
Oracle® Database
SODA for C Developers Guide

Release 19c
E96229-02
July 2021

Oracle Database SODA for C Developers Guide, Release 19c

E96229-02

Copyright © 2018, 2021, Oracle and/or its affiliates.

Primary Author: Drew Adams

Contributors: Vijaya Kumar Jitta, Christopher Jones, Maxim Orgiyan, Rajendra Pingte, Srikrishnan Suresh,
Anthony Tuininga

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

Related Documents vii

Conventions viii

1 SODA for C Prerequisites

2 SODA for C Overview

3 Using SODA for C

3.1 Getting Started with SODA for C 3-2

3.2 Creating a Document Collection with SODA for C 3-11

3.3 Opening an Existing Document Collection with SODA for C 3-13

3.4 Checking Whether a Given Collection Exists with SODA for C 3-13

3.5 Discovering Existing Collections with SODA for C 3-14

3.6 Dropping a Document Collection with SODA for C 3-15

3.7 Creating Documents with SODA for C 3-17

3.8 Inserting Documents into Collections with SODA for C 3-22

3.9 SODA for C Read and Write Operations 3-26

3.10 Finding Documents in Collections with SODA for C 3-28

3.11 Replacing Documents in a Collection with SODA for C 3-41

3.12 Removing Documents from a Collection with SODA for C 3-47

3.13 Indexing the Documents in a Collection with SODA for C 3-52

3.14 Getting a Data Guide for a Collection with SODA for C 3-55

3.15 Handling Transactions with SODA for C 3-57

iii

4 Character-Set Considerations for SODA for C

5 Multithreading in SODA for C Applications

6 SODA Collection Configuration Using Custom Metadata

6.1 Getting the Metadata of an Existing Collection 6-2

6.2 Creating a Collection That Has Custom Metadata 6-8

Index

iv

List of Examples

3-1 Getting Started Run-Through 3-3

3-2 Creating a Collection That Has the Default Metadata 3-12

3-3 Opening an Existing Document Collection 3-13

3-4 Printing the Names of All Existing Collections 3-14

3-5 Dropping a Document Collection 3-16

3-6 Creating a Document with JSON Content 3-19

3-7 Creating a Document with Document Key and JSON Content 3-19

3-8 Creating an Empty Document and Then Defining Components 3-21

3-9 Inserting a Document into a Collection 3-23

3-10 Inserting a Document into a Collection and Getting the Result Document 3-24

3-11 Inserting a Document into a Collection Without Providing a Handle 3-26

3-12 Finding All Documents in a Collection 3-28

3-13 Finding the Unique Document That Has a Given Document Key 3-30

3-14 Finding Multiple Documents with Specified Document Keys 3-32

3-15 Finding Documents with a Filter Specification 3-34

3-16 Finding Documents with a Filter Specification and Pagination 3-36

3-17 Finding a Particular Version of a Document 3-38

3-18 Counting the Number of Documents Found 3-40

3-19 Replacing a Document in a Collection, Given Its Key, and Getting the Result Document 3-42

3-20 Replacing a Particular Version of a Document 3-45

3-21 Removing a Document from a Collection Using a Document Key 3-48

3-22 Removing a Particular Version of a Document 3-49

3-23 Removing Documents from a Collection Using Document Keys 3-50

3-24 Removing JSON Documents from a Collection Using a Filter 3-51

3-25 Creating a B-Tree Index for a JSON Field with SODA for C 3-53

3-26 Creating a JSON Search Index with SODA for C 3-54

3-27 Dropping an Index with SODA for C 3-54

3-28 Creating a Data Guide Dynamically with SODA for C 3-55

3-29 Creating a Data Guide Using a JSON Search Index with SODA for C 3-57

6-1 Getting All of the Metadata of a Collection 6-3

6-2 Getting Individual Collection Metadata Attributes 6-4

6-3 Creating a Collection That Has Custom Metadata 6-9

v

List of Tables

3-1 Document Handle Attributes (Document Components) 3-18

6-1 Collection Handle Attributes (Collection Metadata) 6-2

vi

Preface

This document describes how to use Simple Oracle Document Access (SODA) for C.

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This document is intended for users of Simple Oracle Document Access (SODA) for C.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Documents
For more information, see these Oracle resources:

• Oracle Call Interface Programmer's Guide for complete information about Oracle Call
Interface (OCI), including reference material

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/ for
complete information about SODA and its implementations

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for
general information about SODA

• Oracle as a Document Store for general information about using JSON data in
Oracle Database, including with SODA

• Oracle Database JSON Developer’s Guide for information about using SQL and
PL/SQL with JSON data stored in Oracle Database

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at OTN Registration.

If you already have a user name and password for OTN then you can go directly to the
documentation section of the OTN Web site at OTN Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/

1
SODA for C Prerequisites

SODA for C is an integral part of Oracle Call Interface (OCI) starting with Oracle Database
Release 18c (18.3).

To use SODA for C, ensure the following:

• You have Oracle Call Interface 18.3 or later.

• You have Oracle Database 18c or later. To use indexing you need release 18.3 or later.

It is not a requirement, but Oracle recommends that you use AL32UTF8, which implements
Unicode UTF-8, as the database character set.

You compile programs that use SODA for C the same way you compile other OCI programs.

See Also:

Oracle Call Interface Programmer's Guide for information about building and
configuring OCI applications

1-1

2
SODA for C Overview

SODA for C is a C API that is part of Oracle Call Interface (OCI). It implements Simple
Oracle Document Access (SODA). You can use it to perform create, read (retrieve), update,
and delete (CRUD) operations on documents of any kind, and you can use it to query JSON
documents.

You compile programs that use SODA for C the same way you compile other OCI programs.

SODA is a set of NoSQL-style APIs that let you create and store collections of documents in
Oracle Database, retrieve them, and query them, without needing to know Structured Query
Language (SQL) or how the data in the documents is stored in the database.

Oracle Database supports storing and querying JSON data. SODA collections are backed by
ordinary Oracle Database tables and views. Because of this, you can generally take
advantage of database features for use with the content of SODA documents. For example,
you can apply database analytics and reporting to JSON data, and you can include JSON
data in aggregation and join operations. In addition, your applications can use database
transactions.

SODA interacts with the database transparently. To use SODA you generally do not need a
database administrator, and you do not need to program with a database language, such as
structured query language (SQL). SODA for C uses OCI and the database to carry out CRUD
and query operations, after translating them to Oracle SQL with SQL/JSON operators.

The remaining topics of this document describe various features of SODA for C.

Note:

• This book provides information about using SODA with C applications, and it
describes all SODA features currently available for use with C. To use SODA
for C you also need to understand SODA generally. For such general
information, please consult Oracle Database Introduction to Simple Oracle
Document Access (SODA). Some features described in that book are not yet
available with SODA for C.

• This book does not provide general information about OCI, including reference
information about the SODA for C functions and constants. For such
information, please consult Oracle Call Interface Programmer's Guide.

See Also:

Oracle Database JSON Developer’s Guide for information about using SQL and
PL/SQL with JSON data stored in Oracle Database

2-1

3
Using SODA for C

How to access SODA for C is described, as well as how to use it to perform create, read
(retrieve), update, and delete (CRUD) operations on collections. CRUD operations are also
called “read and write operations” in this document.

• Getting Started with SODA for C
How to access SODA for C is described, as well as how to use it to create a database
collection, insert a document into a collection, and retrieve a document from a collection.

• Creating a Document Collection with SODA for C
Use OCI function OCISodaCollCreate() to create a collection, if you do not care about
the details of its configuration. This creates a collection that has the default metadata. To
create a collection that is configured in a nondefault way, use function
OCISodaCollCreateWithMetadata() instead, passing it custom metadata, expressed in
JSON.

• Opening an Existing Document Collection with SODA for C
Use OCI function OCISodaCollOpen() to open an existing document collection.

• Checking Whether a Given Collection Exists with SODA for C
To check for the existence of a collection with a given name, use OCI function
OCISodaCollOpen(). The function returns OCI_SUCCESS if the collection was successfully
opened, which means that it exists. If no such collection exists then the collection-handle
pointer is NULL.

• Discovering Existing Collections with SODA for C
To discover existing collections, use OCI functions OCISodaCollList() and
OCISodaCollGetNext().

• Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

• Creating Documents with SODA for C
Various ways to create a SODA document are described, along with the components of a
document.

• Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

• SODA for C Read and Write Operations
For all read operations, and for write operations other than insertions, you: (1) allocate an
operation-options handle, (2) set some of its attributes to specify a particular operation,
and (3) pass the handle to a generic function that performs the operation.

• Finding Documents in Collections with SODA for C
To find documents in a collection use function OCISodaFind(), passing it an operation-
options handle that specifies the particular find operation. To find the unique document
that has a given key you can alternatively use OCI convenience function
OCISodaFindOneWithKey(), which does not require an operation-options handle.

• Replacing Documents in a Collection with SODA for C
You can use function OCISodaReplOneAndGet() to replace a document in a collection,
passing it an operation-options handle that specifies the key of the document to replace

3-1

as well as the new, replacement document. It returns that replacement document,
but with all of its metadata filled in, as the result document.

• Removing Documents from a Collection with SODA for C
To remove a document from a collection you can use function OCISodaRemove(),
passing it an operation-options handle. If you only want to remove one document,
specified by its key, then you can alternatively use convenience function
OCISodaRemoveOneWithKey(). It does not require an operation-options handle —
you pass it the key directly.

• Indexing the Documents in a Collection with SODA for C
Indexing can improve the performance of QBEs. To index the documents in a
SODA collection, use function OCISodaIndexCreate(), passing it a textual JSON
index specification. This can specify support for B-tree, spatial, full-text, and ad
hoc indexing, and it can specify support for a JSON data guide.

• Getting a Data Guide for a Collection with SODA for C
You use function OCISodaDataGuideGet() or OCISodaDataGuideGetWithOpts() to
get a data guide for a collection. A data guide is a JSON document that
summarizes the structural and type information of the JSON documents in the
collection. It records metadata about the fields used in those documents.

• Handling Transactions with SODA for C
You can handle individual read and write operations, or groups of them, as a
database transaction.

3.1 Getting Started with SODA for C
How to access SODA for C is described, as well as how to use it to create a database
collection, insert a document into a collection, and retrieve a document from a
collection.

Note:

Don’t worry if not everything in this topic is clear to you on first reading. The
necessary concepts are developed in detail in other topics. This topic should
give you an idea of what is involved overall in using SODA.

To get started with SODA for C, follow these steps:

1. Ensure that all of the prerequisites have been met for using SODA for C. See
SODA for C Prerequisites.

2. Grant database role SODA_APP to the database schema (user account) where you
intend to store SODA collections. (Replace placeholder user here by a real
account name.)

GRANT SODA_APP TO user;

3. Create a program file containing the C code in Example 3-1, but set variables usr,
passwd, and connstr to values appropriate string values for your database account
and instance.

4. Compile the file and build an executable program from it as you would for any OCI
program.

Chapter 3
Getting Started with SODA for C

3-2

5. Run the program.

You can run it just by entering the program name on the command line. For example, if
the name is soda-get-started then enter that at the command-line prompt:

> soda-get-started

If you want the program to drop the collection when done with it then pass the argument
drop to it on the command line:

> soda-get-started drop

Caution:

Do not use SQL to drop the database table that underlies a collection. Dropping a
collection involves more than just dropping its database table. In addition to the
documents that are stored in its table, a collection has metadata, which is also
persisted in Oracle Database. Dropping the table underlying a collection does not
also drop the collection metadata.

Note:

• All C code you have that uses SODA for C features must first initialize the
environment in OCI object mode, passing OCI_OBJECT as the mode parameter
to function OCIEnvNlsCreate() here.

• All SODA handles (document, collection, and any others) need to be explicitly
freed using function OCIHandleFree() when your program no longer needs
them. (In particular, a handle for a document with large content can be
associated with a lot of memory.)

See Also:

• Oracle Call Interface Programmer's Guide for information about building an OCI
application

• Oracle Call Interface Programmer's Guide for basic information about OCI
programming

Example 3-1 Getting Started Run-Through

This example code does the following:

1. Creates an Oracle Call Interface (OCI) environment in object mode, allocates the error
handle, and gets a session using function OCISessionGet().

2. Creates and opens a SODA document collection, using the default collection
configuration (metadata).

Chapter 3
Getting Started with SODA for C

3-3

3. Creates a SODA document with some JSON content.

4. Inserts the document into the collection.

5. Gets the inserted document back. Its other components, besides the content, are
generated automatically.

6. Prints the unique document key, which is one of the components generated
automatically.

7. Finds the document in the collection, providing its key.

8. Prints some of the document components: key, version, last-modified time stamp,
creation time stamp, media type, and content.

9. Optionally drops the collection, cleaning up the database table that is used to store
the collection and its metadata.

10. Frees all allocated handles.

Whether or not the collection is dropped is decided at runtime. To drop the collection
you provide the command-line argument drop to the executable program.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static sword status;

int main(int argc, char *argv[])
{
 sword rc = OCI_SUCCESS;
 OCIEnv *envhp = NULL;
 OCIError *errhp = NULL;
 OCISvcCtx *svchp = NULL;
 OCIAuthInfo *authhp = NULL;
 OCISodaColl *collhp = NULL;
 OCISodaDoc *dochp = NULL;
 boolean isDropped = FALSE;
 ub4 docFlags = OCI_DEFAULT;
 OraText *collectionName = (oratext *)"MyJSONCollection";
 OCISodaDoc *foundDochp = NULL;
 OCISodaDoc *origDochp = NULL;

 // Document content: JSON data
 char documentContent[30] = "{\"name\":\"Alexander\"}";

 // Set these variables to strings with the appropriate user name and
password.
 // (Be sure to replace the placeholders user and password used here.)
 OraText usr[30] = user;
 OraText passwd[30] = password;

 // Set variable connstr to a string value composed of the host name,
port number, and service name
 // of your database instance.
 // (Be sure to replace placeholders host, port, and service used
here.)

Chapter 3
Getting Started with SODA for C

3-4

 OraText connstr[50] = "host:port/service";

 OraText *key = NULL;
 ub4 keyLen = 0;
 OraText *content = NULL;
 ub4 contentLen = 0;
 OraText *version = NULL;
 ub4 versionLen = 0;
 OraText *lastModified = NULL;
 ub4 lastModifiedLen = 0;
 OraText *mediaType = NULL;
 ub4 mediaTypeLen = 0;
 OraText *createdOn = NULL;
 ub4 createdOnLen = 0;

 // Set up environment. OCI_OBJECT is required for all SODA C code.
 rc = OCIEnvNlsCreate(&envhp,
 OCI_OBJECT,
 NULL,
 NULL,
 NULL,
 NULL,
 0,
 NULL,
 0,
 0);

 if (rc != OCI_SUCCESS)
 {
 printf ("OCIEnvNlsCreate failed\n");
 goto finally;
 }

 // Allocate error handle
 rc = OCIHandleAlloc((dvoid *) envhp,
 (dvoid **) &errhp,
 OCI_HTYPE_ERROR,
 (size_t) 0,
 (dvoid **) 0);

 if (rc != OCI_SUCCESS)
 {
 printf ("OCIHandleAlloc: OCI_HTYPE_ERROR creation failed\n");
 goto finally;
 }

 // Allocate authentication-information handle
 rc = OCIHandleAlloc ((dvoid *)envhp,
 (dvoid **)&authhp,
 (ub4)OCI_HTYPE_AUTHINFO,
 (size_t)0,
 (dvoid **)0);

 if (rc != OCI_SUCCESS)
 {

Chapter 3
Getting Started with SODA for C

3-5

 printf ("OCIHandleAlloc: OCI_HTYPE_AUTHINFO creation failed\n");
 goto finally;
 }

 // Set variable usr to the user name
 rc = OCIAttrSet ((dvoid *)authhp,
 (ub4)OCI_HTYPE_AUTHINFO,
 (dvoid *)usr,
 (ub4)strlen((char *)usr),
 (ub4)OCI_ATTR_USERNAME,
 (OCIError *)errhp);
 if (rc != OCI_SUCCESS)
 {
 printf ("OCIAttrSet: OCI_ATTR_USERNAME failed\n");
 goto finally;
 }

 // Set variable passwd to the password
 rc = OCIAttrSet ((dvoid *)authhp,
 (ub4)OCI_HTYPE_AUTHINFO,
 (dvoid *)passwd,
 (ub4)strlen((char *)passwd),
 (ub4)OCI_ATTR_PASSWORD,
 (OCIError *)errhp);
 if (rc != OCI_SUCCESS)
 {
 printf ("OCIAttrSet: OCI_ATTR_PASSWORD failed\n");
 goto finally;
 }

 // Get service handle
 // This provides service and error handles we can use for service
calls
 rc = OCISessionGet ((OCIEnv *)envhp,
 (OCIError *)errhp,
 (OCISvcCtx **)&svchp,
 (OCIAuthInfo *)authhp,
 (OraText *)connstr,
 (ub4)strlen((char *)connstr),
 (OraText *)NULL,
 (ub4)0,
 (OraText **)0,
 (ub4 *)0,
 (boolean *)0,
 (ub4)OCI_DEFAULT);

 if (rc != OCI_SUCCESS)
 {
 printf("OCISessionGet failed\n");
 goto finally;
 }

 // Create collection named by the value of variable collectionName,
with default metadata
 rc = OCISodaCollCreate(svchp,

Chapter 3
Getting Started with SODA for C

3-6

 collectionName,
 (ub4) strlen(collectionName),
 &collhp,
 errhp,
 OCI_DEFAULT);

 if (rc != OCI_SUCCESS)
 {
 printf("OCISodaCollCreate failed\n");
 goto finally;
 }

 // Create a document with content provided by variable documentContent
 rc = OCISodaDocCreate(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 docFlags,
 &dochp,
 errhp,
 OCI_DEFAULT);

 if (rc != OCI_SUCCESS)
 {
 printf("OCISodaDocCreate failed\n");
 goto finally;
 }

 // Because OCISodaInsertAndGet returns the result document as dochp, we
first
 // save the pointer to the original input document handle, which was
returned
 // by OCISodaDocCreate, as origDochp. This lets us free the original
 // document handle later.
 origDochp = dochp;

 // Insert the document into the collection
 rc = OCISodaInsertAndGet(svchp,
 collhp,
 &dochp,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);

 if (rc != OCI_SUCCESS)
 {
 printf("OCISodaInsertAndGet failed\n");
 goto finally;
 }

 // Get the auto-generated key of the inserted document
 rc = OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);

Chapter 3
Getting Started with SODA for C

3-7

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_KEY failed\n");
 goto finally;
 }

 // Find the document using its key
 printf("Find the document by its auto-generated key %.*s\n", keyLen,
key);
 rc = OCISodaFindOneWithKey(svchp,
 collhp,
 key,
 keyLen,
 OCI_DEFAULT,
 &foundDochp,
 errhp,
 OCI_DEFAULT);

 if (rc != OCI_SUCCESS)
 {
 printf("OCISodaFindOneWithKey failed\n");
 goto finally;
 }

 // Get and print components of found document
 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_KEY failed\n");
 goto finally;
 }
 printf("Key: %.*s\n", keyLen, key);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &version,
 &versionLen,
 OCI_ATTR_SODA_VERSION,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_VERSION failed\n");
 goto finally;
 }
 printf("Version: %.*s\n", versionLen, version);

 rc = OCIAttrGet((dvoid *) foundDochp,

Chapter 3
Getting Started with SODA for C

3-8

 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &lastModified,
 &lastModifiedLen,
 OCI_ATTR_SODA_LASTMOD_TIMESTAMP,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_LASTMOD_TIMESTAMP failed\n");
 goto finally;
 }
 printf("Last-modified: %.*s\n", lastModifiedLen, lastModified);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &createdOn,
 &createdOnLen,
 OCI_ATTR_SODA_CREATE_TIMESTAMP,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_CREATE_TIMESTAMP failed\n");
 goto finally;
 }
 printf("Created: %.*s\n", createdOnLen, createdOn);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &mediaType,
 &mediaTypeLen,
 OCI_ATTR_SODA_MEDIA_TYPE,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_MEDIA_TYPE failed\n");
 goto finally;
 }
 printf("Media Type: %.*s\n", mediaTypeLen, mediaType);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &content,
 &contentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);

 if (rc != OCI_SUCCESS)
 {
 printf("OCIAttrGet for OCI_ATTR_SODA_CONTENT failed\n");
 goto finally;
 }
 printf("Content: %.*s \n", contentLen, content);

Chapter 3
Getting Started with SODA for C

3-9

 // Drop the collection if argument "drop" was provided
 if ((argc > 1) && (strcmp(argv[1], "drop") == 0))
 {
 rc = OCISodaCollDrop(svchp,
 collhp,
 &isDropped,
 errhp,
 OCI_DEFAULT);
 if (rc != OCI_SUCCESS)
 {
 printf("OCISodaCollDrop failed\n");
 goto finally;
 }
 else
 {
 printf("Collection dropped\n");
 }
 }

 finally:

 // Release the session and free all handles
 if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);

 if (dochp)
 (void) OCIHandleFree((dvoid *) dochp, OCI_HTYPE_SODA_DOCUMENT);

 if (origDochp)
 (void) OCIHandleFree((dvoid *) origDochp, OCI_HTYPE_SODA_DOCUMENT);

 if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp,
OCI_HTYPE_SODA_DOCUMENT);

 (void) OCISessionRelease(svchp, errhp, (oratext *)0, 0, OCI_DEFAULT);

 if (authhp)
 (void) OCIHandleFree ((dvoid *)authhp, (ub4)OCI_HTYPE_AUTHINFO);

 if (errhp)
 (void) OCIHandleFree((dvoid *) errhp, OCI_HTYPE_ERROR);

 if (svchp)
 (void) OCIHandleFree((dvoid *) svchp, OCI_HTYPE_SVCCTX);

 if (envhp)
 (void) OCIHandleFree((dvoid *) envhp, OCI_HTYPE_ENV);
 return rc;
}

Related Topics

• Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

Chapter 3
Getting Started with SODA for C

3-10

3.2 Creating a Document Collection with SODA for C
Use OCI function OCISodaCollCreate() to create a collection, if you do not care about the
details of its configuration. This creates a collection that has the default metadata. To create a
collection that is configured in a nondefault way, use function
OCISodaCollCreateWithMetadata() instead, passing it custom metadata, expressed in
JSON.

For each of these functions, if a collection with the same name already exists then it is simply
opened and its handle is returned. For function OCISodaCollCreateWithMetadata(), if the
metadata passed to it does not match that of the existing collection then the collection is not
opened and an error is raised. (To match, all metadata fields must have the same values.)

Example 3-2 uses function OCISodaCollCreate() to create a collection that has the default
configuration (default metadata). It returns the collection as an OCISodaColl handle.

A collection that has the default collection metadata has the following characteristics:

• It can store only JSON documents.

• Each of its documents has these components: key, content, creation time stamp, last-
modified time stamp.

• Keys are automatically generated for documents that you add to the collection.

The default collection configuration is recommended in most cases, but collections are highly
configurable. When you create a collection you can specify things such as the following:

• Whether the collection can store only JSON documents.

• The presence or absence of columns for document creation time stamp, last-modified
time stamp, and version.

• Methods of document key generation, and whether keys are client-assigned or generated
automatically.

• Methods of version generation.

• Storage details, such as the name of the table that stores the collection and the names
and data types of its columns.

This configurability also lets you map a new collection to an existing database table.

Note:

Unless otherwise stated, the remainder of this documentation assumes that a
collection has the default configuration.

Chapter 3
Creating a Document Collection with SODA for C

3-11

See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for information about the default naming of a collection table

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for reference information about collection metadata components

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaCollCreate()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaCollCreateWithMetadata()

Example 3-2 Creating a Collection That Has the Default Metadata

This example creates collection MyCollection with the default metadata. Note that
function OCISodaCollCreate() does not, itself, perform a database commit operation.

OCISodaColl *collhp = NULL;
OraText *collectionName = (OraText *)"MyCollection";
rc = OCISodaCollCreate(svchp,
 (const OraText *)collectionName,
 (ub4)strlen(collectionName),
 &collhp,
 errhp,
 OCI_DEFAULT);

Related Topics

• Getting the Metadata of an Existing Collection
You can use OCI function OCIAttrGet() with attribute
OCI_ATTR_SODA_DESCRIPTOR, to get all of the metadata of a collection at once, as a
JSON document. You can also use OCIAttrGet() to get individual collection
metadata attributes.

• Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata,
as JSON data, to OCI function OCISodaCollCreateWithMetadata().

• Checking Whether a Given Collection Exists with SODA for C
To check for the existence of a collection with a given name, use OCI function
OCISodaCollOpen(). The function returns OCI_SUCCESS if the collection was
successfully opened, which means that it exists. If no such collection exists then
the collection-handle pointer is NULL.

Chapter 3
Creating a Document Collection with SODA for C

3-12

3.3 Opening an Existing Document Collection with SODA for C
Use OCI function OCISodaCollOpen() to open an existing document collection.

See Also:

Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaCollOpen()

Example 3-3 Opening an Existing Document Collection

This example uses OCI function OCISodaCollOpen() to open the collection named
MyCollection. It returns an OCISodaColl handle that represents this collection as the value of
the fourth parameter (collhp in this example). The function return value is OCI_SUCCESS for
success or OCI_ERROR for failure. If the value returned is OCI_ERROR then there is no existing
collection named MyCollection.

OCISodaColl *collhp = NULL;
OraText *collectionName = "MyCollection";
rc = OCISodaCollOpen(svchp,
 collectionName,
 (ub4) strlen(collectionName),
 &collhp,
 errhp,
 OCI_DEFAULT);
if (!collhp) printf("Collection %s does not exist\n", collectionName);

3.4 Checking Whether a Given Collection Exists with SODA for
C

To check for the existence of a collection with a given name, use OCI function
OCISodaCollOpen(). The function returns OCI_SUCCESS if the collection was successfully
opened, which means that it exists. If no such collection exists then the collection-handle
pointer is NULL.

Example 3-3 illustrates this. If MyCollection names an existing collection then that collection
is opened, and collection-handle collhp points to it. If MyCollection does not name an
existing collection then after invoking function OCISodaCollOpen() the value of collection-
handle collhp is still NULL.

Related Topics

• Creating a Document Collection with SODA for C
Use OCI function OCISodaCollCreate() to create a collection, if you do not care about
the details of its configuration. This creates a collection that has the default metadata. To
create a collection that is configured in a nondefault way, use function
OCISodaCollCreateWithMetadata() instead, passing it custom metadata, expressed in
JSON.

Chapter 3
Opening an Existing Document Collection with SODA for C

3-13

3.5 Discovering Existing Collections with SODA for C
To discover existing collections, use OCI functions OCISodaCollList() and
OCISodaCollGetNext().

See Also:

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaCollList()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaGetNext()

Example 3-4 Printing the Names of All Existing Collections

This example uses OCI function OCISodaCollList() to obtain a collection cursor
(collectionCursor). It then iterates over the cursor, printing out each collection name.

OCISodaCollCursor *collectionCursor;
OCISodaColl *collhp;
OraText *startName = NULL;
ub4 startNameLen = 0;
OraText *collectionName = NULL;
ub4 collectionNameLen = 0;

rc = OCISodaCollList(svchp,
 startName,
 (ub4) strlen(startName),
 startNameLen,
 &collectionCursor,
 errhp,
 OCI_DEFAULT);

if (rc != OCI_SUCCESS) goto finally;

do
{
 rc = OCISodaCollGetNext(svchp,
 collectionCursor,
 &collhp,
 errhp,
 OCI_DEFAULT);
 if (rc == OCI_NO_DATA || rc == OCI_INVALID_HANDLE || rc == OCI_ERROR)
goto finally;

 rc = OCIAttrGet((dvoid *) collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *) &collectionName,
 &collectionNameLen,
 OCI_ATTR_SODA_COLL_NAME,
 errhp);

Chapter 3
Discovering Existing Collections with SODA for C

3-14

 if (rc != OCI_SUCCESS) goto finally;
 printf("%s\n", collectionName);
 if (collhp) OCIHandleFree((dvoid *) collhp, (ub4)
OCI_HTYPE_SODA_COLLECTION));
}
while(1);

finally:
if (collectionCursor) OCIHandleFree((dvoid *) collectionCursor,
(ub4)OCI_HTYPE_SODA_CURSOR);

In this example, startName is NULL, and startNameLen is 0. As a result, the cursor iterates
over all collections in the database.

Alternatively, you could iterate over only a subset of the existing collections. For that, you
could set startName to an existing collection name, such as "myCollectionB", and set
startNameLen to its string length. The cursor would then iterate over only that collection and
the collections whose names come after that collection name alphabetically. The collections
would be iterated over in alphabetic order of their names.

For example, if the existing collections are "myCollectionA", "myCollectionB", and
"myCollectionC", and if startName is "myCollectionB", then the cursor iterates over
"myCollectionB" and "myCollectionC", in that order.

3.6 Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

Unlike Oracle SQL statement DROP TABLE, function OCISodaCollDrop() does not implicitly
perform a commit operation before and after it drops the collection. To complete the collection
removal you must explicitly commit all uncommitted writes to the collection before invoking
OCISodaCollDrop().

Dropping a collection using a collection handle does not free the handle. You must use OCI
function OCIHandleFree() to free a handle.

Caution:

Do not use SQL to drop the database table that underlies a collection. Dropping a
collection involves more than just dropping its database table. In addition to the
documents that are stored in its table, a collection has metadata, which is also
persisted in Oracle Database. Dropping the table underlying a collection does not
also drop the collection metadata.

Chapter 3
Dropping a Document Collection with SODA for C

3-15

Note:

Day-to-day use of a typical application that makes use of SODA does not
require that you drop and re-create collections. But if you need to do that for
any reason then this guideline applies.

Do not drop a collection and then re-create it with different metadata if there
is any application running that uses the collection in any way. Shut down any
such applications before re-creating the collection, so that all live SODA
handles are released.

There is no problem just dropping a collection. Any read or write operation on
a dropped collection raises an error. And there is no problem dropping a
collection and then re-creating it with the same metadata. But if you re-create
a collection with different metadata, and if there are any live applications
using SODA handles, then there is a risk that a stale collection is accessed,
and no error is raised in this case.

See Also:

Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaCollDrop()

Example 3-5 Dropping a Document Collection

This example uses OCI function OCISodaCollDrop() to drop a collection. (Variable
collhp is assumed to point to an existing collection — an OCISodaColl instance).

If the collection cannot be dropped because of uncommitted write operations then an
error is returned. If the collection is dropped successfully, the value of out parameter
dropStatus is TRUE; otherwise it is FALSE.

If the collection-handle argument (collhp in this example) no longer references an
existing collection then no error is returned, but dropStatus is FALSE after the
invocation of OCISodaCollDrop().

boolean dropStatus = FALSE;
rc = OCISodaCollDrop(svchp, collhp, &dropStatus, errhp, OCI_DEFAULT);

Related Topics

• Handling Transactions with SODA for C
You can handle individual read and write operations, or groups of them, as a
database transaction.

• Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

• Replacing Documents in a Collection with SODA for C
You can use function OCISodaReplOneAndGet() to replace a document in a
collection, passing it an operation-options handle that specifies the key of the
document to replace as well as the new, replacement document. It returns that

Chapter 3
Dropping a Document Collection with SODA for C

3-16

replacement document, but with all of its metadata filled in, as the result document.

3.7 Creating Documents with SODA for C
Various ways to create a SODA document are described, along with the components of a
document.

SODA for C represents a document using a OCISodaDoc handle. This is a carrier of document
content and other document components, such as the document key. Document components
are handle attributes.

Here is an example of the content of a JSON document:

{ "name" : "Alexander",
 "address" : "1234 Main Street",
 "city" : "Anytown",
 "state" : "CA",
 "zip" : "12345"
}

A document has these components:

• Key

• Content

• Creation time stamp

• Last-modified time stamp

• Version

• Media type ("application/json" for JSON documents)

You can create a document in these ways:

• By invoking a OCI function that is specifically designed to create a document:
OCISodaDocCreate(), OCISodaDocCreateWithKey(), or
OCISodaDocCreateWithKeyAndMType().

Example 3-6 and Example 3-7 illustrate this. They both create a document handle. In
each case the media type for the created document defaults to "application/json", and
the other document components default to NULL.

• By invoking function OCIHandleAlloc() with handle type OCI_HTYPE_SODA_DOCUMENT, to
create an empty document (handle).

Example 3-8 illustrates this.

You can use function OCIAttrSet() to define (set) document components (document-handle
attributes), whether or not they already have values.

If you use the second approach (OCIHandleAlloc()) to create a document then you must
invoke function OCIAttrSet() to set the content component. If you intend the document to be
written to a collection with client-assigned keys then you must also invoke it to set the key. If
you intend the document to have non-JSON content then you must also invoke it to set the
media type.

Chapter 3
Creating Documents with SODA for C

3-17

However you create a document, you can reuse the handle for multiple document
operations. For example, you can change the content or other components, passing
the same handle to different write operations.

In a collection, each document must have a key. You must provide the key when you
create the document only if you expect to insert the document into a collection that
does not automatically generate keys for inserted documents. By default, collections
are configured to automatically generate document keys. Use function
OCISodaDocCreate() if the key is to be automatically generated; otherwise, supply the
key (as parameter key) to OCISodaDocCreateWithKey(), or
OCISodaDocCreateWithKeyAndMType().

Use function OCISodaDocCreateWithKeyAndMType() if you want to provide the
document media type (otherwise, it defaults to "application/json"). This can be
useful for creating non-JSON documents (using a media type other than
"application/json").

Whichever document-creation function you use, invoking it sets the document
components that you provide (the content, possibly the key, and possibly the media
type) to the values you provide for them. And it sets the values of the creation time
stamp, last-modified time stamp, and version to null.

You get document components using OCI function OCIAttrGet(), which is the same
way you get the value of any handle attribute. You pass the type of the component you
want to get to OCIAttrGet() as the fifth argument.

Table 3-1 Document Handle Attributes (Document Components)

Attribute Description

OCI_ATTR_SODA_KEY The unique key for the document.

OCI_ATTR_SODA_CREATE_TIMESTAMP The creation time stamp for the document.

OCI_ATTR_SODA_LASTMOD_TIMESTAMP The last-modified time stamp for the
document.

OCI_ATTR_SODA_MEDIA_TYPE The media type for the document.

OCI_ATTR_SODA_VERSION The document version.

OCI_ATTR_SODA_CONTENT The document content.

Immediately after you create a document, OCIAttrGet() returns these values for
components:

• Values explicitly provided to the document-creation function

• "application/json", for OCI_ATTR_SODA_MEDIA_TYPE, if the media type was not
provided to the creation function

• NULL for other components

Chapter 3
Creating Documents with SODA for C

3-18

See Also:

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for
an overview of SODA documents

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for
restrictions that apply for SODA documents

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaDocCreate()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaDocCreateWithKey()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaDocCreateWithKeyAndMType()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCIHandleAlloc()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCIAttrSet()

Example 3-6 Creating a Document with JSON Content

This example uses OCISodaDocCreate() to create a document handle and fill the document
with content. It then frees the document handle.1

OCISodaDoc *dochp = NULL;
OraText *documentContent = "{\"name\":\"Alexander\"}";
ub4 docFlags = OCI_DEFAULT;

rc = OCISodaDocCreate(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 docFlags,
 &dochp,
 errhp,
 OCI_DEFAULT)
// Make further use of handle dochp...
if (dochp) OCIHandleFree((dvoid *) dochp, (ub4) OCI_HTYPE_SODA_DOCUMENT);

Example 3-7 Creating a Document with Document Key and JSON Content

This example is similar to Example 3-6, but it uses OCISodaDocCreateWithKey(), providing
the document key (myKey) as well as the document content. It then gets and prints the non-
null document components that were set by OCISodaDocCreateWithKey(): the key, the
content and the media type. It then frees the document handle.

OCISodaDoc *dochp = NULL;
OraText *documentContent = "{\"name\":\"Alexander\"}";
OraText *key = "myKey";

1 The handle is freed here immediately, just as a reminder to free it when you are done with it (the same as any other
handle). In practice you would make use of the handle in some way before freeing it.

Chapter 3
Creating Documents with SODA for C

3-19

ub4 docFlags = OCI_DEFAULT;
sword rc = OCI_SUCCESS;
OraText *finalKey;
ub4 finalKeyLen = 0;
OraText *finalContent;
ub4 finalContentLen = 0;
OraText *media;
ub4 mediaLen = 0;

rc = OCISodaDocCreateWithKey(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 key,
 (ub4) strlen(key),
 docFlags,
 &dochp,
 errhp,
 OCI_DEFAULT)

if (rc != OCI_SUCCESS) goto finally;

// Get and print the key, content and media type, which were set by
OCISodaDocCreateWithKey().
OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &finalKey,
 &finalKeyLen,
 OCI_ATTR_SODA_KEY,
 errhp);
printf ("Key: %.*s\n", finalKeyLen, finalKey);

OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &finalContent,
 &finalContentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);
printf ("Content: %.*s\n", finalContentLen, finalContent);

OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &media,
 &mediaLen,
 OCI_ATTR_SODA_MEDIA_TYPE,
 errhp);
printf ("Media type: %.*s\n", mediaLen, media);

finally:
if (dochp) OCIHandleFree((dvoid *) dochp, (ub4)
OCI_HTYPE_SODA_DOCUMENT);

Chapter 3
Creating Documents with SODA for C

3-20

This is the printed output:

Key: myKey
Content: {"name" : "Alexander"}
Media type: application/json

Example 3-8 Creating an Empty Document and Then Defining Components

sword rc = OCI_SUCCESS;
OCISodaDoc *dochp = NULL;
OraText *documentContent= "{\"name\":\"Alexander\"}";

rc = OCIHandleAlloc((void *) envhp,
 (void **) &dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

rc = OCIAttrSet(dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 documentContent,
 (ub4) strlen(documentContent),
 OCI_ATTR_SODA_CONTENT,
 errhp);
finally: ...

Related Topics

• Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

• Finding Documents in Collections with SODA for C
To find documents in a collection use function OCISodaFind(), passing it an operation-
options handle that specifies the particular find operation. To find the unique document
that has a given key you can alternatively use OCI convenience function
OCISodaFindOneWithKey(), which does not require an operation-options handle.

• Replacing Documents in a Collection with SODA for C
You can use function OCISodaReplOneAndGet() to replace a document in a collection,
passing it an operation-options handle that specifies the key of the document to replace
as well as the new, replacement document. It returns that replacement document, but
with all of its metadata filled in, as the result document.

• Removing Documents from a Collection with SODA for C
To remove a document from a collection you can use function OCISodaRemove(), passing
it an operation-options handle. If you only want to remove one document, specified by its
key, then you can alternatively use convenience function OCISodaRemoveOneWithKey(). It
does not require an operation-options handle — you pass it the key directly.

Chapter 3
Creating Documents with SODA for C

3-21

3.8 Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

If you have created a document handle, you can use function OCISodaInsert() or
OCISodaInsertAndGet() to insert the document into a collection. These functions
create document keys automatically, unless the collection is configured with client-
assigned keys and the input document provides the key. These functions take a
document handle as one of their arguments.

For convenience, you can alternatively use function OCISodaInsertWithCtnt() or
OCISodaInsertAndGetWithCtnt() to insert a document without having created a
document handle. You provide only the content and (optionally) the key for the
document. (The key is needed only when inserting into a collection that has client-
assigned keys.)

If the target collection is configured for documents that have creation and last-modified
time-stamp components then all of the document-insertion functions automatically set
these components. If the collection is configured to generate document versions
automatically then the insertion functions also set the version component. (The default
collection configuration provides both time-stamp components and the version
component.)

In addition to inserting the document, functions OCISodaInsertAndGet() and
OCISodaInsertAndGetWithCtnt() return a result document. The result document
contains the generated document components, such as the key, version, created-on
timestamp, and last-modified timestamp. It does not contain the content of the inserted
document.

Note:

If the collection is configured with client-assigned document keys (which is
not the default case), and the input document provides a key that identifies
an existing document in the collection, then these methods return an error.

Chapter 3
Inserting Documents into Collections with SODA for C

3-22

See Also:

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaInsert()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaInsertAndGet()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaInsertWithCtnt()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaInsertAndGetWithCtnt()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaBulkInsert()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaBulkInsertAndGet()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaBulkInsertWithCtnt()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaBulkInsertAndGetWithCtnt()

Example 3-9 Inserting a Document into a Collection

This example creates a document and inserts it into a collection using function
OCISodaInsert(). The use of mode parameter OCI_SODA_ATOMIC_COMMIT ensures that the
insertion and any other outstanding operations are committed.

OCISodaDoc *dochp = NULL;
OraText *documentContent = "{\"name\":\"Alexander\"}";

rc = OCISodaDocCreate(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 OCI_DEFAULT,
 &dochp,
 errhp,
 OCI_DEFAULT);

if (rc != OCI_SUCCESS) goto finally:

rc = OCISodaInsert(svchp,
 collhp,
 dochp,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);

finally: ...

Chapter 3
Inserting Documents into Collections with SODA for C

3-23

Example 3-10 Inserting a Document into a Collection and Getting the Result
Document

This example creates a document and inserts it into a collection using function
OCISodaInsertAndGet(), which also returns the result document, after insertion. The
example then gets (and prints) each of the generated components from that result
document (which contains them): the creation time stamp, the last-modified time
stamp, the media type, and the version. To obtain each of these components it uses
function OCIAttrGet(), passing the type of the component:
OCI_ATTR_SODA_CREATE_TIMESTAMP, OCI_ATTR_SODA_LASTMOD_TIMESTAMP,
OCI_ATTR_SODA_MEDIA_TYPE, and OCI_ATTR_SODA_VERSION.

sword rc = OCI_SUCCESS;

OraText *key = "myKey1";
OraText *documentContent = "{\"name\":\"Alexander\"}";
ub4 docFlags = OCI_DEFAULT;
OCISodaDoc *dochp = NULL;
OCISodaDoc *origDochp = NULL;
OraText *resultKey;
ub4 resultKeyLen = 0;
OraText *resultCreatedOn;
ub4 resultCreatedOnLen = 0;
OraText *resultLastModified;
ub4 resultLastModifiedLen = 0;
OraText *resultVersion;
ub4 resultVersionLen = 0;
OraText *resultMedia;
ub4 resultMediaLen = 0;

// Create a document with key "myKey1"
rc = OCISodaDocCreateWithKey(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 key,
 (ub4) strlen(key),
 docFlags,
 &dochp,
 errhp,
 OCI_DEFAULT);

if (rc != OCI_SUCCESS) goto finally;

// Insert the document into a collection.

// collhp is a collection-handle pointer. We assume the collection it
// points to was configured to use client-assigned keys.

// Because OCISodaInsertAndGet returns the result document as dochp, we
first
// save the pointer to the original input document handle, which is
returned by
// OCISodaDocCreateWithKey, as origDochp. This lets us free the
original
// document handle later.

Chapter 3
Inserting Documents into Collections with SODA for C

3-24

origDochp = dochp;

rc = OCISodaInsertAndGet(svchp,
 collhp,
 &dochp,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);

if (rc != OCI_SUCCESS) goto finally;

// Print some components of the result document. (For brevity we omit
checking
// for a return value of OCI_SUCCESS in all OCIAttrGet() calls here.)

OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultCreatedOn,
 &resultCreatedOnLen,
 OCI_ATTR_SODA_CREATE_TIMESTAMP,
 errhp);
printf ("Created-on time stamp: %.*s\n", resultCreatedOnLen,
resultCreatedOn);

OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultLastModified,
 &resultLastModifiedLen,
 OCI_ATTR_SODA_LASTMOD_TIMESTAMP,
 errhp);
printf ("Last-modified time stamp: %.*s\n", resultLastModifiedLen,
resultLastModified);

OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultVersion,
 &resultVersionLen,
 OCI_ATTR_SODA_VERSION,
 errhp);
printf ("Version: %.*s\n", resultVersionLen, resultVersion);

OCIAttrGet((dvoid *)dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&resultMedia,
 &resultMediaLen,
 OCI_ATTR_SODA_MEDIA_TYPE,
 errhp);
printf ("Media type: %.*s\n", resultMediaLen, resultMedia);

finally:

// Free the document handles
if (origDochp) OCIHandleFree((dvoid *) origDochp, (ub4)
OCI_HTYPE_SODA_DOCUMENT);

Chapter 3
Inserting Documents into Collections with SODA for C

3-25

if (dochp) OCIHandleFree((dvoid *) dochp, (ub4)
OCI_HTYPE_SODA_DOCUMENT);

Example 3-11 Inserting a Document into a Collection Without Providing a
Handle

This example uses function OCISodaInsertWithCtnt() to insert a document into a
collection without providing a document handle. Only the document key and content
are provided as arguments.

Here we assume that we are inserting the document into a collection that is configured
with client-assigned keys. If you instead insert a document into a collection configured
for auto-generated keys then pass NULL as the key argument and 0 as the key-length
argument (which immediately follows the key argument).

OraText *documentContent = "{\"name\":\"Hannibal\"}";
OraText *key = "myKey2";

rc = OCISodaInsertWithCtnt(svchp,
 collhp,
 key,
 (ub4) strlen(key),
 (void *)documentContent,
 (ub4) strlen(documentContent),
 errhp,
 OCI_SODA_ATOMIC_COMMIT);

Related Topics

• Handling Transactions with SODA for C
You can handle individual read and write operations, or groups of them, as a
database transaction.

• Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

• Replacing Documents in a Collection with SODA for C
You can use function OCISodaReplOneAndGet() to replace a document in a
collection, passing it an operation-options handle that specifies the key of the
document to replace as well as the new, replacement document. It returns that
replacement document, but with all of its metadata filled in, as the result
document.

3.9 SODA for C Read and Write Operations
For all read operations, and for write operations other than insertions, you: (1) allocate
an operation-options handle, (2) set some of its attributes to specify a particular
operation, and (3) pass the handle to a generic function that performs the operation.

These are the read-operation functions:

• OCISodaFindOne() — Find and return at most one document.

• OCISodaFind() — Find multiple documents and return a cursor to them.

Chapter 3
SODA for C Read and Write Operations

3-26

• OCISodaDocCount() — Find multiple documents and return the number of documents
found.

These are the write-operation functions:

• OCISodaReplOne() — Replace one document.

• OCISodaReplOneAndGet() — Replace one document and return the result document.

• OCISodaRemove() — Remove multiple documents.

You use function OCIHandleAlloc() to allocate an empty operation-options handle:

OCISodaOperationOptions *opthp;
// Create an empty operation options handle
rc = OCIHandleAlloc((void *) envhp,
 (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 (size_t) 0,
 (dvoid **) 0);

You use function OCIAttrSet() to set a single attribute of an operation-options handle. For
example, this sets attribute filter with value {"name:"Ruth"}:

OraText * filter = "{\"name\" : \"Ruth\"}";
// Set the filter on the operation options handle
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 filter,
 strlen(filter),
 OCI_ATTR_SODA_FILTER,
 errhp);

There is no attribute that represents multiple document keys. For an operation that involves
multiple keys you use function OCISodaOperKeysSet() to set them.

Note:

If you use function OCIAttrSet() to set attribute OCI_ATTR_SODA_KEY on an
operation-options handle, and you also use function OCISodaOperKeysSet() to set
multiple keys on the same handle, then only the latest of the two settings takes
effect. The effect of the first function invoked is overridden by the effect of the
second.

Chapter 3
SODA for C Read and Write Operations

3-27

See Also:

• Oracle Call Interface Programmer's Guide for information about the
SODA attributes that can be set on an operation-options handle

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaOperKeySet()

3.10 Finding Documents in Collections with SODA for C
To find documents in a collection use function OCISodaFind(), passing it an operation-
options handle that specifies the particular find operation. To find the unique document
that has a given key you can alternatively use OCI convenience function
OCISodaFindOneWithKey(), which does not require an operation-options handle.

See Also:

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaFind()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaFindOneWithKey()

Example 3-12 Finding All Documents in a Collection

This example first obtains a cursor for a query result list that contains each document
in a collection. It then uses the cursor in a while statement to get and print the
components of each document, as a string.

OraText *key = NULL;
ub4 keyLen = 0;
OraText *content = NULL;
ub4 contentLen = 0;
OraText *version = NULL;
ub4 versionLen = 0;
OraText *lastModified = NULL;
ub4 lastModifiedLen = 0;
OraText *mediaType = NULL;
ub4 mediaTypeLen = 0;
OraText *createdOn = NULL;
ub4 createdOnLen = 0;
ub4 findFlags = OCI_DEFAULT;

OCISodaDocCursor *cursorhp = NULL;
OCISodaDoc *foundDochp = NULL;
OCISodaOperationOptions *opthp;

// Allocate an empty operation-options handle.
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,

Chapter 3
Finding Documents in Collections with SODA for C

3-28

 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Find all documents in the collection.
//
// Because the operation-options handle (opthp) is empty, no conditions
// are set on the find operation, so all documents are returned.
//
// collhp is an OCISodaColl pointer, representing an open collection.
//
// cursorhp is a OCISodaDocCursor pointer to a returned cursor over the
// resulting document set.
rc = OCISodaFind(svchp,
 collhp,
 opthp,
 findFlags,
 &cursorhp,
 errhp,
 OCI_DEFAULT);
if (rc != OCI_SUCCESS) goto finally;

// Fetch each document from the cursor, and print all of its components.
while (OCISodaDocGetNext(svchp,
 cursorhp,
 &foundDochp,
 errhp,
 OCI_DEFAULT)
 == OCI_SUCCESS)
{
 // Get and print components of found document.
 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);
 if (rc != OCI_SUCCESS) goto finally;
 printf("Key: %.*s\n", keyLen, key);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &version,
 &versionLen,
 OCI_ATTR_SODA_VERSION,
 errhp);
 if (rc != OCI_SUCCESS) goto finally;
 printf("Version: %.*s\n", versionLen, version);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &lastModified,
 &lastModifiedLen,
 OCI_ATTR_SODA_LASTMOD_TIMESTAMP,
 if (rc != OCI_SUCCESS) goto finally;

Chapter 3
Finding Documents in Collections with SODA for C

3-29

 printf("Last-modified: %.*s\n", lastModifiedLen, lastModified);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &createdOn,
 &createdOnLen,
 OCI_ATTR_SODA_CREATE_TIMESTAMP,
 errhp);
 if (rc != OCI_SUCCESS) goto finally;
 printf("Created: %.*s\n", createdOnLen, createdOn);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &mediaType,
 &mediaTypeLen,
 OCI_ATTR_SODA_MEDIA_TYPE,
 errhp);
 if (rc != OCI_SUCCESS) goto finally;
 printf("Media Type: %.*s\n", mediaTypeLen, mediaType);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &content,
 &contentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);
 if (rc != OCI_SUCCESS) goto finally;
 printf("Content: %.*s \n", contentLen, content);

 // Important: free document handle before fetching next document.
 // This releases memory associated with the current document.
 if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp, OCI_HTYPE_SODA_DOCUMENT);
}

finally:

// Free all handles.
if (cursorhp)
 (void) OCIHandleFree((dvoid *) cursorhp, OCI_HTYPE_SODA_DOC_CURSOR);
if (opthp)
 (void) OCIHandleFree((dvoid *) opthp, OCI_HTYPE_SODA_OPER_OPTIONS);
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp, OCI_HTYPE_SODA_DOCUMENT);

Example 3-13 Finding the Unique Document That Has a Given Document Key

This example sets up an operations options handle with the given UUID key
(E914016C41174F6CBF7C877C7F9EB4C2), which it passes to function OCISodaFindOne()
to find the document with that key.

Chapter 3
Finding Documents in Collections with SODA for C

3-30

After finding the document, the example uses function OCIAttrGet() to retrieve the document
key and content, and then it prints them. Finally, it frees the document handles that were
allocated for the collection, document, and operations options.

As an alternative to setting the key attribute on an operation-options handle and using
OCISodaFindOne(), you can use convenience function OCISodaFindOneWithKey. It accepts a
key argument directly, in place of an operation-options handle.

OraText *key = NULL;
ub4 keyLen = 0;
OraText *content = NULL;
ub4 contentLen = 0;
ub4 findFlags = OCI_DEFAULT;

OraText *inKey = "E914016C41174F6CBF7C877C7F9EB4C2";

OCISodaDoc *foundDochp = NULL;
OCISodaOperationOptions *opthp;

// Allocate an empty operation-options handle.
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Set the key of the document we want to find, on the operation-options
handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 inKey,
 strlen(inKey),
 OCI_ATTR_SODA_KEY,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Find the document with the key, by way of the operation-options handle.
//
// collhp is an OCISodaColl pointer, representing an open collection.
rc = OCISodaFindOne(svchp,
 collhp,
 opthp,
 findFlags,
 &foundDochp,
 errhp,
 OCI_DEFAULT);
if (rc != OCI_SUCCESS) goto finally;

// Get and print components of found document.
rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

Chapter 3
Finding Documents in Collections with SODA for C

3-31

printf("Key: %.*s\n", keyLen, key);

rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &content,
 &contentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);
if (rc != OCI_SUCCESS) goto finally;
printf("Content: %.*s \n", contentLen, content);

finally:

// Free all handles.
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp, OCI_HTYPE_SODA_DOCUMENT);
if (opthp)
 (void) OCIHandleFree((dvoid *) opthp, OCI_HTYPE_SODA_OPER_OPTIONS);

Example 3-14 Finding Multiple Documents with Specified Document Keys

This example finds three documents using their keys. The keys and their string
lengths, as arrays, and the number of keys (3) are passed to function
OCISodaOperKeysSet(), which sets up the operation-options handle appropriately.
(You cannot set multiple keys and their lengths using standard function OCIAttrSet().)
The example then invokes function OCISodaFind(), passing it the handle.

This example uses function OCISodaFind to find three documents using their keys. The
keys and their string lengths, as arrays, and the number of keys (3) are passed to
function OCISodaOperKeysSet(), which sets up the operation-options handle with this
information. (You cannot set multiple keys and their lengths using standard function
OCIAttrSet().)

Note:

If you use function OCIAttrSet() to set attribute OCI_ATTR_SODA_KEY on an
operation-options handle, and you also use function OCISodaOperKeysSet()
to set multiple keys on the same handle, then only the latest of the two
settings takes effect. The effect of the first function invoked is overridden by
the effect of the second.

OraText *key = NULL;
ub4 keyLen = 0;
OraText *content = NULL;
ub4 contentLen = 0;
ub4 findFlags = OCI_DEFAULT;

OraText *keys[3] = {"6B67A10BC6EB4FB7BFA1ECE7E697C507",
 "9195598AA9FB4F1CBFA376F35BF78588",
 "7FD55EED38BE4F70BF327F8132394E8B"};

Chapter 3
Finding Documents in Collections with SODA for C

3-32

ub4 keyLengths[3];
int i = 0;

OCISodaDocCursor *cursorhp = NULL;
OCISodaDoc *foundDochp = NULL;
OCISodaOperationOptions *opthp;

// Allocate an empty operation-options handle.
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Fill array of key lengths.
for(i=0; i<3; i++)
 keyLengths[i] = strlen(keys[i]);

// Set keys and their lengths on the operation-options handle.
//
// You cannot set keys and their lengths using standard function
OCIAttrSet().
// Use function OCISodaOperKeysSet().
rc = OCISodaOperKeysSet(opthp,
 keys,
 keyLengths,
 3,
 errhp,
 OCI_DEFAULT);

if (rc != OCI_SUCCESS) goto finally;

// Find documents in collection that match the keys set in operation-options
handle.
//
// collhp is an OCISodaColl pointer, representing an open collection.
//
// cursorhp is a OCISodaDocCursor pointer to a returned cursor over the
// resulting document set.
rc = OCISodaFind(svchp,
 collhp,
 opthp,
 findFlags,
 &cursorhp,
 errhp,
 OCI_DEFAULT);
if (rc != OCI_SUCCESS) goto finally;

// Fetch each document from the cursor, and its key and content.
while (OCISodaDocGetNext(svchp,
 cursorhp,
 &foundDochp,
 errhp,
 OCI_DEFAULT)
 == OCI_SUCCESS)
{

Chapter 3
Finding Documents in Collections with SODA for C

3-33

 // Get and print components of found document.
 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);
 if (rc != OCI_SUCCESS) goto finally;
 printf("Key: %.*s\n", keyLen, key);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &content,
 &contentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);
 if (rc != OCI_SUCCESS) goto finally;
 printf("Content: %.*s \n\n", contentLen, content);

 // Important: Free the document handle before fetching the next
document.
 // This releases memory associated with the current document.
 if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp, OCI_HTYPE_SODA_DOCUMENT);
}

finally:

// Free all handles
if (cursorhp)
 (void) OCIHandleFree((dvoid *) cursorhp, OCI_HTYPE_SODA_DOC_CURSOR);
if (opthp)
 (void) OCIHandleFree((dvoid *) cursorhp,
OCI_HTYPE_SODA_OPER_OPTIONS);
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp, OCI_HTYPE_SODA_DOCUMENT);

Example 3-15 Finding Documents with a Filter Specification

Function OCISodaFind() provides a powerful way to filter JSON documents in a
collection. To use it you pass an operation-options handle that specifies attribute
OCI_ATTR_SODA_FILTER as a JSON query-by-example (QBE, also called a filter
specification).

The syntax of filter specifications is an expressive pattern-matching language for
JSON documents. This example uses only a very simple QBE, just to indicate how you
make use of one in SODA for C.

This example sets operation-options handle attribute OCI_ATTR_SODA_FILTER to a filter
that specifies JSON documents whose name field has value "Alexander". It then uses

Chapter 3
Finding Documents in Collections with SODA for C

3-34

the operation-options handle to find the documents that match that filter. Finally, it prints the
key and content of each found document.

OraText *key = NULL;
ub4 keyLen = 0;
OraText *content = NULL;
ub4 contentLen = 0;
ub4 findFlags = OCI_DEFAULT;

OraText *filter = "{ \"name\" : \"Alexander\"}";

OCISodaDocCursor *cursorhp = NULL;
OCISodaDoc *foundDochp = NULL;
OCISodaOperationOptions *opthp;

// Allocate an empty operation-options handle.
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Set the filter (query-by-example, or QBE) on the operation-options handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 filter,
 strlen(filter),
 OCI_ATTR_SODA_FILTER,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Find all documents in collection that match filter set in operation-
options handle.
//
// collhp is an OCISodaColl pointer, representing an open collection.
//
// cursorhp is a OCISodaDocCursor pointer to a returned cursor over the
// resulting document set.
rc = OCISodaFind(svchp,
 collhp,
 opthp,
 findFlags,
 &cursorhp,
 errhp,
 OCI_DEFAULT);
if (rc != OCI_SUCCESS) goto finally;

// Fetch each document from the cursor, and print its key and content.
while (OCISodaDocGetNext(svchp,
 cursorhp,
 &foundDochp,
 errhp,
 OCI_DEFAULT)
 == OCI_SUCCESS)
{
 // Get and print key and content of found document.

Chapter 3
Finding Documents in Collections with SODA for C

3-35

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);
 if (rc != OCI_SUCCESS) goto finally;
 printf("Key: %.*s\n", keyLen, key);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &content,
 &contentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);
 if (rc != OCI_SUCCESS) goto finally;
 printf("Content: %.*s \n\n", contentLen, content);

 // Important: Free the document handle before fetching next document.
 // This releases memory associated with the current document.
 if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp, OCI_HTYPE_SODA_DOCUMENT);
}

finally:

// Free all handles
if (cursorhp)
 (void) OCIHandleFree((dvoid *) cursorhp, OCI_HTYPE_SODA_DOC_CURSOR);
if (opthp)
 (void) OCIHandleFree((dvoid *) cursorhp,
OCI_HTYPE_SODA_OPER_OPTIONS);
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp, OCI_HTYPE_SODA_DOCUMENT);

Example 3-16 Finding Documents with a Filter Specification and Pagination

This example uses function OCISodaFind() in a pagination query. It passes an
operation-options handle that specifies attribute OCI_ATTR_SODA_FILTER as a QBE, as
well as attributes OCI_ATTR_SODA_SKIP (the number of documents to skip) and
OCI_ATTR_SODA_LIMIT (the maximum number of documents to return). Except for
specifying pagination (skip and limit) this example is the same as Example 3-15.

OraText *key = NULL;
ub4 keyLen = 0;
OraText *content = NULL;
ub4 contentLen = 0;
ub4 findFlags = OCI_DEFAULT;

OraText *filter = "{ \"name\" : \"Alexander\"}";
ub4 skip = 1000;
ub4 limit = 100;

Chapter 3
Finding Documents in Collections with SODA for C

3-36

OCISodaDocCursor *cursorhp = NULL;
OCISodaDoc *foundDochp = NULL;
OCISodaOperationOptions *opthp;

// Allocate an empty operation-options handle.
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Set the filter (query-by-example, or QBE) on the operation-options handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 filter,
 strlen(filter),
 OCI_ATTR_SODA_FILTER,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Set the number of documents to skip on the operation-options handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 &skip,
 0,
 OCI_ATTR_SODA_SKIP,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Set the limit of the number of documents to return on the operation-
options handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 &limit,
 0,
 OCI_ATTR_SODA_LIMIT,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Find all documents in collection that match filter set in operation-
options handle.
// Honor skip and limit values set in the handle.
//
// collhp is an OCISodaColl pointer, representing an open collection.
//
// cursorhp is a OCISodaDocCursor pointer to a returned cursor over the
// resulting document set.
rc = OCISodaFind(svchp,
 collhp,
 opthp,
 findFlags,
 &cursorhp,
 errhp,
 OCI_DEFAULT);
if (rc != OCI_SUCCESS) goto finally;

Chapter 3
Finding Documents in Collections with SODA for C

3-37

// Fetch each document from the cursor, and print its key and content.
while (OCISodaDocGetNext(svchp,
 cursorhp,
 &foundDochp,
 errhp,
 OCI_DEFAULT)
 == OCI_SUCCESS)
{
 // Get and print components of found document.
 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);
 if (rc != OCI_SUCCESS) goto finally;
 printf("Key: %.*s\n", keyLen, key);

 rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &content,
 &contentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);
 if (rc != OCI_SUCCESS) goto finally;
 printf("Content: %.*s \n\n", contentLen, content);

 // Important: Free the document handle before fetching the next
document.
 // This releases memory associated with the current document.
 if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp, OCI_HTYPE_SODA_DOCUMENT);
}

finally:

// Free all handles
if (cursorhp)
 (void) OCIHandleFree((dvoid *) cursorhp, OCI_HTYPE_SODA_DOC_CURSOR);
if (opthp)
 (void) OCIHandleFree((dvoid *) cursorhp,
OCI_HTYPE_SODA_OPER_OPTIONS);
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp, OCI_HTYPE_SODA_DOCUMENT);

Example 3-17 Finding a Particular Version of a Document

This example uses function OCISodaFindOne() with an operation-options handle that
specifies the version, as well as the key, of the document to find.

Chapter 3
Finding Documents in Collections with SODA for C

3-38

When specifying the document version you typically specify the key as well. But you can
specify the version along with a filter, provided the filter specifies at most one document in the
collection.

OraText *key = NULL;
ub4 keyLen = 0;
OraText *content = NULL;
ub4 contentLen = 0;
OraText *version = NULL;
ub4 versionLen = 0;
ub4 findFlags = OCI_DEFAULT;

OraText *inKey = "E914016C41174F6CBF7C877C7F9EB4C2";
OraText *inVersion =
 "7CCEF2F54035DE9A9D64653645DBEF7E61B92142F2E41B3F6144262A5F7BC054";

OCISodaDocCursor *cursorhp = NULL;
OCISodaDoc *foundDochp = NULL;
OCISodaOperationOptions *opthp;

// Allocate an empty operation-options handle.
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Set the key on the operation-options handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 inKey,
 strlen(inKey),
 OCI_ATTR_SODA_KEY,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Set the version on the operation-options handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 inVersion,
 strlen(inVersion),
 OCI_ATTR_SODA_VERSION,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Find document that matches key and version set on operation-options
handle.
rc = OCISodaFindOne(svchp,
 collhp,
 opthp,
 findFlags,
 &foundDochp,
 errhp,
 OCI_DEFAULT);
if (rc != OCI_SUCCESS) goto finally;

Chapter 3
Finding Documents in Collections with SODA for C

3-39

// Get the found document and print its key, version, and content.
rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);
if (rc != OCI_SUCCESS) goto finally;
printf("Key: %.*s\n", keyLen, key);

rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &version,
 &versionLen,
 OCI_ATTR_SODA_VERSION,
 errhp);
if (rc != OCI_SUCCESS) goto finally;
printf("Version: %.*s\n", versionLen, version);

rc = OCIAttrGet((dvoid *) foundDochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &content,
 &contentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);
if (rc != OCI_SUCCESS) goto finally;
printf("Content: %.*s \n", contentLen, content);

finally:

// Free all handles
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (foundDochp)
 (void) OCIHandleFree((dvoid *) foundDochp, OCI_HTYPE_SODA_DOCUMENT);
if (opthp)
 (void) OCIHandleFree((dvoid *) opthp, OCI_HTYPE_SODA_OPER_OPTIONS);

Example 3-18 Counting the Number of Documents Found

This example uses function OCISodaDocCount() to get a count of all of the documents
in a collection that satisfy a given filter specification.

OraText *filter = "{ \"name\" : \"Alexander\"}";
ub8 count = 0;
OCISodaOperationOptions *opthp;

// Allocate an empty operation-options handle.
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Set the filter (query-by-example, or QBE) on the operation-options
handle.

Chapter 3
Finding Documents in Collections with SODA for C

3-40

rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 filter,
 strlen(filter),
 OCI_ATTR_SODA_FILTER,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Number of documents that match filter set on operation-options handle is
returned as count.
rc = OCISodaDocCount(svchp,
 collhp,
 opthp ,
 &count,
 errhp,
 OCI_DEFAULT);
if (rc != OCI_SUCCESS) goto finally;
printf ("Number of matching documents: %d\n", count);

finally:

// Free all handles.
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (opthp)
 (void) OCIHandleFree((dvoid *) opthp, OCI_HTYPE_SODA_OPER_OPTIONS);

Related Topics

• SODA for C Read and Write Operations
For all read operations, and for write operations other than insertions, you: (1) allocate an
operation-options handle, (2) set some of its attributes to specify a particular operation,
and (3) pass the handle to a generic function that performs the operation.

3.11 Replacing Documents in a Collection with SODA for C
You can use function OCISodaReplOneAndGet() to replace a document in a collection, passing
it an operation-options handle that specifies the key of the document to replace as well as the
new, replacement document. It returns that replacement document, but with all of its
metadata filled in, as the result document.

Function OCISodaReplOne() is the same as OCISodaReplOneAndGet(), except that it does not
return the result document with completed metadata.

These are the most generic document-replacement functions. There are also other,
convenience functions for more specific use cases.

You can use these convenience functions if only the document content is to be replaced.
Instead of passing them a replacement document, you pass just the new (JSON) content as
a textual argument.

• OCISodaReplOneAndGetWithCtnt()

• OCISodaReplOneWithCtnt()

Chapter 3
Replacing Documents in a Collection with SODA for C

3-41

You can use these convenience functions if only the document key is to be specified.
Instead of passing them an operation-options handle, you pass just the replacement
document and the key of the document to replace. This means that you cannot specify
a filter, document version, and so on.

• OCISodaReplOneAndGetWithKey()

• OCISodaReplOneWithKey()

The functions with AndGet in their name return the new (result) document as the value
of the same parameter that was used for the input document, so you can get its
components.

Whichever replacement function you use, it returns a Boolean value as output
parameter isReplaced, indicating whether the replacement operation was successful.

See Also:

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaReplOne()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaReplOneAndGet()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaReplOneWithCtnt()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaReplOneAndGetWithCtnt()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaReplOneWithKey()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaReplOneAndGetWithKey()

Example 3-19 Replacing a Document in a Collection, Given Its Key, and Getting
the Result Document

This example creates a new document as a replacement for the document with UUID
key "3C03C00FA3904FC2BF5182C424A2C6C1". It uses OCI function
OCISodaReplOneAndGet() to replace the document having that key, and it gets the
result document.

It uses function OCIAttrGet() to retrieve various components from the result
document, which it prints. The use of mode parameter OCI_SODA_ATOMIC_COMMIT
ensures that the replacement and any other outstanding operations are committed.

OCISodaDoc *dochp = NULL;
OCISodaDoc *tempDochp = NULL;

// Document content: JSON data
char documentContent[30] = "{\"name\":\"LiLing\"}";
ub4 docFlags = OCI_DEFAULT;

OraText *key = NULL;

Chapter 3
Replacing Documents in a Collection with SODA for C

3-42

ub4 keyLen = 0;
OraText *content = NULL;
ub4 contentLen = 0;
OraText *version = NULL;
ub4 versionLen = 0;
OraText *lastModified = NULL;
ub4 lastModifiedLen = 0;
OraText *mediaType = NULL;
ub4 mediaTypeLen = 0;
OraText *createdOn = NULL;
ub4 createdOnLen = 0;
boolean isReplaced = FALSE;

OCISodaOperationOptions *opthp;
OraText *inKey = "3C03C00FA3904FC2BF5182C424A2C6C1";

// Create a temporary replacement document, which has documentContent as its
content.
rc = OCISodaDocCreate(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 docFlags,
 &dochp,
 errhp,
 OCI_DEFAULT);
if (rc != OCI_SUCCESS)
{
 printf("OCISodaDocCreate failed\n");
 goto finally;
}

// Allocate an empty operation-options handle.
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Set the document-key attribute on the operation-options handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 inKey,
 strlen(inKey),
 OCI_ATTR_SODA_KEY,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// OCISodaReplOneAndGet returns the result document as dochp, so
// before calling it we save a pointer, tempDochp, to the handle that
// was returned by OCISodaDocCreate. Later we free tempDochp.
tempDochp = dochp;

// Replace the document that has the key set in the operation-options
// handle with the new, replacement document pointed to by dochp, and
// get back the result document.
//

Chapter 3
Replacing Documents in a Collection with SODA for C

3-43

// The result document has the content of the replacement
// document, but it also has all of the other document components,
// automatically populated by SODA when the replacement document was
inserted.
rc = OCISodaReplOneAndGet(svchp,
 collhp,
 opthp,
 &dochp,
 &isReplaced,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);
if (rc != OCI_SUCCESS) goto finally;

if (isReplaced) printf ("Document was replaced.\n");

// Get and print the components of the document after replacement.
rc = OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);
if (rc != OCI_SUCCESS) goto finally;
printf("Key: %.*s\n", keyLen, key);

rc = OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &version,
 &versionLen,
 OCI_ATTR_SODA_VERSION,
 errhp);
if (rc != OCI_SUCCESS) goto finally;
printf("Version: %.*s\n", versionLen, version);

rc = OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &lastModified,
 &lastModifiedLen,
 OCI_ATTR_SODA_LASTMOD_TIMESTAMP,
 errhp);
if (rc != OCI_SUCCESS) goto finally;
printf("Last-modified: %.*s\n", lastModifiedLen, lastModified);

rc = OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &createdOn,
 &createdOnLen,
 OCI_ATTR_SODA_CREATE_TIMESTAMP,
 errhp);
if (rc != OCI_SUCCESS) goto finally;
printf("Created: %.*s\n", createdOnLen, createdOn);

rc = OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &mediaType,

Chapter 3
Replacing Documents in a Collection with SODA for C

3-44

 &mediaTypeLen,
 OCI_ATTR_SODA_MEDIA_TYPE,
 errhp);
if (rc != OCI_SUCCESS) goto finally;
printf("Media Type: %.*s\n", mediaTypeLen, mediaType);

finally:

// Release the session and free all handles, including the handle of the
temporary document.
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (dochp)
 (void) OCIHandleFree((dvoid *) dochp, OCI_HTYPE_SODA_DOCUMENT);
if (opthp)
 (void) OCIHandleFree((dvoid *) opthp, OCI_HTYPE_SODA_OPER_OPTIONS);
if (tempDochp)
 (void) OCIHandleFree((dvoid *) tempDochp, OCI_HTYPE_SODA_DOCUMENT);

Example 3-20 Replacing a Particular Version of a Document

To implement optimistic locking when replacing a document, you can specify both key and
version, as in this example.

OCISodaDoc *dochp = NULL;
OCISodaDoc *tempDochp = NULL;

// Document content: JSON data
char documentContent[30] = "{\"name\":\"Esmeralda\"}";
ub4 docFlags = OCI_DEFAULT;

OraText *key = NULL;
ub4 keyLen = 0;
OraText *content = NULL;
ub4 contentLen = 0;
OraText *version = NULL;
ub4 versionLen = 0;
boolean isReplaced = FALSE;

OCISodaOperationOptions *opthp;

OraText *inKey = "3C03C00FA3904FC2BF5182C424A2C6C1";
OraText *inVersion =
 "BD0A8E86428FFD68A00FAE7833B41404637EE0A31791B36EC4C78A5782272448";

// Create a temporary replacement document, which has documentContent as its
content.
rc = OCISodaDocCreate(envhp,
 documentContent,
 (ub4) strlen(documentContent),
 docFlags,
 &dochp,
 errhp,
 OCI_DEFAULT);
if (rc != OCI_SUCCESS)

Chapter 3
Replacing Documents in a Collection with SODA for C

3-45

{
 printf("OCISodaDocCreate failed\n");
 goto finally;
}

// Allocate an empty operation options handle
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Set the key of the document we want to replace on the operation
options handle
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 inKey,
 strlen(inKey),
 OCI_ATTR_SODA_KEY,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Set the version of the document we want to replace on the operation
options handle
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 inVersion,
 strlen(inVersion),
 OCI_ATTR_SODA_VERSION,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// OCISodaReplOneAndGet returns the result document as dochp, so
// before calling it we save a pointer, tempDochp, to the handle that
// was returned by OCISodaDocCreate. Later we free tempDochp.
tempDochp = dochp;

// Replace the document that has the key and version set in the
// operation-options handle with the new, replacement document pointed
// to by dochp, and get back the result document.
//
// The result document has the content of the replacement
// document, but it also has all of the other document components,
// automatically populated by SODA when the replacement document was
inserted.
rc = OCISodaReplOneAndGet(svchp,
 collhp,
 opthp,
 &dochp,
 &isReplaced,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);
if (rc != OCI_SUCCESS) goto finally;

if (isReplaced) printf ("Document was replaced.\n");

Chapter 3
Replacing Documents in a Collection with SODA for C

3-46

// Get and print the components of found document after replacement.
rc = OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &key,
 &keyLen,
 OCI_ATTR_SODA_KEY,
 errhp);
if (rc != OCI_SUCCESS) goto finally;
printf("Key: %.*s\n", keyLen, key);

rc = OCIAttrGet((dvoid *) dochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &version,
 &versionLen,
 OCI_ATTR_SODA_VERSION,
 errhp);
if (rc != OCI_SUCCESS) goto finally;
printf("Version: %.*s\n", versionLen, version);

finally:

// Release the session and free all handles, including handle of the
temporary document.
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (dochp)
 (void) OCIHandleFree((dvoid *) dochp, OCI_HTYPE_SODA_DOCUMENT);
if (opthp)
 (void) OCIHandleFree((dvoid *) opthp, OCI_HTYPE_SODA_OPER_OPTIONS);
if (tempDochp)
 (void) OCIHandleFree((dvoid *) tempDochp, OCI_HTYPE_SODA_DOCUMENT);

Related Topics

• SODA for C Read and Write Operations
For all read operations, and for write operations other than insertions, you: (1) allocate an
operation-options handle, (2) set some of its attributes to specify a particular operation,
and (3) pass the handle to a generic function that performs the operation.

Related Topics

• Handling Transactions with SODA for C
You can handle individual read and write operations, or groups of them, as a database
transaction.

• Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

• Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

3.12 Removing Documents from a Collection with SODA for C
To remove a document from a collection you can use function OCISodaRemove(), passing it an
operation-options handle. If you only want to remove one document, specified by its key, then

Chapter 3
Removing Documents from a Collection with SODA for C

3-47

you can alternatively use convenience function OCISodaRemoveOneWithKey(). It does
not require an operation-options handle — you pass it the key directly.

Whichever document-removal function you use, the function returns the number of
documents removed as an out parameter.

See Also:

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaRemove()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaRemoveOneWithKey()

Example 3-21 Removing a Document from a Collection Using a Document Key

This example removes the document with UUID key
"E914016C41174F6CBF7C877C7F9EB4C2". The use of mode parameter
OCI_SODA_ATOMIC_COMMIT ensures that the removal and any other outstanding
operations are committed.

OraText *inKey = "E914016C41174F6CBF7C877C7F9EB4C2";
ub8 removeCount = 0;

OCISodaOperationOptions *opthp;

// Allocate an empty operation-options handle.
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Set the document-key attribute on the operation-options handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 inKey,
 strlen(inKey),
 OCI_ATTR_SODA_KEY,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Remove the document that has the key set in the operation-options
handle.
rc = =OCISodaRemove(svchp,
 collhp,
 opthp,
 &removeCount,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);
if (rc != OCI_SUCCESS) goto finally;

if (removeCount > 0)
 printf("Successfully removed document.\n");

Chapter 3
Removing Documents from a Collection with SODA for C

3-48

else
 printf("Document with specified key was not found.\n");

finally:

// Free all handles.
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (opthp)
 (void) OCIHandleFree((dvoid *) opthp, OCI_HTYPE_SODA_OPER_OPTIONS);

Example 3-22 Removing a Particular Version of a Document

This example uses function OCISodaRemove() with an operation-options handle that specifies
the version, as well as the key, of the document to remove. This is useful for implementing
optimistic locking, for write operations.

When specifying the document version you typically specify the key as well. But you can
specify the version along with a filter, provided the filter specifies at most one document in the
collection.

ub8 removeCount = 0;

OraText *inKey = "0C6132FC780D4F16BF9561FC9E2B4F98";
OraText *inVersion =
 "7CCEF2F54035DE9A9D64653645DBEF7E61B92142F2E41B3F6144262A5F7BC054";

OCISodaOperationOptions *opthp;

// Allocate an empty operation-options handle,
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Set the document-key attribute on the operation-options handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 inKey,
 strlen(inKey),
 OCI_ATTR_SODA_KEY,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Set the document-version attribute on the operation-options handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 inVersion,
 strlen(inVersion),
 OCI_ATTR_SODA_VERSION,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Remove document that has the key and version set in the operation-options
handle.

Chapter 3
Removing Documents from a Collection with SODA for C

3-49

rc = OCISodaRemove(svchp,
 collhp,
 opthp,
 &removeCount,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);
if (rc != OCI_SUCCESS) goto finally;

if (removeCount > 0)
 printf("Successfully removed document.\n");
else
 printf("Document with specified key was not found.\n");

finally:

// Free all handles.
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (opthp)
 (void) OCIHandleFree((dvoid *) opthp, OCI_HTYPE_SODA_OPER_OPTIONS);

Example 3-23 Removing Documents from a Collection Using Document Keys

This example uses function OCISodaOperKeysSet() to set operation-options handle
attributes for key and key length for two documents. It then invokes function
OCISodaRemove() to remove the documents that have those keys. Function
OCISodaOperKeysSet() accepts an array of keys, an array of the corresponding key
lengths, and the number of keys as arguments. (You cannot set multiple keys and their
lengths using standard function OCIAttrSet().)

Note:

If you use function OCIAttrSet() to set attribute OCI_ATTR_SODA_KEY on an
operation-options handle, and you also use function OCISodaOperKeysSet()
to set multiple keys on the same handle, then only the latest of the two
settings takes effect. The effect of the first function invoked is overridden by
the effect of the second.

OraText *keys[2] = {"ACF8C4BDA3E44F4CBF802C9708D00C10",
 "787B22133B254F0CBF2DB9975E277913"};

ub4 keyLengths[2];
ub8 removeCount = 0;
int i = 0;

OCISodaOperationOptions *opthp;

// Allocate an empty operation-options handle.
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

Chapter 3
Removing Documents from a Collection with SODA for C

3-50

// Fill array of key lengths.
for(i=0; i<2; i++)
 keyLengths[i] = strlen(keys[i]);

// Set keys and key lengths on operation-options handle.
rc = OCISodaOperKeysSet(opthp,
 keys,
 keyLengths,
 2,
 errhp,
 OCI_DEFAULT);
if (rc != OCI_SUCCESS) goto finally;

// Remove documents matching the keys in the operation options handle.
rc = OCISodaRemove(svchp,
 collhp,
 opthp,
 &removeCount,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);
if (rc != OCI_SUCCESS) goto finally;

if (removeCount > 0)
 printf("Successfully removed %d documents.\n", removeCount);
else
 printf("Document with specified keys were not found.\n");

finally:

// Free all handles.
if (opthp)
 (void) OCIHandleFree((dvoid *) opthp, OCI_HTYPE_SODA_OPER_OPTIONS);
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);

Example 3-24 Removing JSON Documents from a Collection Using a Filter

This example uses a filter to remove the JSON documents whose greeting field has value
"hello". It then prints the number of documents removed.

ub8 removeCount = 0;
OraText *filter = "{\"greeting\" : \"hello\"}";
OCISodaOperationOptions *opthp;

// Allocate an empty operation-options handle.
rc = OCIHandleAlloc((void *) envhp, (void **)&opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0);
if (rc != OCI_SUCCESS) goto finally;

// Set the filter (query-by-example, or QBE) on the operation-options handle.
rc = OCIAttrSet(opthp,
 OCI_HTYPE_SODA_OPER_OPTIONS,
 filter,

Chapter 3
Removing Documents from a Collection with SODA for C

3-51

 strlen(filter),
 OCI_ATTR_SODA_FILTER,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Remove documents matching the filter (QBE) set in operation-options
handle.
rc = OCISodaRemove(svchp,
 collhp,
 opthp,
 &removeCount,
 errhp,
 OCI_SODA_ATOMIC_COMMIT);
if (rc != OCI_SUCCESS) goto finally;

if (removeCount > 0)
 printf("Successfully removed %d documents.\n", removeCount);
else
 printf("No documents matching the filter were found.\n");

finally:

//Free all handles.
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (opthp)
 (void) OCIHandleFree((dvoid *) opthp, OCI_HTYPE_SODA_OPER_OPTIONS);

Related Topics

• SODA for C Read and Write Operations
For all read operations, and for write operations other than insertions, you: (1)
allocate an operation-options handle, (2) set some of its attributes to specify a
particular operation, and (3) pass the handle to a generic function that performs
the operation.

3.13 Indexing the Documents in a Collection with SODA for
C

Indexing can improve the performance of QBEs. To index the documents in a SODA
collection, use function OCISodaIndexCreate(), passing it a textual JSON index
specification. This can specify support for B-tree, spatial, full-text, and ad hoc indexing,
and it can specify support for a JSON data guide.

• A B-tree index is used to index particular scalar JSON fields.

• An Oracle Spatial and Graph index is used to index GeoJSON (spatial) data.

• A JSON search index can improve the performance of:

– QBEs that you might not anticipate or use regularly — it is a general purpose
index.

– QBEs that use operator $contains — full-text search.

Chapter 3
Indexing the Documents in a Collection with SODA for C

3-52

• A JSON search index can also provide persistent recording and automatic updating of
JSON data-guide information.

If a JSON search index is defined, and if a B-tree index or a spatial index applies to a given
QBE, the B-tree or spatial index is generally used for that QBE, in preference to the (more
general) search index.

The invocation of function OCISodaIndexCreate() is the same for each kind of index you
create. The only difference is the index specification that is passed to the function as an
argument.

You drop an index on a SODA collection using function OCISodaIndexDrop(), passing it the
index name.

See Also:

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaIndexCreate()

• Oracle Call Interface Programmer's Guide for information about OCI function
OCISodaIndexDrop()

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for
an overview of using SODA indexing

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for
information about SODA index specifications

• Oracle Database JSON Developer’s Guide for information about JSON search
indexes

• Oracle Database JSON Developer’s Guide for information about persistent
data-guide information as part of a JSON search index

• Oracle Database JSON Developer’s Guide for information about spatial
indexing of GeoJSON data.

Example 3-25 Creating a B-Tree Index for a JSON Field with SODA for C

This example creates a B-tree non-unique index for numeric field address.zip of the JSON
documents in a collection that has handle collhp. A B-tree index specification can be
recognized by the presence of field fields.

// Index specification for B-tree index on field address.zip.
OraText *indexSpec = "{\"name\" : \"ZIPCODE_IDX\", \
 \"fields\" : [{\"path\" : \"address.zip\", \
 \"datatype\" : \"number\", \
 \"order\" : \"asc\"}]}";

// Create the index.
rc = OCISodaIndexCreate(svchp, collhp, indexSpec, strlen(indexSpec), errhp,
OCI_DEFAULT);

Chapter 3
Indexing the Documents in a Collection with SODA for C

3-53

Example 3-26 Creating a JSON Search Index with SODA for C

This example indexes the documents in a collection that has handle collhp for ad hoc
queries and full-text search (QBEs that use operator $contains), and it automatically
accumulates and updates data-guide information about your JSON documents
(aggregate structural and type information). The index specification has only field name
(no field fields).

// Index specification for JSON search index.
OraText *indexSpec = "{\"name\" : \"SEARCH_AND_DATA_GUIDE_IDX\"}";

// Create the index.
rc = OCISodaIndexCreate(svchp, collhp, indexSpec, strlen(indexSpec),
errhp, OCI_DEFAULT);

The simple index specification it uses is equivalent to this one, which makes explicit
the default values:

{"name" : "SEARCH_AND_DATA_GUIDE_IDX",
 "dataguide" : "on",
 "search_on" : "text_value"}

If you instead wanted only ad hoc indexing then you would explicitly specify a value of
"off" for field dataguide. If you instead wanted only data-guide support then you
would explicitly specify a value of "none" for field search_on.

Note:

To create a data guide-enabled JSON search index, or to data guide-enable
an existing JSON search index, you need database privilege CTXAPP and
Oracle Database Release 12c (12.2.0.1) or later.

Example 3-27 Dropping an Index with SODA for C

To drop an index on a SODA collection, just pass the index name to function
OCISodaIndexDrop(). This example drops index ZIPCODE_IDX.

boolean isDropped = FALSE;

// Drop the index named ZIPCODE_IDX.
rc = OCISodaIndexDrop(svchp,
 "ZIPCODE_IDX",
 strlen("ZIPCODE_IDX"),
 &isDropped,
 errhp,
 OCI_DEFAULT);

printf ("isDropped %d\n", isDropped);

Chapter 3
Indexing the Documents in a Collection with SODA for C

3-54

3.14 Getting a Data Guide for a Collection with SODA for C
You use function OCISodaDataGuideGet() or OCISodaDataGuideGetWithOpts() to get a data
guide for a collection. A data guide is a JSON document that summarizes the structural and
type information of the JSON documents in the collection. It records metadata about the
fields used in those documents.

Note:

SODA for C support for JSON data guide was added in Oracle Database 18.3. You
need that database release or later to use this SODA feature.

There are two alternative ways to create a data guide for a collection:

• Use function OCISodaDataGuideGetWithOpts() together with a query-by-example (QBE)
filtering operation. This creates a data guide dynamically from scratch, for only the
documents selected by your query. You can thus limit the set of documents on which the
data guide is based. Example 3-28 illustrates this.

(This method corresponds to using SQL function json_dataguide.)

• Use function OCISodaDataGuideGet(). This always creates a data guide based on all
documents in the collection. Example 3-29 illustrates this.

This method makes use of persistent data-guide information that is stored as part of a
JSON search index, so before you can use this method you must first create a data
guide-enabled JSON search index on the collection. Example 3-26 shows how to do that.
The data-guide information in the index is persistent, and is updated automatically as
new JSON content is added.

(This method corresponds to using PL/SQL function get_index_dataguide.)

The index-based function, OCISodaDataGuideGet(), incurs an ongoing cost of updating
relevant data persistently: document writes (creation and updating) entail index updates. But
because data-guide information is readily available in the index, it need not be gathered from
scratch when generating the data-guide document.

Because function OCISodaDataGuideGetWithOpts() starts from scratch each time, a typical
use of it involves applying the method to only the documents that satisfy some filter (QBE), as
shown in Example 3-28.

See Also:

Oracle Call Interface Programmer's Guide for information about OCI function
CISodaDataGuideGet()

Example 3-28 Creating a Data Guide Dynamically with SODA for C

This example uses function OCISodaDataGuideGetWithOpts() to obtain a data guide for a
filtered set of documents in collection collhp. Using a query-by-example (QBE) filtering

Chapter 3
Getting a Data Guide for a Collection with SODA for C

3-55

operation is a common way to limit the documents represented by a dynamically
created data guide.

The example pretty-prints the content of the data-guide document in the flat format.
Finally, it frees the temporary LOB used for the data-guide document.

OCISodaDoc *dgdochp = NULL;
OCISodaOperationOptions *opthp = NULL;
oratext *content;
ub4 contentLen;
oratext *qbe;

rc = OCIHandleAlloc((void *) envhp, (void **)&opt,
 OCI_HTYPE_SODA_OPER_OPTIONS, (size_t) 0,
 (dvoid **) 0
if (rc != OCI_SUCCESS) goto finally;

qbe = (oratext *)"{\"name\" : \"alexander\"}";
qlen = (ub4) strlen(qbe);

rc = OCIAttrSet(opthp, OCI_HTYPE_SODA_OPER_OPTIONS, qbe, qlen,
 OCI_ATTR_SODA_FILTER, errhp);
if (rc != OCI_SUCCESS) goto finally;

rc = OCISodaDataGuideGetWithOpts(svchp, collhp, opthp,
 OCI_SODA_DG_FMT_HIERARCHICAL,
 OCI_SODA_DATAGUIDE_PRETTY,
 OCI_SODA_AS_AL32UTF8,
 &dgdochp, errhp, OCI_DEFAULT));
if (rc != OCI_SUCCESS) goto finally;

rc = OCIAttrGet((dvoid *)dgdochp, OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *)&content, &contentLen,
 OCI_ATTR_SODA_CONTENT, errhp)
if (rc != OCI_SUCCESS) goto finally;

printf("Dataguide: %.*s\n", contentLen, content);

finally:
 // Free all handles.
 if (dgdochp)
 (void) OCIHandleFree((dvoid *) dgdochp, OCI_HTYPE_SODA_DOCUMENT);
 if (opthp)
 (void) OCIHandleFree((dvoid *) opthp,
OCI_HTYPE_SODA_OPER_OPTIONS);

See Also:

OCISodaDataGuideGetWithOpts() in Oracle Call Interface Programmer's
Guide

Chapter 3
Getting a Data Guide for a Collection with SODA for C

3-56

Example 3-29 Creating a Data Guide Using a JSON Search Index with SODA for C

This example gets a data guide for a collection with collection handle collhp, using function
OCISodaDataGuideGet(). It then prints the content of the data-guide document.

OCISodaDoc *dgdochp = NULL;
OraText *content = NULL;
ub4 contentLen = 0;

// Get the data guide based on the JSON search index defined on the
// collection. dgdochp is the handle for the data-guide document.
rc = OCISodaDataGuideGet(svchp,
 collhp,
 OCI_DEFAULT,
 &dgdochp,
 errhp,
 OCI_DEFAULT);
if (rc != OCI_SUCCESS) goto finally;

rc = OCIAttrGet((dvoid *) dgdochp,
 OCI_HTYPE_SODA_DOCUMENT,
 (dvoid *) &content,
 &contentLen,
 OCI_ATTR_SODA_CONTENT,
 errhp);
if (rc != OCI_SUCCESS) goto finally;

// Print the content of the data-guide document.
printf("Data guide: %.*s \n", contentLen, content);

finally:

// Free all handles.
if (collhp)
 (void) OCIHandleFree((dvoid *) collhp, OCI_HTYPE_SODA_COLLECTION);
if (dgdochp)
 (void) OCIHandleFree((dvoid *) dgdochp, OCI_HTYPE_SODA_OPER_OPTIONS);

3.15 Handling Transactions with SODA for C
You can handle individual read and write operations, or groups of them, as a database
transaction.

You do this in either of these ways:

• Use execution mode parameter OCI_SODA_ATOMIC_COMMIT when you invoke a SODA
operation. If an operation is executed in this mode and it completes successfully then the
current transaction is committed after completion.

As is usual for a commit, this commits all outstanding changes, not just changes made by
the SODA operation. However, if the operation fails then only changes made by the
SODA operation are rolled back; any uncommitted changes made prior to invocation of
the SODA operation are not rolled back.

Chapter 3
Handling Transactions with SODA for C

3-57

• Use function OCITransCommit() or OCITransRollback(), to commit or roll back,
respectively, the current transaction. These are standard Oracle Call Interface
(OCI) functions; they are not SODA-specific.

SODA operations of creating and dropping a collection do not automatically commit
before or after they perform their action. (This differs from the behavior of SQL DDL
statements, which commit both before and after performing their action.)

One consequence of this is that, before a SODA collection can be dropped, any
outstanding write operations to it must be committed or rolled back. This is because
function OCISodaCollDrop() does not itself commit before it performs its action. In
this, its behavior differs from that of a SQL DROP TABLE statement.

Related Topics

• Dropping a Document Collection with SODA for C
To drop a document collection, use OCI function OCISodaCollDrop().

• Inserting Documents into Collections with SODA for C
Various ways to insert a document into a SODA collection are described.

• Replacing Documents in a Collection with SODA for C
You can use function OCISodaReplOneAndGet() to replace a document in a
collection, passing it an operation-options handle that specifies the key of the
document to replace as well as the new, replacement document. It returns that
replacement document, but with all of its metadata filled in, as the result
document.

See Also:

•

• Oracle Call Interface Programmer's Guide for information about
execution mode parameter OCI_SODA_ATOMIC_COMMIT

• Oracle Call Interface Programmer's Guide for information about Oracle
Call Interface (OCI) support for transactions

• Oracle Call Interface Programmer's Guide for information about OCI
function OCITransCommit()

• Oracle Call Interface Programmer's Guide for information about OCI
function OCITransRollback()

Chapter 3
Handling Transactions with SODA for C

3-58

4
Character-Set Considerations for SODA for C

Use of character sets with SODA for C is discussed. This applies only to the encoding of
JSON documents. (Non-JSON documents are always stored in a SODA collection using BLOB
content, which is treated only as a sequence of bytes, not characters.)

SODA for C and Character-Set Encodings for JSON Data: Client and Database

SODA for C involves two kinds of JSON-data character-set encodings: client-side and
database.

By the standard defining JSON, JSON data is encoded with a Unicode character set; that is,
JSON data is Unicode data, by definition. But on the client side SODA for C relaxes the
restriction that JSON data must be Unicode; you can use data that has other encodings but
otherwise has JSON syntax.

On the client side:

• The non-Unicode encodings that you can use with a SODA for C client are all of those
allowed by Oracle Call Interface (OCI), with the exception of EBCDIC: you cannot use an
EBCDIC character set for SODA documents.

• The Unicode encodings that you can use with a SODA for C client are UTF-8, UTF-16 LE
(little-endian), and UTF-16 BE (big-endian). These correspond to Oracle Database
character sets AL32UTF8, AL32UTF16, and AL32UTF16LE, respectively. You cannot
use UTF-32 — it is not an OCI client-side encoding.

On the database side (that is, for the content column of a collection):

• Oracle recommends that you use AL32UTF8, which implements Unicode UTF-8, as the
database character set.

• The encoding used for JSON data in the content column of a collection depends on the
SQL type:

– VARCHAR2 — The documents are encoded as AL32UTF8. VARCHAR2 data is always
stored in the database character set.

– BLOB — The documents are encoded as UTF-8, UTF-16 BE, or UTF-16 LE. Which of
these Unicode encodings is used depends on how the input documents were
encoded on the client side, as is explained in Writing JSON Documents To the
Database From the Client.

– CLOB — The documents are encoded as UCS-2. A CLOB instance is encoded as
UCS-2 whenever the database character set is multibyte (as is AL32UTF8).

If client-side and database-side encodings are the same (they are both Unicode) then no
conversion is needed from one to the other.

But if they differ then SODA automatically converts from one character set to the other. If a
character used in a document on the client side has no corresponding Unicode character
then conversion to the database character set when writing the document is lossy. Similarly, if
a character used in a document on the database side has no corresponding character in the
client-side character set then conversion when reading the document is lossy.

4-1

For example:

• Suppose that your client-side encoding is JA16SJIS, and the content column for
your SODA collection is configured to store JSON data using SQL data type
VARCHAR2. When you write data to your collection SODA automatically converts it
from JA16SJIS to the database character set (AL32UTF8).

• Suppose that your client-side encoding is AL16UTF16LE, and your collection is
configured to store JSON data using SQL data type BLOB. Because data type BLOB
supports encoding AL16UTF16LE, no conversion is needed.

By default, the character set used by OCI is defined by environment variable
NLS_LANG. You can override this for a given OCI client using OCI function
OCIEnvNlsCreate() with parameter charset.

In particular, you can use OCIEnvNlsCreate() to create an environment handle that
defines the character set used by a given client as OCI_UTF16ID (UTF-16), which
cannot be set from NLS_LANG. Character set OCI_UTF16ID designates a UTF-16
encoding whose endianness (big-endian or little-endian) depends on the platform
where the client is run.

When a document is written to the database from a client application, or a document is
read from the database to a client application, the application tells OCI what client-side
encoding to use for the document. It does this by way of parameter docFlags, which is
passed to either a document-handle creation function or a convenience function for
writing content into a document without providing a document handle. That is,
parameter docFlags controls the encoding of documents on the client side.

Writing JSON Documents To the Database From the Client

SODA for C functions that create a document handle are named with prefix
OCISodaDocCreate. They all accept parameter docFlags.

SODA for C also provides convenience functions for writing JSON content to the
database without providing a document handle. These functions are named with suffix
WithCtnt (standing for “with content”). They also accept parameter docflags.

For writing, parameter docFlags can have either of these values:

• OCI_DEFAULT — Use the character set defined by the environment handle, or by
environment variable NLS_LANG, if not set for the handle.

You must supply document content in the encoding that is specified by the
environment handle or NLS_LANG. Otherwise, the result of a write operation is
unpredictable.

The character set can be any that is valid for OCI (Unicode or non-Unicode), with
the exception of EBCDIC. (If it is OCI_UTF16 then you must supply the document
with a UTF 16 encoding whose endianness matches the endianness of the
platform where the client runs.)

If you write a document that is not encoded as Unicode to a BLOB column using
OCI_DEFAULT then SODA converts the content to UTF-8 before writing.

• OCI_SODA_DETECT_JSON_ENC — Automatically detect the encoding of the document
content as UTF-8, UTF-16 LE (little-endian), or UTF-16 BE (big-endian)

You must supply document content in one of those encodings. Otherwise, the
result of a write operation is unpredictable.

Use cases for working with JSON data on the client side:

Chapter 4

4-2

• To work in a non-Unicode encoding or in a single Unicode encoding, use OCI_DEFAULT.

• To work in a mix of Unicode encodings (UTF-8, UTF-16 LE, UTF-16 BE) in the same
application, use OCI_SODA_DETECT_JSON_ENC. (With OCI_DEFAULT, documents are
assumed to be in the single encoding specified by the environment handle or NLS_LANG.)

• To work in a UTF-16 encoding that has a different endianness from that of the client-side
platform, use OCI_SODA_DETECT_JSON_ENC.

If the client-side character set differs from the character set of the content column in the
database, SODA converts the document, when writing, to the character set of the content
column. To avoid any such conversion, use BLOB as the content data type (BLOB is the
default), and supply the content with encoding UTF-8 or UTF-16 (BE or LE). If you do this
then it does not matter which value (OCI_DEFAULT or OCI_SODA_DETECT_JSON_ENC) you use for
parameter docFlags.

Reading JSON Documents From the Database To the Client

SODA for C functions (such as OCISodaFindOneWithKey()) that read content into a client-side
document also provide parameter docFlags, which you use to specify the client-side
encoding to use for the retrieved content.

For reading, parameter docFlags can have any of these values:

• OCI_DEFAULT — Use the character set defined by the environment handle, or by
environment variable NLS_LANG, if not set for the handle. (This is the same as for
document writes to the database.)

• OCI_SODA_AS_STORED — Use the same encoding used to store the document in the
database. This value is valid only for use with a collection that uses BLOB storage;
otherwise, an error is raised.

• OCI_SODA_AS_AL32UTF8 — Use UTF-8 as the encoding.

If the client-side character set differs from the character set of the content column in the
database, SODA converts the document, when reading, to the character set specified for the
client. To avoid any such conversion, use BLOB as the content data type (BLOB is the default),
and use OCI_SODA_AS_STORED for parameter docFlags.

See Also:

• Oracle Call Interface Programmer's Guide for information about setting the OCI
client character set

• Oracle Call Interface Programmer's Guide for information about OCI support for
globalization

• Oracle Database Globalization Support Guide for complete information about
Oracle Database support for globalization

• Oracle Database JSON Developer’s Guide

• Unicode.org for information about Unicode

• IETF RFC4627 and ECMA 404 for the JSON Data Interchange Format

Chapter 4

4-3

5
Multithreading in SODA for C Applications

SODA for C is designed for lockless multithreading in applications.

To achieve multithreading, just use separate handles in each thread of your SODA
application. SODA handles are not designed to be shared between threads. In particular, they
are not locked with mutexes to negotiate mutual exclusion among threads.

For example, to read or write to the same collection from multiple threads, obtain a separate
collection handle in each thread using OCISodaCollOpen(), and use each handle to perform
read and write operations.

Only in the case of document handles can it sometimes make sense to share SODA handles
among threads.

For example, one thread might create documents and put them into a queue, while worker
threads dequeue the head document and insert it into a collection. Document handles could
be shared among threads, here.

You don’t want multiple threads working on the same document at the same time, but a single
document handle can be passed from one thread to another. It is your responsibility to
provide application-level synchronization so that the document handle is not simultaneously
accessed from different threads.

Related Topics

• Opening an Existing Document Collection with SODA for C
Use OCI function OCISodaCollOpen() to open an existing document collection.

• Creating Documents with SODA for C
Various ways to create a SODA document are described, along with the components of a
document.

5-1

6
SODA Collection Configuration Using Custom
Metadata

SODA collections are highly configurable. You can customize collection metadata, to obtain
different behavior from that provided by default.

Note:

You can customize collection metadata to obtain different behavior from that
provided by default. However, changing some components requires familiarity with
Oracle Database concepts, such as SQL data types. Oracle recommends that you
do not change such components unless you have a compelling reason. Because
SODA collections are implemented on top of Oracle Database tables (or views),
many collection configuration components are related to the underlying table
configuration.

For example, if you change the content column type from the default value to
VARCHAR2, then you must understand the implications: content size for VARCHAR2 is
limited to 32K bytes, character-set conversion can take place, and so on.

• Getting the Metadata of an Existing Collection
You can use OCI function OCIAttrGet() with attribute OCI_ATTR_SODA_DESCRIPTOR, to get
all of the metadata of a collection at once, as a JSON document. You can also use
OCIAttrGet() to get individual collection metadata attributes.

• Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata, as
JSON data, to OCI function OCISodaCollCreateWithMetadata().

See Also:

• Overview of SODA Document Collections in Oracle Database Introduction to
Simple Oracle Document Access (SODA) for general information about SODA
document collections and their metadata

• SODA Collection Metadata Components (Reference) in Oracle Database
Introduction to Simple Oracle Document Access (SODA) for reference
information about collection metadata components

6-1

6.1 Getting the Metadata of an Existing Collection
You can use OCI function OCIAttrGet() with attribute OCI_ATTR_SODA_DESCRIPTOR, to
get all of the metadata of a collection at once, as a JSON document. You can also use
OCIAttrGet() to get individual collection metadata attributes.

Table 6-1 Collection Handle Attributes (Collection Metadata)

Attribute Description

OCI_ATTR_SODA_CRTIME_COL_NAME The name of the database column that stores
the creation time stamp of the document.

OCI_ATTR_SODA_CTNT_CACHE The SecureFiles LOB cache setting.

OCI_ATTR_SODA_CTNT_COL_NAME The database column that stores the
document content.

OCI_ATTR_SODA_CTNT_COMPRESS The SecureFiles LOB compression setting.

OCI_ATTR_SODA_CTNT_ENCRYPT The SecureFiles LOB encryption setting.

OCI_ATTR_SODA_CTNT_MAX_LEN The maximum length, in bytes, of the database
column that stores the document content. This
attribute applies only to content of type
VARCHAR2.

OCI_ATTR_SODA_CTNT_SQL_TYPE The SQL data type of the database column
that stores the document content.

OCI_ATTR_SODA_CTNT_VALIDATION The syntax to which JavaScript Object
Notation (JSON) content must conform —
standard, strict, or lax.

OCI_ATTR_SODA_DESCRIPTOR All of the metadata of the collection, in JSON
format.

OCI_ATTR_SODA_KEY_ASSIGN_METHOD The method used to assign keys to documents
that are inserted into the collection.

OCI_ATTR_SODA_KEY_COL_NAME The name of the database column that stores
the document key.

OCI_ATTR_SODA_KEY_MAX_LEN The maximum length, in bytes, of the database
column that stores the document key. This
attribute applies only to content of type
VARCHAR2.

OCI_ATTR_SODA_KEY_SEQ_NAME The name of the database sequence that
generates keys for documents that are
inserted into a collection if the key assignment
method is SEQUENCE.

OCI_ATTR_SODA_KEY_SQL_TYPE The SQL data type of the database column
that stores the document key.

OCI_ATTR_SODA_MODTIME_COL_NAME The name of the database column that stores
the last-modified time stamp of the document.

OCI_ATTR_SODA_MODTIME_INDEX The name of the index on the database
column that stores the last-modified time
stamp.

OCI_ATTR_SODA_READONLY An indication of whether the collection is read-
only.

Chapter 6
Getting the Metadata of an Existing Collection

6-2

Table 6-1 (Cont.) Collection Handle Attributes (Collection Metadata)

Attribute Description

OCI_ATTR_SODA_SCHEMA The name of the Oracle Database schema
(user) that owns the table or view to which the
collection is mapped.

OCI_ATTR_SODA_TABLE_NAME The name of the database table to which the
collection is mapped.

OCI_ATTR_SODA_VERSION_COL_NAME The name of the database column that stores
the document version.

OCI_ATTR_SODA_VERSION_METHOD The method used to compute version values
for documents when they are inserted into a
collection or replaced.

OCI_ATTR_SODA_VIEW_NAME The name of the database view to which the
collection is mapped.

See Also:

• Oracle Call Interface Programmer's Guide

• Oracle Database Introduction to Simple Oracle Document Access (SODA)

Example 6-1 Getting All of the Metadata of a Collection

This example shows the result of invoking function OCIAttrGet() for collection-handle
attribute OCI_ATTR_SODA_DESCRIPTOR on the collection with the default configuration that was
created using Example 3-2. This retrieves all of the collection metadata as JSON data.

OraText *fetchedMetadata;
ub4 fetchedMetadataLen = 0;

rc = OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)fetchedMetadata,
 &fetchedMetadataLen,
 OCI_ATTR_SODA_DESCRIPTOR, errhp);

if (rc == OCI_SUCCESS)
 printf ("Collection specification: %.*s\n",
 fetchedMetadataLen,
 fetchedMetadata);

The default metadata for a collection is presented in Default Collection Metadata in Oracle
Database Introduction to Simple Oracle Document Access (SODA).

Chapter 6
Getting the Metadata of an Existing Collection

6-3

Example 6-2 Getting Individual Collection Metadata Attributes

This example uses OCIAttrGet() to get individual collection metadata attributes. For
each attribute, you pass the collection handle, the attribute, and the attribute type.

// String collection metadata attribute.
oratext *collAttr = NULL;

// Length of collection metadata attribute (relevant only for
// string attributes).
ub4 collAttrLen = 0;

ub1 ub1CollAttr = 0;
ub4 ub4CollAttr = 0;
boolean boolCollAttr = FALSE;

// Get and print collection metadata components. (For brevity we
// omit checking the return values of the OCIAttrGet calls here.)

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_COLL_NAME,
 errhp);
printf("Collection name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_TABLE_NAME,
 errhp);
printf("Table name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_SCHEMA,
 errhp);
printf("Schema name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_KEY_COL_NAME,
 errhp);
printf("Key column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,

Chapter 6
Getting the Metadata of an Existing Collection

6-4

 OCI_ATTR_SODA_KEY_SQL_TYPE,
 errhp);
if (ub1CollAttr == SQLT_CHR)
 printf ("Key column type: VARCHAR2\n");
else if (ub1CollAttr == SQLT_BIN)
 printf ("Key column type: RAW\n");
else if (ub1CollAttr == SQLT_NUM)
 printf ("Key column type: NUMBER\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub4CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_KEY_MAX_LEN,
 errhp);
printf ("Key column max length: %d\n", ub4CollAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_KEY_ASSIGN_METHOD,
 errhp);

if (ub1CollAttr == OCI_SODA_KEY_METHOD_UUID)
 printf ("Key assignment method: UUID\n");
else if (ub1CollAttr == OCI_SODA_KEY_METHOD_GUID)
 printf ("Key assignment method: GUID\n");
else if (ub1CollAttr == OCI_SODA_KEY_METHOD_SEQUENCE)
 printf ("Key assignment method: SEQUENCE\n");
else if (ub1CollAttr == OCI_SODA_KEY_METHOD_CLIENT)
 printf ("Key assignment method: CLIENT\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_COL_NAME,
 errhp);
printf("Content column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_SQL_TYPE,
 errhp);
if (ub1CollAttr == SQLT_JSON)
 printf ("Content column type: JSON\n");
else if (ub1CollAttr == SQLT_CHR)
 printf ("Content column type: VARCHAR2\n");
else if (ub1CollAttr == SQLT_BLOB)
 printf ("Content column type: BLOB\n");
else if (ub1CollAttr == SQLT_CLOB)
 printf ("Content column type: CLOB\n");

Chapter 6
Getting the Metadata of an Existing Collection

6-5

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub4CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_MAX_LEN,
 errhp);
printf ("Content column max length: %d\n", ub4CollAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_VALIDATION,
 errhp);
if (ub1CollAttr == OCI_SODA_JSON_VALIDATION_STRICT)
 printf ("Content column validation: STRICT\n");
else if (ub1CollAttr == OCI_SODA_JSON_VALIDATION_LAX)
 printf ("Content column validation: LAX\n");
else if (ub1CollAttr == OCI_SODA_JSON_VALIDATION_STD)
 printf ("Content column validation: STANDARD\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_COMPRESS,
 errhp);
if (ub1CollAttr == OCI_SODA_LOB_COMPRESS_NONE)
 printf ("Content column compress: NONE\n");
else if (ub1CollAttr == OCI_SODA_LOB_COMPRESS_HIGH)
 printf ("Content column compress: HIGH\n");
else if (ub1CollAttr == OCI_SODA_LOB_COMPRESS_MEDIUM)
 printf ("Content column compress: MEDIUM\n");
else if (ub1CollAttr == OCI_SODA_LOB_COMPRESS_LOW)
 printf ("Content column compress: LOW\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_ENCRYPT,
 errhp);
if (ub1CollAttr == OCI_SODA_LOB_ENCRYPT_NONE)
 printf ("Content column encrypt: NONE\n");
else if (ub1CollAttr == OCI_SODA_LOB_ENCRYPT_3DES168)
 printf ("Content column encrypt: 3DES168\n");
else if (ub1CollAttr == OCI_SODA_LOB_ENCRYPT_AES128)
 printf ("Content column encrypt: AES128\n");
else if (ub1CollAttr == OCI_SODA_LOB_ENCRYPT_AES192)
 printf ("Content column encrypt: AES192\n");
else if (ub1CollAttr == OCI_SODA_LOB_ENCRYPT_AES256)
 printf ("Content column encrypt: AES256\n");

OCIAttrGet((dvoid *)collhp,

Chapter 6
Getting the Metadata of an Existing Collection

6-6

 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&boolCollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_CTNT_CACHE,
 errhp);
if (boolCollAttr == TRUE)
 printf ("Content column cache: TRUE\n");
else
 printf ("Content column cache: FALSE\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_VERSION_COL_NAME,
 errhp);
printf("Version column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)(&ub1CollAttr),
 &collAttrLen,
 OCI_ATTR_SODA_VERSION_METHOD,
 errhp);
if (ub1CollAttr == OCI_SODA_VERSION_NONE)
 printf ("Version method: NONE\n");
else if (ub1CollAttr == OCI_SODA_VERSION_TIMESTAMP)
 printf ("Version method: TIMESTAMP\n");
else if (ub1CollAttr == OCI_SODA_VERSION_MD5)
 printf ("Version method: MD5\n");
else if (ub1CollAttr == OCI_SODA_VERSION_SHA256)
 printf ("Version method: SHA256\n");
else if (ub1CollAttr == OCI_SODA_VERSION_SEQUENTIAL)
 printf ("Version method: SEQUENTIAL\n");

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_MODTIME_COL_NAME,
 errhp);
printf("Last-modified column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_MODTIME_INDEX,
 errhp);
printf("Last-modified index name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,

Chapter 6
Getting the Metadata of an Existing Collection

6-7

 OCI_ATTR_SODA_CRTIME_COL_NAME,
 errhp);
printf("Created-on column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)collAttr,
 &collAttrLen,
 OCI_ATTR_SODA_MTYPE_COL_NAME,
 errhp);
printf("Media type column name: %.*s\n", collAttrLen, collAttr);

OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)&boolCollAttr,
 &collAttrLen,
 OCI_ATTR_SODA_READONLY,
 errhp);

if (boolCollAttr == TRUE)
 printf("Collection is read-only");
else
 printf("Collection is not read-only");

Related Topics

• Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata,
as JSON data, to OCI function OCISodaCollCreateWithMetadata().

6.2 Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata, as
JSON data, to OCI function OCISodaCollCreateWithMetadata().

The optional metadata argument to OCI function OCISodaCollCreateWithMetadata()
is a SODA collection specification. It is JSON data that specifies the metadata for
the new collection.

If a collection with the same name already exists then it is simply opened and its
handle is returned. If the metadata passed to OCISodaCollCreateWithMetadata()
does not match that of the existing collection then the collection is not opened and an
error is raised. To match, all metadata fields must have the same values.

See Also:

• Oracle Call Interface Programmer's Guide for information about OCI
function OCISodaCollCreateWithMetadata()

• Oracle Call Interface Programmer's Guide for information about
collection-handle attribute OCI_ATTR_SODA_DESCRIPTOR

Chapter 6
Creating a Collection That Has Custom Metadata

6-8

Example 6-3 Creating a Collection That Has Custom Metadata

This example creates a collection with custom metadata that specifies two metadata
columns, named KEY (for document keys), and JSON (for document content type JSON). The
key assignment method is CLIENT, and the content-column SQL data type is VARCHAR2. The
example uses collection-handle attribute OCI_ATTR_SODA_DESCRIPTOR to get the complete
metadata from the newly created collection.

sword rc = OCI_SUCCESS;
OCISodaColl *collhp = NULL;
OraText *metadata ="{\"keyColumn\" : \
{\"name\" : \"KEY\", \"assignmentMethod\": \"CLIENT\" }, \
\"contentColumn\" : { \"name\" : \"JSON\", \"sqlType\": \"VARCHAR2\" } }";
OraText *collName = "myCustomCollection";
OraText *fetchedMetadata = NULL;
ub4 fetchedMetadataLen = 0;

rc = OCISodaCollCreateWithMetadata(svchp,
 collName,
 (ub4) strlen(collName),
 metadata,
 (ub4) strlen(metadata),
 &collhp,
 errhp,
 OCI_DEFAULT));
if (rc != OCI_SUCCESS)
{
 printf(OCISodaCollCreateWithMetadata failed\n");
 goto finally;
}

rc = OCIAttrGet((dvoid *)collhp,
 OCI_HTYPE_SODA_COLLECTION,
 (dvoid *)fetchedMetadata,
 &fetchedMetadataLen,
 OCI_ATTR_SODA_DESCRIPTOR,
 errhp);

if (rc == OCI_SUCCESS)
{
 printf ("Collection specification: %.*s\n", fetchedMetadataLen,
fetchedMetadata);
}

finally: ...

Here is the output, formatted for readability. The values of fields for keyColumn and
contentColumn that are not specified in the collection specification are defaulted. The values
of fields other than those provided in the collection specification (keyColumn and
contentColumn) are also defaulted. The value of field tableName is defaulted from the

Chapter 6
Creating a Collection That Has Custom Metadata

6-9

collection name. The value of field schemaName is the database schema (user) that is
current when the collection is created.

Collection specification: {
 "schemaName" : "mySchemaName",
 "tableName" : "myCustomCollection",
 "keyColumn" :
 {
 "name" : "KEY",
 "sqlType" : "VARCHAR2",
 "maxLength" : 255,
 "assignmentMethod" : "CLIENT"
 },

"contentColumn" :
 {
 "name" : "JSON",
 "sqlType" : "VARCHAR2",
 "maxLength" : 4000,
 "validation" : "STANDARD"
 },
 "readOnly" : false
}

Related Topics

• Creating a Document Collection with SODA for C
Use OCI function OCISodaCollCreate() to create a collection, if you do not care
about the details of its configuration. This creates a collection that has the default
metadata. To create a collection that is configured in a nondefault way, use
function OCISodaCollCreateWithMetadata() instead, passing it custom metadata,
expressed in JSON.

Chapter 6
Creating a Collection That Has Custom Metadata

6-10

Index

A
attributes

collection handle, 6-2
document handle, 3-17

C
character sets, 4-1
collection configuration, 6-1
collection metadata

custom, 6-1, 6-8
getting, 6-2

collection-handle attributes, 6-2
collections

checking existence, 3-13
creating, 3-11

with custom metadata, 6-8
discovering, 3-14
dropping, 3-15
opening, 3-13

during creation, 3-11
components of SODA documents, 3-17
creating an OCI environment, 3-2
creating collections, 3-11

with custom metadata, 6-8
creating documents, 3-17

D
data guide

getting for a collection, 3-55
database role SODA_APP, 3-2
deleting collections

See dropping collections
deleting documents from collections

See removing documents from collections
discovering collections

checking existence, 3-13
listing, 3-14

document components, 3-17
document metadata, 3-17
document-handle attributes, 3-17
documents

creating, 3-17

documents (continued)
finding in collections, 3-28
inserting into collections, 3-22
removing from collections, 3-47
replacing in collections, 3-41

documents, indexing, 3-52
dropping collections, 3-15

E
environment, OCI, creating, 3-2
execution mode parameter

OCI_SODA_ATOMIC_COMMIT, 3-57
existing collection, checking for, 3-13

F
finding documents in collections, 3-28
freeing SODA handles, 3-2
functions

OCIAttrGet(), 3-17, 6-2
OCIAttrSet(), 3-17
OCIEnvNlsCreate(), 3-2
OCIHandleAlloc(), 3-2, 3-17
OCIHandleFree(), 3-2
OCISessionGet(), 3-2
OCISodaCollCreate(), 3-2, 3-11

opening existing collection, 3-13
OCISodaCollCreateWithMetadata(), 3-11
OCISodaCollDrop(), 3-2

example, 3-15
OCISodaCollGetNext()

example, 3-14
OCISodaCollList()

example, 3-14
OCISodaCollOpen()

checking collection existence, 3-13
OCISodaDataGuideGet(), 3-55
OCISodaDataGuideGetWithOpts(), 3-55
OCISodaDocCreate(), 3-2, 3-17
OCISodaDocCreateWithKey(), 3-17
OCISodaDocCreateWithKeyAndMType(),

3-17
OCISodaFind(), 3-28
OCISodaFindOneWithKey(), 3-2, 3-28

Index-1

functions (continued)
OCISodaIndexCreate(), 3-52
OCISodaIndexDrop(), 3-52
OCISodaInsert(), 3-22
OCISodaInsertAndGet(), 3-2, 3-22
OCISodaInsertAndGetWithCtnt(), 3-22
OCISodaInsertWithCtnt(), 3-22
OCISodaRemove(), 3-47
OCISodaRemoveOneWithKey(), 3-47
OCISodaReplOne(), 3-41
OCISodaReplOneAndGet(), 3-41
OCISodaReplOneAndGetWithCtnt(), 3-41
OCISodaReplOneAndGetWithKey(), 3-41
OCISodaReplOneWithCtnt(), 3-41
OCISodaReplOneWithKey(), 3-41
OCITransCommit(), 3-57
OCITransRollback(), 3-57

functions: OCISodaDocCount, 3-26
functions: OCISodaFind, 3-26
functions: OCISodaFindOne, 3-26
functions: OCISodaOperKeysSet, 3-26
functions: OCISodaRemove, 3-26
functions: OCISodaReplOne, 3-26
functions: OCISodaReplOneAndGet, 3-26
functions: OCISodaReplOneAndGetWithKey,

3-26

G
getting collection metadata, 6-2
getting document components, 3-17

H
handle

collection
attributes, 6-2

document
attributes, 3-17

use in multithreading, 5-1
handling transactions, 3-57

I
indexing JSON documents, 3-52
inserting documents into collections, 3-22

J
JSON

character encoding, 4-1
character sets, 4-1

JSON data guide
getting for a collection, 3-55

L
listing collections, 3-14

M
metadata

collections
getting, 6-2

documents
getting, 3-17

metadata, custom, 6-1
mode parameter

OCI_SODA_ATOMIC_COMMIT, 3-57
multithreading, 5-1

N
NLS settings, 3-2

O
object mode, OCI, 3-2
OCI_ATTR_SODA_CONTENT document-handle

attribute, 3-17
OCI_ATTR_SODA_CREATE_TIMESTAMP

document-handle attribute, 3-17
OCI_ATTR_SODA_CRTIME_COL_NAME

collection-handle attribute, 6-2
OCI_ATTR_SODA_CTNT_CACHE collection-

handle attribute, 6-2
OCI_ATTR_SODA_CTNT_COL_NAME

collection-handle attribute, 6-2
OCI_ATTR_SODA_CTNT_COMPRESS

collection-handle attribute, 6-2
OCI_ATTR_SODA_CTNT_ENCRYPT collection-

handle attribute, 6-2
OCI_ATTR_SODA_CTNT_MAX_LEN collection-

handle attribute, 6-2
OCI_ATTR_SODA_CTNT_SQL_TYPE

collection-handle attribute, 6-2
OCI_ATTR_SODA_CTNT_VALIDATION

collection-handle attribute, 6-2
OCI_ATTR_SODA_DESCRIPTOR collection-

handle attribute, 6-2
OCI_ATTR_SODA_KEY document-handle

attribute, 3-17
OCI_ATTR_SODA_KEY_ASSIGN_METHOD

collection-handle attribute, 6-2
OCI_ATTR_SODA_KEY_COL_NAME collection-

handle attribute, 6-2
OCI_ATTR_SODA_KEY_MAX_LEN collection-

handle attribute, 6-2
OCI_ATTR_SODA_KEY_SEQ_NAME collection-

handle attribute, 6-2

Index

Index-2

OCI_ATTR_SODA_KEY_SQL_TYPE collection-
handle attribute, 6-2

OCI_ATTR_SODA_LASTMOD_TIMESTAMP
document-handle attribute, 3-17

OCI_ATTR_SODA_MEDIA_TYPE document-
handle attribute, 3-17

OCI_ATTR_SODA_MODTIME_COL_NAME
collection-handle attribute, 6-2

OCI_ATTR_SODA_MODTIME_INDEX collection-
handle attribute, 6-2

OCI_ATTR_SODA_READONLY collection-
handle attribute, 6-2

OCI_ATTR_SODA_SCHEMA collection-handle
attribute, 6-2

OCI_ATTR_SODA_TABLE_NAME collection-
handle attribute, 6-2

OCI_ATTR_SODA_VERSION document-handle
attribute, 3-17

OCI_ATTR_SODA_VERSION_COL_NAME
collection-handle attribute, 6-2

OCI_ATTR_SODA_VERSION_METHOD
collection-handle attribute, 6-2

OCI_ATTR_SODA_VIEW_NAME collection-
handle attribute, 6-2

OCI_HTYPE_SODA_OPER_OPTIONS, 3-26
OCI_SODA_ATOMIC_COMMIT execution mode

parameter, 3-57
OCIAttrGet() function, 3-17, 6-2
OCIAttrSet() function, 3-17
OCIEnvNlsCreate() function, 3-2
OCIHandleAlloc() function, 3-2, 3-17
OCIHandleFree() function, 3-2
OCISessionGet() function, 3-2
OCISodaCollCreate() function, 3-2, 3-11

opening existing collection, 3-13
OCISodaCollCreateWithMetadata() function, 3-11
OCISodaCollDrop() function, 3-2

example, 3-15
OCISodaCollGetNext() function

example, 3-14
OCISodaCollList() function

example, 3-14
OCISodaCollOpen() function

checking collection existence, 3-13
OCISodaDataGuideGet() function, 3-55
OCISodaDataGuideGetWithOpts() function, 3-55
OCISodaDocCount function, 3-26
OCISodaDocCreate() function, 3-2, 3-17
OCISodaDocCreateWithKey() function, 3-17
OCISodaDocCreateWithKeyAndMType()

function, 3-17
OCISodaFind function, 3-26
OCISodaFind() function, 3-28
OCISodaFindOne function, 3-26

OCISodaFindOneWithKey() function, 3-2, 3-28
OCISodaIndexCreate() function, 3-52
OCISodaIndexDrop() function, 3-52
OCISodaInsert() function, 3-22
OCISodaInsertAndGet() function, 3-2, 3-22
OCISodaInsertAndGetWithCtnt() function, 3-22
OCISodaInsertWithCtnt() function, 3-22
OCISodaOperationOptions type, 3-26
OCISodaOperKeysSet function, 3-26
OCISodaRemove function, 3-26
OCISodaRemove() function, 3-47
OCISodaRemoveOneWithKey() function, 3-47
OCISodaReplOne function, 3-26
OCISodaReplOne() function, 3-41
OCISodaReplOneAndGet function, 3-26
OCISodaReplOneAndGet() function, 3-41
OCISodaReplOneAndGetWithCtnt() function,

3-41
OCISodaReplOneAndGetWithKey function, 3-26
OCISodaReplOneAndGetWithKey() function,

3-41
OCISodaReplOneWithCtnt() function, 3-41
OCISodaReplOneWithKey() function, 3-41
OCITransCommit() function, 3-57
OCITransRollback() function, 3-57
opening collections, 3-13

during creation, 3-11
operation options, 3-26

P
prerequisites for using SODA for C, 1-1

R
read operations, 3-26
removing documents from collections, 3-47
replacing documents in collections, 3-41
role SODA_APP, 3-2

S
SODA_APP database role, 3-2

T
threading, 5-1
transaction handling, 3-57

W
write operations, 3-26

Index

Index-3

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 SODA for C Prerequisites
	2 SODA for C Overview
	3 Using SODA for C
	3.1 Getting Started with SODA for C
	3.2 Creating a Document Collection with SODA for C
	3.3 Opening an Existing Document Collection with SODA for C
	3.4 Checking Whether a Given Collection Exists with SODA for C
	3.5 Discovering Existing Collections with SODA for C
	3.6 Dropping a Document Collection with SODA for C
	3.7 Creating Documents with SODA for C
	3.8 Inserting Documents into Collections with SODA for C
	3.9 SODA for C Read and Write Operations
	3.10 Finding Documents in Collections with SODA for C
	3.11 Replacing Documents in a Collection with SODA for C
	3.12 Removing Documents from a Collection with SODA for C
	3.13 Indexing the Documents in a Collection with SODA for C
	3.14 Getting a Data Guide for a Collection with SODA for C
	3.15 Handling Transactions with SODA for C

	4 Character-Set Considerations for SODA for C
	5 Multithreading in SODA for C Applications
	6 SODA Collection Configuration Using Custom Metadata
	6.1 Getting the Metadata of an Existing Collection
	6.2 Creating a Collection That Has Custom Metadata

	Index

