
Oracle® Tuxedo
Application Runtime for Batch User's Guide

Release 22c
F89454-01
June 2024

Oracle Tuxedo Application Runtime for Batch User's Guide, Release 22c

F89454-01

Copyright © 2010, 2024, Oracle and/or its affiliates.

Primary Author: Priya Pathak

Contributing Authors: Tulika Das

Contributors: Maggie Li

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility viii

Organization viii

1 Overview of the Batch Runtime Environment

1.1 Oracle Tuxedo Application Runtime for Batch Presentation and Structure 1-1

1.1.1 Technical Functions 1-1

1.1.2 High-Level Functions 1-1

1.1.3 Interface-Level Functions 1-1

1.2 Script Execution Phases 1-2

2 Using Batch Runtime

2.1 Configuration Files 2-1

2.1.1 BatchRT.conf 2-1

2.1.2 Messages.conf 2-2

2.1.3 FunctionReturnCode.conf 2-2

2.1.4 ReturnCode.conf 2-2

2.1.5 Writer.conf 2-2

2.2 Setting Environment Variables 2-2

2.2.1 Environment Variables for EJR 2-2

2.2.2 Environment Variables for Native JCL 2-9

2.3 Configuring Batch Runtime in MP Mode 2-12

2.4 Creating a Script 2-13

2.4.1 General Structure of a Script 2-13

2.4.2 Script Example 2-14

2.4.3 Defining and Using Symbols 2-15

2.4.4 Creating a Step That Executes a Program 2-16

2.4.5 Application Program Abend Execution 2-16

2.4.6 Creating a Procedure 2-17

2.4.6.1 Creating an In-Stream Procedure 2-17

2.4.6.2 Creating an External Procedure 2-17

2.4.7 Using a Procedure 2-18

iii

2.4.8 Modifying a Procedure at Execution Time 2-18

2.4.8.1 Using Overrides for File Assignments 2-19

2.5 Controlling Script Behavior 2-20

2.5.1 Conditioning the Execution of a Step 2-20

2.5.1.1 Using m_CondIf, m_CondElse, and m_CondEndif 2-20

2.5.1.2 Using m_CondExec 2-21

2.5.2 Controlling the Execution Flow 2-21

2.5.3 Changing Default Error Messages 2-22

2.6 Different Behaviors from z/OS 2-22

2.7 Using Files 2-22

2.7.1 Creating a File Definition 2-23

2.7.1.1 m_FileBuild Examples 2-23

2.7.1.2 m_FileAssign Examples 2-23

2.7.2 Assigning and Using Files 2-23

2.7.2.1 About DD DISP=MOD 2-24

2.7.3 Concurrent File Accessing Control 2-26

2.7.4 Using Generation Data Group (GDG) 2-26

2.7.4.1 GDG Management Functionalities 2-26

2.7.4.2 File-Based Management 2-32

2.7.4.3 DB-Based Management 2-32

2.7.4.4 Support for Data Control Block (DCB) 2-35

2.7.5 Using an In-Stream File 2-36

2.7.6 Using a Set of Concatenated Files 2-37

2.7.7 Using an External “sysin” 2-37

2.7.8 Deleting a File 2-37

2.7.9 RDB Files 2-37

2.7.10 Using an RDBMS Connection 2-38

2.8 Submitting a Job Using INTRDR Facility 2-39

2.9 Submitting a Job With EJR 2-40

2.10 User-Defined Entry/Exit 2-40

2.10.1 Configuration 2-41

2.11 Batch Runtime Logging 2-41

2.11.1 General Introduction 2-41

2.11.1.1 Log Message Format 2-41

2.11.1.2 Log Message Level 2-42

2.11.1.3 Log Level Control 2-42

2.11.1.4 Log File Structure 2-43

2.11.2 Log Header 2-43

2.11.2.1 Configuration 2-44

2.11.3 File Information Logging 2-45

2.11.3.1 Configuration 2-45

2.12 Using Batch Runtime With a Job Scheduler 2-47

iv

2.13 Executing an SQL Request 2-47

2.14 Simple Application on COBOL-IT / BDB 2-47

2.15 Native JCL Job Execution 2-48

2.15.1 General Introduction 2-48

2.15.2 Configurations 2-48

2.15.3 Using JES Client to Manage JCL Jobs 2-48

2.15.3.1 Submitting a JCL Job 2-49

2.15.3.2 Printing Jobs 2-49

2.15.3.3 Holding/Releasing/Canceling/Purging a JCL Job 2-49

2.15.3.4 JCL Engine's Debug Trace File 2-49

2.15.4 Supporting Range for JCL Statements and Utilities 2-49

2.16 Native JCL Test Mode 2-51

2.16.1 General Introduction 2-52

2.16.2 Configurations 2-52

2.16.2.1 Environment Variables Configurations (Mandatory) 2-52

2.16.2.2 Native JCL Configuration File Configurations (Optional) 2-52

2.16.3 Using Client to Manage Test Mode 2-53

2.16.4 Test Mode Report Files 2-53

2.16.4.1 Individual Report File 2-54

2.16.4.2 Category Report File 2-56

2.16.4.3 Summary Report File 2-58

2.17 Network Job Entry (NJE) Support 2-61

2.17.1 General Introduction 2-61

2.17.2 Configurations 2-61

2.17.2.1 Job Execution Server Group 2-61

2.17.2.2 ON/OFF Setting of NJE Support 2-62

2.17.2.3 Environment Variable MT_TMP in MP Mode 2-62

2.17.2.4 Queue EXECGRP 2-62

2.17.3 NJE Job Sample 2-62

2.18 File Catalog Support 2-64

2.18.1 General Introduction 2-64

2.18.2 Database Table 2-64

2.18.3 Configuration Variables 2-65

2.18.4 External Shell Scripts 2-65

2.18.4.1 Description 2-65

2.18.4.2 Usage 2-66

2.18.4.3 Sample 2-66

2.18.4.4 DropTableCatalog[Oracle|Db2].sh 2-66

2.18.5 External Dependency 2-66

2.19 Launching REXX EXECs 2-66

2.19.1 Setting MT_REXX_PATH 2-66

2.19.2 Launching REXX EXECs 2-66

v

2.19.3 TSO Batch Commands 2-67

2.20 COBOL Program Access to Oracle and TimesTen Database 2-67

2.20.1 Setting Environment Variables 2-67

2.20.2 Programming in COBOL 2-68

2.20.3 Preprocessing COBOL Programs 2-68

2.20.4 Examples 2-68

2.20.4.1 Example for Setting Environment Variables 2-69

2.20.4.2 Example for COBOL Programs Accessing to Oracle Database 2-69

2.20.4.3 Example for COBOL Programs Accessing to TimesTen Database 2-69

2.20.4.4 Example for Preprocessing COBOL Programs 2-69

2.20.4.5 Example for Compiling COBOL Programs (CIT) 2-70

3 Best Practices

3.1 Adapting z/OS Capabilities on a UNIX/Linux Environment 3-1

3.1.1 Defining Paths for Procedures, Includes and Programs 3-1

3.1.2 Prohibiting the Use of UNIX Commands 3-1

3.1.3 Avoiding the Use of File Overriding 3-2

4 Using Tuxedo Job Enqueueing Service (TuxJES)

4.1 Overview 4-1

4.1.1 Requirements 4-1

4.1.2 TuxJES Components 4-1

4.2 Configuring a TuxJES System 4-2

4.2.1 Setting up TuxJES as an Oracle Tuxedo Application (Using /Q) 4-2

4.2.1.1 Oracle Tuxedo Configuration File 4-2

4.2.1.2 Oracle Tuxedo /Q Queue Space and Queue Creation 4-5

4.2.1.3 File System Configuration 4-5

4.2.1.4 TuxJES Configuration File 4-5

4.2.1.5 TuxJES Security Configuration 4-8

4.2.1.6 TuxJES User Mapping File 4-9

4.2.2 Setting up TuxJES as an Oracle Tuxedo Application (Using Database) 4-9

4.2.2.1 Setting Up TuxJES 4-9

4.2.2.2 Setting Up Oracle Database 4-10

4.2.2.3 Setting Up DB2 Database 4-13

4.2.2.4 Setting Up BDB Database 4-15

4.2.3 Setting Up TuxJES in MP Mode 4-16

4.3 Using TuxJES 4-16

4.3.1 Submitting a Job 4-16

4.3.2 Displaying Job Information 4-17

4.3.2.1 Getting Job Status (Synchronous) 4-18

vi

4.3.3 Holding a Job 4-19

4.3.4 Releasing a Job 4-19

4.3.5 Canceling a Job 4-20

4.3.6 Purging a Job 4-20

4.3.6.1 Automatic Job Purge 4-20

4.3.7 Displaying/Changing ARTJESINITIATOR Configuration 4-22

4.3.8 Controlling ARTJESINITIATOR Servers 4-22

4.3.8.1 Controlling ARTJESINITIATOR Servers (Synchronous) 4-23

4.3.9 Event Subscribing/Unsubscribing 4-24

4.4 Authorizing TuxJES Job Access 4-24

4.4.1 Configuring Job Access Authorization Mechanism 4-25

4.4.2 Using Job Operation Authorization Rules 4-25

4.4.2.1 Setting Rules 4-25

4.4.2.2 Processing Rules 4-27

4.4.2.3 Adding Comments to Rules 4-27

4.4.2.4 Examples 4-28

4.4.3 Using artjesadmin to Dynamically Change Job Access Authorization 4-29

4.5 Tracing TuxJES 4-29

4.5.1 Setting Environment Variables 4-30

4.5.2 Understanding TuxJES Trace File 4-30

4.5.3 Understanding TuxJES Trace Message Format 4-30

4.5.4 Understanding TuxJES Trace Message Level 4-31

4.5.5 Controlling TuxJES Trace Message Level 4-31

4.5.5.1 Using JESTRACE to Set TuxJES Trace Message Level 4-31

4.5.5.2 Using artjesadmin to Dynamically Change TuxJES Trace Message Level 4-31

5 Using ART BATCH ISPF

5.1 Overview 5-1

5.2 Prerequisites 5-1

5.3 Using ART Batch ISPF 5-1

5.3.1 Administering ART Batch 5-2

5.3.2 Controlling ART Batch Jobs 5-2

6 Debugging COBOL Programs

6.1 Debugging with Micro Focus COBOL 6-1

6.2 Debugging with COBOL-IT COBOL 6-1

6.3 Configuring for Debugging in Configuration File 6-2

vii

Preface

The aim of the following guide is to help users understand and write Korn-Shell scripts to be
used with the Batch Runtime, and how to use Tuxedo Job Enqueueing Service (TuxJES).

The guide covers the usual tasks that are performed within Korn-Shell scripts, whether they
are the result of a conversion from z/OS JCL or newly written for the target platform. The guide
also covers the usage of TuxJES.

• Documentation Accessibility

• Organization

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Organization
This guide is divided into four main chapters:

• Overview of the Batch Runtime: This chapter introduces the general principles of the Batch
Runtime.

• Using the Batch Runtime: This chapter describes, through various examples, how to
perform the usual tasks required to implement the Batch Runtime. This section describes
how the different Oracle Tuxedo Application Runtime for Batch high-level functions can be
assembled in order to create a single "step", and then how the different steps are
assembled in order to create a complete Korn shell script

• Best Practices: This chapter provides guidance for preserving z/OS capabilities on the
target platform.

• Using TuxJES: This chapter provides guidance for configuring and executing TuxJES.

For more information about Batch Runtime, specifically on how to code the different functions,
see Oracle Tuxedo Application Runtime for Batch Reference Guide

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview of the Batch Runtime Environment

This chapter contains the following topics:

• Oracle Tuxedo Application Runtime for Batch Presentation and Structure

• Script Execution Phases

1.1 Oracle Tuxedo Application Runtime for Batch Presentation
and Structure

The purpose of the Batch Runtime is to provide functions enabling a robust production
environment on a UNIX/Linux platform.

Oracle Tuxedo Application Runtime for Batch is composed of:

• Technical Functions

• High-Level Functions

• Interface-Level Functions

1.1.1 Technical Functions
The technical level contains simple one-action functions: easy to write, easy to maintain and
easy to debug. For example, GDG (Generation Data Group) management belongs to this level.
This technical level is the robust base of the Batch Runtime.

1.1.2 High-Level Functions
The high-level functions provide entry points to the Batch Runtime. This level homogenizes the
behavior of functions, in order for them to be called in a production script. A high-level function
follows a skeleton which provide robust logical workflow (execution on/off, options check,
predefined return codes …).

In this level, we find functions to:

• Manage files (creation, copy, assignation…)

• Launch programs (COBOL, executable …)

• Databases (connection/disconnection/commit/rollback for program, SQL execution)

• Produce reports

• Run utilities

1.1.3 Interface-Level Functions
The interface level allow users to interact with the Batch Runtime job management:
submission, holding and releasing, class management, reporting, monitoring …

1-1

Oracle Tuxedo Application Runtime for Batch offers robust and useful production functions.
With these functions, you can easily emulate JCL and JES2 features, and have extra features
like "no exec mode", return code predefinition (customizable), internationalization.

Oracle Tuxedo Application Runtime for Batch uses a native shell interpreter for high level
functions. This approach enables you to add new runtime functions for specific production
needs

1.2 Script Execution Phases
When submitted for execution within the Batch Runtime, a Korn shell script is processed
through three separate phases:

Input Phase

In this phase, the JOB card parameters are analyzed.

Conversion Phase

During this phase, the Batch Runtime performs the following actions:

• Expand all the external Korn shell scripts (procedures and/or includes) that are used within
the script so as to produce a single complete script.

• Resolve all the symbols that are used in the script replacing them by their current values.

Execution Phase

The script is executed by the Batch Runtime.

Chapter 1
Script Execution Phases

1-2

2
Using Batch Runtime

This chapter contains the following topics:

• Configuration Files

• Setting Environment Variables

• Configuring Batch Runtime in MP Mode

• Creating a Script

• Controlling Script Behavior

• Different Behaviors from z/OS

• Using Files

• Submitting a Job Using INTRDR Facility

• Submitting a Job With EJR

• User-Defined Entry/Exit

• Batch Runtime Logging

• Using Batch Runtime With a Job Scheduler

• Executing an SQL Request

• Simple Application on COBOL-IT / BDB

• Native JCL Job Execution

• Native JCL Test Mode

• Network Job Entry (NJE) Support

• File Catalog Support

• Launching REXX EXECs

• COBOL Program Access to Oracle and TimesTen Database

2.1 Configuration Files
The Configuration files are implemented in the directory CONF of the RunTime Batch.

• BatchRT.conf

• Messages.conf

• FunctionReturnCode.conf

• ReturnCode.conf

• Writer.conf

2.1.1 BatchRT.conf
This file contains variables definition.

2-1

These variables must be set before using the RunTime Batch.

2.1.2 Messages.conf
This file contains messages used by RTBatch.

The messages may be translated in a local language.

2.1.3 FunctionReturnCode.conf
This file contains internal codes associated with a message.

2.1.4 ReturnCode.conf
This file contains return codes associated with a message and returned to the KSH script.

2.1.5 Writer.conf
This file contains usage and samples of writer.

Users can add their writers into this file.

2.2 Setting Environment Variables
Some variables (such as ORACLE_SID, COBDIR, LIBPATH, COBPATH …) are shared variables
between different components and are not described in this current document. For more
information, see Rehosting Workbench Installation Guide.

• Environment Variables for EJR

• Environment Variables for Native JCL

2.2.1 Environment Variables for EJR
The following table lists the environment variables that are used in the KSH scripts and must
be defined before using the software.

Table 2-1 KSH Script Environment Variables

Variable Usage

DATA Directory for permanent files.

TMP Directory for temporary application files.

SYSIN Directory where the sysin are stored.

MT_JOB_NAME Name of the job, managed by the Batch Runtime.

MT_JOB_PID PID (process id) of the job, managed by the Batch Runtime.

Note:

For DATA and TMP, the full path can only contain [a-zA-Z0-9_/.].

Chapter 2
Setting Environment Variables

2-2

https://docs.oracle.com/cd/E72452_01/artwb/docs1222/wbinst/index.html

The following table lists the environment variables that are used by Batch Runtime and must
be defined before using the software.

Table 2-2 Oracle Tuxedo Application Runtime for Batch Environment Variables

Variable Usage

JESDIR Directory where TuxJES is installed.

PROCLIB Directory for PROC and INCLUDE files, used during the conversion
phase.

MT_ACC_FILEPATH File concurrency access, directory that contains the files AccLock and
AccWait. These files must be created empty before running the Batch
Runtime ().

MT_COBOL Depending on the used COBOL, must contain:
• “COBOL_MF” for Micro Focus COBOL
• “COBOL_IT” for COBOL-IT
• “COBOL_NONE" if users neither have any COBOL programs to run

nor use any COBOL product; besides, with this setting, only GDG,
LSEQ, Fixed length SEQ, and PDS files are supported.

MT_CTL_FILES Directory where the control file (CTL) used by the function
m_DBTableLoad (sqlldr with ORACLE, load and export with UDB).

MT_DSNUTILB_LOADUNLOAD Indicates the working mode of m_DBTableLoad and
m_DBTableUnload.

When it is set to "yes", m_DBTableLoad and m_DBTableUnload call
the COBOL programs; in this mode, the related data file for load/unload
are in the same format as in z/OS for utility DSNUTILB (Load/Unload)
and for utility DSNTIAUL (Unload). The COBOL program name could be:
schema-table-L (DSNUTILB Load), schema-table-U (DSNUTILB
Unload), or schema-table-u (DSNTIAUL Unload).

When it is set to other values than "yes", "MT_CTL_FILES" are
necessary for m_DBTableLoad and m_DBTableUnload.

MT_DB_DEFAULT_SCHEMA Indicates the default schema for DB, When MT_DSNUTILB_LOADUNLOAD
is set to "yes". The default value is "DEFSCHEMA". This variable is used
for specify the schema for COBOL programs "schema-table-L" and
"schema-table-U".

MT_DB Depending on the target data base, must contain:

- “DB_ORACLE”: means for ORACLE

- “DB_DB2LUW”: means for UDB

MT_DB_LOGIN Database connection user.

MT_FROM_ADDRESS_MAIL From-Address used by the function m_SendMail when the option “-f” is
omitted.

MT_FTP_TEST Variable used by the function m_Ftp to do the tranfer or not (test mode).

MT_GENERATION A mandatory environment variable which indicates the directory to GDG
technical functions.

The default is directory GENERATION_FILE. To manage GDG files in
database, you need to set the value to GENERATION_FILE_DB and
configure MT_GDG_DB_ACCESS appropriately. If the value is specified as
NULL or with an incorrect directory name, error occurs when using this
environment variable.

Chapter 2
Setting Environment Variables

2-3

Table 2-2 (Cont.) Oracle Tuxedo Application Runtime for Batch Environment Variables

Variable Usage

MT_KSH Path of the used "ksh" (pdksh or ksh88 only).

Note:

• Do not copy pdksh from other
machines. You should either
download the source code from
official website and then build pdksh
executable from it, or install pdksh
through the official installer which is
included in the corresponding OS
release image.

• If you build pdksh from source code,
recommend that you define the CPU
frequency (CLK_TCK, in ksh_time.h)
from 60HZ to 100HZ, as most modern
Linux/UNIX platforms use 100 as their
default CPU frequency.

• For more information about pdksh,
see https://github.com/Orc/pdksh

MT_LOG Logs directory (without TuxJes).

MT_ROOT Directory where the Batch Runtime application has been installed. (See
the BatchRT.conf configuration file)

MT_SMTP_PORT Port used by the functions m_Smtp and m_SendMail (localhost by
default).

MT_SMTP_SERVER Server used by the functions m_Smtp and m_SendMail (25 by default).

MT_SORT Depending on the used SORT, must contain:
- “SORT_MicroFocus” for Micro Focus Sort Utility

- “SORT_SyncSort” for SyncSort Sort Utility

- “SORT_CIT” for citsort utility

MT_SYSOUT Sysout directory (without TuxJes).

MT_TMP Directory for temporary internal files

MT_EXCI EXCI Interface (Default is Oracle Tuxedo).

MT_JESDECRYPT MT_JESDECRYPT must be set to jesdecrypt object file.

MT_EXCI_XA Name of the resource manager for XA.

MT_EXCIGRPNAME TUXEDO SRVGRP value of the ARTDPL server.

See Also:

For more information, see BatchRT.conf

Chapter 2
Setting Environment Variables

2-4

https://github.com/Orc/pdksh

Note:

For the following environment variables, the full path can only contain [a-zA-
Z0-9_/.]

• JESDIR
• MT_KSH
• MT_LOG
• MT_REFINEDIR
• MT_SYSOUT
• MT_TMP
The following table lists optional environment variables used by Batch Runtime:

Table 2-3 Oracle Tuxedo Application Runtime for Batch Environment Variables
(Optional)

Variable Usage

MT_ACC_WAIT Retry interval (seconds) to acquire file lock when a job tries to access a
file that is locked by other jobs.

MT_ACC_MAXWAIT Maximum wait time (seconds) to acquire file lock. If the lock is not
acquired within such time, relevant file operation will fail.

MT_CATALOG_DB_LOGIN Variable used with valid database login information to access Database
file catalog. Its format is the same as MT_DB_LOGIN

Note:

It precedes MT_DB_LOGIN in accessing file
catalog. If file catalog DB is the same as
data DB, configuring MT_DB_LOGIN only is
required; otherwise, both must be
configured.

MT_CLEANUP_EMPTY_SYSOUT Controls whether empty SYSOUT files are cleaned up at the end of job
execution.
• MT_CLEANUP_EMPTY_SYSOUT=Y: empty SYSOUT files are cleaned

up.
• MT_CLEANUP_EMPTY_SYSOUT=N: empty SYSOUT files are not

cleaned up.
The default value is Y.

Chapter 2
Setting Environment Variables

2-5

Table 2-3 (Cont.) Oracle Tuxedo Application Runtime for Batch Environment Variables
(Optional)

Variable Usage

MT_CONFIG_FILE A variable to use the specified configuration file instead of the default
configuration file BatchRT.conf under "ejr/CONF".
• For jobs submitted from EJR, export this variable in advance. You

can restore the default configuration file BatchRT.conf by
unsetting this variable.

• For jobs submitted from TUXJes, export this variable before
restarting TuxJes servers. You can restore the default configuration
file BatchRT.conf by unsetting this variable and then restarting
TUXJes servers.
If this variable is not set, the configuration file BatchRT.conf
under "ejr/CONF" will be used.

MT_CPU_MON_STEP A variable used to enable CPU time usage monitor of step for all job. Set
MT_CPU_MON_STEP=yes to enable CPU time usage monitor of step for
all job.
If MT_CPU_MON_STEP is not configured or its value is not equal "yes",
this feature is disabled.

MT_DB_LOGIN2 Used with valid database login information to access database.

If MT_DB_LOGIN2 has a non-null value, BatchRT uses runb2 (which
supports parallel Oracle and DB2 access).

MT_DB_SQL_PREPROCESS Specifies which DB preprocessor is executed before SQL is executed.
The built-in DB2-to-Oracle SQL Converter is "${JESDIR}/tools/sql/
oracle/BatchSQLConverter.sh".

Chapter 2
Setting Environment Variables

2-6

Table 2-3 (Cont.) Oracle Tuxedo Application Runtime for Batch Environment Variables
(Optional)

Variable Usage

MT_DB2_SYSTEM_MAPPING Specifies a full file path. The file is used to store the mapping from "DB
SYSTEM" to "DB connection credential string". The file format is:

<DB SYSTEM NAME>:<DB TYPE>:<Connection String>
• When <DB TYPE> is "ORA", the <connection string> format is

<user>/<pwd>@<instance id> . For example,
ORA01:ORA:tigger/scot@orains01

• When <DB TYPE> is "DB2", the <connection string> format is
<instance id> user <user> using <pwd> . For example,
DB202:DB2:db2ins02 user tom using cat.

This file is accessed when "DB SYSTEM" is specified in the following EJR
API: m_ProgramExec, m_DBTableLoad, m_DBTableUnload,
m_ExecSQL, m_DSNUTILB, and m_UtilityExec.

Note:

When "DB SYSTEM" is specified in a
nested way, only the outer setting takes
effect. For example, in the following case,
only "ORA01" takes effect (and "ORA02" is
ignored).
m_FileAssign -i SYSIN
m_ProgramExec -s ORA02 -b
COBOL_PGM
_end
m_UtilityExec -s ORA01 SYSIN

MT_DSNTIAUL If it is configured to "Y", Batch runtime provides you DSNTIAUL utility to
unload data from Oracle Database tables. This utility has the same
functionality as DSNTIAUL utlity on mainframe with DB2. If it is
configured to "N" or if it is not configured, Batch runtime executes SQL
statement and writes the output to a specific file in plain text. The default
value is "Y".

MT_EJRLOG If it is configured to "Y", BatchRT generates an EJR log file and writes
every phase's log to it. If it is configured to "N", BatchRT does not
generate the EJR log file. The default value is "Y".

MT_EXCI_PGM_LIST A list of executable programs. The programs are invoked by runbexci
instead of runb. For each program in this list, whether or not -n is
specified by m_ProgramExec, the program is invoked only by
runbexci.
The default value is empty; programs are separated by commas. For
example:

MT_EXCI_PGM_LIST=PGM1,PGM2
MT_FTP_PASS Sets ftp password stored in jes security profile, and used at runtime.

MT_GDG_DB_ACCESS A variable used with valid database login information to access Oracle
Database for GDG management. For example, user/password@sid.
Mandatory if MT_GENERATION is set to GENERATION_FILE_DB.

Chapter 2
Setting Environment Variables

2-7

Table 2-3 (Cont.) Oracle Tuxedo Application Runtime for Batch Environment Variables
(Optional)

Variable Usage

MT_GDG_DB_BUNCH_OPERATI
ON

If configured to "Y", the GDG changes are committed using a single
database access.
If configured to "N", the GDG changes are committed using one or more
database accesses The default value is "N".

MT_GDG_USEDCB A variable used to enable DCB support function for GDG.
• MT_GDG_USEDCB=Y: Create .dcb file for GDG (default behavior). In

this mode, LSEQ or SEQ can be specified as file type of GDG
members in m_FileAssign statement.

• MT_GDG_USEDCB=N: Don't create .dcb file for GDG. In this mode,
file type of GDG members can only be LSEQ; whatever file type that
you specify in m_FileAssign statement is ignored.

MT_META_DB The database used for the file catalog and GDG meta data. The default
is null
• DB_ORACLE for ORACLE

• DB_DB2LUW for UDB

If MT_META_DB has a non-null value, BatchRT uses the database type
defined in MT_META_DB for meta data. Otherwise, MT_DB is used.

MT_REFINEDIR The full install path of Workbench refine, which will be invoked to
convert a JCL job to a KSH job. For example:
MT_REFINEDIR=/newspace/public/WB_Test/wb12110/refine

MT_REFINEDISTRIB The value of environment variable REFINEDISTRIB, which is used when
Workbench converts a JCL job. For example:
• MT_REFINEDISTRIB = Linux64: Set REFINEDISTRIB to Linux64

• MT_REFINEDISTRIB = Linux32: Set REFINEDISTRIB to Linux32

MT_RUNB_SIGNAL_TO_TRAP Contains all signals caused by running user application which will be
handled by Batch Runtime. The default value is all the supporting
signals. For example:

MT_RUNB_SIGNAL_TO_TRAP=${MT_RUNB_SIGNAL_TO_TRAP:-"1 2 3
4 6 7 8 11 13 14 15"}

MT_SYS_IO_REDIRECT In BatchRT.conf this item is used to make runb redirect SYSIN and
SYSOUT for COBOL program run by m_ProgramExec.
• If SYSIN is set, then the stdin for utility redirects to the file $

{DD_SYSIN}.
• If SYSOUT is set, then the stdout and stderr for utility redirects to

file ${DD_SYSOUT}.
• By default, MT_SYS_IO_REDIRECT=SYSIN,SYSOUT

MT_SYSLOG In EJR mode, if it is configured to "Y", BatchRT generates a SYSLOG
file. If it is configured to "N", BatchRT does not generate the SYSLOG
file. The default value is "Y".

MT_SYSLOG_MILLISECOND If it is configured to "Y", use hour, minute, second, or millisecond for
Step Start Time and Step End Time in SYSLOG file. If it is configured to
"N", use hour, minute, or second (millisecond cannot be used). The
default value is "N".

Chapter 2
Setting Environment Variables

2-8

Table 2-3 (Cont.) Oracle Tuxedo Application Runtime for Batch Environment Variables
(Optional)

Variable Usage

MT_USERENTRYEXIT Controls whether user entry/exit function is enabled or not.
• MT_USERENTRYEXIT=Y: user entry/exit function is enabled.

• MT_USERENTRYEXIT=N: user entry/exit function is disabled.

The default value is Y. For more information, see User-Defined Entry/
Exit.

MT_UTILITY_LIST_UNSUPPO
RT

A list of executable programs, programs that don't exist but users don't
want to fail any jobs because of them. When m_ProgramExec invokes
nonexistent programs, JOB will continue if those programs are specified
in this list. For example:
MT_UTILITY_LIST_UNSUPPORT=IEHINITT,IEHLIST,IEHMOVE,IEHS
TATR,IEHPROGM,IEBCOMPR,IEBEDIT,IEBIMAGE,IEBUPDTE,IEBDG,
IEBPTPCH

MT_WB_HOSTNAME The host name (or IP address), where Workbench is installed to be
invoked to convert JCL job to KSH job. The value of MT_WB_HOSTNAME
is null if Workbench is in localhost. User name is optional to be added.
For example:
• MT_WB_HOSTNAME=host1: Set the value of MT_WB_HOSTNAME to

host1
• MT_WB_HOSTNAME=user1@host1: Set the value of

MT_WB_HOSTNAME to user1@host1

Note:

It is required to be set if Workbench is deployed on the
remote machine while ARTJESCONV server is deployed
on another machine.

MT_SORT_BY_EBCDIC If configured to "Y", record-sequential ASCII files are sorted in EBCDIC
order.

If configured to "N", record-sequential ASCII files are sorted in ASCII
order.

The default value is "N".

MT_SIGN_EBCDIC If configured to "Y", for numeric DISPLAY items with included signs, the
signs are to be interpreted according to the EBCDIC convention.
If configured to "N", for numeric DISPLAY items with included signs, the
signs are to be interpreted according to the ASCII convention.

The default value is "Y".

MT_PROG_RC_ABORT This env controls dataset termination operation. Any return code greater
than or equal to MT_PROG_RC_ABORT is considered as abort; any code
less than MT_PROG_RC_ABORT is considered as commit.
The default value is 1.

2.2.2 Environment Variables for Native JCL
The following lists the environment variables that are used by Native JCL Batch Runtime and
must be defined before using the software:

Chapter 2
Setting Environment Variables

2-9

Table 2-4 Oracle Tuxedo Application Runtime for Native JCL Batch Environment
Variables

Variable Usage

JESDIR Directory where TuxJES is installed.

DATA Directory for permanent files.

TMP Directory for temporary application files.

PROCLIB Directory used for search of PROC and INCLUDE files.

MT_ACC_FILEPATH File concurrency access directory that contains the files
AccLock and AccWait. These files must be created empty
before you run Batch Runtime.

MT_COBOL Depending on the used COBOL, must contain:
• COBOL_MF: means using Micro Focus COBOL

• COBOL_IT: means using COBO-IT COBOL

MT_DB Depending on the target data base, must contain:
• DB_ORACLE: means using Oracle

• DB_DB2LUW: means using DB2

MT_DB_LOGIN Database connection information.

MT_LOG Logs directory.

MT_TMP Directory for temporary internal files.

The following table lists optional environment variables used by Native JCL Batch Runtime.

Table 2-5 Oracle Tuxedo Application Runtime for Native JCL Batch Environment
Variables (Optional)

Variable Usage

DSNUTILB_PARALLEL_NUM Sets the number of thread to insert records to table in the
load process of utility DSNUTILB. Default value is 5.

JESTRACE Control log output level. Its values could be one of the
followings: ERROR, WARN, INFO, DEBUG, and DUMP. Default
value is INFO.

MT_VOLUME_DEFAULT When MT_VOLUME_DEFAULT is set to a non-empty value,
catalog feature is enabled. It is used as volume value if there
is no volume specified when a new dataset is created. If
MT_VOLUME_DEFAULT is not set, catalog feature is disabled.

MT_E2A_FILE Identifies a customer specified EBCDIC to ASCII mapping
table file.
The file format is one-line-one-char:
00;61
01;50
...

MT_ACC_WAIT Retry interval (seconds) to acquire file lock when a job tries to
access a file locked by other job. The default value is 5.

MT_ACC_MAXWAIT Maximum wait time (seconds) to acquire file lock. If the lock is
not acquired within such time, relevant file operation fails. The
default value is 0.

Chapter 2
Setting Environment Variables

2-10

Table 2-5 (Cont.) Oracle Tuxedo Application Runtime for Native JCL Batch
Environment Variables (Optional)

Variable Usage

MT_DB_LOGIN2 Used with valid database login information to access
database. If MT_DB_LOGIN2 has a non-null value, BatchRT
uses parallel Oracle and DB2 access.

MT_DB2_SYSTEM_MAPPING Specifies a full-path file name. The file is used to store the
mapping from "DB SYSTEM" to "DB connection credential
string". The file format is:
<DB SYSTEM NAME>:<DB TYPE>:<Connection String>
• When <DB TYPE> is "ORA", the <connection string>

format is <user>/<pwd>@<instance id> . For
example, ORA01:ORA:tigger/scot@orains01

• When <DB TYPE> is "DB2", the <connection string>
format is: <instance id> user <user> using
<pwd> . For example, DB202:DB2:db2ins02 user tom
using cat.

When MT_DB2_SYSTEM_MAPPING is defined, the feature of
mapping from "DB SYSTEM" to "DB connection credential
string" is enabled; otherwise, the feature is disabled.

MT_DSNTIAUL If it is configured to "Y" or if it is not configured, Batch runtime
provides you DSNTIAUL utility to unload data from Oracle
Database tables. This utility has the same functionality as
DSNTIAUL utlity on mainframe with DB2. If it is configured to
"N", Batch runtime executes SQL statement and writes the
output to a specific file in plain text. The default value is "Y".

MT_SORT Depending on the used SORT. It must contain
• SORT_MicroFocus for Micro Focus Sort Utility.

• SORT_SyncSort for SyncSort Sort Utility

• SORT_CIT for citsort utility

If not specified, it depends on MT_COBOL.

• SORT_MicroFocus, if MT_COBOL=MF is set

• SORT_CIT, if MT_COBOL=IT is set

MT_SIGN_EBCDIC Identifies how numeric DISPLAY items with included signs are
interpreted:
• Y: Default. They are interpreted according to the EBCDIC

convention.
• N: They are interpreted according to the ASCII

convention.

MT_SORT_BY_EBCDIC Identifies how record-sequential ASCII files are sorted:
• Y: Files are sorted in EBCDIC order.
• N: Default. Files are sorted in ASCII order.

MT_RUNB_SIGNAL_TO_TRAP Lists all signals caused by running user application that
BatchRT will handle.
Values are separated by space, for example:

MT_RUNB_SIGNAL_TO_TRAP="1 2 3 4 6 7 8 11 13 14
15"

Chapter 2
Setting Environment Variables

2-11

Table 2-5 (Cont.) Oracle Tuxedo Application Runtime for Native JCL Batch
Environment Variables (Optional)

Variable Usage

MT_SYS_IO_REDIRECT Identifies whether SYSIN and SYSOUT are redirected for
utilities that ARTCOBRUN runs.
• If SYSIN is set, the stdin for utilitiy is redirect to file $

{DD_SYSIN}.

• If SYSOUT is set, the stdout and stderr for utilitiy is
redirect to file ${DD_SYSOUT}.

• Both SYSIN and SYSOUT can be set at the same time,
separated by comma, for example, "SYSIN,SYSOUT".

The default value is SYSOUT.

MT_PROG_RC_ABORT Any return code greater than or equal to MT_PROG_RC_ABORT
is considered as abort; any code less than
MT_PROG_RC_ABORT is considered as commit.
The default value is 1.

2.3 Configuring Batch Runtime in MP Mode
Batch Runtime (EJR) will need to be specially configured so as to work well in MP mode if
users want to either use EJR to run jobs, which may share resources (normally files), from
different machines or configure a MP mode TuxJES domain and submit jobs from any node
through the utility provided by TuxJES.

In the latter case, the job submitted from node A may be run by node B and the execution
sequence is totally random. Similarly, these jobs submitted from different nodes may share
resources.

This section clarifies the details of configuring Batch Runtime (EJR) to support MP mode.

1. All the resources should be put on a shared storage (NFS), which should have the same
mount point on all machines in the domain, to ensure any file has the same path from the
view of each node, because any job submitted from one machine may be run by another
machine. For example, if users prefer to store all files under environment variable DATA
described in above section, ${DATA} should point to the shared root directory where files
are located and have the same value on all machines.

2. MT_ACC_FILEPATH should be located on shared storage (NFS), which should have same
mount point on all machines in the domain, since the control files for file locking are put in
this directory; in addition, users need to make sure AccLock and AccWait files under this
directory can be read / written by the effective user of the process running the jobs

3. NLM (Network Lock Manager) needs to be enabled on the NFS server and all machines in
the domain since some shared resources, which are located on NFS, need to be locked to
prevent jobs from corrupting them. The configuration is not directly related to Batch
Runtime but has close relationship in MP mode.

4. ARTJESADM server should be configured and started on each node in the MP domain to
check, by other nodes, whether a job on this node is running or not. This is a part of the file
lock mechanism in Batch Runtime. If either ARTJESADM server on one node dies
abnormally or the node itself dies abnormally, the file lock owned by the job running on this
node won't be released automatically; in this case, the utility artjescleanlock can be used to
release the inactive file lock. For details of artjescleanlock, see Using Tuxedo Job
Enqueueing Service (TuxJES).

Chapter 2
Configuring Batch Runtime in MP Mode

2-12

2.4 Creating a Script
This section contains the following topics:

• General Structure of a Script

• Script Example

• Defining and Using Symbols

• Creating a Step That Executes a Program

• Application Program Abend Execution

• Creating a Procedure

• Using a Procedure

• Modifying a Procedure at Execution Time

2.4.1 General Structure of a Script
Oracle Tuxedo Application Runtime for Batch normalizes Korn shell script formats by
proposing a script model where the different execution phases of a job are clearly identified.

Oracle Tuxedo Application Runtime for Batch scripts respect a specific format that allows the
definition and the chaining of the different phases of the KSH (JOB).

Within Batch Runtime, a phase corresponds to an activity or a step on the source system.

A phase is identified by a label and delimited by the next phase.

At the end of each phase, the JUMP_LABEL variable is updated to give the label of the next
phase to be executed.

In the following example, the last functional phase sets JUMP_LABEL to JOBEND: this label allows
a normal termination of the job (exits from the phase loop).

The mandatory parts of the script (the beginning and end parts) are shown in bold and the
functional part of the script (the middle part) in normal style as shown in the table below. The
optional part of the script must contain the labels, branching and end of steps as described
below. The items of the script to be modified are shown in italics.

Table 2-6 Script Structure

Script Description

#!/usr/bin/ksh -

m_JobBegin -j JOBNAME -s START -
v 2.00

m_JobBegin is mandatory and must contain at least the
following options:
• -j: internal job name
• -s: name of the first label to begin execution (usually

should be START)
• -v: Minimum version number of Batch Runtime required

for this script (upward compatible).

while true ;do The "while true; do" loop provides a mechanism to simulate
the movement from one step to the next.

m_PhaseBegin m_PhaseBegin enables parameters to be initialized at the
beginning of a step.

Chapter 2
Creating a Script

2-13

Table 2-6 (Cont.) Script Structure

Script Description

case ${CURRENT_LABEL} in The case statement enables a branching to the current step.

(START) The start label (used in the -s option of m_JobBegin)

JUMP_LABEL=STEP1 JUMP_LABEL is mandatory in all steps and gives the name
of the next step.

;; ;; ends a step and are mandatory.

(STEP1) A functional step begins with (LABEL); where LABEL is the
name of the step.

m_*
m_*

A typical step continues with a series of calls to Batch
Runtime functions.

JUMP_LABEL=STEP2 There is always a branching to the next step
(JUMP_LABEL=)

;; And always the ;; at the end of each step.

(PENULTIMATESTEP) -

m_*
m_*

The last functional step has the same format as the others,
except…

JUMP_LABEL=END_JOB
;;

For the label, which must point to END_JOB. The _ is
necessary, because the character is forbidden on z/OS.

(END_JOB)
break
;;

This step enables the processing loop to be broken.

(*)
m_RcSet ${MT_RC_ABORT:-S999}
"Unknown label : $
{CURRENT_LABEL}"
break
;;
esac

This is a catch-all step that picks-up branching to unknown
steps.

m_PhaseEnd done m_PhaseEnd manages the end of a step including file
management depending on disposition and return codes.

m_JobEnd m_JobEnd manages the end of a job including clearing-up
temporary files and returning completion code to job caller.

2.4.2 Script Example
Listing 2‑1 Korn shell Script Example

#!/bin/ksh
#@(#)--
#@(#)-
m_JobBegin -j METAW01D -s START -v 2.00 -c A
while true ;
do
m_PhaseBegin
case ${CURRENT_LABEL} in
(START)

Chapter 2
Creating a Script

2-14

1) 1st Step: DELVCUST
Delete the existing file.
2) 2nd Step: DEFVCUST
Allocates the Simple Sample Application VSAM customers file

#
-Step 1: Delete...
JUMP_LABEL=DELVCUST
;;
(DELVCUST)
m_FileAssign -d OLD FDEL ${DATA}/METAW00.VSAM.CUSTOMER
m_FileDelete ${DD_FDEL}
m_RcSet 0
#
-Step 2: Define...
JUMP_LABEL=DEFVCUST
;;
(DEFVCUST)
IDCAMS DEFINE CLUSTER IDX
m_FileBuild -t IDX -r 266 -k 1+6 ${DATA}/METAW00.VSAM.CUSTOMER
JUMP_LABEL=END_JOB
;;
(ABORT)
break
;;
(END_JOB)
break
;;
(*)
m_RcSet ${MT_RC_ABORT} "Unknown label : ${JUMP_LABEL}"
break
;;
esac
m_PhaseEnd
done
m_JobEnd
#@(#)--

2.4.3 Defining and Using Symbols
Symbols are internal script variables that allow script statements to be easily modifiable. A
value is assigned to a symbol through the m_SymbolSet function as shown in the listing below.
To use a symbol, use the following syntax: $[symbol]

Note:

The use of brackets ([]) instead of braces ({}) is to clearly distinguish symbols from
standard Korn shell variables.

Chapter 2
Creating a Script

2-15

Listing 2‑2 Symbol Use Examples

(STEP00)
m_SymbolSet VAR=40
JUMP_LABEL=STEP01
;;
(STEP01)
m_FileAssign -d SHR FILE01 ${DATA}/PJ01DDD.BT.QSAM.KBSTO0$[VAR]
m_ProgramExec BAI001

2.4.4 Creating a Step That Executes a Program
A step (also called a phase) is generally a coherent set of calls to Batch Runtime functions that
enables the execution of a functional (or technical) activity.

The most frequent steps are those that execute an application or utility program. These kind of
steps are generally composed of one or several file assignment operations followed by the
execution of the desired program. All the file assignments operations must precede the
program execution operation shown in Listing below.

Listing 2‑3 Application Program Execution Step Example

(STEPPR15)
m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRO099
m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRO001
m_OutputAssign -c “*” SYSOUT
m_FileAssign -i LOGIN
IN-STREAM DATA
_end
m_FileAssign -d MOD LOGOUT ${DATA}/PJ01DDD.BT.QSAM.KBPRO091
m_ProgramExec BPRAB001 "20071120"
JUMP_LABEL=END_JOB
;;

2.4.5 Application Program Abend Execution
ABEND routines, ILBOABN0, CEE3ABD and ART3ABD can be called from a running program to force
it to abort and return the abend code to KSH script. For example, ILBOABN0 is supplied as both
source and binary gnt file. It can be directly called by any user-defined COBOL program.

Listing 2‑4 Application Program Abend Execution Example (KSH)

(STEPPR15)
m_ProgramExec USER
JUMP_LABEL=END_JOB
;;

Listing 2‑5 USER.cbl Example

PROCEDURE DIVISION.
PROGRAM-BEGIN.
DISPLAY "USER: HELLO USER".
MOVE 2 TO RT-PARAM.
CALL "ILBOABN0" USING RT-PARAM.

Chapter 2
Creating a Script

2-16

DISPLAY "USER: CAN'T REACH HERE WHEN ILBOABN0 IS CALLED".
PROGRAM-DONE.
...

2.4.6 Creating a Procedure
Oracle Tuxedo Application Runtime for Batch offers a set of functions to define and use
"procedures". These procedures follow generally the same principles as z/OS JCL procedures.

The advantages of procedures are:

• Write a set of tasks once and use it several times.

• Make this set of tasks dynamically modifiable.

Procedures can be of two types:

• In-stream Procedures: Included in the calling script, this kind of procedure can be used
only in the current script.

• External Procedures: Coded in a separate source file, this kind of procedure can be used
in multiple scripts.

The following topics describe how to create the above procedures:

• Creating an In-Stream Procedure

• Creating an External Procedure

2.4.6.1 Creating an In-Stream Procedure
Unlike the z/OS JCL convention, an in-stream procedure must be written after the end of the
main JOB, that is: all the in-stream procedures belonging to a job must appear after the call to
the function m_JobEnd.

An in-stream procedure in a Korn shell script always starts with a call to the m_ProcBegin
function, followed by all the tasks composing the procedure and terminating with a call to the
m_ProcEnd function. The following listing is an example:

Listing 2‑6 In-stream Procedure Example

m_ProcBegin PROCA
JUMP_LABEL=STEPA
;;
(STEPA)
m_FileAssign -c “*” SYSPRINT
m_FileAssign -d SHR SYSUT1 ${DATA}/PJ01DDD.BT.DATA.PDSA/BIEAM00$[SEQ]
m_FileAssign -d MOD SYSUT2 ${DATA}/PJ01DDD.BT.QSAM.KBIEO005
m_FileLoad ${DD_SYSUT1} ${DD_SYSUT2}
JUMP_LABEL=ENDPROC
;;
(ENDPROC)
m_ProcEnd

2.4.6.2 Creating an External Procedure
External procedures do not require the use of the m_ProcBegin and m_ProcEnd functions;
simply code the tasks that are part of the procedure shown in the listing below.

Chapter 2
Creating a Script

2-17

In order to simplify the integration of a procedure’s code with the calling job, always begin a
procedure with:

JUMP_LABEL=FIRSTSTEP
;;
(FIRSTSTEP)

and end it with:

JUMP_LABEL=ENDPROC
;;
(ENDPROC)

Listing 2‑7 External Procedure Example

JUMP_LABEL=PR2STEP1
;;
(PR2STEP1)
m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRI001
m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBPRO001
m_OutputAssign -c “*” SYSOUT
m_FileAssign -d SHR LOGIN ${DATA}/PJ01DDD.BT.SYSIN.SRC/BPRAS002
m_FileAssign -d MOD LOGOUT ${DATA}/PJ01DDD.BT.QSAM.KBPRO091
m_ProgramExec BPRAB002
JUMP_LABEL=ENDPROC
;;
(ENDPROC)

2.4.7 Using a Procedure
The use of a procedure inside a Korn shell script is made through a call to the m_ProcInclude
function.

As described in Script Execution Phases, during the Conversion Phase, a Korn shell script is
expanded by including the procedure's code each time a call to the m_ProcInclude function is
encountered. It is necessary that after this operation, the resulting expanded Korn shell script
still respects the rules of the general structure of a script as defined in the General Structure of
a Script.

A procedure, either in-stream or external, can be used in any place inside a calling job
provided that the above principals are respected shown in Listing below.

Listing 2‑8 Call to the m_ProcInclude Function Example

…
(STEPPR14)
m_ProcInclude BPRAP009
JUMP_LABEL=STEPPR15
…

2.4.8 Modifying a Procedure at Execution Time
The execution of the tasks defined in a procedure can be modified in two different ways:

Chapter 2
Creating a Script

2-18

• Modifying symbols and/or parameters

• Symbols can be used inside a procedure and the values of these symbols can be specified
when calling the procedure.

Listing 2‑9 Defining Procedure Example

m_ProcBegin PROCE
JUMP_LABEL=STEPE
;;
(STEPE)
m_FileAssign -d SHR SYSUT1 ${DATA}/DATA.IN.PDS/DTS$[SEQ]
m_FileAssign -d MOD SYSUT2 ${DATA}/DATA.OUT.PDS/DTS$[SEQ]
m_FileLoad ${DD_SYSUT1} ${DD_SYSUT2}
JUMP_LABEL=ENDPROC
;;
(ENDPROC)
m_ProcEnd

Listing 2‑10 Calling Procedure Example

(COPIERE)
m_ProcInclude PROCE SEQ="1"
JUMP_LABEL=COPIERF
;;

• Using Overrides for File Assignments

2.4.8.1 Using Overrides for File Assignments
As specified in Best Practices, this way of coding procedures is provided mainly for supporting
Korn shell scripts resulting from z/OS JCL translation and it is not recommended for Korn shell
scripts newly written for the target platform.

The overriding of a file assignment is made using the m_FileOverride function that specifies a
replacement for the assignment present in the procedure. The call to the m_FileOverride
function must follow the call to the procedure in the calling script.

The following Listing shows how to replace the assignment of the logical file SYSUT1 using the
m_FileOverride function.

Listing 2‑11 m_FileOverride Function Example

m_ProcBegin PROCE
JUMP_LABEL=STEPE
;;
(STEPE)
m_FileAssign -d SHR SYSUT1 ${DATA}/DATA.IN.PDS/DTS$[SEQ]
m_FileAssign -d MOD SYSUT2 ${DATA}/DATA.OUT.PDS/DTS$[SEQ]
m_FileLoad ${DD_SYSUT1} ${DD_SYSUT2}
JUMP_LABEL=ENDPROC
;;
(ENDPROC)
m_ProcEnd

Chapter 2
Creating a Script

2-19

Listing 2‑12 m_FileOverride Procedure Call:

(COPIERE)
m_ProcInclude PROCE SEQ="1"
m_FileOverride -i -s STEPE SYSUT1
Overriding test data
_end
JUMP_LABEL=COPIERF
;;

2.5 Controlling Script Behavior
This section contains the following topics:

• Conditioning the Execution of a Step

• Controlling the Execution Flow

• Changing Default Error Messages

2.5.1 Conditioning the Execution of a Step
This section contains the following topics:

• Using m_CondIf, m_CondElse, and m_CondEndif

• Using m_CondExec

2.5.1.1 Using m_CondIf, m_CondElse, and m_CondEndif
The m_CondIf, m_CondElse and m_CondEndif functions can be used to condition the execution
of one or several steps in a script. The behavior is similar to the z/OS JCL statement
constructs IF, THEN, ELSE and ENDIF
The m_CondIf function must always have a relational expression as a parameter as shown in
the listing below. These functions can be nested up to 15 times.

Listing 2‑13 m_CondIf, m_CondElse, and m_CondEndif Example

…
(STEPIF01)
m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000
m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001
m_ProgramExec BAX001
m_CondIf "STEPIF01.RC,LT,5"
JUMP_LABEL=STEPIF02
;;
(STEPIF02)
m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001
m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF002
m_ProgramExec BAX002
m_CondElse
JUMP_LABEL=STEPIF03
;;
(STEPIF03)
m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000

Chapter 2
Controlling Script Behavior

2-20

m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF003
m_ProgramExec BAX003
m_CondEndif

2.5.1.2 Using m_CondExec
The m_CondExec function is used to condition the execution of a step. The m_CondExec must
have at least one condition as a parameter and can have several conditions at the same time.
In case of multiple conditions, the step is executed only if all the conditions are satisfied.

A condition can be of three forms:

• Relational expression testing previous return codes:
m_CondExec 4,LT,STEPEC01

• EVEN: Indicates that the step is to be executed even if a previous step terminated
abnormally:
m_CondExec EVEN

• ONLY: Indicates that the step is to be executed only if a previous step terminated
abnormally:
m_CondExec ONLY

The m_CondExec function must be the first function to be called inside the concerned step as
shown in the Listing below:

Listing 2‑14 m_CondExec Example with Multiple Conditions

…
(STEPEC01)
m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000
m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001
m_ProgramExec BACC01
JUMP_LABEL=STEPEC02
;;
(STEPEC02)
m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF001
m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF002
m_ProgramExec BACC02
JUMP_LABEL=STEPEC03
;;
(STEPEC03)
m_CondExec 4,LT,STEPEC01 8,GT,STEPEC02 EVEN
m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF000
m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIF003

2.5.2 Controlling the Execution Flow
The script's execution flow is determined, and can be controlled, in the following ways:

• The start label specified by the m_JobBegin function: this label is usually the first label in
the script, but can be changed to any label present in the script if the user wants to start
the script execution from a specific step.

• The value assigned to the JUMP_LABEL variable in each step: this assignment is mandatory
in each step, but its value is not necessarily the label of the following step.

Chapter 2
Controlling Script Behavior

2-21

• The usage of the m_CondExec, m_CondIf, m_CondElse and m_CondEndif functions: see
Conditioning the Execution of a Step

• The return codes and abnormal ends of steps.

2.5.3 Changing Default Error Messages
If Batch Runtime administrator wishes to change the default messages (to change the
language for example), this can be done through a configuration file whose path is specified by
the environment variable: MT_DISPLAY_MESSAGE_FILE.

This file is a CSV (comma separated values) file with a semicolon as a separator. Each record
in this file describes a certain message and is composed of six fields:

1. Message identifier.

2. Functions that can display the message (can be a generic name using '*').

3. Level of display.

4. Destination of display.

5. Reserved for future use.

6. Message to be displayed.

2.6 Different Behaviors from z/OS
On z/OS, before one job is executed, JES checks its syntax. If any error is found, JES reports
it and runs nothing of the job. For example, if there is a JCL statement applying “NEW” on
generation(0) of a GDG, because NEW is not allowed to be applied to existing files, JES
reports this error and does not run the job.

However, in ART for Batch, JCL job is converted to ksh job by Oracle Tuxedo ART Workbench
at first, and ART for Batch only checks ksh script syntax in the converted ksh job. Grammar
errors, if any, are detected when this statement runs, resulting in the fact that statements after
the wrong statement are not executed, but statements before it are executed without being
affected.

2.7 Using Files
This section contains the following topics:

• Creating a File Definition

• Assigning and Using Files

• Concurrent File Accessing Control

• Using Generation Data Group (GDG)

• Using an In-Stream File

• Using a Set of Concatenated Files

• Using an External “sysin”

• Deleting a File

• RDB Files

• Using an RDBMS Connection

Chapter 2
Different Behaviors from z/OS

2-22

2.7.1 Creating a File Definition
Files are created using the m_FileBuild or the m_FileAssign function.

Four file organizations are supported:

• Sequential file

• Line sequential file

• Relative file

• Indexed file

You must specify the file organization for the file being created. For indexed files, the length
and the primary key specifications must also be mentioned.

• m_FileBuild Examples

• m_FileAssign Examples

2.7.1.1 m_FileBuild Examples
• Definition of a line sequential file

m_FileBuild -t LSEQ ${DATA}/PJ01DDD.BT.VSAM.ESDS.KBIDO004
• Definition of an indexed file with a record length of 266 bytes and a key starting at the first

bytes and having a size of 6 bytes.
m_FileBuild -t IDX -r 266 -k 1+6 ${DATA}/METAW00.VSAM.CUSTOMER

2.7.1.2 m_FileAssign Examples
• Definition of a new sequential file with a record length of 80 bytes.

m_FileAssign -d NEW -t SEQ -r 80 ${DATA}/PJ01DDD.BT.VSAM.ESDS.KBIDO005

2.7.2 Assigning and Using Files
When using Batch Runtime, a file can be used either by a Batch Runtime function (for
example: m_FileSort, m_FileRename etc.) or by a program, such as a COBOL program.

In both cases, before being used, a file must first be assigned. Files are assigned using the
m_FileAssign function that:

• Specifies the DISP mode (Read or Write)

• Specifies if the file is a generation file

• Defines an environment variable linking the logical name of the file (IFN) with the real path
to the file (EFN).

The environment variable defined via the m_FileAssign function is named: DD_IFN. This
naming convention is due to the fact that it is the one used by Micro Focus COBOL to map
internal file names to external file names.

Once a file is assigned, it can be passed as an argument to any of Batch Runtime functions
handling files by using the ${DD_IFN} variable.

For COBOL programs, the link is made implicitly by Micro Focus COBOL. COBOL-IT is
compatible with Micro Focus COBOL regarding DD assignment.

Chapter 2
Using Files

2-23

Listing 2‑15 Example of File Assignment

(STEPCP01)
m_FileAssign -d SHR INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIDI001
m_FileAssign -d SHR OUTFIL ${DATA}/PJ01DDD.BT.VSAM.KBIDU001
m_FileLoad ${DD_INFIL} ${DD_OUTFIL}
…

Listing 2‑16 Example of Using a File by a COBOL Program

(STEPCBL1)
m_FileAssign -d OLD INFIL ${DATA}/PJ01DDD.BT.QSAM.KBIFI091
m_FileAssign -d MOD OUTFIL ${DATA}/PJ01DDD.BT.QSAM.KBIFO091
m_ProgramExec BIFAB090
…

• About DD DISP=MOD

2.7.2.1 About DD DISP=MOD
Enhance ART/BatchRT to keep consistency with mainframe for DISP=MOD. That is, make the
behavior of DISP=MOD on the target operation system of ART/BatchRT to be same with
mainframe. Currently, BatchRT is depending on below 2 kinds of COBOL compile/runtime
environment:

Note:

For VSAM data set DISP=MOD is always treated as DISP=OLD (file exist), and
DISP=NEW(file doesn't exist) has been same with z/OS.

• Micro Focus COBOL

• COBOL-IT

2.7.2.1.1 Micro Focus COBOL
For Micro Focus COBOL, one new file handler (ARTEXTFH.gnt) is added to BatchRT. In order
to have the correct behavior of DISP=MOD, user COBOL programs must be compiled with this
file handler using the following option:

CALLFH("ARTEXTFH")
If the compile option is not specified, then the write operation with the mode "open output", in
the COBOL program, will erase the existing file contents. This is unexpected.

It is suggested to always add this compiler option when you compile COBOL programs. The
following table lists the behavior of API which support DDN.

Chapter 2
Using Files

2-24

Table 2-7 Micro Focus COBOL DISP=MOD Behaior

API DISP=MOD is
allowed?

Read output file is
allowed?

Result of write output
file

- INPUT OUTPU
T

- -

m_FileRepro YES YES NO such requirement Appended

m_FilePrint YES YES NO such requirement Appended

m_FileSort YES YES NO such requirement Appended

m_ProgramExec: Other
Program

YES YES YES Appended

m_ProgramExec: Other
Program

YES YES YES Written but erase
existing contents

All other API which support
DDN

YES YES NO such requirement NO such requirement

INPUT means INPUT file, only read operation will occur for INPUT file. Specify DISP=MOD is
not reasonable for INPUT file, because no data will be written to INPUT file, but it's allowed,
For INPUT file, DISP=MOD always act as DISP=OLD.

OUTPUT means OUTPUT file, read and write operation occur for OUTPUT file. All the data
written to OUTPUT file will be appended to the original file regardless of open mode in COBOL
program: "open output" or "open extend."

2.7.2.1.2 COBOL-IT
For COBOL-IT, there is no File Handle level support for DISP=MOD (like Micro Focus
COBOL). So there is no special requirement for compiling COBOL program. The following
table lists the behavior of API which support DDN.

Table 2-8 Micro Focus COBOL DISP=MOD Behaior

API DISP=MOD is allowed? Read output file
is allowed?

Result of write
output file

- INPUT OUTPUT - -

m_FileRepro NO YES NO such
requirement

Appended

m_FilePrint NO YES NO such
requirement

Appended

m_FileSort NO YES NO such
requirement

Appended

m_ProgramExec:
COBOL Program

NO YES YES Appended

m_ProgramExec:
Other Program

NO YES YES Written but erase
existing contents

All other API which
support DDN

NO YES NO such
requirement

NO such
requirement

INPUT means INPUT file, only read operation will occur for INPUT file. Specify DISP=MOD to
INPUT file is not reasonable, and it's not allowed in COBOL-IT. if one INPUT file is assigned as
DISP=MOD, its contents can't be read.

Chapter 2
Using Files

2-25

OUTPUT means OUTPUT file, read and write operation occur for OUTPUT file. All the data
written to OUTPUT file will be appended to the original file regardless of open mode in COBOL
program: "open output" or "open extend."

2.7.3 Concurrent File Accessing Control
Batch Runtime provides a lock mechanism to prevent one file from being written
simultaneously in two jobs.

To enable the concurrent file access control, do the following:

1. Use environment variable MT_ACC_FILEPATH to specify a directory for the lock files required
by concurrent access control mechanism.

2. Create two empty files, AccLock and AccWait, under the directory specified in step 1.
Make sure the effective user executing jobs has read/write permission to these two files.

Note:

• The file names of AccLock and AccWait are case sensitive.

• When accessing generation files, a GDG rather than a generation file is
locked. That is, a GDG is locked as a whole.

• Following two lines in ejr/CONF/BatchRT.conf should be commented out:
${MT_ACC_FILEPATH}/AccLock
${MT_ACC_FILEPATH}/AccWait

2.7.4 Using Generation Data Group (GDG)
Oracle Tuxedo Application Runtime for Batch allows you to manage Generation Data Group
(GDG)files either based on file or based on database (DB). In file-based management way,
Batch Runtime manages GDG files in separate "*.gens" files, and one "*.gens" corresponds to
one GDG file. In DB-based management way, ART for Batch allows users to manage GDG
information in Oracle database or DB2 database.

• GDG Management Functionalities

• File-Based Management

• DB-Based Management

• Support for Data Control Block (DCB)

2.7.4.1 GDG Management Functionalities
In order to emulate the notion of generation files present on the z/OS mainframe which is not a
UNIX standard, Batch Runtime provides a set of functions to manage this type of file. These
functions are available to both file-based management and DB-based management.

Note:

Copying or Renaming GDG is not supported.

Chapter 2
Using Files

2-26

• Defining and/or Redefining a GDG

• Adding Generation Files in a GDG

• Referring an Existing Generation Files in a GDG

• Deleting Generation Files in a GDG

• Deleting a GDG

• Cataloging a GDG

• Committing a GDG

2.7.4.1.1 Defining and/or Redefining a GDG
It is required to define a GDG before using it.

A GDG file is defined and/or redefined through m_GenDefine. The operation of defining or
redefining a GDG is committed immediately and cannot be rolled back.

As shown in Listing below, the first line defines a GDG and sets its maximum generations to
15, the second line redefines the same GDG maximum generations to 30, the third line defines
a GDG without specifying "-s" option (its maximum generations is set to 9999), the fourth line
defines a GDG implicitly and sets its maximum generations to 9999, the fifth line defines a
GDG use model file $DATA/FILE, which can be either a GDG file or a normal file.

Listing 2‑17 Example of Defining and Redefining GDG Files

m_GenDefine -s 15 ${DATA}/PJ01DDD.BT.FILE1
m_GenDefine -s 30 -r ${DATA}/PJ01DDD.BT.FILE1
m_GenDefine ${DATA}/PJ01DDD.BT.FILE2
m_FileAssign -d NEW,CATLG -g +1 SYSUT2 ${DATA}/PJ01DDD.BT.FILE3
m_FileAssign -d NEW,CATLG -g +1 -S $DATA/FILE FILE1 $DATA/GDG

2.7.4.1.2 Adding Generation Files in a GDG
To add a new generation file (GDS) into a GDG, call m_FileAssign with "-d NEW/MOD,…" and "-
g +n" parameters. GDS file types can be only LSEQ or SEQ.

There are four key points to add generation files in a GDG.

• Multiple generation files (GDS) can be added in one job or step discontinuously and
disorderedly. See Listing 2‑18 for an example.

• One generation number (GenNum) can be added only one time in a job. Listing 2‑19
shows an incorrect usage.

• The filename of a newly created GDS is generated by the generation number specified in
m_FileAssign in the format of <current GDS number> + <GenNum>. See Listing 2‑20 for an
example.

• In a job, if multiple generation files (GDS) are newly created, the GDS with the maximum
RGN becomes the current GDS after the job finishes. See Listing 2‑21 for an example.

Four examples as below elaborate those key points individually.

Chapter 2
Using Files

2-27

Listing 2‑18 Example of Adding Multiple Generation Files Discontinuously and
Disorderedly

(STEP1)
m_FileAssign -d NEW,KEEP,KEEP -g +1 SYSUT1 "$DATA/GDG1"
m_FileAssign -d MOD,KEEP,KEEP -g +5 SYSUT2 "$DATA/GDG1"
(STEP2)
m_FileAssign -d NEW,KEEP,KEEP -g +9 SYSUT1 "$DATA/GDG1"
m_FileAssign -d NEW,KEEP,KEEP -g +2 SYSUT2 "$DATA/GDG1"

The above example adds the following GDS files to GDG.

$DATA/GDG1.Gen.0001
$DATA/GDG1.Gen.0002
$DATA/GDG1.Gen.0005
$DATA/GDG1.Gen.0009
Listing 2‑19 Example of Adding One Generation Number Multiple Times in a Job
(Incorrect Usage)

(STEP1)
m_FileAssign -d NEW,KEEP,KEEP -g +1 SYSUT1 "$DATA/GDG1"
m_FileAssign -d NEW,KEEP,KEEP -g +5 SYSUT2 "$DATA/GDG1"
(STEP2)
m_FileAssign -d NEW,KEEP,KEEP -g +4 SYSUT1 "$DATA/GDG1"
m_FileAssign -d NEW,KEEP,KEEP -g +5 SYSUT2 "$DATA/GDG1"

The above example shows an incorrect usage, where generation number (+5) is added two
times.

Listing 2‑20 Example of Listing GDS Filenames

m_FileAssign -d NEW,KEEP,KEEP -g +1 SYSUT1 "$DATA/GDG1"
m_FileAssign -d MOD,KEEP,KEEP -g +5 SYSUT2 "$DATA/GDG1"

In the above example, suppose $DATA/GDG1 has three GDS numbered as 1, 2, and 4,
respectively. The corresponding GDS files are listed as below:

$DATA/GDG1.Gen.0001
$DATA/GDG1.Gen.0002
$DATA/GDG1.Gen.0004
After the above job runs, $DATA/GDG1 has five GDS numbered as 1, 2, 4, 5, and 9, respectively.
The corresponding GDS files are listed as below.

$DATA/GDG1.Gen.0001
$DATA/GDG1.Gen.0002
$DATA/GDG1.Gen.0004
$DATA/GDG1.Gen.0005
$DATA/GDG1.Gen.0009

Chapter 2
Using Files

2-28

Listing 2‑21 Example of Defining the Current GDS

(STEP1)
m_FileAssign -d NEW,KEEP,KEEP -g +1 SYSUT1 "$DATA/GDG1"
m_FileAssign -d MOD,KEEP,KEEP -g +5 SYSUT2 "$DATA/GDG1"
(STEP2)
m_FileAssign -d NEW,KEEP,KEEP -g +2 SYSUT3 "$DATA/GDG1"

In the above example, the GDS whose RGN equals +5 becomes the current GDS, meaning its
RGN becomes 0 after job finishes successfully.

2.7.4.1.3 Referring an Existing Generation Files in a GDG
To refer to an existing generation file (GDS) in a GDG, call m_FileAssign "-d OLD/SHR/MOD,…"
and "-g 0", "-g all" or "-g -n" parameters. "-g 0" refers to the current generation, "-g
all" refers to all generation files, "-g -n" refers to the generation file which is the nth
generation counting backward from the current generation (as 0 generation).

When using relative generation number (RGN) to reference a GDS, note that the "relative
generation number" means "relative position with the newest GDS whose generation number
is 0".

For example, if GDG1 contains six GDS numbered as 1, 4, 6, 7, 9, and 10, respectively, the
mapping of GN and RGN is listed as below:

GN 1 4 6 7 9 10

RGN -5 -4 -3 -2 -1 0

In the following job, use RGN=-1 to reference GDS whose GN equals 9 and use RGN=-4 to
reference GDS whose GN equals 4.

Listing 2‑22 Example of Referencing Existing Generation Files

(STEP1)
m_FileAssign -d SHR,KEEP,KEEP -g -1 SYSUT1 "$DATA/GDG1"
m_FileAssign -d SHR,KEEP,KEEP -g -4 SYSUT2 "$DATA/GDG1"

If "DELETE" is specified in the DISPOSITION filed of m_FileAssign, the corresponding GDS will
be deleted after the current step finishes, resulting in a change of mapping between GN and
RGN. The changed mapping will be visible in the next step.

For example, if GDG1 contains six GDS numbered as 1, 4, 6, 7, 9, and 10, respectively, the
mapping of GN and RGN is listed as below.

GN 1 4 6 7 9 10

RGN -5 -4 -3 -2 -1 0

In the following job, use RGN=-1 to reference GDS whose GN equals 9 and use RGN=-4 to
reference GDS whose GN equals 4.

You can run a job as below.

Chapter 2
Using Files

2-29

Listing 2‑23 Example of Referencing Existing Generation Files with DELETE Specified

(STEP1)
m_FileAssign -d OLD,DELETE,DELETE -g -1 SYSUT1 "$DATA/GDG1"
m_FileAssign -d OLD,DELETE,DELETE -g -4 SYSUT2 "$DATA/GDG1"
(STEP2)
m_FileAssign -d OLD,DELETE,DELETE -g -1 SYSUT1 "$DATA/GDG1"
m_FileAssign -d OLD,DELETE,DELETE -g -2 SYSUT2 "$DATA/GDG1"

In the above example, after STEP1 finishes, the mapping of GN and RGN becomes the one as
below.

GN 1 6 7 10

RGN -3 -2 -1 0

In STEP2, the GDS pointed by SYSUT1 (the GDS whose GN is 7) and the GDS pointed by
SYSUT2 (the GDS whose GN is 6) are deleted.

After STEP2 finishes, the mapping of GN and RGN becomes the one as below:

GN 1 10

RGN -1 0

2.7.4.1.4 Deleting Generation Files in a GDG
ART for Batch supports you to delete generation files, newly added or current existing, through
the disposition of DD specified for m_FileAssign.

• Deleting Newly Added GDS (See Listing 2‑24 for an example)

• Deleting Existing GDS (See Listing 2‑25 for an example)

Listing 2‑24 Deleting Newly Added GDS

(STEP1)
m_FileAssign -d NEW,DELETE,DELETE -g +1 SYSUT1 "$DATA/GDG1"
m_FileAssign -d NEW,DELETE,DELETE -g +5 SYSUT2 "$DATA/GDG1"
(STEP2)
m_FileAssign -d NEW,DELETE,DELETE -g +1 SYSUT1 "$DATA/GDG1"
m_FileAssign -d NEW,DELETE,DELETE -g +5 SYSUT2 "$DATA/GDG1"

In the above example, eventually, no GDS is added to GDG1.

Listing 2‑25 Deleting Existing GDS

(STEP1)
m_FileAssign -d NEW,DELETE,DELETE -g -1 SYSUT1 "$DATA/GDG1"
m_FileAssign -d NEW,DELETE,DELETE -g -3 SYSUT2 "$DATA/GDG1"
(STEP2)
m_FileAssign -d NEW,DELETE,DELETE -g -1 SYSUT3 "$DATA/GDG1"
m_FileAssign -d NEW,DELETE,DELETE -g -3 SYSUT4 "$DATA/GDG1"

In the above example, GDG1 has six GDS numbered as 1, 4, 6, 7, 9, and 10, respectively. The
GDS pointed by SYSUT1 (the GDS whose GN is 9), by SYSUT2 (the GDS whose GN is 6), by

Chapter 2
Using Files

2-30

SYSUT3 (the GDS file whose GN is 7), and by SYSUT4 (the GDS file whose GN is 1) are
deleted.

Note:

Removing a GDG's all GDS does not remove the GDG itself, but just result in the fact
that the GDG contains 0 GDS.

2.7.4.1.5 Deleting a GDG
You can delete a GDG as a whole by calling m_FileDelete with the GDG base name, as
shown in the listing below. In this way, all the GDG's GDS will be deleted accordingly. The
operation of deleting GDG is committed immediately and cannot be rolled back.

Listing 2‑26 Deleting a GDG

m_FileDelete ${DATA}/PJ01DDD.BT.GDG

2.7.4.1.6 Cataloging a GDG
Only GDG base can be cataloged; its GDS cannot be cataloged individually.

It is required to enable "file catalog" function in ART for Batch to catalog a GDG. Additionally, in
catalog mode, the parameter [-v volume] specified in m_FileAssign is ignored.

Note:

A GDG will be cataloged once it is defined.

2.7.4.1.7 Committing a GDG
All GDG having changes in the current step will be committed no matter if the current step
successfully finishes.

Committing a GDG updates the information in GDG management system, such as Oracle
DataBase or file (*.gens), and commits the temporary generation files; however, committing a
GDG does not change the mapping relationship between GN and RGN, meaning, in one step
of a job, a RGN always references to the same GDS.

For example, GDG1 has six GDS numbered as 1, 4, 6, 7, 9, and 10, respectively.

Listing 2‑27 Example of Committing a GDG

(STEP1)
m_FileAssign -d NEW,KEEP,KEEP -g +1 SYSUT1 "$DATA/GDG1"
m_FileAssign -d NEW,KEEP,KEEP -g +2 SYSUT2 "$DATA/GDG1"
m_FileAssign -d NEW,KEEP,KEEP -g -1 SYSUT3 "$DATA/GDG1"
(STEP2)
m_FileAssign -d NEW,KEEP,KEEP -g -1 SYSUT4 "$DATA/GDG1"

In STEP1, the mapping of GN and RGN (both in job and in GDG management system)
becomes the one as below. SYSUT3 references to the GDS whose GN is 9.

Chapter 2
Using Files

2-31

GN 1 4 6 7 9 10 11 12

RGN -5 -4 -3 -2 -1 0 1 2

In STEP2, the mapping of GN and RGN in GDG management system becomes the one as
below.

GN 1 4 6 7 9 10 11 12

RGN -7 -6 -5 -4 -3 -2 -1 0

However, the mapping of GN and RGN in the current running job is not changed; in the below
example, SYSUT4 stills references to the GDS whose GN is 9 rather than the GDS whose GN
is 11.

GN 1 4 6 7 9 10 11 12

RGN -5 -4 -3 -2 -1 0 1 2

2.7.4.2 File-Based Management
This section contains the following topics:

• Configuration

• Concurrency Control and Authorization

2.7.4.2.1 Configuration
MT_GENERATION variable specifies the way of managing GDG files. To manage GDG in *.gens
files, you need to set the value to GENERATION_FILE.

2.7.4.2.2 Concurrency Control and Authorization
In file-based GDG management mechanism, one GDG file can only be accessed by one job at
any time, that is, a single GDG cannot be accessed by multiple jobs simultaneously. To access
a GDG file, the file lock must be acquired by the existing internal function
mi_FileConcurrentAccessReservation. File-based GDG management mechanism uses a file
.gens (represents the GDG base name) to control concurrency and authorization. User
access checking depends on whether the *.gens file can be accessed or not.

2.7.4.3 DB-Based Management
For DB-based management, Oracle Database and DB2 database are supported.

Note:

To enable this function, MT_GENERATION must be set to GENERATION_FILE_DB, MT_DB
must be set to DB_ORACLE or DB_DB2LUW (or set MT_META_DB to DB_ORACLE or
DB_DB2LUW), and MT_GDG_DB_ACCESS must be set to valid database connection string
to access Oracle Database or DB2 database.

• Database Tables

Chapter 2
Using Files

2-32

• Generation File Naming Rule

• Configuration Variables

• External Shell Scripts

• Concurrency Control and Authorization

• Exception Handling

2.7.4.3.1 Database Tables
The following table shows the general defines for each GDG managed by Batch Runtime. In
this table, each row represents a GDG. All GDG files share a single GDG_DETAIL table.

Table 2-9 GDG_DEFINE

Name Type Description

GDG_BASE_NAME VARCHAR(1024) Full path name of GDG.
It cannot contain only a relative path relative to a
single repository.

The length of GDG_BASE_NAME is limited to 1024,
i.e. the minimum of PATH_MAX on different UNIX
platforms.

GDG_MAX_GEN INT Maximum number of generation files.
It contains the upper limit of generations specified
by -s option. -s option can be set in the range of
1-9999.

GDG_CUR_GEN INT GDG current generation number

Primary Key: GDG_BASE_NAME

The following table shows the detailed information of all the GDG generation files. In this table,
each row represents a generation file of a GDG.

Table 2-10 GDG_DETAIL

Name Type Description

GDG_BASE_NAME VARCHAR(1024) Full path of the GDG principal name.

GDG_REL_NUM INT Relative generation number of a generation file.

GDG_ABS_NUM INT Absolute generation number of a generation file.

GDG_JOB_ID VARCHAR(8) The ID of the job that creates the file.

GDG_JOB_NAME VARCHAR(32) The name of the job that creates the file.

GDG_STEP_NAME VARCHAR(32) The name of the step that creates the file.

GDG_CRE_TIME TIMESTAMP The timestamp when the file is created.

Primary Key: GDG_BASE_NAME+GDG_ABS_NUM

GDG_FILE_NAME (the physical generation file name) is not stored in table GDG_DETAIL since it
can be constructed from GDG_BASE_NAME in GDG_DEFINE and GDG_ABS_NUM in GDG_DETAIL.

Chapter 2
Using Files

2-33

Note:

To back up GDG information, you need to back up two database tables: GDG_DEFINE
and GDG_DETAIL.

2.7.4.3.2 Generation File Naming Rule
The following table shows the rule of generation file name:

Table 2-11 Generation File Naming Rule

Condition File Name Description

GDG_REL_NUM > 0 ${GDG_BASE_NAME}.Gen.$
{GDG_ABS_NUM}.tmp

Uncommitted

GDG_REL_NUM <= 0 ${GDG_BASE_NAME}.Gen.$
{GDG_ABS_NUM}

Committed

2.7.4.3.3 Configuration Variables
MT_GENERATION
This variable specifies the way of managing GDG files. To manage GDG files in database, you
need to set the value to GENERATION_FILE_DB and configure MT_GDG_DB_ACCESS appropriately.

MT_GDG_DB_ACCESS
This variable is used along with MT_GENERATION when it is set to GENERATION_FILE_DB, and
must be set with the valid database login account. For accessing Oracle DB, it should be
specified in the format of userid/password@sid, for example, scott/password@orcl.

MT_GDG_DB_BUNCH_OPERATION
Used along with MT_GENERATION when set to GENERATION_FILE_DB. It indicates how to commit
GDG changes to database during the commit phase. If configured to "Y", the GDG changes are
committed using a single database access. If configured to "N", the GDG changes are
committed using one or more database accesses.

2.7.4.3.4 External Shell Scripts
You can use the two external shell scripts to create and drop the new database table
automatically.

CreateTableGDG.sh

Description

Creates table GDG_DEFINE and GDG_DETAIL in database

Usage

CreateTableGDG.sh <DB_LOGIN_PARAMETER>
Sample

CreateTableGDG.sh scott/password@orcl
DropTableGDG.sh

Chapter 2
Using Files

2-34

Description

Drops table GDG_DEFINE and GDG_DETAIL from database.

Usage

DropTableGDG.sh <DB_LOGIN_ PARAMETER>
Sample

DropTableGDG.sh scott/password@orcl

2.7.4.3.5 Concurrency Control and Authorization
DB-based GDG management mechanism maintains the same concurrency control behavior as
File-based GDG management mechanism, but has a different *.ACS (* represents the GDG
base name) file format. In DB-based GDG management mechanism, you don’t need to lock
the tables mentioned in Database Tables as any job that accesses the rows corresponding to a
GDG must firstly acquire the file lock of the GDG. That is to say, there is no need to perform
concurrency control in the database access level. You cannot access database if you don’t
have access permission (read or write) to the corresponding *.ACS file. If you need to modify a
GDG file, you must have write permissions to the generation files and the directory holding the
generation files, and MT_GDG_DB_ACCESS must be configured correctly to have appropriate
permissions to the tables mentioned in Database Tables.

You can only copy DB-based GDG management description entirely and replace the file name.

2.7.4.3.6 Exception Handling
There are four kinds of information in DB-based GDG management mechanism:

• GDG_DEFINE
• *.ACS file

• GDG_DETAIL
• Physical file on disk

These information should be kept consistently for a GDG file. Batch Runtime checks the
consistency from GDG_DEFINE to Physical files when a GDG file is accessed the first time in a
job. If exceptions happen and result in inconsistency among these information, Batch Runtime
terminates the current job and reports error.

This behavior is different from the existing file-based mechanism, which does not check the
consistency but only reports exceptions encountered in the process.

2.7.4.4 Support for Data Control Block (DCB)
Both file-based GDG and DB-based GDG support Data Control Block (DCB).

• Defining .dcb File

• Creating .dcb file

• Deleting .dcb file

2.7.4.4.1 Defining .dcb File
.dcb file can have two values: "-t <file type>" and "-r <record length>".

-t <file type>

Chapter 2
Using Files

2-35

-t <file type> must be LSEQ or SEQ in m_FileAssign to create the first generation file. If you
don't specify any file type in job ksh file, LSEQ will be used by default.

-r <record length>

For SEQ file, the value is mandatory and must be a number or "number1-number2".

For LSEQ file, the value is optional. Once set, this value must be a number or "number1-
number2".

Note:

If a GDG is created by m_GenDefine rather than m_FileAssign, .dcb file will not exist
until the first generation file is created by m_FileAssign -g +1.
Once .dcb file is created, its contents will not be changed by any other m_FileAssign
statement afterwards, unless such m_FileAssign creates the first generation file
again.

2.7.4.4.2 Creating .dcb file
Create .dcb file for GDG data set when the first generation file is created by m_FileAssign -g
+1.

Note:

If a GDG is created by m_GenDefine rather than m_FileAssign, .dcb file will not exist
until the first generation file is created by m_FileAssign -g +1.
Once .dcb file is created, its contents will not be changed by any other m_FileAssign
statement afterwards, unless such m_FileAssign creates the first generation file
again.

2.7.4.4.3 Deleting .dcb file
If a GDG is deleted by m_FileDelete, the corresponding .dcb file will be deleted automatically.

However, if all generation files in one GDG are deleted while the GDG itself exists, the
corresponding .dcb file will not be deleted.

2.7.5 Using an In-Stream File
To define and use a file whose data is written directly inside the Korn shell script, use the
m_FileAssign function with the -i parameter. By default the string _end is the “end” delimiter of
the in-stream flow as shown in Listing below:

Listing 2‑28 In-stream Data Example

(STEP1)
m_FileAssign -i INFIL
data record 1
data record 2

Chapter 2
Using Files

2-36

…
_end

2.7.6 Using a Set of Concatenated Files
To use a set of files as a concatenated input (which in z/Os JCL was coded as a DD card,
where only the first one contains a label), use the m_FileAssign function with the -C parameter
as shown in the Listing 2-29 below:

Listing 2‑29 Using a Concatenated Set of Files Example

(STEPDD02)
m_FileAssign -d SHR INF ${DATA}/PJ01DDD.BT.QSAM.KBDDI002
m_FileAssign -d SHR -C ${DATA}/PJ01DDD.BT.QSAM.KBDDI001
m_ProgramExec BDDAB001

2.7.7 Using an External “sysin”
To use an “external sysin” file which contains commands to be executed, use the
m_UtilityExec function.

m_FileAssign -d OLD SYSIN ${SYSIN}/SYSIN/MUEX07
m_UtilityExec

2.7.8 Deleting a File
Files (including generation files) can be deleted using the m_FileDelete function:

m_FileDelete ${DATA}/PJ01DDD.BT.QSAM.KBSTO045

2.7.9 RDB Files
In a migration project from z/Os to UNIX/Linux, some permanent data files may be converted
to relational tables. See the File-to-Oracle chapter of the Oracle Tuxedo Application Runtime
Workbench.

When a file is converted to a relational table, this change has an impact on the components
that use it. Specifically, when such a file is used in a z/Os JCL, the converted Korn shell script
corresponding to that JCL should be able to handle operations that involve this file.

In order to keep the translated Korn shell script as standard as possible, this change is not
handled in the translation process. Instead, all the management of this type of file is performed
at execution time within Batch Runtime.

In other words, if in the z/OS JCL there was a file copy operation involving the converted file,
this is translated to a standard copy operation for files in Batch Runtime, in other words an
m_FileLoad operation).

The management of a file converted to a table is made possible through an RDB file. An RDB
file is a file that has the same name as the file that is converted to a table but with an additional
suffix:.rdb.

Each time a file-related function is executed by Batch Runtime, it checks whether the files were
converted to table (through testing the presence of a corresponding .rdb file). If one of the files

Chapter 2
Using Files

2-37

https://docs.oracle.com/cd/E72452_01/artwb/docs1222/wbuser/wbuser.html#wp1127565

concerned have been converted to a table, then the function operates the required
intermediate operations (such as: unloading and reloading the table to a file) before performing
the final action.

All of this management is transparent to the end-user.

2.7.10 Using an RDBMS Connection
When executing an application program that needs to connect to the RDBMS, the -b option
must be used when calling the m_ProgramExec function.

Connection and disconnection (as well as the commit and rollback operations) are handled
implicitly by Batch Runtime and can be defined using the following two methods:

• Set the environment variable MT_DB_LOGIN before booting the TuxJES system.

Note:

In this case, all executing jobs use this variable.

• Set its value in the TuxJES Security Configuration file for different users.

The MT_DB_LOGIN value must use the following form: dbuser/dbpasswd[@ssid] or “/”.

Note:

"/" should be used when the RDBMS is configured to allow the use of UNIX
authentication and not RDBMS authentication, for the database connection user.
Make sure the executable program can be found in $PATH.

Please check with the database administrator whether "/" should be used or not.

The -b option must also be used if the main program executed does not directly use
the RDBMS but one of its subsequent sub-programs does as shown in Listing below:

Listing 2‑30 RDBMS Connection Example

(STEPDD02)
m_FileAssign -d MOD OUTF ${DATA}/PJ01DDD.BT.QSAM.REPO001
m_ProgramExec -b DBREP001

The m_ProgramExec function may submit three types of files.

• Generated code files (.gnt file extension) compiled from COBOL source code file.
Make sure that the .gnt files can be found in $COBPATH (for Micro Focus COBOL)
or $COB_LIBRARY_PATH (for COBOL-IT).

• Callable shared library (.so file extension) compiled from C source code file.
Make sure the callable shared library file can be found at $COBPATH (for Micro Focus
COBOL) or $COB_LIBRARY_PATH (for COBOL-IT), or at system library file search path like
LIBPATH, LD_LIBRARY_PATH, and so on.

This type of file must have an entry function whose name is equal to the file name.

Chapter 2
Using Files

2-38

For example, callable shared library file ProgA.so must contain a function declared by one
of the following:

– ProgA(short* arglen, char* argstr): if you need parameters

– ProgA(): if you do not need parameters

• Any other types of executable program (such as system utilities, shell scripts, and third
party utilities)
m_ProgramExec will determine the deliverable type of the program in the following
sequence: COBOL program (.gnt), C program in callable shared library (.so), and other
executable programs. Once a COBOL program is executed, m_ProgramExec will not
execute other programs with the same name. For example, once ProgA.gnt is executed,
ProgA.so or other programs named ProgA will not be executed.

For .gnt file and .so files, m_ProgramExec launches the runb program to run it. ART provides
runb for the following:

• $JESDIR/ejr_mf_ora for combination of Micro Focus COBOL and Oracle database

• $JESDIR/ejr_mf_db2 for combination of Micro Focus COBOL and DB2 database

• $JESDIR/ejr_cit_ora for combination of COBOL-IT and Oracle database

• $JESDIR/ejr_cit_db2 for combination of COBOL-IT and DB2 database

If you do not use the above four types of combination, go to $JESDIR/ejr and run make.sh to
generate your personalized runb.

The runb program, runtime compiled with database libraries, runs the runbatch program.

The runbatch program, is in charge to:

- do the connection to the database (if necessary)

- run the user program

- do the commit or rollback (if necessary)

- do the disconnection from the database (if necessary)

2.8 Submitting a Job Using INTRDR Facility
The INTRDR facility allows you to submit the contents of a sysout to TuxJES (see the Using
Tuxedo Job Enqueueing Service (TuxJES) documentation). If TuxJES is not present, a
command “nohup EJR” is used.

Example:

m_FileAssign -d SHR SYSUT1 ${DATA}/MTWART.JCL.INFO
m_OutputAssign -w INTRDR SYSUT2
m_FileRepro -i SYSUT1 -o SYSUT2

In this example, the contents of the file ${DATA}/MTWART.JCL.INFO (ddname SYSUT1) are
copied into the file (ddname SYSUT2) which is using the option -w INTRDR, and then this file
(ddname SYSUT2) is submitted.

Chapter 2
Submitting a Job Using INTRDR Facility

2-39

Note:

The ouput file must contain valid ksh syntax.

INTRDR job which is generated by COBOL program can be submitted automatically in real time.
Once a COBOL program closes INTRDR, the job INTRDR is submitted immediately without
waiting for the current step to finish. To enable this feature, file handler ARTEXTFH.gnt needs to
be linked to COBOL program.

• For Micro Focus COBOL, add the following compile option.
CALLFH("ARTEXTFH")

• For COBOL-IT, add the following compile option.
flat-extfh=ARTEXTFH
flat-extfh-lib="<fullpath of ARTEXTFH.gnt>"
ARTEXTFH.gnt is placed at "${MT_ROOT}/COBOL_IT/ARTEXTFH.gnt".

If this feature is not enabled, INTRDR jobs is submitted after the current step finishes.

Note:

If the batch job script generated at runtime is in JCL language, it can't be submitted
by INTRDR.

2.9 Submitting a Job With EJR
When using Batch Runtime, TuxJES can be used to launch jobs (see the Using Tuxedo Job
Enqueueing Service (TuxJES) documentation), but a job can also be executed directly using
the EJR spawner.

Before performing this type of execution, ensure that the entire context is correctly set. This
includes environment variables and directories required by Batch Runtime.

Example of launching a job with EJR

EJR DEFVCUST.ksh
For a complete description of the EJR spawner, please refer to the Oracle Tuxedo Application
Runtime for Batch Reference Guide.

2.10 User-Defined Entry/Exit
Batch Runtime allows you to add custom pre- or post- actions for public APIs. For each m_* (*
represents any function name) function, you can provide m_*_Begin and m_*_End function and
put them in ejr/USER_EXIT directory. They are invoked automatically when a job execution
entering or leaving an m_* API.

Whether an m_* API calls its user-defined entry/exit function depends on the existence of
m_*_Begin and m_*_End under ejr/USER_EXIT.

A pair of general user entry/exit APIs, mi_UserEntry and mi_UserExit, are called at the entry
and exit point of each external API. The argument to these APIs consists of the function name

Chapter 2
Submitting a Job With EJR

2-40

in which they are called, and the original argument list of that function. You don’t need to
modify these two APIs, but just need to provide your custom entry/exit for m_* external APIs.
mi_UserEntry and mi_UserExit are placed under ejr/COMMON.

Note:

In user entry/exit function, users are not allowed to use any function provided by ART
for Batch; however, in user's script, a return statement returns value to the caller and
ART for Batch checks if calling user entry/exit function works successfully through the
return code. Return code 0 continues the job; non-zero value terminates the job.

You are suggested not to call exit in user entry/exit function. Because In the
framework, exit is aliased an internal function, mif_ExitTrap, which is invoked
ultimately if exit in user entry/exit function is called. If exit 0 is called, the
framework does nothing and the job continues. However if exit not_0 is called, then
a global variable is set and may terminate the current job.

• Configuration

2.10.1 Configuration
You should include only one function in a single file with the same name as the function. For
example, m_*_Begin or m_*_End. Further, you should put all such files under ejr/USER_EXIT.

You are not allowed to provide custom entry/exit functions for any mi_ prefix function provided
by Batch Runtime.

2.11 Batch Runtime Logging
This section contains the following topics:

• General Introduction

• Log Header

• File Information Logging

2.11.1 General Introduction
This section contains the following topics:

• Log Message Format

• Log Message Level

• Log Level Control

• Log File Structure

2.11.1.1 Log Message Format
Each log message defined in CONF/Messages.conf is composed of six fields, as listed in the
Table 2‑8 of the topic COBOL-IT

Chapter 2
Batch Runtime Logging

2-41

Table 2-12 Log Message Format

Field Content

1 Message identifier

2 Functions that can display the message (generic name using *)

3 Level of display. Default value: 4

4 Destination of display (u,e,o).
• U: User output
• E: Error Output (stderr)
• O: Standard output (stdout)

5 Header flag (0,1,b). Default value: 0
• 0: No header will be displayed
• 1: A hard-coded header format will be displayed
• b: Specific for exceptions messages Fatal/Error/Warning

6 The message to be displayed with possible dynamic values

The levels of these messages are set to 4 by default.

You can specify the message level of Batch Runtime to control whether to print these three
messages in job log.

2.11.1.2 Log Message Level

Table 2-13 Log Message Level

Level Message

1 FATAL only

2 Previous level and errors

3 Previous level and information

4 Previous level and file information log

5 Previous level and high level functions

6 Previous level and technical functions

7 Same as level 3 and high level functions which correspond to the -d
regexp option

8 Same as 7 and technical level functions which correspond to the -d
regexp option

9 Reserved

2.11.1.3 Log Level Control
The default level of displaying messages in job log is 3. You can also choose one of the
following ways to change the level:

• Use -V option of EJR

• Use the environment variable MT_DISPLAY_LEVEL
The display level set by EJR can override the level set by MT_DISPLAY_LEVEL.

Chapter 2
Batch Runtime Logging

2-42

2.11.1.4 Log File Structure
For each launched job, Batch Runtime produces a log file containing information for each step
that was executed. This log file has the following structure as shown in Listing below:

Listing 2‑31 Log File Example

JOB Jobname BEGIN AT 20091212/22/09 120445
BEGIN PHASE Phase1
Log produced for Phase1
.......
.......
.......
END PHASE Phase1 (RC=Xnnnn, JOBRC=Xnnnn)
BEGIN PHASE Phase2
Log produced for Phase2
.......
.......
.......
END PHASE Phase2 (RC=Xnnnn, JOBRC=Xnnnn)
..........
..........
BEGIN PHASE END_JOB
..........
END PHASE END_JOB (RC=Xnnnn, JOBRC=Xnnnn)

JOB ENDED WITH CODE (C0000})
Or
JOB ENDED ABNORMALLY WITH CODE (S990})

When not using TuxJes, the log file is created under the${MT_LOG} directory with the following
name: <Job name>_<TimeStamp>_<Job id>.log
For more information, see Using Tuxedo Job Enqueueing Service (TuxJES).

2.11.2 Log Header
Batch Runtime logging functionality provides an informative log header in front of each log line,
in the following format:

YYYYmmdd:HH:MM:SS:TuxSiteID:JobID:JobName:JobStepName
You can configure the format of log header, but should not impact any configuration and
behavior of existing specific message header: type 0, 1 and b.

The following table shows the variables you can use for specifying the general log header:

Table 2-14 Variables for Specifying General Log Header

Variable Description

MTI_SITE_ID If the job is submitted from TuxJES, it is the logical
machine ID configured for the machine by TuxJES,
otherwise it's empty.

Chapter 2
Batch Runtime Logging

2-43

Table 2-14 (Cont.) Variables for Specifying General Log Header

Variable Description

MTI_JOB_ID If the job is submitted from TuxJES, it is the job ID
assigned by JES.

MTI_JOB_NAME Name of the job assigned by m_JobBegin in the
job script.

MTI_STEP_NAME Name of the current executing job step.

MTI_SCRIPT_NAME Name of the job script.

MTI_PROC_NAME Name of the proc when the code included from a
PROC by m_ProcInclude is executing; empty
otherwise.

• Configuration

2.11.2.1 Configuration
MT_LOG_HEADER is a new configuration variable added in CONF/BatchRT.conf, for example:

MT_LOG_HEADER='$(date'+%Y%m%d:%H%M%S'):${MTI_SITE_ID}:${MTI_JOB_NAME}:$
{MTI_JOB_ID}:${MTI_JOB_STEP}: '

If the value of MT_LOG_HEADER is not a null string, its contents are evaluated as a shell
statement to get its real value to be printed as the log header, otherwise this feature is
disabled.

Note:

The string that configured to MT_LOG_HEADER is treated as a shell statement in the
source code, and is interpreted by "eval" command to generate the corresponding
string used as log header:
Syntax inside: eval mt_MessageHeader=\"${MT_LOG_HEADER}\"

To configure this variable, you need to comply with the following rules:

• MT_LOG_HEADER must be a valid shell statement for "eval", and must be quoted by single
quotation marks.

• All the variables used in MT_LOG_HEADER must be quoted by "${}". For example:
${ MTI_JOB_STEP }

• All the command line used in MT_LOG_HEADER must be quoted by "$()". For example: $
(date '+%Y%m%d:%H%M%S')

You can modify the above examples according to your format needs using only the variables
listed in Table 2‑10 of the topic Database Tables.

This configuration variable is commented by default, you need to uncomment it to enable this
feature.

Chapter 2
Batch Runtime Logging

2-44

2.11.3 File Information Logging
Logging system can logs the detailed file information in job log, as well as the information when
a file is assigned to a DD and when it is released.

File assignment information is logged in the following functions:

m_FileAssign
File release information is logged in the following functions:

m_PhaseEnd
File information is logged in the following functions:

• m_FileBuild
• m_FileClrData
• m_FileConcatenate
• m_FileCopy
• m_FileDelete
• m_FileEmpty
• m_FileExist
• m_FileLoad
• m_FileRename
• m_FilePrint
• m_FileRepro
The following topic describes the configurations required to log detailed file information:

• Configuration

2.11.3.1 Configuration
This section contains the following files:

• Messages.conf

• BatchRT.conf

2.11.3.1.1 Messages.conf
The following message identifiers are defined in CONF/Messages.conf to support using of
mi_DisplayFormat to write file assignment and file information Log Message Format.

• FileAssign;m_FileAssign;4;ueo;0;%s
• FileRelease;m_PhaseEnd;4;ueo;0;%s
• FileInfo;m_File*;4;ueo;0;%s

Chapter 2
Batch Runtime Logging

2-45

Note:

CONF/Messages.conf is not configurable. Do not edit this file.

The string "%s" at the end of each identifier represents it will be written to log file.
You can configure its value using the following variables defined in CONF/
Batch.conf. For more information, see the Table 2‑12 of the topic Log Message
Format

– MT_LOG_FILE_ASSIGN (for FileAssign)

– MT_LOG_FILE_RELEASE (for FileRelease)

– MT_LOG_FILE_INFO (for FileInfo)

2.11.3.1.2 BatchRT.conf
Three configuration variables should be defined in CONF/BatchRT.conf to determine the
detailed file information format. With the placeholders listed in Table 2‑11 in the topic
Generation File Naming Rule , you can configure file log information more flexibly.

Table 2-15 Placeholders

Placeholder Description Value and Sample

<%DDNAME%> DD Name for the file being
operated

SYSOUT1

<%FULLPATH%> Full path for the file being
operated

/local/simpjob/work/
TEST001.Gen.000000001

<%FILEDISP%> DISP for the file being operated SHR or NEW

Table 2-16 Configuration Variables in CONF/BatchRT.conf

Name Value and Sample Available Placeholder

MT_LOG_FILE
_ASSIGN

FileAssign: DDNAME=(<%DDNAME%>);
FILEINFO=($(ls -l --time-
style=+'%Y/%m/%d %H:%M:%S' --no-
group
<%FULLPATH%>)';FILEDISP=(<%FILEDISP
%>)

<%DDNAME%>
<%FULLPATH%>
<%FILEDISP%>

MT_LOG_FILE
_RELEASE

FileRelease: DDNAME=(<%DDNAME%>);
FILEINFO=($(ls -l --time-
style=+'%Y/%m/%d %H:%M:%S' --no-
group
<%FULLPATH%>)';FILEDISP=(<%FILEDISP
%>)

<%DDNAME%>
<%FULLPATH%>
<%FILEDISP%>

MT_LOG_FILE
_INFO

FILEINFO=($(ls -l --time-
style=+'%Y/%m/%d %H:%M:%S' --no-
group <%FULLPATH%>))leCopy source,
FileCopy Destination, and FileDelete
etc.

<%FULLPATH%>

Chapter 2
Batch Runtime Logging

2-46

To configure strings to these MT_LOG_FILE_* variables, replace the placeholders with
corresponding values (just string replacement). The result is treated as a shell statement, and
is interpreted by "eval" command to generate the corresponding string writing to log:

Syntax inside: eval mt_FileInfo=\"${MT_LOG_FILE_INFO}\"
To configure these variables, you need to comply with the following rules:

• After placeholders are replaced, MT_LOG_FILE_* must be a valid shell statement for "eval",
and must be quoted by single quotation marks.

• Only the placeholders listed in Table3‑11 can be used in MT_LOG_FILE_*
• All the command line used in MT_LOG_HEADER must be quoted by "$()". For example:

$(ls -l --time-style=+'%Y/%m/%d %H:%M:%S' --no-group <%FULLPATH%>)
If the level of FileInfo message is equal to or less than the message level specified for Batch
Runtime and MT_LOG_FILE_* is set to a null string, FileInfo message will not be displayed in
job log. If MT_LOG_FILE_* is set to an incorrect command to make file information invisible,
FileInfo message will not be displayed in job log as well, but the job execution will not be
impacted.

Note:

You can customize these variables according to your format needs, but make sure
the command is valid, otherwise the file information will not be logged.

2.12 Using Batch Runtime With a Job Scheduler
Entry points are provided in some functions (m_JobBegin, m_JobEnd, m_PhaseBegin,
m_PhaseEnd) in order to insert specific actions to be made in relation with the selected Job
Scheduler.

2.13 Executing an SQL Request
A SQL request may be executed using the function m_ExecSQL.

Depending on the target database, the function executes a “sqlplus” command with ORACLE
database, or a “db2 -tsx” command with UDB.

Note:

The environment variable MT_DB_LOGIN must be set (database connection user login).

The SYSIN file must contain the SQL requests and the user has to verify the contents regarding
the database target.

2.14 Simple Application on COBOL-IT / BDB
Batch COBOL programs compiled by COBOL-IT can access the indexed ISAM files which are
converted from Mainframe VSAM files through the ART Workbench. VSAM files can be stored
in BDB through COBOL-IT.

Chapter 2
Using Batch Runtime With a Job Scheduler

2-47

To enable this function in Batch runtime, do the followings during runtime:

• Compile COBOL programs by COBOL-IT complier with specifying bdb:yes.

• Set DB_HOME correctly because it is required by BDB; DB_HOME points to a place where
temporary files are put by BDB.

• Set the following environment variables before ART for Batch launches a job:

– export COB_EXTFH_INDEXED=BDBEXTFH
– export COB_EXTFH_LIB=/path_to_Cobol-IT/lib/libbdbextfh.so #For example,

export COB_EXTFH_LIB=/opt/cobol-it-64/lib/libbdbextfh.so
• Unset COB_ENABLE_XA environment variable before booting the TuxJES system.

unset COB_ENABLE_XA

Note:

It is required to set COB_ENABLE_XA when you use COBOL-IT with ART CICS
Runtime.

2.15 Native JCL Job Execution
This section contains the following topics:

• General Introduction

• Configurations

• Using JES Client to Manage JCL Jobs

• Supporting Range for JCL Statements and Utilities

2.15.1 General Introduction
Oracle Tuxedo ART Batch Runtime supports users to manage native JCL jobs without pre-
conversion by ART Workbench.

2.15.2 Configurations
It is required to set TuxJES using database to manage job. See Setting up TuxJES as an
Oracle Tuxedo Application (Using Database) for more information.

It is required to add following setting item to jesconfig file: JOBLANG=JCL.

All the environment variables described in Setting Environment Variables is also available for
native JCL execution.

2.15.3 Using JES Client to Manage JCL Jobs
The usage is the same as KSH jobs:

• Submitting a JCL Job

• Printing Jobs

• Holding/Releasing/Canceling/Purging a JCL Job

Chapter 2
Native JCL Job Execution

2-48

• JCL Engine's Debug Trace File

2.15.3.1 Submitting a JCL Job
You can use option -I to submit a JCL job with the following usage.

• artjesadmin -I JCLScriptName (in the shell command line)

• submitjob -I JCLScriptName (in the artjesadmin console)

Also, you can specify env file when submitting job as below:

• artjesadmin -o "-e <envfile_path>" -I JCLScriptName
• submitjob -o "-e <envfile_path>" -I JCLScriptName (in the artjesadmin console)

All the items in this env file should conform to format "<NAME>=<VALUE>", such as

• DATA=/home/testapp/data
• PROCLIB=${PROCLIB}:${APPDIR}/proc
• JESTRACE=DEBUG

2.15.3.2 Printing Jobs
[-t JCL|KSH] is used as a filter with the following usage:

• Print all jobs: printjob
• Print JCL jobs: printjob -t JCL
• Print KSH jobs: printjob -t KSH
The column, job type, is added to the results with one of the following values:

• JCL for JCL jobs

• KSH for KSH jobs

Before the conversion phase completes, the JCL job name and class are null, and the priority
is displayed as 0.

2.15.3.3 Holding/Releasing/Canceling/Purging a JCL Job
The usage is the same as KSH jobs.

2.15.3.4 JCL Engine's Debug Trace File
The JCL conversion log is $JESROOT/<JOBID>/LOG/<JOBID>.trace.

This trace file is only for debug purpose:

2.15.4 Supporting Range for JCL Statements and Utilities
Table 2‑17 lists the supported JCL statement. Table 2‑18 lists the supported utilities.

Chapter 2
Native JCL Job Execution

2-49

Table 2-17 Supported JCL Statement

Item Sub-Item

DD Statement Param DISP

Param DUMMY

Param SYSOUT=CLASS

Param DCB/RECFM/LRECL

Param DSN

Param DSN (backward reference)

Param DDNAME (forward reference)

Param LIKE

Temporary DD, &&TEMP

Instream DD

Concatenate DD

Dataset MOD (append)

Dataset catalog feature, and Param VOLUMN

Dataset expire feature

Duplicate DD in a single step

Dataset exclusive (DD lock and unlock)

Special DD JOBLIB

Special DD STEPLIB

EXEC Statement Param PARM

Param COND

Execute utility

Execute COBOL program

Execute COBOL program with param

JOB Statement Param CLASS

Param COND

Param TYPERUN(COPY/HOLD/JCLHOLD/SCAN)

Param MSGCLASS

Param RESTART(*/stepname/stepname.procstepname)

JCLLIB Statement -

SET Statement -

IF/ELSE/ENDIF Statement -

INCLUDE Statement -

OUTPUT Statement -

JCL Variable -

PROC/PEND Statement -

PROC Invocation Symbol override

PARM override

COND override

DD override

Chapter 2
Native JCL Job Execution

2-50

Table 2-18 Supported Utilities

Utiliy Description

DSNTEP2 Execute SQL DML

DSNTEP4 Execute SQL DML

DSNTIAUL Execute SQL DML

DSNTIAD Execute SQL DML

FTP FTP Client

ICETOOL Perform Multiple Purpose Dataset Operations

IEBUPDTE Create or Modify PS/PDS

IEHLIST List Entries in PDS/PDSE

IEHPROGM Modify System Control Data

IKJEFT01 Launch Application

IKJEFT1A

IKJEFT1B

PKZIP Compress Files into ZIP format

PKUNZIP Ucompress Files in ZIP format

IEBDG Create Dataset based on description

IEBGENER Copy PS or member in PDS

IEBPTPCH Prints or punches all, or selected portions of a sequential or
partitioned data set or PDSE in a single step

IEBCOPY Copy or Merge members in PDS/PDSE

FILEAID Consolidates the functions of many standard IBM utilities

IEFBR14 Null Utility

SORT Sort, merge or filter datasets

ICEGENER Alias of IEBGENER

ICEMAN Alias of SORT

IDCNOGFL Alias of IDCAMS

IEBFR14 Alias of IEFBR14

IDCAMS Generate and modify VSAM and Non-VSAM datasets

REXEC Execute commands on remote host

DFSRRC00 Invoke a BMP program in IMS

DSNUTILB DB2 utility used to load/unload table

2.16 Native JCL Test Mode
This section contains the following topics:

• General Introduction

• Configurations

• Using Client to Manage Test Mode

• Test Mode Report Files

Chapter 2
Native JCL Test Mode

2-51

2.16.1 General Introduction
Native JCL Test Mode is a running mode of native JCL. This mode helps you analyze defects
in user jobs/procs, find gaps in the use of the Native JCL feature, and detect environment
dependency issues that block jobs from running.

2.16.2 Configurations
Configure as follows to use Native JCL Test Mode.

• Environment Variables Configurations (Mandatory)

• Native JCL Configuration File Configurations (Optional)

2.16.2.1 Environment Variables Configurations (Mandatory)
Set required environment variables before you submit a test mode job. The following table lists
all the environment variables you must set.

Table 2-19 Environment Variables Required for Native JCL Test Mode

Environment
Variable

Description

JESDIR Directory where TuxJES is installed

JESROOT Root directory for JES2 system

DATA Directory for permanent files

PROCLIB Directory for PROC and INCLUDE files

MT_COBOL Specifies COBOL. Use one of the following values:
• COBOL_MF: Micro Focus COBOL

• COBOL_IT: COBOL-IT COBOL

MT_DB Specifies target database. Use one of the following values:
• DB_ORACLE: Oracle database

• DB_DB2LUW: DB2 database

MT_LOG Directory for logs

MT_TMP Directory for temporary internal files

MT_SORT Specifies SORT. Use one of the following values:
• SORT_MicroFocus: Micro Foucs COBOL Sort Utility

• SORT_SyncSort: Syncsort Sort Utility

• SORT_CIT: COBOL-IT COBOL Sort utility

2.16.2.2 Native JCL Configuration File Configurations (Optional)
Configure the additional utilities that you need to use in native JCL configuration file. This
configuration file is located under ${JESDIR}/jclexec/conf/JCLExecutor.conf; its
ADDUTILITYLIST item is used to define additional utility list.

For example, if you would like to define MYUTILITY utility, you should specify
ADDUTILITYLIST=MYUTILITY; if you would like to define multiple utilities, you should specify
ADDUTILITYLIST=MYUTILITY1,MYUTILITY2,…, using comma (',') to separate utilities.

Chapter 2
Native JCL Test Mode

2-52

2.16.3 Using Client to Manage Test Mode
You can use artjclchk tool to launch test mode for a job or a group of jobs. The command line
syntax for the artjclchk tool is as follows:

artjclchk -d <destdir> [-i <job_file|job_dir>] [-p <parallel number>] [-r]
-d <destdir>
Specifies the destination directory to save output report files. There are three types of output
report file; all of them are generated here. See Test Mode Report Files for more information.

-i <job_file|job_dir>
Specifies jobs to be analyzed in test mode. You can specify an individual job or a directory; if
you specify a directory, all jobs under this directory are analyzed.

-p <parallel number>
Specifies the number of jobs that can be processed concurrently.

-r
Specifies to generate category report and summary report.

• If you specify -r but do not specify -i, this command generates category report and
summary report for every individual report under -d directory.

• If you specify -r and specify -i, this command generates individual reports for all jobs that
-i specifies, and then generates category report and summary report only for these
individual reports.

• If you do not specify -r, category report and summary report are not generated.

Note:

If you run artjclchk tool twice with the same -i and -d option values, results from
the second run will replace results from the first run.

2.16.4 Test Mode Report Files
There are three types of report files that artjclchk generates.

• Individual Report File
An individual report file is a job specific report file. artjclchk generates an individual
report file for each job; anything found in the job is reported in this file.

• Category Report File
A category report file is organized according to the type of information. artjclchk
generates a summary report file for each type of information; any occurrence falling in the
category together with job location and line number is reported in this file.

• Summary Report File
A summary report file is a simplified version of category report. artjclchk generates it.
Unlike category report file, summary report file only records the issues and issue
occurrences. Summary report file has the same name with the corresponding category
report file but without "Occurences".

Chapter 2
Native JCL Test Mode

2-53

The following topics describe each of the reports in details:

• Individual Report File

• Category Report File

• Summary Report File

2.16.4.1 Individual Report File
An individual report file is a job specific report file. artjclchk generates an individual report file
for each job; anything found in the job is reported in this file.

This file is named in the format of <JOBFILENAME>.rpt ; fields in each line are separated by
comma. See the following tables for these fields.

• Table 2‑20 lists fields for JCL element

• Table 2‑21 lists fields for IKJEFTxx utilities

• Table 2‑22 lists fields for other utilities

Table 2-20 Report Fields for JCL Elements

Field Value Description

TYPE ROC Identifies a PROC issue

INCLUDE Identifies an INCLUDE issue

STATEMENT Identifies a JCL statement issue

PARAM Identifies a JCL parameter issue

SYMBOL Identifies a JCL symbol issue

UTILITY Identifies a utility issue

PROGRAM Identifies a program issue

DATASET Identifies a dataset issue

DD Identifies a DD issue

STEP Identifies a STEP issue

INTERNAL Identifies an internal issue, such as memory fault, I/O defect,
etc.

STATUS FOUND
NOTFOUND

Identifies if PROC, INCLUDE, PROGRAM, and DATASET objects
are found or not found

SUPPORTED
UNSUPPORTED

Identifies if STATEMENT, PARAM, and UTILITY objects are
supported or not supported

DEFINED
UNDEFINED

Identifies if SYMBOL object is defined or not defined

IGNORED Identifies STATEMENT or PARAM is recognized but ignored

INVALID Identifies STATEMENT or PARAM is unrecognized

ERROR Identifies a system/internal error is met

NAME Object name The object name. It can be PROC name, INCLUDE name,
PROGRAM name, UTILITY name, PARAM name, DATASET
name, or other object name

FILE File location Identifies file location

LINE Line location Identifies line location

JCL JCL Identify it is a JCL issue, not a utility issue

Chapter 2
Native JCL Test Mode

2-54

Table 2-20 (Cont.) Report Fields for JCL Elements

Field Value Description

DETAIL Detailed
information

The detailed description of this issue

Table 2-21 Report Fields for IKJEFTxx Utilities

Field Value Description

TYPE COMMAND Identifies a utility command issue

PARAM Identifies a utility parameter issue

UTILITY Identifies a utility issue

PROGRAM Identifies a program issue

DD Identifies a DD issue

STEP Identifies a STEP issue

INTERNAL Identifies an internal issue, such as memory fault, I/O defect,
etc.

STATUS FOUND NOTFOUND Identifies if PROGRAM object is found or not found

SUPPORTED
UNSUPPORTED

Identifies if COMMAND, PARAM, and UTILITY objects are
supported or not supported

IGNORED Identifies COMMAND or PARAM is recognized but ignored

INVALID Identifies COMMAND or PARAM is unrecognized

ERROR Identifies a system/internal error is met

NAME Object name The object name. It can be PROC name, INCLUDE name,
PROGRAM name, UTILITY name, or other object name

FILE File location Identifies file location

LINE Line location Identifies line location. The FILE and LINE locations are
related to JCL job itself, for example, the STEP location where
the current utility is launched.

UTILITY <UTILITYNAME> Identifies the name of the utility that generates the report line,
for example, IKJEFT01

DETAIL Detailed
information

The detailed description of this issue

Table 2-22 Report Fields for Other Utilities

Field Value Description

TYPE COMMAND Identifies a utility command issue

PARAM Identifies a utility parameter issue

DD Identifies a DD issue

INTERNAL Identifies an internal issue, such as memory fault, I/O defect,
etc.

STATUS SUPPORTED
UNSUPPORTED

Identifies if COMMAND and PARAM objects are supported or not
supported

IGNORED Identifies COMMAND or PARAM is recognized but ignored

INVALID Identifies COMMAND or PARAM is unrecognized

Chapter 2
Native JCL Test Mode

2-55

Table 2-22 (Cont.) Report Fields for Other Utilities

Field Value Description

ERROR Identifies a system/internal error is met

NAME Object name The object name. It can be PROC name, INCLUDE name,
PROGRAM name, UTILITY name, or other object name

FILE File location Identifies file location

LINE Line location Identifies line location. The FILE and LINE locations are
related to JCL job itself, for example, the STEP location where
the current utility is launched.

UTILITY <UTILITYNAME> Identifies the name of the utility that generates the report line,
for example, IEBGENER, SORT, and PKZIP

DETAIL Detailed
information

The detailed description of this issue

2.16.4.2 Category Report File
A category report file is organized according to the type of information. artjclchk generates a
summary report file for each type of information; any occurrence falling in the category together
with job location and line number is reported in this file.

The following reports will be generated:

• Missing Item Report
This is the category report file for missing items. This report file is named in the format
"Missing_Item_<DATETIME>_Occurences.csv". See Table 2‑23 for its columns.

• Unsupported Item Report
This is the category report file for unsupported items. This report file is named in the format
"Unsupported_Item_<DATETIME>_Occurences.csv". See Table 2‑24 for its columns.

• Ignored Item Report
This is the category report file for ignored items. This report file is named in the format
"Ignored_Item_<DATETIME>_Occurences.csv". See Table 2‑25 for its columns.

Suspicious Code Defect Report
This is the category report file for ignored items. This report file is named in the format "
Ignored_Item_<DATETIME>_Occurences.csv ". See Table 2‑26 for its columns.

Missing Dataset Report
This is the category report file for missing dataset. This report file is named in the format
"Missing_Dataset_<DATETIME>_Occurences.csv". See Table 2‑27 for its columns.

Internal Error Report
This is the category report file for internal error. This report file is named in the format " Add
content ". See Table 2‑28 for its columns.

Supported Utility Report
This is the category report file for supported utilities. This report file is named in the format
"Supported_Utility_<DATETIME>_Occurences.csv". See Table 2‑29 for its columns.". .

Table 2-23 Category Report File: Missing Item Report

Column Name Description

Name Name of the item which is missing.

Chapter 2
Native JCL Test Mode

2-56

Table 2-23 (Cont.) Category Report File: Missing Item Report

Column Name Description

Type Item type. It can be PROC, INCLUDE or PROGRAM.

File Location Called file.

Line Number Corresponding line number.

Table 2-24 Report File: Unsupported Item Report

Column Name Description

Name Name of the item which is missing.

Type Item type. It can be PROC, INCLUDE or PROGRAM.

JCL/Utility JCL or utility name.

File Location Called file.

Line Number Corresponding line number.

Description Corresponding line number.

Table 2-25 Category Report File: Ignored Item Report

Column Name Description

Name Name of the item which is ignored.

Type Item type. It can be STATEMENT, COMMAND or
PARAM.

JCL/Utility JCL or utility name.

File Location Called file.

Line Number Corresponding line number.

Table 2-26 Category Report File: Suspicious Code Defect Report

Column Name Description

Statement Invalid statement.

Type Item type.

JCL/Utility JCL or utility name.

File Location Called file.

Line Number Corresponding line number.

Description Description for the error.

Note:

The detected location may be not the real root cause but just the location where
parsing failed. The actual code defect may be located in previous lines; when you
check it, pay attention to the context where the error is reported.

Chapter 2
Native JCL Test Mode

2-57

Table 2-27 Category Report File: Missing Dataset Report

Column Name Description

Dataset The missing dataset name.

File Location Called file.

Line Number Corresponding line number.

DD DD name.

Table 2-28 Category Report File: Internal Error Report

Column Name Description

Error The parameter which is unsupported, ignored,or
invalid.

Type Item type.

File Location Called file.

Line Number Corresponding line number.

Description Description for the error.

Table 2-29 Category Report File: Supported Utility Report

Column Name Description

Name Utility name.

2.16.4.3 Summary Report File
A summary report file is a simplified version of category report. artjclchk generates it. Unlike
category report file, summary report file only records the issues and issue occurrences.
Summary report file has the same name with the corresponding category report file but without
"Occurences".

The following reports will be generated:

• Missing Item Report
This report file is named in the format "Missing_Item_<DATETIME>.csv". See Table 2‑30 for
its columns.

Note:

This is the simplified version of the "Missing Item Report" category report file.

• Unsupported Item Report
This report file is named in the format "Unsupported_Item_<DATETIME>.csv". See Table
2‑31 for its columns.

Note:

This is the simplified version of the "Unsupported Item Report" category report
file.

Chapter 2
Native JCL Test Mode

2-58

Ignored Item Report
This report file is named in the format "Ignored_Item_<DATETIME>.csv". See Table 2‑32 for
its columns.

Note:

This is the simplified version of the "Ignored Item Report" category report file.

• Suspicious Code Defect Report
This report file is named in the format "CodeDefect_<DATETIME>.csv". See Table 2‑33 for
its columns.

Note:

This is the simplified version of the "Suspicious Code Defect Report".

• Missing Dataset Report
This report file is named in the format "Missing_Dataset_<DATETIME>.csv". See Table 2‑34
for its columns.

Note:

This is the simplified version of the "Missing Dataset Report" category report file.

• Internal Error Report
This report file is named in the format "Internal_Error_<DATETIME>.csv". See Table 2‑35
for its columns.

Note:

This is the simplified version of the "Internal Error Report" category report file.

• Supported Utility Report
This report file is named in the format

"Supported_Utility_<DATETIME>.csv". See Table 2‑36 for its columns.

Note:

This is the simplified version of the "Supported Utility Report" category report file.

Table 2-30 Summary Report File: Missing Item Report

Column Name Description

Name Name of the item which is missing.

Type Item type. It can be PROC, INCLUDE or PROGRAM.

Occurrences Repeated times.

Chapter 2
Native JCL Test Mode

2-59

Table 2-31 Summary Report File: Unsupported Item Report

Column Name Description

Name Name of the item which is unsupported.

Type Item type. It can be UTILITY, STATEMENT,
COMMAND or PARAM.

JCL/Utility JCL or utility name.

Description Description for the error.

Occurrences Repeated times.

Table 2-32 Summary Report File: Ignored Item Report

Column Name Description

Name Name of the item which is ignored.

Type Item type. It can be STATEMENT, COMMAND or
PARAM.

JCL/Utility JCL or utility name.

Occurrences Repeated times.

Table 2-33 Suspicious Code Defect Report

Column Name Description

Statement Invalid statement.

Type Item type.

JCL/Utility JCL or utility name.

Description Description for the error.

Occurrences Repeated times.

Table 2-34 Summary Report File: Missing Dataset Report

Column Name Description

Dataset The missing dataset name.

DD DD name.

Occurrences Repeated times.

Table 2-35 Summary Report File: Internal Error Report

Column Name Description

Error The parameter which is unsupported, ignored,or
invalid.

Type Item type.

Description Description for the error.

Occurrences Repeated times.

Chapter 2
Native JCL Test Mode

2-60

Table 2-36 Summary Report File: Supported Utility Report

Column Name Description

Name Utility name.

Occurrences Repeated times.

2.17 Network Job Entry (NJE) Support
This section contains the following topics:

• General Introduction

• Configurations

• NJE Job Sample

2.17.1 General Introduction
With NJE support, users can implement the following functionalities in Batch Runtime exactly
as they do in JCL jobs.

• /* ROUTE XEQ
• /* XEQ
• /* XMIT
By m_SetJobExecLocation API of Batch Runtime, users can develop KSH jobs with NJE
support. For example,

• Specify the server group, on which the job will be executed.

• In a job, transmit an in-stream job to another server group and make it run on that server
group.

2.17.2 Configurations
This section contains the following topics:

• Job Execution Server Group

• ON/OFF Setting of NJE Support

• Environment Variable MT_TMP in MP Mode

• Queue EXECGRP

2.17.2.1 Job Execution Server Group
When specifying the server group name, which is specified as job execution group in API
m_JobSetExecLocation, please ensure the following:

• The specified server group must exist in ubbconfig file of JES domain.

• At least one ARTJESINITIATOR server must be deployed in that server group.

Chapter 2
Network Job Entry (NJE) Support

2-61

2.17.2.2 ON/OFF Setting of NJE Support
There is a corresponding setting item in JES configuration file.

Table 2-37 Configurations in <APPDIR>/jesconfig

Name Value Default Value

NJESUPPORT ON: Enable NJE supportOFF:
Disable NJE support

OFF

If NJE support is disabled in jesconfig, the statement m_SetJobExecLocation <SvrGrpName>
is ignored by TuxJES and then the job may executed by any ARTJESINITIATOR in any server
group.

2.17.2.3 Environment Variable MT_TMP in MP Mode
In MP mode, MT_TMP needs to be configured on NFS, and all the nodes in tuxedo domain
should have the same value of MT_TMP and share it.

MT_TMP can be configured in file $MT_ROOT/CONF/BatchRT.conf, or to export it as environment
value before tlisten is started in each node.

2.17.2.4 Queue EXECGRP
If NJESUPPORT is enabled in jesconfig, a new queue named EXECGRP must be created in the
existing queue space JES2QSPACE. If EXECGRP is not created, no jobs can be processed by JES.

2.17.3 NJE Job Sample
Listing 2‑32 Sample of Specifying Job Execution Server Group (XEQ)

m_JobBegin -j SAMPLEJCL -s START -v 2.0 -c R
m_JobSetExecLocation "ATLANTA"
while true ;
do
m_PhaseBegin
case ${CURRENT_LABEL} in
(START)
XEQ ATLANTA
JUMP_LABEL=STEP01
;;
(STEP01)
m_OutputAssign -c "*" SYSPRINT
m_FileAssign -i SYSIN
m_FileDelete ${DATA}/GBOM.J.PRD.ABOMJAW1.ABEND02
m_RcSet 0
_end
m_UtilityExec
JUMP_LABEL=END_JOB
;;
(END_JOB)
break
;;

Chapter 2
Network Job Entry (NJE) Support

2-62

(*)
m_RcSet ${MT_RC_ABORT:-S999} "Unknown label : ${CURRENT_LABEL}"
break
;;
esac
m_PhaseEnd
done
m_JobEnd

Listing 2‑33 Sample of Transmitting and Submitting a Job to Another Server Group
(XMIT)

m_JobBegin -j JOBA -s START -v 2.0
while true;
do
m_PhaseBegin
case ${CURRENT_LABEL} in
(START)
m_FileAssign -i -D _DML_XMIT_TEST1 SYSIN
m_JobBegin -j TEST1 -s START -v 2.0 -c B
m_JobSetExecLocation "ATLANTA"
while true ;
do
m_PhaseBegin
case ${CURRENT_LABEL} in
(START)
JUMP_LABEL=STEP01
;;
(STEP01)
m_OutputAssign -c "*" SYSPRINT
m_FileAssign -i SYSIN
m_FileDelete ${DATA}/GBOM.J.PRD.ABOMJAW1.ABEND02
m_RcSet 0
_end

m_UtilityExec
JUMP_LABEL=END_JOB
;;
(END_JOB)
break
;;
(*)
m_RcSet ${MT_RC_ABORT:-S999} "Unknown label : ${CURRENT_LABEL}"
break
;;
esac
m_PhaseEnd
done
m_JobEnd
_DML_XMIT_TEST1
m_ProgramExec artjesadmin -i ${DD_SYSIN}
JUMP_LABEL=END_JOB
;;
(END_JOB)
break

Chapter 2
Network Job Entry (NJE) Support

2-63

;;
(*)
m_RcSet ${MT_RC_ABORT:-S999} "Unknown label : {CURRENT_LABEL}"
break
;;
esac
m_PhaseEnd
done
m_JobEnd

In the above sample, job TEST1 will be submitted by the current job and executed by the
ARTJESINITIATOR which belongs to JES's Tuxedo server group ATLANTA.

2.18 File Catalog Support
This section contains the following topics:

• General Introduction

• Database Table

• Configuration Variables

• External Shell Scripts

• External Dependency

2.18.1 General Introduction
With file catalog support in Batch Runtime, users can access dataset under volumes. A volume
is a dataset carrier and exists as a folder; each dataset should belong to a volume.

File catalog contains the mapping from each dataset to each volume. When referencing an
existing and cataloged file on Mainframe, file catalog will be requested to find out the volume in
which the file is located, and then the file will be accessed.

If file catalog functionality is disabled, the behavior in Batch Runtime remains the same as it is
without such functionality.

2.18.2 Database Table
This table shows the general management for file catalog functionality by Batch Runtime. In
this table, each row represents one file-to-volume mapping.

Table 2-38 Batch Runtime Catalog

Name Type Description

FILENAME VARCHAR(256) The file name. It cannot contain any slash.

VOLUME VARCHAR(256) The volume name. It cannot contain any slash.

VOLUME_ATTR CHAR(1) Reserved.

EXPDT_DATE CHAR(7) Expiration date of the file

CREATE_DATE CHAR(7) The date when the file is created.

FILE_TYPE VARCHAR(8) File organization.

JOB_ID VARCHAR(8) The ID of the job that creates the entry.

Chapter 2
File Catalog Support

2-64

Table 2-38 (Cont.) Batch Runtime Catalog

Name Type Description

JOB_NAME VARCHAR(32) The name of the job that creates the entry.

STEP_NAME VARCHAR(32) The name of the step that creates the entry.

Primary Key: PK_ART_BATCH_CATALOG

2.18.3 Configuration Variables
Four configuration variables are required to be added in BatchRT.conf or set as environment
variables:

MT_USE_FILE_CATALOG
If it is set to yes (MT_USE_FILE_CATALOG=yes), the file catalog functionality is enabled;
otherwise, the functionality is disabled.

MT_VOLUME_DEFAULT
If no volumes are specified when a new dataset is created, Batch Runtime uses the volume
defined by MT_VOLUME_DEFAULT. MT_VOLUME_DEFAULT contains only one volume. For example,
MT_VOLUME_DEFAULT=volume1.

MT_DB_LOGIN
This variable contains database access information. For Oracle, its value is "username/
password@sid" (for example, "scott/password@gdg001").

For Db2, its value is "your-database USER your-username USING your-password" (for
example, "db2linux USER db2svr USING db2svr").

MT_CATALOG_DB_LOGIN
This variable contains file catalog database access information. Its format is the same as
MT_DB_LOGIN. Since the file catalog is stored in database, BatchRT must access it through
MT_DB_LOGIN or MT_CATALOG_DB_LOGIN.

MT_CATALOG_DB_LOGIN precedes MT_DB_LOGIN in accessing file catalog. If file catalog DB is the
same as data DB, configuring MT_DB_LOGIN only is required; otherwise, both must be
configured.

2.18.4 External Shell Scripts
You can use CreateTableCatalog[Oracle|Db2].sh or DropTableCatalog[Oracle|Db2].sh to
create or drop the new database table.

• Description

• Usage

• Sample

• DropTableCatalog[Oracle|Db2].sh

2.18.4.1 Description
Creates table ART_BATCH_CATALOG in database.

Chapter 2
File Catalog Support

2-65

2.18.4.2 Usage
CreateTableCatalog[Oracle|Db2].sh <DB_LOGIN_PARAMETER>

2.18.4.3 Sample
CreateTableCatalogOracle.sh scott/password@orcl

2.18.4.4 DropTableCatalog[Oracle|Db2].sh
This section contains the following topics:

• Description

• Usage

• Sample

2.18.4.4.1 Description
Drops table ART_BATCH_CATALOG from database.

2.18.4.4.2 Usage
DropTableCatalog[Oracle|Db2].sh <DB_LOGIN_PARAMETER>

2.18.4.4.3 Sample
DropTableCatalogOracle.sh scott/password@orcl

2.18.5 External Dependency
To use file catalog functionality in Batch Runtime, File Converter and JCL Converter in ART
Workbench should enable catalog functionality. For more information, please refer to Oracle
Tuxedo Application Rehosting Workbench User Guide.

2.19 Launching REXX EXECs
This section contains the following topics:

• Setting MT_REXX_PATH

• Launching REXX EXECs

• TSO Batch Commands

2.19.1 Setting MT_REXX_PATH
MT_REXX_PATH has no default value. It should be set with the main path where all REXX execs
located in. Place REXX programs in proper subdirectories under ${MT_REXX_PATH}. These
subdirectories correspond to PDS on mainframe where REXX programs live.

2.19.2 Launching REXX EXECs
If SYSEXEC is defined, BatchRT accepts programs run by m_ProgramExec as REXX EXEC.

Chapter 2
Launching REXX EXECs

2-66

https://docs.oracle.com/cd/E72452_01/artwb/docs1222/wbuser/index.html
https://docs.oracle.com/cd/E72452_01/artwb/docs1222/wbuser/index.html

DD SYSEXEC specifies where to find object REXX programs.

2.19.3 TSO Batch Commands
All relevant REXX files (REXX APIs and TSO commands) are located in the Batch_RT/tools/
rexx directory. The directory structure is as follows:

-- lib
/-- outtrap.rex
/ -- regis_tso_cmd
-- tso
/-- DELETE
/-- LISTDS
/- RENAME
/-- libTSO.so
Batch_RT/tools/rexx/tso is where TSO commands are located. REXX APIs should be put in
theBatch_RT/tools/rexx/lib directory.

Note:

TSO commands provide a lock mechanism. Files accessed by TSO commands in a
REXX program are locked when commands start. All file locks are released once
TSO commands finish executing.

2.20 COBOL Program Access to Oracle and TimesTen Database
ART for Batch supports the following scenarios in this feature:

• COBOL program accesses to both Oracle database and TimesTen database

• COBOL program accesses only to TimesTen database

The following topics describe the procedure to access the Oracle and TimesTen Database:

• Setting Environment Variables

• Programming in COBOL

• Preprocessing COBOL Programs

• Examples

2.20.1 Setting Environment Variables
To enable this feature, you need to set the following environment variables:

Chapter 2
COBOL Program Access to Oracle and TimesTen Database

2-67

Table 2-39 Required Environment Variables

Scenari
o

Environment Variables

MT_TT_CONN MT_DB MT_DB_LOGIN MT_DB
_LOGIN
2

Oracle
databas
e and
TimesTe
n
databas
e

Required.Specifies TimesTen connection name. Require
d.
Specifie
s ORA.

Required.Specifies
Oracle connection
credential.

Require
d.
Specifie
s
TimesTe
n
connecti
on
credenti
al.

TimesTe
n
databas
e only

Required.Specifies TimesTen connection name.

Note:

You only need to
specify a pseudo
connection name
which is used to
indicate that you are
using only TimesTen.
This name is not
actually used in your
COBOL program.

Require
d.
Specifie
s ORA.

Required. Specifies
TimesTen
connection
credential.

Not
required

Also, you need to set the following environment variables.

• LD_LIBRARY_PATH should include TimesTen library and the bundled instant client library.

• TNS_ADMIN should be set to the directory containing file tnsnames.ora, in which both
TimesTen and Oracle TNS information should be included. For more information, see
Oracle TimesTen In-Memory Database documentation.

2.20.2 Programming in COBOL
All EXEC SQL statements to Oracle database does not need to specify connection name;
however, all operations to TimesTen should specify the TimesTen connection name as it is set
in MT_TT_CONN .

2.20.3 Preprocessing COBOL Programs
In this feature, all COBOL programs accessing Oracle database or TimesTen database should
be processed by TimesTen Pro*COBOL.

2.20.4 Examples
The following are the list of examples:

Chapter 2
COBOL Program Access to Oracle and TimesTen Database

2-68

https://www.oracle.com/database/technologies/related/timesten.html

• Example for Setting Environment Variables

• Example for COBOL Programs Accessing to Oracle Database

• Example for COBOL Programs Accessing to TimesTen Database

• Example for Preprocessing COBOL Programs

• Example for Compiling COBOL Programs (CIT)

2.20.4.1 Example for Setting Environment Variables
Listing 2‑34 Example for Setting Environment Variables

export MT_TT_CONN=TTNAME1
export MT_DB=ORA
export MT_DB_LOGIN=user1/pass1@oracle
export MT_DB_LOGIN2=user2/pass2@tt
export TIMESTEN_HOME=/opt/TimesTen/tt
export LD_LIBRARY_PATH=${TIMESTEN_HOME}/lib:${TIMESTEN_HOME}/ttoracle_home/
instantclient_11_2:${LD_LIBRARY_PATH}

2.20.4.2 Example for COBOL Programs Accessing to Oracle Database
Listing 2‑35 Example for COBOL Programs Accessing to Oracle Database

EXEC SQL
SELECT B
INTO :H-VALUE-B
FROM ORATBL01
END-EXEC.

2.20.4.3 Example for COBOL Programs Accessing to TimesTen Database
Listing 2‑36 Example for COBOL Programs Accessing to TimesTen Database

EXEC SQL DECLARE TTNAME1 DATABASE END-EXEC.
EXEC SQL
AT TTNAME1
SELECT NAME
INTO :H-VALUE-NAME
FROM TTTBL01
END-EXEC.

2.20.4.4 Example for Preprocessing COBOL Programs
Listing 2‑37 Example for Preprocessing COBOL Programs

export LD_LIBRARY_PATH=${TIMESTEN_HOME}/ttoracle_home/instantclient_11_2;$
{TIMESTEN_HOME}/ttoracle_home/instantclient_11_2/sdk/procob sqlcheck=syntax
lname=SELECTTT.lis iname=SELECTDB.pco oname=SELECTDB.cob

Chapter 2
COBOL Program Access to Oracle and TimesTen Database

2-69

2.20.4.5 Example for Compiling COBOL Programs (CIT)
Listing 2‑38 Example for Compiling COBOL Programs (CIT)

cobc -fthread-safe -m -g -G -fmf-gnt SELECTDB.cob -w -fixed -ffcdreg -
lcitextfh -t SELECTDB.lst -conf=cit.conf

Chapter 2
COBOL Program Access to Oracle and TimesTen Database

2-70

3
Best Practices

This chapter contains the following topic:

• Adapting z/OS Capabilities on a UNIX/Linux Environment

3.1 Adapting z/OS Capabilities on a UNIX/Linux Environment
Due to the fact that the Batch Runtime is generally used to execute Korn shell scripts issued
from the migration of a z/OS JCL asset, several specific features are provided in order to
reproduce some capabilities of z/OS.

The usage of some of these functions may not have a lot of sense in the target platform when
modifying migrated jobs or writing new ones.

In this chapter, we present some of these features along with other best practices that we
recommend.

• Defining Paths for Procedures, Includes and Programs

• Prohibiting the Use of UNIX Commands

• Avoiding the Use of File Overriding

3.1.1 Defining Paths for Procedures, Includes and Programs
In z/OS JCLs, the following cards are used to define the libraries where procedures, includes
and programs are stored:

• JOBLIB, STEPLIB for programs.

• JCLLIB for procedures and steps.

Oracle Tuxedo Application Runtime for Batch offers the functions m_JobLibSet, m_StepLibSet
and m_JclLibSet as a replacement to these statements.

Even if these functions provide the same functionality, for modified and new jobswe encourage
you to adopt the UNIX common rule which is to directly set the environment variables where
the programs, procedures and includes are searched for.

The main variables to set are:

• PATH : environment variable that specifies where to find executable programs.

• COBPATH : environment variable that specifies where to find object COBOL programs.

• PROCLIB : environment variable that specifies where to find procedures and includes.

3.1.2 Prohibiting the Use of UNIX Commands
In order to trap every possible error or abnormal end, it is better to avoid using basic UNIX
commands (for example: cp / ls / …).

We recommend that you use only the functions provided by the Batch Runtime.

3-1

3.1.3 Avoiding the Use of File Overriding
In order to keep jobs simple and understandable, we recommend you avoid the using of file
overriding mechanism in new or modified jobs.

Chapter 3
Adapting z/OS Capabilities on a UNIX/Linux Environment

3-2

4
Using Tuxedo Job Enqueueing Service
(TuxJES)

This chapter contains the following topics:

• Overview

• Configuring a TuxJES System

• Using TuxJES

• Authorizing TuxJES Job Access

• Tracing TuxJES

4.1 Overview
TuxJES addresses the following batch job phases:

• Input

• Conversion

• Processing

• Purge

The batch job system is an important mainframe business application model. The Tuxedo Job
Enqueueing Service (TuxJES), emulation application provides smooth mainframe application
migration to open systems. TuxJES implements a subset of the mainframe JES2 functions (for
example, submit a job, display a job, hold a job, release a job, and cancel a job).

• Requirements

• TuxJES Components

4.1.1 Requirements
TuxJES is an Oracle Tuxedo application; Oracle Tuxedo is required in order to run TuxJES.

A shared file system (for example, NFS), is required in order to deploy TuxJES in distributed
environment.

4.1.2 TuxJES Components
TuxJES includes the following key components:

• genjesprofile
Generates the security profile for Oracle Tuxedo applications

• genjesacl
Generates the encrypted job access authorization configuration file for TuxJES system:

• artjesadmin
TuxJES command interface. It is an Oracle Tuxedo client

4-1

• ARTJESADM
TuxJES administration server. It is an Oracle Tuxedo server.

• ARTJESCONV
TuxJES conversion server. It is an Oracle Tuxedo server.

• ARTJESINITIATOR
JobTuxJES Initiator. It is an Oracle Tuxedo server.

• ARTJESPURGE
TuxJES purge server. It is an Oracle Tuxedo server.

For more information, see the Oracle Tuxedo Application Runtime for Batch Reference Guide

4.2 Configuring a TuxJES System
This section contains the following topics:

• Setting up TuxJES as an Oracle Tuxedo Application (Using /Q)

• Setting up TuxJES as an Oracle Tuxedo Application (Using Database)

• Setting Up TuxJES in MP Mode

4.2.1 Setting up TuxJES as an Oracle Tuxedo Application (Using /Q)
TuxJES is an Oracle Tuxedo application. Most of the TuxJES components are Oracle Tuxedo
client or Oracle Tuxedo servers. You must first configure TuxJES as an Oracle Tuxedo
application. The environment variable JESDIR must be configured correctly which points to the
directory where TuxJES installed.

• Oracle Tuxedo Configuration File

• Oracle Tuxedo /Q Queue Space and Queue Creation

• File System Configuration

• TuxJES Configuration File

• TuxJES Security Configuration

• TuxJES User Mapping File

4.2.1.1 Oracle Tuxedo Configuration File
The following Listing shows an Oracle Tuxedo configuration file (UBBCONFIG) example segment
for a TuxJES system.

Listing 1 Oracle Tuxedo UBBCONFIG File Example for the TuxJES System

*GROUPS
QG
LMID=L1 GRPNO=2 TMSNAME=TMS_QM TMSCOUNT=2
OPENINFO="TUXEDO/QM:/jes2queue/QUE:JES2QSPACE"
ARTG
LMID=L1 GRPNO=4
EVTG
LMID=L1 GRPNO=8
*SERVERS
DEFAULT:
CLOPT="-A"

Chapter 4
Configuring a TuxJES System

4-2

TMQUEUE
SRVGRP = QG SRVID = 1
RESTART = Y CONV = N MAXGEN=10
CLOPT = "-s JES2QSPACE:TMQUEUE -- -t 5 "
ARTJESADM SRVGRP =ARTG SRVID = 1 MIN=1 MAX=1
CLOPT = "-A -- -i jesconfig"
ARTJESCONV SRVGRP =ARTG SRVID = 20 MIN=1 MAX=1
CLOPT = "-A --"
ARTJESINITIATOR SRVGRP =ARTG SRVID = 30
CLOPT = "-A -- -c ABCDEFG
ARTJESPURGE SRVGRP =ARTG SRVID = 100
CLOPT = "-A --"

The following TuxJES servers should be included in the Oracle Tuxedo configuration file
(UBBCONFIG):

• ARTJESADM
• ARTJESCONV
• ARTJESINITIATOR
• ARTJESPURGE

Note:

Multiple instances of ARTJESADM , ARTJESCNOV, ARTJESINITIATOR and ARTJESPURGE
can be configured.

For the TuxJES administration server ARTJESADM, a TuxJES configuration file should be
specified using the -i option. In the Oracle Tuxedo configuration file (UBBCONFIG), ARTJESADM
should be configured in front of ARTJESCONV, ARTJESINITIATOR, or ARTJESPURGE servers.

For more information, see the Oracle Tuxedo Application Runtime for Batch Reference Guide

TuxJES uses the Oracle Tuxedo /Q component, therefore an Oracle Tuxedo group with an
Oracle Tuxedo messaging server TMQUEUE with TMS_QM configured is required in the UBBCONFIG
file. The name of the /Q queue space should be configured as JES2QSPACE.

A TuxJES system can be either an Oracle Tuxedo SHM application which runs on a single
machine, or an Oracle Tuxedo MP application which runs on multiple machines.

For more information on how to set up Oracle Tuxedo application, see Oracle Tuxedo related
documentation.

• Block Time in UBBCONFIG for TuxJES

4.2.1.1.1 Block Time in UBBCONFIG for TuxJES
For job operations (except for job submission), you can specify the number of timeout periods
for blocking messages and other system activities by setting the SCANUNIT and BLOCKTIME
parameter. The value you assign must be a positive multiple of 5.

Chapter 4
Configuring a TuxJES System

4-3

Table 4-1 Characteristics of the SCANUNIT and BLOCKTIME Parameters

Parameter Characteristics

SCANUNIT Controls the granularity of checking intervals and
timeouts. SCANUNIT must be a multiple of 5 and
between 0 and 60 seconds.
Example: SCANUNIT 20
The default is 10.

BLOCKTIME BLOCKTIME controls how much time can a
message block before it times out.

SCANUNIT * BLOCKTIME must not exceed 32767.

The default time of SCANUNIT * BLOCKTIME is
approximately 60 seconds.

Listing 2 Example Settings

*RESOURCES
IPCKEY 113333
DOMAINID jesdomain
MASTER SITE1
MODEL SHM
MAXACCESSERS 200
MAXSERVERS 50
NOTIFY SIGNAL
SCANUNIT 20
BLOCKTIME 50

In this example, sanity scans are performed in every 20 seconds and request block for no
more than 20 * 50 = 1000 seconds.

For job submission, timeout is not controlled by BLOCKTIME and SCANUNIT, it is specified in the
artjesadmin command line, for example:

artjesadmin -t 60 -i JOBA
In this example, if submission of JOBA cannot be finished in 60 seconds, timeout will be
returned.

TuxJES relies on /Q to store or retrieve messages which represent jobs. The timeout
mechanism for /Q operations inside TuxJES is only controlled by MAXTRANTIME in UBBCONFIG
RESOURCES section.

You should explicitly specify the MAXTRANTIME in UBBCONFIG; otherwise, Tuxedo automatically
uses the default value (this value may vary depending on Tuxedo release).

Set this MAXTRANTIME value based on the specific system loading. The following example sets
MAXTRANTIME to 5 minutes.

Listing 3 Example: Use MAXTRANTIME to Control Timeout

*RESOURCES
IPCKEY 133770
DOMAINID jessample
MASTER SITE1

Chapter 4
Configuring a TuxJES System

4-4

MODEL SHM
MAXTRANTIME 300 # 300 seconds

For more information about MAXTRANTIME in UBBCONFIG RESOURCES section, see
UBBCONFIG(5) in Tuxedo documentation.

If any timeout occurs on /Q operation, like tpdequeue() or tpenqueue(), you can adjust
MAXTRANTIME to accommodate it.

4.2.1.2 Oracle Tuxedo /Q Queue Space and Queue Creation
A /Q queue space with name JES2QSPACE must be created for a TuxJES system (some /Q
queues should be created within this queue space). TuxJES provides a sample shell script
(jesqinit) to create the queue space (JES2QSPACE) and the queues. For more information, see
the Oracle Tuxedo Application Runtime for Batch Reference Guide

4.2.1.3 File System Configuration
TuxJES uses a file system to communicate with Batch Execution Engine. A directory is created
on the file system for the communication between TuxJES and Batch Execution Engine. The
name of the directory should be specified in the TuxJES configuration file. This directory should
reside at a shared file system (for example, NFS), if you want to deploy the TuxJES system on
multiple machines.

4.2.1.4 TuxJES Configuration File
A configuration file can be specified for the TuxJES administration server ARTJESADM. The
following parameters can be configured in the configuration file:

JESROOT
The root directory to store job information. It is a mandatory attribute. If this directory does not
exist, ARTJESADM creates it automatically.

DEFAULTJOBCLASS
The default job class if the job class is not set in JCL. It is an optional attribute. The default job
class is A if this attribute is not set.

DEFAULTJOBPRIORITY
The default job priority if the job priority is not set in JCL. It is an optional attribute. The default
job priority is 0 if this attribute is not set.

DUPL_JOB=NODELAY
If it is not set, only one job can be in execution status for a job name. NODELAY will remove the
dependency check. The default value is delay execution.

NJESUPPORT=ON
If it is not set, NJE support will be disabled and thus jobs cannot be run on the specified server
group by Batch Runtime API m_JobSetExecLocation. The default value is OFF.

EVENTPOST=S,C,E,P,L,A
Specifies whether events are posted for a job at particular stages.

S: Job submission event.

Chapter 4
Configuring a TuxJES System

4-5

https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html#wp1531941

C: Job conversion complete event.

E: Job execution complete event.

P: Job purge event.

L: Job cancel completed event.

A: all supported events

If EVENTPOST is not specified, no events are posted. The data buffer with event post is FML32
type and the fields are defined in tuxjes/include/jesflds.h.

JES_ACL_FILE
The full path of job access authorization configuration file. This file can be plain or encrypted,
see JES_ACL_FILE_TYPE for more information.

JES_ACL_FILE_TYPE
The format of JES_ACL_FILE file. It can be set as PLAIN or ENCRYPTED (case insensitive). The
default value is PLAIN.

JES_ACL_MODE
The action when no matching rule is found for the tuple of user, operation, and job in
JES_ACL_FILE. It can be set as MAC (Mandatory Access Control) or DAC (Discretionary Access
Control). The default value is MAC.

JOBLANG
JCL or KSH.

JCL: support JCL job, user can only submit JCL job.

KSH: support KSH job, user can only submit KSH job.

Not set: act as if KSH is set.

JOBREPOSITORY
The path of the job repository where jobs are stored. The script file path inputted in job
submitting may be a relative path in JOBREPOSITORY if it is set.

You can specify multiple path names, delimit them with a colon (:). For
example,JOBREPOSITORY=<path1>:<path2>:<path3>. To find job to submit, Batch Runtime
searches from these paths in the order that you specify (in JOBREPOSITORY). When finding a job
name match, Batch Runtime stops searching, and submits this matched job.

PRIVILEGE_MODE
Specifies whether and how to enable the user substitution (See TuxJES User Substitution).
The values are:

NONE:Default value. Indicates jobs are executed by the OS user who starts JES system. This is
compatible with all previous implementations on JES system.

USER_IDENTICAL: Indicates jobs are executed by the Oracle Tuxedo user with which JES client
joins JES system. Make sure that each Oracle Tuxedo user corresponds to an existing OS
user before you choose this value.

Chapter 4
Configuring a TuxJES System

4-6

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/batchref/index.html

USER_MAPPING: When this value is specified, the JES system looks up the TuxJES user
mapping file and finds out the OS user corresponding to the Oracle Tuxedo user with which
JES client joins JES system, and then appoints this OS user as the job executor.

USE_COBOL_SERVER
If it is set to Y, TuxJES COBOL server (ARTJESCOBOLDB2MF/ARTJESCOBOLDB2CIT) invokes user
program; if it is set to N or if it is not set, TuxJES COBOL server does not invoke user program.
USE_COBOL_SERVER configuration is only supported for JCL job in Database mode.

USER_MAPPING_FILE
The full path where TuxJES user mapping file is stored. It is used along with PRIVILEGE_MODE
when its value is USER_MAPPING.

USE_DB
ORACLE or DB2.

ORACLE: Use Oracle Database to store job management data.

DB2: (not supported) Use DB2 Database to store job management data.

Not set: Use /Q to store job information.

SYSLOG=OFF,ON,DAILY,WEEKLY,MONTHLY
OFF: Specifies no logs.

ON: Specifies writing to SYSLOG. Default value. The SYSLOG is entitled "jessys.log". You can
change its path from the default "$JESROOT/jessys.log" to other directories by using
SYSLOG_PATH.

DAILY: Specifies writing to SYSLOG. A new log file is created daily. The SYSLOG is entitled
"jessys.log.<mmddyy>". For example, the SYSLOG entitled "jessys.log.032715" stands for the
log file created for the day of March 27, 2015. You can change its path from the default
"$JESROOT/jessyslog/jessys.log.<mmddyy>" to other directories by using SYSLOG_PATH.

WEEKLY: Specifies writing to SYSLOG. A new log file is created weekly. The SYSLOG is entitled
"jessys.log.<mmddyy>", where the "dd" means the first day of current week (Sunday is the first
day of the week). For example, the SYSLOG entitled "jessys.log.032215" stands for the log file
created for the week from March 22, 2015 (Sunday) to March 28, 2015 (Saturday). You can
change its path from the default "$JESROOT/jessyslog/jessys.log.<mmddyy>" to other
directories by using SYSLOG_PATH.

MONTHLY: Specifies writing to SYSLOG. A new log file is created monthly. The SYSLOG is entitled
"jessys.log.<mmddyy>", where the "dd" means the first day of current month. For example, the
SYSLOG entitled "jessys.log.030115" stands for the log file created for the month of March
2015. You can change its path from the default "$JESROOT/jessyslog/jessys.log.<mmddyy>"
to other directories by using SYSLOG_PATH.

SYSLOG_PATH
Specifies the path of SYSLOG files.

When SYSLOG=ON is set, you get the SYSLOG entitled "$SYSLOG_PATH/jessys.log" and located in
the directory where you specify through this SYSLOG_PATH.

When SYSLOG=DAILY,WEEKLY,MONTHLY is set, you get the SYSLOG entitled "$SYSLOG_PATH/
jessys.log.<mmddyy>" and located in the directory where you specify through this

Chapter 4
Configuring a TuxJES System

4-7

SYSLOG_PATH. The "jessys.log.<mmddyy>" confirms to the naming rules for
SYSLOG=DAILY,WEEKLY,MONTHLY.

If you do not specify SYSLOG_PATH, the SYSLOG files are still located in $JESROOT/jessyslog
(when SYSLOG is set to DAILY, WEEKLY, or MONTHLY) or $JESROOT (when SYSLOG is set to ON) by
default.

QSPACE_THRESHOLD
Percentage: 1 ~ 99. This is a threshold value for queue space usage rate, while the usage of
queue space reach this threshold, new job can be submitted but warning message will be
shown in the output of artjesadmin. And auto purge will be performed if it isenabled. The
default is 80.

AUTOPURGE
Integer number: 0 ~ 32767 (2^15-1).

0: Disable the automatic purging. Default value.

N(>=1): Enable the automatic purging and purge the first finished N Jobs one time.

If N>=(size of OUTPUT queue), all the jobs in OUTPUT queue are purged.

AUTOPURGE_KEEPFILES
ON: Backup folder <JESROOT>/<JOB_ID> to <JESROOT>/<JOB_ID>.bak while automatic purging,
just delete the relevant message from "OUTPUT" queue.

If AUTOPURGE=0, this item is ignored. Default value.

OFF: Delete all the files belong to the job (in folder <JESROOT>/<JOB_ID>) while automatic
purging.

Listing 4 jesconfig Example

JESROOT=/nfs/users/john_doe/jreroot
DEFAULTJOBCLASS=B
DEFAULTJOBPRIORITY=9
EVENTPOST=S,C,E,P,L,A
QSPACE_MAX_USAGE=80
AUTOPURGE=10
AUTOPURGE_KEEPFILES=ON

Note:

If the usage rate of queue space reachs 80%, the first finished 10 jobs are
automatically purged.

For the automatically purged job, all the files in folder “<JESROOT>/<JOB_ID>" is
backed up as " <JESROOT>/<JOB_ID>.bak"

4.2.1.5 TuxJES Security Configuration
TuxJES leverages the Oracle Tuxedo security mechanism to implement authentication. If
authentication is enabled, a security profile should be generated using the genapprofile utility

Chapter 4
Configuring a TuxJES System

4-8

and it should be used as a artjesadminparameter to access the TuxJES system. The user
used in the profile will be the job owner. A job only can be administrated by its owner, such as
cancel, purge, hold and release. A job can be viewed by everybody. If a job is without owner, it
can be manipulated by everyone.

Even if an Oracle Tuxedo application does not have security configured, the genjesprofile
utility still can be used to enforce job owner permission checking and store the database
connection MT_DB_LOGIN.

Based on this security mechanism, ART for Batch provides a lightweight job access
authorization mechanism to control user's job operation actions. This authorization only needs
simple configuration without involving any authorization server or even third-party security
product. For more information, see Authorizing TuxJES Job Access.

4.2.1.6 TuxJES User Mapping File
User mapping file is loaded and takes effect when PRIVILEGE_MODE value is specified
toMAPPING_CREDENTIAL. It defines the mapping relationship between Oracle Tuxedo users and
OS users. Every line in the mapping file is in the format as below:

tuxedousername OSusername
It is recommended that the owner of user mapping file is root and the file permission is "-
rw-------".

The following Listing shows a segment example of user mapping file for the TuxJES system.

Listing 5 User Mapping File Example For the TuxJES System

tuxedouser1 OSuser1
tuxedouser2 OSuser2

4.2.2 Setting up TuxJES as an Oracle Tuxedo Application (Using Database)
This section contains the following topics:

• Setting Up TuxJES

• Setting Up Oracle Database

• Setting Up DB2 Database

• Setting Up BDB Database

4.2.2.1 Setting Up TuxJES
As an alternative of /Q, TuxJES can use Database to store and manage metadata of Batch
jobs. In this mode, TuxJES does not need /Q anymore, providing better performance and full
data consistency.

Note:

Now only Oracle Database is supported.

• UBBCONFIG

• JESCONFIG

Chapter 4
Configuring a TuxJES System

4-9

4.2.2.1.1 UBBCONFIG
TuxJES uses Database to store jobs rather than /Q; therefore, you do not need to use group
for /Q and server TMQUEUE/TMS_QM any more. All other servers and groups are not impacted.

4.2.2.1.2 JESCONFIG
A new configuration item named USE_DB is added in JESCONFIG file to enable Database usage.
The following table lists USE_DB values. Listing 6 shows an example.

Table 4-2 USE_DB Values

Name Value Description

USE_DB ORACLE Use Oracle Database to store job management
data.

DB2 Use DB2 as storage to store job information.

BDB Use BDB as storage to store job information.

NOT SET Use /Q to store job information.

Note:

• autopurge is not supported in Database mode; all the setting for autopurge will
be ignored.

• NJE is not supported in Database mode.

• All other settings are the same as in /Q mode.

Listing 6 JESCONFIG Example

JESROOT=/nfs/users/john_doe/jreroot
USE_DB=ORACLE
DEFAULTJOBCLASS=B
DEFAULTJOBPRIORITY=9
EVENTPOST=S,C,E,P,L,A

4.2.2.2 Setting Up Oracle Database
This section contains the following topics:

• Getting Database Credential

• Create Tables

• Set Up Database TAF for Oracle (Optional)

4.2.2.2.1 Getting Database Credential
When using Database as storage, connection information is necessary. It is encrypted and
stored in a separate hidden file under JESROOT directory (JESROOT/.jessysprofile).
gensysprofile utility is used to generate this file.

Chapter 4
Configuring a TuxJES System

4-10

Its usage is:

gensysprofile -d <JESROOT>
When gensysprofile is launched, you are prompted to enter the user name, password,
(Database) server name, and DB schema. Show prompt on the screen:

Listing 7 Screen Prompt

User name:
Password:
Server name:
DB Schema(Optional):
(Database) Server name string indicates the location where Database server can be found and
is normally the name of the Database instance. The syntax is the same as the one used to set
the TWO_TASK environment variable. Its format is either of the following:

• //host:port/server_name
• instance_name
For example, you can use either orcl12c, or //bej301420.cn.myexample.com:1522/
orcl.cn.myexample.com.

The output is a hidden file .jessysprofile under JESROOT directory.

DB Schema is an optional parameter for user to input. If it is specified, TuxJES stores and
manages metadata of Batch jobs in specified schema.

Note:

• If your Database does not exists at the location and must go through SQLNET to
connect to it, you should specify host, port, and server_name in the format of //
host:port/server_name.

• Only JES administrator or OS root user can run gensysprofile.

4.2.2.2.2 Create Tables
To use Oracle Database to store job management data, you must first create table
JES2_JOBNUM and JES2_JOB_PARAM. Two external shell scripts are provided for you to create
and drop these two tables. The two scripts are located at $JESDIR/tools.

• CreateTableJobDataOra.sh
This shell script creates table JES2_JOB_PARAM and create index on field JOBNAME, CLASS,
PRTY, STATUS, SUBMITTIME, GRPID, and SRVID; it also creates table JES2_JOBNUM and
initialize the record in the JES2_JOBNUM. Schema name is an optional parameter. If schema
name is specified, table JES2_JOBNUM and table JES2_JOB_PARAM are created in specified
schema. Its usage is:

CreateTableJobDataOra.sh <DB_LOGIN_PARAMETER> <schema>
• DropTableJobDataOra.sh

Chapter 4
Configuring a TuxJES System

4-11

This shell script drops table JES2_JOBNUM and table JES2_JOB_PARAM. Schema name is an
optional parameter. If schema name is specified, table JES2_JOBNUM and table
JES2_JOB_PARAM are dropped in specified schema. Its usage is:

DropTableJobDataOra.sh <DB_LOGIN_PARAMETER> <schema>

4.2.2.2.3 Set Up Database TAF for Oracle (Optional)
If Oracle Database TAF (Transparent Application Failure) is enabled, when Database server
crashes, after Database recovery, TuxJES can provide service continuously with no need for
restarting TuxJES domain. If TAF is not enabled, once Database connection is broken, you
must restart TuxJES domain after Database recovery.

You can configure TAF on both the client side and the server side. If both are configured,
server-side settings take precedence.

For TAF configuration, see Oracle Database documentation for more information. The following
is simple description of TAP.

Configure TAF on the client side by including the FAILOVER_MODE parameter in the
CONNECT_DATA portion of a connect descriptor.

Configuring TAF option on the client side requires you to add Oracle Net parameters to
tnsnames.ora file. The parameter that drives the TAF option is the FAILOVER_MODE under the
CONNECT_DATA section of a connect descriptor. FAILOVER_MODE may contain the following
parameters:

Table 4-3 tnsnames.ora File Parameters

Parameter Description

TYPE Specifies the type of failover.

METHOD Determinates how fast failover occurs from the primary node to the
backup node.

BACKUP Specifies a different net service name for backup connections.

RETRIES Specifies the number of times to attempt to connect.

DELAY Specifies the amount of time in seconds to wait between connect
attempts.

The following Listing shows a sample. In this sample, failover type session and method basic
are configured for FAILOVER_MODE.

Listing 8 Sample Configuration for Failover

TNSNAMES.ora
ART =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = bej301738.cn.myexample.com)(PORT = 1521))
(LOAD_BALANCE = yes)
)
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = art)
(FAILOVER_MODE =
(TYPE = session)
(METHOD = basic)

Chapter 4
Configuring a TuxJES System

4-12

)
)
)

4.2.2.3 Setting Up DB2 Database

Note:

You should configure USE_DB=DB2 in JESCONFIG. See Setting Up TuxJES for more
information.

Do the followings to set up DB2 database:

• Getting Database Credential

• Creating Tables

• Managing Job in DB2

4.2.2.3.1 Getting Database Credential
When using Database as storage, connection information is necessary. It is encrypted and
stored in a separate hidden file under JESROOT directory (JESROOT/.jessysprofile). Use
gensysprofile utility to generate this file.

Its usage is:

gensysprofile -d <JESROOT>
Listing 9 shows a sample.

Listing 9 Sample for Getting DB2 Database Credential

gensysprofile -d /home/testuser1/work_batchrt/jesroot
gensysprofile will create a profile "/home/testuser1/work_batchrt/
jesroot/.jessysprofile"
User name (0~30 characters):db2b004
User Password (0~31 characters):
Confirm User Password (0~31 characters):
Database instance name:artbatch
DB Schema(Optional):db2b002
/home/testuser1/work_batchrt/jesroot/.jessysprofile is created successfully

Note:

DB Schema is an optional parameter for user to input. If it is specified, TuxJES stores
and manages metadata of Batch jobs in specified schema.

4.2.2.3.2 Creating Tables
Use the following command line to create necessary tables in DB2.

$JESDIR/tools/CreateTableJobDataDb2.sh <DB CONN STRING> <schema>

Chapter 4
Configuring a TuxJES System

4-13

You can use the following command line to remove these tables:

$JESDIR/tools/DropTableJobDataDb2.sh <DB CONN STRING> <schema>
The following Listing shows a sample for creating tables in DB2.

Listing 10 Sample for Creating Tables in DB2

$JESDIR/tools/CreateTableJobDataDb2.sh "artbatch user db2b004 using db2b004"
<<omit some msg here>>
db2 => db2 (cont.) => db2 (cont.) => CREATE TABLE JES2_JOBNUM (JOBNUM INT)
DB20000I The SQL command completed successfully.

db2 => INSERT INTO JES2_JOBNUM VALUES ('0')
DB20000I The SQL command completed successfully.

db2 => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2
(cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2
(cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2
(cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2
(cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2
(cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2
(cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2
(cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => CREATE
TABLE JES2_JOB_PARAM (JOBID INT NOT NULL, JOBNAME VARCHAR(32), CLASS INT,
PRTY INT, STATUS VARCHAR(32), SUBMITTIME INT, TYPRUN VARCHAR(8), OWNER
VARCHAR(32), JOBTYPE VARCHAR(3), EXECGRP VARCHAR(32), MACHINE INT, GRPID INT,
SRVID INT, SRVPID INT, EXECTIME INT, ENDTIME INT, JOBPID INT, JOBRC
VARCHAR(5), USRSEC INT, USRUSEC INT, SYSSEC INT, SYSUSEC INT, JOBSCRIPT
VARCHAR(2048), EJROPTION VARCHAR(128), SHELLOPTION VARCHAR(128), INPUTTYPE
INT, CLIENTMODE VARCHAR(32), CLTIDDATA1 INT, CLTIDDATA2 INT, CLTIDDATA3 INT,
CLTIDDATA4 INT, PROFILECONTENT VARCHAR(1024), JOBENV VARCHAR(1024), Reserve1
INT, Reserve2 INT, Reserve3 VARCHAR(128), Reserve4 VARCHAR(128), CONSTRAINT
PK_JES2_JOB_PARAM PRIMARY KEY (JOBID))
DB20000I The SQL command completed successfully.

db2 => CREATE INDEX JES2_JOB_PARAM_JNAME on JES2_JOB_PARAM (JOBNAME)
DB20000I The SQL command completed successfully.

db2 => CREATE INDEX JES2_JOB_PARAM_CLASS on JES2_JOB_PARAM (CLASS ASC)
DB20000I The SQL command completed successfully.

db2 => CREATE INDEX JES2_JOB_PARAM_PRTY on JES2_JOB_PARAM (PRTY DESC)
DB20000I The SQL command completed successfully.

db2 => CREATE INDEX JES2_JOB_PARAM_STATUS on JES2_JOB_PARAM (STATUS)
DB20000I The SQL command completed successfully.

db2 => CREATE INDEX JES2_JOB_PARAM_SUBTIME on JES2_JOB_PARAM (SUBMITTIME ASC)
DB20000I The SQL command completed successfully.

db2 => CREATE INDEX JES2_JOB_PARAM_GRPID on JES2_JOB_PARAM (GRPID)
DB20000I The SQL command completed successfully.

db2 => CREATE INDEX JES2_JOB_PARAM_SRVID on JES2_JOB_PARAM (SRVID)
DB20000I The SQL command completed successfully.

Chapter 4
Configuring a TuxJES System

4-14

db2 => commit
DB20000I The SQL command completed successfully.

db2 => DB20000I The TERMINATE command completed successfully.

4.2.2.3.3 Managing Job in DB2
Do the following to use this feature.

• Setting DB2 Environment
DB2 environment must be ready before you boot JES domain. Suggest using db2profile,
such as $source /home/db2b004/sqllib/db2profile, or setting LD_LIBRARY_PATH and
PATH (and other DB2 environment variables one by one). See DB2 documentation for more
information.

• Booting JES Domain
Run tmboot to start JES domain, and then use artjesadmin to submit or manage job.

4.2.2.4 Setting Up BDB Database

Note:

You should configure USE_DB=BDB in JESCONFIG. See Setting Up TuxJES for more
information.

Do the followings to set up BDB database:

• Getting Database Credential

• Creating Tables

4.2.2.4.1 Getting Database Credential
When using Database as storage, connection information is necessary. It is encrypted and
stored in a separate hidden file under JESROOT directory (JESROOT/.jessysprofile). Use
gensysprofile utility to generate this file.

Its usage is:

gensysprofile -d <JESROOT>
Because there is no username and password in BDB, you should leave the username field and
the password field blank and directly press ENTER. For the instance name filed, you should
input the file name of BDB DB file (and do not include path). For example, if BDB DB file is "/
home/testuser1/appdir/jesroot/jesbdb", the corresponding database instance name should
be "jesbdb".

4.2.2.4.2 Creating Tables
Use the following command line to create necessary tables in BDB. For BDB, the database is a
file on disk, and this file must be placed in folder <JESROOT>.

$JESDIR/tools/CreateTableJobDataBdb.sh <BDB FILE FULL PATH>
For example,

Chapter 4
Configuring a TuxJES System

4-15

$JESDIR/tools/CreateTableJobDataBdb.sh "/home/testuser1/appdir/jesroot/jesbdb"
You can use the following command line to remove these tables:

$JESDIR/tools/DropTableJobDataBdb.sh <BDB FILE PATH>

4.2.3 Setting Up TuxJES in MP Mode
TuxJES now can be easily configured within MP mode. For the purpose of running job,
however, the configuration in both EJR and TuxJES need to be adjusted so that jobs can be
run in parallel on different machines. This section clarifies the configuration mandatory for
configuring Batch Runtime in MP mode.

Being shared by all the servers on different machines in a TuxJES domain, the data of jobs
should be located on a shared storage (NFS), and can be accessible by all machines in the
domain. In addition, the NFS should be mounted with the same mount point on all machines.
Finally, JESROOT should be configured correctly on each node to point to the shared JES Root
Directory. During runtime, all the TuxJES servers on any machine would write data to or get
data from such shared JESROOT.

For the details of configuring EJR in MP mode, see “ Configuring Batch Runtime in MP Mode”
under “Using Batch Runtime”.

4.3 Using TuxJES
After the TuxJES system starts, you can use the artjesadmin utility to submit a job, hold a job,
release a job, cancel a job, purge a job, display the job information, or subscribe event for job
status change.

• Submitting a Job

• Displaying Job Information

• Holding a Job

• Releasing a Job

• Canceling a Job

• Purging a Job

• Displaying/Changing ARTJESINITIATOR Configuration

• Controlling ARTJESINITIATOR Servers

• Event Subscribing/Unsubscribing

4.3.1 Submitting a Job
You can submit a job using the artjesadmin subcommand submitjob :

submitjob (smj) -i|-I scriptfilename [-t timeout] [-o ejr option]
-i scriptfilename: The script file.

-I scriptfilename: The option specified to submit JCL jobs.

-t timeout: Specifies to control the timeout threshold when submitting a job.

-o ejr option: Specifies the options passed to the EJR script file.

You can submit a job synchronously by using artjesadmin -y option.

Chapter 4
Using TuxJES

4-16

For more information, see artjesadmin in Oracle Tuxedo Application Runtime for Batch
Reference Guide.

4.3.2 Displaying Job Information
You can display the information of a job or a series of jobs using the artjesadmin
subcommand printjob :

printjob(ptj) -n jobname | -j jobid | -c job_class |-a [-v] [-m] | -l
-n jobname: Display jobs with given job name

-j jobid: Display a particular job information

-c job_class: Display a particular class jobs information

-a: Display all jobs

-v: Verbose mode

-m: Print the CPU time usage of each step in one JOB

-l: Display the number of jobs for each job class in each job status type

Note:

-l option is not supported when you use /Q to store and manage metadata of Batch
jobs.

The output of the printjob subcommand includes:

• JOBNAME: The job Name

• JobID: The Job ID generated by TuxJES system

• Owner: The submission user of the job

• Prty: Priority of the job

• C: Job Class

• Status: Job Status
EXECUTING: a job is running

CONVING: a job waiting for conversion

WAITING: a job waiting for execution

DONE: a job finished successfully

FAIL: a job finished but failed

HOLD_WAITING: a job is in hold state after conversion

HOLD_CONVING: a job is in hold state without conversion

INDOUBT: a job is in doubt state due to its initiator restarted

CANCELED: a job is canceled

• Submit time: The submit time of the job

• Step: The current running job step. It is only applicable to running jobs.

Chapter 4
Using TuxJES

4-17

• Type Run: The TYPRUN definition of the job.

• Machine: Only for running/done/failed jobs. It is the machine name that the job is/was
running on.

• CPU usage: The user CPU usage and system CPU usage for the job execution.

• Result: Job operation result, “OK” or error message.

Note:

If there are too many jobs in JES2 system, printing all jobs' status in console may
lead to time out; to avoid this situation, users need to configure long enough
block time in ubbconfig of JES.

For more information about how to set block time, please refer to Block Time in
UBBCONFIG for TuxJES.

• Getting Job Status (Synchronous)

4.3.2.1 Getting Job Status (Synchronous)
You can get job status synchronously by using artjesadmin in the following format:

artjesadmin [-f [security_profile]] -p -j jobid
-p and -j
Option -p and -j are added to get job status without interaction in artjesadmin console.

Exit Code

The following table lists the exit codes for artjesadmin if -p.

Table 4-4 Exit Code

Exit Code Description Notes

0 Job is finished normally. Job status =
DONE

A job is finished successfully.

1 Command execution fails. The failure is caused by an internal
error, a network error, or a syntax error.

3 Job status = FAIL JOB execution fails.

4 Job status = CANCEL A job is canceled.

5 Job status = CONVING A job is waiting for conversion.

6 Job status = EXECUTING A job is running.

7 Job status = HOLD_CONVING A job is in hold state without conversion.

8 Job status = HOLD_WAITING A job is in hold state after conversion.

9 Job status = WAITING A job is waiting for execution.

10 Job status = DISCARD This status will occur if tpenqueue()
fails.

11 Job status = INDOUBT When a job is running, if JES server
ARTJESINITIATOR is shutdown and
then restarted, the job status will be
INDOUBT.

Chapter 4
Using TuxJES

4-18

Table 4-4 (Cont.) Exit Code

Exit Code Description Notes

22 Job doesn’t exist. N/A

Standard Output

Information shown in Table 5 is printed to stdout in the following format.

<JOBID>,<JOBNAME>,<JOBSTATUS>,<JOB RETURN CODE>

Table 4-5 Standard Output

Output Content Description Sample

<JOBID> Job ID 00005097
<JOBNAME> Job name JOBA
<JOBSTATUS> Job current status DONE
<JOB RETURN CODE> Job return code from EJR (only

available if a job has finished)
C000

Listing 11 Sample: Job has been Finished Normally

00000002,JOBA,DONE,C0000

Listing 12 Sample: Job is Finished but Fails

00000002,JOBA,FAILED,U0568

Listing 13 Sample: Job is Running

00000002,JOBA,EXECUTING

4.3.3 Holding a Job
You can hold a job or a series of jobs which are in CONVING or WAITING status using the
artjesadmin subcommand holdjob :

holdjob(hj) -n job name | -j jobid | -c job_class | -a
-n jobname: hold jobs with given job name

-j jobid: hold a particular job

-c job_class: hold a particular class jobs

-a: hold all jobs

4.3.4 Releasing a Job
You can release a job or a series of jobs which are in HOLD_WAITING or HOLD_CONVING status
using the artjesadmin subcommand releasejob:

releasejob(rlj) -n job name | -j jobid | -c job_class | -a
-n jobname: release jobs with given job name

Chapter 4
Using TuxJES

4-19

-j jobid: release a particular job

-c job_class: release a particular class jobs

-a: release all jobs

4.3.5 Canceling a Job
You can cancel a job or a series of jobs using the artjesadmin subcommand canceljob:

canceljob(cj) -n job name | -j jobid | -c job_class | -a
-n jobname: cancel jobs with given job name

-j jobid: cancel a particular job

-c job_class: cancel a particular class jobs

-a: cancel all jobs

4.3.6 Purging a Job
You can purge a job or a series of jobs using the artjesadmin subcommand purgejob :

purgejob(pgj) -n job name |-j jobid | -c job class | -s job status | -a
-n jobname: purge jobs with given job name

-j jobid: purge a particular job

-c job class: purge jobs with given job class

-s job status: purge jobs with given job status

-a: purge all jobs

Completed jobs in the DONE or FAIL status are moved to the purge queue. For other jobs,
purgejob has same effect as canceljob. The purgejob command does not purge the job
directly. The ARTJESPURGE server deletes the job from the TuxJES system.

• Automatic Job Purge

4.3.6.1 Automatic Job Purge
When all the "available space" in queue space is occupied, any new job can't be submitted. To
enable new job submission, users need to manually purge some jobs to decrease the usage
rate. But this may introduce inconvenience and big effort to the application administrator.
Another enhancement, Automatic Purging, can be introduced. With automatic purging enabled,
whenever queue space usage rate reaches the warn level threshold, a specified count of jobs
in OUTPUT queue are purged automatically. Automatic purging can be enabled or disabled (by
default), and users can choose to backup files of all the jobs purged automatically or delete
them permanently.

Chapter 4
Using TuxJES

4-20

Note:

Auto purge only happen at the time point after one job is inserted into queue space
successfully and the queue usage reach the warning threshold. If there is no job
exists in the OUTPUT queue in this time point, no job will be purged automatically. As
an extreme case, after one job is submitted, the status of queue space changed to
"available space are all occupied" and "no job in OUTPUT queue", no job can be
purged automatically by this last job submission, in this situation, auto purge will
never be performed, user must purge some job manually, otherwise no new job can
be submitted.

If job submission failed, auto purge will not be activated.

Auto purge doesn't impact the current job submission.

JES system doesn't do auto purge in the background in any other form, such as
check with a fixed interval.

OEM integration using TSAMPlus plug-in supports auto-archive of job logs and
sysouts. If the jobs are purged, the key job information and job logs are available in
the EM management repository.

The check action for queue space usage only happen at the time point after one job
is inserted into queue space successfully. Only job submission can activate this
check action. If job submission failed, this check action will not be activated.

The check result does not impact the current job submission.

JES system does not check queue space usage in the background in any other form,
such as check with a fixed interval.

• Set Warning Threshold for Queue Space

4.3.6.1.1 Set Warning Threshold for Queue Space
Set a warning threshold for usage rate of the queue space. This threshold can be configured in
file "jesconfig". When submit a new job, JES will check current usage rate of the queue space,
if it has reached the warning threshold:

1. Activate auto purge if it's enabled in jesconfig file

2. One line warning message is output to artjesadmin console following the "job submitted
successfully" message, which indicate user to purge some jobs. Or show how many jobs
has been auto purged (if auto purge is enabled).

This feature depends on one new feature of tuxedo /Q: return current queue space usage rate
in percentage.

Chapter 4
Using TuxJES

4-21

Note:

The check action for queue space usage only happen at the time point after one job
is inserted into queue space successfully. Only job submission can activate this
check action.

If queue space is greater than warning threshold but is little than 100, that is
"available space" has not been exhausted, new job submission is permitted, but
warning message will be outputted in artjesadmin console.

If job submission failed, this check action will not be activated.

The check result doesn't impact the current job submission.

JES system does notcheck queue space usage in the background in any other form,
such as check with a fixed interval.

4.3.7 Displaying/Changing ARTJESINITIATOR Configuration
You can display the number of maximum concurrent ARTJESINITIATOR server executing jobs
using the artjesadmin subcommand printconcurrent :

printconcurrent(pco) -g groupname -i serverid
-g groupname: the Tuxedo group name of the ARTJESINITIATOR server

-i serverid: the Tuxedo server id of the ARTJESINITIATOR server

You can change the number of maximum concurrent ARTJESINITIATOR server executing jobs
using the artjesadmin subcommand changeconcurrent:

changeconcurrent(chco) -g groupname -i serverid -n concurrent_num
-g groupname: the Tuxedo group name of the ARTJESINITIATOR server

-i serverid: the Tuxedo server id of the ARTJESINITIATOR server

-n concurrent_num: the number of maximum concurrent executing jobs

4.3.8 Controlling ARTJESINITIATOR Servers
You can display the number of ARTJESINITIATOR server executing jobs using the artjesadmin
subcommand showjobexec:

showjobexec(she) [-n machine] | [-g groupid [-i serverid]]
-n machine
The Tuxedo logic machine name running ARTJESINITIATOR server.

-g groupid:
The Tuxedo group id of the ARTJESINITIATOR server

-i serverid:

Chapter 4
Using TuxJES

4-22

The Tuxedo server id of the ARTJESINITIATOR server

Note:

If no option is specified, executing jobs for all ARTJESINITIATOR servers are
displayed.

You can stop ARTJESINITIATOR servers from picking up a new job to execute; however, servers
continue finishing current jobs.

stopjobexec(ste) [-n machine] | [-g groupid [-i serverid]]
-n machine:
The Tuxedo logic machine name running ARTJESINITIATOR server.

-g groupid:
The Tuxedo group id of the ARTJESINITIATOR server.

-i serverid:
The Tuxedo server id of the ARTJESINITIATOR server.

Note:

If no option is specified, all ARTJESINITIATOR servers stop picking up new jobs.

You can resume ARTJESINITIATOR server pick up and new job execution.

resumejobexec(rse) [-n machine] | [-g groupid [-i serverid]]
-n machine:
The Tuxedo logic machine name running ARTJESINITIATOR server.

-g groupid:
The Tuxedo group id of the ARTJESINITIATOR server

-i serverid:
The Tuxedo server id of the ARTJESINITIATOR server

Note:

If no option is specified, all ARTJESINITIATOR servers resume.

• Controlling ARTJESINITIATOR Servers (Synchronous)

4.3.8.1 Controlling ARTJESINITIATOR Servers (Synchronous)
You can control ARTJESINITIATOR servers synchronously by using artjesadmin in the following
format:

Chapter 4
Using TuxJES

4-23

artjesadmin [-f [security_profile]] -x showjobexec|resumejobexec|stopjobexec
[[lmid=machine|grpid=groupid|grpid=groupid,srvid=serverid];...]
-x showjobexec [[lmid=machine|grpid=groupid|grpid=groupid,srvid=serverid];...]:
Displays the number of executing jobs for all ARTJESINITIATOR servers, logical machine
servers, servers by group id, or servers by group id and server id.

-x stopjobexec [[lmid=machine|grpid=groupid|grpid=groupid,srvid=serverid];...]:
Stops pick up of new jobs to execute for all ARTJESINITIATOR servers, logical machine servers,
servers by group id, or server by group id and server id.

-x resumejobexec [[lmid=machine|grpid=groupid|grpid=groupid,srvid=serverid];...]:
Resumes pick up of new jobs to executefor all ARTJESINITIATOR servers, ogical machine
servers, servers by group id, or server by group id and server id.

4.3.9 Event Subscribing/Unsubscribing
You can subscribe or unsubscribe job status change event using the artjesadmin
subcommand event:

event (et) [-t C,E,P,L,A] on|off
C: job conversion complete event

E: job execution finish event

P: job purge event

L: job cancel completed event

A: all supported events. If the event is set to "on", A is the default.

on |off: The submission is on or off. the "on" setting can be used with the -t option.

After subscribing to an event, you are notified on the artjesadmin console when the
corresponding event is generated.

4.4 Authorizing TuxJES Job Access
Based on TuxJES security mechanism, ART for Batch provides a lightweight job access
authorization mechanism to control user's job operation actions. This authorization only needs
simple configuration without involving any authorization server or even third-party security
product.

In this mechanism, administrator can authorize particular user to do particular job operations,
using TuxJES job operation authorization rules.

If an Oracle Tuxedo user is mapped to (or identical with) Unix/Linux root, it would be treated
as a super user. This super user is allowed to do any job operation with no authorization
checking performed.

• Configuring Job Access Authorization Mechanism

• Using Job Operation Authorization Rules

• Using artjesadmin to Dynamically Change Job Access Authorization

Chapter 4
Authorizing TuxJES Job Access

4-24

4.4.1 Configuring Job Access Authorization Mechanism
The following configurations are mandatory to enable TuxJES job access authorization
mechanism.

• Set JES_ACL_FILE in JESCONFIG
This is to specify the full path of job access authorization configuration file. For example:

JES_ACL_FILE=/home/user/simpjob/jesacl
If JES_ACL_FILE cannot be opened successfully, or it contains invalid format rules,
ARTJESADM cannot boot up.

Note:

Do not configure JES_ACL_FILE if you want to use other authorization servers such as
EAUTHSVR or if you do not want to use any kind of authorization, because the
configuration for the job access authorization mechanism has higher precedence
than other standalone ACL authorization servers.
Besides the above JES_ACL_FILE configurations, you should set other configurations
to enable TuxJES security mechanism. For example, set PRIVILEGE_MODE to
USER_IDENTICAL or USER_MAPPING in JESCONFIG, and set SECURITY to USER_AUTH, ACL,
or MANDATORY_ACL in UBBCONFIG file.

The following configurations are optional to use this mechanism.

• Set JES_ACL_FILE_TYPE to PLAIN (default) or ENCRYPTED in JESCONFIG to specify whether
the JES_ACL_FILE is plain or encrypted.

• Set JES_ACL_MODE to MAC (default) or DAC in JESCONFIG to specify the action when no
matching rule in the rule file is found. See Example for Using JES_ACL_MODE for an
example.

Also, we use genjesacl tool to generate the encrypted rule file for TuxJES system.

For more information, see ARTJESADM and genjesacl.

4.4.2 Using Job Operation Authorization Rules
This section has the following topics:

• Setting Rules

• Processing Rules

• Adding Comments to Rules

• Examples

4.4.2.1 Setting Rules
The JES_ACL_FILE file where you set rules can be plain or encrypted.

• Plain JES_ACL_FILE File

• Encrypted JES_ACL_FILE file

Chapter 4
Authorizing TuxJES Job Access

4-25

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/batchref/tuxjesref.html#wp1185462
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/batchref/tuxjesref.html#wp1199179

4.4.2.1.1 Plain JES_ACL_FILE File
Set job operation authorization rule in the plain text file that JES_ACL_FILE specifies. Use the
following CSV format:

permission; user-list; operation-list; jobname-list
• permission

• user-list

• operation-list

• jobname-list

Here are some examples.

• Listing 14: In this example, user tpuser1 is authorized to perform any kind of operation on
any jobs.

• Listing 15: In this example, user tpuser2 is authorized to operate on jobs with the JOBZ
prefix in their name.

• Listing 16: In this example, no user is authorized to purge any jobs.

Listing 14 Example for Setting Rules

ALLOW; tpuser1; *; *
Listing 15 Example for Setting Rules

ALLOW; tpuser2; *; JOBZ*
Listing 16 Example for Setting Rules

DENY;*; PURGE;*

permission
Specifies ALLOW or DENY for the permission.

This field is case insensitive.

user-list
Specifies Oracle Tuxedo user name. When specifying user name, you should not only follow
Oracle Tuxedo's naming requirements but also follow the below requirements.

- User name should not contain a semicolon (;).

- User name should not be just an asterisk (*).

Multiple users are separated by ":". An asterisk (*) means all Oracle Tuxedo users. Wildcards
are not supported in this field. For example, tpuser* does not mean all users that have name
starting with tpuser. For Oracle Tuxedo's naming requirements, see Oracle Tuxedo Command
Reference.

operation-list
Specifies job operations. The job operations could be SUBMIT, CANCEL, PURGE, HOLD, and
RELEASE.

Chapter 4
Authorizing TuxJES Job Access

4-26

https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rfcm/rfcmd.html
https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rfcm/rfcmd.html

Among these five kinds of job operation, SUBMIT is the most important one and is the
prerequisite of the following four kinds of job operation because if a user wants to cancel,
purge, hold or release a job, TuxJES firstly checks whether the user is the owner of the job
(only if the user is granted as SUBMIT and successfully submit a job, that user becomes the
owner of this job and will own this job until it is purged out of TuxJES system).

Multiple operations are separated by ":". An asterisk (*) means all of these operations (equals
to SUBMIT:CANCEL:PURGE:HOLD:RELEASE). Wildcards are not supported in this field. This field is
case insensitive.

jobname-list
Specifies job names. The job name is not the file name of the job; it is the internal job name
specified in m_JobBegin and translated from /<NAME> JOB statement in JCL.

Multiple job names are separated by ":". Wildcards "*" (for zero or more characters) and " ?"
(for only one character) are supported.

4.4.2.1.2 Encrypted JES_ACL_FILE file
If you set JES_ACL_FILE_TYPE=ENCRYPTED, you must configure the JES_ACL_FILE file as an
encrypted file. This encrypted file can be generated by the genjesacl tool.

For more information, see JESCONFIG and genjesacl.

4.4.2.2 Processing Rules
In terms of multiple matching rules, the first matching rule takes precedence. A matching rule
means that the user, operation and job fields are all matched.

If no rule is found to match the user, operation and job, the configuration of JES_ACL_MODE in
JESCONFIG file takes effect. If JES_ACL_MODE is not set, its default value JES_ACL_MODE=MAC
takes effect, meaning that the operation is denied.

Listing 17 Example for Processing Rules

ALLOW; tpuser1;*;*
DENY; tpuser1;*; JOBA
Though the above two rules are both matching rules, the first matching rule takes precedence,
meaning that user tpuser1 is authorized to operate on JOBA and the second matching rule
does not take effect.

If you want user tpuser1 to operate all the jobs except for JOBA, exchange the sequence of the
above two rules.

4.4.2.3 Adding Comments to Rules
The lines (ignoring leading space) starting with character # are considered as comments. For
example:

This is comment

 # This is also comment.

ALLOW;tpuser1;*;JOBA:JOBB

Chapter 4
Authorizing TuxJES Job Access

4-27

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/batchref/tuxjesref.html#wp1185462
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/batchref/tuxjesref.html#wp1199179

Do not write comments right after the rule in the same line. For example, the #C in the following
line is not considered as a comment.

ALLOW;tpuser1;*;JOBA:JOBB#C

4.4.2.4 Examples
The following are the list of examples:

• Example for Using Difference Ways to Set Rules

• Example for Using Wildcards to Set Rules

• Example for Using JES_ACL_MODE

4.4.2.4.1 Example for Using Difference Ways to Set Rules
Suppose jobs whose names start with JOBAA, JOBBB and JOBCC need to be protected. You want
to grant tpuser1 and tpuser2 for jobs whose names start with JOBAA, and grant tpuser3 and
tpuser4 for jobs whose names start with JOBBB and JOBCC. All other jobs do not need to be
protected.

The following rules can satisfy this requirement.

ALLOW;tpuser1:tpuser2;*;JOBAA*
ALLOW;tpuser3:tpuser4;*;JOBBB*:JOBCC*
DENY;*;*;JOBAA*:JOBBB*:JOBCC*
ALLOW;*;*;*
The following rules can also satisfy this requirement.

ALLOW;tpuser1:tpuser2;*;JOBAA*
ALLOW;tpuser3:tpuser4;*;JOBBB*:JOBCC*
DENY;*;*;JOBAA*:JOBBB*:JOBCC*
Then configure JES_ACL_MODE=DAC in JESCONFIG file.

4.4.2.4.2 Example for Using Wildcards to Set Rules
Suppose there are three Oracle Tuxedo users in the system: tpuser1, tpuser2, tpuser3; there
are 30 jobs in the system: JOBX01-JOBX10, JOBY01-JOBY10, and JOBZ01-JOBZ10.

You want to grant tpuser1 and tpuser2 to operate all jobs, and grant tpuser3 to only operate
12 jobs: JOBX10, JOBY10, and JOBZ01-JOBZ10.

There are many solutions.

Option A:

DENY;tpuser3;*;JOBX0?:JOBY0?
ALLOW;*;*;*
Option B:

ALLOW;tpuser3;*;JOBX10:JOBY10:JOBZ*
ALLOW;tpuser1:tpuser2;*;*

Chapter 4
Authorizing TuxJES Job Access

4-28

In this case, Option A is not recommended because it authorizes the potential new user a high
permission.

4.4.2.4.3 Example for Using JES_ACL_MODE
Suppose the rule file just contains one line.

ALLOW; tpuser1; *; JOBA
If user tpuser1 wants to submit JOBB and user tpuser2 wants to submit JOBA, there is no
matching rule for these requirements; then the settings for JES_ACL_MODE take effect.

By default, JES_ACL_MODE is MAC, meaning that these actions would be denied; however, if you
specify JES_ACL_MODE to DAC, the above operations will be allowed.

4.4.3 Using artjesadmin to Dynamically Change Job Access Authorization
You can dynamically change job access authorization, using artjesadmin command.

artjesadmin -f [security_profile] -x setjesacl
aclfile=rulepath[,aclfiletype=PLAIN|ENCRYPTED[,aclmode=MAC|DAC]]
You can also use artjesadmin sub command.

setjesacl (sja) -f rulepath [-t PLAIN|ENCRYPTED] [-m MAC|DAC]
For example, to change the rule file of job access authorization to another file (aclrule.new)
with DAC mode, you can use artjesadmin command as Listing 18 or use artjesadmin sub
command as Listing 19.

Listing 18 Example of Using artjesadmin Command to Dynamically Change Job Access
Authorization

artjesadmin -f jesprofile -x setjesacl aclfile=aclrule.new,aclmode=DAC
Listing 19 Example of Using artjesadmin Sub Command to Dynamically Change Job
Access Authorization

artjesadmin -f jesprofile
setjesacl -f aclrule.new -m DAC

4.5 Tracing TuxJES
ART for Batch supports you to trace messages (error messages, warning messages,
information messages, and debugging messages) generated by TuxJES client and server.
These messages are formatted and stored in TuxJES trace files; you can use four different
trace levels (ERROR, WARN, INFO, and DEBUG) to determine which messages will be
displayed.

• Setting Environment Variables

• Understanding TuxJES Trace File

• Understanding TuxJES Trace Message Format

• Understanding TuxJES Trace Message Level

• Controlling TuxJES Trace Message Level

Chapter 4
Tracing TuxJES

4-29

4.5.1 Setting Environment Variables
Before running Batch Runtime, you can set the following environment variables:

Table 4-6 Available Environment Variables for Tracing TuxJES

Variable Usage

JES_TRACE_PATH The directory where TuxJES trace files are stored. The default directory
is ${APPDIR}/Logs.

JESTRACE The display level of TuxJES trace messages. Set one of the following:
• ERROR or error: TuxJES outputs error messages only.

• WARN or warn: TuxJES outputs error messages and warning
messages.

• INFO or info: TuxJES outputs error messages, warning messages,
and information messages.

• DEBUG or debug: TuxJES outputs all messages.

The default value is WARN.

If JESTRACE is not defined or if it is specified with none of these values
above, TuxJES assumes that JESTRACE is specified with WARN
- TuxJES outputs error messages and warning messages.

4.5.2 Understanding TuxJES Trace File
Every TuxJES server and client has its own TuxJES trace file. These trace files store trace
messages generated by TuxJES client and server, including error messages, warning
messages, information messages, and debugging messages.

By default, JES trace files are stored in ${APPDIR}/Logs directory; before running Batch
Runtime, you can change the directory by setting the environment variable JES_TRACE_PATH.

A TuxJES server's trace file is named with the combination of server name, group ID, server
ID, and a fixed-suffix "jestrace". For example,

• ARTJESADM.1.1.jestrace is the jestrace file name of a ARTJESADM server; this server
belongs to group 1 and its server ID is 1.

• ARTJESCONV.1.20.jestrace is the jestrace file name of a ARTJESCONV server; this server
belongs to group 1 and its server ID is 20.

A TuxJES client's trace file is named with the client name and a fixed-suffix "jestrace". For
example,

• artjesadmin.jestrace is the jestrace file name of a TuxJES client.

4.5.3 Understanding TuxJES Trace Message Format
A TuxJES trace message is composed of the following fields:

Table 4-7 TuxJES Trace Message Format

Field Content

1 Process ID (PID)

Chapter 4
Tracing TuxJES

4-30

Table 4-7 (Cont.) TuxJES Trace Message Format

Field Content

2 Thread ID (TID)

3 Current timestamp

4 Trace message level. For more information, see Understanding TuxJES
Trace Message Level and Controlling TuxJES Trace Message Level.

5 Functions that can display the message

6 The message to be displayed with possible dynamic values

4.5.4 Understanding TuxJES Trace Message Level
There are four TuxJES trace messages levels.

• ERROR Level
TuxJES outputs error messages only.

• WARN Level (Default Level)
TuxJES outputs error messages and warning messages.

• INFO Level
TuxJES outputs error messages, warning messages, and information messages.

• DEBUG Level
TuxJES outputs all messages.

4.5.5 Controlling TuxJES Trace Message Level
You can use environment variable JESTRACE to set the TuxJES trace message level, or use
command artjesadmin to dynamically change it, determining which level of messages will be
displayed.

• Using JESTRACE to Set TuxJES Trace Message Level

• Using artjesadmin to Dynamically Change TuxJES Trace Message Level

4.5.5.1 Using JESTRACE to Set TuxJES Trace Message Level
You should set environment variable JESTRACE before running Batch Runtime. Once you set
JESTRACE, it will set the TuxJES trace message level of all TuxJES clients and servers that your
UBBCONFIG SERVERS section specifies.

For more information about JESTRACE, see Setting Environment Variables.

4.5.5.2 Using artjesadmin to Dynamically Change TuxJES Trace Message Level
You can dynamically change TuxJES trace message level, using artjesadmin command:

artjesadmin [-f [security_profile]] -x settracelevel [trclvl=trace_level[,
[lmid=machine|grpid=groupid|grpid=groupid,srvid=serverid];...]]
You can also use artjesadmin sub command:

settracelevel(stl) -t tracelevel [-n machine] | [-g groupid [-i serverid]]

Chapter 4
Tracing TuxJES

4-31

The parameter trclvl and -t can be set as 0, 1, 2, or 3. 0 indicates ERROR level; 1 indicates
WARN level; 2 indicates INFO level; 3 indicates DEBUG level.

If none of the machine, groupid, and serverid parameter is specified, the artjesadmin will
change the TuxJES trace message level of the current client and all servers that your
UBBCONFIG SERVERS section specifies. Once you specify one or more parameters, the
artjesadmin will only change the TuxJES trace message level of the servers that you
specifies; the current client will not be changed.

• Example A:Change TuxJES trace message level to DEBUG for the current client and all
servers that your UBBCONFIG SERVERS section specifies. You can use artjesadmin
command as Listing 20 or use artjesadmin sub command as Listing 21.

• Example B: Change TuxJES trace message level to ERROR for the TuxJES servers which
are running on SITE1 machine. You can use artjesadmin command as Listing 22 or use
artjesadmin sub command as Listing 23

• Example C: Change TuxJES trace message level to INFO for all TuxJES administration
servers that belong to group 1. You can use artjesadmin command as Listing 24 or use
artjesadmin sub command as Listing 25

• Example D: Change TuxJES trace message level to INFO for a TuxJES administration
server; this server belongs to group 1, and its server ID is 1. You can use artjesadmin
command as Listing 26 or use artjesadmin sub command as Listing 27

For more information, see artjesadmin in Oracle Tuxedo Application Runtime for Batch
Reference Guide.

Listing 20 Example A: artjesadmin Command

artjesadmin -x settracelevel trclvl=3
Listing 21 Example A: artjesadmin Sub Command

artjesadmin
settracelevel -t 3
Listing 22 Example B: artjesadmin Command

artjesadmin -x settraceleveltrclvl=0,lmid=SITE1
Listing 23 Example B: artjesadmin Sub Command

artjesadmin
settracelevel -t 0 -n SITE1
Listing 24 Example C: artjesadmin Command

artjesadmin -x settracelevel trclvl=2,grpid=1
Listing 25 Example C: artjesadmin Sub Command

artjesadmin
settracelevel -t 2 -g 1
Listing 26 Example D: artjesadmin Command

artjesadmin -x settracelevel trclvl=2,grpid=1,srvid=1
Listing 27 Example D: artjesadmin Sub Command

Chapter 4
Tracing TuxJES

4-32

artjesadmin
settracelevel -t 2 -g 1 -i 1

See Also:

Oracle Tuxedo Application Runtime for Batch Reference Guide

Chapter 4
Tracing TuxJES

4-33

5
Using ART BATCH ISPF

This chapter contains the following topics:

• Overview

• Prerequisites

• Using ART Batch ISPF

5.1 Overview
ART Batch ISPF functions much like the Interactive System Productivity Facility (ISPF)
program. Instead of performing tasks by opening a command line and entering the correct
command, all actions would be accessible via ART Batch ISPF. It is a very easy interface to
use.

5.2 Prerequisites
1. Setup operation environment for ART JES2 batch system.

2. Start ISPF license daemon in the twglm directory by running ./twglm.

3. Be sure that a shell script, ISPF, can be found in your PATH environment variable.

4. Copy all files under directories ($JESDIR/tools/artispf/msgs, $JESDIR/tools/artispf/
rexx, and$JESDIR/tools/artispf/panels) to the corresponding directory of the uni-
SPF(spf/msg, spf/rexx and spf/panels).

5. Copy directory $JESDIR/tools/artispf/tools to the directory of uni-SPF(spf/tools).

Note:

JESDIR is TuxJES installation directory.

5.3 Using ART Batch ISPF
Type ISPF and press Enter to invoke ISPF and display the main menu panel. It is a menu from
which you select the facility that you wish to use. Then type “A” or “ a” in the COMMAND field
from the main menu to go to start ART BATCH ISPF.

With ART Batch ISPF, there is no need to work at the command line. You may choose the
desired function by typing your selection in the panel OPTION or COMMAND fields.

From any panel, the END command returns you to the previous panel. The RETURN command
takes you immediately to the Main Menu panel from any point in the system. PF7 scrolls the
display up. PF8 scrolls the display down. Tab key moves the cursor to the beginning of the next
input field. The Back-tab (Shift + tab) key moves the cursor to the beginning of the
previous input field. Arrow keys to move the cursor.

5-1

In some panels, if the entry field contains text provided by system, you can type over it. Some
commands are case-insensitive.

• Administering ART Batch

• Controlling ART Batch Jobs

5.3.1 Administering ART Batch
Follow the steps below to Administer the ART Batch:

1. Boot up JES system

2. Shut down JES system

3. Browse system logs (ULOG, jes system log file, stdout and stderr)

4. View or edit GDG files

5. View or edit file catalog and allocate a new file.

6. List or clean lock records in lock files.

7. Configure ART Batch, including BatchRT.conf, jesconfig file. Stop, start, and configure
ARTJESINITIATOR servers.

8. Generate the security profile

5.3.2 Controlling ART Batch Jobs
You can control ART Batch jobs in the following ways:

1. Manage job scripts (view, edit, copy and submit a job)

2. Control job processing (cancel, hold, purge, release re-submit a job and change job
priority)

3. Browse job log and output

Chapter 5
Using ART Batch ISPF

5-2

6
Debugging COBOL Programs

ART for Batch supports user COBOL program in runb/runbexci debugging for Micro Focus
COBOL and COBOL-IT COBOL.

• Debugging with Micro Focus COBOL

• Debugging with COBOL-IT COBOL (using deet tool)

You can configure all the jobs and programs that you want to debug in the configuration file
batchdebug.cfg. Only these jobs/programs configured in this file could be debugged. See
Configuring for Debugging in Configuration File for more information.

To support COBOL debug, all COBOL programs must be compiled to output with debug
information. In particualr, for Micro Focus COBOL, .idy file must exist.

• Debugging with Micro Focus COBOL

• Debugging with COBOL-IT COBOL

• Configuring for Debugging in Configuration File

6.1 Debugging with Micro Focus COBOL
Follow the steps below to debug with Micro Focus COBOL.

1. Create or modify batchdebug.cfg configuration file at ${JESROOT}. See Configuring for
Debugging in Configuration File for more information.

2. Start anim in a new terminal and the anim remains in waiting state.

3. Submit your job. It makes Animator attach to the started COBOL program.

4. Debug your COBOL programs.

Note:

At the end of debug session, you may need to detach Animator from the program
that you just debug.

6.2 Debugging with COBOL-IT COBOL
Do the following steps to debug with COBOL-IT COBOL.

1. Create or modify batchdebug.cfg configuration file at ${JESROOT}. See Configuring for
Debugging in Configuration File for more information.

2. Submit your job. It hangs before COBOL program actually runs, waiting you to start debug
session.

6-1

3. Use vncserver to start a VNC environment. In VNC xterm, start debug session with
command deet -p your DEBUGID. It starts a Deet graphic UI and makes Deet attach to the
COBOL program.

4. Debug this COBOL program in Deet graphic UI.

Note:

At the end of debug session, you may need to detach Deet from the program that
you just debug.

For more information about Deet graphic UI, see COBOL-IT COBOL documentation.

6.3 Configuring for Debugging in Configuration File
Whenever you launch runb or runbexci to start a COBOL application program, ART for Batch
checks configuration file batchdebug.cfg at ${JESROOT} to determine whether to enable
COBOL debug; therefore, to enable it, you should set this configuration file at the very
beginning. Only the programs with the DEBUGID that you configure in batchdebug.cfg can be
debugged.

The format of batchdebug.cfg is:

COBOL; DEBUGID;UserID;JobName;Program

Table 6-1 Debug Configuration Parameters

Field Name Type Value Description

COBOL Fix string Mandatory A fix string for identifying usage for COBOL
debug.

DEBUGID X(40) or 1 ~
999999999

Mandatory For Micro Focus COBOL application
programs, DEBUGID is a string that is required
for enabling animation in COBOL. It is a
character string of up to 40 characters. The
string can have alphanumeric characters and
underscore.
For COBOL-IT COBOL application programs,
DEBUGID is a number ranging from 1 to
999999999.

UserID X(30) Mandatory ART for Batch user ID who is to be
diagnosed. Usually it is Oracle Tuxedo user
name. * means all users.

JobName X(32) Mandatory Job name which is to be diagnosed. * means
all jobs.

Program X(30) Mandatory COBOL program name which is to be
diagnosed. It must be the entry COBOL
program name. * means all programs..

Here are some examples.

• Listing 1 and Listing 2 are examples for debugging all programs in job JOBA submitted by
user A.

• Listing 3 and Listing 4 are examples for debugging program1 in all jobs.

Chapter 6
Configuring for Debugging in Configuration File

6-2

Listing 1 Debugging All Programs in One Job (Micro Focus COBOL)

COBOL;debugid1;A;JOBA;*
Listing 2 Debugging All Programs in One Job (COBOL-IT COBOL)

COBOL;101; A; JOBA;*
Listing 3 Debugging One Program in All Jobs (Micro Focus COBOL)

COBOL;debugid2;*;*;program1
Listing 4 Debugging One Program in All Jobs (COBOL-IT COBOL)

COBOL;102;*;*;program1

Chapter 6
Configuring for Debugging in Configuration File

6-3

	Contents
	Preface
	Documentation Accessibility
	Organization

	1 Overview of the Batch Runtime Environment
	1.1 Oracle Tuxedo Application Runtime for Batch Presentation and Structure
	1.1.1 Technical Functions
	1.1.2 High-Level Functions
	1.1.3 Interface-Level Functions

	1.2 Script Execution Phases

	2 Using Batch Runtime
	2.1 Configuration Files
	2.1.1 BatchRT.conf
	2.1.2 Messages.conf
	2.1.3 FunctionReturnCode.conf
	2.1.4 ReturnCode.conf
	2.1.5 Writer.conf

	2.2 Setting Environment Variables
	2.2.1 Environment Variables for EJR
	2.2.2 Environment Variables for Native JCL

	2.3 Configuring Batch Runtime in MP Mode
	2.4 Creating a Script
	2.4.1 General Structure of a Script
	2.4.2 Script Example
	2.4.3 Defining and Using Symbols
	2.4.4 Creating a Step That Executes a Program
	2.4.5 Application Program Abend Execution
	2.4.6 Creating a Procedure
	2.4.6.1 Creating an In-Stream Procedure
	2.4.6.2 Creating an External Procedure

	2.4.7 Using a Procedure
	2.4.8 Modifying a Procedure at Execution Time
	2.4.8.1 Using Overrides for File Assignments

	2.5 Controlling Script Behavior
	2.5.1 Conditioning the Execution of a Step
	2.5.1.1 Using m_CondIf, m_CondElse, and m_CondEndif
	2.5.1.2 Using m_CondExec

	2.5.2 Controlling the Execution Flow
	2.5.3 Changing Default Error Messages

	2.6 Different Behaviors from z/OS
	2.7 Using Files
	2.7.1 Creating a File Definition
	2.7.1.1 m_FileBuild Examples
	2.7.1.2 m_FileAssign Examples

	2.7.2 Assigning and Using Files
	2.7.2.1 About DD DISP=MOD
	2.7.2.1.1 Micro Focus COBOL
	2.7.2.1.2 COBOL-IT

	2.7.3 Concurrent File Accessing Control
	2.7.4 Using Generation Data Group (GDG)
	2.7.4.1 GDG Management Functionalities
	2.7.4.1.1 Defining and/or Redefining a GDG
	2.7.4.1.2 Adding Generation Files in a GDG
	2.7.4.1.3 Referring an Existing Generation Files in a GDG
	2.7.4.1.4 Deleting Generation Files in a GDG
	2.7.4.1.5 Deleting a GDG
	2.7.4.1.6 Cataloging a GDG
	2.7.4.1.7 Committing a GDG

	2.7.4.2 File-Based Management
	2.7.4.2.1 Configuration
	2.7.4.2.2 Concurrency Control and Authorization

	2.7.4.3 DB-Based Management
	2.7.4.3.1 Database Tables
	2.7.4.3.2 Generation File Naming Rule
	2.7.4.3.3 Configuration Variables
	2.7.4.3.4 External Shell Scripts
	2.7.4.3.5 Concurrency Control and Authorization
	2.7.4.3.6 Exception Handling

	2.7.4.4 Support for Data Control Block (DCB)
	2.7.4.4.1 Defining .dcb File
	2.7.4.4.2 Creating .dcb file
	2.7.4.4.3 Deleting .dcb file

	2.7.5 Using an In-Stream File
	2.7.6 Using a Set of Concatenated Files
	2.7.7 Using an External “sysin”
	2.7.8 Deleting a File
	2.7.9 RDB Files
	2.7.10 Using an RDBMS Connection

	2.8 Submitting a Job Using INTRDR Facility
	2.9 Submitting a Job With EJR
	2.10 User-Defined Entry/Exit
	2.10.1 Configuration

	2.11 Batch Runtime Logging
	2.11.1 General Introduction
	2.11.1.1 Log Message Format
	2.11.1.2 Log Message Level
	2.11.1.3 Log Level Control
	2.11.1.4 Log File Structure

	2.11.2 Log Header
	2.11.2.1 Configuration

	2.11.3 File Information Logging
	2.11.3.1 Configuration
	2.11.3.1.1 Messages.conf
	2.11.3.1.2 BatchRT.conf

	2.12 Using Batch Runtime With a Job Scheduler
	2.13 Executing an SQL Request
	2.14 Simple Application on COBOL-IT / BDB
	2.15 Native JCL Job Execution
	2.15.1 General Introduction
	2.15.2 Configurations
	2.15.3 Using JES Client to Manage JCL Jobs
	2.15.3.1 Submitting a JCL Job
	2.15.3.2 Printing Jobs
	2.15.3.3 Holding/Releasing/Canceling/Purging a JCL Job
	2.15.3.4 JCL Engine's Debug Trace File

	2.15.4 Supporting Range for JCL Statements and Utilities

	2.16 Native JCL Test Mode
	2.16.1 General Introduction
	2.16.2 Configurations
	2.16.2.1 Environment Variables Configurations (Mandatory)
	2.16.2.2 Native JCL Configuration File Configurations (Optional)

	2.16.3 Using Client to Manage Test Mode
	2.16.4 Test Mode Report Files
	2.16.4.1 Individual Report File
	2.16.4.2 Category Report File
	2.16.4.3 Summary Report File

	2.17 Network Job Entry (NJE) Support
	2.17.1 General Introduction
	2.17.2 Configurations
	2.17.2.1 Job Execution Server Group
	2.17.2.2 ON/OFF Setting of NJE Support
	2.17.2.3 Environment Variable MT_TMP in MP Mode
	2.17.2.4 Queue EXECGRP

	2.17.3 NJE Job Sample

	2.18 File Catalog Support
	2.18.1 General Introduction
	2.18.2 Database Table
	2.18.3 Configuration Variables
	2.18.4 External Shell Scripts
	2.18.4.1 Description
	2.18.4.2 Usage
	2.18.4.3 Sample
	2.18.4.4 DropTableCatalog[Oracle|Db2].sh
	2.18.4.4.1 Description
	2.18.4.4.2 Usage
	2.18.4.4.3 Sample

	2.18.5 External Dependency

	2.19 Launching REXX EXECs
	2.19.1 Setting MT_REXX_PATH
	2.19.2 Launching REXX EXECs
	2.19.3 TSO Batch Commands

	2.20 COBOL Program Access to Oracle and TimesTen Database
	2.20.1 Setting Environment Variables
	2.20.2 Programming in COBOL
	2.20.3 Preprocessing COBOL Programs
	2.20.4 Examples
	2.20.4.1 Example for Setting Environment Variables
	2.20.4.2 Example for COBOL Programs Accessing to Oracle Database
	2.20.4.3 Example for COBOL Programs Accessing to TimesTen Database
	2.20.4.4 Example for Preprocessing COBOL Programs
	2.20.4.5 Example for Compiling COBOL Programs (CIT)

	3 Best Practices
	3.1 Adapting z/OS Capabilities on a UNIX/Linux Environment
	3.1.1 Defining Paths for Procedures, Includes and Programs
	3.1.2 Prohibiting the Use of UNIX Commands
	3.1.3 Avoiding the Use of File Overriding

	4 Using Tuxedo Job Enqueueing Service (TuxJES)
	4.1 Overview
	4.1.1 Requirements
	4.1.2 TuxJES Components

	4.2 Configuring a TuxJES System
	4.2.1 Setting up TuxJES as an Oracle Tuxedo Application (Using /Q)
	4.2.1.1 Oracle Tuxedo Configuration File
	4.2.1.1.1 Block Time in UBBCONFIG for TuxJES

	4.2.1.2 Oracle Tuxedo /Q Queue Space and Queue Creation
	4.2.1.3 File System Configuration
	4.2.1.4 TuxJES Configuration File
	4.2.1.5 TuxJES Security Configuration
	4.2.1.6 TuxJES User Mapping File

	4.2.2 Setting up TuxJES as an Oracle Tuxedo Application (Using Database)
	4.2.2.1 Setting Up TuxJES
	4.2.2.1.1 UBBCONFIG
	4.2.2.1.2 JESCONFIG

	4.2.2.2 Setting Up Oracle Database
	4.2.2.2.1 Getting Database Credential
	4.2.2.2.2 Create Tables
	4.2.2.2.3 Set Up Database TAF for Oracle (Optional)

	4.2.2.3 Setting Up DB2 Database
	4.2.2.3.1 Getting Database Credential
	4.2.2.3.2 Creating Tables
	4.2.2.3.3 Managing Job in DB2

	4.2.2.4 Setting Up BDB Database
	4.2.2.4.1 Getting Database Credential
	4.2.2.4.2 Creating Tables

	4.2.3 Setting Up TuxJES in MP Mode

	4.3 Using TuxJES
	4.3.1 Submitting a Job
	4.3.2 Displaying Job Information
	4.3.2.1 Getting Job Status (Synchronous)

	4.3.3 Holding a Job
	4.3.4 Releasing a Job
	4.3.5 Canceling a Job
	4.3.6 Purging a Job
	4.3.6.1 Automatic Job Purge
	4.3.6.1.1 Set Warning Threshold for Queue Space

	4.3.7 Displaying/Changing ARTJESINITIATOR Configuration
	4.3.8 Controlling ARTJESINITIATOR Servers
	4.3.8.1 Controlling ARTJESINITIATOR Servers (Synchronous)

	4.3.9 Event Subscribing/Unsubscribing

	4.4 Authorizing TuxJES Job Access
	4.4.1 Configuring Job Access Authorization Mechanism
	4.4.2 Using Job Operation Authorization Rules
	4.4.2.1 Setting Rules
	4.4.2.1.1 Plain JES_ACL_FILE File
	4.4.2.1.2 Encrypted JES_ACL_FILE file

	4.4.2.2 Processing Rules
	4.4.2.3 Adding Comments to Rules
	4.4.2.4 Examples
	4.4.2.4.1 Example for Using Difference Ways to Set Rules
	4.4.2.4.2 Example for Using Wildcards to Set Rules
	4.4.2.4.3 Example for Using JES_ACL_MODE

	4.4.3 Using artjesadmin to Dynamically Change Job Access Authorization

	4.5 Tracing TuxJES
	4.5.1 Setting Environment Variables
	4.5.2 Understanding TuxJES Trace File
	4.5.3 Understanding TuxJES Trace Message Format
	4.5.4 Understanding TuxJES Trace Message Level
	4.5.5 Controlling TuxJES Trace Message Level
	4.5.5.1 Using JESTRACE to Set TuxJES Trace Message Level
	4.5.5.2 Using artjesadmin to Dynamically Change TuxJES Trace Message Level

	5 Using ART BATCH ISPF
	5.1 Overview
	5.2 Prerequisites
	5.3 Using ART Batch ISPF
	5.3.1 Administering ART Batch
	5.3.2 Controlling ART Batch Jobs

	6 Debugging COBOL Programs
	6.1 Debugging with Micro Focus COBOL
	6.2 Debugging with COBOL-IT COBOL
	6.3 Configuring for Debugging in Configuration File

