEST_ALG An ASN.1 DER object identifier of the
message digest algorithm used by the key for digital
signature. See the TPKEYGETINFO(3cbl) reference
page for details.

• PROVIDER The name of the cryptographic service
provider.

• VERSION The version number of the cryptographic
service provider’s software.

TPKEYSETINFO(3cbl) Set optional attribute parameters associated with a key
handle. A core set of key handle attributes is identified in the
preceding description of TPKEYGETINFO(). Other attributes,
specific to a certain cryptographic service provider, may also
be available.

TPKEYCLOSE(3cbl) Close a key handle previously opened using TPKEYOPEN().

3.7.2 Recommended Uses of Public Key Security
• Use tpkey_close() to release key handles used for digital signature generation or for data

decryption as soon as they are no longer needed.

Chapter 3
Writing Security Code to Protect Data Integrity and Privacy

3-18

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1545991
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1502326

• To inhibit replay attacks, generate digital signatures only on message buffers that contain
details identifying a specific operation. For example, a buffer that contains the message
“Your deposit is confirmed” is dangerously vague. An attacker who intercepts such a
message can easily reuse it. On the other hand, a message that contains many operation-
specific details is much safer. An attacker who intercepts a message such as the one that
follows will not be able to reuse it easily: “John Smith’s deposit of $100.00, account
987654321, confirmation code 123456789, 7/31/2001, is confirmed.”

See Also:

• Sending and Receiving Signed Messages

• Sending and Receiving Encrypted Messages

• Examining Digital Signature and Encryption Information

• Externalizing Typed Message Buffers

• Public Key Security

• Administering Public Key Security

• Programming an ATMI Application with Security

3.8 Sending and Receiving Signed Messages
Message-based digital signature provides end-to-end authentication and message integrity
protection. For a diagram that illustrates how it works, see the figure “ATMI PKCS-7 End-to-
End Digital Signing” on page 1‑37.

To add a digital signature to an ATMI message buffer, the originating process or user signs the
message buffer. This signature contains a cryptographically secure check sum of the message
buffer’s content and a timestamp based on the signer’s local clock.

Any party with access to the message buffer can verify that the signing party’s signature is
authentic, that the message buffer content is unchanged, and that the timestamp is within a
configured tolerance of the verifier’s local clock. In addition, time-independent verification by a
third party guarantees non-repudiation: the originating process or user cannot later deny
authorship or claim the message was altered.

• Writing Code to Send Signed Messages

• How a Signed Message Is Received

3.8.1 Writing Code to Send Signed Messages
The following figure illustrates the procedure for writing code to send signed messages.

Chapter 3
Sending and Receiving Signed Messages

3-19

Figure 3-3 Procedure for Sending Signed Messages

For details about these steps and insight into how the system signs a message buffer, see the
following topics.

• Step 1: Opening a Key Handle for Digital Signature

• Step 2 (Optional): Getting Key Handle Information

• Step 3 (Optional): Changing Key Handle Information

• Step 4: Allocating a Buffer and Putting a Message in the Buffer

• Step 5: Marking the Buffer for Digital Signature

• Step 6: Sending the Message

• Step 7: Closing the Signer’s Key Handle

• How the System Generates a Digital Signature

Chapter 3
Sending and Receiving Signed Messages

3-20

3.8.1.1 Step 1: Opening a Key Handle for Digital Signature
Call the tpkey_open(3c) function or TPKEYOPEN(3cbl) routine to make the private key and the
associated digital certificate of the signer available to the originating process. The private key
is highly protected, and possession of it is equivalent to possessing the signer’s identity.

In order to access the signer’s private key, the originating process must prove its right to act as
the signer. Proof requirements depend on the implementation of the public key plug-in
interface. The default public key implementation requires a secret password from the calling
process.

When the originating process calls tpkey_open() to open the key handle, it specifies either the
TPKEY_SIGNATURE or TPKEY_AUTOSIGN flag to indicate that the handle will be used to digitally
sign a message buffer. Typically, a client makes this call after calling tpinit(), and a server
makes this call as part of initializing through tpsvrinit().

Opening a key handle with the TPKEY_AUTOSIGN flag enables automatic signature generation:
subsequently, the originating process signs message buffers automatically whenever they are
sent. Using the TPKEY_AUTOSIGN flag is beneficial for three reasons:

• Less work is required from application programmers because fewer ATMI calls are
required when operating in a secure ATMI application.

• Existing ATMI applications can leverage digital signature technology with minimal coding
changes.

• The possibility of programming errors that might result in an unsigned buffer being sent
over an insecure network is reduced.

The following listing describes how to open a signer’s key handle. TPKEY is a special data type
defined in the atmi.h header file.

Listing Opening a Signer’s Key Handle Example

main(argc, argv)
 int argc;
 char *argv[];
 #endif
 {
 TPKEY sdo_key;
 char *sdo_location;
 .
 .
 .
 if (tpkey_open(&sdo_key, “sdo”,
 sdo_location,
 NULL, 0, TPKEY_SIGNATURE) ==
 -1) {
 (void) fprintf(stderr,
 “tpkey_open sdo failed
 tperrno=%d(%s)\n”,
 tperrno, tpstrerror(tperrno));
 exit(1);
 }
 .
 .

Chapter 3
Sending and Receiving Signed Messages

3-21

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1513266

 .
 }

3.8.1.2 Step 2 (Optional): Getting Key Handle Information
You may want to get information about a signer’s key handle to establish the validity of the key.
To do so, call the tpkey_getinfo(3c) function or TPKEYGETINFO(3cbl) routine. While some of the
information returned may be specific to a cryptographic service provider, a core set of
attributes is common to all providers.

The default public key implementation supports the following signature modes for computing
signatures on a message buffer:

• MD5 message digest algorithm with RSA public key signature

• SHA-1 message digest algorithm with RSA public key signature

The message digest algorithm is controlled by the DIGEST_ALG key attribute, and the public key
signature is controlled by the SIGNATURE_ALG key attribute. Public key sizes from 512 to 2048
bits are supported, to allow a wide range of safety and performance options. The public key
size is controlled by the SIGNATURE_BITS key attribute.

The default public key implementation recognizes only those digital certificate signatures that
are created with these algorithm and key size choices.

The following listing describes how to get information about a signer’s key handle.

Listing Getting Information About a Signer’s Key Handle Example

main(argc, argv)
 int argc;
 char *argv[];
 #endif
 {
 TPKEY sdo_key;
 char principal_name[PNAME_LEN];
 long pname_len = PNAME_LEN;
 .
 .
 .
 if (tpkey_getinfo(sdo_key, “PRINCIPAL”,principal_name,&pname_len,
0) == -1) {(void) fprintf(stdout,
 “Unable to get information about principal: %d(%s)\n”,
 tperrno,
 tpstrerror(tperrno));
 .
 .
 .
 exit(1);
 }
 .
 .
 .
 }

Chapter 3
Sending and Receiving Signed Messages

3-22

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1513266

3.8.1.3 Step 3 (Optional): Changing Key Handle Information
To set optional attributes associated with a signer’s key handle, call the tpkey_setinfo(3c)
function or TPKEYSETINFO(3cbl) routine. Key handle attributes vary, depending on the
cryptographic service provider.

The following listing example code describes how to change information associated with a
signer’s key handle.

Listing Changing Information Associated with a Signer’s Key Handle Example

main(argc, argv)
 int argc;
 char *argv[];
 #endif
 {
 TPKEY sdo_key;
 static const unsigned char sha1_objid[] = {
 0x06, 0x05, 0x2b, 0x0e, 0x03,0x02, 0x1a
 };
 .
 .
 .
 if (tpkey_setinfo(sdo_key, “DIGEST_ALG”, (void *) sha1_objid,
 sizeof(sha1_objid), 0) == -1){
 (void) fprintf(stderr, “tpkey_setinfo failed
 tperrno=%d(%s)\n”,
 tperrno, tpstrerror(tperrno));
 return(1);
 }
 .
 .
 .
 }

3.8.1.4 Step 4: Allocating a Buffer and Putting a Message in the Buffer
To allocate a typed message buffer, call the tpalloc(3c) function. Then put a message in the
buffer.

3.8.1.5 Step 5: Marking the Buffer for Digital Signature
To mark, or register, the message buffer for digital signature, call the tpsign(3c) function. By
calling this function, you attach a copy of the signer’s key handle to the message buffer. If you
open the key with the TPKEY_AUTOSIGN flag, each message that you send is automatically
marked for digital signature without an explicit call to tpsign(); signature parameters are
stored and associated with the buffer for later use.

Note:

In COBOL applications, use the AUTOSIGN settings member to create a digital
signature. See TPKEYOPEN(3cbl).

Chapter 3
Sending and Receiving Signed Messages

3-23

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1545991
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1066613
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#2537656
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1261719
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1513266

The following example code shows how to mark a message buffer for digital signature.

Listing Marking a Message Buffer For Digital Signature Example

main(argc, argv)
 int argc;
 char *argv[];
 #endif
 {
 TPKEY sdo_key;
 char *sendbuf, *rcvbuf;
 .
 .
 .
 if (tpsign(sendbuf, sdo_key, 0) == -1) {
 (void) fprintf(stderr, “tpsign failed tperrno=%d(%s)\n”,
 tperrno,tpstrerror(tperrno));
 tpfree(rcvbuf);
 tpfree(sendbuf);
 tpterm();
 (void) tpkey_close(sdo_key,0);
 exit(1);
 }
 .
 .
 .
 }

3.8.1.6 Step 6: Sending the Message
After the message buffer has been marked for digital signature, transmit the message buffer
using one of the following C functions or COBOL routines:

• tpcall() or TPCALL
• tpbroadcast() or TPBROADCAST
• tpconnect() or TPCONNECT
• tpenqueue() or TPENQUEUE
• tpforward()
• tpnotify() or TPNOTIFY
• tppost() or TPPOST
• tpreturn() or TPRETURN
• tpsend() or TPSEND

3.8.1.7 Step 7: Closing the Signer’s Key Handle
Call the tpkey_close(3c) function or TPKEYCLOSE(3cbl) routine to release the signer’s key
handle and all resources associated with it.

Chapter 3
Sending and Receiving Signed Messages

3-24

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1502326

3.8.1.8 How the System Generates a Digital Signature
The public key software digitally signs a message buffer before sending it. If a signed buffer is
transmitted more than once, the software generates a new signature for each communication.
This process makes it possible to modify a message buffer after marking the buffer to be
digitally signed.

The public key software generates a digital signature by performing the following three-step
procedure.

1. digest [message_buffer_data + buffer_type_string + buffer_subtype_string] = hash1

2. digest [hash1 + local_timestamp + PKCS-7_message_type] = hash2

3. {hash2}signer’s_private_key = encrypted_hash2 = digital_signature

The notation digest[something] means that a hash value has been computed for something
using a message digest algorithm—in this case, MD5 or SHA-1. The notation {something}key
means that something has been encrypted or decrypted using key. In this case, the computed
hash value is encrypted using the signer’s private key.

• Signature Timestamp

• Multiple Signatures

• Signed Message Content

3.8.1.8.1 Signature Timestamp
A digital signature includes a timestamp from the local system’s clock. Inclusion of such a
timestamp ensures that any tampering with the timestamp value will be detected when the
recipient verifies the signature. In addition, a copy of the timestamp accompanies the digitally
signed message when the message is routed to its destination. Time resolution is to the
second. Timestamps are stored in PKCS-9 SigningTime format.

3.8.1.8.2 Multiple Signatures
More than one signature can be associated with a message buffer, which means that any
number of signers can sign a message buffer in parallel. A signer can be a person or a
process. Each signer signs the message buffer using his, her, or its private key.

Different signatures may be based on different message digest or digital signature algorithms.
If two signers use the same message digest and digital signature algorithm, the hash value is
computed for only one of them.

3.8.1.8.3 Signed Message Content
A digitally signed message buffer is represented in the PKCS-7 format as a version 1
SignedData content type. The SignedData content type, as used by the Oracle Tuxedo system,
consists of the following items:

• One or more digital signatures, each with its own set of signer-specific information, such
as:

• Signer’s X.509v3 certificate

• Message digest and digital signature algorithm identifiers

• Timestamp based on the local clock

Chapter 3
Sending and Receiving Signed Messages

3-25

• Message content, which is a composite of message buffer data, buffer type string, and
buffer subtype string represented in the Oracle Tuxedo encoded format. The encoded
format allows a message buffer’s signature to be verified on any machine architecture.

The following figure illustrates the message content is enveloped by SignedData content type.

Figure 3-4 SignedData Content Type

3.8.2 How a Signed Message Is Received
No ATMI application code is needed to receive a signed message buffer. The public key
software automatically verifies the attached digital signatures and passes the message to the
receiving process.

Upon receiving a signed message buffer, the public key software, operating on behalf of the
receiving process, performs the following tasks.

1. Reads the digital signature information attached to the received message, including the
signer’s digital certificate, message digest algorithm, digital signature algorithm, and
signature timestamp.

2. Decrypts the attached digital signature (encrypted hash value) using the signer’s public
key (found in the signer’s digital certificate) and the digital signature algorithm.

3. Recomputes the hash value for the received message, as shown in the following two-step
procedure.

a. digest[message_buffer_data + buffer_type_string + buffer_subtype_string] = hash1

b. digest[hash1 + received_timestamp + PKCS-7_message_type] = hash2

The notation digest[something] means that a hash value has been computed for something
using a message digest algorithm—in this case, MD5 or SHA-1.

4. Compares the recomputed hash value with the received hash value; if the two are not
identical, discards the message buffer.

5. Compares the received timestamp with the local system’s clock; if the timestamp is not
within a configured tolerance, discards the message buffer.

6. If the message buffer successfully passes the checks performed in Steps 4 and 5, the
public key software decodes the message buffer data, buffer type string, and buffer
subtype string, and then passes the message to the receiving process. This step reverses
the encoding performed by the originating process. (The Oracle Tuxedo encoded format
allows a message buffer’s signature to be verified on any machine architecture.)

Chapter 3
Sending and Receiving Signed Messages

3-26

Note:

If none of the attached digital signatures can be verified, the receiving process does
not receive the message buffer. Moreover, the receiving process has no knowledge
of the message buffer.

• Verifying Digital Signatures

• Verifying and Transmitting an Input Buffer’s Signatures

• Replacing an Output Buffer’s Signatures

3.8.2.1 Verifying Digital Signatures
The public key software automatically verifies digital signatures whenever a signed message
buffer enters a client process, server process, or any system process that needs to access the
content of the message buffer. If a system process is acting as a conduit (that is, if it is not
reading the content of the message), then the attached digital signatures need not be verified.
Bridges and workstation handlers (WSHs) are examples of system processes acting as
conduits.

The signature timestamp is based on an unsynchronized clock, and therefore cannot be fully
trusted, especially if the signature is performed on a PC or personal workstation. However, a
server may reject requests with timestamps that are too old or dated too far into the future. The
capability to reject a request based on the timestamp provides a measure of protection against
replay attacks.

3.8.2.2 Verifying and Transmitting an Input Buffer’s Signatures
If a message buffer is passed to an ATMI function (such as tpacall()) as an input parameter,
the public key software verifies any signatures previously attached to the message and then
forwards the message. This behavior enables a secure, verified transfer of information with
signatures from multiple processes.

If a server modifies a received message buffer and then forwards the buffer, the original
signature is no longer valid. In this case, the public key software detects the invalid signature
and silently discards it. For an example of the process, see Discarding an Input Buffer’s
Encryption Envelopes.

3.8.2.3 Replacing an Output Buffer’s Signatures
If a message buffer is passed to an ATMI function (such as tpgetreply()) as an output
parameter, the public key software deletes any signature information associated with the buffer.
This information includes any pending signatures and signatures from previous uses of the
buffer. (A pending signature is a signature that is registered with a message buffer.)

New signature information might be associated with the new buffer content after successful
completion of this operation.

Chapter 3
Sending and Receiving Signed Messages

3-27

Note:

• Sending and Receiving Encrypted Messages

• Examining Digital Signature and Encryption Information

• Externalizing Typed Message Buffers

• Public Key Security

• Administering Public Key Security

• Programming an ATMI Application with Security

3.9 Sending and Receiving Encrypted Messages
Message-based encryption provides end-to-end data privacy. For a diagram that illustrates
how it works, see the figure “ATMI PKCS-7 End-to-End Encryption” on page 1‑42.

A message is encrypted just before it leaves the originating process, and remains encrypted
until it is received by the final destination process. It is opaque at all intermediate transit points
(including operating system message queues, system processes, and disk-based queues) and
during network transmission over inter-server network links.

• Writing Code to Send Encrypted Messages

• Writing Code to Receive Encrypted Messages

Chapter 3
Sending and Receiving Encrypted Messages

3-28

3.9.1 Writing Code to Send Encrypted Messages

Figure 3-5 Procedure for Sending Encrypted Messages

For details about these steps and insight into how the system encrypts a message buffer, see
the following topics.

• Step 1: Opening a Key Handle for Encryption

• Step 2 (Optional): Getting Key Handle Information

• Step 3 (Optional): Changing Key Handle Information

• Step 4: Allocating a Buffer and Putting a Message in the Buffer

• Step 5: Marking the Buffer for Encryption

Chapter 3
Sending and Receiving Encrypted Messages

3-29

• Step 6: Sending the Message

• Step 7: Closing the Encryption Key Handle

• How the System Encrypts a Message Buffer

3.9.1.1 Step 1: Opening a Key Handle for Encryption
Call the tpkey_open(3c) function or TPKEYOPEN(3cbl) routine to make the digital certificate of
the target recipient available to the originating process. The target recipient might be a client, a
service, a server group, a gateway group, a server machine, or an entire domain of servers.

When the originating process calls tpkey_open() to open the key handle, it specifies either the
TPKEY_ENCRYPT or TPKEY_AUTOENCRYPT flag to indicate that the handle will be used to encrypt a
message buffer. Typically, a client makes this call after calling tpinit(), and a server makes
this call as part of initializing through tpsvrinit().

Opening a key handle with the TPKEY_AUTOENCRYPT flag enables automatic encryption:
subsequently, the originating process encrypts message buffers automatically whenever they
are sent. Using the TPKEY_AUTOENCRYPT flag is beneficial for three reasons:

• Less work is required from application programmers because fewer ATMI calls are
required when operating in a secure ATMI application.

• Existing ATMI applications can leverage encryption technology with minimal coding
changes.

• The possibility of programming errors that might result in an unencrypted (plaintext) buffer
being sent over an insecure network is reduced.

Listing describes how to open an encryption key handle. TPKEY is a special data type defined in
the atmi.h header file.

Listing Opening an Encryption Key Handle Example

main(argc, argv)
 int argc;
 char *argv[];
 #endif
 {
 TPKEY tu_key;
 .
 .
 .
 if (tpkey_open(&tu_key,
 “TOUPPER”, NULL,
 NULL, 0, TPKEY_ENCRYPT) == -1)
 {
 (void) fprintf(stderr,
 “tpkey_open tu failed
 tperrno=%d(%s)\n”,tperrno, tpstrerror(tperrno));
 exit(1);
 }
 .
 .
 .
 }

Chapter 3
Sending and Receiving Encrypted Messages

3-30

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1513266
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1066613

3.9.1.2 Step 2 (Optional): Getting Key Handle Information
You may want to get information about an encryption key handle to establish the validity of the
key. To do so, call the tpkey_getinfo(3c) function or TPKEYGETINFO(3cbl) routine. While some
of the information returned may be specific to a cryptographic service provider, a core set of
attributes is common to all providers.

The default public key implementation supports three algorithms for bulk data encryption of
message content:

• DES (DES-CBC)—a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It
provides 56-bit keys (8 parity bits are stripped from the full 64-bit key) and is exportable
outside the United States. (DES stands for the Data Encryption Standard.)

• 3DES (two-key triple-DES)—a 128-bit block cipher run in Encrypt-Decrypt-Encrypt (EDE)
mode. 3DES provides two 56-bit keys (in effect, a 112-bit key) and is not exportable
outside the United States.

• RC2—a variable key-size block cipher with a key size range of 40 to 128 bits. It is faster
than DES and is exportable with a key size of 40 bits. A 56-bit key size is allowed for
foreign subsidiaries and overseas offices of United States companies. In the United States,
RC2 can be used with keys of virtually unlimited length, but the public key software
restricts the key length to 128 bits. (RC2 stands for Rivest’s Cipher 2.)

Encryption strength is controlled by the ENCRYPT_BITS key attribute, and the algorithm is
controlled by the ENCRYPT_ALG key attribute. When an algorithm with fixed key length is set in
ENCRYPT_ALG, the value of ENCRYPT_BITS is automatically adjusted to match.

The following listing describes how to get information about an encryption key handle.

Listing Getting Information About an Encryption Key Handle Example

main(argc, argv)
 int argc;
 char *argv[];
 #endif
 {
 TPKEY tu_key;
 char principal_name[PNAME_LEN];
 long pname_len = PNAME_LEN;
 .
 .
 .
 if (tpkey_getinfo(tu_key,
 “PRINCIPAL”,
 principal_name,
 &pname_len, 0) == -1) {
 (void) fprintf(stdout,
 “Unable to get information
 about
 principal: %d(%s)\n”,
 tperrno,
 tpstrerror(tperrno));
 .
 .
 .
 exit(1);

Chapter 3
Sending and Receiving Encrypted Messages

3-31

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492

 }
 .
 .
 .
 }

3.9.1.3 Step 3 (Optional): Changing Key Handle Information
To set optional attributes associated with an encryption key handle, call the tpkey_setinfo(3c)
function or TPKEYSETINFO(3cbl) routine. Key handle attributes vary, depending on the
cryptographic service provider.

Listing describes how to change information associated with an encryption key handle.

Listing Changing Information Associated with an Encryption Key Handle Example

main(argc, argv)
 int argc;
 char *argv[];
 #endif
 {
 TPKEY tu_key;
 static const unsigned char rc2_objid[] = {
 0x06, 0x08, 0x2a, 0x86, 0x48,0x86, 0xf7, 0x0d, 0x03, 0x02
 };
 .
 .
 .
 if (tpkey_setinfo(tu_key, “ENCRYPT_ALG”, (void *) rc2_objid,
 sizeof(rc2_objid), 0) == -1){
 (void) fprintf(stderr, “tpkey_setinfo failed
 tperrno=%d(%s)\n”,
 tperrno,tpstrerror(tperrno));
 return(1);
 }
 .
 .
 .
 }

3.9.1.4 Step 4: Allocating a Buffer and Putting a Message in the Buffer
To allocate a typed message buffer, call the tpalloc(3c) function. Then put a message in the
buffer.

3.9.1.5 Step 5: Marking the Buffer for Encryption
To mark, or register, the message buffer for encryption, call the tpseal(3c) function. By calling
this function, you attach a copy of the encryption key handle to the message buffer. If you open
the key with the TPKEY_AUTOENCRYPT flag, each message that you send is automatically marked
for encryption without an explicit call to tpseal().

Chapter 3
Sending and Receiving Encrypted Messages

3-32

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1545991
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1066613
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#2537656
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1261252

Note:

In COBOL applications, use the AUTOENCRYPT settings member to encrypt a message
buffer. See TPKEYOPEN(3cbl) .

The following listing describes how to mark a message buffer for encryption.

Listing Marking a Message Buffer for Encryption Example

main(argc, argv)
 int argc;
 char *argv[];
 #endif
 {
 TPKEY tu_key;
 char *sendbuf, *rcvbuf;
 .
 .
 .
 if (tpseal(sendbuf, tu_key, 0) == -1) {
 (void) fprintf(stderr,
 “tpseal failed tperrno=%d(%s)\n”,
 tperrno,tpstrerror(tperrno));
 tpfree(rcvbuf);
 tpfree(sendbuf);
 tpterm();
 (void) tpkey_close(tu_key,
 0);
 exit(1);
 }
 .
 .
 .
 }

3.9.1.6 Step 6: Sending the Message
After the message buffer has been marked for encryption, transmit the message buffer using
one of the following C functions or COBOL routines:

• tpcall() or TPCALL
• tpbroadcast() or TPBROADCAST
• tpconnect() or TPCONNECT
• tpenqueue() or TPENQUEUE
• tpforward()
• tpnotify() or TPNOTIFY
• tppost() or TPPOST
• tpreturn() or TPRETURN
• tpsend() or TPSEND

Chapter 3
Sending and Receiving Encrypted Messages

3-33

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1143651

3.9.1.7 Step 7: Closing the Encryption Key Handle
Call the tpkey_close(3c) function or TPKEYCLOSE(3cbl) routine to release the encryption key
handle and all resources associated with it.

3.9.1.8 How the System Encrypts a Message Buffer
Just before a message buffer is sent, the public key software encrypts the message and
attaches an encryption envelope; the encryption envelope enables the target recipient to
decrypt the message. If a sealed buffer is transmitted more than once, encryption is performed
for each transmission. This process makes it possible to modify a message buffer after
marking the buffer to be encrypted.

The public key software encrypts the content of the message buffer and generates an
encryption envelope for the recipient of the encrypted message by performing the following
two-step procedure.

1. {message_buffer_data + buffer_type_string + buffer_subtype_string}session_key =
encrypted_message

2. {session_key}recipient’s_public_key = encrypted_session_key =
encryption_envelope_for_recipient

The notation {something}key means that something has been encrypted or decrypted using
key. In Step 1, a message buffer is encrypted using the session key, and in step 2, the session
key is encrypted using the recipient’s public key.

• Multiple Message Recipients

• Encrypted Message Content

3.9.1.8.1 Multiple Message Recipients
More than one encryption envelope can be associated with a message buffer, which means
that multiple recipients, with different private keys, can receive and decrypt an encrypted
message. A recipient can be a person or a process. When a message is encrypted for multiple
recipients, it is encrypted only once, but the session key is encrypted with the public key of
each recipient. All encryption envelopes are attached to the encrypted message.

If several encryption envelopes are associated with one message buffer, all of them must use
the same symmetric key algorithm and the same key size for that algorithm.

3.9.1.8.2 Encrypted Message Content
An encrypted message buffer is represented in the PKCS-7 format as a version 0
EnvelopedData content type. The EnvelopedData content type, as used by the Oracle Tuxedo
system, consists of the following items:

• A list of recipients (in plaintext) that can be read by any ATMI process

• Encryption envelopes for one or more recipients

• Public key algorithm (and any associated parameters) under which the session key was
encrypted

• Symmetric key algorithm (and any associated parameters) under which the bulk data was
encrypted

Chapter 3
Sending and Receiving Encrypted Messages

3-34

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1502326
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1066533

• Encrypted bulk data, which is a composite of message buffer data, buffer type string, buffer
subtype string, and digital signatures (if any) that have undergone the following
transformations:

– Conversion of the message buffer data, buffer type string, and buffer subtype string
into the Oracle Tuxedo encoded format to form the composite encoded data. (The
Oracle Tuxedo encoded format allows a message buffer to be decrypted on any
machine architecture.)

– Compression of the composite encoded data and digital signatures (if any) using the
Deflate compression algorithm to form the composite compressed data.

– Encryption of the composite compressed data under a randomly generated session
key and symmetric key algorithm (identified earlier in this list) to form the encrypted
bulk data.

The following figure illustrates the envelope hierarchy for the EnvelopedData content type. The
SignedData content type is part of the hierarchy only if the message to which it belongs has
one or more associated digital signatures.

Figure 3-6 EnvelopedData Content Type

As shown in the preceding figure, a message buffer may be both signed and encrypted. No
relationship is required between the number of digital signatures and the number of encryption
envelopes associated with a message buffer.

When both processes are performed on a message buffer, signatures are generated first, on
unencrypted data. The number of attached signatures and the identity of signing parties are
then obscured by the bulk data encryption.

Note:

A suitable decryption key must be available to access message data before
signatures can be verified.

Chapter 3
Sending and Receiving Encrypted Messages

3-35

3.9.2 Writing Code to Receive Encrypted Messages
The procedure for writing code to receive encrypted messages consists of the following steps:

1. Call tpkey_open() to open a key handle for the target recipient. tpkey_open returns a key
handle to the recipient’s private key and digital certificate.

2. (Optional): Call tpkey_getinfo() to get information about the decryption key handle.

3. (Optional): Call tpkey_setinfo() to change information associated with the decryption key
handle.

4. Call tpkey_close() to close the decryption key handle. tpkey_close() releases the key
handle and all resources associated with it.

For details about these steps and insight into how the system decrypts a message buffer, see
the following topics.

• Step 1: Opening a Key Handle for Decryption

• Step 2 (Optional): Getting Key Handle Information

• Step 3 (Optional): Changing Key Handle Information

• Step 4: Closing the Decryption Key Handle

• How the System Decrypts a Message Buffer

3.9.2.1 Step 1: Opening a Key Handle for Decryption
Call the tpkey_open(3c) function or TPKEYOPEN(3cbl) routine to make the private key and the
associated digital certificate of the target recipient available to the receiving process. The
receiving process might be a client, a service, a server group, a gateway group, a server
machine, or an entire domain of servers.

An application administrator can configure the ATMI application’s UBBCONFIG file such that
decryption key handles are opened automatically when the ATMI application is booted. No
more than one decryption key handle per server may be used with this method. See
“Initializing Decryption Keys Through the Plug-ins” on page 2‑56 for details.

If an ATMI application is not configured to open a decryption key handle for the receiving
process during booting, the receiving process initiates its own tpkey_open() call. Or, if the
receiving process wants to open another decryption key handle, the receiving process makes
an additional tpkey_open() call.

In order to access the target recipient’s private key, the receiving process must prove its right
to act as the target recipient. Proof requirements depend on the implementation of the public
key plug-in interface. The default public key implementation requires a secret password from
the calling process.

When the receiving process calls tpkey_open() to open the key handle, it specifies the
TPKEY_DECRYPT flag to indicate that the handle will be used to decrypt a message buffer.
Typically, a client makes this call after calling tpinit(), and a server makes this call as part of
initializing through tpsvrinit().

The following listing describes how to open a decryption key handle. TPKEY is a special data
type defined in the atmi.h header file.

Chapter 3
Sending and Receiving Encrypted Messages

3-36

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1513266

Listing Opening a Decryption Key Handle Example

TPKEY tu_key;
 tpsvrinit(argc, argv)
 int argc;
 char **argv;
 #endif
 {
 char *tu_location;
 .
 .
 .
 if (tpkey_open(&tu_key,
 “TOUPPER”, tu_location,
 NULL, 0, TPKEY_DECRYPT) == -1)
 {
 userlog(“Unable to open
 private key: %d(%s)”,
 tperrno,
 tpstrerror(tperrno));
 return(-1)
 }
 .
 .
 .
 }

3.9.2.2 Step 2 (Optional): Getting Key Handle Information
You may want to get information about a decryption key handle to establish the validity of the
key. To do so, call the tpkey_getinfo(3c) function or TPKEYGETINFO(3cbl) routine. While some
of the information returned may be specific to a cryptographic service provider, a core set of
attributes is common to all providers.

The following listing describes hows how to get information about a decryption key handle.

Listing Getting Information About a Decryption Key Handle Example

TPKEY tu_key;
 tpsvrinit(argc, argv)
 int argc;
 char **argv;
 #endif
 {
 char principal_name[PNAME_LEN];
 long pname_len = PNAME_LEN;
 .
 .
 .
 if (tpkey_getinfo(tu_key,
 “PRINCIPAL”,
 principal_name,
 &pname_len, 0) == -1) {
 (void) fprintf(stdout,
 “Unable to get information
 about

Chapter 3
Sending and Receiving Encrypted Messages

3-37

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1066551

 principal: %d(%s)\n”,
 tperrno,
 tpstrerror(tperrno));
 .
 .
 .
 exit(1);
 }
 .
 .
 .
 }

3.9.2.3 Step 3 (Optional): Changing Key Handle Information
To set optional attributes associated with a decryption key handle, call the tpkey_setinfo(3c)
function or TPKEYSETINFO(3cbl) routine. Key handle attributes vary, depending on the
cryptographic service provider.

The following listing describes how to change information associated with a decryption key
handle.

Listing Changing Information Associated with a Decryption Key Handle Example

TPKEY tu_key;
 tpsvrinit(argc, argv)
 int argc;
 char **argv;
 #endif
 {
 TM32U mybits = 128;
 .
 .
 .
 if (tpkey_setinfo(tu_key,
 “ENCRYPT_BITS”, &mybits,
 sizeof(mybits), 0) == -1)
 {
 (void) fprintf(stderr,
 “tpkey_setinfo failed
 tperrno=%d(%s)\n”,
 tperrno,
 tpstrerror(tperrno));
 return(1);
 }
 .
 .
 .
 }

3.9.2.4 Step 4: Closing the Decryption Key Handle
Call the tpkey_close(3c) function or TPKEYCLOSE (3cbl) routine to release the decryption key
handle and all resources associated with it.

Chapter 3
Sending and Receiving Encrypted Messages

3-38

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1545991
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1066613
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1502326
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3cbl/rf3cbl.html#1066613

3.9.2.5 How the System Decrypts a Message Buffer
The public key software automatically decrypts an encrypted message buffer whenever it
enters an Oracle Tuxedo client process, server process, or any system process that needs to
access the content of the message buffer. For automatic decryption to succeed, the receiving
process must have opened a decryption key (type TPKEY_DECRYPT) corresponding to a recipient
identified in one of the attached encryption envelopes.

Upon receiving an encrypted message, the public key software, operating on behalf of the
receiving process, performs the following tasks.

1. Reads the target recipient’s name on the attached encryption envelope.

2. To recover the session key, decrypts the recipient’s encryption envelope using the
recipient’s private key and the public key algorithm.

3. Decrypts the message using the recovered session key and the symmetric key algorithm.

4. Uncompresses the message.

5. Verifies digital signatures if any. (See How a Signed Message Is Received.)

6. If the message buffer successfully passes the check performed in step 5, the public key
software decodes the message buffer data, buffer type string, and buffer subtype string,
and then passes the plaintext message to the receiving process. This step reverses the
encoding performed by the originating process. (The Oracle Tuxedo encoded format
allows a message buffer to be decrypted on any machine architecture.)

7. If none of the attached digital signatures can be verified or the message buffer cannot be
decrypted, the receiving process does not receive the message buffer. Moreover, the
receiving process has no knowledge of the message buffer.

If a system process is acting as a conduit (that is, if it is not reading the content of the
message), then the message need not be decrypted. Bridges and workstation handlers
(WSHs) are examples of system processes acting as conduits.

The WSH is a special example of a conduit. If a WSH is configured for data-dependent routing,
it needs to read the received message buffer to determine how to route the buffer. The public
key software makes a copy of the received message buffer, decrypts the copy, and then
passes the decrypted copy to the WSH. The WSH analyzes the decrypted copy to determine
how to route the buffer, and then routes the original message buffer unchanged to the
appropriate server. (For more detail about the interaction between data-dependent routing and
public key security, see Compatibility/Interaction with Data-dependent Routing.)

• Discarding an Input Buffer’s Encryption Envelopes

• Replacing an Output Buffer’s Encryption Envelopes

3.9.2.5.1 Discarding an Input Buffer’s Encryption Envelopes
If a message buffer is passed to an ATMI function (such as tpacall()) as an input parameter,
the public key software discards any encryption envelopes previously attached to the
message. This behavior prevents the target recipients for the original message from receiving
any modifications made by an intermediate process.

As an example of this process, consider the scenario shown in the following figure.

Chapter 3
Sending and Receiving Encrypted Messages

3-39

Figure 3-7 Forwarding a Signed and Encrypted Message Example

A server process named Manager receives a signed and encrypted message buffer from a
client process named Employee, decrypts and reads the received message buffer, signs and
seals it for a service named Purchasing, and then forwards the message to Purchasing.

The following is a detailed description of how this operation is performed.

1. The workstation handler (WSH) receives the signed and encrypted message buffer from
the employee and forwards it as is.
The WSH process is configured for data-dependent routing, which is briefly described in
“How the System Decrypts a Message Buffer” on page 3‑46. The public key software uses
a decryption key previously opened for the WSH process to decrypt a copy of the received
message buffer, and then passes the decrypted copy to the WSH. After analyzing the
decrypted copy, the WSH routes the received message buffer to the Manager process as is.

If the WSH process is not configured for data-dependent routing, the Employee process
does not need to tpseal() the message buffer for the WSH process, and the WSH
process does not need to open a decryption key.
Regardless of how it is configured, the WSH does not verify digital signatures.

2. When the message buffer arrives at the Manager process, the public key software:

a. Decrypts the message buffer using a decryption key previously opened for the Manager
process.

b. Verifies the employee’s signature.

c. Passes the message without digital signature or encryption information to the
Manager.

3. The Manager calls tpenvelope() repeatedly to find out about the digital signature and
encryption information associated with the message buffer. tpenvelope() returns:

• Digital signature information, including the signer’s public key and a digital-signature
status of TPSIGN_OK

Chapter 3
Sending and Receiving Encrypted Messages

3-40

• Encryption information, including the public keys of the WSH process and the Manager
process itself

4. The Manager calls tpkey_getinfo() with the signer’s public key as an argument, to obtain
more information about the signer, including the signer’s principal name.

5. If the Manager determines that the signer is a known employee and that the employee’s
request (as stated in the message content) is valid, the Manager proceeds as follows.

a. Calls tpsign() to mark the message buffer for digital signature by the Manager.

b. Calls tpseal() to mark the message buffer to be encrypted for Purchasing.

c. Calls tpforward() (or some other function used to transmit data) to send the message
to Purchasing.

Prior to transmission, the public key software performs the following tasks.

1. Generates a digital signature for the Manager.

2. Verifies the employee’s digital signature.

3. Encrypts the message content and associated digital signatures.

4. Creates an encryption envelope for Purchasing.

3.9.2.5.2 Replacing an Output Buffer’s Encryption Envelopes
If a message buffer is passed to an ATMI function (such as tpgetrply()) as an output
parameter, the public key software deletes any encryption information associated with the
buffer. This information includes any pending seals, or seals from previous uses of the buffer.
(A pending seal is a recipient’s seal that is registered with a message buffer.)

New encryption information might be associated with the new buffer content after successful
completion of the operation.

See Also:

• Examining Digital Signature and Encryption Information

• Externalizing Typed Message Buffers

• Public Key Security

• Administering Public Key Security

• Programming an ATMI Application with Security

3.10 Examining Digital Signature and Encryption Information
The public key software maintains the order in which:

• Digital-signature registration requests and digital signatures are attached to a message
buffer

• Encryption registration requests and encryption envelopes are attached to a message
buffer

Chapter 3
Examining Digital Signature and Encryption Information

3-41

A process obtains this information by calling the tpenvelope() function with the target
message buffer as an argument. tpenvelope() is described on the tpenvelope(3c) reference
page in the Oracle Tuxedo ATMI C Function Reference.

There may be multiple occurrences of digital-signature registration requests, digital signatures,
encryption registration requests, and encryption envelopes associated with a message buffer.
The occurrences are stored in sequence, with the first item at the zero position and
subsequent items in consecutive positions. The occurrence input parameter for tpenvelope()
indicates which item is being requested. When the value of occurrence is beyond the position
of the last item, tpenvelope() fails with the TPENOENT error condition. A process can examine
all items by calling tpenvelope() repeatedly until TPENOENT is returned.

In an originating process, digital signature and encryption information is generally in a pending
state, waiting until the message is sent. In a receiving process, digital signatures have already
been verified, and encryption and decryption have already been performed.

• What Happens When an Originating Process Calls tpenvelope

• What Happens When a Receiving Process Calls tpenvelope

• Understanding the Composite Signature Status

• Example Code for tpenvelope

3.10.1 What Happens When an Originating Process Calls tpenvelope
When an originating process calls tpenvelope() with the originating message buffer as an
argument, tpenvelope() reports:

• Any digital signature request explicitly registered with the message buffer as being in the
TPSIGN_PENDING state. The originating process explicitly registers a digital signature
request by calling the ftpsign(3c)unction.

• Any digital signature request implicitly registered with the message buffer as also being in
the TPSIGN_PENDING state. The originating process implicitly registers a digital signature
request by calling tpkey_open(3c) with the TPKEY_AUTOSIGN flag specified.

• Any encryption (seal) request explicitly registered with the message buffer as being in the
TPSEAL_PENDING state. The originating process explicitly registers an encryption request by
calling the tpseal(3c) function.

• Any encryption (seal) request implicitly registered with the message buffer as also being in
the TPSEAL_PENDING state. The originating process implicitly registers an encryption
request by calling tpkey_open() with the TPKEY_AUTOENCRYPT flag specified.

In addition to the status, tpenvelope() returns the key handle associated with a digital
signature or encryption registration request. A process can call the tpkey_getinfo(3c) function
with the key handle as an argument, to get more information about the key handle.

3.10.2 What Happens When a Receiving Process Calls tpenvelope
When a process receives a message buffer, it receives only the message content. Any digital
signatures or encryption envelopes associated with the message buffer are not included. The
receiving process must call tpenvelope() to obtain information about any attached digital
signatures or encryption envelopes.

When a receiving process calls tpenvelope() with the received message buffer as an
argument, tpenvelope() reports:

Chapter 3
Examining Digital Signature and Encryption Information

3-42

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1257660
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1261719
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1513266
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1261252
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492

• Any digital signature attached to the message buffer. A digital signature has one of the
following states:

TPSIGN_OK
Digital signature has been verified.

TPSIGN_TAMPERED_MESSAGE
Digital signature is not valid because the content of the message buffer has been altered.

TPSIGN_TAMPERED_CERT
Digital signature is not valid because the signer’s digital certificate has been altered.

TPSIGN_REVOKED_CERT
Digital signature is not valid because the signer’s digital certificate has been revoked.

TPSIGN_POSTDATED
Digital signature is not valid because its timestamp is too far into the future.

TPSIGN_EXPIRED_CERT
Digital signature is not valid because the signer’s digital certificate has expired.

TPSIGN_EXPIRED
Digital signature is not valid because its timestamp is too old.

TPSIGN_UNKNOWN
Digital signature is not valid because the signer’s digital certificate was issued by an
unknown Certification Authority (CA).

• Any encryption envelope attached to the message buffer. An encryption envelope has one
of the following states:

TPSEAL_OK
Encryption envelope is valid.

TPSEAL_TAMPERED_CERT
Encryption envelope is not valid because the target recipient’s digital certificate has been
altered. (Target recipient will not receive the message buffer.)

TPSEAL_REVOKED_CERT
Encryption envelope is not valid because the target recipient’s digital certificate has been
revoked. (Target recipient will not receive the message buffer.)

TPSEAL_EXPIRED_CERT
Encryption envelope is not valid because the target recipient’s digital certificate has
expired. (Target recipient will not receive the message buffer.)

TPSEAL_UNKNOWN
Encryption envelope is not valid because the target recipient’s digital certificate was
issued by an unknown CA. (Target recipient will not receive the message buffer.)

In addition to the status, tpenvelope() returns the key handle associated with a digital
signature or encryption envelope. A process can call the tpkey_getinfo(3c) function with the
key handle as an argument, to get more information about the key handle.

If a receiving process calls tpsign() to register a digital signature request after receiving the
message buffer, tpenvelope() reports the status of the registration as TPSIGN_PENDING.
Similarly, if a receiving process calls tpseal() to register an encryption (seal) request after
receiving the message buffer, tpenvelope() reports the status of the registration as
TPSEAL_PENDING.

Chapter 3
Examining Digital Signature and Encryption Information

3-43

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1260492

If a receiving process modifies the content of a signed message buffer after receiving it, the
attached signatures are no longer valid. As a result, tpenvelope() cannot verify the signatures,
and reports a signature status of TPSIGN_TAMPERED_MESSAGE.

3.10.3 Understanding the Composite Signature Status
For a message buffer with multiple digital signatures, the public key software calls an internal
function equivalent to tpenvelope() to examine the state of each digital signature. Then, by
observing certain rules, the public key software forms a composite signature status. The rules
for forming a composite signature status are shown in the following table.

Table 3-4 Composite Signature Status

If Any Status Is . . . And There Is No Status of . . . Then the Composite Status Is . . .

TPSIGN_TAMPERED_MESSAGE ... TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT TPSIGN_TAMPERED_MESSAGE TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT TPSIGN_TAMPERED_MESSAGE

TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT

TPSIGN_POSTDATED TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT

TPSIGN_POSTDATED

TPSIGN_EXPIRED_CERT TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED

TPSIGN_EXPIRED_CERT

TPSIGN_OK TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT

TPSIGN_OK

TPSIGN_EXPIRED TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERTTPSIGN_OK

TPSIGN_EXPIRED

TPSIGN_UNKNOWN TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT TPSIGN_OK
TPSIGN_EXPIRED

TPSIGN_UNKNOWN

Any incoming message buffer without a composite signature status of TPSIGN_OK or
TPSIGN_UNKNOWN is discarded as if it were never received. If the SIGNATURE_REQUIRED
parameter is set to Y (yes) in the ATMI application’s UBBCONFIG file, then any incoming
message buffer without a composite signature status of TPSIGN_OK is discarded as if it were
never received. See Enforcing the Signature Policy for Incoming Messages for more detail.

An exception to the handling of signed message buffers described in the previous paragraph is
the tpimport(3c) function. The tpimport(3c) function delivers an incoming message buffer
regardless of the composite signature status.

Chapter 3
Examining Digital Signature and Encryption Information

3-44

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1259847
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1259847

3.10.4 Example Code for tpenvelope
The following listing describes how to use tpenvelope() to examine the digital signature and
encryption information associated with a message buffer.

Listing Using tpenvelope Example

main(argc, argv)
 int argc;
 char *argv[];
 #endif
 {
 TPKEY tu_key;
 TPKEY sdo_key;
 TPKEY output_key;
 char *sendbuf, *rcvbuf;
 int ret;
 int occurrence = 0;
 long status;
 char principal_name[PNAME_LEN];
 long pname_len = PNAME_LEN;
 int found = 0;
 .
 .
 .
 output_key = NULL;
 ret = tpenvelope(rcvbuf, 0, occurrence, &output_key,
 &status, NULL, 0);
 while (ret != -1) {
 if (status == TPSIGN_OK) {
 if (tpkey_getinfo(output_key, “PRINCIPAL”,
 principal_name, &pname_len, 0) == -1) {
 (void) fprintf(stdout, “Unable to get information
 about principal: %d(%s)\n”,
 tperrno, tpstrerror(tperrno));
 tpfree(sendbuf);
 tpfree(rcvbuf);
 tpterm();
 (void) tpkey_close(tu_key, 0);
 (void) tpkey_close(sdo_key, 0);
 (void) tpkey_close(output_key, 0);
 exit(1);
 }
 /* Do not forget to free resources */
 (void) tpkey_close(output_key, 0);
 output_key = NULL;
 found = 1;
 break;
 }
 /* Do not forget to free resources */
 (void) tpkey_close(output_key, 0);
 output_key = NULL;
 occurrence++;
 ret = tpenvelope(rcvbuf, 0, occurrence, &output_key,
 &status, NULL, 0);

Chapter 3
Examining Digital Signature and Encryption Information

3-45

 }
 .
 .
 .
 }

Note:

• Externalizing Typed Message Buffers

• Public Key Security

• Administering Public Key Security

• Programming an ATMI Application with Security

3.11 Externalizing Typed Message Buffers
An externalized representation is a message buffer that does not include any ATMI header
information that is normally added to a message buffer just before the buffer is transmitted. An
externalized representation of a signed message buffer enables “pass through” transmission of
signed data and long-term storage of the signed buffer for non-repudiation. It also enables an
encrypted message buffer to be transported through intermediate processes without access to
a decryption key.

• How to Create an Externalized Representation

• How to Convert an Externalized Representation

• Example Code for tpexport and tpimport

3.11.1 How to Create an Externalized Representation
An ATMI process converts a typed message buffer into an externalized representation by
calling the tpexport(3c) function. Pending signatures associated with a message buffer are
generated at the time tpexport() is called, just as if the buffer were being transmitted to
another process by an ATMI function. Similarly, pending seals associated with a message
buffer are generated at the time tpexport() is called, just as if the buffer were being
transmitted to another process by an ATMI communication function.

The externalized representation of a message buffer is stored in the PKCS-7 format, which is a
binary format. If a string format is required, the calling process must call tpexport() with the
TPEX_STRING flag specified.

Note:

The ability to create an externalized representation of a typed message buffer is not
unique to public key security. A process may call tpexport() to externalize a typed
message buffer regardless of whether a message buffer is marked for digital
signature or encryption.

Chapter 3
Externalizing Typed Message Buffers

3-46

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1259847

3.11.2 How to Convert an Externalized Representation
A receiving process calls the tpimport(3c) function to convert the externalized representation of
a message buffer into a typed message buffer. The tpimport() function also performs
decryption, if necessary, and verifies any associated digital signatures.

3.11.3 Example Code for tpexport and tpimport
The following listing describes how to use tpexport() to convert a typed message buffer into
an externalized representation, and how to use tpimport() to convert the externalized
representation back into a typed message buffer.

Listing Using tpexport and tpimport Example

static void hexdump _((unsigned char *, long));
 #define MAX_BUFFER 80000
 main(argc, argv)
 int argc;
 char *argv[];
 #endif
 {
 char *databuf;
 char exportbuf[MAX_BUFFER];
 long exportbuf_size = 0;
 char *importbuf = NULL;
 long importbuf_size = 0;
 int go_on = 1;
 .
 .
 .
 exportbuf_size = 0;
 while (go_on == 1) {
 if (tpexport(databuf, 0, exportbuf, &exportbuf_size, 0)
 == -1) {
 if (tperrno == TPELIMIT) {
 printf(“%d tperrno is TPELIMIT, exportbuf_size=%ld\n”,
 __LINE__, exportbuf_size);
 if (exportbuf_size > MAX_BUFFER) {
 return(1);
 }
 }
 else {
 printf(“tpexport(%d) failed: tperrno=%d(%s)\n”,
 __LINE__, tperrno, tpstrerror(tperrno));
 return(1);
 }
 }
 else {
 go_on = 0;
 }
 }
 .
 .
 .

Chapter 3
Externalizing Typed Message Buffers

3-47

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf3c/rf3c.html#1259847

 hexdump((unsigned char *) exportbuf, (long) exportbuf_size);
 if (tpimport(exportbuf, exportbuf_size, &importbuf,
 &importbuf_size, 0) == -1) {
 printf(“tpimport(%d) failed: tperrno=%d(%s)\n”,
 __LINE__, tperrno, tpstrerror(tperrno));
 return(1);
 }
 .
 .
 .
 }

Note:

• Public Key Security

• Administering Public Key Security

• Programming an ATMI Application with Security

Chapter 3
Externalizing Typed Message Buffers

3-48

4
Quick Reference for TLS Support

The following is a quick reference for TLS support in Oracle Tuxedo.

All network connections within a Tuxedo domain support TLS. Tuxedo 22.1.0.0.0 supports TLS
versions: 1.0, 1.1, and 1.2. Tuxedo 22.1.1.0.0 introduces support for TLS version 1.3 and
removes support for TLS versions 1.0 and 1.1. The following information outlines the TLS
support behavior in Tuxedo 22.1.1.0.0.

• Overview

• Supported Tuxedo Components

• TLS Version Configuration

• Supported Cipher Suites

• Upgrade from Previous Versions to TLS 1.3

• Interoperability

4.1 Overview
TLS is supported on all network connections within a Tuxedo domain. In Tuxedo 22.1.0.0.0,
TLS versions 1.0, 1.1, and 1.2 are supported. Tuxedo 22.1.1.0.0 introduces support for TLS
version 1.3 and removes support for TLS versions 1.0 and 1.1. The following information
outlines the TLS support behavior in Tuxedo 22.1.1.0.0.

4.2 Supported Tuxedo Components
The following Tuxedo components support versions 1.2 and 1.3 of TLS and can function as
either a TLS client or a TLS server.

Note:

Some Tuxedo components, such as BRIDGE, GWTDOMAIN, and GWWS, can operate as
both a TLS client and TLS server.

Table 4-1 Supported Tuxedo Components

Product TLS Client TLS Server

Tuxedo Workstation client Workstation Listener/Handler

JOLT JOLT client JOLT Listener/Handler

Tuxedo CORBA client CORBA Listener/Handler

Tuxedo BRIDGE BRIDGE

Tuxedo tmboot/tmshutdown tlisten

Tuxedo GWTDOMAIN GWTDOMAIN

SALT External Web service client GWWS

4-1

Table 4-1 (Cont.) Supported Tuxedo Components

Product TLS Client TLS Server

SALT GWWS External Web service server

TASM Plus LMS TSAM Plus Manager

4.3 TLS Version Configuration
The following table summarizes the default TLS version for each Tuxedo component and
provides configuration options for changing it.

Table 4-2 TLS Version Configurations

TLS Client TLS Server

Compo
nent

Default
Version

Configurations Option Compo
nent

Default
Version

Configuration Option

Workstat
ion client

TLSv1.3
_1.2

Environment variable
WSNADDR. For example:
WSNADDR="//
host1:8810;TLSv1.3"

Workstat
ion
Listener/
Handler

TLSv1.3
_1.2

Environment variable
TM_TLS_FORCE_VER

JOLT
client

TLSv1.3
_1.2

Java property
bea.jolt.tls.version.
For example:

System.setProperty("bea
.jolt.tls.version"
"TLSv1.3");

JOLT
Listener/
Handler

TLSv1.3
_1.2

Environment variable
TM_TLS_FORCE_VER

CORBA
client

TLSv1.3
_1.2

The Tobj_Bootstrap
constructor naddress
parameter or the environment
variable TOBJADDR

CORBA
Listener/
Handler

TLSv1.3
_1.2

Environment variable
TM_TLS_FORCE_VER

BRIDGE TLSv1.3
_1.2

Not Supported BRIDGE TLSv1.3
_1.2

Environment variable
TM_TLS_FORCE_VER

tmboot/
tmshutd
own

TLSv1.3
_1.2

Not Supported tlisten TLSv1.3
_1.2

Environment variable
TM_TLS_FORCE_VER

GWTDO
MAIN

TLSv1.3
_1.2

Configuration option
DM_TDOMAIN/TLSversion in
DMCONFIG file. For
example:TLSversion=TLSv1
.3

GWTDO
MAIN

TLSv1.3
_1.2

Environment variable
TM_TLS_FORCE_VER

External
Web
service
client

N/A N/A GWWS TLSv1.3
_1.2

Environment variable
TM_TLS_FORCE_VER

GWWS TLSv1.3
_1.2

Attribute tlsversion in
element Endpoint in
SALTDEPLOY file. For
example:<Endpoint
address="..."
tlsversion="TLSv1.3"/>

External
Web
service
server

N/A N/A

Chapter 4
TLS Version Configuration

4-2

Table 4-2 (Cont.) TLS Version Configurations

TLS Client TLS Server

Compo
nent

Default
Version

Configurations Option Compo
nent

Default
Version

Configuration Option

LMS TLSv1.3
_1.2

Not Supported TSAM
Plus
Manager

See
WebLogi
c Server
docume
nt

See WebLogic Server
document

Note:

Configuration options such as environment variable TM_TLS_FORCE_VER supports the
following values. Any other values are ignored, and the default TLS version will be
used.

• TLSv1.2

• TLSv1.3

• TLSv1.3_1.2

4.4 Supported Cipher Suites
TLS 1.3 supports the following cipher suites:

• TLS_AES_128_GCM_SHA256
• TLS_AES_256_GCM_SHA384
• TLS_CHACHA20_POLY1305_SHA256
• TLS_AES_128_CCM_SHA256
• TLS_AES_128_CCM_8_SHA256
TLS 1.2 supports the following cipher suites:

• TLS_RSA_WITH_AES_256_CBC_SHA256
• TLS_RSA_WITH_AES_256_GCM_SHA384
• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
• TLS_RSA_WITH_AES_128_CBC_SHA256
• TLS_RSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
JDK determines the default cipher suites for JOLT client. The Java property
bea.jolt.tls.ciphersuites can be used to customize the cipher suites used by JOLT client.
Customize the cipher suites for other Tuxedo components using the environment variable
TM_CIPHERSUITES.

Chapter 4
Supported Cipher Suites

4-3

https://docs.oracle.com/middleware/1221/wls/index.html
https://docs.oracle.com/middleware/1221/wls/index.html
https://docs.oracle.com/middleware/1221/wls/index.html

4.5 Upgrade from Previous Versions to TLS 1.3
When upgrading to TLS 1.3 from previous versions, Oracle recommends the following these
steps:

• Certain old key generation algorithms are no longer supported in the TLS 1.3. If you
require to regenerate TLS keys and certificates.

• TLS 1.3 has removed support for re-negotiation, so any re-negotiation configurations will
be ignored in TLS 1.3.

• JOLT client depends on JDK to support TLS 1.3. For example, for JDK 8, 8u261 or later
must be used.

4.6 Interoperability
The Tuxedo 22.1.1.0.0 release no longer supports TLS 1.1 and older versions. Now, if TLS is
enabled, this Tuxedo release cannot interoperate with previous Tuxedo releases that do not
support TLS 1.2.

Chapter 4
Upgrade from Previous Versions to TLS 1.3

4-4

5
Implementing Single Point Security
Administration

The following sections explain how to implement single point security administration for Tuxedo
and WebLogic Server from the Tuxedo point of view:

Note:

Before setting up single point security, ensure you are familiar with the Tuxedo
security architecture and requirements. You may also want to coordinate this effort
with your WebLogic or LDAP Administrator.

• What Single Point Security Administration Means

• Setting up LAUTHSVR as the Authentication Server

• Setting up GAUTHSVR as the Authentication Server

• Setting up OAUTHSVR as the Authentication Server

5.1 What Single Point Security Administration Means
If you have both Tuxedo and WebLogic Server deployed in your environment, then you have to
manage two sets of security information. Single point security administration allows you to
leverage the WebLogic Server security to manage your security database by eliminating user
and group information from Tuxedo. You can use WebLogic Server as your security database
to authenticate Tuxedo users.

Note:

The Tuxedo ACL information will continue to reside in Tuxedo and is not currently
integrated with WebLogic Server 7.0.

If you are specifying SECURITY=ACL or SECURITY=MANDATORY_ACL in the RESOURCES section of the
UBBCONFIG file, then you must continue to maintain tpgrp and tpacl files in Tuxedo.

The single point security administration feature leverages the enhanced WebLogic Server 7.0
security and the LDAP to allow single point security administration. You can maintain user
security information in WebLogic Server embedded LDAP server and use the WebLogic Server
Console to administer the security information from a single system. You must modify the
UBBCONFIG file to enable single point security.

• Single Point Security Administration Tasks

5-1

5.1.1 Single Point Security Administration Tasks
To set up single point security, you must provide the Tuxedo security information to the
WebLogic Server-embedded LDAP server. This includes migrating or setting up the Tuxedo
user (UID) and group (GID) information in WebLogic Server LDAP server so that authentication
can be successful. For Tuxedo UID and GID values to be available to WebLogic Server, you
must use the tpmigldap utility, modify the tpusr file manually with a text editor, or enter the user
information via the WebLogic Administration Console.

Note:

The WebLogic Administration Console may be the method used when adding one or
two users after the security database is set up. For efficiency and time management,
you may prefer using the tpmigldap utility or the tpusr file as a general rule.

Single point security administration consists of the following tasks:

• Setting up LAUTHSVR as the Authentication Server

• Using tpmigldap to Migrate User Information to WebLogic Server

• Setting up GAUTHSVR as the Authentication Server

• Using tpmigldif to Migrate User Information

• Adding New Tuxedo User Information

See Also:

• Security information for Oracle WebLogic Server

5.2 Setting up LAUTHSVR as the Authentication Server
LAUTHSVR is a System /T provided server that offers the authentication service while the user
security information is located in WebLogic Server. To enable the single security administration
feature, you must configure LAUTHSVR as the authentication server. At runtime, the LAUTHSVR
will retrieve the user information from the WebLogic Server-embedded LDAP and authenticate
users. If the authentication is successful, an appkey is returned to the user, otherwise,
authentication fails.

Note:

Tuxedo 10 and greater allows you to configure WebLogic authentication using a more
general authentication server, GAUTHSVR (which can be used along with LAUTHSVR or
replace it).

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-2

http://docs.oracle.com/cd/E24329_01/web.1211/e24446/security.htm#INTRO235

For more GAUTHSVR information, see Setting up GAUTHSVR as the Authentication Server and
GAUTHSVR(5), in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference.

To define LAUTHSVR as the authentication server, you must define the following parameters in
the UBBCONFIG file:

• SECURITY must be set to USER_AUTH, ACL, or MANDATORY_ACL in the RESOURCES section.

• LAUTHSVR must be specified in the SERVERS section.

• If LAUTHSVR cannot find a valid configuration file or the file does not exist, it will log an error
message in USERLOG and fail to boot. The default LAUTHSVR configuration file is $TUXDIR/
udataobj/tpldap and is provided with the product.

• LAUTHSVR Command Line Interface

• Setting Up the LAUTHSVR Configuration File

• Example UBBCONFIG Using LAUTHSVR

• Using Multiple Network Addresses for High Availability

• Configuring the Database Search Order

• Using tpmigldap to Migrate User Information to WebLogic Server

• Adding New Tuxedo User Information

5.2.1 LAUTHSVR Command Line Interface
The LAUTHSVR is the LDAP-based authentication server for Tuxedo. It requires a configuration
file, that by default is $TUXDIR/udataobj/tpldap. You can create your own LAUTHSVR
configuration file or use the default tpldap file that is available with the product.

The command line interface syntax for LAUTHSVR is as follows:

-f full_pathname
Specifies the full pathname of the LAUTHSVR configuration file.

Note:

If -f option is omitted, the default LAUTHSVR configuration file tpldap is used.

The following example instructs LAUTHSVR to use the default configuration file, tpldap, in
the $TUXDIR/udataobj directory.

LAUTHSVR SRVGRP=GROUP1 SRVID=2 CLOPT=”-A-”

In the following example, LAUTHSVR uses the myauthsvr.conf configuration file in the /home/
tuxedo/bankapp directory.

LAUTHSVR SRVGRP=GROUP1 SRVID=2
 CLOPT=”-A--
 -f/home/tuxedo/bankapp/myauthsvr.conf”

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-3

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1002049

5.2.2 Setting Up the LAUTHSVR Configuration File
LAUTHSVR supports an input configuration file that contains information such as bind DN and an
unencrypted password for bind DN. This configuration file is a plain text file and can be edited
using any text editor and must be protected by the system using file permissions. By default
the configuration file, named tpldap, is located in $TUXDIR/udataobj directory. You can
overwrite this file in the command line for LAUTHSVR. The LAUTHSVR configuration file contains
keyword and value pairs as defined in the following table.

• Syntax Requirements for LAUTHSVR Configuration File

• LAUTHSVR Configuration File Keywords

• Example LAUTHSVR Configuration File

5.2.2.1 Syntax Requirements for LAUTHSVR Configuration File
Although the default values for the LAUTHSVR configuration file are usually sufficient, a system
administrator may choose to configure it with different names. Therefore, you should be aware
of the following requirements for the LAUTHSVR configuration file:

• The LAUTHSVR configuration file is a plain text file.

• Keyword order does not matter; however, there must be at least one space character
between the keyword and its value.

• Comments begin with the pound symbol (#). Text after the # is ignored.

• The upper limit of a line is 255 characters. If a line exceeds this upper limit, it will be
truncated.

• The bind DN must have privileges to access the LDAP database (usually this is the LDAP
administrator).

Note:

Before an administrator can set up and use the Tuxedo LDAP-based security
authentication server, the administrator must change the LDAP administrator
password through the WebLogic Administration Console.

5.2.2.2 LAUTHSVR Configuration File Keywords
The following table defines the LAUTHSVR configuration file keywords.

Note:

The only required keyword in the LAUTHSVR configuration file is PASSWORD, which
specifies the password for bind DN. All other keywords are optional.

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-4

Table 5-1 LAUTHSVR Configuration File Keywords

Keyword Value Type Usage

FILE_VERSION numeric The configuration file version. This
should always be 1. The default is 1.

LDAP_VERSION numeric The LDAP protocol version. Valid values
are 2 or 3. The default is 3.

BINDDN string The DN used to bind to an LDAP server,
usually the DN for the LDAP
administrator. The default is
“cn=admin”.

BASE string LDAP search base. The default is
“ou=people,ou=myrealm,
dc=mydomain”, where my realm is the
name of the security realm and my
domain is the name of the WebLogic
Server domain.

UID string The user id attribute that is used to
logon to WebLogic Server and Tuxedo.
The default is uid.

PASSWORD string The password for bind DN. This is a
required keyword and the password is in
clear text format or encrypted format.
The tpldapconf command can be
used to create the encrypted password.

LDAP_ADDR string A comma separated list of WebLogic
hostnames and ports. The syntax is
[//]hostname[:port][,
[//]hostname[:port]...]. The
default value for port is 7001. If
LDAP_ADDR is not specified, LAUTHSVR
assumes localhost:7001 is the
location to contact the LDAP server. For
more information about specifying
multiple network addresses, refer
to“Using Multiple Network Addresses for
High Availability.”

EXPIRE numeric A numeric value that represents the
number of seconds the cached entry is
available in the local process memory. A
value other than zero will enable
caching. A value of zero specifies no
caching. The default is zero. For more
information about enabling caching,refer
to“Using Multiple Network Addresses for
High Availability.”

SRCH_ORDER string Valid values are LDAP or LOCAL, or both
separated by a comma. If you specify
LOCAL, the search order will use the
tpusr file. The default is LDAP. For more
information about database search
order, refer to“Configuring the Database
Search Order.”

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-5

Table 5-1 (Cont.) LAUTHSVR Configuration File Keywords

Keyword Value Type Usage

LOCAL_FILE string The full pathname of the tpusr file to be
used if LOCAL search order is enabled.
The default value is $APPDIR/tpusr.
For more information about database
search order, refer to“ Configuring the
Database Search Order..”

Note:

If a
directory
path is
specified
other than
the
default $A
PPDIR/
tpusr,
the file
must be
generated
using
Tuxedo
MIB or
tpusradd
command
line utility.
Failure to
do this
may
cause
authentica
tion
failure.

WLS_DOMAIN string The WebLogic Server domain name.
The default value is mydomain.

WLS_REALM string The WebLogic Server security realm
name. The default is myrealm.

ADM_GROUP string The WebLogic Server administrator
group name. The default is
Administrators.

OP_GROUP string The WebLogic Server operators group
name. The default is Operators.

TUX_UID_KW string The keyword used in the description to
identify the Tuxedo userid. The default
is TUXEDO_UID.

TUX_GID_KW string The keyword used in the description to
identify the Tuxedo group ID. The
default is TUXEDO_GID.

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-6

5.2.2.3 Example LAUTHSVR Configuration File
The following listing describes an example of a LAUTHSVR configuration file.

Listing Example LAUTHSVR Configuration File

#
 # Tuxedo LDAP Authentication Server configuration file.
 #
 # created: Thu May 26 15:36:59 2002
 #
 FILE_VERSION 1
 LDAP_VERSION 3
 BINDDN cn=Admin
 BASE ou=people,ou=myrealm,dc=mydomain
 UID uid
 PASSWORD secret
 LDAP_ADDR //PLUTO:7001,//Saturn:7001
 EXPIRE 0
 SRCH_ORDER LDAP
 WLS_DOMAIN mydomain
 WLS_REALM myrealm
 ADM_GROUP Administrators
 OP_GROUP Operators
 TUX_UID_KW TUXEDO_UID
 TUX_GID_KW TUXEDO_GID
 # end of file

WARNING:

It is recommended that the system administrator secures this file with the correct
access permissions, as the PASSWORD for the LDAP administrator is in clear text.

5.2.3 Example UBBCONFIG Using LAUTHSVR
The following listing describes an example UBBCONFIG file with SECURITY set to ACL and
LAUTHSVR defined.

Listing Example UBBCONFIG File Using LAUTHSVR

*RESOURCES

 IPCKEY 51002
 MASTER site1
 MAXACCESSERS 50
 MAXSERVERS 20
 MAXSERVICES 20
 MODEL SHM
 LDBAL N
 BLOCKTIME 10
 SECURITY ACL
 AUTHSVC "..AUTHSVC"

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-7

 *MACHINES
 DEFAULT:
 APPDIR="/home/tuxedo/application"
 TUXCONFIG="/home/tuxedo/application/TUXCONFIG"
 TUXDIR="/home/tuxedo/tux81"
 Server1 LMID=site1
 MAXWSCLIENTS=20

 *GROUPS
 GROUP1 LMID=site1 GRPNO=1
 GROUP2 LMID=site1 GRPNO=2
 GROUP3 LMID=site1 GRPNO=3
 GROUP4 LMID=site1 GRPNO=4

 *SERVERS
 DEFAULT:
 CLOPT="-A" RESTART=N MAXGEN=5
 LAUTHSVR SRVGRP=GROUP1 SRVID=10
 CLOPT="-A -- -F /home/tuxedo/application/lauthsvr.conf "
 DMADM SRVGRP=GROUP2 SRVID=20
 GWADM SRVGRP=GROUP3 SRVID=30
 GWTDOMAIN SRVGRP=GROUP3 SRVID=31
 Simpserv SRVGRP=GROUP4 SRVID=40

 *SERVICES
 TOUPPER

5.2.4 Using Multiple Network Addresses for High Availability
It is possible to configure more than one network address for a WebLogic Server domain. This
may be a favorable configuration in order to provide high availability for user authentication.
The user security information is replicated to all WebLogic Server-embedded LDAP servers in
a WebLogic domain. LAUTHSVR can only connect to one server at a time; however, when a
network error occurs, LAUTHSVR will try to connect to the next available address.

To configure multiple network addresses for LAUTHSVR, use the LDAP_ADDR keyword in the
LAUTHSVR configuration file. The order in which the hostnames are specified is the order in
which LAUTHSVR will try to connect. To use caching during authentication, specify the EXPIRE
keyword. The value in this keyword will determine the number of seconds the cached entry is
available in the local process memory.

Note:

It is not required to have WebLogic Server available when you boot Tuxedo using
tmboot; however, without the availability of at least one WebLogic Server, LAUTHSVRs
ability to authenticate users is limited.

Without the availability of WebLogic Server, you can boot Tuxedo and authenticate users using
SRCH_ORDER LOCAL. In this case, the user authentication is verified against the tpusr file. For
more information about search order, refer to Configuring the Database Search Order.

• Example LAUTHSVR Configuration of Multiple Network Addresses

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-8

5.2.4.1 Example LAUTHSVR Configuration of Multiple Network Addresses
The following example specifies multiple network addresses in the LDAP_ADDR keyword.

LDAP_ADDR //Pluto:8000,//Saturn,Jupiter

The previous example specifies three WebLogic Server hostnames. The first server runs on
Pluto and uses address 8000. The second server runs on Saturn and uses the default address
7001. The third server runs on Jupiter and also uses the default address 7001.

5.2.5 Configuring the Database Search Order
By default the LAUTHSVR authentication server will search the user information in the WebLogic
Server-embedded LDAP server. To enable the use of the tpusr file in the database search, you
must specify LOCAL in the SRCH_ORDER keyword. The order that the comma separated values
are defined in the SRCH_ORDER keyword will specify the order in which LAUTHSVR searches for
user information. LAUTHSVR will search the LDAP server or the tpusr file or both (according to
the order of the values specified).

If there are two or more SRCH_ORDER entries specified in the LAUTHSVR configuration file, only
the last entry takes effect. In this case a warning message is logged in USERLOG as well. A
warning message also results if you specify a value other than LDAP or LOCAL in the SRCH_ORDER
keyword. In this case, the invalid entry is discarded and the default value or a previous valid
SRCH_ORDER entry is used.

• Example LAUTHSVR Configuration for Database Search Order

5.2.5.1 Example LAUTHSVR Configuration for Database Search Order
The following example specifies that LAUTHSVR should search the WebLogic Server-embedded
LDAP server first for user information. If the user information is not found in the LDAP server,
then LAUTHSVR should look in the tpusr file.

SRCH_ORDER LDAP,LOCAL

The following example specifies that LAUTHSVR should search the tpusr file first for user
information. If the user information is not found in the tpusr file, then LAUTHSVR should look in
the WebLogic Server-embedded LDAP server for the information.

SRCH_ORDER LOCAL,LDAP

The following example specifies that LAUTHSVR should search the tpusr file only for user
information.

SRCH_ORDER LOCAL

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-9

Note:

• LAUTHSVR(5) and GAUTHSVR(5) in the Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

5.2.6 Using tpmigldap to Migrate User Information to WebLogic Server
You must use the tpmigldap command utility to migrate Tuxedo user and group information to
WebLogic Server.

• Assigning New Passwords for the tpusr File

• tpmigldap Command Line Options

5.2.6.1 Assigning New Passwords for the tpusr File
Before migrating the user and group information, the administrator must assign new passwords
for each user so the migration can be successful. This step is required because the passwords
in the tpusr file are encrypted with one-way encryption; therefore, it is impossible to retrieve the
original password from the file.

There are two ways to handle this password situation:

• Modify the tpusr file.
You can modify the tpusr file using a text editor and change the user password for each
user in the file. The password field is the second field in the tpusr file. The field delimiter is
a colon (:). Each user takes up a line in the tpusr file.

The following example:

TuxedoUser1:ADdg0w8nfGMag:6001:601:TPCLTNM,*:
TuxedoUser2:0Yq2s6FjbvuU2:6002:601:TPCLTNM,*::

could be modified to:

TuxedoUser1:User1Password:6001:601:TPCLTNM,*::
TuxedoUser2:User2Password:6002:601:TPCLTNM,*::

• Use the -f option with the tpmigldap utility to define a default password for all users.
If a -f option is used, then the argument that follows will be used as a substitute for the
password field in the tpusr file for every user in the file.

The following example command:

tpmigldap -f userpassword -c

causes “userpassword” to be assigned to every user in the tpusr file. After the migration,
all users can use “userpassword” as their password in order to join the Tuxedo application.

5.2.6.2 tpmigldap Command Line Options
The following table describes the command line options for the tpmigldap utility. The order of
the command line options does not matter.

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-10

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3070537
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1002049

Note:

The tpmigldap command requires the use of -w or -c so the user or group can be
added to the WebLogic Server-embedded LDAP database.

Table 5-2 tpmigldap Command Line Options

Command Line Option Option Argument Default Value Usage

-h hostname localhost Hostname of WebLogic
Server.

-p port 7001 Port number for WebLogic
Server Administration
Console

-d domain mydomain WebLogic Server domain
name.

-r realm myrealm WebLogic Server security
realm name.

-i TUXEDO_UID keyword string TUXEDO_GID The keyword string for
Tuxedo UID that the
administrator wants to use in
the WebLogic Server user
“description” attribute.

-e TUXEDO_GID keyword
string

TUXEDO_GID The keyword string for
Tuxedo GID that the
administrator wants to use in
the WebLogic Server user
“description”.

-f user password No default. The default user password for
every user in the tpusr file.

-b binddn cn=Admin LDAP connection bind DN.

-w password No default. The password for bind DN.

-c Not applicable. No default. A prompt for entering a
password for bind DN.

-u full path name $APPDIR/tpusr The full directory path for the
tpusr file.

-g full path name $APPDIR/tpgrp The full directory path for the
tpgrp file.

See Also:

• tpmigldap(1) in the Oracle Tuxedo Command Reference.

5.2.7 Adding New Tuxedo User Information
There are two methods for adding new user and group information to the single security LDAP
database:

• Add new information to the tpusr text file and then specify the updated file when using the
migration utility tpmigldap. Refer to Adding New User Information in tpusr or tpgrp.

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-11

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1757256

• Use the WebLogic Administration Console to add user or group information. Refer to
Adding New User Information Using the WebLogic Administration Console.

• Using the WebLogic Administration Console may not be efficient for adding large numbers
of users to the LDAP database. In the case of adding several users, you may want to use
the tpmigldap utility.

• Adding New User Information in tpusr or tpgrp

• Adding New User Information Using the WebLogic Administration Console

5.2.7.1 Adding New User Information in tpusr or tpgrp
To add new user information to the single point security LDAP database:

1. Use your existing tpusr file and tpgrp file to add the new user and group information. Be
sure to use the same format previously defined in the file. Be sure to use clear text
passwords to add to the LDAP database.

2. Run the tpmigldap utility using the -u option and specify the updated tpusr file and the-g
option and specify the updated tpgrp file. For example:

tpmigldap -u $APPDIR/tpusr -g $APPDIR/tpgrp

5.2.7.2 Adding New User Information Using the WebLogic Administration Console
To add new user information to the single point security LDAP database using the WebLogic
Administration Consol

1. Access the WebLogic Administration Console and select Security→Realms→myrealm
where myrealm represents the LDAP security realm.

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-12

Figure 5-1 WebLogic Administration Console Select Users

2. Click Configure a new User... and access the General tab.

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-13

Figure 5-2 WebLogic Administration Console Create Users

Enter the user information:

In the Name field specifies the user name.

In the Description field specify the Tuxedo UID and GID values as a string in the following
syntax:

<TUXEDO UID
 KEYWORD>=<decimal value>
 <TUXEDO GID KEYWORD>=<decimal value>

where by default, the TUXEDO UID KEYWORD is TUXEDO_UID and TUXEDO GID KEYWORD by
default is TUXEDO_GID. For example:TUXEDO_UID=2504 TUXEDO_GID=601
In the Password field, specify the password for the user. Then confirm the password by
entering the password again in the Confirm Password field.

3. Click Apply to update the LDAP database with the new user information.

Chapter 5
Setting up LAUTHSVR as the Authentication Server

5-14

5.3 Setting up GAUTHSVR as the Authentication Server
GAUTHSVR is a System /T provided server usage is similar to LAUTHSVR, but with the following
differences:

• GAUTHSVR can access user security information located in a wide variety of LDAP servers
(for example, WebLogic, OpenLDAP, Netscape/IPlanet, Microsoft Active Directory, z/OS
LDAP, and so on), using LDAP (Lightweight Directory Access Protocol).

Note:

You can also configure WebLogic authentication using LAUTHSVR. GAUTHSVR can
be used along with an existing LAUTHSVR or replace it.

For more LAUTHSVR information, see Setting up LAUTHSVR as the Authentication Server
and “LAUTHSVR(5),” in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference.

• GAUTHSVR syntax does not support multiple network addresses for high availability. For
more information, see Using Multiple Network Addresses for High Availability.

• GAUTHSVR does not support user security information stored in a local file. For more
information, see Configuring the Database Search Order.
To enable the single security administration feature, GAUTHSVR must be configured as the
authentication server. GAUTHSVR authenticates user security information against LDAP
server. It returns appkey if SECURITY is set to ACL or MANDATORY_ACL when authentication
success.

To configure GAUTHSVR as the authentication server, you must define the following
parameters in the UBBCONFIG file:

• SECURITY must be set to USER_AUTH, ACL, or MANDATORY_ACL in the RESOURCES section.

• GAUTHSVR must be specified in the SERVERS section.

Note:

If GAUTHSVR cannot find a valid configuration file or the file does not exist, it will log an
error message in USERLOG and fail to boot. The default GAUTHSVR configuration file
is $TUXDIR/udataobj/tpgauth and is provided with the product.

If you use GAUTHSVR with JDK1.6 or later, please specify the following: JAVA_OPTS=-
Djavax.xml.stream.XMLInputFactory=com.bea.xml.stream.MXParserFactory in your
environment before booting GAUTHSVR.

If you use GAUTHSVR with Java 1.6, please add the 64-bit JRE library path to LIBPATH. The
default library is located in /usr/java6_64/jre/lib/ppc64. Run export LIBPATH=/usr/
java6_64/jre/lib/ppc64:$LIBPATH to set the correct LIBPATH.

• GAUTHSVR Command Line Interface

• Setting Up the GAUTHSVR Configuration File

Chapter 5
Setting up GAUTHSVR as the Authentication Server

5-15

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3070537

• Example UBBCONFIG Using GAUTHSVR

• Using tpmigldif to Migrate User Information

• Supported LDAP Server Template Example

5.3.1 GAUTHSVR Command Line Interface
GAUTHSVR is an LDAP-based authentication server for Tuxedo. It requires a configuration file,
that by default is $TUXDIR/udataobj/tpgauth.

The command line interface syntax for GAUTHSVR is as follows:

-f config
Specifies the full pathname of the GAUTHSVR configuration file.

-o gaconfig.xml
Specifies the full pathname of the GAUTHSVR internal configuration file generated from customer
configuration file specified by -f option. The default value is $APPDIR/gaconfig.xml.

-k gakey.dat
Specifies the full pathname of the GAUTHSVR internal configuration file generated from the
configuration file (specified in the -f option). The default value is $APPDIR/gakey.dat.

-v
Verbose mode. Logs more detailed messages to ULOG.

The following example instructs GAUTHSVR to use the default configuration file, tpgauth, in
the $TUXDIR/udataobj/tpgauth directory.

GAUTHSVR SRVGRP=GROUP1 SRVID=2 CLOPT=”-A
 --”

In the following example, GAUTHSVR use the myauthsvr.conf configuration file in the /home/
tuxedo/bankapp directory.

GAUTHSVR SRVGRP=GROUP1 SRVID=2 CLOPT=”-A --
 -f/home/tuxedo/bankapp/myauthsvr.conf”

GAUTHSVR updates the generated XML file if tpgauth is newer than the generated XML and key
files. Only changed or newly added tpgauth items are updated in the generated XML file.

If the XML and key file are not present when GAUTHSVR is booted, GAUTHSVR creates them
automatically.

5.3.2 Setting Up the GAUTHSVR Configuration File
GAUTHSVR supports an input configuration file that contains information such as bind DN and an
unencrypted password for bind DN. This configuration file is a plain text file and can be edited
using any text editor and must be protected by the system using file permissions. By default
the configuration file, named tpgauth, is located in $TUXDIR/udataobj/tpgauth directory. You
can overwrite this file in the command line for GAUTHSVR. The following table lists keywords and
value pairs contained in the GAUTHSVR configuration file.

• Syntax Requirements for GAUTHSVR Configuration File

Chapter 5
Setting up GAUTHSVR as the Authentication Server

5-16

• GAUTHSVR Configuration File Keywords

• Example GAUTHSVR Configuration File

5.3.2.1 Syntax Requirements for GAUTHSVR Configuration File
Although the default values for the GAUTHSVR configuration file are usually sufficient, you can
choose to configure it with different names. Therefore, you must be aware of the following
requirements for the GAUTHSVR configuration file:

• The GAUTHSVR configuration file is a plain text file.

• Keywords are case-sensitive, but their order does not matter. The keyword format is
“keyword=value”.

• Blank lines or lines starting with a # sign are treated as comments, and are ignored.

• The upper limit of a line is 255 characters. If a line exceeds this upper limit, it is truncated.

• The Principal must have privileges to access the LDAP database (usually the LDAP
administrator).

5.3.2.2 GAUTHSVR Configuration File Keywords
GAUTHSVR keywords are divided into three groups: basic, advanced, and LDAP schema. The
following tables describe the GAUTHSVR configuration file keywords accordingly.

Table 5-3 Basic GAUTHSVR Configuration File Keywords

Configuration Keyword Value Type Description

UserCacheExpire numeric A numeric value that represents
the number of seconds the
cached entry is available in the
local process memory. A value
other than zero will enable
caching. A value of zero specifies
no caching. The default value is
0.

UserCacheSize numeric Maximum number of entries for
user cache where one entry is
required for each user. A0 value
of zero specifies no limit. The
default value is 0 (indicating no
limit).

SYSADM string The user name for the Tuxedo
SYSADM.

SYSOP string The user name for the Tuxedo
SYSOP.

Host string The host name or IP address of
the LDAP server. The default
value is localhost.

Port numeric The port number on which the
LDAP server is listening. The
default value is 389.

Principal The Distinguished Name (DN) of
the LDAP user that is used to
connect to the LDAP server.

Chapter 5
Setting up GAUTHSVR as the Authentication Server

5-17

Table 5-3 (Cont.) Basic GAUTHSVR Configuration File Keywords

Configuration Keyword Value Type Description

Credential The credential (generally a
password) used to authenticate
the LDAP user that is defined in
the Principal attribute. The
credential can be in clear text
format or encrypted format. The
tpldapconf command can be
used to create the encrypted
credential.

RetrieveUIDAndGID boolean Specifies whether the UID and
GID information are retrieved
from the LDAP server. It must be
set to true when SECURITY is ACL
or MANDATORY_ACL. The default
value is false.

Table 5-4 Advanced GAUTHSVR Configuration File Keywords

Configuration Keyword Value Type Description

TuxedoUIDKey string Used to identify the Tuxedo UID.
The default value is TUXEDO_UID.

TuxedoGIDKey string Used to identify the Tuxedo GID.
The default value is TUXEDO_GID.

ConnectTimeout numeric The maximum number of
seconds to wait for the LDAP
connection to be established. If
set to 0, there is no maximum
time limit. The default value is 0.

ConnectionRetryLimit numeric The number of times to attempt to
connect to the LDAP server if the
initial connection failed. The
default value is 1.

ResultsTimeLimit numeric The maximum number of
milliseconds to wait for results
before timing out. If set to 0, there
is no maximum time limit. The
default value is 0.

SSLEnabled boolean Specifies that TLS is used to
connect to the LDAP server. The
default value is false.

KeepAliveEnabled boolean Specifies whether to prevent
LDAP connections from timing
out or not. The default value is
false.

Chapter 5
Setting up GAUTHSVR as the Authentication Server

5-18

Table 5-4 (Cont.) Advanced GAUTHSVR Configuration File Keywords

Configuration Keyword Value Type Description

ParallelConnectDelay numeric The number of seconds to delay
when making concurrent attempts
to connect to multiple servers. If
set to 0, connection attempts are
serialized. An attempt is made to
connect to the first server in the
list. The next entry in the list is
tried only if the attempt to connect
to the current host fails. This
might cause your application to
block for unacceptably long time if
a host is down. If set to greater
than 0, another connection setup
thread is started after this number
of delay seconds has passed.
The default value is 0.

FollowReferrals boolean Specifies whether referrals are
automatically followed within the
LDAP Directory or not. If set to
false, a referral exception is sent
when referrals are encountered
during LDAP requests. The
default value is true.

BindAnonymouslyOnReferrals boolean Specifies to anonymously bind
when following referrals within the
LDAP directory. If set to false,
then the current Principal and
Credential are used. The default
value is false.

UseZOSRACF boolean Specifies whether the LDAP
server is z/OS RACF LDAP
server. The default value is
false.

Chapter 5
Setting up GAUTHSVR as the Authentication Server

5-19

Table 5-4 (Cont.) Advanced GAUTHSVR Configuration File Keywords

Configuration Keyword Value Type Description

ControlFlag string Specifies how Tuxedo LDAP
Authentication provider fits into
the login sequence. The Control
Flag determines how the login
sequence uses the Authentication
provider. A REQUIRED value
specifies this LoginModule must
succeed. Even if it fails,
authentication proceeds down the
list of LoginModules for the
configured Authentication
providers. This setting is the
default. A REQUISITE value
specifies this LoginModule must
succeed. If other Authentication
providers are configured and this
LoginModule succeeds,
authentication proceeds down the
list of LoginModules. Otherwise,
control is return to the
application. A SUFFICIENT value
specifies this LoginModule need
not succeed. If it does succeed,
return control to the application. If
it fails and other Authentication
providers are configured,
authentication proceeds down the
LoginModule list. An OPTIONAL
value specifies this LoginModule
need not succeed. Whether it
succeeds or fails, authentication
proceeds down the LoginModule
list. The default value is
REQUIRED.

Table 5-5 LDAP Schema Configuration File Keywords

Configuration Keyword Value Type Description

UserObjectClass string The LDAP object class that stores
users . The default is person.

UserBaseDN string The base distinguished name (DN) of
the tree in the LDAP directory that
contains users. The default value is
ou=people, o=example.com

UserFromNameFilter string An LDAP search filter for finding a user
given the name of the user. The default
value is (&(cn=%u)
(objectclass=person))

UserSearchScope string Specifies how deep in the LDAP
directory tree to search for users. Valid
values are "subtree, onelevel". The
default value is subtree.

Chapter 5
Setting up GAUTHSVR as the Authentication Server

5-20

Table 5-5 (Cont.) LDAP Schema Configuration File Keywords

Configuration Keyword Value Type Description

UserUIDAttrName string The attribute name of an LDAP user
object that specifies the UID of the user
or the UID and GID of the user in a fixed
format. The default value is userid.

UIDAttrValueType string Specifies the value type of the uid
attribute for the LDAP user object. Legal
values include UID, and UIDAndGID.
The default value is UID.

Note:

When
SECURITY
is ACL or
MANDATOR
Y_ACL, it
must be
set to
UIDAndGI
D.

UserGroupAttrNames string The attribute names of an LDAP user
object that specify the groups the user
belongs to. This attribute can contain
three types of values: GID, group CN
and group DN. One type of value for
each configuration. More names are
separated by comma. The default value
is usergroups.

GroupAttrValueType string Specifies the value type of the group
attributes for the LDAP user object.
Legal values include "GID, group CN,
and group DN". The default value is
GID.

GroupBaseDN string The base distinguished name (DN) of
the tree in the LDAP directory that
contains groups. The default value is
ou=groups, o=example.com.

GroupFromNameFilter string An LDAP search filter for finding a group
given the name of the group. The default
value is (&(cn=%g)
(objectclass=groupofuniquenames
)).

StaticGroupObjectClass string The name of the LDAP object class that
stores static groups The default value is
groupofuniquenames.

GroupSearchScope string Specifies how deep in the LDAP
directory tree to search for groups. Valid
values are "subtree, onelevel" The
default value is subtree.

Chapter 5
Setting up GAUTHSVR as the Authentication Server

5-21

Table 5-5 (Cont.) LDAP Schema Configuration File Keywords

Configuration Keyword Value Type Description

GroupGIDAttrName string The attribute of a LDAP group object
that specifies the GID of the group The
default value is groupid.

5.3.2.3 Example GAUTHSVR Configuration File
The following Listing shows a GAUTHSVR configuration file for WebLogic Server example. Please
refer to this example when configuring other LDAP servers.

Listing 4‑3 Example WebLogic GAUTHSVR Configuration File

#
 # Tuxedo LDAP Authentication Server configuration file.
 #
 # created: Thu May 26 15:36:59 2002
 # end of file

Tuxedo configuration
 UserCacheExpire = 600
 UserCacheSize = 16384
 SYSADM = sysadm
 SYSOP = sysop

 # LDAP server configuration
 Host = server.bea.com
 Port = 7001
 Principal = cn=Admin
 Credential= weblogic

 UserObjectClass = person
 UserBaseDN = ou=people,ou=myrealm,dc=examples
 UserFromNameFilter = (&(uid=%u)(objectclass=person))
 UserUIDAttrName = description
 UserGroupAttrNames=wlsMemberOf
 RetrieveUIDAndGID = true
 UIDAttrValueType = UIDAndGID

Note:

Ensure that the UID =* and GID = * in the LDAP description are the same as defined
in SECURITY IS ACL.

WARNING:

It is recommended that the system administrator secures this file with the correct
access permissions, as the PASSWORD for the LDAP administrator is in clear text.

Chapter 5
Setting up GAUTHSVR as the Authentication Server

5-22

5.3.3 Example UBBCONFIG Using GAUTHSVR
The following listing describes an example UBBCONFIG file with SECURITY set to ACL and
GAUTHSVR defined.

Listing Example UBBCONFIG File Using GAUTHSVR

UBBCONFIG
 *SERVER
 GAUTHSVR SVRGRP="SYSGRP" SVRID=100
 CLOPT="-A -- -f ${APPDIR}/tpgauth"
 ENVFILE="${APPDIR}/tpgauth.env"

See Also:

• GAUTHSVR(5) and LAUTHSVR(5) in the Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

5.3.4 Using tpmigldif to Migrate User Information
You can use the tpmigldif command utility to migrate Tuxedo user and group information to
LDAP servers in LDAP Interchange Format (LDIF). In order to use tpmigldif, you must create
a migration template.

• Using tpmigldif Command Line Options

• tpusr and tpgrp File Format

• Creating a Migration Template

5.3.4.1 Using tpmigldif Command Line Options
The following table lists the command line options for the tpmigldif utility. The order of the
command line options does not matter.

Table 5-6 tpmigldif Command Line Options

Command Line Option Option Argument Default Value Usage

-t user|group user Specifies migration type.

-f template filename tpusr-template (when type is
user), or tpgrp-template(when
type is group)

Specifies the template file
name.

-o o (output filename) console/stdout Specifies the output file
name.

-u full path name tpusr The full directory path for
thetpusr file.

-g full path name tpgrp The full directory path for
thetpgrp file.

Chapter 5
Setting up GAUTHSVR as the Authentication Server

5-23

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#1002049
https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rf5/rf5.html#3070537

5.3.4.2 tpusr and tpgrp File Format
The following listing shows a tpusr file with five fields separated by a colon:

name:password(encrypted) :user id:group id:client name::

Listing Example tpusr File

user1:EI4xxxjrCc:16668:601:TPCLTNM,client::
 user2:EI4xxxjrCc:16669:602:TPCLTNM,client::

The listing shows a tpgrp file with three fields separated by a colon:

name::group id:

Listing Example tpgrp File

group1::601:
 group2::602:

• Assigning New Passwords for the tpusr File (Optional)

5.3.4.2.1 Assigning New Passwords for the tpusr File (Optional)
Before migrating the user and group information, the administrator could assign new
passwords for each user so the generated LDIF output contains correct password for each
user. This step is required because the passwords in the tpusr file are encrypted with one-way
encryption; therefore, it is impossible to retrieve the original password from the file.

Using a text-editor, there are two methods to modify tpusr file passwords:

• Modify the tpusr file password field to change the user password for each user in the file.
The password field is the second field in the tpusr file. Each user is entered on a separate
line in the tpusr file. See listing Listing 4‑5, for original tpusr file example.

user1:pwd1:16668:601:TPCLTNM,client::
 user2:pwd2:16669:602:TPCLTNM,client:

• Add a new password to the last tpusr file field

user1:EI4xxxjrCc:16668:601:TPCLTNM,client::pwd1:
 user2:EI4xxxjrCc:16669:602:TPCLTNM,client::pwd2:

5.3.4.3 Creating a Migration Template
The migration template is a text file used by the tpmigldif command utility to translate the
tpusr or tpgrp file into an LDIF output file.

The following listing shows a tpusr-template migration file example. <%n> refers to a tpusr file
field, where n starts at 1.

Chapter 5
Setting up GAUTHSVR as the Authentication Server

5-24

Note:

Use <%gn> for group field in tpgrp file for given user.

Listing tpusr-template

dn: CN=<%1>,CN=Users,DC=tuxdev,DC=bea,dc=com
 objectclass: top
 objectclass: person
 objectclass: organizationalPerson
 objectclass: user
 cn: <%1>
 description: Tuxedo User, TUXEDO_UID=<%3> TUXEDO_GID=<%4>
 password: <%7>

The following listing shows the LDIF output from the tpusr-template.

Listing LDIF Output

dn: CN=user1,CN=Users,DC=tuxdev,DC=bea,dc=com
 objectclass: top
 objectclass: person
 objectclass: organizationalPerson
 objectclass: user
 cn: user1
 description: Tuxedo User, TUXEDO_UID=16668 TUXEDO_GID=601
 password: pwd1

 dn: CN=user2,CN=Users,DC=tuxdev,DC=bea,dc=com
 objectclass: top
 objectclass: person
 objectclass: organizationalPerson
 objectclass: user
 cn: user2
 description: Tuxedo User, TUXEDO_UID=16669 TUXEDO_GID=602
 password: pwd2

5.3.5 Supported LDAP Server Template Example
Tuxedo provides an example template for supported LDAP servers. The following table lists
the files: 1.

Table 5-7 Supported LDAP Server Template Example

LDAP Server GAUTHSVR Configuration User Migration Template Group Migration Template

WebLogic Server tpgauth tpusr-template tpgrp-template

Active Directory 2 tpgauth-ad tpusr-template-ad tpgrp-template-ad

IPlanet tpgauth-iplanet tpusr-template-iplanet tpgrp-template-iplanet

z/OS LDAP, with RACF
backend 3

tpgauth-racf tpusr-template-racf tpgrp-template-racf

Chapter 5
Setting up GAUTHSVR as the Authentication Server

5-25

1

All files are available under $TUXDIR/udataobj.

2

For Active Directory user’s password cannot be added on creation. For help on how to change
or reset it, please refer to Microsoft support document, http://support.microsoft.com/kb/269190,
http://support.microsoft.com/kb/263991, etc;

3

Two things require to be completed for activating z/OS RACF account after migration:

1. reset the password by z/OS administrator

2. logon with the account to change its password

5.4 Setting up OAUTHSVR as the Authentication Server
• Setting Up the OAUTHSVR Configuration File

• /T DOMAIN Support

• Oracle SALT Support

• WTC Support

• Oracle JCA Support

OAUTHSVR is a Tuxedo provided server that offers the authentication and authorization service
while the user security information is located in Oracle Access Manager (OAM) Server. To
enable the single security administration feature, you must configure OAUTHSVR as the
authentication server. At runtime, the OAUTHSVR authenticates and authorizes the user using
OAM Server

To define OAUTHSVR as the authentication server, you must define the following parameters in
the UBBCONFIG file:

• SECURITY must be set to USER_AUTH, ACL, or MANDATORY_ACL in the RESOURCES section.

• A TMJAVASVR with <server-classname="OAUTHSVR"/> must be specified in the SERVERS
section.

• Setting Up the OAUTHSVR Configuration File

• /T DOMAIN Support

• Oracle SALT Support

• WTC Support

• Oracle JCA Support

5.4.1 Setting Up the OAUTHSVR Configuration File
OAUTHSVR supports an input configuration file that contains information such as OAM access
client configuration file and the resource type mapping between Tuxedo and OAM. This
configuration file is a plain text file and can be edited using any text editor and must be
protected by the system using file permissions. By default the configuration file, named
tpoam.auth, is located in $TUXDIR/udataobj directory. You can overwrite this file in the
command line for OAUTHSVR. The OAUTHSVR configuration file contains keyword and value pairs
as defined in the following table.

Chapter 5
Setting up OAUTHSVR as the Authentication Server

5-26

• Syntax Requirements for OAUTHSVR Configuration File

• OAUTHSVR Configuration File Keywords

• OAM Access Client Configuration (OAM_CONFIG_DIR)

• Examples

• Syntax Requirements for OAUTHSVR Configuration File

• OAUTHSVR Configuration File Keywords

• OAM Access Client Configuration (OAM_CONFIG_DIR)

• Examples

5.4.1.1 Syntax Requirements for OAUTHSVR Configuration File
• Although the default values for the OAUTHSVR configuration file are usually sufficient, a

system administrator may choose to configure it with different names. Therefore, you
should be aware of the following requirements for the OAUTHSVR configuration file:

• The OAUTHSVR configuration file is a plain text file.

• Keyword order does not matter; however, there must be at least one space character
between the keyword and its value.

• Comments begin with the pound symbol (#). Text after the # is ignored.

Note:

Before an administrator can set up and use the Tuxedo OAM-based security
authentication and authorization server, the administrator must register a OAM
access client or use already installed WebGate. For how to register and configure
OAM access client, please refer Oracle OAM documents.

5.4.1.2 OAUTHSVR Configuration File Keywords
The following table lists the OAUTHSVR configuration file keywords.

Table 5-8 OAUTHSVR Configuration File Keywords

Keyword Value Type Usage

OAM_CONFIG_DIR string The directory location where OAM
access client configuration file will be
searched. The access client
configuration can be obtained by
registering an access client as an OAM
11g Agent with the OAM 11g server or
copied from already installed WebGate.

Chapter 5
Setting up OAUTHSVR as the Authentication Server

5-27

Table 5-8 (Cont.) OAUTHSVR Configuration File Keywords

Keyword Value Type Usage

RESTYPE_MAPPING string The resource type mapping between
Tuxedo and OAM. Format
is"RESTYPE_MAPPING $TUX_RESTYPE
$OAM_RESTYPE", multiple resource
types can be defined, such as
RESTYPE_MAPPING SERVICE
TUXEDO_SERVICE RESTYPE_MAPPING
QUEUE TUXEDO_QUEUE
RESTYPE_MAPPING EVENT
TUXEDO_EVENT. If the resource type
name defined in OAM is same as
Tuxedo resource type, no mapping is
needed.

TUXEDO_DEF_RESTYPE string The Tuxedo default resource type
defined in OAM. The default is
"TUXEDO_SERVICE".

TUXEDO_DEF_RESOURCE string The Tuxedo default resource defined in
OAM. OAM always requires a resource
to figure out the authentication level and
policies to authenticate a user.
Administrator need define a default
resource. The default is "tuxres".

5.4.1.3 OAM Access Client Configuration (OAM_CONFIG_DIR)
OAM Access Client configuration information is required by OAM.

For more information, see OAM documents https://docs.oracle.com/cd/E52734_01/oam/
AIDEV/as_api.htm#AIDEV151

• Limitations

5.4.1.3.1 Limitations
OAUTHSVR does not support OAM 10g agent; 11g or above WebGate agent is required. An
example 11gR1PS2 OAM configuration directory is shown in the following listing .

Listing Example 11gR1PS2 OAM Configuration Directory

OAM_CONFIG_DIR/
 |------config/
 |------ cwallet.sso (Get from WebGate)
 |------ jps-config.xml (Get from OAM SDK)
 |------ ObAccessClient.xml (Get from WebGate)

Another example configuration directory for OAM12cR2 is shown in the following listing (the
communication transportation security mode between the Agent and OAM server is Simple or
Cert).

Chapter 5
Setting up OAUTHSVR as the Authentication Server

5-28

Listing Example 11gR1PS3 OAM Configuration Directory

OAM_CONFIG_DIR/
 |------config/
 |------ cwallet.sso (Get from WebGate)
 |------ jps-config.xml (Get from OAM SDK)
 |------ ObAccessClient.xml (Get from WebGate)
 |------ oamclient-keystore.jks (Get from WebGate)
 |------ oamclient-truststore.jks (Get from WebGate)
 |------ password.xml (Get from WebGate)

For more information, see OAM documents http://docs.oracle.com/cd/E21764_01/install.1111/
e12002/webgate.htm#INOIM75755.

Note:

In OAM server host, under directory <OAM_DOMAIN_HOME>/output/<WebGate_ID> you
can find cwallet.sso and ObAccessClient.xml file.

5.4.1.4 Examples
1. Example OAUTHSVR Configuration File

2. Example UBBCONFIG Using OAUTHSVR

3. Example tjsoam.xml Java Server Configuration File

• 1. Example OAUTHSVR Configuration File

• 2. Example UBBCONFIG Using OAUTHSVR

• 3. Example tjsoam.xml Java Server Configuration File

5.4.1.4.1 1. Example OAUTHSVR Configuration File
The following listing describes an example of a OAUTHSVR configuration file.

Listing Example OAUTHSVR Configuration File

Tuxedo OAM Authentication Server configuration file.

 OAM_CONFIG_DIR /usr/tuxedo/accessclient
 #RESTYPE_MAPPING SERVICE TUXEDO_SERVICE
 #RESTYPE_MAPPING QUEUE TUXEDO_QUEUE
 #RESTYPE_MAPPING EVENT TUXEDO_EVENT
 TUXEDO_DEF_RESTYPE TUXEDO_SERVICE
 TUXEDO_DEF_RESOURCE tuxres
 # end of file

5.4.1.4.2 2. Example UBBCONFIG Using OAUTHSVR
The following listing describes an example UBBCONFIG file with SECURITY set to ACL and
OAUTHSVR defined.

Chapter 5
Setting up OAUTHSVR as the Authentication Server

5-29

Listing Example UBBCONFIG File Using OAUTHSVR

*RESOURCES

 IPCKEY 51002
 MASTER site1
 MAXACCESSERS 50
 MAXSERVERS 20
 MAXSERVICES 20
 MODEL SHM
 LDBAL N
 BLOCKTIME 10
 SECURITY ACL
 AUTHSVC "..AUTHSVC"
 OPTIONS EXT_AA

 *MACHINES
 DEFAULT:
 APPDIR="/home/tuxedo/application"
 TUXCONFIG="/home/tuxedo/application/TUXCONFIG"
 TUXDIR="/home/tuxedo/tuxedo12"
 Server1 LMID=site1
 MAXWSCLIENTS=20

 *GROUPS
 GROUP1 LMID=site1 GRPNO=1
 GROUP2 LMID=site1 GRPNO=2
 GROUP3 LMID=site1 GRPNO=3
 GROUP4 LMID=site1 GRPNO=4

 *SERVERS
 DEFAULT:
 CLOPT="-A" RESTART=N MAXGEN=5
 TMJAVASVR SRVGRP=GROUP1 SRVID=2 CLOPT="-A -- -c tjsoam.xml"

 DMADM SRVGRP=GROUP2 SRVID=20
 GWADM SRVGRP=GROUP3 SRVID=30
 GWTDOMAIN SRVGRP=GROUP3 SRVID=31
 Simpserv SRVGRP=GROUP4 SRVID=40

 *SERVICES
 TOUPPER

5.4.1.4.3 3. Example tjsoam.xml Java Server Configuration File
The following listing describes an example Java Server configuration file using OAUTHSVR.

Listing Example Java Server Configuration File Using OAUTHSVR

<?xml version="1.0" encoding="UTF-8"?>
 <TJSconfig version="2.0">
 <!-- do not forget modify $TUXDIR $OAMASDK_DIR to absolute path -->
 <java-config>
 <jvm-options>-Doracle.security.jps.config=/home/tuxedo/application/
oamclient/config/jps-config.xml</jvm-options>

Chapter 5
Setting up OAUTHSVR as the Authentication Server

5-30

 <jvm-options>-Doracle.tuxedo.oam.config=tpoam.auth</jvm-options>
 </java-config>

 <classpath-config>
 <classpath>/home/tuxedo/udataobj/tuxj/oam/
com.oracle.tuxedo.tjoam.jar</classpath>
 <classpath>/home/tuxedo/oamsdk/*</classpath>
 </classpath-config>

 <tux-server-config>
 <server-class name="OAUTHSVR"/>
 </tux-server-config>

 </TJSconfig>

5.4.2 /T DOMAIN Support
ACL_POLICY and CREDENTIAL_POLICY impact credential propagation.

When local domain receives request from remote domain, if ACL_POLICY is set to LOCAL, the
local domain removes the OAM session token of any service request received from the remote
domain if session token exists. If ACL_POLICY is set to GLOBAL the local domain does not
remove the OAM session token received with a remote service request.

When a Tuxedo domain sends request to a remote /T domain, if CREDENTIAL_POLICY is set to
LOCAL, then the local domain removes the session token from a local service request destined
for the remote domain access point. If CREDENTIAL_POLICY is set to GLOBAL, the local domain
does not remove the session token from a local service request destined for this remote
domain access point.

From above description we can see to pass OAM session token between Tuxedo /T domains,
ACL_POLICY and CREDENTIAL_POLICY should both configured to GLOBAL, and same OAM
access client configuration (OAM_CONFIG_DIR parameter in OAUTHSVR configuration file) must be
used to ensure that the OAM session token is valid in both domains.

To authenticate or authorize user requests, username/password pair or valid session token
issued by OAM server must exist. If both username/password pair and valid session token do
not exist, it is not possible to impersonate the desired principle; authentication or authorization
with OAM server cannot be done.

When domain gateway receives a request, if ACL_POLICY is set to LOCAL, or the request doesn't
contain OAM session token (for example, remote domain doesn't use OAM, or
CREDENTIAL_POLICY is set to LOCAL, or Tuxedo version of remote domain is not 12.2.2.0.0 or
later, or remote domain can't pass OAM session token like WTC), to impersonate the desired
principle, the local domain gateway replaces the credential of any service request received
from the remote domain with the principle name specified in the LOCAL_PRINCIPAL_NAME
parameter (if not specified, the principle name defaults to the ACCESSPOINTID string for the
remote domain access point) for this remote domain access point, the password will use
"Remote Domain Password", that is the SECURITY parameter in the DM_LOCAL section of the
DMCONFIG file must set to DM_PW. User LOCAL_PRINCIPAL_NAME (or ACCESSPOINTID) with same
password as "Remote Domain Password" must be defined in OAM. If you do not meet these
prerequisites and SECURITY in UBBCONFIG is set to ACL or MANDATORY_ACL, authorization fails.

Chapter 5
Setting up OAUTHSVR as the Authentication Server

5-31

5.4.3 Oracle SALT Support
OAM integration only support SALT inbound request, for HTTP Basic Authentication GWWS
will extract username and password and calls Tuxedo AUTHSVC to authenticate the user,
OAUTHSVR will communicate with OAM to authenticate, if it is successful then GWWS will
retrieve OAM session token, the session token is passed in following service call, OAUTHSVR
uses the session token to authorize.

For WSSE situation, GWWS will use user credential received and authenticate with Tuxedo,
before it calls Tuxedo service it will check if auth level is TPAPPAUTH and insert the session
token into context and call Tuxedo service.

If it is either X509 authentication or SAML SSO is used then it depends on whether Basic
Authentication is attached to the request. If Basic Authentication is not attached to the request,
Tuxedo cannot retrieve username and password, authorization will fail.

If user is already authenticated with WebGate and the OAM session token is exist in HTTP
header, GWWS will extract the token and use it to authorize.

WebGate is a agent provided for various Web Servers (Oracle HTTP server - OHS, IBM HTTP
server -IHS, Apache ...) as part of the OAM product. It's installed on different HTTP server, to
use OAM for authentication and authorization, HTTP server and WebGate are necessary.
Often the HTTP server works as reverse proxy to backend applications, such as WLS or SALT.

Note:

For 11g WebGate, the OAM token cookie (OAMAuthnCookie) is not passed to
downstream applications such as SALT, please specify WebGate user-defined
parameter filterOAMAuthnCookie to false. For more information, see Registering and
Managing OAM 11g Agents.

5.4.4 WTC Support
For WTC inbound service, client is authenticated in Tuxedo domain, the request is passed to
WTC. WTC will look up the EJB name and invoke the target EJB using passed principle
(ACL_POLICY is global) or domain name (ACL_POLICY is local). No authentication is required,
although WLS security module will check the authorization of this principle (security identity).
The target EJB will receive the identity only, it will not receive any authentication data. There is
no way for WLS to authenticate the identity, the identity is only used in authorization checks.
The OAM session token will not pass to WTC.

For WTC outbound service, the authentication only occurs in WLS, the authorization check
should also occurs in WLS. When WTC pass the request to Tuxedo domain, user is already
authenticated, WTC cannot get the OAM session token from WLS. Tuxedo local domain
gateway will use the same approach as /T domain to impersonate desired principle
(LOCAL_PRINCIPAL_NAME or ACCESSPOINTID and remote domain password).

5.4.5 Oracle JCA Support
Tuxedo JCA adapter can't and should not be changed for OAM as JCA architecture has its
own way of importing the security principal identity, and we should not break the contract and
made it not portable between different Java AS. JCA architecture specification has its own way
and that is supported by all JCA 1.6 compliant JCA

Chapter 5
Setting up OAUTHSVR as the Authentication Server

5-32

https://docs.oracle.com/cd/E37115_01/admin.1112/e27239/register.htm#AIAAG631
https://docs.oracle.com/cd/E37115_01/admin.1112/e27239/register.htm#AIAAG631

See Also:

• tpmigldif(1) in the Oracle Tuxedo Command Reference

Chapter 5
Setting up OAUTHSVR as the Authentication Server

5-33

https://docs.oracle.com/cd/E72452_01/tuxedo/docs1222/rfcm/rfcmd.html#1317097

6
Integrating Audit with Oracle Platform Security
Services (OPSS)

Note:

Before setting up single point security, ensure that you are familiar with the Tuxedo
security architecture and requirements. You may also want to coordinate this effort
with your OPSS Administrator.

• Overview

• Components and Deployment

• Configurations

• Administration

6.1 Overview
Oracle Tuxedo can integrate with Oracle Platform Security Services (OPSS) audit component.
This integration assures you taking all advantages that OPSS has for audit analysis and
reporting.

This feature provides you:

• Rich Data for Business Intelligence Analysis
Integrated with OPSS audit component, Oracle Tuxedo can generate rich data centrally
stored in an audit sotre. You can then continue to use diverse BI tools (such as OPSS) to
view and analyze the data using Oracle Business Intelligence Publisher and the like.

• Customized Audit Strategies/Policies
This feature enables you to generate data for specific events by defining these events on a
static XML file (component_events.xml), which makes it very convenient for you to change
audit strategies/policies without affecting the application.

• Easy Approach to Use
OPSS provides an abstraction layer in the form of standards-based application
programming interfaces (APIs) that insulate you from security and identity management
implementation details. With the integration with OPSS audit component, Oracle Tuxedo
can directly use these OPSS APIs for auditing; you do not need to write a single line of
audit-related code, or change any of your existing code.

6.2 Components and Deployment
• Audit Flow

6-1

6.2.1 Audit Flow
This figure illustrates you an Oracle Tuxedo event flow with OPSS audit framework when an
event (such as tpcall) occurs.

Figure 6-1 Oracle Tuxedo Audit Flow with OPSS

Oracle Tuxedo Part
This part requires you to configure Oracle Tuxedo as Configurations instructs. On this figure,
an Oracle Tuxedo client invokes an Oracle Tuxedo service. This service then sends a request
(also known as "an event") to Oracle Tuxedo Java Server, which has already configured
OPSS audit module (.TUXJPSAUDIT). This module then invokes OPSS audit APIs, which check
if this event should be audited. If it should be, this module audits it to a local file in an
intermediate location (known as the "bus-stop"), creating the audit event structure and
collecting event information such as status, initiator, resource, and ECID.

OPSS Part
This part requires you to configure OPSS standalone Audit Loader. Once OPSS APIs audit an
event to the bus-stop, OPSS Audit Loader collects the audit records throughout all
components running in the instance. If a database is configured for an audit store, the OPSS
Audit Loader pulls the event from bus-stop and moves its data to audit store.

6.3 Configurations
Do the following to configure Oracle Tuxedo for this feature:

• Register OPSS Audit Plug-In to Oracle Tuxedo Registry

• Configure Oracle Tuxedo Auditing Framework

Chapter 6
Configurations

6-2

• Configure Oracle Tuxedo OPSS Audit Module

• Configure OPSS Configuration Files

• Configure OPSS Audit Bus-Stop

6.3.1 Register OPSS Audit Plug-In to Oracle Tuxedo Registry
Oracle Tuxedo registry is a disk-based repository for storing information related to plug-in
modules. Initially, this registry holds registration information about the default security plug-ins;
now that you want to use this feature, you must configure this registry for the OPSS plug-in
before installing it.

• Register OPSS Audit Plug-In to Oracle Tuxedo Registry

If you do not want to use this feature any more, you can

• Unregister OPSS Audit Plug-In from Oracle Tuxedo Registry

• Register OPSS Audit Plug-In to Oracle Tuxedo Registry

• Unregister OPSS Audit Plug-In from Oracle Tuxedo Registry

6.3.1.1 Register OPSS Audit Plug-In to Oracle Tuxedo Registry
You must use epifreg tool to register OPSS plug-ins for Oracle Tuxedo registry. Registering
OPSS plug-in will replace the default Oracle Tuxedo audit implement from ULOG to OPSS
audit.

The following listing describes an example.

Listing Example for Registering OPSS Audit Plug-In to Oracle Tuxedo Registry

epifregedt -s -k "SYSTEM/impl/bea/native/audfan" -a InterceptionSeq=bea/
native/audopss

epifreg -r -p bea/native/audopss -i engine/security/auditing -v 1.0 -f
libtux.so -e _ep_dl_audopss

Use the following shell script tools located at $TUXDIR/bin for registering OPSS audit plug-in to
Oracle Tuxedo registry:

• opssreg.bat
Command of registering OPSS Audit Plug-In for Oracle Tuxedo on windows platforms.

• opssreg.sh
Command of registering OPSS Audit Plug-In for Oracle Tuxedo on UNIX platforms.

6.3.1.2 Unregister OPSS Audit Plug-In from Oracle Tuxedo Registry
You should use epifunregtool to unregister OPSS plug-in from Oracle Tuxedo registry.
Unregistering OPSS plug-in will restore the default Oracle Tuxedo audit implement back to
ULOG.

The following listing describes an example.

Chapter 6
Configurations

6-3

Listing Example for Unregistering OPSS Audit Plug-In from Oracle Tuxedo Registry

epifunreg -p bea/native/audopss

Use the following shell script tools located at .$TUXDIR/bin for unregistering OPSS audit plug-
in from Oracle Tuxedo registry:

• opssunreg.bat
Command of unregistering OPSS Plug-In for Oracle Tuxedo on windows platforms.

• opssunreg.sh
Command of unregistering OPSS Plug-In for Oracle Tuxedo on UNIX platforms.

6.3.2 Configure Oracle Tuxedo Auditing Framework
This feature requires you to create Oracle Tuxedo Auditing framework.

• Add OPSS Audit to Oracle Tuxedo Plug-In Framework
Follow Oracle Tuxedo Auditing configuration rules to add OPSS audit to Tuxedo Plug-in
framework. See Auditing for more information.

• Configure Security Options in UBBCONFIG
In UBBCONFIG RESOURCES section, set SECURITY option to ACL or MANDATORY_ACL.

6.3.3 Configure Oracle Tuxedo OPSS Audit Module
This feature requires to configure Oracle Tuxedo OPSS Audit Module.

• Configure Oracle Tuxedo Java Server (TMJAVASVR)

• Configure Oracle Tuxedo OPSS Audit Module

• Configure Oracle Tuxedo Java Server (TMJAVASVR)

• Configure Oracle Tuxedo OPSS Audit Module

6.3.3.1 Configure Oracle Tuxedo Java Server (TMJAVASVR)
Oracle Tuxedo OPSS Audit Module runs in Oracle Tuxedo Java server (TMJAVASVR), so
TMJAVASVR must be configured in your UBBCONFIG. TMJAVASVR handles the entire audit request,
advertising audit module .TUXJPSAUDIT, which acts as a bridge between Oracle Tuxedo
system with OPSS audit and Oracle Tuxedo application services. The following listing
describes an example for configuring TMJAVASVR in UBBCONFIG SERVERS section.

TMJAVASVR can

• Read configuration file tpopss_audit.xml.

• Advertise audit module .TUXJPSAUDIT, which is implemented with Java code according to
tpopss_audit.xml.

• Launch JVM.

• Forward an audit request to .TUXJPSAUDIT.

• Get and execute the results from this .TUXJPSAUDIT.

Chapter 6
Configurations

6-4

Listing TMJAVASVR Configuration Example

*SERVERS
 TMJAVASVR
 SRVGRP=TJSVRGRP SRVID=3
 CLOPT="-- -c/home/oracle/app/javaserver/tpopss_audit.xml"
 MINDISPATCHTHREADS=2 MAXDISPATCHTHREADS=3

6.3.3.2 Configure Oracle Tuxedo OPSS Audit Module
Now that you have configured TMJAVASVR, you can configure Oracle Tuxedo OPSS Audit
Module in Oracle Tuxedo Java Server Configuration File called tpospss_audit.xml, which you
can find in ${TUXDIR}/udataobj/tuxj/opss.

Two packages that Oracle Tuxedo Java Server uses for this feature are
com.oracle.tuxedo.tjopss_12.2.2.0.jar (Oracle Tuxedo ships it and it is located in $
{TUXDIR}/udataobj/tuxj/opss) and opss-manifest.jar (OPSS ships it and it is located in the
path where -Dcommon.components.home specifies. For example, if you specify -
Dcommon.components.home=/testarea/tuxuser/opss_standalone/, this opss-manifest.jar
is located in /testarea/tuxuser/opss_standalone/modules/oracle.jps_12.1.2/opss-
manifest.jar).

The listing for an example, where the following attributes are specified.

• java-config

• classpath-config

6.3.3.2.1 java-config
Declare the following jvm-options attributes, and ensure that every path you set is an absolute
path.

• Required jvm-options are

– -Doracle.security.jps.config
This declares the absolute path of OPSS configuration file jps-config.xml.

– -Djava.security.policy
This declares the absolute path of java.policy.

– -Doracle.tuxedo.opss.event.config.dir
This declares the absolute path of component_events.xml.

– -Doracle.tuxedo.audit.type
This declares the component type of TMJAVASVR .TUXJPSAUDIT, determining which
component table stores the record to the bus-stop.

– -Doracle.tuxedo.audit.category
This declares the component event category of TMJAVASVR .TUXJPSAUDIT.

– -Dcommon.components.home
This declares the absolute path of OPSS component home directory.

• Optional jvm-options are

– -Djps.auth.debug
– -Djps.auth.debug.verbose

Chapter 6
Configurations

6-5

If these two jvm-options are set to true, JPS debug/trace functions are open.

6.3.3.2.2 classpath-config
Declare the following classpath attributes, and make sure every path you set is an absolute
path.

• com.oracle.tuxedo.tjopss_12.2.2.0.jar
Oracle Tuxedo ships com.oracle.tuxedo.tjopss_12.2.2.0.jar to integrate OPSS Audit
module. This library is located at $TUXDIR/udataobj/tuxj/opss.

You should declare this path in <classpath-config> classpath attribute in
tpopss_audit.xml.

• opss-manifest.jar
Oracle OPSS module ships opss-manifest.jar.

You should declare this path in <classpath-config> classpath attribute in
tpopss_audit.xml.

Listing Example for tpopss_audit.xml

<?xml version="1.0" encoding="UTF-8"?>
<TJSconfig version="2.0">
<!--
do not forget modify $TUXDIR $COMMON_COMPONENTS_HOME $APPDIR to absolute path
-->
<java-config>
<jvm-options>-Dtuxedo.tjatmi.strictly_check=yes</jvm-options>
<jvm-options>-Doracle.security.jps.config=${TUXDIR}/udataobj/tuxj/opss/jps
-config.xml</jvm-options>
<jvm-options>-Djava.security.policy=${TUXDIR}/udataobj/tuxj/opss/java.poli
cy</jvm-options>
<jvm-options>-Doracle.tuxedo.opss.event.config.dir=${TUXDIR}/udataobj/tuxj
/opss/</jvm-options>
<jvm-options>-Doracle.tuxedo.audit.type=tuxedo_opss_template</jvm-options>
<jvm-options>-Doracle.tuxedo.audit.category=TUXEDOOPSSAUDIT</jvm-options>
<jvm-options>-Dcommon.components.home=${COMMON_COMPONENTS_HOME}</jvm-options>

<jvm-options>-Djps.auth.debug=true</jvm-options>
<jvm-options>-Djps.auth.debug.verbose=true</jvm-options>
</java-config>

<classpath-config>
<classpath>${TUXDIR}/udataobj/tuxj/opss/com.oracle.tuxedo.tjopss_13.1.1.0.
jar</classpath>
<classpath>${COMMON_COMPONENTS_HOME}/modules/oracle.jps_12.1.2/opss-
manifest.jar</classpath>
</classpath-config>

<tux-server-config>
<server-class name="TuxAuditServer"/>
</tux-server-config>

</TJSconfig>

Chapter 6
Configurations

6-6

6.3.4 Configure OPSS Configuration Files
This feature requires you to configure the following OPSS configuration files. All of them are
located at $TUXDIR/udataobj/tuxj/opss.

• jps-config.xml

• java.policy

• component_events.xml (static) and audit-store.xml (dynamic)

• system-jazn-data.xml

• jps-config.xml

• java.policy

• component_events.xml (static) and audit-store.xml (dynamic)

• system-jazn-data.xml

6.3.4.1 jps-config.xml
Oracle Tuxedo integrates with the Oracle Fusion Middleware Audit Framework through jps-
config.xml runtime configuration file, which contains the initial filter settings for using OPSS
Audit Plug-In. You should declare its absolute path in tpopss_audit.xml configuration file (jvm-
options: -Doracle.security.jps.config). See Configure Oracle Tuxedo OPSS Audit Module
for more information.

See the following listing describes for an example, where jps-config.xml declares
serviceInstance audit, whose provider is audit.provider and location is ./audit-
store.xml.

Listing jps-config.xml Example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-
config-11_1.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" schema-major-
version="11" schema-minor-version="1"
xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-
config-11_1.xsd jps-config-11_1.xsd">
<property name="oracle.security.jps.jaas.mode" value="off"/>
<property name="oracle.security.jps.enterprise.user.class"
value="weblogic.security.principal.WLSUserImpl"/>
<property name="oracle.security.jps.enterprise.role.class"
value="weblogic.security.principal.WLSGroupImpl"/>
<propertySets>
<propertySet name="saml.trusted.issuers.1">
<property name="name" value="www.oracle.com"/>
</propertySet>
<propertySet name="trust.provider.embedded">
<property name="trust.provider.className"
value="oracle.security.jps.internal.trust.provider.embedded.EmbeddedProviderIm
pl"/>
<property name="trust.clockSkew" value="60"/>
<property name="trust.token.validityPeriod" value="1800"/>
<property name="trust.token.includeCertificate" value="false"/>

Chapter 6
Configurations

6-7

</propertySet>
</propertySets>
<serviceProviders>
<serviceProvider type="POLICY_STORE" name="policystore.xml.provider"
class="oracle.security.jps.internal.policystore.xml.XmlPolicyStoreProvider">
<description>XML-based PolicyStore Provider</description>
</serviceProvider>
<serviceProvider type="AUDIT" name="audit.provider"
class="oracle.security.jps.internal.audit.AuditProvider">
<description>Audit Service</description>
</serviceProvider>
</serviceProviders>
<serviceInstances>
<serviceInstance name="policystore.xml"
provider="policystore.xml.provider" location="./system-jazn-data.xml">
<description>File Based Policy Store Service
Instance</description>
</serviceInstance>
<serviceInstance name="audit" provider="audit.provider" location="./audit-
store.xml">
<description>Audit Service</description>
<property name="audit.filterPreset" value="None"/>
<property name="audit.maxDirSize" value="0"/>
<property name="audit.maxFileSize" value="104857600"/>
<property name="audit.timezone" value="utc"/>
<property name="audit.loader.interval" value="15"/>
<property name="audit.loader.repositoryType" value="File"/>
<property name="auditstore.type" value="file"/>
<property name="audit.db.principal.map"
value="AuditDbPrincipalMap"/>
<property name="audit.db.principal.key"
value="AuditDbPrincipalKey"/>
</serviceInstance>
</serviceInstances>
<jpsContexts default="default">
<jpsContext name="default">
<serviceInstanceRef ref="policystore.xml"/>
<serviceInstanceRef ref="audit"/>
</jpsContext>
</jpsContexts>
</jpsConfig>

6.3.4.2 java.policy
java.policy is the system policy file to grant system-wide code permissions; this policy is
represented by a Policy object for Java programming language application environment
(specifying which permissions are available for code from various sources, and executing as
various principals). For this feature in particular, you should use this file to grant audit store
access permissions to all domains invoke OPSS Audit APIs. You must declare its absolute
path in tpopss_audit.xml configuration file (jvm-options: -D Djava.security.policy). See
Configure Oracle Tuxedo OPSS Audit Module for more information. See the following listing for
an example, where the following two grants are specifically added for this feature.

Chapter 6
Configurations

6-8

• This is to grant permissions to file:${common.components.home}/modules/
oracle.jps_12.1.2/*, where opss-manifest.jar is located.

grant codeBase "file:${common.components.home}/modules/
oracle.jps_12.1.2/*" {
 permission java.security.AllPermission;
 };

• This is to grant permissions to file:${oracle.deployed.app.dir}/*, where required
configuration files (tpopss_audit.xml, jps-config.xml, component_events.xml, audit-
store.xml, java.policy, and system-jazn-data.xml) are located.

grant codeBase "file:${oracle.deployed.app.dir}/*" {
 permission java.security.AllPermission;
};

// Standard extensions get all permissions by default

 grant codeBase "file:${{java.ext.dirs}}/*" {
 permission java.security.AllPermission;
 };
 // default permissions granted to all domains
 grant {
 // Allows any thread to stop itself using the
java.lang.Thread.stop()
 // method that takes no argument.
 // Note that this permission is granted by default only to remain
 // backwards compatible.
 // It is strongly recommended that you either remove this permission
 // from this policy file or further restrict it to code sources
 // that you specify, because Thread.stop() is potentially unsafe.
 // See "http://java.sun.com/notes" for more information.
 permission java.lang.RuntimePermission "stopThread";

 // allows anyone to listen on un-privileged ports permission
 java.net.SocketPermission "localhost:1024-", "listen";

 // "standard" properies that can be read by anyone

 permission java.util.PropertyPermission "java.version", "read";
 permission java.util.PropertyPermission "java.vendor", "read";
 permission java.util.PropertyPermission "java.vendor.url", "read";
 permission java.util.PropertyPermission "java.class.version", "read";
 permission java.util.PropertyPermission "os.name", "read";
 permission java.util.PropertyPermission "os.version", "read";
 permission java.util.PropertyPermission "os.arch", "read";
 permission java.util.PropertyPermission "file.separator", "read";
 permission java.util.PropertyPermission "path.separator", "read";
 permission java.util.PropertyPermission "line.separator", "read";

 permission java.util.PropertyPermission
"java.specification.version", "read";
 permission java.util.PropertyPermission "java.specification.vendor",
"read";
 permission java.util.PropertyPermission "java.specification.name",

Chapter 6
Configurations

6-9

"read";
 permission java.util.PropertyPermission
"java.vm.specification.version", "read";
 permission java.util.PropertyPermission
"java.vm.specification.vendor", "read";
 permission java.util.PropertyPermission
"java.vm.specification.name", "read";
 permission java.util.PropertyPermission "java.vm.version", "read";
 permission java.util.PropertyPermission "java.vm.vendor", "read";
 permission java.util.PropertyPermission "java.vm.name", "read";
 };

 grant codeBase
 "file:${common.components.home}/modules/oracle.jps_12.1.2/*"
 permission java.security.AllPermission;
 {;

 grant codeBase "file:${common.components.home}/modules/
oracle.iau_12.1.2/*" {
 permission java.security.AllPermission;
 };

 grant codeBase "file:${classpath}/*" {
 permission java.security.AllPermission;
 };

 grant codeBase "file:${oracle.deployed.app.dir}/*" {
 permission java.security.AllPermission;
 };

 grant codeBase "file:${TUXDIR}/udataobj/tuxj/opss/*" {
 permissionjava.security.AllPermission;
 };

 grant codeBase "file:${TUXDIR}/udataobj/tuxj/*" {
 permission java.security.AllPermission; };

6.3.4.3 component_events.xml (static) and audit-store.xml (dynamic)
component_events.xml is a static file that defines all the audit events that are generated by the
OPSS Audit Plug-In; audit-store.xml is the dynamic file that defines all the audit events that
are mapped from the static file component_events.xml.

After tmboot for Oracle Tuxedo audit module .TUXJPSAUDIT, audit policy for a specific
component is stored in audit-store.xml. .TUXJPSAUDIT automatically registers the event
component, and maps it from component_events.xml to audit-store.xml; after automatically
un-registering the event component, .TUXJPSAUDIT drops it from audit-store.xml.

Chapter 6
Configurations

6-10

Note:

As Oracle Tuxedo depends on OPSS stand-alone component, audit-store.xml is
actually the file that is mainly used for this feature. Nevertheless, you are still required
to use the static file component_events.xml to adjust your audit policy and specify
component_events.xml in your CLASSPATH. See Change Audit Policy for more
information.

You must declare the absolute path for component_events.xml in tpopss_audit.xml
configuration file (jvm-options: -Doracle.tuxedo.opss.event.config.dir). See Configure
Oracle Tuxedo OPSS Audit Module for more information.

In component_events.xml configuration file, you must set:

• componentType
Audit-Aware Components, referring to components that are integrated with the Oracle
Fusion Middleware Audit Framework so that audit policies can be configured and events
can be audited for these components. You should also set componentType in
tpopss_audit.xml (jvm-options: -Doracle.tuxedo.audit.type).

• category
An audit event category contains related events in a functional area. Attributes are
categorized into base. You should also set category in tpopss_audit.xml (jvm-options: -
Doracle.tuxedo.audit.category).

See the following listing for an example, where

• componentType is set to tuxedo_opss_template (the same as "<jvm-options>-
Doracle.tuxedo.audit.type=tuxedo_opss_template</jvm-options>").

• category is set to TUXEDOOPSSAUDIT (the same as "<jvm-options>-
Doracle.tuxedo.audit.category=TUXEDOOPSSAUDIT</jvm-options>").

Listing component_events.xml Example

<?xml version="1.0" encoding="UTF-8"?><AuditConfig
 xmlns="http://xmlns.oracle.com/ias/audit/audit-2.0.xsd">
 <AuditComponent minor="0" major="1"
componentType="tuxedo_opss_template">
 <Attributes version="1.0" ns="tuxedo_opss_template">
 <Attribute order="1" displayName="visitor ID" required="true"
searchable="true" maxLength="255" type="string" name="visitorid">
 <HelpText>Visitor ID</HelpText>
 </Attribute>
 <Attribute order="2" displayName="Start Time" required="true"
searchable="true" maxLength="2048" type="dateTime"name="starttime">
<HelpText>The time a visitor enters.</HelpText> </Attribute> <Attribute
order="3"
 displayName="End Time" required="true" searchable="true"
 maxLength="2048" type="dateTime" name="endtime">
 <HelpText>the time a visitor exists.</HelpText>
 </Attribute><Attribute order="4" displayName="Service
 Charge" required="true" searchable="true" maxLength="2048"
 type="float" name="fee"> <HelpText>the dollar amount a
 visitor pays.</HelpText> </Attribute><Attribute
 order="5" displayName="Service Item" required="true"

Chapter 6
Configurations

6-11

 searchable="true" maxLength="2048" type="float" name="item">
 <HelpText>the name of an item a visitor
 borrows.</HelpText>
 </Attribute></Attributes><Events>
 <Category displayName="TUXEDOOPSSAUDIT" name="TUXEDOOPSSAUDIT">
 <Attributes>
 <Attribute version="1.1" ns="common" name="EventType">
 <HelpText>The type of the audit event. Use wlst listAuditEvents to
list out all the events.</HelpText>
 </Attribute>
 <Attribute version="1.0" ns="tuxedo_opss_template" name="visitorid">
 <HelpText>Visitor ID</HelpText>
 </Attribute>
 <Attribute version="1.0" ns="tuxedo_opss_template"
 name="starttime"> <HelpText> The time a visitor centers.</HelpText>
 </Attribute>
 <Attribute version="1.0" ns="tuxedo_opss_template" name="endtime">
 <HelpText>the time a visitor exists.</HelpText>
 </Attribute>
 </Attributes>
 <HelpText>TUXEDOOPSSAUDIT category</HelpText> <Event
displayName="SERVICECALL" name="SERVICECALL">
 <HelpText>A service call enters the facility.</HelpText>
 </Event>
 <Event displayName="ENQUEUE" name="ENQUEUE">
 <HelpText>A enqueue enters the facility.</HelpText>
 </Event> <Event displayName="DEQUEUE" name="DEQUEUE">
 <HelpText>A dequeue enters the facility.</HelpText>
 </Event> <Event displayName="POST" name="POST">
 <HelpText>A post call enters the facility.</HelpText>
 </Event> <Event displayName="CONNECT" name="CONNECT">
 <HelpText>A connect enters the facility.</HelpText>
 </Event>
 <Event displayName="IMPERSONATE" name="IMPERSONATE">
 <HelpText>A impersonate enters the facility.</HelpText>
 </Event>
 <Event displayName="LOGON" name="LOGON">
 <HelpText>A logon enters the facility.</HelpText>
 </Event>
 <Event displayName="LOGOFF" name="LOGOFF">
 <HelpText>A logoff enters the facility.</HelpText>
 </Event>
 <Event displayName="DECRYPT" name="DECRYPT">
 <HelpText>A decrypt enters the facility.</HelpText>
 </Event>
 <Event displayName="SERVICESIGNATURE" name="SERVICESIGNATURE">
 <HelpText>A service signature enters the facility.</HelpText>
 </Event>
 <Event displayName="SERVICEENCRYPTION" name="SERVICEENCRYPTION">
 <HelpText>A service encryption enters the facility.</HelpText>
 </Event>
 <Event displayName="QUEUESIGNATURE" name="QUEUESIGNATURE">
 <HelpText>A queue signature enters the facility.</HelpText>
 </Event>
 <Event displayName="EVENTSIGNATURE" name="EVENTSIGNATURE">
 <HelpText>A event signature enters the facility.</HelpText>

Chapter 6
Configurations

6-12

 </Event>
 <Event displayName="EVENTENCRYPTION" name="EVENTENCRYPTION">
 <HelpText>A event encryption enters the facility.</HelpText>
 </Event>
 <Event displayName="SIGNATURE" name="SIGNATURE">
 <HelpText>A signature enters the facility.</HelpText>
 </Event>
 <Event displayName="QUEUEENCRYPTION" name="QUEUEENCRYPTION">
 <HelpText>A queue encryption enters the facility.</HelpText>
 </Event>
 <Event displayName="UNKNOWN" name="UNKNOWN"> <HelpText>A unknown
enters the facility.</HelpText>
 </Event>
 </Category> </Events> <FilterPresetDefinitions>
 <FilterPresetDefinition helpText="" displayName="Low"
 name="Low"> <FilterCategory enabled="partial"

name="TUXEDOOPSSAUDIT">SERVICECALL,ENQUEUE,DEQUEUE,POST,CONNECT,IMPERSONATE,LO
GON,LOGOFF,DECRYPT,SERVICESIGNATURE,SERVICEENCRYPTION,QUEUESIGNATURE,QUEUEENCR
YPTION,EVENTSIGNATURE,EVENTENCRYPTION,SIGNATURE,UNKNOWN</FilterCategory>
 </FilterPresetDefinition> <FilterPresetDefinition
 helpText="" displayName="Medium" name="Medium">
 <FilterCategory enabled="partial"

name="TUXEDOOPSSAUDIT">SERVICECALL,ENQUEUE,DEQUEUE,POST,CONNECT,IMPERSONATE,LO
GON,LOGOFF,DECRYPT,SERVICESIGNATURE,SERVICEENCRYPTION,QUEUESIGNATURE,QUEUEENCR
YPTION,EVENTSIGNATURE,EVENTENCRYPTION,SIGNATURE,UNKNOWN</FilterCategory>
 </FilterPresetDefinition> </FilterPresetDefinitions>
 <Policy filterPreset="Custom">
 <CustomFilters>
 <FilterCategory enabled="partial"

name="TUXEDOOPSSAUDIT">SERVICECALL,ENQUEUE,DEQUEUE,POST,CONNECT,IMPERSONATE,LO
GON,LOGOFF,DECRYPT,SERVICESIGNATURE,SERVICEENCRYPTION,QUEUESIGNATURE,QUEUEENCR
YPTION,EVENTSIGNATURE,EVENTENCRYPTION,SIGNATURE,UNKNOWN</FilterCategory>
 </CustomFilters>
 </Policy>
 <AttributesMapping version="1.0" tableName="IAU_CUSTOM"
ns="tuxedo_opss_template">
 <AttributeColumn datatype="string" column="IAU_STRING_001"
attribute="visitorid"/>
 <AttributeColumn datatype="dateTime" column="IAU_DATETIME_001"
attribute="starttime"/>
 <AttributeColumn datatype="dateTime" column="IAU_DATETIME_002"
attribute="endtime"/>
 <AttributeColumn datatype="float" column="IAU_FLOAT_001"
attribute="fee"/>
 <AttributeColumn datatype="float" column="IAU_FLOAT_002"
attribute="item"/>
 </AttributesMapping>
 </AuditComponent>
 </AuditConfig>

Chapter 6
Configurations

6-13

6.3.4.4 system-jazn-data.xml
system-jazn-data.xml is an OPSS configuration file. Oracle Tuxdo provides this file by default
in $TUXDIR/udataobj/tuxj/opss, and uses it for this feature. You should keep this file as it is
and should not change or remove it. See Oracle Fusion Middleware Security Guide for more
information about this file.

6.3.5 Configure OPSS Audit Bus-Stop
This feature requires you to configure OPSS audit bus-stop.

OPSS audit bus-stop files are named audit_<rotation_index>.log. You can use underscore
("_") as a separator (current file should not have _<rotation_index>).

The location of audit bus-stop files is currently not configurable. Oracle Tuxedo OPSS audit
bus-stop file locates at the parent directory of jps-config.xml. For example,

<parent directory of
 jps-config.xml>/logs/auditLogs/<componentType>

See the following listing for an example.

Listing OPSS Audit Bus-Stop File Example

#Fields:Date Time Initiator EventType EventStatus MessageText AuditUser
ApplicationName AuditService:TransactionId ContextFields
 DomainName ECID EventCategory FailureCode HomeInstance HostId
HostNwaddr MajorVersion MinorVersion RID RemoteIP Resource Roles
 SessionId Target TargetComponentType TenantId ThreadId TransactionId
UserSession:AuthenticationMethod UserTenantId
 tuxedo_opss_template:endtime tuxedo_opss_template:fee
tuxedo_opss_template:item tuxedo_opss_template:starttime
 tuxedo_opss_template:visitorid

 #Remark Values:ComponentType="tuxedo_opss_template"
ReleaseVersion="MAIN"
 2015-05-12 06:27:39.259 - "SERVICECALL" true "WARN: TUXEDO AUDIT:
who = U1, operation_name = SERVICECALL, operation_target = TOUPPER, status =
operation success" - - - - - "0000Kp6nelk8TsS_MDS4ye1LKPpR000002,0"
 "TUXEDOOPSSAUDIT" - - "wyhbj" "10.182.54.145" "1" "0" - - - - - - -
- "12" - - - 2015-05-12 06:27:38.794 - - 2015-05-12 06:27:38.794 "U1"

6.4 Administration
• Change Audit Policy

6.4.1 Change Audit Policy
You can add/remove/change events in the static configuration file component_events.xml to
change audit policy at any time. Your audit policy change is effective right after you restart
Oracle Tuxedo (after tmboot, .TUXJPSAUDIT automatically update the audit policy in the
corresponding dynamic audit-store.xml).

Chapter 6
Administration

6-14

http://docs.oracle.com/cd/E12839_01/core.1111/e10043/apsysjaz.htm#JISEC2186

See component_events.xml (static) and audit-store.xml (dynamic) for more information.

Chapter 6
Administration

6-15

Glossary

Glossary-1

Index

Index-1

	Contents
	List of Figures
	List of Tables
	1 Overview
	1.1 What Security Means
	1.2 Security Plug-ins
	1.3 ATMI Security Capabilities
	1.4 Operating System (OS) Security
	1.5 Authentication
	1.5.1 Authentication Plug-in Architecture
	1.5.2 Understanding Delegated Trust Authentication
	1.5.3 Establishing a Session
	1.5.4 Getting Authorization and Auditing Tokens
	1.5.5 Replacing Client Tokens with Server Tokens
	1.5.6 Implementing Custom Authentication

	1.6 Authorization
	1.6.1 Authorization Plug-in Architecture
	1.6.2 How the Authorization Plug-in Works
	1.6.2.1 Default Authorization
	1.6.2.2 Custom Authorization

	1.6.3 Implementing Custom Authorization

	1.7 Auditing
	1.7.1 Auditing Plug-in Architecture
	1.7.2 How the Auditing Plug-in Works
	1.7.2.1 Default Auditing
	1.7.2.2 Custom Auditing

	1.7.3 Implementing Custom Auditing

	1.8 Link-Level Encryption
	1.8.1 How LLE Works
	1.8.2 Encryption Key Size Negotiation
	1.8.2.1 Determining Min-Max Values
	1.8.2.2 Finding a Common Key Size

	1.8.3 Backward Compatibility of LLE
	1.8.3.1 Interoperating with Release 6.5 Oracle Tuxedo Software
	1.8.3.2 Interoperating with Pre-Release 6.5 Oracle Tuxedo Software

	1.8.4 WSL/WSH Connection Timeout During Initialization

	1.9 TLS Encryption
	1.9.1 How the TLS Protocol Works
	1.9.2 Requirements for Using the TLS Protocol
	1.9.3 TLS Version Negotiation and Configuration
	1.9.4 Encryption Key Size Negotiation
	1.9.4.1 Determining Min-Max Values
	1.9.4.2 Finding a Common Key Size

	1.9.5 Backward Compatibility of TLS
	1.9.6 WSL/WSH Connection Timeout During Initialization
	1.9.7 Supported Cipher Suites
	1.9.8 TLS Installation

	1.10 Public Key Security
	1.10.1 PKCS-7 Compliant
	1.10.2 Supported Algorithms for Public Key Security
	1.10.2.1 Public Key Algorithms
	1.10.2.2 Digital Signature Algorithms
	1.10.2.3 Symmetric Key Algorithms
	1.10.2.4 Message Digest Algorithms

	1.11 Message-based Digital Signature
	1.11.1 Digital Certificates
	1.11.2 Certification Authority
	1.11.3 Certificate Repositories
	1.11.4 Public-Key Infrastructure

	1.12 Message-based Encryption
	1.13 Public Key Implementation
	1.13.1 Public Key Initialization
	1.13.2 Key Management
	1.13.3 Certificate Lookup
	1.13.4 Certificate Parsing
	1.13.5 Certificate Validation
	1.13.6 Proof Material Mapping
	1.13.7 Implementing Custom Public Key Security
	1.13.8 Default Public Key Implementation

	1.14 Default Authentication and Authorization
	1.14.1 Client Naming
	1.14.1.1 User-Client Names
	1.14.1.2 Application Key

	1.14.2 User, Group, and ACL Files
	1.14.3 Optional and Mandatory ACLs

	1.15 Security Interoperability
	1.15.1 Interoperating with Pre-Release 7.1 Software
	1.15.2 Interoperability for Link-Level Encryption
	1.15.3 Interoperability for TLS Encryption
	1.15.4 Interoperability for Public Key Security

	1.16 Security Compatibility
	1.16.1 Mixing Default/Custom Authentication and Authorization
	1.16.2 Mixing Default/Custom Authentication and Auditing
	1.16.3 Compatibility Issues for Public Key Security
	1.16.3.1 Compatibility/Interaction with Data-dependent Routing
	1.16.3.2 Compatibility/Interaction with Threads
	1.16.3.3 Compatibility/Interaction with the EventBroker
	1.16.3.4 Compatibility/Interaction with /Q
	1.16.3.5 Compatibility/Interaction with Transactions
	1.16.3.6 Compatibility/Interaction with Domain Gateways
	1.16.3.7 Compatibility/Interaction with Other Vendors’ Gateways

	1.17 Denial-of-Service (DoS) Defense
	1.17.1 Limited/Restricted Connection Numbers
	1.17.2 Setting Up Connection Limitations/Restrictions
	1.17.2.1 UBBCONFIG File
	1.17.2.1.1 Examples

	1.17.2.2 Messages

	1.17.3 Message Sanity Check
	1.17.4 Message Authentication Code (MAC) Usage
	1.17.4.1 Performance Impact

	1.17.5 Setting up Message Authentication Code (MAC) Usage
	1.17.5.1 DMCONFIG File Configuration
	1.17.5.2 MIB Configuration
	1.17.5.2.1 MAC Negotiation
	1.17.5.2.2 Messages
	1.17.5.2.3 ERROR Messages

	1.18 Password Pair Protection

	2 Administering Security
	2.1 What Administering Security Means
	2.2 Security Administration Tasks
	2.3 Setting the Oracle Tuxedo Registry
	2.3.1 Purpose of the Oracle Tuxedo Registry
	2.3.2 Registering Plug-ins

	2.4 Configuring an ATMI Application for Security
	2.4.1 Editing the Configuration File
	2.4.2 Changing the TM_MIB

	2.5 Setting Up the Administration Environment
	2.5.1 Administering Operating System (OS) Security
	2.5.1.1 Recommended Practices for OS Security

	2.6 Administering Authentication
	2.7 Specifying Principal Names
	2.7.1 How System Processes Acquire Credentials
	2.7.2 Why System Processes Need Credentials
	2.7.3 Example UBBCONFIG Entries for Principal Names

	2.8 Mandating Interoperability Policy
	2.8.1 Establishing an Identity for an Older Client
	2.8.1.1 How the WSH Establishes an Identity for an Older Client
	2.8.1.2 How the Domain Gateway Establishes an Identity for an Older Client
	2.8.1.3 How the Server Establishes an Identity for an Older Client

	2.8.2 Summarizing How the CLOPT -t Option Works
	2.8.3 Example UBBCONFIG Entries for Interoperability

	2.9 Establishing a Link Between Domains
	2.9.1 Example DMCONFIG Entries for Establishing a Link

	2.10 Setting ACL Policy
	2.10.1 Impersonating the Remote Domain Gateway
	2.10.2 Example DMCONFIG Entries for ACL Policy

	2.11 Setting Credential Policy
	2.12 Administering Authorization
	2.13 Administering Link-Level Encryption
	2.13.1 Understanding LLE min and max Values
	2.13.2 How to Configure LLE on Workstation Client Links
	2.13.3 How to Configure LLE on Bridge Links
	2.13.4 How to Configure LLE on tlisten Links
	2.13.5 How to Configure LLE on Domain Gateway Links

	2.14 Administering TLS Encryption
	2.14.1 Understanding TLS min and max Values
	2.14.2 How to Configure TLS on Workstation Client Links
	2.14.3 How to Configure TLS on Bridge Links
	2.14.4 How to Configure TLS on tlisten Links
	2.14.5 How to Configure TLS on Domain Gateway Links
	2.14.6 Development Process for the TLS Protocol
	2.14.7 Creating an Oracle Wallet
	2.14.7.1 Creating an Oracle Wallet with orapki
	2.14.7.2 Creating an Oracle Wallet with openssl

	2.14.8 Runtime Creation of an Oracle Wallet
	2.14.9 Use of the TUXCREATEWALLET Environment Variable
	2.14.10 Debugging TLS Connection Problems
	2.14.10.1 Enabling NZ Tracing
	2.14.10.2 Connection Establishment Log Message
	2.14.10.3 Displaying the Contents of an Oracle Wallet
	2.14.10.4 Obtaining NZ Error Code Information

	2.15 Administering Public Key Security
	2.15.1 Recommended Practices for Public Key Security
	2.15.2 Assigning Public-Private Key Pairs
	2.15.3 Setting Digital Signature Policy
	2.15.3.1 Setting a Postdated Limit for Signature Timestamps
	2.15.3.1.1 Example UBBCONFIG Entries for Postdated Limit

	2.15.3.2 Setting a Predated Limit for Signature Timestamps
	2.15.3.2.1 Example UBBCONFIG Entries for Predated Limit

	2.15.3.3 Enforcing the Signature Policy for Incoming Messages
	2.15.3.3.1 Qualifier
	2.15.3.3.2 Example

	2.15.3.4 How the EventBroker Signature Policy Is Enforced
	2.15.3.5 How the /Q Signature Policy Is Enforced
	2.15.3.6 How the Remote Client Signature Policy Is Enforced

	2.15.4 Setting Encryption Policy
	2.15.4.1 Enforcing the Encryption Policy for Incoming Messages
	2.15.4.1.1 Qualifier
	2.15.4.1.2 Example

	2.15.4.2 How the EventBroker Encryption Policy Is Enforced
	2.15.4.3 How the /Q Encryption Policy Is Enforced
	2.15.4.4 How the Remote Client Encryption Policy Is Enforced

	2.15.5 Initializing Decryption Keys Through the Plug-ins
	2.15.5.1 Example UBBCONFIG Entries for Principal Names and Decryption Keys

	2.15.6 Failure Reporting and Auditing
	2.15.6.1 Digital Signature Error Handling
	2.15.6.2 Encryption Error Handling

	2.16 Administering Default Authentication and Authorization
	2.16.1 Designating a Security Level
	2.16.1.1 Establishing Security by Editing the Configuration File
	2.16.1.2 Establishing Security by Changing the TM_MIB

	2.16.2 Configuring the Authentication Server

	2.17 How to Enable Application Password Security
	2.18 How to Enable User-Level Authentication Security
	2.18.1 Setting Up the UBBCONFIG File
	2.18.2 Setting Up the User and Group Files
	2.18.2.1 Converting System Security Data Files to Oracle Tuxedo User and Group Files
	2.18.2.2 Adding, Modifying, or Deleting Users and Groups
	2.18.2.2.1 Changing Entries for Users and Groups Through Commands
	2.18.2.2.2 Changing Entries for Users and Groups Through the ACL_MIB

	2.19 Enabling Access Control Security
	2.19.1 How to Enable Optional ACL Security
	2.19.1.1 Setting Up the UBBCONFIG File
	2.19.1.2 Setting Up the ACL File
	2.19.1.2.1 Changing ACL Entries Through Commands
	2.19.1.2.2 Changing ACL Entries Through the ACL_MIB

	2.19.2 How to Enable Mandatory ACL Security
	2.19.2.1 Setting Up the UBBCONFIG File
	2.19.2.2 Setting Up the ACL File

	2.19.3 How to Enable Generic LDAP Based Security
	2.19.3.1 Setting Up the UBBCONFIG File
	2.19.3.2 Setting Up the XAUTHSVR Server Configuration File
	2.19.3.3 Setting Up the LDAP Repository
	2.19.3.4 Setting Up the Authorization Cache

	2.19.4 How to Enable Security Service for OES

	2.20 Using the Kerberos Authentication Plug-in
	2.21 Kerberos Plug-In
	2.21.1 Kerberos Supported Platforms
	2.21.2 Kerberos Plug-in Features

	2.22 Kerberos Plug-In Pre-configuration
	2.23 Kerberos Plug-In Configuration
	2.23.1 Configure the Kerberos Plug-in
	2.23.1.1 Restore Default Plug-in

	2.23.2 Configure KAUTHSVR
	2.23.3 Configure Tuxedo Native Client
	2.23.4 Limitations

	2.24 Using the Cert-C PKI Encryption Plug-in
	2.25 Cert-C PKI Encryption Plug-In
	2.26 Cert-C PKI Encryption Plug-In Pre-configuration
	2.27 Cert-C PKI Encryption Plug-In Configuration
	2.27.1 Configure Certificate Lookup
	2.27.1.1 OpenLDAP for X.509 Certificate Lookup

	2.27.2 Configure Key Management
	2.27.2.1 decPassword
	2.27.2.2 privateKeyDir

	2.27.3 Configure Certificate Parsing
	2.27.4 Configure Certificate Validation
	2.27.4.1 caCertificateFile
	2.27.4.2 crlFile

	2.27.5 Sample Registry Command File
	2.27.6 Limitations

	3 Programming Security
	3.1 What Programming Security Means
	3.2 Programming an ATMI Application with Security
	3.3 Setting Up the Programming Environment
	3.4 Writing Security Code So Client Programs Can Join the ATMI Application
	3.5 Getting Security Data
	3.6 Joining the ATMI Application
	3.6.1 Transferring the Client Security Data
	3.6.2 Calling a Service Request Before Joining the ATMI Application

	3.7 Writing Security Code to Protect Data Integrity and Privacy
	3.7.1 ATMI Interface for Public Key Security
	3.7.2 Recommended Uses of Public Key Security

	3.8 Sending and Receiving Signed Messages
	3.8.1 Writing Code to Send Signed Messages
	3.8.1.1 Step 1: Opening a Key Handle for Digital Signature
	3.8.1.2 Step 2 (Optional): Getting Key Handle Information
	3.8.1.3 Step 3 (Optional): Changing Key Handle Information
	3.8.1.4 Step 4: Allocating a Buffer and Putting a Message in the Buffer
	3.8.1.5 Step 5: Marking the Buffer for Digital Signature
	3.8.1.6 Step 6: Sending the Message
	3.8.1.7 Step 7: Closing the Signer’s Key Handle
	3.8.1.8 How the System Generates a Digital Signature
	3.8.1.8.1 Signature Timestamp
	3.8.1.8.2 Multiple Signatures
	3.8.1.8.3 Signed Message Content

	3.8.2 How a Signed Message Is Received
	3.8.2.1 Verifying Digital Signatures
	3.8.2.2 Verifying and Transmitting an Input Buffer’s Signatures
	3.8.2.3 Replacing an Output Buffer’s Signatures

	3.9 Sending and Receiving Encrypted Messages
	3.9.1 Writing Code to Send Encrypted Messages
	3.9.1.1 Step 1: Opening a Key Handle for Encryption
	3.9.1.2 Step 2 (Optional): Getting Key Handle Information
	3.9.1.3 Step 3 (Optional): Changing Key Handle Information
	3.9.1.4 Step 4: Allocating a Buffer and Putting a Message in the Buffer
	3.9.1.5 Step 5: Marking the Buffer for Encryption
	3.9.1.6 Step 6: Sending the Message
	3.9.1.7 Step 7: Closing the Encryption Key Handle
	3.9.1.8 How the System Encrypts a Message Buffer
	3.9.1.8.1 Multiple Message Recipients
	3.9.1.8.2 Encrypted Message Content

	3.9.2 Writing Code to Receive Encrypted Messages
	3.9.2.1 Step 1: Opening a Key Handle for Decryption
	3.9.2.2 Step 2 (Optional): Getting Key Handle Information
	3.9.2.3 Step 3 (Optional): Changing Key Handle Information
	3.9.2.4 Step 4: Closing the Decryption Key Handle
	3.9.2.5 How the System Decrypts a Message Buffer
	3.9.2.5.1 Discarding an Input Buffer’s Encryption Envelopes
	3.9.2.5.2 Replacing an Output Buffer’s Encryption Envelopes

	3.10 Examining Digital Signature and Encryption Information
	3.10.1 What Happens When an Originating Process Calls tpenvelope
	3.10.2 What Happens When a Receiving Process Calls tpenvelope
	3.10.3 Understanding the Composite Signature Status
	3.10.4 Example Code for tpenvelope

	3.11 Externalizing Typed Message Buffers
	3.11.1 How to Create an Externalized Representation
	3.11.2 How to Convert an Externalized Representation
	3.11.3 Example Code for tpexport and tpimport

	4 Quick Reference for TLS Support
	4.1 Overview
	4.2 Supported Tuxedo Components
	4.3 TLS Version Configuration
	4.4 Supported Cipher Suites
	4.5 Upgrade from Previous Versions to TLS 1.3
	4.6 Interoperability

	5 Implementing Single Point Security Administration
	5.1 What Single Point Security Administration Means
	5.1.1 Single Point Security Administration Tasks

	5.2 Setting up LAUTHSVR as the Authentication Server
	5.2.1 LAUTHSVR Command Line Interface
	5.2.2 Setting Up the LAUTHSVR Configuration File
	5.2.2.1 Syntax Requirements for LAUTHSVR Configuration File
	5.2.2.2 LAUTHSVR Configuration File Keywords
	5.2.2.3 Example LAUTHSVR Configuration File

	5.2.3 Example UBBCONFIG Using LAUTHSVR
	5.2.4 Using Multiple Network Addresses for High Availability
	5.2.4.1 Example LAUTHSVR Configuration of Multiple Network Addresses

	5.2.5 Configuring the Database Search Order
	5.2.5.1 Example LAUTHSVR Configuration for Database Search Order

	5.2.6 Using tpmigldap to Migrate User Information to WebLogic Server
	5.2.6.1 Assigning New Passwords for the tpusr File
	5.2.6.2 tpmigldap Command Line Options

	5.2.7 Adding New Tuxedo User Information
	5.2.7.1 Adding New User Information in tpusr or tpgrp
	5.2.7.2 Adding New User Information Using the WebLogic Administration Console

	5.3 Setting up GAUTHSVR as the Authentication Server
	5.3.1 GAUTHSVR Command Line Interface
	5.3.2 Setting Up the GAUTHSVR Configuration File
	5.3.2.1 Syntax Requirements for GAUTHSVR Configuration File
	5.3.2.2 GAUTHSVR Configuration File Keywords
	5.3.2.3 Example GAUTHSVR Configuration File

	5.3.3 Example UBBCONFIG Using GAUTHSVR
	5.3.4 Using tpmigldif to Migrate User Information
	5.3.4.1 Using tpmigldif Command Line Options
	5.3.4.2 tpusr and tpgrp File Format
	5.3.4.2.1 Assigning New Passwords for the tpusr File (Optional)

	5.3.4.3 Creating a Migration Template

	5.3.5 Supported LDAP Server Template Example

	5.4 Setting up OAUTHSVR as the Authentication Server
	5.4.1 Setting Up the OAUTHSVR Configuration File
	5.4.1.1 Syntax Requirements for OAUTHSVR Configuration File
	5.4.1.2 OAUTHSVR Configuration File Keywords
	5.4.1.3 OAM Access Client Configuration (OAM_CONFIG_DIR)
	5.4.1.3.1 Limitations

	5.4.1.4 Examples
	5.4.1.4.1 1. Example OAUTHSVR Configuration File
	5.4.1.4.2 2. Example UBBCONFIG Using OAUTHSVR
	5.4.1.4.3 3. Example tjsoam.xml Java Server Configuration File

	5.4.2 /T DOMAIN Support
	5.4.3 Oracle SALT Support
	5.4.4 WTC Support
	5.4.5 Oracle JCA Support

	6 Integrating Audit with Oracle Platform Security Services (OPSS)
	6.1 Overview
	6.2 Components and Deployment
	6.2.1 Audit Flow

	6.3 Configurations
	6.3.1 Register OPSS Audit Plug-In to Oracle Tuxedo Registry
	6.3.1.1 Register OPSS Audit Plug-In to Oracle Tuxedo Registry
	6.3.1.2 Unregister OPSS Audit Plug-In from Oracle Tuxedo Registry

	6.3.2 Configure Oracle Tuxedo Auditing Framework
	6.3.3 Configure Oracle Tuxedo OPSS Audit Module
	6.3.3.1 Configure Oracle Tuxedo Java Server (TMJAVASVR)
	6.3.3.2 Configure Oracle Tuxedo OPSS Audit Module
	6.3.3.2.1 java-config
	6.3.3.2.2 classpath-config

	6.3.4 Configure OPSS Configuration Files
	6.3.4.1 jps-config.xml
	6.3.4.2 java.policy
	6.3.4.3 component_events.xml (static) and audit-store.xml (dynamic)
	6.3.4.4 system-jazn-data.xml

	6.3.5 Configure OPSS Audit Bus-Stop

	6.4 Administration
	6.4.1 Change Audit Policy

	Glossary
	Index

